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Abstract

In recent years there has been much interest in the possibility that there exist more

spacetime dimensions than the usual four. Models of particle physics beyond the

Standard Model that incorporate these extra dimensions can solve the gauge hierarchy

problem and explain why the fermion masses a spread over many orders of magnitude.

In this thesis we explore several possibilities for models with extra dimensions.

First we examine constraints on the proposal of Arkani-Hamed and Schmaltz that the

Standard Model fermions are localized to different positions in an extra dimension,

thereby generating the hierarchy in fermion masses. We find strong constraints on the

compactification scale of such models arising from flavor-changing neutral currents.

Next we investigate the phenomenology of the Randall-Sundrum model, where the

hierarchy between the electroweak and Planck scales is generated by the warping in

a five-dimensional anti-de Sitter space. In particular, we investigate the “Higgsless”

model of electroweak symmetry breaking due to Csaki et. al., where the Higgs has

been decoupled from the spectrum by taking its vacuum expectation value to infinity.

We find that this model produces many distinctive features at the LHC. However,

we also find that it is strongly constrained by precision electroweak observables and

the requirement that gauge-boson scattering be perturbative. We then examine the

model with a finite vacuum expectation value, and find that there are observable

shifts to the Higgs scalar properties.

Finally, in the original large extra dimension scenario of Arkani-Hamed, Dimopou-

los, and Dvali, the hierarchy problem is solved by allowing gravity to propagate in

a large extra dimensional volume, while the Standard Model fields are confined to 4
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dimensions. We consider the case where there are a large number of extra dimen-

sions (n ∼ 20). This model can solve the hierarchy problem without introducing a

exponentially large radii for the extra dimensions, and represents a scenario that is

difficult to obtain in string theory. We show that, if this scenario holds, the number

of dimensions can be constrained to be larger than the number predicted by critical

string theory. Searching for signals of many dimensions is then an important test of

whether string theory is a good description of quantum gravity.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is a spectacularly successful description

of all current data on high-energy particle collisions [74]. However, if electroweak

symmetry is broken by the SM Higgs mechanism, then the potential for the Higgs

boson receives quantum corrections that tend to drive the scale of electroweak sym-

metry breaking (EWSB) up to the highest scale in the theory. This scale is currently

thought to be either the GUT scale (∼ 1015 GeV), or the Planck scale (∼ 1018 GeV),

both of which are far larger then the known scale of EWSB, ∼ 100 GeV. This is

known as the gauge hierarchy problem. It is not a fatal problem for the theory, as the

initial potential can simply be fine-tuned so that the full potential after the quantum

corrections breaks electroweak symmetry at the correct scale. Nevertheless, it would

be far more natural for there to be a dynamical reason for the electroweak scale to

be so low.

Most of the effort in searching for physics beyond the SM over recent years has

focused on solutions to this problem. For most of the history of the SM the leading

ideas for the solution to this problem were low energy supersymmetry and technicolor.

Recently, it has been probed that the presence of extra spacial dimensions, beyond

the usual 3, could also solve this problem. There are two possible approaches. In the

first model, of Arkani-Hamed, Dimopoulos, and Dvali the fundamental gravity scale

is taken to be near a TeV [20]. There are n extra compactified dimensions with the

SM fields localized to a point in those dimensions. The apparent weakness of gravity

1
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is then generated by the fact that the field generated by a gravitational source can

expand in the extra dimensions. This generates an effective Planck scale M̄2
pl =

V M2+n, where V is the volume of the compactified dimensions. The exponentially

large size of V generates the apparent hierarchy.

The second approach is due to Randall and Sundrum [136]. They propose that

spacetime is five dimensional with the metric of anti-de Sitter space (AdS5), ds2 =

e2kydx2 − dy2, where k is the AdS curvature and y is the coordinate of the extra

dimension. This extra dimension is compactified on an orbifold S1/Z2, with a 3-

brane localized at each fixed point, producing a slice of the AdS5. The electroweak

symmetry breaking sector is localized on one of the branes (called the TeV brane),

with a breaking scale that is naturally of Planckian size. However, in AdS space,

all scales are multiplied by powers of the exponential “warp” factor in the metric.

Hence, the masses appearing in the Higgs potential will be multiplied by the warp

factor evaluated on the TeV brane. In this way, the effective mass scale of EWSB is

v′ = ve−πkrc . With a radius of compactification rc ∼ 10/k, this generates the correct

weak scale.

In the next few years, the Large Hadron Collider will become operational. We will

then have direct access to physics at the scale where electroweak symmetry is broken.

Analysis of this data, possibly combined with data from the proposed International

Linear Collider, will give important insights into the mechanism of EWSB, and pos-

sibly the solution to the hierarchy problem. In light of this, it is very important

to explore the phenomenological consequences of the various possibilities for physics

beyond the Standard Model.

This thesis will explore some of the observable consequences of having extra space

dimensions. In the first two chapters we will examine a sceario of Arkani-Hamed

and Schmaltz called “split fermions” [23]. In this class of models the SM fermions

are localized to different positions in a flat extra dimension. It is possible that these

models could address the question of why the SM fermion masses are spread over

many orders of magnitude. In Chapter 2 we find the constraints on these models

from flavor changing neutral currents. Chapter 3 proposes a slight readjustment of

the model that relaxes these constraints.
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Chapters 4 through 7 explore various aspects of a version of the Randall-Sundrum

model. In this model, not only gravity, but all gauge fields and fermion fields live the

bulk of the AdS5. Only the Higgs is confined to the TeV-scale brane. Additionally,

the gauge group will be expanded from the usual SU(3) × SU(2)L × U(1)Y to the

left-right symmetric SU(3) × SU(2)L × SU(2)R × U(1)B−L. Csaki et. al. have

shown that in this setup the W and Z masses remain finite as the Higgs vacuum

expectation value is sent to infinity, and in the same limit the Higgs boson decouples

[55]. The leads to the so-called Higgsless model. In chapter 4 we investigate the

phenomenology of this model. We find strong constraints from precision electroweak

observables, and the requirement that the scattering of longitudinal gauge bosons

remains perturbatively unitary up to the cutoff. However, we show that when the

model is brought into agreement with current constraints, it must produce distinctive

signals at the Large Hadron Collider. Chapter 5 extends this analysis to include

kinetic operators for the gauge fields localized on one of the branes. These shift many

of the electroweak observables, and can help bring the model into agreement with

current data. In Chapter 6 we conclude this analysis by doing a Monte Carlo scan

over the entire parameter space. We find that, without adjusting the fermion sector,

the model can not simultaneously satisfy the precision electroweak and perturbative

unitarity constraints. One possible way of relaxing this tension is explored in chapter

7, where we allow the Higgs vacuum expectation value to be finite. There it is found

that the model can be brought into agreement with all known constraints. There

is then a physical Higgs scalar in the spectrum, and it’s properties are shifted from

those of the SM Higgs by amounts that should be measurable at the International

Linear Collider.

Finally, in chapter 8 we investigate a very different type of model. We consider

an ADD type of scenario where the fundamental gravity scale is small. However,

we take the number of extra dimensions to be ∼ 20. The hierarchy problem is then

solved without introducing exponentially large compactification radii. In addition,

this scenario is difficult to obtain in string theory, making experimental searches for

it an important test of whether strings provide a good description of quantum gravity.

We show that, if this scenario holds, it is possible to exclude the region of parameter
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space predicted by critical string theory.



Chapter 2

Flavor constraints on split fermion

models

2.1 Introduction

In recent years there has been much interest in the possibility that there may ex-

ist compact extra dimensions with sizes far above the Planck length. In partic-

ular, the possibility of TeV−1-sized extra dimension arises in braneworld theories

[16, 118, 155, 106, 107, 39]. By themselves, they do not allow for a reformulation

of the hierarchy problem, but they may be incorporated into a larger structure in

which this problem is solved, such as the case of large extra dimensions [20, 17, 21].

In the scenario with TeV−1 extra dimensions, the Standard Model (SM) fields are

phenomenologically allowed to propagate in the bulk. These models are hence subject

to stronger experimental constraints and have distinct experimental signatures from

the case where gravity alone is in the bulk.

There are many possibilities for how to place the Standard Model fields in the

TeV−1 bulk. In the universal extra dimensions scenario all fields see the extra dimen-

sions, giving rise to a conserved parity that relaxes direct production and precision

electroweak constraints, and may provide a dark matter candidate [18, 149, 148, 46].

The effects of universal extra dimensions in rare processes have been considered in

[33, 34, 6, 44]. It is also possible to localize the fermions without localizing the

5
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bosons, which allows for the gauge fields to propagate freely throughout the bulk.

More recently it was noticed by Arkani-Hamed and Schmaltz (AS) that one could lo-

calize different fermion species at different points in the TeV−1 extra dimensions [23].

These “split fermion” models naturally suppress many dangerous operators, partic-

ularly those inducing proton decay. They also can naturally generate large Yukawa

hierarchies; and it has been shown by multiple authors that there exist models which

can generate the correct spectrum of fermion masses, as well as the correct magni-

tudes for CKM matrix elements [90, 125, 45, 31, 113, 67]. The most stringent generic

limits in this case arise from precision electroweak measurements, which place the

compactification radius at R . 2− 4 TeV−1 [144, 123, 122, 102]. The specific fermion

locations can be probed in high energy collisions, and at very large energies, cross

sections will rapidly vanish since split fermions will completely miss each other in the

extra dimensions.[22, 142]

This makes the split fermion scenario an attractive possibility for the origin of

the Yukawa hierarchy. However, split fermions (like most models of the fermion spec-

trum) are also capable of generating large flavor changing neutral currents (FCNC).

The magnitude of these currents in the neutral meson sector has been estimated by

several groups, and apparently generate strong constraints[45, 68, 3]. In this paper

we reexamine these computations to derive more model independent constraints on

split fermion models arising from FCNC and show that it is possible to evade the

stringent bounds for natural regions of the parameters.

This paper is organized as follows. In Section 2 we set up the split fermion scenario

in as much generality as possible and give statistical arguments to demonstrate that

they can account for the observed fermion spectrum. We then describe how FCNC

are generated in this scenario. In section 3 we calculate the effects on neutral meson

oscillation. Section 4 presents the effects on rare B decays, and single top production

in e+e− collisions, and Section 5 concludes.
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2.2 The Model of Split Fermions

Here, we construct a very general model that characterizes the effects of separating

the Standard Model fermions in an extra dimension. We start by examining the

original model considered by AS.

In the AS model there is one extra dimension, which is taken to be flat. It is

possible that this extra dimension is actually a “brane” with a finite width embedded

in some other extra-dimensional scenario. For this reason TeV−1 dimensions are

often called “fat branes”, but they need not be tied to other models. Note that if

the brane is not a string theory object, but arises from some field theory mechanism,

then it necessarily has finite extent in the extra dimensions. This makes the study

of fat branes essential to building realistic field-theoretic models of extra dimensional

scenarios.

In this model the Standard Model fields are localized to the brane. Note that the

word brane here refers to any mechanism for achieving this localization. It may or

may not be the same as the branes encountered in string theory. Initially, all fields

are allowed to propagate in the entire dimension. In addition to the fields present in

the Standard Model, there is a real scalar field which couples to the fermions, but

not to the gauge bosons or the Higgs.

If the scalar has a Z2-symmetric potential, then it can develop a stable solution

which tunnels from one of the vacua to the other, called a kink solution. A mechanism

for localizing fermions to a thin but finite width region inside a domain wall has been

known for some time [109]. There it was noted that in 1+1 dimensions a massless

fermion with a Yukawa coupling to a scalar field that has a kink-profile vacuum

expectation will develop a zero mode, with a Gaussian profile centered at the location

of the kink. This can be trivially extended to more dimensions by considering a

domain wall instead of a soliton and making all zero modes constant in the transverse

directions. Note that a five-dimensional fermion field contains two four-dimensional

fermions, one of each chirality. If the extra dimension is infinite, then the zero-mode of

only one chirality is normalizable. If the extra dimension is finite then something else

is needed to produce chirality. A standard procedure is to compactify the dimension
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on an S1/Z2 orbifold, which projects out the unwanted chirality. A nice side-effect of

this is to render the kink absolutely stable.1

In contrast to the fermion sector, the gauge bosons are free to propagate through-

out the extra dimension. Since the dimension is compact, and flat, the mass spectrum

of the Kaluza-Klein gauge states is linear with M2
n = n2/R2, and the orbifold bound-

ary conditions project out the odd solutions, so the wavefunctions along the fifth

dimension, y where 0 ≤ y ≤ R, are

A(n)µ(x, y) =

√
2

R
cos(

nπy

R
)Aµ(x) (n ≥ 1), (2.1)

where R is the size of the extra dimension. Putting all this together allows investiga-

tion of brane world models where there is a single extra-dimension of roughly inverse

TeV size with fermions localized in the center and gauge bosons propagating though

the entirety.

A more interesting picture can be obtained by thinking about the fermion localiza-

tion mechanism. There is a simple heuristic for why this should occur. The fermion

is Yukawa coupled to a scalar field which develops a non-zero VEV. The ordinary

fermion Higgs phenomena should then give the fermion a mass. However, the VEV is

position dependent and in particular there is a place where it is zero (the center of the

kink). So the fermion has a position dependent mass, which is somewhere zero. Thus,

the fermion is easiest to excite near the zero mass, and so most of the probability for

the lowest lying state (the zero mode) will live near the center of the kink.

Given that heuristic, it should be reasonable that if the 5D fermion has a mass

M , then the center of the Gaussian moves to y = M/2µ2, where µ is the slope of the

kink profile, and v is the scale of the VEV. Indeed, it turns out that this is the case,

as was first noted by Arkani-Hamed and Schmaltz [23]. This allows different fermion

fields to be localized at different points in the extra dimension. To see why this is

desirable, consider an operator, O, that involves fermions separated by a distance d.

The effective 4D coupling in the dimensionally reduced theory is proportional to the

1It is interesting to think that if one invokes a mechanism to localize the gauge bosons, as in [73],
then one could have a fat brane residing in an infinite dimension.
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integral over the extra dimensions of the wavefunctions of all fields appearing in O.

Since the fermion wavefunctions are Gaussian, this gives a suppression proportional to

e−aµ2d2
, where a depends on the operator being considered. This has been shown to be

very effective at suppressing dangerous higher-dimensional operators, such as proton

decay. Additionally, the fact that exponentially different couplings can result from

linear separations provides a natural means of explaining the fermion mass hierarchy.

Lighter fermions have greater separation between their left and right handed com-

ponents. In this way Arkani-Hamed and Schmaltz proposed a theory to explain the

Yukawa hierarchy without invoking new symmetries, and which is safe from proton

decay. Several authors have proposed specific “geographies” that do indeed reproduce

the correct fermion masses, as well as the CKM parameters [90, 125, 45].

There are, however, other potentially dangerous effects of the fermion separation

which are not suppressed by this mechanism. The gauge bosons will have a Kaluza-

Klein (KK) tower of states. The zero modes, which are flat in the extra dimensions,

correspond to the SM gauge fields, and have the correct couplings to the fermion

zero modes. On the other hand, the excited states have cosine profiles, as given in

Eq. (2.1).2 The coupling strength of these modes to the fermions are scaled by an

integral over the overlap of the fermion and gauge wavefunctions. However, since the

height of the boson wavefunction will be different at the locations of the different

fermions, there will be non-universal couplings of a single gauge KK-state to different

fermion species. This leads to the possibility of flavor changing interactions, including

tree-level neutral currents, for the KK-modes of the γ, Z, and gluon, as illustrated in

Fig 2.1. One then expects large effects to come from the tree-level contributions of

the KK gluon states to FCNC processes, in particular to neutral meson oscillation.

Calculation of these effects can put limits on the size of the extra dimension. Also,

note that while this discussion was motivated by the kink model, these issues will

be relevant to any model with split fermions. This is an example of the general

principle that any attempt to explain the Yukawa hierarchy will necessarily treat

flavors differently, and will tend to generate large flavor-changing effects.

In practice, geography independent constraints have been difficult to obtain due

2In general they are exponentials, einy, but the orbifolding projects out the odd modes.
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qi

qj
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Figure 2.1: Feynman diagram for the tree-level KK gauge exchange mediating neutral
meson oscillation.

to the large number of parameters in the model. These are, R, σ, the width of the

fermion wavefunctions (which is 1/µ in the kink model), and (dn−d) positions, where

d is the number of extra dimensions and n is the number of independent fermion fields.

Previous discussions [45, 68, 3] have put constraints on R only by first obtaining a

single set of positions that reproduce the Yukawa couplings of the Standard Model,

and calculating the flavor-changing effects in that particular geography. However, one

would like a more model-independent way of understanding the magnitude of flavor

effects in this class of models.

To accomplish this we consider the problem of FCNC in split fermion models in as

much generality as possible. A specific, realistic model exists in string theory [3], as

well as the field theory example just presented. In summary, we abstract from these

the following points:

1. There exist one or more extra dimensions, compactified with a radius R.3

2. Each fermion field, ψi has a chiral zero mode that is localized near the center

of the dimension at yi, with Gaussian profiles ψ ∼ e−(y−yi)
2/σ2

, where the width

σ ¿ R. If there is more than one extra dimension they are taken to be isotropic

in those dimensions ψ ∼ e−(~y−~yi)
2/σ2

.

3In one dimension the compactification is S1/Z2. In more dimensions we take the compactification
to be flat, and orbifolded in such a way that it looks like a simple product of single dimensions.
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3. The gauge bosons are free to propagate in the entire “fat brane” part of the

extra dimension. (There may be a larger bulk accessible to gravity.)

4. The boundary conditions for the bosons are taken to be such that the wavefunc-

tion for the n-th KK-mode is A ∼ cos(nπy/R). Note that these are generally

the same conditions that allow chiral zero modes for the fermions.

5. The field content (gauge group, number and charge of matter fields) is iden-

tical to the Standard Model, plus whatever fields are necessary to localize the

fermions.

These assumptions generate an effective four-dimensional Lagrangian that reduces to

the Standard Model at low energies. The new features present are the propagating

gauge KK-modes, their couplings, and the fact that the Higgs Yukawa couplings are

determined by the fermion locations.

We now construct the interaction Lagrangian for this scenario, focusing on the

quark sector in this paper. An analogous treatment of the leptonic sector can be

performed. Note that there are excited states of the fermion fields in addition to the

KK boson states. However, since the fermions are localized with a width smaller than

R, the scale of the fermion excitations will be significantly higher than that of the KK

gauge states. In addition, the fermion KK modes do not participate in the processes

considered here. We therefore only consider the fermion zero modes, while we include

the complete KK-tower for the bosons. With one extra dimension the coupling of the

n-th KK boson to a flavor localized at the scaled position ` = x/R is determined by

the overlap of wavefunctions

∫ 1

0

dyψ̄(y)ψ(y)A(n)(y) '
∫ 1

0

dy cos (nπy) e−(y−`)2R2/σ2 ' cos (nπ`) e−n2σ2/R2

. (2.2)

where y has now been normalized to R. For δ extra TeV−1 dimensions this generalizes

to

c(~n)(`) ≡
(

δ∏

k=1

cos (nkπ`k)

)
e−~n2σ2/R2

. (2.3)
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The gauge coupling of the gluons, for instance, can then be written in flavor space as

Lint =
√

2gsG
A
(n)µ

(
d̄LγµTAC

(n)
L dL + d̄RγµTAC

(n)
R dR

)
+ (d → u) + h.c.. (2.4)

Here dL(R) is the vector of left (right) handed down-type quarks, d̄ = (d s b), gs is the

SU(3) coupling constant, and G(n)µ is the n-th KK gluon field. The diagonal matrices

C
(n)
i are the wavefunction overlaps given by Eq. (2.2). The factor of

√
2 arises from

the rescaling of the gauge kinetic terms to the canonically normalized value for all n.

Now, the Higgs zero mode, which is the Standard Model Higgs, is flat in the extra

dimension, H0 ∝ 1/R. Then the Yukawa couplings to the 4D Higgs field are given by

Rλ5

∫ 1

0

dyH0q̄LqR ' λ5

∫ 1

0

dy e−(y−yi)
2/σ2

e−(y−yj)
2/σ2 ' λ5e

−(yi−yj)
2/σ2

. (2.5)

Here λ5 is an overall 5D coupling constant that is fixed to be O(1) by the top quark

mass. We write the 4D Yukawa couplings to (for instance) the down-type quarks in

the flavor basis as

LYukawa = d̄V
(d)†
R MdV

(d)
L d (2.6)

Where V
(d)†
R MdV

(d)
L is the matrix of Yukawa couplings with elements given by Eq.

(2.5), and Md is the diagonal mass matrix.

We can now write the relevant terms of the Lagrangian as

L = d̄LV
(d)†
R MdV

(d)
L dR + ūLV

(u)†
R MuV

(u)
L uR +

g√
2
W (0)

µ ūLγµdL

+
∞∑

n=1

[√
2gsG

(n)A
µ

(
d̄LγµTAC

(n)
L dL + d̄RγµTAC

(n)
R dR

)
+ (d → u)

]
+ h.c. (2.7)

After the usual transformation to the mass basis, the CKM-matrix is clearly the

product V
(u)†
L V

(d)
L . Note, however, the presence of non-universal couplings prevents

the products U
q(n)
i ≡ V

(q)†
i C

(n)
i V

(q)
i from being trivial, so there are flavor-changing

interactions in the KK-gluon sector. These also occur in the excited photon and Z

couplings. However, those are suppressed relative to the gluons by a factor of g/gs,



2.2. THE MODEL OF SPLIT FERMIONS 13

so we expect that the KK-gluons will dominate any process to which they contribute.

Before examining the numerical impact of the tree-level FCNC interaction in rare

processes, it will first be useful to get a handle on how far the fermions need to

be separated. It has been shown by Grossman and Perez [90] that there exists at

least one set of positions that correctly reproduces the observed fermion spectrum

and magnitude of the CKM elements. They found that, subject to a certain set of

naturalness assumptions, there was a single solution. A different solution was found

in [45] by choosing different up and down-type Yukawa coupling constants in the 5D

theory. Typical separations in these solutions are from 1 − 20 units of the fermion

width. In what follows, we parameterize the separation between 2 fermions in units

of the width, i.e. ∆y = yi−yj = αijσ, and treat αij as phenomenological parameters.

In addition, we find it useful to define ρ = σ/R.

As a counterpoint to the studies in [90] and [45] we have performed a simple

Monte-Carlo analysis in an attempt to see how large of a hierarchy is generated

naturally for fermions randomly distributed on an interval. To do this we randomly

draw fermion positions from a distribution flat on the interval [0, αmax], and use these

to compute the Yukawa matrices from Eq. (2.5). We then compute the singular

values of these matrices, which are the fermion masses. We can get a sense of the

hierarchy by taking a particular Yukawa matrix (say the up-type) and finding the

ratio of the largest to smallest singular value. In Fig 2.2 we show a histogram of

the log of this ratio for αmax = 15. For comparison we have computed the same

value for a “null hypothesis” where instead of the split fermion scenario, the entries

of the Yukawa matrices themselves are drawn directly from a distribution flat on

the interval [0, 1]. As expected, the case of split fermions clearly generates a much

larger hierarchy. What is surprising is that one needs to set αmax ≈ 10− 15 before a

hierarchy of six orders of magnitude becomes common, while in [23] it was claimed

this hierarchy could result from αmax ≈ 5. The discrepancy is due to the fact that,

while a separation of α = 5 will indeed generate a matrix element of order 10−6, the

singular values (which are the actual masses) of a full Yukawa matrix with separations

no larger than 5 will tend to be too large. We note that the full fermion spectrum

can be generated by ρ as large as 1/15, i.e. without introducing a new large hierarchy
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Figure 2.2: Histograms of 105 random trials of the size of the fermion hierarchy,
log(m1/m3), where m1 is the largest and m3 the smallest mass for a single Yukawa matrix.
Main graph: In the split fermion model where the positions are randomly drawn on the
interval [0, 15] in units of the fermion width. Inset: In a “null hypothesis” where the Yukawa
matrix elements are randomly drawn from the interval [0, 1].

between the compactification and fermion localization scales. Also note that αmax

represents the part of the extra dimension in which the fermions can be localized and

need not be the same as 1/ρ, which is the size of the dimension through which the

gauge bosons can propagate.

2.3 Constraints from Neutral Meson Oscillation

Significant effects from the flavor-changing gluonic couplings should show up in neu-

tral meson oscillations. We start by examining the effects on Kaon mixing. The
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∆S = 2 effective Lagrangian from the single KK-gluon exchange depicted in Fig. 2.1

is

L∆S=2
eff =

2

3
g2

s

∞∑

~n=1

1

M2
n

∑
i,j=L,R

U
d(n)∗
i(sd) U

d(n)
j(ds)d̄iγ

µsid̄jγµsj

=
2

3
g2

s

( ∑
i,j=L,R

V d
i(11)V

d∗
i(12)V

d∗
j(11)V

d
j(12)

× ×
∞∑

n=1

(cos(nπxdi
)− cos(nπxsi

))(cos(nπxdj
)− cos(nπxsj

))

M2
n

e−ρ2n2

)
. (2.8)

Here, the xi are the positions of the d quark fields, yi of the s quark, and we have

used the unitarity of the V ’s (here, we have approximated this with 2 × 2 unitarity,

we discuss the third-generation effects below). We are especially interested in the

form of the sum over the KK-modes. While KK-sums are usually divergent in more

than one extra dimension and require a cutoff, ours contains a natural cutoff arising

from the finite width of the fermion zero mode, and hence is convergent for a number

of extra dimensions δ ≥ 1. This is simple to understand physically. The cutoff sets

in when the wavelength of the KK-mode is of order the fermion width, which occurs

at R/nmax = σ. At higher momenta the wavefunction of the boson is oscillating

many times within the fermion allowing it to resolve the fermion’s wavefunction, and

exponentially decouples. The fact that this cutoff arises naturally in the field theory

model is an attractive feature of that particular mechanism for fermion localization.

In one additional dimension the sum converges even without the exponential sup-

pression. In this case it is insensitive to the value of ρ and can be computed analyti-

cally by ignoring the exponential factor. To do this we need to evaluate

F (x, y) ≡
∞∑

n=1

(cos(nπx)− cos(nπy))2

n2
, (2.9)

and

G(x, y) ≡
∞∑

n=1

(cos(nπx1)− cos(nπy1))(cos(nπx2)− cos(nπy2))

n2
. (2.10)
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The computations for these sums are presented in the appendix. The final result is

F (x, y) =
π2

2
|x− y|, (2.11)

and

G(x1, y1, x2, y2) =
π2

2
(|x1 − x2|+ |y1 − y2| − |x1 − y2| − |x2 − y1|). (2.12)

This tells us that the flavor changing effects depend, as expected, on any nonzero

separation between fermion fields.

The hadronic matrix elements for the gluonic contributions to Kaon mixing are

given by (computed in the vacuum insertion approximation)[78]:

〈K̄0|d̄LγµsLd̄LγµsL|K0〉 =
1

3
f 2

Kmk (2.13)

〈K̄0|d̄LγµsLd̄RγµsR|K0〉 = f 2
Kmk

(
1

12
+

1

4

(
m2

K

m2
d + m2

s

))

as well as those with (L ↔ R), which have the same evaluation. Written out in full,

the contribution to ∆mK is then

∆mK =Re 〈K̄0|L∆S=2|K0〉

=
2

3
g2

sR
2

(
|V d

L 11V
d∗
L 12|2F (xdL

, xsL
)〈K̄0|d̄LγµsLd̄LγµsL|K0〉

+ |V d
R 11V

d∗
R 12|2F (xsR

, xsR
)〈K̄0|d̄RγµsRd̄RγµsR|K0〉 (2.14)

+ (V d
L 11V

d∗
L 12V

d∗
R 11V

d
R 12)G(xdL

, xsL
, xdR

, xsR
)〈K̄0|d̄LγµsLd̄RγµsR|K0〉

+ (V d
R 11V

∗d
R 12V

∗d
L 11V

d
L 12)G(xdL

, xsL
, xdR

, xsR
)〈K̄0|d̄RγµsRd̄LγµsL|K0〉

)
,

where xdL,R
are the positions of the d field, and the xsL,R

of the s. Note that all

possible separations (between quark fields) are present, but some enter with different

signs. In principle then, the gluonic contribution could be made small for any values

of R and ρ by placing the quarks at appropriate places. However, the terms involving

only right or left handed fields occur with the same sign. So, to achieve significant
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reduction, cancellations must occur between those terms and the terms which involve

both chiralities. This involves tuning the quark positions to the values of different

hadronic matrix elements, which introduces a fine-tuning problem. Otherwise, it

would imply that the UV physics that localizes the quarks has information about the

IR behavior of QCD! We can therefore expect that cancellations will be O(1) at most.

This is seen clearly in the Monte Carlo trials, where the random positions have no

relation to the hadronic matrix elements and no significant cancellation occurs.

In light of this we can explore the magnitude of the flavor effects just by looking

at a single term in (2.14); for convenience we choose the first. We can then describe

the contributions with only three parameters: the radius R, the scale ratio ρ, and

the separation between one pair of fermions, α. The sum over KK-modes is then

calculable in terms of these parameters. Since R enters only in the mass in the KK

propagator, we can write the contribution in the simple form

∆mK =
2

9
g2

sf
2
KmKR2V 4

ds,dsFρ(ρα) (2.15)

where V 4
ds,ds stands for the appropriate product of 4 elements of the V u,d

L,R matrices,

two at each vertex, and, as shown in (2.11), F (x, y) only depends on the difference of

it’s arguments, so we can write it as a function of only a single variable, given by the

product ρα. The subscript on F reminds us that in two dimensions or more F also

depends on ρ directly as the cutoff parameter, in which case it must be computed

numerically. If we demand that this contribution to ∆mK be no larger than the

measured value (a conservative assumption from the point of view of constraining the

model) we get

1

R
≥ βK

√
V 4

ds,dsFρ(ρα), (2.16)

where βK is a coefficient of dimension 1, which depends on the meson parameters.

This expression immediately generalizes to other neutral meson systems by using the

appropriate coefficient β, and the appropriate matrix elements of V . Table 2.1 shows

the values of β for cases of interest, along with representative values of Fρ(ρα).
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Figure 2.3: The behavior of the constraint on 1/R with α for various values of ρ. The area
below the curves is excluded. Note that the size of the additional dimension in units of the
fermion width is 1/ρ, so the curve for ρ = 1/10 ends at a maximal separation of α = 10.

The resulting constraints are shown in Fig. 2.3 and 2.4, for 1 and 2 extra dimen-

sions respectively, using the value of β and V 4
ds,ds appropriate for the Kaon sector,

and assuming that the V are CKM-like in magnitude (we discuss that assumption in

detail below). There are two features of note. First, with one extra dimension the

constraint is a simple square-root function, as can be seen from Eq. (2.11). This

means that the flavor-changing effects can be made arbitrarily small by reducing ρ.

That is, by increasing the hierarchy between fermion and boson scales. Second, in

two dimensions the effect seems to be roughly constant in ρ, and flattens off at large

α. We know that the sum over the KK states is diverging logarithmically before

it reaches the cutoff, and so it should be getting larger as ρ decreases. However,

shrinking ρ brings the fermions closer together making the flavor effects smaller. In

two dimensions these two effects are seen to roughly cancel. In three or more dimen-

sions, the divergence of the sum wins completely, and the bounds on R−1 are huge,

effectively removing these cases from consideration as realistic models.

In Figs. 2.5 and 2.6 we display our results for all meson mass differences, taking
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Figure 2.4: Constraints on 1/R from Kaon mixing for two extra dimensions; the area below
the curves is excluded.

ρ = 1/100. For mixing in the Kaon sector and B0
d sector, the bound is set by

demanding that the new physics produce an effect which is no larger than the observed

value. For D0 mixing, the effect is restricted to lie below the current experimental

bound. There is no experimental upper bound on B0
s mixing, so we assume two

values, one the size expected in the Standard Model, the other about 4 times larger,

corresponding to the curves labeled small and large, respectively. Note that the most

stringent constraints come from mixings involving the first and second generation.

This pattern suggests a loop-hole in the otherwise stringent constraints. Namely,

the V matrices need not be CKM-like. Since the CKM matrix is the product V
(u)†
L V

(d)
L ,

the observed CKM hierarchical structure could result from a completely different

structure at the level of the V i. If there is small first to second generation mixing the

Kaon and D0 constraints will be relaxed, and all constraints would then be of order

a few TeV, even for large values of ρ.

However, in the previous calculation we ignored the third generation when impos-

ing the unitarity condition in Eq. (2.8). Transitions between two 4D mass eigenstates

will involve all three generations in the localization (flavor) basis. In this case the
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Figure 2.5: Constraints from all species of neutral meson mixings for one extra dimension,
taking ρ = 1/100. See text for a description of the experimental values used. Note that the
K0 and D0 results are separate lines that overlap due to a numerical coincidence.

Figure 2.6: Neutral meson constraints for two extra dimensions. The area below the curves
is excluded.
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ρ α = 1 α = 5 α = 10 α = 20 α = 50

1D
10−1 1.15 2.33 4.76 NA NA
10−2 0.036 0.23 0.48 1.00 2.45
10−3 0.0012 0.023 0.048 0.097 0.25
2D
10−1 2.05 3.82 3.59 NA NA
10−2 2.25 5.27 6.46 7.47 8.22
10−3 2.27 5.41 6.67 8.08 9.78

Meson β(MeV)
K0 1125.86
B0

d 478.01
B0

s 67.4346
D0 1124.23

Table 2.1: Left: Representative values of the sum Fρ(ρα) for one and two extra
dimensions. Right: Multiplicative β factors for mass splittings of the neutral mesons;
1/R ≥ β

√
V 4Fρ(ρα).

matrices U
(n)
i will contain the positions of all three generations of quarks, and the

unitarity conditions on the V matrices will be changed. For instance, for the term in

Eq. (2.14) with both left-handed chiralities (and dropping the L index), in place of

|V d
L 11V

d∗
L 12|2F (xd, xs) we should have

|V11|2V12V
∗
13F (xd, xs) + V ∗

11V12V
∗
32V31G(xd, xs, xb, xs)

+V ∗
31V32V

∗
13V11G(xb, xs, xd, xs) + |V31|2|V32|2F (xb, xs) (2.17)

These additional terms (including the ones not displayed above corresponding to right

and mixed chiralities) will insure that in any mass splitting observable many mixing

angles and fermion separations will enter. It then becomes non-trivial to reduce ∆mK

by adjusting mixings alone. However, it is still possible to reduce the Kaon and D0

constraints by noticing that the new terms contain fewer diagonal elements. Hence,

if the weak and mass eigenbases are not too badly misaligned, i.e. the V i have large

diagonal elements and smaller off-diagonal elements, then the strongest constraints

may be relaxed somewhat. To get a better sense of what is typically possible, we

again run Monte Carlo simulations. From these we learn that a typical suppression

factor is 10−1 for the factors multiplying β in Eq. (2.16), 10−2 is not uncommon,

and 10−4 is obtainable, but rare, even for the fairly large value αmax = 15. This is

illustrated in Fig. 2.7.
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Figure 2.7: Histogram of values of the factor H =
√∑

V 4F (x, y) summed over the appro-
priate fermion positions and V matrix elements.

All of these considerations together show that once the parameter space is thor-

oughly explored, it is possible to evade the large constraints from meson mixing for

natural regions of the parameters.

2.4 Rare Decays

We also consider processes involving only a single flavor-changing vertex. The best

examples of this type which receive contributions from KK gluon exchange are rare

B decays, such as B → ψKS and B → φKS. The most interesting aspects of these

decays are, of course, their associated CP-violating asymmetries. However, since

we have no control of the phases present in split fermion models, we can’t address

the new contributions to CP-violating observables in a model independent fashion.

Nonetheless, there are tree-level strong coupling contributions to these decays, so we

can expect significant contributions to the branching fractions in split fermion models.
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The effective Lagrangian for a process with a single flavor change is given by

L∆b=1
eff =

2

3
g2

s

∞∑
n=1

1

M2
n

∑
i,j=L,R

U
d(n)
i(qb)q̄iγ

µbiq̄jγ
µqj. (2.18)

Since one vertex is flavor diagonal, the sum depends on the absolute position of the

fermions. For instance, the analog of Eq3. (2.9-2.11) is

F ′(x, y, z) =
∞∑

n=1

cos(nπz)(cos(nπx)− cos(nπy))

n2

= −π2

4

(
|z + x|+ |z − x| − |z + y| − |z − y|+ πx2 − πy2

)
. (2.19)

where z corresponds to the location of the quark at the flavor conserving vertex. This

additional complication turns out to be minor, as the actual magnitude of the sum

is similar to that in the previous case and does not vary much over the parameter

space, as can be seen from Fig. 2.8.

We consider the decay amplitude

A(B → φKS) =
2

3
g2

sR
2

∑
i,j=L,R

F ′(xbi
, xsi

, xsj
)〈φKS|(s̄iγ

µbi)(s̄jγµsj)|B0〉 (2.20)

The relevant matrix elements are [28]

〈φKS|(s̄LγµbL)(s̄LγµsL)|B0〉 =
1

3
H

〈φKS|(s̄L,iγ
µbL,j)(s̄L,jγµsL,i)|B0〉 =

1

3
H (2.21)

〈φKS|(s̄LγµbL)(s̄RγµsR)|B0〉 =
1

4
H

〈φKS|(s̄L,iγ
µbL,j)(s̄R,jγµsR,i)|B0〉 =

1

12
H.

Here, i, j are color indices, displayed explicitly in the non-singlet terms which now
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Figure 2.8: KK sum for processes involving a single flavor changing vertex as a function of
one of the fermion positions, corresponding to the case where one of the fermions is localized
at the orbifold fixed point. The position of the third (flavor conserved) fermion, z, is varied
in steps of one unit, with z = 0 corresponding to the top curve and z = 20 to the bottom.
The sum is done for a single extra dimension of size 20 units.

contribute. The common factor is

H = 2(εφ · pB)fφm
2
φF+(m2

φ), (2.22)

where εφ represents the polarization vector of the phi meson, and F+(q2) is the form

factor for this decay. There are an additional four matrix elements obtained by

taking (L ↔ R). We use the values fφ = 233 MeV [94], F+(m2
φ) = 0.38 [154], and

mφ = 1020 MeV [95].

For the branching fraction we obtain (ignoring the O(1) differences among matrix



2.4. RARE DECAYS 25

elements)

B(B → φKS) =
1

64πmBΓB

f 2
φm4

φF
2
+(m2

φ)

( ∞∑
n=1

Ud†
L(ss)U

d
L(bs)

n2

)2

(2.23)

≈ 9.1× 10−6

(
V 4

sb,ss

0.04

)2 (
R

1 TeV−1

)4
( ∑

i,j=L,R

F ′(xbi
, xsi

, xsj
)

)2

,

and similarly

B(B → ψKS) ≈ 5.6× 10−5

(
V 4

sb,cc

0.04

)2 (
R

1 TeV−1

)4
( ∑

i,j=L,R

F ′(xbi
, xsi

, xcj
)

)2

.

(2.24)

Demanding that this not be larger than the observed rate gives the approximate

constraints 1/R ≥ 1.0 TeV from B → φKS and 1/R ≥ 0.5 TeV from B → ψKS.

These are not competitive with those from Bd and Bs meson oscillation, and provide

a good consistency check. It is interesting to note that if a way can be found to

reduce the constraints from the Kaon sector to the few TeV scale without disturbing

the b-quark couplings (say by arranging the mixing angles), then this contribution to

B → ψKS, φKS is of roughly the same order as that of the Standard Model. Any

new phases in this scenario will thus contribute to the CP-violating observables with

equal effects in each decay channel.

We have also estimated the ree-level KK contribution to single top quark pro-

duction at LEP, e+e− → t̄q + tq̄ (with q = u, c) which proceeds via KK γ(n) and

Z(n) exchange. Using the parameterization in [96] we find an effective anomalous

flavor-changing vector coupling vZ given in this case by

vZeff =
(√

2 + 2 sin θW Q
)

M2
W R2

∑
i,j=L,R

∞∑
n=1

Uu
i(tc)U

l
j(ee)

n2
(2.25)

≈ 6.9× 10−4

(
R

1 TeV−1

)2 ∑
i,j=L,R

(
V 4

ut,ee

0.04

) ( ∑
i,j=L,R

F ′(xci
, xti , xej

)

)
, (2.26)
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where we have used only the c → t since it dominates the u → t by a factor of

10. The current constraint on this effective flavor changing coupling from LEP data

is vZ ≤ 0.75 [4], and so split fermions in the up-quark sector are not significantly

constrained.

Lastly, we examine the potential gauge KK contributions to the purely leptonic

decay of neutral B mesons, B0
q → `+`−, with q = d, s. This process proceeds through

tree-level γ(n) and Z(n) KK exchange, and could ,in principle, probes fermion splitting

in the leptonic sector as well as in the quark sector. Here, for simplicity, we will assume

that the leptonic fields are all localized at the same point in the extra dimension and

will ignore any possible flavor changing leptonic interactions. The ∆b = 1 Lagragian

describing this decay is then

L∆b=1
eff =

∑
α=γ,Z

2G2
α

∞∑

~n=1

1

M2
n

∑
i=L,R

U
d(n)
i(qb)g

b
i,αq̄iγ

µbi g
`
i,α

¯̀
iγµ`i , (2.27)

where Gγ = e and GZ = g/ cos θw. The hadronic matrix element governing this decay

is given by

〈0|gb
L,γ/ZU

d(n)
L q̄LγµbL + gb

R,γ/ZU
d(n)
R q̄RγµbR|B0

q 〉 = ifbp
µ
B[gb

L,γ/ZU
d(n)
L − gb

R,γ/ZU
d(n)
R ] ,

(2.28)

where pµ
B represents the momentum of the B0 meson. Due to parity, only the axial-

vector current contributes to this matrix element. In the case of photon KK exchange,

such contributions are generated when the left- and right-handed fermions are local-

ized at separate points. Here, we will ignore this possibility and consider the case

where only the Z(n) exchange mediates this decay. The branching fraction is then

B(Bs → µ+µ−) =
4G2

F M4
W f 2

Bm2
`mB

πc4
w

τBR4

[
1− 4m2

`

m2
B

]1/2 ∣∣∣
∑

n

gb
L,ZU

d(n)
L − gb

R,ZU
d(n)
R

n2

∣∣∣
2

= 1.15× 10−6

(
R

1 TeV−1

)
V 4

db,µµ

(0.04)2

×
∣∣∣gL,ZF ′(xbL

, xqL
, x`L

)− gR,ZF ′(xbR
, xqR

, x`R
)
∣∣∣
2

, (2.29)
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where we have chosen q = s and used fB = 200 MeV. The function F ′ is as given

in Eq. (19) and has a value in the range −2 to +2 as shown in Fig. 8. Taking

values of this function which maximizes the sum over the KK states, i.e., F ′ = 2,

yields a value of unity for the sum, resulting in a branching fraction of 1.15×10−6 for

R = 1 TeV−1. This is a significant enhancement over the Standard Model value[32]

of B(Bs → µ+µ−) ' 4.0 × 10−9. The experimental bound on this decay, B(Bs →
µ+µ−) < 2.6 × 10−6, as determined by CDF[2], sets the limit R−1 > 815 GeV when

the sum over the KK states takes on its maximal value. The sensitivity of this decay

mode in probing the size of the additional dimension is thus comparable to that of

Bs mixing and will improve with Run II data at the Tevatron[15].

2.5 Conclusions

Models where the Standard Model fermions are localized at specific points along a

compact extra dimension offer an attractive means for constructing the fermion mass

hierarchy and suppressing dangerous operators such as proton decay. In these scenar-

ios, the fermions obtain narrow Gaussian wavefunctions in the additional dimension

with a width much smaller than the compactification scale. The fermion Yukawa

couplings are then generated by the overlap of the localized wavefunctions for the

left- and right-handed fermions. Lighter fermions are thus more widely separated

than heavier ones.

The gauge fields are free to propagate throughout the bulk in these scenarios

and their KK excitations develop tree-level flavor changing interactions which are

proportional to the overlap of their wavefunctions with those of the localized fermions.

Gluons, as well as the electroweak gauge bosons, then mediate flavor changing neutral

current processes at dangerous levels. Previously, it was thought that the only way

to avoid stringent bounds on the size of the compact dimensions was to minimize the

separation of the fermion fields, thus endangering the scenario’s natural explanation

of the fermion hierarchy.

In this paper, we have reinvestigated these new FCNC interactions and have

performed a general, systematic, model independent analysis. Our results hold for
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any such model of the fermion hierarchy with specific fermion geographies. We have

employed a model parameterization which contains only three parameters: the size

of the extra dimension R, the scaled width of the localized fermion ρ = σ/R, and the

fermion separation distance expressed in units of the width, ∆x = ασ. We performed

a simple Monte Carlo analysis and determined that the fermion mass hierarchy can

be reproduced in our parameterization for natural values of the parameters.

We then evaluated the KK gluon tree-level flavor changing contributions to neu-

tral meson oscillations. We found that the sum over the KK states is exponentially

damped for higher KK gauge states as the KK states can then resolve the finite size of

the fermion wavefunction. This allows us to perform the KK sum in a scenario with

more than one extra dimension. We then evaluated the constraints from Kaon mixing

in the case of one extra dimension and confirmed previous results that 1/R & 100’s

TeV for larger values of ρ unless the separation was very small. However, the con-

straint shrinks to 1/R & few TeV for smaller values of ρ, even for widely separated

fermions, at the expense of introducing a new hierarchy between the compactification

and fermion localization scales. The constraints from Bd and Bs mixing were found

to be much less restrictive. We also performed the evaluation for the case of two or

more additional dimensions and found that the FCNC constraints were much more

difficult to evade.

We next studied the dependence of our constraints on the fermion mass mixing

matrices, and found that with a realignment of the matrix elements our bounds could

be reduced further by factors of 10-100.

In addition, we examined the rare meson decays Bd → ψKS, φKS, as well as single

top-quark production in e+e− collisions, and found weaker limits of the size of the

extra dimension of order TeV−1. We note that the KK gluon contributions to these

rare decays are significant enough to generate interesting effects in the related CP

violation observables.

In summary, we have shown that once the parameter space is systematically ex-

plored, it is possible to evade the stringent bounds from FCNC in split fermion models

for natural values of the parameters and without the introduction of any additional

hierarchies. Lastly, we note that the introduction of brane localized kinetic terms are
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known to significantly reduce the couplings of gauge KK states [42, 66] and may help

to even further reduce the constraints from FCNC in these scenarios.

Appendix

Here we present a cute way to perform the sum over KK modes analytically in one

dimension, and see that the sum is exactly linearly proportional to the separation.[52]

The functions that we need are

F (x, y) ≡
∞∑

n=1

(cos(nπx)− cos(nπy))2

n2
, (2.30)

and

G(x1, x2, y1, y2) ≡
∞∑

n=1

(cos(nπx1)− cos(nπy1))(cos(nπx2)− cos(nπy2))

n2
. (2.31)

We can do both of these by evaluating

f(x) ≡
∞∑

n=1

cos(nx)

n2
. (2.32)

So that

F (x, y) =
1

2
(f(2πx) + f(2πy) +

π2

3
− 2f(πx + πy)− 2f(πx− πy)) (2.33)

G(x1, x2, y1, y2) =

[
f(πx1 + πx2) + f(πx1 − πx2) + f(πy1 + πy2) + f(πy1 − πy2)

− f(πx1 + πy2)− f(πx1 − πy2)− f(πy1 + πx2)− f(πy1 − πx2)

]

(2.34)

Writing the cos(nx) as two exponentials and combining the sums we have

f(x) =
1

2

∑

n 6=0

einx

n2
. (2.35)
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The function f is then the solution of the differential equation

f ′′(x) = −1

2

∑

n 6=0

einx = −1

2

∞∑
n=−∞

einx +
1

2
(2.36)

= −1

2

(
2π

∞∑

k=−∞
δ(x− 2πk)− 1

)
. (2.37)

This is solved by

H(x) = −1

2

(
π|x| − x2

2
− π2

3

)
, (2.38)

where H is defined on the interval [−π, π] and is 2π-periodic for other values (this

takes care of the sum over delta functions). We then have

f(x) = H(x) + αx + β. (2.39)

Looking at the original function we see that we must have
∫ π

−π
f = 0 which gives

β = 0. Also, since f is an even function α = 0.

We can then use Eq. (2.39) in (2.33) and (2.34) and use the physical condition

that all arguments are positive to get the final result

F (x, y) =
π2

2
|x− y|, (2.40)

and

G(x1, x2, y1, y2) = −π2

4

(
|x1 − x2|+ |y1 − y2| − |x1 − y2| − |y1 − y2|

)
. (2.41)



Chapter 3

Yukawa hierarchies from extra

dimensions with Small FCNC

3.1 Introduction

Recently there has been much interest in the possibility that there exist extra di-

mensions much larger than the Planck scale [16, 118, 155, 106, 107, 39]. There are

many reasons for this excitement, particularly the fact that having large dimensions

accessible to gravity may allow a solution of the hierarchy problem associated with

the Higgs mass [20, 17, 21, 136, 135]. However, extra dimensions may also be able to

address other puzzles left unexplained in the Standard Model, such as why there are

three families [70], or the origin of dark matter [18, 149, 148, 46].

In particular, it was noticed by Arkani-Hamed and Schmaltz (AS) that localizing

the standard model fermion fields in an extra dimension could solve the other serious

hierarchy problem, that of the relative size of the fermion masses [23]. This is accom-

plished by assigning a universal Yukawa coupling in the higher dimensional theory,

but separating the left and right handed components of the effective 4D fermions in

the additional dimension. This is accomplished by localizing the zero modes to Gaus-

sian profiles, and separating the centers of the Gaussians. The 4D Yukawa couplings,

and hence fermion masses, are proportional to integrals of products of these zero

modes over the compact dimension. They are thus suppressed by exponentially small

31
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wavefunction overlaps. Realizations of this model that match the Standard Model

masses and mixing parameters have been produced [90, 125, 45, 67, 113, 31]. There

also exist possibilities for observing the effects of this localization at future colliders,

such as the production of Kaluza-Klein excitations of the Standard Model particles.

Current results from the direct production of KK states. and precision electro-weak

measurements restrict the size of dimensions accessible to Standard Model fields to

be R . few TeV−1 [144, 123, 122, 102]. The separation between fields also allows for

detection of some novel effects [22, 142].

However, split fermion models also generate tree-level flavor-changing neutral cur-

rents (FCNC). Strict bounds from these are hard to obtain due to the large number

of model parameters, but in general one finds R . 400 TeV−1 [45, 68, 3, 115]. With-

out miraculous cancellations, this can be evaded only by making very small the ratio

ρ = σ/R, where σ is the width of the localized fermions, thus introducing a new

hierarchy.

In this paper we present a different model based on similar ideas. Instead of

fixed width fermions localized at different points, we consider variable width fermions

localized at the same point. We will show that this model can produce the observed

fermion mass hierarchy and mixing angles, including the CP violating phase while

generating much smaller FCNC. This model has the additional virtue suppressing any

proton decay operators. The resulting constraints on the compactification scale turn

out to be a factor of 30 smaller than similar constraints on the AS model, and can be

as low as 1/R ≥ 2 TeV. This is low enough to raise the exciting possibility that they

could be within reach of the next generation of colliders, and that the model could

be embedded in a more encompassing one that also solves the Higgs mass hierarchy

problem. This is similar to the proposal of Kaplan and Tait [113], although they still

required the left and right handed fermions to be separated from each other. This

idea is also similar to a model studied in the case of a warped extra dimension [108].

This paper is organized as follows. In section 3.2 we show how variable widths

can explain the Yukawa hierarchy. A specific set of model parameters that reproduce

the observed fermion masses and mixing angles is shown in section 3.3. In section 3.4

we consider the constraints from FCNC. Section 3.5 discusses possible mechanisms
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for implementing the model, and section 3.6 concludes.

3.2 Yukawa Hierarchies

We propose the configuration where different fermion flavors are localized in the extra-

dimensional bulk as exponentially localized wavefunctions with different widths, as

illustrated in Fig. 3.1. For most of this paper we consider this to be a phenomenolog-

ical ansätz. A discussion of what types of models may produce this picture is given in

section 3.5. This paper will focus on models with a single compact extra dimension,

which we take to be the interval [0, R], with the edges of the additional dimension

being defined either by a brane configuration or by an orbifolding condition.

We begin with a general configuration that allows each fermion species to be

localized with different widths to a specific point. A fermion is taken to be localized

at x0 with width σ if it has a profile ψ ∝ e−|x−x0|a/σa
. The power a is determined by

the localization mechanism, and represents a phenomenological parameterization of

the unknown mechanism. In the AS model, for instance, fermions are localized with

Gaussian profiles, so a = 2; in the Randall-Sundrum (RS) scenario, or in brane-worlds

with bulk mass terms, fermions are localized to exponentials, so a = 1. For simplicity,

we take the localization point to be x0 = 0. The normalized wavefunction for the i-th

fermion is

ψi =
21/2a

√
σi

1√
αa(R, σ)

e−ya/σa
i , (3.1)

where we have defined

αa(R, σ) =

∫ R
σ

0

dz e−za

. (3.2)

This integral will cancel to good approximation in the following computations of the

coupling constants.

The gauge boson wavefunctions will also generally depend on the model details.

For the moment the only important point is that the Higgs zero mode be flat in the
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Figure 3.1: Illustration of the idea of variable width fermions localized to a single point.

extra dimension, so h(0)(y) = 1/
√

R, where h is the Higgs field and h(0) is the zero

mode of the Kaluza-Klein expansion. This zero mode corresponds to the Standard

Model Higgs, the vev of which is responsible for electro-weak symmetry breaking

and generating 4D fermion masses. The 5D Yukawa couplings for the fermions carry

mass dimension −1/2. In the dimensionally reduced theory this scale is given by the

compactification scale R. We therefore write the 5D Yukawa terms as

L5D
Yukawa = λ5,ij

√
R hψ̄iψj. (3.3)

The dimensionally reduced 4D Lagrangian is obtained by integrating over the compact

dimension. The 4D Yukawa couplings are then given, in the physically appropriate

approximation that R is much larger than any of the widths, by

λ4,ij = λ5,ij

√
R

∫ R

0

dy h(0)(y) ψ̄i(y) ψj(y)

= λ5,ij

√
R

(
21/a√σiσj

(σa
i + σa

j )
1/a

)
. (3.4)

This can be rewritten as

λ4,ij = λ5,ij

√
R


21/a

((
σi

σj

)a/2

+

(
σj

σi

)a/2
)−1/a


 . (3.5)
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The factor in parenthesis is determined by the wavefunction overlap. It is unity when

σi = σj, and does not change dramatically as the widths vary. If we take all the 5D

Yukawa couplings to be the same, λ5,ij = λ5 we expect this model to have 4D Yukawa

matrix elements given by λ4,ij ≈ λ5, and essentially equal with small differences due

to the different widths. This is a realization of the “democratic” scenario of fermion

mass generation [77]. This scenario relies on the observation of the singular values of

the matrix

A =




1 1 1

1 1 1

1 1 1




diag−−→




3 0 0

0 0 0

0 0 0


 . (3.6)

That is, there is one large singular value and two vanishing ones. If one then perturbs

the values of the elements in A, the two zero diagonal values become finite, but small.

When A is a Yukawa matrix this gives a natural hierarchy in the resulting masses.

This is in stark contrast to the AS scenario, where the hierarchy is generated by small

elements directly in the Yukawa matrices.

We have studied the expected size of the resulting Yukawa hierarchy by performing

random trials. We drew six widths for the 5D fermion wavefunctions from the interval

[1, 3] and computed the physical mass spectrum for the case a = 2. The interval was

chosen so that all widths are of the same order of magnitude; the overall scale is

irrelevant. The size of the hierarchy is taken to be log10(m1/m3), where m1 is the

largest mass, and m3 the smallest. Fig. 3.2 shows a histogram of the resulting

hierarchies for 105 random trials. We see that hierarchies of size 3 to 5 are generic.

It is important to note that Fig 3.2 shows the hierarchy between the masses

resulting from a single Yukawa matrix; i.e., between fermions with the same quantum

numbers. In this democratic scheme the largest singular value (and hence mass) is

always of the same order of magnitude. Therefore it is impossible to generate the the

large ratios mt/mb or mt/mτ simply by varying the widths. We speculate on how to

obtain these ratios within the model in section 3.5; for now we simply take the five

dimensional Yukawa couplings λu
5 , λd

5, λe
5 to be different.

Finally, note that while Fig. 3.2 was computed for a = 2, similar results hold
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Figure 3.2: Histogram of the expected size of the Yukawa hierarchy for 105 random con-
figurations of fermion widths, with the widths drawn from the interval [1, 3]. The hierarchy
scale is defined as log10(m1/m3), where m1(m3) is the largest (smallest) mass resulting from
that configuration.

for any value of a. The important point is that the mass matrix is almost universal,

and that small perturbations are generated by slightly different zero mode profiles.

In addition, the Higgs profile need not be perfectly flat. As long as the variation in

the Higgs 5D wavefunction is slow across the width of the fermions the same pattern

will emerge.

3.3 Standard Model parameters

For illustration, we will now obtain a set of model parameters that generates the

observed fermion masses and mixings of the Standard Model to within experimen-

tal accuracy. For now, our model contains the following: There is the localization

mechanism parameter a, which will be fixed to 2 in this section. There are the three

Yukawa couplings λu
5 , λd

5, λe
5. For the quark sector, there are nine widths, one each

for the three left handed quark doublets, Qi, the three right handed up singlets, ūi,
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and the three right handed down singlets, d̄i. Only eight of the widths are indepen-

dent because the Yukawa matrix elements from Eq. 3.4 only depend on the ratios of

widths. For the lepton sector there are at least another six widths, for the doublets

Li, and the charged singlets e+
i . There are possibly three more depending on whether

right-handed neutrinos are included. For the purposes of this paper we ignore the

neutrinos and only match the charged lepton masses to their observed values. Fi-

nally, it is necessary to include two arbitrary, but small, phases in one of the quark

Yukawa matrices to be able to match all the CKM mixing angles and incorporate CP

violation.

As a proof of principle, we have performed a search of the parameter space and

located a configuration that reproduces the Standard Model parameters. For this

search we used the values of quark masses and mixing angles from [95]. The fermion

masses were evaluated at the common scale mt using factors given in [125]. The

values of the three five dimensional Yukawa couplings were obtained by matching to

the large third generation masses (so λu
5 =

√
2mt/v, etc. where v is the Higgs vev).

The smaller fermion masses are then obtained by diagonalizing the Yukawa matrices

generated from Eq. (3.4). The mixing angles can then be obtained from the relation

Vckm = V
(u)†
L V

(d)
L , (3.7)

where the V
(u,d)
L are the unitary matrices that rotate the left-handed (u, d) quark

fields to diagonalize the Yukawa matrices. The real part of the CKM matrix was

parameterized by matching to the magnitude of the three entries above the diagonal,

Vus, Vub, and Vcb. Finally, to match the observed CP phenomenology we included two

arbitrary phases, φ1, in in λ
(d)
dd and φ2 in λ

(d)
ss , and computed the Jarlskog invariant

J = Im (VusVcbV
∗
ubV

∗
cs) (3.8)

and required it to be near the Standard Model expectation J ≈ 3× 10−5. The search

was performed by Monte Carlo sampling of the parameter space to find a reasonably

close match.

In the lepton sector we are only matching three masses with five parameters, so
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solutions are essentially trivial to come by. For illustration, one such set is

Li =




6.118

5.815

2.360


 , e+ =




2.696

3.443

5.576


 , (3.9)

which produces me = 0.511 MeV and mµ = 105 MeV from matching the coupling to

mτ = 1777 MeV. There are many others that will match the leptonic masses just as

well.

In the quark sector there are many more constraints. It is possible that there are

many configurations that match the Standard Model, but since this search was for

illustrative purposes only the search was stopped after a solution was obtained. This

configuration is

Qi =




8.132

2.365

6.235


 , ū =




9.865

9.279

9.404


 , d̄ =




7.218

6.463

8.073


 , φ1 = −0.0140, φ2 = −0.0633.

(3.10)

These produce the values

mt = 175 GeV mb = 4.30 GeV

mc = 1.31 GeV ms = 107 MeV

mu = 2.00 MeV md = 8.02 MeV. (3.11)

The absolute values of the resulting CKM matrix are

|VCKM| =




0.975 0.224 0.00482

0.224 0.974 0.0439

0.00590 0.0438 0.999


 . (3.12)

The Jarslkog invariant is J = 2× 10−5. Another way of estimating the magnitude of

CP violation is to calculate sin 2β. Doing this we find sin 2β = 0.627, which is less
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than 2σ away from the current world average sin 2β = 0.734±0.055.[137] Interestingly,

under the substitution φ1,2 → −φ1,2 all masses and absolute values of CKM elements

remain the same, and J and sin 2β switch sign, picking up the alternate solution that

results from the sign ambiguity in β. Both of J and sin(2β) are slightly smaller then

the experimental values. However, since this is only an illustrative configuration, and

there may be others that work as well, the significance is not in exact agreement,

but rather in the fact that they are very close. We note for completeness that this

configuration predicts α = 2.37 and γ = 0.430.

There are a few points to note about this configuration. First, the largest ratio of

widths is 9.865/2.365 ≈ 4, so the widths of all the fermion fields are of the same order

of magnitude, with O(1) differences between them. Second, the phases required are

very small. That small phases are required can be easily understood by noting that

the mechanism for generating the hierarchy depends on the singularity of the Yukawa

matrices. A large phase would ruin that singularity. It is thus significant that these

very small phases are enough to generate the observed CP-violation.

3.4 Flavor Changing Processes

The above discussion of the generation of the Yukawa hierarchy made no mention

of the overall scale of the fermion widths. This is can be understood from the fact

that the Yukawa couplings in Eq. (3.4) involve only ratios of widths, and hence are

independent of any overall scale.

Effects that depend on the scale will come from interactions with the Kaluza-Klein

(KK) excitations of the gauge bosons. These will turn out to depend explicitly on R,

as well as on the ratio ρ = σ/R. Here σ is taken to be the generic scale of the fermion

widths, with σi = γiσ where γi is of order unity, and we further define ρi = σi/R for

later convenience. We see that ρ is a measure of the separation between the energy

scales of the fermions (the localization energy) and the bosons (the compactification

scale).

For simplicity at this point we take the extra dimension to be flat. The bosons

are allowed to propagate in the entire bulk, which has size R. The wavefunctions are
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then

A(n)(y) =
1√
R

e
inπy

R . (3.13)

In most models half of these will be projected out by boundary conditions. We retain

only the cosine modes, to preserve the zero modes (n=0) which correspond to the

Standard Model bosons. The gauge couplings are then

g
(n)
i = g5

∫ R

0

dy A(n)(y)ψ̄i(y)ψi(y)

=
√

2g4

[
1− e

− 1
ρi

]

1 +
n2π2ρ2

i

4

, n ≥ 1, (3.14)

for a = 1, and

g
(n)
i =

√
2g4e

− 1
8
n2ρ2

i , n ≥ 1, (3.15)

for a = 2.

These couplings depend on the fermion species. To see that this results in flavor-

changing currents, consider the phenomenological 4D Lagrangian for the quarks, dL =

(dL, sL, bL)† and similarly for dR, uL, uR, all coupled to the gluon field G:

L =Lkinetic + gG0
µ

∑
i=L,R

(
d̄iγ

µdi + ūiγ
µui

)
+
√

2g
∞∑

n=1

G(n)
µ

∑
i=L,R

(
d̄iC

d(n)
i γµdi + ūiC

u(n)
i γµui

)

+ dLV d†
L MdV

d
RdR. + uLV u†

L MuV
u
RuR, (3.16)

where Mu,d are the diagonal mass matrices, the V
(u,d)
L,R are the unitary matrices that

accomplish the diagonalization, the G(n) are the Kaluza-Klein excitations of the glu-

ons, and we have ignored all but the zero modes for the fermions, since the fermion

KK modes will not enter the processes considered here. The couplings to the KK

gluons are contained in the diagonal matrices C
u,d(n)
L,R , with the i-th coupling given by

Eqs. (3.14) and (3.15). When we transform to the mass basis the gauge couplings
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will be the elements of the matrices

U
u,d(n)
L,R ≡ V u,d†

L,R C
u,d(n)
L,R V u,d

L,R. (3.17)

Since the C matrices are not the identity, these couplings are not diagonal in flavor

space, and hence there will be flavor-changing currents in the KK gauge sector. In

particular there will be tree-level FCNC mediated by the KK gluon states.

Processes that involve these tree-level FCNC are the source of the strong con-

straints on split fermion models. However, if one compares the FCNC effects in our

model to the split fermion models, for the same value of the ρ parameter, the magni-

tude turns out to be much smaller. We can measure the magnitude of the FCNC with

the difference of couplings between two fermion species g
(n)
i − g

(n)
j , since the FCNC

will vanish if this difference does. Figure 3.3 shows the difference of couplings as a

function of the KK number n, of two fermion species; in the first case two fermions

of the same width and ρ = 1/10 separated by 4σ; in the second two fermions at the

same location, one with ρi = 1/10, the other with ρj = 1/20. The total effect is the

sum over n, or roughly the integral of the curves. Clearly the effect is much smaller

in the variable width case.

The reason for this suppression can be understood quite simply. When the fermion

species are directly on top of one another and with the same width the flavor changing

currents are zero. When they are separated the non-universality of the couplings

comes from the different heights of the KK wavefunctions at the location of the

fermions. So every KK state, starting from n = 1, can resolve the difference, up

to the cutoff n ≈ 1/ρ. When the fermions are localized to the same point and the

widths are changed the non-universality can only start to be resolved when the KK

wavefunctions oscillate fast enough to resolve the widths. In this case the first few KK

states will have nearly universal couplings, and the large flavor difference won’t start

until roughly n ≈ 1/ρ>, where ρ> is the larger of the two widths, and will only last

until n ≈ 1/ρ<. Additionally, if there is only one extra dimension, the mass in the KK

propagator provides a 1/n2 suppression in the sum, further suppressing the FCNC

from variable widths, while leaving the FCNC from the first few KK modes from
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Figure 3.3: Comparison of the flavor-changing effects of models with split fermions (upper
curve) and different widths with a = 2 (lower), for the same hierarchy of scales, σ/R = 1/10.
Left: the difference of couplings as a function of n. Right: the same difference multiplied
by 1/n2, as it would appear in the KK sum. Flavor changing currents are proportional to
the sum over n of the right curves.

split fermions large. Note that this argument does not depend crucially on the shape

of the fermion wavefunctions. The key points are the slow variation of the gauge

wavefunctions for small n over the size of the fermions, and the 1/n2 suppression

in the propagator. Thus the argument holds for any value of a, and indeed would

hold for very different, potentially very irregular, shapes of the fermions. The only

requirement is that they all fall off exponentially or faster from the same point on

length scales of order the first KK mass.

The most stringent specific constraint comes from the mass splitting in the neutral

kaon sector, ∆mK . The calculation of ∆mK here is identical with that in the split

fermion case, except for the form of the sum over KK-modes. In [115] it was found
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that

∆mK =Re 〈K̄0|L∆S=2|K0〉

=
2

3
R2f 2

KmKRe

(
|V d

L 11V
d∗
L 12|2ζ1

∞∑
n=1

(gdL
− gsL

)2

n2
+ |V d

R 11V
d∗
R 12|2ζ1

∞∑
n=1

(gdR
− gsR

)2

n2

(3.18)

+ (V d
L 11V

d∗
L 12V

d∗
R 11V

d
R 12)ζ2

∞∑
n=1

(gdL
− gsL

)(gdR
− gsR

)

n2

+ (V d
R 11V

∗d
R 12V

∗d
L 11V

d
L 12)ζ2

∞∑
n=1

(gdL
− gsL

)(gdR
− gsR

)

n2

)
,

where the ζi are the dimensionless part of the hadronic matrix elements and are given

by

ζ1 =
1

3
,

ζ2 =

(
1

12
+

1

4

(
m2

K

m2
d + m2

s

))
, (3.19)

when computed in the vacuum insertion approximation [78]. Requiring this to not

be larger than the observed value produces a constraint on 1/R, given a value of ρ,

1

R
≥ 1960 TeV

√
Re

(
ζ1

∑
(LL + RR) + ζ2

∑
(LR + RL)

)
, (3.20)

where LL is the left-left term in Eq. (3.18), etc..

We have calculated ∆mK for the configuration given in section 3.3. Fig. 3.4

shows the constraint for a range of ρ. This demonstrates clear power-law behavior,

with 1/R = (73.8 TeV)ρ1/2. We see that for very large values, say ρ = 10−1, we

have large constraints 1/R ≥ 30 TeV. One can get down to the direct production

constraint of 1/R ≥ 2 TeV by going to ρ ≈ 10−3. The constraints here turn out

to be very close to those obtained for the model of Kaplan and Tait [113], where

they localized fermions to exponentials centered at one of two fixed points, much like

here, but still produced small Yukawa matrix elements by separating the left and
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Figure 3.4: Constraints on the compactification scale 1/R from ∆mK as a function of
ρ = σ/R, the ratio of the compactification scale to the fermion localization scale. The area
below the curve is excluded.

right handed components.1 Since they presumably have very different V u,d
L,R mixing

elements, this shows that the flavor constraints on variable width models are quite

robust. These constraints are to be contrasted with the similar results for the split

fermion case, where 1/R ≥ 400 TeV for ρ = 10−1 and 1/R ≥ 60 TeV for ρ = 10−3;

in those models one must go to ρ ≈ 10−5 before the flavor constraints are similar to

direct production constraints.

Note that in several places it was claimed that the constraint from εK was even

larger than that from ∆mK [68, 3, 113]. This can be seen from the εK equivalent to

Eq. (3.20)

1

R
≥ 40, 900 TeV

√
Im

(
ζ1

∑
(LL + RR) + ζ2

∑
(LR + RL)

)
(3.21)

However, the imaginary part is, in fact, quite small. For ρ = 10−1, the factor in the

1The paper [113] presents results for ρ = 10−1. The apparent disagreement between the numbers
quoted there and here is due to a normalization factor of 2π between their Mc and our 1/R.
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square root is 1.6× 10−3, leading to a constraint 1/R ≥ 6.6 TeV; this is much smaller

than the constraint from ∆mK .

3.5 Discussion

In previous sections we have tried to emphasize the aspects which are independent

of the mechanism for the variable width scenario of fermion localization. Here we

discuss possible techniques of fermion localization that produce this scenario. The

easiest implementation of localized fermions is on a five-dimensional space with the

extra dimension compactified on S1/Z2. The fermions are then coupled to a scalar

field that is odd under the Z2 action of the orbifold. It can then be shown that the

fermions will develop chiral zero modes localized near one of the orbifold fixed points

[81]. This Lagrangian is given by

L =
∑

i

Ψ̄i(i 6∂ − γ5∂5 − fiϕ)Ψi +
1

2
∂µϕ∂µϕ− 1

2
∂5ϕ∂5ϕ− λ

4
(ϕ2 − v2)2, (3.22)

where here we allow each fermion to have a separate coupling, fi, to ϕ. Since ϕ is odd

under the orbifolding it must vanish at each of the fixed points, y = 0 and y = πR.

However, if λv2 is large enough ϕ will develop a y-dependent vev, h(y), that is zero

on the fixed points and is non-vanishing elsewhere. The fermions then develop zero

modes with profiles

ψi(y) ∝ e−fi

R y
0 dy′ h(y′). (3.23)

This is localized near y = 0 if fih(y) > 0, and at y = R otherwise. The class of

models parameterized by a in Eq. (3.1) can be constructed by demanding that h(y)

behave like h(y) ≈ kya−1 near y = 0 for some constant k, and picking all the f to

have the same sign as h(y), so all fermions are localized to y = 0. The fermions are

then localized as in Eq. (3.1) with width parameter σi = (fik)−1/a.

Note that this construction does not appear to generate any non-trivial phases

in the Yukawa matrices with which we could generate φ1,2. However, phases will
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be present if one allows the localizer field ϕ to be complex and imposing boundary

conditions on the phase at the orbifold fixed points. For instance we could require

that arg(ϕ(y = 0)) = 0 and arg(ϕ(y = R)) = π/2. The vev then has a profile vei π
2

y
R .

This still results in localized fermions, but the Yukawa matrix elements pick up phases

relative to each other, since the phase at each point will be weighted differently due

to the distinct widths. For fermions with width ratios of order those given in the

solution in section 3.3 with 1/R ≈ 5 TeV, we find phase differences of order φ = 0.03,

so this looks like a promising way to make a realistic construction of this scenario.

Another interesting example of fermion localization occurs in the RS scenario. In

this case, the fermions are localized near a brane with a = 1 profiles, and possibly

different widths [101]. The gauge boson wavefunctions are Bessel functions rather

than cosines, so the flavor analysis in section 3.4 is not strictly applicable. However,

since the low KK-number wavefunctions are reasonably flat, the reasoning that the

flavor changing currents are small will still hold. This has been seen explicitly in

[108].

One would like to embed the variable widths model in a larger scenario that, for

instance, solves the Higgs mass hierarchy problem. The fermions and gauge bosons

could be localized within a thick brane embedded in a larger dimension of the ADD

type. Or the complete manifold could be AdS5 × (S1/Z2) with the RS scenario

playing out in the AdS5 and the fermion mass generation playing out in the S1/Z2

[65]. Unfortunately, with all fermions localized at a single point there is nothing to

suppress the proton decay operators that tend to occur in these models, unlike in the

original split fermion scenario. However, a simple twist on this scenario can restore

this suppression. Instead of a single fixed point, there could be two points, with the

quark fields localized on one of them, and the leptons on the other, as shown in Fig.

3.5. Proton decay operators are then suppressed by approximately e−
3
4
l2 , where l

is the separation between the two fixed points, in units of the scale of the fermion

widths. Note that this changes none of the conclusions above about the generation

of the mass hierarchy. In the simple S1/Z2 model presented above this could be

accomplished by taking the couplings to ϕ for quarks to be fi > 0 and for leptons

fi < 0.
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LQ

Figure 3.5: Illustration of a configuration that would suppress proton decay while gener-
ating the Yukawa hierarchy with variable widths.

We could also try to modify the model in order to generate the ratios λu
5/λ

d
5

and λu
5/λ

e
5, rather than having to put them in by hand. One way to do this would

be to make use of the original AS suggestion of separating left and right handed

fermions. The up-type singlets, ui, could be very close to the quark doublets, Qi.

The down-type singlets, di, could then be farther away (about 2σ for a = 2), and

the lepton doublets and charged singlets separated slightly farther than that. This

is then a hybrid model where the hierarchies between fermions with the same charge

are generated by the different widths, and the hierarchy between those with different

charges is generated by the exponentially small overlaps. Combined with separating

the lepton wavefunctions to suppress proton decay, one obtains the picture in Fig.

3.6. The whole assembly with a = 2 requires about 10σ of length in the additional

dimension; most of that is needed to suppress proton decay. Note that as long as

all fermions with the same quantum numbers are localized to the same place the

suppression of FCNC described above will apply.

3.6 Conclusion

We have proposed a model that localizes fermions with different widths in a single,

compact, extra dimensional bulk, and shown that this produces a realization of the
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Figure 3.6: Illustration showing a “Swiss Army Knife” configuration. It generates the hier-
archy between generations with the variable width method; uses split fermions to generate
the hierarchy between the top mass and the bottom and τ masses; and suppresses proton
decay by localizing quarks and fermions to different fixed points.

democratic scenario of fermion mass matrices. Ratios of the fermions widths that are

O(1) can produce the observed fermion masses and mixing angles. With the inclusion

of additional small phases one can reproduce all Standard Model parameters in the

fermion sector, including the CP-violating CKM phase. This is not a reduction of

parameters, but it does explain the large hierarchy in Yukawa couplings in terms of a

simple physical picture. The tree-level FCNC contributions are smaller than in similar

models by about a factor of 10 per flavor changing vertex. The resulting constraints

on the compactification scale can be as small as 1 − 2 TeV if one allows the ratio of

localization to compactification scales to be ρ ≈ 10−3. This advantage in reducing

FCNC effects comes not so much from the particular mechanism of localization, but

rather from the facts that all fermions are localized to the same point, and that the

gauge boson KK wavefunctions are very smooth for the first few modes, so they fail

to resolve the difference in fermion zero modes. When the KK mode number n is

high enough to resolve the differences in fermions the 1/n2 suppression is large. It

is also interesting that the mechanism for generating the Yukawa hierarchy does not

depend on the shape of the fermion wavefunction near the localization point, as long
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as it is exponential far away. It only requires O(1) differences between overlaps of

the wavefunctions. As long as they were all appropriately localized, the zero-mode

wavefunctions could be extremely irregular and still generate the correct fermion

hierarchy while being consistent with the FCNC constraints. It may also be possible

to reduce the FCNC constraints further by the inclusion of the effects of brane-

localized kinetic terms, which were not considered here [42, 66].

Effects of variable width localization could be observable at future colliders, par-

ticularly in flavor-changing processes. Even if direct effects are not seen at the LHC,

precision measurements of mass splittings or rare B decays may provide clues. In [22],

it was noted that when fermions are separated in an extra dimension, one might be

able to observe cross sections that fall exponentially in the center-of-mass energy in

certain channels. There it was proposed to look at polarized e+e− collisions to search

for split fermions. In the scenario presented here this may apply to high energy ep

collisions if the quark and lepton separation prevents proton decay.

Note Added: While this paper was being completed a similar paper [151] appeared.

There, a specific model for the vev in section 3.5 was made and the Standard Model

parameters were obtained.



Chapter 4

Higgsless electroweak symmetry

breaking in warped backgrounds:

Constraints and signatures

4.1 Introduction

After more than 30 years of experimental investigation, the mechanism for electroweak

Symmetry Breaking (EWSB) remains unknown. The simplest picture of EWSB em-

ploys a scalar field, the Higgs, whose vacuum expectation value provides masses for

the Standard Model (SM) W±, Z bosons, as well as for the fermions. Experiments

have yet to find this particle, even though generic expectations place it within the

reach of recent searches. Direct searches place the lower limit on the Higgs mass of

mh & 114 TeV, whereas a global fit to the precision electroweak data set [91] places

the indirect upper bound of mh < 219 GeV at 95% CL.

On a more theoretical level, a weak scale Higgs scalar seems unnatural, as its

mass is typically expected to receive large radiative corrections from UV physics.

Thus, a hierarchy problem arises, as there seem to be much higher scales present in

Nature, such as the Planck scale of gravity, MPl ∼ 1018 GeV. This problem may be

resolved by the addition of new physics at the weak scale, such as Higgs compositeness,

strong dynamics (technicolor), or supersymmetry. None of these proposals have been

50
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experimentally verified, and they also suffer from various phenomenological problems.

Over the past few years, the possibility of extra spatial dimensions has been ex-

ploited to address the hierarchy conundrum. In particular, the warped 5-dimensional

(5-d) Randall-Sundrum (RS) model [136], which is based on a truncated AdS5 space-

time, offers a natural geometric setup for explaining the size of the weak scale. In

this model, the weak scale is generated exponentially from the curvature of the extra

dimensional space. The AdS/CFT conjecture in string theory [120] suggests that the

RS model is dual to a 4-d strongly interacting field theory. The Higgs in the 5-d

picture is then identified with a dual 4-d composite scalar.

It has been recently proposed [55] that one could use the boundary conditions

of a 5-d flat space SU(2)L× SU(2)R× U(1)B−L theory to generate masses for W±

and Z bosons of the SM, in the absence of a Higgs scalar. This proposal predicted

unacceptably large deviations from precision EW data and seemed to be excluded.

However in Ref.[56], this Higgsless approach to EWSB was studied in the context

of the RS geometry, and agreement with data was much improved. This can be

understood from the fact that the model contains a custodial SU(2) symmetry, as

noted in Ref. [9] which is broken only by terms of size of order the spatial variance of

the bulk W and Z wavefunctions. In the warped geometry, these wavefunctions are

nearly flat over most of the bulk, as opposed to the O(1) spatial variance in the case

of flat space.

Using the AdS/CFT correspondence [120], one may think of this proposal as a

technicolor model without a Higgs scalar. This duality also addresses the improved

agreement of the warped model with data, since the global SU(2)L× SU(2)R symme-

try in the bulk provides the equivalent of a 4-d custodial symmetry that suppresses

corrections to the EW observables. Here, we note that even though this construct is

dual to some strong dynamics, the warped 5-d geometry could in principle provide a

computationally controlled theory, with quantitative predictions.

In this paper, we study a 5-d Warped Higgsless Model (WHM), employing a set

of parameters that is more general than those used in the original model of Ref.[56].

In particular, we allow for independent bulk gauge couplings to the L and R gauge

sectors, which is crucial in getting good agreement with the precision EW data. We
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also include the effects of UV boundary gauge kinetic terms, assuming that they are

radiatively generated [128]. We do not specify a mechanism for fermion mass gener-

ation, but adopt a simple parametrization that could accommodate a large class of

possible scenarios.1 In addition, our analysis incorporates all higher order corrections

from the curvature of the 5-d space that were ignored in the initial work[56].

We will demonstrate that with typical values for the model parameters, good

agreement with the precision EW data can be achieved. However, we have found

that perturbative unitarity in W+
L W−

L gauge boson scattering is violated throughout

the entire model parameter space. In particular, for the region where the good agree-

ment with precision measurements is obtained, we find that unitarity is violated at
√

s ≈ 2 TeV, which is below the mass of the new states studied by Csaki et al. [55].

We thus find that this model is not reliably predictive in its present form. However,

assuming that unitarity can be restored by an appropriate modification of this sce-

nario, e.g., with the inclusion of additional non-Higgs states, we then consider the

collider signatures which should be present in any generic WHM. In particular, we find

that the gauge boson Kaluza Klein (KK) excitations of the strong and electroweak

sectors are observable at the LHC. However, it is unlikely that the LHC experiments

will be able to detect the spin-2 graviton KK resonances which constitute the most

distinct signature of the conventional RS-based models.

In the next section, we introduce our formalism and notation. We then determine

the couplings of the various KK towers to the SM fields in Section 3. Our predictions

for the EW observables and the resulting parameter space constraints are given in

Section 4. Unitarity is examined in Section 5 and the collider signatures of the model

are discussed in section 6. Concluding remarks are given in Section 7.

4.2 Formalism and Notation

In the analysis that follows, we will, for the most part, follow the notation of Csaki et

al.[56] with some modifications that are necessary to make contact with our previous

1We note that a recent paper [54] has proposed a mechanism for generating the fermion masses
geometrically by also employing boundary conditions from the WHM configuration.
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work [63, 134, 60, 41]. For this reason we now review the RS metric in both notations.

In the original RS scheme (employed in our earlier work), the 5-d metric is given by

ds2 = gMNdxMdxN = e−2σηµνdxµdxν − dy2 , (4.1)

with uppercase Roman indices extending over 5-dimensional space-time and Greek

indices corresponding to 4-d. Here, σ = k|y| = krc|φ|, with rc being the com-

pactification radius, k is the curvature scale associated with the 5-d space, and

−π ≤ φ ≤ π with φ parameterizing the 5th coordinate. For numerical purposes

we will take krc = 11.27 throughout our analysis. The geometrical setup contains 2

branes, one residing at φ = 0 (known as the Planck brane) and one at φ = π (the TeV

brane), i.e., the branes are located at the boundaries of the 5-dimensional Anti-de

Sitter space. We define the quantity Λπ ≡ MPle
−πkrc , which represents the scale of

physical processes on the TeV brane. In the scheme used in Ref. [56], this metric is

rewritten as

ds2 =

(
R

z

)2

(ηµνdxµdxν − dz2) , (4.2)

with R ≤ z ≤ R′. Here, we see that the relationships k = R−1, R′ = Reπkrc , and

z = eky/k converts one form of the metric to the other. In this convention, the

Planck (TeV) brane resides at z = R (R′). It is important to note that the range

R ≤ z ≤ R′ maps onto only half of the −π ≤ φ ≤ π interval. When employing the

Csaki et al. notation in what follows, we will normalize our wavefunctions over twice

the R ≤ z ≤ R′ interval for consistency with our earlier work.

In the WHM, the gauge theory in the bulk is SU(3)C× SU(2)L× SU(2)R× U(1)B−L

for which the bulk action is given by

S =

∫
d4xdy

√−g
∑

i

−1

4g2
5i

F i
ABFAB

i , (4.3)

where we have suppressed the group indices, −g ≡ det(gMN), the sum extends over

the four gauge groups, and g5i are the appropriate 5-d coupling constants. Note

that for generality, we allow for the possibility of g5L 6= g5R in our analysis below.

The boundary conditions are chosen such that the gauge symmetry breaking chain



54 CHAPTER 4. HIGGSLESS EWSB: CONSTRAINTS AND SIGNATURES

SU(2)R× U(1)B−L → U(1)Y occurs at the Planck scale and subsequently the gauge

symmetry breaking SU(2)L× U(1)Y → U(1)QED takes place at the TeV scale. This hi-

erarchical two-step breaking scheme is analogous to that of the usual breaking pattern

of the conventional Left-Right Symmetric Model [126]. After the gauge symmetry is

broken at the Planck scale, a global SU(2)R× SU(2)L symmetry remains in the brane

picture. This global symmetry is broken on the TeV brane to a diagonal group,

SU(2)D, which corresponds to the SU(2) custodial symmetry present in the SM. It

is the presence of this custodial symmetry which essentially preserves the tree-level

value of unity for the ρ parameter in this model. Of the 7 generators present in the

high-scale electroweak sector, 3 are broken near M̄Pl, 3 are broken near the TeV scale,

leaving one generator for U(1)QED as in the SM. SU(3)C , of course, remains unbroken

and is simply the 5-d analog of QCD.

In addition to the bulk action above, significant boundary (brane) terms can exist

in this scenario [128] which can be generated via quantum contributions2 [80]. The

only sizable effects arise at y = 0, i.e., on the Planck brane, due to the renormalization

group evolution (RGE) between the physical scales associated with the two branes,

∼ k and ∼ ke−πkrc . Since the gauge group below the scale k is simply SU(3)C×
SU(2)L× U(1)Y , only these gauge fields will have brane localized kinetic terms, which

we may write as

Sbrane =

∫
d4xdy

√−g δ(y)

{
− 1

4g̃2
L

F µν
L FL

µν −
1

4g̃2
Y

F µν
Y F Y

µν −
1

4g̃2
s

F µν
C FC

µν

}
, (4.4)

where
1

g̃2
i

=
βi

8π2
ln(

k

ke−πkrc
) =

βi

8π2
πkrc , (4.5)

for i = L , Y , s and βi being the appropriate beta function. If only SM fields are

present in the model, then (βL , βY , βs) = (−10/3 , 20/3 ,−7); we will assume these

values in our numerical analysis. Note that due to the large logarithms, these coeffi-

cients can be significant, of O(1) or larger, and will lead to important effects as will

be seen below.

2There may be other brane terms in the effective theory that can be important on both the IR
and UV branes. In this treatment, we ignore such possible terms.
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In our earlier analysis [63], we introduced the notation

g2
5i

g̃2
i

≡ rcci ≡ 2δi

k
, (i = L , Y , s) (4.6)

which is useful for quantifying the size of the brane kinetic terms. Given the above

relations for 1/g̃2
i , and the assumption that only SM fields contribute to the beta

functions, one can show that δY is not an independent parameter, but is directly

calculable. (We will return to the case of 5-d QCD later.) From Eq. (4.5) we have

1

g̃2
Y

= −2
1

g̃2
L

, (4.7)

where the factor of −2 arises from the ratio βY /βL. This leads to

g2
5Y

g̃2
Y

= −2
g2
5Y

g̃2
L

. (4.8)

Since SU(2)R× U(1)B−L → U(1)Y , we have the relations

1

g2
5Y

=
1

g2
5R

+
1

g2
5B

, (4.9)

which we can write as
g2
5L

g2
5Y

=
1

κ2
+

1

λ2
, (4.10)

by introducing the notation

κ ≡ g5R

g5L

, λ ≡ g5B

g5L

. (4.11)

Solving the above for g2
5Y , we obtain

g2
5Y

g̃2
Y

= −2
λ2κ2

λ2 + κ2

g2
5L

g̃2
L

, (4.12)

which yields

δY = −2
λ2κ2

λ2 + κ2
δL . (4.13)
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As we will see below, the value of λ will be determined by the MW,Z mass relationship

while κ will remain a free parameter confined to a constrained region.

The following set of boundary conditions generate the symmetry breaking pattern

discussed above (note that we suppress the Minkowski indices):

On the TeV brane at z = R′ (y = πrc) one has

∂z(g5RAa
L + g5LAa

R) = 0 ; ∂zA
a
C = 0 ;

g5LAa
L − g5RAa

R = 0 ; ∂zB = 0 ; (4.14)

g5LALa
5 + g5RARa

5 = 0 ; B5 = 0 ;

∂z(g5RALa
5 − g5LARa

5 ) = 0 ,

with Aa
L(R) or Aa

C being one of the SU(2)L(R) or SU(3)C fields with gauge index a,

and B being the corresponding U(1)B−L field.

On the Planck brane at z = R (y = 0) the boundary conditions are

∂zA
a
L = −δLx2

nkε2Aa
L ; ∂zA

a
C = −δsx

2
nkε2Aa

C ;

A1,2
R = 0 ; g5BB − g5RA3

R = 0 ; (4.15)

∂z[g5BA3
R + g5RB] = −δY x2

nkε2[g5BA3
R + g5RB] ;

ALa
5 = 0 ; ARa

5 = 0 ; B5 = 0 ,

where ε = e−πkrc , and mn = xnkε is the mass of the nth gauge KK state. For the

remainder of this paper, we will work in the unitary gauge, where the fifth components

of the gauge fields are zero.

Recalling the breaking pattern for SU(2)R× U(1)B−L → U(1)Y , we introduce the

fields

Y =
g5RB + g5BA3

R√
g2
5R + g2

5B

,

ζ =
g5BB − g5RA3

R√
g2
5R + g2

5B

, (4.16)

and identify Y with the usual hypercharge field. In that case, the boundary condition
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on the third line in Eq. (15) can be written more simply as

∂zY = −δY x2
nkε2Y . (4.17)

The KK decomposition we use is essentially that of Csaki et al., but allowing for

g5L 6= g5R and is expanded to include the SU(3)C group:

B(x, z) = αBγ(x) +
∑

χB
k (z)Z(k)(x) ,

A3
L(x, z) = αLγ(x) +

∑
χL3

k (z)Z(k)(x) ,

A3
R(x, z) = αRγ(x) +

∑
χR3

k (z)Z(k)(x) ,

A±
L(x, z) =

∑
χL±

k (z)W (k)±(x) , (4.18)

A±
R(x, z) =

∑
χR±

k (z)W (k)±(x) ,

AC(x, z) = αgg(x) +
∑

χg
k(z)g(k)(x) ,

where we have again suppressed the Lorentz indices and the sum extends over the KK

tower states, k = 1...∞. Here, γ(g) is the massless photon(gluon) field and αB,L,R,g

are numerical constants which are determined from the boundary conditions. Note

that since the photon and gluon zero-mode states are massless, their wavefunctions

are z-independent, i.e., they are ‘flat’ in z. The wavefunctions χA
k (z) take the form

χA
k (z) = z(ak

AJ1(mkz) + bk
AY1(mkz)) , (4.19)

with J1 , Y1 being first-order Bessel functions with the coefficients ak
A , bk

A and the KK

masses mk to be determined by the boundary conditions as we now discuss.

Let us first consider the case of the charged gauge boson sector. We first introduce

the notation,

Ri ≡ Yi(x
W
n ε)/Ji(x

W
n ε) ,

R̃i ≡ Yi(x
W
n )/Ji(x

W
n ) , (4.20)
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where xW
n kε are the masses of the W± KK tower states. Expressions for the coeffi-

cients b±L,R , a±R in terms of a±L can easily be obtained via the boundary conditions; we

find (dropping the KK index for convenience)

b±L = −a±L
R0

XL ,

b±R = −a±R
R1

, (4.21)

a±R = −κ
(1−XLR̃0/R0)

(1− R̃0/R1)
a±L ,

where a±L will be determined by the wavefunction normalization and

XL ≡ 1 + δLxW
n εRW

1 + δLxW
n εR1RW /R0

, (4.22)

with RW ≡ J1(x
W
n ε)/J0(x

W
n ε). The masses of the KK states can then be determined

and are explicitly given by the root equation

(R1 − R̃0)(R0 −XLR̃1) + κ2(R1 − R̃1)(R0 −XLR̃0) = 0 . (4.23)

Note that for g5L = g5R, i.e., κ = 1, and in the absence of boundary terms (δL = 0,

XL = 1), this expression reduces to that obtained by Csaki et al. [56]. We will return

to a study of the roots and corresponding gauge KK masses in the next section.

We now turn to the neutral electroweak sector and first consider the massive

tower states. The boundary conditions yield (where Ri , R̃i are defined as above with
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W → Z)

bL = −aLXL

R0

,

bR = −aL
(1−XLR̃1/R0) + κ2(1−XLR̃0/R0)

κ(R̃0 − R̃1)
,

aR = −κaL(1−XLR̃0/R0)− bRR̃0 , (4.24)

bB = −aB

R̃0

,

aB = −λaL(XY aR/aL + R0bR/aL)

κ(XY −R0/R̃0)
,

where now aL is determined via normalization and we have defined

XL,Y ≡ 1 + δL,Y xZ
n εRZ

1 + δL,Y xZ
n εRZR1/R0

, (4.25)

with RZ ≡ J1(x
Z
n ε)/J0(x

Z
n ε). The root equation for the neutral KK tower masses is

then,

−λ2(R̃0 −R1)
{

κ2XY (R̃0 − R̃1)(R0 −XL − R̃0) + (R0 −XLR̃1)(R0 −XY R̃0)

+ κ2(R0 −XLR̃0)(R0 −XY R̃0)
}

+ κ2(R0 −XY R̃0)
{

κ2(R̃0 − R̃1)(R0 −XLR̃0) + (R1 − R̃0)(R0 −XLR̃1)

+ κ2(R0 −XLR̃0)(R1 − R̃0)
}

= 0 . (4.26)

Note that unlike the case where brane terms are neglected, this equation does not

factorize into a pair of KK towers associated with the γ and Z. In fact, as we will

see below, the γ and Z tower states are highly mixed and do not simply appear to

be more massive copies of the SM photon and Z boson.

Turning to the case of the zero-mode photon, the fact that its wavefunction is con-

stant in z trivializes all but two of the boundary conditions from which the coefficients
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in Eq. (18) may be obtained:

αR = αL/κ , αB = αL/λ , (4.27)

with αL to be determined via normalization of the massless photon field.

For the remaining case of SU(3)C , we see that αg is determined via the normal-

ization of the massless gluon field and the two boundary conditions lead to the single

relation

bs = −asXs

R0

, (4.28)

where Xs is defined from Eq. (22) with xW
n → xg

n, δL → δs. The mass spectrum of

the gluon excitations are then given by the simple relation

R0 −XsR̃0 = 0 . (4.29)

As before, as will be determined via the normalization conditions in the next section.

4.3 Determination of the KK Mass Spectrum and

Couplings

In this section, we solve the various root equations to determine the mass spectrum

and couplings of the KK sector. A priori, it would seem that the parameters κ , λ, and

δL are completely arbitrary, but as we will see, some of them are determined by data.

We first consider the W± KK tower. In this case, the root equation depends on κ and

δL, and although 1/g̃2
L is known, the ratio g2

5L/g̃2
L, which gives δL, is not. However, δL

is not arbitrary and can be determined from the measured value of the Fermi constant

in a self-consistent manner as follows. Our approach is: (i) we choose a value of κ and

an input value of δL(= δin
L ) and then calculate the roots xW

n using Eq. (22). Since

mW1 = MW = xW
1 kε is identified with the physical W± state observed in experiment

and is thus known, this fixes kε so that the masses of all the KK excitations mWn can

be determined. (ii) Now that the values of the xW
n are known, the coefficients a±R , b±L,R



4.3. DETERMINATION OF THE KK MASS SPECTRUM AND COUPLINGS 61

of the wavefunctions are also calculable; this allows us to determine the couplings of

the KK states to the SM fermions. These are of the form

g2
Wn

= Nn
g2
5L

2πrc

, (4.30)

where the coefficients Nn are computed below. (iii) We observe that the above

equation can be rewritten to give g2
5L provided that g2

W1
, which corresponds to the

usual W boson coupling, is known. We find

g2
5L = 2πrcg

2
W1

/N1 , (4.31)

so that

δout
L = πkrc

g2
W1

N1g̃2
L

. (4.32)

(iv) Next we must examine whether δout
L = δin

L as a test of consistency. We recall

from µ-decay that at tree-level,

8GF√
2

=
∞∑

n=1

g2
Wn

m2
Wn

=
g2

W1

M2
W

∞∑
n=1

Nn

N1(xW
n /xW

1 )2
, (4.33)

with all the quantities in this equation being known except g2
W1

. Hence solving for g2
W1

and inserting this result into the previous equation, we obtain a calculable expression

for δout
L ,

δout
L =

πkrc

N1g̃2
L

8GF M2
W√

2

[ ∞∑
n=1

Nn

N1(xn/x1)2

]−1

. (4.34)

If δout
L 6= δin

L for a fixed value of κ, we perform another search until convergence is

obtained. When we have found a consistent solution (i.e., δin
L = δout

L ), g2
Wn

and g2
5L

are determined absolutely as a function of κ. We would expect δL to only weakly

depend on κ since this dependence vanishes at zeroth-order in 1/πkrc ' 1/35. Here,

we emphasize the importance of the µ-decay constraint in obtaining this result, as

GF determines the absolute strength of the coupling gW1 , thus providing a reference

to which all others can be scaled. Fig. 4.1 displays the value of δout
L versus δin

L for
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κ = 3, for demonstration, and we see that a unique solution is obtained only when

δL ' −7.8; we find similar results for other values of κ near unity.

Figure 4.1: The value of δL(= δout
L ) calculated via the procedure described in the text

as a function of the input value (red curve). The curve corresponding to δin
L = δout

L is
also shown (green curve); the solution lies at the intersection of the two curves. Here,
κ = 3 is assumed.

The parameter κ is bounded from below as can be seen from Eqs. (10) and (11)

of Ref. [128] which apply at lowest order in 1/πkrc,

c−2
w =

M2
Z

M2
W

=
κ2λ2(1 + DL) + (κ2 + λ2)(1 + DY )

(κ2 + λ2)(1 + DY )
, (4.35)

where DL,Y = δL,Y /πkrc, and cw = cos θw where θw is the weak mixing angle. Solving

for λ2, using DY = −2DLκ2λ2/(κ2 + λ2), and demanding that λ2 > 0, we obtain the

bound

κ2 >
c−2
w − 1

1 + DL(2c−2
w − 1)

. (4.36)
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With δL ' −7.8 and c2
w ' 0.78, this implies the constraint

κ & 0.66 . (4.37)

Although there will be corrections to this result from terms of order 1/πkrc, we expect

these to be no more than a few percent. To be concrete, we will assume that κ ≥ 0.75

in our analysis.

It is also possible to obtain an approximate upper bound on κ based on pertur-

bativity arguments, as the typical 4-d couplings g2
4R ≡ g2

5R/2πrc cannot become too

strong. A short analysis leads to the constraint that κ . 4. To be specific, we will

thus limit ourselves to the range 0.75 ≤ κ ≤ 4 in our study. This agrees with our

expectations that on general grounds, the values of g5R and g5L should not be too

different, implying that κ ∼ 1.

Next, in order to define the KK couplings to SM fields, we need to discuss the

localization of the SM fermions. (Note that we define the strength of the ‘weak

coupling’ via the interaction of the SM W± boson and fermions.) In the original

analysis of the WHM [55, 128], the SM fermions were all localized on the Planck brane;

for further model-building purposes this need not be so [54]. However, it is well-known

that if the fermions are localized close to the Planck brane their gauge couplings can

be well approximated by the purely Planck brane values [62, 83]. We have checked

that the gauge field wavefunctions are reasonably flat for fermions localized with

ν . −0.6, where the quantity ν is as defined in Ref. [62]. For simplicity, we thus

make this assumption below. Under this assumption, the covariant derivative acting

on these fields is given by

Dµ = ∂µ + ig5LTLAµ
L + ig5RTRAµ

R + ig5B
B − L

2
Bµ + ig5sTsA

µ
C . (4.38)

In this case, following Csaki et al. [56] and Nomura [128], the couplings of the Wn

KK states to the SM fermions are given by

g2
Wn

= Ω2 g2
5L|χL±

n (R)|2
NWn

, (4.39)
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with

NWn =

∫ R′

R

dz
R

z

{
|χL±

n (z)|2[2 + cLrcδ(z −R)] + 2|χR±
n (z)|2

}
, (4.40)

where the relative factors of 2 arise from the interval extension discussed in the pre-

vious section. The coefficient Ω is determined numerically via the self-consistency

procedure described above, which demands that for n = 1 (i.e.. the SM W boson),

we recover the usual SM coupling g2
W1

= g2
SM . Thus, the W boson coupling automat-

ically retains its known value by construction when we identify W±
1 ≡ W±

SM as the

experimentally observed state (and correspondingly mW1 = MW through the use of

GF ). Using MW and g2
SM from experiment, we thus can determine the masses and

couplings of all the higher KK modes. Here, we assume the LEPEWWG [91] central

values of the SM gauge boson masses, MW = 80.426 GeV and MZ = 91.1875 GeV in

our analysis.

Figure 4.2 displays the masses of the first few W KK excitations as a function of

κ. We see that the masses grow reasonably rapidly as κ increases and can be quite

heavy. For example, for κ = 3, the first W± excitation above the SM-like W boson,

W±
2 , has a mass of ' 2.32 TeV. The masses of the higher KK states are approximately

given by the root relation xW
n = xW

2 + (n− 2)π. The coupling strength of the gauge

KK excitations are small relative to those for the W± and decrease rapidly as the KK

mode number increases. E.g., the first W± KK excitation has a fermionic coupling

of only g2
W2
' 0.0431g2

SM . As we will see below, this will have important implications

in the consideration of unitarity violation in WLWL scattering.

We now turn to the neutral KK states and first discuss their mass spectrum. We

will refer to these states as Zn, but they are KK excitations of both the γ and Z and

are mixtures thereof. In our analysis, we will force the W and Z bosons to have the

correct masses, i.e., those given by experiment, and will also make use of the on-shell

definition of the weak mixing angle.

cos2 θos
w ≡ M2

W

M2
Z

. (4.41)
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Figure 4.2: Masses of the electroweak gauge KK excitations as a function of κ. The
solid curves correspond to the W± states, while the Z KK excitations correspond
to both the solid and dashed curves as labeled. In the latter case, the solid curves
correspond to the almost doubly degenerate states.
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W Z

Figure 4.3: Schematic comparison of the W± and Z KK mass spectra showing that
the W± KK states have masses almost identical to those of the degenerate pair of Z
KK excitations.

Thus, determining the roots xW
1 (κ) from the analysis discussed above, yields

xZ
1 (κ) =

MZ

MW

xW
1 (κ) , (4.42)

with the ratio MZ/MW taken as exactly known. Note that we identify the lightest

massive neutral KK state with the Z boson observed at LEP/SLC. In order to solve

the Zn eigenvalue equation (26), we input our chosen value of κ and our determined

value of δL from which we can obtain δY ; λ remains an independent variable, but we

pick its value in order to obtain the correct root xZ
1 above. Once this is accomplished,

all of the electroweak parameters in the model (except κ) are completely determined,

in particular, the Zn KK tower masses and the wavefunction coefficients aR,B and

bL,R,B of Eq. (19).

The masses of the Zn KK tower states have an unusual behavior; there is a

repeating pattern of a pair of almost degenerate states, followed by a single state,

e.g., the states Z2 and Z3 have a mass splitting of only 1%, Z4 has no other nearby

states, Z5,6 are nearly degenerate, and so forth. In addition, the pair of states become

more degenerate as the KK mode number increases. This KK mass spectrum is more

easily understood by examining Figs. 4.2 and 4.3, where the W and Z KK spectra

are displayed. Note that the W KK tower has a conventional mass spectrum, and

each W KK mode coincides with the pair of degenerate Z KK states.
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The couplings of the SM fermions to the massive Zn KK tower states can be

written in the suggestive form

gZn

cw

(T f
3L − s2

nQ
f ) , (4.43)

with cw = cos θos
w and T f

3L(Qf ) being the usual fermion third-component of weak

isospin (electric charge). Matching with the form of the covariant derivative, the

parameter s2
n is found to be given by

s2
n =

−λχB
n (R)

χL
n(R)− λχB

n (R)
, (4.44)

with s2
1 ≡ sin2 θeff , i.e., the value of the weak mixing angle obtained on the Z-pole.

The values for s2
n vary significantly, even in sign, as the KK mode number varies. For

example, for κ = 3, s2
2 = 0.743 , s2

3 = −0.109 , and s2
4 = 0.218. We note that for the

KK levels which are non-degenerate, the value of s2
n is not too far from the on-shell

value, sin2 θos
w ' 0.22210, as defined above. This can be understood as being due to

the fact that the double states are mixtures of the γ and Z excitations, while the

single states are almost pure Z excitations. Turning to gZn , we know that in the SM

gZ = gW , i.e., gZ1 = gW1 and it is traditional to define an effective ρ parameter

ρZ
eff =

g2
Z1

g2
W1

=
g2

Z

g2
W

, (4.45)

which can be directly calculated once the gZn are known. Matching with the covariant

derivative, we find that these couplings can be written as

g2
Zn

c2
w

= Ω2g2
5L

|χL
n(R)− λχB

n (R)|2
NZn

, (4.46)

where Ω is determined numerically as discussed above. The normalization in the

absence of brane kinetic terms is easily obtained,

N0
Zn

= 2

∫ R′

R

dz
R

z

{|χL
n(z)|2 + |χR

n (z)|2 + |χB
n (z)|2} , (4.47)
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with the factor of 2 being related to the interval of integration as described above. In

order to determine NZn in the more general case we must return to the two actions in

Eqns. (3) and (4). To simplify the discussion, we first rescale each gauge field by its

appropriate 5-d coupling, Ai → g5iAi, and concentrate solely on the action integrands

which we can combine and write symbolically as

−1

4
F 2

L −
1

4
F 2

R −
1

4
F 2

B −
1

4
F 2

C −
1

4
(cLF 2

L + cY F 2
Y + csF

2
C)rcδ(y) . (4.48)

From this it is clear how to normalize fields [63] which are purely composed of AL or

AC as in the case of the W± above. The difficulty with the remaining fields is that

both the gauge fields and brane terms are a mixture of the two bulk fields as can be

seen from the definition of Y in Eq. (16). Rewriting the Y fields in terms of A3
R and

B, substituting the KK decomposition into the respective field strength tensors for

the neutral fields, and neglecting the QCD terms, we see that symbolically

−1

4
F 2

L −
1

4
F 2

R −
1

4
F 2

B −
1

4
(cLF 2

L + cY F 2
Y )rcδ(y) →

|χL|2 + |χR|2 + |χB|2 + cLrc|χL|2δ(y) + cY rc

∣∣∣∣∣
g5RχB + g5BχR√

g2
5R + g2

5B

∣∣∣∣∣

2

δ(y) (4.49)

= |χL|2(1 + cLrcδ(y)) + |χR|2 + |χB|2 + cY rc

∣∣∣∣
κχB + λχR√

κ2 + λ2

∣∣∣∣
2

δ(y) .

Allowing for the extension of the integration range, this gives

NZn =

∫ R′

R

dz
R

z

{|χn
L(z)|2(2 + cLrcδ(z −R)) + 2|χn

R(z)|2 + 2|χn
B(z)|2

+ cY rc
|κχn

B(z) + λχn
R(z)|2

κ2 + λ2
δ(z −R)

}
, (4.50)

which reduces to the result above when the ci are neglected. Note that this ex-

pression also tells us how to normalize the photon field, which is a constant (i.e.,

z-independent) with the substitutions χγ
L = αL , χγ

R = αL/κ , and χγ
B = αL/λ. We

will return to this point below. Given NZn , the g2
Zn

are calculable and ρZ
eff can be

directly determined; we find that in all cases |ρZ
eff − 1| . 10−4. As in the case of
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the W KK tower, these couplings are observed to decrease rapidly as the KK mode

number increases. For example, if κ = 3, the first KK excitation above the Z has a

coupling strength which is only ∼ 11% of the SM Z boson.

Returning to the case of the photon, we note from the form of the covariant

derivative that it couples as

g5LT f
3Lχγ

L + g5RT f
3Rχγ

R + g5B
B − L

2
χγ

B

= g5LαL

(
T f

3L + T f
3R +

B − L

2

)
≡ g5LαLQf , (4.51)

apart from a normalization factor which can be determined directly from NZn above,

giving

Nγ = 2πrcα
2
L

(
κ2 + λ2 + κ2λ2

κ2λ2

){
1 +

1

πkrc

κ2λ2δL + (κ2 + λ2)δY

κ2 + λ2 + κ2λ2

}
. (4.52)

We thus obtain the αL independent quantity

e2 ≡ g2
5Lα2

L

Nγ

, (4.53)

from which we can define the mixing angle

sin2 θeg ≡ e2

g2
W1

, (4.54)

where g2
W1

has been previously defined.

Note that in the above discussion we have introduced three different definitions

of the weak mixing angle: (i) the on-shell value sin2 θos
w , (ii) the effective value on

the Z-pole, sin2 θeff , and (iii) sin2 θeg. In the SM, at tree-level, the values of these

three definitions are, of course, equivalent. In the WHM, they need not be in general;

however, if the model is to be consistent with experiment, it is clear that these three

quantities must be reasonably close numerically. Fig. 4.4 shows these three definitions

of sin2 θw as functions of the parameter κ, where sin2 θos
w is, of course, κ independent.

As a rough guide, the figure also shows the current 1σ errors on the value of sin2 θos
w
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arising from the measured W and Z mass uncertainties. From this figure, we see that

as κ increases the three values of sin2 θw merge together. This is due to the KK masses

becoming heavier as well as the strengthening of the SU(2)R couplings associated with

the custodial symmetry which forces the WHM to become more like the SM. Clearly,

for values of κ ' 3− 4, the three definitions of the weak mixing angle are quite close

numerically. It is interesting to note that this model predicts sin2 θeff to be somewhat

smaller than the on-shell value, e.g., for κ = 3, sin2 θos
w − sin2 θeff ' 0.0006. This

slightly lower value of sin2 θeff is suggestive of the low value obtained from LEP and

SLD [91] from measurements of the leptonic couplings of the SM Z.

Figure 4.4: sin2 θ in each of the three definitions as a function of κ. The black (upper),
red (middle), and green (lower) curves correspond to the schemes sin2 θos

w , sin2 θeff ,
and sin2 θeg defined in the text. The dotted curves show the present 1σ errors on
sin2θos

w from measurements of the Z and W masses.

Before we further discuss the electroweak parameters in the next section, we will

conclude this section by examining the KK tower associated with the gluon. In anal-

ogy to the case of the photon, the massless gluon zero-mode has a flat, z-independent
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wavefunction. This implies that the conventional strong coupling can be defined di-

rectly via the zero-mode coupling to fermions following from the boundary conditions

and the KK decomposition. We thus can write

g2
s =

g2
5s

2πrcZ0

, (4.55)

where

Z0 = 1 +
cs

2π
= 1 +

δs

πkrc

. (4.56)

Note that to maintain Z0 > 0, δs ≥ −πkrc is required. Solving for g2
5s we obtain

g2
5s =

2πrcg
2
s

1− g2
s/g̃

2
s

, (4.57)

so that

δs = πkrc
g2

s

g̃2
s − g2

s

. (4.58)

Since 1/g̃2
s = 1/g̃2

L ·(βs/βL) is known, δs can be directly calculated. Taking αs = 0.118

we obtain

δs ' −29.14 , (4.59)

independent of κ.

Knowing the value of δs, we can now determine the gluon KK spectrum. Note that

this value of δs is not far away from the critical region of δ = −πkrc ' −35.4 discussed

above, where the KK spectrum and couplings become highly perturbed as shown in

our earlier work [63]. In fact, for δs ≤ −πkrc, the system becomes unphysical as ghost

states appear. For the value of δs computed above, the first gluon KK excitation, g1, is

pushed upwards in mass by ' 10% in comparison to what would be naively expected

for smaller values of the brane term, and hence mg1 is roughly 200 GeV heavier than

the first gauge KK excitation. The mass splitting for the higher gluon KK states are

similar to those of the W KK tower.

The couplings of the gluon KK tower states can be directly calculated as in the



72 CHAPTER 4. HIGGSLESS EWSB: CONSTRAINTS AND SIGNATURES

W and Z cases above from the covariant derivative,

g2
sn

g2
s

= 2πrcZ0
|χC

n (R)|2
Nsn

, (4.60)

where

Nsn =

∫ R′

R

dz
R

z
|χC

n (z)|2[2 + csrcδ(z −R)] . (4.61)

Here, we note that g2
s0

= g2
s , the usual QCD coupling. The coupling of the first gluon

KK state is displayed as a function of the strong brane term in Fig. 4.5, where we see

that the KK states of the gluon are more strongly coupled, scaled to the zero-mode

coupling strength, as compared to the other KK towers. For the higher KK levels, the

ratio g2
sn

/g2
s does not decrease as quickly as in, e.g., the case of the corresponding W

boson KK tower couplings. For example, g2
s2

/g2
s ' 0.233, while we previously found

g2
W2

/g2
W ' 0.043. This is due to the large magnitude of δs.

Figure 4.5: Behavior of the coupling of the SM quarks to the first gluon KK excitation
as a function of the brane term δs, demonstrating the rapid growth in the coupling
as δs → −πkrc.
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4.4 Electroweak Oblique Parameters

As discussed in the previous section, the WHM leads to a complete determination of

the couplings of the W ,Z and gluon (as well as their KK towers) as a function of κ.

We showed that the gauge boson zero-mode couplings to fermions are slightly differ-

ent from their corresponding tree-level values in the SM, resulting in shifts from the

SM expectations for the precision electroweak observables. It has become common

practice in the literature to describe the influence of many classes of new physics on

electroweak precision data at the one loop level through the use of the oblique pa-

rameters S , T , U [132]. In the present model we have observed substantial deviations

from SM expectations, e.g., the three distinct values of sin2θ, already at the tree level.

Similar parameter shifts are known to exist in the case of other sources of new physics,

such as in the case of a simple Z ′ model [139, 14]. Though such corrections are not

oblique, it has been shown[139, 14] that the shifts in several electroweak observables

can be parameterized in a manner similar to that of S , T , U . In order to not confuse

any such parameterization with the usual oblique parameters S , T , U,, we will denote

these pseudo-oblique parameters as ∆S , ∆T , and ∆U . We wish to emphasize that

these quantities are being introduced solely as a device to demonstrate the deviations

of the present scenario from SM expectations and they are not to be interpreted as

the ordinary oblique corrections.

We take α, MZ , and GF to be input parameters in performing our fit to the elec-

troweak measurements. Usually, when fitting the electroweak data the most impor-

tant set of quantities to examine is MW , sin2θeff and the width for either Z → l+l−

or νν̄, i.e., the invisible Z width. (Here we will employ the invisible width.) These

quantities are either very precisely measured or are most unambiguously sensitive to

new physics. We can then parameterize any deviations of these quantities away from

their SM expectations through the usual definitions, employing the pseudo-oblique
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parameters ∆S etc. [132, 36, 119]

sin2 θeff = sin2 θ0 +
α∆S

4(c2
w − s2

w)
− c2

ws2
wα∆T

c2
w − s2

w

,

M2
W = M2

WSM

[
1− α∆S

2(c2
w − s2

w)
+

c2
wα∆T

c2
w − s2

w

+
α∆U

4s2
w

]
, (4.62)

Γν = ΓνSM
(1 + α∆T ) ,

where α is the fine-structure constant. Note that here, we are simply exchanging

the shifts from the SM predictions for the observables on the left-hand side of this

equation for the pseudo-oblique parameters. We write ∆S(T, U) as shifts in these

parameters away from their exact value at tree-level in the SM, i.e., we recover the

SM when the pseudo-oblique parameters vanish. Since we are comparing with the

SM at tree-level we have sin2 θ0 = sin2 θos
w . The ratio Γν/ΓνSM

is equal to ρZ
eff , using

the notation of the previous section. Lastly, we have again imposed the requirement

that MW be in agreement with its SM value as defined by experiment, so that the

expression in brackets on the right-hand side of the equation must vanish, thus forcing

a relationship between the pseudo-oblique parameters. Since for all values of κ, ρZ
eff

is found to differ from unity only at the order of a few ×10−5, it is clear that ∆T is

very small. The expression for MW then yields

∆U ' 2s2
w

c2
w − s2

w

∆S . (4.63)

Using the values of ρZ
eff computed above and sin2 θeff from the previous section, we

can determine the pseudo-oblique parameters as a function of κ. This is displayed in

Fig. 4.6. Here, we see that ∆T is very small as expected, ∆U tracks ∆S, and ∆S

falls rapidly in magnitude as κ increases, as expected. The main point of this figure

is to demonstrate that the pseudo-oblique parameters fall rapidly to zero as the value

of κ increases; this is as expected since this limit approaches the SM.

The most recent fit to the oblique parameters has been performed by Erler [75]

using the data presented at the 2003 summer conferences [91]. The results for this

fit are highly correlated; using mH = 117 GeV, Erler obtains the 1σ constraints
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S = −0.13± 0.10, T = −0.17± 0.12 and U = 0.22± 0.13. Slightly negative values of

S, T are favored while the fit prefers slightly positive values of U . While we cannot

directly compare to the data it is clear that the results of Fig 4.6, as well as Fig. 4,

strongly suggest that a reasonably large value of κ & 3, approximately reproduces

the SM at tree-level.

Figure 4.6: Shifts in the values of the pseudo-oblique parameters ∆S, ∆T , and ∆U
as a function of κ from the tree-level analysis discussed in the text.

We recall that at loop level, S, T , and U are traditionally determined from the

gauge boson self-energies [132]. Note that we are now working with the formal def-

initions of S , T and U from [132]. Loop contributions are of order α, so they may

also be important compared to the tree-level values discussed above. To leading

order in 1/(πkrc) the wavefunctions of the W±
1 and Z1 are flat in z, so we can

calculate loop contributions in this approximation; the corrections will be of order

α/(kπrc) ' 2× 10−4, and can be safely ignored. For the photon, of course, the wave-

function is flat to all orders. The coupling of an approximately flat zero-mode to two
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excited modes is then given by, e.g.,

g5LΩ

∫ R′

R

dz
R

z

χZ
1 χW

n χW
m [2 + cLrcδ(z −R)]

(NZ1NWnNWm)1/2
= g5Lδnm (4.64)

by the orthonormality condition in Ref. [63]. This means that the couplings of the

KK W modes (which participate in the loop of the γ/Z self-energy diagram) to the

exterior Z or γ are exactly the same as the SM triple gauge couplings in this limit.

In particular, the coupling of an excited W to the hypercharge boson is zero. We can

write S as [117]

S = −16π
∂ΠZY (q2)

∂q2

∣∣∣∣
q2=0

, (4.65)

where ΠZY (q2) is the self-energy mixing between the Z and the hypercharge boson

(in this example) through W loops. So we conclude that, at order α, ∆S = 0. We

also expect the contribution to T to be small due to the presence of the custodial

symmetry and because the mass splittings between the excited W and Z bosons are

small. Hence the KK loop contributions to the oblique parameters can be safely

ignored.

A more serious problem arises from the fact that the Higgs boson is no longer

in the spectrum, and hence cannot run in loops. To estimate the one loop values of

S, T , and U correctly, one would need a procedure for systematically removing the

effects of the Higgs loops from the precision electroweak observables. It is not clear

how this can be accomplished easily, due to the non-gauge invariant nature of the

relevant graphs.

It is also possible that there are higher dimension operators localized on the TeV

brane that violate S, since there is no symmetry to prevent them (T is protected

by the custodial SU(2)). The size of these operators will naively be M2
Z/Λ2

π ≈ 10−4,

leading to contributions to S of order 1
α
M2

Z/Λ2
π ≈ 10−2.

In Ref. [26], the precision electroweak constraints on the WHM model, within

a less general parameter space, were considered. Qualitatively, we agree with their

conclusion that in the regime where many KK modes lie below the IR cutoff scale
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∼ Λπ of the warped space (corresponding to the regime of weakly interacting distinct

states), the WHM is excluded by precision electroweak data. In our approach, a

similar conflict arises between the electroweak data and unitarity, where the former

requires the absolute scale of higher KK modes to lie above ∼ 2 TeV, and the latter

demands the opposite.

4.5 Perturbative Unitarity in Gauge Boson Scat-

tering

An important function of the Higgs boson in the SM is to insure the perturbative

unitarity of the broken gauge theory. In this Higgsless model, we would like to test

the claim in Ref. [55, 56] that the KK modes will be able to insure the unitarity in

place of the Higgs.

The classic test of perturbative unitarity is the elastic scattering of two longitu-

dinally polarized gauge bosons, W+
L W−

L → W+
L W−

L [114]. This amplitude receives

tree-level contributions from the four-W vertex, and from the three-boson vertices

through exchange of a single neutral gauge boson in the s- and t-channels, as shown

in Fig. 4.7. The diagram involving the four-boson vertex contains terms that grow

like s2, s and s0, as well as innocuous terms involving powers of 1/s. For the scattering

to respect unitarity, the terms that grow with s must cancel against those arising from

other graphs in the theory. Csaki et al. [55] have investigated the behavior of these

terms at large s. Strictly speaking, the expansion they performed is only valid at

energies ‘above’ all the KK masses. In practice, however, it is a good approximation

to take values of
√

s above a sufficiently large number of KK modes. In that region,

as shown in Ref. [55], there are two necessary conditions for the terms which grow

with energy in the 4-point contribution to be cancelled by those from the one-boson
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Figure 4.7: Feynman diagrams for the tree-level amplitudes contributing to W+
L W−

L

scattering.

exchange graphs:

g2
nnnn =

∑

k

g2
nnk ,

4g2
nnnnM

2
n = 3

∑

k

g2
nnkM

2
k . (4.66)

Here g2
nnnn is the coupling of four gauge bosons with KK-number n, and gnnk is the

three boson coupling between two states with KK-number n and one with KK-number

k. The first of these conditions insures the cancelling of terms in the amplitude that

grow like s2, and is guaranteed by the original gauge invariance. The second condition

is required for the cancellation of the terms that grow like s, and it is not trivial that

it will be satisfied in the present model. For the case of ordinary W scattering, n = 1.

To test these conditions we have examined numerically the case of W+
L W−

L scat-

tering, since this is an important process, and will be measured at future colliders.

The relevant couplings are given by

g2
1111 = g2

5LΩ2

∫ R′

R

dz
R

z

1

N2
W1

(
|χL±

1 |4[2 + cLrcδ(z −R)] + 2κ2|χR±
1 |4

)
, (4.67)

g11k = g5LΩ

∫ R′

R

dz
R

z

1

NW1

√
NZk

(
|χL±

1 |2χL0

k [2 + cLrcδ(z −R)] + 2κ|χR±
1 |2χR0

k

)
,

where NW1 and NZk
are the normalization factors given above. For the first sum rule
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we also need the coupling of two W±
1 bosons to the photon, which is just e by gauge

invariance.

We have numerically evaluated g2
1111 and g11k for k extending over the photon,

the Z1, and the first 9 (or more) higher excited states for the entire range of κ. The

agreement with the sum rules is quite good, and was observed to rapidly improve as

more states were added. If, e.g., κ = 3, the residuals of these sum rules after including

the first 9 excited states are

1−
10∑

k=γ,1

g2
11k

g2
1111

= 7.85× 10−8 ,

1− 3

4

10∑

k=1

g2
11k

g2
1111

M2
Zk

M2
W1

= 1.96× 10−3. (4.68)

This shows that the sum rules are being satisfied, and so in the asymptotic region

the cross section will indeed fall like 1/s. The convergence of these sums as more KK

states are added can be seen in Fig. 4.8.

The sum rules, however, are necessary, but not sufficient conditions for perturba-

tive unitarity. In particular, the amplitude for W+
L W−

L scattering, which grows like

s2 near a few times M2
W , could grow too large before sufficiently many KK modes

are passed. There is also a term formally independent of s, the coefficient of which

could grow as more and more KK modes are included. It is possible that this term

will also contribute to unitarity violations. To investigate this issue we examine the

full amplitude for W+
L W−

L scattering.

The amplitudes due to photon and Z exchange have been previously computed.
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Figure 4.8: The residual of the sum rule 1 =
∑

k g2
11k/g

2
1111 as a function of the

highest KK state included in the sum. This shows that the sum rule is converging,
and hence the cross section will behave like 1/s at asymptotically large

√
s. Here we

have assumed that κ = 3 for purposes of demonstration.
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Simple modifications of the formulae in Ref. [72] gives

Asγ = − 1

16
ie2s2β2(3− β2)2 cos θ ,

AsZk
= − 1

16
ig2

11k

s3

s− ξZk

β2(3− β2)2 cos θ ,

Atγ = −ie2s3

32t

[
β2(4− 2β2 + β4) + β2(4− 10β2 + β4) cos θ

+(2− 11β2 + 10β4) cos2 θ + β2 cos3 θ
]

, (4.69)

AtZk
= − ig2

11ks
3

32(t− ξZk
)

[
β2(4− 2β2 + β4) + β2(4− 10β2 + β4) cos θ

+(2− 11β2 + 10β4) cos2 θ + β2 cos3 θ
]

,

A4 = − 1

16
ig2

1111s
2(1 + 2β2 − 6β2 cos θ − cos2 θ) ,

where ξZk
= M2

k/M2
W , t = −1

2
sβ2(1− cos θ), and β =

√
1− 4/s, and the labels refer

to s and t-channel exchanges. Here s and t have been scaled to M2
W . As is well

known, in the SM the sum of these amplitudes grows like s. This growth is cancelled

by the Higgs contributions

AsH = − 1

16
ig2s2(1 + β2)2 1

s− ξH

,

AtH = − 1

16
ig2s2(β2 − cos θ)2 1

t− ξH

, (4.70)

with ξH = m2
H/m2

W .

As we have seen, in the present model, the terms growing with s are cancelled at

large s by the sum over the KK modes. For intermediate regions of s we investigate

the full amplitude

A = A4 + Asγ + Atγ +
∞∑

k=1

(AsZk
+ AtZk

) . (4.71)
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Figure 4.9: The cross section for W+
L W−

L → W+
L W−

L scattering with the first 10 KK
states included. A heavy fake state has also been included with a mass of 14.7 TeV
and coupling g = 2.8× 10−4g1111 to complete the sum rules and show that the cross
section falls like 1/s asymptotically. No attempt has been made to smooth the poles at
the KK resonances. Here we have assumed that κ = 3 for purposes of demonstration
and have set z0 = 0.98.

For reference, the cross section, with a cut on the scattering angle | cos θ| ≤ z0, is

σ =
1

16πs2β2

∫ t+

t−
dt |A|2 , (4.72)

with t± = (2− 1
2
s)(1∓ z0). This cross section, summed over the first 10 KK modes,

is shown in Fig. 4.9, taking z0 = 0.98. To demonstrate the asymptotic behavior for

the case κ = 3, we have inserted a heavy fake state with mass mheavy = 14.7 TeV and

coupling g = 2.8 × 10−4g111 chosen to cancel the residuals in Eq. (68). This heavy

fake state is intended to numerically compensate for extending the KK sum out to

infinity. When this state is included, the cross section is seen to fall like as expected.

However, it is clear that while including 10 KK states is enough to flatten the cross

section, as seen in the region below the fake state, it is not enough to make it fall

with s.
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Figure 4.10: The real part of the zeroth partial wave amplitude for W+
L W−

L → W+
L W−

L

scattering as a function of
√

s. The first 10 KK states have been included. We have
taken κ = 3 and z0 = 0.98. Unitarity is violated if this amplitude exceeds 1/2, which
is seen to occur at

√
s ≈ 2 TeV.

A good test of the unitarity of this scattering process is that the first partial wave

amplitude should be bounded for all s [114]

|Re (a0)| =
∣∣∣∣Re

(
1

32π

∫ 1

−1

d cos θ(−iA)

)∣∣∣∣ ≤
1

2
. (4.73)

We have calculated this quantity for the amplitude in Eq. (4.71), again summing

over the first 10 (or more) KK modes. Our result is shown in Fig 4.10 for the case

κ = 3. Unitarity is clearly violated at a center of mass energy of
√

s ≈ 2.0 TeV,

below the mass of the first KK mode. Note that this is only slightly better than the

value obtained for the 4-d Standard Model without a Higgs, where unitarity breaks

down at
√

s ≈ 1.7 TeV. The problem can be traced to the fact that the first higher

excited modes are too heavy to have much influence before unitarity is violated. So,

while the cross section will behave like 1/s at asymptotically high energies, unitarity

is violated before that regime sets in.
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Figure 4.11: The real part of the zeroth partial wave amplitude for W+
L W−

L → W+
L W−

L

scattering in the flat space equivalent of the WHM. The first 10 KK states have been
included and we have taken κ = 3 and z0 = 0.98. Unitarity is violated if this
amplitude exceeds 1/2, which is seen not to occur. In this case the sum rules are
almost saturated well before

√
s = 1.7 TeV, where the SM without a Higgs boson

violates unitarity.

For comparison we have performed the same calculation for the equivalent theory

in flat space (with κ = 1), as presented in Section 6 of Ref. [55]. Our results are

shown in Fig. 4.11. In that case, the first excited mode sits at 240 GeV, and the

spacing between successive modes is 160 GeV. When
√

s has reached a few TeV

many KK modes have been passed and both sum rules are nearly saturated, so the

terms growing with s are nearly cancelled. We thus see that the flat space equivalent

theory is well-behaved [146, 47].

In order to discern how serious the problem of unitarity violation is in the WHM,

we have repeated the above analysis over the entire allowed range of κ, even in the

regimes where we do not expect the model to agree with the precision measurements.

In particular, one might expect that if unitarity is to be respected it would be in

the case when the neutral KK states are as light as possible and where deviations
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Figure 4.12: The value of
√

s at which perturbative unitarity breaks down in
W+

L W−
L → W+

L W−
L scattering as a function of κ, taking z0 = 0.98. The points rep-

resent the distinct cases for which we numerically computed the unitarity violation
and the curve extrapolates between the points.

from SM couplings are also large, i.e., for small values of κ [26]. However, we find

that perturbative unitarity breaks down for all values of κ, as shown in Fig. 4.12,

although the scale where the violation occurs is somewhat larger when κ is small. We

see that for all values of κ, perturbative unitarity is violated below any new scale,

such as Λπ for k/MPl ≤ 0.1. It is possible that the additional brane terms mentioned

in Section 4 could be adjusted to make the theory both unitary and consistent with

data. Whether this can be achieved with or without fine-tuning is not clear.

We also note that the W+
L W−

L scattering process can proceed by KK graviton ex-

change, and that this contribution has the opposite sign in the amplitude, so one might

hope that unitarity could be restored by destructive interference between the gauge

and gravity sectors. However, the ratio of the KK graviton to gauge exchange am-

plitudes is roughly M2
W /(g2Λ2

π) ≈ 10−4, leading to a strong suppression. Numerically

we find this effect to be insignificant. A similar situation holds for the contribution

of the radion scalar, which is also present in the model. We thus conclude that this
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model is not a reliable perturbative framework.

4.6 Collider Signals

Thus far, we have seen that consistency with precision electroweak data demands

that the ratio κ = g5R/g5L take on larger values, such as κ ∼ 3, which strongly

enforces the SM limit. We have also seen that unitarity in gauge boson scattering is

problematic in the WHM for such values of κ. Although the sum rules in Ref. [55],

which are derived from the amplitude for longitudinal W scattering, are satisfied once

enough gauge KK states are included, we demonstrated that the unitarity condition

for the zeroth partial wave amplitude is violated. Hence the WHM is not a weakly

coupled model. In this section, however, we will take the view that the model may

be extended or modified, e.g., with the inclusion of additional non-Higgs states, in

such a way as to restore unitarity. We thus examine the general collider signatures of

the gauge and graviton KK states, as these are most likely a generic feature in any

extended Higgsless model based on a warped geometry.

We first examine the signatures of the neutral gauge KK states, recalling that

the mass spectrum of these states and their couplings to the SM fields are derived

in Section 3. We will take κ = 3 throughout this section, in accordance with the

constraints from precision electroweak measurements. The resulting spectrum and

fermionic couplings for the first few excited neutral gauge KK states above the Z are

displayed in Table 4.1, where the couplings are written in the form

gZn

cw

(T f
3L − s2

nQf ) . (4.74)

We see a general trend of decreasing coupling strength, gZn , with increasing KK mode.

These couplings are roughly 7 − 16% (with the exact value depending on the mode

number) of the SM weak coupling strength, and hence we can expect smaller produc-

tion rates for these states. In addition, we note that the pair of nearly degenerate

states have different fermionic interactions due to the parameter s2
n. Measuring these

couplings would separate the two degenerate states and uniquely identify this model.
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mZn (TeV) gZn/gSM s2
n

Z2 2.30 0.106 0.743
Z3 2.31 0.163 -0.109
Z4 3.62 0.065 0.218
Z5 5.24 0.072 0.748
Z6 5.26 0.113 -0.104

Table 4.1: Mass spectrum and fermionic couplings for the first five excited neutral
gauge KK states above the Z, taking κ = 3. The KK coupling strength is scaled to
the SM weak coupling.

The classic mechanism for producing heavy neutral gauge bosons in hadronic

collisions is Drell-Yan production, pp → Zn → `+`−, where the Zn appears as a

resonance. The Drell-Yan lineshape is clearly dependent on the total width of the

Zn, which varies in the WHM depending on the placement of the fermions. We have

thus allowed for the total width of the nth gauge KK state to float,

Γn = c Γ0
n , (4.75)

where Γ0
n corresponds to the case where all the SM fermions reside on the Planck

brane. We have taken the range 1 ≤ c ≤ 100, which accomodates for the possibility,

e.g., that the third generation fermions are in the bulk and are localized far from

the Planck brane. The resulting event rate, in the electron channel only, for the

nearly degenerate states Z2,3 is displayed in Fig. 4.13 for the LHC with an integrated

luminosity of 3 ab−1. This high value of integrated luminosity corresponds to that

proposed for the LHC upgrades [84]. The apparently isolated single resonance is, of

course, a superposition of the Z2 and Z3 KK states. The effect of increasing the Zn

width is readily visible; the resonance peak becomes flattened if the total width is

too large. However, it is clear that Drell-Yan production provides a clean discovery

channel for the first two excited states in the case Γn . 25Γ0
n. For present design

luminosities, ∼ 100 fb−1, the event rate is simply scaled by a factor of 30 and the

signal remains strong. The next excitation, Z4, is very weakly coupled, and we have

found that the corresponding peak is too small to be observed above the Drell-Yan

SM continuum. The corresponding event rate for the higher mass KK states, Z5,6,
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is also shown in Fig. 4.13, again assuming 3 ab−1 of integrated luminosity. Here,

we see that the number of events is small, and even when the µ channel is also

included these resonances are unlikely to be observed. Hence the LHC is likely to

only observe a single resonance peak, corresponding to the superposition of the first

two Z excitations. We also expect that only the first W excitation will be observable

at the LHC. We note that the visible spectrum of the weak gauge KK states in the

WHM at the LHC will appear similar to that from a flat extra dimension with brane

terms. The KK states arising from flat space in the absence of brane terms will have a

larger production rate [144, 102], due to the larger couplings, and will be differentiable

from the WHM.

In principle, neutral gauge KK production may be distinguished from that of more

conventional extra gauge bosons arising in, e.g., a GUT model [143]. The presence

of the two nearly degenerate KK states (whether they be the Z2,3 in the WHM, or

the photon and Z KK excitations in flat space) results in a unique resonance shape,

which is different from the case of a single new gauge state. In the present case,

the Z2 and Z3 resonances destructively interfere with the SM background, yielding

the dip in the line-shape in the invariant mass bins just below the heavy resonances.

This effect is in principle measurable at the LHC [24], given enough statistics, and is

a means for identifying the production of gauge KK states. In addition, the indirect

exchange of the Zn (for
√

s < mZn) in fermion pair production in e+e− annihilation

results in a pattern of deviations in the cross sections and corresponding asymmetries

which allows for the determination of the fermionic couplings of additional Z bosons

[140, 12]. In principle, a TeV class Linear Collider (LC) could thus be able to resolve

the Z2 from the Z3 and separately measure their couplings. This claim should be

verified by an independent study. A multi-TeV LC, such as CLIC, would be able to

run on the resonance peaks, measure the individual line-shapes, and perform detailed

studies of the couplings for each state.

The KK excitations of the gluon may be produced as resonances in dijet distri-

butions at the LHC. The 2 → 2 parton-level subprocesses which contribute to dijet

production are qq̄ → qq̄ , qq̄ → gg , qg → qg , gg → gg , and qq → qq. In principle,

the gluon KK states can contribute via s-channel exchange in the qq̄ and gg initiated
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Figure 4.13: Top panel: Event rate for Drell-Yan production of the Z2,3 gauge KK
states, in the electron channel, as a function of the invariant mass of the lepton pair
at the LHC with 3 ab−1 of integrated luminosity. The dotted histogram corresponds
to the SM background, while the histograms from the top down (represented by red,
green, blue, magenta, cyan, solid, and dashed) correspond to letting the width float
with a value of c = 1 , 2 , 3 , 5 , 10 , 25 , 100. Bottom Panel: Event rate for Drell-Yan
production of the Z5,6 gauge KK states as a function of the invariant mass of the
lepton pair at the LHC with 3 ab−1 of integrated luminosity (blue histogram). The
bottom solid histogram corresponds to the SM background.
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processes, and via t- and u-channel exchange in qg → qg and gg → gg. Here, we are

only concerned with the search for peaks in the dijet invariant mass distribution, and

hence neglect the possible gluon KK t- and u-channel contributions. Such contribu-

tions would, however, be revealed in dijet angular distributions. We are then left with

computing the KK s-channel exchange diagrams, for which we need to first examine

the gluon KK couplings to the SM fields. The expression for the qq̄gn coupling is

given in Eq. (60) and its strength is shown in Fig. 4.5 for the first excitation as the

brane kinetic term is allowed to vary. For the value of the brane terms present in the

WHM, the strength of the square of this coupling is 0.234 (gSM
s )2 for the first gluon

excitation and 0.143 (gSM
s )2 for the second KK mode. These coupling strengths are a

larger fraction of the usual SM value as compared to the corresponding couplings of

the weak boson KK states due to the large negative value of δs. Recalling that the

zero-mode gluon wavefunctions are flat in z, it is easy to see that the g0g0g1 coupling

is forbidden by orthonormality. Hence the gg initiated process does not contribute

to the resonant production of the KK modes and the qq̄ → qq̄ subprocess is the only

process we need to consider here. We also recall that the gluon KK mass spectrum

tracks that of the W boson KK states with mg1 = 2.53 TeV and mg2 = 5.51 TeV.

The resulting event rate for the dijet invariant mass distribution is displayed in

Fig. 4.14 for the first and second KK excitations, taking 100 fb−1 and 3 ab−1 of

integrated luminosity, respectively. Here, we have employed the cuts |η| < 1 and

|pjet1
T | > 800(1500) GeV for the first (second) excitation. We see that the event

rates are enormous and that both excitations will be observable at the LHC. Varying

the width, as done above in the case of Drell-Yan production, will flatten the peak,

but should not affect the visibility of the signal unless the width grows very large.

Observation of the first dijet resonance, in addition to the peak present in the Drell-

Yan distribution, will signal that the full SM gauge sector resides in the bulk. The

slightly different value of the mass for g1, as compared to that for Z2,3, with the g1

being roughly 200 GeV heavier than the Z KK states, will signal that brane kinetic

terms are present in the model. Given the large event rate for the production of these

KK states, this mass difference should be measurable. Observation of the second gluon

KK dijet peak will reveal the mass gap between the states in the KK tower, and will
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signal the presence of a warped, rather than flat, geometry. Hence, observation of the

KK dijet resonances is critical to the identification of this model.

We now turn to the production of the graviton KK states and first consider the case

of resonant graviton production. This is well-known to be the main signature of the

original RS model [61, 60]. In principle, resonant graviton production can proceed via

qq̄ and gg initiated subprocesses. However, in the WHM scenario where the fermions

are localized on the Planck brane, the graviton KK tower couples to fermions with

M
−1

Pl strength or smaller since no warp factor is generated in the coupling. Hence the

graviton KK tower decouples from the fermion sector. Examining the couplings of

the graviton excitations to the zero-mode vector bosons, we see that in the absence

of brane terms these are given simply by [62]

g0
V0V0Gn

=
2

Λππkrc

(
1− J0(x

G
n )

(xG
n )2|J2(xG

n )|
)

, (4.76)

where xG
n denotes the roots which determine the graviton KK mass spectrum and, for

example, V0 = g. In the presence of brane kinetic terms, both the V0 wavefunction

and the V0V0Gn interaction are modified; in the case V0 = g,

gV0V0Gn =
NV0(δi = 0)

NV0

{
g0

V0V0Gn
+ · · ·} , (4.77)

where δi denotes the appropriate brane term. The omitted terms in the bracket are

proportional to (xG
n )2e−2πkrc for n > 0 and thus are negligible. Note that these terms

are essential, however, to retain the M
−1

Pl behavior of the zero-mode graviton coupling.

For the case of the graviton KK tower, the only influence of the brane terms on the

V0V0Gn coupling arises from modifications of the vector boson wavefunction.

Resonant graviton KK production thus proceeds through gg → Gn → γγ , gg , ZZ ,WW .

Since the Gn coupling is significantly weaker than that for the gluon excitations, we

expect that the gg channel and ZZ, WW decay to hadronic final states will be over-

whelmed by the SM background. Likewise, we expect the rate for the leptonic final

states to be small due to the low ZZ,WW leptonic branching fractions. Thus, we

only consider the γγ final state. The SM diphoton background arises from qq̄ → γγ
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Figure 4.14: Production of the first (top panel) and second (bottom panel) gluon
KK excitation in the dijet channel as a function of the dijet invariant mass. The SM
background is given by the black histogram.
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and gg → γγ, where the latter process proceeds through a box diagram. We include

both of these SM processes in our background calculation. The event rate at the

LHC, with 3 ab−1 of integrated luminosity, is displayed in Fig. 4.15 for the first

graviton excitation and the SM background as a function of the diphoton invariant

mass. In our numerical calculations, we assume k/MPl = 0.1. We see that the G1

production has a very small event rate and is indistinguishable from the background.

Hence, the WHM differs from the usual RS scenario in that graviton resonances will

not be observed.

Figure 4.15: Production rate for the first graviton excitation at the LHC via the
process gg → G1 → γγ as a function of the diphoton invariant mass. The SM
diphoton background is also shown. The two histograms are indistinguishable except
for the small blip at Mγγ = mG1

For completeness, we also considered the associated production of KK gravitons

via gg → Gn + g. Appropriately modifying the expressions in Ref. [87, 124] for the

WHM we computed the event rate at the LHC for G1 production as a function of

jet energy using an integrated luminosity of 3 ab−1. We found that for typical jet
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energies of Ej = 200 GeV the cross section was of order 0.016 ab, and hence is also

too small to be observed, even with the proposed LHC luminosity upgrades. We

thus conclude that in this model, the graviton KK tower can not be observed at high

energy colliders.

Lastly, we note that there exists a radion scalar in this model and that it may

have distinctive collider signatures.

4.7 Conclusions

Various phenomenological aspects of a Higgsless 5-d model [56], based on the RS

hierarchy proposal [136], were studied in this paper. We considered independent

left and right bulk gauge couplings and included the effects of UV brane localized

kinetic terms for the gauge fields [128]. These terms were assumed to be radiatively

generated, which is a generic expectation in orbifold models [80]. Our analysis was

not limited to leading order bulk-curvature effects unlike in Refs. [56, 128], and also

allowed for a more general set of parameters than that discussed in Ref. [26].

We computed the mass spectrum and the relevant couplings of the W± and γ/Z

KK towers, and studied experimental constraints on the model parameters. Our main

conclusion is that in the region of parameter space allowed by precision EW data,

this model is not perturbatively unitary at tree level above
√

s ≈ 2 TeV, which is

below the scale of the new KK states. Futhermore, we find that tree-level unitarity is

violated over the entire parameter space, even in those regions where comparisons with

the precision measurements are anticipated to be quite poor. Thus, to make reliable

calculations based on the WHM, one must extend this model in order to unitarize the

amplitudes. Setting the issue of perturbative unitarity aside, it was also observed that

quantum contributions to the S, T , U oblique parameters [132, 36, 119] are expected

to be small. However, in the absence of the Higgs, regularization of the relevant loop

diagrams may require non-renormalizable TeV brane counter terms whose coefficients

are unknown. This imposes a degree of uncertainty on loop corrections. Further work

regarding loop corrections is needed before more precise statements could be made in

this regard.
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Finally, we considered the collider signatures of the model, assuming that unitarity

could somehow be restored without significantly modifying our numerical results.

These signatures depend on the 5-d configuration of bulk fermions. We assumed a

simple setup, where all fermions, except perhaps for the third generation, are localized

near the Planck brane. The effect of different localizations of quarks was then taken

into account by varying the widths of the KK resonances. Generically, we found that

the low-lying gauge boson KK modes, including the gluons, would be observable,

whereas the most distinct RS signature, the spin-2 graviton KK resonances, would

most likely evade detection at the LHC.

The AdS/CFT correspondence [120] provides a 4-d interpretation of this model

in terms of strong dynamics. Thus, the tools and insights of both five and four

dimensional model building can be employed in making this scenario more realistic

such that it agrees with the SM at low energies. This setup provides an entirely

higher dimensional explanation of the observed weak interaction mass scales, directly

linking them to the IR scale in the RS model. Thus, it is worth the effort to find

solutions for the problems that plague the present form of the WHM.



Chapter 5

Higgsless models with IR brane

kinetic terms

5.1 Introduction

As we enter the era of the LHC experiments, it is appropriate to examine the features

of various approaches to Electroweak Symmetry Breaking (EWSB). One of the latest

attempts for describing EWSB is the proposal of Refs. [55, 56]. In this approach, a

judiciously chosen set of boundary conditions in a 5–d Higgsless SU(2)L× SU(2)R ×
U(1)B−L model gives rise to a pattern of gauge boson masses and couplings that are

similar to those obtained in the Standard Model (SM) via a Higgs doublet condensate.

The geometry of this model is based on the Randall–Sundrum (RS) hierarchy solution

[136], where two branes reside at the boundaries of a 5–d Anti-de Sitter space1. In this

scenario, the boundary conditions give rise to the breaking chain SU(2)R×U(1)B−L →
U(1)Y at the Planck scale with the subsequent breaking SU(2)L×U(1)Y → U(1)QED

at the TeV scale. After the Planck scale symmetry breaking occurs, a global SU(2)L×
SU(2)R symmetry remains in the brane picture; this breaks on the TeV–brane to a

diagonal group SU(2)D corresponding to the custodial SU(2) symmetry present in

the SM [9].

1In the RS background, holographic arguments based on the AdS/CFT correspondence [120]
have been useful in elucidating the features of the Higgsless theory[56, 128, 26, 35].

96
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It has been shown [56, 128, 9] that due to the presence of the SU(2)D custodial

symmetry, this Warped Higgsless Model (WHM) enjoys good agreement with preci-

sion EW data at the level of a few percent. However, it has been argued [26, 35] and

demonstrated [58] that the region of parameter space in the WHM that results in

good agreement with the EW data leads to perturbative unitarity violation (PUV)

in W+
L W−

L scattering at energies of order ∼ 2 − 3 TeV. Furthermore, a scan of the

parameter space of the WHM shows that the scale of perturbative unitarity viola-

tion is never significantly raised, even in those regions where comparisons with the

precision measurements are anticipated to be quite poor [58]. To restore unitarity in

gauge boson scattering, additional new physics is required at or below the RS cutoff

of the effective theory on the TeV–brane. Even though this does not by itself rule

out the model, it suggests that interactions in the gauge sector are problematic above

the TeV scale.

To address some of these issues, the authors of Ref. [38] have examined the effects

of including IR(TeV)–brane terms for the U(1)B−L and the custodial SU(2)D gauge

symmetries. It is well-known that the introduction of brane terms can alter the

couplings and masses of the corresponding Kaluza-Klein (KK) tower states [42, 64,

63, 41] and this would hence affect their contributions to the precision EW observables

and to W+
L W−

L scattering. These authors concluded that the addition of the U(1)B−L

brane term could lead to improved agreement with the EW data, and, in addition,

lowers the mass of the lightest KK state to ∼ 300 GeV. Light KK states are generically

expected to help restore perturbative unitarity in high energy gauge boson scattering,

however the analysis of Ref. [38] did not quantify this point.

In this paper, we also study the effects of the IR–brane kinetic terms associated

with both the U(1)B−L and SU(2)D symmetries; here, we pay particular attention to

low energy perturbative unitarity violation. For the U(1)B−L boundary term, we find

that the scale of PUV in the model is independent of the size of the brane term. We

also demonstrate that increasing the ratio of the 5–d couplings, κ ≡ g5R/g5L, improves

the agreement with the tree-level SM relations in the electroweak sector, but lowers

the scale at which perturbative unitarity is violated, similar to our previous results

[58]. In the case of the SU(2)D kinetic term, we find that perturbative unitarity
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violation in W+
L W−

L scattering could be delayed to center of mass energies of order

∼ 6−7 TeV. However, agreement with the tree-level SM relations is rather poor, with

the disparity worsening as the size of the SU(2)D brane term increases. In addition,

we compare the predictions for the lowest lying gauge KK state to the searches for

new gauge bosons at the Tevatron Run I and II and for contact interactions at LEP

II and find that the collider bounds restrict the potential size of the IR–brane kinetic

terms. However, these collider bounds allow for the PUV scale to approach 6 − 7

TeV.

We describe our setup in the next section. The EW and collider constraints are

discussed in section 3. Perturbative unitarity in this model is the subject of section

4 and our concluding remarks are given in section 5.

5.2 The Model

Here, we briefly discuss the modifications induced in our earlier analysis [58] due

to the presence of the U(1)B−L and SU(2)D brane terms; these changes are quite

straightforward. We employ the notation introduced in our previous work. In what

follows, when we consider the effects of the U(1)B−L kinetic term we also include the

UV–brane terms associated with the SU(2)L and U(1)Y symmetries in our analysis;

these UV kinetic terms were included in our earlier results. However, for simplicity,

we omit the UV terms in our study of the SU(2)D kinetic term.

The introduction of new kinetic terms on the TeV brane leads to a shift in the

original action (given in Eq.(4) of Ref.[58]) by an amount

δSbrane =

∫
d4xdy

√−g δ(y−πrc)
[
−1

4
rccBF 2

B−L−
1

4(g2
5L + g2

5R)
rccD(g5RFL+g5LFR)2

]
,

(5.1)

with g5L(R) being the 5–d SU(2)L(R) gauge coupling, πrc is the brane separation in

the RS model, and cB,D are dimensionless parameters which quantify the size of

the IR–brane kinetic terms. Here FB−L is the field strength tensor for the U(1)B−L

gauge field, and similarly FL,R corresponds to SU(2)L,R. For later purposes it is

convenient to introduce the quantities δB,D ≡ krccB,D/2 as in our earlier analysis
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where k is the RS curvature parameter. We next observe that a non-zero value

for δB will alter the ∂zB = 0 boundary condition [56] on the TeV brane; instead,

we now find ∂zB − δBx2
nkεB = 0, where xn represents the roots defining the KK

spectra, ε ≡ e−πkrc , and B represents the U(1)B−L gauge field. A similar shift is

observed in the case of the combination of fields associated with the SU(2)D brane

term, i.e., ∂z(g5RAL + g5LAR) − δDx2
nkε(g5RAL + g5LAR) = 0. Solving these new

boundary conditions leads to alterations of the wavefunction coefficients as well as

the eigenvalue equations for the KK tower masses. It is important to note, however,

that the W± KK tower masses and couplings are left unaltered by a non-zero value

of δB, but are modified by δD.

In calculating the couplings to both fermions and W± pairs for the photon, the Z,

as well as the rest of the KK tower states, one of the dominant effects due to the new

brane terms is the shift in the normalizations of the W±
n and Zn wavefunctions. These

normalizations now pick up additional terms; for the case of the Zn, in comparison

to our earlier result (Eq.(50) of Ref.[58]); we now obtain:

NZn =

∫ R′

R

dz
R

z

{|χn
L(z)|2(2 + cLrcδ(z −R)) + 2|χn

R(z)|2 + 2|χn
B(z)|2

+ cY rc
|κχn

B(z) + λχn
R(z)|2

κ2 + λ2
δ(z −R) + cBrc|χn

B(z)|2δ(z −R′)/ε

+ cDrc
|κχn

L(z) + χn
R(z)|2

1 + κ2
δ(z −R′)/ε

}
, (5.2)

where χn
i are the wavefunctions for the relevant gauge KK state, and λ is defined as

the ratio λ ≡ g5B/g5L. A similar shift in the W±
n normalization also occurs,

NWn =

∫ R′

R

dz
R

z

{|χn
L(z)|2(2 + cLrcδ(z −R)) + 2|χn

R(z)|2

+ cDrc
|κχn

L(z) + χn
R(z)|2

1 + κ2
δ(z −R′)/ε

}
. (5.3)

These new TeV brane terms also lead to additional contributions to the normalization
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of the photon wave function,

Nγ = 2πrcα
2
L

(
κ2 + λ2 + κ2λ2

κ2λ2

){
1 +

1

πkrc

κ2λ2δL + κ2δB + (1 + κ2)λ2δD + (κ2 + λ2)δY

κ2 + λ2 + κ2λ2

}
,

(5.4)

where αL is a numerical constant which is determined from the boundary conditions

and appears in the KK decomposition of the A3
L gauge field. Due to the abelian

nature of the U(1)B−L group, new brane term contributions to the W 4-point or

gauge 3-point functions do not occur. However, such contributions are induced in the

case of the SU(2)D brane term.

5.3 Precision Measurements and Collider Bounds

Our analysis now proceeds by analogy with our earlier work [58]: we hold MW,Z

as well as the UV–brane kinetic terms δL,Y fixed and explore the parameter space

spanned by the parameters κ and δB,D.

We previously introduced the three different quantities related to the weak mixing

angle: sin2 θos = 1 − M2
W /M2

Z , sin2 θeg = e2/g2
W1

(where gW1 is the coupling of the

particle we identify as the W to the SM fermions), and sin2 θeff , which is defined at

the Z-pole. All three must take on the same value at the tree-level in the SM. They

can differ significantly in the present scenario; however, there are preferred parameter

space regions, i.e., when κ is large [58], that yield consistent values. The first question

to address here is the variation of sin2 θeg,eff with respect to the fixed on-shell value,

sin2 θos, as δB,D are allowed to change for fixed κ. The results of this analysis are

shown in Fig. 5.1. In the top panel we observe that sin2 θeff is δB-independent, which

we have verified analytically, while sin2 θeg increases as δB increases. In fact we see

that for κ = 1(3) excellent agreement between the on-shell and effective values is

obtained when δB ' 8(10). Overall, however, the case κ = 3 yields more consistent

values, as in our earlier work, due to the large separation between the quantities

sin2 θos and sin2 θeff when κ = 1. Clearly, a non-vanishing value of δB does help to

bring the values of the various definitions of sin2 θ into agreement. In contrast, in the

bottom panel we see that as δD increases both of the different sin2 θ values shrink in
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size and move away from the on-shell value thus getting further from the SM limit.

Of course the κ = 3 values remain closer to the SM than do those for κ = 1, but in

all cases the agreement is poor.

Since δB,D shift the the sin2 θeg curves in opposite directions, it is interesting to

see what happens when these brane terms are simultaneously nonzero. This can be

seen in Fig. 5.2 for κ = 1. For the range of δD of interest we see that we can always

find a value of δB for which sin2 θos ' sin2 θeg. Unfortunately, since sin2 θeff is δB

independent, including this brane term does not bring this quantity into accord with

the others for κ = 1; larger values of κ may help in this regard.

Another quantity of interest is the value of the overall strength of the Z boson

coupling, denoted as ρZ
eff , and in particular, its deviation from unity, i.e., δρZ

eff ≡
ρZ

eff − 1. This deviation is related to the pseudo-oblique parameter T ∗ as T ∗/α ≡
δρZ

eff . The pseudo-oblique parameters are defined in such a way so that they all take

on the value zero in the tree level SM. They are introduced to guide our thinking

about the direction in parameter space which approaches the SM. We note that it

is important not to confuse these pseudo-oblique parameters with the conventionally

defined purely oblique S, T, U . The dependency of δρZ
eff on δB,D for two different

values of κ is shown in Fig. 5.3. Note that this parameter remains relatively small in

magnitude for both values of κ as long as either δB,D does not become too large.

The other pseudo-oblique parameters S∗, U∗, as defined in Ref. [58], are also

functions of δB,D as shown in Fig. 5.4. For U∗, some values of δB improve the

agreement with the SM limit, while S∗ tends away from its SM value. We see that,

overall, smaller values of δB are again preferred. In the case of δD we see that both

S∗ and U∗ move away from the SM limit with the shifts being much more significant

in the case of κ = 1.

Our approach to calculating the pseudo-oblique observables, S∗T ∗U∗, differs from

that of STU as calculated by Csaki et al.[38]. In our approach, we numerically fix

the masses of the first charged and neutral gauge KK excitations to be those of

the physical W and Z bosons observed at colliders. We use these as input to our

analysis, together with the strength of the charged current coupling determined by

GF . From these the couplings and masses of all the gauge KK states can be obtained.
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Figure 5.1: sin2 θ in each of the three definitions as a function of δB,D. The black
horizontal solid and dashed curves correspond to the on-shell value ±1σ, the solid
red (dashed blue) curve represents sin2 θeff for κ = 3(1) while the dash-dotted green
(dotted magenta) curve is for sin2 θeg. The top (bottom) panel illustrates the effects
of including the U(1)B−L (SU(2)D) kinetic term. We take only one IR kinetic term
to be non-vanishing at a time.
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Figure 5.2: Same as in the previous figure but now with both δB,D nonzero for the case
κ = 1. The solid magenta curve is the value of sin2 θeff while the dash-dotted curves
are all for sin2 θeg for, from left to right, δB = 0, 10, 12, 15, 20 and 30, respectively.

The pseudo-oblique parameters are then defined in terms of observables via the W

mass, the invisible width of the Z and the fermionic couplings determined at the

Z-pole. S∗T ∗U∗ are chosen to vanish at the tree-level in the SM. Csaki et al. choose a

different scheme wherein the SM gauge couplings g and g′ are used as input parameters

together with the usual relationship 1/e2 = 1/g2 + 1/g′2. This fixes sin2 θ and hence

the couplings of the W and Z. From this the W and Z and other KK masses, as well

as their couplings, can be determined. The STU parameters in Ref. [38] can then

be calculated as shifts in the masses as well as the wavefunctions and normalizations

for the W and Z. It is clear that these two sets of electroweak parameters probe

different relationships between the masses and couplings of the W and Z described

by distinct choices of input parameters. In either case they allow for a measure of how

far the model predictions are from the tree level SM. However, without employing the

full loop corrections and overcoming the problem of ‘subtracting out’ the Higgs loop

effects (described in [58]) neither set of parameters can be directly compared with
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data.

To go further in the analysis of this model, we need to consider how non-zero values

of δB,D lead to modifications of the KK spectra. Clearly, the U(1)B−L brane term does

not influence the W KK tower so we turn our attention to the neutral KK states. The

major effect of a non-zero δB on neutral KK states can be clearly seen in the upper

panel of Fig. 5.5 for the case of κ = 1; the same qualitative behavior occurs for other

values of κ. Here we immediately observe that the single, non-degenerate states are

unaffected while one member of the nearly degenerate paired states, the one which

couples mainly to B − L, gets its mass reduced as δB is increased. The remaining

member of the pair stays unaffected. In particular, we see that the state Z2 becomes

light (note that here, Z1 is the lightest state and corresponds to the SM Z). Further

increasing δB leads to the appearance of new sets of almost degenerate pairs of states.

Including δD has the opposite effect in that the member of the pair which couples

mainly to T3L gets its mass lowered. The other states are only slightly affected. In

the case of SU(2)D, the charged KK states have all of their masses lowered in analogy

with the falling curves in the lower panel2. This figure demonstrates that the U(1)B−L

and SU(2)D brane terms are at least partly doing what we had expected, i.e., lowering

the KK masses so that the now lighter states can have a potentially greater influence

on unitarity in W+
L W−

L scattering. They do, however, lower the masses of different

sets of KK states and this is critical for unitarity considerations as we will see below.

One may wonder, since some of the KK states are becoming so light, if there are

conflicts with direct searches for new vector bosons at the Tevatron as well as with

indirect searches such as those for contact interactions at, e.g., LEP II. We recall that

while the Tevatron experiments search for new resonances decaying into leptons via

Drell-Yan production, the LEP bounds result from searches for deviations in cross

sections and angular distributions from SM expectations below production threshold.

In the case of the charged KK states, whose masses are lowered by the SU(2)D

2Note that the root corresponding to the observed W is also lowered. Since the mass scale of the
heavier KK states is obtained by matching this root to MW , the mass of the neutral states rises.
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Figure 5.3: δρZ
eff as a function of δB,D for κ = 1 and 3. We take only one IR kinetic

term to be non-vanishing at a time.
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Figure 5.4: Values of the pseudo-oblique parameters S∗ (solid red, dash dotted green)
and U∗ (blue dashed, dotted magenta) for of κ = (3, 1) as labeled as functions of δBD

.
We take only one IR kinetic term to be non-vanishing at a time.
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Figure 5.5: Behavior of the neutral KK mass spectrum as a function of δB,D. From
bottom to top on the left the curves correspond to the states Z2,3,... κ = 1 has been
assumed. We take only one IR kinetic term to be non-vanishing at a time.
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brane terms, the best limit comes from the Run I search at the Tevatron [5]. The

strongest bounds on the direct production of Z ′-like states come from Run II data

using 200 pb−1 of integrated luminosity, while indirect bounds on such states have

been supplied by the LEPEWWG [91]. All of these sets of data have been employed

in obtaining the results which follow. Figures 5.6 and 5.7 show the δB,D dependence

of the lightest KK excitation mass for κ = 1, 3 as well as the corresponding bounds

on this state from LEP II and the Tevatron. The non-trivial nature of these bounds

arises from the modification in the W2 and Z2 couplings as δB,D are varied. Note that

in the case of an SU(2)D [U(1)B−L] brane term, the best limit from the Tevatron

arises from constraints on W ′ [Z ′] production. The reason for this is that, in the case

of SU(2)D, both W and Z KK excitations may be light and the Tevatron constraints

on W ′ production are generally stronger than those for Z ′ production since the cross

section times leptonic branching fraction is larger in the W ′ case. For both values

of κ we again see that smaller values of δB,D are in better agreement with the data.

Note that while the Tevatron bounds are somewhat sensitive to the assumption that

all the SM fermions are localized close to the Planck brane due to possible variations

in the width of the W2 and Z2, this is not true for those from LEP. For example, one

can imagine that for model building purposes, the right-handed top-quark might be

moved away from the Planck brane; this could significantly alter the bounds from the

Tevatron but those from LEP II would remain intact.

As we will see below, the masses of the first W and Z KK excitations must be

relatively light, ≤ 1 TeV, for there to be any impact on PUV. Though their couplings

to the SM fermions are somewhat reduced, such states will not escape detection at the

LHC and may even be observed in the near future at the Tevatron. The first neutral

KK state may be sufficiently light to be produced on resonance at a TeV-scale linear

collider.
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Figure 5.6: The predicted mass of the lightest KK excitation, the lower bound on the
mass from the Run II Tevatron Z ′ searches as well as the lower bound from LEPII as
a function of δB, assuming δD = 0. The collider limits are discussed in detail in the
text.
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Figure 5.7: The predicted mass of the lightest KK excitation, the lower bound on the
mass from the Run I Tevatron W ′ searches as well as the lower bound from LEPII as
a function of δD, assuming δB = 0. The collider limits are discussed in detail in the
text.
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5.4 Unitarity in W+
L W−

L Scattering

We will now investigate the question of whether perturbative unitarity is preserved in

this model. As before, we examine the amplitude for the W+
L W−

L → W+
L W−

L elastic

scattering process. In Ref. [55], two sum rules were derived that insure the cancellation

of terms growing with energy at high energy. Here, we find that, as in our previous

analysis, these sum rules are satisfied to good precision once sufficient KK states are

included. However, these sum rules are technically only valid at infinite center of mass

energy. If the scattering occurs at a finite value of
√

s, then the amplitude cannot

receive contributions from states much heavier than
√

s. Therefore, we investigate the

full amplitude in detail in the intermediate energy region, between mZ and the high-

energy regime where the sum rules are valid. If unitarity is violated it will be in this

region. Since the relevant expansion parameters, M2
KK/s, are not small, we use the

full tree-level amplitude from Ref. [72]. We numerically calculate the couplings using

the δB,D generalized versions of Eq. (67) from Ref. [58]. We then numerically evaluate

the amplitude and apply the partial wave unitarity condition |Re a0| ≤ 1/2, where

a0 is the zeroth partial wave amplitude. The couplings were obtained independently

on two different computing platforms, Maple and Mathematica. The partial wave

amplitude was computed independently by three calculations, using Mathematica

and Fortran. We have included all KK states with masses up to 10 TeV and checked

that the results are stable against including more states. For δB 6= 0 , δD = 0 we

find that perturbative unitarity is violated and, furthermore, the scale of PUV is

independent of δB. For κ = 1 the violation occurs at 3.8 TeV; for κ = 3 it occurs at

1.9 TeV, close to the SM value. We have also checked the case δL = 0, δB = 4, κ = 1

which roughly corresponds to the case studied in [38]; we found PUV at 3.15 TeV. For

non-zero δD, with all other δi set to zero, we find that the scale of PUV is increased

over some of the parameter space, reaching energies ∼ 7 TeV, as displayed in Fig.

5.8.

These results can be understood heuristically. Naively, one expects that the uni-

tarity violations will be softened as the masses of the KK states contributing to uni-

tarity restoration are lowered. Hence, one expects that a high value of δB will at least
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raise the scale of unitarity violation. However, note that gauge boson scattering is a

fundamentally non-Abelian process. In the present model, it is therefore an SU(2)L

process, and should not depend on the U(1)B−L dynamics. When δB is turned on,

the mass of one state in a pair responds dramatically, while the other is unaffected.

It is clear that the state that responds should be predominantly a hypercharge boson,

with very little mixture of W 3 in its wavefunction. Indeed, we can write [58] the cou-

plings of the neutral KK states to SM fermions as (gZn/cw)(T f
3L− s2

nQ
f ). Calculation

of the s2
n parameters confirms that the light state couples as a hypercharge boson.

Numerically, we can look at the coupling of the light state to two WL bosons. At

δB = 0 this coupling is a factor of 6 smaller than that for the next neutral KK state,

which is predominantly W 3. As δB is increased to 20 the couplings of the two states

become comparable. However, the light state still makes a negligible contribution to

the part of the amplutude responsible for PUV. To see this, note that the PUV can

be traced to incomplete cancellations in the term that grows linearly with s at high

energies. The contribution of the kth state to this sum rule is proportional to m2
kg

2
11k,

so the light state has little effect. In the case where δD is non-vanishing, it is the

other member of the degenerate KK pair whose mass is lowered. In this case, the

light state then couples mostly to isospin, and is capable of significantly modifying

the W+
L W−

L scattering amplitude.

A note about numerical instabilities is in order. We find that the sum rule gov-

erning the coefficient of the s2 term is satisfied at the level of 10−6 after the first

KK state is included, while the sum rule for the s term is satisfied to the level of

10−2. After a few more states are included, the first sum rule is satisfied to O(10−9),

and the second to O(10−3). This demonstrates that the PUV is due to incomplete

cancellations in the term growing like s, as well as the presence of the constant term.

However, consider the case where there is a numerical instability in the calculation

of the couplings at the 10−8 level. Then we can estimate the energy scale at which

this becomes important by noting that the amplitude goes like 10−8(s2/M4
W ). This

becomes of order unity when
√

s ∼ 8 TeV, implying that a calculation good to only 8

digits will give incorrect results when the scale of PUV is in the few TeV range. Since
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Figure 5.8: The scattering energy at which perturbative unitarity is violated in
W+

L W−
L scattering as a function of the kinetic terms. We take κ = 1.

unitarity depends on delicate cancellations, it could be expected that any error will

decrease the scale of PUV. However, we have, somewhat surprisingly, found that this

is not necessarily true. The reason is that the terms growing like s and s2 have the op-

posite sign. A numerical error can thus cause the s2 term to turn on prematurely and

cancel the contribution from the s term, leading to an apparent scale of PUV higher

than it actually is. For example, we studied one case where a numerical error at the

level of 10−8 caused the apparent scale of PUV to be 12 TeV, while the correct scale

was actually 6 TeV. For this reason, all our results were computed independently on

two platforms, with agreement to greater than 12 digits.

5.5 Conclusions

The Warped Higgsless Model, which breaks the electroweak symmetry via boundary

conditions associated with an extra dimension, offers a promising alternative to the

Higgs mechanism. A custodial SU(2)D symmetry is present in the model, so that
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reasonable agreement with precision electroweak data is conceivable. However, the

degree of such agreement varies as the parameter space of the model is explored, and

some regions can be excluded. Here, we examined the effects of including IR(TeV)–

brane kinetic brane terms associated with the U(1)B−L and SU(2)D gauge symmetries

of the model. We found that the addition of the U(1)B−L kinetic term enhances

the agreement with the tree-level SM electroweak relations, particularly for larger

values of the ratio of the 5–d couplings g5R/g5L, with reasonable values of the brane

term parameter δB. However, including the SU(2)D brane term alone results in a

stark disagreement with the SM tree level relations in the electroweak sector. We

performed a limited exploration of the full parameter space and found it is possible

that a combination of the two IR–brane terms may result in a reasonable consistency

with the tree-level SM relations.

In its original form, the WHM has some difficulties in the gauge sector in that

perturbative unitarity is violated at the TeV-scale in W+
L W−

L scattering. This does

not exclude the model from being viable, but does suggest that interactions in the

gauge sector are problematic. To restore unitarity in the gauge sector, additional

new physics must be introduced. Here, we again examined the effects of including

the IR(TeV)–brane kinetic brane terms. It is well-known that the addition of brane

terms can alter the couplings and masses of gauge KK states, and this would thus

affect the KK contributions to W+
L W−

L scattering. While we found that the U(1)B−L

brane term does modify the gauge KK spectrum, we also discovered that PUV in

W+
L W−

L scattering is independent of such a brane term and hence remains unaffected

by its presence. This is because this scattering process is inherently non-Abelian

and should not depend on the U(1)B−L dynamics. In contrast, the inclusion of the

SU(2)D kinetic term does affect W+
L W−

L scattering; for moderate values of the brane

term, violation of perturbative unitarity is delayed until
√

s ≈ 7 TeV. In addition,

we also investigated the collider bounds on the production of the lightest gauge KK

excitation as a function of the brane terms. Searches for new gauge bosons at the

Tevatron and LEP II exclude large values of the kinetic term parameters δB,D.

Our analysis shows how various directions in the parameter space of the WHM

affect its phenomenology. Requiring a model that is perturbatively sensible up to
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O(10) TeV favors κ = 1 and 1 . δD . 10, regardless of the size of δB. Collider

constraints on the KK modes of the gauge bosons can accommodate this range of

parameters, as long as δB,D . 2 − 3, with the Tevatron bounds depending on the

fermion localization. We observe that the requirements of multi-TeV perturbative

unitarity and those imposed by tree level SM relations, as represented by the pseudo-

oblique parameters and various values of sin2 θ, do not coexist without tension in this

model. However, a direct comparison of these latter quantities with the electroweak

data requires a computation of the radiative corrections in the WHM, which lies

outside the scope of this work. Thus, it remains an open possibility that this model

could provide a viable alternative for electroweak symmetry breaking, valid far above

the weak scale.
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Chapter 6

Monte Carlo exploration of warped

Higgsless models

6.1 Introduction

As the time of the LHC turn-on draws nearer, the search for alternative theories to

the standard single Higgs boson picture of electroweak symmetry breaking is intensi-

fying. One such scenario [56] is particularly appealing in that it employs a minimal

particle content in a 5-dimensional spacetime and exploits the geometry of the ad-

ditional dimension to break the electroweak symmetry. The model is based on the

Randall-Sundrum framework [136] with an SU(2)L×SU(2)R×U(1)B−L gauge group

in 5-d Anti-de Sitter space. The AdS5 slice is bounded by two branes, with the scale

of physics on the IR(TeV)-brane being given by Λπ ≡ MPle
kπrc , with k corresponding

to the RS curvature parameter and rc being the radius of the compactified dimension.

The set of boundary conditions, which differ for the two branes, generate the breaking

chain SU(2)R ×U(1)B−L → U(1)Y at the Planck scale with the subsequent breaking

SU(2)L × U(1)Y → U(1)QED at the TeV scale. The electroweak symmetry is thus

broken without the introduction of a Higgs field. After the Planck scale symmetry

breaking occurs, a global SU(2)L×SU(2)R symmetry is present in the brane descrip-

tion. This breaks on the TeV-brane to a diagonal group SU(2)D which corresponds

[9] to the custodial SU(2) symmetry of the Standard Model (SM) and helps preserve

116
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the SM tree-level relation ρ = 1. We denote this scenario as the Warped Higgsless

Model (WHM).

In this scenario, the role of the Goldstone boson in generating masses for the W

and Z bosons is played by the would be zero-mode of the KK tower corresponding

to the 5th component of the bulk gauge fields (i.e., A5
0). The Z boson observed

at LEP/SLC/Tevatron is the first excitation of a neutral gauge boson KK tower,

while the photon corresponds to the massless zero-mode of this tower. The W boson

observed in experiments is then the first state of a KK tower of charged gauge bosons,

and there is no charged massless zero-mode. The experimentally observed values of

the W and Z masses and couplings are essentially reproduced in this model. However,

the presence of the gauge KK states affect a number of processes. In particular,

much work has been performed analyzing the contributions to the set of precision

electroweak measurements in Higgsless scenarios [128, 27, 58, 35, 38, 27, 49, 76, 43].

In the flat space analog of the WHM [55], i.e., a Higgsless model based on a flat higher

dimensional spacetime, unacceptably large deviations from precision electroweak data

are generated. However, good agreement with the data can be obtained at tree-level

in the warped Higgsless scenarios, provided that the masses of the KK excitations are

sufficiently heavy. In addition, the KK excitations must satisfy the constraints from

direct production of new gauge bosons at the Tevatron and from their contribution

to contact interactions in four fermion processes at LEPII.

Note that precision observables are sensitive to one-loop electroweak effects. In

general, the loop corrections in this model will be qualitatively similar to those in

the SM (up to small shifts in the couplings). However, there are three types of loop

corrections that may cause large deviations: the gauge KK excitations, the absence

of loops with a physical higgs, and the top quark. Since the gauge KKs are playing

the role of the physical Higgs in WW scattering, it is expected that they will do the

same here, so the first two effects should largely cancel. In our model all fermions

are localized to the Planck brane, and the parameters of the model are adjusted so

the couplings are as close to the SM couplings as possible. Hence, the top corrections

should again approximate the Standard Model values. (In a model where the top

mass is generated on the TeV brane [54] a more careful treatment would be needed.)
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Since we expect all loop corrections to qualitatively approximate the SM corrections,

we will require that the tree level WHM approximate the tree level SM as closely as

possible in the analysis below.

In the absence of a Higgs boson, or any other new physics, perturbative unitarity

(PU) in elastic W+
L W−

L scattering is violated at an energy scale of ' 1.7 TeV. How-

ever, in these Higgsless scenarios, it is in principle possible that the exchange of the

neutral gauge KK tower in W+
L W−

L → W+
L W−

L can restore PU, provided that a set

of conditions on the KK masses and couplings are satisfied [55]. This works well in

the flat space analog of the WHM, but is problematic within the warped scenario.

In particular, the region of parameter space which enjoys good agreement with the

precision electroweak and collider data leads to low-scale (∼ 2 TeV) perturbative

unitarity violation (PUV) in gauge boson scattering [58]. One would at least expect

the theory to remain perturbative up to the cutoff scale of the effective theory on the

TeV-brane, Λπ, where Λπ is roughly on the order of 10 TeV. This leads to a tension in

the model parameter space in terms of finding a region which simultaneously satisfies

all of the model building requirements as well as the experimental constraints.

In [38, 59] the effects of including the IR-brane terms associated with the U(1)B−L

and SU(2)D gauge symmetries were examined; the presence of such terms is known

to alter the corresponding KK spectrum and couplings [42, 64, 63, 41]. In these

analyses it was found that the addition of the U(1)B−L IR-brane term could lead to

improved agreement with the electroweak data [38] and the inclusion of the SU(2)D

brane term could delay PUV in W+
L W−

L → W+
L W−

L to scattering energies of order

∼ 6− 7 TeV [59]. However, a scan of the full parameter space was not performed in

order to determine whether there exists a region where all the constraints discussed

above are simultaneously satisfied.

In this paper, we perform a detailed exploration of the WHM parameter space via

Monte Carlo techniques. There are a number of parameters present in this scenario:

(i) the set of coupling strengths for each gauge symmetry: g5L which is fixed by GF , the

ratio λ ≡ g5B/g5L which is fixed by the value of MZ , and the ratio κ ≡ g5R/g5L which

lies in the restricted range 0.75 . κ . 4.0, but is otherwise free. (ii) The brane kinetic

terms associated with the IR-brane, δB,D, and the UV-brane, δL,Y . Here the brane
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terms will be treated as free phenomenological parameters but should in principle

be calculable from the full theory once the UV-completion is known. The parameter

space is sufficiently large such that it is best scanned by Monte Carlo sampling. For

each set of parameters, we subject the model to a succession of tests: (i) model

requirements, such as the absence of ghosts and tachyon states, (ii) consistency with

the precision electroweak data, (iii) consistency with the direct and indirect collider

bounds on new gauge boson production, and (iv) PU in elastic W+
L W−

L scattering. In

particular, we require that this scattering process be unitary up to Λπ ' 10 TeV. We

find that the conditions (i-iii) are relatively easy to simultaneously satisfy, but that

none of the models satisfied perturbative unitarity beyond the scale of ' 2 TeV. We

conclude that if a successful model of this type exists, it must be highly fine-tuned,

or must contain other sources of new physics.

We present our analysis in the next two sections. The formalism of the WHM is

presented in detail in our earlier work [58, 59] and will not be reproduced here.

6.2 Analysis: Electroweak and Collider Constraints

As discussed above, the model in its present form contains five free parameters: κ =

gR/gL, the ratio of the two SU(2)L,R gauge couplings which is expected to be of order

unity, and the four brane kinetic term parameters, δB,D,L,Y , corresponding to the vari-

ous unbroken gauge groups on the TeV and Planck branes: U(1)B−L, SU(2)D, SU(2)L

and U(1)Y , respectively. Our approach is to choose a value for κ and then explore

the parameter space spanned by δB,D,L,Y via Monte Carlo methods. To be definitive

we will assume that all the δi are constrained to lie in the range −πkrc ≤ δi ≤ πkrc

as suggested in [42, 64, 63, 41], and we fix krc = 11.27 in our numerical study. For

each set of values of the δi we define a successful model as one which passes through a

number of cuts and filters that we now describe in some detail. Our results are com-

piled in Tables 1 and 2, which displays the amount of statistics generated for each

value of κ and the number of models which survive each successive constraint. Our

statistics are concentrated near κ = 1 as in this case the KK spectrum is relatively

light and we are more hopeful that PU constraints will be satisfied.
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Upon generating a set of δi we first calculate a group of model parameters which

are associated with the lightest massive charged and neutral gauge bosons, and ensure

that they are identified with the observed SM fields, W1 = W and Z1 = Z. We take

the experimental values of their masses MZ = 91.1875 GeV and MW = 80.426 GeV

[91] as input to our analysis. This numerically fixes the low energy scale ke−πkrc that

gives the masses of the KK excitations in the RS model, as well as the value of the

on-shell weak mixing angle, sin2 θOS = 1 − M2
W /M2

Z . Next, the requirement of the

absence of ghosts in the unitary gauge of any physical theory implies that these two

states, W1 and Z1, must have positive norms. Similarly, the field that represents the

photon must also have a positive norm. In addition to these constraints, we demand

that the ratio of the squares of the gauge couplings, λ2 = g2
B−L/g2

L, be positive definite.

As can be seen from Table 1, these few simple cuts can remove as much as ∼ 40% of

the parameter space volume.

Assuming that the SM fermions (at least the first two generations) are localized

near the Planck brane we can now calculate a number of electroweak quantities.

Recall that our philosophy is that we want the tree level Higgsless model to match

the tree level SM as closely as possible, outside of the Higgs sector, since in many

cases we expect approximately similar one-loop radiative corrections. As we found in

our earlier works [58, 59], a description of the γ,W and Z couplings to the SM matter

fields can be parameterized in terms of two other definitions of the weak mixing angle

in addition to sin2 θOS. These two additional angles are defined via: sin2 θeg = e2/g2
W ,

with gW = gffW1 being the coupling of the W to SM fermions on the Planck brane,

and sin2 θeff being given by the couplings of the Z to the same fermions at the Z-pole

as discussed below. The electromagnetic coupling is, as usual, defined through the

interaction of the massless neutral mode, Z0, which we identify as the photon, to the

SM fields. All three definitions of the weak mixing angle are identical at the tree level

in the SM but are, in general, quite different numerically in the WHM.

Writing the Z-pole couplings to SM fermions as

gZ

cOS

(T3 − sin2 θeff Q) , (6.1)
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Cuts κ 0.75 0.9 1.0 1.25 1.5 2.0 3.0 4.0
Initial Sample 308,710 141,950 1,307,463 251,970 271,570 145,570 181,274 136,920

λ2 > 0 130,286 62,202 585,011 115,455 125,035 67,662 82,583 16,204
No γ, Z ghosts 130,286 62,202 585,011 115,455 125,035 67,662 82,583 16,204
|δρ| < 0.005 16,181 7,887 76,994 16,728 20,183 13,799 24,223 2,958

|s2
eff − s2

os| < 0.005s2
os 676 387 3,665 875 1,356 1,328 3,838 2,899

|s2
eg − s2

os| < 0.005s2
os 242 159 1,539 332 545 576 1,805 2,013

No Z′ ghost 242 159 1,539 322 545 576 1,805 2,013
Z′ Tevatron 150 102 1134 217 393 439 1,556 1,830
mZ′ < 1.5 TeV 74 50 644 90 180 202 828 1,581
LEPII indirect 70 45 550 72 80 175 796 1,178
Isospin coupling 24 13 112 12 8 12 65 0
No Tachyons 0 0 0 0 0 0 7 0
PUV 0 0 0 0 0 0 0 0

Table 6.1: Data samples and their responses to the various constraints as described
in the text. The values represent the number of cases surviving each of the cuts.

in obvious notation, we also can define an auxiliary quantity, ρZ
eff = g2

Z/g2
W , which

relates the strengths of the W and Z gauge boson interactions. We identify gZ/cOS =

gffZ1 . In the SM at tree-level ρZ
eff = 1, of course. We note that all of the elec-

troweak observables at the W,Z mass scale can now be described in terms of the

three weak mixing angles, MZ , and ρZ
eff and we have no need to introduce any other

parameterizations.1 It is clear that if we wish to reproduce the tree-level SM we must

have all three values of sin2 θ be almost equal as well as require that ρZ
eff be very

close to unity. In our numerical study we will demand that the three definitions of

sin2 θ all be equal within 0.5% and additionally require |δρZ
eff | = |ρZ

eff − 1| to be less

than 0.005. The magnitude of these constraints should be comparable to the size of

the one-loop generated electroweak corrections. This set of constraints is extremely

powerful for the full WHM parameter space, but is especially strong for low values

of κ as can be seen from Table 1; only a few percent of the original model parameter

space remains after applying these cuts. Note that models with larger values of κ

are generally favored by these electroweak constraints. This is not unexpected; we

saw in our earlier work that the SM limit is approached rapidly as the value of κ is

increased. The price one pays for this is a rapid increase in the masses of the KK

states leading to an obvious failure in PU as discussed below.

We now turn our attention to the mass and couplings of the next lightest neutral

KK state, Z2; these parameters are highly constrained by both experimental data

as well as our requirement of PU as we will see below. We first impose the obvious

1It can be easily shown that there is a unique mapping of the above parameters, together with
GF which now involves a KK sum, over to the εi of Altarelli and Barbieri[13].
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Figure 6.1: The coupling strength of the first neutral KK excitation beyond the Z
in units of gW as a function of its effective sin2 θ. The color coding labels models
with different values of κ. All electroweak constraints have been applied to the cases
shown as well as the bounds from the TeVII direct searches. A cut of MZ2 < 1.5 TeV
has also been applied. Indirect LEPII constraints have not yet been imposed.
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constraints that this state not be a ghost and that it has not (yet) been observed in

direct Z ′-like production searches at LEPII or the Tevatron2. This places a correlated

cut on the mass of this state as a function of its couplings to the SM fermions on

the Planck brane. Futhermore, we note that the indirect search constraints for Z ′-

like states must also be satisfied. To be specific we will demand that the masses

of the Z2’s as well as their couplings to SM fermions are such as to have avoided

the LEPII contact interaction constraints. This constraint is actually quite powerful

and removes an entire region in the Z2 mass vs. coupling plane which survives the

electroweak and Tevatron bounds. After imposing all these requirements we see from

Table 1 that there are a respectable number of surviving cases.

The particular properties of the surviving cases will be examined in detail below.

Figures. 1 and 2 show the values of the Z2 mass and coupling for those models passing

all of our above cuts except the constraints imposed by LEPII; in these figures an

additional requirement for PU that MZ2 ≤ 1.5 TeV, to be discussed further below,

has been imposed. The Tevatron direct search constraint is responsible for the sharp

diagonal boundary in the bottom panel of Fig. 2. Note that the couplings of the Z2

can always be written in a form similar to the Z above except we denote the overall

coupling strength as gffZ2 and the value of the corresponding weak mixing angle as

s2
2 = sin2 θeff (Z2), i.e., (gffZ2/cw)(T f

3L − s2
2Q

f ). Note the large set of models near

s2
2 = 0 and 1, the former with large couplings and masses between ∼ 1 and 1.5 TeV.

These strongly coupled cases are entirely removed by the LEPII contact interaction

bound and will not concern us further. It is important to note that at this point there

are a reasonable of surviving models subsequent to applying this rather strict set of

electroweak and collider constraints on the model parameter space. This situation is

in contrast with results previously obtained by Barbieri et al.[27] in the case of the

flat space analog where no warping is present. These authors showed that there was

no significant region of parameter space which simultaneously satisfied the collider

and precision electroweak constraints. We have performed a Monte Carlo study of

2The strongest bounds at present are given by the D0 Collaboration in D0note 4375-Conf, v2.1
based on ∼ 200 pb−1 of Run II data. The analysis of LEPII data leading to bounds on new gauge
boson-like signatures can be found in C. Geweniger et al., LEP Electroweak Working Group note
LEP2FF/02-03(2002)
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Figure 6.2: Same as in the previous figure but now showing the mass-coupling strength
and s2

2 correlations.



6.3. ANALYSIS: PERTURBATIVE UNITARITY AND TACHYONS 125

the flat space analog model, imposing the constraints presented above, and effectively

confirm their results. We note for completeness that if we strengthen our electroweak

cuts such that 0.5% → 0.1% in the analysis above, the number of surviving cases is

reduced by a factor ' 10.

6.3 Analysis: Perturbative Unitarity and Tachyons

Unitarity is an important property of any gauge theory[145, 105, 129]. Before ex-

amining PU directly, two further filters can be applied that will help us to focus on

models which may satisfy our basic requirements. If the Z2 in any of the models that

survive both the electroweak and collider constraints is to contribute significantly to

the W+
L W−

L amplitude it must predominantly couple to isospin and not to B − L or

hypercharge Y . Note that when s2
2 is near unity(zero), the Z2 couples almost purely

to Y (isospin). To ensure that the Z2 has significant isospin-like coupling, we will de-

mand that s2
2 < 0.7. We make exception for the special set of cases where the Z2 mass

is less than ' 400 GeV. The reason for keeping these B−L-like coupled states is that

their light masses may help induce a potentially large contribution to the W+
L W−

L

elastic scattering amplitude. Furthermore, there may exist somewhat heavier excita-

tions not too far away in mass which are coupled to isospin. This cut on s2
2 appears

to be rather loose, but many of the surviving models have great difficulty satisfying

it. It is interesting to note that at this point in the parallel analysis of the flat space

analog model [55] none of the cases satisfy this constraint; all of the possible cases in

the flat space model surviving both collider and electroweak constraints are found to

essentially couple to B − L or Y .

In addition to the above, the Z2 satisfying the collider constraints must still be

sufficiently light as to make a significant contribution to W+
L W−

L elastic scattering.

Recall that in the SM without a Higgs boson, PUV occurs near
√

s ' 1.7 TeV. This

implies that there must be at least one, and more likely several, neutral KK states

below this scale if they are to ‘substitute’ for the SM Higgs in restoring unitarity.

We thus impose the rather weak requirement that the lightest new neutral KK state,

Z2, must exist with a mass below 1.5 TeV; we make no further requirements on the



126 CHAPTER 6. HIGGSLESS EWSB: MONTE CARLO

spectrum for now.

This pair of constraints on the mass and nature of the Z2 couplings are rather

difficult to satisfy simultaneously for the models that have passed the electroweak and

collider cuts; relatively few cases survive at this point as can be seen from Table 1.

Most of the models passing the electroweak and collider bounds tend to be either too

massive or predominantly coupled to hypercharge. We can also see this from Figs. 1

and 2 where the densely populated region near s2
2 = 1 with a mass greater than 400

GeV is now removed by these cuts. At this point, the remaining models are presented

in Figs. 3 and 4; their distribution in δi space is shown in Fig. 5.
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Figure 6.3: Same as Fig.1, but now applying the constraints from LEPII and the
correlated mass-s2

2 cuts to remove the KK states coupling to B − L and hypercharge
as described in the text.

At this point we are ready to examine the PU characteristics of the remaining

cases shown in Figs. 3-5 in detail. First we note that these models fall into two

broad classes: those few with all positive δi and those with at least one of the δi

being negative. An analysis of PU in W+
L W−

L elastic scattering for the cases with all
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Cuts κ 1.0 1.5 2.0 2.5 2.75 3.0 4.0
Initial Sample 611,150 304,680 178,320 122,801 266,801 169,862 70,661
λ2 > 0 611,150 304,680 178,320 122,801 266,801 169,862 70,661
No γ, Z ghosts 611,150 304,680 178,320 122,801 266,801 169,862 70,661
|δρ| < 0.005 168,732 159,537 107,709 89,124 211,944 146,087 69,867
|s2

eff − s2
os| < 0.005s2

os 0 502 1,506 2,734 8,600 7,456 8,724
|s2

eg − s2
os| < 0.005s2

os 0 244 760 1,505 4,887 4,308 5,317
No Z ′ ghost 0 244 760 1,505 4,887 4,308 5,317
Z ′ Tevatron 0 6 145 530 2,204 2,233 4,174
mZ′ < 1.5 TeV 0 6 143 530 2,086 2,112 3,919
LEPII indirect 0 6 143 509 2,086 2,112 3,919
Isospin coupling 0 0 0 0 0 0 0
No Tachyons 0 0 0 0 0 0 0
PUV 0 0 0 0 0 0 0

Table 6.2: Same as the previous table but now for a special set of runs assuming all
the δi ≥ 0. Note that many cases survive until the B − L or Y cut is employed.

positive δi follows the standard procedure described in our earlier work [58, 59] which

makes use of the scattering amplitude as given by [72] augmented to include additional

neutral KK exchanges. Our proceedure is to calculate the complete amplitude using

the expressions of Duncan et al.[72] which we modify to include an an arbitrary

number of neutral KK exchanges in the s− and t− channels as well as an arbitrary

W 4-point coupling. We then integrate this amplitude to extract out the J = 0

patial wave, a0, subject to angular integration cuts imposed to avoid the photon

t−channel pole. For our test of PU we demand that |Re a0| < 1/2, as is widely

done in the literature. This analysis reveals that none of these models are much

improved in comparison to the SM without a Higgs boson, i.e., PUV occurs at ' 2

TeV. The main reason for this is that these cases tend to have a light Z2 which is

predominantly coupled to Y as discussed above. To restate, if the δi are all chosen

positive, the models surviving the electroweak and collider constraints do not lead to

theories which have PU beyond the ' 2 TeV scale.

In order to verify this result we generated a larger statistical sample, an additional

∼ 1.7 · 106 models, distributed over various values of κ, assuming all of the δi ≥ 0.

The results from performing these runs are shown in Table 2 using the same cuts

as above. Here we see that although many models pass the combined collider and
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electroweak constraints none of them survive the non-B−L/Y coupling requirement.

Thus all of these models fail, confirming our previous results. We checked that this

also occurs in the analog flat space model.

We now return to the models with at least one negative δi. Ordinarily, such

models would not be considered since having negative δi at the tree-level implies the

existence of tachyons with all their related difficulties [110]. Indeed, we have verified

numerically that such tachyonic states do indeed exist in the spectrum for all the

models in this class, and found that the tachyon masses are quite sensitive to the

magnitudes of the δi. Nomura [128], however, has argued that potentially large and

negative boundary terms associated with the Planck brane may be benignly generated

at loop level without the significant influence of tachyons. These negative brane terms

can be of sufficient importance numerically as to require their inclusion in a detailed

tree-level analysis such as we are performing here. In such a case one could view the

existence of tachyons as an artifact of including only partial one-loop effects. Since

we are ignorant of the possible origin of negative δi in the full UV-completed theory,

we must in principle consider these cases further.

When analyzing the models with negative δi, one has to take care that the exis-

tence of tachyons at the tree level does not have important phenomenological effects,

e.g., tachyons that have significant couplings to SM fermions or which contribute

substantially to SM processes such as W+
L W−

L scattering. At the very least, if we are

to consider models with such states, the tachyons must be truly benign. Certainly

models where these tachyons can lead to important physical effects must not be al-

lowed. However, if the tachyons are significantly decoupled from the SM fields we

will consider such theories as benign and examine their PU properties. Based on the

analysis of Nomura [128], as well as our previous work [58, 59], one might suspect

that the tachyons induced by Planck brane kinetic terms, δL,Y , are benign while those

arising from kinetic terms on the TeV-brane, δB,D, may not be.

As an initial filter, we analyze the couplings of tachyons to the SM fermions

localized near the Planck brane; clearly, these couplings can depend sensitively on

the magnitude of the δi. First, we must determine the number of tachyon states that

are in the spectrum. In the flat space analog [55] of WHM it is easy to see that
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2 parameter space.
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there can be only a single complex conjugate pair of tachyons in each of the neutral

and charged KK towers; we expect this result to be equally valid in the warped case.

A numerical study verifies these expectations and so we need to concern ourselves

with only two tachyonic states, T 0 and T±. We find that in all the sample cases

examined the relevant couplings of these states to the SM fermions are suppressed by

powers of ε = e−πkrc and are thus exponentially small. Such a result might have been

anticipated since the Bessel functions of an imaginary argument, In and Kn, which

are needed to describe the tachyonic wavefunctions, are asymptotic to exponentials

instead of sines and cosines as is case for the usual Jn and Yn. This suppression of

couplings is similarly observed to take place in the flat space analog of the current

model, though in a more modest fashion due to the absence of warping, where sinh’s

and cosh’s replace the usual sines and cosines in the expression for the tachyonic

wavefunctions. Thus consideration of the fermion-fermion-tachyon coupling places

no additional constraints on any of the models under consideration. One should note,

however, that such constraints may be of some importance in a wider class of models.

As a second test we turn to W+
L W−

L elastic scattering. Here we expect a different

result as the gauge fields are in the bulk and their wave functions sample the entire

region between, as well as on, the two branes. A quick way to analyze this case is to

consider the contribution of the neutral tachyon to the first sum rule of Csaki et al.

[55], which is one of the conditions for PU. Their derivation of this sum rule relies

heavily on the completeness of the set of eigenstates of Hermitian operators; thus

the neutral KK spectrum in the case of δi < 0 is not complete unless the tachyon

state is included. Clearly as the magnitude of the negative brane terms increase the

couplings of the tachyon to SM gauge fields will also increase and the tachyon will

become lighter. The important issue for us is whether or not the tachyon state makes

a numerically significant contribution to the sum rule.

Our results show that there are essentially three possibilities: (i) When δD < 0,

we find that the tachyon makes a substantial contribution to the sum rule, which is

on the order of 10% or more of that of the photon, even when the magnitude of δD is

small. In addition, this contribution is negative, i.e., the tachyon is also a ghost state!

Certainly all such cases must be excluded. This is a powerful constraint as many
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of the surviving models shown in Figs. 3-5 have negative values of δD in the region

near ∼ −0.7. (ii) When δL,Y < 0, the tachyon is generally sufficiently decoupled

as to make almost no significant contribution to the sum rule. Not only are the

couplings weak but the masses tend to lie in the multi-TeV range. For example,

when δL ' −35, a very extreme value, the tachyon coupling to WW is found to

be g2
T ∼ 10−6 which is only dangerous if the tachyon is light. For δL values of lesser

magnitude the couplings are significantly smaller. This is as expected since we showed

in our earlier work[58] that in, e.g., a model with δL ∼ −7.5, the sum rules were very

well satisfied without including any tachyonic contributions. Thus we will retain all

such models for further study. (iii) The remaining case where δB < 0 is a bit more

problematic. As we saw in earlier [59], δB 6= 0 has little influence on W+
L W−

L elastic

scattering since it only modifies the spectrum and couplings of the neutral KK’s

which couple predominantly to B − L/Y . The tachyon W+
L W−

L coupling is found to

be generally intermediate in strength between that of the δD < 0 case and those for

δL,Y < 0, unless the magnitude of δB is reasonably large ' 10. Our analysis of the

surviving sample of models, however, indicates that the values of δB are indeed of this

magnitude or larger. Correspondingly the masses of these states are also dangerously

light implying that they can significantly contribute to SM processes. We thus drop

these cases from further consideration below.

Summarizing, our numerical study confirms our expectations that the tachyons in-

duced by negative TeV-brane kinetic terms are dangerous while those induced by the

corresponding Planck brane terms are benign unless δL is very near its lower bound.

Figures 6 and 7 show what little remains of our surviving models after we employ the

requirement that δB,D ≥ 0. These 10 cases are mostly clustered (those with large neg-

ative δY ) at high Z2 masses in excess of 1.3 TeV and have pure isospin-like couplings.

Those with negative δL tend to have much lighter Z2 masses, of order less than 400

GeV. Their rather small couplings to fermions place them outside the range accessi-

ble to the Tevatron. These are the cases with small masses and large B − L/Y -like

couplings that have survived the B − L/Y cut imposed above. Unfortunately, these

models all have values of δL ' −πkrc and thus have light tachyons with potentially

significant couplings ∼ 10−6 and are thus dropped from further consideration. This
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leaves only the 7 cases with negative δY for further examination.

We now turn to the PU characteristics of these few surviving models; naively we

expect all these cases to be problematic since the first KK excitation is always in

excess of 1.3 TeV even though they are isospin-like coupled. Indeed all of these cases

lead to PUV in the 1.9-2.2 TeV range which is not a significant improvement over the

case of the SM without a Higgs boson. We thus conclude that none of the surviving

models pass our PU requirements leaving us with no remaining models. Note that in

obtaining these results we have not required PU to be valid up to the cutoff but only

that the successful model to reasonably better than the SM without a Higgs.

Since we found that PUV occured at
√

s ' 2 TeV in the surviving models it is

interesting to compare this value to that of the cutoff scale, Λ, as determined by Naive

Dimensional Analysis[130], i.e.,

Λ = ε
24π3

g2
5L

, (6.2)

Following the notation of our earlier work, g2
W = Nδg

2
5L/2πrc, where Nδ is a number

near unity which depends in detail on the values of the δi. With gW fixed via GF this

now yields

Λ =
12π2

g2
W

Nδ

krc

kε , (6.3)

where krc = 11.27 in our analysis. Taking typical model values we find that Λ '
Λπ ' 10 TeV, which is much larger that the

√
s values obtained above for PUV. Thus

PUV is apparently lost long before the cutoff is reached.

6.4 Conclusions

In this paper we have performed a detailed tree-level Monte Carlo exploration of the

parameter space of the 5-d warped Higgsless model which is based on the SU(2)L ×
SU(2)R × U(1)B−L gauge group in the Randall-Sundrum bulk. We have generated

several millions of test models allowing for arbitrary gauge kinetic terms on both the

Planck and TeV branes which are parameterized through the δi coefficients. As we

have seen from our earlier work this scenario suffers from a serious tension between
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constraints arising from precision electroweak measurements and collider data as well

as the requirements of perturbative unitarity in W+
L W−

L elastic scattering up to the

Λπ ∼ 10 TeV scale. We have shown that it is relatively easy to find a class of

models which satisfy all of the current direct and indirect collider bounds and yet

has electroweak properties which are extremely close to those of the tree-level SM.

As before, the size of the parameter space that satisfies the precision EW constraints

increases dramatically as κ increases. The real difficulty arises when we require the

same theories to also satisfy perturbative unitarity while being free of dangerous

tachyons. Though we have generated a fairly large data sample, none of the models

we have examined have been able to satisfy all of our requirements simultaneously.

We do note that if a generic solution of the PUV problem is found, there appears

to be enough room in the parameter space to accomodate precision EW constraints.

Absent such a solution, we can thus conclude that either successful models of this

type are highly fine-tuned or must include additional sources of new physics [79] which

unitarizes the W+
L W−

L scattering amplitude.



Chapter 7

Collider phenomenology of Higgs

bosons in Left-Right symmetric

Randall-Sundrum models

7.1 Introduction

While the Standard Model (SM) is a spectacularly successful description of high

energy particle phenomena, it leaves unexplained why the Electroweak scale is much

smaller than the GUT or Planck scales. Recently, it has been proposed that this

hierarchy might be explained by the presence of additional compactified dimensions.

These could be TeV scale and flat [20, 16], or Planck scale with a warped geometry

[136]. In this second scenario, the Randall-Sundrum (RS) model, there is a single

extra dimension and the spacetime has the geometry of five-dimensional Anti-de Sitter

space, AdS5, compactified on an orbifolded circle, S1/Z2. One 3-brane is localized on

each end of the orbifold, and the warping between them generates the Electroweak

scale.

In the original RS model, all SM fields are localized on the TeV (or IR) brane. The

observable phenomenology in this case comes from the new spin-2 graviton resonances

[61]. However, there is no reason for the fermions and gauge fields not to propagate

in the bulk [60, 89, 62, 134]. Indeed, bulk fermions have a zero mode which is

137
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exponentially localized near one of the branes. Choosing O(1) Lagrangian parameters

for different fermions can select exponentially different overlaps on the IR brane, and

hence different masses, providing a possible explanation of the fermion mass hierarchy

[62, 82, 101]. There have been many investigations into the phenomenology of this

model [53, 42, 41, 64, 108]. One important conclusion is that simply putting the

SM gauge group in the bulk produces a large Peskin-Takeuchi T -parameter [132].

The can be fixed by expanding the gauge group to be left-right symmetric, SU(2)L×
SU(2)R×U(1)B−L [9] or by introducing brane localized kinetic terms for the fermions

[40]. It is also possible to extend this to a Grand Unified group which then contains

a dark matter candidate [11, 10].

More recently, there has been a proposal that no Higgs is needed in this model,

as the geometry can set the gauge boson masses [55, 56, 128], as well as the fermion

masses [54]. The most straightforward application of this model produces large elec-

troweak corrections, and does not preserve tree-level unitarity in longitudinal gauge

boson scattering at finite center-of-mass scattering energies [26, 63, 129, 58, 59, 100,

145, 38, 105]. They do, however, contain a rich collider phenomenology which is

largely independent of those considerations [29]. There have been several variations on

the model, including deconstructing the extra dimension [50, 49, 51, 48, 147, 43, 76],

adding additional dimensions [79], and adding additional branes [37].

The Higgsless models can be obtained as the limit of a model with a Higgs where

the vev, v, is taken to be large compared to the AdS curvature k; that is v/k À 1. The

fact that Higgsless scenarios have difficulty accommodating the precision electroweak

observables leads to the speculation that the agreement may be improved by including

the effects of a finite Higgs vev.

Additionally, analyses of the Higgs scenario, v/k ¿ 1 show that this model is

allowed by precision electroweak data. However, in this case, with Kaluza-Klein

(KK) masses, mKK ≈ 2− 3 TeV, we have v/k ≈ 1/4, which is not particularly small.

In fact, this is expected from RS effective field theory arguments which tell us that

all Lagrangian level mass parameters should be of the same order, MPl. Hence, it

makes sense to study the corrections to collider observables induced by a finite, but

not large, Higgs vev.
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In this paper we will examine the numerical behavior of explicit solutions for the

gauge and fermion wavefunctions in RS with a finite and arbitrary value for v/k.

From this we can extract both the small vev limit and the Higgsless limit.

Note that the RS models can be thought of as large N 4D conformal gauge theories

through the AdS/CFT correspondence [120]. Analyses have also been performed on

the CFT side of the Higgsless model [35], and the Higgs model [7, 8].

In Section 7.2 we develop the formalism that will be employed in this paper.

Section 7.3 shows the behavior of the Kaluza-Klein spectra as the Higgs vev is varied.

We investigate the gauge couplings and precision electroweak constraints in Section

7.4, and the corrections to Higgs properties in Section 7.5. Section 7.6 concludes.

7.2 Formalism

We work in a slice of AdS5, with metric (in conformal coordinates)

ds2 =

(
R

z

)2

(dx2 − dz2) (7.1)

where R = 1/k is the inverse of the curvature scale. There is one brane located at

z = R (the Planck or UV brane), and a second brane at R′ = (MPl/TeV )R (the

TeV or IR brane). This gives log(R′/R) ∼ 35. We define ε = R/R′ ∼ 10−15 for later

convenience.

We are interested in models with a bulk SU(2)L × SU(2)R × U(1)B−L gauge

symmetry. The additional SU(2)R factor over the SM provides a bulk custodial

SU(2)c, which can successfully protect the T parameter [9]. The bulk gauge action

is then

Sbulk =

∫
d5x

√
g

( −1

4g2
5L

FL
MNFMN

L +
−1

4g2
5R

FR
MNFMN

R +
−1

4g2
5B

FB
MNFMN

B

)
(7.2)

We will make use of the ratios of gauge couplings

κ = g5R/g5L, λ = g5B/g5L. (7.3)
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Clearly, this group needs to be broken to U(1)EM. We accomplish this by separating

the breaking into two sectors. On the Planck brane we break SU(2)R × U(1)B−L →
U(1)Y . Since the UV brane is the only place where the SU(2)c is broken, we can

see why the effects on the T parameter will be small. On the TeV brane we break

SU(2)L×SU(2)R → SU(2)D, where SU(2)D is the diagonal subgroup of SU(2)L and

SU(2)R.

We will work in the A5 = 0 (unitary) gauge. The gauge condition can potentially

be complicated by the fact that the brane localized Goldstone modes, the Gi can mix

with the A5 modes. This means that the physical longitudinal polarization for each

vector is a combination of bulk and brane modes. However, for the breaking pattern

used here there is no zero mode for any of the A5 fields, and hence no extra physical

zero-mode scalar. We can therefore safely work in the gauge where A5 = Gi = 0.

We now ask what drives the breaking on each brane. On the planck brane all

degrees of freedom will have Planck scale masses, so we can ignore them. We can

then implement the breaking with boundary conditions to good approximation. This

leads to the boundary conditions at z = R

∂z

(κ

λ
AR − AB

)
= 0, ∂zAL = 0,

AB − κ

λ
A3

R = 0, A±
R = 0. (7.4)

On the TeV brane, the masses will be TeV scale, so we should look at the Higgs

sector in detail. The simplest structure that will create the breaking pattern is a

real Higgs that is a bidoublet under SU(2)L × SU(2)R. This leads to the boundary

conditions at z = R′

∂z(AL + κAR) = 0, ∂zAB = 0,

∂z(κAL − AR) = −g2
5Lv2

4
(κAL − AR). (7.5)

Note that in the v/k →∞ limit we obtain the usual Higgsless boundary conditions.

Instead of the real bidoublet, we could also use the complex bidoublet familiar from

Left-Right symmetric models with minimal changes. See Appendix A for details.
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To write down the effective 4D theory we expand the 5D fields into Kaluza Klein

(KK) fields.

A(x, z) =
∑

n

ζ
(n)
A (z)A(n)(x) (7.6)

We can now obtain the gauge boson wavefunctions by solving the equation of motion

subject to the boundary conditions (7.4) and (7.5). The generic solution for the

wavefunctions is

ζ
(n)
A (z) = z(A

(n)
A J1(mnz) + B

(n)
A Y1(mnz)). (7.7)

Here the label A refers to the particular gauge field being expanded. One of the

coefficients, A(n) and B(n), and the mass are determined by inserting eq. (7.7) into

eqs. (7.4) and (7.5). The other coefficient is fixed by the normalization condition.

We will use 4D canonical normalization for all fields, giving

N
(n)2
W =

∫ R′

R

dz

z
R

(
|ζ(n)

A±L
(z)|2 + |ζ(n)

A±R
(z)|2

)
, (7.8)

for the charged gauge bosons, and

N
(n)2
Z =

∫ R′

R

dz

z
R

(
|ζ(n)

A0
L
(z)|2 + |ζ(n)

A0
R
(z)|2 + |ζ(n)

BR
(z)|2

)
, (7.9)

for the neutral tower.

The fermion sector of the theory is more intricate. First, we will need to arrange

the SM fermions into representations of SU(2)R. There are two ways to do this in

the RS model. The most straightforward is to pair corresponding SU(2)L singlets

into a single SU(2)R doublet. So, e.g.uR and dR become
(
uR dR

)>
. The other

option is to make each right-handed field part of a different SU(2)R doublet. So

uR →
(
uR d′R

)>
, etc.. Orbifold projections are then required to insure that there

is no light mode for the new fermion states. The first option follows more naturally

from Grand Unified theories, and allows the possibility of an explicit Z2 symmetry
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that exchanges the Left and Right gauge groups. The second makes it easier to obtain

top-bottom splitting and to suppress corrections to the Zbb̄ vertex, and is compatible

with the GUT scenario in [10]. Here we will study the case where there is an explicit

Z2, and hence choose to combine right-handed fields into a single SU(2)R multiplet.

We write the 5D fermion as two 4D Majorana fermions, Ψi = (ψi χi)
>. The

orbifold conditions tell us that one component must be even and the other odd [89].

We will pick the ψi to be even for fields corresponding to the left-hand SM fermions,

and the χi even for the right-handed ones. The Yukawa couplings to φ, the Higgs on

the IR brane, will connect the left and right-handed zero modes and lift them. These

couplings are

SIR =
∑

f

∫
d4x

(
R

z

)4

λfφ
(
ψf

Riχ
f
Li + χ̄f

Liψ̄
f
Ri + ψf

Liχ
f
Ri + χ̄f

Riψ̄
f
Li

)
. (7.10)

Here f labels the fermion flavor. Eq. (7.10) induces the boundary conditions at

z = R′

ψf
L = −λfvψf

R χf
R = λfvχf

L. (7.11)

This is equivalent to introducing a Dirac mass λfv on the IR brane. Note that this

is SU(2)D symmetric, and hence can not generate different masses for the up and

down-type quarks. That splitting must be generated on the UV brane, which is the

only place where the custodial symmetry is broken. It was demonstrated in [54] that

the simplest way to do this with a complex fermion is to introduce brane-localized

fermions that can mix with the bulk states. So we include a contribution to the brane

action for each SM right-handed fermion

SUV =

∫
d4x

∑

f

(
−iξ̄f σ̄µ∂µξ

f − iηf σ̄µ∂µη̄
f + F (ηfξf + η̄f ξ̄f ) + MfR

1/2(ψf
Rξ + ξ̄ψ̄f

R)z=R

)

(7.12)

where ξi and ηi are the brane localized states, ψRi is the component of the bulk state

that has a zero mode, and the index f runs over all SM right-handed fermions. This
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leads to the boundary condition

ψf
L = 0 χf

R = mnM
f2
m /F 2ψf

R. (7.13)

The fermion KK expansion will take the form1

χ =
∑

n

g(n)(z)z3/2χ(n)(x), ψ̄ =
∑

n

f (n)(z)z3/2ψ̄(n)(x). (7.14)

Again, we will normalize these canonically, giving

∫
dz

z
χ(n)∗(z)χ(m)(z) = δnm, (7.15)

and similarly for the ψ(n). Note that 5D fermions are achiral, so we can always write

down a mass term in the bulk

mf
5Ψ̄Ψ =

cf

k
Ψ̄fΨf . (7.16)

Even in the presence of this mass term there is still a 4D zero mode for the orbifold

even components of Ψ when v = 0. The cf determine the shape of the wavefunction

in the extra dimension. This would-be zero mode wavefunction is

f
(0)
f (z) = A

(0)
f

( z

R

)cf−1/2

(7.17)

We can see that for c > 1/2 the zero mode is localized to the Planck brane, and for

c < 1/2 it is localized to the TeV brane.

7.3 Kaluza-Klein spectra

We can solve Eq. (7.7) subject to (7.4) and (7.5) to obtain x
(n)
W ≡ m

(n)
W /kε. Figure 7.3

shows the behavior of x
(1)
W as a function of v/k. Demanding that m

(1)
W = mW sets the

1The choice of what powers of z to include in the wavefunctions is, of course, arbitrary. This
choice makes transparent on which brane the fermion zero mode is localized.
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Figure 7.1: Behavior of the first charged boson mass (corresponding to the observed
W ) as a function of v/k at fixed k. The linear behavior at small v/k corresponds to
the ordinary Higgsed model limit, and the flat behavior as v/k →∞ to the Higgsless
limit.

mass scale kε. In the region with v/k small we have x
(1)
W ≈ g

2
v
k

giving the standard

result kε ≈ 2
g
mW

k
v
. This reflects the fact that as v/k gets small, the KK scale gets

large. When v/k is large, x
(1)
W asymptotes to the Higgsless value x

(1)2
W = 1/ log(R′/R)

[56].

Once this scale has been set, we can solve for the rest of the KK gauge boson

masses. For the neutral sector this depends on the additional parameter, λ. We

can solve Eq (7.7) for the neutral gauge sector for λ in terms of x
(1)
Z , the mass of

the observed Z boson. We will use this to choose λ, and hence with our choice of

input parameters the on-shell definition of the weak mixing angle, sin2 θos ≡ 1 −
m2

W /m2
Z , is automatically set to the experimental value sin2 θos = 0.222 [92]. These

inputs completely determine the gauge KK mass spectrum. Figure 7.3 shows this

spectrum for neutral bosons. Note that each KK level in the v/k small region starts

as a degenerate triplet and splits into the doublet-singlet structure seen in Higgsless

theories as v/k gets large. These masses are large enough that these states are not
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Figure 7.2: Masses of the first six neutral boson KK excitations lying above the SM
Z as a function of v/k with the W and Z masses held fixed at their physical values.

bounded by direct detection constraints at the Tevatron[1]. Also, the couplings to

light fermions are small enough that they also avoid the LEP II contact interaction

constraints [59].

The fermion masses depend on both the brane localized Yukawa couplings to the

Higgs and the bulk masses. Eq. (7.11) shows that the Yukawa couplings provide

an effective Dirac mass on the IR brane, and it is this mass that controls the low-

est fermion mass (i.e. the mass of the observed SM particle). Hence, the relevant

dimensionless parameter is λiv/k (where λi is the relevant Yukawa coupling), rather

than v/k. In this paper we consider the case where the fermion mass hierarchy gen-

erated by the different bulk masses, and not the Yukawas. To correctly produce the

top mass, the top/bottom Yukawa must be order 1. We will assume that the other

generations have universal Yukawa couplings λlight. Since we are assuming an explicit

Z2 symmetry that exchanges the SU(2)L and SU(2)R we have cf
L = −cf

R ≡ cf (the

minus sign arises from the choice of orbifold parities). We will pick the parameters

cf to produce the correct fermion masses for a given Yukawa coupling and Higgs vev.
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In the quark sector we pick the cf to match the up-type masses. We then introduce

mixing with UV brane fermions as in Eq. (7.12) to generate the up-down splitting.

In the lepton sector we simply match the charged lepton masses by picking the cf ,

and leave the neutrinos massless. We can then solve for the KK masses, shown in

Fig. 7.3. Note that a large Dirac mass on the IR brane makes the first KK excitation

light. This behavior corresponds to that seen in [10]. To avoid light KK leptons we

will need ylight . 1/2.

7.4 Gauge-fermion couplings

Here we will examine how the shifts in couplings of the W and Z to fermions depend

on the Higgs vev. The 5D covariant derivative acting on a fermion ψ is (suppressing

Lorentz indices)

Dψ =

(
∂µ +

∫ R′

R

dz

z
g5L (ALµTL + κARµTR + λQB−LABµ)

)
ψ (7.18)

with QB−L = (B − L)/2. The electromagnetic charge is Q = T 3
L + T 3

R + QB−L. We

can rewrite the pieces of D corresponding to the neutral gauge boson couplings as

g5L(If
3L − λIf

B)

(
T 3

L +
κIf

3R − λIf
B

If
3L − λIf

B

T 3
R +

λIf
B

If
3L − λIf

B

Q

)
. (7.19)

Where the If
i =

∫ R′

R
dz/z ζiψ̄fψf encode the extra dimensional physics. This can be

matched onto the covariant derivative from the effective 4D theory

gZ1ff̄ (T
3
L + sin2 θR,fT

3
R − sin2 θeff,fQ). (7.20)

This identifies the strength of the Z coupling to fermion f as gZ1ff̄ = g5L(I3
L − λIB),

the effective weak mixing angle for that coupling sin2 θeff,f = −λIB/(I3
L − λIB), and

a new quantity that measures the strength of the right-handed couplings: sin2 θR,f =

(κI3
R − λIB)/(T 3

L − λIB). We can also write an expression similar to Eq. (7.19) for
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Figure 7.3: Masses of the first two excited KK fermions as a function of v/k for several
species. Note that the mass of the first excitation depends strongly on the IR-brane
mass term, but the second excitation does not.
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the charged sector

g5LIf
±L

(
T±

L +
κIf

±R

If
±L

T±
R

)
, (7.21)

giving the strength of the left and right handed couplings.

Note that the wavefunctions for all electroweak particles, with the single exception

of the zero mode photon, have non-trivial dependence on the extra dimension. In

particular the different flavors of fermions will have different wavefunctions that can

be probed by the W and Z. Hence, all quantities defined above will depend on the

fermion species, as indicated by the label f .

Since the photon wavefunction is flat in the extra dimension, the electromagnetic

coupling is simply given by (using the normalization from Eq. (7.9))

e2 =
g2
5L

R log(R′/R)

κ2λ2

κ2 + λ2 + κ2λ2
. (7.22)

We can use this to define the 5D coupling in terms of the fine structure constant α

by

g2
5L

R
= 4πα log(R′/R)

(
1 +

1

λ2
+

1

κ2

)
. (7.23)

The advantage of this definition is that it is the only coupling that is independent of

the fermion species, and allows us to relate g5L to the measured quantity α without

ambiguity.

With these definitions we can find the shifts in the couplings. Fig 7.4 shows the

shift in gZff̄ as a function of v/k. Note that the shifts are only large for the third

generation quarks. This is expected since they are the only fermions with substantial

overlap on the IR brane where the W and Z wavefunctions are distorted. Imposing

the LEP and SLD bound on the shift in the Zbb̄ vertex of ∼ 1% [92], we find that

v/k < 1/2. This gives kε > 800 GeV, and vε < 400 GeV. In Fig. 7.4 we see the shifts

in the effective weak mixing angle in Z-pole observables relative to the on-shell value.

The experimental error on this measurement is ±0.00036 [92], so for v/k ≤ 1/4 the
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Figure 7.4: Shifts in the coupling of fermions to the Z induced by the Z wavefunction
distortions. The large shift to the Zbb̄ coupling is the dominant constraint on v/k.

model shifts correspond to a 2σ deviation. Fig. 7.4 shows sin2 θR, the magnitude

of the right handed couplings to SM fermions relative to the left handed coupling.

Note that the boundary conditions in Eq. 7.4 cause this to vanish for Planck brane

localized fermions. Indeed we see that the closer the fermion to the UV brane, the

smaller the effect. In all cases, however, the effect is unobservable in the allowed

region v/k ≤ 1/4.

7.5 Higgs couplings

We now investigate the shifts in couplings of particles to the physical Higgs boson.

As shown above, the main effects come from distortions of the gauge wavefunctions

near the IR brane. Schematically, the coupling of a Higgs to two bulk modes will

simply be the product of the bulk wavefunctions evaluated at the IR brane, times a

Lagrangian parameter. So for the coupling to gauge bosons we have
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Figure 7.5: Corrections to the effective weak mixing angle for couplings of fermions
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ghWW =
g5Lv

2mW

1

1 + κ2

(
ζ

(1)

A±L
(R′)− κζ

(1)

A±R
(R′)

)2

, (7.24)

and

ghZZ =
g5Lv

2mZ

1

1 + κ2

(
ζ

(1)

A3
L
(R′)− κζ

(1)

A3
R
(R′)

)2

. (7.25)

The wavefunction suppression near the TeV brane will decrease these couplings, with

gh(WW,ZZ) → 0 as v/k → ∞. This coupling is shown in Fig. 7.5.2 This reduction

will weaken the LEP bound on the Higgs mass [25]. For v/k ≤ 1/4 the constraint is

relaxed only a few GeV. However, the bound is moves rapidly after that point, so for

v/k = 1/2 the bound is 80 GeV.

Using the above relations we can find the width for the decay into vector pairs,

2Note that the constraint v/k ≤ 1/4, coming from precision electroweak observables, is highly
sensitive to variations on the model. Many of the features discussed in this section, however, are
generic. Consequently, we will continue to examine the full range of v/k, keeping in mind the
electroweak constraints.
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Figure 7.6: The effective size of the right-handed currents induced by the SU(2)R

gauge bosons.

which is simply

Γ(h → (WW,ZZ)) =

(
1

2

)
g2

h(WW,ZZ)m
3
(W,Z)

64πm2
h

(ξ − 4)1/2(12− 4ξ + ξ2), (7.26)

with ξ = m2
h/m

2
W,Z , and the first factor of 1/2 is a symmetry factor relevant only for

the ZZ final state.

The decay modes where one vector is off-shell can also be important [138]. These

decay widths are

Γ(h → WW ∗) =
3g2

hWW g2mH

512π3
HW (mW /mH), (7.27)

Γ(h → ZZ∗) =
g2

hZZg2mH

2048π3 cos4 θ

(
7− 40

3
sin2 θW +

160

9
sin4 θW

)
HZ(mZ/mH),

(7.28)
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where

HW,Z(x) =

∫ 1+x2

2x

dy
(y2 − 4x2)1/2

(1− y2)2 + x4Γ2
W,Z/M2

W,Z

(y2 − 12x2y + 8x2 + 12x4), (7.29)

and we have ignored the corrections to the Wfb̄ and Zff̄ couplings which are small

for v/k ≤ 1/4. It is necessary to include the effects of the finite widths, ΓW,Z , to

match onto Eq. (7.26).

The fermion couplings to the Higgs are similar; they take the form of the fermion

wavefunctions evaluated on the TeV brane times a Yukawa coupling. Specifically,

λf,n = λf

(
χ

f(n)
L (R′)ψf(n)

R (R′)− ψ
f(n)
L (R′)χf(n)

R (R′)
)

. (7.30)

Note that, since the Kaluza-Klein excitations are localized near the TeV brane, this

coupling will be enhanced by the factor
√

log(R′/R). In the case of the 3rd generation

quarks, which have O(1) Lagrangian level Yukawa couplings, these enhancements
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make the couplings quite large, though in all cases they are perturbative. Again, the

width into fermion pairs is simply

Γ(h → ff̄) =
Ncλ

2
f,1mh

32π

(
1− 4m2

f

m2
h

)3/2

, (7.31)

where Nc counts the fermion’s color degrees of freedom.

Finally, two of the most important couplings for the discovery of the Higgs boson at

the LHC are the Higgs-glue-glue, and Higgs-gamma-gamma vertices. These couplings

are absent at tree-level, but are generated radiatively by loops containing fermions and

W -bosons. In the present model, these vertices receive corrections from two sources.

First, the KK excitations of all fermion species can run in the loop (along with the W

KK excitations in the case of the γγ couplings); since these have substantial couplings

to the Higgs these corrections can be large. Second, the suppression in gHWW from

the distortion of the W wavefunction can suppress the coupling of the Higgs to two

photons. To calculate these contributions, we can adapt the formulae from [94] and

[133]. The parton level cross section for producing a Higgs from gluon fusion is

σgg→h =
GF [αs(mH)]2

32
√

2πm4
H

∣∣∣∣∣
∑

i

F i

∣∣∣∣∣

2

. (7.32)

Here the sum runs over all KK states (including the zero modes) of all colored

fermions, with i labeling the flavor. The kinematic function F i is

F i = 2mi

∑
n

mi,nλi,n{−2 + (m2
H − 4m2

i,n)C0(mi,n)}, (7.33)

where C0(x) is an abbreviation for the three-point scalar Passarino-Veltman function

[131]

C0(x) = C0(m
2
H , 0, 0; x, x, x). (7.34)
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This can be expressed simply as [133]

C0(m
2) =




− 2

m2
H

[
arcsin

(
1√
τ

)]2

: τ ≥ 1

1
2m2

H

[
ln

(
1+
√

1−τ
1−√1−τ

)]2

: τ < 1
, (7.35)

with τ = 4m2/m2
H . Figure 7.5 shows the ratio of the gg → h cross-section to that of

the Standard Model as a function of the Higgs mass for ylight = 1/10. As expected,

there can be large corrections, even in the small v/k region.

For the decay h → γγ we have

Γh→γγ =
α2

π3mHm2
W

∣∣∣∣∣
∑

i

F i

∣∣∣∣∣

2

(7.36)
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where the F i are as in Eq. (7.33) for fermions and

FW =
∑

n

(
m2

H

2
+ 4m2

W − [4m2
W (m2

H − 2m2
W (n))−m2

W (n) ]C0(m
2
W )

)
(7.37)

This is shown in Fig. 7.5. The mH dependence looks complicated, but the qual-

itative features are easy to understand. The initial enhancement is from the KK

fermion contribution. As the Higgs mass approaches the gauge boson threshold the

suppression to the hWW vertex becomes more important, and this suppression in-

creases with v/k as expected. For large Higgs masses the top and other fermion KK

contributions dominate and result in an enhancement.

Putting all of this together we can compute the branching ratios, shown in Fig 7.5

for v/k = 1/10, ylight = 1/10. Several features are visible. First, the WW and ZZ

coupling suppression results in a delayed dominance of these modes, although they do

dominate eventually for all allowed values of v/k. Second, the Z2 left-right symmetry
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requires the b and t couplings to be equal, and hence the width to bb̄ is always larger

than the width to tt̄ (they would, of course, be equal if mt = mb). Finally, this

enhancement in the b coupling suppresses all other modes. In particular, the h → γγ

mode is unobservable. Note that even if the b coupling were not enhanced, the γγ

mode would be reduced over a large region of parameter space by the hWW coupling

suppression. This means searches for Higgs bosons at the LHC which depend on the

h → γγ decay mode will have dramatically reduced signal, and will likely not be

viable if this model is correct.

It has been observed that Higgsless models with KK masses & 1 TeV show a

breakdown of perturbative unitarity in longitudinal gauge boson scattering [58]. Of

course, in a purely Higgsed 4D model, unitarity is maintained to arbitrarily high

scales. It is therefore interesting to see the behavior of the amplitude for WLWL →
WLWL [72] as a function of v/k. This is shown in Fig. 7.5 for a fixed Higgs mass

of 150 GeV. Note both the rapid falloff and the fact that, in the region v/k ≤ 1/4,

unitarity is maintained to scales above 6 TeV.

7.6 Conclusion

In this paper we have investigated the effects of a finite Higgs vev in the Left-Right

symmetric Randall-Sundrum model with fermions and gauge bosons in the bulk. The

main effects come from distortions of the W and Z wavefunctions near the IR brane.

We found that the model is free of existing constraints as long as v/k . 1/4. In this

region the Higgs coupling to the gauge bosons can be suppressed by a factor of up to

1/3, and the Higgs couplings to gg and γγ can be substantially shifted. This results

in a new pattern of branching ratios as a function of mH .

It has been shown previously that the precision electroweak observables can be

shifted by inclusion of brane localized kinetic terms for the gauge bosons and fermions

[64, 42, 40]. This will shift the allowed region of v/k, but will not qualitatively alter

the properties of the Higgs couplings.

In this model it will be difficult to discover the Higgs, since the γγ mode is

invisible over much of the parameter space and the massive gauge boson couplings to
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the Higgs are reduced. However, when it is found the properties of the Higgs will be

an important tool in mapping out the parameters of the full model.

Appendix A - Bidoublet Higgs

Instead of the real bidoublet used in Section 7.2, we could use a complex bidoublet

Higgs field, producing a version of the Two Higgs Doublet Model. We can parame-

terize this field as

ϕ =

(
ϕ0

1 ϕ+
1

ϕ−2 ϕ0
2

)
(7.38)

The most general form of the potential for complex bidoublet field is [93]

V (ϕ) = −µ2Trϕ†ϕ + λ1(Trϕ†ϕ)2 + λ2Trϕ†ϕϕ†ϕ +
1

2
λ3(Trϕ†ϕ̃ + Trϕ̃†ϕ)2

+
1

2
λ4(Trϕ† − Trϕ̃†ϕ)2 + λ5Trϕ†ϕϕ̃†ϕ̃ +

1

2
λ6(Trϕ†ϕ̃ϕ†ϕ̃ + Trϕ̃†ϕϕ̃†ϕ), (7.39)

where ϕ̃ = σ2ϕ
∗σ2, and σ2 is the ordinary Pauli matrix. We expect that there will

be solutions where the neutral fields acquire vevs, so we try 〈ϕ0
1〉 = v1, 〈ϕ0

2〉 = v2.

Stability of this solution requires the two conditions ∂V/∂v1,2 = 0, where all fields

are evaluated at their vevs. These then imply

(
v1

2 − v2
2
)
(−4 λ3 − λ5 + λ2 − λ6) . (7.40)

There is no symmetry that can require the second factor to vanish, so we can see

that aside from a vanishingly small and unnatural region of parameter space we have

v2
1 = v2

2 ≡ v2/2. The second stability condition then gives

v2 =
1

2

µ2

4 λ3 + 2 λ1 + λ2 + λ5 + λ6

. (7.41)
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Inserting this solution into Eq. (7.39) we can read off that the mass eigenstates are

h ≡ Re (ϕ0
1 + ϕ0

2) H ≡ Re (ϕ0
1 − ϕ0

2)

A ≡ Im (ϕ0
1 + ϕ0

2) G0 ≡ Im (ϕ0
1 − ϕ0

2)

h+ ≡ ϕ+
1 + ϕ+

2 G+ ≡ ϕ+
1 − ϕ+

2 . (7.42)

The Gi are the would-be Goldstone fields, and hence have no mass terms in the

potential. Furthermore, the structure of the potential requires mH = mh+ . However,

there are enough parameters that the masses are otherwise arbitrary. To parameterize

this, we can write

m2
h = λhv

2, m2
H = m2

h+ = λHv2, m2
A = λAv2. (7.43)

CP symmetry tells us that there is no three-point vertex coupling two gauge bosons

to the CP-odd scalar. Hence, restricting ourselves to the neutral sector, we find the

analysis from the main part of the paper goes through with minimal changes.
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Chapter 8

Black holes in many dimensions at

the LHC: testing critical string

theory

One of the most difficult questions facing theoretical high-energy physics for many

years has been how to consistently combine General Relativity with Quantum Me-

chanics, as naive quantization produces unrenormalizable divergences. This issue is

exacerbated by the hierarchy problem, which asks why the electroweak scale, Mwk ∼
TeV, is so small compared with the (reduced) Planck scale, MPl ∼ a few 1018 GeV,

which is associated with the energy at which non-renormalizable Einstein gravity be-

comes strong. It appears that resolution of these puzzles may require a complete

theory of quantum gravity.

As of now, the best candidate for such a possibility is (critical) string theory (CST),

which reduces to Einstein gravity at low energies and allows for the computation

of finite S−matrix amplitudes. For CST to be a consistent theory there are three

essential ingredients: (i) the fundamental objects of the theory are no longer point-

like and must have a finite size of order Ms, the string scale; (ii) supersymmetry must

be a good symmetry, at least at scales & Ms; (iii) space-time must be ten or eleven

dimensional, (i.e., D = 4 + n = 10, if the string coupling is perturbative, D = 11

if it is non-perturbative), with the additional dimensions being compactified at a

161



162 CHAPTER 8. BLACK HOLES IN MANY DIMENSIONS

radius Rc & 1/Ms. Most research in string theory so far has focused on critical string

theories, where the world-sheet anomalies are automatically canceled. It is precisely

this anomaly cancelation that requires D = 10. However, there are consistent non-

critical backgrounds of string theory in arbitrary numbers of dimensions. Here, the

anomalies are canceled by solving the equations of motion taking into account the tree

level moduli potential as well as contributions to the equations of motion from other

sources such as fluxes, orientifolds, and branes [127, 121]. In either case, the common

expectation is that Ms is slightly below or equal to MPl which would imply that the

predictions of CST are difficult to test directly. Currently there is no evidence for

any of these basic assumptions. If indeed Ms ∼ MPl it may be that CST can never

be directly tested in laboratory experiments. Furthermore, even if supersymmetry

and/or extra dimensions were discovered in future experiments, this would be no

guarantee that CST represents the correct theory of nature.

In recent years it has been proposed that the fundamental scale of gravity might

not be MPl, but rather M∗ ∼ TeV [16, 118, 155, 20]. There is then no large hierar-

chy between the gravitational and electroweak scales. In this scenario, the observed

weakness of gravity results from the presence of extra dimensions with large radii. In

the simplest picture, gravity is able to propagate in all D dimensions, but the SM

fields are restricted to a 3 + 1 dimensional “brane”. The strength of gravity at long

distances is then diluted by the volume of the extra dimensions. If string theory is

correct, the string scale must then be near a TeV in this scenario. Signals of string

theory, such as string resonances would then be visible at future colliders, such as the

Large Hadron Collider (LHC) at CERN [71, 57]. However, the interpretation of these

signals is likely to be ambiguous, especially if the string coupling is non-perturbative.

In the large extra dimensions picture of Arkani-Hamed, Dimopoulos and Dvali (ADD)

[20], M∗ and MPl are related by M
2

Pl = VnM
n+2
∗ , where Vn is the volume of the n

compactified large dimensions. If CST is correct D = 10(11), thus we must have

n ≤ 6(7) (note that all of the extra dimensions need not be large). It is impossible to

have n > 6(7) in the CST realization of ADD; an experimental determination that

n > 6(7) would thus exclude CST.

In this paper we propose a ‘null’ test of CST; this test can only reveal whether
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CST is excluded and cannot tell us if it is the correct theory of nature. We will do

this by examining the properties of black hole (BH) production and decay at the

LHC with different numbers of extra dimensions. From this, we will show that the

number of compactified large dimensions can be determined; if n > 6(7) is measured

with high confidence then CST is excluded, however if n ≤ 6(7) is measured then

very little information about CST is obtained. We will show that if n is sufficiently

large, then the region n ≤ 6(7) as required by CST will be highly disfavored by many

standard deviations. There are, of course, more general reasons for determining the

number of extra dimensions from BH production: (i) It allows one to differentiate a

BH in the ADD ‘flat’ extra-dimensions scenario from one in a Randall-Sundrum-like

model [136] with warped geometry and very weakly coupled graviton resonances [58].

(ii) If string resonances are observed at colliders this test is the only way to determine

whether or not they arise from CST. (iii) Whatever the theory of quantum gravity,

the energy region near M∗ is likely to be fairly complex; measuring BH properties may

be one of the few handles on this physics. As a proof of principle for our proposal,

we will show that there exists a region in the (n, M∗) parameter space of the ADD

model where we can experimentally exclude the case n ≤ 6(7) at 5σ significance.

For simplicity in what follows, we will assume that this n−dimensional space

is compactified on a torus of equal radii so that Vn = (2πRc)
n, where Rc is the

compactification radius. Given MPl and M∗ ∼ a few TeV, Rc becomes completely

fixed by the relation above. Note that the case n = 1 is excluded while n = 2 with

low M∗ is disfavored by current data [102]. For the case of a torus, the graviton has

Kaluza-Klein(KK) excitations h
(n)
µν , with masses given by M2

n =n2/R2
c , where n labels

a set of occupation numbers. The KK graviton couplings to the Standard Model

(SM) fields are described by the stress-energy tensor T µν , given in D dimensions

by L = −∑
n h

(n)
µν T µν/M

1+n/2
∗ . The ADD scenario has three distinct experimental

signatures which have been studied in some detail in the literature: (i) missing energy

events associated with KK graviton emission in the collisions of SM fields; (ii) new

contact interactions associated with spin-2 KK exchanges between SM fields [97, 103,

87, 124, 141]; (iii) black hole production in particle collisions [19, 69, 86].

Is there any guide as to what values of n > 6(7) we should consider? For ADD



164 CHAPTER 8. BLACK HOLES IN MANY DIMENSIONS

 0.01

 1

 100

 10000

 1e+06

 1e+08

 1e+10

 1e+12

 1e+14

 1e+16

 5  10  15  20  25  30  35  40  45  50

M
*R

c

n

Figure 8.1: M∗Rc as a function of n for M∗ = 1 TeV for a torus (solid) and sphere
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with n ≤ 6 it is well known that the hierarchy problem is not truly solved. Although

we have reduced M∗ to a few TeV, M∗Rc À 1, as seen in Fig 8.1. By contrast,

with n large we could have M∗Rc . 10. Note that, if M∗Rc < 1 the theory would

lose its predictive power since the compactification scale is above the cutoff. To

obtain the interesting range of compactification radii, 1 . M∗Rc . 10, requires

17 . n . 39, hence we will focus on this set of values in what follows. If the

compactification topology is a sphere, rather than a torus, this changes to n ≥ 30,

as seen in Fig 8.1. It is important to notice that this model does solve the hierarchy

problem for large n, but that would lie outside the realm of CST. Note that some

other modifications of the compactification geometry can obtain RM∗ . 10 [111].

For such large values of n the Kaluza-Klein masses are at the TeV scale. Since each

KK state is coupled with 4 dimensional Planck strength, MPl, to the SM fields, it is

clear that this sufficiently weakens the KK contributions to the processes (i) and (ii)

above, such that no meaningful constraints are obtainable. For example, with n = 2,

precision measurements at the International Linear Collider at
√

s = 1 TeV will be

sensitive to M∗ . 10 TeV, while with n = 21, this drops to M∗ . 1 TeV. Thus for

reasonable values of M∗ the only signal for large n in ADD is black hole production.



165

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 2000 3000 4000 5000 6000 7000 8000 9000 10000

#B
H 

Ev
en

ts
/1

00
 fb

-1

MBH, min

n = 2

n = 25

QCD

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0  500  1000  1500  2000  2500  3000  3500

Nu
m

be
r o

f E
ve

nt
s

Missing pT

n=2
n=6

n=21

Figure 8.2: Top panel: Cross-section for production of black holes with mass M >
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We now investigate BH production at the LHC in detail; for previous studies see

[98, 152]. When
√

s & M∗ BHs are produced with a geometric (subprocess) cross

section, σ̂ ' πR2
s. Here Rs is the Schwarzschild radius corresponding to a BH of mass

MBH '
√

ŝ. Rs is given by [112]

M∗Rs =

[
Γ(n+3

2
)

(n + 2)π(n+3)/2

MBH

M∗

]1/(n+1)

. (8.1)

Note that σ̂ ∼ n for large n. Numerical simulations and detailed arguments have

shown that the geometric cross section estimate is good to within factors of a few

[85, 156]. The total number of BH events at the LHC with invariant mass above an

arbitrary value MBH,min is shown in Fig. 8.2. The scale of the total inclusive BH cross-

section, ∼ 100 pb, is huge compared to that which is typical of new physics processes,

. 1 pb. Thus, over much of the parameter space the LHC will be producing over

a million BH events per year. This high rate means that there will be tremendous

statistical power, and essentially all measurements will be systematics limited.

The semiclassical treatment, used here and in all previous studies [112], may

recieve potentially large corrections from two sources: (i) distortions from the finite

compactification scale as Rs approaches Rc, and (ii) quantum gravity. Case (i) is

easily controllable. We know that in 5 dimensions the critical point for instabilities
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due to finite compactification is (Rs/Rc)
2 ≈ 0.1 [88]. For LHC energies we always

have (Rs/Rc)
2 ¿ 0.1, so these corrections are negligible. In more dimensions the ratio

of the volume of a BH with fixed Rs to the volume of the torus with fixed Rc drops

rapidly with n, so we expect the corrections to be even smaller. Case (ii) is more

problematic; we estimate the quantum gravity effects by looking at the corrections

from higher curvature terms in the action, e.g.

S =
MD−2
∗
2

∫
dDx

(
R +

α1

M2∗
L2 +

α2

M4∗
L3 + . . .

)
. (8.2)

Here R is the Ricci scalar, and Li is the ith order Lovelock invariant, with L2 be-

ing the Gauss-Bonnet term [116]. This equation also defines our convention for the

fundamental scale M∗.1 Schwartzchild solutions are known for arbitrary values of

the αi [153]. If we assume that the higher curvature terms are radiatively generated,

and hence each αi is the ith power of an expansion parameter α (as occurs in string

models [158, 30, 157]), we find that αn2 ≤ 1. For α of this size we find that the

corrections are always less severe as n increases, with a ∼ 20% correction to Rs for

n = 20. This does not qualitatively affect our conclusions here; for a more detailed

study of these corrections, see [104].

We now come to the crucial question, is there any property of the produced black

holes that can resolve the number of dimensions? The cross-section is n-dependent,

but the overall scale is set by 1/M2
∗ , so one would first have to measure M∗ inde-

pendently to good accuracy to obtain any resolution on n. Cross section ratios at

different BH masses could be used, however, the range of energies that are clearly

in the geometric regime and accessible to the LHC is not likely to be large. This

leads us to the decay properties of black holes. One generically expects that black

holes produced at colliders are formed in highly asymmetric states, with high angular

momentum, and possibly a non-zero charge. However, they quickly shed their charge

and angular momentum by emitting bulk graviton modes and soft brane modes, and

relax to a simple Schwartzchild state; their decay then proceeds primarily by thermal

1We note that this is related to the other definitions in the literature by M∗ = (8π)−
1

n+2 MDL[69]
= [2(2π)n]−1 1

n+2 MGT[86].
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emission of Hawking radiation [112] until MBH ∼ M∗, where quantum gravity effects

will mediate the final decay. The Hawking temperature is given by

TH =
(n + 1)M∗

4π

[
Γ(n+3

2
)

(n + 2)π(n+3)/2

MBH

M∗

]−1/(n+1)

. (8.3)

From this we can see that, at fixed MBH , higher dimensional BHs are hotter. Since

the average multiplicity goes inversely with the temperature, a low dimensional BH

will emit many quanta before losing all of it’s energy. By contrast, the decay of a high

dimension BH will have fewer final state particles, and each emitted quanta will carry

a larger fraction of the BH energy. We will use this difference to obtain experimental

resolution on n.

The previous argument suggests we examine the final state multiplicity, or the

individual particle pT distributions as a probe of n. The multiplicity is affected by two

major sources of uncertainty: (a) contributions from initial and final state radiation

that produce additional jets, and (b) the details of the final quantum gravity decay

of the BH are unknown. In what follows we will assume that this decay is primarily

2-body. However, this is clearly model-dependent; we prefer observables that are

independent of this assumption, disfavoring the multiplicity. By contrast, the pT

spectra of individual particles, particularly at high-pT , will be mostly sensitive to the

initial temperature of the BHs. There are many such distributions that one could

consider. In particular, one would like to examine all possible distributions and see

that the candidate BH states are coupling equally to each SM degree of freedom,

verifying that these are gravitational phenomena [104]. For illustration we will focus

here on the 6pT and individual jet pT distributions for the BH final state.

To calculate these distributions, we have simulated BH events using a modified

version of CHARYBDIS [99], linked to PYTHIA [150]. First, a large sample of BHs

with masses above a critical value Mmin = M∗ is generated. From these we select

events by cutting on the reconstructed invariant mass, Minv of the event, defined by

summing over all visible final state particles or jets with rapidity |η| < 3, and with

pT ≥ 50 GeV. We would like to select events where the BH mass is large enough that

the event is in the geometrical regime, and quantum gravity corrections are small.
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To do this, one would need to extract from the data an estimate of the size of M∗.

While we have no fundamental model for the quantum gravity effects near threshold,

we can assume that there will be a turn-on for BH production near M∗, and the

cross-section will then asymptote to the geometric value. While this will not lead

to a precision determination of M∗, it can clearly be used to set an optimum cut on

Minv. In the context of a particular model of the threshold based on the action (8.2),

we find that Minv ≥ 2M∗ is a reasonable cut [104]. We include initial-state radiation

in the simulations, since that can lead to a contamination of lower
√

ŝ events in our

sample. In the case of jets, for simplicity we turn off hadronization, and simply look

at the parton-level characteristics.

To be specific, we generate a “data” set of ∼ 300k events with n = 21 and M∗ =

1 TeV. We use this size sample as a conservative lower estimate of BH production.

If the cross section is within an order of magnitude of that in Fig. 8.2, the LHC

will collect many millions of events, giving an increase in statistical power over that

presented here. These “data” events are then compared to a number of template sets

of events. We then ask at what confidence the template can be excluded by performing

a χ2 test using only the resulting 6 pT distribution (shown in Fig. 8.2). We examine

the range 2 ≤ n ≤ 21, and 0.75 ≤ M∗ ≤ 5 TeV. The lower bound on M∗ comes from

non-observation at the Tevatron, while the upper bound is set by demanding that

the LHC be able to collect at least 50k events given the cross-section uncertainties.

We then determine whether the CST region can be excluded at high confidence. For

this test case, we find at least a 5σ exclusion for the entire CST region using the

6 pT distribution alone, or ∼ 40σ using the jet-pT spectrum. Though the statistical

power in jets is much higher, it suffers from more systematic uncertainties. Fig. 8.3

shows the 3, 5, and 10σ exclusion contours in the (n,M∗) plane obtained using the

6pT distribution for this test case. If the LHC collects a few million events rather than

the 300k sample used here, simple scaling tells us that the 5σ curve excludes n ≤ 20,

and the 10σ curve excludes n ≤ 11.

We have shown that the CST region can be excluded if n = 21. What about other

values of n? On changing the number of dimensions used in generating the“data”,

we find that for any n ≥ 15 the CST region can be excluded by at least 5σ, with
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300k events. We would, of course, like to know in what region of the parameter space

this type of definitive test can be performed. A more detailed study of the parameter

space is in progress [104].

In conclusion, we have shown that if there exist many TeV sized extra dimensions,

which solves the Hierarchy Problem, then there exists an observable that can rule out

critical string theory.
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