A Search for B Meson Decay to a Muon, a Neutrino, and a Photon

M. G. Greene

Stanford Linear Accelerator Center Stanford University Stanford, CA 94309

SLAC-Report-801

Prepared for the Department of Energy under contract number DE-AC02-76SF00515

Printed in the United States of America. Available from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

This document, and the material and data contained therein, was developed under sponsorship of the United States Government. Neither the United States nor the Department of Energy, nor the Leland Stanford Junior University, nor their employees, nor their respective contractors, subcontractors, or their employees, makes an warranty, express or implied, or assumes any liability of responsibility for accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use will not infringe privately owned rights. Mention of any product, its manufacturer, or suppliers shall not, nor is it intended to, imply approval, disapproval, or fitness of any particular use. A royalty-free, nonexclusive right to use and disseminate same of whatsoever, is expressly reserved to the United States and the University.

A Search for B Meson Decay to a Muon, a Neutrino, and a Photon

A Dissertation Presented to the Faculty of the Graduate School

of

Yale University

in Candidacy for the Degree of

Doctor of Philosophy

by

Michael G. Greene Dissertation Director: Homer Alfred Neal, Jr. II

May 2004

© 2004 by Michael Gary Greene

All rights reserved.

Abstract

A Search for B Meson Decay to a Muon, a Neutrino, and a Photon

Michael G. Greene 2004

This thesis describes a search for the rare decay $B^+ \to \mu^+ \nu_{\mu} \gamma$, performed at the Stanford Linear Accelerator Center. The BABAR detector is used to analyze 81.65 fb⁻¹ of data, with $(88.6 \pm 0.6) \times 10^6$ charged *B* meson decays, from the PEP-II e^+e^- collider running at the $\Upsilon(4S)$ resonance. The background estimate for the analysis is three events, and three signal candidates are observed. An upper limit on the branching fraction is set at $\mathcal{B}(B^+ \to \mu^+ \nu_{\mu} \gamma) < 1.8 \times 10^{-5}$, at the 90% confidence level.

Acknowledgements

I would like to thank the faculty of the Graduate School of Yale University for granting me the opportunity to return to Yale in order to complete my Ph.D., after a 20-year hiatus.

I wish to thank my thesis advisor, Homer Neal, for allowing me to join the effort in the search for $B^+ \rightarrow \mu^+ \nu_\mu \gamma$. I thoroughly enjoyed the many thought-provoking discussions that we had, regarding every aspect of the analysis.

I am grateful to the members of my dissertation committee, Homer Neal, Charles Baltay, Michael Zeller, Witold Skiba, Daniel McKinsey, and Lawrence Gibbons, for their careful reading of the manuscript, and for their insightful comments and suggestions.

I received invaluable help with this project from many members of the BABAR Collaboration, and I would particularly like to thank Steven Robertson, Thomas Moore, Steve Sekula, Mousumi Datta, David Cote-Ahern, Sylvie Brunet, Gregory Dubois-Felsmann, Edward Chen, Paul Jackson, and Joerg Stelzer.

I would like to express my gratitude to Sébastien Descotes-Genon for an illuminating conversation concerning the paper he co-authored with C. T. Sachrajda, that is central to this thesis. I hope that there are not too many inaccuracies in my description of their work.

I'd especially like to thank Charles Baltay. Charlie's lucid approach to complex physics problems is unsurpassed; no less extraordinary is the kindness and concern for my success that he showed me on every occasion.

Finally, I'd like to thank my family: Dad, Doris, Robin, Steve, Justin, Sara, Max, Meryl, Jon, Barie, Tracy, Scott, and Kilgore. Without their love, support, encouragement, entreaties, and threats, this work would never have been completed.

Contents

A	cknow	vledgements	3
1	Intr	oduction 1	3
2	The	ory 1	8
	2.1	The Cabibbo-Kobayashi-Maskawa (CKM) matrix 1	9
	2.2	The differential decay rate 2	2
	2.3	Form factors	0
	2.4	Factorization	1
		2.4.1 $H^{\mu}(B \to W)$	3
		2.4.2 $H^{\mu}(B \to W\gamma)$	6
	2.5	Higher order corrections	0
		2.5.1 Next-to-leading order	ю
		2.5.2 Results	3
3	The	B Factory at SLAC 4	6
	3.1	Injection system	18
	3.2	PEP-II asymmetric collider	19
		3.2.1 Luminosity	19
		3.2.2 The interaction region	2

		3.2.3 Beam background sources	53
	3.3	BABAR	i4
		3.3.1 Silicon Vertex Tracker	55
		3.3.2 Drift Chamber	56
		3.3.3 Detector of Internally Reflected Cherenkov Radiation . 5	57
		3.3.4 Electromagnetic Calorimeter	59
		3.3.5 Instrumented Flux Return 6	60
		3.3.6 Trigger	54
4	Mo	nte Carlo simulation 6	6
	4.1	Event generation $\ldots \ldots \ldots$	57
		4.1.1 $B\bar{B}$ events	57
		4.1.2 $q \bar{q}$ events	70
		4.1.3 Bremsstrahlung	75
		4.1.4 $\tau^+ \tau^-$ events	77
	4.2	Particle transport	77
	4.3	Digitization	79
5	Eve	nt selection and analysis 8	80
	5.1	Dataset	31
	5.2	Particle type identification	32
		5.2.1 Muons	34
		5.2.2 Photons	36
	5.3	Preliminary filter	37
	5.4	Signal candidate selection	90
	5.5	Main selection criteria	93
		5.5.1 R2	94

		5.5.2 c	$\cos \theta_{\rm thrust}$		•	•	•	- 1)	•	•	÷.	•		÷	2	1	1	•	*	2	ł	5 0	•	•	•	•	•		94
		5.5.3 c	$\cos \theta_{\rm miss}$	•	•	•	•			×	4	6	•	•		3	0	1			ŀ,	ŧ	•	•	æ	•		÷	96
		5.5.4	$E_{\nu} - p_{\nu}c$		•	40		•			+	•				4	ł.	ł	•	÷	4	ŧ		•	a.	+		•	96
		5.5.5	E_{μ}		¥.	÷			•		÷	•		4		4	ē		2		4	į.			÷	•	2	÷	97
		5.5.6	E_{γ}		4			4		2	Q.	2			ç		2	÷	÷	÷	i,	2	+		Ş.		ç	÷	97
		5.5.7	ΔΕ		•	•		•	1	•		ŝ	•	•	•			•	•	•	÷	•	•		÷	•		્ર	97
		5.5.8 1	n _{ES}	21		20			<u>.</u>	•	đ	1	•		•	s	5	,	•			•		3		•			98
	5.6	Data bli	inding .	÷	•	•	• •		•		•	ŝ	•	•	+	2	2	×.	+	÷	÷	5	ţ		8	5	•	*	103
	5.7	Selection	n criteria	a e	ffi	cie	enc	ie	8		ł	5	•	•	•	9	ŧ	•	•	÷	•	•	•	•	9	ŝ	÷		104
	5.8	Compar	ison of r	ea	l e	m	d s	in	u	la	te	d	da	at	a		÷	÷	+	÷	÷	•	æ	÷	÷	÷			113
	5.9	Backgro	und esti	m	ate	S.		1	÷		÷	ē			÷	4	÷.		ų.	x		÷	•	4	3	ŝ	÷		115
6	Sys	tematic	errors																										125
	6.1	B mesor	n countir	ıg	•	•			•	α.	a	ŝ	X	+	÷	9	•	•	,	•	•		•	•	•	ē	•	+	126
	6.2	Recoil s	ide	÷.					4	a,	4	ł,	1	ġ.		6	4.	÷	ĩ	1		÷			4	ē			127
	6.3	Theoret	ical mod	lel					4	•	1	1	÷		4				÷			2	4		1	2			139
	6.4	Muon io	lentificat	io	n	•	• •	-	ł	•		1	•	•		•	•	1	•	•	Ţ.		2	·	1	0	•	÷	145
7	Res	ults and	l conclu	si	or	ıs																							149
	7.1	Results		+		÷			4			÷		•		+	÷		+		•		÷			÷	•		149
	7.2	Conclus	ions	÷	÷					•		1	÷	•		+	÷	4		S.		•	1	•		1	÷		156
B	iblioį	graphy																											162

List of Figures

1.1	$B^+ \rightarrow \mu^+ \nu_\mu \gamma$
1.2	Semileptonic B meson decay ,
2.1	$B^+ \rightarrow \mu^+ \nu_\mu \gamma$
2.2	Structure-dependent $B^+ \rightarrow \mu^+ \nu_\mu \gamma$ decay
2.3	$u\bar{b} \rightarrow W^+$
2.4	$u\overline{b} \to W^+\gamma$
2.5	Muon and photon spectra 39
2.6	E_{γ} vs. E_{μ} , ,
2.7	NLO corrections
2.8	Resummation of large logarithms
3.1	<i>B</i> factory
3.2	The interaction region
3.3	The BABAR detector
3.4	Resistive plate chamber
3.5	Efficiency history of RPC modules
3.6	Muon efficiency and pion misidentification
4.1	String fragmentation
4.2	Bremsstrahlung in $B^+ \rightarrow \mu^+ \nu_\mu \gamma$

5.1	Signal candidate rank	ļ
5.2	<i>R</i> 2	1
5.3	$\cos\theta_{\rm thrust}$	1
5.4	$\cos\theta_{\rm miss}$	Ě
5.5	$E_{\nu}-p_{\nu}c$	ŀ
5.6	E_{μ}	1
5.7	E_{γ}	
5.8	ΔE	
5.9	m_{ES}	
5.10	Signal box and sidebands	
5.11	ΔE vs. m_{ES} : $B^+ \rightarrow \mu^+ \nu_\mu \gamma$	ľ
5.12	ΔE vs. m_{ES} : B^+B^-	1
5.13	ΔE vs. m_{ES} : $B^0 \bar{B}^0$	1
5.14	ΔE vs. m_{ES} : $c\bar{c}$	
5.15	ΔE vs. m_{ES} : uds	
5.16	ΔE vs. m_{ES} : $\tau^+\tau^-$	
5.17	R2: Real vs. MC data	
5.18	$\cos \theta_{\text{thrust}}$: Real vs. MC data	5
5.19	$\cos \theta_{\text{miss}}$: Real vs. MC data	i
5.20	E_{μ} : Real vs. MC data	ľ
5.21	E_{γ} : Real vs. MC data	,
5.22	$E_{\nu} - p_{\nu}c$: Real vs. MC data	ţ
5.23	ΔE : Real vs. MC data	ş
5.24	m_{ES} : Real vs. MC data	ľ
5.25	$E_{\nu} - p_{\nu}c$: All other cuts applied	ĺ
5.26	ΔE : All other cuts applied	5

5.27	$m_{ES}:$ All other cuts applied $\hfill \ldots \hfill \hfill \ldots \hfill \ldots \hfill \ldots \hfill \ldots \hfill \ldots \hfill \ldots \hfill$
5.28	Bifurcated Gaussian fit to the large sideband
5.29	m_{ES} and ΔE profiles
6.1	Event multiplicity, filtered data
6.2	Total energy and momentum, filtered data
6.3	Momentum angular distribution, filtered data
6.4	Event multiplicity, unfiltered data
6.5	Total energy and momentum, unfiltered data
6.6	Momentum angular distribution, unfiltered data
6.7	Recoil-side energy and momentum
6.8	Form factors
6.9	Decay rates
6.10	Background muons and photons
6.11	Muon and electron efficiency
6.12	Lab frame spectra
7.1	Signal event #1
7.2	Signal event #3
7.3	Signal box with three signal candidates
7.4	$ V_{ub} $ upper limit or λ_B lower limit
7.5	Integrated luminosity

List of Tables

3.1	Production cross sections
3.2	PEP-II beam parameters
3.3	Properties of CsI(Ti)
3.4	L3 trigger output
5.1	Real Data
5.2	Monte Carlo Data
5.3	Preliminary filter selection criteria
5.4	Preliminary filter efficiency
5.5	Signal candidate selection
5.6	Main selection criteria
5.7	Main selection criteria, real data
5.8	Main selection criteria, MC data
5.9	Marginal efficiencies
5.1) Scaled marginal efficiencies
5.1	MC signal and background yields
5.1	P Background estimates
6.1	<i>B</i> meson count
6.2	Mean values of event variables

6.3	Corrected ΔE and m_{ES} efficiencies
6.4	Corrected $E_{\nu} - p_{\nu} c$ efficiency
6.5	Form factor dependence
6.6	Muon efficiency
7.1	Signal events
7.2	Future projections