
Chapter 5

Data and Results

Knowing the longitudinal phase space of the electron beams in the E164 experiment

is important for understanding a variety of effects that occur in the plasma, primarily,

the acceleration of the beam itself. To have confidence in the technique, we first seek

to find verification that matching with LiTrack provides accurate data. There are

several ways to test this method.

5.1 Verifying the Technique

As our technique is indirect, we have sought a variety of sources of confirmation that it

is accurate. When we calculate the beam profiles, we can then correlate the properties

of each bunch with several other measurements. If these all track one another in the

expected ways, that greatly increases confidence in the method.

To evaluate the accuracy of our technique, we use data from several runs taken

in 2004. As illustration, we focus on several 100 shot sequences of data taken at 1

Hz on 13 July of 2004, known in our database name convention as runs “07131cw”

and “07131dc.” In all of the runs from this day, the accelerator was set to create

the shortest bunches possible to investigate acceleration at the very highest plasma

densities achievable with our oven: 3.5 × 1017 cm−3. The natural variations of the

accelerator’s various parameters mean that we would expect a variety of beam profiles

at the position of the plasma.
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Figure 5.1: Energy spectra for nine sequential shots in Run 07131dc, each matched
to one of the 255 simulations with slightly varying parameters. Horizontal axis is in
units of δ. Blue is data and red is the best matching simulation spectrum. The peak
current in kA and bunch width in µm for the corresponding simulation are indicated.

With all parameters close to optimal, we produce beams as short as 12µm with

corresponding peak currents of about 20 kA. When any of the various linac parameters

discussed in Chapter 3 jitter away from optimum, the accelerator produces substan-

tially longer bunches with less intense peak currents. This natural variation allows

us to probe several phenomena of interest and is what allows us to see if calculated

bunch properties do, in fact, track other measured quantities.

Figure 5.1 shows the matching of our simulations to nine shots from Run 07131dc.

Each shot has a slightly different energy spectrum, but still matches one of the sim-

ulations, which are different from one another in just a few of the possible variables.

Specifically, the compressor cavity voltage is not well known, so is allowed to take the

values 42.3, 42.5 and 42.7 MV. Similarly, the phase of our bunch coming from the

damping ring is allowed to vary somewhat in the range from 0.7 to about 1.4 mm.

Lastly, the overall phase of the linac was scanned over a range of about one and a

half degrees, with most shots determined to lie within a range of 0.4◦.
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Figure 5.2: Simulation phase spaces, the left shows the long current pulse associated
with Shot 39 of Figure 5.1 and the right is the short pulse matching Shot 41.

The overall phase of the accelerator has been measured to vary on short (less than

30 second) timescales, so we always recreate this variation in the suite of simulations

for matching. The compressor cavity temperature is also known to vary, sometimes

rapidly, when PEP requires changes in the main accelerator. Similar changes are

observed throughout the linac, so there are both long term diurnal drifts and much

more dramatic jumps of as much as a full degree in just one or two seconds. As

discussed in Chapter 4, changes of even 0.1 or 0.2 degree can make appreciable changes

to the energy spectrum. This parameter has the largest variability compared to the

scale at which changes in it make observable differences in the energy spectrum.

Overall linac phase must always be scanned in doing a set of simulations.

For reference, Figure 5.2 shows the phase spaces calculated for shots 39 and 41.

They represent occasions where small changes in the linac led to peak currents which

were a factor of two different, even though the initial conditions were similar on the

scale of our ability to measure the three important quantities highlighted in red.

Determination of the current profile allows us to make a variety of predictions

about the behavior of the electron bunches in the plasma and at other diagnostics.

We discuss four different ways in which we connect the determined profiles with other

measurable quantities, as a means of verifying the technique.
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Figure 5.3: The total charge measured downstream of the plasma is related to the
peak intensity of the incoming electron beam. Data is from Run 07131cw.

5.1.1 Trapped Charge Measurements

The mechanism is not yet understood, but we have observed that immediately down-

stream of the plasma, more charge often comes out than was sent in, by a factor of up

to five or even more. This is probably some sort of trapping of plasma electrons by

the strong wake, analogous to that seen in laser wakefield acceleration experiments.

Trapped particles must start from rest, rather than ∼ 28.5 GeV, ending with

only a few GeV of energy. They will be lost in the sequence of strong quadrupoles

downstream of the plasma and are not seen at the diagnostic Cherenkov screen.

The downstream charge measuring toroid is close to the plasma, so could be

influenced by the significant radiation there. We also cannot yet measure the energy

of these particles, which could allow us to understand sources for what we see.

Nevertheless, for the above data run, if we plot the peak current of each individual

machine shot against the measured charge flowing down the pipe immediately after

the plasma, we clearly see that the more intense incoming bunches associate with

much larger amounts of charge downstream. See Figure 5.3.

The exact mechanism of trapping is not understood, but it seems reasonable that

a more intense electron bunch will drive the plasma wake harder and be more likely

to trap particles. As we have substantial variation in the length of the 100 bunches

in this run, we have a natural way to see the effect of changing bunch length on
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Figure 5.4: Histogram of the calculated bunch lengths in microns for Run 07131cy.

trapping. This provides an interesting result as well as evidence that the simulations

do give an understanding of the beam’s incoming phase space.

5.1.2 Autocorrelation Measurements

The autocorrelation discussed in § 4.2 is a multi-shot measurement that gives some

idea of the bunch length for a given set of accelerator conditions. The measured

bunch length is of the order 18µm long, in reasonable agreement with the shortest

bunches that simulation tells us that we can achieve.

As we have seen, the accelerator varies in its input conditions over time scales

shorter than the multiple minutes required to build up the autocorrelation trace.

Whenever the accelerator strays from ideal conditions, the bunches will be longer.

For example, if we look at a histogram of the peak widths, as determined by com-

parison with simulations, from Run 07131cy, we obtain Figure 5.4. This shows that

we get substantial variation of bunch lengths from roughly our expected minimum of

12µm to 30 and 40µm. The most common length is of order 20µm.

We recall that in choosing events to include in the autocorrelation trace, we had

used the most probable total CTR power value as a cut. If total CTR power is

inversely related to bunch length, we expect that we had selected the most common

bunch length to measure. The autocorrelation value of 18µm for that bunch length
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Figure 5.5: Plot of total Coherent Transition Radiation power as a function of the
peak intensity of the driving electron bunch. Data is from Run 07131cw.

therefore agrees quite well with the bunch length derived from simulation. This gives

confidence in both methods, as they are totally independent of one another.

5.1.3 Pyro Peak Measurements

The autocorrelation measurements give confidence that our short bunches have an

overall absolute length close to that estimated from the simulation comparisons. A

further piece of useful information comes from the simpler measurement that measures

only the total CTR power coming from the bunch. Clearly, we cannot perform the

bunch length scan for each shot of the accelerator, but we can measure the total

broadband power emitted by each individual bunch on a shot by shot basis.

To find the expected total power for bunches of various lengths, we integrate

Equation (4.5) numerically. For each bunch length, the minimum wavelength is taken

to be 0.6 times σz. As discussed in § 4.2, wavelengths beyond about 100µm are

progressively attenuated by the apparatus itself, so we choose to stop the integration

at 150µm.

We can integrate over all angles, and the effect of the acceptance of our system is

taken care of by the choice of limit on wavelength above.

The left hand side of Figure 5.5 shows our measured CTR power plotted against

the peak current as inferred from simulations for Run 07131dc. Clearly, short high
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current bunches produce more CTR than the longer low current bunches. The right

hand side of the same figure shows the theoretical curve we expect.

That the total CTR power we detect as a function of the bunch’s peak power

follows the general trend that we expect from theory gives confidence that we do

understand the longitudinal profile of our bunches.

5.1.4 Comparison with Ionization Measurements

A less direct verification of our understanding of the beam properties comes from

understanding the process of Lithium ionization. Because we seek to use our intense

beams to ionize the Lithium, it is important to verify the threshold at which ionization

occurs. One of the ways to investigate this is to change the electric field of the bunch

in a controlled way and see at what point ionization is initiated.

Caolionn O’Connell, in her thesis on the E164 experiment [41], investigated the

onset of Lithium ionization for different beams. Understanding the bunch longitudinal

profile was particularly useful for the case where the beam was changed in length to

see when it would finally have strong enough fields to dissociate Lithium.

With the high charge bunches that we normally use: 1.8 × 1010 particles, the

ionization of Lithium has been observed to happen readily, so in this investigation of

the threshold for ionization, the bunch charge was dropped to about 0.9× 1010.

The spot size at the entrance to the plasma was held at approximately 15µm.

Thus the peak fields associated with the different bunches were determined only by

their instantaneous currents.

As we have seen in § 2.3, Lithium ionizes rapidly once the space charge fields of

the beam rise above roughly 5 to 6 GV/m. Given the instantaneous current of the

highly relativistic bunch, then the radial electric field at all points in the associated

infinitessimally thin pancake at that z location is given by:

Er(r, z) =
I(z)

2πε0c σ2
r r

∫ r

0

e
− r2

2σ2
r r dr =

I(z)

2πε0c

1

r

(
1− e

− r2

2σ2
r

)
(5.1)

We recall that the pancake’s peak field occurs at r = 1.6σr. With a transverse
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size of 15µm, this peak electric field of our bunch is given by the engineering formula:

Êr(z) [GV/m] = 1.81 I(z) [kA] (5.2)

Peak fields of 5 to 6 GV/m thus will correspond to about 3 kA of beam current

for our beam radius. Away from r = 1.6σr, the fields are lower, so full or nearly full

ionization of the ion column is not expected to happen until the beam current rises

to 4 or 5 kA.

In one run of 200 images from 16 July 2004, the bunch length (and peak current)

was varied by changing the overall phase of the accelerator. Comparison of the X-Ray

based spectrometer images with simulation shows that the bunch lengths ranged from

about about 130µm to about 20µm during this sequence of runs. After selecting only

those events within a tight range of charge at the plasma and after removing the few

events which failed to match well to any of the set of simulations, 115 shots remain.

It is useful to create a condensed view of all 115 Cherenkov spectrometer images.

We take each image, an example of which is the right hand one in Figure 4.19, and

then sum it sideways to create a single pixel wide lineout. We can then place these

lineouts immediately next to one another and order them by the calculated peak

current of the incoming electron bunch to get a picture of what is happening to the

Cherenkov energy spectrum as the bunch length changes. Figure 5.6 shows such

an image, with a plot of the increasing peak current of the bunches below. The

overall trend of increasing energy spread at the Cherenkov screen with increasing

peak current is very clear.

We see that for the first few images, there is a bit of noise, but there is no ioniza-

tion. Once the peak current rises a little above 2 kA, the Cherenkov spectra begin

to broaden, primarily with particles dropping in energy. The only mechanism avail-

able to decelerate these particles in our experiment is that they are driving a plasma

wave, so they clearly must have started to ionize the Lithium. With increasing peak

current, we see that the deceleration of the particles increases to some maximum, at

which point it mostly levels off. There appear to be two interrelated effects caus-

ing this behavior. The first is that we go from having no ionization to having full
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Figure 5.6: Cherenkov spectra summed to single pixel width and ordered by the peak
current of the incoming beam as determined through simulations.

ionization, allowing for ever denser plasmas in which to drive wakes. Additionally,

the more intense bunches ionize the beam ever earlier within the bunch, so that a

larger fraction of the particles can participate in driving a wake. We quantify these

statements below.

We know the current profile of the electron beam and its transverse size at the

plasma. Thus, we also know the electric field at all points, and can use Eq. (2.47)

to find the instantaneous ionization rate. The peak electric fields of our relativistic

electron bunch lie at the r = 1.6σr point, so we integrate the total expected ionization

in the annular sheath at that optimal radius and plot it for four of the calculated

profiles from Figure 5.6, giving Figure 5.7.

The first current profile corresponds to the very first shot. The second profile is

that which matched shots 16 through 21, and had a peak current 2.6 kA. The third

profile is for shot 34, with a peak current of 3.2 kA, and the last profile is for shots

77 to 80, with peak current of 5.5 kA. For all of the bunches, the ionization at other

radii than 1.6σr will be lower, which is why, for example, the third profile shows

that we expect full ionization, but the corresponding Cherenkov lineout does not

yet have the maximal amount of deceleration there. Only part of the plasma sheath
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Figure 5.7: Current profiles for the four bunches indicated in Figure 5.6. Ionization
is rapid compared to the bunch length above about 3.5 kA.

experiences full ionization and therefore can produce the largest fields available. Once

the ionization is complete at some early point in the bunch, the wakes we drive should

not change significantly, which is what we see for the final third of the shots.

In looking at these various plots in conjunction with Figure 5.6, it is clear that

ionization at r = 1.6σr turns on rapidly compared to the beam transit time when

the current rises above 3 or 3.5 kA, corresponding (for a beam radius of 15µm) to

peak fields of about 5 GV/m, just as predicted by theory. Additionally, the entire ion

column seems to be ionized for peak currents above 5 or 6 kA. Our understanding of

the bunch profiles and of ionization reinforce each other very well, and these numbers

have immediate consequences in the following section.

5.1.5 Post-Plasma Energy Spectrum Features

During the summer 2004 data run, we observed an unexpected feature on the Cherenkov

based electron beam spectrometer. Specifically, there was a large amount of charge

at or near the highest incoming energies which appeared to be unaffected by passage
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Figure 5.8: Two Cherenkov spectrometer images for beams with nearly identical
incoming energy spectra. On left is a shot without, right is with plasma. High energy
particles for both shots make it through with no effect as shown on right hand overlay.
The axis corresponding to energy has units of pixels on our camera.

through the plasma. With a normal Gaussian bunch that ionizes the Lithium early

on, so that almost all but the tailmost electrons are decelerated, this is puzzling.

The feature was better explained after the experimental runs, when we simulated the

accelerator in detail to match the observed energy spectra.

For data runs from 13 July 2005, we have two shots with nearly identical incoming

energy spectra. The first Cherenkov spectrum was with no plasma in the beam path,

and the second is of the beam after going through the plasma, see Figure 5.8. With

these two shots, we can compare the Cherenkov energy spectra to get a good idea of

what changes downstream as we insert the plasma cell into the beam. For reference,

Figure 5.9 shows the phase space we have determined for this pair of shots.

If we look closely at the current profile of the bunch in Figure 5.9, we note that

there is a long “nose” at the front where the current of the bunch remains low for

about 100µm. As we saw previously, until the current rises above 3 to 5 kA, the

Lithium is not ionized. With no plasma for the initial portion of the bunch, nothing

should happen to the energies in this population of high energy incoming electrons.

The “Nose” of our bunch, before the current ramps up to over 5 kA, contains

roughly a third of the total charge in this instance. We have also observed that in

many cases, about one third of the total charge goes through the plasma unaffected.
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Figure 5.9: Plot of the simulated phase space for the two accelerator shots discussed
in this section. One shot had plasma off, and one had the plasma on.

Our understanding of the bunch current profile and of Lithium ionization allow us to

explain the initially puzzling collection of charge at high energy that we observed on

the Cherenkov spectrometer even with the plasma cell in.

5.1.6 Uses for Knowledge of the Phase Space

Having verified through these various techniques that simulations do, indeed, tell us

the phase space, we can move on to understanding various aspects of the beam’s

interaction with the plasma. We use knowledge of the beam’s phase space to in-

form investigations of hosing instabilities, and of greatest importance, the plasma

acceleration effect itself.

5.2 Understanding Acceleration

The main motivation for seeking to know the longitudinal phase space of the beams

is naturally so we can understand acceleration more fully. We can use the knowledge

of the phase space in several ways.
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5.2.1 Direct Acceleration Determination

An important application of the phase space reconstructions is to use them to deter-

mine the magnitude of acceleration that we actually have achieved in our accelerator.

The technique discussed here is similar to that presented in [79], and the basic idea

is that identifying the precise incoming energy of particles in the tail allows a more

accurate determination of their overall energy gain.

In E164, we have a short plasma and as discussed previously, our incoming bunch

has a substantial energy spread in order to make it short enough for our experiment.

As we see above in Figure 5.9, the intrinsic energy spread of the beam coming into

the plasma has a full width of 4%, or nearly 1.2 GeV.

With peak gradients expected to be less than 50 GeV/m over a plasma of only

10 cm, the best possible energy gain does not dwarf the beam’s own energy spread.

As a result, there is potentially substantial uncertainty in determining the actual

energy gain by particles when we look at the images of the Cherenkov spectrometer

downstream of the plasma.

If we can identify the particles which are being accelerated and know their incom-

ing energy, then we can improve the accuracy of our gradient measurement.

Identifying Particles

We have seen in a variety of simulations of our plasma wakefield accelerator that

the wake forms a surprisingly long distance behind the bunch. In linear wakefield

theory, we would expect, as shown in Chapter 2, cf. (2.41), that the wake will be at

a maximum when kpξ = π
2
→ ξ = λp

4
behind the bunch. This is because the electrons

are assumed to have been blown out gently and immediately recollapse after the peak

current portion of the beam passes. From fully blown out to recollapsed back to the

axis is one quarter of a plasma wavelength.

Related to this, in linear theory, we see that there is an optimal bunch length for

any given plasma density, where we match using the condition that kpσz =
√

2 for

Gaussian bunches. For too long a bunch, the wake is not strongly driven, and for too

short a bunch, there are no particles available in the tail to be accelerated.
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Figure 5.10: Plot of wake developing behind a bunch simulated in QUICKPIC. The
plasma density is 2.8×1017 cm−3 with an associated plasma wavelength of λp = 63µm.
The maximum accelerating field can be seen to lie almost a full λp behind the peak
current point of the electron bunch. Adapted from [80].

For parameters as in E164, plasma electrons are expelled ballistically by the short

electron beam passing through. After the point of peak current, the plasma electrons

are still moving away from the beam axis before they are ultimately pulled back in

by the ion column. Being relativistic, the electrons cannot accelerate arbitrarily as

they would in simple harmonic motion. Thus, the plasma electrons oscillate with

a phase delay and a substantially longer period than predicted by the naive linear

theory, where we assume motion as in a classical harmonic oscillator.

With these two effects, the wake forms not at a distance behind the main current

pulse of ξ = 1
4
λp, but at ξ . λp. The simulation output shown in Figure 5.10 shows

this long distance. The simulation was performed for a 10 kA peak current beam in a

plasma of density 2.8× 1017 cm−3 with associated plasma wavelength of 63µm. The

wake is strongest about 65µm behind the peak current point of the bunch, just in

front of the point where the blown out plasma electrons come back to the axis.

With this, we know that the particles which will be accelerated are relatively far

into the tails of our bunch. With even our shortest available plasma wavelength of

56 microns, the distance behind our bunch for largest acceleration is more than one

or two σz behind the peak.
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The wake evolves from decelerating to accelerating to decelerating again as we

move progressively backward behind the bunch. This means that electrons in the tail

will see more or less acceleration as a function of their position.

In an ideal plasma accelerator, we would have a very short bunch of electrons

trailing the main drive bunch in a position such that all of the witness bunch is

accelerated strongly and equally. With the single bunch setup of E164, we have

particles at all of the phases of the evolving plasma wake, so some are accelerated

more strongly than others. This manifests itself as the jet of accelerated particles that

we see on our Cherenkov detector. The particles with highest energy are whichever

lie at exactly the best longitudinal position behind the bunch.

Finding the Acceleration Strength

An example data event from 13 July 2004 where we seek to know the gradient showed

many particles being accelerated. On the right side of Figure 5.11 we see the energy

spectrum as measured on our Cherenkov diagnostic after the plasma with a strong jet

of particles above the incoming maximum energy. We can see the substantial number

of particles which have gained a continuum of energies at least up to the top of the

screen, about 2 GeV above the highest incoming energies.

Improvements to the E164 Cherenkov based spectrometer have given a larger

energy acceptance so that all particles will be viewable, but here we are constrained

by the available hardware, and some of the particles may have been accelerated by

more than we could see.

Using the measured energy spectrum from before the plasma, we have found the

phase space for the above event, as shown in the left portion of Figure 5.11. The

intrinsic energy spread is quite large.

At a density of 3.5× 1017cm−3, with even our shortest plasma length of about 10

cm (see Chapter 4), there is enormous acceleration. Recall that when we claim the

plasma is 10 cm long, that refers to its FWHM, and the actual flat top portion which

is at the full nominal plasma density is only a few cm long.

The maximally accelerated particle must have seen an accelerating gradient of at

least 2 GeV in 10 cm, or 20 GeV/m. However, the peak gradient achieved in the
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Figure 5.11: Incoming phase space for Shot 31 of Run 07131co and post-plasma
spectrometer image showing substantial acceleration.

full density flat top must be higher than this. Further, we can show that the actual

energy gain to these particles was even greater than the observed 2 GeV.

As discussed in the previous section, best acceleration happens nearly a full plasma

wavelength behind the point of maximum current in our bunch, and at a density of

3.5×1017 cm−3, the point of maximum acceleration thus lies about 50µm behind the

position of the bunch’s peak current. In Figure 5.11, we draw a line on the simulation

phase space corresponding to that position.

As we can see, the particles in a position to be accelerated all lie below about

-1.5% in energy relative to the mean particle in the bunch. The head of the bunch,

which we have seen will be unaffected by the plasma, has its highest energy particles

at nearly +2%. Just for the accelerated particles to become visible, they must have

gained more than 3%, or over 0.9 GeV of energy. Thus, when we see 2 GeV of gain, the

actual acceleration was greater than we can directly observe, and our peak gradient

at 3.5 × 1017 cm−3 is now calculated to be nearly 30 GeV/m. Further discussion of

this technique for direct gradient determination can be found in [79].
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Figure 5.12: The phase space to which we match the three shots shown in this section.

5.2.2 Acceleration Properties Under Varying Conditions

Naturally, we seek to understand the acceleration for more than just one plasma

density. Toward this end, we performed a series of data runs in July of 2004 with

substantially different plasma densities and therefore, different plasma wavelengths.

Although linear theory does not apply, there is still an optimal bunch length for each

plasma density. Long bunches drive gentle wakes, but have many particles in the tail

to be accelerated. Short bunches create very strong wakes, but have few particles far

enough behind the main portion of the beam to see any acceleration.

During one week, we used plasma densities from 1.5× 1017 to 3.5× 1017 per cubic

centimeter, so that the associated plasma wavelength shrank from 85 to 56 microns.

Thus, we would expect that if we sent the same bunch into these different plasma

densities, we would see differing amounts of acceleration.

We found the phase space for each event in the various data runs, and so could say

what the approximate bunch length was for every shot. To do a direct comparison

of one plasma density versus the others, we choose only a subset of the data events

from various days which all matched to the same phase space from simulation.

A bunch profile that matched to data from each plasma density has a σz for the

main peak of about 16µm. Figure 5.12 shows the output from LiTrack. Linear theory
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Figure 5.13: We compare the effect of different plasma densities on similar incoming
beams. At left is 1.5× 1017 cm−3 with no clearly accelerated particles. In the center,
the plasma density is 2.5× 1017 cm−3 and we clearly see an accelerated tail. On the
right is the densest plasma: 3.5×1017 cm−3, with many strongly accelerated particles.
The approximate energy scale shown is relative to the highest incoming energies.

would predict the plasma density with maximum energy gain to be 2.2× 1017 cm−3,

but we have non-Gaussian bunches with uneven wings. Also, the previously described

phase delays in the formation of the wake make it less easy to predict the ideal plasma

wavelength. We expect that we need a higher density for maximum acceleration than

predicted by linear theory.

Having chosen events with the same incoming conditions, we then quantify the

acceleration as a function of plasma density.

Figure 5.13 shows representative shots from the three densities of plasma. (Note

that the first image had a slightly higher centroid incoming energy. The accelerator

varies somewhat from day to day.) The first image represents the effect of the 1.5×
1017 cm−3 plasma, where there are no accelerated particles visible. The second image

shows the acceleration after the higher density plasma of 2.5× 1017 cm−3, where we

now clearly see a wisp of electrons which have been accelerated beyond the highest

incoming energies. The third image, with plasma density of 3.5 × 1017 cm−3, shows

particles with energies all the way to the top of the image. Beyond that point, we
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cannot see the electrons accelerated by more than about 2 GeV, though it is clear

that there must be some such electrons.

Using the same technique as in the previous section, we can calculate the gradient

available for acceleration in each of these cases.

The distance behind the peak current of the bunch that the wake lies changes

from 75µm to 50µm between these cases, but for each of them, the particles that

experience that maximum wake start out lower than the head particles by almost

4% = 1.1 GeV. For the case with 1.5 × 1017 per cc, we do not see any accelerated

electrons, so the gradient is ≤ 11 GeV/m.

With the higher plasma density of 2.5 × 1017 cm−3, we see acceleration of about

1.2 GeV above the highest incoming energy for a maximum gradient experienced by

a particle in this bunch of the order of 23 GeV/m.

At the highest density of 3.5×1017 cm−3, we now see acceleration of a full 2 GeV,

so as with the case in the previous section, we see a gradient ≥ 31 GeV, limited by

our spectrometer range. It appears that the maximum acceleration for our 16µm

bunch would actually be achieved in a yet higher density plasma, but 3.5×1017 cm−3

is the maximum density in our oven.

This analysis is direct and gives information about the absolute maximum accel-

eration, but it suffers from the significant problem that we do not know the exact

plasma length very well, and thus cannot quote a gradient to very high accuracy. With

multi cm “wings” on either side, it is difficult to separate out the effect just from the

highest density region in the center. The next section discusses a more involved tech-

nique which allows better investigation of the gradient as well as information about

transverse deflections such as hosing.

5.3 Acceleration Analysis - Statistical

A more accurate way to understand acceleration is to change the plasma length and

see how the acceleration is affected. Plotting these versus each other gives another

way to determine the gradient. Because the wings where the Lithium density drops

to zero have the same length whatever the central plasma length, any questions about
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Figure 5.14: The phase space for the beams analyzed in this section.

the effect of the wings can be removed as common mode noise, and we only see the

differential effect of adding or subtracting plasma length at the full desired density.

As discussed in Chapter 4, changing the oven heater power changes the plasma’s

length, but not its density. When reducing the power, changes in length require about

15 minutes to stabilize. As discussed in Chapter 4, for different plasma densities, the

changes in length as a function of power are similar.

At each density, 1.5, 2.5 and 3.5×1017 cm−3, we changed the oven length by several

centimeters in the course of about two hours. The most rapid changes come when

cooling down, so we started with the highest power. In reducing the oven length by

about 4 cm, we typically took 8 to 12 evenly spaced data runs of 100 shots each.

To make direct comparisons of the acceleration, we need to have similar incoming

electron beams from each data run and for each of the plasma densities explored.

We found that electron beams with the phase space as shown in Figure 5.14 were

present in all of our data runs to be discussed below, and therefore provided a good

basis for statistical analysis. Nonetheless, due to the natural variations of the main

accelerator, some runs have only 1 or 2 matching shots, some have more than 40.

With the various data events all having the same incoming conditions, we seek

some metric for the amount of acceleration experienced by the beam in each event.
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Figure 5.15: On left is a Cherenkov spectrometer image from 13 July 2004. On right
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height of features such as the 2% contour labelled at top.

One way to quantify the acceleration that we see is simply to add up the total

charge which has higher energy after the plasma than any particle had coming in. A

more useful measure is to calculate contours of the beam in energy.

When dispersed at the Cherenkov screen, the vertical position of the electrons is

dominated by their energy. If we calculate a running sum of the beam starting at the

highest energy, we can calculate contours above which 5% of the beam’s charge lies,

above which 10% or 50% lies, and so on. Because a relatively small fraction of the

beam is accelerated under even the best conditions, we focus on the contours in the

range of about a half to several percent. Figure 5.15 shows a sample image from the

Cherenkov screen and the calculation of the running sum which gives these contours.

As the incoming beam energy fluctuates slightly from shot to shot and between

days, the relevant metric for the height of our 2% contour is not its absolute height,

but its height above some stable feature in the beam itself. Thanks to the “nose” on

our various beams before ionization takes place, we have such an unchanging feature.

We calculate the height of the contour relative to this high energy spike, which is

unaffected by the plasma, such as we have previously seen in Figure 5.8.
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Figure 5.16: Plot of change in acceleration for the 2% contour vs oven length for
plasma density 1.5× 1017 cm−3 with linear fit.

5.3.1 Lowest Plasma Density

We use the above technique to analyze data taken on 11 July 2004 with the plasma set

to a density of 1.5× 1017 cm−3 to see what gradient had been achieved. By varying

the oven power between the 390 and 460 Watts, we were able to change the oven

length by about 5 cm in length. We took one set of 100 shots at each setting of the

power, where the settings were 7.5 Watts different from one run to the next.

To have a consistent basis for comparing various events, we use only the shots

from each run that match to the phase space shown in Figure 5.14. The number of

successful matches varies, with between 2 and 17 matches for each of the runs here.

Having selected the subset of shots from each run, we calculate the height of

various contours. As relatively few particles are accelerated, we calculate the gradient

for only the 0.5% through 4% contours. For each shot, we calculate the height of the

various contours above the stable feature afforded by the beam’s “nose.” We then

plot the height of each contour versus the length of the plasma to see the gradient.

An example of such a plot is shown in Figure 5.16 for the 2% contour.

The linear fit does not match the data all that well; the confidence level is quite

low indicating that the linear fit is not capturing all of the physics or that the error
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Figure 5.17: Plot of our accelerating gradient vs. the contour at which we choose
to measure it for plasma density of 1.5 × 1017 cm−3. Maximum achieved gradient is
extrapolated to be about 20 GeV/m.

bars are incorrectly small. A discussion of the statistical techniques used to provide

confidence levels can be found in Appendix A.

Nonetheless, by eye one can see that the gradient is something of the order of 4

GeV/m as given by the linear fit. We can create such plots for the various contours

and it is then useful to plot the measured gradient versus the percent contour being

studied. That way, we can extrapolate toward 0 to find the maximum gradient

produced in our plasma. Such a plot is shown in Figure 5.17.

% Contour Gradient [GeV/m] C.L.
0.5 17.9± 1 0%
1 12.2± 0.8 0%
2 4.0± 0.2 0.6%
3 3.6± 0.2 0%
4 3.6± 0.2 0%
5 3.4± 0.1 0%

Table 5.1: Various parameters of the gradient for the lowest density plasma of 1.5×
1017 cm−3
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Figure 5.18: Plot of change in acceleration of the 2% contour vs oven length for the
intermediate plasma density 2.5× 1017 cm−3 with fit to a line.

We only include plasma lengths greater than 9 or 10 cm, where there are always

visibly accelerated particles. Because the gradient is calculated for changes in plasma

length, we remove questions about the size of the “wings” in the Lithium distribution,

and no longer care exactly what the tail particle incoming energies had been.

We reiterate that the errors quoted on the gradients are unrealistically small,

as the confidence levels for each linear fit are very low. Still, we can see that the

gradient grows as we look at smaller and smaller groups of particles near the peak of

the observed acceleration. Extrapolating to 0, we can estimate that the peak achieved

gradient for our plasma of 1.5× 1017 cm−3 was of the order of 20 GeV/m.

5.3.2 Intermediate Plasma Density

We perform a similar analysis with the 2.5 × 1017 cm−3 plasma and get interesting

results. If we measure the acceleration of our 2% contour with beams that have the

same longitudinal profile as mentioned above, we see the results in Figure 5.18.

The gradient determined by the fit is stronger than for the lower density plasma,

as we would expect. Again, the line fit is definitely not capturing all of the physics.

Unlike the previous case, however, the positions of the points are somewhat suggestive.



5.3. ACCELERATION ANALYSIS - STATISTICAL 129

Sloshing
Tail

Accelerating
Bucket

Head of Beam 
Governs Position
of Ion Column

Direction of Beam Motion

Ballistically
Evolving 
Envelope

Figure 5.19: Diagram of the transverse size of the accelerating bucket. Particles
that start off to one side will oscillate transversely at the betatron frequency, passing
through the region of strong acceleration twice per oscillation.

We recall that we have seen transverse asymmetries in the beams coming into our

plasma. If those offsets are in the tailmost particles, they will oscillate back and forth

in the focusing fields of the ion column created by the beam blow-out. The strongest

accelerating fields are located right on axis behind the head of the bunch. Although

offset tail particles lie at the right longitudinal position, they will be in the right

transverse position to experience the peak acceleration only part of the time, seeing

an acceleration that oscillates in strength. The schematic of this effect is presented

in Figure 5.19.

In each betatron oscillation, they will enter and then leave the accelerating region

twice. Thus, not only will the average acceleration be lower than it would otherwise

be, but we will see modulation of the effect at twice the betatron frequency, providing

a useful hallmark to distinguish this particular effect from other possible explanations.

We can see on the upstream OTR screen that our beams do, in fact, come into the

plasma with transverse asymmetries. Although we cannot distinguish the tail from

the head in these images, offset tails are a reasonable explanation. We consistently

notice that there are asymmetries to the same side. Figure 5.20 shows an example of

the beam with a clear tail to one side.

Interestingly, the transverse profile of the bunch clearly does not match to a

Gaussian. Rather, to quantify the asymmetry, we fit the bunch to an asymmetric

Lorentzian, which is a very good match. Lorentzians are normally associated with
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Figure 5.20: Sample image from the upstream OTR foil showing the small tail off to
the left. The projection of the image onto the horizontal axis gives a curve which is
well fit by an asymmetric Lorentzian.

resonance phenomena, so perhaps the periodic transverse focusing in the main accel-

erator optics participates in creating this shape. Our equation is:

L = C +
W

1 + 2(1+sgn(x)A)2

x2σ2
L

(5.3)

where C is the pedestal on which our Lorentzian sits, W is the amplitude, A is the

asymmetry factor and σL is the width parameter of the curve. This is by direct

analogy with our definition of the asymmetric Gaussian (3.1).

With a transversely asymmetric beam coming in, it is natural to investigate what

happens transversely to the tails of the beam after the plasma. As the Cherenkov

spectrometer is imaging in x, we can see horizontal deflections of the beam, just as

we saw them in the upstream OTR images.

The technique is to take a full Cherenkov image and find the height of whichever

contour is of interest, as usual. We then take a horizontal lineout of the Cherenkov

image at that height and fit the curve to a Gaussian. The transverse position that

we quote is simply the mean value from the Gaussian fit. This is illustrated in Figure
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Figure 5.21: By taking a slice from the full image, we can then fit it to a Gaussian
to get an estimate of where the centroid lies. In this case, the mean position in the
Gaussian fit is not in the same place as the raw centroid would be, but this technique
is more robust against noise such as X-ray hits.

5.21. In order to convert the observed transverse positions to something meaningful,

we use the magnification of our electron optics to calculate the actual size of the

transverse deflections at the plasma exit.

Using this technique, we can find the average horizontal position of the slices at

the height of various contours for each plasma length. If tails are oscillating in the

focusing fields of the plasma, we should see sinusoidal oscillations at the betatron

frequency. We can then plot our tail transverse positions vs. plasma length, as in

Figure 5.22.

The amplitude of these oscillations is of the order of the transverse size of the

beam, σr. The wavelength for the oscillation returned by the fitting routine is a bit

larger than the expected 2.23 cm, but we already know that our understanding of

plasma length as a function of heater power is only accurate to about 10%, which

could account for some of the discrepancy between these two values. Combined with

the uncertainties in the fit parameters, our measured value is close enough to the

expected value to believe that this really does represent betatron oscillations of an

offset tail.



132 CHAPTER 5. DATA AND RESULTS

9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5
-40

-20

0

20

40

60

80

Transverse Position of 2% Contour vs Plasma Length for 2.5e17 cm-3

FWHM Oven Length (cm) 

Tr
an

sv
er

se
 P

os
iti

on
 o

f 
2%

 C
on

to
ur

 (
µm

) χ2 per DOF = 1.66,  CL = 12.5%

λ = 2.8 ± 0.11 cm

Amp = 22 ± 2 µ

Figure 5.22: Horizontal position of the 2% contour versus plasma length and find that
its oscillations could be consistent with simple betatron focusing of an initial offset
in the accelerated tail.

And the observed 1.26±0.05 cm period of oscillation in the energy gain is roughly

half this value, as we would expect.

With all of this information, we fit the acceleration data not to a line, but we

superimpose a sinusoid on top of the expected linear increase in energy with plasma

length. If we fit the points again, but to a curve which is the sum of a line and a

sinusoid, we get better agreement with the data. This is plotted in Figure 5.23.

There are now more parameters to the fit, and we show the most important

ones on each graph, namely the wavelength of the oscillation and its amplitude. The

wavelength we see for this particular fit is 1.26±0.05 cm. This number is close to half

of the betatron wavelength for our 28.5 GeV beam in a plasma of this density: 1.12

cm, and is close to half the value obtained by fitting to the transverse oscillations.

This is exactly the relationship we expect if the transverse oscillations affect the

acceleration.

Furthermore, if the oscillations in acceleration that we see are caused by this

transverse motion of the tail particles, then we expect that the oscillation amplitude

will be reduced in tandem with the decreasing overall acceleration as we investigate

ever more inclusive contour lines. This is exactly what we see at right in Figure 5.24.
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Figure 5.23: Plot of change in acceleration of the 2% contour vs oven length for
plasma density 2.5× 1017 cm−3 with fit to a line plus sinusoid.

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16
Accelerating Gradient vs Contour

Contour Being Measured (%) 

G
ra

di
en

t 
(G

eV
/m

) 

0 1 2 3 4 5
0

20

40

60

80

100

120

140

160

180

200
Oscillation Amplitude vs Contour

Contour Being Measured (%) 

Am
pl

itu
de

 o
f 

O
sc

ill
at

io
n 

(M
eV

) 

Figure 5.24: Plot of our accelerating gradient vs. the contour at which we choose
to measure it for plasma density of 2.5 × 1017 cm−3. Maximum achieved gradient is
extrapolated to be about 14± 3 GeV/m.
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% Contour Gradient [GeV/m] λ [cm] Amplitude [MeV] C.L.
0.5 12.7± 2.2 1.67± 0.08 162± 28 1%
1 10.3± 2.2 1.27± 0.05 142± 26 1%
2 8.1± 1.3 1.26± 0.05 85± 20 11%
3 2.8± 0.6 1.27± 0.06 34± 9 24%
4 1.4± 0.5 1.37± 0.11 24± 7 22%
5 1.2± 0.5 1.63± 0.14 18± 8 66%

Table 5.2: Various parameters of the gradient and observed oscillations in that gra-
dient for the medium density plasma of 2.5× 1017 cm−3

If we look at the wavelength of the oscillation in acceleration amplitude from

Table 5.2, we see that there is a group of similar values for the contours 1% through

4%, and the average value is about 1.3 cm. This is close to the expected period

of oscillation for transverse effects, and gives further evidence that these oscillations

cause the uneven acceleration as a function of oven length.

We see also that the oscillation amplitude changes in much the same way as the

overall accelerating gradient, which again implies that this is caused by the above

mechanism. We note that the overall gradient is actually lower than for the case of

the lower density above. This is to be expected if the tail spends a significant amount

of time outside of the main accelerating bucket. So these three lines of inference

give confidence that we understand the effects on acceleration. As a side effect of this

investigation, we can say that we do not see evidence of hosing growth, but transverse

deflections can still be a problem for the overall achievable gradient.

5.3.3 Highest Density Plasma

Lastly, we investigate the highest plasma density achieved, 3.5 × 1017 cm−3. As

observed in § 5.2.2, we should again have the highest gradient.

If we again plot the transverse deflections for the 2% contour as a function of

plasma density, we obtain Figure 5.25. The transverse oscillations are somewhat

greater in amplitude than those observed with the intermediate plasma density. The

machine was likely in a slightly different state the day this data was taken.
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Figure 5.25: We plot the horizontal position of the 2% contour versus plasma length
and find that its oscillations could be consistent with simple betatron focusing of an
initial offset in the accelerated tail.

We expect that there will be oscillations in the energy, and that the amplitude of

those oscillations will be greater than for the medium plasma density. We therefore

use the line plus sinusoid fitting routine again. Figure 5.26 shows the result of finding

the gradient for the 2% contour of shots into this high density plasma.

We see that the wavelength of oscillations in the transverse dimension is very close

to twice the wavelength of the energy modulations that we observe, as expected with

our understanding of what is happening inside the plasma. At 1.22 cm and 2.41 cm,

both wavelengths are greater than expected theoretically, at 0.94 cm and 1.88 cm,

respectively. This is probably because our understanding of the plasma length versus

heater power is not perfect. If we refer to Table 4.1, we see that the value of the

slope for 3.5× 1017 cm−3 looks anomalously large. Incorrectly large values cause the

wavelength to appear longer than it is (and reduce the measured gradient).

We plot the gradient and oscillation amplitude achieved vs. each contour inves-

tigated. This is presented for our high density plasma in Figure 5.27, where the

estimated maximum gradient for the 0% contour would be at about 22± 5 GeV/m.

If we assume that the differences we observe between the measured betatron wave-

length and the theoretical value are because we have a poor calibration of the oven
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Figure 5.26: Plot of change in acceleration of the 2% contour vs oven length for
plasma density 3.5× 1017 cm−3 with fit to a line plus sinusoid.
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Figure 5.27: Plot of our accelerating gradient vs. the contour at which we choose
to measure it for plasma density of 3.5 × 1017 cm−3. Maximum achieved gradient is
extrapolated to be about 22± 5 GeV/m.
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% Contour Gradient [GeV/m] λ [cm] Amplitude [MeV] C.L.
0.5 19.6± 4.9 1.55± 0.22 100± 62 16%
1 19.1± 4.8 1.19± 0.14 121± 56 28%
2 18.2± 4.1 1.22± 0.15 115± 46 35%
3 13.9± 2.5 1.22± 0.13 81± 29 18%
4 8.5± 1.5 1.22± 0.13 46± 17 9%
5 6.6± 1.1 1.17± 0.47 8± 11 3%
6 4.2± 0.8 1.14± 0.07 25± 9 11%
7 2.7± 0.6 1.15± 0.24 7± 6 1.5%

Table 5.3: Various parameters of the gradient and observed oscillations in that gra-
dient for the highest density plasma of 3.5× 1017 cm−3

length versus heater power, we can scale the gradient by the ratio of the observed

betatron wavelength to that which we expect at a density of 3.5× 1017 cm−3. Doing

so, we obtain a gradient of 28.5 ± 6.5 GeV/m, which is in good agreement with the

more direct analysis presented in § 5.2.2.

Despite the increase in transverse oscillation amplitude compared to that for the

intermediate plasma density, we see an increase in accelerating gradient compared to

the case of 2.5× 1017 cm−3 above.

5.3.4 Overall Results and Conclusions

We have demonstrated that energy spectrum measurements, coupled with detailed

simulations of beams in the SLAC main accelerator, do, in fact, give an understanding

of the longitudinal profile. The matching worked well, but should be even more

reliable if the sources of blurring in the spectrum, primarily coming from the electron

beam’s significant βx, were reduced. Nonetheless, this understanding then allows

several investigations of the beam-plasma interaction.

Knowing the incoming energy of the particles which are accelerated gives a better

understanding of their overall energy gain, and, therefore, the gradient. We can also

use the energy spectra more simply to select a subset of nearly identical incoming

bunches in order to compare the effect of different plasma densities and lengths on

those bunches.
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The most important benefit of this second technique is that we can measure the

achieved gradient in a manner which does not depend on the regions in which the

plasma density is changing. We have seen that the strongest acceleration is achieved

when we use the highest density plasma available, although simple linear theory would

predict that best acceleration for our bunches of about σz ≈ 18µm should be with a

plasma density of 2.5× 1017 cm−3. This indicates that continued progress in making

denser plasmas could be more beneficial than initially thought.

In the course of these investigations, it became apparent that transverse oscilla-

tions of the tailmost particles are responsible for a decrease in accelerating gradient

as well as oscillating energy gain to the particles. Further investigation is warranted

to understand more fully these effects.

Due to the nature of the data available as of July 2004, where we could change

the oven length only modestly, more accurate conclusions about gradients and hosing

must await the case when the plasma length can be changed by larger amounts, and

those experiments are underway as of the second half of 2005.



Chapter 6

Conclusions

With current technologies for particle acceleration nearing their theoretical maximum

gradients, new accelerating techniques are necessary. Plasma acceleration with lasers

has already demonstrated more than a thousandfold increase in gradient, but has

long suffered from difficulties in propagating the laser over a significant distance.

Beam based plasma wakefield accelerators get around such difficulties, but can

only achieve the same high gradients with very short electron bunches. Having created

the necessary bunches of RMS length 40 fsec, we lose the ability to understand their

longitudinal phase space directly, as no currently available technique can resolve such

bunches in time. To solve this problem, we used an indirect method to understand

the longitudinal phase space of our electron bunches. This indirect technique has

proven crucial to understanding a variety of effects that happen with short electron

beams driving a plasma wakefield.

As the technique is new, we have verified its accuracy by comparing with a variety

of other ways of understanding the electron beams at SLAC.

We have seen several different ways to apply the phase space information to un-

derstanding acceleration, where we have applied the technique to measure incredibly

high gradients of nearly 30 GeV/m over macroscopic distances. We found that the

gradient does, in fact, increase with greater plasma density, though the gradient is

weakened when transverse deflections become significant compared to the transverse

size of the beam.

139
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Understanding the phase space of short beams is not only useful for E164, but

has already been applied in designs for the Short Pulse Picosecond Source (SPPS)

experiment at SLAC, where short bunches are used to create intense X-Ray radiation

in a wiggler, as a test for the Linac Coherent Light Source (LCLS). Researchers at

DESY have also inquired about the technique for measuring the energy spread of

beams in a non-destructive way, and it may well find broad applicability in future

machines.

Continued progress in accelerating gradient requires ever more sophisticated meth-

ods for understanding the short electron bunches that we use, and we have demon-

strated one such in E164.



Appendix A

Linear and Nonlinear Fitting to

Data

We discuss the useful and generally applicable case of linear least squares fitting both

for background and to motivate the discussion of the main topic of interest: nonlinear

least squares fitting.

The linear case is nice because it admits of an exact analytic solution which can

be used to check numerical methods we seek to employ for the nonlinear case.

A.1 Linear Least Squares

The term “linear least squares fitting” does not require that the function we are using

for the fit be linear in the independent variable, e.g. x. Rather, the fit function must

be linear in our fit parameters, which we will denote as αi. To perform linear least

squares fitting, we require that our function F (x) have the form:

F (x) = α1f1(x) + α2f2(x) + . . .+ αmfm(x) (A.1)

In this case, the fi(x) can be anything we want, x2, cosx, Jν(x), or whatever else,

as long as each αi multiplies a separate function of x.

141
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A.1.1 Linear Fitting Example

Without proving any of the formulae, we outline the analytic method for finding the

linear least squares fit to data with error bars by following the procedures and notation

presented in Orear’s monograph “Notes on Statistics for Physicists, Revised” [81].

The problem we often have is to fit experimental data with error bars to a theo-

retical curve. For the reader’s reference, when that curve is just a line, the procedure

of least squares fitting is sometimes referred to as “linear regression,” a term coming

from statistics in the social sciences and business world.

The best way to demonstrate the technique for finding the best fit to our data

and for finding the errors in the fit parameters is through a concrete case. Orear’s

Example 6 poses the problem that we have four experimental data points which we

wish to fit to a parabola. (This can also be referred to as “quadratic regression.”)

Namely:

⇀
x = (−0.6,−0.2, 0.2, 0.6)

⇀
y = (5, 3, 5, 8)

⇀
σ = (2, 1, 1, 2)

where
⇀
x is the vector of horizontal positions at which we took our data points, and is

assumed to represent perfectly known values.
⇀
y gives the experimentally measured

values at the various x positions, and
⇀
σ represents the quoted errors in the y values.

We seek to use a quadratic fit function F (x), so we write it as

F (x) = α1 + α2x+ α3x
2 −→ f1 = 1 f2 = x f3 = x2 (A.2)

With the three functions known, there is a straightforward method for calculating

the fit parameters and their errors. The first step is to calculate what is generally

known as the Hessian Matrix, H. Luckily, this is easy to do for linear fitting:

Hij =
∑

a

fi(xa) · fj(xa)

σ2
a

(A.3)
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where a is an index referring to the various points. In this example, a runs from 1 to

4 such that we evaluate the functions fi at each x. As i and j are interchangeable,

H is clearly symmetric. For this example, as with all cases where F (x) is composed

of three subfunctions, we need only calculate six terms:

H11 =
∑

a

1

σ2
a

H22 =
∑

a

x2
a

σ2
a

H33 =
∑

a

x4
a

σ2
a

H12 =
∑

a

xa

σ2
a

H13 =
∑

a

x2
a

σ2
a

H23 =
∑

a

x3
a

σ2
a

It is straightforward to verify that performing these sums will give:

H =


2.5 0 0.26

0 0.26 0

0.26 0 0.068

 (A.4)

The Hessian matrix is not directly useful until we take its inverse, V. Doing this

by hand is the worst combination of unpleasant and prone to calculational errors

for all but the smallest of matrices. Thus, we normally let MATLAB perform the

inversion with the delightfully simple command: V = inv(H). We obtain:

V =


0.664 0 −2.54

0 3.847 0

−2.54 0 24.418

 (A.5)

Before we can calculate our fit parameters and their errors, we need to construct

one final vector,
⇀
u. We have made no reference yet to the actual y values that we

have measured, so it is reasonable that they enter into the calculation at this point:

ui =
∑

a

ya · fi(xa)

σ2
a

−→ ⇀
u = (11.25, 0.85, 1.49) (A.6)

Armed with these various vectors and matrices, we can directly find the best fit
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Figure A.1: Best fit plot. The blue points with error bars reflect the measured values
and the red curve is the best fit function superimposed.

parameter values, often denoted by α∗i :

⇀

α∗ =
⇀
u ·V −→ α∗1 = 3.685 α∗2 = 3.270 α∗3 = 7.808 (A.7)

To find the errors in the fit parameters, we just take the square root of the diagonal

elements of our error matrix, V:

∆α1 = 0.815 ∆α2 = 1.96 ∆α3 = 4.94 (A.8)

If we are interested in the cross correlations between the fit parameters, they are

simply the corresponding matrix elements of V:

∆α1∆α2 = 0 ∆α1∆α3 = −2.54 ∆α2∆α3 = 0 (A.9)

In summary, we have the best fit function which is shown in Figure A.1. We can

quote only one or two significant digits, so write:

F (x) = (3.7 ± 0.8) + (3.3 ± 2.0)x+ (7.8 ± 4.9)x2 (A.10)
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A.2 Interlude - Goodness of Fit

We have so far finessed the question of how good a job we have done in fitting our

data to the assumed functional form. The traditional metric for how well the fit curve

represents the data is called the χ2, or “chi-square.” This has the straightforward and

intuitive definition that the differences between each data point and the fit function

at that point are scaled by the known errors, then squared and summed:

χ2 =
∑

a

[
ya − F (xa)

σa

]2

(A.11)

Generally more useful than the raw χ2 is the normalized value, χ2 per degree

of freedom. As the reader recalls, the number of degrees of freedom, ν, is just the

number of data points minus the number of free parameters in the fit. Thus χ2/ν

naturally builds in the concept that there must be more data points than degrees of

freedom in the fit for us to be able to quote a meaningful result.

Depending on the number of degrees of freedom, we can determine how likely it is

that we have chosen an appropriate function to fit our data. The intervals in Figure

A.2 tell us this information. What the contours show is the percent chance that if we

perform a subsequent identical experiment, we will get a χ2/ν value greater than the

one we have measured. The ideal case is where we are on the 50% contour, meaning

that we have found the most likely function.

These “confidence level” curves can be calculated by using a generalization of

the error function known as the Incomplete Gamma Function, P (a, x) [82]. The

following discussion is based on the treatment in Chapter 6, Special Functions. The

Incomplete Gamma Function is calculated in much the same way as erf(x) except

that the normalization is given by the Gamma Function. We recall that Γ(a) is itself

the generalization of the factorial function to non-integral a and is defined:

Γ(a) =

∫ ∞

0

e−t ta−1 dt (A.12)



146 APPENDIX A. LINEAR AND NONLINEAR FITTING TO DATA

0 10 20 30 40 50
0.0

0.5

1.0

1.5

2.0

2.5

Degrees of freedom, ν

50%

10%

90%

99%
95%

68%

32%

5%

1%

χ2
/ν

Figure A.2: Confidence interval curves for various χ2/ν as a function of ν. In the
example from § A.1.1, ν is just one, and the most trusted value for χ2/ν would be
about 0.5. Reproduced from [83].

With this normalization, we can define P (a, x) to be:

P (a, x) =
1

Γ(a)

∫ x

0

e−t ta−1dt (A.13)

We use this to find our Confidence Level, CL, by setting a to be ν/2 and x to

χ2/2 and by taking the complement of P (a, x). So for a given raw χ2 and number of

degrees of freedom ν, our confidence level is given by:

CL = 1− P

(
ν

2
,
χ2

2

)
(A.14)

In MATLAB, we calculate P (a, x) with gammainc, but must be careful because a

and x are reversed in order relative to the standard mathematical notation. Thus,

we might implement the above as CL = 1 - gammainc(ChiSq/2,DOF/2).

In general, if we have a confidence level of only 0.1%, then our fit is not very
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meaningful. Either we are trying to fit to the wrong function, or we have under-

estimated the errors of each individual measurement. Conversely, if we are on the

99.9% contour, then the fit is “too good,” and we have overestimated our errors or

otherwise made a mistake. It is worth noting that when data is fudged to make it

“better,” a hallmark can be that the χ2/ν is on a contour closely approaching the

100% confidence interval.

In the example from § A.1.1, the χ2/ν is 0.35, placing us near the 60% contour,

and indicating that the data are very much consistent with our assumed parabolic

function. We note that being near the 50% contour does not in and of itself prove

that we can exclude all other functional forms for the fit function.

We can only exclude other possible fit functions one by one. If the χ2/ν associated

with fitting to a specific function leads to a CL of 0.1%, then we say that that

particular function does not match the data well. In this example, if we fit to a

simple line, we obtain that χ2/ν is 1.42, placing us at perhaps the 20% confidence

interval. That is not a terrible result, so we cannot dismiss out of hand a linear fit to

the data without real theoretical reasons to eschew this possibility.

It is nonetheless correct to say that the parabolic fit is a better match to the data.

This difficulty in confidently choosing which is the correct fit function in this example

is a direct result of the low number of degrees of freedom (1 or 2!), and adding even

one more data point should enable a more confident discrimination between these two

possible fit functions.

As we normally have a theory and therefore a hypothesis as to what functional

form we would expect, the most robust result we can claim is simply whether or not we

are confident that we have observed the functional form predicted in our hypothesis.

A.3 Theory Behind the Hessian Matrix

The most important part of determining the best fit and the errors on the fit param-

eters is the Hessian matrix, H. We have seen how to construct this matrix, but we

need to understand why we did what we did when we move to the case of nonlinear

least squares fitting.
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General background leading to the results I quote subsequently can be found

in [82], specifically Chapter 14 on modelling of data. The following discussion is

adapted primarily from §14.4, Nonlinear Models.

The general numerical approach to finding fit parameters is to give approximate

values and then vary them repeatedly, calculating χ2 for each combination of param-

eters. Minimizing χ2 gives the best fit parameters as long as the search starts close

enough to the global minimum. The Hessian matrix at any point can be thought of

as the curvature matrix of the χ2 merit function at our set of fit parameters,
⇀
α. The

curvature is simply one half times the second derivative matrix:

Hij =
1

2

∂2χ2

∂αi∂αj

(A.15)

At the risk of being repetitive, we again present the definition of χ2 to show how

its derivatives are calculated, and this time make explicit the dependence of F on the

data and the fit parameters:

χ2(
⇀
α) =

∑
a

[
ya − F (xa;

⇀
α)

σa

]2

(A.16)

We take the gradient of χ2 with respect to our fit parameters:

∂χ2

∂αi

= −2
∑

a

ya − F (xa;
⇀
α)

σ2
a

∂F (xa;
⇀
α)

∂αi

i = 1, 2, . . . ,m (A.17)

Taking the second partial, we obtain:

∂2χ2

∂αi∂αj

= 2
∑

a

1

σ2
a

[
∂F (xa;

⇀
α)

∂αi

∂F (xa;
⇀
α)

∂αj

−
[
ya − F (xa;

⇀
α)
] ∂2F (xa;

⇀
α)

∂αi∂αj

]
(A.18)

As we can see, the components of H depend on both first and second partial

derivatives, but the second derivatives are almost always ignored. Loosely speaking,

this is for several reasons. First, the second derivatives are multiplied by the difference

between the data and the fit function. An even modestly good fit makes this number
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relatively small. Second, the sign of these difference terms will randomly be positive

or negative, causing them to tend to cancel one another. Third, including the second

derivatives can make the fit even less reliable in the circumstance where the model is

not an ideal fit or when there are random outlying points.

Recalling that our factor of one half in the definition of the curvature matrix

cancels the 2 in front of our sum, we ignore the second derivative terms and give the

approximated definition for the elements of H:

Hij =
∑

a

1

σ2
a

[
∂F (xa;

⇀
α)

∂αi

∂F (xa;
⇀
α)

∂αj

]
(A.19)

It is immediately apparent that this is the general formula which gave us the

method of constructing the Hessian matrix in our earlier example. We had required

that F be a linear combination, F =
∑
αifi(x). Thus, the derivatives with respect

to each αi trivially return just the fi(x) such that the bracketed term in the above

sum will always be [fi(xa) · fj(xa)] for linear least squares fitting.

Although nominally a second derivative matrix, our approximated Hessian is really

constructed from combinations of first partial derivatives. Those partial derivatives

are themselves the elements of a matrix known as the Jacobian, J. (Confusingly,

the determinant of J is sometimes also called the Jacobian.) In terms related to

the above, and recalling that a is the index of each data point, the definition of the

elements of the Jacobian matrix is:

Jai =
∂F (xa;

⇀
α)

∂αi

(A.20)

where i spans the number of fit parameters we are using and the derivative is evaluated

at the data points xa. Thus, in this formulation, the matrix must always be taller

than it is wide, corresponding to a nonzero number of degrees of freedom.

Explicitly, we can now define the Hessian as:

Hij =
∑

a

1

σ2
a

[Jai · Jaj] (A.21)
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To be more concrete, the Jacobian for our earlier example uses the partials with

respect to the various αi:

∂F (x;
⇀
α)

∂α1

= 1
∂F (x;

⇀
α)

∂α2

= x
∂F (x;

⇀
α)

∂α3

= x2 (A.22)

Evaluating these partials our 4 data points, we obtain the simple matrix:

J =


1 −0.6 0.36

1 −0.2 0.04

1 0.2 0.04

1 0.6 0.36

 (A.23)

The first element of the Hessian matrix is the sum of the first column after we

square each element and divide by σ2
a. Similarly, H23 is given by the sum of the term

by term products of column 2 and column 3, again divided by the corresponding σ2
a.

In the linear case, this really just gives theoretical background for the method

already discussed at the beginning of this appendix. Association with the concept

of the Jacobian is useful because that is what MATLAB actually produces in doing

numerical fits.

A.4 Nonlinear Least Squares Fitting

We can still sometimes calculate the Hessian even if F (xa;
⇀
α) is not linear with respect

to the various αi, and therefore the partial derivatives are difficult to find analytically.

Better yet, we can let computers give a numerical approximation to the derivatives

and never do any algebra at all.

As discussed in Chapter 5, our acceleration data from the plasma appears to have

the functional form of a line plus a sinusoid. Fitting to this takes us away from

linear theory, because several fit parameters appear inside the sine function, and we

no longer have a linear combination. For readability, instead of using the notation αi
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for the fit parameters, we just use the obvious symbols in the fit function:

F (x) = (Ax+B) + C sin

(
2π

λ
x+ φ

)
(A.24)

There is no straightforward way to solve this analytically, though one could per-

form a Taylor expansion on the functions with redefined fit parameters. This is, in

general, a nightmare, so we let computers do what they do best: perform lots of

calculations to give a numerical answer which will be close to the correct one.

MATLAB is widely used, and has the additional advantage that its syntax is

generally straightforward and resembles pseudocode. So for this example, I will quote

actual MATLAB code to provide illustration of the technique for nonlinear fitting

including errors.

A good way to find the best fit numerically is to minimize the χ2 directly. That

is implicitly what is done with more user friendly routines in MATLAB, such as

lsqcurvefit. Here, we need to use a less convenient, but more powerful minimization

routine. In order to get all of the parameters needed for us to be able to quote errors

in the fit parameters, we do some of the work explicitly ourselves.

To find the best fit parameters, we use the function lsqnonlin. Because we are

doing a very specific task, it is worth noting that we cannot (as of MATLAB 7.0) use

the closely related lsqcurvefit, because it passes data in a slightly different way.

The routine lsqnonlin has a variety of bells and whistles. Its basic purpose,

however, is to minimize some function that the user provides with respect to various

parameters whose seed values are also provided by the user.

We have to define the χ2 function in a specific way so that MATLAB will calculate

it correctly. Because lsqnonlin squares and sums our function for us, we calculate

the individual terms at each data point which combine to make χ2, calling them the

scaled differences
⇀

D:

Da =
ya − F (xa;

⇀
α)

σa

(A.25)

If we compare the Da with the F (xa;
⇀
α), we see that the only differences are that

we have already divided by σa and that we will have an overall minus sign in the
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derivatives with respect to the αi, as F is subtracted from y by convention. Thus,

the terms of the Jacobian of
⇀

D will be scaled by the 1/σa and will be the negative

of the Jacobian of F (xa;
⇀
α). In constructing the Hessian, we must multiply a pair of

Jacobian terms together, so the two minus signs will always cancel.

Our earlier definition of the Hessian of F (A.19) had a separate factor of 1/σ2
a

for each term, but that is now included in the Jacobian of
⇀

D. Having redefined

the function we wish to minimize thus makes the Hessian matrix elements trivial to

compute:

Hij =
∑

a

Jai · Jaj (A.26)

In the previously mentioned case where we seek to match to a line plus sinusoid,

we first have to write the function which will take the difference between each data

point and the fit curve and then scale these differences by the errors. We require

the vector of parameter starting conditions StartParam and the structure array Data

which has the vectors
⇀
x,

⇀
y and

⇀
σ as its three fields. The function is:

\% Fit to a line plus a sinusoid with five parameters

function Differences = LinePlusSinusoid(StartParam,Data)

\% Extract the data to be fitted

Horizontal = Data.Horizontal;

Vertical = Data.Vertical;

Error = Data.Error;

\% The initial conditions for the fit

Slope = StartParam(1);

Intercept = StartParam(2);

Amplitude = StartParam(3);

Wavelength = StartParam(4);

Phase = StartParam(5);



A.4. NONLINEAR LEAST SQUARES FITTING 153

\% Calculate the function at the data points

Curve = Slope*Horizontal + Intercept + ...

Amplitude*sin(2*pi*Horizontal/Wavelength + Phase);

\% Take the differences scaled to the errors, lsqnonlin squares and

\% sums automatically in creating the Chi Squared.

Differences = (Vertical - Curve)./Error;

We now write a short script to call LinePlusSinusoid inside lsqnonlin. We

assume that we have defined the vector StartParam and the structure array Data.

We could have created a simple array with x, y, and σ, but this is more mnemonic.

In the input list of parameters, we just give empty sets for several of the parameters

such as upper bounds that we do not wish to use as constraints.

To get parameters such as χ2, we must give a sequence of variable names inside

the brackets on the left of the equals sign into which lsqnonlin can write the results.

These parameters must be given in order, so we still include variables for items we do

not care about. For ease of comparison with MATLAB help, in the following code,

we use the same names for output parameters as appear there and indicate which

ones we care about by capitalizing them. Resnorm gives the raw χ2 and Jacobian

is the numerically calculated J. It is now easy to calculate H, invert it to make V,

and take the square root of the diagonal elements to find the errors on the previously

returned fit parameters:

\%******* Fit to Line and Sinusoid with lsqnonlin *******

StartParam = [Slope0 Intercept0 Amplitude0 Wavelength0 Phase0];

[FitParams,Resnorm,residual,exitflag,output,lambda,Jacobian] = ...

lsqnonlin(@LinePlusSinusoid, StartParam,[],[],[],DataToFit);

DOF = length(DataToFit.Horizontal) - length(StartParam)

ChiSqPerDOF = Resnorm/DOF

CL = 1 - gammainc(Resnorm/2 , DOF/2)
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Slope = FitParams(1);

Intercept = FitParams(2);

Amplitude = FitParams(3);

Wavelength = FitParams(4);

Phase = FitParams(5);

\%--------- Error Analysis on Fit Parameters -------------

for i = 1 : length(FitParams)

for j = 1 : length(FitParams)

H(i,j) = sum(Jacobian(:,i).*Jacobian(:,j));

end

end

V = inv(H);

for k = 1 : length(FitParams)

Deltas(k) = sqrt(V(k,k));

end

\%********************************************************

With FitParams and Deltas in hand, we have the fit with its errors and are done

with the statistics. It is now up to us to interpret the results.

To give an example of applying this code, we apply it to data discussed in Chapter

5 for our highest density plasma with 3.5×1017. This code and a similar variant that

fits simply to a line allows us to discriminate whether the line plus sinusoid or the

simple line is superior. Our data vectors corresponding to DataToFit.Horizontal,

DataToFit.Vertical and DataToFit.Error are:

⇀
x = (0.37, 0.80, 1.22, 1.65, 2.08, 2.51, 2.93, 3.36)
⇀
y = (780, 700, 1320, 1160, 1380, 1720, 1660, 1700)
⇀
σ = (91, 64, 153, 124, 228, 67, 316, 60)
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Figure A.3: Energy gain as we lengthen the plasma cell. Data fit much better to a
line plus a sinusoid than a simple line.

To seed the fits, we just use polyfit to give us the linear portion’s two parts.

For the line plus sinusoid, we then use trial and error to find reasonable starting

values for the amplitude, wavelength, and phase. When we get a reasonably close

starting value, the fits always return to those shown in Figure A.3 for even substantial

changes in any one of the fit parameters. For reference, we give the seed values for

the line plus sinusoid fits. When fitting only to a line, our function is simpler than

LinePlusSinusoid and we only seed it with the first two parameters:

(A0, B0, C0, λ0, φ0) = (353, 645, 300, 1.3, 5.0) (A.27)

We plot the two ways of fitting this data side by side to compare. Clearly, the

addition of the sinusoid makes for a vastly superior fit. In that case, there are 3

degrees of freedom, and the χ2/ν of 0.31 gives us a degree of confidence of 82%.

Perhaps we have slightly overestimated the errors, but this is a very believable value.

For the linear fit, with χ2/ν of 4.28, the degree of confidence is 0.026%, and a line

is extremely unlikely to represent the data fully.
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