Measurement of the B0 ---> Psi (2S) Lambda0 Branching Fraction on BaBar at the Stanford Linear Accelerator Center

by Alexander Raymond Olivas, Jr.

Ph.D. Thesis

Olivas, Jr., Alexander Raymond (Ph. D., Physics)

Measurement of the $B^0 \to \psi(2S)K^0$ Branching Fraction on BaBar at the Stanford Linear Accelerator Center.

Thesis directed by Professor Uriel Nauenberg

The decays of B^0 mesons to hadronic final states remains a rich area of physics on BaBar. Not only do the $c\bar{c}$ -K final states (e.g. $B^0 \to \psi(2S)K^0$) allow for the measurement of CP Violation, but the branching fractions provide a sensitive test of the theoretical methods used to account for low energy non-perturbative QCD effects.

We present the measurement of the branching fraction for the decay $B^0 \to \psi(2S)K_s$. The data set consists of $88.8 \pm 1.0 \times 10^6$ $B\bar{B}$ pairs collected on the $e^+e^- \to \Upsilon(4S)$ resonance on BaBar/PEP-II at the Stanford Linear Accelerator Center (SLAC). This analysis features a modification of present cuts, with respect to those published so far on BaBar, on the $K_s \to \pi^+\pi^-$ and $\psi(2S) \to J/\psi\pi^+\pi^-$ which aim at reducing the background while keeping the signal intact. Various data selection criteria are studied for the lepton modes $(e^+e^- \text{ and } \mu^+\mu^-)$ of the J/ψ and $\psi(2S)$ to improve signal purity as well as study the stability of the resultant branching fractions.

Contents

Chapter

1	Intro	oduction	1
2	The	Standard Model	2
	2.1	A Brief History of 20th Century Physics	2
	2.2	Fundamental Particles	4
		2.2.1 The fermions	4
		2.2.2 The Gauge Bosons	5
	2.3	The Cabibbo-Kobayashi-Maskawa Matrix	6
3	Phys	sics of e^+e^- collisions at the $\Upsilon(4S)$ Resonance	9
4	The	oretical Estimate of the branching fraction	12
5	PEF	P-II and The BaBar Detector	15
	5.1	The PEP-II Collider	17
	5.2	The BaBar Magnet and Flux Return	19
	5.3	The Silicon Vertex Tracker	21
		5.3.1 Principles of Silicon Strip Sensors	21
		5.3.2 Layout of the BaBar Silicon Vertex Tracker	21
		5.3.3 Performance of the BaBar Silicon Vertex Tracker	23
	5.4	The Drift Chamber	23
		5.4.1 Principle of Operation	23
		5.4.2 The BaBar Drift Chamber	26
		5.4.3 Performance of the BaBar Drift Chamber	26
	5.5	Performance of combined BaBar tracking system (SVT and DCH)	20

		vii
10	$\psi(2S) \to J/\psi \pi^+\pi^-$ - Tracking Efficiency and Selection Analysis	71
	10.1 Tracking Efficiency	71
	10.2 Mass difference between the $\psi(2S)$ and J/ψ candidates	71
	10.3 Removal of $\psi(2S) \to J/\psi \pi^+\pi^-$ candidates which share pions daughters with	
	$K_S \to \pi^+\pi^-$	74
11	Systematic Study of the Branching Fraction $B^0 \to \psi(2S) K^0$	78
	11.1 The $\psi(2S) \to l^+ l^-$ Final States	78
	11.2 The $\psi(2S) \to J/\psi \pi^+\pi^-$ Final States	78
12	B^0 Analysis and Branching Fraction Results	82
	12.1 Reconstruction Efficiency in Signal Monte Carlo	82
	12.2 The Standard BaBar $B^0 \to \psi(2S) K_S$ Selection	82
	12.2.1 Improving the Standard Selection	82
	12.3 Branching Fraction Results	84
	12.3.1 Systematic Errors	84
	12.3.2 Branching Fraction	87
13	3 Conclusion	89
В	Bibliography	90
A	appendix	
A	Definition of the Jpsitoll Skim	92
	A.1 Background Multi-Hadron Filter	92
	A.2 B-Counting Multi-Hadron filter	92
	A.3 $J/\Psi \rightarrow l^+ l^-$ Filter	92
в	B^0 Meson Kinematics	95
	B.1 Derivation of Energy substituted B^0 Mass	95
c	Particle Identification (PID) Selectors	97
	C.1 Description of the variables used in electron identification $\ ,$, , , , , , , , , ,	97
	C.2 Electron Likelihood Selector	98

			viii	
	C.3	Muon Cut Based Selector	98	
		C.3.1 Description of the variables used for muon identification	98	
D	Desc	cription of Candidate Lists	100	
	D.1	Definition of GoodTracksLoose	100	
	D.2	Definition of ChargedTracks	100	
Е	The	ta distribution of ψ lepton daughters not reconstructed	101	
F	Part	icle ID Selection efficiencies for $J/\psi \to l^+ l^-$ and $\psi(2S) \to l^+ l^-$	103	
	F.l	Monte Carlo Corrections	103	
G	Seles	ction of B^0 Candidates for $m_{\psi(2S)} - m_{J/\psi}$ Study	109	
н	The	Ba Bar Standard B^0 Meson Selection	110	
I	Вm	B meson ΔE and m_{ES} plots for signal Monte Carlo, generic $B\bar{B}$ plus continuum Monte		
	Carl	o, and data.	112	
	I.1	m_{ES} Plots	112	
		1.1.1 Plots used in the calculation of the branching fraction $\ \ldots \ \ldots \ \ldots \ \ldots$	112	
		$\rm I.1.2$ $$ Extreme cases considered in the estimation of the systematic error $$	114	
	I.2	m_{ES} vs. ΔE Plots	115	
J	Plot	s of Fractional Deviations of branching fractions for Various Selection Criteria	116	