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Chapter 1

Introduction

This dissertation presents a measurement of the magnitude of Cabibbo-

Kobayashi-Maskawa (CKM) matrix [1] element |Vub| using inclusive semilep-

tonic B decay from data taken at the BABAR experiment. We measure electron

energy spectrum of B → Xueν decay to calculate the partial branching frac-

tion ∆B(B → Xueν) for a lower energy cut of 2.1 GeV. We calculate the

total branching fraction B(B → Xueν) using theory [2] and b → sγ photon

spectrum [3] and determine |Vub|.

In the following sections, brief reviews over theoretical background on

the CKM matrix, other |Vub| measurements and motivation of this analysis are

given.

1.1 The Standard Model and the Cabibbo-Kobayashi-

Maskawa matrix

There are four fundamental recognized forces in nature: the weak, the

strong, the electromagnetic and the gravitational forces. Experimental and

theoretical work has led us to the formulation of a theory that describes all

the known particles in nature and three of the four fundamental forces, except

1



gravity. This theory is called the Standard Model (SM) [4, 5].

According to this model, all matter is built from fundamental fermions;

the three lepton generations,(
e
νe

)
,

(
µ
νµ

)
,

(
τ
ντ

)
, (1.1)

and the three quark generations,(
u
d

)
,

(
c
s

)
,

(
t
b

)
. (1.2)

In lepton generations, weak interactions only within a particular generation

coupling to W boson have been observed: i.e. e− → νe +W−, µ− → νµ +W−

etc. However in quark generations, cross-generational interactions have been

observed: i.e. d → u + W− (the β decay), s → u + W− (in the decay

Λ→ p+ e+ νe).

In 1963, when u, d, s were the only known quarks, Cabibbo introduced

the idea that the weak eigenstates of d and s quarks are mixtures of their mass

eigenstates through the mixing angle θc known as the Cabibbo angle 1:(
d′

s′

)
=

(
cos θc sin θc

− sin θc cos θc

)(
d
s

)
, (1.3)

where the doublet (d′, s′) is the weak eigenstate and (d, s) is the mass eigen-

state [1]. This theory predicted many of the light hadron decays but had a

major flaw; it allowed strangeness-changing neutral currents at a much higher

rate than observed.

1The origin of the Cabibbo angle is not explained in the Standard Model

2



To solve this problem, Glashow, Iliopoulos and Maiani (GIM) incorpo-

rated the charm quark 2 into the hadronic weak current originally proposed

by Cabibbo. The weak charged current in the GIM model is [6]:

JCC
α =

g√
2

(
u c

)
γα

(
d′

s′

)
, (1.4)

where g is a coupling constant and γα are the Dirac matrices.

The GIM mechanism faced a trouble when CP violation was observed

in certain decays of neutral kaons in 1964 [7]. The CP violation could not

be explained in the GIM mechanism. To solve this problem, Kobayashi and

Maskawa (KM) introduced a third weak isospin quark doublet in 1973. The

weak charged current in KM model is extended to include two additional

quarks b and t:

JCC
α =

g√
2

(
u c t

)
γαV


ds
b


 , (1.5)

V is the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix:

V =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb,


 (1.6)

containing three real parameters and a phase factor eiδ.

The CKM matrix can be expressed in terms of four Wolfenstein param-

eters (λ,A, ρ, η) [8]:

V =


 1 − λ2

2
λ Aλ3(ρ− iη)

−λ 1 − λ2

2
Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1


+ O(λ4). (1.7)

2The charm quark was discovered four years later

3



λ = sin θc = 0.2205±0.0018 is measured from the strangeness changing decays

[9], A = 0.80±0.08 is measured from the decays of b→ c with measured λ, and√
ρ2 + η2 = 0.5±0.2 is measured from the high momentum lepton spectrum in

B → lνX. The unitarity of the CKM matrix requires the following conditions

to be fulfilled:

V V † = 1 →
∑

i

VαiV
∗
βi = 0. (1.8)

These relations can be geometrically represented in the complex plane as a

triangle called the unitarity triangle. One of the unitarity relations

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0 (1.9)

shown in Fig. 1.1 (a), is of particular interest, because it has three sides of the

same order. This triangle can be rescaled by (i) choosing a phase convention

such that (VcdV
∗
cb) is real, and (ii) dividing the lengths of all sides by |VcdV

∗
cb|;

(i) aligns one side of the triangle with the real axis, and (ii) makes the length

of this side 1. The scaled unitarity triangle is shown in Fig. 1.1 (b). Two

vertices of the rescaled unitarity triangle are thus fixed at (0, 0) and (1, 0).

The coordinates of the remaining vertex are denoted by (ρ̄, η̄):

ρ̄ = ρ(1 − λ2/2), η̄ = η(1 − λ2/2). (1.10)

Precise measurements of all CKM matrix elements and their relative phases

are important tests of the Standard Model.

4



α

β
γ

VtdVtb
*

VcdVcb
*

VudVub
*

(a)

α

βγ
ρ

η

0 1

VtdVtb
*

|VcdVcb
* |

VudVub
*

|VcdVcb
* |

(b)

Figure 1.1: (a) The unitary triangle. (b) The rescaled unitary triangle, all
sides divided by |VcdV

∗
cb|.

1.2 The CKM matrix element Vub

Among the CKM matrix elements, |Vub| is one of the least understood

and constrained elements. The charmless semileptonic decay channel B →
Xueν provides the theoretically cleanest path for the determination of |Vub|.
However, this method has experimental challenges.

The main experimental challenge is the large background from B →
Xceν decay, which has a rate about 60 times higher than that for charmless

semileptonic decay. The electron energy spectra of both decays from Monte

Carlo samples are shown in Fig. 1.2. The charmless decay spectrum is scaled

up by factor 10 for easier view. Kinematically the energy of electrons from

B → Xceν decays can be as big as 2.3 GeV (E∗
l ∼ (M2

B − M2
D)/(2MB) 3)

while electrons from B → Xueν may have energies up to 2.6 GeV. This gives

3E∗
l is the electron energy in the B meson rest frame, MB and MD are masses of B and

D mesons, respectively.
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Figure 1.2: The B → Xceν decay distribution and scaled electron energy
spectrum from B → Xueν decay by factor 10. These are from
Monte Carlo samples.

a narrow interval of about 300 MeV where the electrons are only from B →
Xueν decays. This is where the charmless electron energy spectrum can be

measured with small experimental uncertainties, but covers about 10% of the

total B → Xueν decays.

The challenge in theory is that calculating the charmless electron energy

spectrum at meson level (B → Xueν) is more difficult than at the parton level

(b→ ueν), especially near the kinematic limit. The reason is that meson decay

processes depend on the b quark’s motion inside the B meson. This is why it is

an important task for experimentalists to measure the charmless semileptonic

electron energy spectrum to as low energy range as possible.

There have been many measurements of |Vub| using the inclusive semilep-

tonic B decays. They are summarized in Table 1.1 [10]. Only those measure-
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Collaboration |Vub| (10−3) Method
CLEO [11] 4.11±0.13±0.31±0.46±0.28 2.2 < E∗

l < 2.6
BABAR [12] 4.31±0.20±0.20±0.49±0.30 2.3 < E∗

l < 2.6
Belle [13] 3.99±0.17±0.16±0.45±0.27 2.3 < E∗

l < 2.6
Belle [14] 4.63±0.28±0.39±0.48±0.32 MX < 1.7, q2 > 8
BABAR [15] 4.79±0.29±0.28±0.60±0.33 MX < 1.55

Table 1.1: Summary of inclusive |Vub| measurements. The errors are from
the statistical, systematic, Eγ-based rate fraction and Γtot un-
certainties. Only those measurements can be directly compara-
ble are shown here. Some are not because they have not been
evaluated with identical theoretical inputs.

ments which can be directly comparable to this analysis (and to each other)

are shown in the table. Some results not shown in the table can not be directly

comparable because they have not been evaluated with identical theoretical

inputs [10].

The first three entries in Table 1.1 are measurements of the b → ueν

rate near the endpoint (E∗
l ∼ (M2

B −M2
D)/(2MB)) by the CLEO, BABAR and

Belle Collaborations, respectively. The next entry is the measurement at the

low MX region with a dilepton mass (q) cut by the Belle Collaboration. MX

is the invariant mass of the hadrons accompanying the leptons [16]. The last

entry is the measurement at the low MX region by the BABAR Collaboration.

This analysis uses charged kaons to tag D mesons and thus to tag b→ c

decays4. This method has never tried in the |Vub| measurement. We require

at least one high energy electron in each event. The high energy electron

indicates there is semileptonic B meson in the event.

4b → c decays are B → D, D∗, D∗∗. And D∗ and D∗∗ go to D 100%.
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We measure electron energy spectrum as a function of number of recon-

structed kaons in each event. Since kaons can come from both the semileptonic

B meson and the second B meson in each event, the kaons from the second

B meson should be removed. With inputs from the Monte Carlo samples, we

obtain the electron energy spectrum as a function of generated kaons from

the semileptonic B mesons. This spectrum allows us to measure B → Xueν

electron energy spectrum and the partial branching fraction. With theoretical

input [2] and b→ sγ photon spectrum [3], the ratio between partial and total

branching fractions is provided [17]. The total branching fractions allow us to

extract |Vub| with measured b quark mass and lifetime.

The detailed discussion on the analysis can be found in Chapter 5.

1.3 Outline of this Dissertation

Apart from this introduction, the dissertation contains 6 more chapters:

• Chapter 2 is about the theoretical background on the charmless semilep-

tonic B decays.

• Chapter 3 is an overview over the BABAR experiment. It introduces the

PEP-II storage ring and the BABAR detector.

• Chapter 4 describes the data and Monte Carlo samples used in the anal-

ysis. The event selection criteria are also discussed here.

• Chapter 5 describes the analysis. It includes the electron and kaon selec-
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tion criteria, the continuum background subtraction, the measurement of

the semileptonic electron energy spectra, the measurement of the charm-

less semileptonic B decays, taking of the partial and total branching

fractions of B → Xueν decays, extraction of |Vub| and systematic error

study.

• Chapter 6 gives a summary of the results.
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Chapter 2

Theory

2.1 The Heavy Quark Expansion

One of the theoretical methods to study hadronic B physics is effective

field theories. They derive their predictive power by systematically exploiting

a small expansion parameter. Effective field theories are based on the idea

that in a given process only certain degrees of freedom may be important for

understanding the physics. In particular, it is often the case that kinematical

considerations that restrict the momenta of external particles effectively re-

strict the momenta of virtual particles as well. Thus it is sensible to remove

from the theory intermediate states of high virtuality. Their absence may be

compensated by introducing new “effective” interactions between the degrees

of freedom which remain. Effective field theories are often constructed using

the technique of the operator product expansion (OPE), which enables one to

identify the physics at a given scale and to separate it out explicitly. OPE is

used in conjunction with the renormalization group.

The heavy quark expansion (HQE) is one of effective field theories. It

is characterized by virtualities µ ≤ mb. Since the b quark is real and the B

carries a nonzero b-number which persists in the asymptotic state, it is not
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appropriate to integrate out the b and removing it from the theory entirely.

Rather, when bound into a hadron with light degrees of freedom of typical

energies E ≈ΛQCD, the b makes excursions from its mass shell by virtualities

only of order ΛQCD. What can be integrated out is not the b itself, but rather

those parts of the b field which take it far off shell. The result will be an

effective theory of a static b quark in its rest frame.

Processes with hard virtual gluons, which drive the b far off shell, will

lead to perturbative corrections in the effective theory of order αS (mb). In

addition, power corrections which will lead to terms of order (ΛQCD/mb)
n

appear. The appearance of the scale ΛQCD reminds that these corrections

involve non perturbative physics and will typically not be calculable from

first principles. Instead, the inclusion of power corrections will require the

introduction of new phenomenological parameters, whose values are controlled

by non perturbative quantum chromodynamics (QCD).

2.2 Heavy Quark Effective Theory

Let us consider a hadron composed of a heavy quarkQ and light degrees

of freedom consisting of quarks, anti-quarks and gluons, in the limit mQ → ∞.

Since the Compton wavelength of the heavy-quark is a lot smaller than that of

light degrees of freedom, the light degrees of freedom cannot resolve features

of the heavy quark other than its conserved gauge quantum numbers [18, 19].

In this limit, Q acts as a static source of electric and chromoelectric field. This

is called the Heavy Quark Symmetry (HQS).
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It is useful to make HQS manifest within QCD by taking the limit mb

→∞ of the QCD Lagrangian. This is done by making the dependence of all

quantities on mb explicit, and then developing the Lagrangian in a series in

inverse powers ofmb. The idea is to write the Lagrangian in a form in which the

action of the HQS is well-defined at each order in the expansion, so the effect

of symmetry breaking corrections can be studied in a systematic way. The

resulting Lagrangian is known as the Heavy Quark Effective Theory (HQET)

[20, 21]. The HQET is similar to an effective theory which results from an OPE,

in the sense that the only virtualities p which are allowed satisfy p� mb, with

effects of greater virtuality absorbed into the coefficients of higher dimension

operators. The difference is that in this case, the heavy b quark is not explicitly

removed from the effective theory.

In inclusive B decays, it is useful to observe that the energy released

into the final state by the decay of the heavy b quark is large compared to

the QCD scale. Hence the final hadronic state needs not be dominated by

a few sharp resonances. If resonances are indeed unimportant, then there is

a factorization between the short-distance part of the decay (the disappear-

ance of the b quark) and the long-distance part (the eventual hadronization

of the decay products). This factorization implies that for sufficiently inclu-

sive quantities it is enough to consider the short-distance part of the process,

with the subsequent hadronization taking place with unit probability. This

factorization is known as parton-hadron duality [22]. It must hold as mb →∞
with all other masses held fixed. In this limit, wavelengths associated with the
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b quark decay are arbitrarily short and cannot interfere coherently with the

hadronization process.

2.3 Inclusive Semileptonic B Decays

The calculation of the decay rate of semileptonic B decays begins with

the effective Hamiltonian:

Heff =
−4GF√

2
Vub(ūγµ(1 − γ5)b)(l̄γ

µ(1 − γ5)νl) (2.1)

=
−4GF√

2
VubJµJ

µ
l , (2.2)

obtained by integrating out the W bosons. The differential decay distribution

can then be written as the product of leptonic and hadronic tensors,

dΓ ∝ |Vub|2LαβWαβ . (2.3)

Using the Optical Theorem1, the hadronic tensor Wαβ can be related to the

imaginary part of the time ordered product of currents

Wαβ = −1

π
	Tαβ, (2.4)

Tαβ = − i

2MB

∫
d4xe−iq·x < B|T (J†

α(x)Jβ(0))|B > . (2.5)

The time ordered product can be calculated by expanding in an OPE.

Then the lepton energy spectrum is given as [2]:

dΓ

dx
=
G2

F |Vub|2mb
5

192π3
2x2(3 − 2x)

(
1 − CFαS

2π
G(x)

)
, (2.6)

1The method discussed in the following paragraphs was introduced in [23, 24].
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where x is the energy of the charged lepton in the B meson rest frame (x =

2El/mb, 0 ≤ x ≤ 1), and

G(x) = ln2(1 − x) + 2L2(x) +
2π2

3
+

82 − 153x+ 86x2

12x(3 − 2x)
(2.7)

+
41 − 36x+ 42x2 − 16x3

6x2(3 − 2x)
ln(1 − x). (2.8)

In kinematic regions close to phase space boundaries, the spectrum is

infrared sensitive and receives large nonperturbative corrections. Because the

corresponding effects can be associated with the motion of the b quark inside

the B meson, they are commonly referred to as “Fermi motion” [23]. This

happens in the endpoint region 1−x = O(Λ/mb) of the charged lepton energy

spectrum.

Fermi motion effects are included in the HQE by re-summing an infinite

set of leading-twist corrections into a shape function F (k+), which governs the

light-cone momentum distribution of the heavy quark inside the B meson,

F (k+) =
1

2mB
< B(v)|b̄vδ(k+ − iD+)bv|B(v) >, (2.9)

where D+ is the light cone component of the covariant derivative of QCD,

which is defined with the help of a light-like vector n+ = (1, 0, 0, 1) as the scalar

product D+ = n+ ·D. This function is non-vanishing for values −∞ < k+ ≤ Λ̄.

The physical decay distributions are obtained from a convolution of parton

model spectra with the function [25]

dΓ

dEl
=

∫
dk+F (k+)

dΓparton(mb + k+)

dEl
. (2.10)
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The non perturbative F (k+) is not calculable. However, if one assumes that

u quark and s quark are massless, it can be obtained from other B decays,

for example, b → sγ. Using the CLEO measurement of the b → sγ photon

spectrum [3], the ratio of partial and total branching fraction of B → Xueν

decays (Eq. 2.14) is calculated [17].

The endpoint singularities near 2El/mb ∼ 1 are integrable, and the

total decay rate is given model-independently by

Γ =
G2

F |Vub|2mb
5

192π3

[
1 − CFαS

2π

(
π2 − 25

4

)]
. (2.11)

The charmless electron energy spectrum from semileptonic B decays

are models in the Monte Carlo samples which this analysis uses using Eq. 2.3.

So the shape of the spectrum at low energy range has small uncertainties while

that near end point has bigger uncertainties.

We measure the electron energy spectrum of B → Xueν decays from

1.4 GeV to 3.5 GeV. Since we depend on the Monte Carlo samples for the

ratio of B → Xceν decays with and without kaons (R−1
bc , Eq. 5.1), we have big

model dependency. While the shape of the ratio R−1
bc is used as in the Monte

Carlo samples, the normalization is fitted to minimize the uncertainty. The

error of normalization from the fit is considered as statistical error.

To fit the normalization of B → Xceν spectrum against B → Xueν and

backgrounds, we need B → Xueν input. Since theory has small error of order

2% at the low energy range of 1.4–1.8 GeV, and the Monte Carlo samples and

15



theory shows less than 5% difference, we take the shape of the B → Xueν

spectrum from the Monte Carlo samples and fit the normalization of it too.

2.4 |Vub| extraction

After we measure the charmless electron energy spectrum (Nbu), we

calculate the partial branching fraction

MB/2∑
E∗

l =E0

B(B → Xueν;E
∗
l ) =

∑MB/2
E∗

l =E0
Nbu(E

∗
l )∑MB/2

E∗
l =E0

εe(E
∗
l ) ·NB

, (2.12)

where E∗
l is the electron energy in the Υ (4S) rest frame, E0 is the starting

energy (typically 2.0 to 2.3 GeV), MB is the B meson mass and εe is the

electron efficiency defined using Monte Carlo samples as

MB/2∑
E∗

l =E0

εe(E
∗
l ) =

∑MB/2
E∗

l =E0
Nbu(E

∗
l ) with reconstructed electron∑MB/2

E∗
l =E0

Nbu(E∗
l ) with generated electron

, (2.13)

and NB is the total number of B mesons in the data (1.28234×107). It is twice

of the accumulated on-peak luminosity (5.964×106 nb−1) times b cross-section

(1.075 nb). Twice is because there are two B mesons for each event.

The total B → Xueν branching fraction is required in order to extract

|Vub| from the measured electron energy spectrum. Since we only have partial

branching fraction, we depend on theory[2]. The dimensionless shape function

is defined as:

Fu(E
∗
l ) =

1

B(B → Xueν)

∫
dE∗

l

dB(B → Xueν;E
∗
l )

dE∗
l

, (2.14)
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E∗
l ( GeV) Fu

2.0 – 2.6 0.278 ±0.052
2.1 – 2.6 0.207 ±0.046
2.2 – 2.6 0.137 ±0.034
2.3 – 2.6 0.078 ±0.022

Table 2.1: The shape functions Fu for four E∗
l intervals.

where ii is bin of which low edge is E∗
l =E0 and if is that of which upper edge

is E∗
l =MB/2 ≈2.6 GeV.

The values and errors of Fu with different E0’s are derived by the CLEO

Collaboration using theory [2] and the shape function parameters based on the

measurement of the B → Xsγ photon spectrum [3]. They are summarized in

Table 2.1.

A relation for the extraction of |Vub| from the total semileptonic branch-

ing fraction, with BABAR measured b quark mass and other OPE parameters

[26] is [27, 28]:

|Vub| = 0.00424

(B(B → Xueν)

0.002

1.61ps

τb

)1/2

(1.0 ± 0.028pert+nonpert ± 0.039mb
),

(2.15)

where the first error arises from the uncertainty in the OPE expansion and the

second from the uncertainty in the b quark mass. The BABAR measurement of

b quark mass is mb(1 GeV) = (4.61 ± 0.07) GeV/c2 and that of the B lifetime

is 1.604 ± 0.012 ps [10].
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Chapter 3

The BABAR experiment

The main physics goal of the BABAR experiment is the study of CP -

violating asymmetries in the decay of neutral B mesons. Secondary goals are

measurements of decays of bottom and charm mesons and of τ leptons, and

searches for rare processes which become accessible through the high luminos-

ity of the PEP-II B Factory. The BABAR detector is designed for CP -violation

studies, but it is also well suited for these other physics topics.

In the late 1980s, studies indicated that the best source of B mesons for

such a physics program was an e+e− collider, operating at the Υ (4S) resonance,

but in an asymmetric mode [29], i.e., with beams of unequal energy, resulting

in B0 mesons with significant momenta in the laboratory frame. This enables

the B0 mesons’ decay times to be inferred from their now-measurable decay

lengths. The PEP-II B Factory was designed with these characteristics.

3.1 The PEP-II storage ring

The PEP-II B Factory [30–32] is an asymmetric e+e− collider designed

to operate at a center-of-mass (CM) energy of 10.58 GeV, the mass of the Υ (4S)

resonance. This resonance decays nearly exclusively to B0B0 and B+B− pairs
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e+e− → cross-section ( nb)

bb 1.075
cc 1.30
ss 0.35
uu 1.39
τ+τ− 0.94
µ+µ− 1.16
e+e− ∼40

Table 3.1: Production cross-sections at the peak of the Υ (4S) resonance.
The e+e− cross-section is the effective cross-section, expected
within the experimental acceptance.

and thus provides an ideal laboratory for the study of B mesons.

In PEP-II, an electron beam of 9 GeV collides head-on with a positron

beam of 3.1 GeV. The difference in energy of the two beams results in a rela-

tivistic boost of the collision products; the CM frame is moving with respect to

the lab frame with βγ = 0.56. The resulting average separation of the B decay

vertices is on the order of 250µs, which is sufficient for precise measurements

of CP -asymmetries.

While most data are recorded at the peak of the Υ (4S) resonance,

about 12% are taken at a CM energy 40 MeV lower to allow for studies of the

non-resonant background. The accumulated luminosity is shown in Fig. 3.1.

The cross-sections for the production of fermion pairs at the Υ (4S) are shown

in Table 3.1.

The requirements for high beam currents, asymmetric energies and

head-on collisions resulted in an innovative design for the interaction region.

Beam-line elements are positioned very close to the interaction point, which is
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Figure 3.1: Luminosity vs. time.
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Parameters Design Typical
Energy HER/LER ( GeV) 9.0/3.1 9.0/3.1
Current HER/LER (A) 0.75/2.15 1.5/2.5
# of bunches 1658 1588
Bunch spacing ( ns) 4.2 6.3–10.5
σLx (µm) 110 120
σLy (µm) 3.3 5.6
σLz ( mm) 9 9
Luminosity (1033 cm−2s−1) 3 9

Table 3.2: PEP-II beam parameters: Values are given both for the design
and for typical colliding beam operation in the first year. HER
and LER refer to the high energy e− and low energy e+ ring,
respectively. σLx , σLy and σLz refer to the horizontal, vertical,
and longitudinal rms size of the luminous region.

contained within a cylindrical beryllium beam-pipe. Beam-beam interference

effects are minimized by arranging for the beams to collide only at the inter-

action point and by dividing the high currents into a large number of bunches.

The parameters of the PEP-II storage rings are presented in Table 3.2.

3.2 The BABAR detector

The BABAR detector [30–32] has two charged particle tracking systems:

the Silicon Vertex Tracker (SVT) and the Drift Chamber (DCH), and three

particles identification systems: the detector of internally reflected Cherenkov

light (DIRC), the electromagnetic calorimeter (EMC) and the instrumented

flux return (IFR), and a superconducting coil which provides a 1.5 T solenoidal

magnetic field. The longitudinal section of the BABAR detector is shown in

Fig. 3.2 and the transverse section is shown in Fig. 3.3. The main features of
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each of the detector systems are reviewed and summarized here.

3.2.1 Silicon Vertex Tracker (SVT)

The goal of the SVT is to measure the angles and positions of charged

particles just outside the beam pipe in order to provide precise reconstruction

of the decay vertices of the two primary B mesons so as to determine the time

between the two decays. The SVT is solely responsible for tracking charged

particles with pT <100 MeV/c, since those tracks will not reach the DCH.

The SVT is composed of five layers of double-sided silicon microstrip
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detectors as shown in Fig. 3.4 [33]. The inner three layers primarily provide

position and angle information for the measurement of the vertex position.

The outer two layers provide the coordinate and angle measurements needed

for linking the SVT and DCH tracks.

The modules of the inner three layers are straight, while the modules

of the outer layers are arch-shaped as shown in Fig. 3.5. This arch design was

chosen to minimize the amount of silicon required to cover the solid angle,

while increasing the crossing angle for particles near the edges of acceptance.

The modules are divided electrically into two half-modules, which are read out

at the ends.

The inner sides of the detector have strips which are oriented perpen-

dicular to the beam direction to measure the z-coordinate (z-strip), whereas

the outer sides have longitudinal strips allowing for φ-coordinate measurement

(φ-strip) with a precision of better than about 250µm. This corresponds to

a single vertex precision of better than 80µm. The active parts of the SVT

cover the polar angle between 20.1◦ and 150.2◦.

At PEP-II the radiation near the interaction region is peaking in the

bending plane of the machine, with a maximum of 240 krad/ yr for the inner-

most layer detectors, and 100 krad/ yr for the electronics in the same layer.

The system is designed to withstand such continuous radiation exposure for

at least ten years.
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3.2.2 Drift CHamber (DCH)

The goal of the DCH is to measure the momenta and angles of charged

particles with high precision. The DCH complements the measurements of the

impact parameter and the directions of charged tracks provided by the SVT

near the IP [34].

The DCH should be able to measure the transverse momenta for tracks

with momentum above 1 GeV/c with a resolution of σpT
≈0.3%×pT . The DCH

is a 2.8 m long cylinder and its inner and outer radii are 23.6 cm and 80.9 cm re-

spectively. It is composed of 40 layers of small, approximately hexagonal cells.

Due to the asymmetric beam energies of the PEP-II collider, the DCH was

designed to minimize the material in the forward direction and is positioned

asymmetrically about the interaction point.

To minimize multiple scattering inside the DCH, low-mass wires (20µm
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gold-plated tungsten-rhenium for the sense wires, 120µm and 80µm gold-

plated aluminum for the field wires) and a helium-based gas mixture (he-

lium:isobutane=4:1) were chosen. This gas mixture provides good spatial and

dE/dx resolution and reasonably short drift time, while minimizing the ma-

terial. The gas and the wires total a radiation length of 0.3%X0 for tracks at

90◦. The inner cylinder is made of 1 mm thick beryllium, which corresponds to

0.28%X0. The outer cylinder consists of 2 layers of carbon fiber on a Nomex

core, corresponding to 1.5%X0. The scatter plot of dE/dx as a function of mo-

mentum is shown in Fig. 3.6, with parameterized Bethe-Bloch curves. Protons

and deuterons are mainly from beam gas interactions.

Nominal voltages of 1930 V for the sense wires and 340 V for the field-

shaping wires at the boundaries of the superlayers are supplied by HV assem-

blies mounted on the feed-throughs of the rear endplate. Other field wires are

connected to the ground.

The DCH provides prompt trigger signals; information from all 7104

channels is sent at a sampling frequency of 3.75 MHz to the Level-1 trigger

system.

3.2.3 Detector of Internally Reflected Cherenkov light (DIRC)

The DIRC is designed to provide an excellent kaon identification, not

only for tagging purposes where kaon momenta extend up to about 2.0 GeV/c,

but also at higher momenta for rare B meson decay processes [35]. In order to

distinguish between the two-body decay modes B0 → π+π− and B0 → K±π∓,
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Figure 3.6: dE/dx vs. momentum and parameterized Bethe-Bloch curves.
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the DIRC must be able to separate pions from kaons up to about 4.0 GeV/c at

large dip angles in the laboratory frame. The DIRC also participates in muon

identification in the momentum range where the IFR is inefficient, typically

below ∼750 MeV/c.

Cherenkov light is produced in 4.9 m long bars of synthetic fused silica

of rectangular cross section, 1.7 cm ×3.5 cm, and transported by total internal

reflection, preserving the angle of emission, to an array of photomultiplier

tubes. This array forms the backward wall of a toroidal water tank that is

located beyond the backward end of the magnet. Only this end of the bars is

instrumented. A mirror placed at the other end of each bar reflects forward-

going photons to the instrumented end. The DIRC technique was chosen for

its many advantages. It presents an amount of material comparable to that
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of other techniques (14% X0 for a particle at normal incidence). The DIRC

occupies only 8 cm of radial space, its material is located close to the front

faces of the crystals and has minimal impact on the EMC performance for

soft photon detection. Also, the DIRC performance tends to improve with the

steepness of incidence of particles, as more light is generated and trapped at

steeper angles, which matches well the needs of a detector at an asymmetric

B Factory.

The refractive index of quartz is close to 1.474. In a quartz radia-

tor, the Cherenkov threshold for kaons (∼460 MeV/c) is well below the value

of momentum for which there is no possible confusion between a pion and a

kaon through ionization loss measurement (dE/dx) in the DCH (∼700 MeV/c):

the two systems are remarkably complementary as far as π/K separation is

concerned. The difference in Cherenkov angle between a pion and a kaon at
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Figure 3.10: Schematics of the DIRC fused silica radiator bar and imaging
region.

4.0 GeV/c is as small as 6.5 mrad (the same difference occurs between a muon

and a pion at 700 MeV/c). A good π/K separation therefore requires resolu-

tions on the Cherenkov angle for a track of 2 mrad or better. The cherenkov

angle as a function of momentum is shown in Fig. 3.8 with parameterized

curves. The kaon selection efficiency and mis-identification rate from pions as

a function of momentum are shown in Fig. 3.9, with tracks from D0 sample.

The single photoelectron resolution, intrinsically limited by geometry

and quartz achromaticity, are obtained by combining measurements from the

large number of photoelectrons generally observed for each track.

31



Parameters Values
Radiation Length 1.85 cm
Moliěre Radius 3.8 cm
Density 4.53 g/ cm3

Light Yield 50,000 γ/ MeV
Light Yield Temp. Coeff. 0.28 %/◦C
Peak Emission λmax 565 nm
Refractive Index (λmax) 1.80
Signal Decay Time 680 ns (64%)

3.34 µs (64%)

Table 3.3: Properties of CsI(Tl).

3.2.4 ElectroMagnetic Calorimeter (EMC)

The goal of the EMC is to detect electromagnetic showers with ex-

cellent energy and angular resolution over an energy range from 20 MeV to

9 GeV. The EMC provides good electron identification down to about 0.5 GeV

and information for neutral hadron identification. It uses a quasi-projective

arrangement of crystals made from thallium doped cesium iodide(CsI(Tl)) cov-

ering a range of CM solid angle of −0.916 ≤cos θ ≤0.895. The crystals are

arranged in two sections, a barrel and a forward endcap as shown in Fig. 3.11.

Some properties of thallium-doped CsI are listed in Table 3.3. The high

light yield and small Moliěre radius allow for excellent energy and angular

resolutions. The short radiation length allows for a compact design. The high

light yield and the emission spectrum permit efficient use of silicon photodiodes

which operate well in high magnetic fields.

The length of the crystals vary between 29.6 cm (16X0) and 32.4 cm
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(17.5X0). The barrel and outer five rings of the endcap have less than 0.3∼0.6X0

of material in front of the crystal faces. The typical area of the front face is

4.7×4.7 cm2, while the back face area is typically 6.1×6.0 cm2. The crystals

act not only as a total-absorption scintillating medium, but also as a light

guide to collect light at the photodiodes that are mounted on the rear surface.

The photon detector consists of two 2×1 cm2 silicon PIN diodes glued to

a transparent 1.2 mm-thick polystyrene substrate which is glued to the center

of the rear face of the crystal. Each of the diodes is directly connected to a

low-noise preamplifier.

The requirements on energy resolution is of the order of 1∼2%. Below

energies of 2 GeV, the π0 mass resolution is dominated by the energy resolution.

At higher energies, the angular resolution becomes dominant, and therefore is

required to be of the order of a few mrad. The target energy resolution for

photons at 90◦ is:

σE

E
=

1%
4
√
E(GeV)

⊕ 1.2% (3.1)

where E and σE refer to the energy of a photon and its rms error, measured in

GeV. The 1% term arises primarily from the fluctuations in photon statistics,

but it is also impacted by electronic noise in the photon detector and its elec-

tronics. The 1.2% term, which is dominant at higher energies(> 1 GeV), arises

from non-uniformity in light collection, leakage or absorption in the material

between and in front of the crystals and uncertainties in the calibrations. The

angular resolution is determined by the transverse crystal size and the dis-

tance from the interaction point. The target angular resolution for photons at
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a polar angle of 90◦ is:

σθ,φ =
3 mrad√
E( GeV)

⊕ 2 mrad. (3.2)

A position resolution of a few mm will translate into an angular resolution of

a few mrad.

3.2.5 Instrumented Flux Return (IFR)

The goal of the IFR is to identify muons and to detect neutral hadrons

(primarily K0
L

and neutrons). The principal requirements for the IFR are large

solid angle coverage, good efficiency to identify muons down to momenta below

1 GeV/c. To achieve the needed measurement goals, the magnet flux return

steel is instrumented with single gap resistive plate chambers (RPCs) as shown

in Fig. 3.12.

The IFR is 6.35 m in length, 5.84 m in height and 6.75 m in width. The
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Figure 3.12: Overview of the IFR: Barrel sectors and forward (FW) and
backward (BW) end doors; the shape of the RPC modules
and their dimensions are indicated.

inner surface of each of the six sextants that make up the barrel section is at a

radial distance of approximately 1.70 m from the beam line. The polar angle

coverage is down to 300 mrad in the forward direction and 400 mrad in the

backward direction. The average chamber efficiencies are 78% in the barrel

and 87% in the endcaps.

The gas contained within the chamber is a mixture of isobutane (4.5%),

argon (56.7%) and freon (38.8%). A charged particle traversing an RPC gap

produces a quenched spark, which is detected on external aluminum pickup

electrodes. The discharge is very fast (of order 100 pC). The pulse rise time

is around 2 ns and the duration is typically around 20 ns.

The aluminum pickup strips on either side of the chamber are arranged

orthogonally so as to provide a three-coordinate measurement. Strips in the

barrel have a pitch of 38.5 mm for measuring z and 19.7 mm to 33.5 mm for
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Figure 3.13: Schematic diagram of the Front-End Electronics (FEE). Ana-
log signals arrive from the left, proceed conditionally through
the indicated steps and are injected into the remainder of the
data acquisition system.

measuring φ. In the end caps, the strip pitches are 38.0 mm and 28.4 mm for

the measurement of x and y coordinates respectively. The IFR delivers timing

information, which is then employed in the trigger.

3.3 Front end electronics

Each subsystem has its own custom-made front end electronics (FEE)

situated in the detector. These apply simple amplification, shaping and digiti-

zation to the data. The signals are then stored in a trigger latency buffer and

sent by optical fiber to the Read Out Modules (ROMs), situated outside of the

detector, for further processing. Fig. 3.13 shows the typical job of the FEE.

The EMC and DCH signals are passed on to the Level-1 trigger (described in

Section 3.4), for the other subsystems the data are only read out for an L1

accept.
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3.4 The trigger system

The BABAR trigger system consists of a Level-1 (L1) hardware trigger

and a Level-3 (L3) software trigger.

The L1 trigger is designed to select candidate physics events at a rate of

no more than 2kHz, the maximum rate allowed by the data acquisition system.

It consists of the drift chamber trigger (DCT), calorimeter trigger (EMT) and

global trigger (GLT). The maximum L1 response latency for a given collision

is 12µs. The DCT and EMT construct ’primitive objects’ which are then

combined by the GLT to produce a whole range of ’trigger lines’. If a GLT

trigger line is active for a time corresponding to a beam crossing, an L1 accept

is produced.

The primitive objects of main DCT are ’short’ and ’long’ tracks, cor-

responding to tracks with pT >120 MeV/c and >150 MeV/c respectively. For

EMT, the basic trigger object is a ’tower’, corresponding to three adjacent

rows of crystals along the length of the calorimeter.

The trigger system has been designed such that the EMC and DCH

triggers are orthogonal. This allows the individual and combined trigger effi-

ciencies to be easily determined. For BB events the efficiency for both DCT

and the EMT is over 99%, with the combined efficiency being greater than

99.9%.

The L3 trigger uses more complex algorithms to reduce the 2kHz input

from the L1 trigger to an event rate of 100Hz, which is the maximum rate that
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the event processing farm and mass storage facility can tolerate. It carries out

an analysis of the complete event, using timing information as well as simple

track finding and calorimeter clustering to accept or reject events. Beam

background events are rejected by looking at the impact parameters of the L3

tracks. L3 decisions are based on simple track cluster topologies rather than

recognizing actual physics processes.

The L3 trigger lines can be pre-scaled to keep the trigger rate under

control. This is done for physics processes with high cross section like Bhabha

events and two-photon events. These are needed for luminosity measurements

and calibration purposes, but not at the rate at which they occur. The L3

trigger runs on a 125 node Online Event Processing (OEP) farm.

To calculate efficiencies, monitor and to calibrate, L1 and L3 pass

through events (which are not required to pass the triggers) at a low rate,

which is called a random trigger.
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Chapter 4

The data samples and event selection

This analysis is based on data recorded in the year 2001, corresponding

to 59.64 fb−1 collected at the Υ (4S) resonance (10.58 GeV), called on-peak

data, and 6.92 fb−1 at an CM energy 40 MeV below the resonance (10.54 GeV),

called off-peak data. Due to the kinematic limit, the off-peak data can not

have B mesons. Table 4.1 gives an overview over the data samples selected for

this analysis.

We histogram the CM energy of electrons in 42 bins from 1.4 GeV to

3.5 GeV with a bin size of 0.05 GeV. The electrons in the on-peak data are

consist of

• semileptonic : from semileptonic B decays (ex: B → Deν),

• BB background : from B decays but not semileptonic,

– from secondary decays (ex: B → DX and D → Keν),

– from mis-identification,

– from wrong reconstruction: E∗
l (rec) − E∗

l (gen) > 0.1 GeV, E∗
l (rec)

and E∗
l (gen) are the reconstructed and generated electron energy

in the Υ (4S) rest frame, respectively,
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Dataset Time L( fb−1)
2001-b1-s2-on 03/16/2001 – 07/15/2001 10.452
2001-b1-s3-on 07/10/2001 – 09/13/2001 6.297
2001-b1-s4-on 09/13/2001 – 10/11/2001 4.605
2001-b1-s5-on 10/13/2001 – 11/01/2001 4.005
2001-b1-s6-on 11/02/2001 – 11/30/2001 4.219
2001-b1-s7-on 12/01/2001 – 12/23/2001 4.535
2002-b1-s0-on 01/12/2002 – 02/02/2002 2.502
2002-b1-s1-on 02/02/2002 – 02/11/2002 1.260
2002-b1-s2-on 02/14/2002 – 05/31/2002 17.699
2002-b1-s3-on 06/01/2002 – 06/23/2002 3.323
2002-b1-s4-on 06/24/2002 – 06/30/2002 0.833
2001-b1-s0-off 02/10/2001 – 02/13/2001 0.005
2001-b1-s2-off 03/16/2001 – 07/15/2001 1.291
2001-b1-s3-off 07/10/2001 – 09/13/2001 1.058
2001-b1-s6-off 11/02/2001 – 11/30/2001 1.323
2002-b1-s0-off 01/12/2002 – 02/02/2002 1.352
2002-b1-s2-off 02/14/2002 – 05/31/2002 1.891

Total on resonance 03/16/2001 – 06/30/2002 59.64
Total off resonance 02/10/2001 – 05/31/2002 6.92

Table 4.1: Summary of the data used in this analysis.
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– from QED processes,

– from J/ψ decays,

– from photon conversion,

– from Dalitz decay,

– · · · ,

• continuum background : from non B decays.

The BB background is estimated using Monte Carlo samples and the contin-

uum background is estimated using the off-peak data. We subtract the BB

background electron energy spectrum and the continuum background spec-

trum from the off-peak electron energy spectrum to obtain the signal electron

energy spectrum NSL. Since there are only 12% of the off-peak data samples

to the on-peak data samples, the scale factor is needed.

The scale factor for the continuum background ξL is given as:

ξL =
Non

Noff
=

Lon

Loff
· E

2
off

E2
on

, (4.1)

where N are the number of events, L are the luminosities of the data sets,

Eon is 10.58 GeV and Eoff is 10.54 GeV. This relation is derived from the fact

that the number of events is the luminosity times the cross-section and the

cross-section is proportional to the inverse of the CM energy. With the given

numbers, ξL is 8.55. The relative error on ξL is 1.7%, estimated from the errors
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of the luminosities and the CM energies 1. To account for the difference in the

beam energies, the measured electron energy in the off-peak data are scaled

by a factor of 10.58/10.54=1.0038.

For each semileptonic B meson, there always is the second B meson in

the event. These mesons are called as the second B mesons in this document.

They decay fully inclusively.

4.1 The event selection

The data samples used in this analysis pass one of two Level 3 triggers

and they satisfy additional event selection criteria. These are discussed in

detail next.

4.1.1 The trigger and filter

The BABAR data are selected and recorded through the L3 triggers and

the front-end filters of the Prompt Reconstruction. Selecting the L3 trigger

lines and filter ensures a well-controlled sample, with a measurable (and sim-

ulatable) efficiency.

The following two L3 trigger lines are required for this analysis: the

first is based on the charged tracks recorded from the DCH information only:

• |dIP
0 | < 1.5 cm, |dIP

0 | is the distance of closest approach to the interaction

1The rms spread of Eon is 5.5 MeV, that of Eoff is 2.3 MeV [30] and the relative errors
on the luminosity calculations are 1.2% [36]
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point in the x− y plane,

• z0 < 10.0 cm, z0 is the z-coordinate of a track’s point of closest approach

to the z-axis,

• pT ≥ 0.25 GeV/c, pT is the transverse momentum.

The second requires for clusters on the EMC:

• ELab ≥ 0.10 GeV,

• ECM ≥ 0.35 GeV,

• Number of good clusters ≥ 2,

• Effective mass ≥ 1.5 GeV, the effective mass is the mass calculated using

the locations and energies of all good clusters, which is not the real mass

if the particle does not discharge all the energy in the calorimeter.

For both cases, the event may also not be a Bhabha event according to the

criteria summarized in Table A.1 and Table A.2 of Appendix A.

In case the event does not pass one of the two criteria described above,

the following criteria are required [37]:

• Number of tracks ≥ 3,

• Rch
2 ≤ 0.98.
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The Rch
2 is the ratio of the second to zeroth Fox-Wolfram moments [38] cal-

culated only with the charged tracks satisfying |dIP
0 | ≤ 1.5 cm, z0 ≤ 10.0 cm,

and pT ≥ 0.1 GeV/c in the event.

4.1.2 Event selection cuts

We require at least one electron with a CM energy above 1.4 GeV. For

the off-peak data, 1.0 GeV is required to fit its shape from below 1.4 GeV.

To suppress non-resonant continuum events containing a high energy

electron, selection criteria are applied to the data samples. Most of these

backgrounds are events with low charged multiplicity, originating mainly from

qq and QED pair production, which result in events with jet-like topology.

The following cuts are applied to the events to reduce these backgrounds:

• R2 ≤ 0.6, R2 is the ratio of the second to zeroth Fox-Wolfram moments

[38] calculated from all charged tracks in the event,

• Number of charged tracks ≥ 4,

• Multiplicity ≥ 62,

• Total charge ≤ 23.

2Multiplicity is total number of charged and neutral tracks.
3This is not important for this analysis. It is applied for other analyses which share the

same data samples.
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Dataset Equiv. Lumi. Number of reconstructed B mesons

B0B0 generic 133 fb−1 143.3 × 106

B+B− generic 132 fb−1 141.8 × 106

Table 4.2: Summary of the Monte Carlo samples used in this analysis.

4.2 The Monte Carlo samples

The Monte Carlo samples are generated with the EvtGen [39] generator

and the experiment is simulated with the software package called GEANT4 [40].

The B → Xueν decays are simulated based on the ISGW2 model [41, 42].

For the B → Xceν decays three models are employed to simulate different

decay modes. The decay to D∗eν is modeled following a form factor based

parameterization of HQET [43], for decays to Deν and higher mass charm

meson states the ISGW2 model is used The non-resonant decays to D(∗)πeν

are modeled according to a prescription by Goity and Roberts [44].

The Monte Carlo samples used for this analysis are summarized in the

Table 4.2. The generic BB Monte Carlo represent the full simulation of all

possible decays of the B meson.

4.3 The inclusive samples

The data samples and the Monte Carlo samples with the electron re-

quirement are called the electron samples; the electron data samples and the

electron Monte Carlo samples. There are samples with no electron require-

ment and they are called the inclusive samples; the inclusive data samples and
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the inclusive Monte Carlo samples. The inclusive samples are used to get kaon

multiplicity distribution from B mesons which can decay into any channels.
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Chapter 5

Analysis

5.1 Introduction

The b quark can decay only into quarks of a different generation, and it

has W -mediated decays to both first-generation (u) and second-generation (c)

quarks; B → Xueν and B → Xceν. In the Monte Carlo sample, B → Xceν

is specified as B → Dlν, B → D∗lν, B → D∗∗lν, and B → D(∗)πlν. Their

electron energy spectra are shown in Fig. 5.1 with that of B → Xueν. As

shown in this figure, B → Xueν is small compared to B → Xceν. Because of

the kinematics, there is almost no B → Xceν decay with CM electron energy

(E∗
l ) of about 2.5 GeV or higher, and almost no B → Xueν decay with about

2.8 GeV or higher 1.

To give an idea how big effect the uncertainty on B → Xceν decays

can make on B → Xueν measurement, the ratio of B → Xueν over B → Xceν

decay yields from Monte Carlo sample is shown in Fig. 5.2. It shows that 1%

of systematic error on B → Xceν causes relative errors of 50%, 20% and 7%

on B → Xueν at E∗
l = 2 GeV, 2.1 GeV and 2.2 GeV, respectively. The goal of

this analysis is to measure the electron energy spectrum of B → Xceν decay

1There can be some due to the reconstruction errors.
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Figure 5.1: (a) The electron energy spectra of all modes from Monte Carlo
sample. (b) Same as (a) except their areas are normalized to
be 1.
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with a systematic error of order of 1% to reduce the electron energy cut as

much as possible.

The B → Xceν decays are tagged with charged kaons. To understand

the idea, let’s think in the Monte Carlo samples first. Since the number of

kaons (ng
K) produced in a semileptonic decay of a B meson are known in

Monte Carlo samples, we can get the following ratio:

Rbx ≡ Nbx(n
g
K ≥ 1)

Nbx(n
g
K ≥ 0)

, (x=c or u), (5.1)

where R−1
bc and Rbu are shown in Fig. 5.3, and the following relations between

electron energy spectra:

Nbc(n
g
K ≥ 0) = R−1

bc ·Nbc(n
g
K ≥ 1) (5.2)

= R−1
bc ·

(
NSL(ng

K ≥ 1) − Rbu ·Nbu(n
g
K ≥ 0)

)
, (5.3)

49



 (GeV)*
lE

1.5 2 2.5 3 3.5

-1
R

bc

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

(a)

 (GeV)*
lE

1.5 2 2.5 3 3.5

R
bu

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(b)

Figure 5.3: (a) R−1
bc , (b) Rbu. Both from Monte Carlo sample.

where Nbc, Nbu, NSL denotes the electron energy spectrum of B → Xceν, B →
Xueν and B → X(c,u)eν decays, respectively, ng

K is the number of generated

kaon.

By rearranging NSL = Nbc + Nbu using Eq. 5.3, we get the electron

energy spectrum for B → Xueν decays:

Nbu(E
∗
l ) =

NSL(E∗
l ) − R−1

bc (E∗
l ) ·NSL(E∗

l , n
g
K ≥ 1)

1 − R−1
bc (E∗

l ) · Rbu(E∗
l )

. (5.4)

We get Rbu from Monte Carlo samples. The shape of R−1
bc is from Monte

Carlo samples and the magnitude is fitted using data to minimize model de-

pendency. We will obtainNSL(E∗
l ) andNSL(E∗

l ,n
g
K) using mainly on data with
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some Monde Carlo input. NSL(E∗
l ) can be obtained easily from background

subtraction.

Denoting the number of reconstructed kaons in each event as nev
K , we

obtainNSL(ng
K) fromNl(E

∗
l ,n

ev
K ) correcting for efficiency, faked kaons and kaon

background from the second B in the event.

• the E matrix transforms NSL(E∗
l ,n

g
K) to NSL(E∗

l ,n
r
K), using Monte Carlo

samples,

• the F matrix adds fake kaons to the reconstructed kaon distribution,

using Monte Carlo samples,

• the S matrix adds the kaons from the second B mesons, using the inclu-

sive samples.

Combining this three steps gives:

Nl(n
ev
K ) = S · F · E ·NSL(ng

K). (5.5)

Having determined Nbu(E
∗
l ), the partial branching fraction of B →

Xueν can be obtained by dividing Nbu(E
∗
l ) with the electron efficiency and

the total number of B mesons in the data set. The electron efficiency εe is

defined in Eq. 2.13 using Monte Carlo sample.

Then the total branching fraction is calculated as explained in Sec-

tion 2.4. The |Vub| is extracted with the total branching fraction, b quark mass

and b quark lifetime measurements (Eq. 2.15).
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5.2 Measurement of the semileptonic electron energy
spectrum NSL(E

∗
l )

In the following sections, the criteria for electron reconstruction and

selection are given to obtain electron sample. The high-energy electron is

a signal for the semileptonic B decays. Thus their reconstruction is very

important for this analysis.

5.2.1 Electron reconstruction and selection

From the list of the charged tracks (candidates with non-zero charge

and pion mass hypothesis), the electrons are selected by the following criteria:

The likelihood-based method requires tracks to satisfy the following

criteria to be identified as electrons:

• 0.88 < E/p < 1.3,

• Number of crystals > 3,

• 0.1 < LAT (Lateral Shower Moment) < 0.6,

• fe ≥ 0.95, fe is the likelihood fraction for electron.

The likelihood fraction for electron is computed by weighings the individual

likelihoods with a priori probabilities pη, where η ∈ {e; π;K; p}; fe = pe ·
L(e)/

∑
η pη · L(η), with pe : pπ : pK : pp = 1 : 5 : 1 : 0.1 assumed [45].

When a candidate electron is paired with an opposite-sign electron and
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if the invariant mass of the pair is consistent with J/ψ mass (2.5 < Me+e− <

3.3 GeV/c2), the candidate electron is rejected.

5.2.2 Background subtraction

To obtain the semileptonic electron energy spectrum, the BB back-

ground and the continuum background should be removed2. The BB back-

ground is subtracted using the Monte Carlo samples. We use the off-peak

data to describe the shape of the continuum background. However, since the

amount of the off-peak data is about 12% of that of the on-peak data, the

off-peak data should be scaled before the subtraction.

The off-peak data can be subtracted from the on-peak data too. How-

ever, the bin-by-bin subtraction of the off-peak data of the scaled distribution

will amplify the statistical errors of the off-peak sample by a factor 8.55. To

avoid this, we fit the shape of the off-peak data to smoothen the fluctuations.

The continuum model which gives the best probability is the following:

fc(p0, · · · , p3; x) = exp(p0 + p1 · x) · (1 + p2 · x+ p3 · x2), (5.6)

where x is E∗
l and pj are parameters. So, there are total 5 parameters in the

fit; four parameters for the continuum function and one for ξL. The ξL is also

fitted because the error from the fit is smaller.

Due to the kinematics, all entries with E∗
l ≥2.8 GeV in the on-peak

data cannot have any B mesons and thus they are all continuum background.

2The definition of each background can be found in Section 4
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We fit the on-peak data from 2.8 GeV to 3.5 GeV and the off-peak data from

1.1 GeV to 3.5 GeV together with a scale factor ξL. The off-peak data is fitted

from 1.1 GeV 3 to minimize uncertainties near 1.4 GeV. The fit function to be

minimized (ffit) is the following:

ffit =
imax∑
i=i0

χ2
off (i) +

imax∑
i=i1

χ2
on(i), (5.7)

χ2
off (i) =

(
fc(xi) −Noff (xi)

)2

Noff (xi)
, (5.8)

χ2
on(i) =

(
ξL · fc(xi) −Non(xi) +NBB(xi)

)2

Non(xi)
, (5.9)

where xi is E∗
l (i), fc is defined above, i0 is the electron energy bin with center

value 1.1 GeV, i1 is that with 2.8 GeV, imax is that with 3.5 GeV. Non is the

electron energy spectrum of the on-peak data, Noff is that of the off-peak data

and NBB is that of the BB background from Monte Carlo samples. This fit

gives a χ2 probability of 61.5%, and 8.70 for ξL. The electron energy spectrum

of the off-peak data, the scaled off-peak spectrum, the scaled continuum func-

tion, the scaled continuum function plus BB background, and the on-peak

spectrum are shown in Fig. 5.4.

5.2.3 Result

The subtracted distribution is NSL(E∗
l ):

NSL(E∗
l ) = Non(E∗

l ) −NBB(E∗
l ) − ξL · fc(p0, · · · , p3;E

∗
l ), (5.10)

3All the plots show from 1.4 GeV only.
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where ξL and fc are from the fit. The electron energy spectrum from semilep-

tonic B mesons (NSL) is shown in Fig. 5.5.

5.3 Measurement of NSL(E
∗
l ) as a function of the recon-

structed kaon multiplicity Nl(n
ev
K )

Mesons containing c quarks, Xc, are D, D∗ and D∗∗. The exited D

states, D∗ and D∗∗ mesons, decay into D almost 100%. So finding B → Xceν

modes is basically looking for D mesons from semileptonic decays. Due to the

high branching fraction of D → K± decay channels, the charged kaons are

used as tags for D mesons. The branching fractions are [10]:

• B(D0 → K− anything) = (53 ± 4)%,
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• B(D0 → K+ anything) = (3.4 + 0.6 −0.4)%,

• B(D+ → K− anything) = (27.5 ± 2.4)%,

• B(D+ → K+ anything) = (5.5 ± 1.6)%.

The kaons can also directly come from B → Xueν decays by hadronization.

We use Monte Carlo samples to get the ratio of of B → Xueν decays with and

without charged kaons in the daughters (Rbu in Eq. 5.1) to correct this.

In the following sections the kaon reconstruction and selection, correc-

tions and background subtraction are discussed.
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Detector Momentum ( GeV/c) Requirements
SVT dE/dx 0.025 < p < 0.7, > 3 dE/dx sample hits

p > 1.5
DCH dE/dx 0.090 < p < 0.7, > 10 dE/dx hits

p > 1.5
DIRC # of Photons 0.6 < p < 10 Expected number of

θC photons for electron > 0

Table 5.1: Minimal requirements applied to charged tracks for kaons.

5.3.1 Kaon reconstruction and selection

The kaon selection in BABAR is based on the information from the SVT,

the DCH and the DIRC.

Among the charged particles satisfying criteria in Table 5.1, the ones

passing the following additional criteria are chosen as kaons.

• pSV T < 0.6 GeV/c, pSV T is particle momentum in SVT,

• pDCH < 0.6 GeV/c,

• pDIRC > 0.6 GeV/c,

• L(K) > L(p), L(x) is likelihood of particle x and is defined in [46],

• L(K) > rπL(π),

where rπ is 1 for p < 2.7 GeV/c4, 80 for p > 2.7 GeV/c and 15 for 0.5 < p <

4It does not matter which sub detector measured the momentum.
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0.7 GeV/c. These criteria are optimized to keep the misidentification rate below

2% up to momenta of 4 GeV/c, using the DIRC only at higher momenta.

5.3.2 Kaon efficiency correction

Since Monte Carlo samples are not yet optimally tuned to the data,

some corrections need to be applied to the Monte Carlo samples. Two of

these corrections are applied in this analysis: tracking efficiency correction

and Particle Identification (PID) killing.

The Tracking Efficiency Correction

The tracking efficiency is measured for data and Monte Carlo samples for

various conditions over time. The most significant such variations that impacts

tracking efficiency are changes to the DCH high voltage setting. For 1999 and

the first half of 2000, the voltage was set to 1900V, then raised to 1960V

for the remainder of 2000. In 2001, the intermediate value of 1930V is used.

The Tracking Efficiency Task Force has studied this in detail and provided a

correction [47]. The result is applied to this analysis.

The PID Killing

This correction makes the Monte Carlo sample to reflect the data efficiency of

particle selectors. PID Tables store the data efficiency and misidentification

of the various particle selectors in bins of momentum, polar and azimuthal

angles [48].

The Kaon PID Efficiency Correction

The kaon momentum distributions of data and Monte Carlo sample are shown
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Figure 5.6: Kaon momentum distribution. The solid like is the kaons from
data and the dotted line is the kaons from Monte Carlo samples.

in Fig. 5.6. Even after the tracking efficiency correction and the PID killing,

the kaon momentum shows big difference between 0.5–0.8 GeV/c. To correct

this, we measure the PID efficiency from a D control sample.

A control sample is a set of tracks where the type of the particle that

caused the track is known from the topology of the respective event. Due to

the large branching fraction of 3.8%, we choose the D → Kπ decay channel.

We histogram the invariant masses of kaon-pion combinations and hadron-pion

combinations as shown in Fig. 5.7. The hadrons are forced to have the kaon

mass 0.493677 GeV/c2 [10].

To estimate the number of D mesons, the sideband is used to estimate

the background of the control sample and to correct for it. This method is

based on the assumption that the background is linear in the invariant mass
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Figure 5.7: (a) Invariant mass of kaon and pion combination. (b) Invariant
mass of hadron and pion combination. The kaon mass is forced
for hadrons. For both (a) and (b), the vertical lined area in-
dicates the typical signal region and the horizontal lined areas
are the typical side bands. See text for more detail.
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distribution. The signal and sideband regions are shown in Fig. 5.7. The detail

calculation can be found in Section A.1.

The number of D mesons is estimated by counting all entries in the

signal region and subtracting the estimated background in the signal region.

Then the particle identification efficiency (εPID) is defined as the number of D

mesons from Kπ combinations (NKπ
D ) divided by that from hπ combinations

(Nhπ
D ):

εPID ≡ NKπ
D /Nhπ

D . (5.11)

For the systematic error calculation, the PID efficiency is calculated

four more times:

• with the sideband regions increased by 10% at each end (ε1),

• with the sideband regions decreased by 10% at each end (ε2),

• with the signal region increased by 10% at each end (ε3),

• with the signal region decreased by 10% at each end (ε4).

If a region was (ri, rf), increasing it by 10% at each ends means that the region

changed to (ri−0.1× (rf − ri), rf +0.1× (rf − ri)), and so on. The systematic

error is calculated as following:

systematic error = 0.5 ·
(√

Σ2
+ +

√
Σ2−

)
, (5.12)
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where

Σ2
+ =

4∑
i=1

(εPID − εi)
2, if εPID < εi, (5.13)

Σ2
− =

4∑
i=1

(εPID − εi)
2, if εPID > εi. (5.14)

This is done for several kaon momentum ranges below 0.75 GeV/c, and

for one range above it. The sidebands and signal regions vary a little bit for

each pK bin.

The PID efficiencies, statistical errors and systematic errors for each

kaon momentum bin are shown in Fig. 5.8. Due to the big error in the lowest

bins, the PID efficiency measured in this method is trusted and applied only

for pK > 0.45 GeV/c. Because the reconstructed kaon distribution of data and

Monte Carlo samples below 0.45 GeV/c are different from each other, their

shapes are not a result of PID differences only, and we exclude kaons with

pK < 0.45 GeV/c. The final kaon momentum cut is 0.45–3.5 GeV/c.

We correct the Monte Carlo for the ratio:

cp = εData
PID /ε

MC
PID, (5.15)

which are shown in Fig. 5.9.

5.3.3 Background subtraction

The BB background and the continuum background are subtracted

from the on-peak electron energy spectrum for each number of kaons (nev
K ) per
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event, in the same way for no kaon requirement case discussed in Section 5.2.2.

We fit the off-peak electron energy spectrum and the on-peak data for each

nev
K bin with the following empirical model:

fk
c (p0, · · · , p3; xi) =

{
exp(p0 + p1 · xi) · (1 + p2 · xi + p3 · x2

i ), for k=0 or 1,

exp(p0 + p1 · xi + p2 · x2
i + p3 · x3

i ), for k=2, 3 or 4,

(5.16)

where pj are p4k+j to be precise. Due to the lack of entries, the fit is good up

to nev
K =4 bin. Thus there are 21 parameters (5 nev

K bins × 4 fit parameters of

continuum functions + 1 scaling factor) determined minimizing:

ffit =
4∑

k=0

(imax∑
i=i0

χ2
off (k, i) +

imax∑
i=i1

χ2
on(k, i)

)
, (5.17)

χ2
off (k, i) =

(
fk

c (p0, · · · , p3; xi) −Nk
off(xi)

)2

Nk
off (xi)

, (5.18)

χ2
on(k, i) =

(
ξL · fk

c (p0, · · · , p3; xi) −Nk
on(xi) +Nk

BB
(xi)

)2

Nk
on(xi)

, (5.19)

where xi is E∗
l (i) and Nk

BB
are BB background with k kaons in the event.

The fit gives χ2 probabilities of 48.26%, 60.9%, 84.95%, 49.6% and

50.4% for nK =0,1,...,4, respectively. The electron energy spectra of the

on-peak data, the off-peak data and the continuum functions are shown in

Fig. 5.10 and Fig. 5.11 for each nev
K bin.
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5.3.4 Results

The subtracted distribution is:

Nk
SL(E∗

l ) = Nk
on(E∗

l ) −Nk
BB

(E∗
l ) − ξL · fk

c (p0+4k, · · · , p3+4k;E
∗
l ), (5.20)

for each nev
K bin k (k=0,· · · ,4), as shown in Fig. 5.12 and Fig. 5.13.

5.4 Measurement of NSL(E
∗
l ) as a function of the gen-

erated kaon multiplicity NSL(E
∗
l ,n

g
K)

After BB background and continuum subtraction as discussed in Sec-

tion 5.3.3, each event has at least one semileptonic B mesons. Let nev
K be

the reconstructed kaons in the event including fake kaons. What we want, as

shown in Eq. 5.4, is the electron energy spectrum as a function of the number

of kaon NSL(ng
K) produced in the semileptonic B decays. Our goal, in this

chapter, is to get from Nl(n
ev
K ) with the three steps discussed

1. The kaons from the second B mesons in events are removed using the

S matrix: S · NSL(nr,f
K ) = Nl(n

ev
K ), nr,f

K is the number of reconstructed

kaons including fake kaons,

2. The fake kaons are removed using the F matrix: F·NSL(nr
K) = NSL(nr,f

K ),

nr
K is the number of reconstructed kaons including no fake kaons,

3. NSL(ng
K) is fromNSL(nr

K) using the E matrix: E ·NSL(ng
K) = NSL(nr

K).

Here, these three steps are discussed in detail.
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Figure 5.10: The electron energy spectra for each nK bins. The marker
schema is the same as in Fig. 5.4.
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Figure 5.11: The electron energy spectra for each nK bins. The marker
schema is the same as in Fig. 5.4. Notice that the nK ≥ 5
bins are not fitted due to low statistics.
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Figure 5.12: The electron energy spectra of the off-peak and BB back-
ground subtracted on-peak data, for each nK bin.
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Figure 5.13: The electron energy spectra of the off-peak and BB back-
ground subtracted on-peak data, for each nK bin.
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5.4.1 Kaons from the second B mesons

The kaons in Nl(n
ev
K ) can come from both B mesons in each event. We

need to remove the kaons from the second B mesons. The relation between

number of kaons per event is a summation:

nev
K = nr,f

K (from SL B) + nr,f
K (from the second B), (5.21)

but that between distributions is a convolution:

Nl(E
∗
l , n

ev
K ) = g(nB

K) ◦NSL(E∗
l , n

r,f
K ), (5.22)

where g(nB
K) is the normalized kaon multiplicity distribution from the second

B mesons. A normalization is required because the total number of electrons

are same:

∑
nev

K =0

Nl(E
∗
l , n

ev
K ) =

∑
nr,f

K =0

NSL(E∗
l , n

r,f
K ) = NSL(E∗

l ). (5.23)

The inclusive samples5 can provide us g(nB
K). Because of no electron

requirement, both B mesons in inclusive samples are same as the second B

mesons in electron samples6. Assuming the two B mesons are independent,

the kaon multiplicity distribution per event N(nev
K ) is a convolution of g(nB

K)

and itself

N(nev
K ) = Ng(nB

K) ◦ g(nB
K). (5.24)

5The continuum background and BB background are subtracted bin-by-bin for the in-
clusive samples, with the scale factor determined from electron samples.

6They can decay into any possible modes while the semileptonic B mesons decay only
into either B → Xueν or B → Xceν.

70



The solution of this and more detailed discussions on convolution are given in

Appendix B.

To test if the two B mesons are really independent, we compare the

following two kaon multiplicity distributions:

• g(nB
K) from inclusive Monte Carlo samples using Eq. 5.24,

• the kaon multiplicity distribution from the second B mesons using elec-

tron Monte Carlo samples, g(nB,sl
K ).

The two kaon multiplicity distributions are shown in Fig. 5.14. The first

bin shows about 0.048% difference which shows there is small correlations

between semileptonic B mesons and the second B mesons. The correction

g(nB,sl
K )/g(nB

K) is multiplied to g(nB
K) in data, assuming the data has the same

amount of correlations between the two B mesons as the Monte Carlo sample.

The distribution after the correlation fix is shown in Fig. 5.15.

The matrix S is given as:

S =




g(0) 0 0 0 · · · 0
g(1) g(0) 0 0 · · · 0
g(2) g(1) g(0) 0 · · · 0

...
...

...
...

...
...

g(9) g(8) g(7) g(6) · · · g(0)


 , (5.25)

for each electron energy bin. With this, we can rewrite Eq. 5.22 for each

electron energy bin as following:

Nl(E
∗
l , n

ev
K ) = S(E∗

l ) ·NSL(E∗
l , n

r,f
K ). (5.26)
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Figure 5.14: The normalized kaon multiplicity distributions g(nB
K). The

square is from the electron Monte Carlo samples and the tri-
angle is from the inclusive Monte Carlo samples.
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Figure 5.15: The normalized kaon multiplicity distributions after correla-
tion fix. See text for the correlation fix. The circle is from
data and the square is from Monte Carlo sample. The square
is same as the square in Fig. 5.14.
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The typical S(E∗
l ) matrix is shown in Fig. 5.16. The variations on the

matrices for each electron energy bin is very small.

5.4.2 Fake kaons

Particles which are not kaons can be reconstructed as kaons. They are

called the fake kaons or fakes. From the Monte Carlo sample we may obtain the

number of kaons including fakes from the semileptonic B mesons, NSL(nr,f
K ),

and the same but without fakes, NSL(nr
K). From these, the F matrix is made.

Let F (nr,f
K , nr

K) be the number of semileptonic B decays with nr,f
K kaons

with fakes and nr
K non-fake kaons. Let f(nr,f

K , nr
K) be the normalized distri-

bution:

f(nr,f
K , nr

K) =
F (nr,f

K , nr
K)∑9

nr,f
K =0

F (nr,f
K , nr

K)
. (5.27)

73



The matrix of f(nr,f
K , nr

K) is the F matrix.

Fbefore =




f(0, 0)| 0 0 0 · · · 0
f(1, 0)| f(1, 1) 0 0 · · · 0
f(2, 0)| f(2, 1) f(2, 2) 0 · · · 0
f(3, 0)| f(3, 1) f(3, 2) f(3, 3) · · · 0

...
...

...
...

...
...

f(9, 0)| f(9, 1) f(9, 2) f(9, 3) · · · f(9, 9)




(5.28)

The number of kaons from the semileptonic B meson is usually 0 or

1. But we still keep 10 nK bins. So the F matrix has many zeros even at

diagonal. This makes the F matrix not invertible. To fix this, we patch the

second column of the F matrix to all the following columns. The second

column is chosen because the numbers were fluctuating too much from the

third column due to low statistics.

Fafter =




f(0, 0) 0 0 0 · · · 0 0
f(1, 0) f(1, 1) 0 0 · · · 0 0
f(2, 0) f(2, 1) f(1, 1) 0 · · · 0 0
f(3, 0) f(3, 1) f(2, 1) f(1, 1) · · · 0 0

...
...

...
...

...
...

...
f(8, 0) f(8, 1) f(7, 1) f(6, 1) · · · f(1, 1) 0
f(9, 0) f(9, 1) f(8, 1) f(7, 1) · · · f(2, 1) f(1, 1)




(5.29)

The fake multiplicity distribution is normalized so that the normaliza-

tion of the electron energy spectrum remains same. The sum of all the F(E∗
l )

matrices is shown in Fig. 5.17. The matrices for each electron energy bin can

be found in Appendix A.2.
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Figure 5.17: The F matrix. This is sum of 42 F matrices for all electron
energy bins. There are some fluctuations at high nK area.
But there are no cases with so many kaons from semileptonic
B mesons. So it does not really matter.

5.4.3 Kaon efficiency

The kaon efficiency matrix E can be obtained directly from the Monte

Carlo samples in the same way as the fake matrix. Each matrix element E(g, r)

is the normalized ratio of cases with g generated kaons and r reconstructed

kaons.

The E matrix from the Monte Carlo sample is fitted for mean efficiency

ε assuming they follow the Binomial distribution. This is used to fix columns

with too low statistics (r < 50) 7. For example, if there is only one case

7The χ2 probability for this fit is not good. It indicates the assumption of the Binomial
distribution does not hold. That’s why this is used only as a correction where there are not
many event.
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Figure 5.18: The E matrix. This is the sum of 42 E matrices for all electron
energy bins.

of 4 generated and 2 reconstructed kaons, the column in E matrix would be

(0,0,1,0,0). We replace this column with ((1 − ε)4, ε · (1 − ε)3, ε2 · (1 − ε)2,

ε3 · (1 − ε), ε4). This is a small effect because these cases happen where there

are not many kaons 8.

The sum of all the E(E∗
l ) matrices is shown in Fig. 5.18. The matrices

for each electron energy bin can be found in Appendix A.3.

From the relation:

Nl(E
∗
l , n

ev
K ) = S · F · E ·NSL(E∗

l , n
g
K), (5.30)

by inverting the matrices, we get the electron energy spectra as a function

8For the high electron energy range, where there are no kaons, the matrix from the Monte
Carlo sample is a zero matrix. This makes the E matrix not invertible. To fix this, if the
matrix is a zero matrix, it is replaced with a unit matrix. Since there is no kaon, it does
not make any difference in the analysis.
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of produced kaon multiplicity from semileptonic B mesons from those as a

function of reconstructed kaon multiplicity in each event:

NSL(E∗
l , n

g
K) = (S · F · E)−1 ·Nl(E

∗
l , n

ev
K ). (5.31)

5.5 Charmless electron energy spectrum

Our goal is to get B → Xueν electron energy spectrum as already

discussed in Eq. 5.4:

Nbu(n
g
K ≥ 0) =

NSL(ng
K ≥ 0) − R−1

bc ·NSL(ng
K ≥ 1)

1 − R−1
bc · Rbu

, (5.32)

=

NSL − R−1
bc

∑9
k=1

(
(S · F · E)−1 ·NSL(nr,f

K ; ev)

)
(k)

1 − R−1
bc ·Rbu

. (5.33)

If R−1
bc · Rbu is small, this equation is Nbu ≈ NSL − Nbc. The Nbc part

depends on R−1
bc which is from the Monte Carlo samples. To minimize the

Monte Carlo dependency, the magnitude of Nbc part is fitted with parameter

α. To fit B → Xceν spectrum against B → Xueν and backgrounds, the

B → Xueν input is needed. Since this distribution from theory has about

2% error in the range of E∗
l =1.4–1.8 GeV, we use the shape of theoretical

prediction.

The Monte Carlo samples and the theoretical calculation shows about

5% difference in shape, so instead of theory, we simply take the shape of

the B → Xueν spectrum from Monte Carlo samples. However, we fit the

magnitude with parameter β, because we don’t know it precisely.
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In addition to this, we combine all the fit including the BB and off-

peak subtraction (discussed in Section 5.2.2 and Section 5.3.3) altogether, to

simplify the error propagation and to avoid having two scale factors from

separate fits. We want all the fit parameters from one fit so that we can plug

the fit values into Eq. 5.44. The fit function (ffit) is consist of the off-peak

part (χ2
off) for continuum distribution, the on-peak part (χ2

on) for scale factor

ξL, the model part (χ2
md) for α and β. Here is ffit to be minimized:

ffit =
imax∑
i=i0

χ2
off (xi) +

imax∑
i=i1

χ2
on (5.34)

+

i3∑
i=i2

χ2
md +

(
β − B(B → Xueν)

σB(B→Xueν)

)2

, (5.35)

where

χ2
off =

(Noff − fc)
2

Noff

, (5.36)

χ2
on =

(Non −NBB − ξL ·Noff )
2

Non
, (5.37)

χ2
md =

(Non − fmd)
2

Non + σ2
f

, (5.38)

with

fmd = Nbc +Nbu +NBB + ξLNBB (5.39)

= α · R−1
bc

(kmax∑
k=1

(B · F · E)−1(Nk
on −Nk

BB
− ξL · fk

c )

− Rbu · βNMC
bu

B(B → Xueν)

)
+

β ·NMC
bu

B(B → Xueν)
+NBB + ξL · fc,

(5.40)
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where NMC
bu is the Nbu directly from the Monte Carlo samples. We take the

shape of NNC
bu but fit the normalization. Once again, we trust the shape at

the low energy range due to the small uncertainties in the theory.

The error of f , σ2
f , is defined as:

σ2
f = A · Ton · AT , (5.41)

where A and a 10 × 10 matrix Ton are defined as

A ≡ α ·R−1
bc

(kmax∑
k=1

(B · F · E)−1

)
, (5.42)

Ton[i][j] =

{
Non(xi), if i = j,

0, elsewhere.
(5.43)

The continuum functions fc and fk
c are already defined in Eq. 5.6 and Eq. 5.16.

The bin numbers i0 and i1 are the bins with central E∗
l values 1.1 and 2.8,

respectively, as defined in Section 5.2.2. The bin numbers i2 and i3 are the bins

with central E∗
l values 1.4 and 1.8, respectively. The B(B → Xueν) used in the

fit is a measured total B → Xueν branching fraction from BABAR experiment;

B(B → Xueν) = (2.2 ± 0.5) × 10−3.

The fit gives 72.5% probability with ξL =8.75±0.04, α =0.804± 0.004,

β =(2.46 ± 0.48) × 10−3. The final B → Xueν electron energy spectrum is

shown in Fig. 5.19.
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Figure 5.19: B → Xueν electron energy spectrum. The small error bars
are statistical only and the big error bars are statistical and
systematic combined.

The final B → Xueν electron energy spectrum is:

Nbu(E
∗
l ) =

1

1 − α · R−1
bc (E∗

l ) · β · Rbu(E∗
l )/B(B → Xueν)

×
[
(Non −NBB)(E∗

l ) − ξL · fc(E
∗
l ) − α · R−1

bc (E∗
l )

·
9∑

k′=1

{
(B · F · E)−1(E∗

l ) ·
(

(Nk
on −Nk

BB
)(E∗

l ) − ξL · fk
c (E∗

l )

)}
(k′)
]
,

(5.44)

where α, β, ξL, fc and fk
c are from the fit.

The error matrix (VNbu) on Nbu is given as following:

VNbu =

(
∂Nbu

∂pi

)
· Vcov ·

(
∂Nbu

∂pi

)T

+

(
∂Nbu

∂S
)
· VS ·

(
∂Nbu

∂S
)T

, (5.45)

where Vcov is the covariant matrix from the fit, pi are the fit parameters and VS

is the error matrix of
∑9

k=1 S−1. This is statistical error only. The statistical
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E∗
l ( GeV) Electron Efficiency

2.0 – 2.6 0.490
2.1 – 2.6 0.476
2.2 – 2.6 0.461
2.3 – 2.6 0.445

Table 5.2: The electron Efficiency.

errors of Monte Carlo samples are counted as systematic errors. Among the

three matrices S, F , and E , only S is made with data and the others are made

with Monte Carlo sample. That is the reason why only errors of S matrix are

counted as statistical errors.

The B → Xueν branching fraction for each electron energy bin is cal-

culated using the electron efficiency (εe) defined in Eq. 2.13 and summarized

in Table 5.2. The statistical error of the electron efficiency is negligible and

the systematic error on it is about 2%.

The electron efficiency for each energy bin shows a slope as shown in

Fig. 5.20 due to the migration effect. The energy resolution of electrons shows

that there is a big tail to the lower energy. The electrons produced at high

energy near the end point can be reconstructed at lower energies but there are

not many electrons produced at higher energy due to the kinematics. If we

calculated the efficiency as function of the generated energy, then the efficiency

is flat.
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5.6 Systematic error study

The biggest systematic error sources, R−1
bc and Rbu, and the systematic

error sources on electron background in BB background and those on kaon

background in BB (nK ≥1) are studied.

The kaon tracking efficiency correction and the kaon PID efficiency

correction using D samples are discussed in Section 5.3.2. We start with the

systematic errors from these in the next section.

5.6.1 Systematic error from the kaon efficiency corrections

There are uncertainties in the kaon tracking and PID efficiency cor-

rections. These are considered as systematic errors. Let the kaon tracking
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and PID efficiency correction factors be ct(pk) and cp(pk), respectively, as a

function of kaon momentum pk. And let their errors be et(pk) and ep(pk),

respectively. The values and error of the PID efficiency correction cp and ep

are calculated in Section 5.3.2. The default correction factor is ct(pk)× cp(pk).

The B → Xueν electron energy spectrum with this default correction is Nbu.

The analysis is repeated with the following correction factors:

• (ct + et)(pk) × cp(pk) [gives N1
bu],

• (ct − et)(pk) × cp(pk) [gives N2
bu],

• ct(pk) × (cp + ep)(pk) [gives N3
bu],

• ct(pk) × (cp − ep)(pk) [gives N4
bu].

The systematic errors from the kaon efficiency corrections on Nbu for each

electron energy bin is calculated as following:

systematic error = 0.5 ·
(√

Σ2
+ +

√
Σ2−

)
, (5.46)

where

Σ2
+ =

∑
(Nbu −N i

bu)
2, if Nbu < N i

bu, i = 1, 2, 3, 4, (5.47)

Σ2
− =

∑
(Nbu −N i

bu)
2, if Nbu > N i

bu. (5.48)

5.6.2 Systematic error from R−1
bc

The magnitude of R−1
bc is fitted and its error is counted as statistical

error. The R−1
bc is the ratio of all Xc meson decays to the Xc meson decays with
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charged kaon produced. So it is sensitive to the uncertainties in B(B → Xceν)

of each mode9, in B(D0 → K±) and in B(D+ → K±).

We vary the branching fractions of all B → Xceν decay modes by ± 1

sigma and also vary D → K± branching fractions by ± 1 sigma. Let bi to be

the default branching fractions for each mode i and let ei to be their errors.

The analysis is repeated with bi + ei and bi − ei. Then the systematic error is

calculated in the same way as that from the kaon efficiency corrections.

5.6.3 Systematic error from Rbu

The relative systematic error on Rbu is estimated to be 50% because

this is not well known. The systematic error from Rbu is calculated in the same

way as that from R−1
bc . The systematic error from Rbu is given as

∆Nbu(Rbu) =

√(
∂Nbu

∂Rbu

)
·MRbu ·

(
∂Nbu

∂Rbu

)T

, (5.49)

where MRbu is a matrix with element M i,j
Rbu = ∆i

Rbu · ∆j
Rbu and ∆i

Rbu ≡ 0.5 ×
Rbu(i), i and j are electron energy bins.

5.6.4 Systematic error from BB background

The following possible sources of systematic errors on electrons are stud-

ied for BB background. Each BB background category is shown in Fig. 5.21,

Fig. 5.22 and Fig. 5.23. The relative systematic errors on each category are:

[49]

9B → D, B → D∗ and B → D∗∗
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Figure 5.21: BB background in categories divided by the total BB back-
ground.
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Figure 5.22: BB background in categories divided by the total BB back-
ground.
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Figure 5.23: BB background in categories divided by the total BB back-
ground. The last plot is the total BB background.
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• The systematic error on electron tracking efficiency about 0.7%,

• The mis-identification as electron

– The relative systematic error on pion fake rate is about 3.5%,

– The relative systematic error on kaon fake rate is about 15%,

– The relative systematic error on proton fake rate is about 20%,

• Backgrounds

– The relative systematic error on the electrons from gamma conver-

sions is about 13%,

– The relative systematic error on the electrons from Dalitz Decays

is about 19%,

– The relative systematic error on the electrons from cascade decays

is about 25% [B(B → c̄→ e)=(1.64± 0.37)%],

– The relative systematic error on the electrons from τ decay is about

11.2% [B(B → τ+X, τ+ → e+νeν̄τ)=(0.565± 0.063)%],

• J/ψ , ψ(2S):

– The relative systematic error on the electrons from J/ψ is about

5.6% [B(B → J/ψ → e+e−=(6.82± 0.38)×10−4],

– The relative systematic error on the electrons from ψ(2S) is about

193.5% [B(B → ψ(2S) → e+e−=(0.31± 0.6)×10−4],
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• The relative systematic error on all other sources is about 25%.

The systematic error from BB background is calculated as

∆Nbu(BB) =

√√√√(∂Nbu

∂BB

)
·
∑

h

MBB(h) ·
(
∂Nbu

∂BB

)T

, (5.50)

where MBB(h) is a matrix with element M i,j

BB(h)
= ∆i

BB(h)
· ∆j

BB(h)
and

∆i
BB(h)

≡ δ(h) × BB(h), (5.51)

while δ(h) is the relative error in category h and i is the electron energy bin.

The relative systematic errors on partial branching fraction of B →
Xueν decay are summarized in Table 5.3.

5.7 Determination of the CKM element |Vub|
The partial branching fraction for few E∗

l ranges are summarized with

the Fu
10 in Table 5.4. The total branching fraction and the values and errors of

|Vub| for few E∗
l ranges are calculated using Eq. 2.14 and Eq. 2.15, respectively,

and summarized in Table 5.5. We choose E∗
l = 2.1 − 0.26 GeV because the

relative error of |Vub| is the smallest.

10This is already given in Table 2.1. Here it is shown again for convenience.
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Error Source 2.0–2.6 2.1–2.6 2.2–2.6 2.3–2.6
Shape of R−1

bc 17.953 12.125 6.114 2.455
Rbu 4.949 3.890 2.932 1.799

Efficiency Corrections 3.026 3.224 3.762 4.258
Electron Tracking Effieincy 0.800 0.800 0.800 0.800

Gamma Conversion 0.165 0.209 0.280 0.393
Dalitz Decays 0.054 0.072 0.103 0.148

Cascade Decays 0.271 0.229 0.224 0.241
Tau Decay 0.012 0.008 0.007 0.007
J/Ψ Decay 0.071 0.074 0.075 0.076

Ψ(2S) Decay 1.464 1.777 1.929 2.199
π mis-ID 0.024 0.032 0.039 0.046
K mis-ID 0.016 0.018 0.021 0.021
p mis-ID 0.001 0.001 0.002 0.003
µ mis-ID 0.211 0.162 0.095 0.050

E∗
l (rec)-E

∗
l (gen)>0.1 GeV cut 0.115 0.162 0.238 0.379

Other e background 0.047 0.049 0.063 0.090
Stat. Error on MC 0.233 0.233 0.240 0.252

Total 18.929 13.264 8.007 5.718

Table 5.3: Summary of systematic errors (%) on the branching fraction for
B → Xueν.

E∗
l ( GeV) ∆B (10−3) Fu

2.0 – 2.6 0.714 ±0.070 ±0.135 0.278 ±0.052
2.1 – 2.6 0.415 ±0.040 ±0.055 0.207 ±0.046
2.2 – 2.6 0.231 ±0.024 ±0.019 0.137 ±0.034
2.3 – 2.6 0.110 ±0.016 ±0.006 0.078 ±0.022

Table 5.4: Results on the partial branching fraction (∆B) for inclusive B →
Xueν decays and shape functions for four E∗

l intervals. First and
second errors of ∆B are statistical and systematic, respectively.
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E∗
l ( GeV) B (10−3) |Vub| (10−3)

2.0 – 2.6 2.57 ±0.55 ±0.48 4.80 ±0.51 ±0.45 ±0.23
2.1 – 2.6 2.00 ±0.33 ±0.44 4.25 ±0.35 ±0.45 ±0.20
2.2 – 2.6 1.68 ±0.22 ±0.42 3.89 ±0.25 ±0.48 ±0.19
2.3 – 2.6 1.41 ±0.22 ±0.40 3.55 ±0.28 ±0.50 ±0.17

Table 5.5: Results on the total branching fraction (B) for inclusive B →
Xueν decays and |Vub| for four E∗

l intervals. First and second er-
rors of B are experimental(stat.+sys.) and from Fu, respectively.
Errors on |Vub| are experimental, Fu and theory, respectively.
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Chapter 6

Conclusion

We measured the electron energy spectrum of the charmless semilep-

tonic B meson decays by getting the spectrum of the charmed semileptonic

decays using kaon tags. The total branching fraction of the charmless semilep-

tonic B meson decays is:

B(B → Xueν) = (2.00 ± 0.33(exp) ± 0.44(Fu))%, (6.1)

and the extracted |Vub| using the ratio (Fu) of the partial Branching Fraction

over the total Branching Fraction from theory is:

|Vub| = (4.25 ± 0.35(exp) ± 0.45(Fu) ± 0.20(theo)) × 10−3 (6.2)

The other inclusive |Vub| measurement are summarized in Fig. 6.1. The

ones above line uses different theory frame work and thus can not be compared

directly. The ones below line all use HQET to extract |Vub|. The result of this

analysis agrees with other measurements.

There are some things can be improved. To reduce Monte Carlo depen-

dency in R−1
bc , the neutral kaons can also be used as tags. There is a way to

estimate R−1
bc from data, if we know branching fractions of D meson to charged
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Figure 6.1: Other inclusive |Vub| measurements.
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kaons precisely and the ratio of charged and neutral D mesons well:

Nbc

Nbc(n
g
K ≥ 1)

=
(1 − B(D0 → K+))ND0 + (1 − B(D+ → K+))ND+

B(D0 → K+)ND0 + B(D+ → K+)ND+

(6.3)

,where D0, D+, K+ denotes neutral D meson, charged D meson and charged

kaons, respectively. This method gives R−1
bc with too big error due to the big

errors from the current branching fractions. So it was not used in this analysis.

The BB background is about 10% of the semileptonic spectrum and it

is pure Monte Carlo input. The magnitude of each category of BB background

can be fitted with signal and continuum background. This has not been tried

in this analysis.

This analysis uses minimal Monte Carlo input and has a result agrees

with the world average.
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Appendix A

Detail information and more plots

This appendix have some detail information which was not as important

to put in the main text and many detail plots. The Bhabha event selection

criteria are summarized in two tables; Table A.1 and Table A.2. These were

used to reject so that we have non-Bhabha electrons.

A.1 The PID Efficiency

In this section, the calculation of PID efficiency using the D control

sample is discussed in detail.

Let the sidebands be within the mass values of bi1, b
f
1 and bi2, b

f
2 , and the

signal region be within si and sf ; (bi1 < bf1 < si < sf < bi2 < bf2). The widths

of the regions be wb1, wb2 and ws, respectively, and the distances between the

regions be δ1 and δ2:

wb1 ≡ bf1 − bi1, wb2 ≡ bf2 − bi2, ws ≡ sf − si, (A.1)

δ1 ≡ si − bf1 , δ2 ≡ bi2 − sf . (A.2)

If the background is linear and can be parameterized as f(x) = αx + β, the
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Cut Description Cut Value
Good track criteria

Maximum vertex |dIP
0 | 1.5 cm

Maximum vertex |zIP
0 | 10.0 cm

Minimum pcm 0.25 GeV
Event criteria

Number of good tracks 1
Minimum track x = pcm/(W/2) 0.567

Minimum track θ 2.0
Maximum track-cluster |∆φ| 0.1
Maximum track-cluster |∆θ| 0.1

Minimum cluster x = Ecm/(W/2) 0.300
Minimum Ecm/pcm (cluster/track) 0.650
Minimum θ for looser Ecm/pcm cut 2.43

Looser minimum Ecm/pcm (above a minimum θ) 0.300

Table A.1: Criteria for Bhabha 1 prong veto in Level-3 Trigger. W/2 is
half the total CM energy, nominally 5.29GeV at the Υ (4S).

number of background events in each region can be calculated as:

N1 =
wb1

2

(
f(bi1) + f(bf1)

)
, (A.3)

=
wb1

2

(
f(si − δ1 − wb1) + f(si − δ1)

)
, (A.4)

= wb1(αs
i − αδ1 + β − wb1

2
α), (A.5)

N2 =
wb2

2

(
f(bi2) + f(bf2)

)
, (A.6)

= wb2(αs
f + αδ2 + β +

wb1

2
α), (A.7)

Ns =
ws

2

(
f(si) + f(sf)

)
, (A.8)

=
ws

2
(αsi + αsf + 2β), (A.9)

where N1 and N2 are the numbers of background events in the sidebands and

Ns in the signal region.
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Cut Description Cut Value
Good track criteria

Maximum vertex |dIP
0 | 1.5 cm

Maximum vertex |zIP
0 | 10.0 cm

Minimum pcm 0.25 GeV
Event criteria

Number of good tracks 2
Minimum track x = pcm/(W/2) 0.378

Minimum track
∑
x =

∑
pcm/(W/2) 0.500

Maximum φ acolinearity in cms 0.10
Maximum θ acolinearity (|θ1 + θ2 − π|) in cms 0.20

Maximum — missing x - predicted missing x — 0.15
Maximum track-cluster |∆φ| 0.1
Maximum track-cluster |∆θ| 0.1

Minimum cluster x = Ecm/(W/2) 0.300
Minimum cluster

∑
x =

∑
Ecm/(W/2) 0.0

Minimum Ecm/pcm (cluster/track) 0.650
Minimum θ for looser Ecm/pcm cut 0.0

Looser minimum Ecm/pcm (above a minimum θ) 0.000

Table A.2: Criteria for Bhabha 2 prong veto in Level-3 Trigger. W/2 is
half the total CM energy, nominally 5.29GeV at the Υ (4S).
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After simple math, we have:

Ns =
ws

2

[N1

wb1

+
N2

wb2

− α(δ2 − δ1)

]
. (A.10)

To avoid getting α, we choose δ1 and δ2 to be same. Then we may

simply use the following equation:

Ns =
ws

2

[N1

wb1

+
N2

wb2

]
. (A.11)
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All the detail plots of F and E matrices for each electron energy bin

are here.

A.2 The F matrices

All the F matrices for all the lepton energy bins are shown in Fig. A.1,

Fig. A.2 and Fig. A.3.

A.3 The E matrices

All the E matrices for all the lepton energy bins are shown in Fig. A.4,

Fig. A.5 and Fig. A.6.

100



0

0.2

0.4

0.6

0.8

1

Kn
0 1 2 3 4 5 6 7 8 9 10

Kn

0

1

2

3

4

5

6

7

8

9

10

 bin 0 (1.40--1.45 GeV)*
lF matrix:E

0

0.2

0.4

0.6

0.8

1

Kn
0 1 2 3 4 5 6 7 8 9 10

Kn

0

1

2

3

4

5

6

7

8

9

10

 bin 1 (1.45--1.50 GeV)*
lF matrix:E

0

0.2

0.4

0.6

0.8

1

Kn
0 1 2 3 4 5 6 7 8 9 10

Kn

0

1

2

3

4

5

6

7

8

9

10

 bin 2 (1.50--1.55 GeV)*
lF matrix:E

0

0.2

0.4

0.6

0.8

1

Kn
0 1 2 3 4 5 6 7 8 9 10

Kn

0

1

2

3

4

5

6

7

8

9

10

 bin 3 (1.55--1.60 GeV)*
lF matrix:E

0

0.2

0.4

0.6

0.8

1

Kn
0 1 2 3 4 5 6 7 8 9 10

Kn

0

1

2

3

4

5

6

7

8

9

10

 bin 4 (1.60--1.65 GeV)*
lF matrix:E

0

0.2

0.4

0.6

0.8

1

Kn
0 1 2 3 4 5 6 7 8 9 10

Kn

0

1

2

3

4

5

6

7

8

9

10

 bin 5 (1.65--1.70 GeV)*
lF matrix:E

0

0.2

0.4

0.6

0.8

1

Kn
0 1 2 3 4 5 6 7 8 9 10

Kn

0

1

2

3

4

5

6

7

8

9

10

 bin 6 (1.70--1.75 GeV)*
lF matrix:E

0

0.2

0.4

0.6

0.8

1

Kn
0 1 2 3 4 5 6 7 8 9 10

Kn

0

1

2

3

4

5

6

7

8

9

10

 bin 7 (1.75--1.80 GeV)*
lF matrix:E

0

0.2

0.4

0.6

0.8

1

Kn
0 1 2 3 4 5 6 7 8 9 10

Kn

0

1

2

3

4

5

6

7

8

9

10

 bin 8 (1.80--1.85 GeV)*
lF matrix:E

Figure A.1: The F matrices of the first 9 electron energy bins.
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Figure A.2: The F matrices of the second 9 electron energy bins.
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Figure A.3: The F matrices of the third 9 electron energy bins. The rest
bins (which are not shown here) are all same the the last ma-
trix.
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Figure A.4: The E matrices of the first 9 electron energy bins.
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Figure A.5: The E matrices of the second 9 electron energy bins.
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Figure A.6: The E matrices of the third 9 electron energy bins. The rest
bins (which are not shown here) are all same the the last ma-
trix.
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Appendix B

Convolution, deconvolution and their errors

The convolution and deconvolution with their error calculation is ex-

plained here. It will be focus on the special cases this analysis uses than more

general discussion. The special cases are:

1. The number of kaons is a positive discrete random variable.

2. We deconvolute the distribution of the sum of two independent variables.

3. The error of a convolution of two functions assumes they are correlated,

This affects on the error propagation. This affects on the error propa-

gation. This affects on the error propagation. This affects on the error

propagation.because this is a test to see if the convolution of deconvo-

luted functions return the same values and errors, and they do.
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B.1 Convolution of two different functions

The convolution of two functions f and g, F , is defined as:

Fk ≡ (f ◦ g)k =

k∑
k′=0

fk′ · gk−k′, (B.1)

F0 = f0 · g0, (B.2)

F1 = f0 · g1 + f1 · g0, (B.3)

F2 = f0 · g2 + f1 · g1 + f2 · g0, (B.4)

· · · , (B.5)

The physical meanings are: Fk is the number of events with k kaons, f ′
k is that

of one type of B mesons with k′ kaons and gk−k′ is that of the other type of B

mesons with k-k′ kaons. The one type of B mesons can mean semileptonically

decaying ones, the other type of B mesons can mean inclusively decaying ones,

in case the events are tagged with one lepton.

The error matrix of F , VF , is given like following, with a covariance

matrix of f , Vf , and of g, Vg:

VF = A · Vf · AT +B · Vg · BT + A · Vfg · BT +B · Vgf · AT , (B.6)
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where a matrix A is defined as following:

Aij = ∂Fi/∂fj (B.7)

=
i∑

k=0

∂fk/∂fj · gi−k (B.8)

=
i∑

k=0

δk,j · gi−k (B.9)

= gi−j, (B.10)

and a matrix B is defined as following:

Bij = ∂Fi/∂gj (B.11)

=
i∑

k=0

fk · ∂gi−k/∂gj · (B.12)

=

i∑
k=0

fk · δi−k,j (B.13)

= fi−j . (B.14)

B.2 Deconvolution of two different functions

The deconvolution of f from F = f ◦ g is defined as:

fk ≡ (F ◦−1 g)k =
1

g0

(
Fk −

k−1∑
k′=0

f ′
k · gk−k′

)
, (B.15)

f0 =
F0

g0
, (B.16)

f1 =
F1 − f0 · g1

g0

, (B.17)

f2 =
F2 − f0 · g2 − f1 · g1

g0
, (B.18)

· · · . (B.19)
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The error matrix of f , Vf , is given as:

Vf = A
′ · VF ·A′T + C · Vg · CT , (B.20)

where a matrix A
′
of which components are A

′
ij = ∂fi/∂Fj can be calculated:

A
′
ij = ∂fi/∂Fj =

1

g0

(
∂Fi/∂Fj −

i=1∑
k=0

∂fk/∂Fj · gi−k

)
, (B.21)

=
1

g0

(
δi,j −

i=1∑
k=0

∂fk/∂Fj · gi−k

)
, (B.22)

and a matrix C of which components are Cij = ∂fi/∂gj can be calculated:

Cij = ∂fi/∂gj , (B.23)

=
1

g0

(
−

i=1∑
k=0

(∂fk/∂gj · gi−k + fk · ∂gi−k/∂gj) − fi · ∂g0/∂gj

)
(B.24)

= − 1

g0

(
i=1∑
k=0

∂fk/∂gj · gi−k + fi−j · (1 − δ0,j) + fi · δ0,j

)
. (B.25)

B.3 Convolution of same functions

The convolution of two same function f is F as shown following:

Fk ≡ (f ◦ f)k =
k∑

k′=0

fk′ · fk−k′, (B.26)

F0 = f0 · f0, (B.27)

F1 = f0 · f1 + f1 · f0, (B.28)

F2 = f0 · f2 + f1 · f1 + f2 · f0, (B.29)

· · · . (B.30)
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The error matrix of F , VF is given with a covariance matrix of f , Vf ,

as following:

UF = A · Vf · AT , (B.31)

where a matrix A is defined as:

Aij = ∂Fi/∂fj (B.32)

=
i∑

k=0

(∂fk/∂fj · fi−k + fk · ∂fi−k/∂fj) (B.33)

=
i∑

k=0

(δk,j · fi−k + fk · δi−k,j) (B.34)

= 2 · fi−j (B.35)

B.4 Deconvolution of same functions

The deconvolution of f from F = f ◦ f is defined as:

fk ≡ (F ◦−1 f)k, (B.36)

f0 =
√
F0, (B.37)

f1 =
F1

2 · f0
, (B.38)

f2 =
F2 − f1 · f1

2 · f0

, (B.39)

· · · . (B.40)

Generalization looks like:{
k = 0, f0 =

√
F0,

k > 0, fk =
Fk−

∑k−1
k′=1

f ′
k·fk−k′

2·f0
.

(B.41)
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The error matrix of f , Vf , is given as:

Vf = A
′ · VF ·A′T , (B.42)

while a matrix A
′
is defined as:

A
′
ij =

1

2f0

(
δi,j −

i−1∑
k=1

(∂fk/∂Fj · fi−k + fk · ∂fi−k/∂Fj) − 2 · fi · ∂f0/∂Fj

)

(B.43)
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Appendix C

Study of EMC Performance Using e+e− → γγ

events

We present a study of the performance of the BABAR Electromagnetic

Calorimeter (EMC) using photons from e+e− → γγ events which have energies

between 3.1 GeV and 9.0 GeV. Kinematic constraints between the two detected

photons permit checks of the EMC calibration, resolution and geometry. Our

results indicate that photon energies are being reconstructed systematically

1.2±0.3 % higher than what is predicted by kinematics. The energy resolution

of photons in upper energy range of this sample (mean energy 7.8 GeV, which

are observed at relatively smaller polar angles θ with respect to the electron

beam direction), is found to be 1.6 ± 0.3 %. Photons in the lower energy

range (mean energy 4.1 GeV, observed at larger θ), have energy resolutions

measured to be 2.1 ± 0.3 %. Azimuthal angles are measured with systematic

errors less than 1 mrad and the azimuthal angle resolution is determined to

be 2.7 mrad for photons of mean energy 6.0 GeV. Systematic errors in the

measurement of polar angles are observed at the 1 mrad level, arising from

shower reconstruction algorithms used in event reconstruction; the polar angle

measurement resolution is consistent with that found for measuring azimuthal

angles, but is difficult to determine with the method used here. We find the
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origin of the EMC shifted by −0.189± 0.006 cm in x and 0.054± 0.005 cm in

y with respect to the drift chamber.

C.1 Introduction

At e+e− colliders, the two-body processes e+e− → e+e− , µ+µ− and γγ

provide clean sources of charged and neutral particles with large and well-

known cross sections. At BABAR (center of mass energy 10.58 GeV), the

corresponding detected cross sections (within the lab-frame polar angle ac-

ceptance, 15.8o ∼ 141.8o) are ∼ 40 nb, 1.16 nb and 2 nb, respectively. The

respective differential cross sections for these processes are shown in Fig. C.1.

)|θ|cos(
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 (
nb

)
Ω

/dσ
d

0

1

2

3
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6 -e+e→-e+e
γγ→-e+e
µµ→-e+e

Figure C.1: Differential cross sections for e+e− → e+e− , µ+µ− and γγ

By energy-momentum conservation, final state particles are mono-energetic
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and collinear in the center of mass (CM) frame. Consequently, two-body

processes are often used in detector monitoring, calibration and performance

studies. Bhabha events (e+e− → e+e−), for example, are used to calibrate the

high energy scale of the BABAR electromagnetic calorimeter (EMC). In this

study, we use e+e− → γγ events to verify the Bhabha calibration. In addi-

tion, we measure the energy resolution and study the reconstruction of photon

directions. The basic method is described next.

Two-body kinematics enables us to predict the lab energy of photons,

Epred, in terms of their measured polar angle. The predicted lab-frame photon

energy as a function of its CM frame polar angle, θ∗, is given by the following:

Epred(θ
∗) ≡ ECM

2
γ(1 + β cos θ∗), (C.1)

where ECM is the CM energy, β is the velocity of the CM system in units

of speed of light and γ is 1/
√

1 − β2. We define the relative energy differ-

ence between measured and predicted photon energies in the lab frame by the

following:

δE

E
≡ Emeas −Epred

Epred
, (C.2)

where Emeas is the measured photon energy. The mean of δE/E is used to

check energy calibration; its full width half max is a measure of the EMC

energy resolution.

Similarly, the direction of one particle in the final state, �npred
1 , can be

predicted if the energy-momentum 4-vector of the other particle, (E2, �p2), is
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known:

�npred
1 =

2γ2(E2 − �β · �p2)�β − �p2

|2γ2(E2 − �β · �p2)�β − �p2|
. (C.3)

Notice that for e+e− → γγ events, only direction vectors are needed to describe

photon kinematics.

We can compare the direction measured for a given photon with that

predicted by the other photon in the event in order to study possible errors

in reconstructing photon directions. The lab-frame polar and azimuthal angle

differences between measured and predicted photon directions are defined by:

δθ = arccos (�n1 · ẑ) − arccos
(
�npred

1 · ẑ
)
, (C.4)

δφ = arctan

(
�n1 · ŷ
�n1 · x̂

)
− arctan

(
�npred

1 · ŷ
�npred

1 · x̂

)
, (C.5)

where ẑ = �β/|�β|, ŷ points in the vertical direction, x̂ = ŷ × ẑ and �n1 is the

measured direction vector of the photon being considerated.

The photon momentum, �pγ , is reconstructed using the cluster position

in the EMC, �xEMC, an origin or vertex position assumed for photons, �xo, and

the measured energy of the cluster Eγ:

�pγ = Eγ · �xEMC − �xo

|�xEMC − �xo| . (C.6)

We use the mean event vertex location measured from Bhabha and

e+e− → µµ events for each run—called here the interaction point (IP)—as the

event vertex for all 2-photon events because the actual event vertex cannot

be determined. Typical values of the IP location, the RMS spread in event

116



Parameters Typical value
x (cm) 0.1

IP position y (cm) 0.3
z (cm) −0.9
x (µm) 110

RMS in event vertex y (µm) 3.3
z (µm) 7100

x −0.01
�β y −0.0002

z 0.4857

Table C.1: The typical values of the IP position, IP RMS size and the boost
vector.

vertices and the components of CM boost vector, all in the standard BABAR

coordinate system, are collected in Table C.1.
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C.2 The data samples and event selection

The data used in this analysis are the good runs 1 in the ranges of run

number between 25281 and 25382 (about 3 million events); these events are

reconstructed with the 13.0.1 release. About 1 million Monte Carlo events

are generated and reconstructed with the 13.0.1 release.

The selection criteria for the 2-photon events used in the present anal-

ysis are given in the following:

• To obtain e+e− → γγ events having a standard detection efficiency, we

use events that passed the Level 3 trigger under the L3TGammaGammaFilter.

It requires:

– zero tracks satisfying:

∗ |dIP
0 | < 1.5 cm, |dIP

0 | is the distance of closest approach to the

IP in the x-y plane,

∗ z0 < 10.0 cm, z0 is z coordinate of a track’s point of closest

approach to z axis

∗ pT > 0.25 GeV/c, pT is the transverse momentum.

– one pair of high energy clusters satisfying E∗
γ/(ECM/2) > 0.7,

– |θ∗1 + θ∗2| < 0.5 rad, θ∗ is polar angle of a photon in the CM frame,

– |φ∗
1 − φ∗

2 + π| < 0.5 rad, φ∗ is azimuthal angle of a photon in the

CM frame.

1http://www.slac.stanford.edu/BFROOT/www/Physics/BaBarData/BaBarData.html
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• From the events passing the Level 3 criteria, we select photons starting

with all the local maxima of calorimeter energy deposits called “bumps”.

Then the following cuts are applied:

– the bumps should not be matched with any tracks,2

– E > 30 MeV,

– LAT (lateral moment) < 0.8,

• The bumps with these cuts are saved in the list called GoodPhotonLoose.

In events where there are more than two bumps or photons, the two

having the highest energies are selected. Then the following two cuts are

applied:

– the two photons must be approximately collinear in the CM frame

by requiring arccos( �n1 · �n2) < 0.03 rad, where �n is the direction

vector of each photon,

– θlab < 0.375 rad, because of the poor energy resolution as shown in

Fig. C.2.

The acolinearity cut is imposed in order to reject events with significant

initial-state radiation (ISR).

2We take the points where tracks intersect with the EMC, then compare azimuthal and
polar angles with those of bumps. Using a double Gaussian model, a significance level is
calculated. The bumps which are not matched with any tracks are those of which significance
level is smaller than 1 × 10−6.
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Figure C.2: The relative energy difference vs. θlab. The low theta (first
three θ rings of crystals in the endcap area) region has poor
energy resolution. This plot has only run 25281 and 25304,
and δE/E <2 is required so that the typical performance of
most crystals outside the endcap region can be seen.

C.3 Angle errors and resolutions

In this section, the angle differences (δθ or δφ) are studied as a func-

tion of polar angle θ and azimuthal angle φ. We do this for two basic reasons.

First, systematic errors in angle measurements will affect the predicted photon

energy and, hence, our understanding of the energy calibration. Second, an-

gle measurements affect the measured momentum for photons, an important

kinematic quantity. In the following, all angles are described in the lab frame.

C.3.1 Method

We represent the data in two dimensional histograms with one angle (θ

or φ) as the horizontal axis and one angle difference (δθ or δφ) as the vertical
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axis. We fit the angle difference distribution for each bin with a Gaussian

probability distribution function (pdf) and determine the corresponding mean

and width. One example plot is shown in Fig. C.3. The mean and width of

polar angle difference are called δθ and σ∆θ, respectively. Those of azimuthal

angle difference are called δφ and σ∆φ, respectively. The relation between

width and angular resolution is given by:

σθ ≡ σ∆θ/
√

2 or σφ ≡ σ∆φ/
√

2. (C.7)

Figure C.3: One example (out of 50 such distributions) of azimuthal angle
difference distribution with its Gaussian fit.

The fit-ranges are chosen to give the best χ2/ndf under the condition

that the fit-range ratio (the values of the fit function at the fit-ranges to the

maximum value of it) to be less than 0.3. The fit-qualities of the angle differ-

ence distributions are summarized in Fig. C.21, in Section C.6.3.
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C.3.2 Effects of misalignment on azimuthal angle distributions

If there is a misalignment of the EMC coordinate system relative to

the nominal BABAR system, the true origin of the photons is shifted by ∆�x

from the origin used in reconstruction, as shown in Fig. C.4. Therefore, the

reconstruction of a photon’s momentum should be corrected as in the following:

�pγ = Eγ · �xEMC − �xo − ∆�x

|�xEMC − �xo − ∆�x| , (C.8)

where Eγ is the measured energy of the photon, �xEMC is cluster position in the

EMC and �xo is origin of photons.

Photons produced parallel to ∆�x have no contribution from the mis-

alignment; those perpendicular to ∆�x have maximum error. The mean of

azimuthal angle difference is a sin function of φ, as shown in Fig. C.6.

δφ = A · sin(φ+ φ0), (C.9)

∆�xγ = (∆xγ ,∆yγ) = A · rγ

2
· (cosφ0, sin φ0), (C.10)

where A is a magnitude of the sin wave, φ0 is a phase and rγ is the distance

from the IP to the EMC in the x-y plane of each photon.

The parameters A and φ0 are extracted by fitting the mean of azimuthal

angle difference as a function of φ for each run. Then, we take events in which

both photons are detected in barrel region (θlab > 0.051 for both photons),

and calculate rγ for each photon. Using these values and Eq. C.10, the mis-

alignment ∆�xγ is calculated for each per photon; the resulting distribution

is shown in Fig. C.5. These data indicate there are probably two classes of
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Figure C.4: Schematic diagram showing the effect of a misalignment, ∆	x,
between the DCH and the EMC for photon momentum recon-
struction. The circle represents the EMC in the x-y plane.
The red arrows are the true photon directions and the black
arrows are the reconstructed photon directions using 	xo.

runs with slightly different relative EMC-DCH alignments. In what follows,

we assume a single misalignment for the entire data set given by the mean

values indicated in Fig. C.5. The mean shift is:

∆�xγ
∼= (−0.189 ± 0.006, 0.054 ± 0.005) cm. (C.11)

To check this relative alignment hypothesis, we correct the photon di-

rections by the mean EMC-DCH offset and re-evaluate the azimuthal differ-

ences. The blue points in Fig. C.6 are from reconstructing photon momenta

assuming their origin is at the IP; black markers are following correction of the

IP by ∆�xγ , using Eq. C.8. Monte Carlo generated events, which use the IP as

photons’ origin, give the red markers. Both black and red curves show small

remaining waves. A possible reason for this is a residual rotation of the EMC
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Figure C.5: (a) The misalignment between the DCH and the EMC in x
direction. (b) The same in y direction.

with respect to the DCH. We have not attempted to determine the parameters

of such a rotation.

The mean of azimuthal angle difference as a function of polar angle is

shown in Fig. C.7. Note that there are correlations between different values of

θ in this kind of plot: when a photon falls in the endcap area (low θ), the other

photon in the final state has a large value for θ. Therefore, the distribution is

symmetric about π/2 in the CM frame, but with opposite sign. In addition,

there is an asymmetry that arises from the θlab < 0.375 rad cut.

After corrections, the net azimuthal reconstruction error is less than 1

mrad over the full EMC acceptance.
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Figure C.6: The mean of azimuthal angle difference as a function of az-
imuthal angle. Blue markers are the data, using the normal
IP in reconstruction. The black markers are after applying the
misalignment correction. Red markers are for Monte Carlo
simulated events.
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Figure C.7: The mean of azimuthal angle difference as a function of polar
angle.
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C.3.3 Polar angle

In the same way we analyzed the azimuthal distribution, the mean of

the polar angle difference as a function of θ is shown in Fig. C.8. It shows a

complex structure which comes about from systematic errors in reconstructing

both “ends” of photon direction vectors: the origin and the cluster position.

Systematic error in the z direction of the event will affect the mean of the

polar angle difference distribution. Data show that the misalignment in z di-

rection is small. Cluster position reconstruction issues and the basis for the

“prediction”—black curve—are explained in Section C.6.1. The prediction in-

dicated in Fig. C.8 is based on true cluster position at a fixed depth 16 cm in

crystals, while 12.5 cm was used in the reconstruction code. Notice that Monte

Carlo simulated events disagree with data and with the prediction. The Monte

Carlo distribution shows the same structure as our prediction made for cluster

position on the EMC crystal surface as shown in Fig. C.19 in Section C.6.2.

The reason for this is not fully understood yet, but this result suggests incon-

sistencies in reconstructing Monte Carlo events compared to actual data. But

we have found no obvious error in reconstruction code.

For reasons described above, polar angle correlations between the two

photons lead to correlations in the structures seen in Fig. C.8. With a re-

alistic model of shower depth, it is plausible that systematic errors in polar

angle can be maintained below the 1 mrad level. However, the Monte Carlo

events/data differences indicated here must be understood before we can have

full confidence in the polar angle reconstruction.
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Figure C.8: The mean of polar angle difference as a function of polar angle.

C.3.4 Angular resolution

Angular resolutions are shown in Fig. C.9. The azimuthal angle res-

olution, 2.7 mrad, is extracted from a constant fit to data. The polar angle

resolution peaks near 90 degrees because of the effect of the spread in longitu-

dinal positions of the true event locations, which cannot be reconstructed on

an event-by-event basis. To verify this, we take Monte Carlo generator-level

tracks—which are generated at one point—and smear them with a Gaussian

distribution function of mean 0 and width 0.79 cm in the z direction. After

smearing, the shape of the data points (black and red markers in Fig. C.9(b))

is well reproduced. Because this effect of spread in event vertices is large com-

pared to the expected polar angle resolution, it is not possible to extract a

meaningful value for polar angle resolution; we expect it is consistent with
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Figure C.9: (a) Azimuthal angle resolution as a function of polar angle
and its constant fit. (b) Polar angle resolution as a function of
polar angle.

EMC crystal sizes and typical shower sizes as is the azimuthal resolution.
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C.4 Energy bias and resolution

Because of two-body kinematics, it is possible to predict the energy of

a photon from its measured polar angle. Our study of the relative energy dif-

ference between measured and predicted photon energies, δE/E, as a function

of polar angle is described in this section.

C.4.1 Method

Again, we present data in two dimensional histograms with θ as hori-

zontal axis and δE/E as vertical axis. We fit δE/E distribution for each bin

with the so-called “Crystal Ball” function,

C(x) =


Ne

− (x−x0)2

2σ2 for x > x0 − ασ,

N (n/α)ne−
α2

2

[(x0−x)/σ+n/α−α]n
for x ≤ x0 − ασ,

(C.12)

with five free parameters (peak height N , peak position x0, width σ, joint

parameter α and power n). One example plot is shown in Fig. C.10. The

mean of each fit is called δE/E and relative energy resolution, σE/E, is full

width half max divided by 2.354.

We find that the Crystal Ball function doesn’t completely describe the

full fit-range properly. Therefore, care must be taken in order to find the

best fit-ranges to describe the peak fit and to determine the resolution most

reliably. The fit-ranges are chosen to give the best χ2/ndf under the condition

that the fit-range ratio (the values of the fit function at the fit-ranges to the

maximum value of it) are less than 0.3. The fit-qualities of the relative energy

difference distributions are summarized in Fig. C.22, in Section C.6.3.
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C.4.2 Energy calibration bias and resolution

The mean of relative energy difference δE/E, and relative energy reso-

lution, σE/E, are shown in Fig. C.11. A constant fit to δE/E gives 0.84 % for

data and −0.37 % for Monte Carlo events. A reasons for a negative value in

the Monte Carlo distribution could be the use of an electron shower model in

the acceptance correction for photons. The systematic difference between data

and Monte Carlo events is 1.2 %. This difference is possibly due to the mis-

calibration of high energy photons. Furthermore, the energy resolution shows

a step around θ ∼ 1.2 rad. A possible reason for the step is that different

types of amplifiers are employed in the EMC at different polar-angle regions

and crystal depths. A value for the energy resolution is fitted separately for

each region in polar angle. The resulting energy resolution is 1.6 % at low θ

and 2.1 % elsewhere.

C.4.3 Systematic errors

Two different possible sources of systematic errors have been studied.

One is the resolution of the predicted energy. The other is the effect of errors

in the measured polar angle which arise from the longitudinal distribution of

beam vertices. We find both potential sources to be small.

C.4.3.1 Resolution of the predicted energy

To test that the resolution of the predicted energy is negligible com-

pared to that of the measured energy, the energy of a photon from the generator
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level Monte Carlo, we compute the difference between the generated energy,

Egen, and the predicted energy, Epred. The relative energy difference between

predicted and generated energies, (Egen −Epred)/Egen, is plotted for the full θ

range in Fig. C.12. A Crystal Ball function fit gives 0.3 % for resolution of the

predicted energy; the systematic error of the measured energy.

C.4.3.2 Resolution of the polar angle

The unknown longitudinal vertex position distribution is the dominant

contribution to the resolution of the polar angle. We can eliminate this con-

tribution and estimate the systematic error in the predicted energy due to the

polar angle measurement error, by choosing the vertex position for each event

that makes the two photons back-to-back in the CM frame, instead of using

the IP which is an average for each run. A histogram of the difference between

the nominal longitudinal position and the position that forces the photons to

be back-to-back, ∆z, is shown in Fig. C.13. The RMS of ∆z, 0.79 cm, is close

to that measured for vertices in events with charged tracks, 0.71 cm, which

arise from the longitudinal extents of the colliding beams.

Because photons are forced to be back-to-back in this analysis, we need

only one polar angle θ∗event to describe the event. We calculate a test predicted

energy, Etest
pred, with θ∗event, and a test variable (δE/E)test according to:

Etest
pred ≡ ECM

2
γ(1 + β cos θ∗event), (C.13)(

δE

E

)
test

≡ Emeas −Etest
pred

Etest
pred

. (C.14)
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The mean of relative energy difference and the energy resolution from this

method are shown in Fig. C.14. These agree with our results where the nominal

IP was used for all event vertices.

The difference of δE/E and of energy resolution between the “default”

method and the “forced-back-to-back test” method is histogramed in Fig. C.15.

The RMS gives the systematic error of δE/E, 0.2 %, and of the energy reso-

lution, 0.1 %.

The combined systematic error is 0.3 % for relative energy difference

and 0.3 % for energy resolution.

C.4.4 Result: energy calibration bias and resolution

As a summary, photon energies are reconstructed systematically 1.2 ±
0.3 % higher than what is predicted by kinematics. The energy resolution is

1.6 ± 0.3 % for smaller polar angles and 2.1 ± 0.3 % for larger polar angles.

Our results for the EMC energy resolution (black markers in Fig. C.11(b))

is overlaid with energy resolutions from other analyses, as shown in Fig. C.16.

We find the energy resolution of high energy photons to be the same or better

than that determined using Bhabha events.

C.5 Summary

The means and resolutions, of angle differences and of relative energy

difference, are studied using e+e− → γγ events. The mean of the azimuthal
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angle difference distribution shows the importance of using the correct origin

for reconstructing photon momenta. It also indicates a misalignment between

the DCH and the EMC: −0.189 ± 0.006 cm in x, 0.054 ± 0.005 cm in y. Sys-

tematic errors in azimuthal reconstruction are less than about 1 mrad and

the φ resolution is 2.7 mrad. The mean polar angle difference distribution is

strongly affected by the cluster position reconstruction algorithm. The θ reso-

lution distribution is dominated by the spread of the interaction point in the z

direction. The longitudinal distribution of event vertices can be measured by

forcing the photons to be back-to-back in the CM frame. The resulting lon-

gitudinal distribution agrees with vertex distributions in events with charged

tracks where the event location can be measured directly.

High energy photons appear to be miscalibrated by 1.2 %. The energy

resolution derived from e+e− → γγ events is 1.6 % at low θ and 2.1 % else-

where. This is approximately the same as or better than the energy resolution

measured with Bhabha events.

C.6 Appendix

C.6.1 Cluster position reconstruction and prediction

A typical electromagnetic shower spreads over many adjacent crystals,

forming a cluster of energy deposits.

In release-10, the position of these energy deposits are assumed to be

at the center of the front face of the crystals. From the polar and azimuthal

angles of these positions, the angles of the cluster position is calculated using
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a center-of-gravity method with logarithmic weights. The cluster position is

defined as the intersection of the front face of the crystals with a line from the

origin in the direction given by the cluster angles.

A systematic bias of the calculated polar angle originates from the

non-projectivity of the crystals. This bias is corrected by a simple offset of

−2.6 mrad for θ > 90◦ and +2.6 mrad for θ < 90◦. This correction δR10 is

calculated by the following equation:

δR10 =
0.0026 · (1 − exp(−61 · cos θ))

1 + exp(−61 · cos θ)
, (C.15)

as shown in Fig. C.17 (black line).

The maximum longitudinal shower development of a 6 GeV photon-

induced cascade in the EMC is about 12.5 cm. To take this depth into account,

we move the position of the energy deposit �xf toward the middle of the crystals

by the depth d along the crystal axis n̂α, as shown in Fig. C.18. The vector of

the new position �xhit is given as following:

�xhit = �xf + d · n̂α − �xIP, (C.16)

where �xIP is the vector to the IP from the origin. In the reconstruction code,

the origin instead of the IP is used: �xIP ≡ 0. The polar angle difference δ is

given as θhit − θf. Its predicted distribution from the EMC geometry is shown

in Fig. C.17 (bluer marker).

Since the positions of the energy deposits are not saved in the dataset,

we use the cluster positions instead of the energy deposit positions to predict
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the systematic error of the angle difference in the e+e− → γγ events. It is

possible if we assume the errors of those are the same for all energy deposits in

the cluster. The predicted angle difference made with the depth d = 12.5 cm

and the longitudinal IP position zIP (0 cm for data and 1.5 mm for Monte

Carlo events) is overlayed in Fig. C.19. Monte Carlo distribution does not

agree well with the prediction for reasons not understood yet. The fact that

our prediction for Monte Carlo distribution with zIP = 1.5 cm agrees better

might be a hint for a geometry problem in the EMC.

In the release-13 code, the shower depth d = 12.5 cm is used for the

positions of the energy deposits. Thus the simple correction δR10 is removed.

By this change, the gross distortions apparent under the release-10 code are

largely eliminated.

We estimate the systematic error that would be associated with a dif-

ferent actual shower depth dtrue and zIP. We overlay the systematic error

estimated for dtrue = 16 cm in Fig. C.8. The magnitudes of remaining struc-

ture in the data, as well as some of the peaks and dips are approximately

represented by the present estimate but there is additional structure in the

data. The fact that the phase of the wiggle in the curve seems to agree with

the data implies that the true depth of the photon hit in these crystals is

somewhat greater than that assumed by the reconstruction algorithm.
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C.6.2 Analysis with Release-10

The same analysis with data and Monte Carlo events as describe in the

main text has been done with release-10 reconstruction code. We present only

the results which show difference.

Mean of polar angle difference as a function of polar angle are discussed

in Appendix C.6.1. Mean of relative energy difference and the energy resolu-

tion are shown in Fig. C.20. These results show impact of the improvements

made to the cluster position reconstruction that have been first implemented

in release-13.

C.6.3 Fit qualities

The quality of Gaussian fit to the azimuthal angle and Crystal Ball

function fit to the relative energy difference are shown in Fig. C.21 and in

Fig. C.22.
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Figure C.10: One example (out of 50 such distributions) of relative energy
difference distribution with its Crystal Ball function fit.
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Figure C.11: (a) The mean of relative energy difference as a function of
polar angle and their constant fits. (b) Relative energy reso-
lution as a function of polar angle and their constant fits.
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Figure C.14: (a) The mean relative energy difference. (b) Relative energy
resolution. The black markers are from Fig. C.11 and the
blue markers with the “forced-back-to-back test” method.
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Figure C.15: (a) The difference of mean relative energy differencefrom two
methods. (b) The difference of relative energy resolution from
two methods.
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Figure C.18: The position of the energy deposit and non projectivity. 	xf

is the position of the energy deposit on the front face of the
crystal and 	xhit is that moved into the crystal with a depth
d along the crystal axis. θf and θhit are according polar an-
gles. n̂α is the unit vector in the crystal axis direction. This
drawing is not to scale.
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Figure C.22: The quality of relative energy difference fit as a function of θ.
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top right is the χ2 probability histogram. The bottom left is
the ratio (fit function value at the left fit-range)/(maximum
value of the fit function), the bottom right is the same for the
right fit-range. The ratio is smaller than 0.3 at all times.

146



Bibliography

[1] N. Cabibbo. Phys. Rev. Lett., 10:531, 1963.

[2] M. Neubert. Subleading shape functions and the determination of Vub.

hep-ex/0207002.

[3] A. Bornheim and et al. [The CLEO Collaboration]. Phys. Rev. Lett.,

88:231803, 2002.

[4] D. H. Perkins. Introduction to High Energy Physics. Cambridge Univer-

sity Press, New York, 2000.

[5] S. L. Glashow. Nucl. Phys., 22:579, 1961.

[6] S.L. Glashow, J. Iliopoulos, and L. Maiani. Phys. Rev. D, 2:1285, 1970.

[7] J.H. Christenson and et al. Phys. Rev. Lett., 13:138, 1964.

[8] L. Wolfenstein. Phys. Rev. Lett., 51:1945, 1983.

[9] H. Leutwyler and M. Roos. Z. Phys. C, 25:91, 1984.

[10] S. Eidelman and et al. [Particle Data Group]. Phys. Rev. D, 592:1, 2004.

[11] A. Bornheim and et al. [The CLEO Collaboration]. Phys. Rev. Lett.,

88:231803, 2002.

147



[12] B. Aubert and et al. [The BABAR Collaboration]. hep-ex/0207081.

[13] K. Abe and at al. [The Belle Collaboration]. BELLE-CONF-0325, 2003.

[14] C. Schwanda (for the Belle Collaboration). to appear in the ”proceedings

of the international europhysics conference on high energy physics–eps

2003”, aachen, germany. 2003.

[15] B. Aubert and et al. [The BABAR Collaboration]. hep-ex/0307062.

[16] V. Berger, C.S. Kim, and R.J.N. Phillips. Phys. Lett. B, 251:629, 1990.

[17] B. Aubert and et al. [The BABAR Collaboration]. hep-ex/0408075.

[18] E.V. Shuryak. Phys. Lett. B, 93:134, 1980.

[19] J.E. Paschalis and G.J. Gounaris. Nucl. Phys. B, 222:473, 1983.

[20] E. Eichten and B. Hill. Phys. Lett. B, 234:511, 1990.

[21] H. Georgi. Phys. Lett. B, 240:447, 1990.

[22] M. Shifman. Quark-hadron duality. UMN-TH-1920/00, 2000.

[23] I.I. Bigi, N.G. Uraltsev, and A.I. Vainshtein. Phys. Lett. B, 293:430,

1992.

[24] B. Blok and M. Shifman. Nucl. Phys. B, 399:441, 1993.

[25] T. Mannel and M. Neubert. Phys. Rev. D, 50:2037, 1976.

148



[26] B. Aubert and et al. [The BABAR Collaboration]. Phys. Rev. Lett.,

93:11803, 2004.

[27] B. Aubert and et al. [The BABAR Collaboration]. Measurement of the

inclusive electron spectrum in charmless semileptonic b decays near the

kinematic endpoint and determination of Vub. hep-ex/0408075.

[28] A.H. Hoang, Z. Ligeti, and A.V. Manohar. Phys. Lett. D, 59:74017, 1999.

[29] P. Oddone. In D. Stork, editor, Proceedings of the UCLA Workshop: Lin-

ear Collider BB Factory Conceptual Design, page 243. World Scientific,

1987.

[30] B. Aubert and et al. [The BABAR Collaboration]. The BABAR detector.

Nucl. Instr. Meth. A, 479:1–116, 2002.

[31] B. Aubert and et al. [The BABAR Collaboration]. Technical design report.

SLAC-REP-372, 1995.

[32] BABAR Physics Book. http://www.slac.stanford.edu/pubs/slacreports/

slac-r-504.html.

[33] C. Bozzi and et al. [The BABAR SVT Collaboration]. The BABAR silicon

vertex tracker. Nucl. Instr. Meth. A, 453:78–83, 2000.

[34] G. Sciolla and et al. [The BABAR Drift Chamber Collaboration]. The

BABAR drift chamber. Nucl. Instr. Meth. A, 419:310–314, 1998.

149



[35] I. Adam and et al. [The BABAR DIRC Collaboration]. The dirc detector

at BABAR. Nucl. Instr. Meth. A, 433:121–127, 1999.

[36] http://www.slac.stanford.edu/BFROOT/www/Physics/Analysis/AWG/

Luminosity.

[37] R. Bartoldus and et al. Trigger and filter documentation for run1. BABAR

Analysis Document #194, 2002.

[38] G. Fox and S. Wolfram. Observables for the analysis of event shapes

in e+e− annihilation and other processes. Phys. Rev. Lett., 41(23):1581,

1978.

[39] http://www.slac.stanford.edu/~lange/EvtGen/.

[40] Nucl. Instr. Meth. A, 506:250–303, 2003.

[41] N. Isgur, D. Scora, B. Grinstein, and M.B. Wise. Phys. Rev. D, 39:799,

1989.

[42] D. Scora and N. Isgur. Phys. Rev. D, 52:2783, 1995.

[43] I.I. Bigi, M. Shifman, and N.G. Uraltsev. Ann. Rev. Nucl. Part. Sci.,

47:591, 1997.

[44] J.L. Goity and W. Roberts. Phys. Rev. D, 51:3459, 1995.

[45] B. Aubert and et al. [The BABAR Collaboration]. Phys. Rev. D, 67:031101,

2003.

150



[46] G. Mancinelli and S. Spanier. Kaon selection at the BABAR experiment.

BABAR Analysis Document #116, 2001.

[47] M. Bona and et al. Report of the tracking efficiency task force for 2001.

BABAR Analysis Document #321, 2002.

[48] http://www.slac.stanford.edu/BFROOT/www/Physics/Tools/Pid/PidOnMc/

pidonmc%.html.

[49] T. Brandt. Electron Identification and Measurement of the Inclusive

Semileptonic Branching Fraction of B mesons at the BABAR Experiment.

PhD thesis, Technical University Dresden, November 2001.

151



Vita

Hojeong Kim was born in Jeonju, Korea on August 14, 1974, the daugh-

ter of Kim Moonsoo and Ra Seonghee. After completing her work at Deok-

moon Girls’ High School, Busan, Korea, in 1993, she entered the Korea Uni-

versity in Seoul, Korea. She received the degree of Bachelor of Science from the

same university in February 1997. In August 1997, she entered the Graduate

School of The University of Texas at Austin.

Permanent address: Nam-gu Yongho-dong LG Metro City Apt.
202-1902, Busan, Korea

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

152




