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This thesis is a study of D-branes in string compactifications. In this context, D-

branes are relevant as an important component of the nonperturbative spectrum, as an

incisive probe of these backgrounds, and as a natural stringy tool for localizing gauge

interactions.

In the first part of the thesis, we discuss half-BPS D-branes in compactifications of

type II string theory on Calabi-Yau threefolds. The results we describe for these objects are

pertinent both in their role as stringy brane-worlds, and in their role as solitonic objects.

In particular, we determine couplings of these branes to the moduli determining the closed-

string geometry, both perturbatively and non-perturbatively in the worldsheet expansion.

We provide a local model for transitions in moduli space where the BPS spectrum jumps,

and discuss the extension of mirror symmetry between Calabi-Yau manifolds to the case

when D-branes are present.

The next section is an interlude which provides some applications of D-branes to other

curved backgrounds of string theory. In particular, we discuss a surprising phenomenon in

which fundamental strings moving through background Ramond-Ramond fields dissolve

into large spherical D3-branes. This mechanism is used to explain a previously-mysterious

fact discovered via the AdS-CFT correspondence. Next, we make a connection between

type IIA string vacua of the type discussed in the first section and M-theory compactifica-

tions on manifolds of G2 holonomy. Finally we discuss constructions of string vacua which

do not have large radius limits.

In the final part of the thesis, we develop techniques for studying the worldsheets of

open strings ending on the curved D-branes studied in the first section. More precisely,

we formulate a large class of massive two-dimensional gauge theories coupled to boundary

matter, which flow in the infrared to the relevant boundary conformal field theories. Along

with many other applications, these techniques are used to describe worldvolume theories

of pointlike D-probes of various Calabi-Yau threefolds.
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Chapter 1: Friendly Introduction

String theory is a framework which reconciles the two main advances of twen-

tieth century physics – quantum mechanics and Einstein’s theory of gravity. It is

a beautiful theory which has no ambiguity in its formulations, and which passes

many non-trivial consistency tests. It has natural solutions which look very much

like the world we observe; in addition to gravity, these solutions produce gauge

theories with chiral matter, such as the Standard Model of particle physics.

In spite of all these laurels, we find our basic understanding of string theory at

a rather primitive level. For example, just a few years ago, a large set of degrees of

freedom were discovered in the theory whose significance had not been appreciated.

These are extended objects, called D-branes, which are sources for the many tensor

fields present in string theory (in the same way that an electron is a source for the

electromagnetic field). Simply put, they are dynamical pieces of space on which

open strings can end. An important feature of D-branes is that their motions are

described by gauge theories (like the Standard Model mentioned above) which live

on their worldvolume.

Our current understanding of string theory starts in ten dimensions with an

enormous number of unbroken supersymmetries. Supersymmetry pairs particles

with complementary partners of opposite statistics but the same mass. This con-

strains the behavior of the theory, and the number of such symmetries present in

ten dimensions forbids many interesting stringy effects. The solutions of string the-

ory which look something like our world generally involve curling up six of these

dimensions into some very small shape which solves the equations of motion of the

theory, leaving macroscopic the four dimensions which we observe. Furthermore, the

shape of this “internal” space (known as a Calabi-Yau (CY) manifold) breaks most

of the supersymmetries, which means that the dynamics become less constrained

and we can see more inherently stringy phenomena. Besides providing a natural

and tractable mechanism for breaking some of the supersymmetries, these curved

backgrounds exhibit intriguing and fruitful connections between string theory and

modern mathematics.

As mentioned above, (in flat space and at weak coupling) the dynamics of D-

branes have a simple description in terms of the sectors of free open strings which

end on them. However, when a D-brane is embedded in curved space – such as
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one finds in some solutions of string theory which could be relevant to nature – or

in the presence of other strong background fields, these open strings are strongly

interacting. My work has focused on the fascinating behavior of D-branes in such

environments. As I will explain below, D-branes provide many realizations of quasi-

realistic string vacua which can be studied using techniques which were previously

unavailable. Furthermore, the dynamics of these objects in curved backgrounds

have many remarkable qualitative consequences.

The class of examples of quasi-realistic string solutions alluded to above in-

volves D-branes wrapping subspaces of a Calabi-Yau manifold and filling the non-

compact dimensions we observe. The fluctuations of the branes could plausibly

mediate the interactions of nature. Vacua of the heterotic string which look quite

a bit like the real world have been known for some time. However, having at our

disposal more ways of obtaining potentially phenomenological solutions gives new

perspective on old problems, such as the relative strengths of the gravitiational and

particle-physics forces, and the doublet-triplet splitting problem of grand-unified

theories. These new vacua are in many cases dual to the old solutions, in the sense

that the description in terms of branes is good in one regime of parameters, while

a description via the heterotic string is valid in another, continuously connected

regime. The brane description has some advantages. The realization in terms of D-

branes clearly delineates bundle moduli from moduli of the CY. Further, there exist

in these backgrounds classical mechanisms for breaking supersymmetry which give

the same desired scalings of masses as one finds from nonperturbative mechanisms

used for quasi-realistic vacua of the (strongly coupled) heterotic string.

In the first part of this thesis, we discuss couplings between closed-string and

open-string moduli in these backgrounds. In chapter two, we study an example

where changing the closed-string moduli results in a jump in the spectrum of su-

persymmetric D-branes. We provide a local field theory model for this behavior.

In chapters three and four, we attempt to understand and use the duality

between IIA with D6-branes wrapping a special Lagrangian (sL) three-cycle of a

CY, M , and IIB with D5-branes wrapping the mirror holomorphic curve in the

mirror manifold, W . On the both sides, one obtains massless scalars living in the

four-dimensional spacetime from infinitesimal deformations of the supersymmetric
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cycles. On the IIB side, these deformations can classically be obstructed at some

higher order; this can be summarized by a superpotential for the corresponding

fields in the effective 4d action. The result from classical geometry is exact in

the sigma model (but we work at tree level in the string coupling). On the IIA

side, however, a non-renormalization theorem shows that no potential for the de-

formation fields can be generated at any order of sigma-model perturbation theory.

The classical superpotential on the IIB side must be reproduced instead by disc

instantons - maps from the Euclidean string worldsheet to the CY whose images

are holomorphic curves with boundary on the sL submanifold. We have shown that

such configurations have the right properties to contribute to the superpotential.

We study in detail a particular class of examples of special Lagrangian 3-cycles

and their mirror holomorphic curves. On the type IIA side, these involve CY

manifolds which have genus g curves of AN singularities. When these are resolved,

one obtains families of rational curves. There exist deformations of the complex

structure of the CY which break up these families into N(2g − 2) isolated curves.

The superpotential which encapsulates this effect is generated on the mirror by

nonperturbative worldsheet effects. We have identified a mechanism by which the

disc instanton sum cancels on the mirror of the locus where the nontrivial moduli

space of curves exists. We analyzed the topology of the sL three-cycles and observed

that their homology can vary as a function of closed-string moduli.

Part III describes techniques which can be applied to the study of these back-

grounds. With S. Hellerman, S. Kachru and A. Lawrence, we formulated a new

description of open strings ending on D-branes in CY manifolds. This description,

known as a linear sigma model, is a two-dimensional field theory with tractable

interactions which at long distances has the properties of the non-linear theory de-

scribing the strings’ dynamics. Such an approach was used by E. Witten to great

effect in describing closed-string interactions on CY manifolds. As with the closed

string models, this approach allows one to gain quantitative understanding of the

behavior of strings in regimes where the geometric description breaks down, such

as when the CY space is very small or singular. Using this technology, one can

determine the effective theory on the worldvolume of the branes, and in particular

diagnose whether the this theory has chiral matter representations of interesting

gauge groups. The linear model is an ideal tool for mapping out the space of vacua
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of the open strings, and for following the behavior of D-branes as the background

geometry is deformed. In summary, the linear sigma models we have developed

provide a powerful new technique for studying D-brane physics.

In the strong-coupling limit, these theories have a description in terms of an

11-dimensional theory, known as M-theory, compactified on a (possibly singular)

manifold of G2 holonomy. This fact allows a complementary approach to under-

standing these backgrounds via geometry and the (partly known) behavior of M-

theory at singularities. With S. Kachru, we examined this correspondence for some

of the few known examples of compact G2 manifolds. Our progress is described in

chapter 5.

Remarkably, some of the techniques which we have developed for describing the

string worldsheet via linear sigma models are useful for making an effective theory

of the fluctuations of branes – the supersymmetric structure of the interactions is

similar. This has allowed us (with S. Hellerman) to develop field theories with

finitely many fields describing probes of compact spaces. These studies could lead

to nonperturbative definitions of string theory in these backgrounds, along the lines

of the matrix model for M-theory. Our progress in this direction is described in

chapter 10.

One of the main obstacles to making further contact between string theory and

observation is the apparent overabundance of solutions of the theory. Because of this

embarassment of riches, it is important for string theorists to attempt to understand

more basic aspects of the theory, even in regimes which are not directly interesting

for phenomenology. A class of solutions of string theory about which much has been

learned in the past few years involves a maximally-symmetric negatively curved

space – Anti-de Sitter space, or AdS for short – times a maximally-symmetric

positively curved space – a sphere. The curvature of the sphere is supported against

collapse by some tensor flux. It turns out that an understanding of certain simple

aspects of the physics of these backgrounds follows directly from the behavior of

D-branes in curved space and background fields. The main advance in this area

was the realization that information about string theory in such backgrounds is

contained in field theories which live on the boundary of the AdS space. Using this

duality, it was noticed that certain sets of states, in particular those with angular

momentum larger than a cutoff set by the size of the space, were simply absent
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from the theory. Translating to a statement about string theory in AdS times a

sphere, this “Stringy Exclusion Principle” says that in certain vibrational modes,

a string moving on the sphere has a maximum angular momentum. We (with L.

Susskind and N. Toumbas) proposed a simple explanation of this phenomenon, as

we will describe in more detail in chapter four.

The effect we discovered is similar to the behavior of an electric dipole in

a magnetic field. Using earlier work by R. Myers, we showed that when a string

moves through the background flux on the p-sphere, it becomes polarized and in fact

expands into a spherical D(p−2)-brane. The key fact for understanding the missing

states is that the size of this “giant graviton” grows with its angular momentum.

The Exclusion Principle is simply understood as the fact that there is a biggest

(p− 2)-sphere inside a p-sphere.

The giant graviton effect is one way we can see that these objects which we have

been studying (strings and D-branes) should have a more fundamental description

than the perturbative one – in fact, they are made from the same stuff.

Further, our explanation of the exclusion principle is a manifestation of a new

paradigm which has emerged for quantum gravity. In traditional particle physics,

high energies were linked with short-distance phenomena. A quantum theory con-

taining black holes problematizes this correspondence because a black hole grows

as it gains energy. In quantum gravity it has become clear that the highest-energy

objects are actually macroscopically large.

Above, we mentioned that realistic string vacua were generally of the form of

a compactification of the ten-dimensional theory on a small Calabi-Yau manifold.

Such vacua have the generic problem that the volume of the manifold is undeter-

mined. The fact that classically there is no energy cost for changing this value

leads to many phenenological problems. In chapter seven, we discuss a class of

potentially realistic models which do not have that feature, because they cannot be

described as a ten-dimensional geometry. We construct these vacua as two-torus

fibrations where the monodromy group includes stringy symmetries. These theories

are nevertheless weakly-coupled. They have a lower-dimensional local description

as compactifications with various kinds of branes wrapping parts of the space.

The work we have been doing on strings and branes in curved backgrounds has

many applications in string theory and M-theory. For example, the linear sigma
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model allows a very intuitive approach to off-shell string theory, in the following

sense. The equations of motion of string theory are the vanishing equations for the

beta functions of the worldsheet field theory; a massive theory such as the linear

sigma model represents a configuration on the slope of a string theory potential

hill. Very little is known about this off-shell configuration space. It is by developing

a better understanding of such inner workings of the theory itself that we will

learn to tackle the big questions which string theory must eventually address, such

as vacuum selection, supersymmetry breaking, and the value and origin of the

cosmological constant.
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Chapter 2: Supersymmetric Three-cycles

and (Super)Symmetry Breaking

We describe physical phenomena associated with a class of transitions that occur in

the study of supersymmetric three-cycles in Calabi-Yau threefolds. The transitions

in question occur at real codimension one in the complex structure moduli space

of the Calabi-Yau manifold. In type IIB string theory, these transitions can be

used to describe the evolution of a BPS state as one moves through a locus of

marginal stability: at the transition point the BPS particle becomes degenerate

with a supersymmetric two particle state, and after the transition the lowest energy

state carrying the same charges is a non-supersymmetric two particle state. In

the IIA theory, wrapping the cycles in question with D6-branes leads to a simple

realization of the Fayet model: for some values of the CY modulus gauge symmetry

is spontaneously broken, while for other values supersymmetry is spontaneously

broken.

1. Introduction

In the study of string compactifications on manifolds of reduced holonomy,

odd-dimensional supersymmetric cycles play an important part (see for instance

[2,3,4,5,6,7,8,9,10,11] and references therein). In type IIB string theory, a super-

symmetric three-cycle can be wrapped by a D3-brane to yield a BPS state whose

properties are amenable to exact study; in the IIA theory or in M theory, Euclidean

membranes can wrap the three-cycle and contribute to “holomorphic” terms in the

low energy effective action of the spacetime theory (that is, terms that are integrated

over only a subset of the fermionic superspace coordinates).

Of particular interest, partially due to their role in mirror symmetry [6,8], have

been special Lagrangian submanifolds in Calabi-Yau threefolds. In an interesting

The material in Chapter 1 appeared in “Supersymmetric Three-cycles and (Su-

per)symmetry Breaking” with Shamit Kachru [1] and is reprinted with permission of Phys.

Rev. D.
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recent paper by Joyce [11], various transitions which these cycles undergo as one

moves in the complex structure or Kähler moduli space of the underlying CY man-

ifold were described. In this note, we study some of the physics associated with

the simplest such transitions discussed in §6 and §7 of [11]. These transitions are

reviewed in §2. The physical picture which one obtains by wrapping D3-branes

on the relevant cycles in IIB string theory is described in §3, while the physics of

wrapped D6-branes in type IIA string theory occupies §4. Our discussion is purely

local (in both the moduli space and the Calabi-Yau manifold), as was the analysis

performed in [11]; we close with some speculations about more global aspects in §5.

At all points in this chapter, we will be concerned with rigid special Lagrangian

three cycles. Since the moduli space of a special Lagrangian three cycleN (including

Wilson lines of a wrapped D-brane) is a complex Kähler manifold of dimension

b1(N) [12,7], this means we have to focus on so-called “rational homology three

spheres” with H1(N,ZZ) at most a discrete group. We will further assume that

H1(N,ZZ) is trivial.

2. Splitting Supersymmetric Cycles

2.1. Definitions

Let M be a Calabi-Yau threefold equipped with a choice of complex structure

and Kähler structure. Let ω be the Kähler form onM , and let Ω be the holomorphic

three-form, normalized to satisfy

ω3

3!
=

i

8
Ω ∧ Ω (2.1)

This also allows us to define two real, closed three forms on M , Re(Ω) and Im(Ω).

Let N be an oriented real three-dimensional submanifold of M . We call N

special Lagrangian with phase eiθ iff

a) ω|N = 0

b) (sin(θ)Re(Ω)− cos(θ)Im(Ω))|N = 0

(a) and (b) together imply that

∫

N

(cos(θ)Re(Ω) + sin(θ)Im(Ω)) = vol(N) (2.2)

where vol(N) is the volume of N .
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Physically, the relevance of θ for us will be the following. LetN andN ′ be three-

cycles which are special Lagrangian with different phases θ and θ′. Compactifying,

say, IIB string theory on M , we can obtain BPS states which preserve half of the

N = 2 spacetime supersymmetry by wrapping three-branes on N or N ′. In the

notation of [2], the surviving supersymmetries in the presence of a D3-brane on N ,

for example, are generated by

εδ = eiδε+ + e−iδε−,

with δ = − θ
2
− π

4
. For generic θ 6= θ′, however, N and N ′ preserve different N = 1

supersymmetries and the state with both wrapped three-branes would break all of

the supersymmetry.

2.2. Transitions

The following supersymmetric three-cycle transitions are conjectured by Joyce

to occur in compact Calabi-Yau threefolds M .

Choose two homology classes χ± ∈ H3(M,ZZ) which are linearly independent

in H3(M, IR). For any Φ ∈ H3(M,C), define

Φ · χ± =

∫

χ±

Φ (2.3)

Thus Φ · χ± are complex numbers. Following Joyce, define a subset W (χ+, χ−) in

H3(M,C) by

W (χ+, χ−) = {Φ ∈ H3(M,C) : (Φ · χ+)(Φ · χ−) ∈ (0,∞)} (2.4)

So W (χ+, χ−) is a real hypersurface in H3(M,C).

Fix some small, positive angle ε. For Φ ∈ H3(M,C) write

(Φ · χ+)(Φ · χ−) = Reiθ

where R ≥ 0 and θ ∈ (−π, π]. Then we say Φ lies in W (χ+, χ−) if R > 0 and θ = 0.

We say that Φ lies on the positive side of W (χ+, χ−) if R > 0 and 0 < θ < ε. We

say that Φ lies on the negative side of W (χ+, χ−) if R > 0 and −ε < θ < 0. Then,

Joyce argues that the following kinds of transitions should occur. We are given

a Calabi-Yau M with compact, nonsingular three cycles N± in homology classes
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[N±] = χ±. N± are taken to be special Lagrangian with phases θ±. We assume

N± intersect at one point p ∈ M , with N+ ∩ N− a positive intersection. As we

deform the complex structure of M , the holomorphic three form moves around in

H3(M,C) and therefore the phases θ± of N± change.

When [Ω] is on the positive side of W (χ+, χ−) there exists a special Lagrangian

threefold N which is diffeomorphic to the connected sum N+#N−, with [N ] =

[N+] + [N−] in H3(M,ZZ). N can be taken to be special Lagrangian with phase

θ = 0 (this fixes the phase of Ω for us). As we deform [Ω] through W (χ+, χ−), N

converges to the singular union N+ ∪ N−. When [Ω] is in W (χ+, χ−), the phases

θ± align with θ = 0. On the negative side of W (χ+, χ−), N ceases to exist as a

special Lagrangian submanifold of M (while θ± again become distinct).

For completeness and to establish some notation we will find useful, we briefly

mention some motivation for the existence of these transitions [11]. In Joyce’s model

of the transition, there exists a manifold, D, with boundary S ⊂ N , which is special

Lagrangian with phase i. If we call its volume A, this means that iA =
∫

D
Ω. S

defines a 2-chain in N ; since we are assuming that H1(N,ZZ) is trivial, by Poincaré

duality, S must be trivial in homology. Because S is real codimension one in N , it

actually splits N into two parts:

N = C+ ∪ C−, ∂C+ = −S, ∂C− = S.

So C± ±D define 3-chains and in fact it turns out that

[C± ±D] = χ± = [N±] (2.5)

We see that we can determine the volume of D just from knowledge of χ±:

A =
1

i

∫

D

Ω =

∫

D

Im(Ω) =

∫

χ+

Im(Ω) (2.6)

using Re(Ω)|D = 0 and Im(Ω)|N = 0. But when [Ω] goes through W (χ+, χ−), we

see from (2.6) and from the definition of W (χ+, χ−) that A becomes negative; at

least in the local model in C3, this means that N does not exist.

10



3. Formerly BPS States in IIB String Theory

Now, consider Type IIB string theory compactified on M . When the complex

structure is such that [Ω] is on the positive side of W (χ+, χ−), one can obtain

a BPS hypermultiplet by wrapping a D3-brane on N . One can also obtain BPS

hypermultiplets by wrapping D3-branes on N+ or N−.

Because

[N ] = [N+] + [N−]

one can make a state carrying the same charges as the BPS brane wrapping N by

considering the two particle state with D3-branes wrapping both N+ and N−. How

does the energy of the two states compare?

Recall that the disc D with boundary on N splits N into two components, C±.

Define

B± =

∫

C±

Ω (3.1)

Then if we let V denote the volume of N and V ± denote the volumes of N±, we

recall:

V = B+ +B− (3.2)

V ±eiθ
±

= B± ± iA (3.3)

where A is the volume of D. Since on this side of the transition A is positive, θ+

is small and positive while θ− is small and negative. In fact, reality of the volumes

V ± lets us solve for θ± in terms of B± yielding

θ± = ± A

B± (3.4)

The energy of the single particle state obtained by wrapping a D3-brane on N is

TD3×V where TD3 is the D3 brane tension. The energy of the (nonsupersymmetric)

state obtained by wrapping D3-branes on both N± can be approximated by TD3 ×
(V + + V −). Expanding (3.3) for small θ±, we find:

V + + V − = V + A (θ+ − θ−) = V + A2 (
1

B+
+

1

B− ) (3.5)

So since A > 0 and ±θ± > 0 on this side of the transition, we see that the single

wrapped brane on N is energetically preferred.
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Therefore, when the complex structure is on the positive side of W (χ+, χ−),

the BPS state indeed has lower energy than the nonsupersymmetric two particle

state carrying the same charges, by roughly TD3 ×A(θ+ − θ−).

Now as one moves in the complex structure moduli space of M through a point

where [Ω] lies in W (χ+, χ−), A and θ± vanish. Therefore, (3.5) shows that that

mass of the two particle state becomes equal to that of the single particle state: we

are passing through a locus of marginal stability. On this locus, the two particle

state consisting of branes wrapping N± is supersymmetric, since N± are special

Lagrangian with the same phase.

Finally, move through to the region where [Ω] lies on the negative side of

W (χ+, χ−). Here, ±θ± < 0. Since N ceases to exist as a supersymmetric cycle,

the two particle state with D3-branes wrapping N± is the lowest energy state car-

rying its charges.1 Note that the two particle state is nonsupersymmetric, since

N± are special Lagrangian with different phases. Here, we are making the conser-

vative assumption that there is no stable, nonsupersymmetric bound state of these

two particles – such a bound state would be reflected in the existence of a (non-

supersymmetric) cycle in the homology class [N+] + [N−] with lower volume than

V + +V −. This is tantamount to assuming that the force between the two particles

is repulsive for slightly negative A. This is reasonable since for A positive there is

an attractive force and a (supersymmetric) bound state, and as A decreases to zero

the magnitude of the force and the binding energy decrease until they vanish when

A = 0.

This phenomenon is an interesting variant on the examples of [13]. There, a

stable nonsupersymmetric state passes through a locus of marginal stability and

becomes unstable to decay to a pair of BPS particles (which together break all of

the supersymmetries). In the present example, a BPS particle becomes, as we move

in complex structure moduli space, unstable to decay to a pair of BPS particles.

Moving slightly further in moduli space, we see that the two BPS particles together

break all of the supersymmetries.

1 In a global model, even if there do exist other supersymmetric cycles in the same

class, there will be some region in moduli space close to the transition where the energy

cost for moving to them in the Calabi-Yau will be larger than the energy gained.
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4. D6-Branes and the Fayet Model

Now, consider type IIA string theory on the Calabi-Yau M in which the phe-

nomena of §2 are taking place. Instead of studying particles in the resulting N = 2

supersymmetric theory, we wrap the three-cycle N with a space-filling D6-brane

(i.e., 3+1 of the dimensions of the D6-brane fill the non-compact space). This

yields an N = 1 supersymmetric theory in the non-compact dimensions. For sim-

plicity (since all our considerations are local), we can assume M is non-compact

so we do not have to worry about cancelling the D6 Ramond-Ramond charge. Al-

ternatively, we could imagine the model discussed below arising as part of a larger

system of branes and/or orientifolds on M .

First, let’s discuss the physics when [Ω] is on the positive side of W (χ+, χ−).

Since b1(N) = 0, N has no moduli in M . Therefore, there are no moduli in the

effective 3+1 dimensional field theory on the wrapped D6-brane. The U(1) gauge

field on the brane survives reduction on N , so the 3+1 dimensional low energy

effective theory has a U(1) gauge symmetry. Finally, because N is a supersymmetric

cycle with H1(N,ZZ) trivial, there is a unique supersymmetric ground state in the

gauge theory (as opposed to a discrete set of ground states parametrized by Wilson

lines around N).

What about the physics when [Ω] is on the negative side of W (χ+, χ−)? The

D6 which was wrapping N has now split into two D6-branes, wrapping N+ and

N−. The U(1) gauge field on each survives, yielding a U(1)2 gauge theory. Because

N+ and N− are supersymmetric cycles with different phases, the theory has no

supersymmetric ground state. We do expect a stable nonsupersymmetric ground

state, as long as [Ω] is close enough to W (χ+, χ−).

What is the physics associated with the phase transition when [Ω] lies in

W (χ+, χ−)? At this point, the two D6-branes wrapping N+ and N− preserve the

same supersymmetry, and intersect at a point in M . Because the light states are

localized at the intersection, the global geometry of the intersecting cycles doesn’t

matter and we can model the physics by a pair of flat special Lagrangian three-

planes intersecting at a point. This kind of system was discussed in [14], and using

their results it is easy to see that the resulting light strings give rise to precisely

one chiral multiplet with charges (+,−) under the U(1)2 gauge group of the two

wrapped D branes. Therefore, one linear combination of the U(1)s (the normal
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“center of mass” U(1)) remains free of charged matter, while the other (the “rela-

tive” U(1)) gains a single charged chiral multiplet Φ. The relative U(1) is therefore

anomalous; [14] demonstrates that the anomaly is cancelled by inflow from the bulk.

Ignoring the center of mass U(1) (which we identify with the surviving U(1)

on the positive side of W ), the physics of this model is precisely reproduced by the

Fayet model, the simplest model of spontaneous (super)symmetry breaking [15].

This is a U(1) gauge theory with a single charged chiral multiplet Φ (containing

a complex scalar φ). There is no superpotential, but including a Fayet-Iliopoulos

term rD in the spacetime Lagrangian, the potential energy is

V (φ) =
1

g2
(|φ|2 − r)2 (4.1)

where g is the gauge coupling.

The phase structure of the model is quite simple: For r > 0, there is a unique

supersymmetric minimum, and the U(1) gauge symmetry is Higgsed. For r < 0,

there is a unique nonsupersymmetric minimum at φ = 0, so the U(1) symmetry

is unbroken. Precisely when r = 0, there is a U(1) gauge theory with a massless

charged chiral field and a supersymmetric ground state.

Thus, we are led to identify the regions of positive, vanishing and negative r

with the positive side of W (χ+, χ−), the locus where [Ω] is in W , and the negative

side of W . The single real modulus which varies in the transition experienced by the

supersymmetric three-cycle N can be identified with the Fayet-Iliopoulos parameter

r. This identification is consistent with the conjecture in [10] that in worldvolume

gauge theories of A-type D-branes on Calabi-Yau spaces, complex structure moduli

only enter as D-terms.2

5. Discussion

Exploration of the phenomena involving supersymmetric cycles in a Calabi-Yau

manifold M under variation of the moduli of M has just started. It should be clear

that as such phenomena are understood, they will have interesting implications

2 Note that the D6 branes in question here are considered A-type branes in the con-

ventions of [10] since the three non-compact spatial dimensions are ignored.
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for the physics of D-branes on Calabi-Yau spaces (for a nice discussion of various

aspects of this, see [10]).

One of the most enticing possibilities is that as more such phenomena are un-

covered, we will find new ways to “geometrize” the study of supersymmetry breaking

models in string theory. This would provide a complementary approach to attempts

to write down interesting nonsupersymmetric string models informed by AdS/CFT

considerations [16] or insights about tachyon condensation and nonsupersymmetric

branes [17].

As a small step in this direction, it would be nice to find ways of going over

small potential hills between different supersymmetric vacua of string theory. The

transitions studied here, when put in the more global context of a manifold M with

(possibly) several supersymmetric cycles in each homology class, might provide a

way of doing this. For instance in §4, as one moves [Ω] into the negative side of

W (χ+, χ−), it is clear that one is increasing the scale of supersymmetry breaking

(at least in the region close to the transition). Suppose that after one moves through

the negative side of W in complex structure moduli space, eventually N+ and N−

approach each other and intersect again and the phenomenon of §2 occurs in reverse,

with a new supersymmetric cycle N ′ in the same homology class as [N+] + [N−]

popping into existence. In such a case, one would have a nonsupersymmetric ground

state for some range of parameters on the negative side of W , and then eventually

reach a supersymmetric ground state again (with the D6 brane wrapping N ′).

Similarly, on the negative side of W there could exist “elsewhere” in M a su-

persymmetric cycle Ñ in the same class as [N+]+[N−]. Although the cost in energy

to move from wrapping N to wrapping Ñ is nonzero and hence on the negative side

of W the phenomena of §3, §4 occur, eventually it may become advantageous for

the D6 branes to shift over to wrapping Ñ . This would again be a situation where

supersymmetry is broken, and then restored, as one dials the complex structure

modulus of the Calabi-Yau space.
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Chapter 3: Open String Instantons and Superpotentials

We study the F-terms in N = 1 supersymmetric, d = 4 gauge theories arising from

D(p+ 3)-branes wrapping supersymmetric p-cycles in a Calabi-Yau threefold. If p

is even the spectrum and superpotential for a single brane are determined by purely

classical (α′ → 0) considerations. If p = 3, superpotentials for massless modes are

forbidden to all orders in α′ and may only be generated by open string instantons.

For this latter case we find that such instanton effects are generically present. Mir-

ror symmetry relates even and odd p and thus perturbative and nonperturbative

superpotentials; we provide a preliminary discussion of a class of examples of such

mirror pairs.

1. Introduction

The study of D-branes in Calabi-Yau threefolds is of both formal and phe-

nomenological interest. As philosophical tools, Calabi-Yau threefolds provide a

natural arena for studying nonperturbative stringy geometry. D-branes are excel-

lent probes of this geometry as they are sensitive to structure well below the string

scale (at weak string coupling) [19,20]. Furthermore a deep understanding of mirror

symmetry requires understanding its action on D-branes [21,22,23].

The phenomenological interest is served by studying space-filling D-branes in

type I or type II string theories, in configurations preserving N = 1 SUSY in four

dimensions.3 These configurations fall into two classes [24,25]: 6-branes in type

The material in Chapter 2 appeared in “Open string instantons and superpoten-

tials” with Shamit Kachru, Sheldon Katz, and Albion Lawrence [18] and is reprinted with

permission of Phys. Rev. D.
3 The standard caveat is in force here: in order to satisfy Gauss’ law for the various

RR charges, one should either consider branes wrapping cycles in non-compact Calabi-

Yau spaces, or consider configurations containing both branes and orientifolds. For our

purposes the former assumption will suffice, but many of our considerations could also be

applied to lower dimensional, non space-filling branes wrapping the same cycles.
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IIA wrapping special Lagrangian cycles of the threefold, and odd-p-branes in type

I or type IIB wrapping even-dimensional cycles. The latter configurations (up to

orientifolds) can be written as coherent sheaves on the threefold [21,22,26] (or its

mirror) and so involve the same type of data as heterotic compactifications [27,28].

The D-brane limit allows one to study gauge field data when it is intrinsically stringy

(much as Landau-Ginzburg compactifications allow one to study intrinsically stringy

aspects of geometric data), via open string techniques.

In closed-string compactifications on Calabi-Yau threefolds, worldsheet instan-

ton effects are the most well-understood source of truly stringy physics. They dras-

tically modify the geometry at short distances: in addition they lead to interesting

physical effects such as the generation of nontrivial superpotentials in heterotic

compactifications [29,30].4 In this work we will study the effects of open-string

instantons on D-brane physics, in particular on the superpotential. For branes

wrapping even-dimensional cycles, we will find that the superpotential can be de-

termined from classical geometry; for branes wrapping special Lagrangian cycles it

is generated entirely by nonperturbative worldsheet effects.

This has interesting implications for mirror symmetry in the type II compact-

ifications. To begin with, if a given mirror pair of cycles has massless deformations

with a nontrivial superpotential, then the classical moduli spaces will not match

under the mirror map. A holomorphic 2-cycle with its infinitesimal holomorphic

deformations obstructed at some nontrivial order (so that a 5-brane wrapped around

it will have massless chiral fields with a superpotential) will have as its mirror a

3-cycle which has flat directions to all orders in α′. On the other hand, if we start

with a special Lagrangian cycle and find that worldsheet instantons destabilize or

make nonsupersymmetric the D-branes wrapping them, the mirror will respectively

either not exist or will be some classically nonsupersymmetric configuration. This

is reminiscent of a common feature of dualities of N = 1 gauge theories, where

superpotentials generated by nonperturbative dynamics are dual to tree-level su-

perpotentials [34]. However, it is a relatively novel situation for N = 1 dualities

4 In fact, it has been proved in [31] that the most easily realized heterotic (0,2) models,

those realized as gauged linear sigma models [32,33], are not destabilized by worldsheet

instantons. As we will see in the following, it should be easier to find examples of D-brane

models which exhibit disc instanton generated superpotentials.
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of string vacua, where normally instanton effects map to instanton effects, as in

heterotic/F-theory duality [35]. Here mirror symmetry should provide a powerful

tool for summing open string instantons, as it does for closed string worldsheet

instantons [36]. Note that the nonperturbative superpotentials we are discussing

here are not explicable in terms of gauge dynamics involving the (perturbative)

D-brane gauge theory; we would expect in some circumstances the instanton ef-

fects will be related to gauge instantons of a non − perturbative D-brane gauge

theory that arises at singular points in the brane moduli space. This is analogous

to the fact that in heterotic (0,2) models, worldsheet instantons can sometimes be

related to gauge instantons of nonperturbative gauge groups arising from singular

compactifications [37].

In this chapter we will begin to investigate disc instanton effects by asking

whether nonperturbative superpotentials are generically generated by worldsheet

(disc) instantons. We will find a story similar to that of the heterotic string [30]:

when the open string instantons are isolated, nonvanishing (locally) runaway po-

tentials may be generated.5

The plan of this chapter is as follows: in §2 we will review the construction

of N = 1 four-dimensional theories via space-filling D-branes wrapped on Calabi-

Yau threefolds in type II string theory. After discussing the results determined by

classical geometry, we will discuss some constraints from string theory. First, at tree

level the superpotentials are computable via topological open string theory, and the

hypermultiplets of the background closed-string theory decouple [38]. Furthermore,

we will find that in the case of D6-branes wrapping special Lagrangian three-cycles,

superpotentials are forbidden not only classically but to all orders in α′, due to

a Peccei-Quinn symmetry. Superpotentials in these cases can only be generated

by topologically nontrivial disc instanton effects. In §3 we will discuss the generic

superpotential terms that are allowed in the presence of an isolated holomorphic

disc. Finally, in §4 we discuss promising directions for future work. Further results

in explicit examples will appear in the next chapter [39].

There is a close relation between the ideas discussed in this chapter and earlier

work of Witten [40] and Vafa [41]. As this work was being completed, we were also

informed of the related work [42] by mathematicians.

5 However, in contrast to the heterotic string story, the classical moduli spaces of the

brane configurations we will study are naturally compact. Hence, the superpotentials we

find will have minima which are not “at infinity” in field space.

18



2. Classical geometry of D-branes on CY3

We begin with D-brane configurations preserving four supercharges, to lowest

order in gs and α′, in type II string theory on M × IR4 where M is a Calabi-Yau

threefold. We will assume that the D-branes fill all of spacetime so that we realize

an N = 1, d = 4 gauge theory.

The internal configurations preserving four supersymmetries fall into two

classes [24,25]: “A-type” branes wrapping special Lagrangian submanifolds of the

threefold, and “B-type” branes which wrap holomorphic cycles of the Calabi-Yau.

(The latter may have nontrivial holomorphic gauge bundles living on them as well,

corresponding to bound states with lower-dimensional branes. We will for the most

part ignore this possibility.) In the present discussion these exist in the type IIA

and IIB theories respectively. We will discuss the associated gauge theories of each

class in turn.

2.1. A-type branes

Spectrum

In the large-volume, large-complex-structure limit, supersymmetric A-type

branes wrap special Lagrangian submanifolds. Let such a manifold Σ be described

by a map

f : Σ →M .

Recall that special Lagrangian submanifolds Σ are defined by the properties that:

dimIR Σ =
1

2
dimIRM

f∗ω = 0

f∗(ImeiθΩ) = 0

(2.1)

where ω is the Kähler form of M , Ω is the standard holomorphic (3, 0) form, and

eiθ is some phase.

N D6-branes wrapping a single supersymmetric cycle Σ ⊂ M have a U(N)

vector multiplet arising from massless open string excitations polarized completely

in IR4. Massless open string excitations polarized in M form adjoint U(N) chiral

multiplets. We will focus on the case N = 1. To lowest order in α′, the counting

of massless chiral fields has been worked out. Σ lives in a family of deformations
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with dimension b1(Σ) [43] (c.f. also [44] for a clear discussion). More precisely,

each basis vector in the tangent space to the space of deformations may be used

to construct a nontrivial harmonic one-form on Σ, and vice-versa. Of course the

space of such deformations (which has real dimension b1(Σ)) cannot make up our

set of chiral multiplets which are built from complex scalars: for example b1(Σ)

need not be even. However, deformations of flat connections of the D6-brane gauge

field on Σ also map one-to-one onto the space of harmonic one-forms on Σ, roughly

because there is a Wilson line of the U(1) gauge field around each 1-cycle. Thus

for each element of the space H1(Σ) of harmonic one-forms on Σ one has two real

flat directions which may be described by a complex scalar [23]. In other words, we

find b1(Σ) massless chiral multiplets, one for each non-trivial one-cycle or harmonic

one-form on Σ.

Note that if we have branes wrapping several (mutually supersymmetric) 3-

cycles, then we may get additional matter from any intersection points, in bifunda-

mentals of the U(1)s of each cycle. A local example of this was discussed in [1]. In

this work we will discuss branes wrapping single “primitive” 3-cycles: however, as

explained in [1], interesting transitions to this more complicated case can occur as

one varies background (closed string) hypermultiplets.

A natural choice of coordinates on the moduli space of the wrapped D6 brane

is the following [41,45]. Let {γj} be a basis for H1(Σ). Choose minimal area discs

Dj subject to the condition that

∂Dj = γj (2.2)

and let

wj =

∫

Dj

ω . (2.3)

In other words, if there is a holomorphic disc in the relative homology class of

D, then wj will be the area. The wj provide b1(Σ) real coordinates. They are

complexified by b1(Σ) Wilson lines

aj =

∫

γj

A (2.4)

where A is the U(1) gauge field on the wrapped brane. The coordinates in (2.3)

and (2.4) are the real and imaginary parts of scalar components of the b1(Σ) chiral

multiplets Φj on the brane:

Φj = wj + iaj + · · · (2.5)
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where · · · indicates higher components of the superfields.

Superpotentials and worldsheet instantons

As noted above, it follows from McLean’s theorem [43] that at lowest order

in α′ the brane wrapping Σ has a moduli space of dimension b1(Σ). So far there

may still be α′ corrections which lift these flat directions. To lift moduli, one would

need to generate either D-terms or F-terms in the low energy action; we will focus

on the superpotential, since the chiral multiplets Φj are neutral (at least at generic

points in the classical moduli space of the cycle) and do not appear in FI D-terms.

At leading order in α′, the superpotential W (Φ) identically vanishes. We now

determine to what extent α′ corrections of any sort are possible.

In fact, it turns out that there are no corrections to the open-string superpo-

tential to any finite order in α′: all contributions must come from nonperturbative

corrections, arising from topologically nontrivial configurations. The arguments are

almost identical to similar arguments for the heterotic string [29,30]. We will give

two.

The first argument is a string theory argument. The (0)-picture vertex operator

for a flat connection A at zero momentum on the D6-brane has the form:

V =

∫

∂D

Aµ(X)∂αX
µdσα (2.6)

where X are coordinates on the brane and σ coordinates on the worldsheet D. Let A

be polarized completely internally, so that it corresponds to a choice of Wilson lines

around the elements ofH1(Σ). If X(∂D) is a topologically trivial cycle on Σ, then A

can be written as an exact form dΛ. We see that V vanishes after an integration by

parts. Thus topologically trivial disc amplitudes give no non-derivative couplings

(such as superpotential terms) of the imaginary parts of chiral multiplets, to all

orders in α′. Holomorphy thus requires the superpotential vanish to all finite orders

in α′.

If the boundary maps to a topologically non-trivial cycle γj ⊂ Σ, this argument

fails. Such discs are non-trivial elements of the relative homology class H2(M,Σ).

These worldsheets will give terms weighted by the instanton action:

e−(wj+iaj)/α
′

(2.7)
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where wj is the spacetime area of this disc as in (2.3), and aj is its partner Wilson

line (2.4). The α′ dependence is decidedly non-perturbative. Note that to obtain

the contribution (2.7) to the action, the map X(σ) must be a holomorphic map

from the disc to M with the desired boundary, and with the normal derivative to

X(σ) at the boundary taking values in the pullback of the normal bundle to Σ; this

is a disc instanton. It follows from standard arguments that only such holomorphic

maps have the correct zero mode count to contribute to a superpotential term in

the spacetime theory.

The second argument is a spacetime argument. The space of U(1) Wilson

lines on a circle is the dual circle. Thus, any function of the chiral fields appear-

ing in the effective action must be invariant under discrete shifts of their imagi-

nary parts. Holomorphy then requires that the superpotential be a power series in

exp (−[wj + iaj ]/α
′), which again gives a nonperturbative dependence on α′.

Examples of three-cycles

The best-known example arises in the Strominger-Yau-Zaslow formulation of

mirror symmetry [23]: the claim is that any geometric Calabi-Yau with a geometric

mirror can be written as a fibration of special Lagrangian T 3s. Mirror symmetry is

fiberwise T-duality on these T 3s. D3-branes wrapping these fibers are mapped to

D0-branes on the mirror. The T 3 has b1 = 3 so all this is in accord with expectations:

the mirror D0-brane and thus the wrapped D3-brane should have a 3-dimensional

complex moduli space (which is the mirror threefold). Many examples of special

Lagrangian three-cycles can be found as fixed loci of real structures. Some examples,

which are homeomorphic to IRIP3, are contained in [24,38]. Note that these have a

Z2 Wilson line degree of freedom as π1(IRIP3) = Z2.

In addition, there has been some discussion of local and non-compact models.

Ref. [45] contains some general discussion of noncompact supersymmetric three-

cycles. A simple example with an isolated disc instanton is the following. Take

z1,2,3 as coordinates on C3, and choose ω and Ω to be the obvious Kähler form and

holomorphic three-form. Then the three-cycle Σ defined by

|z1|2 − t = |z2|2 = |z3|2 (2.8)

Im(z1z2z3) = 0, Re(z1z2z3) ≥ 0 (2.9)
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with t positive is special Lagrangian, and diffeomorphic to S1 × IR2. A generator γ

of H1(Σ) is given by the concrete choice

γ : {(t1/2eiθ, 0, 0)} (2.10)

where θ runs from 0 to 2π. A holomorphic disc with boundary γ and area πt is

given by

Dt : {(z1, 0, 0), |z1|2 ≤ t)} (2.11)

2.2. B-type branes

In the large-volume, large-complex-structure limit, supersymmetric B-type

branes wrap holomorphic cycles of M . One may also examine bound states which

can be described as gauge bundles on the highest-dimensional branes (c.f. for exam-

ple [38] for a discussion). For simplicity we will focus on branes wrapping primitive

cycles, and in our examples we will discuss cases where C is a rational curve.

For N (space-filling) D-branes wrapping a given cycle C ⊂ M one again has

a U(N) vector multiplet arising from massless open strings polarized along the

spacetime directions. Massless strings polarized along M give rise to adjoint chiral

multiplets. Again we will focus on N = 1. For B-type branes wrapping C the

infinitesimal supersymmetric deformations of the cycle are holomorphic sections of

the normal bundle NC . The number of such first-order deformations is therefore the

dimension of the space of holomorphic sections, H0(C,NC) (this is the cohomology

group of the bundle NC, not a relative cohomology group). These are the scalars in

the massless chiral multiplets. There is no guarantee that these deformations do not

have an obstruction at higher order.6 Such obstructions, if they exist, correspond

to elements of the group H1(C,NC) [46]. More specifically, given an element of

the cohomology group H0(C,NC) one may try to construct a finite deformation by

beginning with an infinitesimal deformation and constructing a finite deformation

as a power series. H1 measures the space of possible obstructions at each order

in this series. Note that it may happen that although H1 is nonvanishing, there

is still a solution for this power series and thus a family of cycles. In the end, an

6 For e.g. C a curve of genus g ≥ 1, there are also 2g Wilson line degrees of freedom

which parametrize the flat U(1) bundles on C. These pair up into g chiral multiplets and

provide exactly flat directions. Similar comments apply if C is a four-cycle with b1(C) 6= 0.
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obstruction should appear as a higher-order term in the superpotential for a brane

wrapped around this cycle [38].

Furthermore, deforming the complex structure ofM can also cause obstructions

to (previously existing) deformations of C. The basic statement is as follows (c.f.

[47,48]). One may use the restriction map to C and the short exact sequence:

0 → TC → TM |C → NC → 0 (2.12)

to write a map

r : H1(M,TM ) → H1(C,NC) . (2.13)

If we perturb the complex structure of M to first order by some element ρ ∈
H1(M,TM), a deformation of C exists which preserves C as a holomorphic cycle

if and only if r(ρ) = 0. Note that couplings of (open-string) chiral multiplets to

(background closed-string) complex structure parameters in the superpotential are

allowed and generic [38].

In the end, even counting these chiral multiplets is a harder problem on its face

than for A-type branes, as the number of moduli depends not only on the intrinsic

topology of the cycle but on the details of its embedding in M . (This is already

apparent for rational curves in the quintic – c.f. [49,50].) Nonetheless, one may

find a lot of specific examples for which computations are possible, especially for

rational curves.

Some additional constraints exist as for A-type branes. First, the computa-

tion of the disc contribution to the superpotential can be reduced to a B-twisted

open topological field theory calculation [38]. Again the Kähler parameters al-

most completely decouple from the superpotential: indeed, the computations of the

dimension of H0(C,NC) and of the obstruction depend completely on the complex

structure. But in addition, all contributions to B-model computations come entirely

from constant maps into the target space [51,40]. There are no worldsheet instanton

corrections and tree level sigma model calculations will suffice: the superpotential

can be deduced from classical geometry.
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Examples of holomorphic curves and superpotentials

Many useful examples of holomorphic cycles exist in the literature. Several can

be found or are referenced in [38]. We are particularly interested in two-cycles with

nontrivial obstructed deformations.

The canonical example is simply a small resolution of the singular hypersurface

in C4:

xy = z2 − t2n (2.14)

(Such a small resolution is consistent with the Calabi-Yau condition as the space is

noncompact.) If n = 1, then H0(C,NC) = 0, and the curve is rigid. If n > 1, then

H0(C,NC) is one-dimensional — the normal bundle to this curve is O(0) ⊕O(−2)

— but there is an obstruction at nth order to deforming this curve [52]. This

phenomenon can be described by a superpotential W (Φ) = Φn+1 [38].

It is easy to use W (Φ) to see the effect of a general deformation of complex

structure on C. We perturb W (Φ) to

Wt(Φ) = Φn+1 + tP (Φ) +O(t2), (2.15)

where P (Φ) is an arbitrary polynomial in Φ subject only to the genericity condition

P ′(0) 6= 0. Solving W ′
t (φ) = 0, we get n solutions for the vev

φk(t) = e2πik/n
(

−P
′(0)

n+ 1

)1/n

t1/n + . . . ,

where the dots denote higher order terms in t. The geometric description of this

perturbation of curves with normal bundle O(0)⊕O(−2) to n rigid rational curves

was well known [53]. The geometric perturbation of contractible curves with normal

bundle O(1)⊕O(−3) to rigid curves has recently been worked out in [54] and can be

rephrased in terms of the perturbation of a superpotential if desired. The geometric

description in the case of a general O(1) ⊕O(−3) curve is not yet worked out, but

the introduction of a superpotential can be expected to clarify the geometry.

Digression on holomorphic Chern-Simons theory

Another way to arrive at the superpotential in examples like (2.14), (2.15)

is by studying a holomorphic analogue of the Chern-Simons action, discussed in
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[40,41].7 In the following, we will suppress constants which enter harmlessly in our

formulas. We think of the Calabi-Yau M as being obtained from the total space

of the normal bundle O(0) ⊕ O(−2) by a modification of the complex structure.

We choose holomorphic coordinates (z, z0, z1) on the normal bundle, with z being a

coordinate on C, z0 being in O(0), and z1 in O(−2). The curve C is identified with

the zero section z0 = z1 = 0. The modification of complex structure is realized as

usual by perturbing ∂̄ by a tensor Ai
j̄
, i.e. ∂̄j̄ 7→ ∂̄j̄ +Ai

j̄
∂i, where Ai

j̄
is a TM valued

(0, 1) form on M . We assume that the curve C remains holomorphic, and want

to understand which deformations zi = φi(z) (i = 0, 1) remain holomorphic. The

space of C∞ deformations of C is identified with the space (φ0, φ1) of C∞ sections

of the normal bundle NC . The relevant holomorphic Chern-Simons action is

∫

C

(

φ0

(

∂̄ + Aiz̄∂i
)

φ1 − φ1

(

∂̄ + Aiz̄∂i
)

φ0

)

. (2.16)

Note that in (2.16) we only use the index j̄ = z̄ in A. (2.16) expands as

∫

C
φ0∂̄φ1 + φ0A

z
z̄∂φ1 + φ0A

1
z̄ −

(

φ1∂̄φ0 + φ1A
z
z̄∂φ0 + φ1A

0
z̄

)

. (2.17)

We make sense of this by respectively identifying φ0, φ1 with functions and (1, 0)

forms on C (as would be expected in the twisted brane worldvolume theory [55]),

while respectively identifying A0
z̄, A

1
z̄ with (0, 1) and (1, 1) forms after pulling back

to C. Thus all the terms in (2.17) are (1, 1) forms on C and can be integrated.

The variations of (2.16) or (2.17) with respect to φ0 and φ1 give the condi-

tions that the corresponding curve in X is holomorphic. In fact, the action of the

topological theory on C actually becomes the superpotential in the four-dimensional

N = 1 theory arising from wrapping a D5 brane on C. This is because the holomor-

phic Chern-Simons theory is the string field theory for the open string topological

B-model [40], and therefore its action is the generating function of the topological

correlation functions which give rise to superpotential terms in the physical theory.

To illustrate this fact, we now show that we can choose our tensor A so

that (2.17) becomes W (Φ) = Φn+1. Since the obstructions to deforming C lie

in H1(NC) = H1(O(−2)), we choose our A to have A1
z̄ = zn0 dz ∧ dz̄ while the

7 We thank C. Vafa for pointing this out to us, and D. Diaconescu for related

discussions.
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other Aiz̄ vanish (we can always choose such a gauge). Then the constant section

(φ0, φ1) = (t, 0) is holomorphic provided we put tn = 0. So this A produces the

required geometry.

The variation of (2.17) with respect to φ1 shows that φ0 is holomorphic. The

variation of (2.17) with respect to φ0 shows that ∂̄φ1 is a multiple of φn0 . Substituting

these back into (2.17) (and performing the integral over the curve C, which just

produces a volume factor) gives a multiple of φn+1
0 , as claimed. This proves that

for any O(0)⊕O(−2) curve, the superpotential will be a polynomial of degree k for

some k (or will vanish identically) – k is the only invariant of the complex structure

in some neighborhood of the curve.

Another Example

Another example which we will use was detailed in Ref. [56] (see also sec. 9

of [48].) Here one has at a specific point in the complex structure moduli space an

A1 singularity fibered over a genus-g curve S. At this point the collapsing cycles

obviously form a family which is precisely S. Deformations of the complex structure

of M destroy this family, generically leaving 2g − 2 isolated curves. One may find

2g three-cycles by sweeping the collapsing curves over the one-cycles of S, mapping

H1(S) to H3(M).8 This can be lifted to a map from H(1,0)(S) into H(2,1)(M) '
H1(M,TM) [56,48]. This gives g independent first-order deformations of complex

structure.9 We can use the map r (2.13) to project the relevant deformation onto

H1(N ) for each fiber of this collapsing surface. Now the spaces H1(N ) are the

fibers of a bundle over S, and this bundle is identified with the canonical bundle of

S. So (2.13) gets included in the sequence of maps

H(1,0)(S) → H1(M,TM) → H0(S, KS). (2.18)

8 This is closely related to the formula for the superpotential in [57]. Fixing a point

s0 ∈ S, then a path from s0 to s ∈ S sweeps out a 3-chain in M , which can be integrated

over a holomorphic 3-form, defining a function of s. If we define the potential this way

in our context, there is a multiplicative ambiguity from the choice of holomorphic 3-form,

reflected in the description in the main text by the choice of isomorphism H(2,1)(M) '

H1(M,TM ).
9 If M arises from Batyrev’s construction of Calabi-Yau toric hypersurfaces by blowing

up the curve S of A1 singularities, these deformations of the complex structure of M are

those which are not realizable by polynomial/toric deformations.
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This says two things. First of all, first order differentials on S lead to first order

deformations of complex structure, realizing g deformations of complex structure.

Second, upon perturbing by such a complex structure deformation, the only curves

which survive the deformation are those which are located at zeros of the associated

section of KS . Thus generally we will find a set of isolated curves with only massive

chiral multiplets. However, at codimension one in the complex structure moduli

space, zeros of the section of KS will coincide and the resulting curve will have

higher multiplicity: their deformations will be massless but obstructed at some

higher, non-trivial order.

A superpotential which reflects this geometry be constructed as follows. Let the

complex structure deformation be induced as above from an element ω ∈ H(1,0)(S).

At ω = 0 the curve lives in a family which is precisely S so that a deformation of a

curve at z ∈ S described by N can also be written as an element φ ∈ T
(1,0)
z S. One

may then write the superpotential as:

W (Φ;ω) = 〈ω,Φ〉+
1

2!
〈∂〈ω,Φ〉,Φ〉+

1

3!
〈∂〈∂〈ω,Φ〉,Φ〉,Φ〉+ · · · (2.19)

Here Φ is the superfield associated to φ, ∂ is the the Dolbeault operator on S and 〈, 〉
is the usual inner product between forms and vectors. It is understood that one is to

evaluate the inner product at the point p ∈ S around which one is expanding, and

convergence follows from the convergence of the power series representation of ω.

For S of genus g, the expansion (2.19) can be truncated after 2g− 1 terms without

changing the location and structure of the critical points. The closed string complex

structure moduli act as parameters in the superpotential, through the choice of ω.

Let us explore the properties of (2.19) slightly more explicitly, to illustrate

its features. Consider expanding (2.19) about some point on S where ω has an

expansion in a local complex coordinate z

ω ∼ zndz. (2.20)

We can represent the scalar field, which we are thinking of as a tangent vector to

S, as φ ∂
∂z with φ complex. Then, expanding (2.19) around z = 0, we find

W (Φ) ∼ Φn+1.

28



For n = 0 (i.e. around generic points on S) there is no supersymmetric vacuum,

while for n > 0 there are supersymmetric vacua. For n = 1, the vacuum is massive;

for n > 1 there is a massless field, and the vacuum splits into n− 1 massive vacua

upon small perturbations of the complex structure of M (just as in the situation of

(2.15)). For S of genus g, ω will generically have 2g−2 isolated zeroes, giving rise to

2g − 2 massive supersymmetric vacua at generic points in the space of background

closed string parameters. At various codimensions in the closed string moduli space,

as one further specializes the multiplicities of the zeroes of ω, these 2g − 2 vacua

merge in various combinations to yield theories with massless fields obstructed by

higher order potentials.

A simpler way to write (2.19) locally on S is to write ω = dfω for a locally

defined function on S. Locally, such an f can be thought of as a function of φ.

Then we simply have

W (Φ, ω) = fω(Φ).

While this formula is simpler in form than (2.19), it does not capture the global

structure of the moduli space S.

The above considerations are easily adapted to the more general situation con-

sidered in [56], where an AN singularity is fibered over S. If we denote the collapsing

curve as C1 ∪ . . . ∪ CN , then for each Cj we get g deformations of complex struc-

ture arising as in (2.18), yielding gN complex moduli. But we also have connected

subsets Ck ∪ Ck+1 ∪ . . . ∪ Ck+r to which the above analysis applies. But since the

first map in (2.18) depends linearly on the individual Cj , including these connected

subsets does not give rise to any new complex structure deformations. So we get

N(N + 1)/2 superpotentials of the form (2.19) on N(N + 1)/2 copies of S, each of

which depends on the gN complex moduli (only g of which appear in any one su-

perpotential). Each of these superpotentials controls the obstructions to deforming

curves of the form Ck ∪Ck+1 ∪ . . .∪Ck+r, and 2g − 2 curves of this type survive a

generic deformation of complex structure.

3. Disc instantons

Type II string theory in the presence of a D-brane on a given special La-

grangian submanifold has the same net number of worldsheet (and spacetime) su-

persymmetries as a heterotic (0, 2) model; and as with heterotic (0,2) models, the
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nonrenormalization theorem for the spacetime superpotential is spoiled by world-

sheet instanton effects. In light of results for (0, 2) models [30], it is fair to ask

whether the generic D6-brane configuration is nonperturbatively stable.

We expect direct calculations of instanton effects to be difficult. But instan-

tons in supersymmetric theories generate fermion zero modes which provide selec-

tion rules for CFT correlators. Using the rule of thumb that allowed terms are

generic, we will see that three-cycles with an isolated disc instanton are destabi-

lized nonperturbatively.10 The argument is quite similar to that for heterotic (0, 2)

models.

The easiest way to count the zero modes for an isolated holomorphic disc is

to begin with the amplitude for the sphere and get the disc by orbifolding with

respect to a real involution, which will cut the number of zero modes in half. For

an isolated sphere, the superconformal symmetry together with an index theorem

shows that there are four holomorphic zero modes and four antiholomorphic zero

modes [30,58], so we expect four fermion zero modes on the disc.

Consider a single D6-brane wrapping a special Lagrangian three-cycle Σ. The

complex modulus φ = w+ia is associated with a cycle γ ∈ H1(Σ), using the notation

and definitions of §2.1. Here we assume the isolated instanton corresponds to a disc

D such that ∂D = γ and D has minimal area. The most obvious, lowest-order term

consistent with our perturbative nonrenormalization theorem is the exponential

W (Φ) = e−Φ/α′

(3.1)

where Φ is the superfield corresponding to φ. This will clearly destabilize the

wrapped D6-brane, at least locally.

We will search for the superpotential (3.1) by examining small fluctuations Φj

away from the above classical configuration Φ0 = φ. Here j is an index in H1(Σ).

The lowest-order terms directly computable via a CFT correlator will be those

arising from the cubic term

ΦiΦjΦke
−φ/α′

.

We will focus on the term

Scubic = C

∫

d4xφiφjFk (3.2)

10 Holomorphic discs ending on special Lagrangian cycles of Calabi-Yau threefolds are

generically isolated [40].
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where Fk is the auxiliary field in Φk. Note that in the reduction to four dimensions,

the operators above are arrived at by contour integrals in Σ, so C is proportional

to a triple integral.

The vertex operators which enter in the calculation of (3.2) are easily presented

in the covariant RNS formalism [59] (c.f. [38] for a general discussion of the CFT

calculation of open-string superpotential terms). The (−1)-picture zero-momentum

vertex operator for the scalar component φj is:

V
(−1),j
φ = θjµ(X)ψµe−φ̃ (3.3)

where φ̃ is the bosonized superconformal ghost [59], θjµ is the harmonic one-form

(associated to γj) on the 3-cycle, and ψµ is a fermion with Dirichlet boundary

conditions. The (0)-picture vertex operator for the auxiliary field is [60]:

V
(0),j
F = Ωρµν(X)θjσg

σρψµψν . (3.4)

Here Ω is the the (3, 0) form, with the coordinates (but not the indices) restricted

to Σ. Equation (3.4) is obtained by applying the unit spectral flow operator

Ωµνρψ
µψνψρ as in [60,28].

The three-point function

〈V (0),i
φ V

(−1),j
φ V

(−1),k
F 〉 (3.5)

has the correct fermion and ghost number to be nonvanishing; in an instanton

background, the four fermions in the vertex operators in (3.5) can soak up the

relevant zero modes. Note that we are computing the integrand of the triple integral

defining C in Eq. (3.2). Since holomorphic maps will preserve the order of marked

points on the boundary, the ordering of (3.5) will be fixed for a given set of positions

in this integrand.

This superpotential term can equivalently be computed as a correlator in the

topological A-model open string theory [40,38]. Here one is computing the contri-

bution to (3.5) (or more familiarly, a Yukawa coupling related to (3.5) by super-

symmetry) in a sector where the map of the worldsheet to spacetime is a disc whose

boundary γ ⊂ Σ is topologically nontrivial. The path integral localizes onto the

space of holomorphic maps, and the contribution is
∮

γ

∮

γ

∮

γ

dx1dx2dx3Ai(x1)Aj(x2)Ak(x3) (3.6)
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(suppressed by the exponential of the area of the holomorphic disc), where the

gauge fields Ai can be identified with the 1-forms θi in (3.3). Once again, for given

positions in the integrand, the ordering of the vertex operators for Ai,j,k must match

the ordering of x1,2,3 respectively.

The result is that the superpotential (3.1) is generic for an isolated instanton.

With some interpretation added, this statement matches a calculation in ref. [40].

There it is shown that the string field theory for the topological open string A-model

is equivalent to Chern-Simons theory on Σ with instanton corrections to the action.

This instanton correction can be interpreted as precisely the superpotential we have

calculated, as it generates the topological correlator we have discussed. Note that

in [40], the dependence on the area of the disc was added as a convergence factor,

whereas in our discussion it is required by spacetime supersymmetry.

The topological string theory representation of the superpotential allows us to

write the full worldsheet instanton contribution to the CFT correlator (3.5). First,

note that while we have discussed Ai as a harmonic form, we can modify it by adding

a BRST-trivial piece to give it support only in an arbitrarily small neighborhood

around a two-cycle βi which is Poincaré dual to γi. The result is as follows. Denote

by d
{na}
{ml}(i, j, k) the number of holomorphic maps from a disc to M where the image

D ⊂M has the following properties:11

i) [∂D] =
∑

lml γl.

ii) The vertex operators V i,j,k are mapped in cyclic order to intersections of γ = ∂D

with βi,j,k respectively.12

iii) D −∑lmlDl, which is a closed two cycle in M , is in the homology class
∑

a naKa.

11 As with “numbers” of rational curves in mirror symmetry, the correct notion of d

when there are families of discs and/or including multiple covers would require much

further discussion; we will be content here to be schematic. A proposal for the multiple

cover contribution has recently been worked out by H. Ooguri and C. Vafa [61].
12 One has to be careful if two vertex operators correspond to the same cycle. The

support of A can be made arbitrarily small but finite. In this way nonzero contributions

still generically come from the vertex operator insertions mapping to different points in γ.
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Then, the three-point function receives a contribution

〈V iFV jφV kφ 〉 ∼
∑

ml,na≥0

(
∫

∂D

θi
) (

∫

∂D

θj
) (

∫

∂D

θk
)

×

× d
{na}
{ml}(i, j, k)

b1(Σ)
∏

l=1

e−ml(wl+ial)/α
′

h1,1(M)
∏

a=1

e−nata

(3.7)

from disc instantons, where ta denotes the integral of the Kähler form over Ka (and

for simplicity we are setting the closed string background B-field to zero). Although

we have mostly used the language of the topological theory in deriving this result,

it also holds for the three-point function in the physical theory.

The same kind of instanton sum also appears in [41], where the interpretation in

terms of a superpotential for wrapped branes (and in particular the fact that these

effects serve to obstruct the deformations of branes wrapped on special Lagrangian

cycles) was not discussed.
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Coupling to closed string background fields

It is clear from the form of the three-point functions (3.7) that the superpoten-

tial depends on the closed string background Kähler moduli, which enter through

the worldsheet instanton action e−ta . The dependence of the disc instanton gen-

erated superpotential on Kähler moduli, and the fact that it does not depend on

the background complex structure moduli in the IIA theory, is consistent with the

nonrenormalization result of [38].

We can directly probe the dependence of the superpotential on closed string

moduli by computing the CFT correlator

〈V (−1,−1),a
K V

(0),j
F 〉 (3.8)

where V
(−1,−1),a
K is the vertex operator for a closed string Kähler deformation.

Again, the vertex operators in (3.8) can absorb the fermion zero modes which are

present in an instanton background. In fact, the “mirror” couplings of open strings

to background complex moduli in the superpotential generically exist at tree level in

the B-model [38] – this is clear from the examples of §2.2, where a small perturbation

of complex structure can obstruct families of holomorphic curves. The couplings

(3.8) must then similarly exist, but due to Peccei-Quinn symmetries they should

arise at the non-perturbative level in both the closed and open string worldsheet

instanton expansions.

V aK represents an integral (1,1) form ωa which could be used to perturb the

Kähler form of M . We can choose ωa to have support only infinitesimally near the

four-cycle La ⊂M Poincare dual to Ka. Then, (3.8) has the expansion

〈V (−1,−1),a
K V

(0),j
F 〉 ∼

∑

ml,nb≥0

(
∫

D

ωa

)(
∫

∂D

θj
)

×

× d
{nb}
{ml}(a, j)

b1(Σ)
∏

l=1

e−ml(wl+ial)/α
′

h1,1(M)
∏

b=1

e−nbtb

(3.9)

where d
{nb}
{ml}(a, j) counts the number of holomorphic maps to discs D ⊂ M which

pass through La at the insertion point of V aK and βj at the insertion point of V jF ,

and which in addition have [∂D] =
∑

lmlγl and [D −∑lmlDl] =
∑

b nbKb.
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4. Discussion

Space-filling D-branes wrapping supersymmetric cycles in Calabi-Yau mani-

folds provide one of the most natural classes of N = 1 supersymmetric models in

string theory, and are attractive as concrete realizations of “brane world” scenarios.

In this chapter, we have shown that the theories which arise from D6 branes wrap-

ping supersymmetric three-cycles are in many ways analogous to heterotic (0,2)

models. In particular, although they are supersymmetric to all orders in α′, non-

perturbative worldsheet effects can generate superpotentials and, perhaps, break

supersymmetry.

These models differ from heterotic theories, however, in that mirror symmetry

provides a dual description where the non-perturbative superpotential is computable

at tree level in sigma model perturbation theory. This should be a powerful tool:

most known dualities of N = 1 models, like heterotic/F-theory duality, relate in-

stanton computations to other instanton computations (with worldsheet instantons

mapping to euclidean wrapped branes of various sorts [35]). The present situa-

tion is considerably rosier, and it will be very interesting to exploit this to sum up

instantons in this class of N = 1 string vacua.

The cases discussed in §2.2 (on the B-model side) should provide ideal test cases.

In each case, one can realize (on a 5-brane wrapping a holomorphic curve) a theory

with massless chiral fields, constrained by a higher order superpotential. The mirror

D6 theory should provide us with an example of a brane wrapping a supersymmetric

three-cycle Σ with b1(Σ) > 0, but without a moduli space of the expected dimension.

By the nonrenormalization theorem of §2.1, the moduli space on the A-model side

must be lifted by a disc instanton generated superpotential. Work to explicitly

construct the mirror cycles, and compute the relevant superpotentials, is under way

[62]. Note that nonperturbative superpotentials which obstruct deformations of

branes wrapped on three-cycles can resolve the puzzle for mirror symmetry raised

by Thomas in [63]. On the other hand, we expect e.g. the supersymmetric T 3 used

in [23] to derive mirror symmetry will survive instanton corrections. In the mirror

picture this is obvious (since deformations of a point are unobstructed), and in the

direct analysis presumably any holomorphic discs with boundary on the T 3 would

come in families and cancel in their contribution to the superpotential.

In the regime where there are “small” holomorphic discs, new interesting phe-

nomena should also occur. For instance, there are arguments in the mathematics
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literature that in some cases the classical moduli spaces of special Lagrangian three-

cycles will be manifolds with boundary (see §5 of [45]). This cannot be the case

for physical applications of the sort we have discussed, involving wrapped branes

in string theory. The moduli space (including Wilson line degrees of freedom) is

that of a 4d N = 1 supersymmetric D-brane field theory. Assuming supersymme-

try isn’t broken, the quantum moduli space of supersymmetric ground states must

be a Kähler manifold; there is no known dynamics that can create boundaries at

codimension one in the moduli space of 4d N = 1 supersymmetric theories. The

argument of [45] involves the fact that a holomorphic disc with boundary in the

three-cycle is becoming very small; therefore, it is likely that some analogue of the

phenomena discussed in [32] is occurring. Just as one can use theta angles to go

around the boundaries of the classical Kähler cone and find intrinsically stringy

Landau-Ginzburg phases of Calabi-Yau compactifications, it seems likely that one

can use Wilson lines to go around the would-be boundary of moduli space discussed

in [45] and find new, “quantum” supersymmetric three-cycles.
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Chapter 4: Mirror Symmetry for Open Strings

We discuss the generation of superpotentials in d = 4, N = 1 supersymmetric

field theories arising from type IIA D6-branes wrapped on supersymmetric three-

cycles of a Calabi-Yau threefold. In general, nontrivial superpotentials arise from

sums over disc instantons. We then find several examples of special Lagrangian

three-cycles with nontrivial topology which are mirror to obstructed rational curves,

conclusively demonstrating the existence of such instanton effects. In addition, we

present explicit examples of disc instantons ending on the relevant three-cycles.

Finally, we give a preliminary construction of a mirror map for the open string

moduli, in a large-radius limit of the type IIA compactification.

1. Introduction

“The importance of instanton computations in string theory and in M-theory

can hardly be overstated.”[64]

– J.A. Harvey and G. Moore

There are many important motivations for studying the physics of D-branes on

Calabi-Yau threefolds in type II string theories (or orientifolds thereof). To begin

with, space-filling branes provide a microscopic construction of brane world models

with N = 1 supersymmetry. In addition, physical objects in these theories (such

as the moduli space of vacua and the superpotential) have a geometric expression.

Hence, these theories provide a rich new context for studying quantum geometry

via N = 1 field theories, along the lines of previous work on N = 2 brane probe

theories [65]. For a fairly recent introductory review, see [66]; recent work on this

subject has appeared e.g. in [67,68,69,70,71,72,73,74,75,76,77,78,79].

The material in Chapter 3 appeared in “Mirror symmetry for open strings” with

Shamit Kachru, Sheldon Katz, and Albion Lawrence [39] and is reprinted with permission

of Phys. Rev. D.
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Consider a compactification of type IIA string theory on a Calabi-Yau threefold

M . A single D6 brane wrapped on a supersymmetric three-cycle Σ ⊂ M realizes

a 4d N = 1 quantum field theory.13 In [69], we began to explore the consequences

of mirror symmetry for such brane worldvolume theories (related work appears in

[80,81,82]). We found that the moduli space of vacua has complex dimension b1(Σ),

to all orders in σ-model perturbation theory. Any superpotential must be generated

by nonperturbative worldsheet effects, i.e. disc instantons. Now, choose Σ so that

the mirror cycle C is a rational curve in the mirror threefold W . The mirror of the

above D6-brane is a D5-brane wrapped on C×IR4. When C has obstructed first-order

deformations, the deformation is described by a massless scalar field with a higher-

order superpotential; this superpotential is described exactly by classical geometry

[67,69]. Mirror symmetry implies a disc instanton-generated superpotential for the

IIA D6 brane. Ideally we could use this to compute the instanton sum exactly.

The first obstacle to this program is that the explicit construction of such D-brane

mirror pairs is quite difficult, and examples of compact special Lagrangian three-

cycles with b1(Σ) 6= 0 have been scarce.

In this chapter, we further this program by providing examples of such pairs,

and developing a preliminary understanding of the structure of the instanton sums

and the mirror map. We begin in §2 with a more detailed review of supersymmet-

ric D-branes in Calabi-Yau compactifications. These have a standard classification

as A-type or B-type branes [83], which roughly correspond to special Lagrangian

cycles and holomorphic cycles, respectively. The superpotentials on B-type branes

arise from classical geometry [67,69] and we review the geometry of a few specific

examples (some with nontrivial superpotentials and some without). We also dis-

cuss the qualitative features of superpotentials for A type branes. In §3, we give

an explicit construction of the special Lagrangian three cycles which are mirror

to the explicit examples of B-type branes discussed in §2. In particular, we find

examples of smooth three-cycles with nonvanishing b1 whose mirrors have moduli

space dimension less than b1. This effectively proves the existence of disc instanton-

generated superpotentials. We also give explicit examples of disc instantons, i.e.

13 To avoid RR tadpoles, one can take M to be noncompact, or consider a full orientifold

model which also has orientifold planes. Alternatively, since we will be working at tree

level, one can consider a non-space filling brane whose worldvolume theory still has 4

supercharges, and view the superpotentials we compute in that context.
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holomorphic discs with boundary in a nontrivial homology class on the special La-

grangian cycle. In §4, we use mirror symmetry to make some statements about

the instanton-generated superpotential for our A-type examples. We first discuss a

mechanism by which disc instanton effects in our examples could (partially) cancel

at special loci in closed string moduli space. We then give a preliminary description

of the mirror map for open string moduli in one example. We close with a discussion

of promising future directions in §5.

2. Superpotentials from D-branes

2.1. A-type and B-type branes

There are two distinct classes of supersymmetric branes in Calabi-Yau compact-

ifications: A-type and B-type branes [83] (which can be constructed as boundary

states in the topological A- and B-twisted sigma models respectively, following the

notation of [84]). To help distinguish between these cases, we will denote by M

a Calabi-Yau used for studying A-type branes, and by W a Calabi-Yau used for

studying B-type branes. When we give examples in later sections, mirror pairs will

be identified by using a common subscript, (Mi,Wi). In geometric language, B-type

branes correspond to branes wrapped on holomorphic 0,2,4 and 6-cycles of a Calabi-

Yau W ; while A type branes correspond to branes wrapped on a special Lagrangian

three-cycle Σ ⊂M . In both cases, one has to choose a gauge field configuration on

the D-brane; the supersymmetry-preserving bundles correspond to flat bundles for

A-type branes and to stable, holomorphic bundles for B-type branes.14

Assuming the branes to be space-filling, one can prove the following general

results about the dependence of the N = 1 brane worldvolume action on the Calabi-

Yau moduli:

• The superpotential for B-type branes depends only on the complex structure

moduli, while FI terms depend only on Kähler moduli.

• The mirror story holds for A-type branes: the superpotential depends only on

Kähler moduli, while the FI terms depend on complex structure moduli.

14 We are being schematic. A more precise discussion of B-type branes as coherent

sheaves can be found in [85]; supersymmetric configurations with NS 2-form moduli turned

on can be found in [86].
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The statements about the superpotential were proven using worldsheet techniques

in [67]. The correspondence between FI terms and Calabi-Yau moduli has been

explored in [66,1]; explicit examples of superpotentials for B-type branes were given

in [67,69].

As with closed string σ-models, the open string σ-model coupling constants

(in which one expands σ-model perturbation theory) are related to the choice of

the Kähler form on W , and not to the complex structure. It follows that for B-

type branes one can determine the superpotential exactly at σ-model tree level,

using classical geometry. In contrast, for A-type branes (at least for a single brane,

which is the case of interest to us here) the superpotential is entirely determined by

“stringy” disc instanton corrections [69].

2.2. Superpotentials for B-type branes

Information about the superpotential for B-type branes is contained in the

deformation theory for these branes (and for the gauge bundles on those branes).

We will review here the case of branes wrapping curves in a threefold [67], since

these are the examples we use in this chapter.

For a holomorphic curve C in a Calabi-Yau threefold W , the number of first-

order holomorphic deformations is d = dimH0(C,NC), where NC is the normal

bundle of C ⊂ W . For a single D5-brane wrapping C in type IIB string theory,

this leads to d massless neutral chiral supermultiplets (in addition to the U(1)

vector multiplet). A superpotential for chiral multiplets naturally corresponds to

an obstruction to extending the associated first-order deformations to higher order.

Geometrically, the obstruction can only arise if H1(C,NC) is nontrivial. For

simplicity, we only consider a one-parameter deformation. If one chooses a small

parameter ε, and tries to find a finite holomorphic deformation order by order in ε,

one computes that the obstruction to finding a solution at each order is represented

by an element of H1(C,NC) [87]. In particular, if there is a nonzero obstruction at

order εn, then this geometry is naturally described by a superpotential of the form

W = Φn+1.15

15 Of course the correct normalization of the fields, and thus of the superpotential,

depends on the Kähler metric, which we will not compute in this work.
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The simplest example of such obstructed curves begins with a threefold with n

isolated curves, as a particular deformation of the complex structure causes these

curves to coincide. They become a single curve C of multiplicity n, and this curve has

an obstruction at order n to holomorphic deformations. Physically this is described

by n massive vacua coalescing into a single vacuum with superpotential Φn+1.16

The B-type examples we will study realize this construction from the following

starting point [88,89]. Begin with a Calabi-Yau threefold which contains a rational

curve C fibered over a genus-g curve Sg. One may canonically associate an element

ω ∈ H1,0(Sg) with a non-toric17 first order deformation of the complex structure.

The differential ω generically has (2g − 2) simple zeros, which correspond to the

isolated rational curves in the family Sg which survive the deformation. At points

of positive codimension in complex moduli, these curves can coincide and form

curves of higher multiplicity.18 There is a natural superpotential for a single D5-

brane wrapped on some fiber Cz over a point z ∈ Sg, described in [69]. The local

modulus φ of the rational curve Cz over z can be thought of as an element of the

holomorphic tangent space T 1,0
z Sg, and it is the scalar component of a superfield Φ.

The superpotential is then:

W (Φ;ω) = 〈ω,Φ〉 +
1

2!
〈∂〈ω,Φ〉,Φ〉 +

1

3!
〈∂〈∂〈ω,Φ〉,Φ〉,Φ〉 + · · · , (2.1)

evaluated at z. Here 〈 , 〉 is the usual inner product between forms and vectors, and

∂ is the Dolbeault operator on Sg. It is easy to see that the expansion in (2.1) can

be truncated after (2g− 1) terms without changing the location and multiplicity of

the critical points of W .

Below are several examples which realize this general framework. These will

be our testing ground for a discussion of open-string mirror symmetry. The consid-

erations of [69] yield some predictions for the mirror three-cycles which we will give

16 The situation is actually a bit more complicated than this. Our assertion only pertains

to the case NC = O⊕O(−2). It is an open problem to classify the possible superpotentials

that can yield a single curve with multiplicity n, even in the next simplest case NC =

O(1) ⊕ O(−3). An example in this case is the superpotential W (Φ,Ψ) = Φ2Ψ + Ψ3,

corresponding to a curve with multiplicity 4.
17 We will be studying hypersurfaces in weighted projective space: for these examples the

non-toric complex structure deformations are those which are not monomial deformations

of the defining equation.
18 In all of these cases, NC = O ⊕O(−2), so our previous discussion applies.
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at the end of these examples: we will describe and explore the mirror examples in

§3.

Ur-Example

Our examples will all be orbifolds of the Calabi-Yau hypersurface W of degree

8 in IP4
1,1,2,2,2 , defined for example by the equation

p = z8
1 + z8

2 + z4
3 + z4

4 + z4
5 = 0. (2.2)

W has a singularity at z1 = z2 = 0, inherited from the ambient weighted projective

space. Blowing up this Z2 singularity yields a family of IP1s, parametrized by the

genus 3 curve S3:

z4
3 + z4

4 + z4
5 = 0. (2.3)

The non-toric deformations associated to H(1,0)(S3) generically lift the family S3 of

IP1s, leaving four isolated IP1s.

One can see the non-toric deformations explicitly, by considering an equivalent

description of W as a complete intersection of a quartic and a quadric in CIP5

following [88]. One sees the equivalence by setting the homogeneous coordinates

(y0, · · · , y5) of CIP5 equal to (z2
1 , z

2
2 , z1z2, z3, z4, z5). Then the quadric equation

y2
2 = y0y1 (2.4)

of rank three is automatically satisfied. The model in IP5 obviously has complex

structure moduli which deform (2.4) to an equation of higher rank. If one deforms

the quadric to have rank four or fewer, then one is still describing points in the

complex structure moduli space of W .19 Deformations to quadrics of rank greater

than four correspond to making an extremal transition from W to another Calabi-

Yau space. One finds a three-dimensional space of deformations of the quadric which

leave one in the moduli space of W , hence there are three non-toric deformations.

This story is described in full generality (in the case of a family of IP1s parameterized

by a genus g curve, and the corresponding g non-toric deformations) in [89].

19 To see this, note that both (2.4) and the rank 4 quadric y0y1 = y2y3 can be desin-

gularized by the same blowup y0 = y2 = 0, hence both blowups fit into the same moduli

space.
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It is evident that when one deforms (2.4) by a term which increases the rank to

four, e.g. y2
3 , one destroys the family of IP1s. This is because the family is located

at y0 = y1 = y2 = 0 (which is the same as z1 = z2 = 0); the addition of y2
3 to (2.4)

would then force z3 = 0 also. But then the former genus 3 curve (2.3) collapses to

the four points z4
4 +z4

5 = 0. Hence, instead of a one-parameter family there are now

4 isolated IP1s.

Upon wrapping a single D5-brane on a member of the family of IP1s one finds

a U(1) gauge theory in four dimensions with a single neutral chiral multiplet φ

parameterizing a local neighborhood in S3. After a generic non-toric deformation

described by ω, (2.1) will describe a superpotential with four massive vacua.

In the mirror manifold, M , the non-toric deformations have the following de-

scription. Toric Kähler moduli in weighted projective space arise from the volume

of the space, the blow-up parameters for the fixed loci of the Greene-Plesser orb-

ifold group, and blow-up parameters for any singularities of the weighted projective

space which intersect the Calabi-Yau. If the CY hypersurface intersects one of these

loci n+ 1 times, the toric Kähler deformation changes the size of all n+ 1 divisors

simultaneously, while the remaining n “non-toric” moduli change the relative sizes.

In our examples, mirror symmetry demands the following statement about the

three-cycles Σ ⊂M mirror to C ⊂W . At the locus in Kähler moduli space with the

three non-toric moduli turned off, we have a unique first-order deformation which

by [90,69] requires b1(Σ) ≥ 1. (If the inequality is not saturated, the instanton sum

must give b1 − 1 chiral multiplets a mass.) The instanton-generated superpotential

for one of these moduli must vanish until the non-toric deformations are turned on,

and then the moduli space generically splits into four massive vacua.

Example I

The first example which we will discuss is W1, the orbifold of W and S3 ⊂ W

by the discrete Z4 × Z2 × Z2 group with generators

(1, i, i, i, i), (1, 1,−1,−1, 1), (1, 1, 1,−1,−1) . (2.5)

The family of IP1s on W located at z1 = z2 = 0 is orbifolded by (2.5), and the curve

(2.3) becomes a genus 0 curve after orbifolding. Because IP1 has no holomorphic one

forms, this model does not admit non-toric deformations which destroy the family
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of holomorphic spheres. Therefore, there is never a nontrivial superpotential, for

any complex structure.

Mirror symmetry requires that M3 has a one-parameter family of supersym-

metric three-cycles. This would be most simply realized by a family of three-cycles

Σ with b1(Σ) = 1. No Kähler deformation of M3 should lead to a nontrivial disc

instanton generated superpotential, so the family of three cycles survives quantum

corrections even after deformations of closed string Kähler moduli.

If M1 is the mirror of W1, we will see in Appendix A that the mirror cycles

Σ ⊂ M1 to our family of IP1s have b1(Σ) > 1. Therefore we expect disc instanton

effects to give masses to b1(Σ) − 1 of the moduli of Σ predicted by the classical

geometry.

Example II

Our next example, W2, arises from orbifolding W and S3 ⊂ W by the Z4 ×Z4

discrete group with generators

(1, i, i, 1,−1), (1, 1, 1, i,−i) . (2.6)

Once again we have a family of IP1s at z1 = z2 = 0. The curve (2.3) becomes a

genus-1 curve S1, after orbifolding by (2.6). Thus, if we wrap a D5-brane around a

member of this family, there is a single parameter in the superpotentialW associated

to the holomorphic differential on the curve S1. The corresponding superpotential

(2.1) is just

W (Φ) = cΦ , (2.7)

where c is related to the magnitude of the non-toric blowup. When c 6= 0 there

are no supersymmetric vacua: the auxiliary field F in the chiral multiplet is non-

vanishing, and since we are coupled to closed string theory the 4d gravitino gains a

mass. This is in keeping with the fact that after the deformation, the holomorphic

spheres have all disappeared.

In the absence of coupling to gravity, one can redefine the supercharges so that

the superpotential (2.7) does not break supersymmetry; it simply adds a harmless

constant to the Lagrangian. This is reflected clearly in the geometry of the example.

In a local neighborhood of the g = 1 curve of IP1s in W2, the manifold looks like a

product of an A1 ALE space and a T 2. This local geometry is hyperkähler and so
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has a family of complex structures, parametrized by an S2. Upon performing the

non-toric deformation (2.7), one can choose a different complex structure so that

there are still holomorphic curves. Since W2 is not hyperkähler, this is prevented

by the global geometry at finite volume. Hence, global features of W2 are impor-

tant in determining that supersymmetry is broken, a fact which clearly reflects the

need to couple the D-brane worldvolume theory to gravity in order to diagnose the

supersymmetry breaking.

If M2 is the mirror of W2, the mirror cycles Σ ⊂ M2 to our family of IP1s

should also live in a one-dimensional family, so that b1(Σ) ≥ 1. The non-toric

Kähler deformation of M2 breaks supersymmetry entirely via disc instanton effects.

Example III

Example III works much like Example I. Let M3 be the orbifold of W by the

Z2 symmetry generated by g̃:

g̃ = (1, 1, 1,−1,−1) (2.8)

We will consider B-type branes on the mirror W3 of M3. In W3 there is still a one-

parameter family of IP1s, parametrized by a IP1 (roughly obtained by orbifolding

the genus 3 curve in W ). Again, there is no superpotential for this modulus for any

value of the complex structure.

For the mirror A-cycle we will find below that b1(Σ) = 1, so classical results

apply for all values of the Kähler moduli of M3.

2.3. Qualitative features of superpotentials for A-type branes

Coordinates on the moduli space of A-type branes

Let M be a general Calabi-Yau threefold, and Σ ⊂ M a special Lagrangian

three-cycle. For simplicity, assume b1(Σ) = 1, and assume there is a single holo-

morphic disc instanton D bounded by a representative γ of the generating class in

H1(Σ). The cycle Σ moves in a one-dimensional family in σ-model perturbation

theory; as discussed in [81,69], we can parameterize this family locally by a modulus

field φ:

φ = Area(D) + ia (2.9)

where the area is measured in string units, and a is an axion (the Wilson line of the

brane U(1) gauge field around γ).
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This was the picture given in [69], but a moment’s thought indicates that it

should be modified. Consider for example a special Lagrangian torus in T 6. There

are clearly no holomorphic discs bounding the cycles of T 6, but this does not mean

that there is no moduli space for the special Lagrangian subcycle. Indeed there

is a simple ansatz which naturally generalizes the above. Begin with a reference

three-cycle Σ0 in some family Σt, defined by an embedding ft : Σ0 ↪→M . Choose a

family of deformations constructed from a harmonic form in some class in H1(Σ0)

[90]. Then choose some one-cycle γ0 ∈ Σ0 whose class in H1(Σ0) is dual to this

cohomology class via the metric. As t varies in the chosen family of deformations,

ft(γ) will sweep out some tube T in M . A natural coordinate φ is:

φ =

∫

T

ω + i

∫

γt

At (2.10)

where ω is the Kähler form on M and At is a flat connection on Σt. When the tube

is holomorphic, the real part is simply the area of the tube.

Finding nontrivial superpotentials

Before launching into a detailed discussion of specific three-cycles mirror to the

above examples, we would like to gain some general and intuitive understanding of

the form of the superpotentials directly in the language of the three-cycle geometry.

Following [82], the sum over multiple covers of D yields a superpotential

W = ±
∞
∑

n=1

e−nφ

n2
. (2.11)

The sign here depends on details of the fermion determinants around the instanton

solution [80]. It follows from (2.11) that

∂W

∂φ
∼ ±

∞
∑

n=1

e−nφ

n
= ∓log(1 − e−φ). (2.12)

This has a single critical point at φ = ∞, which from (2.9) is the open string

analogue of large radius. Of course one expects that to reach φ = ∞, M must be

at some infinite-radius point.

Now, suppose instead that we have k disc instantons Di bounding the same

homology class γ ∈ H1(Σ). Di may differ by homology classes in M . Choose Re(φ)

to be the area of D1. The exponential of the action for instanton Di is that for D1
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times a factor qi, the exponential of the (complexified) volume of [Di−D1] ∈ H2(M).

Finally, assume each of these discs are isolated. The resulting superpotential is:

W =
k
∑

i=1

∞
∑

n=1

σi
e−nφ

n2
qni , (2.13)

where σi is the sign of the σ-model fermion determinant for the instanton Di. The

supersymmetric vacua satisfy:

k
∑

i=1

σilog(1 − qie
−φ) = 0 . (2.14)

This is equivalent to a polynomial equation in e−φ, whose degree is the greater of

#{i | σi = 1} and #{i | σi = −1} . Note that the critical points need not all be at

large radius. The precise locations of the critical points depend on the closed string

Kähler moduli through the qi.

We get similar results when we include new disc instantons in the class dγ for

varying d. The general result is that if we have ki disc instantons in classes diγ,

then (assuming for simplicity that all the fermion determinants are positive) there

are
∑

kidi supersymmetric vacua. For families of discs some open-string version of

the Gromov-Witten invariants of closed string instantons should replace ki.

The main point of this discussion is that it is not difficult to imagine one-

parameter families of special Lagrangian manifolds which yield, after disc instanton

corrections, a discrete set of supersymmetric vacua. This is fortunate as the mirrors

of the B-brane configurations discussed in §2.2 must exhibit this behaviour.

Another lesson is that string instanton effects alter our expectations of the

topology of our three-cycles. The natural physical measure of b1(Σ) within σ-model

perturbation theory is the number of massless chiral multiplets for a single D6-

brane wrapped on this cycle. However, disc instanton effects may well give some of

these chiral multiplets a mass, in which case there is no obvious physical distinction

between the original three-cycle and a cycle with smaller b1.

Special features of A-cycles arising as real slices

We will be focusing on special Lagrangian three-cycles constructed as the fixed

point locus of antiholomorphic involutions acting on M , in other words antiholo-

morphic maps σ : z → z̄ which square to the identity. The standard example,
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which we will use in every case, is the real slice arising as the fixed point set of

zi → z̄i. In this case, for each holomorphic disc we get a conjugate holomorphic

disc. If f : D →M is a holomorphic map, we can define its conjugate holomorphic

disc g : D → M by g(z) = f(z̄). Upon gluing these discs together we find that for

any special Lagrangian submanifolds obtained as fixed points of antiholomorphic

involutions, holomorphic disc instantons always come as two halves of a rational

curve in M . Furthermore, it is natural to conjecture that as this special Lagrangian

cycle moves through a family Σt, one may find a set of one-cycles γt ∈ Σt whose

images in M sweep out this rational curve.

The superpotential can be derived from a variant of (2.13). Let IP be the

rational curve in question, and t be the integral of the complexified Kähler form of

M over IP. Let z be the action of the instanton described by f ; the action for the

instanton described by g is then t− z. Assuming the fluctuation determinants have

the same sign, the superpotential one gets from summing over multiple covers is up

to overall sign:

W = Li2(1 − e−z) + Li2(1 − e−t+z) . (2.15)

It is easy to see that this has a supersymmetric vacuum at z = t/2. At this point

in the open- and closed string moduli space the superpotential is that of the local

model in [82].

3. Constructing the mirror three-cycles

The next step to fleshing out the mirror map for open strings is, of course,

to characterize the mirror map for the submanifolds on which they end. In this

section we will find explicit special Lagrangian three-cycles mirror to elements of

the families of IP1s described in the examples above.

3.1. Strategy for identifying mirror cycles

At an arbitrary point in the closed string moduli space, it will be fairly difficult

to find explicit mirror cycles. Instead we focus on loci of the moduli space with

physical and mathematical significance. In our B-cycle examples, the family of

IP1s around which we intend to wrap D5-branes are known to have zero volume

at some submanifold in the full (complex and Kähler) moduli space; these points
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occur when the resolutions of the orbifold singularities discussed above have been

turned off (along with the associated NS-NS 2-form moduli). We may identify

these points physically by studying BPS D2-branes wrapped on the same cycles in

type IIA string theory.20 These D2-branes form massless (vector) multiplets at this

discriminant locus as guaranteed by the BPS formula.

In type IIB on the mirror CY, the BPS formula implies that a wrapped D3-

brane must become massless at the mirror discriminant locus. Since the mass

receives no closed string worldsheet instanton corrections, we need simply find the

mirror discriminant locus and the vanishing three-cycle via classical geometry. We

will discuss the identification of this pair of cycles in W ⊂ IP4
1,1,2,2,2 and its mirror;

the same logic leads to a similar identification in all of our examples.

The mirror manifold M of W is easily constructed using the Greene-Plesser

construction [91]. One quotients W by a suitable maximal group of scaling sym-

metries, leaving only two complex structure deformations of M . These can be

represented by the coefficients of the monomials z1 · · · z5 and z4
1z

4
2 in the defining

equation for M .

Let us work on the locus in moduli space where the defining equation is:

(z4
1 − z4

2)2 − 2εz4
1z

4
2 + z4

3 + z4
4 + z4

5 = 0. (3.1)

Here we have set the coefficient of z1 · · · z5 to zero; this subspace of the complex

structure moduli space of Y intersects the discriminant locus at {ε = 0 , ε =

−2}. These two points in moduli space can be seen to determine the same CY

manifold by redefining z2 by an eighth root of unity. Now, we want to construct

a supersymmetric three-cycle which is mirror to a member of the family of IP1s

on W , discussed in §2.2. At least near large complex structure, δz1 · · · z5 is the

complex deformation of M mirror to the size of the projective space W IP4
1,1,2,2,2.

Furthermore, we can identify ε as mirror to the modulus controlling the size of the

exceptional IP1 in W , as explained in [88]. Therefore, we are looking for a three-

cycle Σ ⊂M which collapses as ε→ 0. This identification of mirror moduli holds in

the other cases as well. We will find a particular such three-cycle Σ as a component

of the fixed point locus of a real involution acting on the A-model CY. Some set of

20 All of our statements are at string tree level so we can be cavalier about changing

brane dimension like this.

49



fixed points of the Greene-Plesser quotient intersect the three-cycle, and the details

of the resolution of these singularities will determine the topology of Σ.

In the following subsections we study the mirrors of the examples considered in

§2. Mirror symmetry reverses the order of increasing complexity, so we will examine

the three examples in reverse order.

3.2. Example III

In this example the three-cycle topology is the simplest, since the fewest

blowups are required. Recall that M3 is the orbifold of W by g̃ = (1, 1, 1,−1,−1).

The only fixed points are at z4 = z5 = 0, so we introduce a second C∗ action and

a new coordinate z6, where the second C∗ acts by (z4, z5, z6) → (λz4, λz5, λ
−2z6).

The defining equation is modified to:

(z4
1 − z4

2)2 − 2εz4
1z

4
2 + z4

3 + z2
6(z4

4 + z4
5) = 0, (3.2)

so that the manifold is preserved by this secondC∗. Now consider the real involution:

σ : (z1, · · · , z6) → (z1, · · · , z6) .

We obtain a three-cycle N as the fixed point locus of σ (N has two components,

which are basically two copies of the desired three-cycle Σ). We will see below that

it vanishes as ε → 0. For the rest of this subsection, we take z1, · · · , z6 to be real

(since we wish to work on the fixed point locus of σ).

We use the C∗ action of the IP4 to set z2 = 1; we will see presently that we will

not need to leave this coordinate patch. Furthermore, we define:

x = z4
1 , Q = z4

3 + z2
6(z4

4 + z4
5), A = 2ε+ ε2 . (3.3)

Solving (3.2) for x in terms of the remaining variables we find:

x = 1 + ε±
√

A−Q. (3.4)

We have two branches of solutions for x, which meet when Q = A. The real slice

includes only the region A ≥ Q, since otherwise x = z4
1 would be imaginary.
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Next, we blow up the orbifold singularity induced by g̃ using the language

of symplectic quotients. We introduce a new Kähler parameter r in the following

“D-term equation” (c.f. [92]):

|z4|2 + |z5|2 − 2|z6|2 = r (3.5)

in the description of the full complex manifold M : along the real locus we can

dispense with the absolute values. Note that in the full CY we have to gauge

away the U(1) under which (z4, z5, z6) have charges (1, 1,−2). Since the zi are

real on N , the only gauge transformation which acts as an identification on N is

(z4, z5, z6) 7→ (−z4,−z5, z6), i.e. the orbifold by g̃.

Next, we can solve (3.5) for z4:

z4 = ±
√

r − z2
5 + 2z2

6 . (3.6)

This gives two branches for z4 which are glued together along the hyperbola z2
5 −

2z2
6 = r. Reality of z4 requires that r ≥ z2

5 − 2z2
6 . These conditions bound z2

3 , z
2
5 , z

2
6

from above, allowing us to stay on the patch where z2 = 1.

Consider the regime 0 < ε << 1, r > ε. The region Q ≤ A intersects the region

of real z4 in a region with the topology of a solid cylinder, as pictured below.

z3z8

z5

Fig. 1: z4 is real between the walls; x is real inside the tube.

51



Making the orbifold identification merely halves the circumference of this cylin-

der. The two branches of solutions for z4 and the two branches of solutions for z4
1

give rise to four copies of this cylinder, which are glued along the loci where the

z4 branches meet and the z1 branches meet (the sheet of hyperbolas and Q = A

respectively). The gluing along the boundaries of the z4 branches yields two solid

tori; gluing along the boundaries of the z1 branches then yields the closed three-

manifold Σ ∼ S2 × S1, which has b1(Σ) = 1. Note that N consists of two copies

of Σ, one with z1 > 0, and the other with z1 < 0 (we will abuse notation and call

both copies by the same name, since in any case they are identical).

Because Σ is a smooth special Lagrangian three-cycle with b1 = 1, it is guaran-

teed by McLean’s theorem to come in a family of special Lagrangian cycles of real

dimension one [90]. Since Q is positive semidefinite on the real slice, when ε → 0

the locus Q ≤ A collapses and the two components of N are no longer finite-volume

three-manifolds. We identify the two components of N with two members of the

family of IP1s in W3.

A D6 brane wrapping Σ would naively yield, in the transverse 3+1 dimensions,

a 4d N = 1 field theory with U(1) gauge group and a single neutral chiral multiplet

φ. Although φ has no superpotential to all orders in sigma model perturbation

theory (this is the string theory analog of McLean’s theorem), φ can receive a

superpotential from disc instantons [69]. In this case, we know from the mirror

B-model geometry that there are no non-toric deformations which would lift the

moduli space of supersymmetric IP1s. This implies that there is no disc-generated

superpotential in this case.

Disc Instantons

Some explicit examples of disc instantons with boundary on Σ can be con-

structed in this example. Consider the upper half plane parametrized by u. Let

z1, · · · , z6 be given by

(z1, · · · , z6) = (a1u, a2u, a3u
2, 1, 1, 0) . (3.7)

We take the ai to be real; this guarantees that the boundary of the disc (where u

is real) is mapped to Σ.

The disc must lie in M3, which means that:

(a4
1 − a4

2)
2 − 2εa4

1a
4
2 + a4

3 = 0 . (3.8)
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Solutions to (3.8) provide holomorphic maps into M3 with boundary on Σ. In fact

this ansatz yields a one-parameter family of discs: the constraint (3.8) eliminates

one of the ai and the freedom to rescale the u plane fixes another, but there is

one free parameter left in the ansatz. The fact that mirror symmetry implies that

there is no disc-generated potential in this case suggests that there is a cancellation

between the contributions of different discs. We will discuss such a mechanism in

§4.

3.3. Example II

The mirrorM2 ofW2 is constructed by orbifoldingW by the Z4 group generated

by g = (1, 1,−1, i, i). The group element g2 = (1, 1, 1,−1,−1) is the symmetry by

which we orbifolded in Example III, so we should still perform the resolution above.

However, g itself fixes the locus z3 = z4 = z5 = 0, which must be independently

blown up. This is achieved by introducing another variable, z7, and another C∗

action - the charges are summarized in the following table:

z1 z2 z3 z4 z5 z6 z7

C∗
1 1 1 2 2 2 0 0

C∗
2 0 0 0 1 1 −2 0

C∗
3 0 0 2 1 1 0 −4.

The defining equation is modified to

(z4
1 − z4

2)2 − 2εz4
1z

4
2 + z2

7z
4
3 + z7z

2
6(z4

4 + z4
5) = 0. (3.9)

We will use z3, z5, and z6 as coordinates on the real slice, N , which is the fixed

point locus of

σ : (z1, · · · , z7) → (z1, · · · , z7) .

Redefining

x = z4
1 , Q = z2

7z
4
3 + z7z

2
6(z4

4 + z4
5), A = 2ε+ ε2 (3.10)

we find:

x = z4
2(1 + ε±

√

A−Q) . (3.11)

On the real slice, the D-term equations for C∗
2,3 read

z2
4 + z2

5 − 2z2
6 − r2 = 0, 2z2

3 + z2
4 + z2

5 − 4z2
7 − r3 = 0 . (3.12)
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Solving (3.12) for z4 and z7 we find:

z4 = ±
√

r2 − z2
5 + 2z2

6

and

z7 = ±
√

1

2
(r2 − r3 + z2

3 + z2
6) . (3.13)

If we choose Kähler moduli so that r2 > r3, then z7 never vanishes, and the two

branches of solutions never meet. On the branch where z7 > 0, Q = z2
7z

4
3 +z7z

2
6(z4

4 +

z4
5) is positive semidefinite as in §3.2, and (3.11) tells us that this component of

the real slice vanishes as ε → 0. The other component of the real slice does not

shrink on this locus and so is of no interest to us. Under the restriction that

z4 = ±
√

r2 − z2
5 + 2z2

6 is real, the three-cycle of interest again resides on the patch

where z2 = 1 (for this regime in closed string moduli space). The determination

of topology goes through in complete analogy with Example III, and we again find

two components of the real slice N , each of which is topologically S2 × S1. We

again call the components Σ.

So we see again that a D6-brane on Σ has a one-dimensional moduli space to all

orders in σ-model perturbation theory. The non-toric deformation of W2 which lifts

the moduli space of supersymmetric IP1s must in fact map to a small deformation

of the Kähler structure of M2. This deformation cannot change the topology of

Σ, since Σ is a smooth three-cycle and the deformation can be made arbitrarily

small. Hence, for the moduli spaces of the mirror pair to match, the non-toric

Kähler deformation must activate a disc-generated superpotential. We give further

evidence for this below.

Disc Instantons

For this example we can again construct explicit examples of disc instantons

with boundary on Σ. Using the holomorphic quotient description of M2, we fix the

three C∗ actions to set z4 = z5 = z7 = 1.

Consider the upper half plane parametrized by u. Let z1, · · · , z7 be given by

(z1, · · · , z7) = (a1u, a2u, a3u
2, 1, 1, 0, 1) (3.14)

Again the ai are real, so that the boundary of the disc u ∈ IR is mapped to Σ.

In order that the disc lies in M2, a1,2,3 must again satisfy Eq. (3.8). As

before, we find a one-parameter family of holomorphic maps of the disc into M2

with boundary on Σ.
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3.4. Example I

The mirror M1 of W1 is constructed by orbifolding W by the Z2 × Z2 group

generated by g1 = (1, 1,−1,−1, 1) and g2 = (1, 1, 1,−1,−1). This example provides

the richest spectrum of phenomena for the A-cycles in M1 as we have to perform

the most blowups. Augmenting the weighted projective space by the following ad-

ditional variables and C∗ actions allows us to resolve all singularities which intersect

the three-cycle:
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z1 z2 z3 z4 z5 z6 z7 z8

C∗
1 1 1 2 2 2 0 0 0

C∗
2 0 0 0 1 1 −2 0 0

C∗
3 0 0 1 0 1 0 −2 0

C∗
4 0 0 1 1 0 0 0 −2 .

The defining equation for M1 is:

0 = (z4
1 − z4

2)2 − 2εz4
1z

4
2 + z2

7z
2
8z

4
3 + z2

6z
2
8z

4
4 + z2

6z
2
7z

4
5

≡ (z4
1 − z4

2)2 − 2εz4
1z

4
2 +Q .

(3.15)

We will use z3, z4 and z5 as our independent variables. Solving the D-term equations

associated to C∗
2, C∗

3 and C∗
4 for z6, z7 and z8 on the real slice gives

z6 = ±
√

1

2
(−r2 + z2

4 + z2
5)

z7 = ±
√

1

2
(−r3 + z2

3 + z2
5)

z8 = ±
√

1

2
(−r4 + z2

3 + z2
4).

(3.16)

where r2,3,4 are the Kähler parameters controlling the sizes of the associated excep-

tional divisors in M1.

Choosing r2,3,4 > 0 we find a geometric phase. The real slice will have several

identical components of which we choose one and call it Σ. Since the function Q

defined above is positive semidefinite, this component will shrink when ε→ 0.

The analysis of the topology of this component Σ of the real slice is included

in the appendix. The conclusion is that in the regime of Kähler moduli considered

above, b1(Σ) = 5. In particular, Σ is a connected sum of 5 copies of S1 × S2.

The mirror IP1 has a one-dimensional moduli space, while by McLean’s theorem Σ

would move in a 5-dimensional family. Thus we are guaranteed the presence of a

disc-instanton generated superpotential which lifts four of the flat directions.

4. Mirror symmetry and the superpotential

We are interested in computing the superpotential for the A-type examples in

§3, by finding a mirror map for the open string moduli. In this section we will make

some progress in this direction. We will start in §4.1 by arguing that the features
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of the mirror B-type examples near the toric locus are captured by certain features

of disc instantons in our A-type examples. In §4.2 we will find a large-complex-

structure limit of the B-type examples for which the disc instantons of the mirror

three-cycle will be large, and construct a mirror map for the chiral multiplet in this

limit.

4.1. The superpotential near the toric locus

Recall that for the Ur-example and for example II, mirror symmetry requires

the following story. The ambient Calabi-Yau M (resp. M2) has g non-toric defor-

mations with g = 3 (resp. 1); these arise because the hypersurface intersects g of the

divisors of the (orbifolded) weighted projective space twice, to create two divisors

in the hypersurface. At the “toric locus” these divisors have the same size. At this

point the three-cycles we study must have a one-dimensional moduli space (namely

a genus-g curve). As we leave this locus, we acquire a superpotential and are left

with 2g − 2 isolated three-cycles. We argue here that there will be different disc

contibutions which cancel on the toric locus.

In our A-cycle examples, the defining equation for the threefold M may be

written as:

0 = (z4
1 − z4

2)2 − 2εz4
1z

4
2 +Q , (4.1)

where Q is a function of all the variables zk>2 other than z1 and z2. It follows that

on the hypersurface:

(z4
1)± = z4

2(1 + ε±
√

A−Q) (4.2)

with A = 2ε + ε2. Consider the map, i : M → M , which fixes zk>2 but flips

the branches of z4
1 . We claim that this is an isometry of M at the toric locus.

Note that i induces a map on the toric part of the cohomology: i∗ : H2
toric(M) →

H2
toric(M). This happens to be the identity and so preserves the Kähler class on

M . Furthermore, it preserves the complex structure, and so by Yau’s theorem [93]

it preserves the metric on M .

The non-toric Kähler deformations are odd under i∗. To see this, let us describe

them in more detail following [89]. In our examples M is a hypersurface in the

quotient IP4
1,1,2,2,2/Γ, where Γ is the relevant Greene-Plesser (GP) (sub)group. If

Γ has elements which fix the locus z3 = z4 = z5 = 0 (and not just varieties which

contain it such as z3 = z4 = 0), this locus must be blown up to desingularizeM . The
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Kähler parameters controlling these blow-ups have a natural mirror description in

toric geometry [88,89]. Within the lattice of exponents of monomials in the ambient

space of W , the allowed monomials (preserved by the subgroup of the GP group

complementary to Γ) lie on a polyhedron. The lattice points on the lines and faces

of this polyhedron correspond to divisors in M and monomial deformations of W .

In particular the lattice points corresponding to z4
3,4,5 in W form the vertices of a

triangular face of this polyhedron and control the monomial deformations of the

Riemann surface Sg ⊂ W . The g interior points can be used to construct the

holomorphic differentials of Sg, so they are associated to the non-toric deformations

which destroy the family of IP1s over Sg.
In M these g interior points denote the Kähler parameters controlling the

blowup of z3 = z4 = z5 = 0. The exceptional divisors intersect the hypersurface

twice in M , at the loci (z4
1)± = z4

2(1 + ε±
√
A). The non-toric moduli control the

relative sizes of these divisors in M . Since the map i defined above interchanges

these two loci, and the non-toric deformations change their relative sizes, i can no

longer be an isometry away from the toric locus. Furthermore, at the toric locus i

will change the sign of the non-toric deformation.

The map i lifts naturally to a map on holomorphic discs. Hence, these discs

should come in pairs related by i. It is plausible that on the toric locus, the sign of

the contribution in Eq. (2.13) is changed by i; then the disc instanton contributions

of the pair will cancel in the superpotential. This could come about through the

action of i on fermion zero modes or on the pfaffian. When i is not an isometry, the

areas of the discs related by i will differ, so their contributions to W will no longer

cancel.

Note that this cancellation cannot happen for every disc at the toric locus.

In particular, in example I we find that b1(Σ) = 5 while the true moduli space

is one dimensional.21 This suggests that the involution i changes the sign of the

contribution of discs with boundaries in only one class of H1(Σ). There is clearly

much to understand here.

The set of examples we have considered fits into the more general framework

discussed in [89]. The B-model CY in general contains a family of AN singularities

21 At special degenerate points in the complex structure moduli space of W , the dimen-

sion of the moduli space of the mirror IP1 enlarges to two, but never to five.
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fibered over a genus g curve. Upon resolving this family, one then finds N families

of IP1s. There are g interior points on the relevant face of the toric diagram, and

therefore g non-toric complex structure deformations which destroy each family.

Furthermore, the defining equation for the A-model CY will be of degree N + 1 in

one of the variables, x, which is single-valued under the GP orbifold (the analog of

x = z4
1), leading to N +1 branches of solutions. g toric divisors each intersect these

N + 1 branches once. On the toric locus, the Galois group, SN+1, of the defining

equation will act via isometries on the CY by interchanging the branches of solutions

for x, leading to cancellations between discs. Upon turning on the non-toric Kähler

moduli, these isometries are broken allowing a nontrivial superpotential.

4.2. The mirror map

One of our long-term goals is to use mirror symmetry to find the explicit form of

the instanton sums for A-type branes. Of course this sum is automatically computed

in the B-model, but we require a mirror map for the open string fields in order that

this be of any use. In the context of our models, this means the following. The

B-brane moduli space is parametrized by the complex coordinate z on a genus g

surface, while the A-brane moduli space is parametrized via (2.9) by the disc area

A and Wilson line a. Thus, defining

q = e−φ , (4.3)

we would like to find a map z(q).

As in the closed string case, this will be easiest around “large radius” or “large

complex structure” points, in particular when Re(φ) is large so that the instanton

action is small and classical geometry is a reasonable guide. We therefore search for

a map in a region of large radius of our IIA models, and in the mirror large complex

structure limit of our IIB models. In this limit we can identify the mirror of the

large-disc limit of the A-cycle moduli space with a particular point on the B-cycle

moduli space. Finally, since the superpotential is explicitly computable in the B-

model side, we can use our previous intuition about the A-type superpotentials to

guess at an explicit mirror map in this limit.

We will work exclusively with the Ur-Example in this section.

The large-complex-structure limit of W

59



On the manifold M , we are interested in the large radius limit. In particular,

the sizes of discs ending on the real slice are determined by sizes of rational curves

(as shown in §2.3), so we demand that the exceptional divisors which intersect the

three-cycle are large. The mirror locus in the complex structure moduli space of W

is specified by the defining equation

p = αz2
3z4z5 + βz3z

2
4z5 + γz3z4z

2
5 = 0 (4.4)

with α, β, γ large and at fixed ratios (recall that these monomials correspond to the

toric divisors in M1). (4.4) can be rewritten as

z3z4z5 (αz3 + βz4 + γz5) = 0 . (4.5)

This degeneration is similar to the large complex structure limit discussed in [94].

It is described by four IP3s at z3 = 0, z4 = 0, z5 = 0 and αz3 +βz4 + γz5 = 0 which

intersect as shown in the figure.

3

4

5

345

Fig. 2: M in the large complex structure limit. The lines represent IP3s

labeled by which coordinate vanishes on them. ‘345’ denotes the one where

αz3 +βz4 +γz5 = 0. This picture also accurately portrays the degeneration

of the curve S3 where z1 = z2 = 0, in which case the lines represent IP1s.

Each IP3 is identical to the others and joins them in a symmetrical way. As

in [94] where the example of the quintic at large complex structure is discussed,

in this large complex structure limit of W it is easy to write down a flat Kähler

metric. Let us examine the metric on z3 = 0 near the locus z4 = 0. We may use
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the C∗ action on the W IP4 to set z5 = 1. The standard residue formula yields the

following expression for the holomorphic (3, 0) form Ω in this degenerate limit:

Ω =

∫

p=0

dz1 . . . dz5
p

=
dz1dz2dz4
z4(βz4 + γ).

(4.6)

Near z4 = 0 the Ricci-flat metric is clearly:

dz2
1 + dz2

2 +
1

γ2
d(ln z4)

2 . (4.7)

Elsewhere on the slice it is:

dz2
1 + dz2

2 + dζ2, (4.8)

where

ζ =
1

γ
ln
βz4 + γ

z4
(4.9)

Sg in this limit lives at z1 = z2 = 0. It is a chain of four IP1s, one in each

IP3 and joined as in fig. 2. The genus-3 structure is clear from this figure. The

metric is simply induced from Eq. (4.9). In particular it is clear that the different

components are joined along infinite cylinders, parameterized by ln zi for zi → 0.

This then is the asymptotic moduli space for a D5-brane wrapped on an element of

the family of IP1s at z3 = 0 near z4 = 0.

The large-radius limit of M

In the mirror M there are three toric divisors which are taken to be large:

near the toric locus, this means that all relevant divisors are large since the toric

modulus controls the sum of the sizes of the exceptional divisors.

The moduli of the A-type branes are the areas of discs; according to our dis-

cussion at the end of §2.3 these discs live in pairs forming IP1s in the Poincaré dual

class of these toric divisors. When the brane wraps a real slice it bisects these IP1s.

Let us parameterize the IP1 by an altitudinal angle θ and an azimuthal angle ρ.

The equator is θ = 0 and the real slice intersects this equator. Let 2πR be the

circumference of the equator. R will be a function of α, β, γ via the mirror map for

closed strings. As the three-cycle moves through its moduli space, it will sweep out

the IP1 by intersecting it at fixed θ. We choose the open-string modulus so that
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φ is the area of the smaller disc. For θ close to zero, a natural metric on the disc

coordinate is:

ds2 = dA2 + da2 = 2πR4 cos θ(dθ)2 +
1

(2πR)2 cos2 θ
(dα)2 , (4.10)

where α ∈ [0, 2π]. Near θ = 0 we can set cos θ = 1 and this is clearly a cylinder,

with the periodic direction given by the Wilson line.

Asymptotic identification of the coordinates

Let us take β, γ ∈ IR. Up to overall normalizations of the fields we roughly

identify

ln z4 = φ (4.11)

due to the periodicity of the imaginary parts of each side of this equation. This

use of the periodicity is similar to the use of monodromy properties in identifying

the closed string mirror map. Note that the correct normalization of the fields is

extracted from the so far unknown Kähler metric. Thus our map is only good up

to some overall constant.
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Computing the superpotential

As reviewed in §2, the deformation along the non-toric locus can be specified

by the choice of a holomorphic differential. Let p̃ be the defining polynomial for

Sg ⊂ W at z1 = z2 = 0. The general holomorphic differential can be writtten as:

ω =

∫

p̃=0

z3dz4dz5 + z4dz3dz5 + z5dz3dz4
p̃

(az3 + bz4 + cz5) . (4.12)

On the locus z3 = 0, this becomes:

ω =
dz5

z5(βz4 + γz5)
(bz4 + cz5) +

dz4
z4(βz4 + γz5)

(bz4 + cz5) . (4.13)

We can concentrate on the region near z4 = 0 by using the C∗ action of W to fix

z5 = 1. Then

ω =
dz4

z4(βz4 + γ)
(bz4 + c) . (4.14)

In the flat coordinates x we write ω = f(x)dx. As shown in [69], W ′(Φ) = f(Φ) for

the associated chiral multiplet. This superpotential clearly has a single vacuum at

z4 = −c/b. It is easy to see that there is a single such vacuum in each of the IP1

components of S3 in this limit, for a total of 2g − 2 = 4 isolated vacua.

We wish to make contact with the large-disc limit of the toric locus of the A-

cycle moduli space. Therefore we push the vacuum to infinite distance by sending

c→ 0. In this limit,

Wζ(ζ) = bz(ζ) =
γ

eγζ − β
(4.15)

for the superpotential of the B-brane. If the A-cycle superpotential were dominated

by a single pair of discs, the corresponding superpotential would be that in Eq.

(2.15). Certainly as z4 → 0 and φ→ ∞, (4.15) and (2.15) are equal to lowest order

in z4 and e−φ, given (4.11).

Our candidate superpotentials are equal only to lowest order as we only have an

asymptotic mirror map at present. There are several complications in constructing

an exact mirror map. First, given our experience with Example I, we expect that

the three-cycle has a sizable number of classical moduli. All but one gain masses

from instanton corrections, but the remaining moduli space may be a nontrivial

submanifold of the classical moduli space. So our formulae for the superpotential

as a function of this modulus are undoubtedly rather schematic.
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Secondly, we have assumed that the only contributions are a discD ∈ H2(M,Σ)

plus its three images arising from the anti-holomorphic involution and the map i

discussed in §4.1. Of course there may be higher-degree contributions nD which

are not multiple covers, and there may be contributions from discs D′ for which

[D −D′] lies in a nontrivial class in H2(M). We leave these issues for future work.

Finally, we have not yet found a global topology of the moduli space of A-

branes which matches the topology of the moduli space of the B-branes, even in

this degenerate limit.

5. Discussion

In this chapter, we have presented explicit examples of three-cycles with non-

trivial topology which are mirror to two-cycles which have either obstructed holo-

morphic deformations or no deformations. After the results of [69], this clearly

shows that there is a disc instanton generated superpotential for the moduli of

such cycles. We have certainly not given a complete formulation of the mirror map

in these examples, but we have made a first step by presenting an analog of the

monomial-divisor mirror map for closed string moduli [95].

Although we lack the full power of N = 2 special geometry that exists for closed

string mirror symmetry, the structure of the N = 1 theory we are studying gives us

some information. In particular, the superpotential W must be holomorphic in the

appropriate variables. Therefore, in limits where one has an open string modulus

φ which is periodic with period 2πi, the superpotential must be a holomorphic

function of eφ. This together with some detailed knowledge of the behavior of W

at singularities should be enough to determine the function entirely.

We can also draw some general lessons from this work and the results of [69].

As with closed strings, in making mathematical statements using mirror symmetry

one must take the instanton corrections into account. For instance, there is a

general conjecture that fundamentally, mirror symmetry is a relation between the

Lagrangian submanifolds of a threefold and the semistable coherent sheaves on its

mirror [96]. The fact that stringy nonperturbative effects prevent generic special

Lagrangian three-cycles from being supersymmetric indicates that this comparison

will be complicated.
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It would be interesting to study these issues in the presence of orientifolds

(required for tadpole cancellation), as a step towards genuine model-building.22

Many of the results of this chapter and [67,69] rest on the fact that from the σ-

model point of view, the superpotential is essentially a topological quantity and

can be computed in an appropriately twisted theory. Since N = 2 worldsheet

supersymmetry is a consequence of N = 1, d = 4 spacetime supersymmetry [97],

the twisted theories will still make sense in the presence of orientifolds.

Another subject worth exploring is the behavior of the topology of a given

special Lagrangian cycle Σ as the closed string parameters vary. It is clear from some

of our examples that the topology of Σ can change as one varies Kähler parameters of

the ambient Calabi-Yau space. For instance, in the example we discuss in Appendix

A, different choices of the blow-up parameters r2,3,4 yield three-cycles of different

topology in the same homology class.
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Appendix A. Some Details Concerning Example I

In this appendix we determine the topology of Σ, the component of the real

slice of the mirror of IP1,1,2,2,2[8] on which all of the wi are positive. We will choose

a regime in moduli space where

ε >> ri, r1 >> ri (A.1)

for all i ≥ 2.

As in the simpler examples, we solve the defining equation for x = z4
1 by

x = 1 + ε±
√

A−Q. (A.2)

We have set z2 = 1 again. We will see that the other variables charged under C∗
1 are

bounded on Σ and so Σ is entirely contained in this coordinate patch. The locus

B ≡ {Q = A} where the two branches of x are joined is a big (not quite round)

ball in the IR3 coordinatized by z3,4,5. The branches of x are then two copies of this

ball glued along the boundary. The loci where the branches of z6,7,8 are joined are

three tubes surrounding the coordinate axes and ending on B. The region where all

variables are real is the part of the inside of B which is outside the union of these

tubes. Suppose we are in a regime of moduli where r3 + r4 < r2. Then the tubes

surrounding the z3 and z4 axes will both intersect the one surrounding the z5 axis,

but not each other, like this:

6

7

7

6

8

Fig. 3: The real slice is the ball with the tubes removed. The tubes are

labeled according to which branches are glued along them.

Now divide by the orbifold group which maps the real slice to itself. It acts by

flipping signs in pairs:

(z3, z4, z5) ∼ (z3,−z4,−z5) ∼ (−z3, z4,−z5) ∼ (−z3,−z4, z5).
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6

6

7

8

Fig. 4: A fundamental domain for the orbifold action on the real slice (glue

along the dotted lines with matching arrows).

After performing this identification, the plumbing fixture surrounding the origin

depicted in fig. 3 becomes a half-cigar (where z8 = 0) ending on B with two smaller

tubes coming off of it (where z6 = 0 and z7 = 0 respectively) and ending on B as

well.

Next, glue the two x-branches along B. This produces an S3 with the following

set removed: The locus where z8 becomes imaginary is now a full cigar, and the

z6 = 0 and z7 = 0 loci are two handles coming off of this cigar.

76
8

Fig. 5: The real slice is the ball with the blob in the middle excised.

An S3 with the z8-cigar removed is again a three-ball; the two handles coming off

of the cigar become tunnels through this three-ball.

We take four copies of this creature to represent the two branches each of z6

and z7. They are glued in pairs along the tunnels. To see what this is we must use

the fact that gluing handlebodies along a tunnel is the same as gluing along a tube

that contains a handle.
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67

Fig. 6: The previous picture turned inside-out. The real slice is now the

inside of the ball minus the two tunnels. The boundary of the ball is where

z8 = 0.

�
�
�
�
�
�
�
�
�
�
�
�

a c

db
Fig. 7: Gluing handlebodies (in particular, solid cylinders) along a tunnel

is the same as connecting them via a tube with a handle in it.

After we do this gluing, we find a solid genus 5 surface for each branch of z8.

The boundary of this surface is where z8 = 0.

Since the two different branches for z8 meet at z8 = 0, we now glue two copies

of the genus 5 surface together along their boundaries. In general, two solid genus

g surfaces glued in this manner describe a Heegaard splitting of a connected sum

of g copies of S2 × S1. Hence, this three-cycle has b1(Σ) = 5.
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7+ 7-

6+

6-

Fig. 8: Our special Lagrangian three-cycle is obtained by gluing two of

these along their boundaries via the trivial identification. The numbers

along the top and left indicate which branch each ball represents.

Chapter 5: Invasion of the Giant Gravitons from Anti de Sitter Space

It has been known for some time that the AdS/CFT correspondence predicts a

limit on the number of single particle states propagating on the compact spherical

component of the AdS × S geometry. The limit is called the stringy exclusion

principle. The physical origin of this effect has been obscure but it is usually thought

of as a feature of very small distance physics. In this chapter we will show that

the stringy exclusion principle is due to a surprising large distance phenomenon.

The massless single particle states become progressively less and less point-like as

their angular momentum increases. In fact they blow up into spherical branes of

increasing size. The exclusion principle is simply understood as the condition that

the particle should not be bigger than the sphere that contains it.

The material in Chapter 4 appeared in “Invasion of the Giant Gravitons from Anti-

de Sitter Space” with Leonard Susskind and Nicolaos Toumbas [98] and is reprinted with

permission of JHEP.
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1. Introduction

In conventional (20th century) physics, high energy or high momentum came

to be associated with small distances. The physics of the 21st century is likely to

be dominated by a very different perspective. According to the Infrared/Ultraviolet

connection [99] which underlies much of our new understanding of string theory and

its connection to gravity, physics of increasing energy or momentum is governed by

increasingly large distances. Examples include the growth of particle size with

momentum [100], [101], the origin of the long-range gravitational force in Matrix

Theory from high energy quantum corrections [102]and the IR/UV connection in

AdS spaces. Another important manifestation is the spacetime uncertainty principle

of string theory [103], [104], [105]

∆x∆t ∼ α′.

Similar uncertainty principles occur in non-commutative geometry where the co-

ordinates of space do not commute. An important consequence of the non-

commutativity is the fact that the particles described by non-commutative field

theories have a spatial extension which is proportional to their momentum [106],

[107]. This in turn leads to unfamiliar violations of the conventional decoupling of

IR and UV degrees of freedom in these theories [108], [109], [110]. In this chapter we

will describe another example of IR/UV non-decoupling that occurs in AdS/CFT

theories. The relevant space-times have the form AdSn × Sm. We are interested in

the motion of the graviton and other massless bulk particles on the Sm. The motion

is characterized by an angular momentum L or more exactly a representation of the

rotation group O(m + 1). In 20th century physics such particles are regarded as

point or almost point particles regardless of L. In fact we will see that as L increases

the particles blow up in size very much like the quanta of non–commutative field

theories. When the size reaches the radius of the Sm, the growth can no longer

continue and the tower of Kaluza–Klein states terminates. This is the origin of the

stringy exclusion principle [111], [112], [113].

In section 2 we will review the theory of electric dipoles moving in a magnetic

field. This system is the basic object of non-commutative field theory. When the

theory is defined on a 2-sphere there is a bound on the angular momentum when

the ends of the dipole separate to the antipodes of the sphere. In sections 3, 4 and

5 we consider the cases of AdS7 × S4, AdS4 × S7 and AdS5 × S5. In each case we

find that the spectrum of angular momentum is bounded and that the bound agrees

with expectations from the stringy exclusion principle.
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2. Dipoles in Magnetic Fields

In this section we briefly review the dipole analogy for non-commutative field

theory [106], [107]. We begin with a pair of unit charges of opposite sign moving

on a plane with a constant magnetic field B. The Lagrangian is

L =
m

2

(

ẋ2
1 + ẋ2

2

)

+
B

2
εij

(

ẋi1x
j
1 − ẋi2x

j
2

)

− K

2
(x1 − x2)

2.

Let us suppose that the mass is so small so that the first term in Eq.(2.1) can be

ignored. Let us also introduce center of mass and relative coordinates

X = (x1 + x2)/2

∆ = (x1 − x2)/2.

The Lagrangian becomes

L = BεijẊ
i∆j − 2K∆2.

From Eq.(2.3) we first of all see that X and ∆ are non-commuting variables satis-

fying

[X i,∆j ] = i
εij

B
.

Furthermore the center of mass momentum conjugate to X is

Pi = Bεij∆
j .

Thus when the dipole is moving with momentum P in some direction it is stretched

to a size

|∆| = |P |/B.

in the perpendicular direction. This is the basis for the peculiar non-local effects in

non–commutative field theory.

Now suppose the dipole is moving on the surface of a sphere of radius R.

Assume also that the sphere has a magnetic flux N . In other words there is a

magnetic monopole of strength

2πN = Ω2BR
2.
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at the center of the sphere. We can get a rough idea of what happens by just saying

that when the momentum of the dipole is about 2BR the dipole will be as big as

the sphere. At this point the angular momentum is the maximum value

L = PR ∼ BR2.

This is of order the total magnetic flux N .

We will now do a more precise analysis and see that the maximum angular

momentum is exactly N . Parameterize the sphere by two angles θ, φ. The angle φ

measures angular distance from the equator. It is ±π/2 at the poles. The azimuthal

angle θ goes from 0 to 2π. We work in a gauge in which the θ component of the

vector potential is non-zero. It is given by

Aθ = N
1 − sinφ

2R cosφ

For a unit charged point particle moving on the sphere the term coupling the velocity

to the vector potential is

LA = AθR cosφθ̇ = NR
1 − sinφ

2R
θ̇.

Now consider a dipole with its center of mass moving on the equator. The

positive charge is at position (θ, φ) and the negative charge is at (θ,−φ). For the

motion we consider φ is time independent. Eq.(2.10) becomes

LA = N(
1 − sinφ

2
)θ̇ −N(

1 + sinφ

2
)θ̇

or

LA = −N sinφθ̇.

Again we want to consider a slow-moving dipole whose mass is so small that

its kinetic term may be ignored compared to the coupling to the magnetic field, i.e.

mR << N . Let us also add a spring coupling

LS = −k
2
R2 sin2 φ;

for simplicity, we have used the chordal distance in this potential. The total La-

grangian is

L = −k
2
R2 sin2 φ−N sinφθ̇
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and the angular momentum is

L = −N sinφ.

The angular momentum will reach its maximum when φ = π/2 at which point

|Lmax| = N.

The fact that the angular momentum of a single field quantum in non-commutative

field theory is bounded by N is well known in the context of non–commutative field

theory on a sphere [114]. Here we see that it is a large distance effect.

3. AdS × S

We now study BPS particles moving on the sphere of maximally supersym-

metric AdS vacua of string and M theory. For simplicity, we present all details of

the argument in the case of the M5-brane geometry. Results for the other cases are

given in the latter subsections. Note that in all of these cases, the energy of our

objects is well below the energy of a stable AdS black hole.

3.1. AdS7 × S4

We are interested in the motion of a BPS particle on the 4-sphere of AdS7×S4.

We will assume that the radius of curvature R is much larger than the 11 dimensional

Planck length lp. The analogy with the previous example is very close. The role of

the magnetic field is played by the 4-form field strength on the sphere. We call the

flux density B. Quantization of flux requires

Ω4BR
4 = 2πN.

From the supergravity equations of motion it can be seen [115] that R is given by

R = lp(πN)
1
3 .

The assumption of large R means N >> 1.

We want to know what happens to a graviton or any other massless 11 dimen-

sional particle when it moves on the 4-sphere in the presence of the 4-form field

strength. As long as the angular momentum is small (L << N) the graviton is
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expected to be much smaller than R, and we can make the approximation that

space is locally flat. Furthermore from Eq.(3.1) we see that the field strength B is

small

B ∼ N− 1
3 l−4
p .

Since the space is almost flat we can locally introduce flat space coordinates

x0, ...., x10. Let us take the B field to lie in the (7, 8, 9, 10) directions. The graviton

is moving along the x10 direction. Its momentum is P10 = L/R. This setup is very

close to one that was studied by Myers using Matrix Theory [116].

In matrix theory the 11 dimensional graviton is viewed as a threshold bound

state of n = P10R10 D0-branes. Myers shows that in a background 4-form field-

strength the D0-brane configuration is described as a spherical membrane with a

radius r that grows with P10 according to

r ∼ BP10l
6
p.

Let us assume that this formula is approximately valid until r becomes of order R.

In that case when the graviton size becomes ∼ R it will have momentum

P10(max) ∼ R/Bl6p

and angular momentum

Lmax ∼ RP10(max) ∼ R2/Bl6p ∼ N.

Thus as in the previous section we find that the maximum single particle angular

momentum is N .

We will now give a more precise calculation which parallels that of section

1. We are interested in the dynamics of a relativistic spherical membrane moving

in S4. The membrane has zero net charge but it couples to the background field

strength. It behaves like the dipole of section 1.

Let us parametrize S4 using cartesian coordinates X1, ....., X5 so that

X1 = R cos θ1

X2 = R sin θ1 cos θ2

X3 = R sin θ1 sin θ2 cos θ3

X4 = R sin θ1 sin θ2 sin θ3 cos θ4

X5 = R sin θ1 sin θ2 sin θ3 sin θ4.
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The angles θ1, ...., θ3 go from 0 to π. The angle θ4 is the azimuthal angle and goes

from 0 to 2π. Then

X2
1 +X2

2 +X2
3 +X2

4 +X2
5 = R2.

Next we embed a spherical membrane in S4. We choose to parametrize the

surface of the membrane by θ3, θ4. The brane is allowed to move in the X1, X2

plane. Its size depends on its location in the X1, X2 plane according to

r = R sin θ1 sin θ2.

We see that when the size is at its maximum value, r = R, the membrane is at the

origin X1 = X2 = 0 like the two charges at the ends of the dipole in section 1. Since

X2
1 +X2

2 = R2 − r2,

the membrane can move around a circle in the plane and have constant size. We

also set
X1 =

√

R2 − r2 cosφ

X2 =
√

R2 − r2 sinφ.

In terms of the coordinates r, φ, θ3, θ4, the metric on the 4–sphere becomes

ds2 =
R2

(R2 − r2)
dr2 + (R2 − r2)dφ2 + r2dΩ2

2,

where dΩ2
2 is the metric of a unit 2–sphere parametrized by θ3 and θ4. From the

metric we see that the volume element is just

Rr2drdφdΩ2.

The kinetic energy of the membrane is given by the Dirac–Born–Infeld La-

grangian. We are mostly interested in the case when the size of the sphere r is

constant and close to its maximum value R. In this case the membrane moves

around a circle in the X1, X2 plane of radius (R2 − r2)1/2 with angular velocity φ̇.

Dropping time derivatives of r, we have

LK = −TΩ2r
2

√

1 − (R2 − r2)φ̇2.
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Here, T is the membrane tension which is given by

T =
1

4π2l3p

in 11-dimensional Planck units.

Next we add the Chern–Simons coupling involving the background field. The

contribution of the four-form field strength to the action of the brane per orbit

around the S4 is

SB =

∫

wv

C =

∫

Σ

F.

The first integral is over the world-volume of the brane. F = dC is the four-

form flux, and Σ is a four-manifold in the S4 whose boundary is the 3-dimensional

surface swept out by the brane during one orbit. Since the background flux is just

F = Bdvol, where B is the constant flux density and dvol is the volume form on

S4, we have

SB = Bvol(Σ).

Therefore the Chern-Simons term in the Lagrangian is

LB =
SB
T

= Bvol(Σ)
φ̇

2π

where φ̇ is the (constant) angular velocity of the brane. Parametrizing the motion

as above, the volume of Σ is

vol(Σ) = RΩ2

∫ 2π

0

dφ

∫ r

0

r′2dr′ =
8π2

3
Rr3.

So the Chern-Simons term is

LB =
φ̇

2π
BΩ4Rr

3 = φ̇N
r3

R3

where we used the flux quantization condition, Eq.(3.1).

Therefore, the full bosonic Lagrangian is

L = −m
√

1 − φ̇2(R2 − r2) +N
r3

R3
φ̇

with m = Ω2Tr
2. Using Eq.(3.2) and Eq.(3.15), we also see that

N

R3
= TΩ2.
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From the Lagrangian we find that the angular momentum is given by

L =
mφ̇(R2 − r2)

√

1 − φ̇2(R2 − r2)
+N

r3

R3
.

The maximum size a membrane can have is R. Also, the velocity of its center of

mass, φ̇R, cannot exceed the speed of light. This implies that the angular momen-

tum has a maximum value given by N23:

Lmax = N.

When the membrane has maximal size R, the angular momentum is the maximum

value N . We see that the Kaluza–Klein graviton has a maximum angular momen-

tum in agreement with the stringy exclusion principle. For the energy, we find

E = φ̇L− L =

√

(

Nr2

R3

)2

+
(L−Nr3/R3)2

R2 − r2
.

Varying the energy with respect to r at fixed L, we find

dE

dr
=

r

E(R2 − r2)2

(

L−N
r

R

)

(

L− 2N
r

R
+N

r3

R3

)

.

We see that for L < N there exists a stable minimum at

r =
L

N
R.

Therefore, the membrane grows as we increase the angular momentum. This is in

agreement with Eq.(3.4) 24. When r = R and L = N , a more careful analysis for

the stability of the solution is needed and we do so at the end of this section. The

value of the energy at the minimum is

E =
L

R
,

23 There is an exception to this statement at the pathological value r = 0 which we

discuss at the end of this section.
24 The cubic factor in dE/dr has a positive root at 0 < r < (L/N)R at which the energy

has a local maximum and another root at r > R.
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which is the energy of a Kaluza–Klein graviton with angular momentum L. From

Eq.(3.23), we also find that the velocity of the center of mass equals the speed of

light, φ̇R = 1.

We now show that there is a stable solution at r = R and L = N . Setting

r̃ = R− r and expanding the Lagrangian up to quadratic powers in r̃, we obtain

LK = −TΩ2R
2 + TΩ2Rr̃(2 + φ̇2R2) − TΩ2r̃

2(φ̇4R4 +
5

2
φ̇2R2 + 1),

and

LB = Ω4BR
4φ̇(1 − 3

r̃

R
+ 3

r̃2

R2
) = Nφ̇−Rr̃

3N

R3
φ̇R + r̃2

3N

R3
φ̇R.

Using N/R3 = TΩ2, the total Lagrangian becomes

L = −TΩ2R
2 +Nφ̇+TΩ2Rr̃(2−3φ̇R+ φ̇2R2)−TΩ2r̃

2(φ̇4R4 +
5

2
φ̇2R2 −3φ̇R+1).

There is an extremum at r̃ = 0 provided that

2 − 3φ̇R+ φ̇2R2 = 0.

This can be achieved if the velocity φ̇R = 1. Thus, when the size of the membrane

is R its center of mass moves with the speed of light. Furthermore, the extremum

is stable since
d2V (r)

d2r
|r=R > 0.

Thus when the size of the membrane is R, the angular momentum has its

maximum value N and the energy is given by

E = TΩ2R
2 =

N

R
.

At the classical level, this is in exact agreement with the energy of a Kaluza–

Klein graviton having angular momentum N about the sphere. When N >> 1,

the maximal angular momentum is large and the classical formula for the energy

agrees with the BPS bound for the energy given the angular momentum. Quantum

corrections are suppressed by 1/N . The Kaluza–Klein graviton is a BPS state and

its energy should not change under the process of blowing up into a membrane.

Again, the size of the brane is determined by the angular momentum. Since the

maximum size a brane can have is R, there is a maximum angular momentum as

predicted by the dual conformal field theory. The fact that the energy of the brane
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agrees with the BPS formula for given angular momentum is a non–trivial test of

our model.

We also note that there is a minimum of the energy at r = 0 as well. Classi-

cally, it corresponds to a massless particle moving around the equator with angular

momentum L.25 Such a solution is singular from the perspective of the gravitational

field equations since for angular momenta of order N , it represents a huge energy

(of order N2/3) concentrated at a point. Therefore it is subject to uncontrolled

quantum corrections. In particular, there are quantum corrections proportional to

powers of the momentum times the flux density, which are large at angular momenta

of order N .

We have shown in this chapter that such a singular solution can be resolved by

blowing into a smooth macroscopic membrane of size (L/N)R. Our classical analysis

is expected to be valid for the large membrane. The smooth membrane solution

certainly has much more nearby phase space and as a result the true quantum

ground state will be overwhelmingly supported at the membrane solution. We

believe that this is another example of how string/M–theory resolves singularities

of the type studied rececently in ref. [117].

3.2. AdS5 × S5

The extension of our analysis to the other two maximally supersymmetric cases

is straightforward and we will be much less explicit. Consider the case of AdS5×S5

first. The radius of the five sphere is given by

R = (4πgsN)
1
4 ls,

where gs, ls are the string coupling constant and string length scale and N is the

number of units of five–form flux on the sphere. We take N large keeping gsN fixed

and large.

In type IIB string theory on AdS5 × S5 with N >> 1, the maximum angular

momentum of a BPS particle on the S5 is N [111]. From the gauge theory perspec-

tive, this can be seen from the fact that one builds up such states by a single trace

of the N × N scalars in the 6 of SO(6). The largest representation of SO(6) one

can build in this way is the spin-N representation, SymN6.

25 We thank Sunny Itzhaki for discussions of this point.
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From our perspective this is because the particle moving on the sphere expands

into a spherical D3-brane. In this case we present only the exact classical analysis

of the D3-brane wrapping an S3 that moves in S5. The bosonic Lagrangian is

L = LDBI + LCS = −TD3Ω3r
3

√

1 − (R2 − r2)φ̇2 + φ̇N
r4

R4
.

The tension of the D3-brane is

TD3 =
1

(2π)3l4sgs
.

We will use the relation

TD3Ω3 =
N

R4
.

The angular momentum in terms of φ̇ is

L =
mφ̇(R2 − r2)

√

1 − φ̇2(R2 − r2)
+N

r4

R4

where m = TD3Ω3r
3 = (N/R4)r3. Again we see that the angular momentum is

bounded by N since 0 ≤ r ≤ R and 0 ≤ φ̇R ≤ 1. The energy is

E =

√

m2 +
(L−Nr4/R4)2

R2 − r2
.

Varying the energy with respect to r at fixed L, we find in this case a stable minimum

when

r2 =
L

N
R2.

The value of the energy at this minimum again matches the BPS bound when L is

large, for N >> 1:

E =
L

R
.

This is strong evidence that at any appreciable momentum, at least at the

(semi-) classical level, the good description of Kaluza–Klein gravitons is in terms of

branes, rather than fundamental strings. From the dual CFT, we know that there

is a unique BPS state with these quantum numbers; consistency with the exclusion

principle implies that it is the one described by the spherical brane.
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3.3. AdS4 × S7

In this case, we expect the graviton to expand into an M5-brane which is an

S5 ⊂ S7. The radius of the sphere is given by

R = (25π2N)
1
6 lp.

The tension of the 5–brane is given by

T =
1

(2π)5l6p

and we have the relation

m = TΩ5r
5 =

N

R6
r5.

The Lagrangian is

L = −TΩ5r
5

√

1 − (R2 − r2)φ̇2 + φ̇N
r6

R6
.

The angular momentum in terms of φ̇ is

L =
mφ̇(R2 − r2)

√

1 − φ̇2(R2 − r2)
+N

r6

R6
.

The energy is

E =

√

m2 +
(L−Nr6/R6)2

R2 − r2
.

Varying the energy with respect to r at fixed L, we find in this case a stable minimum

when

r4 =
L

N
R4.

The value of the energy at this minimum again matches the BPS bound when L is

large:

E =
L

R
.
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3.4. Remarks about AdS3

We will conclude this section with some comments about AdS3 × S3 ×M4.

This case is distinguished in several ways.

First, it is not clear into what the graviton should expand. Consider the ge-

ometry built from the D1-D5 system with Q1 D-strings and Q5 five-branes. The

stringy exclusion bound on the angular momentum is L ≤ Q1Q5. The graviton is

expected to blow up into a circular string moving on the S3, but should it be a

D5-brane wrapped on the four-manifold, or a D-string?

Secondly, the energetic considerations degenerate in this case. If we assume

for argument’s sake that the graviton blows up into either a D-string or wrapped

fivebrane which is a circle on the S3, we find that the energy at fixed L has no

nontrivial minimum. Considering some incarnation of the “fractional strings” of

[118] does not help.

It may help to consider the S-dual situation of the F1-NS5 system. In this

case, the dynamics of fundamental strings on the relevant sphere are described by a

level-Q5 SU(2) WZW model. One expects the exclusion principle to be related to

the affine cutoff on SU(2) representations. Finally, a clarification of this case should

match the result of [119] that the exclusion bound occurs at the critical value of the

energy for black hole formation. A better understanding remains for future work.

4. Conclusions

Physics in non-commutative spaces is characterized by a simple signature – the

increase of size on systems with increasing momentum. In this chapter we have seen

that the motion of massless quanta on the S factor of AdSn × Sm has exactly this

behavior. The massless particle blows up into a spherical brane of dimensionality

m− 2 whose radius increases with increasing momentum. Eventually the radius of

the blown up brane becomes equal to the radius of the sphere that contains it. It

can no longer grow and the spectrum is terminated. This is the origin of the stringy

exclusion principle. Thus we see one more piece of evidence for non-commutativity

of space in quantum gravity.
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Chapter 6: M-theory on Manifolds of G2 Holonomy

and Type IIA Orientifolds

We demonstrate that M-theory compactifications on 7-manifolds of G2 holon-

omy, which yield 4d N = 1 supersymmetric systems, often admit at special loci

in their moduli space a description as type IIA orientifolds. In this way, we are

able to find new dualities of special IIA orientifolds, including dualities which relate

orientifolds of IIA strings on manifolds of different topology with different numbers

of wrapped D-branes. We also discuss models which incorporate, in a natural way,

compact embeddings of gauge theory/gravity dualities similar to those studied in

the recent work of Atiyah, Maldacena and Vafa.

1. Introduction

Compactifications of M-theory and string theory down to 4d N = 1 supersym-

metry are of obvious interest. The reduced supersymmetry is probably necessary

for any contact with real world physics. It also allows for richer phenomena than

extended supersymmetry and so provides a nice playground for theorists.

Generic methods of constructing such models include compactifying the het-

erotic string on Calabi-Yau threefolds, F-theory on Calabi-Yau fourfolds, and M-

theory on 7-manifolds of G2 holonomy. Although many basic facts about all of these

classes of compactifications remain mysterious, perhaps the least is known about

the last class, since at least the others are amenable to attack using techniques of

complex geometry.

A large class of compact 7-manifolds with G2 holonomy was constructed by

Joyce [121,122]. In this note, we make the simple observation that M-theory com-

pactified on many of these spaces admits, at special loci in its moduli space, a

description as an orientifold of type IIA string theory compactified on a Calabi-Yau

The material in Chapter 5 appeared in “M-theory on Manifolds of G2 Holonomy

and Type IIA Orientifolds” with Shamit Kachru [120] and is reprinted with permission of

JHEP.
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threefold.26 This is reminiscent of the fact that F-theory models can be reformu-

lated, at special loci in their moduli space, as type IIB orientifolds [124,125].

There are several different reasons this observation can be useful. On the one

hand, the orientifolds we discuss have a rather simple, solvable structure, and so

provide a very concrete handle on these models at some special points in their

moduli space. On the other hand, as we will show, a given G2 space can admit

different type IIA orientifold limits. Thus, by studying limit points in the moduli

space of G2 compactifications, we learn about non-perturbative dualities of IIA

compactifications with N = 1 supersymmetry. In particular, we exhibit an example

where orientifolds of type IIA on Calabi-Yau spaces of different topology (and with

different numbers of D-branes and orientifold planes) are dual to each other. On

yet a third hand, our construction “globalizes” interesting gauge theory/gravity

dualities similar to those encapsulated in the local models of [126] and [127].

In §2, we introduce the G2 manifold X which will be our focus in part of this

note. In §3, we show that various limit points in the moduli space of M-theory on

X are well described by IIA orientifolds. This observation allows us to find non-

perturbative duality symmetries of these orientifolds. In §4 we make some remarks

about the extent to which our analysis generalizes to other G2 spaces, and also

provide a simple proof that a large class of IIA orientifolds should have an “M-

theory lift” to G2 compactifications. In §5 we explain how gauge theory/gravity

dualities analogous to those discussed in [126,127] naturally arise in simple examples

of compact G2 manifolds and the related IIA orientifolds. We conclude in §6 by

mentioning some interesting directions for further study.

Several papers analyzing various related aspects of M-theory on G2 manifolds

have appeared recently. Dual descriptions of N = 1 gauge theories using such spaces

have been discussed in [126,127,128,129,130,131], while [132] discusses a general rela-

tionship between certain classes of wrapped branes and geometries with exceptional

holonomy. Earlier work on this subject appears in [133]. Phase transitions between

topologically distinct G2 compactifications were described in [134].

26 We ignore the possibility of a membrane instanton generated superpotential [123]

in most of our discussion. If such a potential exists, it would provide a potential barrier

between the large-volume M-theory and perturbative type IIA limits. Our successful

comparison of these limits in many cases suggests that either such a potential is absent,

or the interpolation over the potential barrier is nevertheless physically meaningful.
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2. The Manifold X

A basic example of a compact 7-manifold of G2 holonomy is the manifold X

considered by Joyce in [121]. It is constructed as a toroidal orbifold. Let x1, · · · , x7

parametrize a square T 7 which is a product of seven circles of radii r1, · · · , r7.
Define X as the (desingularization of the) quotient of this T 7 by the Z3

2 group with

generators

α(xi) = (−x1,−x2,−x3,−x4, x5, x6, x7) (2.1)

β(xi) = (−x1, 1/2 − x2, x3, x4,−x5,−x6, x7) (2.2)

γ(xi) = (1/2 − x1, x2, 1/2 − x3, x4,−x5, x6,−x7) (2.3)

where 1/2 denotes a shift of order 2 around the circle. Then as demonstrated

in [121], X has betti numbers b2(X) = 12, b3(X) = 43. Therefore, M-theory

compactification on X gives rise to a 4d N = 1 supersymmetric low-energy theory

with (generically) 12 abelian vector multiplets and 43 chiral multiplet moduli.

It may be useful to review the origin of the various cohomology classes on X

here. None of the two-forms and seven of the three-forms on T 7 are invariant under

the action of 〈α, β, γ〉.27 In addition, each of the generators fixes 16 T 3s on T 7;

however e.g. the 16 T 3s fixed by α are identified by the group 〈β, γ〉 to yield 4 on

the quotient X , and the fixed tori of β and γ undergo a similar fate. The local

form of the singularities at the fixed T 3s is R4/Z2 ×T 3, and resolving each of these

yields a two-form and three three-forms. Since there are 12 such fixed tori on X ,

after desingularizing one has the stated betti numbers.

3. Orientifold Limits of X

In this section, we demonstrate that X has several different IIA orientifold

limits in its moduli space. This in particular tells us that the different orientifolds

are related to one another by various dualities.

27 〈· · ·〉 denotes “the group generated by · · ·.”
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3.1. Orientifold A

We start by viewing x7 as the “M-theory circle,” or the eleventh dimension.

Then in the limit of small r7, we should be able to get an effective IIA description of

M-theory on X . Denote by α∗ the action of α restricted to the T 6 with coordinates

x1, · · · , x6. Then since α and β don’t act on the M-theory circle anyway, in the

limit of small x7 they simply induce identifications on the T 6 visible to the type

IIA string. It is therefore propagating on the Calabi-Yau space N = T 6/〈α∗, β∗〉.
However, γ also acts on the M-theory circle. Using the results of [135], it follows

that the action of γ (inversion of the M-theory circle and three other coordinates)

is mapped in the IIA theory to w = (−1)FL Ω γ∗. Thus, IIA string theory on the

orientifold of N by w should govern M-theory in the limit of small radius for x7.

Let us call this model orientifold A.

To check this conjecture, let us try to match up the counting of fields. N has

hodge numbers h1,1 = 19, h2,1 = 19. So IIA string theory on N yields an N = 2

supersymmetric 4d theory with 20 hypermultiplets (including the dilaton) and 19

vector multiplets. Now, projecting by w has the following effect (see e.g. [136]).

Each of the 20 hypermultiplets is projected down to a chiral multiplet. The vector

multiplets (which came from the Kähler moduli) are more subtle: those which

come from (1,1) forms invariant under w give rise to N = 1 vector multiplets,

while those which are anti − invariant under w give rise to chiral multiplets. It

is easy to convince oneself that the untwisted (1,1) forms on N are anti-invariant,

while the 16 twisted (1,1) forms split into ± eigenspaces of equal size. Therefore,

the Kähler moduli contribute 11 chiral multiplets and 8 vector multiplets.

This accounts for 31 chiral multiplets and 8 abelian vectors so far. However,

we must also take into account the fixed points of the w action. γ∗ acts with 8 fixed

loci on T 6. Identification by 〈β, γ〉 reduces this to 2 fixed loci; a neighborhood of

each in the threefold is of the form R3/Z2 × T 3. Therefore, there are orientifold

six-planes wrapping each of these T 3s (as in [135]).

By the normal tadpole cancellation considerations, we must introduce 2 D6

branes for each O6 plane. Hence, we introduce a total of 4 D6 branes wrapping

T 3s in this model. Each of the D6 branes comes with a U(1) vector multiplet and 3

chiral multiplet moduli (coming from the Wilson lines on the T 3, together with the

moduli of the three-cycle in N). So the D6 branes contribute a total of 12 chiral

multiplet moduli and 4 vector multiplets to the low-energy theory.
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Totalling up the spectrum, we find that orientifold A (at generic points in its

moduli space) has 43 chiral multiplet moduli and 12 vector multiplets, just as it

must to match the spectrum of M-theory on X . At special points in moduli space

when the D6 branes coincide, one achieves enhanced gauge symmetries, which come

from geometrical singularities in the M-theory picture [135].

3.2. Orientifold B

It is of course also possible to view other circles as the M-theory circle. For

instance, we could take x4 to be the M-theory circle. However, repeating the same

logic as in §3.1, we would find that we again arrive (in the small r4 limit) at an

orientifold (which we could call orientifold B) of type IIA string theory on the

Calabi-Yau orbifold with hodge numbers h1,1 = 19, h2,1 = 19, and we again have to

introduce the same numbers of D6 branes.

The role of the dilaton in orientifold A is played by a geometrical modulus in

orientifold B, and vice-versa. However, they are really compactifications on the

same target space. This means that the IIA theory on the orientifold of N by w,

discussed in §3.1, has a sort of S − T exchange symmetry, where S is the dilaton

chiral multiplet and T is the chiral multiplet containing the radius of x4. This way

of seeing the S − T exchange symmetry of these orientifold models is analogous

to the way that the S − T exchange symmetry [137] of the main heterotic string

examples in [138] can be understood as arising from the existence of multiple K3

fibrations in the type II-dual Calabi-Yau compactifications [139,140].

In fact, this model enjoys more symmetry than just a single S−T duality; one

could equivalently consider the x6 circle to be the M-theory circle, with the same

results, yielding a sort of S − T − U triality symmetry.

3.3. Orientifold C

A more interesting possibility is to interpret x5 as the M-theory circle. Then

acting on the T 6 coordinates x1, x2, x3, x4, x6, x7, we have

α(xi) = (−x1,−x2,−x3,−x4, x6, x7) (3.1)

βγ(xi) = (x1 + 1/2, 1/2− x2,−x3, x4,−x6,−x7) (3.2)
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The manifold N ′ = T 6/〈α, βγ〉 is then a Calabi-Yau threefold with hodge numbers

h1,1 = 11, h2,1 = 11. In particular, it is topologically distinct from the threefold N

which appeared in §3.1 and §3.2.

Define u to be the composition of (−1)FLΩ with the action of γ on the T 6

coordinates. Then in the limit of small r5, M-theory on X should be well described

by IIA theory on the orientifold of N ′ by u, which we will call orientifold C.

Let’s check that the spectrum matches our expectations. v, the composition of

(−1)FLΩ with the action of β on the T 6 coordinates, arises upon composing u with

elements of the orbifold group. Both u and v act with fixed loci on N ′. Each has

8 fixed T 3s in the T 6, which descend to 2 fixed T 3s in the orbifold N ′. Therefore,

one has to introduce four O6 planes, and 8 wrapped D6 branes are required to

cancel the RR tadpoles. These give rise to 8 abelian vector multiplets and 24 chiral

multiplets, at generic points in moduli space.

The projection of the spectrum of IIA on N ′ can be done as before. Once

again, half of the 8 twisted (1,1) forms are invariant under the orientifold action,

while the other half (and the untwisted (1,1) forms) are anti-invariant. So we get 4

vectors and 7 chirals from the (1,1) forms; adding in the 12 chirals descending from

the N = 2 hypermultiplets, we indeed find a total of 43 chiral multiplets and 12

vectors.

In this orientifold C picture, the radii r4, r6, r7 which are related (up to triality)

to the dilaton in the pictures of §3.1 and §3.2 are all geometrical moduli of the IIA

compactification, while r5 (which is geometrized in orientifolds A,B) is playing the

role of the dilaton. This gives an example of a strong/weak duality between IIA

orientifolds of topologically distinct Calabi-Yau spaces, with different numbers of

space-filling D-branes and orientifold planes.

4. Generalization to Other Models

In this section, we generalize our results in two directions. We first show that

a large class of G2 spaces should similarly have orientifold limits. We then take the

opposite approach, and prove that a wide class of IIA orientifolds have an M-theory

lift to G2 compactifications.
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4.1. Other Classes of G2 Manifolds

Beyond the toroidal orbifold constructions of Joyce, there are other methods

of constructing G2 holonomy spaces which are amenable to an orientifold interpre-

tation.

Barely G2 Manifolds

Harvey and Moore defined “barely G2 manifolds” as quotients of the form X =

(Y ×S1)/Z2, where Y is a Calabi-Yau threefold and the Z2 action is a composition

of a freely acting antiholomorphic involution σ on Y with inversion on the circle

factor x7 [123]. These are of course a special case of a more general construction

which should arise when σ has fixed points [121,122].

For the barely G2 spaces, it turns out that

H3(X) = H2(Y )− +H3(Y )+ (4.1)

H2(X) = H2(Y )+ (4.2)

where ± refer to eigenvalues under the action of σ on Y . For simple examples which

come from hypersurfaces in toric varieties, one simply keeps the complex structure

deformations which preserve the real structure (i.e. defining equations with real

coefficients), so H3(Y ) has ± eigenspaces of equal dimension. For such examples,

we find nC = h1,1(Y )− + h2,1(Y ) + 1 chiral multiplets and nV = h1,1(Y )+ vector

multiplets in M-theory on X .

As one shrinks the radius r7 of the S1, one should obtain a IIA description.

Indeed, since the Z2 above acts with an inversion on x7, we should expect that the

orientifold of IIA on Y by (−1)FLΩ composed with σ arises in this limit. It follows

from the general considerations of [136] (as discussed in §3) that the spectrum of

this type IIA orientifold agrees with the M-theory spectrum.

Cases with Fixed Points

It is attractive to speculate about generalizations of the previous case to cases

where σ acts on Y with fixed points. On general grounds, the fixed point locus

Σ ⊂ Y will be a special Lagrangian (sL) three-cycle (or several, in which case

one should repeat the discussion below for each component). It is not known in

generality how to resolve the singularities in this case to obtain a smooth metric of

G2 holonomy.
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However, the existence of an orientifold limit leads to a very natural conjecture.

Shrinking the x7 circle again, we find a IIA model which should have an O6 plane

and two D6 branes wrapping Σ. For Σ special Lagrangian, a D6 brane wrapping

Σ gives rise to a single N = 1 vector multiplet and b1(Σ) chiral multiplets in

spacetime. Therefore, we expect that there will be 2 vectors and 2b1(Σ) chiral

multiplets associated with the D6 branes in this limit. When the D6 branes are

coincident, the model has enhanced gauge symmetry (which shows up in the M-

theory as the singularity of the G2 space related to the fixed points of σ). For

b1(Σ) > 0, one can move in the D6 brane moduli space to remove the enhanced

gauge symmetry. It is then attractive to conjecture that in the M-theory picture,

b1(Σ) > 0 is a condition that allows the singularities of this class of G2 orbifolds

to be repaired, and that furthermore resolving the singularity gives rise to precisely

two elements of b2(X) and 2b1(Σ) elements of b3(X).28

4.2. “All” Orientifolds of type IIA on CY have a G2 Limit

Suppose we have a IIA orientifold which gives rise to a four dimensional N = 1

supersymmetric theory. For simplicity, let us first restrict ourselves to orientifolds

of tori. The orbifold part of the orientifold group must have (at most) SU(3)

holonomy, to preserve (at least) 4d N = 2 supersymmetry.29 Let us assume we

are in the most generic case, so that it preserves precisely N = 2 supersymmetry.

Denote the full orientifold group by

G = Γ1 × (−1)FLΩΓ2 (4.3)

The (−1)FL is present because we choose, as in [135], a convention where reflection

on three circles must be accompanied by a (−1)FL to preserve supersymmetry in

the IIA theory, and we will show momentarily that all elements of Γ2 must reflect

precisely three circles of the T 6. With these assumptions, T 6/Γ1 alone is Calabi-

Yau, and so has a holomorphic three-form Ω(3,0) and a Kähler form J .

28 This could be related to Condition 4.3.1 in [122], which was stated without proof to

be an important condition in resolving singularities of this sort.
29 This is because there are no geometric compactifications of IIA down to 4d which

preserve precisely 4d N = 1 supersymmetry.

91



Now, consider the (−1)FLΩΓ2 part of the group. Any element (−1)FLΩg2 of

this part must have g2 reversing the orientation of the 6d target, or it cannot be a

symmetry of the IIA theory. So we know a few things about the g2 action:

i) g2 maps J to −J (orientation reversal) and

ii) g2 maps Ω(3,0) to Ω
(0,3)

. Notice that this implies that g2 reflects precisely three

circles of the T 6/Γ1, as required above.

In ii), we are using the fact that to preserve one supersymmetry, some linear

combination of the killing spinors must be preserved. This means that g2 either

preserves the holomorphic and anti-holomorphic three-form individually, or at least

preserves a linear combination. But since Ω(3,0) ∧Ω
(0,3) ∼ J ∧J ∧J , by i) above g2

must permute the two. One might worry that g2 could act with a phase in relating

Ω(3,0) to its conjugate; but all g2 ⊂ Γ2 which exchange Ω(3,0) and its conjugate

would have to have the same phase to preserve N = 1 supersymmetry. It can then

be redefined to 1 by a phase rotation of Ω(3,0).

To proceed, we add a seventh M-theory circle x7. Define the new group G̃,

which acts on T 7, as follows: take each element of G and replace (−1)FLΩ any-

where it appears with inversion of the x7 coordinate (while elements which don’t

include a (−1)FLΩ act trivially on the x7 coordinate). This will not change anything

about elements of Γ1 (since the minus sign on x7 will cancel in the product of two

(−1)FLΩΓ2 elements). However, under assumptions i) and ii) above, the three-form

Φ = J ∧ dx7 +Re[Ω(3,0)] (4.4)

is preserved by the whole (now orbifold) group G̃ acting on T 7. This form is pre-

served by a G2 subgroup of GL(7, R) [122]. This is sufficient to prove that the

resulting manifold is a G2 space.

It is clear that this argument is more generically applicable to supersymmetric

models which are not toroidal orientifolds. One could replace the T 6 in the IIA

theory with any manifold M , use the fact that M/Γ1 should be Calabi-Yau to

preserve supersymmetry in the IIA theory, and apply the same logic.
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5. The Case of the Disappearing Orientifold

Recent work has made it clear that gauge dynamics on wrapped D6 branes (or

arising from singular M-theory geometries) can often be encoded by smooth geome-

tries in a “dual” gravity description [126]. The gauge dynamics is then encoded in

appropriate RR-fluxes, or in changes of the behavior of the M-theory three-form

C field, which (suitably interpreted) capture the low-energy physics of the gauge

theory. In this section, we discuss examples of this phenomenon which arise in

string/M-theory compactifications in a natural way.

The most obvious source of consistent compact models with wrapped D6 branes

is the Calabi-Yau orientifolds discussed here. The components of the orientifold

fixed locus provide sL three-cycles Σ, which are wrapped by orientifold planes and

D6 branes. In fact, examples of sL cycles Σ which arise in this way were stud-

ied in [18,39] precisely with the motivation of understanding the dynamics on the

worldvolumes of such wrapped D6 branes.

One interesting fact (which had perplexed some of the authors of [18,39] for

some time) is that it is possible for the fixed locus of an anti-holomorphic involution

to disappear as the complex structure of the Calabi-Yau varies; and the relevant

complex structure moduli survive in the orientifold models. This fact was used in

[39] to identify D6 branes on such real slices as mirror to D5 branes on vanishing

holomorphic curves. However, it raises the question: if one continues past the point

in moduli space where the fixed locus disappears (so there is no orientifold plane,

and no need to introduce D6 branes), where has the information about the gauge

theory on the D6 branes gone? The gauge theory/gravity dualities relevant to this

situation were studied in [126,127], and provide the answer to this question.

Let us illustrate this with a simple example. The easiest examples discussed in

[39] basically involve a sL three-cycle which is the fixed locus of a real involution and

which collapses at a conifold singularity. So locally, the geometry of the compact

Calabi-Yau M looks like

z2
1 + z2

2 + z2
3 + z2

4 = µ (5.1)

where µ is chosen to be a positive real parameter. Then under the involution

I : zi → zi (5.2)
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the fixed point locus Σ+ is the three-sphere

Σ+ :
4
∑

i=1

x2
i = µ (5.3)

where zi = xi + iyi.

We can embed this situation in a G2 manifold as in §4.1, where the G2 manifold

X is of the form (M×S1)/σ. The Z2 symmetry σ acts by I combined with inversion

on the M-theory circle, x7 → −x7. Then for µ > 0, the fixed point loci of σ, which

consist of copies of Σ+ at x7 = 0, 1/2, are actually S3s of A1 singularities in X .

This gives rise in M-theory on X to two 4d, N = 1 pure SU(2) gauge theories (with

equal gauge couplings).

Now, consider taking µ through 0. At µ → 0 there are collapsing associative

three-cycles in X , and hence membrane instanton effects are expected to be large

[123]. However, the sizes of the S3s come paired in chiral multiplets with periods of

the three-form C field over the S3s, and for generic values of this phase, there is no

singularity in the physics – singularities in N = 1 moduli spaces happen at complex

codimension one. Therefore, one can smoothly (in the physical sense) continue from

µ > 0 to µ < 0. This raises a puzzle: the SU(2) gauge groups present for µ > 0

have now disappeared, since the Z2 symmetry σ acts on X without fixed points for

µ < 0. However, the information about the gauge theory must be encoded somehow

in the µ < 0 geometry.

The basic point is as in [126]. For µ < 0, one can still look for a homologically

nontrivial three-sphere which membrane instantons can wrap. For instance, consider

the locus of pure imaginary zi, still at x7 = 0, 1/2. This is given by a three-sphere

4
∑

i=1

y2
i = −µ (5.4)

which is orbifolded by the freely-acting Z2 symmetry yi → −yi. Call the resulting

IRIP3 Σ−. It turns out that Σ−(−µ) has exactly half the volume of Σ+(µ), due to

the orbifolding. These IRIP3s are associative three-cycles in X for µ < 0. However,

as in [126], changing the period of the C field on Σ+(µ) by 2π, which is physically
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meaningless, corresponds to changing it by π on Σ−(−µ), due to the smaller vol-

ume. This ambiguity in the choice of phase for µ < 0 corresponds to the vacuum

degeneracy due to the gaugino condensate in the gauge theory.30

In the IIA picture, with x7 taken as the M-theory circle, this becomes an

example where an orientifold plane and two D6 branes, present for µ > 0, disappear

as µ passes through 0. This system has an SO(4) gauge symmetry, and should give

rise to multiple vacua after gaugino condensation, in agreement with the M-theory

picture above. The phase ambiguity detected by membrane instantons in M-theory

is detected by D2 brane instantons in the string theory picture. This is in accord

with our gauge theory intuition, since D2 branes are the instantons of the D6 brane

gauge theory in the phase where the D6 branes exist [141]. The fact that Σ−(−µ)

has half the volume of Σ+(µ) then becomes the familiar fact that the superpotential

from a gaugino condensate in N = 1 SU(2) gauge theory looks like a “half-instanton

effect.”

More precisely, once we have compactified this setup, the superpotential we

are discussing destabilizes the closed-string modulus µ (which is a parameter in the

non-compact case). In our discussion here, we are imagining that we can hold µ

fixed at various values, which is reasonable as long as the scale generated by the

superpotential is parametrically smaller than the string/Planck scale. This is true

for large enough |µ|.
It is clear that the other examples of [39], which involve sL three-cycles Σ with

b1(Σ) > 0, could also be lifted in this way to find examples of M-theory “dualities”

in gauge theories with adjoint matter. Some examples of this have already appeared

in [129].

6. Discussion

Little is known about M-theory compactification on spaces of G2 holonomy.

Naive extrapolation of the kinds of results that exist so far suggests that further

30 Notice that since the two associative S3s at x7 = 0, 1/2 are in the same homology

class, their volumes (and the periods of the C-field) are the same. So although there are

two SU(2)s, the choice of phase in the two gaugino condensates is related – there is only

a single Z2 ambiguity. This carries over to the IIA picture as well.
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study of the relationship between IIA orientifolds and M-theory compactifications

could yield:

1) A large class of examples of non-perturbative dualities between orientifolds of

type II compactifications on Calabi-Yau spaces of different topologies, with

different numbers of space-filling D-branes.

2) New gauge theory/gravity dualities along the lines of [126], in a compact con-

text (i.e., coupled to 4d gravity).

3) Connections between the study of disc instanton effects in type II compactifi-

cations with branes (see e.g. [18,39,142,143]) and membrane instanton effects

in M-theory [123]. The real involution of the CY pairs holomorphic discs [39]

even when the sL three-cycle on which they end is deformed away from the

real slice. In this way, pairs of discs times the M-theory circle form closed

orbifold-invariant three-manifolds which membrane instantons can wrap. Sim-

ilarly, IRIP2 worldsheets with their crosscap on the real slice lift to orbifolds of

membrane instantons on the M-theory circle times the covering sphere of the

IRIP2 [127].

4) A good understanding of the new physics which arises at singularities of M-

theory on spaces of G2 holonomy (some examples of this were discussed in

[130]). It would be particularly interesting to find various singularities which

correspond to chiral gauge theories. Perhaps these would provide a useful tool

for the further exploration of chirality changing phase transitions [144].

5) A new window into type I compactifications. The type IIA orientifolds stud-

ied here are T-dual to type I string compactifications (roughly speaking, by

T-duality on the T 3 fibers [145] of the Calabi-Yau space which is being ori-

entifolded). Therefore, any insights gained about these models through their

M-theory interpretation will carry over to the study of certain type I theories.
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Chapter 7: D(NA)-Branes

We engineer a configuration of branes in type IIB string theory whose mechanical

structure is that of a DNA molecule. We obtain it by considering a T-dual de-

scription of the quantum Hall soliton. Using a probe analysis, we investigate the

dynamics of the system and show that it is stable against radial perturbations. We

exercise a certain amount of restraint in discussing applications to biophysics.

1. Introduction

String theory – at present the only known consistent theory of quantum gravity

– has undergone several major changes during its lifetime in terms of the way in

which physicists look at it, and what they expect from it. Originally it was viewed

as a possible theory of strong interactions, although the ineluctable appearance of a

massless spin-2 state in its spectrum dampened the enthusiasm for the idea. When

this phenomenon was later reinterpreted as a feature rather than a bug, with the

spin-2 state incarnate as a graviton rather than an anomalously light hadron, the

theory garnered a reputation as the leading candidate for a theory incorporating the

phenomenon of gravity into quantum mechanics. The discovery of supersymmetry, a

cornucopia of compactifications to four dimensions, and quasi-realistic gauge groups

and matter content in the string framework only served to solidify the hegemony of

strings over the field of theoretical high-energy physics.

Much of the recent excitement in string theory has come from an (often non-

perturbative) understanding of many different backgrounds of the theory and the

relations between them. The protean character of quantum states under the du-

ality group of string theory is a source of much of the continuing fascination with

the theory, and of the general sense that it has many depths yet to be explored.

Indeed it seems that just about any quantum theory imaginable can be obtained

The material in this chapter appeared in “D(NA)-Branes” with Simeon Hellerman

[146] and is reprinted with permission of JHEP.
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as a (low-energy or other) limit of the dynamics of the theory. Its shape-shifting

capacity appears unlimited.

Most recently, the theory has been investigated because of the fact that one

of its backgrounds seems to be able to reproduce the quantum Hall effect at low

energies. In fact two logically separate dualities relating the Hall system to other

theories of interest have emerged recently. The first [147] is a direct embedding of

the system in string theory. The second [148] is an equivalence to a noncommutative

gauge theory whose relation to string theory is less direct. This equivalence was

recently sharpened in [149,150].

In this chapter we describe a closely related system, obtained by considering

the T-dual of (a nonabelian version of) the system in [147]. We show that the

T-dual is a double helix, with fundamental string rungs connecting the two helices.

The plan of the chapter is as follows. In §2, we briefly review the construction

of the quantum Hall soliton, and motivate an examination of the D(NA)-brane

system by considering its T-dual. In §3 we use the Dirac-Born-Infeld/Wess-Zumino

action on the lighter branes to find the equilibrium radius of the helix. In §4 we

describe the low-energy dynamics of the system. In §5 we conclude by discussing

the limitations of our calculation and ways in which it might be improved.

2. The quantum Hall soliton and its DNA dual

We briefly review the construction [147] of a quantum Hall-like system in type

IIA string theory.

Begin with a set of k sixbranes, spatially extended in the x4, · · · , x9 directions,

located at transverse position x1 = x2 = x3 = 0. Surrounding these sixbranes we

place a set of n coincident twobranes – that is, twobranes whose location is defined

by the sphere x2
1 + x2

2 + x2
3 = R2

0, with R0, the radius of the sphere, determined

by the dynamics and specified later. When we say ’surrounding’ we mean that

the twobranes literally cannot be moved off to infinity without intersecting the

sixbranes.

It is known [151] that for such nontrivially ’linked’ configurations of D-branes

in type II string theories there is an effect that causes fundamental strings to con-

nect the two linked objects. Referred to as the ’Hanany-Witten’ effect after its
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discoverers, this feature of brane dynamics can be understood from many different

points of view, c.f. e.g. [152].

In order to stabilize the configuration one can dissolve n zerobranes in the set

of twobranes. There is a repulsive force between zerobranes and sixbranes at long

distances, and so the system seeks its equilibrium radius, calculated in [147] to be

R0 = (πk′/n)2/3ls/2.

The authors of [147] argued that the dynamics of this system were closely

related to those of the quantum Hall effect, in that the string endpoints appeared in

the gauge theory dynamics as charges in the fundamental representation (in [147]

only a single twobrane was considered, and so the string endpoints were simply

electric charges) and the dissolved zerobranes were units of magnetic flux. For a

single twobrane the ’filling fraction’ of the system was simply k/k′, the ratio of the

density of electrons to the density of flux.

R c

n D2’s

k’ D0’s

k D6’s

n k F1’s

Fig. 9: The periodic array of quantum Hall solitons before the Gregory-

Laflamme transition.

Now suppose one compactifies the system along the x3 direction with radius

Rc. For Rc >> R0 we can think of the periodically identified configuration as an

infinite array of twobrane spheres surrounding an array of sixbranes as in fig. 931.

We expect, however, that as we reduce the compactification radius until Rc ∼ R0,

the system will develop an instability (closely related to the Gregory-Laflamme

instability [153]) towards a merger of the twobranes into a cylinder, periodically

identified in the compact direction.

31 Strictly speaking as soon as one compactifies transverse to the sixbranes one runs into

trouble because the fields generated by the branes grow logarithmically in the remaining

transverse directions and there is a conical deficit at infinity. For now we assume we can

regulate this problem, but we will discuss the point in more detail further on.
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n cylindrical D2’s

Fig. 10: After the Gregory-Laflamme transition.

Now we perform T -duality along the x3 direction. Under this duality:

• The k′ zerobranes become D1-branes, extended in the x3 direction.

• The k sixbranes become D7-branes, extended in the x3, x4, · · · , x9 directions.

• The n cylindrical twobranes become circular onebranes in the x1, x2 plane.

• The nk fundamental strings stay as they are; now they are stretched between

the sevenbranes and the circular D-strings surrounding them.

k’ D1’s

n D1’s

k D7’s

n k F1’s

Fig. 11: The unstable D-string configuration.

In fact this description is not very accurate; it is merely a cartoon which illus-

trates the way in which the charges transform under T -duality. The configuration

shown in fig. 11 would more accurately describe the T -dual of the unstable system

in which the zerobranes are present but not dissolved in the twobranes. The correct,

(meta)stable configuration in the original picture is the one in which the zerobranes

and twobranes form a bound state in which the zerobranes give up almost all their

rest energy. The correct T -dual picture is one in which the circular onebranes ’bind’
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to the straight onebranes by forming a coil – the preference of the system for the

bound state is a consequence of the Pythagorean theorem.

k D7’s

R

y

θ

k’ D1’s

Fig. 12: How Watson and Crick tamed the D1-D7 system.

Note that the picture above is most accurate if the ratio n/k′ is large, a limit

opposite that of [147], in which n = 1. For n/k′ >> 1 (so that the number of coils

is large) and Rc/α
′ << 1 (so that the T-dual radius is large) we really can consider

an infinitely extended D(NA)-brane. Specifically, in order to keep fixed the number

of coils per unit length of a bundle of k′ D1-branes, we need to take a large-n limit

of the nonabelian quantum Hall soliton:

n → ∞
Rc → 0

holding fixed the natural quantities in the T−dual picture:

k′ = number of onebranes in a bunch (fixed)

nRc
k′α′ = number of coils per unit length (fixed)

k = number of sevenbranes in a bunch (fixed)

(2.1)

We also keep fixed the coupling in the resulting T-dual theory (this means we have

to scale the original coupling). Note that the number of fundamental strings per

coil is
number of F-strings per Rc

number of coils per Rc
=

nk

n/k′
= kk′.

Consider for a moment taking k′ = 0. In that case, the D-strings would not

coil in the y-direction at all, and would close onto themselves. Recall that when a

fundamental string ends on a D-string, the D-string carries away the F-string charge

in one direction (as worldline flux).
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z

(p,q)

(p-nk,q)

(p-1,q)

branch cut

(1,0)

Fig. 13: Checking consistency between sevenbrane monodromy and

charge conservation.

In order to have charge conservation when the D-string closes, the monodromy

action of the D7-branes on the (p, q)-string charges must cancel off this accumulated

F-string charge. If we start off with a (p, q) string, and go around the k D7 branes

which emit nk F-string spokes, we must have (in the notation of [152])

(

p
q

)

= M[k,0]

(

p− nk
q

)

=

(

1 k
0 1

)(

p− nk
q

)

=

(

p− nk + kq
q

)

,

where M[p′,q′] =

(

1 − p′q′ p′2

−q′2 1 + p′q′

)

is the monodromy experienced by the charge

lattice of (p, q) strings in traversing the branch cut of a (p′, q′) 7-brane [152]. There-

fore we see that we must have q = n units of D-string charge, and that the number

p of units of F-string charge is arbitrary. Once we take k′ nonzero, the string moves

in the y direction as it coils and this condition illuminates the Hanany-Witten effect

from the F-theory point of view.

The Double Helix

Finally, consider what will happen if we compactify the six dimensions x4, · · ·x9

on a T6 of total volume V6 (whose individual dimensions will not figure in the

discussion), giving the wrapped sevenbranes a finite tension. This will cause them

to coil up in response to the pull of the stretched fundamental strings, and the

resulting object will be a double helix. The tension of the effective one-dimensional

object in 3 + 1 dimensions will be V6/(α
′3) times that of a onebrane; we will let
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V6 be large enough that we can treat the bundle of sevenbranes as a heavy, fixed

background in which the onebranes move as probes.

Before analyzing the stability of the system, there is one final subtlety to be

dodged. When one considers an infinitely extended one-dimensional object in three

spatial dimensions, one must deal somehow with the fact that objects of spatial

codimension two have rather dramatic behavior when they couple to massless fields,

particularly to the metric. The sevenbranes and onebranes are sources for the

RR zero-form and two-form potentials, respectively, which grow logarithmically

rather than falling off at large distance from the source. Also the coupling to the

metric creates a conical deficit at infinity. Furthermore if one tries to add too many

sevenbranes and onebranes, one will actually drive the deficit beyond 360o. Finally

both the onebranes and sevenbranes source the dilaton and other moduli, which

grow logarithmically away from the branes, changing the way in which one defines

the adjustable coupling for this background.

While there may be ways to regulate the long-distance fields of an infinite string

consistently, we take a strictly pragmatic approach in this chapter and instead of an

infinite D(NA)-string, we consider an object with a different “tertiary structure”.

Wind the helix around in a large loop with a radius far larger than the string

scale, the radius of the helix, or the scale on which the helix is coiled.

Fig. 14: Our regulator.
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Obviously, if we make it big enough, the timescale for its collapse will be much

longer than those relevant to the “secondary structure”. Among other simplifying

features, this regulated configuration has unambiguous expectation values of the

dilaton and other moduli at infinity, although the dynamics on the onebranes will

decouple from the asymptotic dilaton.

3. Probe analysis and low-energy dynamics

The complexified dilaton is

τ(z) = χ+ ie−Φ.

The Einstein-frame metric for sevenbranes with worldvolume along t, y, x4, . . . x9 is

[154]

ds2ein = −dt2 + dy2 +
9
∑

i=4

dx2
i + Ω2dzdz̄,

where Ω is a function of z defined below. The string-frame metric is ds2 =
1√
Imτ

ds2ein. We work in units where α′ = 1. Let z = reiθ.

We take the near-brane solution for a stack of k D7-branes, for which the

complexified dilaton takes the form

τ(z) = j−1(−bzk) ' k

2πi
ln bz.

This approximation is valid at weak coupling, i.e. when τ2 ≡ Imτ is big. b is a

parameter of the solution which plays the role of a dilaton modulus. The metric

function Ω takes the form

Ω2 = τ2|η(τ)2
∏

i

(z−zi)−
1
12 |2 ' τ2|(bz)

2k
24 z−

k
12 |2 ' − k

2π
b

k
6 ln(bR) ≡ − k

2πγ2
ln(bR),

where η is the Dedekind eta function.

Parametrize the worldvolume of the helix by a spatial coordinate σ and choose

the embedding

y = ασ, z = Reiσ,

so that θ = σ mod 2π. α is the inverse number of coils per unit length as defined

by the scaling limit (2.1).
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Then, ignoring kinetic terms because at the moment we are just interested in

finding the potential for R, the induced E = G+F (using the string-frame metric)

is

E = (G+ F )αβdσαdσβ = (Gµν∂αXµ∂βX
ν + Fαβ)dσ

αdσβ

= ( dt, dσ )

(

− 1√
τ2

ξ

−ξ 1√
τ2

(R2Ω2 + α2)

)

(

dt
dσ

)

,

where ξ = F0σ is the electric field along the helix. So we have

−detE = eΦ(Ω2R2 + α2) − ξ2.

Let us discuss the form of ξ. The sources for the field strength ξ are the

endpoints of the fundamental strings on the D-string, and the background axion

gradient:

Lξ ∼
1

g2
YM

ξ2 − A0

(

1

k′

∑

i

δ(string endi) − ∂1χ

)

,

where g2
YM = eΦ and ξdσdt = dA. The factor of 1

k′ multiplying the string source

arises because a single string-end ending on a clump of D-strings sources the trace

of ξ with unit strength. We find that the solution should be

ξ ∼ eΦ

(

kσ

2π
− 2π

k′

∑

i

Θ(string endi)

)

− ξ0

=
−2π

ln bR

(

σ − 2π

kk′

∑

i

Θ(string endi)

)

− ξ0.

ξ0 is a background electric field determined by the worldline theta-angle, which

is in turn related to the bulk RR axion. As we will explain below, the worldline

theta-angle becomes dynamical and chooses ξ0 to make the average electric field

vanish.

The electric field on the D-strings has the form of a sawtooth which reaches its

maximum when it reaches a string end which then discharges it. However, in the

following, we take a average field approximation, where we replace ξ by its spatial

average value. This approximation is justified by the fact that the deviation of ξ

from its average value is of order 1
kk′ which we take to be small.
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Plugging into the Dirac-Born-Infeld plus Wess-Zumino probe action,

S =

∫

dtdσL = k′
∫

dtdσ

(

e−Φ
√
−detE + e−(F+B)

∑

p

C(RR)

)

,

(the k′ is out front because there are k′ D-strings) we find

L = k′

√

τ2

(

(
R2τ2
γ2

) + α2 − τ2ξ2
)

+
kk′σ

2π
ξ. (3.1)

We must also include the force on the D-string from the tension of the attached

fundamental strings. These contribute an energy proportional to their length in

the string frame metric, which is in turn equal to their coordinate length, over γ.

Averaging over σ, we find that they contribute a linear potential,

Vstrings =
k′k

2πα′γ
R.

In the average field approximation, a convenient way to write the potential for

x = bR is

V =
kk′

2πγb

(

x+
√

x2 ln2 x− c lnx
)

(3.2)

where c ≡ 2πα2b2γ2/k, a dimensionless parameter. For small but nonzero c, this

function has a minimum at xE defined by the transcendental equation

c = 2x2
E

(

ln2 xE +
√

2| lnxE |3/2
)

.

There is a critical value of c ' 0.6689 above which there is no minimum, and the

potential just slopes off toward infinity.

Issues raised by this calculation

1. Obviously we have only considered the dynamics of a single mode of the helix,

albeit the most obvious candidate for an instability. In the next section, we

consider some other modes.

2. The sevenbrane geometry which we are probing is singular if k 6= 24. Further,

there is a range of r’s (r > 1/b) for which our near-brane approximation breaks

down and the dilaton, Φ, is apparently imaginary. However, the minimum we

found above lies within the region where our approximation makes sense.
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Fig. 15: The potential as a function of x in units of kk′

2πγb
for c = 0.5. The

gravity solution goes stupid around x ∼ 1.

3. The DBI analysis is only valid if the brane worldvolume is weakly curved, and

its field strengths are slowly varying; this is the case for our probe, except for

the step-function discontinuities due to fundamental string sources.

4. The value of the dilaton at the D-strings,

eΦ(RE) =
2π

k| lnxE |

can be made parametrically small by taking k large and α2 large fixing RE , c, b.

5. If we take c smoothly to zero, the minimum we found above moves closer to

the sevenbranes. In this limit, the 1-7 strings become light, but the coupling

to the 7-7 strings can be kept small by making V6 large. Since c ∝ α2, this is

consistent with the T-dual fact that in the absence of zerobranes, the quantum

Hall soliton collapses.

6. Observe in fig. 15 that our potential has a maximum, and slopes downward

far from the sevenbranes. When c is small, this maximum is inside the region

of validity of our approximation. This signals that our equilibrium is perhaps

only metastable, as is the quantum Hall soliton.

4. Low-energy theory on the strings

What can we say about the effective dynamics on the worldline of the helix?

The low-energy effective excitations are as follows:

• There are six compact scalars from the transverse T 6. The T 6 is large and the

sevenbranes are distant, and we assume in what follows that these modes decouple.
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There is also a seventh Goldstone mode, corresponding to translation in the axial

direction, which is likely to decouple as well.

• We found that there is a (stable) equilibrium value for the radion field, R,

that measures the coordinate distance between the onebranes and sevenbranes; the

radion is massive.

• There is a charge displacement wave mode, D, which is massive. In the

presence of a neutralizing background charge (provided by the axion gradient), the

charged string endpoints are bound to their equilibrium positions with a linear

restoring force.

• There is a mode that rotates the entire onebrane around the sevenbranes,

leaving the F -strings at fixed axial position. This ’turnon’32 field T is not an

independent mode; it can be compensated by a combined charge displacement and

axial shift. This corresponds with the fact that in the presence of a background axion

that winds k times around the sevenbranes, the turnon is in effect a dynamical theta

angle in 1 + 1 dimensions; giving T a vev produces a vacuum energy proportional

to T 2 which matches the energy from the corresponding charge displacement.

• There are modes corresponding to fragmentation of the onebrane into con-

stituent onebranes. There are also fragmentation modes along the T 6 directions.

Understanding the fragmentation modes would require a more careful treatment of

the nonabelian dynamics than we attempt here. In the probe analysis, then, we

will set k′ ≡ 1. However abelian and nonabelian coulomb forces are quite similar

in 1 + 1 dimensions, and so we believe the qualitative picture may be similar when

k′ 6= 1.

• There is no independent ’unwindon’ – that is, the mode which uncoils the

D-strings is essentially a linearly rising mode of the turnon field.

4.1. The full potential

In this subsection, we perform a refinement of the calculation of §3, for the case

k′ = 1.

32 Since the word ’roton’ already has a standard usage in condensed matter physics, we

were left with little choice in the matter.
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Let us fix y ≡ ασ,X0 ≡ τ identically as a helical analog of static gauge for

the reparametrization invariance of the DBI action. In order to find the roton and

turnon potential, we write

z ≡ R(σ)exp{i(σ + T (σ))} (4.1)

First we set the charge density to its equilibrium value, and find a potential

for R and T alone. We apply the approximation in which the fundamental string

endpoints are continuously and uniformly distributed so as to cancel the background

charge density coming from the axion gradient. The electric field on the onebrane

worldvolume is constant, and equal to ξ. The energy is at a minimum when ξ

vanishes. In this system the θ angle is dynamical, so the electric field can relax to

zero by changing the value of the turnon.

Substituting this parametrization into the probe action we expand to zeroth

order in derivatives, for the full Lagrangian:

L(R, T ) = e−Φ(R)
√

α2 +R2Ω2(R) − ξ2 + Tξ − k

2πγ
R. (4.2)

Notice that the turnon field only appears in the WZ term, coupling as a Peccei-

Quinn axion. The background electric field is determined by the effective theta

angle:

ξ =
τ̃1√

τ̃2|τ̃(R, T )| ·
√

α2 +R2Ω2(R)

where τ̃ ≡ T + i · e−Φ(R) is the effective gauge coupling. Note that ξ has an

interpretation as a density of dissolved Wick-rotated D(−1)-branes. Integrating

out ξ in the manner above is analogous to the “dilute instanton gas” approximation

in four-dimensional axion physics.

Plugging this back into the Lagrangian we obtain

V = −eΦ(R)/2
√

α2 +R2Ω2(R) · |τ̃(R, T )|+ k

2πγ
R. (4.3)

Having done this calculation, it is easy to take account of the motions of the

charged string endpoints. A charge distribution couples to the gauge field as

L→ L+ ρ(σ)A0(σ). (4.4)
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However for small motions of the charges from their equilibrium positions, the

charge density is given by the inhomogeneity of the charge displacement field D(σ);

that is ρ(σ) = D′(σ), so integrating by parts we find the interaction term

−D(σ)ξ. (4.5)

So T and D enter the action only through their difference. To find the full

potential for all the fields, including the charge displacement, simply substitute

T − D for T in the expression (4.3). This expresses the fact that any uniform

displacement of the charges from their equilibrium positions can be compensated

by a rotation of the helix.

In the end we find a (1 + 1)-dimensional system of three coupled fields: the

charge density of string-ends, the turnon field, and the radion. In the absence of a

charge-clumping instability, we expect that the radion field decouples. The resulting

system seems to form a Wigner crystal. It will be interesting to learn more about

the D(NA)-brane system, particularly when k′ 6= 1.

5. Conclusions

We have shown that the quantum Hall soliton has a certain limit in which it

is naturally viewed via T-duality as a molecule of DNA. Though there is still much

we do not understand about the D(NA)-brane system, the dynamics are those of

point charges in a neutralizing background. In addition to the Goldstone modes,

the theory on the strand contains a worldvolume axion, the turnon, and a charge

displacement field, one combination of which is massless.

Our computation is incomplete in the following ways:

• In our low-energy analysis, we have merely determined which modes have

nonzero mass. In order to compute physical masses of fields, one would need to

compute their kinetic terms.

• Where uncertain, we have given the benefit of the doubt to approximations

and assumptions which emphasize the possible similarity of our system to that of

[147]. In particular, we have treated the string endpoints on the sevenbranes as if

they could be effectively decoupled; we leave open the problem of treating them

more realistically.
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• We have not attempted to understand the nonabelian worldvolume dynamics

when k′ > 1, particularly whether or not there may be a “genes’ instability” to

fragmentation of the clump.

• A better analysis of the effective dynamics should take into account that the

lowest modes of the stretched fundamental strings are fermionic [147].

• It would be interesting to go beyond the average-field approximation for the

charge distribution to see if an electric analog of the structure of [148] emerges.

It would be interesting to learn more about this system.

6. What we have to say about biophysics

Consider the case of two sevenbranes and two D-strings. Let the fundamental

index of the D-string gauge group run over “purine” and “pyrimidine” . . ..
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Chapter 8: Geometric Constructions

of Non-Geometric String Theories

We advocate a framework for finding perturbative string compactifications which do

not have large-radius limits. The idea is to modify vacua which have descriptions as

fibrations by enlarging the monodromy group around the singular fibers to include

perturbative stringy duality symmetries. As a controlled laboratory for testing this

program we study in detail six-dimensional (1, 0) supersymmetric vacua arising from

two-torus fibrations over a two-dimensional base. We also construct some examples

of two-torus fibrations over four-dimensional bases, and comment on the extension

to other fibrations.

The unpublished material in this chapter was developed in collaboration with Simeon

Hellerman and Brook Williams.
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1. The Undiscover’d Country: weakly-coupled supersymmetric string

vacua without geometry

In this paper we will examine a class of solutions to supergravity in 7 + 1

dimensions with 32 supercharges. These solutions will involve nontrivial behavior of

the metric and Neveu-Schwarz (NS) B-field, but not of any of the Ramond-Ramond

fields, nor of the eight dimensional dilaton. (The ten-dimensional dilaton will vary,

but only in such a way that the eight dimensional effective coupling is held fixed.)

We will argue that these backgrounds are likely to represent sensible backgrounds for

string propagation on which the dynamics of string worldsheets are determined by

a two-dimensional conformal field theory of critical central charge, with a controlled

genus expansion whose expansion parameter can be made arbitrarily small.

Almost all known examples of perturbative string backgrounds are descibed

by nonlinear sigma models , that is, by field theories containing scalar fields Xµ

parametrizing a topologically and geometrically nontrivial target space, the la-

grangian

Lworldsheet =
1

2πα′Gµν(X)∂Xµ∂̄Xν (1.1)

describing the classical action of a fundamental string travelling in a curved space-

time with metric Gµν . The conditions for conformal invariance of the worldsheet

theory are then

0 = βµν [Gστ (X)] = Rµν(X) + α′ · (quadratic in Rαβγδ) + · · · (1.2)

for weak curvatures RαβγδR
αβγδ << 1 in string units. Therefore the condition for

conformal invariance is approximately the same as the Einstein equation for the

target space metric. So a nonlinear sigma model whose target space smooth Ricci-

flat space at large volume will always be approximately conformal, an approximation

which improves if one scales up the manifold Gµν → ΛGµν .

Unfortunately the existence of a large-volume limit of a family of solutions

or approximate solutions gives rise to the moduli problem, that there is always at

least one massless scalar in the lower-dimensional effective field theory - namely,

the overall volume of the compact space - if space is an exact solution to the string

equations of motion at the quantum level as it is, for instance, in superstring theory

(to which we will restrict our attention exclusively in this paper).
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Even if potentials are generated nonperturbatively for the volume modulus,

such potentials always vanish in the large volume limit, giving rise to a potential

that attracts the theory to its least phenomenologically acceptable point [156].

It is therefore important to find compactifications of the theory without large

volume limits. In principle, one could scan the space of two dimensional super-

conformal field theories of appropriate central charge, calculate their spectra, and

consider only those not connected by marginal deformations to large-volume points.

In practice however this is prohibitively difficult.

Our strategy is to exploit the existence of stringy gauge symmetries of partially

compactified string theory, symmetries which do not commute with the operation

Gµν → ΛGµν of rescaling the metric. There are, indeed, three ways in which one

could in principle exploit such symmetries:

I. One could orbifold by them, which would project out the volume modulus.

II. One could simply consider points in the moduli space of compactifications

under which all moduli, including the volume modulus, are charged; such a

vacuum is guaranteed to be stationary (though not necessarily stable) against

all quantum corrections.

III. One could consider solutions to string theory with boundary conditions which

lift the overall volume modulus.

The first possibility has been studied, in the form of the ’asymmetric orbifold’,

which refers to an orbifold of a torus where one orbifolds by a ’stringy’ symmetry,

such as T -duality, which has no classical counterpart and under which the volume

transforms nontrivially. The second possibility has also been proposed, [157], as a

mechanism for solving the moduli problem. In this paper we investigate the third

possibility.

1.1. The setup

The idea is as follows: spacetime is a product of 10− n Minkowski dimensions

with an internal space Xn. The internal space is a fiber product of a k-dimensional

fiber space G over a n − k-dimensional base B. Fiberwise, G is Ricci flat, and we

denote by M the moduli space of Ricci-flat spaces whose topology is G. We then

allow the moduli M of the fiber to vary over B in such a way that the total space

is also Ricci-flat.
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We focus on solutions in which, as one circumnavigates some singular locus S
of codimension two in B, the moduli M transform nontrivially under elements of

the discrete symmetry group G acting on M.

The adiabatic approximation in which G is fiberwise Ricci-flat typically breaks

down in the neighborhood of S. Nonetheless when the approximation breaks down,

the resulting singularities can be understood, in all examples we consider, by demon-

strating their local equivalence to other known solutions of string theory.

In all examples in this paper, the fiber G will be a torus, and we will focus on

the case G = T 2 as a controlled laboratory for testing our ideas.

The organization of the paper is as follows. In section two, after a brief review

of string theory on T 2, we will derive the effective equations for the metric and

moduli in B which express the higher-dimensional equations of motion. We then

analyze the allowed boundary conditions near the singular locus S, and solve those

equations, locally, in the case B = C or CIP1. We analyze the effective dynamics

of these theories in six dimensions. In section three we will construct a global,

compact solution, and analyze its spectrum, checking its consistency via anomaly

cancellation. In section four we consider other choices of G and B. In section five

we discuss the many directions for future study.

2. Stringy cosmic fivebranes

In this section we will find and solve the conditions for supersymmetric solutions

of type IIA string theory which locally look like compactification on a flat T 2, which

is reviewed in the next subsection. We allow the moduli τ and ρ to vary over a

two-dimensional base B2 and to reach degeneration points on some locus S.

Without supersymmetry, a restricted class of such solutions where only τ or ρ

varies has been known for some time [158]. We will try to make clear the connection

to earlier work as we proceed, since some of our models have been made using other

techniques.
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2.1. Type IIA string theory on T 2

A few basic facts about type II string theory on a flat two-torus will be useful

to us. We will write the metric on the T 2 as

MIJ =
V

τ2

(

| τ |2 τ1
τ1 1

)

IJ

. (2.1)

It is convenient to pair the moduli of the torus into the complex fields τ = τ1 + iτ2

and ρ = b+ iV/2 where

b ≡
∫

T 2

B

is the period of the NS B-field over the torus. In eight-dimensional Einstein frame,

the relevant part of the bosonic effective action for these variables is

S =

∫

M8

d8x
√
g

(

R +
∂µτ∂

µτ̄

τ2
2

+
∂µρ∂

µρ̄

ρ2
2

)

(2.2)

These kinetic terms derive from the metric on the moduli space which is in-

variant under the

G ≡ O(2, 2; ZZ) ∼ SL(2,ZZ) × SL(2,ZZ) (2.3)

perturbative duality group, some properties of which we will need to use. Under the

decomposition indicated in (2.3), the first SL(2,ZZ) factor is the geometric modular

group which identifies modular parameters defining equivalent tori. The second is

generated by shifts of the B-field through the torus by its period:

b 7→ b+ 1,

and by T-duality on both cycles combined a 90◦ rotation of the T 2.

One representation of this group is its action on windings and momenta of

fundamental strings on the two-torus. Labelling these charges as wI and pI for

I = 1, 2 along the two one-cycles, these transform in the 4 = (2, 1) ⊗ (1, 2) vector

representation of this group. By this we mean that it transforms as

(

pI
εIJw

J

)

7→
(

a′T b′T
c′T d′T

)(

pI
εIJw

J

)

= T ′ ⊗ T
(

pI
εIJw

J

)

(2.4)

where T =

(

a b
c d

)

, ad− bc = 1.
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Another representation of this group is on Ramond-Ramond (RR) charges. We

can organize these into

ψ ≡







D2 along θ1
D2 along θ2

D2 wrapped on T 2

D0






(2.5)

which transforms in the reducible Dirac (2, 1) ⊕ (1, 2) = 2+ ⊕ 2− representation:

ψ 7→
(

T 0
0 T ′

)

ψ. (2.6)

The periods






ω1

ω2

υ1

υ2







whose ratios are

τ =
ω1

ω2
ρ =

υ1

υ2

transform in this represenation.

Some further discrete symmetries will be relevant. We define I2 to be the

transformation which inverts the torus:

I2 : θI 7→ −θI .

In our notation above, this is (T , T ′) = (−1, 1). (−1)FL reverses the sign of all RR

charges, and so can be written as (T , T ′) = (−1,−1). Note that this acts trivially

on the vector (NS) representation as expected.

2.2. Killing spinors

The action (2.2) was written in eight-dimensional Einstein frame, but it will

be convenient to study the supersymmetry variations of the fermions in terms of

string frame variables. We explain our index and coordinate conventions and play

the frame game in detail in the appendices. Actually, the results of this section

apply to any G-fibration over B, and we do not specify the dimension of the fiber

or the base until the next subsection.
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The SUSY transformations of the gravitino Ψµα and dilatino λα in type IIA

supergravity in string frame are

δλ = (Γ[10]Γ
µ∂µΦ − 1

6
ΓµνσHµνσ)η (2.7)

δΨµ = (∂µ +
1

4
Ω

A
′
B

′

µ ΓA′B′)η (2.8)

where we have defined the generalized spin connection Ω as in [159] to be

Ω
A

′
B

′

µ ≡ ωµ
A

′
B

′

+Hµ
A

′
B

′

Γ[10]

Here we have set to zero RR fields and fermion bilinears. η is a Majorana but not

Weyl spinor of SO(9, 1), and the NS field strength is

Hµνσ ≡ (dB)µνσ ≡ Bµν,σ + cyclic (2.9)

HµÃ′B̃′ ≡ HµνσE
ν
Ã′E

σ
B̃′ (2.10)

The ten-dimensional chirality matrix is

Γ[10] ≡
1

10!
εA′

1
···A′

10
ΓA

′

1 · · ·ΓA
′

10 = Γ†
[10]. (2.11)

We make an ansatz for the metric Gµν , NS two-form Bµν and dilaton Φ of the

form




Gµ̃ν̃ Gµ̃i Gµ̃J
Giν̃ Gij GiJ
GIν̃ GIj GIJ



 (2.12)

=





exp{w(x)}ηµν 0 0
0 gij(x) +MKL(x)AKi (x)ALj (x) MJK(x)AKi (x)

0 MIK(x)AKj (x) MIJ (x)



 (2.13)





Bµ̃ν̃ Bµ̃i Bµ̃J
Biν̃ Bij BiJ
BIν̃ BIj BIJ



 =





0 0 0
0 Bij(x) BiJ(x)
0 BIj(x) BIJ(x)



 (2.14)

Φ = Φ(x) (2.15)

This is the most general ansatz which preserves a 10−n-dimensional Poincaré

invariance and a U(1)k isometry of the fiber. For the moment we will further assume

that

AIi (x) = BiI(x) = 0, (2.16)

which we will relax later on when studying the spectrum of fluctuations around our

solutions. Further we assume an isometry defined by

Gµν,I = 0. (2.17)

This is the semi-flat approximation [160].
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2.3. T 2 over B2

We now make a number of simplifying observations for the case of two-torus

fibrations over a two-dimensional base. With our ansatz we lose no generality by

assuming that a preserved spinor η has definite four-, six- and ten-dimensional

chiralities

Γ[4]η = χ4η Γ[6]η = χ6η Γ[10]η = χ10η (2.18)

Γ[4] =
1

4!
εABCDΓA · · ·ΓD = Γ†

[4] (2.19)

Γ[6] =
1

6!
ε
Ã

1
···Ã

6
ΓA1 · · ·ΓA6 = Γ†

[6] (2.20)

Note also that Γ[10] = Γ[4]Γ[6]. Next, we notice that the warp factor, w(x), on the

six-dimensional space vanishes given our ansatz. The third simplifying observation

is a fact about gamma matrices in four dimensions:

Γabc = εabcdΓ[4] · Γd = −εabcdΓd · Γ[4] (2.21)

⇔ Γ[4] · Γabc = −Γabc · Γ[4] = εabcdΓd (2.22)

⇔ Γa = −1

6
εabcdΓ[4]Γ

bcd = +
1

6
εabcdΓbcdΓ[4] (2.23)

⇔ Γ[4]Γ
a = −ΓaΓ[4] = −1

6
εabcdΓbcd (2.24)

ΓabΓ[4] = −1

2
εabcdΓcd (2.25)

The fourth fact is that we can choose – for greatly enhanced convenience – the

following convention for our 32-component 10-dimensional spinors:

Γm = γm−4 ⊗ 1, m = 5, 6, 7, 8, 9 (2.26)

Γm=0 = γ0 ⊗ 1, ΓA = γ[6] ⊗ γ̃A (2.27)

where γ0, γm are (5+1)-dimensional (nonchiral) Γ-matrices, γ̃ are 4-dimensional

(nonchiral) Γ-matrices, and γ[6] is the (5+1)-dimensional (Hermitean) chirality ma-

trix.

Using these facts, the vanishing of the dilatino variation is equivalent to

s∂̄Φ = iV −1∂̄b (2.28)
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and the vanishing of δΨI (where I is an index along the torus directions) is equiv-

alent to

ΩI
Aa + χ4ε

ABεabΩI
Bb = 0 (2.29)

We can write the generalized spin connection Ω whose (anti-)self-duality this equa-

tion expresses as

ΩI
Aa ≡ ωI

Aa + χ10εIJf
AJeaib,i. (2.30)

In appendix D we show that this implies

∂̄Φ = ∂̄ ln
1√
V
,

which can be solved by setting
V

e2Φ
= g2

8 (2.31)

equal to a constant. We recognize this undetermined quantity g8 as the eight-

dimensional string coupling33. Given this relationship (2.31) between V and Φ, the

remaining equations reduce to holomorphy of ρ and τ .

We show in appedix D.1 that the variation of the gravitino with index along

the base will vanish if the conformal factor on the base satisfies

0 = ∂∂̄ (ϕ− ln
√
τ2 − ln

√
ρ2) . (2.32)

Summary of killing spinor conditions

We have found that if τ and ρ are holomorphic functions on the base, and the

ρ degenerations back-react on the base metric in the same way as τ singularities

usually do [158], we preserve six-dimensional (1, 0) supersymmetry. With constant

ρ we preserve (1, 1), with constant τ we preserve (2, 0). The complex structure on

the base is correlated with the six-dimensional chirality.

33 Note that we would find other solutions for the dilaton if we turned on the RR

potentials. In that case we would find F-theory-like solutions which could remove the

zeromode of the dilaton as well as those of ρ and τ .
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2.4. Stringy cosmic fivebranes

The lovely insight of [158] is that our moduli need only be single valued on the

base up to large gauge identifications in the perturbative duality group G. As such,

there can be a collection S of branch points in B around which τ and ρ jump by

some action of g ∈ G. At such a degeneration point, the moduli must reach values

fixed by the element g. Points in the moduli space fixed by elements of G will in

general represent singular tori or decompactification points.

The basic example of a solution with nontrivial monodromy is

τ =
1

2πi
ln z.

In going around the origin, z 7→ e2πiz,

τ 7→ τ + 1

which corresponds to the monodromy element

(T , T ′) =

((

a b
c d

)

, 1

)

in the notation of §2.1.

A convenient way to encode the monodromy of τ is by describing the fiber tori

as a family of elliptic curves satisfying a Weierstrass equation

y2 = x3 + f(z)x+ g(z) (2.33)

varying with z, a local coordinate on the base. For this elliptic fibration, the

discriminant locus where the fiber degenerates is

Sτ = {z ∈ B s.t. 0 = ∆τ (z) = 4f(z)3 + 27g(z)2}. (2.34)

Local physics of the degenerations

In the previous subsections we have shown that we can preserve supersymmetry

by letting ρ and τ vary as locally-holomorphic sections of a G-bundle. Branch points

around which the holonomy of the bundle acts represent degenerations of the T 2
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fibration. The local physics of each possible degeneration is well-understood, and

we review this understanding in this subsection.

Degenerations of the complex structure τ of an elliptic fibration were classified

by Kodaira [161] according to the behavior of the polynomials in the Weierstrass

equation (2.33). This classification (which appears as table I in the next section)

tells us which kind of singularity of the total space of the fibration is created by a

particular degeneration of the fiber. Assuming supersymmetry is preserved, these

singularities have an ADE classification.

Note that an A0 singularity is associated with the degeneration of a particular

one-cycle of the T 2 fiber, which is some integer linear combination pa + qb of the

a-cycle and the b-cycle. Therefore, A0 singularities come with a

(

p
q

)

label.

Local physics of the nongeometric monodromies

What about degenerations of ρ? Consider a singular fiber near which

ρ ∼ N

2πi
ln z. (2.35)

Recalling that ρ = b + iV/2, this says that in going around the origin the B-field

through the torus fiber moves through N periods,

b 7→ b+N.

We can identify this object by performing a measurement of the H-flux through a

surface surrounding the singularity. Such a surface is the T 2-fiber times a circle, C,

around the origin, and H = db∧ν where ν is a unit-normalized volume-form on the

T 2, so
∫

T 2×C
H =

N

2πi

∮

C

dz

z
= N. (2.36)

This tells us that this surface contains N units of NS5-brane charge [162] and we

identify such a degeneration as a collection of N type IIA NS5-branes. Note that

this identification is consistent with the fact that a background with τ constant

and ρ varying according to (2.35) preserves (2, 0) supersymmetry, as does the IIA

NS5-brane.

Next we must explain the microscopic origin of the other ρ degenerations, whose

monodromies fill out the rest of SL(2,ZZ). For this purpose it is useful to recall that
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T-duality along one cycle of the T 2 fiber replaces type IIA with type IIB. Choosing

different one-cycles in the T 2 along which to dualize gives different IIB descriptions

of a given IIA background. Starting with an A0 singularity associated to the

(

1
0

)

cycle, and T-dualizing along the

(

1
0

)

cycle, one obtains a type IIB NS5-brane

[162]. If we T-dualize again along the

(

p
q

)

cycle of the type IIB dual torus, we

obtain the object in type IIA whose monodromy is

(

υ1

υ2

)

7→Mp,q

(

υ1

υ2

)

(2.37)

where ρ ≡ υ1/υ2 and

Mp,q =

(

1 − pq p2

−q2 1 + pq

)

is the SL(2,ZZ) matrix which preserves the vector

(

p
q

)

. Notice that this mon-

odromy includes some action on the volume of the T 2 for any (p, q) other than

(1, 0).

Explain about the breakdown of the semiflat approximation. the eight-

dimensional string coupling is arbitrary. Both the volume of the fiber, and the

ten-dimensional dilaton diverge near an NS5-brane. If you don’t ask questions in-

volving momentum modes on the torus, perturbative CFT calculations are valid.

2.5. Putting things on top of other things

Now that we have discussed the local physics near each kind of supersymmetric

degeneration, we can consider configurations involving both types, which we know

can preserve only one quarter of the original supersymmetry. Simple examples

of this type, those involving only AN degenerations of τ are locally described by

collections of type IIB NS5-branes probing ADE orbifold singularities (e.g. [163],

[164], [165]) which is S-dual to D5-branes probing the orbifold as in [166]. However,

if the configuration involves mutually nonlocal degenerations (not just AN ) of both

ρ and τ , it cannot be described in this way.

In the next section we construct and study in detail a compact model of this

kind which preserves six-dimensional (1, 0) supersymmetry. As we will show, in

a compact model in which both τ and ρ vary, one must have mutually nonlocal

degenerations of each type.
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3. Compact models in six dimensions

What is required to make a compact model (whose base is a two-sphere with

punctures) out of stringy cosmic fivebranes? There are two conditions one needs to

satisfy. One is that the conformal factor on the base behaves smoothly at infinity,

i.e. that the metric on the base is that of a sphere. The second condition is that

the monodromy around all of the singularities be trivial, since this is the same as

the monodromy around a smooth point in B.

The first condition is easily accomplished by including the correct number of

singularities. Since the degenerations of ρ back-react on the metric on the base

in the same way as the degenerations of τ , we know from [158], [167] that this

number is 24. This is because equation (2.32) tells us that ϕ is the two-dimensional

electrostatic potential with charge equal to the tension E of the degenerations,

which far from the degenerations behaves as ϕ ∼ − E
2π ln ‖z‖. The total tension is

2π
12

times the total number of times N that the maps

τ : C → Fτ , ρ : C → Fρ

cover their fundamental domains, which says that far away the metric on the base

looks like

ds2 = e2ϕdzdz̄ ∼ ‖z−N/12dz‖2;

with N = 24, the metric behaves as

ds2 ∼ ‖dz
z2

‖2

so that infinity is a smooth point in terms of u = 1/z, and we find B = IP1.

Trivial monodromy at infinity

The second condition can be solved in many ways. Including the action on

fermions and RR fields, it cannot be solved with fewer than 12 objects. For inspi-

ration, we present the following table:

Table 1: Kodaira Classification of Singularities
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ord(f) ord(g) ord(∆) monodromy fiber singularity ai

≥ 0 ≥ 0 0

(

1 0
0 1

)

smooth none 1
12

0 0 n

(

1 N
0 1

)

In An−1
n
12

2 ≥ 3 n+ 6

(

−1 0
0 −1

)

I∗n Dn+4
1
2 + n

12

≥ 2 3 n+ 6

(

−1 0
0 −1

)

I∗n Dn+4
1
2 + n

12

≥ 4 5 10

(

0 −1
1 1

)

II∗ E8
5
6

≥ 1 1 2

(

1 1
−1 0

)

II none 1
6

3 ≥ 5 9

(

0 −1
1 0

)

III∗ E7
3
4

1 ≥ 2 3

(

0 1
−1 0

)

III A1
1
4

≥ 3 4 8

(

−1 −1
1 0

)

IV ∗ E6
2
3

≥ 2 2 4

(

0 1
−1 −1

)

IV A2
1
3

The column labeled “fiber” gives Kodaira’s name for the fiber type; the column

labeled “singularity” gives the type of singularity the fiber degeneration causes in

the total space; the last column indicates the contribution that the degeneration

makes to the first chern class of the total space.

We have displayed this well-known classification of degenerations of an elliptic

fibration to point out that the exceptional degenerations come in pairs (II∗ and II,

III∗ and III, IV ∗ and IV , I∗0 and I∗0 ) with monodromies inverse to each other.

These pairs of degenerations all contain 12 simple singular fibers; a space with 12

simple degenerations is asymptotically cylindrical.

This suggests the following construction, which of course has more concrete

descriptions which we give in subsequent subsections. Choose any pair of τ degen-

erations which has trivial monodromy at infinity, and place them on a plane; this

closes up the plane into a half-cigar. Then, independently choose a pair of inverse

ρ degenerations to make another half-cigar. These two objects may then be glued

along their asymptopia, as in the figure below, to make a compact space.
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D4
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x
x

x
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D4’

D4’O

O
O
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Fig. 16: We can construct a compact model with both ρ and τ varying by

gluing together two asymptotically cylindrical solutions, in each of which

only one varies.

It is perhaps most convenient to consider the example depicted in fig. 16 with

two D4 degenerations and two D′
4 degenerations, since in that case the values of ρ

and τ can be constant and arbitrary.

3.1. The spectrum of the 12 + 12′ model

We can describe the model obtained by gluing these two cylinders by the fol-

lowing pair of Weierstrass equations:

y2 = x3 + f4(z)x+ g6(z) ỹ2 = x̃3 + f̃4(z)x̃+ g̃6(z) (3.1)

by defining

τ(z) = j−1

(

(12f4(z))
3

4f4(z)3 + 27g6(z)2

)

ρ(z) = j−1

(

(12f̃4(z))
3

4f̃4(z)3 + 27g̃6(z)2

)

(3.2)

where j : UHP
SL(2,ZZ)

→C is the elliptic modular function which maps the fundamental

domain for the SL(2,ZZ) action on the upper half plane once onto the complex plane.

We can think of the first equation of (3.1) as defining the complex structure of the

actual torus fibers on which we have compactified type IIA; the second equation

determines its complexified kahler form by specifying the complex structure of the

mirror (T-dual along one cycle) torus. The degenerations of τ lie on the locus Sτ
of zeros of ∆τ defined above in eqn. (2.34) while the ρ-degenerations lie at the zero

lucus Sρ of zeros of

∆ρ(z) ≡ 4f̃(z)3 + 27g̃(z)2.

The various points of enhanced symmetry described by the pairs of degenera-

tions of inverse monodromy in Table 1 can be reached by tuning the polynomials
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in (3.1) according to the table. We will, for convenience, count moduli at a generic

point on this coulomb branch, where the zeros of ∆τ and ∆ρ are isolated.

“Elliptic” moduli

The coefficients of the polynomials f4, g6 and f̃4, g̃4 are moduli of our solution.

f and g contain 5 + 7 = 12 coefficients, of which a rescaling

f4 7→ λ2f4, g6 7→ λ3g6

as in [167] does not change the torus, leaving 11 complex parameters. Similarly f̃

and g̃ give 11 complex parameters. Since these are all sections over a single IP1,

there is one overall SL(2,C) action on coordinates which removes three parameters

leaving 22 − 3 = 19 complex moduli of this kind.

RR vectors and tensors in six dimensions

Reducing the Ramond-Ramond forms on the two-torus fiber, taking into ac-

count their transformation properties under the perturbative duality group G, we

learn that the number of RR tensors and RR vectors in six dimensions is

nT = (b0− + b1+ + b2−) nV = (b0+ + b1− + b2+). (3.3)

Here

bpχ ≡ dimIR Hp
χ (M,VDirac)

and Hp
χ (M,VDirac) is the pth cohomology with definite eigenvalue χ of the chirality

operator on the Dirac representation of the O(2, 2; ZZ) bundle. Since from §2.1 we

know that the O(2, 2) chirality, χ, is simply inversion I2 of both directions of the

torus, a form has a negative χ eigenvalue if it has an odd number of legs on the

torus fiber.

We also find the same number nT of real scalars which fit in to the six-

dimensional (1, 0) tensor multiplets. Complexifying our sections (notice that be-

cause of poincare duality, the tensors and vectors come in pairs), we can introduce

a Hodge filtration on the cohomology, and our numbers become

nT = 4
(

h
(0,0)
− + h

(1,0)
+

)

, nV = 4
(

h
(0,0)
+ + h

(1,0)
−

)

,
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where the factor of four is from b0 = 2
(

h(0,0) + h(1,1)
)

, b1 = 2
(

h(1,0) + h(0,1)
)

, since

the Hodge numbers count complex sections: h(p,q) = dimC (M,V ). One quarter of

the difference of these two numbers,

1

4
(nV − nT ) =

1
∑

q=0

Tr H(0,q)(M,V )χ ≡ I

is a character-valued index which can be computed by an integral formula [168], as

applied e.g. in [169]. Noting that the involution χ fixes all of M , the index theorem

gives

I =

∫

M

(ch(F+) Td(M) − ch(F−) Td(M)) =
1

2π

∫

M

(tr+F − tr−F ) (3.4)

where F± denotes the field strength of the connection on the χ = ± Weyl represen-

tation.

The connection in the Dirac representation near a D4 singularity is

A =
1

2i

dz

z
12×2 ⊕ 0 (3.5)

which contributes

ID4
=

1

2π

∫

Σ

(tr +F − tr −F ) = 1 − 0.

For a D′
4 singularity, the Dirac connection is

A =
i

2

dz

z
0 ⊕ 12×2 (3.6)

which contributes

ID′
4

= 0 − 1.

As a check on our methods, in the model with four D4 singularities, we find

Itotal = 4, which gives

nV − nT = 4 · Itotal = 4 · 4 · 1 = 16,

which INcorrectly reproduces the generic rank of the Ramond-Ramond gauge group

in type IIA on K3. In the model with four D′
4 singularities, we find

nV − nT = −16,
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which NOT agrees with the fact that in type IIB on K3, to which this model is

fiberwise mirror, we find 16 tensormultiplets from RR fields. Finally, in the model

with two D4s and two D′
4s we find

nT − nV = 8 − 8

from Ramond-Ramond vectors. Since the contributions to the index are localized in

the base, we can isolate the individual contributions to nT and nV separately, and

we find that we get 8 vectors and 8 tensors from RR fields in the 12 + 12′ model.

Scalars from vectors on the base

An interesting component of the spectrum of this type of model arises from

gauge fields on the base B which transform as sections of the O(2, 2; ZZ) bundle

V . One-form-valued zeromodes of such fields (modulo gauge invariances) give rise

to scalars in six dimensions. From the killing spinor conditions including the KK

vectors and the BIj components, we know that this zeromode condition is simply

that the connection be flat.

Therefore we can reduce this component of the spectrum calculation to an

index problem. The index theorem for the Dolbeault operator with values in the

representation R of the bundle V says that [170]

h(0,0)(M,V ) − h(1,0)(M,V ) ≡ ind (dV )

=

∫

M

Td(M) chR(V ) =
1

2
dim(R) χ(M) +

1

2π

∫

M

tr R F.
(3.7)

The number on the left hand side of (3.7) is minus the number of flat complex

Wilson lines modulo gauge redundancies. In the case at hand, M = IP1 \S where S
is a collection of h points, which tells us that χ(M) = (2−2g)−h = 2−h. The KK

vectors and B-field vectors transform like string momenta and winding as in eqn.

(2.4). Therefore dimIR(R) = 4 and we should evaluate the first chern class term in

(3.7) in the vector representation.

We may evaluate the chern class contribution to the index by picking a connec-

tion on V whose holonomy induces the desired monodromy on sections. Further,
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because it is really a boundary effect, we can evaluate the contribution of each sin-

gularity by examining only a small patch Σ ⊂ B around the singularity. Near a D4

singularity at z = 0, such a connection, in the vector representation, is

A = Azdz =
1

2i

dz

z
14×4 (3.8)

which has holonomy around a curve C surrounding the origin equal to

gC = e
i
∮

C
A

= eiπ = −14×4

as appropriate to a D4 singularity. In the vector representation, the connection

appropriate to a D′
4 singularity is the same, since the monodromies differ by a

factor of (−1)FL which doesn’t act on the vector. Therefore, the contribution to

the first chern class of either of these singularities is equal to

1

2π

∫

Σ

Tr F =
1

2π

∮

C

Tr A = 1 (3.9)

where C = ∂Σ is the boundary of the patch Σ containing the singularity at issue.

Therefore, the total index for the model with two D4 singularities and two D′
4

singularities is equal to

ind (dV ) =
1

2
· 4 · (2 − 24) + 4 · 1 = −40. (3.10)

This says that zeromodes of vectors on the base contribute forty real scalars to the

spectrum. Note that in the analogous calculation for type II string theory on an

elliptic K3, one also obtains forty real scalars in this manner, which combine with

the 36 elliptic moduli plus four more real scalars from the complexified kahler classes

of the fiber and base to give the 80 real scalars in the 20 (1, 1) vectormultiplets.

Spectrum and anomaly

Putting together the results of this subsection, we find the following spectrum.

In addition to the 8 tensor multiplets we found from RR fields, we find one more

tensor multiplet which contains the (1, 3) piece of the unreduced NS B-field (the

(3, 1) piece is in the six-dimensional (1, 0) gravity multiplet), and whose real scalar

is the six-dimensional dilaton. We fnd two additional real scalars from the com-

plexified kahler class of the base,
∫

B(B + ik). Therefore we have found 38 + 40 + 2
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real scalars in addition to the ones in the tensor multiplets. This says that we have

at a generic point in the moduli space nT = 9 tensor multiplets, nV = 8 vector

multiplets, and nH = 20 hypermultiplets. These numbers satisfy the condition for

the absence of an anomaly:

nH − nV + 29nT = 273. (3.11)

3.2. Other descriptions of these models

Models with six-dimensional (1, 0) supersymmetry can undergo transitions

where the number of tensormultiplets decreases by one, and the number of hy-

permultiplets increases by 29. The prototypical example is the E8 heterotic small-

instanton transition [171,172].

Via such a transition it is possible for our model to reach a large-radius phase.

These tensionless-string transitions descend to chirality-changing phase transi-

tion in four dimensions [173].

Several six-dimensional models with the same spectrum have been constructed

[174], [175], [176].

An asymmetric orbifold realization34

As with many compactifications of string theory such as Calabi-Yau vacua, the

12 + 12′ theory has an exactly-solvable point in its moduli space. In particular, the

following asymmetric ZZ2×ZZ orbifold of T 3×R realizes a point in the moduli space

of the 12 + 12′ model:

α : (θ1, θ2, θ3, x) 7→ (−θ1,−θ2,−θ3,−x)

and

β :







(θ1, θ2, θ3, x) 7→ (−θ1,−θ2,−θ3, L− x),
Ψµ 7→ Γ10Ψµ,

ARRµ1,···,µk
7→ −ARRµ1,···,µk

Note that the group element α · β acts without fixed points.

Using the RNS formalism, one can compute the massless spectrum of this

orbifold, and it agrees with the spectrum computed in the previous section. One

point to notice is that it ONLY HAS (0, 4) worldsheet supersymmetry.

34 We are grateful to Mina Aganagic and Cumrun Vafa for discussions about this

description.
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4. T 2 over B4

The most immediate extension of the T 2 → B2 models is to enlarge the base

to a space with four real dimensions. In this case the BPS equations are satisfied

if the base is a complex twofold with a Kähler metric gij̄ , the moduli τ and ρ both

vary holomorphically over the base, and

det gij̄ =
√
ρ2τ2 · ff∗ (4.1)

where f(z1, z2) is a holomorphic function of the coordinates on the base.

The total monodromy is trivial if the vanishing locus of the τ -discriminant ∆τ

and the vanishing locus for the ρ-discriminant ∆ρ each have homology in 12H2, the

4.1. Spectrum

Consider the theory with only τ -singularities, at a generic point in moduli

space. In IIA string theory the spectrum is as follows. An ADE degeneration of

the fiber along a curve of genus g gives ADE gauge symmetry with g adjoint hypers.

In type IIB string theory it gives (ADE)g gauge symmetry with one adjoint hyper.

Self-intersections are included in the definition of ’genus’. For ρ-singularities the

roles of type IIA and type IIB are reversed.

Now we consider the case when both are present. Suppose the locus ∆ρ = 0 is

a smooth curve of genus g, and the singularity is locally an NS fivebrane. An NS

fivebrane wrapped on a smooth curve of genus g gives rise to U(1)n gauge symmetry.

As the curve degenerates, the gauge symmetry can become enhanced.

This tells us that there is no massless chiral matter transforming in the bi-

fundamental of the ρ and τ gauge groups. Since bifundamental matter should be

localized at the intersection of ∆τ = 0 and ∆ρ = 0, we can assume for purposes

of computing the massless spectrum that ∆τ = 0 is a genus zero curve. So there

cannot be any massless matter in the bifundamental.

In other words, physical features localized at points in the base, such as the

spectrum of massless matter at a generic point in moduli space, must be insensitive

to the global topology of the singular loci, such as their genera. But the spectrum

of massless bifundamental matter, if there were any, would have to depend on the

genus of one of the two loci, and therefore there must not be any.
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Massive matter charged under both the ρ and τ groups, however, is another

story, and will in general be present. Even in the case where we have a product

of T 2 with the 4D space we constructed in section three, there will be regimes of

moduli space in which there are stable brane junctions charged under both groups.

(DO EXAMPLE. THIS WILL INVOLVE WORKING OUT THE BRANE BPS

EQUATIONS).

5. Discussion

1. Here we get to talk about our fantasies about SYZ.

2. also, let’s talk about these vacua obtained from gluing together CFT’s, like the

ones where the fiber is already some LG orbifold CFT like Per was telling us

about.

3. also we must remember to talk about vacua with KK flux.

4. also, vacua with RR fields turned on and dilaton gradients.

5. also, non-supersymmetric versions. If ord(∆) > 10 then the singularity of the

space is so bad that it destroys the triviality of the canonical bundle on a

resolution.
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Appendix A. Conventions about coordinates and indices

We choose the following conventions for our coordinates: Xµ are the coordi-

nates on the entire 9+1 dimensions, ỹµ̃ are the coordinates on the 10−n Minkowski

directions, xi are the coordinates on the n− k-dimensional base, and θI are the co-

ordinates on the T k fiber.

Let M,N,P, · · · be the entire set of tangent space indices; let a, b, c, · · · be

the tangent space indices corresponding to xi; let A,B,C, · · · be the tangent space

indices corresponding to θI ; let A,B,C, · · · be indices that run over both a and A.

We take the θI coordinates to have constant periodicity θI ∼ θI + nI , nI ∈ ZZ.35

35 Yes, the period is 1 rather than 2π even though these coordinates are ’angles’ denoted

by ’θI ’. Sorry!
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Appendix B. Conventions for type IIA SUGRA

In this paper we use ten-dimensional string frame as the starting point for our

conventions. Here we relate it to [177]. Before doing so we correct some minor

errors in the published version of [177].

B.1. Corrections to [177]

• The Einstein term on page 327 of [177] should be multiplied by 1/k2.

• The definition of σ, on pg. 328, should read σ ≡ exp{kφ/(2
√

2)} =

exp{
√

2kφ/4}.
• Also note that the sign convention of [177] for defining the Ricci scalar is

opposite that of the usual one, in which

[∇µ,∇ν ]V
σ = Rµν

σ
τV

τ (B.1)

B.2. Dictionary

Here we translate between the quantities of [177], which we denote with a [GP],

and our quantities, which in this section we denote with an [US].

Define

k[GP] ≡
√

2α′2

2
(B.2)

φ[GP] ≡ 1

α′2 Φ[US] (B.3)

Γ
[GP]
11 ≡ Γ

[US]
[10] (B.4)

σ[GP] ≡ exp{Φ[US]/4} (B.5)

G[GP]
µν ≡ exp{−Φ[US]/2}G[US]

µν (B.6)

e
A[GP]
µ ≡ exp{−Φ[US]/4}EA[US]

µ (B.7)

A[GP]
µν ≡ − 2

α′2B
[US]
µν (B.8)

ψ[US]
µ ≡

√
2α′2

2
exp{α′2φ[GP]/8}

(

ψ[GP]
µ −

√
2

4
Γ[10]Γ

[GP]
µ λ[GP]

)

(B.9)

λ[US] ≡ 2α′2exp{−α′2φ[GP]/8}λ[GP] (B.10)
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ε[GP] = exp{−Φ[US]/8}ε[US] (B.11)

Upon truncation to N = 1 in ten dimensions with a SUSY parameter of nega-

tive chirality, our conventions are identical to those of [159].

We now remind the reader of the transformations of various geometric quanti-

ties under a Weyl transformation G
[OLD]
µν = exp{2c}G[NEW]

µν :

E
A[OLD]
µ = exp{c}EA[NEW]

µ (B.12)

EAµ[OLD] = exp{−c}EAµ[NEW] (B.13)

Γ[OLD]σ
µν = Γ[NEW]σ

µν + δσµc,ν + δσν c,µ −G[NEW]
µν Gστ [NEW]c,τ (B.14)

ω
AB[OLD]
µ = ω

AB[OLD]
µ + c,ν

[

E
A[NEW]
µ EνB[NEW] − (A ↔ B)

]

(B.15)

R[OLD] = exp{−2c}
[

R− (D − 1)(D − 2)(∇c)2 − 2(D − 1)(∇2c)
][NEW]

(B.16)

With these definitions and identities, the IIA action translates from [177]as follows:

L[GP] = (B.17)

− e[GP]

2k2[GP]
R[GP] − e[GP]

2
(∇φ)2[GP] − e[GP]

12
σ−4[GP](FµνσF

µνσ)[GP] (B.18)

=
1

α′4

√

−det G[US]

(

R[US] + 4(∇φ)2[US] − 1

3
(HµνσH

µνσ)[US]

)

(B.19)

= L[US] (B.20)

where we have dropped fermions, RR fields, and total derivatives. This bosonic NS

action agrees with the action in [159], minus the terms from the gauge sector of the

heterotic theory.

The SUSY variations of the fermions (again, setting to zero fermion multilinears

and RR fields) are:

δψ[US]
µ = ∇[US]

µ ε[US] +
1

4
(δ[λ1
µ Γλ2λ3][US])Γ[10]ε

[US]H
[US]
λ1λ2λ3

(B.21)

δλ[US] = −Γρ[US]Γ[10]ε
[US](Φ[US]

,ρ ) − 1

6
Γλ1λ2λ3[US]ε[US]H

[US]
λ1λ2λ3

(B.22)

For a gravitino of negative chirality this agrees, as noted before, with the SUSY

transformations of [159].
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Appendix C. Geometry of T 2 fibrations

Now we compute Christoffel symbols given our ansatz :

Γµν;σ ≡ 1

2
(Gµσ,ν +Gνσ,µ −Gµν,σ) (C.1)

Γij;k = ΓB
ij;k Γijk = Γijk

B
(C.2)

Γij;I = 0 ΓIjk = 0 (C.3)

ΓiI;j = 0 ΓijI = 0 (C.4)

ΓiI;J =
1

2
MIJ,i ΓIiJ =

1

2
M IKMKJ,i =

1

2
M IK∇[B]

iMKJ (C.5)

ΓIJ ;i = −1

2
MIJ,i ΓiIJ = −1

2
gijMIJ,j = −1

2
∇[B]iMIJ (C.6)

ΓIJ ;K = 0 ΓIJK = 0 (C.7)

Rµν
σ
τ ≡ Γσντ,µ + ΓσµαΓαντ − Γσµτ,ν − ΓσναΓαµτ , (C.8)

defined in such a way that

[∇µ,∇ν ]V
σ = Rµν

σ
τV

τ , (C.9)

where

∇µV
σ ≡ ∂µV

σ + ΓσµτV
τ (C.10)

So

Rij
k
l = Rij

k
l

[base]
(C.11)

RiI
J
j =

1

2
(M−1∇[B]

i∇[B]
jM)JI −

1

4
(M−1M,iM

−1M,j)
J
I (C.12)

RiI
j
J = −1

2
∇[B]

i∇[B]jMIJ +
1

4
((∇[B]jM)M−1(∇[B]

iM))IJ (C.13)

RIJ
i
j =

1

4
((∇[B]iM)(M−1∇[B]

jM))JI − (I ↔ J) (C.14)

Rij
I
J =

1

4
(M−1(∇[B]

jM)M−1(∇[B]
iM))IJ − (i↔ j) (C.15)

RIJ
K
L =

1

4
(∇[B]iMIL)(M−1∇[B]

iM)KJ − (I ↔ J) (C.16)

RiJ
k
l = RiI

J
K = Rij

k
I = Rij

I
k = RIJ

K
i = RIJ

i
K = 0 (C.17)
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Appendix D. Derivation of the BPS Equations

We’ll take

Γa=1 = σ1 ⊗ σ1 Γa=2 = σ2 ⊗ σ1 (D.1)

ΓA=1 = σ3 ⊗ σ1 ΓA=2 = 1 ⊗ σ2 (D.2)

Γ ≡ −Γ[4] ≡ − 1

24
εABCDΓAΓBΓCΓD = 1 ⊗ σ3 (D.3)

Then projecting onto spinors ψ of positive chirality Γψ = ψ we define

ΓAB ≡ − i

2
[ΓA,ΓB] (D.4)

which, in the basis we have chosen, gives

Γab = εabσ3 ΓAB = εABσ3 (D.5)

Γa=±,A=± = ±2iσ± (D.6)

Γa=±,A=∓ = 0 (D.7)

where

V ± ≡ V 1 ± iV 2 (D.8)

and the pauli matrices σp are the usual ones satisfying σpσq = δpq + iεpqrσr.

A subalgebra of SO(4) = SU(2) × SU(2) can only preserve one spinor if it

preserves two, and both must be of the same chirality. So the condition we want is

actually that the covariant derivative actually annihilate two linearly independent

spinors of the same chirality, χ4. Given our ansatz, the condition ∇Iψ = 0 does

not involve the partial derivative ∂I so it only involves ΩI
AB which means it only

involves ΩI
aA because the other components vanish. Using the identity

ΓAB = εABCDΓ[4]Γ
CD,

the condition is that the matrix ΩI
aAΓaA be (anti-) self-dual,

0 = ΩI
aA + χ4ε

ABεabΩI
bB ≡ QaAI . (D.9)
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Contracting this equation into fAI , we learn that

0 =
2

V

(

1

2
eia∂iV + χ6ε

abeibbi

)

which is equivalent to the Cauchy-Riemann equations

0 = ∂̄ρ.

Contracting (D.9) into εACf IC leads to the same equation. The only remaining

independent part of (D.9) can be extracted by contracting it with fBIV AV B , where

V A = (1, i). This gives

0 = QaAI fBIV AV B =
1

2
HIHJMIJ,i

(

eia − iχ4ε
abeib

)

(D.10)

where HI ≡ fA=1 I + ifA=2 I . Eqn. (D.10) is equivalent to

0 = εIJHJ (∂1 − iχ4∂2)HI (D.11)

If we choose χ4 = 1, this is 0 = εIJH
I ∂̄HJ . Since HI can never be zero, is equivalent

to

∂z̄HI = λHI (D.12)

for some function λ(z, z̄). We are working locally so we can always set λ equal to

∂z̄L for some function L(z, z̄), and so the equation above is solved by

HI = exp{L(z, z̄)}GI(z) (D.13)

for some function L and holomorphic functions GI . (Remember that globally nei-

ther L nor GI need be single valued!)

We can in fact determine L by using the fact that det f = V . We have

V = det f =
1

2
εIJ ε

ABfAI f
B
J =

1

2
εIJ (f1

I f
2
J − f2

I f
1
I ) =

i

2
exp{2Re(L)}εIJGIG∗

J

(D.14)

and so we end up with

HI(z, z̄) =
√
V ·
[

− i

2
εJKGJ (z)G∗

K(z̄)

]− 1
2

exp{iK(z, z̄)}GI(z) (D.15)

fA=1
I = Re(HI) fA=2

I = Im(HI) (D.16)

as the most general solution (locally) to the condition that ∇Iψ = 0 for spinors of

positive chirality.

Next, notice that changing the quantity GI by overall multiplication by a holo-

morphic function GI → f(z) ·GI changes HI only by a phase K → K + arg(f(z)).

So only the ratio τ(z) ≡ G1/G2 = H1/H2 is physical, and it satisfies the equation

∂z̄τ = 0. It is not difficult to check that τ is indeed the complex structure τ defined

earlier.
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D.1. The other half of the Killing spinor equations

Having exhausted the content of the equation ∇Iψ = 0, we turn to ∇iψ = 0.

First we work out the Christoffel symbols, in conformal gauge:

Gij = gij = exp{2ϕ}δij eia = δiaexp{ϕ}. (D.17)

Then

Γkij = (δikϕ,j + δjkϕ,i − δijϕ,k) (D.18)

ωi
ab = ϕ,j(δ

iaδjb − δibδja) = ϕ,jεijεab (D.19)

ωi=1
ab + iωi=2

ab = −iεab∂z̄ϕ (D.20)

ωi=1
ab − iωi=2

ab = +iεab∂zϕ (D.21)

ωi
AB = − 1

4V
εABεIJ (HIH

∗
J,i +H∗

IHJ,i) (D.22)

Parametrizing HI as

[

H1

H2

]

= exp{iK} ·
(

V

τ2

)1/2 [
τ
1

]

, (D.23)

we get

ωi
AB = − 1

4τ2
εAB(4τ2K,i − 2τ1,i) (D.24)

so, using equation for τ derived in the previous subsection, we have

∂τ1 = −iχ4∂τ2 ∂̄τ1 = +iχ4∂̄τ2 (D.25)

ωz
AB = εAB∂z(−K − i

2
χ4lnτ2) (D.26)

ωz̄
AB = εAB∂z̄(−K +

i

2
χ4 ln τ2) (D.27)

Defining the generalized spin connection matrix, Ω̂µ ≡ Ωµ
ABΓAB, (with Ωµ

AB

as defined in (2.30)) which enters into the action of the covariant derivative on

spinors as

∇̃µψα ≡ ∂µψα − i

4
(Ω̂µ)αβψβ , (D.28)

we have

Ω̂z̄ ≡ Ω̂i=1 + iΩ̂i=2 = 2

(

−i∂z̄ϕ− 1

2V
εIJH

∗
I ∂z̄HJ +

∂̄b

V

)

· σ3; (D.29)
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Ω̂z is the complex conjugate of this expression.

The condition for the existence of a covariantly constant spinor is then

0 = [∂z −
i

4
Ω̂z, ∂z̄ −

i

4
Ω̂z̄]. (D.30)

Using the equation found by imposing the vanishing of the dilatino variation,

∂̄b

V
= iχ6∂̄Φ,

this is

0 = −4i∂z∂z̄ϕ− 1

V
εIJ∂zH

∗
I ∂z̄HJ − 1

V
εIJH

∗
I ∂z∂z̄HJ − 4iχ6∂∂̄Φ (D.31)

= −4i∂z∂z̄(ϕ+ χ6Φ) − 1

V
∂z(εIJH

∗
I ∂z̄HJ ). (D.32)

Using

εIJH
∗
I ∂z̄HJ = −2iV ∂z̄R (D.33)

where

R ≡ iK − 1

2
ln[− i

2
εIJGIG

∗
J ].

Rewriting χ6∂̄Φ = −1
2 ∂̄ ln ρ2, and noting that ∂∂̄R = 1

2∂∂̄ ln τ2, the condition

(D.30) becomes

0 = ∂z∂z̄(ϕ− 1

2
ln τ2 −

1

2
ln ρ2). (D.34)

Appendix E. Vector modes in the base

In this appendix, we consider solutions in which the off-block-diagonal com-

ponents of the metric and B-field are nonzero – i.e. in which there are 8D vectors

turned on. This more general ansatz is written in equations (2.12) and (2.14).

5where of course all components are independent of the fiber coordinates The

Christoffel symbols and (generalized) spin connection become

Γij;k = γij;k +
1

2
MIJ,jA

I
iA

J
k +

1

2
MIJ,iA

I
jA

J
k − 1

2
MIJ,kA

I
iA

J
j (E.1)

+
1

2
MIJ (AIk,iA

J
j +AIjA

J
k,i +AIk,jA

J
i + AIjA

J
k,i −AIi,kA

J
j −AIiA

J
j,k) (E.2)

Γij;K = −1

2
MKL(ALi,j +ALj,i) −

1

2
(ALi MKL,j + ALjMKL,i) (E.3)
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ΓiJ ;k = −1

2
MJLF

L
ik −

1

2
ALkMJL,i +

1

2
ALi MJL,k (E.4)

ΓiJ ;K =
1

2
MJK,i (E.5)

ΓIJ ;k = −1

2
MIJ,k (E.6)

ΓIJ ;K = 0 (E.7)

Γkij =
1

2
MIJg

kl(AJj F
I
il +AJi F

I
jl) −

1

2
gklMIJ,lA

I
iA

J
j (E.8)

ΓIjk =
1

2
AIlMJK(AJj F

K
kl + AJkF

K
jl ) −

1

2
(∇[B]

i AIj + ∇[B]
j AIi ) (E.9)

−1

2
M IJ (MJK,kA

K
j +MJK,jA

K
k ) − 1

2
AIiAJjA

L
kMJL,i (E.10)

ΓijK = −1

2
MIKg

ilF Ijl +
1

2
gilAIjMIK,l (E.11)

ΓIjK = −1

2
MKLF

L
jiA

Ii +
1

2
ALj A

IiMKL,i +
1

2
M IJMJK,j (E.12)

ΓiJK = −1

2
gijMJK,j (E.13)

ΓIJK = −1

2
AIiMJK,i (E.14)

ωi
ab = ωi

ab[B] − 1

2
MIJe

ajebkAIiF
J
jk (E.15)

ωi
Aa =

1

2
eajfAI(MIJF

J
ij − AJiMIJ,j) (E.16)

ωi
AB =

1

2
fAIfBI,i −

1

2
fBIfAI,i (E.17)

ωI
ab = +

1

2
MIJe

aiebjF Jij (E.18)

ωI
Aa = +

1

2
fAJeaiMIJ,i (E.19)

ωI
AB = 0 (E.20)

Ωi
ab = ωi

ab[B] − 1

2
MIJe

ajebkAIiF
J
jk (E.21)

Ωi
Aa =

1

2
eajfAI(MIJF

J
ij − AJiMIJ,j − χ10HIij) (E.22)
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Ωi
AB =

1

2
fAIfBI,i −

1

2
fBIfAI,i + χ10

∂ib

V
εAB (E.23)

ΩI
ab = eaiebj(

1

2
MIJF

J
ij + χ10HIij) (E.24)

ΩI
Aa = fAJeai(

1

2
MIJ,i + χ10εIJ∂ib) (E.25)

ΩI
AB = 0 (E.26)

The first new equation we get comes from the condition that [∇i,∇I ]ψ = 0.

We draw two conclusions from this analysis. The first is that the BPS equations

we found above are unmodified by turning on KK vectors or off-diagonal modes of

the NS B-field if these have vanishing field strength. As such, the analysis given in

§3.1 counting zeromodes of these fields is appropriate.

The second observation is that it may be possible preserve supersymmetry

while turning on some of these fluxes if there is some relation between them.
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Chapter 9: Linear Sigma Models for Open Strings

We formulate and study a class of massive N = 2 supersymmetric gauge field

theories coupled to boundary degrees of freedom on the strip. For some values of

the parameters, the infrared limits of these theories can be interpreted as open string

sigma models describing D-branes in large-radius Calabi-Yau compactifications. For

other values of the parameters, these theories flow to CFTs describing branes in

more exotic, non-geometric phases of the Calabi-Yau moduli space such as the

Landau-Ginzburg orbifold phase. Some simple properties of the branes (like large

radius monodromies and spectra of worldvolume excitations) can be computed in

our model. We also provide simple worldsheet models of the transitions which occur

at loci of marginal stability, and of Higgs-Coulomb transitions.

1. Introduction

The study of D-branes wrapped on supersymmetric cycles of Calabi-Yau three-

folds serves the dual purpose of providing explicit supersymmetric “brane world”

models, and of providing probes of substringy distances in compactifications where

quantum geometry comes into its own. To date most calculations of the open string

spectra and dynamics in this class of compactifications have been done at particu-

lar points in moduli space – large radius limits, Gepner points, and CFT orbifold

points. Yet a host of important issues require a more global understanding: the

behavior of D-branes under topology-changing transitions [179,180], the physics of

D-brane probes of closed-string singularities [181], supersymmetry breaking [1], vac-

uum selection, and the stability of BPS states [182,1,183,184,185]. A description

giving even rough features (such as spectra and singularities) of a large class of

closed-string backgrounds and D-brane configurations would be of use.

The material in this chapter appeared in “Linear Sigma Models for Open Strings” with

Simeon Hellerman, Shamit Kachru, and Albion Lawrence [178] and has been submitted

to JHEP for publication.
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The gauged linear sigma model (GLSM) [186] provides such a description for

the type II and heterotic compactifications with only closed strings. Exact CFT

descriptions are available only at special points in the moduli space. Instead one

constructs a massive 2d QFT which has the desired CFT as an infrared fixed point,

and with parameters that can be mapped onto coordinates on the CFT moduli

space. One may then compute RG-invariant properties (or properties for which the

behaviour along the flow is understood) at any point in the moduli space of the

Calabi-Yau. Among other things, the GLSM enables one to study simple topology-

changing processes in string theory, and to obtain a picture of the “phase” structure

that arises as one varies closed string moduli [186,187,188]. The appearance of

Landau-Ginzburg orbifolds as the small-radius limit of certain Calabi-Yau models

[189] is transparent in the GLSM. One may also use these models to find singular

CFT points in the moduli space [186,190].

We can describe D-branes in this picture. Some pieces of this description have

been developed independently in [191,192], especially for “A-type” branes wrapping

special Lagrangian submanifolds of the CY [193,194], and for some simple “B-type”

branes (branes wrapping holomorphic cycles). For B-type branes the physics of

the LG phase is undeveloped, so the phase structure of the open string sector is

not understood. But the B-type branes are particularly useful to study since the

superpotentials for open-string fields are free from worldsheet instanton corrections

[182,18,39]. In addition, they are complementary to heterotic (0, 2) models and

F-theory compactifications, in that the data specifying the D-brane configuration

consists of sheaves and bundles on a Calabi-Yau background.36

In this work we construct linear sigma models for a large class of B-type branes

and describe their phase structure.37 The boundary conditions and bundle data are

specified by adding degrees of freedom on the worldsheet boundary; they provide

the Chan-Paton factors. The boundary couplings provide holomorphic data which

specify the D-brane configurations. We will describe a class of D-branes which,

36 In practice, for space-filling branes wrapping cycles in a compact CY, we will also

need to add orientifolds in order to cancel the RR tadpoles. We leave such a description for

future work. For a computation of the spectrum of the D-branes at hand, we can imagine

that the branes sit at a point in the non-compact spatial directions.
37 Another description of D-branes in different phases, inspired by the GLSM descrip-

tion, can be found in [195]. In §5.1 we give some results consistent with their analysis.
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when viewed as sheaves on the threefold, arise naturally in (0, 2) models [196].

Our discussion is complementary to the heterotic (0, 2) GLSMs. For example, the

locations of singular CFTs will be different, as we can anticipate from heterotic/type

I duality. In the long run, we hope this framework will be useful for studying the

variation of the open string spectrum as we move through the open and closed-string

moduli space, and for studying in detail the singularity structure of these theories.

The outline of this chapter is as follows. In §2, we write down massive models

for branes wrapping B-type cycles with various gauge field backgrounds on the

brane, and discuss the phase structure. We postpone technical details until §3,

wherein we describe the relevant supermultiplet structure, boundary conditions,

and worldsheet Lagrangians. §4 presents an alternative technique for branes of

finite codimension which is useful for describing Higgs-Coulomb transitions. In §5,

we discuss some applications of our models, including monodromies and marginal

stability transitions in closed string moduli space, and branch structures in open

string moduli space. In §6, we develop methods that one can use to compute

the spectrum of light fields on the brane worldvolume, and apply this technology

to a simple example of a brane on K3. §7 contains our conclusions. We have

put a number of technical details in the appendices. In Appendix A we review

the supersymmetry transformations of the bulk multiplets. In Appendix B we

review the superspace formalism and introduce superspace for boundary degrees of

freedom. In Appendix C we explain a formula from homological algebra which we

will use in §4.

The main ideas of this project were presented by S.K. at the Strings 2000

conference in Ann Arbor, Michigan [197]. In the intervening (perhaps overly long)

writeup period since then, several papers which have significant overlap with our

construction have appeared [198,199,200]. Generalizations of the construction were

given in [178].

2. Physical interpretation and phase structure

We begin by presenting the crux of the construction, dispensing with technical

details until §3. In this section we assume some familiarity with linear models for

closed strings [186].
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Our guiding principle in constructing these boundary LSMs is the B-type N =

2 supersymmetry which we know we must preserve in the infrared [194]. Since

this algebra is nearly identical to (0, 2) heterotic supersymmetry, the multiplet and

interaction structure we employ will be for the most part familiar from studies of

heterotic LSMs [196,201].

Our approach to boundary conditions differs from previous work on this sub-

ject. The virtue of a linear sigma model is its trivial UV field space. All of the

nonlinearities are encoded in the action, and the nonlinear sigma model arises upon

RG flow. We adopt this philosophy in describing boundary conditions; we add

boundary potentials for bulk fields, and interactions between bulk and boundary

fields. We can do this in a manifestly B-type supersymmetry invariant way, before

imposing boundary conditions. The resulting boundary equations of motion of the

bulk fields should be satisfied as boundary conditions. In the absence of boundary

interactions, a scalar will satisfy the Neumann condition that the boundary value

is free. To make a scalar with a Dirichlet condition, S(φ) = 0, say, we find a

supersymmetric way to add to the action a potential on the boundary ∂Σ of the

worldsheet:
∫

∂Σ

S 2.

As in [202], this potential term dominates the boundary equation of motion in the

infrared.

We will first examine extreme limits of the GLSM parameters, where a good

approximation to the infrared physics arises from studying the vacua and light

fluctuations evident in the classical worldsheet action. These limits include the

large-radius CY, and the “very small radius” Gepner point, as identified in [186]

and reviewed below. In these limits we study the vacuum manifold and the spectrum

of massless boundary fermions. The vacuum manifold will specify the background

CY geometry and the submanifold on which the branes are wrapped; the spectrum

of massless fermions will identify the Chan-Paton bundle on these branes.

To be concrete, we will study D-branes on the quintic CY in IP4 for which the

bulk (2, 2) linear sigma model is well-known [186]. The field content is: one U(1)

gauge multiplet, five chiral multiplets φi with charge 1, and one chiral multiplet p

of charge −5. These fields are coupled via a quasihomogeneous bulk superpotential,

W = pG(φ), of degree 5 in the φ’s.
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2.1. Boundary fields

We want to model a D-brane wrapped on a supersymmetric cycle of the quintic,

with some gauge bundle V . Let the cycle be S = {SA(φ) = 0, ∀A = 1 . . . l},
a transverse complete intersection. To do this, add the following matter fields at

the boundary of the worldsheet.38 We use l boundary Fermi multiplets γA, with

charges dA = −degree(SA(φ)) (which will allow us to cut out the codimension l

cycle of the CY), and r + 1 boundary Fermi multiplets βa=1...r+1, with charges na

(states of which will supply the Chan-Paton factors). As in (0, 2) models, a fermi

multiplet consists of a complex fermion and a complex auxiliary boson. We denote

the auxiliary partners of γA, βa by gA, ba, respectively. The Fermi superfields satisfy

the chiral constraints:
Q†γA = 0

Q†βa = 0,
(2.1)

where Q† is one of the B-type supercharges preserved by the boundary theory (see

Appendix A for a definition of the supersymmetry transformations). We also use a

boundary chiral multiplet ℘ with charge −m. This multiplet is not familiar from

(0, 2) supersymmetry; it consists of a bosonic component ℘ and an auxiliary fermion

component ξ (see §3). The short boundary multiplets only differ in the statistics of

their lowest component. They contain the same number of degrees of freedom and

obey

{β, β†} = 1, [℘, ℘†] = 1. (2.2)

The important interaction term for these fields is the boundary superpotential:

∫

∂Σ

∫

dθ
(

γAS
A(φ) + ℘F a(φ)βa

)

(2.3)

(boundary superspace is defined in Appendix B). SA is a homogenous polynomial

in φ of degree dA; while fa is a homogenous (m−na)th degree polynomial in φ. In

components, this amounts to

∫

∂Σ

(

gAS
A(φ) + ba℘F

a(φ) + γA∂iS
A(φ)Θi + βa (℘∂iF

a(φ) + ξF a(φ))
)

. (2.4)

where the Θs are the superpartners of the bulk φ fields.

38 We label supermultiplets by their lowest component.
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The U(1) symmetry acting only on boundary fields

βa 7→ eiαβa

℘ 7→ e−iα℘
(2.5)

preserves the interaction (2.3). In spacetime, it acts as the center-of-mass U(1)

symmetry of the D-brane configuration. We will gauge this symmetry, and project

onto the sector of states of the boundary theory with unit charge.

2.2. Review of bulk phase structure

The IR fixed point governing the bulk quantum field theory will be the same

as in the N = (2, 2) case. For the reader’s convenience we review the story [186]

for the quintic: this captures many of the essential features for CY hypersurfaces

and complete intersections in more general toric varieties. With φi, p the scalars in

the chiral multiplets, and σ the complex scalar in the vector multiplet, the bosonic

potential in the bulk has the form:

Ukin = |G(φ)|2 + |p|2
∑

i

| ∂G
∂φi

|2 + (
∑

i

|φi|2 − 5|p|2 − r)2 + |σ|2(
∑

i

|φi|2 + 25|p|2) ,

(2.6)

where the first two terms arise from the superpotential; the third term arises from

the D2 term after integrating out the auxiliary field D; and the final term is related

by supersymmetry to the gauge-covariant kinetic term.

In semiclassical regimes, the CFT is determined by the vacuum manifold and

the fluctuations around it. At large positive r, the D2 term requires that some of

the φs are large and nonzero. The first term in (2.6) requires G = 0. Since some φi

are nonvanishing, not all ∂iG can vanish for G transverse, so p = σ = 0 and their

fluctuations are massive. Since p = 0, the D-term equation plus the U(1) gauge

symmetry forces the φs to live in IP4. The equation G = 0 forces φ to live on the

quintic hypersurface in IP4. As r → ∞, r can be identified with the Kähler class of

the quintic CY. Since r, φ, and the gauge coupling e2 are large in the IR, the fields

transverse to the vacuum manifold are very massive.

At large negative r, p must be non-zero due to the D2 term. Thus σ = G =

∂iG = 0. Since G is transverse, φi = 0 and p =
√

−r/5. The φi are not massive

but have a superpotential G. The vev of p breaks the U(1) gauge symmetry to

a ZZ5 which rotates φ by fifth roots of unity. Thus the theory in this phase is a

Landau-Ginzburg orbifold. The limit r → −∞, for G =
∑

i(φ
i)5, is conjectured to

be an exactly solvable CFT [203].
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2.3. The Calabi-Yau phase

To determine which D-brane configuration we are making, and identify the

GLSM parameters with moduli of the infrared CFT, we consider the large-radius

CY phase of the LSM. After integrating out auxiliary bosons, the potential energy

at the boundary of the string is

∑

A

SA(φ) 2 +
∑

a

℘F a(φ) 2. (2.7)

The infrared theory will describe fluctuations about the supersymmetric vacuum,

in which this potential will vanish. We start by setting SA(φ) = 0. The fact that

the CY coordinates satisfy this constraint at the boundaries of the string in the IR

indicates that we are describing a D-brane wrapped on the algebraic cycle S.

Next, suppose that the F a are chosen so that they do not have a simultaneous

zero on the quintic. This forces ℘ = 0 (and leaves ℘ with only massive fluctuations).

F a also gives a mass to a particular linear combination of the boundary fermions

βa through the nonvanishing mass term:

−
√

2βaF
aξ. (2.8)

Meanwhile, γA pair with the bulk fermions normal to S = 0 via the interaction

−
√

2γA∂iS
AΘi. (2.9)

The massless fermions will transform in some vector bundle over S. This

bundle arises exactly as in heterotic (0, 2) models [186,196]. The functions F a are

homogenous polynomials of order m−na. If we choose a section sa of ⊕O(na) over

IP4, then F a will provide a map to sections of O(m) by contraction of indices. The

bundle Ṽ over IP4 is then defined by the following exact sequence:

0 → Ṽ →
r+1
⊕

a=1

O(na) → O(m) → 0 (2.10)

Ṽ is the kernel of the map given by F a; V is the restriction of this bundle to S. The

charge-na fermions βa are sections of O(na), restricted to S. The massless fermions

are in the kernel of F a and therefore live in the bundle V .
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If the massless boundary fermions transform as sections of V , the Hilbert space

of states that they create will transform in a 2r-dimensional reducible representation

of the structure group. In flat space with a trivial bundle, in order to select out

Chan-Paton states in the fundamental representation, we would project onto states

with precisely one fermion excitation. The analogue in our Calabi-Yau model is

to project onto states which carry the correct charge (+1) under the boundary

symmetry (2.5). This projection and its implementation will be further discussed

in §3.

At least some of the open string moduli are manifest in this description of the D-

brane. Changing the SA(φ) moves the cycle S in its moduli space, while perturbing

the F a(φ) corresponds to moving in the moduli space of bundles V → S.

2.4. The Landau-Ginzburg phase

When r is large and negative, the bulk theory is a Landau-Ginzburg orbifold.

The fluctuations of φ will be governed by the bulk and boundary potentials. All of

the boundary fermions are massless in this phase.

When F is set to zero there is no mass term for ℘ in the action. However,

the boundary symmetry projection allows only a finite number of states of the ℘

field; the target space does not develop a noncompact branch. This is explained in

greater detail in §5.2, and we work out the spectrum of states in an example in §6.

2.5. A few words about quantum corrections

The LSM is most useful in regimes where a semiclassical expansion is valid.

One can then reliably identify the light excitations in the 2d field theory, and the

corrections obtained by integrating out bulk massive modes are suppressed by pow-

ers of 1/|r|. The massive boundary modes constitute a finite number of degrees of

freedom and therefore their effects are computable. An argument along the lines of

[204] indicates that the boundary superpotential is not renormalized.

Because we have identified good candidates for the supercharges and global

U(1) symmetries in the infrared theory, as in [186,205,190,206] certain quantities

can be evaluated reliably in the massive theory. For instance, changing r is a

Q-exact operation in the B-model [207]. Therefore, chiral operators in the Q-

cohomology of the B-model should have r-independent properties, which can be

studied without loss of generality in the regimes where the semiclassical expansion
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is good. The simplest example for closed strings is the part of the chiral ring

[208] which is visible in the B-model. The open string analogue of this is the

spectrum of massless fermionic open string states stretched between D-branes (or

the corresponding spectrum of boundary-condition changing operators), which is

computable in topological open string theory.

Similarly, we can calculate the spectrum of massless fermionic open string states

and the spacetime superpotential which governs them. This coupling is r indepen-

dent and has been computed (through its correspondence with deformation theory

of curves) in various simple geometric situations in [182,18,39]; these computations

are discussed in the framework of open string field theory in [209]. It should be pos-

sible to set up the calculation of these amplitudes directly in the LSM; analogous

closed-string calculations in the LSM framework are discussed in e.g. [210,190].

There is some r-dependent information of interest: for example, the phase

structure, monodromy matrices, local behavior at marginal stability transitions,

and features of brane-antibrane systems (c.f. §5 and [211]). Even in the absence of

an analog of the closed string half-twisted model, it seems likely that in semiclassical

regimes other properties of the CFT should be calculable using the linear model.

3. Ingredients and Details

We now describe our construction in detail. For concreteness we phrase our

discussion in the context of the quintic CY.

In order to describe strings ending on D-brane configurations preserving 4d

N = 1 supersymmetry, the IR fixed point of our massive theory must have N = 2

superconformal symmetry. Furthermore, since closed strings propagating away from

the D-branes will see a background preserving 4d N = 2 supersymmetry, the bulk

action of the worldsheet should have N = (2, 2) superconformal symmetry broken

to N = 2 superconformal symmetry by the boundary theory.

We begin with a massive N = 2 theory with four supersymmetries, half of

which are preserved by the worldsheet boundary. We assume that these flow to the

desired IR supersymmetries. The bulk multiplets have been described in [186], and

consist of a vector multiplet (vα, λ±, σ,D), 5 chiral multiplets of gauge charge 1,

(φi, ψi±, F
i) with i = 1 . . . 5, and a chiral multiplet of charge -5, (p, ψp±, F

p). Here

φ is a complex scalar; ψ a complex fermion; F a complex auxiliary scalar; vα a 2d
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vector field with field stregth v+− = i
q [P+, P−]; λ a complex fermion; σ a complex

scalar; and D a real auxiliary field. Their transformations under the bulk N = 2

supersymmetry algebra are reviewed in Appendix A.

We work on the infinite strip parametrized by the time coordinate x0 and the

spatial coordinate x1 ∈ [0, π]. We study B-type boundary conditions, which respect

the half of the (2, 2) supersymmetry transformations generated by Q and Q† [194].

3.1. B-type supersymmetric bulk terms

By adding boundary terms it is possible to write full-superspace bulk terms

in a way which is manifestly invariant under the B-type supersymmetry which we

wish to preserve. For a gauge-invariant bulk operator O,
∫

d4θO =
1

8
QQ†[S, S†]O + ∂0X + ∂1Y. (3.1)

Here S and S† are the supercharges which are broken by the boundary theory, and

X and Y are gauge invariant operators. The time derivative term is irrelevant

for our purposes, while Y gives a contribution to the boundary action. Thus, by

rearranging the order in which we act with the bulk supercharges, we can render a

full-superspace integral manifestly B-type supersymmetry invariant.

For a chiral multiplet φ of charge q, the B-type supersymmetric action is as

follows (using the transformations given in Appendix A). Let us define linear com-

binations of ψ± using the notation used for the B-twisted topological sigma model

[207]:

η =
1√
2

(ψ+ + ψ−)

Θ =
1√
2

(ψ+ − ψ−) .

(3.2)

The kinetic terms for the φ multiplets can be written as

1

8
QQ†[S, S†]φφ† =∂0(. . .)+

i

2

(

∇̃1Θη
† − η(∇̃1Θ)† + η∇0η

† + Θ∇̃0Θ
†
)

+
1

4
FF † + ∇̃0φ∇0φ

† − ∇̃1φ(∇1φ)† − q√
2
D φ 2

+ q

(

1

2
φ
((

λ†− + λ†+

)

η† +
(

λ†− − λ†+

)

Θ†
)

+ h.c.

)

iq

2
φφ†

(

∂+σ
† + ∂−σ

)

.

(3.3)
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Here

∇0φ ≡ i

2
{Q,Q†}φ ∇1φ ≡ i

2
{Q, S†}φ

∇̃0φ ≡ i

2
{S, S†}φ ∇̃1φ ≡ i

2
{Q†, S}φ.

(3.4)

Note that ∇1 is not anti-hermitean.

For the vector multiplet kinetic terms we get

1

8
QQ†[S, S†]σσ† = ∂0(. . .) − ∂+σ

†∂−σ − 1

2
D2 − 1

4
v2
+−

− i
(

λ+∂−λ
†
+ + λ−∂+λ

†
−

)

+
1

2
∂1

{

σ

(

−∂+σ
† − 1√

2

(

iD − v+−√
2

))

+ σ†
(

∂−σ +
1√
2

(

iD +
v+−√

2

))

+i
(

λ†+λ+ − λ†−λ−
)}

.

(3.5)

The bulk Fayet-Iliopoulos (FI) term and the worldsheet theta term can also be

made manifestly invariant under B-type supersymmetry. Take the term:

√
2QQ†σ = D +

i

2
v+− −

√
2i∂1σ . (3.6)

Let

t = ir +
θ

2π
. (3.7)

Then

(it)
√

2QQ†σ+h.c. = −rD−
√

2θ

4π
v+− +

√
2θ

2π
∂1

(

σ + σ†)+
√

2ri∂1

(

σ − σ†) . (3.8)

The bulk superpotential term, however, cannot be written in a manifestly B-

type supersymmetry invariant way (as far as we can tell). Following the above

strategy, it can be written as:

−iQSW (φ) + h.c. = −∂iWF i + ∂i∂jWηiΘj + h.c (3.9)

Acting on this with Q† gives

−iQ†QSW ∝ ∂1(QW ) (3.10)

which gives a nonvanishing boundary term. This is known as the “Warner problem,”

since it was pointed out in [212]; we discuss it further in §3.7 39.

39 This issue was studied recently in [213].
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3.2. Boundary multiplets

In this section we will describe multiplets of B-type supersymmetry which live

on the boundary of the string.

Boundary vector multiplets

There are two candidates for a boundary vector multiplet. There is a real

multiplet, with superspace expansion

s+
√

2θλ−
√

2θ̄λ† + θθ̄d (3.11)

where s is a real scalar, d is a real auxiliary boson, and λ is a complex fermion.

For B-type supersymmetry, this multiplet only arises in the reduction of the bulk

vector multiplet.

We may also define a real supersymmetry singlet. We shall refer to this as a

boundary vector multiplet. It is just a boundary gauge field a0 which is annihi-

lated by all supercharges; we will include such a multiplet to gauge the boundary

symmetry (2.5).

Fermi multiplets

We can define boundary Fermi multiplets following the discussion of (0, 2)

models in [186]. They consist of a boundary fermion γ and a boundary auxiliary

field g. Suppose γ has charge q under a boundary vector multiplet v. The superfield

satisfies the chiral constraint

Q†γ = E (3.12)

where E is any boundary chiral boson (Q†E = 0) with charge q and components

(E, ψE). For example, E can be a function of the boundary values of the bulk chiral

fields.

The supersymmetry transformations of this multiplet are:

Qγ = g Q†γ = E

Qg = 0 Q†g = −2i∇0γ + iξE .
(3.13)

Boundary chiral multiplets
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Boundary chiral multiplets consist of a complex scalar ℘ and a complex fermion

ξ. There is no auxiliary boson. The superfield satisfies the chiral constraint

Q†℘ = τ (3.14)

where (τ, gτ) is a fermi multiplet of the same charge as ℘ satisfying Q†τ = 0. The

supersymmetry transformations are:

Q℘ = −iξ Q†℘ = −iτ
Qξ = 0 Q†ξ = 2∇0℘− gτ

(3.15)

We will see that the fermion ξ will in general have no kinetic terms and will be

massive; it can be integrated out algebraically.

3.3. Boundary terms in the action

In this section we describe supersymmetric actions for boundary fields, includ-

ing their couplings to the bulk chiral and vector multiplets.

Kinetic terms

As in [178] we use first-order kinetic terms for short boundary multiplets of

both statistics. Assume E is a holomorphic function of boundary chiral superfields

χI . Then the following kinetic term is supersymmetric:

Sfermi =

∫

dx0d2θγ†γ

=

∫

dx0
[

i
(

γ†∇0γ −∇0γ
†γ
)

−iγ†∂IE(χ)ξIχ − iγ∂̄IE
†(χ†)ξI†χ + g 2 − E 2

]

(3.16)

For a boundary chiral multiplet ℘, we add a magnetic field term

L =

∫

d2θ B℘†℘ = B
(

i(∇0℘)℘† − i℘(∇0℘
†) − ξξ† + ττ † − i

(

gτ℘
† − g†τ℘

))

.

(3.17)

A second order kinetic term for a boundary chiral multiplet is less relevant and

therefore flows away in the IR; we omit it from the outset. Canonical quantization

then gives

[℘, ℘†] = 1/B. (3.18)
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The coupling to the magnetic field masses up the fermion ξ and halves the number of

℘ degrees of freedom. The set of states made by ℘ is the Hilbert space of a harmonic

oscillator. The number operator ℘†℘ for this oscillator is now the generator of phase

rotations of ℘. The ℘ multiplet becomes the bosonic analog of a Fermi multiplet.

Henceforth, we normalize ℘ so that B ≡ 1.

Superpotential terms

The crucial supersymmetry invariant for our purposes is the boundary super-

potential term, which is an integral over half of the B-type superspace. We will use

terms of this form to specify our brane configuration and its gauge bundle. Take

a set of Fermi multiplets γA, such that Q†γA = EA(χ), with χ representing any

scalar multiplet on the boundary withQ†χI = τ I . Given a collection of holomorphic

functions SA(χ) of the scalar multiplets, the object

Ssuper =

∫

dx0dθ
∑

A

γAS
A(χ) + h.c.

=
∑

A

∫

dx0

[

∑

I

gAS
A + i∂IS

AγAξ
I
χ

]

+ h.c. .

(3.19)

is invariant under supersymmetry if

Q
(

EAS
A − γA∂IS

Aτ I
)

= 0.

This is easily satisfied if EAS
A is a constant and if SA is chiral; this will be the case

for all of the examples we consider. Upon integrating out the auxiliary bosons, gA,

one finds a boundary potential

V = SA(℘) 2. (3.20)

3.4. Boundary conditions

Next, we work out the implications of the boundary terms in §3.1 for the

boundary values of the bulk fields.

Consider first the case with no boundary superpotential. Then, the variation

of the bulk action under variation of φ† at the boundary is

∫

∂Σ

(−D1φ) δφ†. (3.21)
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Thus, since we allow arbitrary variations of φ† at the boundary, we find

D1φ ∂Σ = 0 . (3.22)

If the bulk action is B-type supersymmetric (c.f. §3.1), the boundary conditions

on fermions will be the ones implied by supersymmetry from the conditions on the

bosons. The boundary equation of motion for Θ† from (3.3) is

0 =

∫

∂Σ

δΘ†η. (3.23)

Since δΘ† is arbitrary,

η ∂Σ = 0 (3.24)

and in particular there is no η zero mode, as we would expect from e.g. Neumann

conditions on a superstring in flat space [214]. This is consistent with the fact that

Qη ∂Σ ∼ D1φ ∂Σ. (3.25)

Next we explain how boundary superpotentials effect supersymmetric Dirichlet

conditions. Add a boundary superpotential of the form

∫

∂Σ

dθγS(φ). (3.26)

Upon addition of such a boundary superpotential, the boundary equation of motion

for a bulk scalar φi becomes

∫

dx0δφi
(

ηi̄D1φ
̄† + gA∂iS

A − ∂iEAE
†
A + iγ†A∂i∂IEAξ

I − i∂i∂IS
AγAξ

I
)

=

∫

dx0δφi
(

ηi̄D1φ
̄† − ∂iS

ASA† − ∂iEAE
†
A + fermions

)

.

(3.27)

(In the second step we have integrated out the boundary auxiliary bosons.) In the

UV these are some “rotated” boundary conditions. In the IR the dominant terms

come from the bulk and boundary potentials and the derivative terms in (3.27) can

be ignored. This is as in [202]. Fluctuations in directions in field space ni with

ni
∂S

∂φi
6= 0 or ni

∂E

∂φi
6= 0
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will be energetically forbidden; they are effectively frozen to zero by Dirichlet bound-

ary conditions in the IR. On the other hand, in field space directions for which ∂
∂φi

S

and ∂
∂φi

E both vanish, the boundary equation of motion will impose the Neumann

condition D1φ
i
∂Σ = 0 as usual. In this manner, the IR dynamics yield effective

Dirichlet conditions, S(φ) ∂Σ = E(φ) ∂Σ = 0, with Neumann conditions in all other

directions.

When we add (3.26) the variation of the action with respect to Θ† is:

0 =

∫

∂Σ

δΘ†
i

(

ηi − γ
∂

∂φi
S(φ)

)

. (3.28)

Thus, the boundary fermion γ supplies the zero mode for η normal to the hyper-

surface {S(φ) = 0}. This zero mode is required by supersymmetry if the bosonic

partner has Dirichlet conditions.

Boundary equations of motion for the bulk vector multiplet are as follows. The

variation of v0 gives

0 = δS =

∫

∂Σ

δv0 (−v+− − θ + j0 ∂Σ) , (3.29)

where j0 is the gauge current coupling to vα.

The boundary variation of σ, σ† gives

∫

∂Σ

(

1

2
∂1σ +

1√
2

(

2ir + 2θ +
i

2
D +

v+−

2
√

2

))

δσ† − 1

2
σ∂1δσ

† + h.c.. (3.30)

We note here that the vanishing of this term is consistent with the A-type boundary

condition

σ − eiγσ†
∂Σ = 0 (3.31)

with Neumann conditions on the orthogonal combination. The angle γ that this

line in the complex σ plane makes with the real axis is unfixed.

Finally, the equations of motion together with the supersymmetry variations

of σ require that λ satisfy the boundary condition

eiγλ+ + λ− ∂Σ = 0 . (3.32)
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3.5. Bulk multiplets on the boundary

In order to couple bulk and boundary multiplets supersymmetrically, we can

decompose the boundary values of bulk multiplets into boundary multiplets.

The bulk vector multiplet restricts to a boundary vector multiplet and a real

multiplet. The combination

∇0 =
i

2
{Q,Q†} (3.33)

is a singlet under the B-type N = 2 supersymmetry. It will couple minimally to

charged boundary matter fields according to their gauge charge under the bulk U(1)

symmetry.

The story for bulk chiral multiplets depends on the boundary conditions. If φ

does not appear in a boundary superpotential, then:

∇1φ ∂Σ = 0

η ∂Σ = 0

∇1Θ ∂Σ = 0 .

(3.34)

The supersymmetry variations in Appendix A imply that φ and Θ form a bound-

ary chiral multiplet, and η and F form a (trivial) boundary fermi multiplet. RG

flow may induce a magnetic field coupling for the charged bulk fields at the bound-

ary. This would make them analogous to the ℘ multiplet described above. Our

considerations will be insensitive to this issue.

If φ is fixed by a boundary superpotential,

∇0φ ∂Σ = 0

Θ ∂Σ = 0 .
(3.35)

In this case, the supersymmetry transformations imply that η, F form a Fermi

multiplet with a deformed chiral constraint Q†η ∼ ∇1φ.

A boundary Lagrangian

Next we write down the complete boundary interactions in an example. Take

a Fermi multiplet β such that Dβa =
√

2℘Ea(φ), with superpotential coupling

∫

∂Σ

dx0dθβa℘F
a(φ) , (3.36)
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where ℘ is a boundary chiral multiplet such that D℘ = 0. Then the kinetic and

superpotential terms are:

SB =
∑

a

∫

dx0
[

i
(

β†
a∇0βa −∇0β

†
aβa
)

+ ba
2 − ℘Ea

2

+
(

−iβ†
aEaξ − iβ†

a℘∂iEaΘ
i + h.c.

)

+

(

iβaF
aξ + iβa℘

∑

i

∂iFaΘ
i + ba℘F

a + h.c.

)]

.

(3.37)

If we integrate out the boundary auxiliary fields, the boundary Lagrangian

becomes:

L∂Σ = −
∑

a

(

2 ℘ 2 F a 2 + ℘ 2 Ea
2
)

+ i
(

β†
a∇0βa −∇0β

†
aβa
)

− i
(

∇0℘
†)℘+ i℘†∇0℘

+

(

−i
∑

a

β†
a Ea

2βa − iβ†
a℘∂iEaΘ

i + h.c.

)

+

(

−
∑

a

β†
a F

a 2βa + iβa℘
∑

i

∂iFaΘ
i + h.c.

)

+ (i∇1p)
†p+ η†pΘp + h.c.

+ a0 (js − 1)

+ σ

(

−∂+σ
† − 1√

2

(

iD − v+−√
2

))

+ σ†
(

∂−σ +
1√
2

(

iD +
v+−√

2

))

+ i
(

λ†+λ+ − λ†−λ−
)

+
1√
2

(

σ†t† − σt
)

− i

4

(

σ − σ†)
(

∑

i

qi φi
2

)

.

(3.38)

The boundary term involving the bulk p field will be explained in §3.7.

3.6. Gauging the special symmetry

As mentioned in §2, because the massless boundary fermions live in a vector

bundle V , the Hilbert space on the boundary will transform in a sum of represen-

tations of the structure group of V . The βs create 2r states. To find the correct

rank-r Hilbert space at one end of the string, we make a projection.

To motivate this, consider r coincident branes in flat space. We can model this

by introducing r free boundary fermi multiplets βa. These fermions acting on the

vacuum give 2r = 1 + r + (r2) + · · · states. To obtain an r-dimensional space of

Chan-Paton factors, we project onto states with boundary fermion number one.
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Since our boundary fermions interact, boundary fermion number is no longer

conserved. However, the boundary fermion number symmetry is replaced by the

global boundary symmetry (2.5) mentioned above. We will project onto states

which have charge 1 under this symmetry. This is accomplished by including a

boundary vector, a0, to act as a Lagrange multiplier

Lbdya0(js − 1) , (3.39)

where

js = : β†β : − : ℘†℘ : (3.40)

is the boundary symmetry current.

3.7. The Warner problem

In the presence of a B-type boundary, the bulk worldsheet superpotential is no

longer supersymmetric. Its Q† variation is:

Q†
∫

Σ

∫

d2θ W =

∫

dx0Θ̄† i√
2

(

ηi̄F
i − 2∂̄̄W

†)

∼
∫

∂Σ

QW.

(3.41)

This does not vanish even if we impose the equations of motion for F .

There are many options for dealing with this term. There is a family of bound-

ary terms whose Q† variation cancels the Warner term when the auxiliary fields in

the bulk chiral multiplets satisfy their equations of motion. For example for the

quintic with

W = pG(φ)

one can add

∆Lbdy =

∫

dθ pηp† + h.c. (3.42)

which has

Q†
∫

dθ pηp† =

∫

dθ pF p†. (3.43)

When the auxiliary field F p is evaluated on-shell, this gives

Q†∆Lbdy ∼
∫

dθ pG(φ) + h.c. (3.44)
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which cancels the Warner variation. This solution works for any quasihomogeneous

bulk superpotential.

Another approach is to set W = 0 as one of the boundary conditions for

the bulk chiral multiplets. Then the natural fermionic partner of this condition is

precisely Θi∂iW = 0, and the boundary term (3.41) vanishes. This is natural in

that it simply forces the boundaries of the worldsheet to lie in the CY hypersurface.

This is equivalent to adding a neutral fermi multiplet M = µ+ θm+ · · · such that

DM = − 1√
2

(3.45)

and writing a term of the form (3.19) with S = W . The supersymmetry variation

of this action will cancel (3.41). This is the off-shell version of the fix used in [212].

The constraint (3.45) is the origin of the inhomogenous terms in the supersymmetry

transformation in [212].

We believe that both these solutions will lead to sensible conformal theories.

3.8. Symmetries of bulk and boundary fields

Bulk fields

We will first review the global symmetries of the bulk fields [186]. There are left-

and right-moving R-symmetries acting on the bulk chiral fields. Under the right-

moving R-symmetry the supersymmetry current Q− has charge 140; the Grassman

variable θ+ has charge 1; and the fields (ψ+, F, σ, λ−) have charges (−1,−1, 1, 1).

Under the left-moving R-symmetry, the supersymmetry current Q+ has charge 1;

the Grassman variable θ− has charge 1; and the fields (ψ−, F, σ, λ+) have charges

(−1,−1,−1, 1). These symmetries are non-anomalous so long as the sum of charges

of the chiral multiplets vanishes.

The bulk superpotential generically breaks the R-symmetry. However, in ab-

sence of the superpotential there was an additional global symmetry under which

each superfield Φi could be assigned arbitrary charge ki. By adding this symmetry

to the R-charge, we find new left and right moving R symmetries under which W

40 The relation between the chiral bulk supercharges Q± and the B-type supercharges

Q, Q† is described in the Appendices.
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has left- and right- moving R-charge 1. This symmetry is diagonal; it must be added

to both the left- and right-moving R-charges.

For B-type boundary SCFTs, only the sum of the R-charges is preserved:

Rtot,i = R+ +R− + 2ki . (3.46)

Boundary fields

Since bulk and boundary fields are coupled, both will be charged under the

conserved R-symmetry. The R-charges of the boundary fields can be deduced from

the charges of bulk fields which restrict to the boundary. One will again have to

compose symmetries of the boundary theory with the naive R-symmetry to make

a symmetry which is respected by the interactions. There is no anomaly in (0 + 1)

dimensions so this symmetry will survive quantization. We will assume that this

U(1)R flows to the expected R-symmetry of the infrared N = 2 superconformal

algebra.

4. Sheafy variables

Given a description of a Chan-Paton bundle as the cohomology of an arbitrary

sequence of sums of line bundles, a prescription was given in [178] for making a

linear sigma model of the type detailed above. However, [178] focused on bundles

which have constant fiber dimension over the entire Calabi-Yau manifold.

One linear model for branes of finite codimension, i.e. sheaves with nonconstant

fiber dimension over the CY, was described in §2.3. Simply add a boundary fermi

multiplet γ of charge −d ≡ −degree(S(φ)) and add a boundary superpotential

∫

dθγS(φ). (4.1)

This produces a boundary energy ∼ S(φ) 2 which confines the string boundary

to the hypersurface. This boundary theory would describe a D-brane localized at

S(φ) = 0. In this section we present another formulation of this model, which

is useful because it makes e.g. the possibility of transitions between Higgs and

Coulomb branches in the D-brane moduli space more transparent.
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Introduce a boundary fermi multiplet β of bulk gauge charge −d , and a gauge

neutral boundary chiral multiplet ℘, and project as usual onto the charge one sector

of the boundary symmetry (2.5). Instead of (4.1), add

∫

dθ℘βS(φ) . (4.2)

The resulting vacuum equations set ℘S(φ) = 0. Away from the locus S ≡ {S =

0} this is accomplished by setting ℘ = 0; β is massed up by ξ. Away from the

hypersurface, therefore, there is no way to satisfy the boundary charge projection

on the vacuum manifold. When S = 0, on the other hand, there is no constraint

on β or ℘, but the charge projection picks out a single Chan-Paton state which

we will describe in detail below. The resulting D-brane is the sheaf which is the

cohomology of the sequence

0 → O(−d)S(φ)−→O → 0. (4.3)

Away from S there is no cohomology; over the hypersurface, the map degenerates

and a single cohomology element appears at adjacent nodes.

This method of building a brane on a subcycle has also been described from

the spacetime point of view, e.g. in [215,216,217]. At large volume, adjacent vector

bundles in a sequence have opposite-signed D6-brane charge. The map between

them represents the open string tachyon. The sequence above describes a D6-brane

with D4-brane charge, and an anti-D6 brane; they annihilate to leave a D4-brane

behind.

To translate between the two descriptions of hypersurfaces we have given, one

can think of γ as a boundary-gauge-symmetry-invariant composite of ℘ and β. We

refer to the description using ℘ and β as “sheafy variables” and employ it in the

next section when we discuss transitions in open-string moduli space.

The reader may be confused by the fact that in the sheafy description there

seem to be two Chan-Paton states localized at the zero set S, one created by β

and one created by ℘†. That this is not the case can be seen by calculating the

cohomology of Q† acting on boundary states. As explained in more detail in §6,

this yields the number of massless open string states in the Ramond sector.

Consider an example where there is just a single bulk chiral field z parametriz-

ing a copy of C. Take S ≡ {S(z) = z = 0}, i.e. a D0-brane at the origin, as
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described by the sequence (4.3). Finally, introduce an additional space-filling brane

with a single trivial Chan-Paton state, i.e. a D2-brane. We will find the massless

strings stretching between our brane made by the sequence (4.3) and the D2-brane.

Let us start with a vacuum of the interesting end of the string which satisfies

0 = Θ 0〉 = β† 0〉 = ℘ 0〉. (4.4)

Imposing the boundary charge projection, an arbitrary state in the Hilbert space is

ψ〉 = f1(z, z
†)β 0〉 + f2(z, z

†)βΘ† 0〉 + f3(z, z
†)℘† 0〉 + f4(z, z

†)℘†Θ† 0〉. (4.5)

Now we want to solve for Q† ψ〉 = 0 modulo Q†-exact states. Reducing to zero-

modes, the relevant terms in Q† are

Q† = Θ†∂ + β℘z. (4.6)

Acting on the first term on the RHS of (4.5), we find:

Q†f1(z, z̄)β 0〉 = i∂̄f1Θ
†β 0〉 . (4.7)

If f1(z) is holomorphic, this state is in the kernel of Q†. Furthermore, Q† acts on

the third term on the RHS (4.5) to give:

Q†f3(z)℘
† 0〉 = izf3(z)β 0〉 . (4.8)

Finally, the second and fourth term on the RHS of (4.5) are Q-exact.

Thus, within cohomology,

f1(z) ' f1(z) + zf3(z) . (4.9)

The cohomology representatives live in the ring C[z]/〈z〉, the local ring at z = 0

(c.f. [218]). There is a single cohomology generator localized at z = 0. This is our

state, up to Q† descendants.

We can see even more explicitly that the string endpoint is stuck at the origin

and has a single Chan-Paton factor by solving for the ground state wavefunction of

the worldsheet zero modes, which is killed by both Q† and Q. To do this exactly we

need the IR effective action for the zero modes. In this example the bulk theory is a

free scalar field theory and the relevant perturbations lie entirely on the boundary.
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If we assume that the RG flow does not add anything to the bulk kinetic terms (as

appears to be the case in related work [202]), and if the boundary superpotential

satisfies a nonrenormalization theorem similar to that for the bulk superpotential,

then the only effect of the RG flow in the presence of the relevant boundary pertur-

bation (4.2) will be to change the anomalous dimension of the superpotential. As

the term (4.2) is relevant along the RG flow, it will be dressed with a factor Mα,

where M → ∞ in the IR and α is positive.

Altering the supercharges accordingly, the ground state should satisfy:

0 = Q† ψ0〉 =
(

−i∂̄f1 − iMαzf4
)

Θ†β 0〉 +
(

−i∂̄f3
)

Θ†℘† 0〉 +Mα (izf3)β 0〉
0 = Q ψ0〉 = (−if1z̄ − iMα∂f4)℘

† 0〉 +Mα (i∂f2)β 0〉 + (−iz̄f2)℘†Θ† 0〉 .
(4.10)

where we have ignored time derivatives since Q† = Q = 0 implies H = 0. The

first equation in (4.10) requires that f3 is holomorphic, with support only at z = 0;

thus f3 = 0. Similarly, the second equation leads to f2 = 0. Rotational invariance

implies that the lowest-energy state ψ0〉 depends only on (zz̄). Therefore,

ψ0〉 ∼ A(M)e−M
α z 2 (

β 0〉 + ℘†Θ† 0〉
)

. (4.11)

In the infrared, as M → ∞, the ground state will become a delta function at

S = {z = 0}. This has also been observed in [219].

4.1. Unions and intersections

In this section, we explain a number of ways to combine two boundary linear

sigma models to make another. For argument, we discuss two transverse hypersur-

faces of a CY defined by S1(φ) = 0 and S2(φ) = 0 with degrees d1 and d2.

Intersections

Here are three distinct ways to make the strings end on the intersection

{S1 = S2 = 0}:
1. As described in §2, add a boundary superpotential:

W = γ1S1 + γ2S2. (4.12)

The vacuum energy S1
2 + S2

2 only vanishes on the intersection.
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2. The tensor product of two sheaves has support on the intersection of the sup-

port of the two sheaves. Given the resolution of two sheaves by a sequence

of line bundles, there is a formula for such a resolution of the tensor product

whose derivation from the LSM is described in Appendix C. In this example,

it gives:

0 → O S1−→O(d1) → 0
⊗

0 → O S2−→O(d2) → 0

=

0 → O

[

S1

S2

]

−→ O(d1) ⊕O(d2)
[−S2,S1]−→ O(d1 + d2) → 0 .

(4.13)

The field content is a neutral ℘, two β’s of charges d1,2, and a ℘̃ of charge

−(d1+d2) with the constraints on the Q’s and Q†’s determined by the sequence

(c.f. [178]).

3. There is another sheafy description of this intersection. Take as boundary fields

β1,2 and ℘1,2, coupled via the boundary superpotential:

W = ℘1β1S1 + ℘2β2S2 (4.14)

and project on separate boundary symmetries for each of β1, ℘1 and β2, ℘2.

Away from the intersection the boundary system cannot satisfy one or the

other charge projection while staying on the vacuum manifold.

Unions

Three analogous models for the union {S1 = 0} ∪ {S2 = 0} are:

1. The scheme variables union is simply to use a single boundary fermion of charge

−d1 − d2 and add

W = γS1(φ)S2(φ). (4.15)

The boundary energy is then S1S2
2 and it vanishes if one lies on either

hypersurface. This gives a scheme-theoretic description in the following sense.

Notice that if S1 and S2 are the same, one gets multiple Chan-Paton sectors.

In this sense, this boundary linear model keeps track of the fact that a pair of
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coincident branes is a non-reduced scheme. Related observations were made in

[220].

2. As with a single hypersurface, we can describe this in “sheafy” variables. By

this we mean replace γ by a fermion β and a boson ℘, gauge the new boundary

symmetry, and add

W = ℘βS1(φ)S2(φ). (4.16)

3. While tensoring sheaves intersects their supports, adding them gives a sheaf

whose support is the union. Simply adding together the sequences we find:

0 → O S1−→O(d1) → 0
⊕

0 → O S2−→O(d2) → 0

=

0 → O⊕O[S1,S2]−→ O(d1) ⊕O(d2) → 0 .

(4.17)

The superpotential is the same as (4.14). But if there is just a single charge

projection, we obtain the union of the two branes because the string ends on one

brane or the other. So this is really the analog of the third way of intersecting

- we just do one charge projection instead of two. This is also consistent with

the fact that if only one of the boundary symmetries is gauged, then there is

one left over which acts as the second U(1) spacetime gauge symmetry - the

branes can move independently.

5. Applications and consequences

5.1. Monodromy in closed-string moduli space

The open string linear sigma model is an ideal tool for thinking about transport

of branes in closed string moduli space. Choose some boundary field content to make

a particular D-brane in the IR. If we move along a closed path in Kähler moduli

space, we come back to the same bulk LSM, but with possibly different boundary

data. This determines an action of the monodromy group on the branes themselves,

and not just on their charges. Such a refinement of the action of the monodromy
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group on branes has also been observed in the approach of [215,221,216] where

branes are considered as objects in the derived category.

In the case of the quintic, there are three monodromy generators [222]. At

large volume, the imaginary part of the complexified Kähler form – represented

in the linear model by the worldsheet theta angle – has periodicity 2π. A shift

by 2π at large r is a noncontractible loop and should generate the “large-volume

monodromy.” A loop about r = 0 should generate a monodromy which corresponds

to the monodromy about the conifold point in the mirror CY. Finally, at large

negative r a shift of θ by 2π is also a noncontractible loop in the closed string

GLSM. Since r → −∞ describes the Gepner point which is a ZZ5 orbifold point in

the moduli space, this shift of θ should generate the ZZ5 monodromy action about

the Gepner point.

Large radius

Consider a single D6-brane on the quintic, modeled by a single neutral bound-

ary fermion which carries charge 1 under the gauged boundary symmetry. The

pertinent terms in the boundary action are

Lbdy
(

θ

2π
v0 + jv0 + (js − 1)a0

)

(5.1)

where v0 is the bulk worldsheet gauge field, j is the bulk gauge current, js is the

boundary symmetry current, and a0 is the boundary vector field in (3.39).

Now, shifting θ → θ + 2πα adds to this

δL = αv0, (5.2)

(this is only gauge invariant if α is an integer multiple of 2π). This is equivalent to

shifting the bulk gauge charges of all fields by their boundary charge:

j → j + αjs. (5.3)

In our example, this means that when α = 1, we can remove the term (5.2)

by giving the boundary fermion bulk gauge charge 1. But this shifts the chern

classes of the bundle; in particular, it adds one unit of four-brane charge. This is

the expected large-radius monodromy.
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This is the right answer for any boundary field content. Adding the boundary

symmetry generator to the gauge charge has the effect of tensoring the bundle with

the line bundle O(1) over the projective space. This is precisely the effect of moving

the NS B-field through one period [222,182].

Other monodromy generators

An understanding of the other independent monodromy generator requires an

analysis of the effective theory at the conifold singularity. Work is in progress in

this direction. Here we restrict ourselves to a few suggestive observations.

Firstly, even at large negative r, θ → θ+2π acts by adding the boundary current

to the gauge current. So it seems that the idempotence of the LG monodromy action

is related to the ZZ5-valuedness of the worldsheet gauge charge.

Secondly, it generates the expected monodromy on the branes following the

discussion in [195]. A “fractional brane” in their model corresponds to a brane

whose Chan-Paton factors have ZZ5 charge under the orbifold group, corresponding

to the different irreducible representations of ZZ5. The quantum symmetry at the

orbifold point rotates these irreps and so shifts all of the charges by 1 mod 5.

Finally, the trivial representation is believed to correspond to the D6-brane at

the Gepner point [195]. This is the same description as at large radius. The fact

that the D6-brane has no monodromy about r = 0 suggests that we have the right

description at the Gepner point.

5.2. Degenerations and Singularities

Singularities in the CFT moduli space are especially important. They provide

a window into nonperturbative physics, and can give rise to the singularities of the

spacetime superpotential which are expected in N = 1 supergravity [223,190]. In

the closed string GLSM, singularities of the CFT appear at points in the GLSM

moduli space where the vacuum manifold becomes noncompact [186]. This should

also hold true in the open string case. Furthermore, apparent singularities in the

open string moduli space, such as “small instanton” singularites, signal enhanced

gauge symmetries or the existence of a branch structure in the moduli space.

Singularities in the closed string moduli space

For closed strings, singularities in the complex structure moduli space occur

when G is not transverse; then, as in [186], there is a branch where p and some
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of the φs diverge with zero energy cost. If there are boundary terms of the form

(3.19), where S depends only on the bulk fields, φi will not always be able to diverge

consistent with SA(φ) = 0, so the D-term keeps p from diverging. The boundary

CFT will not be singular (i.e. the D-brane physics will be smooth) at many points

where the closed string CFT would be singular.

If S = 0 is consistent with the nonzero φi necessary for the existence of the

non-compact p branch, then the full boundary CFT will be singular. In other words,

there can be singularities in the relevant boundary CFT as well as the closed string

CFT when the D-brane intersects the closed string singularity.

Singularities in the Kähler moduli space occur when σ has a noncompact

branch. For the closed GLSM on the quintic, this occurs at r = θ = 0. It is

an interesting question whether D-brane physics is singular at this point – see for

example [181]. If the Chan-Paton factors for a given state have nontrivial gauge

charge then the answer is uncertain. When σ is large all of the charged fields have

masses of order σ 2. The charged boundary fermions create a constant electric

field in the bulk. Competing effects exist: on the one hand one expects screening

of the bulk electric field via Schwinger pair production, on the other hand the mass

of the bulk charged fields (which must be pair-produced to provide the screening)

grows quickly down the σ branch. It would be interesting to disentangle the physics

of the potential singularity by performing a delicate analysis of the IR limit (as was

done for closed strings in [190]).

Singularities from boundary fields?

If the boundary field ℘ has no potential, one might worry that a noncompact

branch develops and the CFT is singular. For example, in the Calabi-Yau phase,

℘ is usually frozen to zero by the term
∑

a |℘|2|F a|2, which gives ℘ a large mass

since the F a are generically nonvanishing at S = 0 in the Calabi-Yau. However,

one could choose a bundle with singular points, where the F a all vanish on S = 0.

Even more uncomfortably, in the Landau-Ginzburg phase φ = F = 0. It would be

bizarre if the CFT was singular in an open set in the moduli space.

However a ℘ branch does not exist. The boundary charge projection gives

a finite number of states in the Hilbert space of boundary fields. The ℘ field is a
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“quantum dimension” in the target space, and cannot cause divergences in the path

integral. The integral over a0 projects onto:

js =
∑

a

: β†
aβa : − : ℘†℘ := 1 . (5.4)

Since the βs are fermionic, the positive contribution in (5.4) is bounded; therefore

(when (5.4) can be satisfied), ℘ contributes a finite volume factor to the path integral

and does not give any new branches to the path integral.

Enhanced gauge symmetries

Despite the absence of a ℘ branch, there is significant physics when a bundle

degenerates. If a locus D exists such that for φi? ∈ D, F a(φ?) = G(φ?) = 0,

then in addition to the bundle V , we get a sheafy variables description of a lower-

dimensional brane – namely a sheaf with support over D. The small instanton limit

[224] of the D0-D4 system is the classic example of such a degeneration.

In addition, we can sometimes tune parameters such that additional global

symmetries arise, in addition to (2.5) which rotates all β’s and ℘’s oppositely. Then

additional spacetime gauge symmetries should appear.

Small Instanton “Singularities”

The “sheafy variables” construction of D-branes allows us to easily study transi-

tions between branches of D-brane moduli spaces. First we will study two D2-branes

filling orthogonal complex lines in a flat C3. The “Higgs branch” can occur when

they lie in a common C2 and can be deformed into a single D2-brane; the “Coulomb

branch” occurs when they are separated along the complex line orthogonal to both

of them. If we replaced C3 by T 6 this would be the T-dual of the small instanton

singularity. We will then proceed to a direct study of small instantons in the D0-D4

system.

Consider the linear model which flows to the Coulomb branch. We take as

boundary fields β, β̃, ℘1,2, β
′, β̃′. We wish to describe a background with one two-

brane located at z1 = 0, z3 = 0, and the other at z2 = 0, z3 = a.
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Using the “sheafy variables” description, the complex defining this configura-

tion is










z1
0 → O → O → 0

⊗
z3

0 → O → O → 0











⊕











z2
0 → O → O → 0

⊗
z3 − a

0 → O → O → 0











=




[

z1
z3

]

[ z 3,−z1]
0 → O → O⊕2 → O → 0





⊕





[

z2
z3 − a

]

[ z 3 − a,−z2]
0 → O → O⊕2 → O → 0





=







z1 0
z3 0
0 z2
0 z3 − a







[

z3 −z1 0 0
0 0 z3 − a −z2

]

0 → O⊕2 −→ O⊕4 −→ O⊕2 → 0

In other words, the deformed chiral constraints are

Q†β = 0 Q†℘†
1 = z1β Q†℘†

2 = z3β Q†β′ = z3℘
†
1 − z1℘

†
2

Q†β̃ = 0 Q†℘̃†
1 = z2β̃ Q†℘̃†

2 = (z3 − a)β̃ Q†β̃′ = (z3 − a)℘̃†
1 − z2℘̃

†
2

(5.5)

and the on-shell supersymmetry transformations are

Q†β† = −z1℘1 − z3℘2 Q†℘1 = −z3β′† Q†℘2 = z1β
′† Q†β′† = 0

Q†β̃† = −z2℘̃1 − (z3 − a)℘̃2 Q†℘̃1 = −(z3 − a)β̃′† Q†℘̃2 = z2β̃
′† Q†β̃′† = 0

(5.6)

One can search for marginal deformations of the system in one of two ways.

Either one can look for candidate superpotential terms annihilated by Q† (using

the unperturbed EOM and values for the auxiliary fields); or one can look for

consistent perturbations of the off-shell deformed chiral constraints and add no

explicit superpotential term. The two approaches yield equivalent results; here we

will take the latter.

We are interested in deformations which preserve the orientation of the branes

and more generally the structure of the configuration at infinity, so we only al-

low deformations of the maps of the complex which are constant independent of
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z. Deformations linear in z would generally alter the orientation of the branes,

and higher-order polynomials would cause even more drastic changes in the brane

geometry.

For a 6= 0 there are no constant deformations of the system other than the

obvious ones corresponding to moving the twobrane moduli around on the Coulomb

branch.

When a vanishes, however, one can find other consistent perturbations of the

deformed chiral constraints, or equivalently deformations of the complex preserving

nilpotence of the differential Q†.

Specifically, for vanishing a the most general set of constants one can add to

the maps of the complex is:







z1 ε
z3 0
ε′ z2
0 z3







[

z3 −z1 0 −ε
0 −ε′ z3 −z2

]

0 → O⊕2 −→ O⊕4 −→ O⊕2 → 0

(5.7)

We will now show that for a = 0 the effect of this perturbation will be to merge

the two branes into a single brane covering the locus z3 = 0, z1z2 = εε′. After

adding this deformation of the complex, the deformed chiral constraints become

Q†β = 0 Q†℘†
1 = z1β + ε1β̃ Q†℘†

2 = z3β Q†β′ = z3℘
†
1 − z1℘

†
2 − ε℘̃†

2

Q†β̃ = 0 Q†℘̃†
1 = z2β̃ + ε′β Q†℘̃†

2 = z3β̃ Q†β̃′ = z3℘̃
†
1 − z2℘̃

†
2 − ε′℘†

2

(5.8)

and the on-shell supersymmetry transformations are

Q†β† = −z1℘1 − z3℘2 − ε′℘̃1 Q†℘1 = −z3β′† Q†℘2 = z1β
′† + ε′β̃′† Q†β′† = 0

Q†β̃† = −z2℘̃1 − z3℘̃2 − ε℘1 Q†℘̃1 = −z3β̃′† Q†℘̃2 = z2β̃
′† + εβ′† Q†β̃′† = 0

(5.9)

The condition for the Q and Q† variations of all ℘ fields to vanish is

z3(β, β̃, β
′†, β̃′†) = 0

(z1z2 − εε′)(β, β̃, β′†, β̃′†) = 0.
(5.10)

So we see that this deformation moves the support of the brane to the irreducible

variety defined by

z3 = 0, z1z2 = εε′ (5.11)

which represents the Higgs branch of this D2-D2 system.
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There is a shortcut to finding the locus of the twobrane. If one takes a generic

point in the base space, the matrices defining the complex are all of full rank.

Their rank is reduced, leading to nonzero cohomology, exactly when all two by two

subdeterminants vanish. This occurs at the locus z3 = 0, z1z2 = εε′.

Higgs-Coulomb transition in the D0-D4 system

The merging of two D2−branes is T−dual to the Coulomb-Higgs transition in

the 0-4 system. We can also describe this transition directly.

A linear sigma model for a zerobrane separated from a pair of fourbranes is

d1 d2 d3

0 → O → O⊕5 → O⊕5 → O → 0
(5.12)

with

d1 ≡











z1
z2

z3 − L
0
0











(5.13)

d2 ≡











0 z3 − L −z2 0 0
L− z3 0 z1 0 0
z2 −z1 0 0 0
0 0 0 z3 0
0 0 0 0 z3











(5.14)

d3 ≡ [ z1, z2, z3 − L 0, 0 ] . (5.15)

For generic L the only marginal operators one can add simply correspond to

shifts in the positions of the branes. However for L = 0 one can deform the complex

to:

d1 ≡











z1
z2
z3

−B1

−B2











(5.16)

d2 ≡











0 z3 −z2 0 0
−z3 0 z1 0 0
z2 −z1 0 C1 C2

0 0 B1 z3 +E11 E12

0 0 B2 E21 z3 + E22











(5.17)

d3 ≡ [ z1, z2, z3, −C1, −C2 ] (5.18)
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for B,C,E which satisfy

[C1, C2 ]

[

B1

B2

]

=

[

E11 E12

E21 E22

] [

B1

B2

]

= [C1, C2 ]

[

E11 E12

E21 E22

]

= 0 (5.19)

The general solution to these constraints consists of a unit doublet (u1, u2) and

three complex numbers b, c, e:

[

B1

B2

]

= b

[

u1

u2

]

; [C1, C2 ] = c [u2, −u1 ] ;

[

E11 E12

E21 E22

]

= e

[

u1u2 −u2
1

u2
2 −u1u2

]

(5.20)

We will now assume generic values of b, c, e, u. There is never cohomology at the

first or last node; neither d1 nor d3 ever has a kernel. d2 always has determinant

zero, which is to be expected since d1 has one-dimensional image, so d2 must have

at least one-dimensional kernel.

There will be cohomology at the second and third nodes only when the dimen-

sion of the kernel of d2 is two or higher, the criterion for which is the vanishing of

all twenty-five 4 by 4 subdeterminants of d2. We find that the matrix of subdeter-

minants is

z2
3 ·











−bcu1u2, bcu2
1, cu1z3, −cu1z2, cu1z1

−bcu2
2, bcu1u2, cu2z3, −cu2z2 cu2z1

−bu2z3 bu1z3 z2
3 −z2z3 z1z3

bu2z2 −bu1z2 −z2z3 z2
2 −z1z2

−bu2z1 bu1z1 z1z3 −z1z2 z2
1











(5.21)

Specifically, it factorizes as z2
3 times a matrix which never vanishes. (The entry in

the upper left hand corner, for instance, is constant and nonzero). This means that

there are two fibers along the locus z3 = 0 (rather than a single fiber, since the zero

is doubled), and no extra fibers at special subloci of z3 = 0. The interpretation

is that we have dissolved a zerobrane into a smooth instanton field in the pair of

fourbranes. (Note that the value of e drops out of the subdeterminants and we can

set it to zero in what follows.)

We can see this even more directly by examining the cohomology restricted to

z3 = 0. Setting e = 0 and computing the kernel of d2 we have

d2 ≡











0 0 −z2 0 0
0 0 z1 0 0
z2 −z1 0 C1 C2

0 0 B1 0 0
0 0 B2 0 0





















β1

β2

β3

β4

β5











= 0 (5.22)
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⇔ [ z2, −z1, C1, C2 ]







β1

β2

β4

β5






= β3 = 0 (5.23)

Furthermore, the massless β’s are in the kernel of d†1, restricted to z3 = 0. That is,

[ z∗1 , z∗2 , B∗
1 , B∗

2 ]







β1

β2

β4

β5






= 0 (5.24)

In other words, the vector [β1, β2, β4, β5] is a harmonic representative of the

cohomology of the complex







z1
z2
B1

B2






[ z2, −z1, C1, C2 ]

0 → O → O⊕4 → O → 0

(5.25)

with

[C1, C2 ]

[

B1

B2

]

= 0 (5.26)

But the ADHM construction of a single U(2) instanton in IR4 works precisely

by defining a holomorphic bundle as the cohomology of this same complex. So we

have directly demonstrated the ability of a D0 brane to dissolve into D4 branes by

open string worldsheet arguments, without any reference to the brane worldvolume

gauge theory.

This whole computation should generalize without undue complication to the

process of dissolving k instantons in N fourbranes to make a smooth k-instanton

field in a U(N) gauge theory on IR4.

5.3. Marginal stability transitions: A local worldsheet model

While many of the quantities which are reliably computed in the open string

LSM are independent of the worldsheet FI parameter, it is clear that important

aspects of the physics of B-type D-branes do depend on the Kähler moduli. The

most striking example is marginal stability transitions, which occur at special loci

in the Kähler moduli space. Determining when a transition occurs for a given set of
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brane charges is a delicate problem which has come under intense recent investiga-

tion (see e.g. [182,183,184,215]). Since the topological B-model is insensitive to the

Kähler parameters, the occurence of such transitions is not transparent in the linear

model. However, we can understand the local physics of these transitions in the

linear model in a simple way. The local model we present below is a good candidate

to describe the generic worldsheet behavior in the vicinity of such a transition.

A local model for the spacetime physics of a D-brane undergoing a marginal sta-

bility transition is the Fayet model [225]. This is easily seen in the A-model [1,226],

where the physics can be reduced to a problem involving intersecting branes.41 The

Fayet model is a four-dimensional N = 1 field theory with a U(1) gauge symmetry

and a single charged field. (In the brane system, there is also a center of mass vector

field gauging a U(1) under which all fields are neutral.) The D-term takes the form

D = φ 2 − ξ.

When the FI parameter ξ is positive, there is a supersymmetric vacuum at nonzero

φ; the gauge symmetry is broken by this vev and there is a mass gap. For ξ < 0, there

is no way to make D vanish; supersymmetry is broken, and the gauge symmetry

is preserved. Classically, the gauge multiplet (Aµ, λα), and the fermion partner

ψα of φ are all massless, while φ is massive. In realizations of this transition in

B-type brane systems, ξ is to be identified with a nontrivial function of the Kähler

parameter t = θ
2π + ir. There is a supersymmetric brane for ξ > 0 and the brane

decays on the locus ξ(t, t†) = 0 in Kähler moduli space.

This simplest model of the spacetime physics is reproduced by the simplest

possibility in the LSM. Add a brane-antibrane pair to the linear model - i.e. add a

boundary chiral multiplet ℘ and a boundary fermi multiplet β.

To model the behavior when ξ is small and positive, add the operator

f(ξ)

∫

dθ℘β (5.27)

to the boundary action (f is some nontrivial function of ξ, which vanishes when

ξ = 0). The Q† complex then takes the form

0 →
{

β†℘†}→
{

℘†℘
β†β

}

→ {β℘} → 0. (5.28)

41 In the B-model, these transitions are related to a chamber structure in the moduli

space of stable bundles [227].
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At generic points when ξ > 0, f is non-vanishing. The last map from R-charge 0

to R-charge 1 is then onto, and there is no cohomology beyond the center of mass

vector at R-charge 0. We have a supersymmetric vacuum with the mass gap (for

modes other than the decoupled U(1)) that we expect. The R-symmetry of the

CFT to which we flow must preserve (5.27), so the operator β℘ has unit R-charge.

Now consider the behavior at ξ = 0. Since f(ξ) = 0 at this point, the maps in

(5.28) degenerate and we get a cohomology generator at R-charge zero (in addition

to the center-of-mass gaugino 1 = β†β − ℘†℘) which we identify as a new gaugino.

Its image under spectral flow is a new massless vector. There is also new cohomology

at R-charge 1 of the form β℘ which we identify with the vertex operator for ψα,

the fermi component of the charged chiral multiplet. The R-charge of this operator

is still unity, and so spectral flow generates from it the vertex operator for massless

scalar φ. One can show, using the equation

[β†β, ℘β] = −℘β, (5.29)

that the string created by this vertex operator indeed carries unit charge under the

new vector field, as expected.

Now, what happens as one moves past the spacetime transition point, to the

ξ < 0 region of parameter space of the Fayet model? At ξ = 0, the model enjoys

an extra unbroken U(1) global symmetry – one can rotate β and ℘ independently.

There is no longer a unique candidate for the U(1)R symmetry which appears in

the IR N = 2 superconformal algebra. We can hypothesize that when ξ is made

slightly negative, the R-charge is a linear combination of the two U(1)s under which

β℘ has charge > 1. We then find that the scalar φ obtains a tree-level mass since

the conformal weight of the image of Vψ under spectral flow will be different from

1. The operator β℘ is still in the Q† cohomology, so ψα remains massless.

This scenario will be realized in the following situation. When ξ > 0, the φ field

has two gauge-inequivalent vacua (the true vacuum, and the tachyonic vacuum at

〈φ〉 = 0). Associated with these two vacua are two different boundary CFTs. In the

CFT of the supersymmetric vacuum, where the tachyonic perturbation,
∫

dθβ℘, has

been turned on, the conserved R-charge must be such that β℘ has unit R-charge.
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1

ξ

R
q  

Fig. 17: The R-charge, qR, of the operator ℘β varies with the spacetime

FI coefficient ξ. The dashed line indicates the conserved R-charge in the

CFT of the tachyonic vacuum at 〈φ〉 = 0.

In the unperturbed CFT of the tachyonic 〈φ〉 = 0 vacuum, there is an extra

global boundary U(1) symmetry under which (if necessary by adding to it a multiple

of the gauged boundary current) only β is charged. Therefore the conserved R-

charge in the IR theory can be some linear combination of the bulk R-current

and the β number current with r-dependent (and hence ξ-dependent) coefficients

determined by the boundary RG flow. It is this gauge-symmetric vacuum (and

hence this CFT) which describes the brane at ξ < 0, and so the R-charge of ℘β can

vary with ξ when ξ becomes negative.

It would be very interesting to understand in detail, from a microscopic point

of view, the appearance of this local model in various D-brane decay processes. It is

quite plausible that not only generic marginal stability transitions, but also generic

variations of the worldvolume spectrum on a given D-brane, can be accomplished

through the judicious addition of brane/anti-brane pairs in this manner.

6. Massless worldvolume fields

6.1. Generalities

In this section we compute the massless worldvolume spectrum in a particular

example. Our linear model flows to the worldsheet-supersymmetric Ramond sector

of strings ending on these branes, and it is the states in this sector which are

annihilated by L0 that we determine. As in [215,216,217] it should be understood

that we are looking at branes in the topological B-model, and the spectrum of strings

we are computing corresponds to the massless open (fermionic) strings stretching

between such branes. The relation of these “topological” branes to physical branes

is not always straightforward: the supersymmetric branes in the topological model

satisfy the physical F-flatness conditions but not necessarily the physical D-flatness

conditions. The question of which topological branes satisfy the latter condition is
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equivalent to understanding marginal stability, and loci of marginal stability are not

manifest in the linear model (and indeed still need to be determined on a more or

less case by case basis). In some special cases, e.g. half-supersymmetric D-branes on

K3, the enhanced supersymmetry makes it easier to infer properties of the physical

branes from the topological model, so after some generalities we will specialize to

an example involving branes on K3.

To find the massless open string states, we can study the supersymmetric

ground states in the Ramond sector. In this sector, the two unbroken supercharges

Q and Q† anti-commute to the Ramond-sector Hamiltonian:

{Q,Q†} = 2L0 (6.1)

By (6.1) and standard results in Hodge theory, we can find the supersymmetric

ground states by computing the Q† cohomology. Since the FI terms are Q exact,

we can ignore their effects in this computation.

We will find it convenient to compute the cohomology of Q† acting on opera-

tors.

X

a

b

a

b

Vab =

b

a

Fig. 18: In the conformal limit, emission of a string stretched between

branes is the same as insertion of a boundary-condition-changing vertex

operator, Vab ∼ β†
bβa.

Since, as illustrated in fig. 18, there is a 1-1 correspondence between the open

string states and associated boundary condition changing operators, this does not

constitute a loss of generality.
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6.2. Example: A bundle on K3

Field qG qR qS

φi 1 1
2 0

Θi, ηi 1 −1
2 0

p −4 0 0

Θp, ηp −4 −1 0

βa 1 −1
2 1

℘ −4 0 −1

Table 1: The charges of the rele-
vant fields.

Our example consists of three D4-

branes on the quartic K3, with the bun-

dle V defined by the sequence (2.10)

with m = 4 and {na} = {1, 1, 1, 1}.
There is a boundary superpotential cou-

pling
∫

dθβaF
a(φ)℘. The table at left

displays the gauge charges, R-charge,

and boundary global charges of all of

the relevant fields. The bulk vector is

neutral under all of these transforma-

tions.

In the GLSM for this simple monad on K3, our supercharge takes the form

Q† = Q†
bulk +Q†

∂

=

∫

dx
{

∇0φiΘ
i† + ∇1φiη

i† + 2p∂iGη
i + ∇0pΘ

†
p + ∇1pη

†
p + 2Gηp

+ λ+

(

−∂+σ +
1√
2

(

iD +
v+−√

2

))

+ λ−

(

∂−σ
† − 1√

2

(

iD − v+−√
2

))

+δ(∂Σ)
(

℘βaF
a(φ) + η†pp

)}

.

(6.2)

• We will only be interested in operators which are invariant under the gauged

special boundary symmetry (so that they map states in the charge-one sector

back into the same sector). Furthermore, if we are not going to restrict ourselves

to a phase of the theory where the bulk U(1) is higgsed and integrate out the

bulk gauge field, we must throw away operators which are not U(1) invariant.

We want to find the spectrum of massless spacetime fields. The fermionic

parts of such multiplets arise from Ramond vertex operators whose internal

parts have R-charge 0 or 1. The former map via spectral flow to NS-sector

operators of conformal weight 0 and hence lead to spacetime vectors. Ramond

states of unit R-charge flow spectrally to NS operators of unit dimension which

give the scalar components of spacetime chiral multiplets.
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• The equation of motion of the boundary vector field a0 is imposed as an oper-

ator equation of motion. So we impose the boundary Gauss’ Law,

: β†
aβa : − : ℘†℘ := ±1 (6.3)

where the ± depends on the orientation of the boundary component, on our

operators.

• In order to be boundary-symmetry-invariant, an operator has to contain an

even number of boundary fields. Operators without any boundary fields are

just bulk operators restricted to the boundary and we ignore them. Included

among these is the identity operator, which creates the center-of-mass vector.

We claim that operators containing four or more boundary fields do not create

any states beyond those made by operators bilinear in the fiber fields. We can

see this by making the state-operator correspondence more explicit as follows.

The only subtlety involved is the vacuum degeneracy (present even in the NS

sector) arising from the boundary fermion and boson zero modes. To resolve this,

we choose a reference state,

0〉+ ⊗ 0〉−. (6.4)

Here 0〉± are vacua of the two ends of the string satisfying

0 = βa 0〉− = ℘† 0〉− = β†
a 0〉+ = ℘ 0〉+. (6.5)

So we have arbitarily picked out a state which is not in the boundary Hilbert space

of the ends of the string because it does not satisfy the boundary charge projection.

The state corresponding to an operator is obtained by acting with that operator

on this vacuum and projecting onto the subspace satisfying the charge projection.

For example, an operator of the form β†
aβb makes the state with the − end of the

string in sector a, and the + end of the string in sector b. Acting on this state, the

only independent boundary operators invariant under the boundary symmetry are

of the form

℘†β†, ℘†℘, β†β, ℘β.

Operators which are least quartic in the fiber fields are made by acting with one of

these operators again. Using the charge projection (6.3) this will always give zero

or a state created by a quadratic operator.
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• It is convenient to divide up Q† into

Q† = Q†
0 +Q†

1 (6.6)

where Q†
0 includes only the parts depending on derivatives of bulk fields. By a

zig-zag argument of the type appearing in [206] we can compute the cohomology

of Q† by computing the cohomology of Q†
1 in the cohomology of Q†

0. This tells

us that we can leave out any non-holomorphic dependence on φ and we can

leave out Θ’s and their daggers because any operator with Θ- or φ†-dependence

is a Q† descendant.

• We discard the vector multiplet from our cohomology calculation. It is massive

at large r , where its effect is to impose Gauss’ law and its supersymmetric

completions. Combined with the fact that the result of this calculation is

independent of worldsheet FI terms (which are Q† descendants), this means

that we may safely neglect it. A more rigorous justification for this awaits

future work.

• Operators containing the bulk field p, but not containing its partner η†p are in

the image of the supercharge because of the term

δ(∂Σ)η†pp (6.7)

added to the supercharge to solve the Warner problem.

Schematically, the structure of the action of Q† on the pertinent operators is:

0 →
{

Ra(l)(φ)β†
a℘

†
}

→
{

S(l+3)(φ)℘†℘
Sab(l+3)(φ)β†

aβb

}

→
{

T a(l+6)(φ)βa℘
}

→ 0, (6.8)

where the notation means that Ra(l)(φ) is a homogeneous polynomial in φ of degree

l (and likewise for Ss and T s).

In order that these operators be gauge invariant we need l = −3. This means

that the first node is trivial, and at the second node the polynomials are just

constants. At the third node, the polynomials are cubic and these operators are

exactly of the form of marginal deformations of the superpotential. Accordingly,

they have R-charge 1. The image of Q† from the R-charge zero operators at the

previous node consists of operators of the form

RabF
a(φ)βb℘, (6.9)
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where Rab is a constant and F a is the section of
⊕O(na) appearing in the boundary

superpotential. This tells us that in Q† cohomology,

T a(3)(φ) ' T a(3) +Rabf
b(φ). (6.10)

Since there are twenty independent degree three monomials in four variables, we

find 4(20 − 4) = 64 elements of cohomology at R-charge 1 from this part of the Q†

complex.

At R-charge 0, the only operator in ker(Q†) is

: β†
aβa : − : ℘†℘ := js (6.11)

which by the boundary Gauss’ law (6.3) is the identity operator which creates (the

fermion partner of) the center-of-mass vector field.

We note here that the brane worldvolume Higgs mechanism has a very natural

implementation in this complex. Cohomology can appear at adjacent nodes which

have R-charge 0 and 1 respectively, resulting in a new vector field and a new charged

multiplet descending to zero mass.

Note that this framework could as easily have been applied directly to the

large-radius phase of the theory. In that case, we would have simply set p = 0 to its

vacuum value and ignored its massive fluctuations. One finds the same operators

representing the cohomology, and the calculation essentially reduces to the classical

mathematics of deformation theory. It would be interesting to perform an analogous

calculation directly in the Landau-Ginzburg effective field theory, after integrating

out the p field and gauge multiplet.

Consequences of the index theorem

For the Chern-classes of the SU(3) bundle V one finds c1(V ) = 0 and c2(V ) =

24. A theorem of Mukai [228] tells us that the dimension of the moduli space

of such a bundle is related directly to the index of Q†, and in this example has

(quaternionic) dimension 64. Therefore, one expects the brane spectrum to include

64 massless hypermultiplets, in agreement with our result.

The index of Q† is not directly related to the dimension of the brane moduli

space for branes on Calabi-Yau threefolds. In those examples, the index of Q† is still

invariant under smooth deformations of the closed string and open string moduli,

but there are adjacent nodes in the complex representing scalar states which may

pair up with each other while preserving the index of the Q† complex. Note that

the index of Q† is invariant under addition of brane-antibrane pairs in the linear

sigma model.
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7. Future Directions

Many interesting issues arise in the study of D-branes on Calabi-Yau spaces,

and our formalism might be usefully extended to address a number of them. Here,

we close by mentioning several subjects for future exploration:

• One expects that generic branes will cross lines of marginal stability in the (r, θ)

plane. While a mechanism for implementing brane decays in the linear model was

discussed in §5.3, it would be very interesting to derive the form of these loci of

marginal stability directly in the linear model. This would presumably involve a

direct calculation of the relevant spacetime central charge.

• The physics of D-branes at singular points in their moduli space (where even the

boundary CFT becomes ill-defined) should be tractable in this approach. For closed

strings, the new non-compact branches which arise in the linear model at singular

points in moduli space were shown in e.g. [190] to allow one to reproduce detailed

calculations about divergent terms in the spacetime effective action. A similar story

may well arise here.

• A related question: At certain loci in moduli space, wrapped D-branes become

massless spacetime states. This happens for instance at the mirror conifold point

in the Kähler moduli space of the quintic, where the wrapped D6 brane becomes

massless. What is the behavior of the worldvolume theory on the brane in such a

limit? What happens as one makes extremal transitions to new branches of moduli

space where such wrapped branes become fundamental string states?

• We have confined ourselves to discussing B-type branes in this chapter; but similar

methods could work for A-type branes as well (for earlier work in this direction see

[191,192], for later work in this direction see [211]). As discussed in [18,39,229]

there are expected to be intricate, disc-instanton generated superpotentials for A-

type branes. It would be interesting to formulate a linear sigma model description of

such branes in which the instanton sum was computable. In a somewhat analogous

problem with more supersymmetry, Morrison and Plesser did succeed in reproducing

closed string instanton effects directly in the linear sigma model [210]. For recent

work in this direction, see [230].

• Finally, any microscopically consistent model with wrapped, space-filling D-branes

will have to include orientifolds (or anti-branes) as well to cancel RR tadpoles. It
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will be interesting to study new phenomena that arise in generalizing this kind of

worldsheet description to models with orientifolds and/or antibranes.
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Appendix A. Transformation properties of bulk supermultiplets

Throughout this chapter we use Q = Q+−Q−√
2

and its conjugate as the gen-

erators of the unbroken B-type supersymmetry. S = Q++Q−√
2

and its conjugate

generate the supersymmetry transformations broken by the boundary theory.

The (2, 2) algebra is

{Q±, Q±} = 0 {Q±, Q∓} = 0

{Q±, Q
†
±} = 2P±

{Q+, Q
†
−} = 2Z {Q−, Q

†
+} = 2Z†

[Q±, P∓] = −i
√

2qλ†∓ [Q†
±, P∓] = −i

√
2qλ∓

(A.1)

where Z acts by multiplication by qσ† on a field of charge q and P± = −iD± is

the gauge covariant momentum (but does not contain σs). Note that [∇±, Q] =

[∇±, Q†] = 0.
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In the following, our supercharges act by graded commutation. The (2, 2)

supersymmetry transformations of the fields in a chiral multiplet, φ, of U(1) gauge

charge a in Wess-Zumino gauge are

Qφ = −iΘ Q†φ = 0 Qφ† = 0 Q†φ† = −iΘ†

Sφ = −iη S†φ = 0 Sφ† = 0 S†φ† = −iη†

QΘ = 0 Q†Θ = 2∇0φ QΘ† = 2∇0φ
† Q†Θ† = 0

SΘ = −F S†Θ = 2∇1φ SΘ† = 2(∇1φ)† S†Θ† = −F †

Qη = F Q†η = 2∇̃1φ Qη† = 2(∇̃1φ)† Q†η† = F †

Sη = 0 S†η = 2∇̃0φ Sη† = 2∇̃0φ
† S†η† = 0

QF = 0 QF † = 2i
(

(∇̃1Θ)† −∇0η
†
)

+ 2qφ† (λ+ + λ−)

Q†F = 2i
(

∇̃1Θ −∇0η
)

+ 2qφ
(

λ†+ + λ†−

)

Q†F † = 0

SF = 0 SF † = 2i
(

∇̃0Θ
† − (∇1η)

†
)

+ 2qφ† (λ+ − λ−)

S†F = 2i
(

∇̃0Θ −∇1η
)

+ 2qφ
(

λ†+ − λ†−

)

S†Θ† = −F †

(A.2)
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The vector multiplet fields transform as:

Qσ = iλ†+ Q†σ = −iλ− Qσ† = −iλ†− Q†σ† = iλ+

Sσ = iλ†+ S†σ = iλ− Sσ† = iλ†− S†σ† = iλ+

Qλ+ = −∂+σ
† − 1√

2

(

iD − v+−√
2

)

Q†λ†+ = −∂+σ +
1√
2

(

iD +
v+−√

2

)

Q†λ+ = 0 S†λ+ = 0 Qλ†+ = 0 Sλ†+ = 0

Sλ+ = −∂+σ
† +

1√
2

(

iD − v+−√
2

)

S†λ†+ = −∂+σ − 1√
2

(

iD +
v+−√

2

)

Qλ− = ∂−σ +
1√
2

(

iD +
v+−√

2

)

Q†λ†− = ∂−σ
† − 1√

2

(

iD − v+−√
2

)

Q†λ− = 0 S†λ− = 0 Qλ†− = 0 Sλ†− = 0

Sλ− = −∂−σ +
1√
2

(

iD +
v+−√

2

)

S†λ†− = −∂−σ† − 1√
2

(

iD − v+−√
2

)

Qv+− = −i
(

∂+λ
†
− + ∂−λ

†
+

)

Q†v+− = −i (∂+λ− + ∂−λ+)

Sv+− = −i
(

∂+λ
†
− − ∂−λ

†
+

)

S†v+− = −i (∂+λ− − ∂−λ+)

Qi
√

2D = i
(

∂+λ
†
− − ∂−λ

†
+

)

Q†i
√

2D = −i (∂+λ− − ∂−λ+)

Si
√

2D = i
(

∂+λ
†
− + ∂−λ

†
+

)

S†i
√

2D = −i (−∂+λ− + ∂−λ+)

(A.3)

Appendix B. Boundary superspace

We can exponentiate the supersymmetry transformations to define a super-

space formalism. We use the same bulk superspace coordinates as in [186]. In this

language the action of supersymmetry on superfields is generated by:

δΦ =
(

εαQα − ε̄αQ†
α

)

Φ

=
(

−ε−Q+ + ε+Q− + ε̄−Q
†
+ − ε̄+Q

†
−

)

Φ
(B.1)

where εα is the Grassman parameter; the spinor indices are raised and lowered by
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the antisymmetric tensor εαβ as in [186]. Recall that

Q+ =
∂

∂θ+
+ iθ̄+∂+

Q− =
∂

∂θ−
+ iθ̄−∂−

Q†
+ = − ∂

∂θ̄+
− iθ+∂+

Q†
− = − ∂

∂θ̄−
− iθ−∂−

(B.2)

where

∂± = ∂0 ± ∂1

We can similarly define superspace derivatives:

D± =
∂

∂θ±
− iθ̄±∂±

D± = − ∂

∂θ̄±
+ iθ±∂± .

(B.3)

We wish to preserve as symmetries those transformations for which ε+ = ε−.

Define:

ε =
1√
2

(ε+ + ε−)

ε̃ =
1√
2

(ε+ − ε−)

(B.4)

and set ε̃ = 0. Then

δΦ =

(

ε
Q− −Q+√

2
+ ε̄

Q†
+ −Q†

−√
2

)

Φ (B.5)

We can define

θ =
θ+ − θ−√

2
(B.6)

and

Q =
Q+ −Q−√

2
=

∂

∂θ
+ iθ̄∂0 Q† =

Q†
+ −Q†

−√
2

= − ∂

∂θ̄
− iθ∂†0 , (B.7)

so that

δΦ =
(

εQ− ε̄Q†)Φ .
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Similarly, we can define superspace derivatives:

D =
D+ −D−√

2
=

∂

∂θ
− iθ̄∂0

D =
D+ −D−√

2
= − ∂

∂θ̄
+ iθ∂0 .

(B.8)

Appendix C. The tensor formula

Here we state a formula for the tensor product of two sheaves. The support of

this product sheaf is the intersection of the supports of the original sheaves.

Take a complex

0 → V0
d1−→V1

d2−→· · · dm−→Vm → 0 (C.1)

whose cohomology is a sheaf E, and a complex

0 → W0
d̃1−→W1

d̃2−→· · · d̃n−→Wn → 0 (C.2)

whose cohomology is a sheaf F . Then a complex whose cohomology is E ⊗ F is:

0 → V0⊗W0
D1−→V0⊗W1⊕V1⊗W0

D2−→V0⊗W2⊕V1⊗W1⊕V2⊗W0
d3−→· · · → 0 , (C.3)

where

Dr+s+1(a⊗ b) = dr+1(a) ⊗ b+ (−1)ra⊗ d̃s+1(b) (C.4)

for a ∈ Vr and b ∈ Ws.

This formula is well known to mathematicians, to whom, however, the minus

signs in (C.4) seem mysterious (c.f. p. 431 of [231]). Rather than proving this

directly as a mathematical statement, we can give a physical interpretation. Con-

sider two sets of fiber fields β, ℘ and β̃, ℘̃ which transform under two independent

boundary symmetries U(1)1,2. The β, ℘ fields are linear model fields satisfying the

correct deformed chiral constraints to have cohomology equal to E. That is

{Q†, β2n} = d2n−1℘
†
2n−1

[Q†, ℘†
2n+1] = d2nβ2n .

(C.5)

Similarly, β̃, ℘̃ satisfy the contraints:

{Q†, β̃2n} = d̃2n−1℘̃
†
2n−1

[Q†, ℘̃†
2n+1] = d̃2nβ̃2n

(C.6)
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in order to describe F . We can combine βk, ℘
†
k into an object γm which is even(odd)

when m is odd(even). If the left endpoint lives in E ⊗ F , the fields for both E and

F should be excited. Thus we perform two boundary charge projections, each onto

charge sector +1.

To see that this is equivalent to the complex (C.3) with exterior deriva-

tive D, examine variables invariant under the combination U(1)1 − U(1)2. The

gauge invariant combinations which satisfy deformed chiral constraints off shell are

ββ̃, β℘̃†, ℘†β̃, ℘†℘̃†. These combinations all have charge +1 under the remaining

symmetry 1
2(U(1)1 + U(1)2), and satisfy:

[Q†, γmγ̃n] = dm−1(γm−1)γ̃n + (−1)m−1γmd̃n−1(γ̃n−1) . (C.7)

Thus, the singlets of the confined gauge group U(1)1 − U(1)2 transform under

supersymmetry as fibers in the complex defining E ⊗ F .

193



Chapter 10: Linear Sigma Model Toolshed

for D-brane Physics

Building on earlier work [232], we construct linear sigma models for strings on curved

spaces in the presence of branes. Our models include an extremely general class of

brane-worldvolume gauge field configurations. We explain in an accessible manner

the mathematical ideas which suggest appropriate worldsheet interactions for gen-

erating a given open string background. This construction provides an explanation

for the appearance of the derived category in D-brane physics complementary to

that of [233].

1. Introduction

Main Entry: de · noue · ment

Function: noun

1. the final outcome of the main dramatic complication in a literary work

2. the resolution of a complex sequence of events

The study of supersymmetric D-branes in curved spaces is a dual-purpose en-

deavor. On one hand, these objects provide new probes of the stringy physics which

was uncovered principally by the application of mirror symmetry. On the other

hand, when coupled with orientifolds, they provide a large, relatively uncharted

class of quasi-realistic string vacua.

Thus far, only a small part of the spectrum of branes on Calabi-Yau (CY)

manifolds has been studied. While a classification of these objects, even in the

geometrical limit, is lacking, an avenue toward systematic exploration is provided

by the fact that all bundles have a description in terms of simpler components.

Such a description, called a “resolution” (see [218] or [234] Chapter II, Corollary

5.18) is a sequence of maps between sums of rank-one bundles which encodes the

The material in this chapter appeared in “Linear sigma model toolshed for D-brane

physics” with Simeon Hellerman [232] and is reprinted with permission of JHEP.

194



non-triviality of the bundle of interest. As a means of clearly laying out the space

of D-brane states, these sequences appear promising [233]. It should be possible to

use this sequence data to make a useful model of the stringy physics.

A tractable description of the conformal field theory (CFT) describing the

string dynamics on a CY is lacking (for any branes, or even in their absence) except

for special values of the closed string moduli. A useful model of much of the physics

at all points in moduli space is provided by linear sigma models (LSM’s)[186]. Such

models are two-dimensional quantum field theories which approach the desired CFT

at long distances. Linear sigma models are in many cases the only available tools

for extracting information about string backgrounds in the small-volume region,

including the persistence of such backgrounds beyond perturbation theory. The

LSM is the ideal framework to

HARNESS THE AWESOME POWER OF HOMOLOGICAL ALGEBRA.

Already the shortest such sequences (“monads”) have appeared in linear sigma

model constructions, first for heterotic strings [186,235], and more recently for open

strings [232].

In this chapter, we make linear models for bundles whose resolution has an

arbitrary number of nodes42. More generally, the models we make generate any

bundle which can be realized as the cohomology of a sequence of sums of line

bundles.

The sequences which encode the data for these models are the same ones that

appear as building-blocks for the derived category of [233].43 As in other incarna-

tions of open string field theory [239], the condensation of spacetime tachyons is

manifested on the string worldsheet as flow to the infrared. In our construction,

the equivalence of quasi-isomorphic complexes is a consequence of universality in

the sense of the renormalization group.

There a second way in which our work relates to [233] which we explain in the

concluding section.

In addition to any motivation from recent exciting ideas about abstract de-

scriptions of D-brane spectra, our construction would be needed for an attempt to

make contact with phenomenology through this type of four-dimensional N = 1

42 It was suggested recently [233] that this would be useful.
43 Early work in this direction includes [236,237,238].
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string vacuum. Certainly any systematic exploration of this class of vacua would

incorporate the more general models we construct.

The plan of the chapter is as follows. In §2 we (p)review the construction [232]

of a linear sigma model coupling open strings to B-type branes, and more specifically

to a bundle defined by a one-step sequence. In §3 we explain why this construction

fails for more general bundles whose resolutions do not terminate after one step,

and explain our solution. In §4 we discuss a linear model for an even broader

class of bundles, namely those which are not pullbacks of bundles on the ambient

space in which the CY is embedded. In §5 we explore the relation of our linear

models to possible linear models for heterotic strings whose left-moving fermions

couple to these more general bundles. We close with a discussion of applications

and the extension of this set of ideas to CY’s and branes which are not complete

intersections. In appendix A we give more details about our models. In appendix

B we describe another formulation of our models, of which the one in the body of

the chapter is a gauge-fixed version.

Other work on linear models for open strings includes [240,241,242,243,244].

2. Brief review of the construction for one step

We present this discussion in the context of a CY hypersurface in projective

space, but the generalization to any complete intersection in a toric variety should

be clear. The simplest example of the monad construction defines a holomorphic

vector bundle, V , from the sequence of maps

0 → V → E1 ≡
⊕

a1

O(na1
)
d1−→E2 ≡

⊕

a2

O(na2
) → 0.

The first map is inclusion and the second map is

d1 :E1 → E2

βa1 7→
∑

da2
1 a1

(φ)βa1 .

This sequence is exact in the sense that the kernel of one map is the image of

the previous one. For our purposes, the bundles El are sums of powers of the

hyperplane bundle over a projective space. We want to consider type II string

theory on a Calabi-Yau hypersurface, X , in the projective space. A linear sigma
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model which realizes open strings ending on a brane wrapping X with gauge bundle

V works as follows [232].

The bulk fields are the same as in the (2,2) linear model for X . For ease of

exposition we present the model for a hypersurface in IP4 defined by a homogeneous

polynomial G of degree d = 5. Then one has a single U(1) gauge multiplet under

which the chiral multiplets Φi, i = 1 . . .5 carry charge 1 and P carries charge −5.

There is a (2,2) superpotential Wbulk = PG(Φ). In accordance with the notation

of the relevant (B-type) topological field theory, we refer to the fermions in a bulk

chiral multiplet as

Θ =
1√
2
(ψ+ − ψ−), η =

1√
2
(ψ+ + ψ−).

We refer to [186] for more details.

We give these fields couplings to boundary matter which respect B-type su-

persymmetry. By B-type supersymmetry we mean a subalgebra of the bulk (2,2)

supersymmetry generated by a linear combination of Q+ and Q− rather than a

linear combination of Q+ and Q†
−. Boundary conditions preserving such a subal-

gebra are associated with branes of even codimension in the CY [245]. We call the

conserved supercharges Q and Q†. The representation theory of their algebra is

similar to that of (0,2) two-dimensional supersymmetry and is worked out in [232].

The two kinds of multiplets we will need are: Fermi multiplets, β, have a fermion

as their lowest component, and chiral multiplets, ℘, have a boson as their lowest

component. Both satisfy either the chiral constraint, Q†(β, ℘) = 0, or some defor-

mation thereof. The consistency conditions on such deformations will play a key

role in building the more general bundles.

2.1. About kinetic terms

A Fermi multiplet contains a complex fermion, β, and an auxiliary complex

boson, b. A supersymmetric kinetic term is 44

∫

d2θβ†β = b†b− i(∇0β
†)β + iβ†(∇0β)

44 We use gauge-covariantized supercharges, so we omit the usual eqV ’s.

197



where

∇0 ≡ i

2
{Q,Q†}.

A boundary chiral multiplet contains a complex boson, ℘, and a fermion ξ. In

addition to a usual kinetic term of the form

∫

d2θ℘†∇0℘,

we add a magnetic field term:

∫

d2θB℘†℘ = Bξ†ξ +B℘†∇0℘− (∇0B℘
†)℘

where B is a constant. Consider a limit where B is big so that we can ignore the

kinetic terms for ℘, c.f. e.g. [246]. This approximation can be justified by the fact

that this term is less irrelevant than the kinetic one. In that case, the momentum

conjugate to ℘ is iB℘†. So canonical quantization gives

[℘, ℘†] = 1/B.

The coupling to the magnetic field masses up the fermion ξ and it halves the number

of ℘ degrees of freedom - i.e. the set of states made by ℘ is now just the Hilbert

space of a harmonic oscillator. It makes the ℘ multiplet into an exact bosonic analog

of a Fermi multiplet. Since we work in an approximation where the magnetic field

term dominates the kinetic term, we will drop the usual kinetic term altogether and

adopt a normalization for ℘ such that B ≡ 1.

2.2. The model for a monad

On the boundary of the string, introduce Fermi multiplets, βa1 , which live in

the bundle E1, and chiral multiplets, ℘a2
, which live in the bundle E?2 . In this case

the half-superspace integrand which generates the bundle V is

W = ℘a2
da2
1 a1

βa1

which we abbreviate as

W = ℘d1β

(We will suppress indices whenever possible!)
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After integrating out the auxiliary bosons in βa, this leads to the following

interactions on the boundary

L = . . .+ ξa2
da2
1 a1

βa1 + h.c.+
∑

a2

℘a2
da2
1 a1

2

The finishing touch we need to put on the monad model is to implement a

charge projection on the boundary which guarantees the right number of Chan-

Paton (CP) states – i.e., that only one Chan-Paton fermion at a time will be excited,

no more and no less. Specifically, we gauge the symmetry which acts only on

boundary fields, as
℘ 7→ eiγ℘

β 7→ e−iγβ.

This is done by adding a supersymmetry singlet, one-dimensional gauge field a0 on

the boundary, which couples as

La =

∫

∂Σ

a0(jS − 1)

where jS is the boundary symmetry charge. Since each excitation of the β fermions

is in effect a ’quark’ at the left endpoint of the open string (or an ’antiquark’ at

the right endpoint), the charge projection restricts the system to a subsector of

the Hilbert space where the open string worldsheet couples to the gauge field as a

section of V ⊗ V ∗ [232].

3. Any resolution

Consider a bundle V over a Calabi-Yau manifold which is a hypersurface in

projective space. Such a bundle has a resolution of the form

0 → V → E1
d1−→E2

d2−→E3 → · · · (3.1)

which is an exact sequence and the Els are direct sums of line bundles. The map

from El to El+1 depends on φ and we will call it dl. Let kl be the rank of El.

At this point, the important point to make is what goes wrong with the naive

model when d1 has a cokernel. This is twofold: firstly, there are extra massless ℘s on

the boundary, each of which gives an energetically degenerate harmonic-oscillator
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spectrum of states, leading to the wrong spectrum of CP factors. Secondly, and

perhaps more importantly, a generic deformation of the matrix elements of d1 will

destroy the brane. This happens because the matrix d1 imposes overconstrained

conditions on β, which are inconsistent rather than redundant for a generic defor-

mation. So under a random deformation, the equations of motion for the ℘s and βs

will simply set them to zero at low energies, meaning that no states will satisfy the

boundary charge projection – there will be no CP factors. This is connected with

the problem of massless ℘’s in that the superpartners of the ℘’s are the Goldstone

fermions for the spontaneous breaking of supersymmetry.

Now for a model with the correct behavior. The sections of the line bundles

which we introduce will be alternately Fermi multiplets, βa(l), and chiral multiplets,

℘a(l+1). They are Fermi multiplets at the first step, as in the monad case, because it

is states of massless fermions that play the role of the CP factors (or the left-moving

current algebra in a (0,2) theory). The basic idea is that the fermions at the third

step pair up with the “extra” massless fermion partners of the ℘’s at the second

step (which arise because d1 has a cokernel). If the sequence does not terminate

there, the partners of the bosons at the fourth step pair up with the extra fermions

at the third step, and this process of lifting kernels and images continues until the

sequence terminates.

In the general case the boundary symmetry acts on all chiral multiplets with

one phase and all Fermi multiplets with the opposite phase.

For ease of discussion, we give the details for a bundle with a two-step resolu-

tion:

0 → V → E1
d1−→E2

d2−→E3 → 0. (3.2)

We will also assume for simplicity that the line bundles making up Ei at each step

are the same, i.e.,

Ei ≡ O(ni)
⊕ki .

This assumption is in no way essential to the construction.

Then the degrees ∆1,2 of the polynomials defining the maps d1,2 are n2 − n1

and n3 − n2, respectively. Here is the field content:

• Bulk fields: the usual (2,2) multiplets (φ, Pbulk, σ) where Pbulk is the bulk

P -multiplet.
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• A set of boundary fermi multiplets βi, a smoothly varying subspace of which

will define the desired bundle. They satisfy the usual chiral constraint {Q†, β} = 0

and their gauge charge is n ≡ n1.

• A set of boundary chiral multiplets ℘i with gauge charges −n2 = −(n+∆1).

Instead of the usual chiral constraint [Q†, ℘] = 0 these will obey a deformed chiral

constraint, which will fix the Q† variation of ℘ in terms of the other fields of the

problem.

• A set of boundary multiplets β′ which boundary-symmetry charge +1 and

gauge charge n3 ≡ n + ∆1 + ∆2. They will turn out to be forced to satisfy the

opposite of the chiral constraint: {Q, β′} = 0.

Now for the interactions. The half-superspace integral will be:

∫

dθ W ≡
∫

dθ ℘d1β.

We can add the obvious gauge-invariant kinetic term for the β, β′ multiplets:

∫

d2θ · β†β + β′†β′

The key to obtaining the correct physics is the multiplet structure of ℘:

Since d1 has a cokernel, the condition for the superpotential W to be annihilated

by Q† does not require Q† to annihilate ℘. Indeed, [Q†, ℘] = (anything) · d2 will

suffice.

There is an obvious choice: [Q†, ℘] = iβ′†d2. Since for a two-step sequence d2 is

onto, the nilpotence of Q† forces {Q†, β′†} = 0 – so β′ satisfies the opposite of the

usual chiral constraint.

This constraint completely determines the supersymmetry transformations of

the new multiplet. This is one of the two key ingredients in this new type of model.

The second is the observation that for a boson living on the boundary, it is consistent

to add to the Lagrangian a magnetic field coupling for the complex target space

fiber coordinates:
∫

d2θ ℘℘†. (3.3)

In fact it is necessary to add this term to obtain the mass terms and Yukawa

couplings that give the desired physics in the infrared.
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Rather than listing all the terms in the action and the supersymmetry trans-

formations here, we leave that to the Appendix. In this section we will discuss only

the terms which will be important for causing the model to flow to the correct brane

configuration at low energies, in the ’large radius’ phase of the worldsheet theory.

To clarify the content of the low energy theory we begin by integrating out the

auxiliary fields b in the fermi multiplets and also the superpartners ξ of ℘, which

become auxiliary at low energies in the presence of the large magnetic field. With

auxiliary fields eliminated, the key terms in the Lagrangian are then:

• Derivative terms for the physical bosons and fermions of the system:

i ·
[

β†(∇0β) + (∇0℘)℘† + β′†(∇0β
′) − h.c.

]

For the fermions these are just standard kinetic terms; for the bosons the

standard kinetic term is irrelevant and their dynamics at this scale is dominated by

lowest Landau level physics; the number of physical degrees of freedom is effectively

reduced by a factor of two and the complex bosonic fiber becomes a product of

noncommutative C1’s. Now the boson ℘ really does have similar kinematics to the

fermions β and β′, except with opposite statistics, i.e., [℘i, ℘
†
j ] = δij .

• Mass terms for the fermions:

β†(d†1d1)β + β′†(d2d
†
2)β

′ (3.4)

• Mass terms for the bosons:

℘(d1d
†
1 + d†2d2)℘

† (3.5)

Note that because of the large magnetic field, the physical mass of the bosons

is proportional to the coefficient of ℘ 2 rather than to the square root of that

coefficient.

In the next subsection we explain why these potentials and Yukawa couplings

are preicisely what we need to yield the correct sigma model at low energies.
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Interestingly, the supersymmetry transformations take a very nice form with ξ

and the other auxiliary fields integrated out:

{Q, β} = −id†1℘† {Q, β†} = 0

{Q†, β} = 0 {Q†, β†} = +i℘d1

[Q,℘†] = +id†2β
′ [Q,℘] = −iβ†d†1

[Q†, ℘†] = +id1β [Q†, ℘] = −iβ′†d2

{Q, β′} = 0 {Q, β′†} = −i℘d†2
{Q†, β′} = +id2℘

† {Q†, β′†} = 0

(3.6)

We note again that these transformations are consistent with the supersymmetry

algebra (in particular, Q2 = 0) because d2 ◦ d1 = 0. The relation {Q,Q†} =

2H holds on-shell, that is when the fields satisfy their (first-order) equations of

motion. Although the limit in which the two-derivative kinetic term for the bosons

vanishes simplifies the algebra greatly, the model is consistent without using this

approximation.

The generalization to sequences of an arbitrary number of steps should be clear.

The Q†-variation of a field associated with a given node encodes the previous map,

while the Q-variation encodes the next map. So, for example, to make a 3-step

sequence, we would add some ℘′ fields satisfying the undeformed chiral constraint

[Q†, ℘′] = 0 and deform the constraint on β′ to {Q, β′} = d†3℘
′†. The model works

for a sequence of arbitrary length; one never needs to add another superpotential

term, only deform the chiral constraint by hand at each step according to the data

of the sequence and add the appropriate full-superspace terms. In the appendix we

write down the model for a sequence of arbitrary length.

3.1. Large-radius analysis

The point of this section is to prove that we get the right low-energy behavior

for the two-step model from the interactions discussed in the previous subsection.

Make the bulk FI coefficient r large and positive, so that we are in the large-radius

CY phase of the bulk theory.
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Let us determine the supersymmetric vacuum of the theory by setting to zero

the supersymmetry variations in equation (3.6):

0 = d1β

0 = ℘d1

0 = ℘d†2

0 = d†2β
′

(3.7)

The first equation tells us that the massless βs live in the kernel of d1. Since d2 is

surjective, the last equation tells us that β′ must vanish. The two middle equations

tell us that ℘ is closed and co-closed which, since the sequence is exact at E2, tells

us that ℘ must vanish as well. This is the desired physics.

We would arrive at the same conclusion by a direct examination of the La-

grangian, without making use of supersymmetry. The statement that the sequence

we examine has no cohomology at the middle node is the statement that there is

no nonzero fiber annihilated both by d2 and by d†1. As a result, d†2d2 + d1d
†
1 is an

invertible matrix, so all components of ℘ are set to zero at low energies by their

equations of motion. Similar reasoning shows that all β′ are set to zero by their

mass terms at low energies, and that the surviving subset of the β’s is the kernel of

d1, just as we wanted.

Note that this analysis makes it clear that there is a direct relation between

cohomology of the sequence and massless worldsheet fields. In particular, if under a

deformation the defining polynomials the sequence fails to be exact at some point,

φ?, in the CY, closed and co-closed will no longer imply zero and we will find

massless β′s and ℘’s.

In summary, as in the simpler case, given a non-degeneracy condition for the

sequence (analogous to G = d1 = 0 has no solutions in the monad case [235]) all

of the ℘’s vanish in vacuum, and the mass matrix for the fermions imposes the

sequence.

3.2. Examples

The first example we study is a very trivial one, namely a multi-step resolution

for a twobrane on a two-torus with a trivial line bundle. Make the T 2 as a cubic

hypersurface in IP2. Consider the Koszul complex over the ambient IP2,

0 → V
i
↪→ O(1)⊕3 d1−→ O(2)⊕3 d2−→ O(3) → 0
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where the maps are

d1 =





0 φ2 −φ1

−φ2 0 φ0

φ1 −φ0 0



 and d2 = (φ0, φ1, φ2) ;

the inclusion is induced by

i =





φ0

φ1

φ2



 .

One can see by computing its Chern classes that the line bundle V defined by this

sequence is in fact trivial45.

To model a string coupling to this brane, we add on its boundary three fermi

fields β of charge 1, three chiral fields ℘ of charge −2, and another fermi field β′ of

charge 3. We add the superpotential

W = ℘d1β = εijkβ
i℘jφk

and implement the chiral constraints and charge projections discussed above.

Obviously this brane could also be constructed by simply adding a neutral

fermion on the end of the string. To see the relation to the above model, define an

effective neutral fermion, γ, by

βi = φiγ + massive.

Setting to zero ℘, β′ and the massive components of β then solves the vacuum

equations identically. So the multistep model does flow in the IR to the theory of a

single neutral fermion.

For a less trivial example, we study the pullback to the CY of the tensor square

V ≡ T∗IPn⊗T∗IPn of the cotangent bundle of IPn. This is defined by the sequence

0 → V
i
↪→ O(−2)⊕(n+1)2 d1−→ O(−1)⊕2n+2 d2−→ O(0) → 0

where the maps are

d1 : βij 7→
(

φjβij , φ
iβij

)

and d2 : (℘, ℘̂) 7→ φi(℘i − ℘̂i).

45 This statement is false. The example of the CY 1-fold is special in that the target

space is not simply connected; however the existence of a global section (demonstrated

below) means that the bundle is in fact trivial.
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To build this bundle, we add (n+1)2 fermi multiplets βij of charge −2, 2n+2

chiral multiplets ℘i and ℘̂i of charge −1, and one neutral fermi multiplet β′. The

superpotential is

W = ℘iφ
jβij + ℘̂jφ

iβij

and the nontrivial deformed constraints are

[Q,℘i] = −iβ†
ijφ

j† [Q, ℘̂j] = −iβ†
ijφ

i†

[Q†, ℘i] = −iβ′†φi [Q†, ℘̂i] = iβ′†φi

{Q, β′†} = − i(℘− ℘̂)†φi†.

We have given two examples of smooth bundles with constant fiber dimension

using resolutions of finite length. It would be nice to understand more about the

physics of the sheaves defined by more general choices of ranks and charges in a

multistep sequence (3.1).

4. Bundles which do not extend to the ambient space

In fact we lose some generality by considering only pullbacks of bundles on

the ambient toric variety. Bundles which extend generate in general a sublattice of

finite index in the lattice of all K-theory classes of bundles on the target variety.

In order to see how to generate linear models for more general bundles, let

us consider the case of a hypersurface defined by G(φ) = 0. The bulk then has a

single P -field and a superpotential Wbulk ≡ PG(φ). Non-extending bundles can be

realized as the cohomology of a sequence over the coordinate ring of the variety,

i.e. the cohomology of a set of maps dn such that dn+1dn = Mn+1 nG(φ) for some

matrix Mn+1 n of holomorphic polynomials.

The key fact in the following construction is that

dn+2Mn+1 n = Mn+2 n+1dn

Proof: G(φ)(dn+2Mn+1 n−Mn+2 n+1dn) = (dn+2dn+1)dn−dn+2(dn+1dn) = 0

by associativity. Since G is nonvanishing and polynomial rings contain no zero

divisors, that means the second factor dn+2Mn+1 n−Mn+2 n+1dn must vanish and

the statement follows.
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We now set the bulk η multiplet on shell; in particular this means F †P ≡

{Q†, η†
P } = G(φ). For a two-step resolution we take the boundary superpotential

to be

W = (℘d1 − η†
P
β′†M2 1)β

and the (deformed) chiral constraints to be

{Q†, β} = 0 [Q†, ℘] = β′†d2 {Q†, β′} = id2℘
†.

Clearly the supersymmetry algebra closes and the superpotential is annihilated by

Q†.

The extension to a multistep sequence over a hypersurface is straightforward.

For three steps, for instance, the superpotential is the same, and the supersymmetry

transformations are

{Q†, β} = 0

[Q†, ℘] = β′†d2 − η†
P
℘′M3 2

{Q†, β′} = id2℘
† {Q†, β′†} = ℘′d3

[Q†, ℘′] = 0

For an arbitrary number of steps, take the same superpotential and use the

constraints

{Q†, β} = 0

[Q†, ℘] = −iβ′†d2 − η†
P
℘′M3 2

{Q†, β′†} = i℘′d3 − η†
P
β′′†M4 3

· · ·
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5. Discussion

5.1. Relation to heterotic models

Field qG qL qR

Φi wi 0 wi

m

Γ −d 0 1 − d
m

β n1 1 n1

m

℘ −n2 −1 0

β′ n3 1 1 − d2
m

Table 1: The gauge charges and
“left-moving U(1)” charges of the
fields.

One might hope that one could

use similar technology to make linear

models for heterotic strings coupling to

these bundles. In fact, our spectrum

of fields was motivated by the anom-

aly coefficients and cancellation condi-

tions that one would have in the het-

erotic case. In the table at left we write

the gauge charges, boundary symmetry

charges, and R-symmetry charges of our

fields for a generic two-step model.

Now imagine that they are instead representations of (0,2) supersymmetry, as in

[235]. We call the boundary symmetry charge qL because in its heterotic incarna-

tion, it is the charge under the left-moving U(1) which becomes part of the spacetime

gauge group (and a Z2 subgroup of which provides one of the GSO projections).

Using these charges we would calculate the anomaly in the left-moving U(1) to be

A(L,G) ∝
∑

fields

qGqL = k1n1 − k2n2 + k3n3.

This is just c1(V ) 46. Note that consistency only requires this to vanish mod 2,

since only a Z2 subgroup of U(1)L is gauged. The gauge anomaly would be

A(G,G) ∝
∑

fields

(−1)fermiqGqG ∝ c2(V ) − c2(X).

46 The chern classes of the bundle V are determined by the sequence (3.1) to be

c(V ) =
∏

l=0

c(El)
(−1)l

and in particular c1(V ) =
∑

l
(−1)l

∑

al
nal

J , and c2(V ) =
∑

l

∑

al 6=a′
l

nal
na′

l
J2 where J

is the (1, 1) form on the CY.
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The anomaly in the U(1)R symmetry would be (modulo the gauge anomaly)

A(R,G) ∝
∑

fields

qGqR =
∑

i

wi − d,

the first chern class of the hypersurface.

As in [235,247] we can calculate the left-moving central charge of our model

as an anomaly-matching coefficient in the massive theory. Specifically, the left-

moving central charge is the would-be (if it were gauged) quadratic anomaly of the

left-moving U(1) symmetry. This is r = k0 − k1 + k2, the rank of the bundle, as

expected.

However, while the spectrum seems to be correct, the interactions we would add

to give the right vacuum structure do not respect two-dimensional Lorentz invari-

ance. An equivalent way to phrase the obstruction is that the desired interactions

break the U(1) R-symmetry which is thought to flow to the R-symmetry of the

right-moving N = 2 superconformal algebra. It is possible that a new R-symmetry

appears in the IR, but without a UV candidate for the IR R-symmetry one loses

some confidence that one has identified the correct LSM. This is puzzling, but we

still hope to find a LSM for the multi-step resolution in the heterotic case. Given

that nonperturbative conformal invariance of (0,2) models has only been proven

using the linear models [248], it would be fascinating if no heterotic LSM could be

found for multi-step bundles.

We also hope to find an argument that motivates the field content directly in

the open string case, such as a direct relation between the RR charge of the D-brane

configuration and the spectrum of worldsheet fields.

5.2. Other phases and singularities

One of the great successes of the linear sigma model approach to CY physics

is an automatic description of the stringy physics of small-volume phases of the

theory. We are still working out the behaviour of the monad theories when the FI

parameter is large and negative [232], and we leave the application of that analysis

to these more intricate models for future work.

But there is a possibility of new physics from our multistep bundles. When the

moduli of the bundle are deformed in such a way that the maps beyond the first

step degenerate, cohomology will appear at higher nodes. It would be interesting
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to see if the resulting massless worldsheet fields have any special signatures in the

spacetime physics.

We have been assuming thoughout this chapter that the sequence

0 → E1
d1−→E2

d2−→E3 → · · · (5.1)

was chosen so that its cohomology was a bundle. In fact, the cohomology of such a

sequence will generically be a more general coherent sheaf (espoused by Harvey and

Moore [249] as the proper mathematical characterization of wrapped D-branes).

Work is in progress to harness this fact to study D-brane configurations without

space-filling branes [232].

5.3. Other classes of models

In addition to the heterotic models discussed above, we are hoping to extend

the construction to:

1. (2,2) linear models for varieties which are not complete intersections. The

generic CY manifold is such a beast. If a variety is not a complete intersection,

it means that the number of defining equations is bigger than its codimension.

As a result, there are relations among these equations, and in general relations

among these relations... There is again a sequence of maps resolving the ideal

of the variety. We have made some progress towards such (2,2) models using

extra gauge symmetries.

2. Open strings in the presence of branes wrapping submanifolds which are not

complete intersections.

If we can accomplish item 1 above, our technology will be very useful for the program

of [233]. In particular, the 4d N = 1 field theory which is proposed to describe the

space of branes with fixed charge involves a superpotential with relations among

the vacuum equations, and relations among these relations . . .
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Appendix A. Full supersymmetry transformations and lagrangian

In this appendix we give a more detailed description of the supersymmetry

structure of our models, and present the model for a sequence with an arbitrary

number of nodes.

First we present the gauge-covariantized supersymmetry transformations for

the two-step case and show that we get all of the terms we need in the action to get

the desired massless degrees of freedom. (We do not write down terms in the bulk

action which are given in [186].) We suppress indices on the fields.

The transformations of the bulk multiplets under the reduced superalgebra are:

[Q, φ] = −iΘ [Q†, φ] = 0

{Q,Θ} = 0 {Q†,Θ} = 2∇0φ

and

{Q, η} = F {Q†, η} = 2∇̃1φ
†

[Q,F ] = 0 [Q†, F ] = −2i∇0η + 2i∇̃1Θ + 2iqφ
(

λ†+ + λ†−

)

.

where ∇̃1 ≡ i
2
√

2
{Q,Q†

+ + Q†
−}, the anticommutator of Q with the broken super-

charge.

We will introduce the notation ξ for the fermionic superpartner of ℘. So:

{Q, β′†} = b′ {Q, β′} = 0

{Q†, β′†} = 0 {Q†, β′} = b′†

[Q, b′] = 0 [Q, b′†] = −2i∇0β
′

[Q†, b′] = −2i∇0β
′† [Q†, b′†] = 0

[Q,℘] = −iξ [Q,℘†] = +id†2β
′

[Q†, ℘] = +iβ′†d2 [Q†, ℘†] = −iξ†

{Q, ξ} = 0 {Q, ξ†} = 2∇0℘
† + d†2b

′† − i(d†2,aθ
a†)β′

{Q†, ξ} = 2∇0℘+ b′d2 + iβ′†(d2,aθ
a) {Q†, ξ†} = 0

So the d2θ integral of β′†β′ is

b′b′† − i(∇0β
′†)β′ + iβ′†(∇0β

′)

211



and the d2θ integral of ℘℘† contains five types of term:

• a ’target space magnetic field’ term

+i(∇0℘)℘† − i℘(∇0℘
†) (A.1)

• quadratic terms for the gauge-invariant ξ fermions:

−ξξ† (A.2)

• mass terms for the β′ fermions:

+β′†d2d
†
2β

′ (A.3)

• some F-terms giving rise to a bosonic potential for ℘:

ib′d2℘
† − i℘d†2b

′† (A.4)

• and some cross terms between β′ and ℘ which have no obvious role:

−β′†(d2,aθ
a)℘† − ℘(d†2,aθ

a†)β′ (A.5)

• We also have the usual kinetic terms for the β-fermions:

∫

d2θβ†β = +b†b− i(∇0β
†)β + iβ†(∇0β) (A.6)

Also, the superpotential contributes the following component terms:

∫

dθW ≡ i

∫

dθ℘d1β = i

∫

dθ℘d1β

= ξd1β + β†d†1ξ
†

+ ℘(d1,aθ
a)β + β†(d†1,aθ

a†)℘†

+ i℘d1b− ib†d†1℘
†.

(A.7)

The model with many nodes

For an arbitrary number of steps, the action is

∫

d2θ
∑

n

(

β†
(n)β(n) + ℘(n+1)℘

†
(n+1)

)

+

∫

dθ W + h.c.
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and the on-shell supersymmetry transformations are

{Q†, β(1)} = 0 {Q, β(1)} = −id†1 · ℘†
(2)

· · ·
{Q†, β(n)} = idn−1 · ℘†

(n−1) {Q, β(n)} = −id†n · ℘†
(n+1)

[Q†, ℘†
(n+1)] = idn · β(n) [Q, ℘†

(n+1)] = id†n+1 · β(n+2)

· · ·

Appendix B. Formulation with shift symmetries

In the main part of this chapter we have given a presentation of our models

which clearly exhibits the spectrum of fields and their interactions. This presen-

tation has the drawback that the supersymmetry transformations of the fields are

complicated and the closure of the supersymmetry algebra is not manifest. In

this appendix we present a formulation of our models in which the supersymmetry

transformations of all fields are simple but which involves a number of nonlinearly-

realized gauge symmetries. The formulation of the models given in the main part

of the chapter results from fixing these gauge symmetries. This appendix clari-

fies the relation between the modified chiral constraints and the “fermionic gauge

symmetries” of [235,247], and is how our models were initially constructed.

We again present the construction for a two-step sequence, (3.2). Introduce

a fermi multiplet β1 of bulk gauge charge n1, a chiral multiplet ℘̃2 of bulk gauge

charge −n2, and an unconstrained multiplet V3 of gauge charge n3 whose lowest

component is a boson. The usual superpotential

W = ℘̃2d1β

respects the following shift symmetry, which we gauge:

℘̃1 7→ ℘̃1 + Ω2d2

V3 7→ V3 + Ω2

The gauge parameter Ω2 is a chiral multiplet, Q†Ω2 = 0. Then the shift-symmetry

invariant field ℘2 ≡ ℘̃2−V3d2 satisifes the constraintQ†℘2 = β†
3d2 with β†

3 ≡ −Q†V3.

β†
3 is gauge invariant and satisfies Q†β†

3 = 0.
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In order to extend the sequence by another step, enlarge the gauge symmetry.

Relax the condition Q†Ω2 = 0 on the gauge parameters and demand merely that

Q†Ω2 = Ω3d3 for some Ω3 with Q†Ω3 = 0. Note again that the fact that the maps

dl form a complex is crucial for closure of the superalgebra. Under this modified

shift symmetry, the quantity ℘2 is still gauge invariant, but β̃3
† ≡ −Q†V3 is not.

Introduce a new gauge (i.e. unconstrained) multiplet V4 (whose lowest component

is a fermion) and assign it a transformation Σ4 7→ Σ4 + Ω3. Then β†
3 ≡ β̃3

† − Σ4d3

is gauge invariant, and satisfies the deformed chiral constraint Q†β†
3 = ℘4d3 where

℘4 ≡ −Q†Σ4 is gauge invariant and annihilated by Q†. The generalization of this

formulation to an arbitrary number of steps should be clear.
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Chapter 11: Matrix Theory on Projective Space

Using linear sigma models for open strings, we derive supersymmetric actions for

multiple pointlike D-branes probing the canonical bundles of toric surfaces. The

moduli spaces of these worldvolume theories are symmetric products of the target

space. In some instances, we are required to gauge nonlinearly-realized symmetries

of the system. We comment on extensions of these techniques to the case of branes

probing compact Calabi-Yau manifolds. We also discuss transitions in closed-string

moduli space which reassign charges under the grading by worldsheet R-symmetry.

1. Introduction

M(atrix) theory and its AdS/CFT avatars have proven useful in defining the

dynamics of quantum gravity on various spaces. Initially formulated in flat space

[250], the theory has subsequently been developed to describe branes probing the

geometry of orbifolds and their resolutions, as well as tori of diverse (but not too

high) dimensions. Overall, the enterprise has proceeded in a rather ad hoc way, lim-

ited by our sparse understanding of the dynamics of branes transverse to nontrivial

geometries.

Recently, a description of the dynamics of open strings in rather general space-

times has been emerging [251]. In this approach, the wavefunctions for open string

endpoints are sections of coherent sheaves, and a given D-brane configuration is

an object in the derived category of coherent sheaves over the target space. There

is a ZZ grading on the entries in this complex which encodes the relationship be-

tween spacetime supersymmetry and the worldsheet superconformal algebra. The

problem of understanding the spectra of BPS objects is decomposed into one (F

terms) which involves holomorphic data and can be solved using topological field

theory, and (D terms) a harder stability problem which requires keeping track of

the grading.

The unpublished material in this chapter was developed in collaboration with Simeon

Hellerman.
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A useful tool for exploring the space of configurations (solutions at least to the

F-term problem) is the open string linear sigma model [232,178]. In particular, the

linear sigma models associated by the techniques of [232,178] to two complexes E·

and F · which are quasiisomorphic can be shown to be IR equivalent. 47 A current

limitatation of the approach via linear models is the lack of control over the U(1)

R-symmetry in the infrared N = 2 superconformal algebra when there are extra

global U(1) symmetries present in the massive theory.

The goal of this chapter is to begin to combine the technologies of [251] and

[232,178] to study examples. In particular we find that we can construct quite

explicitly the worldvolume theory for pointlike branes probing toric Calabi-Yau

(CY) threefolds. We consider branes which are pointlike probes of the total space

of the canonical line bundles over toric surfaces. This class of examples has a

very simple construction via brane-antibrane physics. Relatedly, all worldvolume

theories discussed in this chapter are invariant under a superalgebra containing four

supercharges.

The fact that the target space has vanishing first Chern class enters the con-

struction in only one way – it renders the theory supersymmetrizable. There is a

close relationship between the fact that the target space is a CY threefold and the

fact that we can impose the holomorphic constraints as the gradients of a single

function.48 Namely, the assumption that the constraints on the massless fields in

the worldvolume theory arise as gradients of some function implies that for each

constraint C, the theory contains a field L which lives in the space dual to that of

the constraint (so that ∂W
∂L = C ). But we know that the light worldvolume fields

themselves can be thought of as representatives of some first cohomology group (be-

cause you can think of them as deformations of a gauge connection, or of a tachyon

map between adjacent nodes which carries R-charge one, or more generally because

47 The statement that E· and F · are quasiisomorphic says that there exists a map of

complexes

ρ : E· → F ·

which induces an isomorphism on cohomology. Assembling the linear model for E· ⊕−F ·

(−F · is the antibrane of F ·), one finds that the map ρ can be used to construct a gauge-

invariant worldsheet boundary superpotential. Turning on this operator gives mass to

every boundary field – its condensation annihilates the two branes.
48 We thank Mike Douglas for explaining this to us.
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the string field has degree one) over the target space; further we know that the con-

straints lie in the corresponding second cohomology group (because the obstruction

to deforming a holomorphic connection is F (0,2), or because supersymmetry requires

that the tachyon maps form a complex, or more generally because the equation of

motion for the string field carries ghost number two). This means that for every

element of

H2(X, V ⊗ V ?),

we must able to find an element of the dual space, which by Serre duality is

H1(X, V ⊗ V ? ⊗KX)

where KX is the canonical bundle of the target space X . This can only be guaran-

teed if X is KX is trivial and X is three-dimensional; namely, if X is a Calabi-Yau

threefold.

These theories also contain blown-up brane states which describe the nucleation

of higher-dimensional brane-antibrane pairs which can be separated in directions

transverse to the toric space.

Matrix theory

To our knowledge, no four-dimensional Minkowski vacuum of string theory has

been given a nonperturbative definition. Such a definition of these backgrounds

would be at least comforting, and possibly even useful. While the difficulties that

arise in attempting a matrix definition of M theory on T 6 seem formidable [252,253],

recall that [254] suggest that the situation for matrix theory on a CY threefold whose

holonomy is all of SU(3) is better than that for T 6. In particular:

1. the light states in the (conjectured) DKPS limit for a CY3 do not have spin 2,

2. there is not an infinite (KK) tower of them, and

3. the worldvolume theory doesn’t become 6 + 1 dimensional in the limit, and

therefore has a chance of decoupling from gravity. The theory is at most

3+1 dimensional, and the three putative spatial dimensions are compact and

string-scale (but maybe sometimes shrink). However momentum modes on the

compact spatial volume of this theory are not BPS and one has no reason to

believe their energies will shrink as the size of the original CY is scaled down;

at energies below α′ we may integrate them out to obtain an effective quantum

mechanics.
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In accord with the fact that we have little to say about issues of D-term stability,

we do not make any claims about the kahler data in the worldvolume theory, which

were the point at issue in [255,256].

A problem that does not arise for matrix theories which enjoy more supersym-

metry, but which will arise here, is the issue of what happens to the matrix de-

scription when the pointlike probe one is using can decay. The basic answer is that

one must include in such a description also collections of branes and anti-branes49,

which is the very purpose of the description via the derived category. We will see

below that our descriptions in fact retain some of this additional information.

A cynical reading of our results is that we have found symplectic quotient

descriptions of N -fold symmetric products of these CY threefolds.

The organization of the chapter is as follows. We warm up in §2 with branes

on one dimensional projective space. This is a special case in that no superpo-

tential term is required in the probe action. In §3, we study many-probe theories

for K(IP2), and for a cubic hypersurface thereof. §4 describes matrix models of

the Hirzebruch surfaces, IFn. §5 describes evidence that these nonrelativistic probe

theories encode more of the physics than just their moduli space; namely, we inter-

pret non-supersymmetric stationary points of the action in terms of nucleation of

brane-antibrane pairs. MAYBE in §6 we mention some ideas about the emergent

nature of the ZZ grading. In the conclusion we discuss the extension of these ideas

to brane probes of compact Calabi-Yau manifolds.

We note that some of the quiver theories we write down have already appeared

in the literature. In particular, the theories for IP2 and for IP1×IP1 were constructed

in [258] in a similar context using a mirror description in terms of intersecting special

Lagrangian three-cycles. These theories also appear in [259] and are implicit in [260].

Quiver theories for some of the other toric surfaces given in these references differ

from the ones we construct. We comment in the concluding section on the group

of dualities whose existence this suggests.

49 Such a viewpoint was recently advocated in [257].
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2. Branes on CIP1 (not really)

The simplest action to describe is that of zerobranes on the product of CIP1

with a four-dimensional Minkowski factor. This theory is formally a dimensional

reduction of a four-dimensional gauge theory. The relationship between the two

theories is similar to that between the M(atrix) theory Lagrangian for zerobranes

in 10-dimensional Minkowski space and the 10-dimensional super-Yang-Mills ac-

tion in that the higher dimensional action is anomalous for general SU(n), but its

dimensional reductions are anomaly-free, and describe consistent brane actions.

The reader may be puzzled by the fact that CIP1 is neither Ricci-flat nor of

complex dimension three. We introduce this example mainly to give a flavor of the

construction, but it can be embedded in string theory as a D-brane lagrangian in

various ways. For instance if we consider type IIA string theory on a Calabi-Yau

which is a K3-fibration of CIP1, the lagrangian for n fourbranes wrapped on the

fiber has this form. However while the quiver is the simplest among the examples

we consider, the embedding in string theory is more complicated than we wish to

have to deal with, so we will just look at the Lagrangian and not worry too much

about where it came from.

2.1. Techniques

We build a zerobrane from a brane and an antibrane wrapping the whole pro-

jective space:

0 → O B(z)−→ O(1) → 0 (2.1)

where B(z) is a linear polynomial in the homogenous coordinates z1,2 of IP1. There

is one unit of gauge flux on the antibrane, so when the open string tachyon rolls to

its minimum and the 2-branes annihilate one another, a D0-brane remains.

A useful framework for thinking about this system is the open string linear

sigma model of [232]. Here one preserves two (B-type) worldsheet supercharges,

and adds matter to the boundary of the string to construct the Chan-Paton bundle.

Boundary condition changing vertex operators such as the tachyon mentioned above

are bilinear in these boundary fields.

In this particular case, we consider the bulk linear model for IP1 [186]

z1 z2 p

C∗ 1 1 −2
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We have added the p field to stabilize the kahler modulus of the projective space

against renormalization. We will set p∂Σ = 0 as a boundary condition in the UV.

We will see that the worldsheet theory contains exactly marginal operators which

correspond to shifts in this boundary condition.

2.2. Worldvolume theory

Massless worldvolume fields can be identified in the boundary linear sigma

model by examining the cohomology of the worldsheet supercharge acting on op-

erators of the massive theory [232]. This computes the Ext groups of the complex

(2.1) with the maps turned off. Note that, just as in the closed string case where

there can be “non-toric deformations,” not all of the marginal operators are always

obvious in the linear model.

The theory as we have defined it thus far results in a worldvolume gauge theory

which contains two U(1) factors, one combination of which is the decoupled center

of mass U(1). The complementary combination couples to a pair of chiral fields

of the same charge, and will be the U(1) implementing the quotient which turns

C2 − {(0, 0)} into CIP1. The size of the projective space is determined by the

magnitude of the Fayet-Iliopoulous coefficient for the relative U(1) implementing the

symplectic quotient. When this coupling is negative, this gauge theory is strongly

coupled and a different description is more appropriate.

To model N D0 branes probing this space, we simply append N free Chan-

Paton labels to the ends of our strings. The gauge group of this theory is then

U(N)L × U(N)R and the matter content is a pair of chiral superfields

BI
ij̃
, i, j̃ = 1, . . . , N I = 1, 2

both transforming in the same representation (N, N̄) of U(N)L×U(N)R, and trans-

forming as doublets under the SU(2) global rotational invariance acting on the in-

dex I. This global symmetry will implement the obvious SU(2) rotations of the

two-sphere, IP1.

Note that unlike the N = 1 decomposition of an N = 2 hypermultiplet in the

bifundamental, this pair of chiral multiplets transform the same, rather than dually

to one another, under the pair of SU(N) factors. That is, the quiver diagram is

this:
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N N
2

Fig. 19: Quiver diagram of the matter content of the IP1 matrix theory.

Moduli space

The D-terms arising from the two gauge groups are

Di
j = −

∑

I

B†k′
Ii B

k′

Ij − rδij

Di′

j′ =
∑

I

Bi
′

IkB
†j′
Ik − r′δi

′

j′

(2.2)

To parametrize the flat directions, start by writing

BI = εIJZ
J . (2.3)

This is motivated by the fact that the field B represents the profile of the open

string tachyon whose zero locus is the location of the zero brane:

0 = BIZ
I (2.4)

is solved by (2.3). Next, let us work in a patch of the moduli space here Z2 is

invertible. In the abelian case, such a choice is always possible because at least one of

the Zs is always nonvanishing in the vacuum manifold (for positive FI parameters),

or more generally from the description of the moduli space as a toric variety CN \F
where F is some subspace of CN specified by the toric data. In the non-abelian

case, the generalization of this condition is that the Z matrices have no common

kernel. If there are components of the vacuum manifold (when FI parameters are

generic) where this condition fails, they have a very different geometry and we have

not found them. Let

Z2W = Z1 (2.5)

define W , which will be our matrix local coordinate in this patch.

Next we show that W commutes with its dagger using the D-terms in (2.2)

above. Writing them in terms of Z and suppressing indices, we get

0 = D = Z1Z1† + Z2Z2† −R2

= Z2W (Z2W )† + Z2Z2† −R2.
(2.6)
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Without loss of generatlity, we work in a patch where Z2 is invertible. Multiplying

both sides by (Z2)−1 on the left and by (Z2†)−1 on the right we get

0 = (Z2)−1D(Z2†)−1 = WW † + 1 −R2
(

Z2†Z2
)−1

(2.7)

which gives

Z2†Z2 = R2
(

WW † + 1
)−1

(2.8)

The other combination of D-terms then gives

D′ = −Z1†Z1 − Z2†Z2 +R2

= −W †Z2†Z2W − Z2†Z2 +R2

= −R2W † (WW † + 1
)−1

W −R2
(

WW † + 1
)−1

+R2

= −R2
[

W,W †]+ O(W 4)

(2.9)

where to get the third line we used (2.8) and in the last line we consider small

fluctuations around the point Z1 = 0, i.e. small W .

Thus, the worldsheet boundary linear model has led us to a field theory with

four supercharges whose moduli space contains an N -fold symmetric product of

CIP1. We say “contains” because there are actually other massless fields on the

worldvolume theory, related to motion in the P -field direction. We will come to

terms with such degrees of freedom in the next section.

3. Branes on CIP2 (not really)

Next we will try to study point-like branes on CIP2. Clearly this is not a

Ricci-flat space, so we must do something to stabilize its volume. We will therefore

consisider strings propagating on the total space of the canonical bundle, O(−3),

of IP2, and we will restrict their endpoints to lie at the origin of the fiber direction.

The bulk linear model is defined by

z1 z2 z3 p

C∗ 1 1 1 −3

In addition to setting p ∂Σ = 0, we define our zerobrane by the complex

0 → O

[

A1(z)
A2(z)

]

−→ O(1) ⊕O(1)
[B1(z),B2(z)]−→ O(2) → 0 . (3.1)
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This is indeed a complex if

0 = B1(z)A1(z) +B2(z)A2(z).

In terms of the coefficients of Ai(z) = AiIz
I , Bī(z) = BīIz

I , this is equivalent to

0 =
∑

i

(BīIAiJ + (I ↔ J)) .

Calculating the Q† cohomology, we find the field content defined by the quiver

in Fig. 2.

N
6

N

2N
__

3 3

Fig. 20: The quiver diagram for matrix theory on IP2.

The superpotential, as can be deduced from holomorphic Chern-Simons theory

or because it is the only gauge-invariant object with the right properties, is (in

matrix notation)

W = Tr SIJBIAJ . (3.2)

3.1. Moduli space

We can parametrize the flat directions of the bosonic potential by N × N

matrices ZI , P where

ZI = εIJKBJAK

SIJ = PZIZJ .
(3.3)

As for the example of IP1 in §2, the definition of Z is motivated by the fact that

the zero locus of the open-string tachyon should be the location of the brane.

We begin by searching as before for ’pointlike’ vacua, in which there exists a

homogeneous coordinate on the base, say Z3, which is invertible.
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Matrix local coords W 1,2 and U are defined, in a patch where Z3 is invertible,

by

W I = (Z3)−1ZI , SIJ = UW IW J (Z3)−1. (3.4)

That one of the three matrix projective coordinates be invertible like this we will

call the assumption of a ’pointlike’ vacuum. This name will justify itself a posteriori.

We believe all D-term vacua in the large-base phase will turn out to be ’pointlike’

in this sense.

Below we explain that in the case of multiple probes, all of the matrix local

coordinates, including the fiber coordinate U , are forced to commute on the moduli

space. But first, let us count charges, in the abelian case, to show that the extra

dimension is actually the fiber of the canonical bundle. As we explained in the

introduction, the fact that our probe worldvolume theory is N = 1 supersymmetric

with a superpotential is related to the fact that the space being probed has trivial

canonical bundle. Next we show that in fact the moduli space is the total space

of said canonical bundle. There is a residual unbroken abelian gauge symmetry

under which the Z’s have unit charge. This implements a symplectic quotient on

the moduli space, turning the space coordinatized by the Z’s into a CIP2. But what

is the extra coordinate P? To determine its charge under this symplectic quotient,

we note that the superpotential W ∼ SBA is neutral, Z ∼ BA has charge one, so

S has charge −1. Since S ∼ PZ2, we conclude that P has charge −3. This means

that it is precisely the coordinate on the fiber of the canonical bundle O(−3) over

the CIP2.

3.2. Matricization

Next we show that the ring of matrix functions is the same as the ring of regular

functions on the N -fold symmetric product of O(−3) → CIP2. First we show that

[w1, w2] = 0 in the F -term vacua.

Let b ≡ w2a, c ≡ w1a. If

Z3b = Z2a, Z3c = Z1a (3.5)

then what we need to show is that Z1b = Z2a. The key point is that since Z3 is

invertible and equal to B1A2 = −B2A1, then A1,2 have no kernel n-dimensional
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image, and B1,2 have n-dimensional kernel. Combined with the fact that B1A1 =

B2A2 = 0, this means that the kernel of B1,2 equals the image of A1,2.

Then we have

B1A2b = −B2A1b = B3A1a = −B1A3a (3.6)

and likewise

B1A2c = −B2A1c = B2A3a = −B3A2a (3.7)

so the vectors A2b+A3a and A1c+A3a lie in the kernels of B1,2 and hence in the

images of A1,2, respectively. So A3a = A1d−A2b = A2e−A1c. Multiplying on the

left by B1 and B2 and gives e = −b and d = −c. So we have A1c+A2b+A3a = 0,

and multiplying on the left by B3 gives Z1b = Z2c, as desired.

Next we show that both ZISJK and SIJZK are both totally symmetric in

I, J,K.

The vanishing of SIJZK − (J ↔ K) is equivalent to the vanishing of

εJKLS
IJZK which equals

εKLJε
KMNSIJBMAN = SIJ (BLAJ − (L↔ J)) (3.8)

By the F -term condition for SIL this is equal to

= −2SIJBJAL = −2(SIJBJ )AL (3.9)

and by the F -term condition for AI this vanishes. Likewise the quantity εIJKZ
ISJK

vanishes by the F -term conditions for S and B.

This tells us two things. First of all, if we define u ≡ S33Z3 then we find that

uwi = S33Zi = S3iZ3 = Si3Z3 (3.10)

= (Z3)−1Z3Si3Z3 = (Z3)−1ZiS33Z3 = (Z3)−1Ziu = wiu (3.11)

Second of all it tells us that

S33Zi = S3iZ3 = Si3Z3 = uwi (3.12)

and

S3iZj = Sj3Zi = SijZ3 = Sj3Zi = (i↔ j) (3.13)

= S3iZ3(Z3)−1Zj = uwiwj (3.14)

The result of this analysis is that the fiber direction u is forced to commute

with the other variables on the vacuum manifold.
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3.3. Branes on a compact CY!

Consider adding to the worldvolume superpotential the term

∆W = GIJKtr εIJMSJKBLAM

= GIJKtr PZIZJZK = tr PG(3)(Z)
(3.15)

So the F-term equation from P restricts the Z’s to lie in the elliptic curve defined

by the cubic equation G(3)(z) = 0.

Of course, we know how to make models of pointlike branes probing tori [261].

The only advance here is that this model contains a finite number of fields in the

UV, and, relatedly, its construction does not rely on translation-invariance.

4. Branes on other toric surfaces

4.1. Branes on IP1 × IP1

The bulk linear model for IP1 × IP1 has a gauge group with two abelian factors

with the following charge vectors:

z1 z2 y1 y2 p

C∗
1 1 1 0 0 −2

C∗
2 0 0 1 1 −2

Let I = 1, 2 and Ĩ = 1, 2 index the fundamentals of the SU(2) global symme-

tries of the two IP1 factors. A complex whose cohomology is a skyscraper sheaf at

the point

{A(z) = AIz
I = 0} ∩ {C(y) = CĨy

Ĩ = 0} (4.1)

is

0 → O(0, 0)

[

A(z)
C(y)

]

−→ O(1, 0)⊕O(0, 1)
[B(y),D(z)]−→ O(1, 1) → 0 ; (4.2)

this is indeed a complex if

BJ̃AI +DJCĨ = 0 (4.3)

for all I, J̃ .

Another vertex operator which exists is

VS = β′†βSII′z
IyI

′

.

It is difficult to distinguish this operator from its Serre dual:

VS = β′†βSzIyI
′

η†Iη†I
′

η†P .
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(2, 1) (1,2)

(2,1)

(2,2)
_  _

Fig. 21: The quiver diagram for matrix theory on IP1 × IP1. The fields

are labeled by their representations of the global SU(2) × SU(2).

The superpotential is

W = tr SIJ̃ (BJ̃AI +DICJ̃ ) . (4.4)

We can parametrize the flat directions by

AI = εIJZ
J BĨ = εĨJ̃Y

J̃

CI = −εIJZJ DĨ = εĨJ̃Y
J̃

SIJ̃ = PZIY J̃ .

(4.5)

Note that of the original quiver gauge group, two C?s act on these coordinates. One

acts on the Zs and the other acts on the Y s. We have fixed others by choosing the

ratios A/C, and B/D to be −1 and +1 respectively. By counting charges under

these unfixed U(1)s we can see that the flat direction coordinatized by P is indeed

the fiber direction of the total space of the canonical bundle over IP1 × IP1. Since

W ∼ S(BA+DC) is neutral under both, BA ∼ ZY implies S has charge (−1,−1).

Since S ∼ PZY , P has charge (−2,−2) as befits the fiber of O(−2,−2) → IP1×IP1.

4.2. Branes on IFn

The bulk linear model for IFn (IF0 = IP1 × IP1) is defined by the toric data

z1 z2 y1 y2 p

C∗
1 1 1 n 0 −2

C∗
2 0 0 1 1 −2

Again, let I = 1, 2 the fundamental of the SU(2) global symmetries of the base

IP1 coordinatized by z.
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We wish to place N D-branes at the point

{A(z) = AIz
I = 0} ∩ {Q(n)(z)y

2 −Ny1 = 0} (4.6)

where Q(n)(z) = QI1...In
zI1 · · · zIn is a degree n polynomial in the homogeneous

coordinates on the base. A complex whose cohomology is a skyscraper sheaf on the

locus defined by (4.6) is

0 → O(0, 0)

[

A(z)
Qy1 −Ny2

]

−→ O(1, 0) ⊕O(n, 1)
[Ry1−My2,B(y)]−→ O(n, 2) → 0 . (4.7)

This is indeed a complex if

RI1...In
AIn+1

+BI1QI2...In+1
+ perms = 0

AIM +NBI = 0.
(4.8)

The superpotential is

W = SI1...In+1
(

RI1...In
AIn+1

+BI1QI2...In+1

)

+ T I (AIM +NBI) . (4.9)

The flat directions of this superpotential are parametrized by Z, P, Y where

AI =εIJZ
J

Q(Z) ≡ QI1...In
ZI1 · · ·ZIn = (Z?IZ

I)nY 1

N =Y 2(Z?IZ
I)n

BI = AI , R = −Q, M = −N
SI1...In+1 =PZI1 · · ·ZIn+1Y 2

T I = − PZIY 1

(4.10)

4.3. Gauged shift symmetry

Here we run into an interesting complication. The flat directions of the super-

potential (4.9) fall into orbits of the symmetry Γ which acts (nonlinearly) as

QI1...In
7→ QI1...In

+ AI1ΩI2...In
+ perms

RI1...In
7→ RI1...In

+BI1ΩI2...In
+ perms.

(4.11)

This symmetry arises from the fact that any function of Z in the ideal generated

by A(z) will vanish at the point we are making by the complex (4.7).
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Therefore, in the correct worldvolume theory, whose moduli space really is

K(IFn), the shift symmetry Γ is gauged. This is accomplished as follows.

To avoid proliferation of indices, we present the construction for the case of

IF1. In that case the action on Q is

QI 7→ QI + ΩIJAJ (4.12)

We add some extra unconstrained fields UIJ , TIJ and a new shift symmetry on

which
UIJ 7→ UIJ + ΩIJ + ω†

IJ

TIJ 7→ TIJ + ωIJ .
(4.13)

Define

Q̃I = QI − UIJAJ − T †
IJAJ (4.14)

to be the shift-symmetry invariant combination of these fields. We can then write

kinetic terms in 4d N = 1 superspace by

∫

d4θQ̃†
IQ̃I ∼

∫

d4θ
(

Q†Q− UAQ† + . . .
)

. (4.15)

Integrating out U in this action gives a “nonlinearly realized D-term”

V ∼ AIQ
†
I

2 (4.16)

which tells us that in the supersymmetric vacuum 0 = A†
IQI , but we have

parametrized AI = εIJZ
J , so this says that

0 = εIJZ
J?QI (4.17)

which tells us that

QI ∝ ZI?. (4.18)

5. Reappearance of brane-antibrane constituents

Consider again the model for IP1. The potential arising from (2.2) has another

stationary point other than the one where the D-terms vanish. This is the (unstable)

point where the B’s simply vanish. In this section we wish to give evidence for
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an interpretation of this state as one where the D2-brane and the anti-D2-brane

wrapping the IP1 from which we made the D0-brane have reappeared.

• In addition to its stable, supersymmetric vacuum, the theory has an unstable

classical vacuum in which gauge symmetry is unbroken. The energy of this

vacuum scales with the FI parameter, which is in turn the size of the P 1, in

accord with the interpretation above.

• This vacuum has a Coulomb ’branch’, where the constituents can be separated

in a transverse direction. In the limit of infinite separation, we approach a

supersymmetric state.

• We have discussed the IP1 case for simplicity. These objects are also present

in the toric surface examples. For example, in the model for IP2, one can

satisfy the F-term constraints by setting to zero the fields BīI , and the i =

2 components of AiI . The complex (3.1) then degenerates to the one-step

complex

0 → O[A1I ]−→O(1) → 0.

• As mentioned in the introduction, the ability to see brane-antibrane nucleation

is something that one wants from a less-supersymmetric matrix model since

which are the stable probes will depend on the closed-string background.

6. Regrading

In [232] we pointed out that the simplest boundary linear model for a brane-

antibrane system (PLUS SOME ASSUMPTIONS ABOUT THE R-CHARGE IN

THE UNBROKEN VACUUM) reproduces the worldvolume physics. Here, we refine

this analysis by suggesting that MAYBE WE DON’T NEED TO RESPECT THE

FUCKING ZZ-GRADING.

7. Seiberg duality and its generalizations

There are many ways to create a given lower dimensional brane configuration

as the stable remnants of various unstable brane pairs. We point out that this fact

fits nicely with what we know about

• the open string worldsheet and

• the geometry of sheaves

and also with an expanded, less familiar version of Seiberg duality suggested

by brane-antibrane physics.
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7.1. Tachyon condensation and the open string worldsheet

Unstable configurations with branes and antibranes can be described by linear

σ-models which couple fields φ living in the bulk of the string worldsheet to bosonic

and fermionic degrees of freedom ℘, β which create and annihilate states of string

endpoints on antibranes and branes, respectively.

Though there is no unbroken spacetime supersymmetry, the worldsheet dynam-

ics still respect an exact superalgebra with a single complex supercharge Q 6= Q†.

The relevant boundary operators corresponding to open string tachyons appear as

boundary half-superspace integrals

∫

dθ℘f(φ)β (7.1)

8. Conclusions

• OBVIOUSLY WE SHOULD DISCUSS OTHER PHASES OF THESE GAUGE

THEORIES. and when they are weakly coupled descriptions and stuff.

• Perhaps the most attractive feature of this means of generating quiver theories

is that it extends to the case of compact target space. We sketch the form

this program should take and answer various objections along the way. E.G.,

winding strings ETC. ANSWER: IT’S NEAT, IT’S GOOD FOR SOMETHING

OBVIOUSLY.

i.e. the Chern class fact about the coho of a sequence of sums of line bundles

on a variety of degree greater than one.

• PERHAPS WRITE DOWN THE SHEAFY VARIABLES DESCRIPTION OF

A SINGLE BRANE ON THE (FERMAT) QUINTIC? its only drawback is that

it doesn’t matricize easily.

∫

dθ

(

Γ1z1 + Γ2z2 + Γ3z3 + Γ4

(

G5(z)

(z4 + ξz5)

))

where ξ5 = 1.

• DERIVATION FROM HOLOMORPHIC CS THEORY.
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