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Abstract

It is widely believed that many of the exotic physical properties of the high-Tc cuprate

superconductors arise from the proximity of these materials to the strongly correlated,

antiferromagnetic Mott insulating state. Therefore, one of the fundamental questions

in the field of high-temperature superconductivity is to understand the insulator-to-

superconductor transition and precisely how the electronic structure of Mott insulator

evolves as the first holes are doped into the system. This dissertation presents high-

resolution, doping dependent angle-resolved photoemission (ARPES) studies of the

cuprate superconductor Ca2−xNaxCuO2Cl2, spanning from the undoped parent Mott

insulator to a high-temperature superconductor with a Tc of 22 K. A phenomenolog-

ical model is proposed to explain how the spectral lineshape, the quasiparticle band

dispersion, and the chemical potential all progress with doping in a logical and self-

consistent framework. This model is based on Franck-Condon broadening observed

in polaronic systems where strong electron-boson interactions cause the quasiparticle

residue, Z, to be vanishingly small. Comparisons of the low-lying states to differ-

ent electronic states in the valence band strongly suggest that the coupling of the

photohole to the lattice (i.e. lattice polaron formation) is the dominant broadening

mechanism for the lower Hubbard band states.

Combining this polaronic framework with high-resolution ARPES measurements

finally provides a resolution to the long-standing controversy over the behavior of

the chemical potential in the high-Tc cuprates. This scenario arises from replacing

the conventional Fermi liquid quasiparticle interpretation of the features in the Mott

insulator by a Franck-Condon model, allowing the reassignment of the position of

the quasiparticle pole. As a function of hole doping, the chemical potential shifts
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smoothly into the valence band while spectral weight is transferred from incoherent

weight at high energies to a coherent quasiparticle peak near EF. The combined shift

in the chemical potential and Fermi wavevector, kF, closely corresponds to a rigid

band shift into the faint excitation branch defined by the low-energy quasiparticles.

In addition, the detailed doping evolution of the low-energy excitations has been

studied throughout k-space. A large, hole-like contour emerges with doping, al-

though well-defined quasiparticle peaks are only observed along a small arc around

the (0, 0)−(π, π) nodal line. Near the (π, 0) antinodes, faint parallel segments are

found with a nesting wavevector and energy dependence very similar to the 4a0× 4a0

checkerboard pattern observed by scanning tunneling microscopy. However, these

measurements reveal a striking dichotomy between the real and momentum-space

probes, where antinodal charge ordering is emphasized in the tunnelling measure-

ments, while ARPES is most sensitive to excitations near the d-wave nodal line.

These results emphasize the importance of momentum anisotropy in determining the

complex electronic properties of the cuprates and places strong constraints on theo-

retical models of the charge ordered state.
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Chapter 1

Introduction

1.1 The Theory of Everything

The beautiful paradox of solid state physics is that it is a field which is always rife

with new surprises and controversies, yet the microscopic interactions which govern

all behavior have been known for the past eighty years, and can be written down on

a cocktail napkin by an undergraduate physics student. This “master equation” is

simply the non-relativistic Schrodinger’s equation for electrons and nuclei interacting

via the Coulomb interaction, shown as Equation 1.1

H = −
Ne∑
j

h̄2

2m
∇2

j −
Ni∑
α

h̄2

2Mα

∇2
α −

Ne∑
j

Ni∑
α

Zαe
2

|~rj − ~Rα|
+

Ne∑
j�k

e2

|~rj − ~rk|
+

Nj∑
α�β

ZαZβe
2

|~Rα − ~Rβ|
(1.1)

where h̄ is Planck’s constant, e and m are the charge and mass of the electron, rj

is the location of the jth electron, and Zα and Mα are the atomic number and mass

of the αth nucleus at position Rα. This so-called “theory of everything” (as coined

by Laughlin and Pines [1]) describes virtually everything we see around us, from

human beings to high-temperature superconductivity, and certainly encapsulates all

of chemistry, biology, and solid-state physics. Only a few things that we encounter

in our day-to-day lives are not described by this Hamiltonian: the sun and stars

1
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(thermonuclear fusion) or apples falling to the ground (gravity). The question, then, is

why do people continue to study seemingly “solved” topics (such as high-temperature

superconductivity or organic chemistry) when the basic Hamiltonian determining all

the underlying physics is already well known?

The answer is that Equation 1.1 cannot be solved analytically for any system

beyond a two-particle system (such as the hydrogen atom), and cannot be solved

numerically for anything beyond a handful of particles (N > 10) with even the most

powerful computers in existence (or likely will ever come into existence). Seeing as

how even a single silicon atom has 14 electrons, it becomes immediately obvious

that attempting to understand the properties of large molecules, let alone entire

crystals, with a brute force, first-principles approach with Equation 1.1, is utterly

futile. Knowledge of the underlying Hamiltonian may provide little or no insight or

predictive power into the important physical properties of the system in question. The

good news is that the insolubility of Equation 1.1 certainly guarantees employment

for future generations of solid state physicists, chemists, and biologists. Despite

the general insolubility and complexity of Equation 1.1, Nature is not a hopelessly

complicated mess. Beautiful and elegant laws and phenomena can emerge with higher

organizing principles than can be robust against changes in the nitty-gritty details of

the starting constituents. To take the example of condensed matter physics, some of

the best-known “emergent states” include crystallinity, Landau Fermi liquid theory,

superconductivity, magnetism, superfluidity, and quantum Hall states. Discovering

and understanding such new states of matter remains at the heart of the quantum

many-body problem in physics.

One can often attempt to reduce the complexity of the Hamiltonian in Equation

1.1 to a more easily solved model, in the hopes that this simpler model, while in-

complete, may still capture the essential properties in question. For instance, while

even attempting an exact numerical solution for a single Cu atom is essentially im-

possible, rather simple models are able to provide an excellent description of the

relevant properties of crystalline Cu with 1023 Cu atoms. Simple “one-electron band

theories” have provided a remarkably accurate description of a wide range of mate-

rials. In such models, one effectively neglects the electron-electron interactions and
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the interaction between nuclei, and reduces the problem of 1024 interacting electrons

to a bare model of a single electron propagating through a static periodic potential

defined by the crystal lattice. Such a concept dates back to the work of Bloch and

Wilson in the 1930’s, before it was even clear why such a simple approach should be

so successful. Today, band theory remains alive and well, and is the basis of the semi-

conductor industry which in turn is the foundation for virtually all of high-technology

today. Despite the success of the one-electron picture in explaining the properties of

a wide number of compounds, it should not be terribly surprising that there can be

instances where band theory not only fails, but fails spectacularly. The motivation

behind this dissertation is to investigate such novel quantum states of matter which

arise as a result of strong quantum many-body interactions - the Mott insulator and

the high-temperature superconductor being two of the most prominent examples of

such states.

1.2 Conventional Superconductivity

Superconductivity was discovered by Heike Kammerlingh Onnes in elemental mer-

cury in 1911 [2], only three years after his successful liquefaction of helium, and was

awarded the Nobel Prize in Physics shortly thereafter in 1913. At the time, little

was known about the effect, other than it manifested itself as an abrupt drop of the

electrical resistivity to absolutely zero (such that a persistent current set up in a

superconducting material should not dissipate in any less than 105 years!), and that

it was observed in a number of elemental metals such as tin and lead. The next

hallmark of superconductivity was discovered by Meissner and Ochsenfeld in 1933

[3] was perfect diamagnetism - the complete expulsion of a magnetic field from the

interior of a superconductor, now known as the Meissner effect, shown in Figure 1.1.

However, to this point, there was very little theoretical understanding of the mech-

anism of superconductivity. This changed in the 1930’s with the work of the London

brothers who introduced a phenomenological theory of the electrodynamics of su-

perconductors [4], and later in the 1950’s by the work of Ginzburg and Landau in

applying their powerful theory of second-order phase transitions to superconductivity
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Figure 1.1: Demonstration of the Meissner effect (perfect diamagnetism) in a high-Tc

superconductor. The force provided by the expulsion of the permanent magnet’s field
from the interior of the superconductor counteracts gravity and results in levitation.

[5]. However, a microscopic theory of superconductivity remained elusive until the

breakthrough by Bardeen, Cooper, and Schrieffer and the development of the BCS

theory of superconductivity [6], for which they won the Nobel Prize in 1972. They

explained superconductivity to arise from the pairing of individual electrons into com-

posite bosons via an attractive effective retarded interaction mediated by the lattice,

and the the subsequent condensation of these bosons into the superfluid. The main

problem in understanding how electrons could form bosonic pairs was that electrons

should repel each other through the Coulomb interaction. This was addressed by the

BCS theory, which explained that the electrons were paired through an intermediary,

being the lattice, shown in Figure 1.2. As one electron propagates through the lat-

tice, it causes a local positive polarization of the lattice. However, the electron moves

much more quickly than the lattice, so the original electron will have moved far away,

before the lattice polarization can relax back to its equilibrium position. This positive
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Figure 1.2: Schematic of the retarded effective pairing interaction between electrons
in a Cooper pair mediated by the lattice.

polarization can then attract a second electron, resulting in an effective pairing of the

first and second electron into a boson. The BCS ground state wavefunction can be

expressed as follows

|ψBCS〉 =
∏
k

(
uk + vkc

†
k↑c

†
−k↓

)
|φ0〉 (1.2)

where |uk|2 + |vk|2 = 1, uk and vk are complex numbers, and |φ0〉 is the vacuum

state. There is an order parameter associated with the superconducting state

∆eiφ (1.3)

where ∆ is the magnitude of the order parameter and the superconducting en-

ergy gap, i.e. the energy cost needed to break apart the composite boson or Cooper

pair into individual electrons. φ represents the phase of the superfluid, and macro-

scopic phase coherence is one of the unique and distinguishing characteristics of the

superconducting state from the band metal. Equation 1.2 should also make clear

that the superconducting state is entirely different than a perfect conductor, since
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Figure 1.3: Periodic table showing elemental superconductors, including those which
superconduct only under high pressures.

the ground state is orthogonal to the Fermi liquid. For instance, a Fermi gas or any

perfect crystal will have zero resistance at T = 0. However, in any real system, the

existence of some minute concentration of defects will exist simply due to entropy

considerations. On the other hand, in a superconductor, the transport of electrons is

insensitive to the inevitable presence of defects. Today, many superconductors have

been discovered. In fact, since the basic ingredients for superconductivity are found

in every metal (phonons and conduction electrons), it should not be surprising that

superconductivity manifests itself in a wide variety of materials. A periodic table of

known elemental superconductors is shown in Figure 1.3.

While many materials exhibit a superconducting ground state, the temperatures

at which they superconduct are typically below ∼ 15 K. It was generally believed

that due to competing effects (such as charge-density-wave formation or structural

instabilities), the maximum superconducting transition temperature for an electron-

phonon mechanism was on the order of 10-20 K. Today, we known that this is not

true, since there are obvious examples of BCS superconductivity with Tcs of up to

39 K, such as MgB2 [7].
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Figure 1.4: Plot showing highest Tc superconductor discovered as a function of time.

1.3 High-Temperature Superconductivity

1.3.1 A Brief History of High-Tc Superconductivity

The field of superconductivity changed dramatically in 1986 with a report of super-

conductivity at 35 K in La2−xBaxCuO4+δ by Bednorz and Mueller [8]. An enormous

burst of activity followed (now often referred to as high-Tc fever), resulting in the

discovery of superconductivity at 90 K in the YBa2Cu3O7−δ family by Wu and Chu

just one year later [9]. The ubiquitous plot of “Tc vs. time” is shown in Figure 1.4.

Over the course of a mere 2 years, Tcs skyrocketed up past a balmy 120 K.

Currently, the highest Tc is over 160 K, but this occurs only under the application of

high pressure. The first families of high-Tc compounds discovered were hole-doped

compounds, but in 1989, Tokura, Takagi, and Uchida discovered the first class of
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electron-doped high-Tc superconductors, Nd2−xCexCuO4 [10]. It was determined

that the main constituent of the cuprates was a square CuO2 plane which, when

undoped, has one electron per Cu atom, but was insulating due to strong electron-

electron repulsion. Carrier doping occurs either by adding or removing oxygen atoms

(typically interstitially) or by cation substitution, both of which take place away from

the CuO2 plane, in the so-called “blocking” or “charge reservoir” layers, similar to

modulation doping in semiconductor, as shown in Figure 1.5. In fact, these “blocking

layers” were for the most part electrically inactive and virtually all charge conduction

was found to take place within the CuO2 planes. For typical cuprates, the in-plane

to out-of-plane resistivity anisotropy, ρc/ρab is typically on the order of 103 to 104,

implying that the electrons are essentially confined to move solely within the CuO2

plane. As a result, the high-Tc cuprates are often idealized as a single square CuO2

sheet, since it is generally believed that the single CuO2 plane contains all of the

essential physics in the cuprates. A further simplification of this problem is to ignore

the details of the individual copper and oxygen orbitals and reduce the problem to

a single 2D square grid with zero, one, or two spin-1/2 fermions per site. While this

may capture many aspects of the high-Tcs, we know this cannot encompass all of the

important features of the cuprates. In particular, the high-Tc cuprates have optimal

Tcs which can vary by up to a factor of 5, so there are clearly chemical and structural

effects beyond the idealized CuO2 plane which can dramatically effect the physical

properties.

The high transition temperatures observed in the cuprates immediately suggested

that a pairing mechanism other than the conventional electron-phonon interaction

was responsible for superconductivity. This notion was supported by the fact that

the parent material of the cuprates is an antiferromagnetic Mott insulator driven

by strong electron-electron correlations. Over the past two decades, a wide array of

experimental probes have uncovered some very unusual behaviors in the cuprates, as

will be discussed later in this chapter.
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Figure 1.5: Figure showing the CuO2 plane and the charge reservoir layer where
chemical doping takes place.

1.3.2 Correlated Electron Physics

Given that all real materials possess rather sizable electron-electron correlations, it is

rather remarkable that one-electron band theory works so well for such a wide class of

materials. Although band theory originated with Bloch in 1928 [11], it was not until

Landau’s description of quasiparticles and the adiabatic continuity of the quasiparticle

liquid to the non-interacting Fermi gas, that one understood exactly why band theory

worked as well as it did. Today, the quasiparticle concept is typically referred to

as “Fermi liquid” theory, or “Landau Fermi liquid quasiparticles”. To be specific,

the quasiparticle concept is more general than Fermi liquid theory, which typically

addresses only the effects of electron-electron scattering. On the other hand, Landau’s

general quasiparticle concept can be explained rather intuitively in the sense that
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Figure 1.6: A simple conceptualization of the Landau quasiparticle using the eigen-
states of the square and parabolic potential wells, from Schofield [15].

the eigenstates of the interacting system can be mapped one-to-one or adiabatically

continued onto the eigenstates of the non-interacting system [12, 13, 14]. This is

illustrated in a cartoon fashion in Figure 1.6, taken from Schofield [15]. In this case,

the “non-interacting” system is the infinite square well, and the “interacting” system

is the parabolic potential well. Although the eigenstates of the parabolic potential are

clearly distinct from and inhabit a different Hilbert space than those of the square

well, if we use the number of nodes in the wavefunction as a method of labeling

the eigenstates, we find that the eigenstates of the parabolic well can be mapped

monotonically and one-to-one onto the eigenstates of the “non-interacting” square

well. A number of consequences extend naturally from Landau Fermi liquid theory,

such as Luttinger’s sum rule [16] and having zero scattering rate or infinitely long

lived quasiparticles at EF (neglecting impurity scattering).

While the combination of one-electron band theory and Landau Fermi liquid the-

ory provides an excellent starting point for understanding the solid-state, there are

many instances where band theory breaks down. Perhaps the first realization of

this came in 1937, when deBoer and Verwey reported the case of transition metal
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oxides which had partially filled d-bands and were expected to be metals but were

often insulators or poor conductors [17]. It was then suggested by Peierls and Mott

that the electrostatic interaction between the conduction electrons led to insulating

behavior [18], similar to the ideas proposed by Wigner in 1934 [19] on Wigner crys-

tallization. In the following years, the concept of the Mott insulator was further

developed [20, 21, 22]. The importance of the electron-electron interactions should

not be surprising, since the electron-electron interaction term is
∑Ne

j�k
e2

|~rj−~rk|
, which

can be comparable to the kinetic energy term,
∑Ne

j
h̄2

2m
∇2

j , and therefore can often

make the non-interacting Fermi gas a poor choice for a starting ground state. This

is obviously the case for the parent high-Tc cuprates, since the Mott insulating state

cannot be arrived at perturbatively from a starting ground state of the non-interacting

Fermi gas.

Although the effects of electron correlations in solids was certainly an active field

in the years following the initial work of Mott, this topic vaulted to the forefront of

the solid-state physics field with the discovery of spectacular changes in the physical

properties of certain transition metal oxides, such as the high-Tc cuprates and the

colossal magnetoresistive manganites. One common thread in many of these strongly

correlated transition metal oxides is that many of the half-filled compounds which

are predicted by band theory to be metals are, in fact, insulators.

While the parent compounds of the cuprates are often loosely referred to as “Mott

insulators”, they should in fact be considered as “charge-transfer insulators” as de-

noted from the famous Zaanen-Sawatzky-Allen (ZSA) [23] classification of 3d tran-

sition metal compounds. The key distinction is that Mott insulators refer to an

on site Coulomb interaction which gives rise to the insulating behavior; for the in-

sulating cuprates, this would mean that both the first electron removal and addi-

tion states have 3d character, such that the insulating gap, U , is of the d − d type

(dn
i d

n
j → dn+1

i dn−1
j ). However, for the case of the cuprates, it is known that the first

electron removal state is on the O 2p ligand orbital. Therefore, the insulating gap

is associated with the charge transfer energy, ∆, between the ligand orbital and the

transition metal ion (dn
i → dn+1

i L).

The fact that the charge transfer between the O 2p and Cu 3d orbitals is critical to
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Figure 1.7: Schematic showing the proposed Zhang-Rice singlet wavefunction, with
a single hole injected into the antiferromagnetic CuO2 plane.

describing the properties of the cuprates suggests that a three-band model, where the

Cu 3dx2−y2 , O 2px, and O 2py orbitals are explicitly considered, is the best description

of the low-energy electronic structure of the cuprates. Early in the history of the

field, Zhang and Rice suggested that the lowest-lying electron removal state was that

the hole delocalized on the four oxygen 2p orbitals surrounding the Cu2+ ion, and

hybridized with the Cu 3dx2−y2 orbital, forming a singlet state [24].

This work by Zhang and Rice allowed the further simplification of the three-band

model into a single-band of Zhang-Rice singlets, suggesting that one might neglect the

internal orbital structure of this lowest-lying state. By doing so, one can effectively

recover a simplified single-band Hubbard model where the charge-transfer insulator

is treated as a Mott insulator. In this case, the effective “lower Hubbard band” is the

largely O 2p derived Zhang-Rice singlet-like band, the “upper Hubbard band” is a

primarily Cu 3d10 derived band, and the “Mott gap” is the Cu-O charge-transfer en-

ergy, ∆ ∼ 2 eV. Throughout this thesis, we will use this terminology interchangably,

and most of the existing literature on the cuprates typically use the Mott-Hubbard

terminology. There is, in fact, little experimental evidence that the Zhang-Rice sin-

glet state is actually the lowest-lying electron removal state. Recent spin-resolved
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photoemission experiments have confirmed that the lowest-lying electronic states in-

deed have a predominantly singlet character, consistent with the 3d9 L Zhang-Rice

singlet character [25]. As we will discuss in Appendix B, we believe that while the

single band model may be sufficient for discussing the general behavior of the low-

lying excitations, the hybridization of the Cu 3d and O 2p orbitals (which would be

included in the three-band model) is necessary for a truly accurate description of the

single-particle excitations, and particularly matrix element effects.

The reduction of the three-band to a single band model allows one to write down

the Hamiltonian for a single-band Hubbard model as follows:

H = −t
∑
〈ij〉,σ

(c†iσ cjσ + h.c.) + U
∑

i

ni↑ni↓ (1.4)

where t is the kinetic energy term of moving an electron from site i to one of its

four nearest neighbors, j, and U is the on-site electron Coulomb repulsion. For the

cuprates, we will effectively replace the onsite U term with the charge-transfer energy,

∆. However, even this seemingly simple Hamiltonian is impossible to solve exactly,

and even further restraints must be placed on this model. In the limit where U � t,

the double occupancy of sites becomes prohibitively costly. In the actual materials,

U → ∆ ∼ 2 eV, and t ∼ 0.35 eV, so this may be a reasonable approximation. Then,

in this case, we can reduce the Hubbard model to a so-called t− J model, where

H = −t
∑
〈ij〉,σ

(c†iσ cjσ + h.c.) + J
∑
〈ij〉,σ

(Si · Sj −
ninj

4
) (1.5)

where J is the antiferromagnetic exchange interaction and Si is the on-site spin

operator. One can obtain the exchange interaction by considering the lowering of

kinetic energy through a virtual hop of an electron to a neighboring site of opposite

spin via first-order perturbation theory, where J =
∑

j

|〈j|tijc†jci|i〉|2

U
.

The key point of the t − J model is that it simplifies the problem through a

Gutzwiller projection - that is, by taking the U → ∞ limit, one removes all dou-

bly occupied states from the Hilbert space. Even under this approximation, exact
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solutions of the t − J model are still impossible. Nevertheless, respectable numeri-

cal calculations of the t − J model can be performed on finite clusters (typically on

the order of 4 × 4) to obtain insight into the properties of these strongly correlated

systems.

At a certain level, the study of these t−J or Hubbard models is largely academic,

and one can simply ask the question of how close the numerical results come to

approximating the actual solution of the Hamiltonian. However, a more fundamental

question is how close these model Hamiltonians come to describing the real materials

in question. For instance, how important is the effect of double occupancy and the

fact that U is not infinite? What are the effects of higher order hopping terms (t′, t′′)

or longer-ranged Coulomb interactions? Is it appropriate to neglect the effects of

electron-phonon interactions? In Chapter 5 will deal with some of these questions,

particularly the effects of electron-lattice interactions in the real materials.

1.3.3 Properties of the High-Tc Superconductors

One of the reasons that many physicists assumed, justifiably, that the high-Tc super-

conductors were fundamentally different from the conventional BCS variety was not

only their extremely high Tc s, but also their anomalous physical properties. Shown

in Figure 1.8 is the canonical phase diagram of the high-Tc cuprates, spanning both

electron and hole doping. Aside from the unusually high-Tcs, the most dramatic as-

pect of the phase diagram is that the parent compounds are antiferromagnetic Mott

insulators, clearly signaling the breakdown of Fermi liquid theory upon approach-

ing the underdoped and undoped side of the phase diagram. In fact, the normal

state properties of the underdoped cuprates exhibit various non-Fermi liquid or “bad

metal” properties, as will be detailed later. In general, the hole doped cuprates heavily

outnumber the electron doped cuprates. In the electron doped cuprates, supercon-

ductivity is heavily suppressed and exists only in a narrow doping range with fairly

low Tcs. In this thesis, we will focus only on the doping evolution of the hole doped

systems, and in particular the cuprate Ca2−xNaxCuO2Cl2, away from the Mott insula-

tor, Ca2CuO2Cl2; the doping evolution of the electron doped cuprate Nd2−xCexCuO4
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Figure 1.8: Phase diagram of the hole-doped (La2−xSrxCuO4) and electron-doped
(Nd2−xCexCuO4) cuprates.

is detailed in [26, 27].

Long-range antiferromagnetic Néel order persists in a narrow range around half-

filling. TN for typical cuprates is typically around ∼ 300 K at half-filling, and Néel

order vanishes usually around x > 0.03. We note that because these compounds

are highly two-dimensional, TN reflects the three-dimensional ordering and interlayer

coupling strength, while the in-plane, nearest neighbor antiferromagnetic exchange

energy J ∼ 150 meV ∼ 1500 K. However, very strong short-range antiferromagnetic

correlations persist up to rather high doping levels, even after long range order is

destroyed, and a detailed discussion of the magnetic properties of the cuprates can

be found in [28]. In addition, some doped cuprates, particularly La2−xSrxCuO4 and

its variants (Nd, Ba, and Eu-substituted samples) exhibit incommensurate magnetic

order which has been attributed to the formation of the doped holes into static one-

dimensional spin and charge “stripes” [29], potentially explaining why antiferromag-

netism remains so robust while at the same time allowing the holes to delocalize and

gain kinetic energy [30, 31, 32]. The basic idea of charge ordering (not necessarily as
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one-dimensional stripes) remains a very important and hotly debated topic in the field

of high-Tc superconductivity. Charge ordering can be seen as one particular example

of a more global concept of competing orders in the cuprate superconductors. The

intervening region between the Mott insulator and the top of the superconducting

dome is often to referred to as the “pseudogap” region where the cuprates exhibit a

wide array of anomalous normal state properties in the magnetic and charge sectors

which are consistent with the opening of some kind of gap, although without the pres-

ence of any obvious long-range order. The term “pseudogap” borrows its name from

the field of charge-density-wave systems where gapped behavior would manifest itself

well before the phase transition itself, due to the formation of incipient short-range

CDW order. This is mainly because of the large degree of anisotropy in the 1D Peierls

systems where CDW ordering is driven by the one-dimensionality of the system, while

the phase transition to the long-range ordered CDW state requires three-dimensional

order, caused by interchain coupling. The pseudogap in the cuprates is often at-

tributed to the formation of preformed Cooper pairs above the ordering temperature,

due to an extremely strong pairing interaction. In this case, the ordering transition

is related to the onset of phase coherence of the preformed pairs. Another viewpoint

that we have already mentioned is that the pseudogap is representative of another

ordered phase, such as charge ordering or orbital currents [33], which competes with

superconductivity and is therefore responsible for the anomalous normal state prop-

erties and also for driving down Tc in the underdoped regime. A comprehensive

overview of the pseudogap in the cuprates can be found in the review by Timusk and

Statt [34].

In the following, we briefly summarize some of the normal state charge properties

of the underdoped cuprates. Perhaps one of the most vaunted aspects of the under-

doped cuprates was the approximately T-linear resistivity, which was interpreted to

be a clear sign of non-Fermi liquid behavior, which should have a scattering rate ∝ T2.

Moreover, the evidence of T-linear behavior was often taken to imply that electron-

phonon interactions (which typically give a T5 term) were also unimportant, although

such resistivity data are often difficult to interpret literally. Recent work by Ando

et al. on lightly doped La2−xSrxCuO4 show a surprisingly high mobility per carrier
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contribution from CuO chains, which run along the b axis.
Note that the detwinning is not necessary for YBCO crys-
tals with y , 6.40, which have tetragonal symmetry.

The in-plane resistivity rab and the Hall coefficient RH
are measured using a standard ac six-probe method. The
Hall effect measurements are done by sweeping the mag-
netic field to 614 T at fixed temperatures stabilized within
!1 mK accuracy [16]. The uncertainty in the absolute
magnitude of rab and RH is minimized [15] by using
relatively long samples (voltage contact separation is typi-
cally !1 mm for YBCO and !1.5 mm for LSCO), paint-
ing narrow contact pads with the width of 50 80 mm, and
accurately determining the crystal thickness by measuring
the weight with 0.1-mg resolution; total errors in absolute
values of rab and RH are less than 10% and 5%, respec-
tively. In our crystals, rab is very reproducible (we always
measure several crystals for each composition), and its ab-
solute value is among the smallest ever reported for each
composition.

Figure 1 shows the temperature dependences of rab
for the LSCO crystals, with the vertical axis in the log-
arithmic scale. One may immediately notice that rab in
the moderate-temperature range show metallic behavior
(drab"dT . 0) for all values of x. It is particularly in-
triguing to note that in the x ! 0.01 sample rab#T$ keeps
its metallic behavior well below the Néel temperature TN
(which is 240 K; see Fig. 2 inset). This clearly demon-
strates that the in-plane charge transport is insensitive to
the long-range magnetic order, which may not be surpris-
ing because the large J #!0.1 eV$ causes the antiferro-

FIG. 1. Temperature dependences of rab in TSFZ-grown
La22xSrxCuO4 single crystals.

magnetic correlations to be well established in the CuO2
planes far above TN [5].

To examine the detailed doping dependence of the
charge transport, it is useful to look at the conductivity
per charge, namely, the mobility of the doped holes. In
Fig. 2, we plot the temperature dependences of nherab
for various x, where e is the electronic charge and nh
is the nominal hole concentration given by 2x"V [unit cell
V #% 3.8 3 3.8 3 13.2 Å3$ contains two CuO2 planes
in LSCO]. This product, nherab , corresponds to the
inverse mobility m21 of the doped holes. Note that it is
probably better to use nhe #! 2ex"V $ than to use R21

H for
the calculation of the conductivity per hole, because RH
in cuprates shows a strong temperature dependence that
is not caused by a change in the density of mobile holes.
One can see in Fig. 2 that the slope of nherab#T$ at 300 K
depends only weakly on x and the absolute value of m21

changes only by a factor of 3 at 300 K; the similarity of
the moderate-temperature m21#T$ curves and the rather
small change in their magnitude hint at the possibility that
the metallic charge transport is governed by essentially
the same mechanism from x ! 0.01 to 0.17.

Figure 3 shows the x dependence of m21 at 300 K. The
change in m21 is smooth and is relatively small, which is
rather surprising in view of the superconductor-insulator
transition occurring at x & 0.05. In Fig. 3, we also plot
the x dependence of the AF correlation length jAF, which
is known to show a similarly smooth change with x; jAF#x$
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FIG. 2. Temperature dependences of the inverse mobility,
nherab , of the LSCO crystals. Inset: magnetization of a large
La1.99Sr0.01CuO4 single crystal (93 mg) from which the samples
for rab measurements were cut; the peak in M#T $ corresponds
to the Néel transition.
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Figure 1.9: Resistivity of La2−xSrxCuO4 from x = 0.01 to 0.17, from Ando et al. [36].

and high temperature metallic behavior for x = 0.01 even below TN where the mate-

rial should be an antiferromagnetic insulator! At low temperatures, the most lightly

doped compositions (x < 0.05) are insulating and the heavily underdoped compounds

experience an insulating upturn before going superconducting, and a crossover to a

T = 0, field-induced metallic state is found near optimal doping inside the SC dome

[35]. The most recent data on high quality single crystals of La2−xSrxCuO4 are shown

in Figure 1.9.

Optical conductivity measurements of La2−xSrxCuO4 have shown that the un-

doped insulator has a charge-transfer gap of ∼ 2 eV, although this values varies con-

siderably from compound to compound. As La2−xSrxCuO4 is doped, a small Drude

peak appears at low energy and spectral weight fills into the mid-infrared region be-

tween the Drude peak and the charge transfer gap. The optical conductivity data

are shown in Figure 1.10, along with a plot of the extracted Drude intensity, both

from [37]. This obviously implies that the charge transfer gap does not immediately
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a) b)

Figure 1.10: (a) Optical conductivity σ(ω) of La2−xSrxCuO4 as obtained from
Kramers-Kronig transformation of the E⊥c reflectivity. (b) Effective electron number
N∗

eff at 1.5 eV and the Drude weight, ND as a function of doping. At low doping levels,
ND is found to increase proportionally to x. From Uchida et al. [37].

collapse upon doping, and the material remains strongly correlated with a large onsite

Coulomb repulsion, even if there are metallic carriers at EF.

The superconducting properties of the hole doped cuprates are also highly anoma-

lous. Perhaps the most distinctive feature of the high-Tc cuprates, aside from the high

transition temperatures, is the fact that the symmetry of the superconducting gap

has a dx2−y2 symmetry, as opposed to the isotropic s-wave gap found in virtually

all conventional superconductors. Out of the vast number of known superconductors,

only a small handful have been confirmed (or have sufficient evidence to be considered

as) non-s wave superconductors, including the cuprates, Sr2RuO4, and some heavy

fermion and organic superconductors. However, virtually all other known non-s wave

superconductors have low Tcs (Tc < 10 K), so the high-Tcs are truly unconventional in

this sense. In fact, many conventional superconductors can have gapless excitations,

or at least variations in the gap size at different points on the Fermi surface. However,

the important question is whether the phase of the superconducting order parameter

changes sign at any point in k space. In that sense, the dx2−y2 superconducting gap
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sample was cooled to 4.2 K and imaged in a magnetic
field estimated to be less than 0.4 !T. The interpretation
of this image is that the three outer control rings have no
magnetic flux trapped in them, but that the central
three-junction ring has "0/2 total flux in it. The control
rings are visible due to a slight change in the inductance
of the SQUID when it passes over the superconducting
rings.

Four different techniques were used to determine the
amount of flux in the rings in these experiments (Fig.
14). The first was to calculate directly the SQUID signal
for a given flux magnitude in the rings. Since the width
of the rings is comparable to the 10-!m diameter of the
pickup loops used to image these samples, the currents
in these rings can be modeled as infinitely narrow lines
of current. The mutual inductance M(#! ) between a
pickup loop tilted at an angle $ from the sample x-y
plane in the x-z plane and a circular wire of radius R at
the origin can be written as

M%#! &!
!0R
4' ! dx dy!

0

2'
d(

"
cos $%R#y sin (#x cos (&#sin $%z cos (&

%x2$y2$z2#2xR cos (#2yR sin (&3/2 ,

(41)

where the integral dx dy is over the plane of the pickup
loop, and the vector #! specifies the displacement of the
pickup loop with respect to the ring in the x-y plane.

Numerical integration of Eq. (41), using the pickup
loop geometry of Fig. 12(b), a tilt angle of 20°, and a
distance between the pickup loop center and the point
of contact of the SQUID substrate with the sample sur-
face of 10 !m, gives a mutual inductance of 2.4 pH be-
tween the pickup loop and one of the rings when the
pickup loop is centered above the ring. The ring induc-
tance was calculated to be 99%5 pH. This means that

the fields induced by the pickup loop in the ring are a
small perturbation of the self-fields induced by the cir-
culating currents in the rings. A given flux " threading a
superconducting ring with self-inductance L induces a

FIG. 13. Three-dimensional rendering of a scanning SQUID microscope image of a thin-film YBCO tricrystal ring sample, cooled
and imaged in nominally zero magnetic field. The outer control rings have no flux in them; the central three-junction ring has half
of a superconducting quantum of flux spontaneously generated in it [Color].

FIG. 14. Four techniques for demonstrating the half integer
flux-quantum effect in tricrystal ring samples: (a) Direct calcu-
lation, assuming the central ring has "0/2!h/4e flux in it. (b)
Observation of the change in the SQUID signal as individual
vortices enter the three-junction ring, with the pickup loop
centered on the ring. (c) Measurements of the absolute values
of the pickup loop flux when it is directly above the zero-
junction ring minus that above !, the two-junction ring and ",
the three-junction ring, for a number of cooldowns. (d) Mea-
surements of the SQUID signal directly above the rings, as a
function of externally applied field.

987C. C. Tsuei and J. R. Kirtley: Pairing symmetry in cuprate superconductors

Rev. Mod. Phys., Vol. 72, No. 4, October 2000

Figure 1.11: A half-flux quantum spontaneously generated at a tricrystal junction,
demonstrating the dx2−y2 phase of the order parameter. From Tsuei and Kirtley [38].

changes sign four times (every π/2 radians) as one goes around the Fermi surface.

The superconducting gap maximum is along the (π, 0), or Cu-O bond direction, while

there is a node in the superconducting gap along the (π, π) direction (diagonal to the

Cu-O bond). This means that even deep in the superconducting state (in the T =

0 limit), there are gapless quasiparticles that can be excited, coexisting with the su-

perfluid condensate. The d-wave nature of the cuprates was confirmed dramatically

by phase-sensitive experiments of Tsuei and Kirtley, shown in Figure 1.11.

Another aspect of the unusual superconducting state is the very low superfluid

density (i.e. the total number of electrons participating in the condensate) in the

underdoped regime. µSR experiments from Uemura et al. [39] resulted in the so-called

“Uemura plot” which showed that the superfluid density scaled with Tc, suggesting

that a large number of electrons are still not able to condense into the superfluid.

This might imply that in the underdoped regime, the effects of strong correlations

prevent a large (1− x) number of electrons of participating in the low-energy physics

and thus cannot form part of the condensate.
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1.3.4 Key Experimental Results from ARPES

Photoemission spectroscopy has played a critical role in shaping our understanding of

the cuprate superconductors [40], but the two fields have emerged in parallel, and it is

difficult to say whether photoemission has had more impact on the cuprates, or vice

versa. One reason for the prominence of photoemission in the cuprates was the lack of

any other Fermi surface probes, such as de Haas-van Alphen or Shubnikov-de Haas os-

cillations. This is because the cuprates are doped oxides - notoriously dirty materials -

and therefore the electronic scattering rate is too high to support such quantum oscil-

lation experiments. However, very recently angular magnetoresistance oscillation ex-

periments have been performed in heavily overdoped Tl2Ba2CuO6+δ which have found

a coherent three-dimensional Fermi surface [41] which corresponds rather closely to

the Fermi surface deduced from ARPES [42]. In addition, because of the nature

of the strong interactions electron-electron (and electron-boson) interactions in the

cuprates, understanding the excitation spectrum at higher energies, not just at zero

energy (EF), is desirable in order to address, for instance, the frequency-dependent

scattering rate or transfers of spectral weight with doping, something impossible from

transport or quantum oscillation experiments.

Even with the previous generation of electron analyzers, ARPES was able to con-

tribute significantly to our understanding of the cuprates. In the early days of the

cuprates, it was believed that the materials were so exotic and non-Fermi liquid-like,

that they possessed no well-defined single-electron excitations. The observation of dis-

persive peaks by Olson [43] and Takahashi [44] was therefore an extremely important

discovery. Perhaps the greatest single contribution to the field of high-Tc supercon-

ductivity from ARPES was the detection of the anisotropic dx2−y2 superconducting

gap in Bi2Sr2CaCu2O8+δ by Wells [45] and Shen [46] in 1993. At that time, there was

little consensus as to the symmetry of the superconducting gap, and most believed

that the cuprates were s-wave superconductors. Together with the microwave con-

ductivity measurements of Hardy [47], ARPES was instrumental in turning the tide

towards d-wave pairing in the cuprates. The detection of the d-wave gap by ARPES

was rather fortunate, since the experimental resolution at the time was ∼ 20-30 meV
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Figure 1.12: Schematic of the doping evolution for (a) a shifting chemical potential,
as in a heavily doped band insulator, and (b) a pinned chemical potential forming
mid-gap states, as in a lightly doped semiconductor.

and Bi2Sr2CaCu2O8+δ has a rather high transition temperature and a resulting su-

perconducting gap of ∼ 40 meV. If such experiments were performed on a material

such as La2−xSrxCuO4, the d-wave gap would likely have eluded detection. After the

detection of the d-wave SC gap, work on underdoped Bi2Sr2CaCu2O8+δ revealed that

the d-wave gap did not close above Tc, as one would expect above the phase transition

temperature [48, 49] and exhibited pseudogap behavior.

In 1995, the single-electron excitation spectrum of the undoped parent compound

Sr2CuO2Cl2 was studied by Wells [50], and showed qualitatively good agreement

with calculations from the t − J model. Later spin-polarized photoemission work

verified that the electronic states closest to EF have a predominantly singlet charac-

ter [25, 51], as first predicted by Zhang and Rice [24]. In addition, a great deal of

work was also centered on the study of the doping dependence of the chemical po-

tential, µ, since this is a fundamental thermodynamic quantity that could be directly

compared with theoretical predictions. However, different studies of the chemical

potential often gave conflicting results, including reports that the chemical poten-

tial was either pinned in mid-gap upon doping [52, 53], or that it shifted to the

top of the valence band (bottom of the conduction band) upon hole (electron) dop-

ing [54, 55, 26, 56], posing a significant problem for the understanding of the Mott

insulator-to-superconductor transition in the cuprates. These two scenarios for the

evolution of the chemical potential are shown in Figure 1.12. Later, with the ad-

vent of sophisticated two-dimensional electron analyzers, dispersion anomalies were
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observed, first in Bi2Sr2CaCu2O8+δ [57, 58], and later in a wide variety of cuprates

[59]. This demonstrated a fairly strong coupling of the electrons to a bosonic field.

In this thesis, we will synthesize many of the topics listed above - the spectral

features in the undoped Mott insulator, the doping dependence of the chemical po-

tential, and strong electron-boson coupling - into a coherent framework by which to

understand the doping evolution of the electronic structure of the cuprates. In par-

ticular, we can describe the spectra of the Mott insulator using a model based on

small polaron formation, thereby naturally explaining how the quasiparticle residue,

Z, evolves from near zero in the parent Mott insulator.



Chapter 2

Photoemission Spectroscopy

Angle-resolved photoemission spectroscopy is a technique which has rather illustri-

ous roots. The explanation of the photoelectric effect by Albert Einstein during

his “miracle year” of 1905 has been widely heralded as one of the greatest scientific

breakthroughs in human history. While his work on relativity captured more of the

spotlight and the public’s imagination, it is “especially for his discovery of the law of

the photoelectric effect” for which he was awarded the 1921 Nobel Prize. Moreover,

the elucidation of the photoelectric effect opened the door to the quantum world,

which has formed our basis for understanding all of modern science.

The actual photoelectric effect was discovered by Hertz in 1887 and also found by

others (Hallwach, 1888 and von Lenard, 1900). The photoelectric effect was inexpli-

cable under Maxwell’s electromagnetic wave formulation of light, where the square of

the amplitude or intensity of the light wave (the magnitude of the Poynting vector),

and not the frequency, represented the energy of the incident light. However, it was

found that the maximum kinetic energy of electrons emitted from a clean metallic

cathode when illuminated with ultraviolet light went as

Ekin,max = hν − φ (2.1)

where h was Planck’s constant and ν was the frequency of the incident light,

and φ was the work function of the cathode, but nowhere does the intensity of the

23
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incident light beam factor into this relationship. This led Einstein to postulate that

light was quantized, and that each photon carried an energy hν. Ironically, while

Einstein’s special and general theories of relativity overturned the Newtonian universe,

the explanation of the photoelectric effect revived Newton’s concept of the corpuscular

nature of light.

2.1 General Aspects of Photoemission

It was not until the late 1950’s and early 1960’s that it was observed that the photo-

electric effect could yield interesting information on the nature of the electronic states

of the illuminated cathode. Owing to the conservation of energy, which also led to

Equation 2.1, it was noticed that the energy distribution of photoemitted electrons

could provide information on the density of electronic states in the cathode material.

In particular, the 1964 photoemission work of Berglund and Spicer [60] on Cu and

Ag showed the edges of the d bands at 2 eV and 4 eV below the Fermi energy, in

agreement with the predictions of the non-interacting band theory. Later, Kai Sieg-

bahn would share the 1981 Nobel Prize in Physics for his development of electron

spectroscopy.

As early as 1964, Kane argued that the momentum-dependent band structure

could be mapped from the angle and energy dependence of the photoemission spectra

[61, 62]. However, during the formative years of photoemission, all experiments were

exclusively angle-integrated. In the early 1970’s, work began in earnest on measur-

ing the angular distribution of the photoelectrons. It was not until 1974 that the

first angular dependent band-mapping was performed using photoemission by Smith,

Traum and DiSalvo [63, 64, 65, 66]. As a prelude to the current state-of-the-art

ARPES experiments in this thesis, Smith et al. also used the two-dimensional lay-

ered compounds TaS2 and TaSe2 to avoid the complications of the uncertainty in the

transverse momentum, kz, and were able to show good agreement with band structure

calculations [65, 66, 67].

However, the energy resolution of photoemission experiments in the late 1970’s

and 1980’s were on the order of 100 meV. In contrast, the thermodynamic properties
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tight-binding model calculations.31 The authors did rule out
several other possible explanations, especially those related
to the herringbone reconstruction32,33 (23!)), which has
been considered in the literature as being responsible for in-
fluencing the STS results.34 The observed splitting leads to
two peaks in the energy distribution curves !EDC’s" with an
energy separation proportional to the in-plane wave vector
k"!k"! reaching values of about #$#110meV close to kF .
The experimental values for the Fermi vectors given in Ref.
25 are 0.153 and 0.176 Å$1 at room temperature. A depen-
dence of the kF values on the measured k-space direction
!%̄$M̄ or %̄$K̄" or on the photon energy could not be de-
tected. However, the physical origin of the observed splitting
is still discussed, in particular because STS and PES show
quantitatively and qualitatively different results for the
Au!111" surface state and an equivalent splitting for the
other noble metal surface states could not be observed by
PES.
In this paper we report on high-resolution PES measure-

ments to investigate the dispersion and the lifetime of the

L-gap surface states on the !111" surface of copper, silver,
and gold.

II. EXPERIMENTAL SETUP

The photoemission data presented here have been mea-
sured with a SCIENTA SES 200 spectrometer and a mono-
chromatized He discharge lamp !GAMMADATA" posi-
tioned under an incidence angle of 45° to the analyzed
direction. The angular mode of the analyzer allows us to
measure a window of %7° simultaneously, which !at He I
excitation" is large enough to map the complete relevant k
range in one direction without any sample rotation. The
angles in the orthogonal direction—necessary for complete
Fermi surface mappings !see below"—could be reached by a
subsequent change of the in-axis rotational degree of free-
dom of the manipulator !tilt". For example, in the case of the
Ag!111" surface state, the time of the measurement of the
complete dispersion in one direction could be reduced to
approximately 5 min. However, the accumulation of a whole
Fermi surface map !FSM" with a tilt step size of 0.2° took
approximately 3 h.
The base pressure of the UHV systems was below 5

!10$11 mbar, increasing—due to the He leakage from the
discharge lamp—to &8!10$10 mbar during the measure-
ments. The samples could be cooled down to approximately
T"8 K on the manipulator. During the measurements, the
temperature was set to T"30K because of the accelerated
surface degradation at lower temperature.35 A comparison of
normal emission spectra at T"8 K and T"30K showed,
that at T"30K, the contributions from thermally activated
phonons to intrinsic linewidth and binding energy of the sur-
face states are negligible. This is in accordance with the ex-
perimental and calculated temperature dependence reported
in the literature.12,13,15
The surfaces of the single crystalline noble metals were

prepared by the standard in situ sputter-annealing cycles !Ar
sputtering at low energies of approximately 1 kV, annealing
by back-side electron bombardment for several hours at
500 °C", repeated until the linewidth at normal emission had
reached the minimum values presented here. The time inter-
val from the end of the annealing procedure to the start of the
measurement at 30 K was approximately 10 min.
The energy resolution of the system was determined by

measuring a Fermi edge of a polycrystalline Ag sample at
T"8 K and a least-squares fit by a Gaussian-broadened
Fermi-Dirac distribution at this temperature. The resulting
value in the angular mode and with He I& radiation (h'
"21.23 eV) was #E"3.5%0.2meV. The angular resolu-
tion, determined both from a standard calibration sample36
and directly from the broadening of the surface states in the
branches of the parabolas !see below", is given by #(
"%0.15°. Slight deviations of the measured vs the nominal
emission angle by nonperfect instrumental alignment have
been corrected numerically.37

III. RESULTS

A. Lifetime width at normal emission

Figure 2 shows the photoemission spectra of the three
investigated surface states on a common energy scale, mea-

FIG. 1. Technological development in PES since the first obser-
vation of the Ag!111" surface state in photoemission spectra: !A"
from Ref. 2 measured at room temperature !RT" with Ar I (h'
"11.83 eV), angular integrated; !B" from Ref. 30 at RT with h'
"13 eV, #E)60 meV and #("1°; !C" from Ref. 13 at T
"56 K with Ar I, #E"21 meV, and #("0.9°; !D" present data at
T"30 K with He I (h'"21.23 eV), #E"3.5 meV and #(
"%0.15°.
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Figure 2.1: Progression of the L-gap surface state for Ag(111) with time, showing
the vast improvements in instrumental resolution. For data at the bottom, the peak
width is due primarily to intrinsic lifetime broadening, and not instrumental reso-
lution. In fact, the improvements stem not only from instrumental resolution, but
also improvements in the surface quality as well as lowered measuring temperatures.
From [68].

of solids are determined by the electronic states within a thin strip of energy about kT

wide around the Fermi energy. At room temperature, this corresponds to a thermal

energy of 30 meV, but at low temperatures where phenomena such as superconduc-

tivity occur (∼ 10 K), this corresponds to an energy of roughly 1 meV. Therefore, an

energy resolution of ∼ 100 meV (corresponding to roughly 1000 K, on the order of

the melting temperature of most solids) was clearly insufficient to address anything

beyond the gross electronic structure of solids. However, substantial advances in de-

tector technology in the late 1990’s and early 2000’s resulted in order-of-magnitude

improvements in the energy and angular resolutions, along with the data acquisition
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efficiency. The chronology of improvements in the resolution of electron spectroscopy

is shown in Figure 2.1. At present, multichannel angular and energy detection in

normal ARPES experiments typically occur using ∆E ∼ 10 meV, ∆θ ∼ 0.3◦, and

with 100 angular channels acquired simultaneously. Analysis of ARPES spectra using

the latest detector technology will be discussed later in this chapter. Using the lat-

est generation of analyzers and laser-based light sources, sub-meV energy resolutions

have recently been demonstrated [69, 70, 71].

2.2 Energetics and Kinematics of ARPES

In Figure 2.2, we show the energetics of the photoemission process in a simplified

density-of-states picture. Within the solid, there is an electronic density of states

governed by the intrinsic band structure and interaction effects, where states are

filled up to the Fermi energy, EF. As discussed earlier, there is a finite potential

energy barrier between the first occupied electronic state (at T = 0) at EF, and the

vacuum level (the potential energy zero at x → ∞), which is the work function of

the material, φ, and this is what holds the electrons inside the crystal. Therefore,

when an electron absorbs a photon (and does not experience any inelastic losses),

the binding energy of the electron in the initial state relative to the Fermi energy,

EB, can be related to the measured kinetic energy, Ekin, by hν − φ− EF . The work

function in question is that of the detector, since all materials have slightly different

work functions depending on the characteristics of the surface. If the work function

of the sample and detector are different, then a potential will be set up between the

sample and detector, φsample − φdetector.

To relate the relationship of the photoelectron momentum to the momentum of

the photohole left in the crystal, we consider an electron in a crystal with a well-

defined quasimomentum k, and energy EB. If the incident photon has enough energy

to promote the electron above Evac, then the electron can be photoemitted into free

space. Because the electron has to propagate a macroscopic distance (∼ 1 m) to

the detector, it can essentially be treated as a free plane wave with E = h̄k2/2m.

Therefore, by knowing the takeoff angles of the electron relative to the crystal axes
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dicular to the sample surface are obtained from the po-
lar (!) and azimuthal (") emission angles.

Within the noninteracting electron picture, and by
taking advantage of total energy and momentum conser-
vation laws (note that the photon momentum can be
neglected at the low photon energies typically used in
ARPES experiments), one can relate the kinetic energy
and momentum of the photoelectron to the binding en-
ergy EB and crystal momentum #k inside the solid:

Ekin!h$"%"!EB!, (1)

p"!#k"!!2mEkin•sin ! . (2)

Here #k" is the component parallel to the surface of the
electron crystal momentum in the extended zone
scheme. Upon going to larger ! angles, one actually
probes electrons with k lying in higher-order Brillouin
zones. By subtracting the corresponding reciprocal-
lattice vector G, one obtains the reduced electron crystal
momentum in the first Brillouin zone. Note that the per-
pendicular component of the wave vector k! is not con-
served across the sample surface due to the lack of
translational symmetry along the surface normal. This
implies that, in general, even experiments performed for
all k" (i.e., by collecting photoelectrons at all possible
angles) will not allow a complete determination of the
total crystal wave vector k [unless some a priori assump-
tion is made for the dispersion E(k) of the electron final
states involved in the photoemission process]. In this re-

gard it has to be mentioned that several specific experi-
mental methods for absolute three-dimensional band
mapping have also been developed (see, for example,
Hüfner, 1995; Strocov et al., 1997, 1998).

A particular case in which the uncertainty in k! is less
relevant is that of the low-dimensional systems charac-
terized by an anisotropic electronic structure and, in par-
ticular, a negligible dispersion along the z axis [i.e.,
along the surface normal; see Fig. 3(a)]. The electronic
dispersion is then almost exclusively determined by k" ,
as in the case of the 2D copper oxide superconductors
which we shall focus on throughout this paper [note,
however, that possible complications arising from a finite
three-dimensionality of the initial and/or final states in-
volved in the photoemission process should always be
carefully considered (Lindroos et al., 2002)]. As a result,
one can map out in detail the electronic dispersion rela-
tions E(k") simply by tracking, as a function of p" , the
energy position of the peaks detected in the ARPES
spectra for different takeoff angles [as in Fig. 3(b),
where both direct and inverse photoemission spectra for
a single band dispersing through the Fermi energy EF
are shown]. As an additional bonus of the lack of z dis-
persion, one can directly identify the width of the pho-
toemission peaks with the lifetime of the photohole
(Smith et al., 1993), which contains information on the
intrinsic correlation effects of the system and is formally
described by the imaginary part of the electron self-
energy (see Sec. II.C). In contrast, in 3D systems the
linewidth contains contributions from both photohole
and photoelectron lifetimes, with the latter reflecting
final-state scattering processes and thus the finite prob-
ing depth; as a consequence, isolating the intrinsic many-
body effects becomes a much more complicated prob-
lem.

Before moving on to the discussion of some theoreti-
cal issues, it is worth pointing out that most ARPES
experiments are performed at photon energies in the
ultraviolet (in particular for h$#100 eV). The main rea-
son is that by working at lower photon energies it is
possible to achieve higher energy and momentum reso-
lution. This is easy to see for the case of the momentum
resolution &k" which, from Eq. (2) and neglecting the
contribution due to the finite energy resolution, is

&k"#!2mEkin /#2•cos !•&! , (3)

where &! corresponds to the finite acceptance angle of
the electron analyzer. From Eq. (3) it is clear that the
momentum resolution will be better at lower photon en-
ergy (i.e., lower Ekin), and for larger polar angles !
(note that one can effectively improve the momentum
resolution by extending the measurements to momenta
outside the first Brillouin zone). By working at low pho-
ton energies there are also some additional advantages:
first, for a typical beamline it is easier to achieve high-
energy resolution (see Sec. II.E); second, one can com-
pletely disregard the photon momentum '!2(/) in Eq.
(2), as for 100-eV photons the momentum is 3%
(0.05 Å"1) of the typical Brillouin-zone size of the cu-
prates (2(/a#1.6 Å"1), and at 21.2 eV (the HeI* line

FIG. 2. Energetics of the photoemission process. The electron
energy distribution produced by incoming photons and mea-
sured as a function of the kinetic energy Ekin of the photoelec-
trons (right) is more conveniently expressed in terms of the
binding energy EB (left) when one refers to the density of
states inside the solid (EB!0 at EF). From Hüfner, 1995.
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Figure 2.2: On the left, the energy levels in the crystal in the initial state. Photoe-
mission process occurs with the absorption of a photon with energy hν. On the right,
the measured photoemission spectrum, starting from the vacuum level. From [40].

and the detector, we can determine the momentum wavevector of the outcoming

photoelectron. From this we can use momentum conservation to relate this to the

quasimomentum of the electron in the initial state. We can roughly generalize the

real situation to a semi-infinite crystal (infinite in the lateral directions, but with

a discontinuous step - the crystal surface - in the z direction). In this case, the

momentum in the lateral direction, k‖ is conserved due to translational symmetry, but

the momentum in the z direction is clearly not conserved, due to the work function

step potential at the surface (the lost k⊥ momentum of the photoelectron across

the barrier is then taken up by a recoil of the crystal). Therefore, we can obtain

an exact measure of the in-plane wavevectors of the electron in the initial state,
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Figure 2.3: (a) Illustration of optical (direct) transitions from electrons in a band in
the crystal, to photoelectrons in free space. From [73]. (b) ARPES and measured ob-
servables, being photoelectron counts, photoelectron kinetic energy, and polar angles
of photoelectron relative to sample crystal axes. From [40].

k‖, but extracting k⊥ is more challenging. To determine k⊥, one should determine

the so-called “inner potential” of the crystal, which is essentially determining which

photoelectron kinetic energy corresponds to k⊥ = 0 (the (0, 0, 0) point) [72]. This

is typically rather involved and requires spanning a wide range of incident photon

energies, hν, in our measurements. The measurements related here were performed

on highly two-dimensional materials where k⊥ should not be a particularly relevant

quantum number, and for the rest of this thesis, we will neglect k⊥.

First, it is most appropriate to view the experimentally measured photocurrent

as a photoinduced transition between electron initial and final states. In ultraviolet

photoemission spectroscopy (UPS), the incoming photon carries negligible momentum

(for hν = 10 eV, q ∼ 5 × 10−3 Å−1), so all transitions are essentially direct (q =

0). To reach an available final state, the photoelectron should then be translated by

a reciprocal lattice vector, G, so that the wavevector of the outgoing photoelectron

K = k + G, demonstrating that the photoemission process requires the presence of

a lattice potential to conserve momentum. The above analysis allows us to relate
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the photoelectrons measured at some kinetic energy and momentum to electrons

with some different binding energy and momentum in the initial state, inside the

crystal before the photoemission process. However, it does not tell us the direct

relationship between the electronic states of the N and N − 1 system. For this, one

must make further assumptions beyond simple kinematics and conservation relations

to obtain meaningful information about the N − 1 system of the photohole from

the experimentally measured photocurrent. Using Fermi’s golden rule, the measured

photocurrent can be expressed as a transition matrix element

wfi =
2π

h̄

∣∣∣〈ΨN
f |Hrad|ψN

i

〉∣∣∣2 δ(EN
f − EN

i − hν) (2.2)

where EN
i is the energy of the N electron system in the initial state, and EN

f =

EN−1
f + Ekin is the energy of the N electron system in the final state, corresponding

to the N−1 system left behind plus the ejected photoelectron. Hrad is the interaction

of the electron with the radiation field and can be expressed as

Hrad = − e

2mc
(A · p + p ·A) ≈ − e

mc
A · p (2.3)

where we consider only the linear term in A and use the commutation relation

[p,A] = −ih̄∇ · A and use the dipole approximation to set ∇ · A = 0. We note

that this neglects effects at the surface-vacuum interface where a large change in the

dielectric constant can lead to sizable contributions from ∇ · A. However, the key

aspect of our photoemission experiments is to extract information about the excited

state N − 1 electron system from the photoelectrons which propagate into free space.

Rigorously speaking, the best theoretical description of the photoemission process

is the so-called “one-step model”. In the one-step model, the photoemission process

is treated as a single, entirely quantum-mechanical process. The absorption of the

photon by an electron, the excitation of the electron to a higher energy state, and

the emission of the electron into vacuum are all treated simultaneously, hence the

name “one-step model”. Furthermore, in the one-step model, one must also take into

account the bulk, the surface, changes in the dielectric constant, interference between

bulk and surface transitions, scattering of photoelectrons by plasmons, and evanescent
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(damped electrons in the near-field) states, among other things [74, 75, 76]. There-

fore, the one-step model, while exact, is not a particularly useful approximation for

helping us understand and interpret our experimental spectra, much like Equation

1.1 is not particularly helpful for solving high-Tc. We should note that some model

one-step calculations have been performed for the cuprates using sophisticated band

structure calculations for the initial and final states [77, 78]. However, these should

only be appropriate for materials near the optimally or overdoped side of the phase

diagram where ψi might potentially be reasonably approximated by a Bloch wave

obtained from band calculations; clearly, such calculations should fail for the Mott

insulating compounds. Secondly, spending a month of supercomputer processing time

on an hour’s worth of ARPES beamtime is obviously neither a efficient nor practical

approach to data analysis. Finally, the motivation for studying many of these prob-

lems is to gain information about the nature of the N − 1 initial state wavefunction.

Since the rigorous one-step model requires a priori knowledge of ψi, this makes the

one-step model very impractical for the interpretation of ARPES studies of systems

where the electronic states are very poorly understood from theoretical grounds. If

the initial state wavefunction of the cuprates was already known, then we would have

already solved the problem of high-temperature superconductivity.

The phenomenological model which is nearly exclusively used in the photoemission

community is the “three-step” model, popularized by Berglund and Spicer in 1964

[60]. The steps in the three-step model are as follows:

1. Optical excitation of the electron inside the solid

2. Transport of the photoelectron to the surface

3. Escape of the photoelectron into the vacuum

The independent steps in the three-step model are shown in Figure 2.4. In this

semiclassical picture, only the first step is treated in a quantum mechanically, and

the three steps are treated as independent of one another, in obvious contrast to the

one-step approach. The beauty of the three-step model is that it actually removes

the complicated photoemission process itself from photoemission! The three-step
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Figure 2.4: Illustration of the three step model, with (1) optical excitation of an
electron in the bulk, (2) transport of the photoelectron to the surface, and (3) escape
of the photoelectron into vacuum free space.

model effectively reduces the photoemission process to an optical excitation. Steps

(2) and (3) in the three-step model are simply attenuation factors and kinematic

considerations, respectively, leaving (1) as the only nontrivial process.

Given the dramatic simplifications of the three-step model, it works remarkably

well and provides surprisingly accurate results. Certainly, there are many obvious

instances where the three-step model breaks down (such as surface-bulk interference

on Ag(111) [79], to name just one example). However, its general reliability even

at the level of quantitatively analyzing detailed lineshapes is remarkably good. Here

we will discuss a few additional aspects of the photoemission process, before later

describing a formal mathematical description of photoemission within the three-step

framework. First, photoemission is a highly surface-sensitive process because of the

strong Coulomb interactions between the photoelectron and the rest of the electrons

left in the solid. In Figure 2.5, we show the well-known “universal curve” plotting

the photoelectron mean free path length versus photoelectron kinetic energy. In fact,

the “universal curve” is not particularly universal (it is roughly universal, and only
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Figure 2.5: The so-called “universal curve” of photoelectron mean free path versus
kinetic energy. Taken from Hufner [72] and originally compiled by Seah and Dench
[81].

on a logarithmic scale), and was generally compiled using good metals. Because

the mean free path depends on the cross-section of the photoelectrons to scatter

with plasmons, the mean free path should be even lower for “bad metals” with low

plasmon energies such as many strongly correlated transition metal oxides. This has

been discussed previously in the cuprates [80], but is an important topic which should

be explored further in the field of ARPES on strongly correlated materials, especially

at very low kinetic energies. This high degree of surface sensitivity is the reason

for extremely stringent ultra-high vacuum conditions necessary for reliable, high-

resolution ARPES experiments, and we typically perform experiments at pressures of

better than 5 × 10−11 torr. Samples are usually cleaved in situ at low temperatures

and base pressure to ensure an atomically clean surface layer. Even at these pressures,

we can occasionally observe surface degradation, although this varies significantly on

the particular compound and contaminants in the vacuum chamber.
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2.3 Spectral Function Interpretation of

Photoemission Spectra

As discussed earlier, we would like to infer information about the details of the elec-

tronic states of the N − 1 electronic system from the experimentally measured pho-

tocurrent. The following is a brief summary of how to relate the measured photocur-

rent to the single particle spectral function, but a more detailed discussion of the

photoemission process can be found in the literature [40, 82, 83, 72]. We start with

the three-step model and Equations 2.2 and 2.3. We would first like to decompose

the ΨN
f final state into a ΨN−1

f state and the outgoing photoelectron. This becomes

simple if we assume that the photoemission process is so fast that the photoelectron

is ejected instantaneously and the remaining N − 1 system does not interact with

the photoelectron on its way out of the solid, an assumption otherwise known as the

sudden approximation [84]. This is a crucial assumption upon which the rest of the

following analysis is based. In this case, we can express ΨN
f = Aφk

f ΨN−1
f where A is

the antisymmetrization operator for fermions, and φk
f is the photoelectron wavefunc-

tion with momentum k. For the cuprates, it is generally believed that the sudden

approximation should hold for photoelectrons above at least 20 eV [85]. Generally

speaking, ΨN−1
f is not an eigenstate of the N − 1 system, but can be expressed as

a superposition of the eigenstates of the N − 1 system, ΨN−1
m , which have energies

EN−1
m

ΨN−1
f =

∑
m

cmΨN−1
m (2.4)

To simplify things, we assume that the initial state can be expressed as a single

Slater determinant, at the Hartree-Fock level, so that one can express the initial state

as the product of a one-electron orbital φk
i and a N − 1 term, much like we did for

the final state wavefunction

ΨN
i = Aφk

i ΨN−1
i (2.5)

In general, any exact many-body wave function can be expressed as a sum of Slater
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determinants such that Ψ =
∑

k ckDk, as often utilized in “configuration interaction”

approaches in quantum chemistry. Dk is a particular Slater determinant, and the Dks

fully span the allowed Hilbert space. For simplicity, we will take the case of just a

single Slater determinant for ΨN
i , and this can easily be generalized to a case of sum

over Slater determinants. D0 is the ground state Hartree-Fock reference determinant,

and should account for the majority of the exact total energy, while higher order

determinants should add smaller and smaller corrections to the ground state energy.

So, in general, ΨN−1
i = ck ΨN

i , where ck is the electron annihilation operator. ΨN−1
i

is also not an eigenstate of the N − 1 system, unless the system is non-interacting.

Using the simplification in Equation 2.5, we can then express the matrix element in

Equation 2.2 as

〈
ΨN

f |Hrad|ψN
i

〉
=
〈
φk

f |Hrad|φk
i

〉 〈
ΨN−1

m |ΨN−1
i

〉
(2.6)

since we need to sum over different final states, this allows us to express the

measured photocurrent as

I(k, Ekin) =
∑
f,i

∣∣∣Mk
f,i

∣∣∣2∑
m

|cm,i|2 δ(Ekin + EN−1
m − EN

i − hν) (2.7)

where Mk
f,i =

〈
φk

f |Hrad|φk
i

〉
and is the one-electron dipole matrix element, and

|cm,i|2 = |
〈
ΨN−1

m |ΨN−1
i

〉
|2 is the overlap of the removal of an electron from the initial

state with the eigenstates of the N − 1 systems. For a non-interacting system, ckΨ
N
i

is one of the eigenstates of the N − 1 system, ΨN−1
m , so the emission is then a δ-

function peaked at the energy corresponding to EN−1
m . If there are a discrete number

of eigenstates of the N − 1 system and the system is interacting, then the intensity

will be distributed into a series of δ-functions at energies EN−1
m , as is the case for

molecular photoemission, as illustrated in Figure 4.9. In correlated solids, ck ΨN
i will

overlap with a nearly infinite number of eigenstates, such that there will be many

finite |cm,i|2s.
It turns out that the mathematical forms derived above appear very similar to

the imaginary part of the one-electron Green’s function, as we will discuss here. The

Green’s function approach is discussed in many texts, including Mahan [86]. Green’s
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functions are widely used in physics as a method of characterizing the response of some

system to an impulse. In this example in condensed matter physics, our example of an

impulse is the annihilation or creation of an electron with a given quantum number k

at a particular time t. The Green’s function then represents the probability amplitude

to find that electron at a later time t′. Fourier transforming t into w, the Green’s

function can be expressed as

G±(k, ω) =
∑
m

|
〈
ΨN±1

m |c±k |ΨN
i

〉
|2

ω − EN±1
m + EN

i ± iη
(2.8)

where c+k and c−k represent c†k and ck, respectively. Taking the imaginary part of

this Green’s function, the so-called single-particle spectral function, one obtains

A±(k, ω) =
∑
m

|
〈
ΨN±1

m |c±k |ΨN
i

〉
|2 δ(ω − EN±1

m + EN
i ) (2.9)

where A−(k, ω) and A+(k, ω) correspond to the annihilation and creation of one

electron and thus to direct and inverse photoemission, respectively. Because of causal-

ity, the real and imaginary parts of the Green’s function are related through Kramers-

Kronig transformation, and therefore knowledge of A(k, ω) provides full knowledge

of G(k, ω). In the case of the electron Green’s function, it can be shown formally that

all many-body interactions can be encapsulated into a complex “self-energy”

Σ = Σ′(k, ω) + iΣ′′(k, ω) (2.10)

where the real and imaginary parts are again related through Kramers-Kronig

and contain all the information about the renormalization and lifetime of excitations,

respectively. The Green’s function and spectral function can then be expressed in a

form known as Dyson’s equation

G(k, ω) =
1

ω − εk − Σ(k, ω)
(2.11)

A(k, ω) = − 1

π

Σ′′(k, ω)

[ω − εk − Σ′(k, ω)]2 + [Σ′′(k, ω)]2
(2.12)



CHAPTER 2. PHOTOEMISSION SPECTROSCOPY 36

In general, calculating the form of G(k, ω) and A(k, ω) for arbitrary interac-

tion Hamiltonians is extremely difficult, and only very few cases can be solved ex-

actly. Generally speaking, one would typically need to use quantum field theoretic

approaches to calculating the electron (or hole) propagator for an interacting many-

body system, which is well beyond the scope of this thesis. Instead, we will use very

simplified and physically intuitive pictures to describe the effects of many-body in-

teractions on the single-particle spectral function. An illustration of the expectations

for A(k, ω) in the case of no interactions and weak interactions is shown in Figure

2.6. In the trivial non-interacting case, Σ(k, ω) is identically zero, and A(k, ω) is

simply a branch of δ-function poles which lie on the non-interacting band dispersion,

εk. When interactions are turned on the δ-functions gain some finite, ω-dependent

width and the position of the poles shifts from εk to εk +Σ′(k, ω). When interactions

are turned on, the spectral weight encompassed within the pole is reduced from 1 to

a reduced factor Zk, as also shown in Figure 2.6.In the language of the photoemis-

sion discussion above, this would correspond to |cm,i| being finite for many different

eigenstates ΨN−1
m , and not just a single eigenstate. A particular example of this case

is the Fermi liquid where the self-energy can be expressed as

ΣFL(k, ω) = βω + iβ
[
ω2 + (πkBT )2)

]
(2.13)

For the Fermi liquid, away from EF, the quasiparticles acquire a finite lifetime,

Σ′′, which grows as ω2. The value of Zk can be determined from linearly expanding

Σ around the position of the pole, E∗
k = εk +Σ′(k, ω). For a small region in ω around

E∗
k, we can expand as follows

ω − εk − Σ′(k, ω) ≈ 1

Zk

(ω − E∗
k) (2.14)

where

Zk =

1− ∂Σ′

∂ω

∣∣∣∣∣
ω=E∗

k

−1

(2.15)

In this expansion around the vicinity of the quasiparticle pole,
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Figure 2.6: Illustration of the effects of interactions on the single-particle spectral
function as it would be observed by ARPES. On the left is the case of non-interacting
electrons where the single-particle excitations are δ-functions. On the right is the
moderately interacting case where electron-electron interactions cause a renormaliza-
tion of the band dispersion and a finite lifetime. Adapted from [40].

A(k, ω) = Zk
Γk/π

(ω − εk)2 + Γ2
k

+Ainc (2.16)

giving a familiar Lorentzian form for the first term, the “coherent” part of the

self-energy, Acoh. We use renormalized values which are defined only in the vicinity

of the pole: εk = Zk(εk + Σ′) and Γk = Zk|Σ′′|. This quasiparticle description is only

valid in the proximity close to EF and where |Σ′′| � εk − µ, that is the level width is

narrower than the level spacing. Another important point is to notice the A(k, ω) is

broken into two separate terms. The first is the coherent part of the spectral function,

corresponding to the quasiparticle pole. This is the first term in Equation 2.16 which

corresponds to the part of the spectral function which can be linearized in the vicinity

of the quasiparticle pole, E∗
k. However, the total spectral weight in the coherent part

is simply Zk, while the total integrated spectral weight for A(k, ω) must satisfy the

sum rule such that
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∫ +∞

−∞
A(k, ω) dω = 1 (2.17)

This is a trivial statement, since A(k, ω) is simply a probability amplitude for a

single electron, and the total electron must be conserved! However, it is important

to note that this sum rule is difficult to apply in practice, because all unoccupied

spectral weight must also be summed over, and this cannot be done without combining

ARPES and inverse photoemission (although an approximate sum rule was proposed

by Randeria et al. [87]). Thus if the coherent weight is Zk, then the second term

in Equation 2.16, Ainc, must encompass 1 - Zk of the spectral weight to fulfill the

sum rule. In the examples that are discussing, we typically assume that Zk may be

typically between 0.1 - 1. Many of the typical approaches to analyzing data is to use

a “large Z” phenomenology, where one tracks a peak in the spectra and corresponds

that to the quasiparticle pole, and therefore the position of the renormalized band.

In Chapters 4 and 5, we will discuss the situation where Z → 0 due strong electron-

boson interactions. We should note that although the sum rule for A(k, ω) cannot

be fulfilled using ARPES alone, one can address the Luttinger sum rule [16] using

ARPES where

∫ +∞

−∞
A(k, ω) f(ω) dω = n(k) (2.18)

relating the momentum distribution function n(k) to the integral of A(k, ω) up

to EF. Since the integral is cut off by the Fermi function, this negates the need

for inverse photoemission. If there is some finite quasiparticle weight, Zk, this will

manifest itself as a discontinuity in n(k) of magnitude Zk at kF. Even in the case of

non-Fermi liquid systems, such as Luttinger liquids, where Zk = 0 because the one-

electron excitations are unstable against decay into spinons and holons (topological

excitations in the spin and charge density, much like solitons), there is some hint

for the position of the original kF in n(k) of the Luttinger liquid. Although there is

no discontinuity in n(k), there is a divergence in dn(k)/dk at kF for the Luttinger

liquid at T = 0. For this reason, attempts have been made to use the experimentally

determined n(k) to determine the position of the Fermi surface [88].
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Figure 2.7: Simulation of A(k, ω) using a model self-energy described in the text. The
red curve shows A(k, ω), and the blue dashed line shows the coherent quasiparticle
peak which was linearly expanded around E∗

k. The remaining spectral weight repre-
sents the incoherent part of the spectral weight. The δ-function shows the position of
the unrenormalized bare pole. At the bottom of the figure are the real and imaginary
parts of the self-energy, as well the intersections of ω − ε0 − Σ′(ω) (from [89]).

An illustration of the coherent and incoherent pole structure is shown in Figure

2.7, adapted from [89]. The form of the self-energy used in this simulation is Σ(ω) =
Gω

(ω+iγ)2
and the coherent and incoherent parts of the spectral function are shown at

the top, while Σ′(ω) and Σ′′(ω).
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2.4 Interpretation and Data Analysis of ARPES

Spectra

2.4.1 EDC and MDC Analysis

As discussed will be discussed below, the ARPES spectra were traditionally col-

lected in a “point-by-point” fashion in momentum space using electron analyzers

with pinhole apertures. This typically meant a sparse sampling in k-space, so that

the primary analysis was performed by analyzing the individual energy distribu-

tion curves (EDCs). However, with the latest generation of 2D multiplexing ana-

lyzers, modern ARPES spectra now have a high sampling density in both energy and

momentum-space, so one can effectively slice the two-dimensional image into different

one-dimensional strips. A slice showing the photoelectron intensity at a fixed k (actu-

ally, fixed θ) as a function of ω is the traditional EDC. Conversely, the photoelectron

intensity plotted at a fixed ω as a function of k is called a “momentum distribution

curve”, or MDC.

In some sense, looking at a single EDC gives a better global overview of the

spectral function, in that one can observe whether a well-defined quasiparticle peak

can be observed, and the distribution of incoherent and coherent spectral weight.

Also, tracking subtle features, such as small, low-energy peaks or the presence of

gaps should generally be better achieved through EDC analysis. On the other hand,

the MDC method has certain specific advantages over the EDC method, especially

in the automated quantitative analysis of large data sets, whereas the EDC method

tends to be much more subjective and time-consuming. One major advantage of the

MDC method is that it largely eliminates effects which are isotropic or very weakly

k-dependent. This includes things like the Fermi function, a momentum-independent

background, and photoelectron matrix elements (if one is looking at MDC features

whose ∆k is much smaller than the k regions where the matrix elements vary).

As mentioned above, although a single EDC would tend to carry more interesting

information than a single MDC, the simple lineshape of the single MDC make it

amenable to computer analysis. The reason for is that the MDC can be approximated
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other (11). The intensity at any point is given by
a false color scale, with white being the most
intense. The two other insets show 1D scans
obtained by taking cross-section cuts through
the data in orthogonal directions. The lower
right inset shows a cross section of the intensity
as a function of energy at a constant in-plane
momentum. Such a scan represents an energy
distribution curve (EDC), which is the standard
format for acquiring and displaying photoemis-
sion data. The inset in the upper right is an
alternative method of displaying ARPES infor-
mation. It shows the intensity as a function of
parallel momentum at constant energy—a mo-
mentum distribution curve (MDC).

The 2D intensity plot I(k,!) represents a
direct visualization of the spectral function of
the photohole, A(k,!), weighted by the Fermi
distribution function. A(k,!) is given by (12)

A"k,!# $
1
%

Im&"k,!#

'! ! εk(Re&"k,!)]2)[Im&(k,!#*2 (1)

where Re&(k,!) and Im&(k,!) represent the
real and imaginary components of the self
energy, respectively. The width of the photo-
emission peak in an EDC reflects the inverse
lifetime, +/, and is given by !2Im&(k,!)!.
Similarly, the width of the peak in an MDC
reflects the mean free path ! - 1/.k such
that

+/k.k "
+/k

!
" !2Im&"k,!)! (2)

Here /k represents the velocity of the excita-
tion as determined by the band dispersion.
Previous work analyzing ARPES line shapes
from the cuprates concentrated on EDCs and
attempted to fit the line shape to some form
of A(k,!). Several difficulties arise with this
procedure. In any EDC, there is a background
component that is not included within A(k,!).
Determining which fraction should be regard-
ed as this component is not straightforward.
Furthermore, the line shapes of EDCs in
these materials are complex, with no unique
theoretical description to serve as a guide.
The use of MDCs has several benefits. At the
Fermi level, the peaks are symmetric with a
simple background. Away from the Fermi
level, the peaks develop a slight asymmetry
reflecting the binding energy dependence of
Im&. Ambiguities are not introduced by the
Fermi function cutoff. The background in a
MDC is constant because the step-like distri-
bution in the vicinity of the Fermi level,
which appears to exist at all momenta, is
sampled at a constant energy. Finally, it is
possible to take MDC cuts that are closely
spaced in energy. These combined advantag-
es allow an easier determination of the posi-
tions and widths of peaks. The resulting dis-

persion obtained from such cuts is more de-
tailed than, but in general agreement with,
previously published results. In agreement
with calculation (13), the wave vector corre-
sponding to the Fermi surface crossing is
equal to 0.446 Å(1 or 0.391(%,%). In addi-
tion, the velocity or rate of dispersion chang-
es in the vicinity of the Fermi level, resulting
in an increased effective mass m* such that
m*/mb 0 1.6, where mb represents the mass
at higher binding energies.

The MDCs taken at ! - 0.0 1 2.5 meV
for several temperatures (Fig. 2A) represent
the ARPES intensity at EF as a function of
momentum along the (0,0) 3 (%,%) direc-
tion. Fitting the scans with a Lorentzian, we
obtain momentum widths .k for several sam-
ples over a range of temperatures (Fig. 2B).
The offset between the different sets of data
represents a small broadening, which varies
from one cleave to another. However, the
slopes are all identical within error bars. Also

  

 

 

 

 

  

 

Fig. 1. Two-dimensional spectral plot showing the intensity of emission in the (%,%) direction of
the Brillouin zone as a function of !, the binding energy, and k!, the parallel momentum. The
photon energy is 21.2 eV and the sample temperature is 48 K. Clockwise from upper left, the insets
show the region of the Brillouin zone sampled in the experiment, a cross section through the
intensity at constant energy (! - 0) as a function of momentum (an MDC), and a cross section
through the intensity at constant angle or momentum (k - kF) as a function of ! (an EDC).

 

  

 

 

  

 
 

Fig. 2. (A) Momentum distribution curves as a function of temperature. The cuts are made at a
binding energy corresponding to the Fermi surface. (B) .k! obtained from MDCs of the type shown
in (A) for three samples indicated by the circles, squares, and diamonds. The error bars represent
the statistical uncertainties from the fits to Lorentzian line shapes The thin lines represent linear
fits to the data. The solid black line shows the temperature dependence of the resistivity 2
measured on an identical sample. The double-headed arrow indicates the combined energy and
angular contributions to the momentum resolution of the experiment.
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Figure 2.8: Example spectra from Bi2Sr2CaCu2O8+δ along the nodal direction demon-
strating the concept of EDCs and MDCs. Figure taken from [57], which is believed
to the first published use of MDC analysis from a 2D Scienta angle mode image. The
MDC cut at EF is shown at the top, while the EDC cut at kF is shown at the right.

as a simple Lorentzian if one assumes that the band is approximately linear and the

momentum dependence of the self-energy Σ(k, ω) varies only weakly over the ∆k of

the MDC. In fact, it appears that this Lorentzian expectation is surprisingly robust

in many materials, even strongly correlated compounds such as the high-Tcs.

The observation and quantification of a kink or break in the MDC dispersion along

the nodal direction [57, 58, 59] was made possible by the use of MDC analysis. Since

then, dispersion anomalies arising from electron-boson coupling has been a topic of

great interest in a wide variety of materials. The origin of the electron-boson cou-

pling in the cuprates is still a matter of great debate as to whether the boson is a spin

excitation (perhaps associated with the famous q= (π, π) magnetic resonance), or a

lattice phonon, or whether there are spectral signatures of both interactions. The

original inspiration for associating the observed behavior to electron-boson interac-

tions was ARPES studies of the Be(0001) surface by LaShell [90] and Hengsberger

[91], as shown in Figure 2.9. This data is quite strongly suggestive of the two-pole
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cally towards kF , where it finally dominates the spectral
function !No. 8". For k!kF !No. 9 to 11 in Fig. 3", the whole
spectral intensity decreases rapidly. However, the spectra
show a sharp peak remaining pinned at EF and a second
weak structure at about "70 meV !see inset of Fig. 4". The
same line shapes can be observed around "kF and in the
corresponding spectra excited with He II-radiation !40.8 eV,
spectra not shown".
In order to simulate the photoemission line shapes, we

adopt the procedure described in Sec. II with the following
parameters: #m#70 meV was taken from electron-energy-
loss measurements,13,25 and $#1.18 was determined by
comparison of the quasiparticle dispersions in the present
spectra.6 The high Debye temperature of the sample
(%1000 K) with respect to the sample temperature !12 K"
allows us to compare the experimental spectra with calcula-
tions performed for T#0. The Eliashberg coupling function
and the phonon contribution to the self-energy are evaluated
using Eqs. !5" and !6". k is fixed by the experiment and E(k)
is given by extrapolation. With & as the only variable pa-
rameter, A(k ,#) is calculated from Eqs. !1" and !4" and mul-
tiplied by the Fermi function at 12 K. The resulting spectrum
is then convoluted in k-space with a Gaussian of width 'k to
account for the experimental angular resolution, the energy

resolution being neglected. The intensity of each calculated
spectrum is adjusted to the experimental counterpart by mul-
tiplication with a factor, found to vary only slightly with k
!standard deviation 10%; see upper panel in Fig. 5". This
underlines the stability of the experimental conditions and
the reproducibility of the spectra, which were recorded over
a period of several weeks. The final results are superimposed
as lines in Figs. 3 and 4 in order to facilitate comparison. The
calculation reproduces almost perfectly the double structure
and the intensity ratio between the two main peaks. It is
interesting to notice that the sharp peak at EF for k!kF does
not appear in the spectral function of the pure electron-
phonon system, in contrast to the weak structure at slightly
higher binding energies !at %#m , see inset in Fig. 4". It was
found to be the remnant of the strong quasiparticle peak,
centered far above EF and broadened by & . It serves,
thereby, as a sensitive probe for the fitting procedure.
In the lower panel of Fig. 5 the theoretical momentum

distribution n(k) at T#0, obtained by integration of the
spectral function according to Sec. II, is plotted. Curve !a",
calculated for the pure electron-phonon coupling, exhibits
the expected discontinuity of height Z#1/(1$$) at kF .
Curve !b" takes both the experimental resolution and the pa-
rameter &(k) into account, the latter coming from the results
of the line-shape fits !see below". The experimental values,
obtained by integration of the photoemission spectra, are
given by the symbols in the plot. The raw spectra have been
used without any adjustment of their relative intensities. The
errors due to the cutoff of the spectra at high binding ener-

FIG. 3. Photoemission spectra !12 K, p-polarized He I photons"
of the surface state near EF in the direction (K !dots", compared to
the spectral functions, calculated for the corresponding emission
angles !lines". Spectra are numbered and labeled with the corre-
sponding wave vectors &k#k(EF)"kF ; k was calculated here for
emission from the Fermi level. The range in emission angle covered
by these spectra is 3°.

FIG. 4. As in Fig. 3, but with the wave vector along (M . The
spectra extend over 6°. Inset: spectrum No. 9, enhanced in order to
show the sharp peak pinned at EF .

PRB 60 10 799ELECTRON-PHONON COUPLING IN PHOTOEMISSION SPECTRA

Figure 2.9: EDCs from Be(0001) from Hengsberger et al. [91] showing an unusual,
non-Fermi liquid-like lineshape representative of electron-phonon coupling.

calculations of Engelsberg and Schrieffer [92], shown in Figure 2.10, where the low-

energy branch is the heavily phonon-dressed, massive polaronic quasiparticle, and the

higher energy branch represents the electron plus one (or more) real phonons emitted.

Very recently, attempts have been made to refine this electron-boson analysis

beyond simplistic Debye or Einstein models. In particular, there is typically some

fine structure observed in the dispersion (i.e. in Σ′) beyond what would expect from a

smooth distribution of oscillators (Debye) or a single non-dispersive mode (Einstein).

In any real solid, there should be numerous phonon modes which interact with the

electrons, and therefore it should not be unreasonable to expect that the fine structure
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Figure 2.10: Two-pole treatment of electron-phonon interactions from Engelsberg and
Schrieffer [92].

observed in the electronic dispersion may arise from the interactions with different

phonon modes. Taking a similar approach to what was done in the case of phonon

anomalies in the tunneling spectra of the BCS superconductors [93, 94], attempts have

been made to extract the Eliashberg function α2F (ω; ε,k) [95], which represents the

coupling of the phonon modes to the electrons in the system and therefore provides

full information about the electron-phonon interaction. α2F (ω; ε,k) can be related

to Σ′(k, ω) through an integral relation

Σ′(k, ω;T ) =
∫ ∞

0
α2F (ω; ε,k)K

(
ε

kT
,
ω

kT

)
dω (2.19)

where K(y, y′) =
∫+∞
−∞ f(x − y) 2y′/ (x2 − y′2) dx, where f(x) is the Fermi dis-

tribution function. Because the Eliashberg function is the kernel of this integral,

one must perform an integral inversion of Σ′(k, ω) to extract α2F (ω; ε,k), which is

extremely challenging. This has been attempted first on the Be(101̄0) surface [96],

and later on La2−xSrxCuO4 [97] using a “maximum entropy method” algorithm to

extract α2F (ω; ε,k). This approach is rather ambitious and still very new, and while

promising, it remains to be seen how robust and exact this procedure is. However, one

thing about this is certain: in order to implement such sophisticated analysis schemes,

improvements in the data quality both in terms of the resolution and signal-to-noise

ratio will be critical.
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forms for the background function B (Hüfner, 1995),
two are more frequently used: (i) the step-edge back-
ground, with three parameters for height, energy posi-
tion, and width of the step-edge, which reproduces the
background observed all the way to EF in an unoccupied
region of momentum space; (ii) the Shirley background
BSh(!)"#!

$d!!P(!!), which allows one to extract from
the measured photocurrent I(!)!P(!)"cShBSh(!)
the contribution P(!) due to the unscattered electrons
(the only parameter is the constant cSh ; Shirley, 1972).

Let us now very briefly illustrate the effect of the ma-
trix element term I0(k,% ,A)"!Mf ,i

k !2, which is respon-
sible for the dependence of the photoemission data on
photon energy and experimental geometry, and may
even result in complete suppression of the intensity (Go-
beli et al., 1964; Dietz et al., 1976; Hermanson, 1977;
Eberhardt and Himpsel, 1980). By using the commuta-
tion relation &p/m!#i'x,H( , we can write !Mf ,i

k !2

" ")* f
k!!"x!* i

k+ "2, where ! is a unit vector along the po-
larization direction of the vector potential A. As in Fig.
5(a), let us consider photoemission from a dx2#y2 or-
bital, with the detector located in the mirror plane
(when the detector is out of the mirror plane, the prob-
lem is more complicated because of the lack of an over-
all well-defined even/odd symmetry). In order to have
nonvanishing photoemission intensity, the whole inte-
grand in the overlap integral must be an even function
under reflection with respect to the mirror plane. Be-
cause odd-parity final states would be zero everywhere
on the mirror plane and therefore also at the detector,
the final-state wave function * f

k itself must be even. In
particular, at the detector the photoelectron is described
by an even-parity plane-wave state eikr with momentum
in the mirror plane and fronts orthogonal to it (Herman-

son, 1977). In turn, this implies that (!"x)!* i
k+ must be

even. In the case depicted in Fig. 5(a) where !* i
k+ is also

even, the photoemission process is symmetry allowed
for A even or in-plane (i.e., !p•x depends only on in-
plane coordinates and is therefore even under reflection
with respect to the plane) and forbidden for A odd or
normal to the mirror plane (i.e., !s•x is odd as it depends
on normal-to-the-plane coordinates). For a generic ini-
tial state of either even or odd symmetry with respect to
the mirror plane, the polarization conditions resulting in
an overall even matrix element can be summarized as

)* f
k!A"p!* i

k+# * i
k even )"!"!"+⇒A even

* i
k odd )"!#!#+ ⇒A odd. (22)

In order to discuss the photon energy dependence,
from Eq. (5) and by considering a plane wave eikr for the
photoelectron at the detector, one may more conve-
niently write !Mf ,i

k !2"!(!"k))* i
k!eikr+!2. The overlap inte-

gral, as sketched in Fig. 5(b), strongly depends on the
details of the initial-state wave function (peak position
of the radial part and oscillating character of it), and on
the wavelength of the outgoing plane wave. Upon in-
creasing the photon energy, both Ekin and k increase,
and Mf ,i

k changes in a non-necessarily monotonic fashion
[see Fig. 5(c), for the Cu 3d and the O 2p atomic case].
As a matter of fact, the photoionization cross section is
usually characterized by one minimum in free atoms, the
so-called Cooper minimum (Cooper, 1962), and a series
of them in solids (Molodtsov et al., 2000).

Before concluding this section, it has to be empha-
sized that the description of photoemission based on the
sudden approximation and the three-step model, al-
though artificial and oversimplified, allows an intuitive
understanding of the photoemission process. However,
for a quantitative analysis of the ARPES spectra, calcu-
lations based on the one-step model are generally re-
quired. In this case, surface discontinuity, multiple scat-
tering, finite-lifetime effects, and matrix elements for
initial- and final-state crystal wave functions are in-
cluded and accounted for by first-principles calculations,
as we shall discuss in Sec. IV.C for the case of Bi2212
(Bansil and Lindroos, 1999).

E. State-of-the-art photoemission

In the early stage of the investigation of the high-
temperature superconductors, ARPES proved to be
very successful in detecting dispersive electronic fea-
tures (Takahashi et al., 1988; Olson et al., 1990, 1989),
the d-wave superconducting gap (Shen et al., 1993).
Over the past decade, a great deal of effort has been
invested in further improving this technique. This re-
sulted in an order-of-magnitude improvement in both
energy and momentum resolution, thus ushering in a
new era in electron spectroscopy and allowing a detailed
comparison between theory and experiment. The rea-
sons for this progress are twofold: the availability of
dedicated photoemission beamlines on high-flux second-
and third-generation synchrotron facilities (for a de-

FIG. 5. Schematic representation of the polarization and pho-
ton energy effects in the photoemission process: (a) mirror
plane emission from a dx2#y2 orbital; (b) sketch of the optical
transition between atomic orbitals with different angular mo-
menta (the wave functions of the harmonic oscillator are here
used for simplicity) and free-electron wave functions with dif-
ferent kinetic energies (after Hüfner, 1995); (c) calculated
photoionization cross sections for Cu 3d and O 2p atomic
levels (after Yeh and Lindau, 1985).
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Figure 2.11: Symmetry and parity considerations in the photoelectron matrix ele-
ment. From [40].

2.4.2 Matrix Element Effects

Finally, we come to the issue of the photoelectron matrix elements. Typically the

matrix elements are viewed as “one-electron matrix elements”, such that the initial

and final states can be viewed as a single Slater determinant as in Equation 2.6.

In this basic picture and taking the dipole approximation, one can approximate the

matrix element as

|Mk
f,i|2 ∝

∣∣∣〈φk
f |ε · x|φk

i

〉∣∣∣2 (2.20)

where we use the commutation relation that p = −im/h̄ [x, H] where ε is the

polarization unit vector. Regardless of the details of the initial state wavefunction,

one can make simple arguments as to whether emission is allowed or forbidden from

basic symmetry and parity arguments. This is shown in Figure 2.11. Because the

total integrand must be even for the matrix element to be finite, we can consider for

a generic initial state, the case must be such that
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〈
φk

f |A · p|φk
i

〉 φk
i even 〈+|+ |+〉 → A even

φk
i odd 〈+| − |−〉 → A odd

(2.21)

This provides a very simple overview of the matrix elements in the sense of simply

discussing the dipole allowed transitions. However, to understand the photoelectron

matrix elements in a more detailed way is difficult, as this requires knowledge of the

initial states. One approach is to use initial states derived from band theory, and

assume the outgoing final states are simply plane waves. At low kinetic energies,

using a free-electron plane wave is not the best approach since at low energies the

effects of the lattice potential can be sizable even in the cuprates, as shown by studies

using very low energy electron diffraction (VLEED) [98].

The variation of the photoelectron matrix element with photon energy in real

materials is not something that can be understood particularly easily. For instance,

it is generally known that Ca2−xNaxCuO2Cl2, La2−xSrxCuO4, Bi2Sr2CaCu2O8+δ, and

Nd2−xCexCuO4all have very different photoelectron matrix elements despite the fact

that the basic building block - the CuO2 plane - is common to all the cuprates.

Therefore, the photoelectron matrix element depends very sensitively on the precise

details of the crystal structure, and one cannot simply consider the Cu 3d and O

2p states in the CuO2 plane for a realistic description of the photoelectron matrix

elements. In fact, attempts have been made to describe the photoelectron matrix

elements of Sr2CuO2Cl2 [99, 100], but have only been based on fairly simple models.

Very detailed one-step calculations of the matrix elements in Bi2Sr2CaCu2O8+δ have

been performed [77, 78] and shows that the photoelectron matrix element is extremely

sensitive to only small changes in the incident photon energy.



CHAPTER 2. PHOTOEMISSION SPECTROSCOPY 46

2.5 Experimental Details of the ARPES System at

SSRL Beamline 5-4

Virtually all results reported in this thesis were performed at Normal Incidence

Monochromator (NIM) Beamline 5-4 of the Stanford Synchrotron Radiation Labora-

tory (SSRL). At the time of these measurements, SSRL was using the SPEAR2 ring (a

second-and-a-half generation synchrotron) with operating characteristics of 3.0 GeV

and 100 mA. Beamline 5 had an undulator insertion device, so the photon flux was

rather respectable (∼ 1011 / s mm2), although certainly not on par with lower energy,

third-generation sources such as the Advanced Light Source at Lawrence Berkeley

Laboratory. The photon spot size of our measurements was typically on the order of

(∼ 0.5 × 0.3 mm) which was generally acceptable for most samples, since handling

crystals much smaller than 1×1 mm becomes increasingly difficult. One of the power-

ful aspects of BL 5-4 was the NIM, which allowed for highly monochromatic photons

with a resolving power of ∼ 104, which meant ∆Ehν ∼ 2 − 3 meV. However, the

geometry of the NIM and low reflectivity of gratings in this configuration restricted

our work to between hν = 13-32 eV; above 32 eV, the grating efficiency drops pre-

cipitously. On the other hand, grazing incidence monochromators (such as spherical

grating monochromators, SGMs, or plane grating monochromators, PGMs) can cover

a wide range in hν, but generally do not have the high resolving power of the NIMs.

In addition, NIMs strongly suppress undesired higher order photons which can lead

to an additional background of photoelectrons, while grazing incidence monochroma-

tors produce a much higher spectrum of higher harmonic light. These considerations

made BL 5-4 an ideal facility for very high resolution, synchrotron-based ARPES

measurements. A picture of the beamline is shown in Figure 2.12a.

2.5.1 Scienta Electron Analyzer and Experimental

Endstation

ARPES experienced a renaissance in the very late 1990’s and early 2000’s with the

advent of 2D multiplexing analyzers by the Swedish company Gammadata Scienta
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Figure 2.12: (a) View of the Stanford Synchrotron Radiation Laboratory Normal
Incidence Monochromator Beamline 5-4. Red lines indicate the beam trajectory, and
green lines indicate the photoelectron trajectories. The NIM and analyzer are clearly
marked. (b) Closeup view of the 5-4 ARPES endstation. The hemispherical SES-200
analyzer is on the left, and the entrance beam pipe, upper chamber, and manipulator
are shown at the right. Beamline Jesus sold separately.

which could measure a range of electron kinetic energies and angles simultaneously.

The way that traditional electron analyzers worked was that their angular acquisition

was based on a small pinhole aperture. The position of the pinhole relative to the

sample normal determined the photoelectron k, and the solid angle subtended by

the pinhole determined ∆k. The problem with this approach is that all electrons

outside this pinhole are discarded, and only one wavevector can be measured at a

time. The great advantage of the Scienta analyzers is that the electron lens system

for these analyzers allowed for parallel detection of many (∼ 100) angular channels,

thereby increasing the measurement efficiency by about two orders of magnitude. The

Scienta analyzers can operate in two electrostatic lens modes: “angle” mode, where

the analyzer multiplexes as a function of angle, and “transmission” mode, where the

analyzer multiplexes in real space (so as to produce a one-dimensional real-space
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scription of synchrotron radiation technology and appli-
cations see Koch et al., 1991), and the development of
the Scienta electron spectrometers (Beamson et al.,
1990; Martensson et al., 1994).

The configuration of a generic angle-resolved photo-
emission beamline is shown in Fig. 6. A beam of white
radiation is produced in a wiggler or an undulator (these
so-called ‘‘insertion devices’’ are the straight sections of
the electron storage ring where radiation is produced), is
monochromatized at the desired photon energy by a
grating monochromator, and is focused on the sample.
Alternatively, a gas-discharge lamp can be used as a ra-
diation source (once properly monochromatized, to
avoid complications due to the presence of different sat-
ellites and refocused to a small spot size, essential for
high angular resolution). However, synchrotron radia-
tion offers important advantages: it covers a wide spec-
tral range, from the visible to the x-ray region, with an
intense and highly polarized continuous spectrum, while
a discharge lamp provides only a few unpolarized reso-
nance lines at discrete energies. Photoemitted electrons
are then collected by the analyzer, where kinetic energy
and emission angle are determined (the whole system is
in high vacuum at pressures lower than 5!10"11 torr).

A conventional hemispherical analyzer consists of a
multielement electrostatic input lens, a hemispherical
deflector with entrance and exit slits, and an electron
detector (i.e., a channeltron or a multichannel detector).
The heart of the analyzer is the deflector, which consists
of two concentric hemispheres of radius R1 and R2 .
These are kept at a potential difference !V , so that only
those electrons reaching the entrance slit with kinetic
energy within a narrow range centered at the value
Epass#e!V/(R1 /R2"R2 /R1) will pass through this
hemispherical capacitor, thus reaching the exit slit and
then the detector. In this way it is possible to measure
the kinetic energy of the photoelectrons with an energy
resolution given by !Ea#Epass(w/R0$"2/4), where
R0#(R1$R2)/2, w is the width of the entrance slit, and
" is the acceptance angle. The role of the electrostatic
lens is to decelerate and focus the photoelectrons onto
the entrance slit. By scanning the lens retarding poten-

tial one can effectively record the photoemission inten-
sity versus the photoelectron kinetic energy. One of the
innovative characteristics of the Scienta analyzer is the
two-dimensional position-sensitive detector consisting of
two microchannel plates and a phosphor plate in series,
followed by a charge-coupled device (CCD) camera. In
this case, no exit slit is required: the electrons, which are
spread apart along the Y axis of the detector (Fig. 6) as
a function of their kinetic energy due to the travel
through the hemispherical capacitor, are detected simul-
taneously. In other words, a range of electron energies is
dispersed over one dimension of the detector and can be
measured in parallel; scanning the lens voltage is in prin-
ciple no longer necessary, at least for narrow energy win-
dows (a few percent of Epass). Furthermore, in contrast
to a conventional electron analyzer in which the mo-
mentum information is averaged over all the photoelec-
trons within the acceptance angle (typically %1°), the
Scienta system can be operated in angle-resolved mode,
which provides energy-momentum information not only
at a single k-point but along an extended cut in k space.
In particular, the photoelectrons within an angular win-
dow of #14° along the direction defined by the analyzer
entrance slit are focused on different X positions on the
detector (Fig. 6). It is thus possible to measure multiple
energy distribution curves simultaneously for different
photoelectron angles, obtaining a 2D snapshot of energy
versus momentum (Fig. 7).

The Scienta SES200 analyzer (R0#200 mm) typically
allows energy and angular resolutions of approximately
a few meV and 0.2°, respectively [for the 21.2-eV pho-
tons of the HeI" line, as one can obtain from Eq. (2),
0.2° corresponds to #1% of the cuprates’ Brillouin-
zone edge $/a]. Note, however, that in estimating the
total energy resolution achievable on a beamline, one
also has to take into account !Em of the monochro-
mator, which can be adjusted with entrance and exit
slits. The ultimate resolution a monochromator can de-
liver is given by its resolving power R#E/!Em ; it can
be as good as 1–2 meV for 20-eV photons but worsens
upon increasing photon energy. To maximize the signal
intensity at the desired total !E , monochromator and

FIG. 6. Generic beamline equipped with a plane grating monochromator and a Scienta electron spectrometer (Color).
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Figure 2.13: Schematic of Scienta analyzer on a beamline. Photoelectrons with dif-
ferent take-off angles are imaged onto the long entrance slit, and pass through the
concentric hemispheres, and strike the microchannel plates. Note the beamline in
question is not a NIM, but a PGM beamline. From [40].

image of the photoelectrons emitted from the sample). In addition, the most popular

Scienta analyzers were rather large, with a radius of 200 mm, also increasing the

throughput (which goes as r2). Illustrations of such improvements in the angular

multiplexing and resolution are shown in Figures 2.16 and 2.15. A simple schematic

of a Scienta analyzer working at a beamline is shown in Figure 2.13.

A more detailed picture of the 200 mm Scienta analyzers are shown in Figure 2.14,

and a picture of our analyzer in action is shown in Figure 2.12b. In Figure 2.14a, we

show a picture of the SES R4000, the latest model of the 200 mm electron analyzer

(at BL 5-4, we are using the SES-200, a very similar but older model). The electrons

pass through the entrance aperature, at the far left, through a three-element lens

system, through the entrance slits, and then the two concentric hemispheres housed

inside the large stainless steel dome. The electrons are finally detected at the bottom

of the analyzer, after the electron signals are amplified by a pair of microchannel

plates (MCPs) and a phosphor screen. Flashes on the phoshphor screen are then

detected ex situ by a CCD camera looking through the window, visible at the bottom

flange. In the analyzer orientation shown in Figure 2.14a, the vertical direction on

the 2D MCP corresponds to kinetic energy, and the horizontal, the angular channels.

In Figure 2.14b, we show an SES-2002 (the HeLM system installed in the basement
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Figure 2.14: (a) Gammadata Scienta SES R4000 electron analyzer. (b) SES-2002
with the steel dome, µ-metal shield, and outer hemisphere removed. (c) Close-up of
the SES-2002 entrance slits.

of McCullough) with the stainless steel dome, µ-metal shield, and outer hemisphere

removed. In Figure 2.14c, we show a close-up of the electron entrance slit, visible

in the bottom center part of the picture. The slits are mounted on a wheel, so that

one can select entrance slits of different widths, so as to trade off energy resolution

against counting rate, if necessary.

In order cover a wide span in k-space, one needs to change the relative angles

between the sample normal and the detector. Ideally, it would be better to move

the electron detector, since rotation of the sample will change the polarization of

the incoming photons relative to the crystal axes. However, because the 200 mm

analyzers are so large and unwieldy, it is much easier to move the crystal sample. For

that purpose, we use a low-temperature, two-axis manipulator shown in Figure 2.17.

The manipulator cools the sample stage via Cu braids to a working temperature of

approximately 15 K. The manipulator in Figure 2.17a is the manipulator at BL 5-4,

and a cleaved sample is visible at the center of the picture. A CAD drawing of the

new low-temperature manipulator on the HeLM system is shown in Figure 2.17b.

This manipulator is also now operational and can reach a sample temperature of less
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Figure 2.15: Demonstration of improvements in angular acquisition and resolution.
(a) Data from Bi2Sr2CaCu2O8+δ showing the band dispersion, taken from Dessau et
al. [101]. (b) Dispersion from Bogdanov et al. [58] using a multiplexing SES-200
analyzer, showing fine structure (a “kink” at 70 meV) in the dispersion undetectable
with the previous generation of analyzers. Data from (a) are overlaid as open squares.

Figure 2.16: Demonstration of advances in data throughput. (a) Data from
Bi2Sr2CaCu2O8+δ showing the first evidence from ARPES of an anisotropic super-
conducting gap, from Z.-X. Shen et al. [46]. (b) 3D intensity wedge from Sr2RhO4

from Baumberger et al. [102]. The 4 data points in (a) took approximately 12 hours
to collect, while the 104+ data points in (b) took approximately 9 hours.
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Figure 2.17: (a) Low-temperature sample manipulator at BL 5-4 with cleaved sample.
(b) CAD drawing of the HeLM low-temperature manipulator.

than 10 K.

2.5.2 Resolution and Detector Issues

Before moving on, we will mention a few technical issues related to the Scienta ana-

lyzers. Because these electron analyzers are far more sophisticated than the previous

generation of electron analyzers, there are many complications and artifacts. These

considerations were considered throughout the data taking and analysis process in

this thesis, but will only be touched upon once here. First, these lenses are astig-

matic, and the linear proportionality between real space channels and photoelectron

angle is only accurate in the center (∼ ±5◦) part of the detector, where at the edges,

the spacing of angles per channel begins to increase. Therefore, we typically only

use the center channels of the detector. Secondly, the angular response function is

highly irregular (i.e. the detection efficiency varies strongly across channels), and this

needs to be corrected for in some manner. Two typical approaches to calibrating

against the detector response are to measure the angular response using an isotropic

(angle-averaged sample), such as polycrystalline Au, and divide the measured spectra

by the angular profile of the Au. The other is to self-normalize the spectra against
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the angular profile within some energy window, for instance, using above-EF elec-

trons from second-order light, or some featureless part of the valence band. Not only

does the detector response vary with channels, but also the kinetic energy position

can vary slightly across the detector in angle mode. In the SES-200 at BL 5-4, this

variation is slight (∼ 3 meV) and primarily at the far edges of the detector, and the

variation across the center channels is less than 1-2 meV. This is usually corrected

for by taking an high resolution, angle-resolved Au spectrum before each measure-

ment, and correcting for the energy “dispersion” across the detector by measuring

EF at every angular channel. In addition, the response of the detector assembly in

the analyzer is highly nonlinear. At high electron count rates, the measured signal

increases superlinearly versus photoelectron number before detector saturation, and

has been documented in detail by Mannella et al. [103]. To check against this de-

tector nonlinearity, we typically varied the incident photon flux and compared the

overall lineshape. Fortunately (or unfortunately), at the low photoelectron yields for

the near-EF states in the cuprates, detector nonlinearity is hardly a concern.

Due to the surface sensitivity of the ARPES technique, ultrahigh vacuum (UHV)

conditions are of the utmost importance. Experiments were typically performed at

pressures of better than 5 × 10−11 torr, and sample lifetimes were typically on the

order of 24 hours or longer. Our manipulator was able to span temperatures from

∼ 15 K to 400 K; temperatures above room temperature were generally achieved by

measuring after a chamber bake and running the sample heater. It was typically

found that warming the sample manipulator above 20 K could cause large pressure

bursts of up to 1 × 10−9 torr, due to the release of adsorbed gases, sometimes re-

sulting in a severely aged sample surface. This was particularly problematic with

samples which had reactive sample surfaces whose termination layer was not van der

Waals. Therefore, reliable temperature dependent measurements and temperature

cyclings were challenging, and often best performed by cooling from higher temper-

atures, rather than heating. For low-temperature measurements, however, samples

were typically cooled to base temperature, then cleaved in situ, and then realigned

by laser reflection. The polarization of the incoming photons was in the horizontal

plane (parallel to the floor) and incident about 50◦ to the sample normal (electron
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analyzer axis).

Finally, a word about the effects of energy and angular resolution. Because of

the nature of the 2D detector, our measured intensity at any point is a product of

the energy resolution and the angular resolution. In principle, we should perform

a three-dimensional deconvolution (ω, θ, φ). However, within a single 2D image, we

do not have information on the angular direction transverse to the detector slit. If

we choose the analyzer cut direction such that the bands are dispersive along the

cut direction and non-dispersive perpendicular to the cut direction, then we can ef-

fectively eliminate the transverse angular resolution. However, in this case, we still

need to deal with the energy resolution as well as the angular resolution along the

slit direction. This is equivalent to deblurring a picture, a difficult inverse problem

which also requires absolute knowledge of the 2D resolution function. One can also

attempt to extract and model the self-energy, while iterating an analysis of the con-

voluted simulated data until it is consistent with the original experimental data. This

is discussed in some detail in [104]. However, before one attempts to extract quan-

titative values from ARPES spectra (such as quasiparticle lifetimes) or perform very

sophisticated analyses of the spectra, a careful accounting of the detector resolution

will be essential.

2.5.3 Transformation from angles to k

In Figure 2.18, we show a schematic sketch of our experimental setup, and the ori-

entation and angles of the sample with respect to the detector. The sample surface

has three degrees of rotation, but only one (θ, the cryostat axis) is fixed in space

relative to the detector, while φ, the sample flip stage rotates about θ, and α, the

azimuthal rotation of the sample surface (or moly piece), rotates about both φ and θ.

Therefore, the exact values of kx, ky and kz depends in a rather complex manner on

these angles. In addition, there is an analyzer angle, β, which is the angle the emitted

photoelectron makes with respect to the long detector slit. However, one can treat

the general transformation from angle space to real space (x, y, z) by transformation

matrices.
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Figure 2.18: Schematic of angles and coordinates of experimental setup (manipulator
and analyzer).

θ̂ =


cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 (2.22)

φ̂ =


cosφ 0 − sinφ

0 1 0

sinφ 0 cosφ

 (2.23)

α̂ =


1 0 0

0 cosα sinα

0 − sinα cosα

 (2.24)

while the real space and crystal-space axes can be represented as vectors
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R =


x

y

z

 (2.25)

C =


kc

ka

kb

 (2.26)

assuming a tetragonal crystal with a, b, and c-axes oriented as shown in Figure

2.18, and we measure outgoing electrons at a given x, y, and z. Because the φ axis

rotates around θ, and the α axis rotates around both φ and θ, it is important to

operate the θ̂, φ̂, and α̂ operators in the correct order because they will obviously not

commute. The order of operation obviously depends on the setup of that particular

manipulator. So, in our case, we will have the situation where

θ̂ φ̂ α̂C = R (2.27)

α̂−1 φ̂−1 θ̂−1 R = C (2.28)

We assume that the analyzer and sample are properly aligned such that electrons

coming directly off the sample normal strike the center of the analyzer slit. Then,

we can also express the incident angle along the parallel detection direction of the

analyzer slit as a unit vector, such that R = (cos β, 0, sin β) if the slit is vertical

(along the z axis), or horizontal (cos β, sin β, 0) along the y axis. We will leave the

actual matrix elements as an exercise for the reader, but in general (where s and c

are shorthand for sin and cos),

α̂−1 φ̂−1 θ̂−1 =


cθ cφ cφ sθ sφ

sα sφ cθ − sθ cα sα sθ sφ + cα cθ −sα cφ
−sα sθ − cα sφ cθ sα cθ − cα sφ sθ cα cθ

 (2.29)



Chapter 3

Properties of Ca2−xNaxCuO2Cl2

The field of high-temperature superconductivity is one driven strongly by advances

in materials science. Due to its favorable cleaving characteristics, Bi2Sr2CaCu2O8+δ

has been the workhorse material for surface-sensitive techniques such as ARPES and

STM for the past decade. However, Bi2Sr2CaCu2O8+δ has a number of complica-

tions associated with its crystal structure and chemistry. First, Bi2Sr2CaCu2O8+δ

cannot typically be grown down to low hole dopings and is usually restricted in dop-

ing level to a vicinity around the top of the superconducting dome. Very recently,

Bi2Sr2CaCu2O8+δ has been pushed down to non-superconducting compositions by La

substitution into the Sr site [105], and ARPES measurements have been performed

[106, 107], although the chemical quality of these samples has not yet been verified

in detail. In addition, the precise doping level is difficult to ascertain because of the

oxygen non-stoichiometry, δ. The doping level is often calibrated versus Tc, but in

fact, this is a rather poor metric since many other factors can strongly affect Tc,

such as Bi-Sr cross-substitution or cation disorder [108]. In addition, the bilayer

band splitting in Bi2Sr2CaCu2O8+δ causes severe complications in the determination

of the electronic structure, as recently demonstrated by many studies [109, 110, 111].

Finally, structural complications such as the incommensurate superstructure modu-

lation in the Bi-O plane and orthorhombic distortions result in an extremely compli-

cated unit cell which does not resemble the simple square CuO2 plane. As a result,

Ca2−xNaxCuO2Cl2 is a far cleaner system in which to study the Mott insulator to

56
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T (K) a (Å) c (Å) ZCa ZCl

10 3.8673(5) 14.9567(25) 0.39549(40) 0.18325(20)
300 3.8745(4) 15.0758(16) 0.39644(24) 0.18222(12)

Table 3.1: Lattice constants and structural parameters of Ca2CuO2Cl2 at 10 K and
300 K obtained from Rietveld analysis of powder neutron diffraction in [112]. Cu is
at the origin (0, 0, 0), O (0, 0.5, 0), and Ca and Cl at (0, 0, Z)

.

superconductor evolution in the cuprates, and the properties of Ca2−xNaxCuO2Cl2

will be detailed in the following chapter.

3.1 Physical Properties of Ca2−xNaxCuO2Cl2

Ca2−xNaxCuO2Cl2 crystallizes in the canonical K2NiF4 (or “214”) single-layer per-

ovskite structure which is the n = 1 sequence of the Ruddlesden-Popper series

An+1MnO3n+1. Unlike many cuprates, Ca2−xNaxCuO2Cl2 retains a tetragonal

I4/mmm symmetry (a = b, θ = 90◦) for all temperatures and doping levels currently

studied, and therefore should provide an excellent realization of the undistorted,

square CuO2 plane. The primary difference between Ca2−xNaxCuO2Cl2 and other

cuprates is that the apical site above the planar Cu in the CuO2 plane is a Cl−, in-

stead of the typical O2−. However, the main physical properties of Ca2−xNaxCuO2Cl2

do not appear grossly different from those of other cuprates which do have apical

oxygen sites. The most detailed structural study of this family was performed using

single-crystal neutron scattering on undoped Ca2CuO2Cl2 by Vaknin et al. [112].

The crystal structure at 10 K and 300 K is summarized in Table 3.1, obtained from

Rietveld analysis of powder neutron diffraction in [112]. Cu is at the origin (0, 0, 0),

O (0, 0.5, 0), and Ca and Cl at (0, 0, Z). These measurements also give a Néel temper-

ature for Ca2CuO2Cl2 as 247 ± 5 K. Raman scattering measurements on the similar

sister compound, Sr2CuO2Cl2 give an estimate for J ∼ 125 meV [113].

Large single crystals of pure Ca2CuO2Cl2 can be grown from a slow cooling a

molten flux of 60% Ca2CuO2Cl2 and 40% CaCl2 from 900◦ in a alumina crucible, as
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Figure 3.1: (a) Structure of Ca2−xNaxCuO2Cl2. The primitive unit cell is body-
centered tetragonal and has an I4/mmm symmetry. Cu is shown in yellow, O (blue),
Cl (green), and Ca (red). The Na dopants substitute at the Ca site. (b) Schematic of
the pressure cell for Ca2−xNaxCuO2Cl2, with representative crystals with flat, well-
defined cleaved surfaces. Ca2−xNaxCuO2Cl2 cleaves between the ionic CaCl rocksalt
layers. From [114].

described in [115]. One of the peculiarities of the cuprate oxyhalide families (includ-

ing Sr2CuO2Cl2 and Ca2CuO2Cl2) is that these compounds are extremely hydroscopic

and will decompose and turn a bright blue color upon exposure to water or moisture.

As a result, all sample preparation and handling was performed in a dry nitrogen

environment before insertion in the UHV chamber for our measurements. Further-

more, the oxyhalides are perhaps the most stoichiometric of all the cuprate families,

making them ideal for studies of the undoped Mott insulator. Unlike other ma-

terials, such as La2−xSrxCuO4+δ, Bi2Sr2CaCu2O8+δ, YBa2Cu3O7−δ, Bi2Sr2CuO6+δ,

and Nd2−xCexCuO4+δ, the oxygen stoichiometry is fixed at 2 oxygen atoms per for-

mula unit, and additional oxygen atoms cannot be introduced by intercalation or

annealing, so that the stoichiometry is set entirely by the dopant cation. In addi-

tion, Ca2CuO2Cl2 and Sr2CuO2Cl2 are believed to have very low amount of cation

disorder or cross-substitution, unlike materials such as Bi2Sr2CaCu2O8+δ [108]. In
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a) b) c)

Figure 3.2: (a) Dependence of lattice constants on Na doping. (b) SQUID magne-
tization measurements of Ca2−xNaxCuO2Cl2. (c) Superconducting phase diagram of
Ca2−xNaxCuO2Cl2 from (a) and (b). From [114].

fact, substituting Na for Ca is so energetically unfavorable that growth of the doped

Ca2−xNaxCuO2Cl2 compounds can only be performed under extremely high pressures

(∼ 4 GPa). Superconductivity in polycrystalline Ca2−xNaxCuO2Cl2 was first discov-

ered by Hiroi, Kobayashi, and Takano in 1994 [116]. However, not until 2000 were

the first mm-sized single crystals of Ca2−xNaxCuO2Cl2 grown by Kohsaka et al. [114]

using a cubic diamond-anvil high-pressure apparatus with a sample space of ∼ 1 cm3.

Details of the high pressure growth can be found in [114].

To characterize the Na concentration of Ca2−xNaxCuO2Cl2, changes in the lattice

parameter as a function of doping were studied, and shown in Figure 3.2a, taken

from [114]. The in-plane lattice constant, a, shrunk as a function of doping by about

0.03% per 0.01 Na, and Na concentrations were determined from electron probe mi-

croanalysis. Superconducting transition temperatures were measured using SQUID

magnetometry, as shown in Figure 3.2b. Knowing this information, one can then plot

out the superconducting phase diagram, shown in Figure 3.2c. In addition to the Tc

and the structure, other measurements have been performed on Ca2−xNaxCuO2Cl2,

including resistivity, optical, muon spin resonance, and STM measurements. Because

of the small and thin nature of the crystals, measurements requiring large bulk crys-

tals, such as neutron scattering, have not yet been performed. STM measurements

will be discussed in more detail in Chapter 7.
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b) c)a)

Figure 3.3: (a) In-plane resistivity ρab of x = 0.06, 0.08, and 0.10. (b) Out-of-plane
resistivity ρc. (c) Optical conductivity spectra of Ca2−xNaxCuO2Cl2 from Kramers-
Kronig transformation of the measurements of the reflectivity. From [117].

Resistivity measurements of ρab and ρc are shown in Figure 3.3 taken from [117],

and were generally difficult to perform because of the large ρc/ρab anisotropy, the

irregular shape of the crystals, and the presence of small flux bubbles in the sam-

ples. For instance, the unusually large values of ρab for x = 0.06 (in comparison with

x = 0.08 and 0.10) in Figure 3.3a is likely due some small admixture of the much

larger ρc component. However, the transport properties show the characteristic hall-

marks of the underdoped cuprates, with “metallic” behavior at high temperatures

with an insulating upturn for lightly doped samples at temperatures below ∼ 100

K. Nevertheless, this ostensibly metallic behavior is still in apparent violation of the

Mott-Ioffe-Regel limit [118], which is the semi-classical expectation that the resistiv-

ity should saturate at a value corresponding to a mean free path ∼ d, the lattice

spacing. In the cuprates, this corresponds to slightly less than 1 mΩ cm. We note

that even though this insulating upturn is not discernible in the x = 0.10 sample, a

small insulating upturn is often seen even in heavily underdoped yet still supercon-

ducting samples, as in La2−xSrxCuO4 [36]. The values for ρc/ρab were typically on the

order of 104. Optical spectroscopy measurements were also similar to other cuprates

lightly doped cuprates [37], with a large charge-transfer gap of approximately 2 eV

in the undoped material, and the emergence of a Drude peak with doping as well as

a filling in of spectral weight into the mid-infrared, as shown in Figure 3.3b. In the
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FIG. 4: Magnetic phase diagram of Na-CCOC. The transi-
tion temperature for the SG-like state (TD) is defined as an
onset temperature where the spin fluctuation rate becomes
lower than 109 s−1. The spin freezing temperature (Tf) is
only defined in x = 0.10 specimen. The inset shows the tem-
perature dependence of magnetic susceptibility measured for
(x = 0.10, 0.12, 0.15 and 0.20) in an applied field µ0H = 1 mT
after field-cooling process.

Hdip =
∑

i(3rα
i rβ

i /r2
i − δαβ)/r3

i (α, β = x, y, z) is the
magnetic dipolar field from the i-th Cu2+ ion at a dis-
tance ri from the muon, and Hfc is the Fermi-contact
hyperfine field due to the finite electron spin density at
the muon site. Since the latter is likely to be negligi-
ble as in the case of La2CuO4 (LCO), we can calculate
the local field at a muon site as the sum of magnetic
dipolar field from the Cu moments with their moment
size " 0.25(10)µB as determined by neutron diffraction
[3]. Another source of information is the nuclear dipolar
width ∆ determined in the paramagnetic state. In the
case of polycrystalline samples, ∆ is determined by the
second moment, ∆2 = 5

3
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µ
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i

, where

σVV is a value defined by Van Vleck [14] and µi is the
nuclear magnetic moment situated at distance ri from
the muon site. Comparison of the experimental values
of Hdip and ∆ with those calculated by the above for-
mulae yields R1 = 1.97Å (from f1) and R2 = 3.52Å
(from f2), respectively. Considering the distance of
rCu−O = 1.934Å in CuO2 plane and rCu−Cl = 2.737Å
in CCOC, we conclude that f1 and f2 respectively corre-
spond to the muons stopped near the planer oxygens and
apical chlorines. The latter site is close to that in LCO,
which is perfectly in line with the fact that f2 is close
to that observed in LCO. The above conclusion is also
consistent with a theoretical estimation made for LCO
[15], where muons are predicted to be attracted by the
negative charge at the apical oxygen atoms. The ap-
pearance of additional site for CCOC may be explained
by the reduced ionic charge of Cl−, which makes the site
near the apical Cl less attractive to muons compared with
that near O2− in terms of the electrostatic energy. Then
it seems reasonable that a considerable fraction of im-
planted muons dwells on the CuO2 plane containing O2−

ions.

The revelation of SG-like phase in the underdoped Na-
CCOC is one of the most important results in the present
study. As mentioned earlier, the very recent STM/STS
measurements on the corresponding specimen have re-
vealed a nanoscale inhomogeneity in the electronic den-
sity of state (DOS) [6]. Considering that the SG-like
state is observed as a bulk majority over the region
0.05 ≤ x ≤ 0.12, it is natural to presume that the quasi-
static SG-like state (magnetic inhomogeneity) has a close
link with the electronic inhomogeneity observed in the
underdoped Na-CCOC. However, the possibility to in-
terpret the inhomogeneity as those consisting of the AF
domains is ruled out; it would lead to the spontaneous
muon precession with an amplitude proportional to the
volume fraction of AF domains [16]. Accordingly, the low
DOS area probed by STS/STM should not be interpreted
simply as the AF domains. The picture of diluted local
moments would be also inconsistent with the STM/STS
observation, since such moments would not induce the
nanoscale inhomogeneity. Thus, one of the few possibili-
ties to explain both µSR and STM/STS results would
be to consider a spin density wave (SDW) associated
with the DOS distribution. We point out that the ob-
served time spectrum shown in the inset of in Fig. 3(a)
exhibits a close resemblance with that in the SDW state
[17]. The sensitivity to induce such an inhomogeneity
upon the hole-doping would be a key to understand the
electronic state of CuO2 planes. We also note that no
strong anomaly was observed for x = 0.12 (" 1/8), sug-
gesting either the buckling of CuO2 planes or the ionic
radius of alkaline metals (Ca<Sr<Ba) may be related to
the 1/8 anomaly.

The remaining issue is the splitting of frequency below
100 K. In the case of SCOC, it is also reported that the
muon precession frequency splits into two components
below 60 K [13], which is attributed to an intrinsic effect
of possible spin reorientation. Accordingly, one possible
scenario is that a similar spin reorientation may occur
also in CCOC. However, it turns out that both neutron
and magnetization measurements report no sign of such
spin-flop transition in CCOC [3]. The fact that f1 re-
mains unique below 100 K also disfavors this scenario.
Another possibility is that muons near the apical Cl ions
may undergo a local site change below 100 K, although
the origin of the instability is unclear at this stage.

We would like to thank the staff of TRIUMF and KEK
for their technical support during the experiments. This
work was partially supported by a Grant-in-Aid for Cre-
ative Scientific Research and a Grant-in-Aid for Scientific
Research on Priority Areas by Ministry of Education,
Culture, Sports, Science and Technology, Japan.

Figure 3.4: Magnetic phase diagram of Ca2−xNaxCuO2Cl2 derived from zero-field
µSR. From Ohishi et al. [119].

absence of neutron scattering results, the magnetic phase diagram of polycrystalline

Ca2−xNaxCuO2Cl2 was plotted out using zero-field µSR by Ohishi et al. [119]. A

summary of these results is shown in Figure 3.4, where the Néel order is found to

persist to approximately x = 0.02, followed by an intervening spin glass phase for

0.02 < x < 0.12, and an onset of bulk SC for x > 0.10. This general picture is very

similar to the situation observed in other materials, such as La2−xSrxCuO4 [28].

3.2 Preparation and Characterization of

Ca2−xNaxCuO2Cl2 Samples

Here we detail the preparation and characterization of Ca2−xNaxCuO2Cl2 samples for

our ARPES experiments. As mentioned previously, due to the extremely hydroscopic

nature of the Ca2−xNaxCuO2Cl2 crystals, all preparations of crystals were performed

in a dry nitrogen environment, including ex situ Laue alignment of the crystals, before

samples were transported under vacuum to the load lock of the ARPES endstation.

Because all ARPES measurements were performed under UHV conditions, and the
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Figure 3.5: Laue diffraction measurements of (a) Sr2CuO2Cl2, (b)
Ca1.88Na0.12CuO2Cl2, and (c) Sr2RuO4. All samples were aligned so that the
a and b axes are horizontal and vertical.

samples were cleaved in situ thereby removing any reacted surface layers, bulk degra-

dation of the samples was not a major issue. However, the hydroscopic nature of

the samples may have meant that the initially pristine surface layer was potentially

more reactive and thus prone to surface aging from adsorbates. We found that the

typical sample lifetime of Ca2−xNaxCuO2Cl2 crystals ranged from 12-24 hours, de-

pending on vacuum conditions, making its surface slightly more reactive than typical

Bi2Sr2CaCu2O8+δ samples, but no more reactive in our vacuum chamber than com-

pounds such as MgB2 or La2−xSr1+xMn2O7. However, due to the small supply of

doped Ca2−xNaxCuO2Cl2 crystals, we were not able to perform many challenging

“sample-hungry” (i.e. a high failure rate) experiments, such as cycling the doped

samples through a wide temperature range, as we were able to do for the undoped

Ca2CuO2Cl2 crystals where a large batch of crystals was available.

Samples were first aligned by Laue diffraction ex situ using a digital Laue diffrac-

tometer. A Laue diffraction pattern for undoped Sr2CuO2Cl2 is shown in Figure

3.5a. The sample is aligned so that the Cu-O bond direction (a and b axes) run hor-

izontal and vertical, and diffraction lines are also observed along the (110) diagonal

direction. In Figure 3.5b, we show a diffraction pattern from Ca1.88Na0.12CuO2Cl2,

which is qualitatively very similar to the pattern from Sr2CuO2Cl2. In Figure 3.5c,

we show a diffraction pattern from Sr2RuO4 which shares the same K2NiF4 structure
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Figure 3.6: Low-energy electron diffraction (LEED) measurements of
Ca1.9Na0.10CuO2Cl2 taken at 15 K, showing the clear tetragonal symmetry of
the surface structure. LEED pattern is oriented such that the a and b axes run along
the 45◦ diagonals in this picture, and data were taken at 220 V.

as Sr2CuO2Cl2 and Ca2−xNaxCuO2Cl2. However, generally Sr2RuO4 crystals are of

much higher quality than the micacious oxyhalides, and exhibit a much better crystal

mosaic, as can be seen in Figure 3.5c.

In addition, we have performed low-energy electron diffraction measurements of

Ca2−xNaxCuO2Cl2 on samples cleaved at low temperatures in situ. Because this tech-

nique uses low-energy electrons, its surface sensitivity is comparable to ARPES and

provides a sensitive probe of the surface structure. In fact, one can view the outgo-

ing photoelectron in the photoemission process as a time-reversed LEED state. Our

measurements do not appear to show any clear evidence for surface reconstruction,

which would be evident as additional diffraction spots. For instance, another transi-

tion metal oxide with the same K2NiF4 structure, Sr2RuO4, exhibits extra diffraction

spots in LEED which arises from a
√

2×
√

2 reconstruction of the topmost RuO6 octa-

hedra [120, 121, 122]. The lack of such additional LEED spots would suggest that no

strong surface reconstruction exists, although the LEED used for these measurements
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was not adequate for performing detailed investigations or quantitative LEED studies

(such as those using the Barbieri/Van Hove Symmetrized Automated LEED package

[123]). Therefore at the level of sophistication of the current LEED measurements

that we performed, we cannot conclusively rule out the possibility of a very small sur-

face reconstruction. However, in combination with the STM topographs observed by

Hanaguri et al., we would likely conclude that any surface structural reconstruction

is highly implausible in Ca2−xNaxCuO2Cl2.



Chapter 4

Spectral Analysis of the Mott

Insulating Cuprates and the

Franck-Condon Model

At a fundamental level, understanding the behavior of the single hole in the anti-

ferromagnetic Mott insulator is a key to understanding the behavior of the doped

Mott insulator. While there still exists some controversy as to whether the physics of

the idealized doped Mott insulator alone can explain the remarkably high transition

temperatures of the superconducting cuprates, there is no doubt that Mott insulators

remain one of the most critical problems in field of strongly correlated systems, and

perhaps the whole of condensed matter physics. As a result, it will be worthwhile to

revisit and reinvestigate the issue of photoemission from the antiferromagnetic Mott

insulator. 1

Although a large body of photoemission work had been performed on the insulat-

ing cuprates for the better part of a decade, there existed a number of rather critical

problems regarding the interpretation of the data. In this thesis, we will address these

outstanding issues and develop a self-consistent approach to resolving these problems,

by using a model based on Franck-Condon broadening.

1A portion of the work discussed in this chapter has been published in K.M. Shen et al., Physical
Review Letters 93, 267002 (2004).

65
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4.1 General Electronic Structure

The parent compounds of the cuprates (and in fact, all cuprates) are derived from

materials with sequences of two-dimensional square CuO2 planes and separated by

blocking layers. Materials are often classified by the number of CuO2 layers per

unit cell. For instance, La2−xSrxCuO4 or Ca2−xNaxCuO2Cl2 would be referred to as

“single-layer” compounds, while Bi2Sr2CaCu2O8+δ would be referred to as a “double-

layer” or “bilayer” material. Studies of the electronic structure can be significantly

complicated by the interactions between individual CuO2 sheets within a bilayer,

resulting in bonding and antibonding combinations of the CuO2-derived bands. To

avoid this bilayer band splitting, we have chosen to focus on single-layer compounds

such as Ca2−xNaxCuO2Cl2.

In Ca2−xNaxCuO2Cl2, the low-lying states (< 10 eV from EF) are comprised of a

combination of primarily Cu 3d, O 2p, and Cl 3p orbitals. The Ca atom is generally

considered to effectively be in a Ca2+ closed shell configuration, and therefore largely

chemically inert. On the other hand, the Cl ion is in the apical site of the octahedron

surrounding the Cu site, and some small overlap between the Cl 3p and Cu orbitals

may be expected. We show band structure predictions based on a linear augmented

plane-wave (LAPW) calculation using muffin-tin potentials from L.F. Mattheiss [124]

in Figure 4.1.

Typical for the cuprates, the relevant low-energy band from the point of view of

band structure is a single, half-filled band Cu 3dx2−y2 - O 2px,y antibonding band with

an approximately 3 eV bandwidth. This can be seen from a simple analysis of the

orbitals of the Cu and O ions, as illustrated in Figure 4.2. In a cubic environment, the

Cu 3d orbitals are no longer degenerate, but are split into t2g and eg orbitals, with the

dxy, dyz, and dxz orbitals comprising the deeper t2g levels, while the dx2−y2 and d3z2−r2

comprise the eg orbitals. However, the cuprates are tetragonal and the apical bond is

elongated. This lower symmetry further lifts the degeneracy between the orbitals, and

the lowest energy orbital is now the 3dx2−y2 orbital. In the Cu2+ state, this results in

a single hole on the 3dx2−y2 orbital. The antiferromagnetism in the undoped cuprates

then arises from this single uncompensated spin on the 3dx2−y2 orbital. On the other
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Figure 4.1: Band structure calculations by L.F. Mattheiss [124] for Ca2CuO2Cl2.
Calculated partial density of states (DOS) from [124].

hand, the O2− anion has its 2p6 orbitals split into σ, π‖, and π⊥ orbitals by the crystal

field. The hybridization between the Cu and O then leads to the single antibonding

sigma band (σ∗) comprised of Cu 3dx2−y2 and O 2p orbitals. However, the undoped

cuprates are not half-filled metals, but are, in fact, antiferromagnetic insulators with

a ∼ 2 eV gap. This insulating behavior arises from the Coulomb repulsion between

electrons; in particular, it is the energy difference between moving an electron from

the Cu 3d to an empty orbital on the O 2p, as discussed in Chapter 1.

A more detailed and rather sophisticated band structure calculation of the oxy-

chloride materials was produced by Hayn et al. [125]. These calculations utilize a

combination of local density approximation + Coulomb repulsions (LDA + U) and

experimental ARPES data to extract effective tight-binding parameters. Although

these specific calculations are for the Sr2CuO2Cl2 compound, and not Ca2CuO2Cl2,

we will still discuss these calculations in the context of Ca2CuO2Cl2. We believe this

justified as both the Sr and Ca ions are essentially fully ionized and thus are electron-

ically quite inert. Therefore, the only effective difference between Sr2CuO2Cl2 and

Ca2CuO2Cl2 is the difference in ionic radius of the cation and thus different lattice

constants. In addition, the ARPES data of Sr2CuO2Cl2 and Ca2CuO2Cl2 generally

appear extremely similar.
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Figure 4.2: Schematic showing the effects of cubic and tetragonal crystal field splitting
on the orbital levels of Cu2+ and O2−, and the effects of covalent bonding.

4.1.1 ARPES Studies of the Valence Band

Using the calculations in [125] as a reference, we identify three particular electronic

features in the valence band which will later study in detail and which we show in

Figure 4.3. The first is the famed Zhang-Rice singlet (ZRS) [24] feature (Figure 4.3b),

which is the lowest-lying excitation and the electronic feature of most interest, and

will be discussed in greater detail later. The second feature, at ∼ 2.5 eV binding

energy shown in Figure 4.3c, is the O 2pπ orbital. It was previous identified as the

so-called “1 eV peak” in a number of different cuprates, such as YBa2Cu3O7−δ and

Sr2CuO2Cl2, and thus an intrinsic feature of the CuO2 plane. Work by Pothuizen [126]

identified this state as having O 2pπ symmetry by comparison to a tight-binding model

of the CuO2 plane; this was also later confirmed in [125]. The work by Pothuizen et

al. used an eight-band tight-binding model (5 Cu 3d orbitals and 3 O 2p orbitals)
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to explain the wavefunction character of the O2pπ state. The work by Hayn et al.

utilized a more extensive LDA and LDA+U calculations with 11 individual bands,

but agreed qualitatively with the assignment of the O2pπ state by Pothuizen. Our

identification of the O2pz state was made by combining the information from the

Sr2CuO2Cl2 valence band with the LDA and LDA+U calculations. One important

aspect of this state is that at k = (π, π), it is in an in-plane antibonding configuration,

and has zero overlap (i.e. completely nonbonding) with the Zhang-Rice singlet or Cu

3dx2−y2 orbital, as shown in Figure 4.3c. We will later take advantage of this fact in

our data analysis of the chemical potential shift and the assignment of lattice polaron

formation in undoped Ca2CuO2Cl2. The third state that we will identify is the O

2pz state at ∼ 4 eV binding energy (Figure 4.3a), although there may some small

admixture of the Cl 3pz orbital, as well.

Band structure calculations and ARPES data on both Ca2CuO2Cl2 and

Sr2CuO2Cl2 indicate that at k = (0, 0), the O 2pz is relatively well isolated from

the other electronic states which will help in identifying its peak position. Like the

O2pπ state, the O2pz band is also completely non-bonding with the Zhang-Rice singlet

or the Cu 3dx2−y2 orbitals, but at k = (0, 0). Within the range of -7 to -4 eV in bind-

ing energy, there is a large manifold of Cu 3d and O 2p states. Because these peaks

are strongly overlapping and the assignment of these orbitals depends sensitively on

the band structure calculations, it is difficult to reliably determine the nature of each

of these states, although this was attempted in Ref. [125].

In fact, we have found that the valence band of Ca2CuO2Cl2 can vary considerably

from sample to sample, even when measured under ostensibly identical conditions. In

particular, we have identified two characteristic types of valence bands, which we de-

note as A and B, as shown in Figure 4.4. These spectra were recorded using hν = 25.5

eV at the (0, 0) point under essentially identical conditions. Most importantly, we

found that the LHB and low-energy features were basically indistinguishable between

samples of type A and B, and therefore did not affect the essential low-energy physics

which we were attempting to address. One possibility is that these two different line-

shapes could have originated from flux inclusions which were present on the cleaved

surfaces. Supporting this assumption, we found that all samples grown by Y. Kohsaka
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Figure 4.3: Valence band spectra of Ca2CuO2Cl2 taken using hν = 25.5 eV after
the subtraction of an inelastic Shirley background. Spectra are shown at (0, 0) (a);
(π/2, π/2) (b), with the ZRS peak shown on an expanded scale; and (π, π) (c).

using the high-pressure flux method (over 30 doped and undoped cleaves) exhibited

valence bands of type A, while the undoped samples grown by L.L. Miller using an

ambient pressure flux technique exhibited valence bands which varied between line-

shapes of type A and B. Since these crystals should be identical in all other ways (and

the LHB and O2pπ features behave identically across these two batches), this would

indicate that the flux inclusions introduced by these two growth methods should be

different. Because of the uniformity of the lineshapes observed in samples grown by

the high-pressure method, one could assume that A is representative of a pure, cleaved

Ca2CuO2Cl2 or Ca2−xNaxCuO2Cl2 surface, and that B represents the additional con-

tribution of flux inclusions. On the other hand, if B was due to polycrystalline flux

inclusions, one would expect extra, non-dispersive peaks in the valence band. How-

ever, while the spectra at (0, 0) in samples of types A and B are very different, the

spectra at (π, π) are very similar, making the possibility of polycrystalline inclusions

highly unlikely. Moreover, the peaks in B are roughly at the same position of the

peaks in A, but primarily with different intensities, so that no extra peaks are clearly

evident. This raises the possibility that the samples of type B may be Sr2CuO2Cl2

single crystals that were accidentally sent and included in the batch of Ca2CuO2Cl2

crystals. This would be consistent with the fact that no high-pressure Ca2CuO2Cl2

crystals exhibited type B valence bands, that the low energy peaks in B showed very

similar dispersions to A, and the valence band spectra from type B samples appear
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Figure 4.4: Raw valence band spectra of Ca2CuO2Cl2 taken at (0, 0) using hν = 25.5
eV, under identical conditions. Spectra in (a) of Type A were taken on undoped
Ca2CuO2Cl2 grown using the high-pressure technique, while spectra of Type B were
taken on Ca2CuO2Cl2 grown under ambient pressure. The difference between A and
B are presumably either due to flux inclusions or accidentally mislabeled Sr2CuO2Cl2
samples.

rather similar to data from known Sr2CuO2Cl2 samples.

Additional valence peaks, presumably also from flux inclusions of NaCl or NaClO4,

were also observed by Filip Ronning in the doped Ca2−xNaxCuO2Cl2 samples grown

under high pressures. However, these peaks appeared at higher energies (∼ −10 eV),

while the low-energy valence band still resembled lineshape A. The work in [127]

demonstrated that these peaks disappeared over the course of a few hours. Our later

work confirmed that these peaks were being photodesorbed as a function of photon

flux, and not being suppressed from residual gases in the vacuum chamber. However,

this type of flux inclusion is likely different than any possible inclusions in B samples,

since no photo-induced changes were observed in samples of type B.

Another possibility that we should address is that these two different signals could

arise from different surface terminations (either the CaCl or CuO2 layers). However,

we believe this is highly improbable for a number of reasons. The weak bonding and

mirror symmetry between the ionic CaCl double layers make this the obvious choice



CHAPTER 4. MOTT INSULATOR AND FRANCK-CONDON MODELS 72

for a cleavage plane, and this is borne out by XPS [128]. Secondly, these materials are

very electronically two-dimensional (ρc/ρab ∼ 104) and can be cleaved using very little

force, suggesting easy and preferential cleavage between the ionic CaCl layers, and not

between the CaCl and CuO2 layers. Finally, and most importantly, this would simply

not explain the dependence of the valence band lineshape on the growth method.

4.1.2 ARPES Studies of the Lower Hubbard Band

At the most fundamental level, it is important to understand how the ARPES data

relate to the expectations for the single-electron excitations from the band structure

calculations and the t − J model, respectively. Such a comparison of these different

scenarios will be essential in determining which model comes closest to approximat-

ing the “real world”. However, extracting an experimental “band dispersion” from

ARPES is a highly nontrivial matter, as there are many possible metrics for deter-

mining dispersion. Usually, the simplest way to address this problem is to use an

approach based simply on the non-interacting band picture. In this case, a sharp

pole in A(k, ω) will appear where ω = ε(k). In a weakly interacting Fermi-liquid

scenario, interactions will remove spectral weight from the pole (Z < 1), shift the

pole position to ω = ε(k) + Σ′(ω,k), and distribute the rest of the weight (1− Z) to

other energies, but this sharp peak structure will be retained. Much of this work deals

with the failings of such a näıve model, especially when dealing with very strongly

correlated systems when Z � 1. However, we will start by using this weakly interact-

ing model to interpret the data, as this has been the basis for the analysis of ARPES

data for decades.

ARPES data on the insulating cuprate Ca2CuO2Cl2 are shown in Figure 4.5

at low energies, with data taken along different high-symmetry lines of the Bril-

louin zone, which are qualitatively similar to the first work by Wells [50]. The

most apparent feature in the data is a broad but still well-defined dispersive peak

within ∼ 1 eV of EF. Typically, the most strongly dispersive features are observed

along the (0, 0)-(π, π) line, or along the AF zone boundary. Only weak dispersion

is observed along the (0, 0)−(π, 0) line, while the situation is more complex for the
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Figure 4.5: Panels (a)-(d) show energy distribution curves (EDCs) taken from
Ca2CuO2Cl2 along various high symmetry lines of the crystal. Data were taken
at 200 K with hν = 25.5 eV. From bottom to top: (a) EDCs along (0, 0)-(π, π); (b)
(0.85π, 0)− (0.85π, π); (c) (π, 0)-(0, 0); and (d) (π, 0)-(0, π). EDCs in panel (d) were
symmetrized across (π/2, π/2).

(π, 0)−(π, π) direction. At (π, 0) in Ca2CuO2Cl2, the photoemission matrix element

for the LHB always appears rather weak, and the states are rather indistinct. There-

fore, it has been difficult to clearly determine any obvious dispersion along (π, 0)-

(π, π), regardless of the photon energy used. However, very clear dispersion is ob-

served along a parallel cut very close to the (π, 0)−(π, π) line (for instance, along

(0.85π, 0)− (0.85π, π)). Because there should be rather little change in the dispersion

in going from (0.85π, 0)− (0.85π, π) to (π, 0)-(π, π), we will use the obtained disper-

sion from (0.85π, 0) − (0.85π, π), but use larger error bars to reflect the uncertainty

in going from (0.85π, 0) to (π, 0).

By using the standard weak-coupling analysis and empirically tracking the local

peak maximum in the EDCs as a function of momentum, we can attempt to extract

an experimental dispersion, E(k). This was done as early as 1995 in the pioneering
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Figure 4.6: (a) Dispersion of LHB peak maximum in Ca2CuO2Cl2 along high symme-
try lines (circles), along with predictions from LDA band structure [125] and fits to
extended t− J model calculations [129]. Error bars represent uncertainty in locating
peak position, not the peak width. (b) Close-up of experimentally derived disper-
sion and comparison with fits to t− J model calculations, including also data along
(π, 0)-(0, π).

work of Barry Wells et al., and repeated many times since. With the use of many more

samples and high data sampling rates available with the Scienta 200 series analyzers,

we can greatly improve on the data quality found in earlier work. This is shown

in Figure 4.6, where we plot the peak position as a function of momentum, E(k).

Despite the advances in instrumentation and sample growth, the qualitative features

compared to the work from [50] are basically unchanged.

Figure 4.6 shows the failure of the one-electron band structure in describing the

data. The dashed lines show the LDA bandstructure taken from Hayn et al. (although

this is for Sr2CuO2Cl2, the band structure is extremely close to the results from

Mattheiss for Ca2CuO2Cl2). The solid black line shows results from [129], which is

a fitting of the self-consistent Born approximation calculation of the t − t′ − t′′ − J

model to the function form shown in Equation 4.1
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E(k) = −0.55J (cos(kx)+cos(ky))
2−4t′eff cos(kx) cos(ky)−2t′′eff (cos(2kx)+cos(2ky))

(4.1)

with J = 0.14 eV, t′eff = −0.038 eV, and t′′eff = 0.022 eV. These values of t′eff

and t′′eff are simply a useful parameterization of the dispersion, and not so physically

relevant. The failure of the LDA calculations is unsurprising, as all experimental

probes clearly indicate that Ca2CuO2Cl2 is not a half-filled metal, but rather an anti-

ferromagnetic insulator. What is more remarkable is the level of agreement between

the Ca2CuO2Cl2 data and calculations using the t− J model. These can basically be

summarized as follows:

• Bandwidth Renormalization: While the one-electron calculations predict a band-

width of 8t ∼ 3− 4 eV, the t− J model predicts a bandwidth of 2J ∼ 0.3 eV.

This is in rough agreement with our experimental value of ∼ 0.3− 0.4 eV.

• Symmetry of Dispersion: The dispersion of the LHB is found experimentally

to be symmetric about the AF zone boundary, at least along the (0, 0)-(π, π)

line (about k = (π/2, π/2)). This is in accordance with a Néel-ordered antifer-

romagnet, consistent with the t − J model, but obviously not with the band

picture.

• Overall Dispersion: The overall dispersion agrees roughly with the expectations

based on the t−J model, although the main disagreement is along the AF zone

boundary (0, π)−(π, 0). Adding higher-order hopping terms (t′, t′′) can help to

improve the fit of this extended t− t′ − t′′ − J model to the experimental data,

although the question of the physical relevance of this extended model is still

up for debate.

• Quasiparticle Weight: The t−J models predict a Z ∼ 0.2, due to the effects of

magnetic interactions. Compared to other states in the valence band, the LHB

peaks have much weaker intensity, consistent with this reduced Z.
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Therefore, it is clear from this simple analysis of the insulating Ca2CuO2Cl2 data

that calculations based on the t − J model do a far better job of approximating

the ARPES spectra than simple band structure calculations. However, in the Fig-

ure 4.6b, one can observe a fairly clear discrepancy between the calculations and the

experimental data. One possibility is that the value used for J in the calculations

is smaller than reality. Another is the existence of a more dispersive, high energy

branch near (0, 0)which skews our peak position to higher binding energies, partic-

ularly near (π/4, π/4), where the LHB intensity becomes very weak, as shown in

Figure 5.12. Therefore, the points near (π/4, π/4) in Figure 4.6b may not be and

accurate representation of the dispersion of the antiferromagnetic Zhang-Rice singlet

band alone. Still, for quite some time, this approximate agreement was essentially

taken as a demonstration of the success of the t−J model in describing the single-hole

dynamics in the AF Mott insulator. Despite this apparent success of the t−J model,

there were still a number of discrepancies between theory and experiment, which were

either difficult to address or not fully understood or realized. The next section will

discuss these discrepancies in some detail, and then later I shall describe a model

based on Franck-Condon broadening (FCB) which can resolve these problems.

4.1.3 Failure of the Coherent Quasiparticle Scenario

From aforementioned analysis, the agreement of the t − J model and experiment

was predicated on the use of the standard “weakly-interacting” paradigm where the

ARPES peak represented the QP pole in the spectral function. Moreover, the t− J

model predicts a Z ∼ 0.2 in the lowest-energy QP peak. While this is substantially

reduced from 1 (due to spin effects), this implies that the eigenstates of the N − 1

system of the t − J model still have a reasonably strong overlap (∼ 20%) with the

pure electron/hole states. Despite the strong interactions, numerical calculations of

the t − J model indeed still predict very sharp QP-like excitations. Although on a

superficial level this type of analysis appears to give satisfactory results, there are

crucial flaws and inconsistencies related to such a scheme. The obvious discrepancy

between the experiment and theory was the strongly broadened peak widths observed
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in the insulator. This was first pointed out by the work of Pothuizen et al. [126],

and later by Changyoung Kim [130], who suggested a heuristic multiple initial state

/ final state model as a source of the broadening and temperature dependent change

in spectral weight. The newer work presented here borrows on these earlier ideas,

and builds on it by using a particular model (FCB) and physical scenario to describe

the single-electron excitations.

At this point, we will describe the failings of the weakly-interacting quasiparti-

cle scenario, which we dub the “Coherent Quasiparticle Scenario”, or CQS. More

accurately, CQS refers to the scenario when the projection of the N − 1 state (i.e.

the initial state, with one electron instantaneously removed, ckψ
N
i = ψN−1

i ) onto the

true eigenstates of N − 1 system is rather large. In other words, this would be the

case when ψN
i has some finite overlap with a noninteracting many-body wavefunc-

tion, such as would be the case for a Fermi liquid. However, when there are strong

interactions (electron-electron, or electron-phonon, for instance), this coupling of the

single electronic states (to other electrons, or to the lattice) will effectively reduce the

overlap between the eigenstates of the N − 1 system (which are then heavily dressed)

and ψN−1
i , thereby “stealing” spectral weight away from the quasiparticle peak. This

would then be the limit where Z � 1, which we will discuss in detail. In particular,

we will concentrate on one particular model where Z � 1, namely the situation for

Franck-Condon broadening (FCB).

We will first discuss the failings of the CQS in the context of the ARPES data on

Ca2CuO2Cl2, and later, how the FCB can resolve these issues. This will prove to be

particularly important in Chapter 6, when we discuss the evolution in the electronic

structure as a function of hole doping, where the CQS will again prove inadequate,

and the FCB model proves to be a much more attractive alternative. We outline a

list of four problems with the CQS in the context of Ca2CuO2Cl2:

1. Peak Width: This is the longest-standing and best-known problem regarding

ARPES data on the undoped parent Mott insulators. When ARPES data were

first taken on Sr2CuO2Cl2 ten years ago, the experimental resolution was still

rather poor, so it was unclear whether this peak width was, in fact, intrin-

sic. As the instrumental resolution improved, it became clear that the peaks
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Figure 4.7: (a) Fits to the experimental data from Ca2CuO2Cl2 at the top of the
valence band, k = (π/2, π/2), at 200 K. Fits to a Lorentzian are shown in red, while
the Gaussian is shown in blue. (b) Comparison of the data from Ca2CuO2Cl2 in (a)
with Sr2RuO4, taken at 15 K at k = (π, 0)(peak represents the surface γ-band).

measured in Sr2CuO2Cl2 and Ca2CuO2Cl2 were much broader than other com-

pounds. This can be seen in Figure 4.7b, where data at the top of the valence

band of Ca2CuO2Cl2 are compared to truly quasiparticle-like excitations mea-

sured in Sr2RuO4. At the top of the valence band, there is no phase space for

electron-electron scattering, and Fermi-liquid theory would predict δ-function-

like excitations there (and at all energies less than the gap). Instead, the peaks

measured in Ca2CuO2Cl2 were found to have a width comparable to the entire

bandwidth of the lower Hubbard band - a highly unusual situation.

2. Lineshape: Typical quasiparticle poles should possess a lineshape reminiscent

of a Lorentzian. This can be seen from inspection of the form of A(k, ω) =
(Σ′′k,ω)2

(ω−εk−Σ′(k,ω))2+Σ′′(k,ω)2
. When at the pole energy, ω = εk + Σ′(k, ω), the form is

approximately Lorentzian if dΣ(k,ω)
dω

is not too large over the range of the pole

width, so that Σ′(k, ω) and Σ′′(k, ω) can be well approximated by constants,

as discussed in Chapter 2. However, what is observed is that the falloff of

the spectral weight away from the peak is suppressed exponentially. In fact,

the low-energy half of the peak of the LHB can be fit extremely well by using
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a Gaussian form. This can be seen in Figure 4.7a. At higher energies, there

should be additional higher energy states [131], likely leading to the asymmetric

lineshapes. On the other hand, a Lorentzian fits the ARPES data poorly; the

large peak widths would imply very long tails away from the peak, something

that is not observed experimentally.

One could argue that an exponential tail in the density of states to EF might

be expected from impurity states (as would be in the case for a doped semicon-

ductor, i.e. Urbach tails). However, the undoped system is stoichiometric and

very robust against disorder (making Ca2CuO2Cl2 the ideal system for studies

of the Mott insulator). Because the entire peak can be fit by a Gaussian, this

would imply that a very large number of these states arise from impurities,

which would simply be far too great a concentration. Secondly, if this was due

to impurity states, this exponential tail would be essentially isotropic (a density

of states effect). However, as we will show later, the width of this Gaussian is

surprisingly momentum dependent. Moreover, this Gaussian lineshape is also

present for other deeper states in the valence band (O2pπ), which are far re-

moved from EF. Finally, adding additional impurities in the form of Na dopant

ions actually makes the low-energy features sharper, not broader. All of these

factors would suggest that this unusual Gaussian lineshape cannot solely be due

to the presence of impurity states.

3. Chemical Potential Positions: Another apparent inconsistency plaguing the

CQS is the position of the chemical potential, µ, relative to the LHB peak. In

a pure insulator, µ is poorly defined, and can exist anywhere within the gap.

However, its upper and lower bounds are set by the bottom of the conduction

band and the top of the valence band, respectively. More specifically, the po-

sition of the QP pole at the top of the valence band should set the ultimate

lower bound for µ. In a photoemission experiment, µ in the insulator is most

likely determined by surface defects and impurities. From measuring many sam-

ples, we have observed a distribution of µ’s relative to the LHB peak, and have
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Figure 4.8: (a) Pinned positions of µ in Ca2CuO2Cl2, plotted relative to the peak
position of the LHB (open circles), and the onset of spectral weight (open squares),
along the (0, 0)-(π, π) direction. Experimentally determined values of µ, relative to the
LHB peak, are shown as horizontal grey lines. (b) Lineshape of undoped Ca2CuO2Cl2
(black) and Ca2−xNaxCuO2Cl2 (red) at kF. Data were taken at hν = 25.5 eV and
normalized to the high binding energy background at -1 eV; normalizing to the valence
band gives very similar results. Estimated peak intensities are shown as shaded curves.

determined a lower bound for µ. This is shown in Figure 4.8 where the ex-

perimentally determined µ’s from many samples are plotted as horizontal grey

lines. However, the lower bound for µ is set approximately 400 meV above the

position of the LHB peak, not close to the LHB peak position. In fact, 400 meV

is a very large energy scale - comparable to the bandwidth of the entire LHB.

Therefore, there would appear to be some sort of “hidden energy scale” which

is keeping µ from approaching the LHB peak, something that will become clear

when we discuss the FCB model.

4. Evolution of Spectral Weight: As the cuprates become progressive more hole

doped, they are generally believed to recover Fermi-liquid-like behavior near the

overdoped side of the phase diagram. Therefore, one would expect as cuprates
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become more hole doped that the QP residue, Z, should increase monotoni-

cally. However, because of the large width of the LHB peak in Ca2CuO2Cl2,

the integrated spectral weight of this peak is rather sizable. One can compare

this to the intensity of the QP-like peaks observed in the doped materials. Be-

cause these QP-like peaks are much sharper than the LHB peaks, they actually

encompass much less spectral weight than the broad LHB peak, as shown in

Figure 4.8b. Data here were taken under similar conditions (Ca2CuO2Cl2 was

measured at 300 K; Ca1.88Na0.12CuO2Cl2 was measured at 15 K, although this

should not make a large difference), using hν = 25.5 eV. The spectra were nor-

malized to the flat background at -1 eV. Normalizing to the intensity of the

entire valence band gave qualitatively similar results. To estimate the peak

weights, we use the Gaussian fit for Ca2CuO2Cl2, and an empirical fit to the

peak for Ca1.88Na0.12CuO2Cl2. The ratio of these peak areas, A0.12 / A0, is es-

timated to be roughly 0.20. Although the fitting scheme is somewhat arbitrary

and there may also be different photoelectron matrix elements for the doped

and undoped states, this analysis should be accurate to within a factor of 2.

This would still imply that under the CQS, “Z0” > Z0.12, which is a highly

nonintuitive and unusual (and incorrect) result; we will demonstrate that this

apparent “Z0” is incorrect and arises from inconsistencies in the CQS.

4.2 Franck-Condon Model

The previous section has outlined reasons for the failure of the conventional, weak-

coupling CQS and has demonstrated the need for a new model to understand the

ARPES data on the undoped and lightly doped cuprates. Here, we will outline a

model based on Franck-Condon broadening (FCB) to explain many of the unusual

spectral features in the cuprates. The most important point of this model is that

in this picture, Z → 0. In principle, a different model which possesses this essential

feature might also be used to explain the features in the undoped cuprates. However,

we will show that FCB can nicely describe some detailed features in the ARPES

spectra, such as the Gaussian lineshapes. Therefore, the FCB scenario appears to
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be the best existing model to describe the experimental data, although this certainly

does not preclude other candidates.

We will start with a simply physical picture for Franck-Condon broadening, one

that is commonly used in quantum chemistry and molecular physics, and is well

worth discussing in some detail. Later, we will describe how one can also arrive at

the same picture by using a standard Green’s function formalism. In the FCB model,

we start with an electron in a harmonic potential well, corresponding to the chemical

bonding to adjacent atoms. Although the potential need not be exactly harmonic,

this should be a good approximation to first order. This is shown in Figure 4.9a,

where the potential energy curves are plotted versus a generalized atomic / lattice

coordinate, q, with an equilibrium position q0. Each excited state, ψN
m , corresponds to

the electronic state with N electrons (there are N electrons in the initial state) and m

vibrational quanta excited. We treat the system in the initial state as ψN
0 , the lower

curve in Figure 4.9a, with no vibrational quanta thermally excited (low temperature

limit). The photoemission process then ionizes the molecular system to a final state,

ψN−1
m , plus a photoelectron at “infinity”. We then take the sudden approximation (or

Born-Oppenheimer approximation), where the outgoing photoelectron is removed so

quickly as not to interact with the ionized molecule as it is leaving the system. This

photoionization transition can be treated as direct, where the atomic coordinates do

not change from q0 during the process. However, the ionized molecule will obviously

have a different atomic potential and final equilibrium position, q1, due to the altered

nature of the ionized chemical bond. Therefore, the final states for the photoionized

molecule are shown by the upper curve. The key point is that the initial state, ψN
0 , can

overlap with many different final states, ψN−1
m , not simply ψN−1

0 . This can be shown

by simply performing the integral of |〈ψN
0 |ψN−1

m 〉|2, where the ψ’s are simply different

harmonic oscillator wavefunctions. A simple example of FCB is shown in Figure 4.9b,

where the photoemission spectrum of H2 → H+
2 is shown (from Turner [132]). Even

in this simplest of cases, the ψN
0 → ψN−1

0 transition (which we will call the “0-0

transition” or the “zero-phonon line”) has only a ∼ 0.10 probability, and the overlap

to the N − 1 states with vibrational quanta excited, ψN−1
m>0 , is about ∼ 0.90. Simply

speaking, this basically implies that a photoemitted electron has a high probability
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Figure 4.9: (a) Illustration of the Franck Condon principle, showing the transition
from the ψN

0 → ψN−1
m states. (b) Photoemission spectrum from H2 → H+

2 with the
0-0 transition shown in red [132]

of leaving the system in a vibrationally excited state when it leaves the molecule. In

fact, the ψN
0 → ψN−1

1,2,3,4 transitions all have a higher probability than 0-0. This overlap

will depend strongly on the nature of the chemical bond (i.e. whether it is a bonding,

antibonding, or nonbonding orbital). It is rather easy to see that if the electron

somehow does not participate in the chemical bonding (equivalent to a zero coupling

constant), that the upper curve should be identical to the lower curve. Then, the 0-0

transition will have a probability of unity, because of the orthogonality of different

eigenstates, since the N and N − 1 systems have the same q-Hamiltonian.

Another way to approach this problem is using a Green’s function formalism,

which extends more naturally to the solid-state limit. In fact, the molecular approach

and the Green’s function approach describe precisely the same physical scenario and in

fact give the same results. Therefore, the only difference between the two approaches

is one of mathematical formalism and not physics. However, while the molecular

picture may be more physically intuitive, the Green’s function approach is more

general and powerful. For instance, one can not only address the FCB case, but
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also the weakly interacting scenario (CQS), where the excitations are delocalized,

free-electron-like quasiparticle states; the FCB and CQS start from different limits.

In Chapter 2, we have already discussed the evolution of the single-particle spectral

function with the addition of weak interactions (CQS). For instance, this should quite

well reproduce the case of weak electron-electron interactions in a good metal, such

as copper. In this case, the real eigenstates of the N − 1 system have well defined k

quantum numbers and overlap very strongly with the single hole state, ψN−1
i . This

implies that the many-body eigenstates of the photoexcited N − 1 system can be

nearly constructed from a basis set of delocalized Bloch states, with the interactions

causing a slight mixture of these states. This is basically the standard weak-coupling

CQS phenomenology that is nearly always utilized to interpret ARPES spectra.

On the other hand, we can take an electronic state which is coupled to some

bosonic field. In the solid, this bosonic field could represent spin waves (magnons)

or lattice vibrations (phonons). The Hel−b term in the Hamiltonian will couple the

electron (fermionic) and phonon/magnon (bosonic) Hilbert spaces, so that the new

eigenstates have mixed electron-boson character, but solving for these new eigenstates

becomes far more difficult. Below is a Hamiltonian for a single electronic band with

an electronic dispersion, εk, interacting with a single branch of bosonic excitations

through a matrix element, Mq.

H =
∑
k,σ

εk c
†
k,σck,σ +

∑
q

ωq a
†
qaq +

∑
k,q,σ

Mq c
†
k+q,σck,σ(aq + a†−q) (4.2)

However, even in the absence of electron-electron interactions, this problem is

still analytically intractable. Even without considering electron-electron interactions,

a wide array of fascinating phenomena in the solid state such as charge-density-wave

(CDW) formation and superconductivity are driven by such electron-boson (in this

case, phonon) interactions. However, an exact solution of an extremely simplified

case of this interacting fermion-boson model is within our theoretical reach. We will

use the solutions of this simplified model to help develop our intuition for interpreting

the more complicated situations which exist in real materials. Theoretical attempts
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to obtain either analytical or numerical solutions to the more generalized interact-

ing fermion-boson (IFB) model are well beyond the scope of this thesis. However,

we will later discuss some recent theoretical treatments of the interacting electron-

phonon Hamiltonian which give remarkable agreement with the experimental data

and provide some insights and justifications for our work. To simplify the IFB model,

we take the case of a localized electronic state coupled to a single bosonic mode.

For the purposes of this discussion, we will assume that the boson is a phonon. In

this case, c and c† are the electron annihilation (creation) operators, aq and a†q are

the phonon annihilation (creation) operators, and Mq is the matrix element for the

electron-phonon coupling.

H = ε0 c
†c+

∑
q

ωq a
†
qaq +

∑
q

Mq c
†c(aq + a†−q) (4.3)

An abbreviated summary of the analytical solution will follow, but the full solution

can be found in Mahan [86]. The Green’s function for t > 0 is then

G(t) = −i〈Tt c(t)c
†〉 = −ie−i(ε0−∆)e−Φ(t) (4.4)

where

Φ(t) =
∑
q

(
Mq

ωq

)2

[Nq(1− eiωqt) + (Nq + 1)(1− e−iωqt)] (4.5)

∆ is

∆ =
∑
q

M2
q

ωq

(4.6)

Nq is the phonon (Bose-Einstein) occupation number

Nq =
1

eβωq − 1
(4.7)

To solve for the spectral function, we neglect any q-dependence in the Hamilto-

nian. Therefore, we will also assume that this phonon is dispersionless (an Einstein

mode, ωq = ω0), and that the coupling constant between the electrons and phonons
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is momentum-independent (i.e., just a c-number, M). Then Equation 4.3 can be

expressed as

H = ε0 c
†c+ ω0 a

†a+M c†c(a+ a†) (4.8)

The solution to this problem, at T = 0 (so that N = 0) is then given by

A(ω) = e−g
∞∑
l=0

gl

l!
δ(ω − ε0 + ∆− lω0) (4.9)

It is immediately obvious that A(ω) takes on the form of a Poisson distribution

of δ-functions separated by ω0. Moreover, this clearly satisfies the sum-rule for A(ω)

since the Poisson distribution necessarily sums to unity. In this case, the coupling

constant g can be expressed as

g =
∑
q

(
Mq

ωq

)2

→
(
M

ω0

)2

(4.10)

The form of A(ω) is shown in Figure 4.10. As mentioned earlier, the spectral

function takes on the form of a series of δ-functions separated by ω0. Since the

chain of δ-functions in Eq. 4.9 are shifted by ∆ = gω0, this means that the center

of gravity of this distribution remains at the unrenormalized electronic energy, ε0.

The zero-phonon line, corresponding to l = 0, is shifted to lower binding energies

relative to ε0. The spectral weight in this zero-phonon line (corresponding to Z in the

solid-state) is reduced exponentially quickly as a function of the coupling constant,

g. Since the functional form of Eq. 4.9 is a Poisson distribution, this reduces to a

simple Gaussian in the limit of large g. In fact, even when g is only ∼ 3, the spectral

weight distribution is already very close to a Gaussian form, as can be seen in Figure

4.10. In our later analyses, we will simply use the Gaussian form to substitute for

the Poisson distribution.

We can also study the temperature dependence of A(ω) by considering how the

phonon population, N , changes as a function of temperature. At finite temperature,

there are thermally excited phonons, and the electron can not only create phonons,

but also annihilate phonons. This will broaden the spectral function, as shown in
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Figure 4.10f. The exact functional form for A(ω, T ) is

A(ω, T ) = e−g(2N+1)
∞∑
l=0

gl

l!

l∑
m=0

lCmN
m(N +1)l−m δ(ω− ε0 +∆− (l−2m)ω0) (4.11)

where lCm is combinatorial shorthand for “l choose m”, which is simply l!
m!(l−m)!

.



CHAPTER 4. MOTT INSULATOR AND FRANCK-CONDON MODELS 88

g = 1
Z = 0.37

-1.5 -1.0 -0.5

0.4

0.2

0.0

a)

g = 3
Z = 0.05

-1.5 -1.0 -0.5

0.2

0.1

0.0

0.3 b)

g = 5
Z = 0.007

-1.5 -1.0 -0.5

0.2

0.1

0.0

c)

g = 7
Z = 0.001

-1.5 -1.0 -0.5

0.2

0.1

0.0

d)

g = 0
g = 1
g = 3
g = 7

-1.5 -1.0 -0.5

1.0

0.5

0.0

e)

T = 0
T = 0.5ω0
T = 1ω0
T = 2ω0

-1.5 -1.0 -0.5

0.2

0.1

0.0

f)

Energy (eV)

Figure 4.10: Calculations from the interacting electron-boson Hamiltonian, Equation
4.8. In this plot, we plot the case for a hole, not an electron, so that the energy axes
are analogous to what one would observe in the photoemission process (as opposed
to inverse photoemission). Panels (a)-(d) show the evolution of A(ω) as a function
of the electron-boson coupling constant, g. In this model, ε0 = −1 eV and ω0 = 0.05
eV. The position of the diamond shows the zero-phonon line (Z), which would be
analogous to the QP in the solid state. A fit of the lower binding part of A(ω) to
a Gaussian is shown as a thin solid line. A direct comparison of the spectral weight
distribution as a function of g is shown in (e). The evolution of A(ω) as a function
of temperature (measured in units of ω0) is shown in (f).



Chapter 5

Evidence for Lattice Polaron

Formation in the Undoped

Cuprates

In Chapter 4, we demonstrated that using a phenomenology based on Franck-Condon

broadening was far better suited to describing the single-electron excitations of the

parent Mott insulator than the coherent quasiparticle scenario. This implies that the

good eigenstates of the photoexcited N − 1 system had very little overlap with non-

interacting, free-electron-like states. In the photoemission process, we cannot measure

the actual eigenstates of the system, only single electrons which must propagate

roughly 1 meter through free space from the sample surface to our detector. Therefore,

in a very real sense, we are measuring the projection of the eigenstates of the N − 1

system onto the measurable free-electron plane-wave states. This line of thinking led

us to the discussion of Franck Condon broadening in Chapter 4, where the eigenstates

of that system have a strongly mixed electron-boson character. Because of this, it is

more appropriate to refer to these eigenstates as “polarons” - i.e. an electron strongly

coupled to a field of bosons 1.

In the case of the undoped cuprates, it is rather difficult to determine a priori what

1The majority of the work discussed in this chapter is currently submitted as a manuscript to
Physical Review B.
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Figure 5.1: (a) Photoemission from a metal. Due to screening of the positively
charged photohole by the conduction electrons, the lattice relaxation is small. (b)
Photoemission from an ionic insulator. Without readily mobile screening electrons,
the lattice ions are free to relax due to strong Coulomb interactions with the un-
screened, positively charged photohole.

particular kind of bosonic field the electrons are coupling to. The idea of polarons

first originated in the 1950’s from the consideration that electrons could be strongly

coupled to the lattice [133, 134, 135, 136]. However, because the undoped cuprates

are also antiferromagnetic, the photohole (which is a spin-1/2 object) can also be

dressed by magnons, and therefore the injected photohole can also decay into a “spin

polaron”, i.e. a hole strongly dressed by a cloud of spin wave excitations. The

objective of this chapter is to attempt to determine what mechanisms could cause

this broadening. Because excitations from the LHB can, in principle, be coupled to

the charge, spin, and lattice sectors, it is essentially impossible to disentangle each

contribution. However, we can attempt to determine whether any lattice contribution

to the FCB exists in the LHB.

In the case of lattice polaron formation, electronic localization is associated with

the hole’s +e charge and its interactions with surrounding ions. Because the un-

doped system is an insulator, the neighboring ions should be poorly screened from

the Coulomb interaction of the positively charged hole, as opposed to the case of a

metal, where screening from the other conduction electrons (i.e. associated with plas-

mons) greatly weakens the effective photohole-lattice Coulomb interaction. A cartoon
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picture of this is shown in Figure 5.1. In the case of the oxychloride materials, it is

generally accepted that the CaCl (or SrCl) blocking layers are essentially ionic, and

the positions of the Ca2+ cations or Cl− anions, or the copper or oxygen atoms within

the plane, may relax in response to the electrostatic interaction with the photohole.

This lattice relaxation results in the formation of a localized lattice polaron, which

in a quantum-mechanical sense, is a hole dressed by a number of virtual phonons.

The basic concept of the spin polaron is analogous to a lattice polaron, and in

discussed in detail by Shastry, Auerbach, and others [137, 138, 139, 140]. Because the

hole carries both charge +e and spin-1/2, its hopping motion through the lattice will

also disrupt the antiferromagnetic spin sublattice. The motion of the hole therefore

results in spin-flip processes, and the magnetic energy cost of the hole’s propagation

scales roughly with the distance that the hole has moved. Therefore, the energy cost

of these spin-flip processes associated with the hole motion will favor a more localized

photohole. Therefore, it may be energetically more favorable, in terms of the mag-

netic exchange energy, for the hole to form a small local region of ferromagnetically

polarized spins in the antiferromagnetic background, and this massive “spin polaron”

can then move coherently by tunneling, similar to a lattice polaron. A small lattice

polaron state can be rather easily created, since an electron can be dressed by any

number of phonons. On the other hand, it is unclear exactly how “small” a spin

polaron can be created around an electron or hole. This is because magnon (spin

flip) excitations will eventually bring the spin orientation back into its original direc-

tion, thereby putting a bound on the maximum number of magnons that can dress an

electron, and this was the basis for some of the calculations performed by Mishchenko

and Nagaosa [141] which will be discussed later in this chapter. In systems where

orbital ordering occurs there exist bosonic modes, sometimes called “orbitons”, asso-

ciated with the broken symmetry associated with the orbital order. As a result, in

such orbitally ordered systems, orbital polarons can also be formed [142, 143]. In the

cuprates, this is irrelevant as the Cu 3dx2−y2 orbital is the only unfilled 3d orbital,

so no such orbital degeneracy necessary for orbital ordering exists. However, these

considerations might be essential for materials such as the manganites.

To complicate the situation, no detailed theoretical understanding of the spectral
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properties of the electronic Mott insulator currently exists. Because of the strongly

correlated nature of the Mott insulating state, it is not known whether well-defined

sharp quasiparticle-like excitations (which exist in the Fermi liquid state) would exist

for the Mott insulator, irrespective of additional lattice or spin polaron effects. Some

theoretical studies of the two-dimensional Hubbard model which focus on the effects

of the electronic correlations on the single-particle properties will also be discussed

along these lines. However, we can still attempt to determine whether lattice effects

are, at any level, relevant to the observed Franck-Condon broadening in the undoped

insulator. To do this, we compare the complex strongly correlated states in the

lower Hubbard band (LHB) to conventional “benchmark” states (O 2pπ and Ca 3p

orbitals). From this comparison, we conclude that lattice effects play a substantial

role in the observed broadening, implying that the photoholes form localized small

polaron states. In addition, we have observed a large momentum dependence to the

linewidth which may have implications on the anisotropy of the first doped QP states

in the lightly doped cuprates. This evidence of a strong lattice polaron effect still

does not rule out additional contributions from spin or charge degrees of freedom to

the lower Hubbard band.

5.1 Photoemission Studies of Small Polaron

Systems

In order to discuss the possibilities of lattice polaron formation in the cuprates, we

first provide a brief overview of previous photoemission studies of systems exhibiting

small polaron behavior. Establishing this framework will be very important in order to

conclusively demonstrate that lattice effects unequivocally contribute to the Franck-

Condon broadening observed in the undoped cuprates, as will be later described.

We should note that while lattice-induced FCB / polaron formation has been known

for over 30 years, there has not yet been (to our knowledge) any observation by

photoemission of spin polaron formation. This certainly does not exclude the fact

that spin polarons can be observed by photoemission, but the precedent for this has
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a) b)

Figure 5.2: XPS spectroscopy of the ionic potassium halides, taken from [145]. (a)
Temperature dependence of the EDCs of the K 2p core level from KI. (b) Temper-
ature dependence of the Gaussian FWHM of the core levels. The upturn at low
temperatures is from electrostatic charging of the insulating samples.

not yet been set. However, we should note that recent work on the Fe(110) surface

has claimed to observe electron-magnon effects in the electronic self-energy extracted

by ARPES, although these effects appear to be rather subtle and not definitive [144].

There have been many claims that the observed dispersion anomalies in the cuprates

are due to interactions between electrons and spin interactions [40], although this is

still a highly controversial and unresolved topic. In principle, however, there is still

no reason why such effects could not be observed by ARPES.

Much of the work presented in this chapter was based on the work of Citrin,

Wertheim, and Baer [145, 146, 147] on core-level broadening in simple alkali halides.

In these very simple ionic systems, one does not need to be concerned about spin

degrees of freedom, so any electron-boson interactions would most certainly be due

to phonons (in this case, we neglect plasmons because of the vastly different energy

scales of phonons and plasmons). In Figure 5.2a, we show core level spectra from

the K 2p electrons from KI taken from [145]. Two aspects of Figure 5.2a are critical

to the identification of lattice FCB as the predominant source of broadening in the
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spectra. First, even in spite of the poor instrumental resolution, the lineshape is

clearly Gaussian-like. This is significantly different from the Lorentzian-like Doniach-

Šunjić (DS) lineshapes observed in conventional metals such as Na or Al [148], where

the predominant lifetime effects are due to the interaction of the conduction electrons

with the localized core hole. Second is the sizable temperature broadening observed

in Figure 5.2a and summarized in Figure 5.2b; the magnitude of the temperature

broadening observed in the core levels of these alkali halides is substantially larger

than what one would expect from electron-hole interactions, and again points to the

coupling of the core hole to a low-energy bosonic field.

More recent photoemission work has centered on studies of lattice polaron effects

on the near-EF valence electrons. A substantial amount of photoemission work on

the colossal magnetoresistance (CMR) manganites has also demonstrated broad and

incoherent, yet dispersive spectral weight with very little intensity at EF [149, 150].

This appears to be qualitatively very similar to the ARPES spectra observed in the

undoped cuprates, and it is generally accepted that Jahn-Teller polarons play a critical

role in the physics of the manganites [151], and the effects of small polaron formation

in these systems have already been discussed [152]. This type of analysis has been

extended to work for other transition metal oxides, including the vanadates [153, 154]

and magnetite [155]. It is rather interesting to note an acknowledgement in one of

Holstein’s first papers on small polarons in 1959 [135] that it was experimental studies

on transition-metal oxides that provided the initial stimulus for his own work. In

addition to work on the transition-metal oxides, recent ARPES studies by Perfetti et

al. of one-dimensional charge-density-wave systems such as the classic “blue bronze”

K0.3MoO3 as well as (TaSe4)2I seem to suggest that small polaron formation is also

relevant in these strongly pseudogapped 1D Peierls systems [156, 157]. This is rather

different than the conventional textbook weak-coupling, FS nesting-driven scenario for

CDW formation, but seems to provide a very appealing and self-consistent picture for

understanding the spectral features of these 1D Peierls compounds. The sum total

of this work on transition-metal oxides and 1D Peierls compounds would strongly

suggest that lattice polaron effects are clearly exhibited also in the low-energy (near-

EF) single electron excitations in ARPES.
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5.2 Lattice Polaron Formation in Ca2CuO2Cl2

5.2.1 Polaron Formation in O2pπ States

As described earlier, the complex many-body nature of the states in the LHB makes

it extremely difficult to determine whether the large broadening arises from electron-

phonon, electron-magnon, or purely electron-electron effects. Therefore, it is impor-

tant to have some comparison between the LHB states and other states in the crystal

which do not have such complicated many-body interactions. We employ the logic

that while many electronic states are not coupled to spin and electronic correlations

in the Cu 3d and ZRS states, all states must necessarily be coupled to the underlying

lattice. Therefore, by selecting particular “uncorrelated” electronic states, we can

determine whether these states experience an appreciable electron-lattice interaction.

Although the electron-phonon interaction will obviously vary significantly between

states, this should at least provide us with an estimate of how relevant electron-

phonon interactions may be to the broadening observed in undoped Ca2CuO2Cl2.

We start by using the O2pπ state identified in Chapter 4 as a reference state to

compare against the LHB. A very similar comparison was first performed by Pothuizen

et al. in Sr2CuO2Cl2 using the same aforementioned logic [126]. Our work adopts

the same line of reasoning, but extends upon this work with a discussion of FCB,

detailed lineshape analysis of high-resolution spectra, as well as with comprehensive

temperature dependence data. As discussed by Pothuizen et al. [126] and later by

Hayn et al. [125], at k = (π, π) this state has 100% O2pπ character (as shown in

Figure 4.3c) and therefore does not overlap with the Cu 3d spin system. Therefore,

the only mechanisms for the decay of a photohole injected into the O2pπ band at k

= (π, π) should be electron-hole and electron-phonon interactions. In principle, one

can distinguish between electron-hole and electron-phonon decay of the photohole by

the characteristic lineshapes of each process. In Figure 5.3a, we show EDCs along

the (0, 0)−(π, π) direction of the Brillouin zone for the LHB near EF. As discussed

earlier, the LHB exhibits the Gaussian FCB lineshape not only at (π/2, π/2), but

all over the Brillouin zone. As can be seen, the Gaussian FWHM also seems to be

strongly momentum dependent, and this will be discussed later in this chapter.
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Figure 5.3: (a) Franck-Condon broadening of the LHB near (π/2, π/2) along the
(0, 0)- (π, π) direction. (b) Spectra from the O2pπ band near (π, π) along the (0, 0)-
(π, π) direction which also exhibit FCB. All raw data are shown as black points and
Gaussian fits are shown as a thick red lines. Data were taken at 300 K with hν = 25.5
eV, and polarization at 45◦ to the Cu-O bonds. (c) Schematic of the Franck-Condon
broadening process.

In Figure 5.3b, we show the EDCs from the O2pπ state near (π, π). The main

point is that the O2pπ peaks can also be fit very nicely with a Gaussian lineshape,

similar to the LHB. Because electron-hole decay should result in an approximately

Lorentzian lineshape, this is a very strong indication that the lineshape of the O2pπ

states are also Franck-Condon broadened. Since the O2pπ states are not coupled to

the spin degrees of freedom, this clearly implies that the photoholes injected into

the O2pπ band form small lattice polarons, indicating the presence of very strong

electron-phonon interactions for the O2pπ band in Ca2CuO2Cl2. This suggests that

there might exist a sufficiently large electron-phonon interaction for states in the

LHB to cause the observed FCB in Ca2CuO2Cl2. Therefore, our studies of the O2pπ
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lineshape in Ca2CuO2Cl2 have provided cause to believe that sizable lattice polaron

effects should also exist for the LHB, and therefore may be largely responsible for the

observed broadening. The Gaussian lineshape also seems to describe a fairly wide

range of k-space for the O2pπ band, much like the LHB.

First of all, electron-hole lifetime effects should also be relevant in the O2pπ

band which sits ∼ -2.5 eV below EF. Assuming that this decay channel produces a

Lorentzian lineshape, we can estimate the maximum contribution from electron-hole

interactions by convoluting the Gaussian FCB lineshape with a Lorentzian. Estimat-

ing a total width at T = 200 K of 370 ± 50 meV, we estimate a maximum Lorentzian

contribution of ∼ 70 meV before significant deviations from a Gaussian lineshape.

This upper bound for Γel−el would correspond to an electron-phonon contribution of

Γel−ph = 300 meV, resulting in a Voigt parameter y = Γel−el/Γel−ph

√
ln 2 = 0.19.

However, performing a more detailed fit of the Voigt parameters of the O2pπ line-

shape is complicated by the high binding energy tail, which makes the O2pπ peak

asymmetric. Calculations by Hayn et al. [125] predict a neighboring state of mixed

O 2pz / Cu 3dxz,yz character at (π, π) -500 meV away from the O2pπ state. If we

assume that the observed broadening is entirely due to electron-phonon interactions,

this will allow us to make an estimate of the electron-phonon coupling constant. The

data yield a value of Γπ(200K) = 370 ± 50 meV, and using the independent boson

model from Chapter 4, we find that the polaron binding energy is

∆P = gω0 = Γ2/(8ln 2ω0) (5.1)

where g is the electron-phonon coupling constant and is a dimensionless quantity

related to the expectation value for the number of virtual phonons in the polaron

cloud. However, our estimates of ∆P and g depend rather sensitively on the choice of

ω0. If we use ω0 = 40 meV, which is the centroid energy of the LO oxygen phonons,

we obtain ∆P = 0.62 ± 0.18 eV and g = 15 ± 5, while if we use ω0 = 70 meV (the

half-breathing mode), ∆P = 0.35 ± 0.1 eV and g = 5 ± 1.4. Unfortunately, without

ab initio calculations, it would be difficult to estimate which particular phonon modes

are most strongly coupled to a photohole in the O2pπ band.
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5.3 Temperature Dependence of the

Franck-Condon Broadening

The data presented in the previous section provide unequivocal evidence that very

significant coupling exists between the photohole and the lattice in Ca2CuO2Cl2.

Another piece of evidence to support this view is the temperature dependence of

the broadening. We have measured the temperature dependent width of the LHB,

O2pπ and also Ca 3p core levels. All three states exhibit a temperature dependent

broadening much larger than one would expect from conventional electron-electron

interactions, and are again consistent with the coupling of the electronic states to

a low-energy bosonic field. Theoretical studies of the t − J model have also shown

temperature dependent broadening of the LHB [158, 130], but only at very large

temperature scales (T = J/2, J), while we have seen significant changes over even a

small (∼ 200 K) range.

5.3.1 Temperature Dependence of Valence Band States

The temperature dependence of the FCB was treated earlier in Chapter 4 in the inde-

pendent boson model, and is simply dependent on the Bose-Einstein distribution of

thermally populated phonons. The temperature dependent spectral function A(ω, T )

is plotted in Figure 4.10f, and is expressed as an analytical function in Equation 4.11.

The FWHM of the phonon sidebands can also be expressed as an analytical function

[159], and applied by Citrin et al. for the potassium halides [145]. The temperature

dependence of the width is given in Equation 5.2

Γ(T ) = 2.35
√
h̄ω0 ∆E [coth(h̄ω0/2kT )]1/2 (5.2)

where ω0 is the phonon frequency and ∆E is the lattice relaxation energy. In a

simplified model considering the interaction between a localized electronic state and

an LO phonon, the expression for ∆E = e2 (6/πVm)1/3 (1/ε∞ − 1/ε0), where Vm is

the volume of the primitive unit cell and ε∞ and ε0 are the low- and high- frequency

dielectric constants, respectively [160]. The applicability of Equation 5.2 and the
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Figure 5.4: Temperature dependence of states in the lower Hubbard band from 200-
400 K taken at (π/2, π/2). All spectra are scaled and shifted so that all peak heights
and positions match, as to best illustrate the temperature dependent broadening.
Gaussian fits are shown as solid lines.

form for ∆E is probably quite good for a localized core level in the alkali halides.

However, for delocalized valence electrons in the undoped cuprates (which have a

much more complex unit cell than the alkali halides), the utility of these expressions

is suspect. To our knowledge, there is no published information regarding ε∞ or ε0 for

Ca2CuO2Cl2. However, far more extensive optical conductivity work is available for

La2−xSrxCuO4, so we can use results from undoped La2CuO4 as a rough estimate for

∆E and Γ(T ). The ARPES spectra for the valence band and LHB in La2CuO4 look

substantially different from Ca2CuO2Cl2. In La2CuO4, published data from Falck

et al. [161] and Chen et al. [162] give values of ε∞ = 5 and ε0 = 30, respectively.

For La2CuO4, this would give a ∆E = 6.5 eV and a Γ(0) ∼ 1.2 eV. Quite clearly,

this is a gross overestimate of the nuclear relaxation energy and Γ(0). However, the

relevance of these expressions for valence electrons in a complex material like the

cuprates should not be high.

In Figure 5.4, we show the temperature dependence of the LHB at (π/2, π/2); the

peak position and peak height are all normalized to the same value, emphasizing the
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Figure 5.5: Temperature dependence of states in from the O2pπ band from 200-400 K
taken at (π, π). All spectra are scaled and shifted so that all peak heights and positions
match, as to best illustrate the temperature dependent broadening. Gaussian fits are
shown as solid lines.

observable change in width. The peak widths for the LHB change quite dramatically

as a function of temperature, as can be seen easily in the raw data. Along with the

data are Gaussian fits (solid lines) to the low-binding energy half of the peaks; the

Gaussian lineshape seems to fit the experimental spectra well at all three tempera-

tures. We were unable to obtain a reliable temperature dependence of the pinned

position of µ as a function of temperature. This was primarily because µ is sensitive

to surface defects and adsorbates. For instance, µ could be changed irreversibly by cy-

cling the temperature or introducing a brief pressure burst to the chamber. Although

there was still a sizable scatter from sample to sample, the FWHM behaved more

reliably than µ as a function of temperature, so we will only discuss the temperature

dependence of the FWHM. In Figure 5.5, we show the temperature dependence of

the O2pπ state at (π, π), where the peak positions and heights are likewise normalized

as in Figure 5.4. The O2pπ peak is also well fitted by a Gaussian lineshape (solid

lines) at all three temperatures, although the temperature dependent broadening is

less dramatic than that observed in the LHB.
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5.3.2 Temperature Dependence of Ca 3p Core Levels

In Figure 5.6a, we show a wide-range valence band scan of Ca2CuO2Cl2 using He

II radiation (from the Gammadata VUV5000). With hν = 40.8 eV, we can reach

the Ca 3p core levels which sit at ∼ -19 eV binding energy. These core levels are

highlighted in red. Like the O2pπ band, the Ca 3p core levels are obviously decoupled

from the complex many-body interactions of the LHB, and therefore any evidence for

FCB in the Ca 3p states should also be taken as evidence for strong electron-phonon

interactions. In Figure 5.6b, we show the Ca 3p states in Figure 5.6a on an expanded

scale after the subtraction of a Shirley-like background. Although the widths of the

Ca 3p states is large, clear temperature dependent broadening can be observed over

a modest temperature range. At -19.5 eV, there is a small dip between the 3p3/2 and

3p1/2 peaks which becomes more pronounced upon lowering the temperature. Even

on this large energy scale, a change of ∼ 100 K is enough to produce a discernible

change in the raw spectra. To extract quantitative widths, we perform a detailed fit

of the Ca 3p core levels.

Upon closer inspection, the Ca 3p core levels are comprised of two spin-orbit

split doublets, resulting in the small shoulder at ∼ -17.8 eV. We ascribe the second

doublet to a surface core level shift (SCLS) of Ca2+ in the ionic CaCl cleavage plane

arising from the altered Madelung potential from the surface termination. A SCLS is

common in many materials, including cuprates such as YBa2Cu3O7−δ [163], and does

not necessarily affect the electronic states in the underlying CuO2 plane. Through

a simple analysis using the known structure and taking the escape depth as 10 Å

[163], we obtain the surface intensity fraction to be Sf = 0.31, roughly consistent

with experiment. Even without fitting, the raw data exhibit observable temperature

broadening, as evidenced by the dip at -19.5 eV (arrow) becoming more pronounced

at lower temperatures. Fits to a pair of Gaussian doublets are shown, where the

parameters Sf (0.33), spin-orbit splitting (1.19 eV), and the SCLS (0.61 eV) were

kept fixed with temperature. Two doublets in the Ca 2p core levels were also observed

using XPS by Koitzsch et al. [164] with a separation of ∼ 1 eV. In this work, they

ascribed the second Ca 2p doublet to the presence of Ca defects and vacancies of the

topmost CaCl layer. However, the intensity of their second doublet would imply that
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Figure 5.6: (a) Raw data over a wide energy range from Ca2CuO2Cl2 taken using He
II radiation, showing the Ca 3p core levels (outlined). (b) Spectra from the Ca 3p core
level taken using He II radiation on an expanded scale. A Shirley-like background
was subtracted from the raw data in (a) to give the spectra in (b). Fits to a pair
of doublets are shown as solid lines, and a detailed discussion of the fits is given in
the text. Bulk and surface core levels are shown in dotted lines as “B” and “S”,
respectively.

approximately 25% of the Ca atoms would be vacant. This number is unreasonably

high, and certainly not borne out by STM studies of Ca2−xNaxCuO2Cl2 which show

1-2 orders of magnitude fewer vacancies (∼ 1%) in the CaCl plane than suggested by

Koitzsch et al..

The relatively good agreement of the Gaussian lineshapes used in Figure 5.6b

would again suggest lattice-induced FCB. However, because of the uncertainties in-

volved in the background subtraction, as well as the complex (four-peak) spectra of

the Ca 3p core levels, it is difficult to make any definitive statements as to the pre-

cise lineshape and the amount of (Lorentzian) electron-electron contribution to the

photohole lifetime. However, it is quite clear that any temperature dependence of
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the core level width (especially within a 200 K window) should most likely arise from

electron-lattice interactions. Therefore, any temperature-independent offset to the

measured width from electron-electron interactions will result in an underestimate of

the temperature dependence of the electron-phonon interactions, so dΓ/dT from our

extracted data should represent a lower bound.

5.3.3 Temperature Dependence of Franck-Condon Broaden-

ing

In Figure 5.7, we show a summary of the temperature dependence of the width

of all three peaks. We found a sizable sample-to-sample scatter in the FWHM of

the O2pπ and LHB peaks. The average values of Γ(T ) are shown as large symbols

with representative error bars, while individual measurements are shown as small

symbols. Despite sample-to-sample variations, the data in Figure 5.7 clearly establish

a temperature dependent broadening. In addition, measurements performed on the

same cleaved surface at multiple temperatures also support the trends shown. Reliable

and reproducible temperature dependent measurements were difficult to carry out

primarily due to sample aging due to surface adsorbates arising from outgassing

or cooling of the sample manipulator. In addition, measurements could only be

performed typically above ∼ 180 K due to the onset of electrostatic charging of the

sample as undoped Ca2CuO2Cl2 becomes more insulating at lower temperatures. In

order to perform more extensive temperature dependent experiments, better vacuum

conditions for temperature cycling and reducing sample charging at low temperatures

will be necessary.

Along with the raw data in Figure 5.7, we also show fits to Equation 5.2, with

ω0 and ∆E as free parameters in the fit, although we constrained ω0 > 30 meV. For

the Ca 3p states, which should be most appropriate for Equation 5.2, ∆E = 1.44 eV

and ω0 = 60 meV. For the O2pπ states, ∆E = 0.57 eV and ω0 = 37 meV, and finally

for the LHB, ∆E = 0.34 eV and ω0 = 30 meV (the minimum constrained value for

ω0). The agreement for the fit for the Ca 3p states is quite good, and also reasonable

for the O2pπ states. However, for the LHB, one finds the agreement to be poor, as
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Figure 5.7: Summary of temperature dependent broadening of the LHB (circles),
O2pπ (squares), and Ca 3p (diamond) states. Small open symbols represent individual
measurements, while the larger symbols represent the average values and error bars.
Also, we show the fit of the experimental data to Equation 5.2.

the temperature dependence of the LHB broadening is much larger (and more linear)

than one would expect from Equation 5.2. This might suggest a number of distinct

possibilities. First, it is very plausible that the simple expression in Equation 5.2

is inappropriate for delocalized valence electrons within a complex crystal structure.

Second, that electron-electron correlations or electron-magnon interactions introduce

additional temperature dependent broadening terms beyond the simple lattice polaron

picture. In fact, both possibilities seem very reasonable. Between 200 < T < 400 K,

dΓ/dT was estimated to be 1.0 ± 0.3 meV / K for the LHB, 0.6 ± 0.4 meV / K for

the O 2pπ, and 0.7± 0.2 meV / K for the Ca 3p core level. In comparison, core level

measurements of alkali halides such as KCl, where polaron formation is also observed,
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give comparable values of dΓ/dT (∼ 0.8 meV / K) [145].

One potential concern with the strong temperature dependence of the LHB is that

using the above value of dΓ/dT = 1.0 ± 0.3 meV / K, this would extrapolate to Γ(0)

= 0 eV. Although Equation 5.2 shows that Γ(T ) should saturate at low tempera-

tures, sample charging makes such low temperature experiments nearly impossible.

However, we have reason to believe that ΓLHB(T ) does, in fact, saturate at low tem-

peratures and that the width does not shrink to zero at low temperatures. First, a

single set of early data taken by Filip Ronning showed that upon cooling from 180

K to 20 K, there was no appreciable change in ΓLHB (ΓLHB(20) ∼ ΓLHB(200) ∼ 200

meV). However, in this measurement, no checks were made of the effects of sample

aging or slight electrostatic charging at 20 K, and this very difficult low temperature

measurement has never since been reproduced. However, we can speculate based on

these measurements that ΓLHB(0) ∼ ΓLHB(200) for the LHB. Additional evidence

comes from nominally undoped Nd2CuO4 [26, 27], where measurements of the LHB

were performed at 10 K and no evidence of charging was found for these samples.

These measurements suggest that ΓLHB(T ) does saturate at low temperatures, and

that the FCB is not simply associated with thermally populated phonons.

5.3.4 Possible Extrinsic Broadening Factors

As the actual QP (or 0-0 transition) in small polaron systems is undetectable, the

primary experimental evidence for polaron formation comes from the lineshape and

linewidth of the incoherent multi-boson sidebands. Therefore, excluding potential ex-

trinsic broadening factors is critical. Here, we discuss and rule out possible broadening

factors unrelated to polaron formation.

One potential source of lattice-induced broadening unrelated to polaron formation

is a Doppler broadening effect - the recoil energy that the ejected photoelectron

imparts to the ion. Clearly, the magnitude of the Doppler broadening should be

proportional the momentum of the outgoing photoelectron; at the reasonably low

kinetic energy of our UPS experiments, this recoil effect should be rather small. The

FWHM of this recoil broadening has been given by Flynn [165] as
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Γrec =
√

8 ln 2

(
P 2 kT

M0

)1/2

(5.3)

where P is the photoelectron momentum and M0 is the ionic mass. If kT < ε0,

where ε0 is the zero-point energy of the solid (which we can estimate as 1
2
h̄ω0), we

replace kT by ε0/2. For the Ca 3p core level using He II radiation at 400 K, this gives

a Γrec = 10 meV, while for the LHB at 200 K using 25.5 eV and taking the oxygen

mass, this would give Γrec = 12 meV. Added in quadrature to an intrinsic width

of 400 meV, this contribution is essentially negligible, and therefore not relevant to

our experimental measurements. However, taking into account the zero-point energy

of the lattice ε0 ∼ 0.02 eV and assuming that the low-energy states in the metallic

cuprates are primarily oxygen-derived, this would give a lower limit of Γrec(T=0) (at hν

= 25 eV) of ∼ 8 meV. This value is well within the accessible range of today’s electron

detectors, and it would be interesting to observe whether Doppler recoil energies may

present a practical obstacle to high-resolution experiments on metallic cuprates (and

other transition-metal oxides), even at intermediate photon energies.

Another possible consideration is ohmic losses of the photoelectron as it leaves

the solid, as proposed by Joynt [166] to be relevant to poorly conducting metals.

For the case of an insulator, however, a lack of mobile conduction electrons should

make such losses irrelevant. Nevertheless, even if we ignored this point, these ohmic

losses should depend sensitively on the momentum of the outgoing photoelectron.

Therefore, if we believed that the Gaussian lineshapes in the cuprates were affected

by ohmic losses, the shape of the spectra themselves should be highly dependent on

the outgoing photoelectron energy, and hence on the incident photon energy, hν, and

is easy to check for, experimentally. Our experiments spanning the range from 15-30

eV show no appreciable change in the Gaussian FWHM of the LHB, and therefore

we can rule out the effect of any ohmic losses. Also, later work by Schulte et al.

[167] also seemed to suggest that the effects of ohmic losses even in poor conductors,

such as the CMR manganites, were much less pronounced than predicted by Joynt

[166]. We should point out that the photoelectron matrix element of the LHB varied

very strongly with incident photon energy, but the measurable FWHM still did not
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change. Moreover, this photon energy invariance of the FWHM would also rule out

other possible concerns, such as the Doppler broadening effect mentioned above, or

breakdowns of the sudden approximation or three-step model.

In semiconductor physics, a Gaussian tail in the DOS, a so-called Urbach tail [168],

is often associated with related to a distribution of impurity states. In any insulator

or semiconductor, defect and impurity states will have some impact on the total DOS.

Ca2CuO2Cl2 and Sr2CuO2Cl2 are the most ideal undoped cuprates because the sto-

ichiometric compounds are Mott insulators. Therefore, the number of defects (from

cation cross-substitution [108]), vacancies, or impurities should be rather small, less

than 1%. However, we should also consider the existence of surface defects or vacan-

cies introduced in the cleavage process; STM measurements estimate the density of

surface vacancies [169] to be on the order of ∼ 1%. However, the Gaussian fit of the

LHB extends all the way to the peak of the LHB, and should not be considered just a

very small tail in the DOS. Therefore, a small concentration of defects (∼ 1%) should

not account for such a large amount of spectral weight encompassed in the Gaus-

sian. Moreover, this impurity tail should not be strongly temperature or momentum

independent. However, we find that the peak position disperses very strongly with

momentum, and also the FWHM is strongly momentum dependent; this would not

be consistent with a dilute distribution of impurity states. The large temperature

broadening of the LHB would also argue against impurity states, whose temperature

dependence should depend only on the Fermi-Dirac distribution. Moreover, we obtain

sharper, low-energy structures (well-defined peaks, shown in Chapter 6) in energy and

momentum at higher doping levels where the impurity concentration is much higher,

suggesting that impurity scattering effects are not primarily culpable for the broad

peaks observed in the insulator

Perhaps the most insidious of all extrinsic broadening effects is that of electro-

static sample charging. Charging in insulators occurs when the photocurrent exceeds

the rate at which electrons can be replenished (from ground) to the sample surface,

thereby resulting in a net positive charge buildup on the surface. Accurate, high-

resolution ARPES studies of insulators are notoriously difficult due to such charging

effects. Moreover, charging cannot be entirely excluded, since it is certainly present
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at low enough temperatures. Two characteristics of electrostatic charging are a shift

of the spectra to higher binding energies (due to the positive potential on the surface)

and a overall broadening of the spectra (due to spatial inhomogeneities in the charg-

ing potential). It is highly likely that the broadening from inhomogeneous charging

would take on a Gaussian distribution. To check for charging, we varied the incident

photon flux to see whether the photoemission spectra exhibited any changes, since

these effects should be dependent on the total photocurrent. We typically found no

substantial changes above T = 200 K, although this temperature varied considerably

between samples. We believe this was primarily due to the sample contact resis-

tance and the sample thickness. However, it is conceivable that slight inhomogeneous

charging might be responsible for some of the scatter among individual cleaves in Fig-

ure 5.7. Nevertheless, we note that the temperature dependent broadening observed

would run contrary to the trends expected from charging; at higher temperatures,

Ca2CuO2Cl2 becomes more conducting and therefore charging should become less

important. However, the peak widths become sharper at lower temperatures, where

charging should worsen. Therefore, we can conclude that electrostatic charging effects

are not the primary source of the peak broadening observed. In addition, as will be

discussed in Chapter 6, the wide Gaussian lineshapes of the O2pπ states are retained

at finite doping levels (metallic or SC samples), where charging becomes irrelevant.

Therefore, we can again conclude that the inherent widths of the peaks do not arise

from sample charging.

5.4 Theoretical Studies of Small Polaron Systems

As discussed in Chapter 4, an analytical solution of the general case of electron-

boson interactions does not exist. Instead, the “toy model” Hamiltonian for the

interacting electron-boson system assumed a single, nondispersive electronic state,

and a single, nondispersive bosonic branch (an Einstein mode). In many solids, such

as ionic insulators, the assumption of an Einstein mode may be a good approximation.

However, the dispersion of the bare electronic state (in the absence of electron-boson

interactions) poses a significant challenge to this model. As shown in the discussion
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of the IFB model, interactions with the bosonic field reduce the spectral intensity

of the QP peak, Z, and result in a manifold of “bands” separated by the boson

frequency, ω0, representing the “0-boson” line, the “1-boson” line, “2-boson” line,

etc... Another consequence of the IFB model was that the electron-boson interactions

did not change the first moment (i.e. the center of mass or centroid) of spectral weight,

which remained peaked at the bare electronic energy, ε0.

For the case of a dispersing electronic state, ε(k) 6= ε0, it is unclear whether

the conclusions of this simple model will continue to hold. For instance, will the first

moment of spectral weight in the polaronic system track the bare electronic band ε(k)

at all wavevectors, as one might näıvely expect? Will the “width” of this spectral

envelope still be a measure of the electron-boson coupling strength? Although the

answers to these questions have still not been conclusively determined, a number

of theoretical treatments of this problem have shed some new light on this issue.

Here we briefly outline two treatments of this problem. The first is based on very

sophisticated quantum Monte Carlo calculations by A. Mishchenko and N. Nagaosa

of the single hole in the t−J model, with the addition of an Einstein phonon branch.

This technique uses an exact diagrammatic Monte Carlo method where the phonon

propagators are allowed to cross (i.e. allowing many phonon excitations around the

hole - a necessary condition for small polaron formation). This may be the closest

approximation to the real, physical situation of photoemission from the undoped

parent cuprate. In fact, the results from these calculations, shown in Figure 5.8 from

[141], were a large motivating factor for the Franck-Condon / small polaron analysis

pursued in this thesis.

The primary result from these sophisticated calculations of the t-J + phonon

model is that the coherent “true QP” or zero-phonon line has vanishingly small weight

and is nondispersive, while the centroid of incoherent weight follows the original dis-

persion defined in the original, frozen-lattice t-J model. This apparent juxtaposition

of polaronic QPs yet dispersive spectral weight allows us to “have our cake, and eat

it too”, so to speak. This is shown in Figure 5.8a, where the δ-function is the zero-

phonon line, and the feature marked “C” is the t-J band. The dispersion of the

zero-phonon line and the centroid (C) is shown in Figure 5.8b, where the quantum



CHAPTER 5. LATTICE POLARON FORMATION 110

Figure 5.8: Left panel: Spectral function for the hole at different k points for J/t = 0.3
and g = 0.23. Vertical arrows show the position of the zero-phonon line, and “C”
marks the centroid of the t-J band. Center panel: Dispersion of zero-phonon line
(squares) and centroid (circles) for g = 0.23 (filled) and g = 0.20 (open) respectively.
Lines are calculation for bare t-J model. Right panel: Position of zero-phonon line (b)
and zero-phonon line weight, Z, (c) as a function of coupling constant, g, using the
diagrammatic Monte Carlo (circles) and phonon-phonon non-crossing approximation
(triangles). Figures taken from A. Mishchenko and N. Nagaosa [141].

Monte Carlo results for the zero-phonon line and the incoherent centroid are shown as

circles and squares, respectively, while the dispersion of the bare t-J model is shown

as lines. This demonstrates that even for dispersive electronic features, the intuitive

result that the centroid of spectral weight tracks ε(k) even as a function of momentum

holds true. In addition, the results from Mishchenko in Figure 5.8 show that in the

quantum Monte Carlo calculations for this t-J + phonon model, the reduction of Z as

a function of coupling constant, g has a very rapid crossover to a small polaron state

- this is unlike the simple IFB discussed earlier, where the zero-phonon line decreased

smoothly as e−g.

Later calculations by O. Rösch and O. Gunnarsson [170] confirmed the results

from Mishchenko and Nagaosa, but used a slightly different approach. These cal-

culations essentially dealt with systems that had no electron-phonon coupling in the

initial state, i.e. insulators where no holes (electrons) were present in the valence (con-

duction) band in the initial state, and therefore this part of the Hamiltonian could

be neglected for ψi. In this special case, they found that the photoemission intensity
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Figure 5.9: Spectral functions for creating a hole in the undoped 4-site Holstein-t-J
model (t = 1, J = 0.3, ωph = 0.1, g = 0.8). k = 0: solid line, k = ±π/2: dashed line,
k = π: dotted line. Lorentzian broadening: FWHM = 0.01. Arrows show positions
and weights of corresponding peaks for g = 0. Figure taken from O. Rösch and O.
Gunnarsson [170].

can then be simply expressed as an average over frozen distorted lattices without any

electron-phonon interaction. This essentially removes any electron-phonon coupling

term from the Hamiltonian, and reduces the problem to a sum over the different con-

figurations of distortions. In this case, the spectral function of a single hole in both

the Holstein and t-J models were calculated, and it was found that the first moment

of spectral weight coincided with the bare electronic dispersion, even as a function of

momentum. Results from the Holstein model and t-J model calculations are shown

in Figures 5.9a and 5.9b, respectively.

These numerical studies of the single-electron spectral function in the presence of

strong electron-phonon interactions demonstrate importantly that even in the case of

small polaron formation, the majority of incoherent spectral weight can still exhibit

strong momentum dependence and follow the original “frozen lattice” dispersion.

However, this also indicates that simply observing dispersive spectral weight does

not imply that the true eigenstates of the N − 1 system are actually delocalized
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excitations. Therefore, in order to make such statements about the delocalization

or mean free path of single-electron excitations using ARPES, more care must be

applied to study the details of the lineshape in order to make statements about the

nature of the actual eigenstates of the system.

5.5 Momentum Dependence of Franck-Condon

Broadening

In addition to the dispersive centroid of incoherent weight, we have also found an

intriguing momentum anisotropy of ΓLHB which may have profound implications for

the emergence of the first doped hole states. In particular, our analysis reveals that

as a function of momentum, the width of the LHB peak, ΓLHB(k), increases directly

proportionally to the binding energy of the peak maximum, ε(k), such that ε(k) =

αΓLHB(k). Empirically, we have found that α = 1.8, and at 1.8 Γ away from the

peak, the intensity has decayed to ∼ 10−4 of the peak value.

In Figure 5.10a, we show data from Ca2CuO2Cl2 together with Gaussian fits at

various locations in k-space, along with crosses to denote the position of ε(k) +

1.8 ΓLHB(k). The momentum dependence of these features along both the (0, 0) −
(π, π) and (0, π)− (π, 0) directions is summarized in Figures 5.10b and 5.10c. While

the peak position changes considerably, the onset remains roughly fixed, and thus

the width appears to change to accommodate the dispersion of the peak. In Figure

5.10a, we show data from Ca2CuO2Cl2 together with Gaussian fits at various locations

in k-space, along with crosses to denote the position of ε(k) + 1.8 ΓLHB(k). The

momentum dependence of these features along both the (0, 0)−(π, π) and (0, π)−(π, 0)

directions is summarized in Figures 5.10b and 5.10c. While the peak position changes

considerably, the onset remains roughly fixed, and thus the width appears to change

to accommodate the dispersion of the peak.

In a simple picture where Γ is related to the electron-phonon coupling strength (in

the independent boson model, Γ2 ∝ g), the photohole would effectively be coupled

more strongly to the lattice at k = (π, 0), the d-wave antinode, than at k = (π/2, π/2),
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Figure 5.10: (a) Data from the LHB taken at various k points, together with Gaussian
fits (red). k dependent dispersion of the LHB, ε(k) (blue circles), along the (0, 0)−
(π, π) (b) and (0,0)-(π, π) (c) directions. Crosses represent ε(k) + 1.8 ΓLHB(k). Data
in (a)-(c) were taken at 200 K. (d) Comparison of the low-energy spectral weight from
Ca1.95Na0.05CuO2Cl2 with ΓLHB(k)−1 as a function of angle, as defined in the inset.

the d-wave node. Recent results from Ca2−xNaxCuO2Cl2 have demonstrated that

spectral weight first emerges near (π/2, π/2) upon hole doping, while only faint in-

tensity is visible near (π, 0), and similar results were reported for other lightly hole

doped cuprates such as La2−xSrxCuO4 and Bi2Sr2CaCu2O8+δ [171, 172]. The mo-

mentum dependence of the inverse peak width in undoped Ca2CuO2Cl2, ΓLHB(k)−1,

exhibits a qualitative similarity to the low-energy spectral weight in the lightly doped

materials. This is shown in Figure 5.10d, where the spectral weight along the osten-

sible Fermi surface for Ca1.95Na0.05CuO2Cl2 is integrated in a narrow window around

EF (EF ±10 meV) and compared with ΓLHB(k)−1 along the antiferromagnetic zone
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boundary (dashed red) from the undoped system. The correspondence between these

two quantities may suggest that the lack of well-defined QPs near (π, 0) in the lightly

doped compounds may be related to the apparently anisotropic coupling in the parent

compound.

At low temperatures (T = 200 K), the Gaussian FWHM of the LHB is approx-

imately 200 meV. In addition, the minimum separation between the Gaussian cen-

troid and the pinned position of µ is approximately 350-400 meV. From the relation

in Equation 5.1, if we take ∆P = 350 meV and Γ = 200 meV, we would obtain an

ω0 = 21 meV and g = 17. This is a surprisingly low frequency, considering that

the majority of LO phonons are centered around 40 meV. If we assume that ω0 =

40 meV, we would expect ∆P = 180 meV and g = 4.5. However, we have not yet

observed any samples which have the peak centroid so close to µ. On the other hand,

all measurements were performed at elevated temperatures (T > 200 K), so that the

photohole can also absorb thermally excited phonons, as shown in Figure 4.10

It is also possible that the oversimplified independent boson model from which

Equation 5.1 was obtained is insufficient to describe the physics of the polaron for-

mation in the delocalized valence electrons. Using an independent boson model

where momentum dependence is explicitly ignored to explain a strongly momentum-

dependent effect is obviously problematic.

On the other hand, very recent sophisticated calculations based on the exact dia-

grammatic quantum Monte Carlo techniques employed in [141] have been utilized to

study the momentum dependence of the electron-phonon interaction in the undoped

cuprates [173] (we have collaborated on this work, providing experimental spectra).

These momentum-dependent results obtained from sophisticated exact diagrammatic

calculations point towards a very similar behavior as observed experimentally, in that

the Gaussian envelope becomes progressively broader towards (π, 0) or (0, 0), pro-

portional to the binding energy of the peak centroid, shown in Figure 5.11. These

calculations are performed such that the actual electron-phonon coupling constant, g,

as well the Einstein phonon dispersion, are both momentum-independent. Thus this

effect arises entirely from the interaction between the dispersive electronic excitations

and the dispersionless phonon field.
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Figure 5.11: Experimental data along the (0, 0)- (π, π) direction (a), along with the-
oretical calculations for A(k, ω) (b). The relative width (normalized to Γ(π/2, π/2))
is shown in (c), with numerical values shown in red and results from Ca2CuO2Cl2
shown in green, and Sr2CuO2Cl2 in purple. The same plots along the (π, 0)- (0, π)
direction are shown in (d)-(f). Taken from [173].

5.6 Polaron Formation and Hierarchy of Energy

Scales

Due to the strong coupling of the photohole to the lattice in the undoped cuprates,

we may safely assume that the overlap of the single-electron excitations and the true

eigenstates of the N − 1 system is extremely small. One must then account for how

the total spectral weight of the electron is distributed. First, for the case of the Mott

insulator, one cannot satisfy sum rules for spectral weight using photoemission. This

is simply because the spectral weight for one electron is divided into upper and lower

Hubbard bands at all points in k-space (one can, in essence, think of the LHB as being

purely spin-up, and the UHB as being spin-down, as opposed to a normal metal or

band insulator with spin degeneracy). Therefore, particularly for the case of these
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Figure 5.12: (a) Experimental data from Ca2CuO2Cl2 from [174] which show an osten-
sibly rapidly dispersing branch near (0, 0). Near (π/2, π/2), the emission is dominated
by the J structure. (b) Numerical results from variational cluster perturbation theory
[175] which demonstrate the same behavior of the t and J branches near (0, 0) (the
rightmost part of the panel).

“strongly correlated systems”, one must be careful to integrate over both occupied

and unoccupied states before one can address any sum rules. Practically speaking,

that means both direct and inverse photoemission must be performed.

In a idealized system of electrons coupled only to a vibrational mode, one can

satisfy the conservation of total spectral weight by summing over all phonon side-

bands, starting from 0-0. For instance, this should be the case for a system such as

the H2 molecule, or perhaps the ionic alkali halides (NaCl). In the undoped cuprates,

however, there are multiple things to consider, such as the original band dispersion

and the effects of electronic correlations and spin degrees of freedom. Therefore, the

integrated intensity of the Gaussian LHB peak alone should not correspond to the

total spectral weight associated with injecting a photohole, but there should be a

manifold of higher energy excitations. This was actually observed in the calculations

of Mishchenko in Figure 5.8 where there is substantial spectral weight spread out to

high energies (the right of the figure). Earlier t−J model calculations predicted that

Z ∼ 0.2, with 80% of the spectral weight pushed to higher energies due to strong

electron correlation effects. This is also borne out in the calculations by Mishchenko,

where feature “C”, corresponding to the antiferromagnetic LHB (what we will also

call the “J” branch), encompasses about 20% of the spectral weight. Here, 80% of the

spectral weight is retained at higher energies due to electron correlation effects. In
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fact, this high-energy incoherent spectral weight appears to follow a dispersion quite

similar to the original, uncorrelated band (we call this the “t” branch). A number

of numerical calculations based on a wide variety of approaches, including exact di-

agonalization [176], self-consistent Born approximation [158], quantum Monte Carlo

[177], strong coupling perturbation theory [178], variational cluster perturbation the-

ory [175], and cluster dynamical mean field theory [179] all appear to demonstrate the

same general point: that a large amount of incoherent, high-energy spectral weight

appears to possess a dispersion similar to the unrenormalized band.

A recent analysis of our ARPES measurements of Ca2CuO2Cl2 done by Filip Ron-

ning [174] seems to provide some interesting experimental evidence along these lines.

While at (π/2, π/2), emission from the LHB or J branch is dominant, near (0, 0)

the situation is rather different. In particular, there is essentially no emission at the

(0, 0) point, and this is not simply due to a matrix element selection rule, since no

emission is seen in the second zone at (2π, 0) either. Instead, between (π/4, π/4)

and (0, 0), the spectral weight falls along a steeply dispersing band reminiscent of the

unrenormalized band. Correspondingly, the numerical calculations cited above also

seem to suggest a transfer of spectral weight from the J branch to the t branch upon

reaching (0, 0). The calculations of Mishchenko suggest that the addition of phonons

does not change the relative fraction of spectral weight in the t and J branches found

in the earlier calculations which did not consider lattice relaxation effects. This is

illustrated in Figure 5.12, where experimental data along the (0, 0)−(π, π) line are

shown in Figure 5.12a, while one example of a calculation showing analogous behavior

[175] is shown in Figure 5.12b. Although this is quite suggestive, it is well known

that there are many states [131, 180], including possible “string resonances” [140],

that exist at higher energies which could make positive identification of the t branch

rather difficult. Nevertheless, taken at face value, this provides a rather appealing

hierarchy of excitations: an incoherent t branch at high energies, an intermediate J

branch, and a small polaron state at the lowest binding energies. It is also rather

intriguing that both the t and J structures exhibit significant dispersion, even though

they are incoherent. However, given the work of Mishchenko and Rösch, allowing the

incoherent branches to maintain the dispersion consistent with the underlying energy
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Figure 5.13: (a) ARPES spectra for a half-filled, Fermi-liquid-like band. (b) Effects
of electron correlations and antiferromagnetism. (c) Cumulative effects of kinetic
energy, electron-electron correlations and antiferromagnetism, and lattice effects on
the ARPES spectra.

scales associated with those branches appears to be entirely reasonable. Therefore, we

might attempt to physically visualize the t branch as spectral weight associated with

an electron hopping, but moving incoherently with respect to the antiferromagnetic

background and the phonons. The J branch would then be linked to the electron

moving coherently within the antiferromagnetic background, but incoherently rela-

tive to the phonons. Finally the invisible QP (or small polaron state) is the real

quasiparticle of the system, which moves coherently with respect to both the anti-

ferromagnetic background as well as the phonons. Moreover, the spectral weight is

distributed such that the t branch encompasses ∼ 80% of the spectral weight, the J

branch ∼ 20 %, and the small polaron QP has → 0.

In Figure 5.13, we show a schematic depiction of the effects of these three differ-

ent energy scales on the ARPES spectra of the undoped cuprate Ca2CuO2Cl2. In

the absence of electronic correlations, one would expect to see a broadly dispersing,

sharp Fermi liquid-like band, shown in Figure 5.13a. Upon turning on electronic cor-

relations, this single half-filled band would be split into a fully occupied LHB and an

unoccupied UHB, each with a much narrower bandwidth, now corresponding to the
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magnetic exchange energy, J (Figure 5.13b). Finally, lattice relaxation effects give

rise to a Franck-Condon broadening of the spectral features in (b), as shown by the

phonon sidebands in Figure 5.13c. This results in a broader distribution of spectral

weight and the top of the LHB pushed out into the original Mott gap. This is also

discussed in Figure 6.4 in Chapter 6. We should emphasize that in this heuristic

picture, the kinetic energy and electron-electron repulsions are still critical elements

and many of the main spectral features and the distribution of spectral weight are

retained even in the presence of the FCB.

Finally, this picture only discusses lattice polaron formation as a potential source

for the broadening of the LHB. In the absence of lattice effects, it is still unclear

whether the spectral function of the LHB would possess sharp, δ-function peaks (as

predicted in the t− J model) or be broadened due to electronic correlations. This is

still very much an open and much-debated issue. Some theoretical work discussing

possible broadening effects due to electronic correlations will be discussed below, with

the exception of dynamical mean-field theory, which will be discussed in Chapter 6.

First, some analytical approximations have have suggested that interactions with the

antiferromagnetic spin background cause Z → 0 [181, 182]. On the other hand, recent

work by Stanescu and Phillips [183, 184, 185] has attempted to tackle the 2D Hubbard

model by starting with the Hubbard U (as opposed to t−J models) and using a self-

consistent two-site dynamical cluster expansion. This approach is similar in some

respects to cluster dynamical mean-field theory (CDMFT). Work using this approach

also finds that coherent, QP-like excitations do not exist in the Mott insulator [184],

consistent with the redistribution of the electron spectral weight into a UHB and

LHB. Although these results are rather intriguing, the calculations by Stanescu and

Phillips show that the excitations in the LHB are sharp and well-defined at (0, 0),

while they are much broader at (π/2, π/2), directly opposite to what is observed

experimentally. Thus, while the approach taken by Phillips and Stanescu could be

qualitatively correct, the existing calculations do not appear to accurately reproduce

the quantitative features in the experimental data.



Chapter 6

Doping Dependence of the

Electronic Structure

Understanding the doping dependence of the cuprate superconductors away from the

parent Mott insulating state has been, perhaps, the key intellectual issue in the study

of high-temperature superconductivity1. Apart from the high transition tempera-

tures themselves, the defining characteristic of the cuprates has been the fact that at

half-filling, these materials are Mott insulators, a product of strong electron-electron

repulsions. Despite this fact, ARPES studies of the evolution of the cuprates away

from the Mott insulator have been lacking, mainly due to a lack of suitable materials

for such studies. For instance, Bi2Sr2CaCu2O8+δ, the canonical cuprate superconduc-

tor studied by ARPES, cannot typically be grown at low hole doping levels due to the

constraints of crystal chemistry. For this reason, Ca2−xNaxCuO2Cl2 is nearly unique

in its suitability for the study of the evolution of the Mott insulator to the high-Tc

superconductor. From a materials perspective, the only other potential candidate to

span the lightly doped cuprate phase diagram is La2−xSrxCuO4; however, the poten-

tial difficulties with La2−xSrxCuO4 are that the lower Hubbard band features have

never been identified clearly in the undoped compound, and also that certain spectral

features in La2−xSrxCuO4 have been associated with phase separation. Therefore, it is

1A large portion of the work discussed in this chapter has been published in K.M. Shen et al.,
Physical Review Letters 93, 267002 (2004).
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not entirely clear how representative La2−xSrxCuO4 would be of the high-Tc cuprates

on the whole. For this reason, a detailed understanding of the doping evolution of

the cuprates from the perspective of Ca2−xNaxCuO2Cl2 would be extremely valuable,

and is the topic of this chapter.

One of the central topics addressed by theory in the doping evolution of the

cuprate superconductors is the evolution of the chemical potential, µ. As mentioned

in Chapter 1, this particular topic was the subject of intense debate over the past

decade due to conflicting reports over the whether the chemical potential remained

pinned inside the Mott gap with doping, or whether it shifted inside the lower Hub-

bard band. Consequently, this would in principle allow one to determine whether

the doped low-energy electronic states formed as mid-gap states, or whether they

evolved continuously from the LHB states. It turns out that much of this confusion

stemmed from where the true “top” of the lower Hubbard band was located, as we

have discussed in Chapters 4 and 5. The discussion of the doping evolution of the

electronic structure in this chapter will be based on a synthesis of different experi-

mental measurements. First and foremost is the experimental determination of the

chemical potential, µ. To do this, we develop a new method to determine with high

precision the shift in µ as a function of hole doping. We combine this quantitative

determination of µ with high-resolution ARPES measurements of the low-lying states

along the (0, 0)-(π, π) nodal direction. We find that only by using the Franck-Condon

broadening (FCB) scenario introduced in Chapters 4 and 5 can we explain this doping

evolution in a self-consistent fashion. By integrating all these different aspects, we

find that we can explain the doping evolution of Ca2−xNaxCuO2Cl2 as a simultaneous

shift of µ, combined with an increase of the quasiparticle residue, Z, away from zero.

However, the most important element of this doping evolution is the utilization of

the polaronic / FCB phenomenology. In particular, even if µ has been determined in

an accurate fashion, a critical problem remains if the true nature of the LHB has not

been properly identified. For instance, previous interpretations of the LHB pointed

to the maximum of spectral weight as the “top” of the LHB, whereas in the (what

we now believe to be correct) polaronic scenario, the position of the QP pole for the

LHB is within the low-energy tail of spectral weight. In the previous interpretation ,
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µ would have been shifting continuously within the Mott gap, which would have been

posed a blatant logical inconsistency. However, our new identification of the position

of the QP pole resolves this potentially fatal flaw.

6.1 Determination of the Chemical Potential Shift

In many prior studies of the chemical potential shift in other cuprates, primarily by

the Fujimori group, the shift of various core level states was used to estimate the shift

in the chemical potential, ∆µ. However, this interpretation is somewhat nontrivial

due to a number of factors. First, the intrinsic width of the short-lived core hole

states (∼ 1-2 eV) makes an accurate determination of the core level shift (to say,

better than 50 meV) rather difficult. Secondly, the core level shift, ∆CL is known to

be a combination of numerous factors

∆CL = −∆µ+K∆Q+ ∆VM + ∆ER (6.1)

where K∆Q is the chemical shift, ∆VM is the change in the Madelung potential,

and ∆ER is the change in the core hole screening [53]. Therefore, any reasonable

estimates of ∆µ must be able to accurately account for all additional factors. Being

able to explain the individual shifts of all the different core levels is therefore a rather

tricky task, and the precision of this approach is further limited by the broad core

hole lineshapes. Finally, the lack of an x-ray source and the limited energy range

of the monochromator (14-32 eV) at our beamline meant that even attempting to

measure the core levels was impossible and therefore finding an alternative method

for determining the chemical potential shift was essential.

For these studies, we chose to utilize particular states in the shallow valence band

as reference states to determine ∆µ as a function of hole doping. In particular, we

chose to use oxygen 2p states at particular k-points which were identified in Chapter

4. As discussed earlier, previous band structure calculations showed these states to

have zero overlap with the wavefunction of the LHB (assumed to be of Zhang-Rice

singlet character). Because these states were fairly low in energy (< −4 eV), we
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Figure 6.1: (a)-(d) Valence band EDC stacks taken from (0, 0) to (π, π) at hν = 25.5
eV and polarization at 45◦ to the Cu-O bond direction for x = 0, 0.05, 0.10, and 0.12
samples, respectively.

also assumed that the relative contributions from changes in the Madelung potential

or the screening energy would be considerably less than those of deep core levels

(although possibly not negligible). In addition, the intrinsic linewidth of these shallow

valence band states was easily less than 1 eV, so the determination of the positions

of these valence band states could be accomplished with a relatively high degree of

precision. This was a key aspect of our studies of the chemical potential shift in

Ca2−xNaxCuO2Cl2. EDC stacks of valence band spectra for x = 0, 0.05, 0.10, and

0.12 are shown in Figure 6.1.

On a practical level, the O2pπ and O2pz states are good reference states to track

because they are particularly pronounced, unlike many other electronic states in the

valence band. In particular, the O2pπ state has been identified in a number of doped

cuprates, and is almost solitary at ∼ 2 eV binding energy at (π, π). This fact makes

the O2pπ state uniquely suited for tracking the doping dependent shift of µ. The O2pz

state, on the other hand, sits within the manifold of other states in the valence band,
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Figure 6.2: (a) Valence band spectra taken at hν = 25.5 eV and polarization at 45◦

to the Cu-O bond direction for x = 0, 0.05, 0.10, and 0.12 samples at k = (0, 0) and
(π, π), respectively. (b) An expanded plot of the shift for the O2pz peak at (0, 0)
(triangle) and the O2pπ peak at (π, π) (circle). (c) The doping dependent shift of the
O2pπ and O2pz peaks summarized from multiple samples. Data are plotted relative to
µ0 determined from the lower bound of the pinned chemical potentials in the undoped
insulator.

but at an excitation energy of hν = 25.5 eV, the O2pz peak is quite pronounced and

can its position can be extracted quite reliably. Because both states are constituted

from orbitals coming from the CuO2 plane, these states could in principle be utilized

for all cuprates, not just NaCCOC. Furthermore, as discussed in Chapter 4, the O2pπ

and O2pz states are also not hybridized with the ZRS state and can be interpreted

in a rather simple fashion for these studies.

Valence band spectra from Ca2−xNaxCuO2Cl2 taken at hν = 25.5 eV and the

incident polarization at 45◦ to the Cu-O bond direction are shown in Figure 6.2a. The

individual O2pπ and O2pz states are denoted by circles and triangles, respectively.

In Figure 6.2b, we show an expanded plot of the shift of these peaks as a function
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of doping, illustrating that these peaks can indeed be used as a sensitive metric for

∆µ. These measurements were repeated for a number of samples at each doping level,

to ensure a high level confidence in ∆µ. In addition, the accurate determination of

µ0 in Chapter 4, the lowest pinned position of µ in the insulator, or in other words,

the highest possible energy for the “hidden” quasiparticle in the insulator, was also

critical. Without this determination, it would be futile to discuss any change in µ in

going from x = 0 to x = 0.05. However, we can now use our determined value of µ0 as

an effective upper bound for the top of the LHB in the undoped Mott insulator. The

combination of this first determination of µ0 along with our measurement of dµ/dn

allows us state unequivocally that the µ appears to shift continuously above the

position of the LHB peak centroid - i.e. within the supposed Mott gap. However, if

we utilize the polaronic / FCB model proposed for the undoped insulator and extend

it to the case of the doped compounds, we can easily resolve this apparent logical

inconsistency. The doping dependent shift of µ is shown in Figure 6.2c where the

shifts from the O2pπ and O2pz valence band states are shown. By taking a weighted

average of the O2pπ and O2pz states, our values for ∆µ are as follows (referenced

from µ0 = 0): ∆µ0.05 = -0.20 eV; ∆µ0.10 = -0.28 eV; ∆µ0.12 = -0.33 eV, with typical

error bars of ±0.025 eV. However, the relative shift ∆µ = −0.20 from x = 0 → 0.05

has the largest amount of error, because of the inherent difficulty in determining µ0

accurately.

In addition, we compare our results from valence band measurements to those per-

formed from core level XPS measurements of polycrystalline samples, taken from Yagi

et al. [186] (squares). In Figure 6.3, we combine our valence band measurements with

XPS measurements from a wide range of samples (La2−xSrxCuO4, Bi2Sr2CaCu2O8+δ,

Bi2Sr2CuO6+δ) taken from the Fujimori group’s measurements [53, 55]. However, for

the XPS measurements of Ca2−xNaxCuO2Cl2, there was no accurate determination of

µ0, so the absolute position of these points on this plot is arbitrary, and can be shifted

up or down. Despite the obvious difference in the approaches of the valence band and

core level shift analyses, we find good agreement between the two measurements for

Ca2−xNaxCuO2Cl2. If we estimate a value for dµ/dn, taken from the x = 0.05, 0.10,



CHAPTER 6. DOPING DEPENDENCE 126

-0.6

-0.4

-0.2

0.0

0.2

0.200.150.100.050.00

 La2-xSrxCuO4

Bi2Sr2CuO6+δ

Bi2Sr2CaCu2O8+δ

 Na-CCOC (XPS)

 Na-CCOC (VB)

Doping (x)

C
he

m
ic

al
 P

ot
en

tia
l S

hi
ft 
Δ
µ

 (
eV

)

Figure 6.3: Chemical potential shift determined from photoemission spectroscopy of
La2−xSrxCuO4, Bi2Sr2CaCu2O8+δ, Bi2Sr2CuO6+δ, and Ca2−xNaxCuO2Cl2. All mea-
surements are determined by core level spectroscopy from the Fujimori group [55],
except Na-CCOC (VB), which was determined from our own ARPES measurements.

and 0.12 samples (neglecting the x = 0 composition, due to the larger error bars asso-

ciated with µ0), we obtain dµ/dn = -1.8 ± 0.5 eV / hole. This is roughly on par with,

although even somewhat larger than the estimates from band structure calculations

which give ∼ -1.3 eV / hole [124]. The estimates from XPS give a dµ/dn ∼ 2.2± 0.8

eV / hole; the rate of the doping dependent shifts from valence band and core level

measurements appear to coincide reasonably well, demonstrating the compressibil-

ity of the Ca2−xNaxCuO2Cl2 system. However, there is an obvious discrepancy be-

tween results obtained on Ca2−xNaxCuO2Cl2 and La2−xSrxCuO4, with the results

from the Bi-based cuprates somewhat intermediate between Ca2−xNaxCuO2Cl2 than

La2−xSrxCuO4.

This observation of dµ/dn ∼ 0 [53] for lightly doped La2−xSrxCuO4 suggested

that there were two qualitatively different scenarios for the doping evolution of the

cuprates. Some studies suggested that there either was a “chemical potential shift”,
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akin to a simple rigid band shift that would be observed in heavily doping a band

insulator. Earlier evidence for this was obtained from observations of the valence

band shift in Bi2Sr2CaCu2O8+δ [54], core level shifts in Bi2Sr2CaCu2O8+δ [55], and a

combination of resonant photoemission and x-ray absorption for La2−xSrxCuO4 and

Nd2−xCexCuO4 [56]. On the other hand, other studies seemed to suggest that µ was

pinned in mid-gap upon hole doping [53, 52]. This would have suggested two funda-

mentally different physical pictures for the doping evolution of the cuprates. However,

much of this confusion stemmed from the misidentification of the top of the LHB,

where (up to this work) it was thought that the peak maximum at (π/2, π/2) was

the pole at the top of the LHB. Utilizing the polaronic / FCB model allows us to ex-

plain many features of the doping evolution of La2−xSrxCuO4 and Ca2−xNaxCuO2Cl2

within a common framework, as the low-energy QPs would still form at the top of the

LHB in both materials. However, this does not explain the quantitative differences

in the behavior of µ in across these two compounds.

6.2 Doping Evolution of the Low Energy States

However, the most important aspect of this accurate quantification of µ is that this

allows to directly compare between the low-energy spectra of different compositions,

with a clear idea of where µ resides in one composition relative to another. This is

shown in Figure 6.6, where EDCs taken along the (0, 0)-(π, π) nodal direction are

shown at all four different doping levels. In these plots, the data are plotted on an

absolute scale relative to µ0, such that EF for each doping level is shifted by ∆µ for

that concentration, relative to µ0. By combining the values determined for ∆µ, we

can clearly observe a number of striking features in the spectra. Most importantly,

as already discussed, is the fact that µ does not immediately drop to the position

of the peak of the LHB in the undoped parent insulator. In fact, it was this initial

observation that inspired the adoption of the polaronic / Franck Condon broadening

approach outlined throughout this thesis. Instead, in going from the x = 0 compound

to x = 0.05, it appears that the position of the broad hump maximum remains roughly

fixed relative to µ0, and that the effect of hole doping is simply to “eat” into the
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Figure 6.4: Proposed model for the density of states in the undoped cuprates. A
detailed explanation of this model is explained in the text.
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intensity of the undoped LHB feature. Clearly, if the LHB is “structureless”, that is,

consisting of only a single pole, this type of doping evolution would make no sense. In

general, the position of this broad hump maximum shifts with hole doping by nearly

the same amount as µ. In addition to this shift, low-energy spectral weight develops

at EF and forms into a well-defined peak for x = 0.10 and 0.12 compositions.

In Figure 6.4, we give a comprehensive overview of the doping and “interaction”

evolution of the density-of-states within our model. Figures 6.4(a)-(d) discuss the

undoped cuprate, while (e) shows the evolution with hole doping. In (a), we take the

simplest situation of the undoped cuprates without electron-electron correlations, so

that the material is a half-filled metal with a ∼ 3 eV bandwidth. Strong electron-

electron interactions split this single metallic band into a completely occupied lower

Hubbard band and an unoccupied upper Hubbard band, shown in (b). The energy

gap between the LHB and the UHB corresponds to the onsite Coulomb repulsion

between two electrons on the same site, U . In this simplified scenario, we neglect the

fact that these materials are charge-transfer insulators (with an energy gap, ∆) and

use a single-site picture. In (b), we take the simple view that the LHB and UHB are

like the valence and conduction band in a band insulator, such that all spectral weight

is essentially coherent. Numerical calculations show that strong electronic correlations

push ∼ 80% of the spectral weight into an incoherent high-energy feature, discussed

in Chapter 5, giving the situation in (c). Because this incoherent high-energy weight

may have a dispersion similar to the original unrenormalized band, we call this the

“t” band. This leaves only ∼ 20% of the spectral weight in the coherent low-energy

“J” band. However, polaronic effects cause FCB in the t and J bands, shown in (d),

so that the J band is now composed of incoherent multi-phonon satellites. This also

has the effect of reducing the size of the single-particle gap. The position of the top

of the LHB and bottom of the UHB are denoted by the triangles. In (b) and (c), the

gap magnitude is given by U . However, lattice relaxation pushes spectral weight into

this Mott gap, such that in (d), the true QP gap (or polaron gap) is substantially

reduced from U . Finally, when we dope holes into the system, the chemical potential

shifts to the top of the LHB. This doping also induces a spectral weight transfer to a

band of coherent QPs which disperses across EF and whose intensity scales with x.
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Figure 6.5: (a) In a pure insulator, the chemical potential at T = 0 is undefined, since
there is a finite energy difference (the gap energy) between adding one electron and
removing one electron. Typically, EF is pinned by impurity states in the gap. (b)
Rigid band shift into valence band, corresponding to fairly heavy doping of a band
insulator. (c) In-gap states, consistent with a lightly doped semiconductor.

The model outlined in Figure 6.4 draws upon three key aspects. First, FCB

redefines where the “top” of the LHB lies, so that µ does shift to the top of the LHB

with doping, and does not sit in mid-gap. Secondly, the chemical potential shifts

continuously within the LHB as a function of doping, with a rate determined by the

emergent QP band. Third, spectral weight is continuously transferred to this QP

band with hole doping at a rate roughly proportional to x. We can easily contrast

this with the conventional band insulator / semiconductor scenarios, shown in Figure

6.5. In this case, there is no FCB for the band insulator, and the excitations at the

top of the VB are sharp, δ-function-like peaks (in fact, Figure 6.5a is incorrect in a

rigorous sense, since there should be no electron-hole decay at all energies below the

gap energy, so even the higher binding energy peaks should also be δ-function-like).
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Figure 6.6: Doping dependence of EDCs along the nodal direction from (0.2π,0.2π)
- (0.72π, 0.72π) for x = 0 (a), 0.05 (b), 0.10 (c), and 0.12 (d). Data were taken with
hν = 25.5 eV and polarization at 45◦, at 15 K for the doped samples and 200 K for
the undoped sample. Hump maxima are determined from a combination of fitting
and second derivatives. Data are plotted on an absolute scale relative to µ0, but EF

for each individual sample is marked above.

A shifting chemical potential would imply the scenario in Figure 6.5b, where the

material becomes metallic (or a semi-metallic) and the single electron excitations at

EF are again δ-functions. A pinned chemical potential, on the other hand, would imply

Figure 6.5c, where the spectral features of the band insulator are essentially retained,

and a small, narrow band is formed in mid-gap from impurity states. The data we

shown in Figure 6.6 obviously deviates dramatically from any of the scenarios shown

in Figure 6.5, and demonstrates the importance of the physical picture proposed in

Figure 6.4.

The global picture for the doping evolution of Ca2−xNaxCuO2Cl2 is best summa-

rized in Figures 6.7a and 6.7b. In Figure 6.7a, we clearly illustrate the momentum

and doping dependence of the both the broad high-energy hump and the low-energy

quasiparticle bands together in a single plot. Plotted on an energy scale relative to µ0,
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it becomes evident that the energy position of the hump maximum does not change

appreciably with doping, although at higher doping levels, particularly x = 0.12, accu-

rately identifying the position of the hump maximum becomes difficult. Nonetheless,

from the overall trend, this appears to be a robust statement at least at low doping

levels. At low energies, we track the position of the low energy spectral weight using

an MDC analysis. By tracking the low-energy dispersion across doping levels, we re-

veal rather striking and unexpected behavior: the low energy quasiparticle dispersion

lies approximately on a single straight line, with only relatively small changes in the

group velocity as a function of doping, consistent with the “universal nodal velocity”

discussed by Zhou et al. [187]. Moreover, the convergence of the group velocity, vF,

the change in nodal wavevector, kF, and the chemical potential shift, ∆µ, neatly

merge together in such a way that it appears that µ is simply rigidly shifting down

the band defined by the low-lying quasiparticles, while effectively ignoring the broad

hump at higher energies. Experimentally, vF ∼ 1.8 eV·Å, and the values for the nodal

kF were determined (from a series of Fermi surface mappings and long “arc-to-arc”

cuts) to be kF = 0.50 ± 0.02, 0.47 ± 0.02, 0.43 ± 0.01, and 0.41 ± 0.01, for x = 0,

0.05, 0.10, and 0.12, respectively. From these values, we basically obtain that ∆kF

∼ ∆µ/vF, directly tying µ to kF, as would be for the case of doping a simple Fermi

liquid system.

6.3 Theoretical Interpretations of the Doping

Evolution

6.3.1 Doping Dependence of Electron-Boson Coupling

While this aforementioned aspect is somewhat reminiscent of hole doping a conven-

tional band insulator, the fact that Z → 0 in the undoped system is highly unlike the

conventional Fermi liquid case. Therefore, this aspect of transfer from incoherent to

coherent spectral weight is truly a hallmark of strong correlation effects. This is illus-

trated in Figure 6.7b, where EDCs at kF along the (0, 0)-(π, π) line are plotted, along

with a superimposed caricature of the proposed distribution of incoherent (pink) and
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Figure 6.7: (a) Summary of the doping dependence of the broad hump (in symbols,
also shown in Figure 6.6) and the low-energy MDC dispersions. All data are plot-
ted relative to µ0, although EF for each composition is denoted above. (b) Doping
dependence of the nodal EDC at kF, combined with a cartoon schematic of the pro-
posed distribution of coherent (blue) and incoherent (pink) spectral weight, and its
evolution as a function of doping.

coherent (blue) spectral weight. Doping then induces a transfer from incoherent to

coherent weight, consistent with the growth of the low-energy peak. In the polaronic /

FCB scenarios, the transfer from incoherent (boson satellites) to coherent (‘0-0’ tran-

sition) can be achieved simply by reducing the strength of the electron-boson coupling

constant. As one approaches the Mott insulating state, the strength of the electron-

phonon coupling should increase rather dramatically as the screening from the mobile

conduction electrons (holes) vanishes, ultimately leading to the formation of lattice

polarons in the undoped system, as previously discussed. It is also worthwhile to note

that the effective “strength” of the coupling of the photohole to the antiferromagnetic
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background should also increase towards half-filling. Although a detailed discussion

of this is beyond the scope of this thesis, it is worth noting that the mechanisms

for electron-phonon and electron-magnon coupling are markedly different. While the

electron-phonon coupling is simply the electrostatic Coulomb interaction between the

mobile electrons and the nuclei, the electron-magnon coupling in the Mott insulator

is more complicated. Because it is simply the hopping of the hole in the Mott insula-

tor that induces spin-flip processes, the “electron-magnon interaction” is really just a

re-expression of strong electron-electron interactions. This is an obvious statement in

this case, because it is the low-energy electrons of interest that also carry the spin-1/2

antiferromagnetism.

The conventional wisdom regarding metal-insulator transitions describes two gen-

eral phenomenologies: “filling control” and “bandwidth control” metal-insulator tran-

sitions [188]. In the filling control case, the number of free carriers are gradually

reduced to zero as the insulator is approached, but the effective mass, m∗, remains

constant as this transition is crossed. On the other hand, for the bandwidth con-

trol transition, the number of carriers is kept constant, while m∗ diverges as the

insulator is reached. Using this somewhat crude description for these two cases,

we can actually see that the Mott insulator to high-Tc superconductor evolution in

Ca2−xNaxCuO2Cl2 borrows from both aspects of the bandwidth and filling control

metal-insulator transitions. The fact that vF remains finite suggests that m∗ also

remains finite (this is a rather simplistic view; in reality, vF does decrease somewhat

at low dopings, but there is no evidence for vF/ vband diverging), and m∗/mband can

be seen as roughly proportional to the quasiparticle residue, Z, since the formal def-

inition for Z = (1 − dReΣ/dω)−1, which is essentially the change of slope in the

quasiparticle dispersion away from the unrenormalized band dispersion. The evolu-

tion to the superconducting state is obviously driven by hole doping (filling control),

and in the context of vF/vband, m
∗ certainly remains finite. However, we have also

established that Z → 0 as one approaches the Mott insulator, suggesting that m∗

does diverge at the Mott insulating state. In fact, it is more meaningful to describe

the evolution from the Mott insulator to the superconductor more precisely as one

where the quasiparticle spectral weight, Z, evolves from near zero, but where the
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group velocity of the quasiparticles remains fixed. This then presents the rather con-

fusing situation of making m∗/mband either finite or infinite, depending precisely on

whether m∗ is defined relative to the spectral weight or the group velocity, and one

must use a precise description of how determines the quasiparticle renormalization.

The coupling of the holes to bosonic fields (likely phonons) are responsible for a

large degree of the broadening observed in the undoped insulator, and a reduction of

this coupling strength with hole doping seems to be a plausible explanation for the

subsequent changes in electronic structure. Along these lines, Mishchenko et al. have

expanded on their initial work [141] on the single hole in the extended t − J model

+ phonons by attempting to simulate the physics of hole doping by changing the

coupling constant [173]. Specifically, they have performed their exact diagrammatic

Monte Carlo technique on an extended t−J model with higher-order hopping terms,

t′ and t′′, since it is generally found that the t− t′ − t′′ − J models do a better job of

approximating the experimental data than the bare t − J model; their calculations

of the extended t − J model give essentially the same basic physics as their earlier

t− J model calculations. However, the interesting question to investigate is whether

one can reproduce what is observed in experiment by simply reducing the electron-

phonon coupling constant in these t− t′− t′′−J + phonon models. At a generic level,

the calculation appears to reproduce certain key aspects of the doping dependence

of Ca2−xNaxCuO2Cl2. Certainly, the broad linewidth and exact spectral lineshape of

undoped Ca2CuO2Cl2 is explained beautifully by the t− t′ − t′′ − J + phonon calcu-

lations, as was described in Chapter 5. The famous “peak-dip-hump” and dispersion

“kink” observed in many cuprates and taken to be signatures of electron-boson cou-

pling are also reproduced by these calculations; however, this should not be surprising,

since these types of structures are generic features of spectral functions with relatively

strong electron-boson interactions. A more remarkable aspect of these calculations

was the ability of these calculations to reproduce quite closely the momentum depen-

dence of the width observed in the undoped compound discussed in Chapter 5.
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6.3.2 Possible Relationship to Electron-Electron Correlations

Another critical question regarding the doping dependence is whether electron-boson

coupling alone can explain all the essential physics. Quite clearly, the hole doping

should not only affect the magnitude of the electron-phonon coupling, but also the

long-range antiferromagnetic order as well as the effective electron-electron correla-

tions. From the aforementioned discussion, we have demonstrated that certain salient

features in the carrier doping evolution of Ca2−xNaxCuO2Cl2 seem to be explained

nicely within an electron-phonon framework. Here we will discuss other theoretical

scenarios which neglect electron-phonon interactions, but simply focus on the effects

of electronic correlations. In regards to most theoretical studies of the undoped insula-

tor, the model of choice has been the t− J model. In many respects, the t− J model

over-exaggerates the effects of electron-electron correlations, since doubly-occupied

states are Gutzwiller-projected out of the Hilbert space. Therefore, the t− J model

is a situation where U →∞, and thus does not adequately treat the effects of charge

fluctuations when U is finite, as is the case for real materials. To properly treat the

dynamic effects of double occupancy, a better approximation is the Hubbard model

where U is finite and double occupancy is permitted (the t−J model can be thought

effectively as the U →∞ limit of the more general Hubbard model). However, allow-

ing doubly occupied states makes numerical solutions of the Hubbard model much

more costly and difficult, since a greater degree of realism will always come at some

appreciable cost.

One of the most successful recent theoretical approaches to treating the problem

of double occupancy and charge fluctuations in a sophisticated manner is that of dy-

namical mean field theory (DMFT) and its close variants, such as cluster dynamical

mean field theory (CDMFT) [189, 190]. Because a great deal of work in DMFT has

centered precisely on the Mott insulator-to-metal transition, DMFT and its relevance

to the data described here warrants some discussion. In a nutshell, the concept of

DMFT is to replace a lattice problem with many degrees of freedom by a much simpler

effective single-site problem coupled to a self-consistent bath. In spirit, it is similar

to an Anderson impurity problem - a single atomic site embedded in some medium.

Because the complex many-body dynamics are replaced by a a self-consistent bath,
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a) b)

Figure 6.8: (a) Results from the Mott insulator-to-metal transition from DMFT as
a function of U/D [189]. (b) Similar results away from half-filling showing the QP
peak at the top of the LHB, also from DMFT [191].

this is a mean-field approach, and DMFT attempts to interpolate between two limits:

the localized atomic site (the single site, decoupled from the bath) and the delocalized

band electrons (the self-consistent medium, without any impurity sites). Moreover,

because this is a mean-field approach, one should expect DMFT to produce better

results when the coordination of nearest neighbor sites (in the real problem) is large,

thereby reducing the effects of large spatial fluctuations in the field. Here we discuss

some of the results from DMFT describing the Mott insulator-to-metal transition.

One approach is to study this transition as a progressive function of Coulomb re-

pulsion; this is shown in Figure 6.8 where the density of states (DOS) is plotted at

different ratios of the Hubbard U over the half-bandwidth, D: U/D. As can be seen

in Figure 6.8a, the DMFT calculations appear to nicely reproduce a major feature

observed in experiment: in the Mott insulator, one has broad, incoherent Hubbard

bands, and as one reaches the metallic phase, a narrow, coherent quasiparticle res-

onance appears with a quasiparticle residue, Z, which grows from zero [189]. This

occurs not as a function of hole doping, but as a function of relative correlation

strength, U/D. At different values of U and D, one can have this resonance form not

in the middle of the Mott gap, but at the top of the lower Hubbard band, as shown

in Figure 6.8b [191].
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Although the plots in Figure 6.8 are very redolent of the experimental situation

shown in Figure 6.7, we should also make clear the important distinctions between the

DMFT calculations and our experimental results. First, all work in the conventional

DMFT approach is performed using a single site, meaning that their obtained A(k, ω)

is momentum-integrated. Hence, at a practical level, the results obtained by DMFT

should be compared with a DOS obtained by PES, and not single EDCs obtained

in ARPES. Therefore, the resemblance between the EDCs in Figure 6.7 and the

calculations shown in Figure 6.8 should not be taken literally, particularly because

the experimental spectra are so strongly momentum dependent, as will be discussed

in this chapter. In addition, MDC-derived dispersions at low doping levels appear

to indicate fairly dispersive QPs. The narrow QP resonances obtained by DMFT

would seem to indicate flat, non-dispersive bands, in contrast to experiment. These

problems in relating ARPES spectra to DMFT might be addressed by very recent

work on CDMFT, which considers not a single-site, but rather a small cluster of sites

(such as a square of 4 sites) embedded within a self-consistent medium. This would

then allow one to address both the momentum dependence of the self-energy together

with charge fluctuations in a self-consistent manner.

At this point, the logical justification for using the Franck-Condon broadening

model over DMFT to explain the features in the lightly doped Ca2−xNaxCuO2Cl2

are due to a number of reasons. First of all, the FCB scenario explains the pinned

position of µ in the insulator, as well as the evolution of µ with doping in a very

natural manner. It is also unclear whether DMFT could reproduce the key features

of the doping evolution of µ. Secondly, the fact that the Gaussian lineshape observed

in the insulator is very easily explained within the context of the FCB model would

also seem to suggest that polaron formation / Franck-Condon broadening would be

the natural way to understand the spectral features of the insulator. This line of rea-

soning is further supported by the success of the t− t′− t′′−J + phonon calculations

of the spectral function from Mishchenko. However, this does not necessarily ex-

clude the fact that DMFT calculations could possibly produce similar results. Along

these lines, comparisons of the detailed single-particle lineshape obtained from future

CDMFT work and ARPES would be extremely interesting. In particular, if more
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advanced CDMFT calculations could reproduce the observed Gaussian broadening in

the momentum-resolved lineshapes seen in ARPES, the correct width, as well as its

momentum dependence, then this would pose a serious challenge to the t− t′− t′′−J
+ phonon models. However, one piece of evidence which would suggest that lat-

tice polaron formation and not electron-electron repulsion is the driving force for the

broad spectral lineshapes observed in the lightly doped cuprates is the very broad

Gaussian lineshape observed for the O2pπ state at (π, π), as discussed in Chapter

5. For the O2pπ state, the electronic correlation effects addressed by DMFT should

be mostly irrelevant, but the O2pπ peak possesses a spectral lineshape very similar

to that observed in the lower Hubbard band. However, DMFT may also capture

much of the essential physics of the lightly doped cuprates, and one might speculate

that a combination of DMFT + phonons may potentially provide the best model for

describing the doping evolution of the cuprates.

6.4 Doping Dependence of Franck-Condon

Broadening for O2pπ

Because the lineshape of the O2pπ state played an important role in our determination

that the observed FCB was primarily a result of lattice polaron formation, as shown

in Chapter 5, we now discuss the evolution of the O2pπ lineshape as a function of hole

doping in detail. From simple considerations, one might expect a number of things

to occur as the hole concentration is increased. First, one might expect the lineshape

to change from Gaussian to more Lorentzian-like (Voigt-shaped) as the scattering

rate of the photohole with other conduction electrons may increase due to the higher

carrier concentration. Secondly, one might expect the Gaussian linewidth to decrease

as the effective electron-phonon interaction is expected to be reduced at higher doping

levels. Using the change in the LHB lineshape to track the doping dependence of the

ostensible electron-boson coupling is difficult, since the spectral weight becomes cut

off at µ. Furthermore, there may also be doping dependent effects which are unrelated

to the change in the electron-phonon coupling strength, and more in line with strong
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Figure 6.9: (a)-(d) O2pπ peak at k = (π, π) taken with hν = 25.5 eV and polarization
at 45◦ to the Cu-O bond direction for x = 0, 0.05, 0.10, and 0.12. Measurements were
performed at T = 200 K for x = 0 and T = 15 K for x > 0. Raw data are shown
as black solid lines and red line is the fit to a Gaussian. (e) Doping dependence of
the O2pπ FWHM, with all samples grown using the high pressure synthesis shown
as open circles, and undoped samples grown using the conventional ambient pressure
technique shown as a solid square.

correlation effects. On the other hand, there is no appreciable spectral weight at

energies above the top of the O2pπ band at (π, π), even in the doped compounds.

Therefore, the spectra from the O2pπ band can readily be compared between samples

with different hole compositions.

In Figure 6.9, we show EDCs from (π, π) from the x = 0, 0.05, 0.10, and 0.12

samples, together with Gaussian fits to the data. To within experimental error, no

sizable deviation from a purely Gaussian lineshape can be observed at all doping

levels. This would seem to indicate that the relative contribution from electron-

electron interactions to the photohole lifetime for the O2pπ state is reasonably small
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compared to electron-phonon interactions, even for the doped compositions. Note

that the flat background at low binding energies (ω > −1.0 eV) persists even for

finite x, allowing for a reliable fit and analysis of the raw data. A summary of the

doping dependence of the O2pπ Gaussian FWHM is shown in Figure 6.9e. The most

surprising finding from this analysis is that the FWHM of the O2pπ spectra from

the undoped samples is narrower than those of the x = 0.05 or 0.10 samples. If

one considered the effects of electron-phonon interactions alone, one might expect a

smooth decrease in the FWHM as the electron-phonon coupling strength is reduced

monotonically with hole doping. However, this is not the case. The FWHM rises in

going from x = 0 to 0.05, then appears to decrease monotonically from x = 0.05 to

0.12. Moreover, the FWHM for the x = 0 samples were obtained at T = 200-300

K, while the FWHM for the x > 0 samples were obtained at T = 15 K. Since the

temperature dependence of the O2pπ FWHM is only weakly temperature dependent,

we could assume that the O2pπ width should have essentially saturated near T = 200

K, so that FWHM(10 K) ∼ FWHM(200 K), as discussed in Chapter 5.

Here, we propose possible reasons for the increase in FWHM in going from x = 0 to

0.05. Changes in the crystal chemistry should be taken into account when comparing

the doped and undoped samples. An increase in the scattering rate from single-

particle scattering considerations (electrons scattering from microscopic Na dopants)

should be on the ∼ 1-10 meV scale, especially since the lineshape of the near-EF exci-

tations becomes sharper with increasing x, and thus should be essentially irrelevant.

Another consideration associated with crystal chemistry is that the doped compounds

were synthesized using a high-pressure flux growth technique, while different batches

of the undoped samples were grown using either the high-pressure technique or an

ambient pressure approach. A small difference in the FWHMs were observed between

the undoped samples grown under ambient or high-pressure, although this difference

is well within the statistical error bars. This difference might be due to the fact

that the larger crystals grown under ambient pressure tended to have flatter surfaces

(sharper laser reflections) than the high-pressure crystals. Therefore, the more curved

or warped surfaces from the high-pressure crystals might account for some of the ad-

ditional broadening. However, even by assuming a fairly large angular broadening
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(±1◦) to the undoped samples, one cannot reasonably account for much additional

energy broadening. Another potential concern in the doped samples is the effects of

macroscopically inhomogeneous doping - because µ shifts rapidly with hole doping,

variations in x across a given sample could also result in a spread in µ. For instance,

dµ/dx was determined to be -1.8 eV±0.5 eV /hole. Allowing for a ± 0.005 spread

in x across a given sample, this would correspond to an additional broadening of ∼
18 meV. However, these additional corrections to the intrinsic width would not add

directly, but roughly in quadrature. Therefore, if we assume an intrinsic width of 400

meV, the combined effects of ±1◦ angular broadening and macroscopic chemical inho-

mogeneity listed above would only increase this to ∼ 405 meV. The sample-to-sample

scatter in the undoped samples for Γπ is much larger than ± 5 meV, and Γπ of the

x = 0.05 sample is 490 ± 55 meV. Either there exist additional extrinisc effects be-

yond our simple framework for accounting for macroscopic chemical or morphological

broadening, or there else are other microscopic and intrinsic broadening mechanisms

that we should take into account.

Here, we propose some potential microscopic explanations for this additional

broadening in the doped samples. First, the above discussion neglected lifetime ef-

fects arising from electron-electron interactions. If the electron-electron scattering

rate first increased very rapidly with doping from x = 0 to 0.05, and then saturated

at higher doping levels, this might help to explain the sharp increase between the

FWHM of the x = 0 and 0.05 samples. If we convolute a Gaussian (FCB) with a

FWHM = 400 meV with a Lorentzian (electron-electron) lineshape with a FWHM

= 150 meV, the total resulting linewidth of the convolved function is 500 meV, but

the lineshape remains rather close to a Gaussian (in this case, the Voigt parameter,

y = Γlor/Γgauss

√
ln 2 ∼ 0.31). Because of the asymmetric lineshape of the O2pπ

peak, which limits us to only fitting the low-binding energy half of the peak, it is

possible that an additional Lorentzian contribution could have been unaccounted for.

Therefore, an additional contribution from increased electron-electron scattering in

the doped samples is highly plausible, at least given the experimentally measured

spectra. However, increasing the Voigt parameter beyond y ∼ 0.4 − 0.5 begins to

introduce significant deviations from a well-defined Gaussian lineshape. Another
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possibility is that of intrinsic microscopic carrier inhomogeneity. Recent scanning

tunnelling spectroscopy (STS) measurements have shown apparent nanoscale varia-

tions in the local hole density (so-called “p-maps”) [192]. The magnitude of these

variations is significantly larger than what one would expect from variations in the

chemical composition, on the order of x of ± 0.01-0.02. Taking this nanoscale varia-

tion into account in a worst case scenario, a variation of ± 0.02 in the hole density

might account for up to ∼ 72 meV in broadening. However, added in quadrature to

an intrinsic width of 400 meV, this would still only increase the total width to ∼ 410

meV. Therefore, more work (and a much greater number of doped samples) would

be required to completely account for the sharp increase in the FWHM in going from

x = 0 to 0.05. Neglecting the x = 0 sample for the meantime, a clear decrease in

the FWHM as a function of x in the doped samples is evident in Figure 6.9. From a

linear fit to the x = 0.05, 0.10, and 0.12 samples, we would estimate that dΓ/dx to

be 1.1 ± 1.3 eV / hole. This decrease in Γπ would be consistent with a weakening

electron-phonon interaction for the O2pπ band.

We can attempt to estimate the doping dependent change in the electron-phonon

coupling strength by relating Γπ(x) → ∆P (x), where ∆P (x) = g(x)ω0 is the 0-0 to

peak separation. We can use the T = 0 results of the independent boson model from

Chapter 4, since the measurements of the x > 0 samples were performed at 15 K

(whereas the boson energy ω0 > 400 K). From the analysis of the independent boson

model, we can relate Γ (the FWHM) to the separation of the 0-0 transition from the

peak maximum. In the independent boson model, the separation is given by gω0,

while the FWHM, Γ, should be given by
√

8ln 2 gω2
0. Therefore, the QP-to-centroid

separation, ∆P should be given as ∆P = Γ2/(8ln 2ω0). In Figure 6.10a, we show

∆P (x) using the experimental values of Γπ from Figure 6.9 and ω0 = 40 meV. In fact,

we can see that ∆P (x) changes faster than even µ(x) shown in Figure 6.2, with a

value of approximately of d∆P/dx ∼ -4.5 ± 5.7 eV / hole. However, this quantitative

value of ∆P (x) depends sensitively on the absolute value of Γ, as well as the choice

of ω0. Moreover, the error bars for our determination of Γ(x) are rather large, and

more comprehensive experiments are necessary before one can make strong claims as

to the doping dependence of Γ and ∆P , as well as an accurate value for the absolute
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Figure 6.10: (a) Estimation of the polaron binding energy of the O2pπ state extracted
from the FWHM and independent boson model, using phonon frequencies of ω0 = 40
and 70 meV, respectively. Electron-phonon coupling constant, g(x) (representative
of the average number of phonons dressing a photohole, 〈n〉), as a function of doping
using ω0 = 40 meV (b) and 70 meV (c), respectively.

width of Γ in the doped samples. In Figure 6.10a, we also plot d∆P/dx using ω0 = 70

meV (taking, for instance, the oxygen half-breathing mode) and subtract a nominal

“extrinsic broadening contribution” to the linewidth, such that Γπ(0.05) = 400 meV.

Using these new values, we find that d∆P/dx ∼ -2.1 ± 2.6 eV / hole.

This doping dependent change in the O2pπ state raises an important question

with our earlier analysis of the doping dependence of µ. The peak position of the

O2pπ band was used as a reference marker for measuring dµ/dx. However, later

analysis showed that even the O2pπ state was not just a simple band-like state, but

also exhibited FCB, and therefore the O2pπ peak maximum did not represent the

QP pole. Moreover, the fact that Γπ shows significant doping dependence might

imply that we should also account for this in our determination of dµ/dx, since the

peak maximum of the O2pπ should not be the position of the QP pole. However,

the analysis of the independent boson model in Chapter 4 suggests that even in the

presence of strong electron-phonon coupling, the centroid of incoherent spectral weight
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coincides exactly with the energy position of the bare, frozen electronic band. This

is also confirmed by the theoretical studies discussed in Chapter 5 [141, 170]. Unless

the 0-0 transition at the top of the O2pπ band extends all the way to µ and controls

the chemical potential shift (and not the LHB), we should still regard the O2pπ peak

maximum as a good reference for the shift of µ. As we have shown in Figure 6.10,

the quantitative value of ∆P depends sensitively on the absolute value of Γ, as well

as the choice of ω0, neither of which has been firmly established. Nevertheless Figure

6.10, this still clearly establishes that the O2pπ 0-0 transition is well separated from

EF by at least 1 eV, and therefore should not affect dµ/dx, even in the presence of

polaron formation.

We note that it is unclear whether we can generalize about the particular strength

of electron-phonon interactions in the LHB from our studies of the O2pπ state. Obvi-

ously, the electron-phonon interactions for the O2pπ should be rather different than

the LHB. Since the two electronic states are fundamentally different, the O2pπ may

be coupled strongly to different particular phonon modes, and the matrix element

for electron-phonon coupling for those particular states may well be rather different

from the LHB and its phonon modes. This difference could potentially be addressed

by studying ab initio calculations which use electronic structure calculations in con-

junction with a detailed shell model obtained from a refinement of the neutron scat-

tering data, as has already been attempted by Rösch and Gunnarsson for La2CuO4

[193]. Unfortunately, such detailed neutron scattering studies of the phonon modes

in Sr2CuO2Cl2 or Ca2CuO2Cl2 have not yet been attempted, making such a direct

comparison currently impossible. For instance, it would be interesting to see if the

much larger width of the O2pπ peak could be explained from larger intrinsic coupling

of the O2pπ band to particular phonon modes.



Chapter 7

Evolution of the Fermi Surface in

Ca2−xNaxCuO2Cl2

One of the crucial elements in the physics of the doped Mott insulator is understanding

how the low-lying excitations emerge throughout k-space, a task uniquely suited to

ARPES 1. Precisely at half-filling, there is no FS to speak of, because the LHB is

completely filled and µ sits somewhere within the gap. There has been previous work

on the observation of a so-called “remnant Fermi surface” in undoped Ca2CuO2Cl2

[88], although this feature is not a real FS, but associated with the distribution of

spectral weight in k-space with respect to the first and second AF Brillouin zones.

One can imagine two different simplified scenarios for the evolution of the FS as

one dopes the Mott insulator. The first is to treat hole doping of the LHB similar to

doping a band insulator. In this picture, µ shifts into the lower Hubbard band defined

by the t − J model in Figure 4.6, and the upper Hubbard band remains completely

unoccupied and the Mott gap remains intact. In this case, one might expect to see

a small hole pocket emerge centered at (π/2, π/2) with a volume proportional to x.

The second scenario is that one can imagine that upon doping, the upper and lower

Hubbard bands merge as the Mott gap collapses, and one is left with a case similar

to the noninteracting electron picture where electron correlations are turned off. In

1A large portion of the work discussed in this chapter has been published in K.M. Shen et al.,
Science 307, 901 (2005).

146
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a) b) c)

Figure 7.1: (a) 3D plot of theoretical dispersion of the lower Hubbard band in undoped
Mott insulator. (b) Rigid doping into the lower Hubbard band, resulting in a small
hole pocket centered at (π/2, π/2). (c) Development of a non-interacting band-like
FS with a volume of 1 − x. EF is denoted by the transparent window-like surface,
and the FS is shown as a thick red line.

this case, one would expect to recover a large, hole-like 1− x FS centered at (π, π).

These two cases are illustrated in Figure 7.1, where we start from the case of the

undoped Mott insulator (where the 2D dispersion is shown as a three-dimensional

surface where E is the vertical axis) in Figure 7.1a. Rigidly dropping µ into this

lower Hubbard band would give us the small hole pocket shown in Figure 7.1b, while

the non-interacting band picture would give us a contour reminiscent of 7.1c. In a

picture where the physics can be described purely as a doped Mott insulator, one

might expect the formation of a small hole pocket as in Figure 7.1b at very low hole

concentrations. This possibility has been explored theoretically using RVB or gauge

theories which attempt to account for the Hubbard U in some fashion [194, 195, 196].

In addition to the large 1−x FS and the small x hole pocket, the possibility of Fermi

surface truncation (so-called “Fermi arcs”) due to highly k-anisotropic scattering

rates into “hot” and “cold” spots has been discussed, primarily by N. Furukawa, T.M.

Rice, and coworkers [197, 198, 199]. Finally, work by S.A. Kivelson and coworkers,

and R.S. Markiewicz has discussed the possible FS which arises from these spatially
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When the system is doped further, antiferromagnetic
correlations are reduced and a metallic state appears.
Eventually (i.e., in the optimum and overdoped regime),
the antiferromagnetic state is destroyed and a large
LDA-like Fermi surface emerges, with a volume which
scales as (1!x) counting electrons (x is the concentra-
tion of doped holes for p-type high-temperature super-
conductors), as expected within the Fermi-liquid ap-
proach. In this context, the first important question to be
answered concerns the way the low-energy states
emerge in the very underdoped regime (Fig. 14). For x
"1, two alternative scenarios have been proposed (see,
for example, Allen et al., 1990; Dagotto et al., 1991; van
Veenendaal et al., 1994): first, the chemical potential ! is
pinned inside the charge-transfer gap " as ‘‘in-gap
states’’ are created [Fig. 14(b)]; second, the chemical po-
tential moves downwards into the top of the valence
band and states are transferred from the upper to the
lower Hubbard band because of correlations [Fig. 14(c)].

Another relevant question is: How do the low-lying
states evolve upon going from the underdoped to the
overdoped regime, where Fermi-liquid-like behavior
seems to recover? To better organize the discussion, let
us present an overview of some relevant theoretical
models. They can be classified as (i) those that preserve
the underlying crystalline symmetry, and (ii) those that
break this symmetry (note also that the scenarios based
on a dynamical breaking of symmetry should be taken
into account because ARPES is sensitive to the latter,
due to the relatively high excitation energy). The first
models to be mentioned among group (i) are the Fermi-
liquid and band-structure perspectives (Pines and No-
zières, 1966; Pickett, 1989), which sever the connection
to the undoped antiferromagnetic insulator by assuming
that screening in the doped metal is strong enough for
the Fermi-liquid formalism to recover; in this case a
well-defined Fermi surface is expected [Fig. 15(a)], with
a volume proportional to (1!x) in agreement with Lut-

tinger’s theorem (Luttinger, 1960). An alternative sce-
nario considers the breakdown of Fermi-liquid theory
due to umklapp scattering (Furukawa and Rice, 1998;
Furukawa et al., 1998; Honerkamp et al., 2001). As a re-
sult, in the underdoped region of the phase diagram the
Fermi surface is truncated near the saddle points at
(#,0) and (0,#), because of the opening of spin and
charge gaps. This results in four disconnected arcs of
Fermi surface centered at (##/2,##/2), as shown in
Fig. 15(b). In agreement with a generalized form of Lut-
tinger’s theorem, the area defined by the four arcs and
by the umklapp-gapped Fermi surface [dashed lines in
Fig. 15(b)] encloses the full electron density.

Among the broken-symmetry models, we find the
RVB/flux-phase approach.13 This predicts a Fermi sur-
face given by four hole pockets close to (##/2,##/2)
with a volume proportional to x , as in Fig. 15(c), which
continuously evolve into a large Fermi surface as the
hole concentration is increased. Note that this is very
similar in spirit to the spin-density-wave picture, which
also assumes a dynamical breaking of symmetry (Kampf
and Schrieffer, 1990a, 1990b). Another model belonging
to group (ii) is the stripe picture, which yields a
momentum-space distribution of low-lying excitations
(Salkola et al., 1996; Fleck et al., 2000; Markiewicz,
2000). These are represented by the gray patches in Fig.
15(d), where the results obtained for an equal number of
vertical and horizontal domains of disordered stripes are
qualitatively sketched (in this case the physics, together

13See, for example, Affleck and Marston (1988); Kotliar and
Liu (1988); Maekawa et al. (1988); Suzumura et al. (1988);
Wen and Lee (1996); Chakravarty et al. (2001).

FIG. 14. Doping of a charge-transfer insulator: (a) in the un-
doped insulator a gap " separates the occupied from the un-
occupied electronic states; (b) upon doping, ! is pinned inside
the charge-transfer gap and states move towards the chemical
potential; (c) alternatively, ! shifts to the top of the valence
band and spectral weight is transferred as a consequence of
electron correlations. From Veenendaal et al., 1994.

FIG. 15. Calculated Fermi surface for the CuO2 plane from (a)
local-density approximation with next-nearest-neighbor hop-
ping; (b) truncation of a 2D Fermi surface due to umklapp
scattering (Furukawa and Rice, 1998); (c) resonating valence
bond/flux phase (Wen and Lee, 1996); (d) vertical and horizon-
tal domains of disordered stripes (Salkola et al., 1996).

489Damascelli, Hussain, and Shen: Photoemission studies of the cuprate superconductors

Rev. Mod. Phys., Vol. 75, No. 2, April 2003

Figure 7.2: (a) Large 1− x band-like FS. (b) Fermi arcs, truncated at the antiferro-
magnetic zone boundary by umklapp scattering, resulting in hot and cold spots. (c)
Small, x hole pockets. (d) Possible EF spectral weight arising from disordered stripes.
From [40].

inhomogeneous charge distributions or “stripes” (which sometimes appear to conspire

to give the appearance of the FS similar to that expected from band theory) [200, 201].

These pictures are shown in Figure 7.2.

Our work in Chapters 4, 5, and 6 makes it evident that because of polaronic

effects, the QP states are far separated in energy from the original “frozen lattice”

LHB states. Therefore, the well-separated QP states are not fixed to the original

frozen lattice dispersion of the LHB, and can potentially form all the different forms

of the FS shown in Figure 7.2. Even without the added complication of small polaron

formation, there was little theoretical consensus on the evolution of the Fermi surface

when taking into account solely electronic considerations. However, it may be possible

that while lattice effects strongly affect the distribution of spectral weight in A(k, ω)

as a function of ω, polaronic effects may not strongly alter the k-distribution of

spectral weight, and may not shift the underlying FS, although this is still not a well

understood problem.
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7.1 Low-Lying Spectral Weight in

Ca2−xNaxCuO2Cl2

To determine the FS of Ca2−xNaxCuO2Cl2, we plot the low-lying spectral weight

within a narrow window near-EF (± 10 meV) for all three different doping levels. We

should note that in Fermi liquid systems, the Fermi surface has a precise and rigor-

ous meaning. In systems such as the lightly doped cuprates, which are potentially

non-Fermi liquid-like and may not possess truly well-defined Landau quasiparticle

excitations, it is not correct to call the contour of spectral weight at EF a real “Fermi

surface”. However, solely for convenience, we will continue to call the contour of near-

EF spectral weight the “Fermi surface”, keeping in mind that this may not rigorously

correct. Data for Ca1.9Na0.10CuO2Cl2 was previously published in [127, 202]. The in-

tensity plots in Figure 7.3 were taken at 15 K with hν = 25.5 eV and polarization at

45◦ to the Cu-O bond direction. To normalize the data, we utilized the relatively flat

high-energy background at ∼ -1 eV. To compare the low-energy intensity between

samples, we not only checked against this background at -1 eV, but we also used

the valence band features as a point of comparison, since our earlier work demon-

strated that the intensity and shape of the gross valence band features are relatively

insensitive to carrier doping. Both approaches give effectively the same result, which

can be seen in Figure 7.3, where the overall intensity grows as a function of x. As

shown in Figure 7.3, the distribution of spectral weight is also highly anisotropic, and

is maximum along the (0, 0)−(π, π) nodal line and drops off precipitously towards

the antinodes. Although photoelectron matrix element effects can greatly affect the

k-distribution of spectral weight, we found that this strong anisotropy did not vary

significantly over multiple Brillouin zones, or with polarizations at 0◦ and 45◦ to the

Cu-O bond, or at different photon energies between 16.5-32 eV, strongly suggesting

that this is an intrinsic effect.

From the data in this figure, it appears that the contour of low-lying spectral

weight stretches from the nodal direction towards the antinodes as x is increased.

However, this is somewhat misleading due to the cutoff of the 2D false color intensity

plots. A more informative way to view the low-energy spectral intensity is with a
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Figure 7.3: False color intensity scale plots over the Brillouin zone quadrant of
Ca2−xNaxCuO2Cl2 of the integrated spectral weight within a ± 10 meV window
around EFfor x = 0.05, 0.10, and 0.12 compositions (a-c). Data acquisition range is
shown within the black lines. Data were taken at 15 K with hν = 25.5 eV photons
and a polarization at 45◦ to the Cu-O bond direction. Data were symmetrized about
the (0, 0)−(π, π) line, and normalized to the featureless background at high binding
energies (∼ -1 eV).

“bird’s eye view” plot of the spectral weight, where the near-EF intensity is plotted

as height along the z-axis, in Figure 7.4. In these plots, the raw experimental data

are not shown, but rather curves generated from parameterized fits of kF, the an-

gular intensity, and the angular width. Nevertheless, this should be a very accurate

representation of the raw spectral intensity in Figure 7.3. From these plots, one can

see that the angular distribution of spectral weight does not change appreciably, but

it is primarily the overall intensity that scales with x. One can see in going from x

= 0.05 to 0.12, the overall intensity increases, but the contour of intensity remains

roughly constant.

This strong anisotropy in the spectral weight distribution of Ca2−xNaxCuO2Cl2

is reminiscent of lightly doped La2−xSrxCuO4 [171] and even heavily underdoped

Bi2Sr2CaCu2O8+δ [106]. All lightly hole doped cuprates to date have shown that

well-defined QP-like excitations first emerge near (π/2, π/2), while the antinodal

excitations appear broad and indistinct, until about optimal doping. This generic

behavior across materials would also argue against a trivial matrix element effect

causing this anisotropy in spectral weight, since it is known that different materials
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Figure 7.4: 3D bird’s eye view plots of the spectral intensity within a ± 10 meV
window, as shown in Figure 7.3. These plots were generated by parameterizing the
angular distribution of spectral weight, the width of the EDC plots, and the underly-
ing FS. These plots demonstrate that the apparent Fermi arcs do not rigidly extend
with doping, but it is more representative of an overall growth in spectral weight.

typically have very different photoelectron matrix elements which depend very sen-

sitively on the details of the crystal structure. To better quantify this, we show the

angular distribution of spectral weight along the ostensible FS, where θ is defined in

Figure 7.4b. Essentially, this is the z-position (height) along the top of the “ridge”

in Figure 7.4, as a function of θ. This is shown in Figure 7.5 where the near-EF

angular intensity is plotted as a function of θ for the three doping compositions. In

addition, we plot similar data from La2−xSrxCuO4 taken from [171] for the purpose

of comparison. The relative intensities for the different La2−xSrxCuO4 compositions

were matched to the comparable doping levels for Ca2−xNaxCuO2Cl2. In Figure 7.5b,

we show the intensity of the three doping levels scaled to the nodal value (normal-

ized to one) which show the quantitatively similar angular profiles of spectral weight.

In Figure 7.5c, we show the doping dependence of the total low-lying FS intensity

(± 10 meV) for Ca2−xNaxCuO2Cl2 and La2−xSrxCuO4. For Ca2−xNaxCuO2Cl2, we

calibrated the near-EF weight by normalizing against the valence band, or the flat

background at ∼ -1 eV, as described earlier. At low dopings, the FS intensity ap-

pears to be I ∝ x, but appears to increase superlinearly with x at higher dopings.

Recent work on Bi2Sr2CaCu2O8+δ [106] also appears to be roughly consistent with

La2−xSrxCuO4 and Ca2−xNaxCuO2Cl2. These similarities would appear to suggest an
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Figure 7.5: (a) Angular distribution of spectral weight as a function of angle along
the FS. Data from Ca2−xNaxCuO2Cl2 are plotted as solid symbols, while data from
La2−xSrxCuO4, from [171], are plotted as open symbols. (b) Same angular distribu-
tions from Ca2−xNaxCuO2Cl2 in (a), but normalized to the same intensity, showing
the quantitatively similar angular distributions. (c) Doping dependence of FS inten-
sity which as a function of x for Ca2−xNaxCuO2Cl2 (black circles) and La2−xSrxCuO4

(red squares).

intrinsic commonality in the low-lying excitations between different cuprate families.

This might also imply a generic microscopic origin for the low-lying nodal states irre-

spective of material-specific parameters and ordering tendencies (such as the tendency

to form one-dimensional “static stripes” [29]).

As discussed earlier, this generic suppression of antinodal weight would again

suggest that this is an intrinsic property of the single-electron spectral function of the

lightly doped cuprates and not a trivial matrix element effect or a material-specific

feature. We can also demonstrate this by showing EDCs around the FS, as shown in

Figure 7.6 for all three doping levels. From the EDCs, it becomes apparent that the

anisotropy observed in Figure 7.3 arises not from overall matrix element suppression

or a pure d-wave gap, but the lack of coherent QP weight at the antinodes, and we

will discuss this nodal/antinodal dichotomy in further detail.
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Figure 7.6: EDCs as a function of angle (as defined in Figure 7.4) around the Fermi
surface of Ca2−xNaxCuO2Cl2 at x = 0.05, 0.10, and 0.12.

7.2 Determining the “Fermi Surface” in

Ca2−xNaxCuO2Cl2

7.2.1 Methodology for Quantifying the Fermi Surface

In a Fermi liquid, the FS can be defined as where the momentum distribution n(k)

has a discontinutity at T = 0; the magnitude of this discontinuity corresponds to

the QP residue. However, even in a Luttinger liquid (LL) where FL quasiparticles

do not exist due to fractionalization of the single electron excitations into separate
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Figure 7.7: (a) Simulation of Fermi-liquid-like A(k, ω) (intensity plot) and MDC-
determined FS (circles), showing excellent agreement between actual FS and MDC-
derived kFs. (b) Simulation of same underlying FS, but with a d-wave BCS gap and
anisotropic self-energy. MDC-determined kFs still demonstrate excellent agreement
with (a) and the underlying FS

topological defects, one can still define a sort of underlying FS. For the LL, one can

use a criterion of kF as being where |∇n(k)| diverges at T = 0. From an experimental

standpoint, using n(k) is very difficult to implement accurately from a practical point

of view, although it has been employed previously [88]. There are a number of issues

with using n(k), including possible strong k-dependence of matrix elements, the need

to integrate over very wide energy ranges particularly for strongly correlated systems

(impractical, because of the presence of other unrelated bands), and the influence of

the background intensity. Another method to determine the position of a particular

kF is to examine each EDC and estimate whether the QP pole is above or below EF.

This particular approach was utilized primarily in the earlier days of ARPES (before

2000) before the advent of the 2D multiplexing detectors, when EDCs were taken one

at a time. The difficulty with this approach is that it either uses a somewhat arbitrary

metric (such as the leading edge midpoint) or requires extensive modeling of the

spectral function. As a result, the EDC method is rather subjective, although it can

yield very accurate results if implemented correctly. Another practical consideration

is that with modern electron analyzers producing ∼ 104 spectra, the EDC method

becomes extemely slow and time-consuming.
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Another method which is much more practical for analyzing a large array of spec-

tra is the MDC method. The principle behind the MDC method is to look for maxima

in an MDC at EF which passes through the FS, since the spectral weight at EF should

be maximum when the QP pole sits at EF. The k position of this maximum should

then correspond to kF. The benefit of this technique is that it provides a relatively

unbiased and mechanical procedure for extracting the FS. In fact, in the absence of

strong matrix element or other complicating effects, the MDC method can extract

the underlying (normal-state) FS, even in gapped systems. In Figure 7.7, we show

the spectral intensity at EF of a simulated A(k, ω). In Figure 7.7a we show the EF

intensity of our simulation assuming a Fermi liquid-like self-energy and a finite im-

purity scattering term. The white circles are the values of kF determined from MDC

extraction. The values of kF from the MDC extraction agree exactly with the ac-

tual FS, as can be seen directly. In Figure 7.7b, we show another simulated A(k, ω)

where we use the same FS, but add a d-wave gap (of the BCS form) into A(k, ω),

along with a strongly k-anisotropic self-energy. This was intended to approximate

the experimental situation as closely as possible. We then implemented the MDC

kF extraction method on this simulated data and obtained essentially the same non-

interacting FS shown in Figure 7.7a. However, for Figure 7.7b, this is not the “true”

FS (for the d-wave gapped system, the FS is simply a nodal point), but rather the

underlying normal-state FS. The reason for this is that the MDC maximum corre-

sponds to the position where the gapped band approaches most closely to EF, and for

the BCS case, this position corresponds to kF for the normal-state FS. In addition to

our simulations, the MDC determination method has also proven very successful for

determining the FS in simpler systems, such as the idealized 2D Fermi liquid system

(above 1.5 K), Sr2RuO4 [121, 122, 203]. In Sr2RuO4, there are 4 electrons in 3 Ru 4d

t2g bands. Calculating the Luttinger volume enclosed by the α, β, and γ FS sheets,

we find excellent agreement of our MDC-derived volumes to within 2% of the known

value of 4 electrons / unit cell. Nevertheless, the situations outlined above for Figure

7.7 and Sr2RuO4 are examples where Z > 0, i.e. where the quasiparticle concept

is still applicable. It remains to be seen how appropriate the MDC methodology is

for the case of non-Fermi liquids or polaronic systems where Z � 1, such that the
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Figure 7.8: Extracted kFs from Ca1.9Na0.10CuO2Cl2 using the MDC methodology.
Data were collected on multiple samples (shown in different symbols) over multiple
Brillouin zones.

incoherent spectral weight dominates, even near EF.

7.2.2 Application of MDC Methodology to Ca2−xNaxCuO2Cl2

In Figure 7.8, we show in multiple Brillouin zones kFs determined from the MDC

methodology, taken from multiple samples of Ca1.9Na0.10CuO2Cl2. All data were

acquired at T = 15 K, but under different experimental conditions. Spectra were

taken with the polarization either parallel to or at 45◦ to the Cu-O bonds, and with

the Scienta analyzer slits either along the Cu-O bond direction or along the Cu-O

diagonal. Data were also acquired at different photon energies in the range of 16.5

- 28 eV, although most data were acquired using hν = 21.2 or 25.5 eV, and include

data both from a He I plasma discharge lamp and (primarily) synchrotron radiation.
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Because of errors in sample alignment and matrix element effects, we combined

kFs measured from multiple samples under different experimental conditions to at-

tempt to minimize the aforementioned sources of error. We believe the effects due

to kz dispersion are minimal, since the resistivity anisotropy ρc/ρab ∼ 104. There

has recently been work discussing the effects of kz broadening in La2−xSrxCuO4 and

Bi2Sr2CaCu2O8+δ [204]. However, in La2−xSrxCuO4 the anisotropy (∼ 10−3) is much

less than in Ca2−xNaxCuO2Cl2, while in Bi2Sr2CaCu2O8+δ, one must distinguish be-

tween intracell and intercell hopping. Nevertheless, any kz broadening should drop

to zero along the nodal direction, so it is primarily along the antinodal direction that

one must be most concerned about possible kz effects.

To quantify the ostensible “Fermi surfaces” of Ca2−xNaxCuO2Cl2, we took the kFs

from Figure 7.8 and translated them by G-vectors into a reduced zone scheme. We

then assumed tetragonal symmetry and fourfold symmetrized every data point into

all four quadrants of the first Brillouin zone. Finally, we generated a mirror image by

reflecting all points across the (0, 0)−(π, π) high symmetry line, thereby placing all

kFs within the irreducible wedge of the 2D tetragonal Brillouin zone. This procedure

was repeated for x = 0.05 and 0.12 compositions as well, yielding the FS maps shown

in Figure 7.9. The data in shown in Figure 7.3 only represents data from one sample

at each composition while the points in Figure 7.9 are typically representative of data

from ∼ 5 samples

From the data points in Figure 7.9, we can make a fit to the experimental kFs by

using a tight-binding fit to the FS. We use a functional form:

E = −2t (cos(kx) + cos(ky)) − 4t′ (cos(kx)× cos(ky)) − 2t′′ (cos(2kx) + cos(2ky)) + µ

(7.1)

We give the following parameters in units of t, such that t = 1. For x = 0.05, t′

= -0.162, t′′ = 0.151, and µ = -0.162. For x = 0.10, t′ = -0.276, t′′ = 0.162, and µ =

0.27. For x = 0.12, t′ = -0.227, t′′ = 0.168, and µ = 0.486. We obtained these values

by fitting the tight-binding model by hand, since there was no closed form analytic

expression for the tight-binding FS that one could use for least-squares fitting (at
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Figure 7.9: Extracted kFs from Ca2−xNaxCuO2Cl2 using the MDC methodology.
Data were collected on multiple samples over multiple Brillouin zones, and kFs were
translated into the irreducible octent of the 2D square unit cell (open symbols),
together with a fit of the data (solid data). Yellow circles show the locations in
momentum space along the FS where a near-EF peak in the EDCs is observed. Data
are shown from x = 0.05 (a), 0.10 (b), and 0.12 (c). Example MDCs along the nodal
and antinodal direction are overlaid in grey on (b).

least in two dimensions). Moreover, we did not use the QP dispersion (intensity at

ω < EF) in the tight-binding fits, and therefore these values should be treated simply

as a convenient parameterization for the shape of the FS, but not literally as physical

values for the electron hopping. The results from the tight-binding fit are shown in

Figure 7.10.

7.3 Charge Ordering in Ca2−xNaxCuO2Cl2

7.3.1 Evidence from STM of Charge Ordering

The primary motivation for the growth of Ca2−xNaxCuO2Cl2 in single-crystalline form

was that it would allow a detailed study of the undoped and very lightly doped regime

of the cuprate phase diagram by surface sensitive techniques such as ARPES and

STM, thanks to its atomically flat CaCl cleavage planes. Due to materials chemistry

constraints, better studied and better known materials such as Bi2Sr2CaCu2O8+δ or

YBa2Cu3O7−δ cannot yet be synthesized near the antiferromagnetic Mott insulating
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Figure 7.10: Comparison of tight-binding fits of experimental data with tight-binding
fits for x = 0.05, 0.10, 0.12, as shown in (a), (b), (c). Black areas represent the
occupied regions inside the tight-binding FS.

phase. The only other well-known compound that can be chemically synthesized in

a clean fashion at such low hole dopings is La2−xSrxCuO4. However, ARPES studies

of undoped La2CuO4 have never produced well-defined and dispersive LHB peaks as

observed in the oxychloride compounds, Ca2CuO2Cl2 and Sr2CuO2Cl2. Moreover,

the La2−xSrxCuO4 surface has never yielded well-defined atomically resolved STM

images. Therefore, no comparisons have ever been made between the ARPES and

STM spectra in the lightly doped regime of the cuprates, until the successful synthesis

of Ca2−xNaxCuO2Cl2.

The first STM measurements of Ca2−xNaxCuO2Cl2 were performed by Yuhki

Kohsaka and Tetsuo Hanaguri at the University of Tokyo. At that time, detailed

STS measurements were not performed, but the constant-current images yielded a

striking pattern of nanoscale inhomogeneity. These patterns were determined not

to arise from topographic effects, and were therefore strong evidence that signifi-

cant nanoscale electronic inhomogeneity existed on the surface of Ca2−xNaxCuO2Cl2.

These data from [205] are reproduced in Figure 7.11. The STM maps show long, twist-

ing rivers of high conductance (bright) (dubbed as “kishimen”, a Japanese noodle!),

approximately 4-5a0 in width. Autocorrelation maps of the STM images demon-

strated anisotropy, in that the kishimen were slightly favored to run along the [100]

and [010] crystallographic directions.

More detailed STM/STS measurements were performed in the group of J.C.
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Figure 7.11: (a) 15 nm × 15 nm STM images of Ca1.92Na0.08CuO2Cl2 taken with Vs

= 200 mV and It = 10 pA at 7 K. (b) Autocorrelation patterns of data in (a), taken
from Kohsaka et al. [205]

Séamus Davis at Cornell University [169]. STS maps were performed with extremely

high spatial resolution, and uncovered a striking pattern of 2D charge-ordering (2DCO)

hinted at by the earlier kishimen patterns. The STM data reveal a 4a0 × 4a0 pat-

tern in the dI/dV maps, as shown in Figure 7.12, taken from Hanaguri et al. [169].

In addition, this pattern appeared to be approximately nondispersive, in that the

wavevector of the 2DCO did not deviate from the 4a0 × 4a0 pattern, at least within

a window of ± 50 meV. This is in contrast to the quasiparticle interference patterns

or Friedel oscillations observed in Bi2Sr2CaCu2O8+δ [206, 207]. Furthermore, the

4a0× 4a0 pattern in Ca2−xNaxCuO2Cl2 is far more distinct and pronounced than the

ordering patterns reported in Bi2Sr2CaCu2O8+δ [208, 209].

7.3.2 Evidence for Charge Ordering from ARPES

Because charge-ordered states (i.e. charge-density-waves) can arise from Fermi surface

instabilities such as nesting, ARPES is an obvious and powerful tool to study these

systems. To date, a substantial body of work has been performed on “conventional”

CDW systems such as NbSe2, NbSe3, TaSe2, TiSe2, In/Cu(001), Sn/Ge(111), CeTe3,

(TaSe4)2I, and K0.3MoO3 [210, 211, 156, 157, 212, 213, 214, 215, 216, 217, 218], to
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Figure 7.12: (a) STM topographs of Ca1.9Na0.10CuO2Cl2, showing atomic resolution.
(b) dI/dV map of same field of view at E = +24 meV, showing the clear 2DCO
4a0 × 4a0 structure. (c) dI/dV map of Ca1.9Na0.10CuO2Cl2 taken at E = +8 meV
and resulting Fourier transform in (d). (e) Line cut of Fourier transform in (d)
showing the peaks at 1/4 and 3/4, and the Bragg peak. The 4a0× 4a0 pattern shows
no appreciable doping dependence from x = 0.08, 0.10, to 0.12 (f)-(h). Figures taken
from Hanaguri et al. [169]
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Figure 7.13: (a) Spectral intensity for Ca1.9Na0.10CuO2Cl2 with approximately nested
antinodal segments illustrated. (b) 4a0 × 4a0 2DCO from STM [169].

name a few. In addition, FS nesting and charge-ordering have been reported in the

cuprate superconductors [219, 220], although the experimental situations for both

La2−xSrxCuO4 and Bi2Sr2CaCu2O8+δ have changed considerably in recent years.

On the other hand, Ca2−xNaxCuO2Cl2 provides a much clearer examples, since

both STM and ARPES can be performed at very low doping levels. An obvious

question is whether one can relate the images from STM/STS to the spectral features

observed in ARPES. The 4a0 × 4a0 patterns oriented along the Cu-O bond direction

immediately suggests a q-vector that spans across the antinodal Fermi surface neck.

By studying Figure 7.9, we can see that the wavevector that connects the antinodal

FS segments corresponds very closely to 4a0. However, although the q-vector from

the ARPES FSes appears to match the 4a0 × 4a0 pattern in the STM/STS images,

there is very little spectral weight at (π, 0) and (0, π). If we used a more conventional

quasiparticle scattering picture (essentially a non-interacting, band-like scenario anal-

ogous to the QP scattering model [206, 207]) where we took the autocorrelation image

of the the spectral maps shown in Figure 7.3, we would have essentially no intensity

at q= (2π/4a0, 0) due to the lack of spectral intensity at the antinodes. There-

fore, there appears to be a rather intriguing dichotomy between the case of STM,

where the ostensibly antinodal 4a0 × 4a0 ordering is dominant, and ARPES, where

the nodal quasiparticles are far more pronounced than the weak antinodal segments
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Figure 7.14: (a) Antinodal MDCs from (π,−π) − (π,+π) as a function of binding
energy every 10 meV from EF. (b) Nodal MDCs along the (0, 0)−(π, π) direction. (c)
Doping dependence of the the nodal and antinodal kFs.

which are associated with charge ordering. In Figure 7.13, we show a schematic of

the nested antinodal FS segments evidenced by ARPES and their correspondence to

the 4a0× 4a0 checkerboard observed by STM. One picture that has been proposed to

explain the observed 2DCO as a Wigner crystal driven by the long-range Coulomb

repulsion of the doped holes, and may provide an appealing real-space visualization

[221]. However, for the simple Wigner crystal picture, virtually all the holes should

be locked into an insulating superlattice and the low-energy QPs would arise from

the overflow or deficit of holes away from favored commensurate dopings. This sim-

ple picture would be rather difficult to reconcile with our observation of nodal QPs

whose intensity appears to increase monotonically with doping. Furthermore, it is not

altogether clear how naturally one can obtain nodal QPs in one-dimensional stripe

models, although it has been argued that they may arise from disordered stripes [200],

but then may only be peripheral states.

In addition to the correspondence of the wavevectors, the energy dependence of

both the 4a0 × 4a0 pattern and the antinodal states also share a close resemblance.

This is shown in Figure 7.14a, where MDCs along the antinodal direction are plotted
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as a function of binding energy. While the antinodal excitations are broad in momen-

tum space, the peak position of the MDCs shows very weak dependence on ω, which

would correspond to a very steep dispersion. This is in contrast to the nodal MDCs

shown in Figure 7.14b, where the nodal peaks are much more sharply defined in k-

space and exhibit considerable dispersion. This dichotomy between the nodal and

antinodal dispersion is particularly unusual given the fact that band theory predic-

tions give the bottom of the band at (π, 0) (∼ −0.25 eV) is predicted to be ∼ 8 times

below that of the bottom of the band at (0, 0) (∼ −2 eV), and therefore the band

velocity along the nodal direction should be even larger than the antinodal direction,

in contrast to what is observed experimentally. The doping dependent values of the

antinodal and nodal kFs are given in Figure 7.14c.

As mentioned earlier, the values for the antinodal kFs appear to match rather

closely with k = 2π/4a0, shown as the dashed red line, consistent with 4a0 × 4a0

order. The error bars for the antinodal wavevectors are larger, primarily due to the

difficulty in accurately determining the MDC peak maximum along the antinodal

direction. In addition, this antinodal wavevector appears to be quite weakly doping

dependent, especially given that the van Hove singularity at (π, 0) is predicted to be

rather shallow below EF, and therefore changes in µ due to hole doping should result

in relatively large changes in the antinodal kF. However, this would also be consistent

with the fact that the 4a0 × 4a0 patterns observed by STM appear to be essentially

doping independent, as shown in Figure 7.12. The antinodal kF still appears to

exhibit some weak dependence on doping, and appears to close as a function of hole

concentration. In principle, this could still be consistent with data from Hanaguri et

al. [169], if one considers that the slightly incommensurate wavevectors may arise from

a macroscopic superposition of microscopically commensurate regions (4a0 × 4a0),

and other incommensurate regions or regions with slightly smaller ordering vectors,

q, resulting in an average incommensurate wavevector. The images shown in Figure

7.12 do not exhibit long-ranged 4a0×4a0 ordering over the entire field of view. Taking

this k-space view of the 4a0 × 4a0 order observed in STM, one can then explain the

strong peaks seen in the FT-STS at q = (3/4π, 0) in Figure 7.12 as an umklapp

process from a section of FS in the first zone to the second zone. Finally, we should
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emphasize that the evidence for static 2DCO in Ca2−xNaxCuO2Cl2 is only available

from surface-sensitive probes such as STM and ARPES. On the one hand, this fact

ensures that the comparison between STM and ARPES is valid, since both probes

measure effectively the same electronic states. On the other hand, it would be essential

to verify that this phenomenon is also present in the bulk, using techniques such as

scattering. It could also be that the observed 4a0×4a0 ordering is a result of incipient

or fluctuating charge ordering tendencies in the bulk, and the perturbation associated

with surface termination is enough to pin or lock in the charge ordered state [222],

and remains an open issue of great importance and interest.

7.3.3 Comparison with Other Charge-Ordered Systems

Studied by ARPES

It has long been known that CDW formation and SC are competing instabilities in a

wide variety of materials [223]. This is not surprising, given that the same attractive

effective interactions, usually electron-phonon, can give rise to both states in many

materials. In addition, the identification of similar charge modulation patters by STM

in Bi2Sr2CaCu2O8+δ also suggests the possible universality of electronic ordering in all

cuprates. Electronic checkerboard patterns are evident in Bi2Sr2CaCu2O8+δ when SC

is destroyed (above Tc [208], inside vortex cores [224], and in very underdoped samples

[225]), and may be associated with the absence of sharp antinodal SC excitations in

many cuprates studied at low doping levels and with low Tcs, such as La2−xSrxCuO4

and Ca2−xNaxCuO2Cl2, or above Tc in the underdoped materials. Although many

particular details of the 2DCO state may be material dependent, there appears to be

a general correspondence between

In the case of Ca2−xNaxCuO2Cl2, both d-wave SC and 2DCO appear to compete

for the antinodes, and the strength of one order parameter may come at the expense

of the other. For instance, although Ca2−xNaxCuO2Cl2 is a rather poor high-Tc

superconductor, it exhibits very prominent modulations in the STM dI/dV maps. On

the other hand, Bi2Sr2CaCu2O8+δ is one of the better high-Tc SCs (maximum Tc= 96

K), but exhibits far less pronounced charge density modulations at low energies [206,
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225, 208]. Along these lines, it may be possible that critical fluctuations between the

charge-ordered state and another state (such as d-SC) could result in the incoherent

antinodal states [226], although in this case, it is not entirely clear whether the nodal

QPs would also survive. A related possibility is that the 2DCO does not represent

a CDW of single holes, but instead represents a density wave of preformed d-wave

Cooper pairs, or a pair-density wave (PDW) [227].

At this point, we should make a connection between the charge ordering observed

in Ca2−xNaxCuO2Cl2 and other more conventional charge-density wave systems [228].

In the conventional CDW picture, a Peierls instability arises when FS nesting leads

to a divergence of the Lindhard susceptibility χq at the nesting wavevector, qCDW .

Due to this divergent susceptibility, perturbations in the charge density arising from

phonons at a wavevector qCDW , are strongly amplified, and act to screen the inter-

ionic restoring Coulomb forces. This leads to a softening of the phonon branch at

qCDW , otherwise known as a Kohn anomaly. When the softening of the phonon

reaches ω = 0, a static lattice distortion becomes frozen in at qCDW , leading to the

CDW or Peierls state [228].

In the CDW state, there are now two competing periodicities, the original lat-

tice wavevector and qCDW . In the general incommensurate case, this means that

the crystal no longer possesses a long range translational symmetry, since a simple

translation operation can never bring the lattice back into itself. In the conventional

weak-coupling CDW picture, even in the regions of the FS gapped by the CDW forma-

tion (i.e. the regions nested by qCDW ), QP excitations still exist. This is analogous

to Bogoliubov quasiparticle excitations in the gapped regions of a superconductor,

where well-defined single-particle excitations exist, but are now of a mixed particle-

hole character. In the CDW case, the quasiparticles are instead of mixed particle-

particle character (i.e. electrons from opposite sides of the nested FS), but sharp

single-electron excitations still are present. This certainly appears to be the case in

materials such as CeTe3 [218] on In/Cu(001) [217]. In contrast, in Ca2−xNaxCuO2Cl2,

there are no well-defined QP states at the antinodal zone face, raising the question

of how the apparently incoherent states (Z → 0) can give rise to the 2DCO ob-

served by STM. In the simple FS nesting picture, one starts from a non-interacting
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band picture to calculate the charge (two-particle) susceptibility, χ. However, it is

difficult to generalize between single-particle excitations and two-particle suscepti-

bilities, as these two properties only have a straightforward correspondence in the

non-interacting picture.

In contrast to CeTe3, some other CDW systems apparently do not exhibit well-

defined QPs in the nested regions. For instance, recent work on the classic 1D Peierls

systems suggests that a combination of small polaron formation and a Peierls insta-

bility, arising from strong electron-phonon coupling, is responsible for the apparent

pseudogap and the spectral features observed by ARPES [156, 157]. Very similar be-

havior was also observed in the colossal magnetoresistive compound La1.2Sr1.8Mn2O7

by Chuang et al. [150]. In this case, the broad antinodal features tie in neatly to

the discussion of small polaron physics in Chapter 5. As shown in Figure 5.10, the

effective electron-phonon coupling appears to be significantly larger at (π, 0) than at

(π/2, π/2). If we extended this strongly anisotropic coupling to the doped case, we

might expect to find that the antinodal excitations are much more strongly coupled

to the bosonic field, while the nodal excitations are more weakly coupled, resulting in

a situation where Znodal � Zanti, possibly consistent with our experimental observa-

tions. In this case, the antinodal states already have strong electron-phonon coupling

inherently built into the undoped insulator, potentially favoring a CDW-like state,

and the nesting simply locks in and stabilizes the static charge-ordered state.

7.3.4 Luttinger Volumes in Ca2−xNaxCuO2Cl2

Although we have colloquially referred to the contours of near-EF spectral weight as

“Fermi surfaces” (FS), this would imply that well-defined, quasiparticle-like (Z > 0)

excitations exist all across this contour. This would have definite connotations as to

certain properties of the FS. For instance, Luttinger’s theorem (also known as the

Luttinger sum rule [16]) states that the volume enclosed by the FS should be inde-

pendent of the strength of electron-electron interactions. Depending on how the FS is

defined, the Luttinger theorem can be even more robust than Fermi liquid theory, as

discussed for the 1D Luttinger liquids. Moreover, ARPES has been demonstrated to
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Figure 7.15: (a) Fitted contours to the experimentally determined FSes for x = 0.05,
0.10, 0.12. (b) Hole pocket centered at (π/2, π/2) generated by reflecting the FSes
in (a) about the AF zone boundary. (c) Comparison of experimentally determined
Luttinger volumes versus the carrier concentration expected from chemical doping,
for a large 1− x FS (red squares) and a small x hole pocket (blue circles).

be able to test the Luttinger sum rule quite stringently, as demonstrated for Sr2RuO4.

Therefore, it is of great interest whether or not the lightly doped cuprates near the

Mott insulating state obey the Luttinger sum rule. There is the issue of whether one

should count “1 − x” (taking the view that doping the Mott insulator results in a

case similar to doping a band insulator) or “x” (strong correlations, doping rigidly

into the LHB), or if neither viewpoint is sufficient.

Using the ostensible FSes described above, we have calculated the Luttinger vol-

ume enclosed within these contours by fitting the experimental kFs and calculating

the area enclosed in two ways. The first is simply to calculate the entire FS volume

(1− x), as shown in Figure 7.15a. The second is to assume that the correct Brillouin

zone is the antiferromagnetic Brillouin zone (which is 1/
√

2 × 1/
√

2 the size of the

crystallographic BZ) and reflect the FS across the AF zone boundary. This would

result in a small hole pocket centered around (π/2, π/2), and we neglect the two

electron pockets centered around (π, 0) and (0, π), assuming that the low-lying exci-

tations emerge as one expect from Figure 7.1b, and that we count as x. This is shown

in Figure 7.15b. The extracted Luttinger volumes are plotted against the expected

carrier concentration from the chemical composition (the Na-for-Ca substitution, x).
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If one assumes a 1−x FS, then one obtains the points in red squares in Figure 7.15c;

correspondence to the expected Luttinger sum rule for non-interacting electrons is

shown as the dashed line. On the other hand, if one counted from x, the situation

shown in Figure 7.15b, then one would obtain the blue circles shown in Figure 7.15c.

This scenario would be consistent with a FS of volume x, i.e. doping rigidly into the

LHB, while keeping the UHB entirely unoccupied, and seems to agree very well with

the expected volume of the hole pocket (dashed line) from the chemical composition.

We also note that the values of the area of the small x hole pocket, assuming x car-

riers / hole will also correspond to a 1 − x FS, assuming that the starting FS is the

AF “diamond” (running from (0, π) to (π, 0)), and that the Luttinger volume of this

diamond is simply reduced by the nodal arc “biting” a section out of the diamond.

Taking this FS (essentially replacing the antinodal straight sections with the AF zone

boundary), one can count from 1 − x and also obtain the blue circles. This type of

scenario was described by Furukawa, Rice, and Salmhofer [197] in the context of a

2D Fermi liquid with saddlepoints at (π, 0) and (0, π), leading to four disconnected

“Fermi arcs”, ending where the FS intersected the AF zone boundary.

The fact that the apparent FS extracted by the MDC method does not agree

with the expectations from Luttinger’s sum rule suggests that either this material

is non-Fermi liquid-like, or that the observable spectral weight does not provide a

good measure of the true underlying FS. From our work, we would conclude that

the Luttinger volumes (taking the 1 − x approach) would correspond to VARPES =

-0.14, -0.07, and 0.02 for the x = 0.05, 0.10, and 0.12 samples, respectively. In fact,

simply by measuring the nodal and antinodal kFs, assuming the correct symmetry

for a square Brillouin zone, and assuming a relatively smooth contour between the

node and antinode, one can confirm that Luttinger’s sum rule is violated. This is

shown below in Figure 7.16, where for x = 0.10, the enclosed grey area corresponds

to a doping of V = -0.05 (i.e. 0.05 electron doped). Therefore, if we count from

1−x, it appears that we badly violate the Luttinger sum rule, making a simple Fermi

liquid interpretation problematic. On the other hand, this might imply that while

Z might be finite in the nodal arc, it may drop abruptly to zero outside the arc

region (for instance, potentially where a QP peak is not seen along the FS, i.e. in
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Figure 7.16: Extracted FS for Ca1.9Na0.10CuO2Cl2 and the minimal 1 − x Luttinger
volume area obtained by using straight lines (tangent to the nodal and antinodal
contours), shown in grey, giving a Vmin = -0.05 (electron doped)

Figure 7.9 outside the region with the yellow circles), as suggested in the “hot spot”

theories advanced by Rice and Furukawa. If Z = 0 in the antinodal regions, the

Luttinger sum rule can potentially be violated in this system. Although one might

expect non-Fermi liquid behavior near the Mott insulating state, it is rather strange

to have Z finite in certain regions in k-space, and Z = 0 in other regions in k-space.

Typically, Fermi liquid theory should be an “all-or-nothing” proposition, where Z

would be finite everywhere or zero everywhere. Although our previous analysis in

Figure 7.5 might imply that Z varies continously across the FS, we cannot rule out

the possibility that at some (possibly doping-dependent) θ, Z drops abruptly to zero

(perhaps where a well-defined peak in the EDCs disappears), but the spectral weight

at EF remains finite.

Along these lines, a recent theoretical work based on dynamical mean-field theory

has attempted to calculated A(k, ω = 0), or in other words, our low-lying intensity

maps. Recent work by Civelli et al. appears to suggest that a situation strikingly

similar to our experiments [229]. Specifically, at low dopings, the antinodes have



CHAPTER 7. EVOLUTION OF THE FERMI SURFACE 171
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Figure 7.17: Spectral maps for A(k, ω = 0) for x = 0.04, 0.11, and 0.27 from Civelli
et al. [229].

very weak spectral weight, and moreover, the contours of maximum intensity do not

appear to obey the Luttinger sum rule for the calculated hole concentrations. Civelli

et al. interpret this as a dynamical breakup of the Fermi surface in “cold” sections

(nodal) and “hot” sections (antinodal). Analyzing the contours from [229] shown in

Figure 7.17 by taking the MDC maximum as the value for kF, we would obtain a

volume of VDMFT = -0.04, 0.01, and 0.10 for the x = 0.04, 0.11, and 0.27 calculations

shown, demonstrating that the volumes extracted from ARPES and the effective

volumes extracted in a similar fashion from DMFT behave in a very similar fashion

in terms of underestimating the hole concentration. Therefore, the apparent violation

of Luttinger’s theoren may arise due to the strong electron correlation effects inherent

to the problem of the doped Mott insulator. This was also pointed out earlier in the

work of Maier et al. using a dynamical cluster approximation (DCA) to calculate

the ARPES spectra of the Hubbard model [230]. In addition, very recent work using

variational cluster perturbation theory have obtained rather similar results to those

discussed above [231]. However, the fact that the DMFT technique is based on

starting around a Fermi liquid fixed point brings into question how meaningful the

DMFT results are when they calculate seemingly non-Fermi liquid behavior.

A similar “violation” of the Luttinger sum rule was also seen in very lightly doped

Bi2Sr2CaCu2O8+δ [106], although studies of the FS in Bi2Sr2CaCu2O8+δ were less

comprehensive. On the other hand, very detailed studies of La2−xSrxCuO4 from the
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work of Xingjiang Zhou [232] appear to suggest that the FS of La2−xSrxCuO4 appears

to coincide rather closely with the expected Luttinger volume from counting 1 − x.

This is shown in Figure 7.18a, where the measured volume as a function of x is plot-

ted. This approximate agreement with the expected 1−x volume is highly unlike the

situation for Ca2−xNaxCuO2Cl2. This can also be seen in the behavior of the nodal

and antinodal kFs. Upon doping the first holes into La2−xSrxCuO4, the nodal kF ap-

pears to “jump” discontinuously away from (π/2, π/2) (the maximum of the LHB) to

a value more consistent with expectations from one-electron band theory, as shown in

Figure 7.18b. On the other hand, the nodal kF for Ca2−xNaxCuO2Cl2 seems to evolve

smoothly away from (π/2, π/2) as a function of doping, more consistent with the pic-

ture of doping a Mott insulator. In addition, the antinodal kFs for La2−xSrxCuO4

appear to be smaller than Ca2−xNaxCuO2Cl2at any given doping, as shown in Figure

7.18c. At this stage, we cannot ascertain what the origin of this difference is between

Ca2−xNaxCuO2Cl2 and La2−xSrxCuO4, although it could potentially be related to the

different behaviors of µ in the two different systems. The pinned behavior of µ in

La2−xSrxCuO4 may suggest the presence of phase separation, in the sense that the

system has separated into antiferromagnetic hole-poor regions, and hole-rich regions.

Then, the measured FS in La2−xSrxCuO4 might correspond only to the hole-rich

regions, therefore accounting for the discrepancy between Ca2−xNaxCuO2Cl2 and

La2−xSrxCuO4. On the other hand, one would expect in the case of phase separation

a preferred density of holes, whereas in the case of La2−xSrxCuO4, the density of holes

would have to change continuously to match 1 − x. In other words, in the case of

simple phase separation, one might not expect the Fermi surface wavevectors kFs to

change with doping, but simply the overall FS intensity to increase with x. However,

this intensity increase would be consistent with the observed growth in intensity of

the FS, IFS ∝ x, for both La2−xSrxCuO4 and Ca2−xNaxCuO2Cl2.

Another interesting question that remains to be resolved is whether one can relate

the nested antinodal FS segments in La2−xSrxCuO4 to the stripe ordering observed

in those compounds, and more generally, the nature of the relationship between the

ordering observed in Ca2−xNaxCuO2Cl2 and La2−xSrxCuO4. In LSCO, the tendency

to possibly form one-dimensional stripes may arise from the orthorhombic structural



CHAPTER 7. EVOLUTION OF THE FERMI SURFACE 173

0.50

0.45

0.40

0.35

0.30
0.30.20.10.0

 LSCO
 CCOC

0.3

0.2

0.1

0.0
0.150.100.050.00

 LSCO
 CCOC

0.3

0.2

0.1

0.0

0.30.20.10.0

Sr (x) Doping (x) Doping (x)

a) b) c)

V
ol

um
e 

(1
-x

)

W
av

ev
ec

to
r

W
av

ev
ec

to
r

Figure 7.18: (a) Extracted volume from FS mappings of La2−xSrxCuO4 from Zhou
et al. [232] versus the nominal Sr concentration, showing approximate agreement of
1− x counting. (b) Doping dependence of the nodal kF from Ca2−xNaxCuO2Cl2 and
La2−xSrxCuO4. (c) Doping dependence of the antinodal kF.

distortions (LTO-to-LTT) which may pin charge order along certain lines, or “creases”

in the lattice. On the other hand, it might be the case that one-dimensional ordering

is naturally favored, even in Ca2−xNaxCuO2Cl2. At this point the correlation lengths

observed in STM experiment are short enough that some directional anisotropy might

exist over short length scales, but over large fields of view, the a/b anisotropy becomes

completely averaged out. Therefore, one needs to more carefully examine the STM

images for short-ranged anisotropy. Certainly in our ARPES experiments, one aver-

ages over ∼ mm-sized areas, and thus we obtain a spatial average, thereby leaving

open the possibility for one-dimensional anisotropy.

At present, a promising potential avenue to explain the spectral features in the

undoped and lightly doped Mott insulator may be an approach based on DMFT +

phonons. On one level, small polaron physics and strong electron-phonon coupling

appears to explain very nicely many of the spectral features observed in the un-

doped insulator, and potentially the strong and anisotropic electron-boson coupling.

At another level, the DMFT may well account for additional features beyond the

conventional small polaron model due to strong electronic correlations, such as the

Hubbard gap, the very strongly temperature dependent LHB width, and the appar-

ent violation of the Luttinger sum rule. However, the computational power needed to
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perform such calculations is extremely large, and therefore may prove highly challeng-

ing. Nevertheless, such computations may shed crucial insights into the nature of the

interplay between strong electron correlations and lattice coupling in the transition

metal oxides.



Chapter 8

Conclusions and Future Prospects

8.1 Conclusions

In this dissertation, we have presented a new and unified view of the hole doping evo-

lution of the cuprate Ca2−xNaxCuO2Cl2 from an undoped Mott insulator to a high-Tc

superconductor. In the past, our tentative understanding of the undoped and lightly

doped regimes meant that issues such as the evolution of the chemical potential, the

spectral lineshape, the emergence of quasiparticle states, and the transfer of spec-

tral weight were all understood in a piecemeal and inconsistent fashion. Our work,

which introduces a novel approach to understanding the single-particle spectra of the

Mott insulator in a consistent fashion, provides for the first time a phenomenological

picture in which one can explain the evolution of µ, the doping dependence of the

spectral lineshape, the emergence of quasiparticle states, and the doping dependence

of the Fermi wavevector kF and the Fermi velocity vF. Although this is still a heuris-

tic scenario and does not explain the microscopic details, it still provides a coherent

framework for understanding and interpreting the ARPES spectra.

The key advance in this understanding was the reinterpretation of the ARPES

spectra from the undoped Mott insulator in terms of a small polaron / Franck-Condon

broadening scenario. This meant revising the previous interpretation: instead of the

spectral peak in the Mott insulator representing a QP pole, we assign the peak to be

175
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the maximum in a broad envelope of boson shake-off sidebands, as detailed in Chap-

ters 4 and 5. The true quasiparticle (“0-0” transition) sits far out in the low-energy

tail of the broad peak, has nearly vanishing QP weight, and is effectively disper-

sionless. Recent theoretical work by Mishchenko [141, 173] and Rösch [170] suggests

that one can also reconcile the dispersive nature of these broad sidebands and their

apparent agreement with theories incorporating strong electron-electron correlations,

such as t − t′ − t′′ − J models. In this sense, one can view the spectra from the un-

doped Mott insulator as resulting from different interactions and energy scales: the

kinetic energy, t, the antiferromagnetic exchange energy, J , and a low-energy bosonic

field (either phonons or magnons). To determine whether the polaronic states arose

from electron-magnon or electron-phonon interactions, we performed comparisons in

Chapter 5 between the states in the lower Hubbard band, and other electronic states

decoupled from the spin system (the O2pπ and Ca 3p states). This work led us to con-

clude that a large contribution of observed polaronic broadening did indeed originate

from lattice interactions.

Armed with this new understanding of the spectral features and polaron formation

in the undoped system, we can now better interpret the doping evolution of the

electronic states in Ca2−xNaxCuO2Cl2, as described in Chapter 6. First of all, the

assignment of the QP pole in the insulator to the low-energy tail allows to explain why

the minimum pinned position of µ in the insulator was always ∼ 400 meV away from

the broad peak maximum. Most importantly, this helps us explain why the chemical

potential does not abruptly drop 400 meV to the spectral peak maximum immediately

upon doping the first hole into the system. Using our polaronic interpretation in

concert with high-resolution measurements of the O2p states, we find that µ shifts

smoothly and rapidly into the lower Hubbard band. In addition, we find that the

changes in the Fermi wavevector kF and µ with doping are related simply through vF,

suggesting almost a “rigid band” shift into the faint, low-energy quasiparticle branch.

However, the real scenario is not as straightforward as a simple rigid band shift, as

strong spectral weight transfer occurs at all energy scales.

Finally, we investigate the momentum dependence of the first doped holes in

Ca2−xNaxCuO2Cl2 throughout the Brillouin zone in Chapter 7. Our work establishes
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that in the underdoped regime, the nodal quasiparticle excitations are dominant,

while the antinodal excitations are very faint, resulting in an arc-like distribution

of spectral weight. The overall intensity of this Fermi arc appears to grow roughly

monotonically with hole doping, in a manner commensurate to our discussion of

spectral weight transfer in Chapter 6. In both these aspects, this general scenario

appears qualitatively similar to the situation observed in lightly doped La2−xSrxCuO4

[171, 233]. Despite the faint spectral weight in the antinodal regions, they exhibit a

nesting wavevector q = 2π/4a0 which appears to correspond very closely to the 4a0×
4a0 checkerboard charge-ordering observed by STM, indicating that the electronic

states comprising the 4a0 × 4a0 checkerboard originate from the antinodal states.

However, this should not be confused with a case of simple, weak-coupling Fermi

surface nesting where quasiparticle excitations still remain well-defined even in the

gapped regions, much like Bogoliubov quasiparticles in a superconductor. However,

we find only indistinct, seemingly incoherent excitations in the antinodal regions.

Relating this back to our work on Franck-Condon broadening in Chapter 5, this

could correspond to antinodal states which are more strongly coupled to a bosonic

(likely phonons) field, therefore resulting in the broad excitations.

8.2 Future Directions

Regarding our work on polaron formation and Franck-Condon broadening in the

cuprates, one obvious question to determine precisely how much of a contribution

does the lattice introduce, how much arises from antiferromagnetism, and how much

is simply due to strong electron correlations. Our work in Chapter 5 provided an

important first step in indicating that lattice effects comprised a substantial amount

of the observed Franck-Condon broadening, but the lattice effects on the LHB were

still only inferred. A true “smoking gun” experiment would be to observe a clear

isotope effect (say, 16O for 18O) in the width of the lower Hubbard band, as this

should result in a different ΓFWHM assuming a change in the phonon frequency ω0.

This would be even more convincing if one did not observe large changes in the lattice

constants, TN , or J . However, due to the great chemical stability of the oxychloride
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materials, oxygen isotope exchange is extremely difficult and much more challenging

than a similar procedure for Bi2Sr2CaCu2O8+δ. Nevertheless, this should, in many

ways, be the best method for observing lattice effects in the cuprates and establishing

or disproving the importance of electron-phonon interactions.

In addition to studying isotope and polaronic effects by ARPES, our interpretation

of the Franck-Condon broadened lower Hubbard bands from ARPES has important

implications for the value and determination of the charge-transfer gap in. Ignoring

excitonic effects, the optical conductivity should be a convolution or joint density of

states of the valence and conduction bands at q = 0. In conventional one-electron

pictures, the main peak in the optical conductivity spectrum should then correspond

to transitions between the quasiparticle poles in the valence and conduction bands.

However, in a highly polaronic picture, the broad multi-boson sidebands dominate the

spectral weight, and actual quasiparticle has vanishingly small weight. Therefore the

actual quasiparticle (or polaron) gap in the cuprates could be dramatically reduced

from the typical experimentally deduced value of the charge-transfer gap. Again this

is a direct consequence of the fundamental difference between the position of the

quasiparticle poles and the spectral weight maximum in highly polaronic systems.

This should also be observable from an isotope effect and would again be a “smoking

gun” for proving or disproving lattice polaron formation. Moreover, such effects

in the upper Hubbard band alone might also be observable from x-ray absorption

spectroscopy (XAS) and inverse photoemission (although practically speaking, the

counting rates and energy resolution for inverse photoemission make this practically

infeasible).

Finally, extending the measured doping range of Ca2−xNaxCuO2Cl2 would be of

critical importance, if single crystals can be synthesized. For instance, extremely

lightly doped samples would be highly desired (x ∼ 0.01), to see the evolution of the

Franck-Condon sidebands and µ at very low dopings, as currently the gap between

x = 0 and the first x > 0 composition is rather sizable (∆x = 0.05). Perhaps more

importantly, an investigation of the optimally and overdoped compositions would be

extremely valuable to contrast against the undoped and lightly doped materials. For

instance, in La2−xSrxCuO4, it has been observed that the anisotropy in the angular
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distribution of low-energy spectral weight “flip-flops” very abruptly from being max-

imal along the nodal direction in the underdoped samples to being maximal at the

antinodes in the overdoped samples. Furthermore, it would be extremely interesting

to see whether such a crossover is also seen in Ca2−xNaxCuO2Cl2 and whether this

corresponds to the emergence of well-defined antinodal quasiparticles as well as the

disappearance of charge-ordering (i.e. the competing order parameter).



Appendix A

Fully Gapped Excitations in the

Lightly Doped Cuprates

A.1 Background

While accurately describing the single particle excitations of the undoped insulator

remains a theoretical challenge, this problem becomes far more daunting upon the ad-

dition of even a small number of holes or electrons 1. The exotic properties exhibited

by these underdoped cuprates have led to numerous inquiries and debates over the

physics of the insulator-superconductor transition, the presence of competing phases,

precursor superconductivity, and electronic phase separation. While popular theoret-

ical models (i.e. t−J or Hubbard models) predict the formation of metallic states even

at infinitesimally small doping concentrations [140], antiferromagnetic Néel order has

been experimentally found to persist up to finite doping levels. Moreover, the doping

range in which low temperature insulating behavior is observed has been universally

found in the cuprates to extend well past the disappearance of Néel order [234]. This

naturally raises the question of the respective roles played by order (i.e. Néel order

or alternative competing orders) and disorder (chemical or electronic inhomogeneity),

on the low lying electronic states derived from doping the parent insulator.

1The vast majority of the work discussed in this chapter has been published in K.M. Shen et al.,
Physical Review B 69, 054503 (2004).

180



APPENDIX A. GAPPED EXCITATIONS 181

To date, angle-resolved photoemission spectroscopy (ARPES) has been the pre-

mier tool for the direct study of the electronic structure of the near-optimally doped

cuprates [40]. However, its contributions to our understanding of the lightly doped

regime have been extremely limited. The main reason for this disparity is that the

bismuth based cuprates, the archetypal materials for ARPES, are naturally grown

within a limited range around optimal doping, and thus it becomes necessary to

study other families in order to access lighter dopings. Because of the extreme dearth

of ARPES data in the lightly doped regime, a serious gap exists in our experimen-

tal understanding of the doping evolution of the electronic structure. Unfortunately,

this deficiency in knowledge occurs where the physics of the cuprates is generally ac-

knowledged to be most complex, further complicating attempts at understanding the

physics of high-temperature superconductivity. It has been very recently shown that

upon the addition of even a small concentration of carriers to the parent insulator,

finite spectral weight develops near the chemical potential [26, 171], as expected for

a compressible thermodynamic system. While consistent with the high temperature

metallic behavior seen at low concentrations [234, 36], this near-EF weight has seri-

ous conflicts with the low temperature insulating behavior observed by charge and

thermal transport [234, 36, 235, 236]. It is therefore important to ask whether this

near-EF weight is additionally gapped at low energies. An energy gap along the d-

wave node has not yet been observed, as previous work in the pseudogap regime was

restricted to higher dopings where the nodal states were found to be ungapped. The

presence of a gap along the nodal direction will clearly demonstrate the effects of

disorder or additional orders on the ostensibly d-wave-like low energy states.

Here we report an extensive ARPES study of various lightly doped cuprates, where

we find a small but apparently finite excitation gap in the normal state over the entire

Brillouin zone. This result is observed for a variety of compounds and carrier con-

centrations, including hole-doped Ca2−xNaxCuO2Cl2 (x = 0.05, 0.10), La2−xSrxCuO4

(x = 0.01, 0.02), and electron-doped Nd2−xCexCuO4 (x = 0.025, 0.04). This study

reports the lowest doping concentrations ever studied by ARPES for each of the

respective compounds, including La2−xSrxCuO4 with x ≤ 0.02, where Néel order

persists. The widespread absence of ungapped excitations in this regime suggests
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that this behavior may be generic to the cuprate superconductors instead of being

a material-specific phenomenon. We consider a number of scenarios, including the

presence of disorder and electronic inhomogeneity, as well as a possible competing

order.

A.2 Experimental Details and Results

Measurements were performed with both synchrotron radiation and a He discharge

lamp with typical energy and angular resolutions of 10 to 14 meV and 0.3◦, respec-

tively. Even with an energy resolution of 14 meV, edge positions could be measured

accurately and reproducibly to within 1 meV. The Fermi energy (EF) was determined

from a polycrystalline Au target in direct electrical contact with the sample. Single

crystals of La2−xSrxCuO4 and Nd2−xCexCuO4 were grown using the travelling-solvent

floating zone method, while single crystals of Ca2−xNaxCuO2Cl2 were grown using a

self-flux method [114]. Samples were first aligned by Laue diffraction ex situ, and

cleaved and measured at a base temperature of 15 K at a pressure of better than

5×10−11 torr.

As previously observed in La2−xSrxCuO4 and Bi2Sr2CaCu2O8+δ [172, 171], the

first hole addition states emerge near (π
2
,π
2
), the top of the lower Hubbard band of

the undoped parent insulator. At relatively low concentrations, the locus of low-lying

spectral weight is confined to a small arc. Outside this sector, a large pseudogapped

region devoid of well-defined low energy excitations persists around (π,0). As an

example, we show spectra from Ca1.9Na0.1CuO2Cl2 in Figure A.1 whose electronic

structure has been shown to be consistent with the behavior described throughout

this thesis. A dispersive excitation branch can be observed along the (0,0)-(π,π) line in

Figure A.1a. In Figure A.1b, all spectra have been collapsed together and there exists

a clear shift of all leading edge midpoints away from the chemical potential which we

call a leading edge gap (LEG). As mentioned above, the locus of low-lying excitations

in this compound is confined to an arc-like segment spanning approximately ±20◦

measured radially from (0,0), as discussed in Chapter 7. The angular dependence

of this gap, ∆LEG, shown in Figure A.1c, exhibits weak anisotropy within this arc.
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Figure A.1: (a) Spectra from Ca1.9Na0.1CuO2Cl2 taken along (0,0) to (π,π). (b)
Collapsed spectra from (a) with a finite leading edge gap of 5 meV as deduced from
comparison with Au (grey). (c) Momentum dependence of this leading edge gap along
the low-energy arc as a function of angle α.

However, it is difficult to ascertain whether this apparent anisotropy is intrinsic, or

due to the loss of spectral weight and broader lineshapes away from the nodal line,

as illustrated by the larger error bars.

Spectra from non-superconducting (x = 0.05) and underdoped (x = 0.10, Tc =

13 K; x = 0.12, Tc = 22 K) compositions of Ca2−xNaxCuO2Cl2 are shown at the

bottom of Figure A.2. While no well-defined peak is visible for x = 0.05, there

exists a distinct edge structure with ∆LEG = 7 meV. This effect decreases with hole

doping and appears to close by x = 0.12. To demonstrate that this effect is generic

to all cuprates, we also present results from very lightly doped, non-superconducting

La2−xSrxCuO4 and Nd2−xCexCuO4 in Figure A.2, summarizing our findings regarding

this LEG. For La2−xSrxCuO4, the topology of low-lying excitations is qualitatively
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Figure A.2: LEG spectra from hole-doped Ca2−xNaxCuO2Cl2 and La2−xSrxCuO4, and
electron-doped Nd2−xCexCuO4. The bottom inset shows the wavevector of the spectra
taken from Ca2−xNaxCuO2Cl2 and La2−xSrxCuO4; the top shows Nd2−xCexCuO4. All
data were taken at 15 K.

similar to Ca2−xNaxCuO2Cl2, and the spectra are likewise taken from the dx2−y2 nodal

line. At a doping concentration of x = 0.01, dispersive low-energy states are observed

with a ∆LEG = 9 meV. However, by x = 0.03, this LEG has closed, to within our

experimental resolution, and remains as such for higher concentrations, as studied

in detail in [171] (which focuses on the metallic behavior for x ≥ 0.03). In the case

of lightly electron-doped Nd2−xCexCuO4, the first electron addition states appear as

small electron pockets near (π,0) [26], in contrast to the hole-doped cuprates. In this

case, we have observed the gap along these electron pockets with ∆LEG ∼ 16 meV for

x = 0.025, while for x = 0.04, ∆LEG ∼ 8 meV, and closes to nearly zero by x = 0.08;

at higher concentrations (x > 0.10), the Fermi surface crosses over to a hole pocket

centered at (π, π).



APPENDIX A. GAPPED EXCITATIONS 185

The measurement of a LEG is the canonical scheme by which excitation gaps have

been typically determined by photoemission spectroscopy. It is difficult to ascertain

the precise value of any excitation gap from the measurement of the gap without a

priori knowledge of the single-particle spectral function, A(k, ω), making lineshape

modelling potentially suspect. However, the LEG criterion has typically been success-

ful in identifying the d-wave gap in the superconducting cuprates [46], charge density

wave (CDW) gaps [215], and even small superconducting gaps in photoemission stud-

ies of conventional BCS materials such as V3Si, Nb, and Pb [237, 238]. Furthermore,

our observation of finite LEGs in a wide variety of lineshapes and compounds sug-

gests that this effect is not a misidentification due to a peculiar lineshape profile.

Nevertheless, we should note that it is not inconceivable that in particular special

instances, an ungapped spectral function may possibly give rise to a finite LEG in

the ARPES lineshape (e.g. Luttinger liquids). All results were confirmed by multiple

measurements on different sample batches. We have also utilized the method of sym-

metrization where Isym(k, ω) = I(k, ω) + I(k,−ω), which has been demonstrated to

be an effective procedure for determining the presence of Fermi crossings [239]. The

results obtained from this method were qualitatively consistent with values obtained

by taking the leading edge midpoints of the spectra.

Particular care was taken to avoid any electrostatic charging, a possible considera-

tion due to the low-temperature insulating tendencies of these lightly doped samples.

No change in ∆LEG was observed when the photon flux was varied by a factor of 3 or

greater. Also, the macroscopic sample surface quality for the lower doping concen-

trations was found to be comparable to more heavily doped samples, as determined

from inspection by optical microscope and laser reflection. Finally, all three studied

families are chemically pristine when undoped and must be alloyed towards higher

doping levels. Therefore, the opening of this gap towards lower concentrations cannot

be associated with a degradation in crystal quality, as would be the case for the bis-

muth based cuprates. We note that ARPES studies of irradiated Bi2Sr2CaCu2O8+δ

have also shown a demonstrable effect of induced disorder on the low energy spectral

lineshape [240].

The compositional and doping dependence of ∆LEG for all samples studied is
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summarized in Figure A.3 and is shown to be reproducible over numerous measure-

ments. In all compounds, ∆LEG is largest at the lowest concentrations and closes

with increasing doping. Despite the universal presence of this phenomenon, there

exist obvious differences in the detailed behavior of each particular compound. In

particular, the gap appears to close rapidly in La2−xSrxCuO4. Another intriguing

point is that for Ca1.9Na0.1CuO2Cl2, which has a Tc onset of 13 K, there still exists

a small but finite ∆LEG ∼ 3 meV above 15 K, the base temperature of our exper-

iments. Interfamily variations in the behavior of ∆LEG may not be unexpected, as

many other physical properties exhibit considerable material-specific differences, in-

cluding superconductivity and antiferromagnetism, and may depend on factors such

as the chemical composition and crystal structure.

A.3 Discussion and Implications of Experimental

Results

We now speculate on possible origins of the observed normal state gap. One very

important consideration is that disorder is inherently manifest in the cuprates, as

chemical substitution or intercalation is necessary for introducing carriers. At suf-

ficiently low concentrations, the poor screening of these impurities should cause a

strong disorder potential which may result in localization. The combination of dis-

order with long-range Coulomb interactions can produce a depression in the density

of single-particle excitations at the chemical potential known as a Coulomb or “soft”

gap [241], where the presence of repulsive electron-electron interactions necessitates a

vanishing density of states at EF to ensure against an instability towards an excitonic

ground state. The existence of disorder and localization may also be consistent with

the reasonably broad peaks and edges, suggesting short lifetimes and/or breaking of

translational symmetry resulting in poorly defined momentum eigenstates. Within

this scenario, the reduction of ∆LEG with doping can be explained by the enhance-

ment of screening. It should be emphasized that the presence of a Coulomb gap

even in the presence of disorder is still a non-trivial result, since gapless insulating
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Figure A.3: Compilation of ∆LEG measurements taken from all samples. Data from
hole-doped samples were taken near (π

2
, π

2
) while data from electron-doped samples

were taken near (π, 0), as shown in the insets in Figure A.2. All measurements were
performed at 15 K.

behavior can also occur (i.e. weak localization); a Coulomb gap in the lightly doped

cuprates would be a clear indication of the strong electron-electron interactions in

these systems. It is also possible that a Coulomb gap may exist in the lightly doped

cuprates without the aid of chemical disorder.

Recent STM studies have found considerable electronic inhomogeneity in the

cuprate superconductors [242, 205, 243]. In particular, results from Kohsaka et al.

on Ca1.92Na0.08CuO2Cl2 have shown that this inhomogeneity persists to high energy

scales [205], implying that the distribution of carriers varies strongly on nanome-

ter length scales. A recent neutron scattering study of lightly doped La2−xSrxCuO4

[244] also suggests the presence of electronic phase separation below x = 0.02, close to

where ∆LEG vanishes. It is then possible that Coulomb blockade effects in mesoscopic

systems such as granular metals [245] may be germane to this discussion. Photoemis-

sion results from ultrathin granular Pb films [246] and segmented one-dimensional

systems [247], have been interpreted within such a framework. We note that the
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observed values of ∆LEG appear rather small for Coulomb blockade in the nanometer-

sized patches proposed for the cuprates, although additional effects such as the mutual

screening of patches and photohole relaxation [248] may be mitigating factors. More-

over, it is unlikely that the charge modulations in the cuprates are so severe as to

cause separation of the holes into truly insulating and metallic patches, and is more

plausible that there are only small charge density modulations, which would then

not result in such a large (or any) Coulomb gap. Whether this inhomogeneity is

driven solely by the presence of chemical disorder or is an inherent property of the

pristine CuO2 plane is still unclear. Nevertheless, both chemical disorder and/or the

presence of intrinsic electronic inhomogeneity are plausible origins for a Coulomb gap

which may account for our results. We also note that the presence of ∆LEG naturally

reconciles the existence of an insulating ground state, as determined from collective

transport properties, with the development of finite spectral weight near EF as mea-

sured from single-particle spectroscopy. It is now clear that although the spectral

intensity of excitations near EF grows as a function of doping, these low-energy states

are additionally gapped, resulting in a charge and thermal insulator [234, 235].

Another intriguing possibility is that this may represent a signature of an alternate

phase of matter. It has been proposed that the exotic normal state properties of the

heavily underdoped cuprates may signify the presence of a competing order, such as a

staggered flux phase [33] or charge/spin stripes [29]. It has also been established from

neutron scattering that spin density wave (SDW) order exists in La1.6−xNd0.4SrxCuO4

[29] and La2−xSrxCuO4+δ [249, 250]. The fact that we have consistently observed this

effect in multiple families suggests that if ∆LEG is due to a competing order, this order

should be generic to the cuprate superconductors. In a competing order scenario, the

doping dependence in Figure A.3 suggests that the strength of the competing phase

decreases rapidly as a function of doping, similar to the behavior of the pseudogap.

We note that the presence of chemical or electronic disorder does not necessarily

preclude the existence of a competing order. Future experiments may help to clarify

this situation. For instance, a systematic study of ∆LEG with increasing chemical

impurities, such as Zn or Ni substitution, or induced disorder [240], would elucidate

the effects of disorder on this gap, and help to distinguish between a soft gap or a
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competing order scenario.

In summary, we have presented ARPES results revealing the existence of a fi-

nite gap over the entire Brillouin zone of the lightly doped cuprates in the low-

temperature normal state. This phenomenon was observed in both electron and

hole-doped cuprates and was found to decrease as a function of carrier doping. We

believe this effect is one of the keys underlying the novel superconductor-insulator

transition in the lightly doped region of the phase diagram and may represent elec-

tronic inhomogeneity/disorder effects or a competing order parameter in the lightly

doped regime. It is hoped that these results will spur future activity into developing

a better understanding of the properties of the lightly doped cuprates.



Appendix B

Anomalous Photon Energy

Dependence of ARPES Spectra

from Ca2−xNaxCuO2Cl2

B.1 Background

The very presence of the strong correlations which give rise to fascinating phenom-

ena such as the Mott insulating state, the high transition temperature, pseudogap

behavior, and electronic phase separation, may also provide significant complications

for interpreting the ARPES spectra 1. To date, the simplified approach outlined in

Chapter 2 been employed for the analysis of ARPES data where it is assumed that

the photoemission intensity from the CuO2 plane is directly proportional to the single

particle spectral function, A(k, ω), and particularly that the coherent and coherent

parts of the spectral function have the same photoelectron matrix elements. How-

ever, given their strong correlations and remarkable properties, the cuprates provide

a unique opportunity to observe variations away from this conventional paradigm.

Salient discrepancies may indicate the presence of previously overlooked phenomena.

For instance, strong antiferromagnetic correlations are known to coexist with metallic

1This work forms the basis of a manuscript originally written in 2002, and will be modified and
submitted to the Physical Review sometime in 2005.
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behavior and superconductivity [251, 36], raising the question of whether the single

particle spectrum is concurrently representative of both traits. It becomes impera-

tive to develop a comprehensive understanding of precisely how such correlations can

affect the photoemission spectra, especially as the technique progresses towards even

higher levels of precision.

Here we report anomalous behavior of the ARPES spectra of the cuprate super-

conductor Ca2−xNaxCuO2Cl2 as a function of incident photon energy. In addition to

strong modifications in the global momentum distribution of the intensity, I(k, ω), we

find inconsistent variations in extracted parameters such as the renormalized velocity

and self-energy. More remarkably, we find that the photoemission lineshape itself

exhibits prominent variations at low energies, contradictory to any simplified spectral

function interpretations. Because these effects cannot be explained within the ex-

isting framework, we propose a new phenomenological dual-component model where

the single particle spectrum is composed of distinct high and low energy excitations.

The high energy excitations reflect the remnant incoherent spectral weight from the

parent insulator (i.e. Zhang-Rice singlet), while the coherent low energy branch is

derived from the more mobile doped hole states. These variations progress system-

atically with doping, further supporting our hypothesis. The physical basis for these

effects is related to the sensitivity of the photoelectron matrix elements to disparities

in the orbital configurations of the different initial state wavefunctions. Finally, we

consider the potential influence of electronic inhomogeneity and how these findings

may be generalized to other correlated systems.

B.2 Experimental Details and Results

Measurements were performed using synchrotron radiation with typical energy and

angular resolutions of 13 meV and 0.3◦, respectively. The polarization of the pho-

tons had an in-plane component at 45◦ to the Cu-O bonds. Single crystals of

Ca2−xNaxCuO2Cl2 (x = 0, 0.05, 0.10, 0.12) were grown using a high pressure flux

method [114]. The x = 0.05 composition was non-superconducting, while x = 0.10

and 0.12 had Tc’s of 13 and 22 K, respectively (Tc, opt = 28 K). Samples were cleaved
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Figure B.1: Two-dimensional ARPES spectra are shown from x = 0.10 along the
(0, 0)–(π, π) direction at hν = 21.2 (a) and 16.5 eV (b). The MDC renormalized
dispersion is overlaid in black. ∆k = Σ′′(k, ω)/v0

F determined from (a) and (b) are
shown in panel (c). The ω-integrated intensity (−500 meV < ω < 0) as a function of
wavevector is shown in panel (d), along with that from x = 0 (dashed).

and measured at pressures better than 5×10−11 torr at a base temperature of 15 K.

The results in this study did not exhibit any strong temperature dependence and were

observed in both the normal and superconducting states. Results were reproducible

over multiple samples from different growth batches.

In Figures B.1a and B.1b, we present raw data taken from underdoped

Ca1.90Na0.10CuO2Cl2 along the (0,0)–(π, π) symmetry line at hν = 21.2 and 16.5 eV on

the same cleaved surface. Measurements were also performed with other photon ener-

gies between 16.5-32 eV, but for the purpose of clarity, only results from 21.2 and 16.5

eV will be discussed; other energies yielded results similar or intermediate to either

21.2 or 16.5 eV. The qualitative variations between Figures B.1a and B.1b are striking,
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as the k-distribution of spectral weight is nearly reversed about kF = (0.43π, 0.43π).

The momentum dependence of the integrated spectral weight (−500 meV < ω < 0) is

shown in Figure B.1c and quantifies this global redistribution which was also observed

for x = 0.05 and 0.12. In addition, while a well-defined low-energy branch is visible

at 21.2 eV, this feature is obscured at 16.5 eV. Under the sudden approximation,

the photoemission intensity can be expressed as I(k, ω) = M0(k,A) f(ω,T)A(k, ω)

where f(ω,T) is the Fermi-Dirac distribution and M0(k,A) is the square of the one-

electron photoelectron matrix element, |〈ψi|A · p|ψf〉|2, where ψi and ψf are the

initial and final state wavefunctions. The direct proportionality between I(k, ω) and

A(k, ω), is what makes ARPES a powerful technique for studying many-body physics

and in principle allows the extraction of physical quantities [82].

The apparent renormalized dispersion (v = dω
dk

) is determined from fitting the

momentum distribution curves or MDCs (I(k, ω0)) using a standard procedure used

in the cuprates outlined in [57] and [252] and overlaid as solid black lines in Figures

1a and 1b. The results obtained at the two photon energies differ dramatically; at

16.5 eV, the band appears to disperse inwards from (π, π), contrary to data from 21.2

eV and theoretical and experimental expectations [40]. Additionally, the momen-

tum uncertainty can be related to the imaginary part of the self-energy, Σ′′(k, ω), by

∆k = Σ′′(k, ω)/v0
F, where v0

F is the unrenormalized band velocity, and Σ′′(k, ω) rep-

resents the inverse lifetime of quasiparticle excitations [82]. From the dramatic and

unphysical changes in the extracted values of both Σ′′ (Figure B.1d) and v, it becomes

clear that some assumptions underpinning this basic analysis scheme possess serious

inadequacies. For instance, the conversion of the raw intensity, I(k, ω), to quanti-

ties such as v and Σ′′ relies on the assumption of a negligibly weak k-dependence of

M0(k,A). However, the dramatic variations in Figure B.1c clearly demonstrate the

considerable momentum dependence of M0. An analogous redistribution of weight

between hν = 21.2 and 16.5 eV was also observed in undoped Ca2CuO2Cl2 [253], and

such similar behavior implies that the electronic character of the superconducting

compound retains strong similarities to the undoped compound [253]. This suggests

that the strong correlations inherent in the Mott insulator persist for x > 0 and

implies that our rudimentary analysis framework may be inadequate to accurately
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describe even the doped superconductors.

While the preceding discussion has focussed on the strong k-dependence of M0,

we now investigate the energy distribution curves or EDCs (I(k0, ω)) and find un-

equivocal evidence for a multi-component electronic structure. Because EDCs are

measured at single wavevector, their shapes are insensitive to any k-dependence of

M0, unlike the MDCs. The EDCs can then be expressed as I(k0, ω) ∝ A(k0, ω) for

the occupied states, after factoring in thermal and resolution broadening. The valid-

ity of this assumption is essential for theoretical attempts to model ARPES spectra

and implies that I(k0, ω) should be invariant under changes in experimental condi-

tions. To date, detailed ARPES studies regarding the photon energy (hν) dependence

of the doped cuprates have been performed only on bilayer Bi2Sr2CaCu2O8+δ. Al-

though sizable variations have been found in both the EDCs [254, 111] and Fermi

surface [255, 256], these effects were explained by the presence of bonding and anti-

bonding bilayer bands whose existence was already predicted by early band structure

calculations for Bi2Sr2CaCu2O8+δ [257]. Nevertheless, all aforementioned studies im-

plicitly assumed that the photoemission intensity from the single CuO2 sheet was

comprised of only a solitary electronic component. Ca2−xNaxCuO2Cl2, with its single

CuO2 layer per unit cell and simple tetragonal structure devoid of superlattice mod-

ulations, structural distortions, or surface reconstructions [114], provides us with an

ideal model system with which to test this most fundamental assumption.

In Figure B.2, we present the hν dependence of the EDC at kF ∼ (0.43π, 0.43π) for

x = 0.05, 0.10, and 0.12. The discrepancy between hν = 21.2 and 16.5 eV is striking

and provides direct evidence that the excitation spectrum of the CuO2 plane includes

multiple components. From the raw data, it is clear that the low energy spectral

weight (ω > −100 meV) is substantially enhanced at hν = 21.2 eV over 16.5 eV at all

dopings. This substantial change is best exemplified at x = 0.10 in Figure B.2b, where

the small peak near EF is evident at 21.2 eV, but vanishes at 16.5 eV. The comparisons

shown in each panel were performed on the same cleave and reproduced on other

samples. It is evident from the raw data that the excitation spectrum from the CuO2

plane can no longer be considered as originating from a single initial state. However,

in order to quantify these changes, we employ a simple phenomenological model. The
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Figure B.2: EDC lineshapes for x = 0.05, 0.10, and 0.12, with hν = 21.2 (blue) and
16.5 eV (red), are shown in (a-d). Fits for 21.2 eV (solid green) and 16.5 eV (solid
black) are overlaid, along with the individual Lp (dashed) and Lh (dashed purple)
components. In panel (d), spectra at (π, 0) from x = 0.12 is shown. A comparison of
Lh with the shifted lineshape at (π

2
, π

2
) from x = 0 is shown in the inset.

lineshape can be approximately decomposed into two principal components: a broad

hump at high energies, Lh, and a peak at low energies, Lp. Lh was derived from the

lineshape of the Zhang-Rice singlet of the undoped insulator at k = (π
2
, π

2
) (Figure

B.2d inset), while Lp was a low-energy peak with a residual tail, both multiplied by

f(ω,T). In the context of our work in Chapters 4 and 6, Lh would approximately

correspond to the high-energy incoherent spectral weight (multi-boson sidebands),

and Lp is the low-energy coherent QP weight. To estimate the doping and photon

energy dependence, we employ a basic two parameter fit where we use the same

model lineshapes for Lh and Lp (dashed lines) and approximate the total lineshape

as a linear superposition of the two components, F(ω) = aLh(ω) + bLp(ω), where

the scaling factors a and b are the only free parameters. The total fits are shown

as black (16.5 eV) and green (21.2 eV) lines in Figure B.2 and agree well with the
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data. We should note that in this simplified analysis, we assume that Lh and Lp

are doping independent. However, we know this is technically inaccurate from our

work in Chapter 6. The strength of the electron-boson coupling constant should

change strongly with doping, and µ also shifts, leading to strong changes in Lh which

have not been taken into account in this simplified model, therefore, these quantities

should not be taken literally, but simply as an illustrative guide. Results from other

photon energies (18, 19, 25.5, 28, 32 eV) were not shown, but yielded comparable

results. We note that some potentially relevant factors have been neglected in this

simple model, such as the doping dependent changes in Lh and Lp, or additional

components. Nevertheless, we believe the reasonable agreement of this crude model

with experiment further supports the general validity of our hypothesis.

The data in Figure B.2 suggests that both doping and photon energies play similar

roles in determining the overall lineshape. This is evident from the similarity between

the data from x = 0.10 at 16.5 eV with that from x = 0.05 at 21.2 eV, as well as

the resemblance between the spectra from x = 0.12 at 16.5 eV with that from x =

0.10 at 21.2 eV. For that reason, we also assume a simple decomposition with a =

Mh · nh and b = Mp · np, where Mi represents the doping independent, hν dependent

matrix element for component Li, while ni represents a doping dependent scaling

factor. In Figure B.3a, we show the ratio, r of b
a

= Mpnp

Mhnh
(the weight of the peak

over the hump) as a function of doping. It is striking that the doping dependence of

r(16.5) and r(21.2) are nearly identical to within a factor. This is expected within

our scenario where the doping dependence of r should depend only on np/nh. In the

inset of Figure B.3a, we show r(21.2)/r(16.5), which appears doping independent,

consistent with our model.

B.3 Discussion of Experimental Results

These variations are direct evidence of a discrepancy in the microscopic character

of the high and low energy (ω > −100 meV) excitations. At low doping, the high

energy excitations comprise the large majority of the occupied spectral weight; in

Fermi liquid terminology, the coherent fraction of A(k, ω) is small, or Z � 1. We



APPENDIX B. PHOTON ENERGY DEPENDENCE 197

0 5 10
0

1

2

0 10
0

1

2

0.0 0.5 1.0
-1

0

a)

  

r 
  (2

1.
2 

eV
)

Doping (x)

 r (21.2 eV)

0

1

r (16.5 eV
)

 r (16.5 eV)

b)

E
ne

rg
y 

(e
V

)

k    (0,0)−(π,π)
0.05 0.10

0.10

Figure B.3: Panel (a) shows r = b
a

as a function of x for data at 21.2 and 16.5 eV.
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is shown in the inset. A momentum-dependent cartoon schematic of

Lh (red) and Lp (blue) is shown in (b).

also find a doping induced transfer of spectral weight from high to low energies,

resulting in an increase in the peak with x, as shown in Figure B.3a. These results

may also be consistent with the coexistence of Drude weight (Lp) and residual charge-

transfer excitations (originating from Lh) in optical conductivity measurements of

the underdoped cuprates [37]. A cartoon schematic of this two-component model

is shown in Figure B.3b, where the excitation branches for Lh and Lp are shown

in red and blue, respectively. The shape and dispersion of Lh was found to closely

match the Zhang-Rice singlet in the undoped insulator [258], while the sharp peak

Lp is reminiscent of a more quasiparticle-like state. Our model is also consistent with

the lack of hν dependence at (π, 0) in Figure B.2d, where there are no well-defined

low energy excitations. In this case, the (π, 0) lineshape is better described with a

single component demonstrating that the low energy spectral weight displays strong

anisotropy, seen in studies of the “nodal metal” in La2−xSrxCuO4 [171].

The physical origin of the discrepancies in Mh and Mp is likely the different wave-

functions of the states comprising Lp and Lh. While early work by Zhang and Rice

showed that the Cu 3dx2−y2 and O 2px,y states could be effectively reduced to a sin-

gle band [24], this band still possesses strong hybridization between the Cu 3dx2−y2

and O 2px,y states. Because the initial state wavefunction, ψi is composed of a linear
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combination of orbitals, |〈ψi|A · p|ψf〉|2 will depend crucially on their hybridized con-

figuration. Even subtle changes in the coefficients and relative phases of the orbitals

becomes extremely important due to the interference of cross-terms the computation

of the squared matrix element. Therefore, the difference between Lh being a more

correlated, Zhang-Rice singlet-like state and Lp being a more QP-like state can likely

result in the observed discrepancy in Mh and Mp. Simple changes in the atomic cross-

sections alone cannot explain these effects, as the total Cu 3d and O 2p cross-sections

change only negligibly within the relevant photon energy range [259]. Moreover, the

suppression of Lp at lower photon energies is unlikely to be due to a breakdown of

the sudden approximation; upon approaching the adiabatic limit, the spectral weight

accumulates into a single peak, opposite to what is observed

One natural explanation for our observations may be the presence of electronic

phase separation where effectively undoped regions give rise to the broad hump rem-

iniscent of the parent insulator, while hole-rich regions produce the dispersive nodal

peak responsible for transport properties. Moreover, the doping dependent transfer

of spectral weight to Lp is consistent with this model, as one expects the fractional

area occupied by hole-rich states to increase with doping. Although this may offer

one straightforward premise, other possibilities should not be excluded.

In the context of our work in Chapter 6, one natural possibility is that the wave-

function heavily dressed, “polaronic” quasiparticle becomes heavily mixed with the

bosonic field dressing the photohole. The quasiparticle is still fermionic in nature, but

it may begin to take on certain aspects of the bosonic field, for instance, in terms of

its symmetry, and this may be then be evidenced through the photoelectron matrix

elements. It is possible that this is somewhat analogous to the observation of “shape

resonances” in molecular photoemission, where the photoelectron intensity profile

has a strong dependence on the incoming photon energy, and this is a possibility that

needs more investigation given the potential for very strong electron-boson coupling

in many strongly correlated systems.

Another possibility is based not on electron-boson coupling but on calculations

from dynamical mean-field theory which predict that upon doping a Mott insulator,

the spectral function can possess both delocalized quasiparticle excitations as well as
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broader localized (i.e. Hubbard-like) features [189]. The transition from insulator to

metal is then signified by a transfer of spectral weight between the two, and has been

borne out in the present study. We believe that these results can be generalized to

other systems. Since the CuO2 planes are generic to the high-temperature supercon-

ductors, similar effects should be expected in the other cuprates, although they might

be difficult to distinguish from other complications (bilayer splitting, superstructure,

orthrhombicity) in more structurally complex compounds. In fact, we believe these

findings to be generic to many strongly correlated materials where Mott-Hubbard

physics and phase separation are believed to be important, such as the nickelates and

manganites, as well as systems undergoing metal-insulator transitions.

In conclusion, we have demonstrated for the first time that complex effects exist

in the photoemission intensity arising from the single CuO2 plane. We propose that

the effects of correlation result in the presence of two disparate excitation branches,

a lower Hubbard band-like feature at high energies and a more well-defined delocal-

ized state at low energy. Given the amount of effort currently employed in modelling

ARPES spectra and extracting quantitative parameters, discovering fundamental de-

viations and failings of the existing framework are imperative for all future studies.

We postulate that similar complications may be generic to ARPES studies of other

strongly correlated systems, and systems with strong electron-boson coupling (and

therefore small Z). It is hoped that the findings from this study provide a more

mature understanding of the complex nature of the photoemission process in the

cuprates and other correlated systems.



Appendix C

Surface Electronic Structure of

Sr2RuO4

C.1 Background

Following the discovery of superconductivity (SC) at 1 K in the layered perovskite

Sr2RuO4, [260] the exact nature of its SC pairing mechanism has attracted a great

deal of interest.1 While it shares the same structure as the archetypal cuprate par-

ent compound La2CuO4, RuO2 planes replace the CuO2 planes thus resulting in an

anisotropic Fermi liquid [261] instead of a strongly correlated charge transfer insula-

tor. Furthermore, there is evidence that Sr2RuO4 exhibits spin-triplet pairing with a

p-wave order parameter,[262] as opposed to the spin-singlet, d-wave symmetry found

in the cuprates. Although it is now widely believed that the unconventional nature

of SC in this compound is mediated by spin fluctuations, the exact nature of this

interaction is still unresolved. Originally, it was suggested that ferromagnetic (FM)

spin fluctuations were responsible for mediating the SC as inferred from theoretical

calculations, [263] NMR measurements,[264] and ferromagnetism in closely related

SrRuO3. However, more recent evidence has suggested that this simple picture may

1The vast majority of this appendix has been published in K.M. Shen et al., Physical Review B
64, 180502(R) (2001).
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be incomplete. Antiferromagnetism (AFM) in Ca2RuO4, the observation of incom-

mensurate peaks at Q = (0.6π, 0.6π, 0) by neutron scattering, [265] and calculations

which show strong nesting at Q = (2π/3, 2π/3, 0) [263] all seem to imply AFM cor-

relations should not be neglected, leaving the nature of SC open to speculation.

Recently, an analysis of low-energy electron diffraction data from Sr2RuO4 in-

dicated that a
√

2 ×
√

2 reconstruction was induced by the freezing of a soft zone

boundary phonon into a static lattice distortion at the surface, and comparisons with

band structure calculations predicted that the resulting surface was FM. [120] This

possibility was also speculated upon in a recent ARPES study by our group, [121]

as well as in earlier theoretical calculations.[266] If FM does exist on the surface of

Sr2RuO4, such a result should be indicative of strong ferromagnetic tendencies in the

bulk and thus possibly relevant to microscopic theories which describe the mecha-

nism of SC. This speculation becomes even more intriguing in light of recent STM

measurements[267] which suggest the opening of a superconducting gap with Tc =

1.4 K, perhaps hinting that the surface layer may be superconducting, and raises the

possibility that the surface of Sr2RuO4 may exhibit the rare coexistence of SC and

FM. However, as this proposed surface FM has never been confirmed, it becomes

imperative to reinvestigate the surface electronic structure to definitively verify or

exclude surface FM.

Here, we present a detailed, high-resolution ARPES study of the surface electronic

structure of Sr2RuO4. While our earlier work [121] ascertained that the bulk Fermi

surface (FS) topology extracted by ARPES was indeed in excellent agreement with

both theory [268, 269] and de Haas-van Alphen (dHvA) results, [261] the precise na-

ture of the surface-derived states, which could be nonmagnetic (NM) or FM, remained

ambiguous. In particular, our earlier depiction of the surface electronic structure

failed to explicate the presence of the intense, surface-derived peak at (π, 0), leaving

us to speculate that its existence could be a possible manifestation of surface FM.

To clarify this uncertainty, we have performed a comprehensive ARPES study with

various photon energies and polarizations in conjunction with detailed band structure

calculations which now account for the surface reconstruction. By comparing these

calculations with our ARPES data, we conclude that our results are consistent with
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Figure C.1: (a) EF intensity map of Sr2RuO4 cleaved at 180 K and measured at 10
K with hν = 28 eV and overlaid theoretical FSes. (b) and (c) show an intensity map
from a sample cleaved and measured at 10 K. (b) shows calculated bulk FSes (white)
with trivial folded FSes (dashed), while (c) shows calculated 6◦ NM reconstruction
with both primary and folded surface FSes (dashed white and dashed black).

the NM scenario and exhibit no experimentally detectable trace of surface FM down

to 10 K.

C.2 Experimental Details and Results

Data was taken at the synchrotron with typical resolutions of ∆E < 13 meV and

∆θ ≈ 0.2◦. Sr2RuO4 single crystals were first aligned by Laue diffraction and then

cleaved in situ at a pressure of better than 5×10−11 torr and at various temperatures

described below. All spectra were measured at 10 K in both the first and second

Brillouin zones; surface features showed slight enhancement in the second zone.

Figure C.1a shows an EF intensity map (integrated signal within EF ± 5 meV)

of a sample cleaved at 180 K and measured at 10 K. As discussed in [121], cleaving

the sample at elevated temperatures preferentially suppresses the surface intensity;

we speculate that the increased rate of thermally activated oxygen diffusion results

in a more disordered surface layer. The resulting intensity map thereby primarily

reflects the bulk contribution, and the calculated bulk FSes from [269] are overlaid

and in excellent agreement. When cleaving at lower temperatures, the surface states

were well preserved and also apparent in our data, in addition to the bulk states.

This additional surface contribution is clearly visible in the intensity maps in Figures
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C.1b and C.1c and somewhat complicates the situation. Our original conjecture,

in [121] and shown in Figure C.1b, accounted for the surface states by considering

them to be the same as those of the bulk, except for a rigid folding due to the
√

2×
√

2 surface reconstruction; the reconstruction arises from rotations of the RuO6

surface octahedra which cause a doubling of the surface unit cell.[120] Despite the

approximate agreement, this overly simplistic picture fails to explain the origin of the

strong peak (bottom of Figure C.2b) at M, which influenced earlier ARPES reports to

erroneously designate the bulk γ-FS as hole-like.[270, 271] This apparent discrepancy

also led us to initially posit that surface FM might be responsible for this state at

M. However, after calculating the precise effects of the surface distortion on the band

structure, we find that the NM reconstruction alone can potentially drive the surface

γ-FS hole-like, thus explaining the peak at M; this more accurate NM scenario is

depicted in Figure C.1c.

Nonetheless, since surface FM might still account for some of the experimentally

observed features, it becomes crucial to examine the surface states in greater detail.

In particular, surface FM would cause the surface states to split into minority and

majority bands, effectively doubling the number of surface-derived bands. In order

to distinguish between the NM and FM scenarios, we focus on ARPES spectra taken

along lines I and II in Figure C.1c. For the NM surface, we would expect to see one

band, αF , crossing along I and two crossings, αS and αB, along II. Any additional

bands beyond those predicted for the NM surface would be strong evidence for surface

FM, and should be readily apparent in the ARPES data.

To address this issue, we first focus on spectra taken along I, shown in Figure

C.2a, using 24 eV photons polarized along the Ru-O bond direction; different photon

energies and polarizations yielded similar results. This region is particularly suitable

for an investigation into potential surface FM since it is far removed from the bulk

electronic states. Examining the energy distribution curves (EDCs) in Figure C.2a, we

see only a single electronic state from the folded α-FS, denoted as αF , as is expected

from the NM scenario shown in Figure C.1c. Conversely, additional bands reflecting

the exchange splitting would be expected for a FM surface. In Figure C.2d, we show

a momentum distribution curve (MDC) of data from C.2a, where the photoemitted
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Figure C.2: EDCs in panels (a), (b), and (c) with along cuts I and II shown in Figure
C.1. Corresponding MDCs at EB = 20 meV taken from (a), (b), and (c) are shown
in panels (d), (e) and (f), respectively. Data from (a), (b), (d), and (e) were taken on
a sample cleaved at 10 K, while data from (c) and (f) were taken on a sample cleaved
at 160 K. αF , αS, and αB refer to folded, surface, and bulk α bands, respectively.

electron intensity is displayed as a function of momentum at a fixed binding energy of

EB = 20 meV and fitted to a single Lorentzian lineshape on a linear background. By

analyzing our data in this fashion, we are able to track the dispersion of αF yielding

vF
F =0.7 eV·Å. Therefore our measurements along I yield only a single surface band,

consistent with the nonmagnetic scenario of Figure C.1c.

To further reinforce this result, we now consider data along II shown in Figure

C.2b, taken under the same conditions as I, but in the second zone. In both the

EDCs and MDCs, one can clearly observe two distinct peaks. By fitting the MDCs

to a double-Lorentzian form, shown in Figure C.2e, and tracking their dispersion to
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Figure C.3: ARPES data taken near X with hν = 24 eV at 10 K on a sample cleaved
10 K. EDCs in (a) were taken along cut C. (b) shows an EF intensity map (± 5 meV)
around the region of the bulk and surface α-FSes, shown in solid and dashed white,
respectively. (c) shows the EDC from X and the corresponding fit. The background
curve and the Lorentzian used in fitting are also shown as dotted lines.

EF , one can determine the Fermi velocities of the two bands. From this analysis, we

determine the velocity of the first band, αB, to be vB
F = 1.1 eV·Å, while for the second,

αS, vS
F = 0.7 eV·Å. On another sample cleaved at 160 K with the measurement

taken in otherwise identical conditions, αS is suppressed, as shown in Figure C.2c,

and the remaining state is the bulk-derived αB; both αB features in C.2b and C.2c

have the same vF and Fermi crossing position. Also note that cleaving at elevated

temperatures completely suppresses the strong peak at the bottom of C.2b, which is

also responsible for the weight at M in Figures C.1b and C.1c. Furthermore, we are

able to conclude that αF is simply the folded counterpart of the surface-derived αS,

and not the counterpart of the bulk-derived αB, since αS and αF have matching vF

and Fermi crossings in the reduced zone. Therefore, the absence of additional bands

along II is consistent with our results from I and our conclusion of a NM surface.
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Examining EDCs taken over the entire zone, virtually all observed surface states

can be well accounted for by considering only a NM surface. The only unexpected

feature was a small peak localized around X, hereafter denoted as Φ, as shown in

Figures C.3a and C.3b, which was most strongly enhanced at hν = 24 eV. Close

inspection of the spectrum at X in Figure C.3c reveals that the peak position is

located at EF (± 1 meV) and the leading edge is 6 meV above EF , indicating that

this peak originates from above EF ; the peak in the EDCs is the product of the rising

tail of the quasiparticle peak and the falling edge of the Fermi-Dirac function. This

was confirmed by fitting the data using a background taken from (0.8π, π) and a

Lorentzian peak, both multiplied by a Fermi-Dirac function and convolved with our

resolution (∆E = 8 meV), allowing us to estimate a peak position of 3 meV above EF

and an intrinsic FWHM of 3 meV. Although there may be some slight inaccuracies in

the fitting procedure, all attempts to fit the spectra to a below-EF peak proved wholly

unsuccessful. Moreover, since no corresponding band can be seen to disperse from

below EF , we can conclude that Φ arises from an unoccupied band whose minimum at

X almost grazes EF . Naively, one might infer that this somewhat unexpected feature

could be interpreted as evidence for surface FM. However, as will be discussed below,

our calculations, in fact, even predict the appearance of Φ, which arises from the

distortion of the surface layer.

C.3 Discussion and Comparison with Theory

In order to gain deeper insight into the effects of the surface reconstruction, we have

performed both NM and FM calculations similar to those reported in [269], but

including rotations by a fixed angle in all RuO2 planes, resulting in a monoclinic C2/m

symmetry. We will hereafter refer to these rotated bulk calculations as pertaining to

the surface, and this assumption can be justified because of the extremely 2D nature

of the electronic structure; any effects from the surface termination should be far

weaker than those of the rotations of the octahedra, and is demonstrated by the

excellent agreement of our NM rotated calculations with the corresponding surface

calculations performed by Fang. [120, 272]
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Figure C.4a shows the results of NM calculations along the tetragonal M-X di-

rection for rotations of θ = 0◦ (bulk) and θ = 6◦ (NM surface). An angle of 6◦ was

chosen since it is within the error bars of the structural data [120] and also gives good

agreement with our ARPES data, especially the placement of Φ. The NM surface

and bulk bands are shown in Figure C.4a, and the experimentally determined values

are overlaid and in good agreement with theory. We also note that our estimate of

the quasiparticle renormalization vcalc
F / vB

F = 3.2 for the bulk α-FS along M-X is in

excellent agreement with m∗/mband = 3.3 from dHvA [261], and also close to theo-

retical estimates of ≈ 2.5.[273] Calculations for θ = 6◦ produce the dashed FSes in

Figure C.1c and the rotation induces various effects.

First, the extended van Hove singularity (evHs) at M, which is 60 meV above EF

in the bulk calculations, is pushed 40 meV below EF due to the repulsion between the

dxy and d3z2−r2 bands, which is allowed only in the lowered symmetry of the distorted

surface. This results in the topology of the surface γ-FS changed from electron-like

to hole-like, as shown in Figure C.1c, also concurring with independent calculations

from [274]. Furthermore, the dispersion of this feature, in agreement with [270] and

[271], is consistent with the saddlepoint topology predicted by theory.

Secondly, the lower symmetry on the surface also allows for hybridization between

the dxy and dx2−y2 bands forbidden in the tetragonal symmetry. In the distorted

structure, these two states are both at the now-equivalent Γ/X point of the downfolded

zone and repel each other. Furthermore, rotations disrupt the Ru-O pdσ hopping

more strongly than the pdπ hopping and thus the dx2−y2 band moves down relative

to the dxy band. Both effects together lead to the formation of a strongly mixed

state at the Γ/X point which moves down rapidly and gains more dx2−y2 character

with rotation angle. While it is 300 meV above EF for θ = 0◦, it crosses EF for θ

= 7◦, and is the origin of Φ. Although Φ was not observed at Γ, this absence is not

surprising when considering the unfavorable photoemission matrix elements due to

the significant dx2−y2 and dxy character of this state.

The effects of FM on the surface electronic structure were evaluated by performing

constrained fixed spin moment calculations for the 6◦ surface with an imposed mag-

netization of 1 µB / Ru, a value consistent with [120]. The corresponding FM surface
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Figure C.4: (a) : Band structure calculations along M-X for bulk and 6◦ NM surface
(thick and thin lines) along with ARPES dispersion for bulk and surface states (solid
and open circles). (b) : Bulk, minority surface, and majority surface bands in thick,
thin, and dashed lines for a 6◦ FM surface.

calculation is shown in Figure C.4b and is radically different from what is measured

experimentally; for instance, both the evHs at M and the bottom of the dxy / dx2−y2

band at X are absent. Regardless of the particular details of the calculations, such

as the position of the chemical potential and the bands, even the number of bands

expected and measured is in disagreement, thus favoring the NM scenario, in contrast

to the earlier speculation by our group [121] and Matzdorf et al. [120]

Although exact comparisons between the theoretical calculations and the ARPES

data can be somewhat difficult due to the significant electron-electron interactions, the

qualitative comparison of the ARPES data with the general behavior of the calculated

electronic structure should be robust. The earlier conclusion of surface FM [120] was

based on the comparison of structural data (θ = 9◦± 3◦) to magnetic band structure

calculations. However, the error bars in the structural data are comparable to the

spread in the calculated rotation angles for a NM (6.5◦), AFM (6.5◦), and FM surface

(9◦), leaving room open for alternative interpretations of the data. Furthermore, the

generalized gradient approximation employed in the aforementioned calculations may

be inclined to overestimate the tendency towards magnetism, and even incorrectly

predicts ferromagnetism in bulk Sr2RuO4. [266] We can place a maximum upper
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bound on the strength of any existing FM by considering our experimental resolution

and the width of the quasiparticle peaks. If we assume that both αS and αF were

comprised of a pair of extremely weakly split FM bands, we are able to put an upper

bound of Eexch ≈ 15 meV, which is much smaller than the predicted FM exchange

splitting of ≈ 500 meV. [266, 272] Using this value of Eexch ≈ 15 meV results in an

upper bound for the spin polarization of < 0.05 µB / Ru, much weaker than predicted

theoretically.

In conclusion, we have isolated and directly studied the surface-derived electronic

states in Sr2RuO4 by ARPES. By comparison with detailed band structure calcu-

lations, we find that the origin of the ARPES features can be simply explained by

considering the effect of a nonmagnetic surface reconstruction on the electronic struc-

ture, with no evidence of surface FM.



Appendix D

Electronic Structure of the

high-temperature BCS

superconductor MgB2

D.1 Background

The discovery of superconductivity in MgB2, with the surprisingly high critical tem-

perature (Tc) of 39K [7], has garnered a tremendous amount of interest [275]1. Con-

cerning the nature of the superconducting pairing mechanism, there has been con-

siderable speculation, particularly regarding whether superconductivity could be ex-

plained within the Bardeen-Cooper-Schrieffer framework [6]. On the one hand, on

the basis of experiments performed on isotope substituted material it has been shown

that the electron-phonon interaction is indeed important to the pairing in MgB2

[276, 277]; on the other hand, Tc is considerably higher than what many would have

originally believed possible as a result of conventional electron-phonon interaction

alone [278, 279]. This has prompted the question of whether additional factors, such

as electron-electron correlations [280, 281, 282], may conspire to raise the supercon-

ducting transition temperature. In order to quantitatively address this important

1The vast majority of this appendix has been published in H. Uchiyama, K.M. Shen, et al.,
Physical Review Letters 88, 157002 (2002).
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issue, an experimental determination of the electronic structure of MgB2 is crucial.

In fact, the strength of the electronic correlations can be estimated from the renor-

malization of the overall electronic bandwidth, Fermi velocity, and effective mass

with respect to the values predicted by band theory (in the extreme case, electronic

correlations could result in the opening of a so-called Mott-Hubbard gap in systems

that on the basis of the bare electron counting are expected to be metallic [283]; this

corresponds to the complete breakdown of the independent particle picture which,

however, is clearly not realized in MgB2).

Here we report the first ARPES measurements performed on the first synthesized

single crystals of MgB2 [284]. We find a good overall agreement between the exper-

imental data and the results of existing band structure calculations [285, 286, 287,

288, 289], which gives a good basis for understanding the fundamental properties

of this material. Furthermore, the good agreement indicates that electron-electron

correlation effects are very weak. In turn, this implies that the electronic structure

of MgB2 is of a conventional nature and electron-electron interactions are of little

importance to superconductivity.

D.2 Experimental Details and Results

Single crystals of MgB2 were grown in the quasi-ternary Mg-MgB2-BN system under

5-6 GPa at 1600 ◦C. Several single crystals with typical dimensions of 0.3×0.3×0.1

mm3 were selected for this study. The single-crystallinity was confirmed by four

circle x-ray diffraction. Both resistivity and magnetization measurements verified

that the crystals exhibit superconductivity at 38 K with a narrow transition width

of 0.3 K [284]. The ARPES measurements were performed at the synchrotron with

a total energy resolution of better than 40 meV and an angular resolution of 0.3◦.

In this study, higher energy resolution was sacrificed in order to obtain reasonable

counting statistics on the small single crystals. The samples were first aligned by

Laue diffraction and then cleaved in situ along the a-b plane at a pressure better

than 5×10−11 torr and a temperature of about 10K. Due to the observed rapid

degradation of the sample surface, all data were taken within 5 hours of cleaving.
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Reproducible results were obtained on different cleaves.

The ARPES spectra were collected parallel to the high symmetry directions ΓM

and ΓK [where Γ=(0, 0, 0), M=(π, 0, 0), and K=(2/3π, 2/3π, 0)], using a photon en-

ergy of hν = 28 eV and incident electric-field polarization perpendicular to each

respective symmetry direction (see Figure D.1a). Along ΓM, the polar emission angle

was changed from 0◦ (normal emission) to 28◦ in the plane defined by the surface nor-

mal and the [100] axis; along ΓK it was changed from 0◦ to 33◦ in the plane defined by

the surface normal and the [110] axis. The normal to the sample surface was deter-

mined by a standard laser-reflection procedure, and the fine alignment of the sample

with respect to the electron analyzer was verified by checking the symmetry of the

detected electronic bands with respect to the normal-emission direction. Since MgB2

is characterized by a three dimensional electronic structure and the electronic bands

are predicted to show strong dispersion along the z axis [285, 286], we performed

photon-energy dependence measurements at normal emission in order to estimate the

corresponding kz value for each given incident photon energy [72]. The photoemission

cross section was found to be maximum at hν=28 eV in the explored range of 17-28

eV, and decreased rapidly and monotonically upon progressively lowering the photon

energy. However, due to the combination of large background and low intensity it was

not possible to observe a clear electronic dispersion as a function of incident photon

energy at normal emission. Therefore, we could not determine experimentally the

exact kz-coordinates for the ARPES data presented here.

The spectra in Figures D.1b and D.1c are representative energy distribution curves

(EDCs) taken along the Γ(A)-M(L) and Γ(A)-K(H) directions, respectively. Several

dispersive bands can be observed, as emphasized by the colored dots. The positions

of these markers were determined from the combined analysis of EDCs and second

derivative plots, which will be described in more details below. Although the data

have been taken well below Tc, in which case a few meV superconducting gap should

be open along the normal state Fermi surface, due to the insufficient energy resolution

used in the present experiment the gap has not been resolved and all the detected

bands appear to reach and cross the Fermi energy. Near the K(H) and M(L) points,

we observed a strong dispersive peak that approaches EF , as emphasized by the blue
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Figure D.1: (b, c) MgB2 ARPES spectra from along the Γ(A)-M(L) and Γ(A)-K(H)
directions, as indicated by the arrows in the Brillouin zone sketch (a). The B 2pz and
2px,y bands are marked in blue and green, respectively, while the red dots denote the
surface state centered around Γ(A).

dots. Along Γ(A)-K(H) another feature, marked in green, is approaching EF near the

Γ(A) point. Along the Γ(A)-M(L) direction the corresponding feature is very weak,

although subtle changes in the lineshape can be discerned and are marked in green.

Finally, along both the Γ(A)-K(H) and Γ(A)-M(L) directions, a small parabolic-like

band is centered at the Γ(A) point and reaches EF near (π/4, 0, kz) and (π/6,π/6, kz),

respectively.

To more effectively visualize the ARPES data in the context of band dispersions,

the image plots of the second derivative of the EDCs are shown in Figure D.2a. By

taking the second derivative with respect to the binding energy of the raw ARPES

data shown in Figures D.1b and D.1c, the relative contrast of the detected features

can be enhanced, especially for those bands which are characterized by a very broad
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structure in the EDCs. The spurious intensity in the second derivative plots, which

does not have a correspondent in the raw data and therefore does not represent any

true feature, is likely due to higher sensitivity to statistical noise. The bands identified

in Figures D.1b and D.1c are evident in the image plots of Figure D.2a, where the

overlaid colored solid lines emphasize the experimentally determined electronic bands.

In particular, the two weak features in the raw data along the Γ(A)-M(L) direction

are much more pronounced in the second derivative image plots. Note that the EDCs

and second derivative image plots emphasize different aspects of the data; in Figure

D.1 what catches one’s eye is the intensity of the EDCs, while in Figure D.2a is the

change in slope of the EDCs, independent of the relative intensity. Together with

the enhancement of the photoemission intensity at the M point most probably due

to matrix element effects, this is the reason for the apparent disagreement in Figure

D.1b between the dispersion of the B 2pz band as inferred from the EDCs and from

their second derivative (blue dots).

A comparison of the features observed along ΓM and ΓK with the results of band

structure calculations [285, 286] for kz≈ 0 is presented in Figure D.2b, which shows

a remarkable agreement between experiment and theory in the whole studied energy

range (i.e., up to 2.5 eV binding energy). To account for the kz uncertainty, our results

are compared to calculations projected in kz between kz=0 and kz=±0.14π, which

are represented by broad lines in Figure D.2b (it is worth emphasizing that, within

the emission-angle range used in the present experiment, the percentage change in

kz is considerably smaller than in k‖). Since the agreement is completely lost for

other values of kz, we conclude that at normal emission with 28 eV photons we are

close to the plane containing the Γ point, as far as the z-dispersion is concerned.

Thus, our angular cuts lay close to the ΓM and ΓK lines. From Figure D.2b, we can

clearly assign the feature marked in blue to the B 2pz (π) band, and those marked

in green to the B 2px,y (σ) bands. Of the two σ-bands predicted along ΓK, only one

is experimentally observed. However, as in the calculations the two bands lie close

in energy, the broad feature we observe may likely result from the superposition of

the two. In addition, although the 2px,y bands along ΓM are weak in both the EDCs

and the second derivative image plots, the close agreement of these features with the
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Figure D.2: (a) Second-derivative plots of the energy distribution curves (EDCs)
shown in Figure D.1. The data were smoothed in both energy and momentum be-
fore taking the second derivative with respect to the binding energy. Colored lines
emphasize the detected electronic bands, consistently with Figure D.1. (b) Compar-
ison between theoretical (black) and experimental (color) results. The width of the
theoretical lines represents the projection of kz values from 0 to ±0.14π.

theoretical calculations lends strong support to our identification. We note that a

similar contrast in the photoemission intensity for σ and π bands is observed also on

graphite [290], which possesses an electronic structure somewhat similar to the one

of MgB2, and appears to be a consequence of matrix element effects.

Finally, we turn our attention to the electronic state centered around the Γ point

and marked in red in Figures D.1, D.2, and D.3. From the comparison with the

results of band structure calculations, one can conclude that there is no theoretically

predicted bulk band which would correspond to this particular feature. It is entirely

possible that this feature originates from a surface electronic state. The existence

of surface states, which is a consequence of the breaking of translational symmetry

at the crystal surface, is a rather universal phenomenon and occurs in many simple

materials such as Au, Ag, Cu, Si, and graphite [72]. Therefore, the existence of such
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Figure D.3: Enlarged view of the EDCs taken close to the Γ point, along the ΓK
direction (see also Figure D.1b), which shows the surface state (red) and the B 2px,y

band (green).

a surface state in MgB2 is not surprising, especially around the Γ point where there

is a gap in the kz-projected bulk band structure [285, 286]. The close agreement

between all the other detected features and the results of band structure calculations

also lends credence to our assignment of this feature to a surface state, as opposed

to an unexpected bulk band. In addition, calculations for the electronic structure

of the MgB2(0001) surface predicted the existence of several surface and image po-

tential states for both B- and Mg-terminated surfaces [287, 288, 289]. In particular,

there is an overall good agreement between ARPES and theoretical results for the

Mg-terminated surface, as indicated by self-consistent ab initio calculations of the

electronic structure [287, 288], as well as one-step model calculations of the ARPES
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intensity in which the position of the surface potential is treated as a phenomeno-

logical parameter [289]. At this point, it should be noted that many measurements

of the superconducting gap magnitude in MgB2 were performed by surface-sensitive

techniques such as tunnelling [291, 292, 293, 294] and angle-integrated photoemission

spectroscopy [295, 296]; the presence of a surface state could potentially affect the

interpretations of these results, especially as far as the issue of a multiple gap in the

bulk electronic structure is concerned.

D.3 Discussion

The close overall agreement of our experimentally determined band dispersions with

the theoretical calculations seems to indicate that the effects of electron-electron corre-

lations in this material are weak. In particular, electronic correlations would typically

result in an overall renormalization or narrowing of the total electronic bandwidth as

compared to the calculated value, and in an effective mass larger than the expected

band mass. Clearly, as indicated by our investigation, this behavior is not observed

in the ARPES data up to binding energies as high as 2.5 eV, thus suggesting that

electronic correlations in MgB2 are fairly unimportant and that this material can be

well-described by conventional band theory. At low binding energies, it is in prin-

ciple possible to directly estimate from the ARPES spectra the interaction, if any,

of the quasiparticles with collective modes such as, for example, lattice vibrations

in electron-phonon coupled systems [297]. This interaction might result in a change

of the electronic velocity along the quasiparticle dispersion and/or in an additional

pole structure in the EDCs at the characteristic phonon energies [297]. These effects

might actually be expected in the present case, given that MgB2 is a relatively strong-

coupling superconductor in which the phonon density of states extends up to 100 meV

[298]. However, no clear behavior of this kind was observed in our measurements. On

the other hand, no definitive conclusion can be drawn on this issue on the basis of

the present data because the signatures of an interaction between quasiparticles and

collective modes could be easily masked by the broadness of the experimental line-

shapes. This, in turn, might be a consequence of the finite kz dispersion and/or of a
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considerable disorder of the cleaved surface at the atomic scale. Further scrutiny of

this issue is therefore required.

In conclusion, we have studied the electronic structure of MgB2 by ARPES focus-

ing, in particular, on the electronic dispersion near the Fermi level. Two σ-bands and

one π-band were observed, as expected for the bulk electronic structure. The presence

of multiple bands must be the origin of the complicated physical properties of MgB2,

such as the extremely small but remarkably temperature dependent Hall coefficient

[275]. An additional band was observed around the Γ point and assigned to a surface

state of the Mg-terminated cleaved surface. The close agreement between experimen-

tal and theoretical results for all detected features supports the view that MgB2 is a

conventional metal in which electronic correlations are weak and superconductivity

is likely of conventional origin.
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