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ABSTRACT 

 

A precision measurement of the parity nonconserving left-right 

asymmetry, LRA , in Møller scattering ( )e e e e− − − −→  is currently in 

progress at the Stanford Linear Accelerator Center (SLAC).  This 

experiment,  labeled SLAC-E158, scatters longitudinally polarized 

electrons off atomic electrons in an unpolarized hydrogen target at a 2Q  of 

20.03 (GeV/c) .  The asymmetry, which is the fractional difference in the 

scattering cross-sections, measures the effective pseudo-scalar weak 

neutral current coupling, eeg , governing Møller scattering.  This quantity 

is in turn proportional to 21
4( sin )wθ− , where wθ  is the electroweak 

mixing angle.  The goal is to measure the asymmetry to a precision of 
81 10−×  which corresponds to 2(sin ) 0.0007wδ θ ∼ .  Since LRA  is a 

function of the cross-sections, and the cross-sections depend on the beam 

parameters, the desired precision of LRA  places stringent requirements on 

the beam parameters.  This paper investigates the requirements on the 

beam parameters and discusses the means by which they are monitored 

and accounted for. 
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(1) INTRODUCTION 

 

(1.1) Historical Background: 

 

 The first conclusive evidence for neutral weak interactions was found in 1973 at 

the European center for particle physics, CERN.  The members of this experiment 

produced a photograph, using a giant bubble chamber called Gargamelle, that suggested 

the following neutrino scattering reaction: 

e eµ µν ν+ → +  

This process signaled the existence of a new neutral particle, now denoted 0Z , which 

mediates the weak interaction.  The discovery of a neutral weak force mediator had 

immediate consequences, for it gave credence to a theory which is now the cornerstone of 

the Standard Model of particle physics – the Glashow-Weinberg-Salam (GWS) model of 

the electroweak interactions.  In 1961, Sheldon Glashow published the first paper on the 

unification of the electromagnetic and weak interactions; his theory required the 

existence of neutral weak processes.  In 1967, Steven Weinberg and Abdus Salam 

formulated Glashow’s model as a spontaneously broken gauge theory.  Lastly, in 1971, 

Gerardus ‘t Hooft demonstrated that the GWS scheme is renormalizable.  Thus, the 1973 

discovery of neutral weak processes was timely, if not overdue, from a theoretical 

standpoint. 

 Subsequent experiments at CERN using the Gargamelle detector also witnessed 

the corresponding neutrino-quark process in neutrino-nucleon scattering: 

N Xµ µν ν+ → +  

N Xµ µν ν+ → +  

The cross sections of these processes were approximately one-third as large as the 

corresponding charged weak processes: 

N Xµν µ ++ → +  

N Xµν µ −+ → +  

These findings suggested that the neutral weak interaction was indeed a real phenomenon 

and not a higher order (box diagram) charged process.  Further deep inelastic neutrino 
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scattering experiments at CERN and at Fermi Laboratory verified many predictions of the 

GWS theory. 

 In 1978,  parity violation in the neutral current interaction was unambiguously 

observed at the Stanford Linear Accelerator Center (SLAC).  This pioneering experiment, 

the predecessor of SLAC-E158, was led by Charles Prescott [1].  The experiment 

measured parity violation in deep inelastic scattering of electrons off nucleons.  The key 

to the success of this experiment was the 1975 discovery of a new method for producing 

polarized electrons made by a group in Colorado, which included E.L. Garwin of SLAC.  

Shortly thereafter, a new source was built for the SLAC linac utilizing the method, thus 

allowing for the 1978 parity violation measurements which were in close agreement with 

those predicted by the GWS model.  Not surprisingly, Glashow, Weinberg, and Salam 

received the Nobel Prize in physics in 1979. 

 The first set of experiments confirming the existence of neutral weak interactions 

were truly remarkable efforts, since most weak processes are masked by competing 

electromagnetic ones.  Indeed, this is why neutrino scattering was originally employed to 

find the effect.  Neutral processes are mediated by either the photon, denoted by γ , or the 

0Z .  At low energies, such as the SLAC experiment, the photon mechanism dominates.  

Very subtle interference effects between the two exchanges, which will be described 

later, and very sensitive measuring devices, were the key ingredients to the success of the 

SLAC experiment.  Despite the difficulties, these early experiments roughly determined a 

very important parameter in the GWS theory – the weak-mixing angle, wθ .  The 

experimental data towards the late seventies suggested 29wθ ≈ o .   

The GWS theory predicts that the old Fermi coupling strength can be re-expressed 

as, 

( )

2

3 2

2
8

wF

w

gG
M cc

 
=  

 h
 

where wg  is the coupling strength of the charged partners of the 0Z , denoted W ± , and 

wM  is their mass.  Additionally, the GWS theory yields the following relations:  

sine w wg g θ=  and cosw z wM M θ= .  Since FG  and eg  (the familiar electromagnetic 
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coupling) are well known, one can predict the masses of the intermediate vector bosons 

from the experimentally determined value of wθ .  Using 29wθ ≈ o , one finds 

282 (GeV/c )wM =  and 292 (GeV/c )ZM = .  The production of these particles on the 

predicted resonances at CERN in 1983 was a stunning verification of GWS model. 

 The prospect of copiously producing the intermediate vector bosons on resonance 

initiated the construction of two new facilities – the Stanford Linear Collider (SLC) at 

SLAC and LEP at CERN.  The act of producing a neutral particle on resonance is 

equivalent to colliding electrons and positrons with center of mass energy in a 

neighborhood of the mass of the particle one intends to produce, such as the 0Z .  In this 

case the denominator of the weak propagator is small, and hence the rate of the weak 

interaction dominates the rate of the electromagnetic interaction.  Therefore, the 

complications of working at lower energy, where electromagnetic contamination is large, 

vanish by operating on resonance.  Experiments at these new facilities measured various 

quantities in the GWS theory with spectacular precision.  Indeed, these experiments have 

also placed very definite limits on the mass of the last, and as yet undiscovered particle 

predicted by the GWS theory – the Higgs particle. 

 In any renormalizable gauge theory, such as the GWS theory, the predicted values 

of various quantities are functions of the energy scale of observation.  The SLC and LEP 

experiments made very precise measurements of GWS parameters at the energy scale of 

the intermediate vector boson masses.  This energy scale is very high, however, and one 

would like to make equally sensitive measurements off resonance.  New physics may be 

glimpsed by finding slight deviations from predicted values off resonance.  Since the time 

of the pioneering SLAC experiment of 1978 many of the experimental techniques have 

been improved so that neutral weak observables may be measured with comparable 

accuracy at low 2Q .  SLAC-E158 is currently measuring the left-right asymmetry, LRA , 

in Møller scattering ( )e e e e− − − −→ at a 2Q  of 20.03 ( / )GeV c .  Subsequent sections will 

demonstrate the precise relation between LRA  and the weak mixing angle, wθ .  The 

expected precision of the E158 measurement of 2sin wθ  is shown in the figure below 

along with the Standard Model prediction and other measurements. 
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Figure 1: Weak Mixing Angle Dependence on Four-Momentum Transfer 

 

In closing, SLAC-E158 is the first experiment to measure a purely leptonic weak neutral 

current coupling away from the 0Z  pole with sufficient accuracy to access electroweak 

radiative corrections. 

 

(1.2) Introduction to the Glashow-Weinberg-Salam Theory: 

 

In order to understand how the SLAC-E158 experiment employs Møller 

scattering to measure the weak mixing angle, one must understand the basic principles of 

the Glashow-Weinberg-Salam theory.  The general structure of this theory is revealed as 

one examines the historical developments which eventually led to the assertion that the 

electroweak interaction arises from a “spontaneously broken” SU(2) U(1)×  gauge 

symmetry. 

 The first serious treatment of the weak interaction was developed by Enrico 

Fermi.  In his famous 1933 paper, Fermi described the β -decay of the nucleus in terms of 
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the creation and immediate emission of an electron and a neutrino.  This was a bold 

hypothesis at that time.  Pauli had only reluctantly postulated the existence of the 

neutrino three years prior in an effort to account for the continuous spectrum of the 

emitted electron.  In modern terminology, Fermi proposed a contact interaction of four 

spin-1 2  quantum fields.  In this process a neutron decays into a proton, electron, and 

anti-electron neutrino (internal structure of nucleons is ignored).  The proposed invariant 

amplitude associated with the interaction is 

e

µ
F n p ? µ eM G (u ? u )(u ? u )= . 

The similarity of this amplitude to the electromagnetic amplitude is striking.  In Quantum 

Electrodynamics, or QED, one expresses the invariant amplitude as 
2

(em) (em)µ
µ 1 22

e
M (j )( j )

q
= ±  

where em
µ f µ ij u ? u=  is identified as an electromagnetic current.  Thus, Fermi’s model 

naturally leads to the concept of charged weak currents – an essential ingredient to the 

GWS model.  The Fermi constant, FG , should be compared with the photon propagator, 

2q− .  The Fermi constant, a parameter to be experimentally determined, reflects Fermi’s 

original assumption that the weak nuclear force has essentially zero range, thus 

eliminating the need for a bosonic mediator.  The presence of this constant at least 

suggests the possibility that massive mediators might be required if the universality of 

FG  is lost at sufficiently high energies.  This indeed occurred, and massive vector bosons 

are now the hallmark of the GWS theory. 

 Fermi’s postulation of charged weak currents, in analogy with the electromagnetic 

current of QED, was a brilliant first step towards a more complete theory of weak 

interactions.  However, the vector nature of the current was, in retrospect, taken for 

granted.  The vector-vector form of the amplitude is simply one of many possible Lorentz 

invariant amplitudes that may be constructed.  All told, sixteen products are obtained 

taking one component of a spinor and one component of an adjoint spinor.  These 

products may be added together in various linear combinations to construct quantities, 

known as bilinear covariants, with definite transformation behavior:  scalar, pseudoscalar, 

vector, pseudovector, and antisymmetric tensor.  In QED, one uses the vector 
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combination, µ? ? ? , to characterize the electromagnetic current.  Experiments in the 

1950s showed the (charged) weak current can not be similarly described.  These 

experiments demonstrated that parity is not conserved in the weak interaction, and thus 

the weak current is not a vector- like quantity.  Although several combinations of bilinear 

covariants can violate the parity operation, the one that “maximally violates” parity, as 

was observed in the (charged) weak current experiments, is µ 5??(1-? )? .  The presence 

of µ 5? ?  indicates an axial vector, and the new theory which incorporated this was known 

as “V A−  theory”, for vector-minus-axial.  Incorporating the necessary changes into the 

invariant amplitude for β -decay yields 

5 5(1 ) ( (1 ) )
2 e

F
n p e

G
M u u u uµ

ν µγ γ γ γ  = − −     

A theory which adds a vector to an axial vector definitely has the potential to violate 

parity.   

 The structural difference of the electromagnetic and charged weak currents 

appears at face value to preclude any possibility of unification.  Amazingly, with some 

suggestive notation, and a better understanding of the 5γ  operator, the path to the GWS 

theory is now in sight [2].  First, one finds that for a massless Dirac particle spinor,  the 
5γ operator is equivalent to the helicity operator, which has eigenvalues 1± ;  hence, the 

operator 51
2 (1- )γ  is the identity operator if the particle has helicity 1− , and is the zero 

operator if the particle has helicity 1+ .  In general, the operator 51
2 (1- )γ  in the V A−  

theory acts a projection operator, picking out the helicity 1−  component of  the spinor.  

Using the fact that 5γ anti-commutes with the other Dirac matrices and is a projection 

operator (squaring it yields the identity), the following relations are obtained: 
25 5

5 5 21 1 1
1 2 ( )

2 4 2
γ γ

γ γ
 − − = − + =   
 

 

5 51 1
2 2

µ µγ γ
γ γ

   − +
=   

   
 

thus, 
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5 5 51 1 1
2 2 2

µ µγ γ γ
γ γ

     − + −
=     

     
 

The final equation may not seem particularly profound, but it allows us to recast the 

invariant β -decay  amplitude of the V A−  theory in a notation that is reminiscent of the 

vector-vector structure of QED. 

5 5 5
,

( ) , ,
(1 ) (1 ) (1 )

2 2 2p n n p n p n L p Lj u u u u u uµ µ µ µγ γ γ
γ γ γ+

→
− + −

= = =  

5 5 5
,( )

, ,
(1 ) (1 ) (1 )

2 2 2
e

e e e

e
e e L e Lj u u u u u uν

µ ν µ ν µ ν µ
γ γ γ

γ γ γ− → − + −
= = =  

,( ),
( )

4
2

eeF
p n

G
M j j νµ

µ
− →+

→=  

The subscript L  denotes the left-handed “chiral spinor”.  In essence, the factor 51
2 (1 )γ−  

in the charged weak coupling characterizes the participating particles, rather than the 

interaction itself.  This view allows one to treat both the weak and electromagnetic 

theories as vector theories, at the cost of introducing the notion of a chiral spinor. 

 Although the V A−  theory substantially improved the existing theoretical 

framework, the model was generally regarded as incomplete.  Even when theorists 

introduced the massive charged vector bosons, W ± , to explain the non-universality of 

FG , calculations of anything other than lowest-order, low-energy diagrams lead to very 

serious problems.  These problems signaled the need for a more complete theory of weak 

interactions, one which is on par with QED (i.e. a renormalizable theory). 

 The currents ,
( )p nj µ+

→  and ,( )eej ν
µ
− →  are now structurally similar to emjµ  (aside from 

the fact that former involve chiral spinors), but the fact that the particles appear to change 

identities at the vertex can not be overlooked – clearly, something novel occurs at a weak 

vertex .  The most analogous process in QED is pair annihilation.  Indeed, conservation 

of charge at the vertex generates the (1)emU  gauge symmetry.  In general, symmetries 

yield conservation laws that are useful tools for physicists.  The concept of nuclear 

isospin serves as a good example.  Nuclear isospin is an (2)SU  symmetry (not a gauge 

symmetry, however) and is very successful in explaining many strong interaction results 
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in light hadron scattering processes.  Indeed, postulating isospin invariance explains the 

relative scattering cross-sections in the following processes: 

(a) p p d π ++ → +  

(b) 0p n d π+ → +  

The reasoning goes as follows – the proton and neutron are the base states of a two-

dimensional representation of (2)SU , that is, an isospin doublet (i.e. 1 1
2 2p =  and 

1 1
2 2n −= ).  The rules of addition of spin suggest that two coupled nucleon states will 

form an isotriplet,  

11 pp= ,  ( )1
2

10 ( )pn np= + ,  1 1 nn− = , 

and an isosinglet,  

( )1
2

00 ( )pn np= − . 

Experimentally, only one bound state of two nucleons exist, the deuteron d , which is a 

bound state of a proton and a neutron.  If the deuteron were a part of the triplet then all 

three states would have to exist, since they only differ by a rotation in isospin space.  

Therefore deuteron is an isosinglet.  Three pions exist and form an isotriplet, 

11π + = ,  0 10π = ,  1 1-π − = . 

Hence the process p p d π ++ → +  has the state 11  describing the left side and the state 

11  describing the right side (since deuteron has 0I = ).  However, the process 

0p n d π+ → +  has the state ( )1
2

(10 00 )+  describing the left side and the state 10  

describing the right side.  Since the final state is pure 1I = , only the 1I =  portion of the 

left side of process (a) contributes.  Hence the ratio of amplitudes is : 1:(1 2)a bM M =  

and the ratio of cross sections is : 2:1a bσ σ = .  This prediction has been verified 

experimentally.  It is now understood that (2)SU  is a good symmetry of the strong 

nuclear interaction because the up and down quarks have similar masses. 

 The motivation for examining nuclear isospin is that the internal symmetry group 

(2)SU was useful in analyzing the four particle processes above in which initial state 

particles differed from final state particles.  Can symmetry principles aid in 
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understanding weak interaction processes, such as  en p e ν→ + + , ee µµ ν ν→ + + , 

llπ ν− → + ?  The answer is a  resounding yes – conservation of lepton number and 

charge at weak interaction vertices suggest natural doublets.  The modern leptons come in 

three generations of doublets: 

e         
e

µ τν ν ν
µ τ

     
     
     

 

Weak decays of hadrons are a result of transitions within quark doublets, which also 

come in three generations: 

u c t
        

d s b
     
     ′ ′ ′     

 

where the primed quarks are the Cabbibo-Kobayshi-Maskawa (CKM) matrix rotated 

quarks which participate in the weak interaction.  The V A−  theory and the use of chiral 

spinors imply that the subscript L  should also be placed on the fermion labels.  Consider 

the following charged weak currents: 

L Lj eµ µν γ− =  

L Lj eµ µγ ν+ =  

Defining the left-handed doublet e
L

L
e

ν
χ

 
=  

 
, the two currents may be expressed in the 

more compact notation, 

L Ljµ µχ γ τ χ± ±=  

where, 

0 1
0 0

τ +  
=  

 
 , 

0 0
1 0

τ −  
=  

 
 

This notation clearly suggests an (2)SU symmetry.  Since the first two Pauli matrices 

combine to form the raising and lowering operators, one is lead to consider a third current 

using the third Pauli matrix: 
3 31 1

2 2 ( )L L L L L Lj e eµ µ µ
µ χ γ τ χ ν γ ν γ= = −  

At first glance one may be tempted to identify this current with a photon exchange, since 

it appears to describe the exchange of a neutral force carrier.  However, the neutrino 



 14 

clearly does not participate in the electromagnetic interaction, and only the left handed 

electron appears in the current.  These observations leave the impression that (2)SU  

might not be the relevant symmetry group for the weak interactions.  The Glashow-

Weinberg-Salam model preserves the (2)SU  symmetry by postulating that 3jµ  is only a 

part of a more complete neutral current which also includes emjµ .  This is accomplished 

by expanding the symmetry group to (2) (1)SU U× . 

 The GWS model is derived from the gauge symmetry group (2) (1)L YSU U×  [3].  

The (2)SU part is generated by a quantity referred to as “weak isospin” and the subscript 

L  refers to the fact that only left-handed particles couple to the gauge bosons of (2)SU .  

The group (1)YU  is generated by a quantity called “weak hypercharge”.  The interaction 

Lagrangian of the GWS model is: 

2
Y

w

g
i g j Bµ µ

µ µ

′ − +  
j Wi  

Three weak isospin currents, L L
µ

µ χ γ χ=j t , couple with strength wg  to a weak isotriplet 

of intermediate vector bosons, µW .  Additionally, the weak hypercharge current, Yj
µ , 

couples with strength 2g′  to an isosinglet intermediate vector boson, Bµ .  Using a 

generic doublet 1

2
L

u
u

χ
 

=  
 

, where 1u  carries one more unit of charge than 2u , let us 

examine the first two terms of the dot product in the interaction Lagrangian: 

( ) ( )

( ) ( )

1 1 2 2 1 2
1 2

1 11 21 1
1 12 22 2

2 2

1 21 1
1 2 2 1 1 2 2 12 2

11
1 22

( )

0 1 0
1 0 0

w w L L L L

L L
w L LL L

L L

w L L L L L L L L

w L L

g j W j W g W W

u ui
g u u W u u W

u ui

g u u u u W iu u iu u W

g u u W

µ µ µ µ
µ µ µ µ

µ µ
µ µ

µ µ
µ µ µ µ

µ
µ

χ γ τ χ χ γ τ χ

γ γ

γ γ γ γ

γ

 + = + 
 −      

= +       
       

 = + + − + 

= −( ) ( )2 1 21
2 12 L LiW u u W iWµ µ µ

µγ + + 

 

Defining ( )1 21
2

W W iW± = ∓  and 1 2j j ijµ µ µ
± = ± , the results from above yie ld the charged 

weak interaction: 

( ) ( )1 1 2 2 1
2w wg j W j W g j W j Wµ µ µ µ

µ µ µ µ
+ + − −+ = +  
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 Hence, the charged interactions are derived from the first two weak isospin currents, as 

one would expect from the (2)LSU  weak isospin symmetry.  Additionally, the charged 

intermediate vector bosons only couple to left handed fermions, preserving the pure 

V A−  structure of the charged weak interactions discussed earlier.  

 When Glashow proposed his model for electroweak unification in 1961, there was 

no experimental evidence for a neutral weak current interaction.  Yet, his scheme 

correctly surmised that a neutral current exists, and moreover, it is not simply the third 

component of weak isospin.  Rather, the third component of weak isospin combines with 

the weak hypercharge current to form the electromagnetic current and the neutral weak 

current.  More precisely, the weak hypercharge current is defined to be the difference of 

the electromagnetic current and the third weak isospin current, 

( )32Y emj j jµ µ µ= −  

Since Yjµ  contains emjµ , the former contains right handed chiral spinors as well as left 

handed chiral spinors.  One important fact to note is that, as defined, Yjµ  is invariant 

under (2)LSU .  The combination of left handed spinors in the expression can be shown 

to be an (2)LSU  invariant, and an (2)LSU  transformation in weak isospin space does not 

affect right handed chiral spinors at all. 

 The introduction of the electromagnetic current begs the following question – 

where is the photon in all this formalism?  Indeed, embedded in the GWS interaction 

Lagrangian is the electromagnetic interaction.  According to the GWS model the 

underlying (2) (1)L YSU U×  gauge symmetry is broken, and the two neutral vector bosons, 

3W µ and Bµ , “mix” according to the weak mixing angle, wθ : 

3

cos( ) sin( )

sin( ) cos( )
w w

w w

B A Z

W A Z

µ µ µ

µ µ µ

θ θ

θ θ

= −

= +
 

The mixing produces the massless linear combination, Aµ  (the photon), and a massive 

linear combination, Z µ  (the 0Z ).  Examining the neutral portion of the GWS interaction 

Lagrangian using the relations above yields: 
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( )
( )

( ) ( )

3 3

3

3 3

2

sin( ) cos( ) 2 cos( ) sin( )

sin( ) 2 cos( ) cos( ) 2 sin( )

Y
w

Y
w w w w w

Y Y
w w w w w w

g j W g j B

g j A Z g j A Z

g j g j A g j g j Z

µ µ
µ µ

µ µ µ µ
µ µ

µ µ
µ µ µ µ

θ θ θ θ

θ θ θ θ

′+

′   = + + −   
′ ′   = + + −   

 

Since we know that the source of Aµ  is emjµ , it must be that 

( )3sin( ) 2 cos( )em Y
e w w wg j g j g jµ µ µθ θ′= +  

However, by the definition of hypercharge, 3 1
2

em Yj j jµ µ µ= + .  Therefore, the coupling 

constants are not independent, but rather they are related by the weak-mixing angle: 

sin( ) cos( )e w w wg g gθ θ′= =  

The neutral weak current part of the interaction Lagrangian, with a little bit of algebraic 

manipulation, can now be written as 

3 2( sin ( ) )em
z wg j j Z µ

µ µθ−   where 
sin( )cos( )

e
z

w w

g
g

θ θ
=  

The neutral weak current, 3 2sin ( )NC em
wj j jµ µ µθ= − , differs from its charged weak current 

counterparts in that it has a right handed component, since 

( )
2

1

em
i iL iL iR iR

i

j Q u u u uµ µ µγ γ
=

= +∑  

The most striking feature of the weak neutral current is that the coupling is different for 

right and left handed spinors.  The quantity 3 22(sin )wT Qθ− , where 3T  is the third weak 

isospin eigenvalue and Q is the charge eigenvalue, acts a modification to the coup ling 

constant for a given neutral current, iL iLu uµγ  or iR iRu uµγ . 

 The origin of the (2) (1)L YSU U×  symmetry breaking is through the Higgs 

mechanism, which is also responsible for generating the masses of the intermediate 

vector bosons, as well as the quarks and leptons.  Much can be said here about the Higgs 

mechanism, and even more remains to be learned  (indeed, the observable Higgs particle 

has yet to be detected).  However, the most important features of the GWS model 

necessary for understanding the physics of E158 have now been established, and it is to 

this subject that we now turn. 
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(1.3) Left-Right Asymmetry in Møller Scattering and The Weak Mixing Angle 

 

 The fundamental feature of the Glashow-Weinberg-Salam model of electroweak 

interactions is the loss of mirror symmetry.  In the theoretical discussion above, this 

conclusion is somewhat masked in the more formal term parity violation.  The concepts 

of helicity and chirality, though absolutely crucia l to understanding the electroweak 

theory, also fail to convey the implications of the loss of mirror symmetry.  The left-right 

asymmetry in Møller scattering is manifestly parity violating.  In order to understand 

what this means, let us first examine one of the earliest experiments to measure an 

asymmetry associated with the weak interactions. 

In 1957, C.S. Wu examined the β -decay of polarized cobalt nuclei: 

60 60
eCo Ni e ν−→ + +  

The nuclear spins in the cobalt sample were aligned by an external magnetic field. An 

asymmetry in the direction of emitted electrons was observed (see Figure 2).  This  

 

Figure 2:  Parity violation in polarized cobalt: asymmetry in direction of emitted electron 

 

asymmetry can be explained as follows.  Conservation of spin angular momentum 

implies that the spin angular momenta of the electron and anti-electron neutrino must add 

to one and point in the direction of the polarized cobalt (and nickel) spin.  This fixes the 

spins.  However, this requirement seems to place no restrictions on the momenta.  The 
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subtle point is that since the neutrino is massless (or at least nearly massless), its helicity 

is fixed.  It must be either left-handed or right-handed.  Evidently, since the electron 

always emerges in the direction opposite to the cobalt spin, the helicity of the anti-

electron neutrino is 1+  (right-handed).  This should not come as a surprise:  the β -decay 

process is a charged weak interaction in which only left-handed particles (and right-

handed anti-particles) participate.  If one imagines acting the parity operator on the 

coordinate system in the figure above, the momenta, as vectors, would change direction, 

while the spins, as pseudo-vectors, would not.  Hence the helicities of the particles would 

flip. Since the decay process now depicts a right-handed electron and left-handed anti-

electron neutrino, it cannot occur.  Parity is violated. 

 Since the charged weak interactions, such as β -decay, involve only left-handed 

particles, they are “maximally parity violating”.  This is a result of the pure V A−  

structure of the charged weak vertex.  The weak neutral current, on the other hand, 

involves both left and right handed particles.  This fact is clear since the electromagnetic 

current enters into the expression for the neutral weak current.  However, left and right 

handed particles are not treated equally.  If one examines the expression for the weak 

neutral current, expressing it in terms of the true spinors instead of the chiral spinors in 

order to get the weak neutral vertex, one finds that the neutral weak vertex is 
5

2 ( )i
z V Ag c cγ γ− −  

where 3 22 sinV wc T Q θ= −  and 3
Ac T= .  Clearly, the neutral weak vertex is not pure 

V A− .  Also, the weak neutral current clearly depends on the particular fermion 

involved.  For example, an electron has 21
2 2sinV wc θ= − +  and 1

2Ac = − . 

 SLAC-E158 utilizes Møller scattering ( )e e e e− − − −→  to determine the weak 

mixing angle, wθ .  Polarized electrons are scattered off atomic electrons in an 

unpolarized target.  Since this experiment is performed at low center-of mass four 

momentum transfer squared ( ( )2 0.03 2Q  GeV/c  ≈ ), the primary process is scattering by 

exchange of a photon.  The spin average differential cross-section for Møller scattering is 

( )22

4

3 cos

2 sin
d
d mE

σ α + Θ
=

Ω Θ
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where E  is the incident beam energy, m is the electron mass, α  is the fine structure 

constant, and Θ  is the scattering angle in the center of mass frame. However, the 

contribution due to the exchange of a 0Z is not a negligible effect.  In fact, one can 

measure the difference between the scattering of left handed electrons and right handed 

electrons – this is the motivation for the E158 experiment.  This difference is non-zero 

because left and right electrons couple differently to the 0Z .  The left-right asymmetry is 

defined by, 

R L
LR

R L

A
σ σ
σ σ

−
=

+
 

where the subscript denotes the helicity of the electrons in the incident beam.  Since the 

asymmetry is non-zero it is manifestly parity violating.  The asymmetry is a result of the 

interference between the weak and electromagnetic amplitudes which arises when 

squaring the total amplitude to produce the cross section.  The interference term is 

different for left and right handed electrons and therefore does not vanish in the 

difference.  Because the interference term is responsible for a non-zero asymmetry, the 

asymmetry is ( )/FO G α  which is larger than usual pure weak effects which are ( )2
FO G .  

Explicitly, at the tree level, 

( )
2

2

16sin
2 3 cos

F
LR ee

G
A mE g

πα
Θ

= −
+ Θ

 

where 21
4 sinee A V wg c cρ θ≡ ⋅ ⋅ = −  [4].  The dependence on wθ  is not surprising, since the 

asymmetry is the result of the interference of the electromagnetic and weak neutral 

current amplitudes.  Further, depending on the spin configuration, the weak neutral 

current amplitude is either proportional to ( )2
A Vc c+  or ( )2

A Vc c− .  Hence, when taking 

the difference of cross sections, the factor A Vc c⋅  remains on the interference terms.  The 

E158 experiment plans to measure LRA  to a precision 9( ) 7 10LRAδ −×∼ .  This 

corresponds to a precision of 2(sin ) 0.0007wδ θ ∼ . 
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(2) EXPERIMENTAL DESIGN 
 
 The asymmetry in Møller scattering, LRA , is measured by rapidly flipping 

between the two possible electron beam helicity states, and then averaging the fractional 

difference in the cross-section over many such complementary pairs of pulses.  The 

important assumption in this method is that all experimental parameters remain virtually 

unchanged over the duration of a given pulse pair.  Indeed, much work in this experiment 

is dedicated to ensuring that helicity correlated systematics are controlled and eliminated.  

The design of this experiment may be broken down into five major sub-sections: (1) the 

polarized electron beam, (2) the electron beam monitoring systems, (3) the liquid 

hydrogen target, (4) the spectrometer, and (5) the calorimeter.  In this section the most 

important aspects of each system will be highlighted and discussed [5]. 

 

(2.1) The Polarized Electron Beam 

 

 The polarized electron beam is produced by photoemission from a GaAs 

photocathode.  A flash lamp pumped Ti:sapphire laser ejects electrons off the 

photocathode in 100-350 ns pulses.  The laser light is polarized by a linear polarizer and 

two Pockels cells (see Figure 3).  A Pockels cell is a crystal whose birefringence is 

proportional to the applied electric field across its face.  In general, circular polarized 

light is obtained by setting the CP Pockels cell voltage to its quarter-wave voltage and the  

 

Figure 3:  Schematic Diagram of SLAC E158 Polarized Source 
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PS cell at 0 volts, although small corrections to these voltages are needed to compensate 

for phase shifts in the transport optics.  The major source of helicity correlation in the 

electron beam is attributed to the physical characteristics of the laser light.  A feedback 

scheme has been implemented which couples the retardation of the Pockels cell and the 

beam charge asymmetry.  This algorithm ensures that the cumulative average in the 

intensity asymmetry is smaller than expected from statistical averaging.  Also, since other 

beam parameters such as energy, position, and angle are correlated with beam intensity, 

the corresponding cumulative averages of these quantities will also be smaller than 

expected. 

 The electron beam contains between 11(3 6) 10− ×  electrons per pulse with 80% 

beam polarization.  The production repetition rate is 120 Hz.  The experiment will 

operate at two beam energies, 48.3 GeV and 45.0 GeV.  The reason for this is to cancel 

systematic effects.  At these two energies the electron beam in the End Station A is still 

longitudinally polarized after the A-Line bend, but the number of 2g −  precessions 

differ by one-half.  This changes the sign of the experimental asymmetry, which is a 

useful systematic check.  A summary of beam specifications is given in Table below. 

 

 

Polarization 80%  
Intensity at 48 GeV 3.5 11 -10  e /pulse×  
Intensity at 45 GeV 6 11 -10  e /pulse×  

Pulse Length 100 350 ns≈ −  
Repetition Rate 120 Hz  

Beam Spot 1 mm≈  
Intensity Jitter per pulse 0.5%  
Energy Jitter per pulse 0.4%  

Table 1:  Polarized Electron Beam Specifications 
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(2.2) Electron Beam Monitoring Systems  

 

 The measurement of the electron beam parameters (charge, energy, position, and 

angle) is the major topic of this paper and will be discussed more thoroughly in 

subsequent sections.  Briefly, the beam parameters are measured close to the source at 

ASSET, at specific locations in the A-Line, and just before the target in the Alcove (see 

Figure 4).  The devices which  are used to measure the beam parameters are toroids and 

resonant cavities, called BPMs (Beam Position Monitors).  Toroids, of course, measure 

charge:  two toroids are situated in ASSET and four toroids are situated in the Alcove.  A 

given BPM unit consists of three BPMs: one which is sensitive to x-position, one which 

is sensitive to y-position, and one which is sensitive to charge.  Three BPM units are in 

place at ASSET, five in the A-Line, and two in the Alcove.  Two BPMs units are often 

placed near each other for redundancy and device resolution.  The information from two 

units separated by a given distance, or placed in certain symmetric locations in the A-

Line bend, can be used to infer beam angle on target and beam energy. 

 

 

Figure 4: Placement of the beam monitoring devices  
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(2.3) The Liquid Hydrogen Target 

 

 The source for target electrons in this experiment are the atomic electrons in a 

liquid hydrogen target.  Liquid hydrogen is the most practical choice for a scattering 

target, since it has the smallest radiation length per target electron.  Also, the nuclei 

scattering background and asymmetry is smallest for hydrogen – Mott scattering, 

( )e p e p− −→ .  The target chamber is cylindrical, 3 inches in diameter, and 150 cm long.  

The liquid hydrogen flows through a closed loop system, in and out of the target 

chamber, and is cooled to 20  Ko by a heat exchange with helium.  A summary of target 

specification is given in Table below. 

 

Refrigeration Capacity 700 W  
Operating Temperature 20 K  

Operating Pressure 30 psia  
Density 0.07 3 gm/cm  

Target Thickness 11 2 gm/cm  
Length 150 cm  

Liquid Hydrogen 45 Liters  

Table 2: Liqui d Hydrogen Target Specifications 

 

(2.4) The Spectrometer 

 

 The purpose of the spectrometer is to cleanly separate the Møller electrons, the 

Mott radiative tail, and the bremsstrahlung degraded primary beam.  The spectrometer is 

designed for full azimuthal acceptance of Møller scattered electrons with momenta 

(12 24 GeV/c)−  and consists of three dipole magnets and four quadrupole magnets.  The 

primary beam and Møller electrons travel cleanly through all seven magnet elements.  

The three dipole magnets are in a “chicane” DDD configuration. The purpose of this 

configuration is to move the beam off the central axis, collimate neutral particles, and 

then bring the beam back, so that the detector is out of direct the line-of-sight of the 

target.  The  purpose of the quadrupole magnets is to control the beam spot size at the 

detector.  These magnets radially separate the Møller electrons from the more energetic 
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Mott electrons.  Data are taken with the quads on and off to examine e p− contamination.  

The expected beam spot size at the detector is 5 mmx yσ σ; ; .  Additional collimators 

are in place beyond the magnet system. 

 

(2.5) The Calorimeter 

 

 The primary detector in the experiment is the Møller electron calorimeter.  This 

detector is designed for excellent radiation resistance and the need to integrate the 

response over the duration of the beam pulse.  The calorimeter consists of layers of 

copper plates and quartz fibers.  The quartz fibers are the active medium that transports 

the Cherenkov radiation which is then measured by photomultiplier tubes.  The copper 

plates serve as absorbers and separate the numerous layers of quartz fibers so that the 

photons from one quartz fiber will receive minimal leakage from other quartz fibers.  

This is important so that the asymmetry can be compared over the entire detector cross-

section and possible effects such as ϕ -dependence may be observed. 

 A similar detector is also in place to measure Mott electrons at a larger distance 

from the beam axis than the Møller detector.  Mott electrons are a source of background 

for the Møller detector and also have a characteristic asymmetry.  Other detectors are a 

very forward angle Mott calorimeter, luminosity monitor, and pion and muon quartz 

Cherenkov counters behind the electron calorimeters. 

 

(3) EXPERIMENTAL REQUIREMENTS ON BEAM PARAMETERS 

 

 The goal of the SLAC-E158 experiment is to infer the value of 2 2sin ( )w Qθ  at 

2 20.03 (GeV/c )Q = .  The desired precision of the measurement is at the level 

2(sin ) 0.0007wδ θ ≈ .  As discussed in the introduction, the asymmetry at the tree- level is 

given by 

( )
2 2

2
2

16sin 1
sin

42 3 cos
e F

LR ee ee w

m c EG
A g    , g θ

πα

  Θ
= = − 

+ Θ 
. 
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Since 29wθ ≈ o , 21 2 10eeg −≈ − × .  Using this value, and a 40% reduction due to higher 

order processes [6], one finds that 9130 10LRA −≈ × .  The desired precision of 2(sin )wδ θ  

implies 2/ 6 10ee eeg gδ −= × .  Thus, assuming 80% beam polarization, 81 10LRAδ −≈ × .  

Therefore, the experimental goal is equivalent to determining LRA  to within 10% of its 

value.  

If an experiment is performed in which N  events are recorded, the results of the 

experiment will fluctuate according to Gaussian distribution with an RMS of 1 N .  

Since LRAδ  is computed by adding in quadrature the widths of the pulse pair 

asymmetries, the total number of scattered electrons should be at least ( )2 161 10LRAδ ≈ .  

The number of Møller scattered electrons necessary for the desired statistical accuracy of 

the experiment thus places definite requirements on the electron beam. 

First, let us examine the consequences this number has on the required beam 

intensity and beam time [7].  The number of scattered electrons incident on the detector is 

a product of three quantities, MN TLσ= :  the total time in which the experiment is taking 

data, the luminosity at the detector, and the Møller differential cross-section integrated 

over the detector aperture.  The E158 experiment has been taking data for roughly seven 

months. Accounting for the fact that not all the data is taken at full repetition rate, and 

systems are not up continuously, let us assume roughly 50% efficiency so that 710T s= .  

The luminosity at the detector, L , may be expressed roughly as a product of two 

quantities: ( ) ( )b rep tL N f n l= .  The first quantity is essentially the beam current: bN  is the 

number of electrons in a bunch, and repf is the repetition rate.  Let us take 120repf  Hz=  

and 115 10 /-
bN  e pulse= × .  The second quantity characterizes the scattering off the 

target: the length of the target is 150l  cm= , and the number density of liquid hydrogen is 
224 10 -3

tn  cm≈ × .  Multiplying these numbers gives 38 15 10 -2L  cm s−≈ × i , and so 

45 155 10 5 10-2 -1LT  cm  barnµ≈ × ≈ × .  The Møller differential cross-section integrated 

over the detector aperture is 14M  barnσ µ= , so that 167 10MN TLσ= ≈ × .  Thus, using 
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the numbers above, the number of Møller scattered electrons incident on the detector is 

consistent with that necessary for the statistical accuracy of the experiment. 

Monte Carlo simulations have been performed using the code GEANT to more 

accurately characterize the scattering process given the precise experimental layout. The 

simulations show that for 710  incident electrons, 690 Møller scattered electrons enter the 

detector – a fraction of 57 10−× .  For a total number of beam electrons 
206 10tot b repN N f T= × × = × , 5 20 16(7 10 ) (6 10 ) 4 10−× × × = × .  This is in agreement with 

the estimate above. 

 Now that we have a rough idea of the necessary beam luminosity and beam time 

for the desired statistical accuracy, let us examine and bound the pulse to pulse 

fluctuations of the Møller scattered electrons incident on the target.  Suppose the results 

of one experiment lasting 710T s=  is expressed as two sequences of numbers, 1{ }M
mL mN =  

and 1{ }M
mR mN = .  The numbers mLN  ( mRN ) represent the number of scattered electrons 

detected on the thm machine pulse for a left (right) handed incident bunch.  M represents 

the total number of machine pulses for a bunch containing electrons of a specified 

helicity;  the total number of pulses is therefore 92 1.2 10p repN M Tf= = = × .  For this 

experiment we may compute the difference 

1 1

M M

LR mL mR
m m

a N N
= =

= −∑ ∑  

Suppose the numbers mLN  ( mRN ) are distributed according to a Gaussian about a mean 

LN  ( RN ) and a RMS Nσ .  Thus, mL L N LmN N rσ= +  and mL L N LmN N rσ= +  for stochastic 

variables Lmr and Rmr  which have unit RMS and are assumed uncorrelated.  In order to 

quantify the statistical error on our measurement of LRA , we assume many experiments 

are performed, each with 91.2 10pN ≈ × .  After sufficiently many experiments, we may 

examine the average 

1 1

M M

LR mL mR
m m

a N N
= =

= −∑ ∑  

and 
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( )

( )

( )

2
2 2

1 1

2

22 2 2

M M

aLR LR mL mR
m m

L N mL R N mR

N mL mR N

a N N

MN r MN r

r r M

σ

σ σ

σ σ

= =

 
≈ = − 

 

= + − −

≈ − ≈

∑ ∑

∑ ∑

∑ ∑

 

so the RMS of LRa  is hence 2aLR N Mσ σ≈ .  Now the real quantity of interest is 

1 1

1 1

M M

mL mR
m m

LR M M

mL mR
m m

N N
A

N N

= =

= =

−
=

+

∑ ∑

∑ ∑
 

Since ( )1
2 L R L RN N N N N= + ≈ ≈ , 

2
LR

LR
a

A
MN

≈  

and therefore 

1
2 2

aLR N
ALR MN N M

σ σ
σ ≈ ≈  

The experimental goal of measuring LRA  to within 10%  of its value implies 810ALRσ −≤ .  

For a bunch containing 114 10×  electrons, and using the Monte Carlo transmission factor 

57 10−× , ( ) ( )5 11 77 10 4 10 3 10N −≈ × × ≈ × .  So, 

( ) ( ) ( )
1

27 9 8 42 3 10 1.2 10 10 1 10N ALRN Mσ σ −≤ = × × ≈ ×  

and therefore, 

43 10N
N

σ −≈ ×  

This is the main result.  For the experiment to achieve the desired statistical accuracy, 

fluctuations in the combined probability of production, transmission, and detection of 

Møller scattered electrons must be identified at this level. 

 The obvious question now arises:  what experimental factors could result, on a 

pulse by pulse basis, in this level of fluctuation of the observed number of Møller 

scattered electrons?  Clearly, if the charge per pulse varied wildly, the number of Møller 

scattered electrons seen by the detector would likewise vary wildly.  Thus, monitoring the 
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charge on a pulse by pulse basis is necessary.  Additionally, if the beam offset from the 

central axis, or the beam angle with respect to the central axis, fluctuates from pulse to 

pulse, then this will also result in fluctuations of Møller electrons at the detector.  There 

fore monitoring beam position and angle at the target is also necessary.  Lastly the Møller 

differential cross-section is inversely proportional to the energy (see section 1.3).  Hence, 

monitoring energy fluctuations is also important. 

A rough analytic investigation of these issues can be performed using the 

requirement that 43 10N Nσ −≈ × .  First, we express the number of Møller electrons at 

the detector as 
2 ( )M

D

N d rF r= ∫∫
v v  

where ( )F r is a single pulse time integrated flux of electrons.  We will now express this 

flux as  

( )( )F r f r rε= −r r  

and consider small horizontal offsets in x:  ˆr xε ε=v .  Using detector centered coordinates, 

we can expand in the small parameter,  

( )
2

2 2 2
0 0( , , ) ( ) ( , ,0) ( )

2
F F

F r f x y F r Oε ε
ε

φ ε ε φ ε ε
ε ε= =

∂ ∂
= − + = + + +

∂ ∂
 

Substituting in the partial derivatives of F in terms of f  and its derivatives yields 

2 2 2
3

2 2( , , ) ( ) ( ) ( ) ( ) ( )
2

x x y
F r f r f r f r f r O

r r r
ε

ϕ ε ε ε
 

′ ′′ ′= + + − + 
 

 

Now, 

2 2

1 1

2
2 31

( ) ( ) 2 ( ) ( ) ( ) ( )
2

R R

M
D R R

N d rF r rdrf r rdr f r f r O
r

πε
ε π ε ′′ ′= = + − + 

 ∫∫ ∫ ∫
v v  

And, after an integration by parts, 

[ ] 2

1

2( ) (0) ( ) 2 ( )
2

r R
M M M M r R

N N N  , N rf r f r
π

ε δ δ ε
=

=
′= + = −  
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Therefore, if one assumes a particular distribution f , one may compute M

M

N
N

δ .  

Using a Gaussian offset for ε , with mean 0 and RMS εσ , one may also impose the 

condition, 

22

43 10MN M

M M

NN
N N N

δσ δ −
    = − ≈ ×       

 

and solve for εσ . 

The author of [7] assumed a particular two parameter distribution with the 

appropriate dimensions for the Møller detector and found 0.8 cmεσ ≈  at the detector.  

Extrapolating back to the target, assuming the spectrometer is a drift approximately 60 

meters in length yields an angle jitter requirement of 16 microradians.  Further estimates 

placed position jitter at 1000 microns. 

Monte Carlo simulations have been performed to characterize more accurately 

how the beam parameter fluctuations effect the number of Møller electrons at the 

detector.  The requirements on beam parameter resolution based on these simulations are 

considerably more stringent than those calculated above.  The table below summarizes 

these requirements. 

 

Parameter Resolution 

Charge 30 ppm 

Energy 10 ppm 

Position 1 mµ  

Angle 0.1 radµ  

Table 3: Proposal Requirements on Beam Parameter Resolution 

   

(4) ELECTRON BEAM PARAMETER MONITORS 

 

In the previous section, we examined how the desired precision of the LRA  

measurement places very specific requirements on the electron beam parameters – 
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charge, energy, position, and angle.  In this section, the systems which monitor and 

record the beam parameters on a pulse by pulse basis are discussed.  The discussion is 

divided into two parts.  First, the beam position monitoring system is discussed.  Despite 

the name, this system also measures beam energy and beam angle with respect to the z-

axis (the desired axis of electron propagation).  After discussing the beam position 

monitoring system, we examine the toroid system, which measures charge. 

 

 

(4.1) The Beam Position Monitoring System 

 

 The beam position monitoring system consists of many resonant copper cavities 

(called BPMs) strategically placed throughout the linac, A-Line, and Alcove (see Figure 

4, Section 2.2).  A given BPM unit consists of three cavities: one cavity which is 

sensitive to x-position, one cavity which sensitive to y-position, and one cavity which is 

sensitive to phase.  The placement of a BPM unit is determined by the parameter the unit 

must be sensitive to.  When the electron beam passes through the cavity, the beam fields 

couple to the cavity, depositing energy, and the cavity “rings”.  A connecting guide 

contains an antenna that carries an induced voltage waveform through a cable to 

electronics for processing.  Therefore, on a pulse by pulse basis, the signal from a BPM 

may be processed and recorded for analysis.  In the following sections we will examine 

the details of this system. 

 

(4.1.1) The Function of a Resonant BPM Cavity 

 

 In general, a cavity mode functions as a damped harmonic oscillator, driven by 

the beam and any other external drive.  In the case of a BPM cavity, the cavity is driven 

only by the beam and serves as a pickup[8].  As the beam passes through the cavity, the 

cavity couples to the beam through the beam-multipole moments.  Thus, one may speak 

of a cavity mode as a monopole mode, a dipole mode, and so on.  The geometry of the 

cavity determines the mode and  resonant frequencies at which the cavity oscillates when 

excited.  Two cavity geometries are of interest for our discussion of beam position 
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monitors.  The dimensions are chosen so that the primary excitation mode has an 

oscillation frequency of 2,856 MHz .  This is the operating frequency of the linac.  The 

first geometry is a cylindrical pillbox whose axis of symmetry is along the beam axis – 

this is the phase cavity.  The dimensions are:  1.7005” in length, 2.6525” in diameter, 

with 0.8000” diameter beam ports.  The second geometry is a rectangular pillbox – this is 

a position cavity.  The dimensions are: 2.0010” along beam axis, 4.7080” in one 

transverse direction and 4.1820” in the other transverse direction, with 0.8000” diameter 

beam ports.  For sensitivity in the x-direction, one would align the 4.7080” side along the 

x-axis.  A BPM unit, which contains a phase cavity, an x-position cavity, and a y-position 

cavity is shown in the Figure below. 

 

 

Figure 5:  A BPM unit consisting of three resonant cavities.  From left to right - phase, x-position,    
y-position. A toroid is also shown and is the furthest element to the right 

 

Neglecting the coupling to the beam ports, and assuming perfect alignment 

between the beam axis and cavity axis, the beam couples only to the TM  modes of the 

cavity (those with only an axial electric field).  For the cylindrically symmetric phase 
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cavity the different modes can be labeled by one integer.  The primary resonances are 

2856 MHz , 4210 MHz , 5080 MHz , and 6480 MHz [9].  The 4210 MHz  mode falls on 

where one would expect a dipole mode, and fortunately, none of the higher modes falls 

on a higher beam harmonics.  Since the phase cavity is for the most part independent of 

position offsets (due to its cylindrical symmetry), it is primarily sensitive to phase and 

charge.  For the position cavity, the lowest frequency modes are the mn0TM  (those with 

no longitudinal variation in the axial electric field).  The primary modes of concern are 

110TM , 210TM , and 120TM [10].  For an x-cavity, one hopes to be most sensitive to the x-

dipole mode, 210TM .  For the dimensions listed above, the resonant frequency of this 

mode is 2856 MHz .  The monopole mode, 110TM , has a resonant frequency 1893 MHz .  

One concern with an asymmetric output coupling is the inability of the pickup to 

distinguish the modes not varying linearly with position.  For the position cavities this is 

the monopole mode which has a nonzero reading when the beam is centered.  The y-

dipole mode is 120TM .  However, for an x-cavity, the coupler used to pick up the 210TM  

mode will for most part be insensitive to the y-dipole mode. 

 Now that we understand how the geometry of the cavity determines the mode 

sensitivity, let us consider the waveform induced as a result of a excitation by a bunch 

train.  Since a cavity mode functions as a damped harmonic oscillator, the waveform 

envelope rises as a bunch train passes through the cavity.  The rise is exponential, similar 

to a charging capacitor.  Once the train has completely passed through the cavity, the 

energy stored in the cavity fields dissipates and the envelope of the waveform decays 

exponentially.   

The rate of exponential rise and decay depends on how well the cavity is tuned to 

the beam frequency.  Small tuning cavities which can adjust the effective geometry of the 

cavity are used to tune the BPMs (these can be seen at the top of Figure 5).  One can use 

a network analyzer to ping the cavities and optimize the effective geometry by tuning the 

cavity to resonate at 2856 MHz .  One can also optimize the quality factor, Q .  When 

tuning the cavities, the goal was to obtain a Q  of approximately 3000 at 2856 MHz . 
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Figure 6:  BPM waveforms  after mixing, recorded by a digital scope.  The top two plots display the 
two processor outputs :“real” (left) and “imaginary”(right) for BPM 12X.  The bottom two plots 
display the two processor outputs for BPM 12Y.   The mixing procedure is described in section (3.1.3) 

 

 

Figure 7:  The BPM waveforms above are cut to the exponential decay region and fitted with an 
exponential of the form 0exp( 1 )y p p x= − ⋅  
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 During run conditions, and without the use of an expensive network analyzer, one 

can check the tune of the cavities by recording the BPM processor waveforms with a 

digital scope.  The file can be read into analysis software and the Q  can be obtained by 

fitting the exponential decay of the signal to an exponential.   This procedure is depicted 

in Figure 6 and Figure 7.  The waveform is cut to the appropriate time range and fit by 

the function 0exp( 1 )y p p x= − ⋅ ,  where the constant 1p  is related to the quality factor by 

( )9 11 2.856 10p  s Qπ −= × × .  Hence for the upper right plot in Figure 7, which depicts 

the cavity BPM 12X, we find that 3,323Q = . 

 

(4.1.2) BPM Unit Placement 

 

 The placement of BPM units in the linac, A-Line, and alcove reflects the beam 

parameters one wishes to measure.  First, one wishes to measure the position near the 

source in order to correlate position fluctuations at the source to position fluctuations near 

the target.  Therefore, 3 BPM units are located at ASSET, which is near the source in the 

linac.  Next, 2 BPM units are placed roughly symmetrically in the A-Line bend at a 

location called “the maximum dispersion point”.  Beam position at this point is mostly 

dependent on beam energy, rather than position at the start of the bend (clearly, the 

amount by which a bunch is bent by magnets depends on the energy of the bunch). This 

is achieved by quadrupole focusing.  The dispersion at this point is 0.5m, which means 

that if the beam energy is changed by 100% the beam would move by 0.5m.  Thus, by 

measuring beam position with these BPMs one can measure beam energy. (The issue of 

calibration will be discussed in section 3.1.4).  Next, 2 BPM units are placed at the end of 

the A-Line beyond the last optical elements.  These BPMs serve as a lever arm to 

determine angle on target.  The target BPMS (2 units) are located just before the target, 

40m beyond the lever arm (or “angle”) BPMs.  The reason BPM units usually come in 

pairs (separated by 0.5m) is for to measure device resolution. 
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(4.1.3) BPM Signal Processing 

 

 The signal induced on the antenna and carried on the cable to the electronics 

contains the fast 2856 MHz  oscillation characteristic of the cavity oscillation and linac 

frequency.  The beam position information is carried on the envelope of this oscillation.  

The goal of the BPM electronics is to remove the fast oscillation so that the resulting 

waveform can be integrated and yield a non-zero value.  This integral is proportional to 

the product of the average position and charge (there is also a dependence on phase 

which will be discussed later).  The BPM waveform processing electronics utilizes the 

quadrature IF mixing scheme to achieve this goal. 

The quadrature IF mixer provides two equal amplitude intermediate frequency 

(IF) outputs that are in phase quadrature. It consists of two double balanced mixers, an in 

phase power divider and a 90° hybrid. The input radio frequency (RF) signal is fed to the 

in phase divider and split before feeding the RF ports of the two double balanced mixers. 

The local oscillator signal (LO) is fed to the hybrid and split with a 90° phase shift 

between the two outputs before feeding the LO ports of the two double balanced mixers. 

The two double balanced mixers provide IF outputs that are equal in amplitude but in 

phase quadrature (see schematic in Figure 8).  The 

 

Figure 8: Quadrature IF Mixer 
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RF input is the signal from the BPM cavity, while the LO is a signal derived from the 

main drive- line.  Both signals are oscillating with the characteristic frequency of the 

accelerator, 2856 MHz , but may differ in phase. In general, a double balance mixer 

“multiplies” the two input waveforms, so for waveforms 1 1cos( )A tω ϕ+  and 2 2cos( )A tω  

[ ]1 2
1 1 2 2 1 2 1 2cos( ) cos( ) cos(( ) ) cos(( ) )

2
A A

A t A t t tω ϕ ω ω ω ϕ ω ω ϕ+ = + + + − +  

The high frequency component is filtered out, and in our case 1 2ω ω= , so were just level 

with the product of amplitudes multiplied by the cosine of a phase.  In the quadrature 

mixer a ninety degree phase is introduced, so one may think of one IF output as being 

proportional to input RF times the sine of the phase while the other IF output is 

proportional to the input RF times the cosine of the phase. 

The quadrature IF mixer is the main component of the a BPM processor.  

Additional components of a processor are an attenuator, a phase adjustor (to adjust the 

input LO relative to the RF), and a limiter (to prevent mixer damage).  Additional BPM 

electronics are a frequency multiplier, a power amplifier, a twenty-four way power 

splitter, filters, and integrating ADCs.  The frequency multiplier is necessary since the 

main drive- line signal is 476 MHz , hence times six multiplication is necessary for the  

 

Figure 9: BPM electronics rack in the counting house 
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LO.  The power amplifier amplifies the LO signal, and the twenty-four way splitter splits 

it for each BPM processors.  The filters are used to filter out low frequency electronics 

noise, and the ADCs are used to integrate the processed signal.  A picture of the BPM 

electronics rack in the counting house is shown below. 

 In practice, the phase adjustor is tuned so that so that the relative phase difference 

between the LO and cavity RF is zero or pi – hence the sine term vanishes and the cosine 

term goes to 1 or -1.  In this ideal situation only one processor component would be 

needed, and hence only one ADC channel.  However, phase drifts may occur.  One 

source could be thermal expansion of the cables carrying the signals.  Therefo re both 

outputs are read into the ADCs, although only the cosine channel is presently used to 

represent position.  A method for calibrating the mixers such that both outputs can be to 

reconstruct the full amplitude will be discussed in section (3.1.5). 

 

(4.1.4) BPM Calibration 

 

 Absolute BPM calibration is achieved by comparing the integrated response of 

the cavity to some absolute scale.  The absolute scale is provided by another monitoring 

device known as the wire array.  Briefly, the beam passes through the wire array, 

stripping charge from the wires, and the voltage across each wire is measured.  The 

spacing between wires is very well known.  The wire array lacks the precision of a BPM, 

but provides useful information concerning beam spot size.  During a BPM calibration 

run, the dithering coils move the beam about its central axis.  Afterwards, the BPM 

response is plotted against the wire array and fitted in the linear region to obtain a slope 

representing the calibration constant. 

 Another type of BPM calibration is a relative calibration.  This is type of 

calibration is performed between BPM pairs.  In section (3.1.2) it was noted that most 

BPMs come in pairs, separated by 0.5 m  (that is, a triplet of BPMs is augmented by 

another triplet close by).  The reason for this is redundancy to gain information on 

measurement resolution.  The two x-cavities, say, are calibrated independently.  

However, one can provide a relative calibration between the two, which is independent of 

the absolute calibration, by stipulating that the two should agree on position.  Clearly, the 
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assumption is that beam position should not change over the distance between the two 

cavities;  under normal operating conditions this is a very good assumption.  One can 

even improve the assumption by computing the angle dependence and subtracting it. 

 A rough sketch of the algorithm to compute the relative calibration constants goes 

as follows.  Suppose the BPM pair under consideration is labeled BPM-A  and BPM-B .  

For a given run, one plots BPM-A BPM-B− versus BPM-B .  This should yield a linear 

relationship, the slope of which represents the percent correction one would need to make 

the absolute calibration constants yield position agreement.  There are a few subtle details 

worth mentioning.  In practice one actually plots the pulse pair differences of the above 

quantities.  Also, one must take into consideration the above mentioned angle dependence 

and also make appropriate cuts so that the fits are representative of the true linear  

 

Figure 10: Relative Calibration and BPM Resolution, Run 2 Data for 40s X pair 
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relationship.  Once one has found the above pair agreement relationship and angle 

correlation, the dependence of the difference, BPM-A BPM-B− , on these quantities may 

be subtracted.  This yields the device resolution.  Figure 10 shows the relative agreement 

constants and resolution versus run number for a BPM pair.  These constants are used in 

data reprocessing to make run by run corrections to the absolute BPM constants. 

 

BPM Pair Run I Resolution Run II Resolution 

12-24 (Energy) 1 2 MeV−  1 2 MeV−  

31-32 X (Angle) 3 4 mµ−  2 4 mµ−  

31-32 Y (Angle) 2 3 mµ−  3 4 mµ−  

41-42 X (Target) 1 2 mµ−  2 3 mµ−  

41-42 Y (Target) 3 4 mµ−  2 4 mµ−  

Table 4: Summary of BPM resolution during Run I and Run II 

 

(4.1.5) The Phase Drift Problem 

 

 In section (3.1.3) it was noted that only one BPM processor output is used to 

represent beam position.  The phase adjustor in the BPM processor unit is set so that 

phase difference between the local oscillator signal and the RF signal from the cavity is 

either zero or pi.  Thus, the IF output of one channel is maximized while the other is set 

to zero.  The motivation for doing this is to avoid the need to use both outputs to 

reconstruct the full waveform amplitude.  Such a reconstruction would require an 

accurate calibration of the mixer electronics. 

 Adjusting the phase is an ideal solution to this problem.  In practice, however, the 

phase between the two signals will drift.  There are many possible sources of phase drift.  

One obvious source is the time dependent thermal expansion of the cables carrying the 

RF signal from the cavity to the electronics.  One hopes that the phase shifts are small 

and hence negligible.  For small drifts, the error in using one channel is quadratic in 

phase (consider the Taylor expansion of cosine to second order). 

  Although only one channel is calibrated and used to represent position, both  
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channels are read out to the ADCs.  Therefore, one can monitor the phase drifts in order 

to assess the potential for significant error in position measurements.   Figure 12 shows a 

phase plot over the Run I production data set.  What is plotted is the mean of the sine of 

phase of the Q-cavities.  Additionally, the sine of the phase of the cavities is considered 

with respect to the sine of the phase of the cavity closest to the electronics.  Clearly, one 

can see from the plot below that the phase drifts may not necessarily be small.  Hence, 

considerable position information may be lost if the phase drifts are not accounted for. 

 

 

Figure 11:  Sine of the phase of the Q cavities relative to one cavity, Run I data. 

 

 If one does not wish to continually monitor the phase, frequently resetting the 

phase adjustor to account for drifts, one must first calibrate the BPM electronics.  

Calibrating the BPM electronics accounts for imperfections of the quadrature IF mixer.  
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An ideal IF quadrature contains a perfect in-phase power divider and a 90o  hybrid.  Let 

us consider how the imperfections of these devices may effect the outputs.   

 First, if the in-phase power divider does not precisely split the RF signal into two 

equal amplitude outputs, one channel is weighted differently than another.  Second, if the 

90o  hybrid is not exactly 90o , then the resulting outputs are not truly in phase quadrature.  

These effects are most easily visualized by considering the following situation.  Suppose 

that the RF input signal is a constant amplitude and sinusoidal in time with frequency 0ω .  

Likewise, the LO is a constant amplitude signal with frequency 0ω δω+ , where δω  is 

small.  In this situation, for each double balanced mixer,  

( ) ( )( ) ( )( ) ( )( )1 2
1 0 2 0 0cos cos cos 2 cos

2
A A

A t A t t tω ϕ ω δω ω δω ϕ δω ϕ + + = + + + +  . 

The high frequency component will be filtered out, but the remaining component will 

oscillate with frequency δω .  However, the two IF outputs are still in phase quadrature, 

so each is the product of the input amplitudes multiplied by the sine or cosine of some 

time dependent phase .  Therefore, if plotted against each other, one would find a circle in 

the ideal mixer case.  In the non – ideal mixer case one sees an ellipse. 

 The goal of the mixer calibration is to parameterize the ellipse so that the degree 

of imperfection of the power divider and 90o  hybrid  are reflected in the fit parameters. 

More specifically, we seek the parameters of a linear transformation which takes us from 

the ideal circle to the observed ellipse.  The appropriate parameters are a pinching 

parameter, δ , which quantifies the deviation from a true 90o  hybrid, and a scale 

parameter, s , which quantifies the result of unequal RF power division.  Once, these 

parameters are determined for each mixer, the two outputs can be corrected and added in 

quadrature to yield a position reading which is independent of phase.  The algorithm for 

finding these constants is depicted in Figure 12, and a list of all the ellipse fit parameters 

is shown in Figure 13.  Additionally, few plots depicting the process are shown in Figure 

14.  Finally, the fit parameters for a few BPM processors are listed in Table 4.  These 

numbers suggest that simply adding the outputs in quadrature without calibration may 

yield results that are no more accurate than allowing for small phase drifts in the one 

channel scheme. The parameters will be calculated for all BPM processors and the data 
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will be reprocessed such that position can be inferred in a manner accounting for the 

phase drifts. 

 

 

Figure 12: Schematic of Mixer Calibration Algorithm.  The pedestal subtraction  

transformation to center the ellipse is suppressed for clarity 

 

 

Figure 13: Summary of Mixer Calibration Fit Parameters 
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Figure 14: Typical Mixer Calibration Plots 

 

Mixer Ped X Ped Y C 
rσ  0r  δ  s  

12X 537.4 1163.9 47.03 69.02 2177.3 0.0388 1.058 

12Y -292.4 -225.8 39.76 76.68 2129.7 -0.0124 1.028 

12Q -63.84 -501.7 34.37 92.73 1990.4 -0.0129 1.034 

24X 283.7 -91.93 39.79 70.01 1917.5 -0.0498 1.042 

Table 5: A Selection of Mixer Calibration Constants  
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(4.2)  The Toroid System 

 

(4.2.1) Toroid System Overview 

 

 The toroid system is a much simpler system than the beam position monitoring 

system.  As the beam bunch  passes through a toroid, the magnetic fields which circulate 

about the direction of beam motion alter the flux through the toroid wire loops, and hence 

induce a current.  The toroid “rings” accordingly and the goal is to use the size of the 

ringing to infer the charge present in the bunch train. 

 The toroid system as a whole a whole can be viewed as an LRC circuit driven by 

the beam.  The inductor is the toroid, and the inductance, L, is fixed by the geometry of 

the toroid.  The two ends of the toroid are connected by a twin-axial cable to a toroid pre-

amplifier.  The pre-amplifier functions as a resistor, a capacitor, and an amplifier, and is a 

solid-state device.  The resistance, R, and the capacitance, C, are variable quantities 

which may be adjusted. 

 From elementary circuit analysis we know that the resonant frequency of an LRC 

circuit is 0 1 LCω = , the decay time constant is L Rτ = , and the quality factor is 

0Q ω τ= .  The pre – amp is adjusted such that the decay time constant is sufficiently 

small.  This is to prevent the ringing induced by one bunch from lasting until the arrival 

of the next bunch.  Also, to ensure that this absolutely does not occur, there is a damping 

mechanism which discharges the circuit after a certain amount of time has elapsed, before 

the arrival of the next pulse. 

 The time constant characterizes the exponential decay of the envelope of the 

induced current waveform.  Within this waveform envelope is an oscillating sinusoidal 

signal.  One may think of the bunch train as a delta function impulse.  Therefore, the 

frequency of the sinusoidal signal is the resonant frequency of the circle.  Additionally, 

the sinusoidal assumes both positive and negative values.  The ultimate goal is to 

integrate this signal by means of an integrating ADC and call the value of this integral the 

charge (assuming proper calibration).  The fact that the signal oscillates rapidly through 

positive and negative values requires us to use an absolute value rectifier as the last 

electronic element before the ADC input, in order to obtain a non-zero integral.     
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(4.2.2) Toroid Calibration 

 

 The toroids are calibrated by sending a pulse of known charge down a cable 

which passes through the toroid, thereby mimicking the beam.  The response of the toroid 

is processed by the electronics and recorded.  The toroid calibrator basically consists of a 

capacitor which itself can be accurately calibrated.  One can specify the voltage on the 

capacitor, and hence the charge.  Therefore, ADC count can be plotted versus charge and 

a calibration slope is obtained. 

 For the most part, the toroid system responds linearly with beam charge.  

However, the toroid pre-amp is a solid-state device which may become non-linear if the  

 

 

Figure 15: Typical Toroid Calibration Plot 
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input charge becomes too large.  By plotting the fit residuals one can assess degree of 

non- linearity (see bottom plot of Figure 15).  For the charge range corresponding to 

typical run conditions the degree of non- linearity was found to be small. 

 

(5) Beam Parameter Measurements and Analysis 

 

 The beam parameter measurements are an important aspect of the Møller 

asymmetry analysis.  The toroids and BPMs measure the beam parameters on a pulse by 

pulse basis, and the dependence of the Møller cross-section on these parameters must be 

corrected for.  One aspect of this analysis is to estimate the level of systematic error 

associated with helicity correlated systematics.  One uses the BPM and toroid 

measurements to assess the beam asymmetries.  Two independent methods also correct 

the raw Møller asymmetry using the BPM and toroid data.  The first method is 

regression, which involves computing the linear dependence of the cross-section on beam 

parameters, and then subtracting off this dependence.  This is done on a run by run basis. 

The second method is known as dithering, which is performed less frequently.  The 

strength of steering coil magnets is varied slowly, and hence the beam parameters are 

made to vary.  From this one finds the so called dithering coefficients, which represent 

dependence of the cross-section on the beam parameters.  
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