
Work supported in part by Department of Energy contract DE-AC02-76SF00515

Iron Dominated Electromagnets

Design, Fabrication, Assembly and Measurements

Jack Tanabe

January 6, 2005

SLAC-R-754
June 2005

Stanford Linear Accelerator Center, Stanford Synchrotron Radiation Laboratory, Stanford, CA 94025



2

Dedicated with Love to Sumi, for her support and devo-
tion. For our beautiful grand-daughter, Sarah.



3

Abstract

Medium energy electron synchrotrons (see page 15) used for the produc-
tion of high energy photons from synchrotron radiation is an accelerator growth
industry. Many of these accelerators have been built or are under construction
to satisfy the needs of synchrotron light users throughout the world. Because of
the long beam lifetimes required for these synchrotrons, these medium energy
accelerators require the highest quality magnets of various types. Other accel-
erators, for instance low and medium energy boosters for high energy physics
machines and electron/positron colliders, require the same types of magnets.

Because of these needs, magnet design lectures, originally organized by
Dr. Klaus Halbach and later continued by Dr. Ross Schlueter and Jack Tanabe,
were organized and presented periodically at biennual classes organized under
the auspices of the US Particle Accelerator School (USPAS). These classes were
divided among areas of magnet design from fundamental theoretical consider-
ations, the design approaches and algorithms for permanent magnet wigglers
and undulators and the design and engineering of conventional accelerator mag-
nets. The conventional magnet lectures were later expanded for the internal
training of magnet designers at LLNL at the request of Lou Bertolini. Because
of the broad nature of magnet design, Dr. S. Y. Lee, the former Director of
the Particle Accelerator School, saw the need for a specialized course covering
the various aspects of the design, engineering and fabrication of conventional
magnets. This section of the class was isolated and augmented using the LLNL
developed material resulting in the class on conventional magnet design. Con-
ventional magnets are defined (for the purposes of this publication) as magnets
whose field shape is dominated by the shape of the iron magnet yoke and are
excited by coils, usually wound from solid or hollow water-cooled copper or
aluminum conductors.

Dr. S. Y. Lee and Dr. Helmut Wiedemann, past and current Directors
of USPAS, encouraged the author to write a text for the purpose of consolodat-
ing the lecture notes used in the USPAS course. This publication collects the
lecture notes, written for the first course in the USPAS conventional magnet
design course and evolved over subsequent presentations of this same course,
and organizes the material roughly divided among two parts. One part is
theoretical and computational and attempts to provide a foundation for later
chapters which exploit the expressions and algorithms for the engineering and
design calculations required to specify magnet conceptual designs. A chap-
ter is devoted to the description and use of one of many magnet codes used
to characterize the two dimensional field resulting from various magnet cross-
sections. A chapter is included which exploits the two-dimensional theory and
applies the mathematics to techniques and systems for magnet measurement.
The second part of this publication ranges to practical issues associated with
the fabrication of components, assembly, installation and alignment of magnets.
This section also includes fabrication practices which respond to personnel and
equipment protection needs.
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Required design calculations are supplemented by examples and prob-
lems. A CD is included with tools provided to simplify the computation of some
of the more tedious relationships. This CD also includes useful photographs
and pictures describing the high volume production of typical magnet types,
which if included in the publication will add too many pages and increase the
cost of publication.

Styles among those facing similar problems will result in a wide vari-
ation of individual magnet designs. Designs and technologies will evolve and
improve. This publication provides a snapshot of the present technology and
presents as examples the magnet designs developed in response to the needs
of several projects, the Advanced Light Source at LBNL, PEPII Low Energy
Ring and SPEAR3 synchrotron light source at SLAC and the Australian Light
Source, currently under construction in Melbourne. In each example, the rea-
sons for fabrication design decisions are itemized and rationalized as much as is
reasonable. The examples presented in this publication are provided as start-
ing points which can be used as a design basis for magnets required for future
projects. It is hoped that the listing of some design choices and the motivation
for these choices will be useful. It is the intention of the author to publish a
document collecting and archiving the tools and techniques learned from the
past masters in the craft and to provide a useful reference for future magnet
designers.
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Chapter 1

BASIC CONCEPTS

1.1 Introduction

Conventional iron dominated electromagnets are components of low/medium energy
accelerator systems and also used for low/medium energy charged beam transport.
Low/medium energy particle accelerators are those whose beam stiffness, Bρ, is lim-
ited to a few tens of Tesla-meters. The beam stiffness is given in many physics texts
including Livingood[1] by

Bρ =
1

qc

√
T 2 + 2TE0, (7.01)

where q = charge in Coulombs, c = the speed of light in m
sec
, T = beam energy and

E0 = the particle rest mass energy. Written in conventional accelerator units

Bρ ≈ 1

299.8Z

√
T 2 + 2TE0, where (7.02)

Z is the number of charge units,
Bρ (Tesla−meters) ,

T (MeV ) ,

E0 =

(
0.51Mev for electrons
938MeV for protons

)
.

High energy accelerators and beam transport lines for accelerators whose beam
stiffness is greater than a few tens of Tesla-meters require higher fields not achievable
with iron dominated magnets and must rely on superconducting technology.

The conventional magnets described herein are those whose fields are shaped
by iron poles, where the maximum field level in the yoke is less than the iron satura-
tion level and whose excitation is provided by current carrying coils. Understanding
the function of these magnets requires understanding the forces and the force direc-
tions on charged particle beams with conventionally defined magnet polarities. This
chapter introduces the different magnet types, describes the forces and defines the
polarities for different magnets used for particle beams. Means of electrically con-
necting separate coils in different type magnets to achieve the desired polarities are
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also described. The physics accelerators using different magnets can be found in
other Physics texts[2][3].

Since it is difficult to explain all concepts of magnetic fields without some
basic background, some expressions, developed more fully in later chapters, are used
to describe relationships of the electrical current flowing in a single conductor, the
magnetic field it generates and the forces the field exerts on moving charged particles.
Other conventions are used to identify the polarities of magnet poles and the flux
directions determined by these polarities.

1.2 Magnet Types

Many of the magnet types and their functions are described in a chapter written
by Dr. Neil Marks of Daresbury in Great Britain in a collection of articles covering
various aspects of synchrotron radiation accelerators edited by Dr. HermanWinick[4].

Conventional electromagnets can be divided among several different types.

• Dipole Magnets

— Gradient Magnet

• Quadrupoles

• Sextupoles

• Correctors

— Vertical and Horizontal Steering

— Skew Quadrupole

• Specialized Magnets

— Current Sheet Septum (Horizontal Bend)

— Lambertson Septum (Vertical Bend)

— Bump and Kicker Magnets

1.3 Pictures

The photographs reproduced in this chapter are those of magnets manufactured for
the PEPII and SPEAR3 projects. The PEPII accerator at SLAC is an electron
positron assymetric collider, constructed to investigate the fundamental nature of
subatomic particles. The SPEAR3 project is an upgrade of an existing 3GeV electron
synchrotron at SLAC, constructed to exploit the synchrotron radiation emitted by
electrons bent through magnetic fields.
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Figure 1 PEPII Low Energy Ring Dipole

Figure 2 SPEAR3 Gradient Dipole Magnet
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Figure 3 SPEAR3 Quadrupole Magnet

Figure 4 PEPII Quadrupole
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Figure 5 SPEAR3 Sextupole Magnet with Skew Quadrupole Trim Coils

Figure 6 SPEAR3 Combined Horizontal and Vertical Steering Corrector
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Fig. 1 illustrates a PEPII Low Energy Ring dipole. A dipole magnet has
two poles and has a constant field in the magnet aperture. Fig. 2 illustrates the
SPEAR3 gradient dipole magnet. In the gradient dipole, the field shaped by the pole
combines a constant dipole field with a field linearly distributed along the transverse
and vertical directions. The SPEAR3 gradient magnet simultaneously bends and
horizontally defocuses the charged beam.

Fig. 4 illustrates a PEPII Low Energy Ring quadrupole magnet. Fig. 3
illustrates a SPEAR3 quadrupole magnet. The two illustrated quadrupoles differ in
design and construction details. The PEPII magnet uses a welded core. Its conduc-
tors are large and require separate busses for the coil to coil electrical connections.
The SPEAR3 quadrupole employs a glued core. The coil conductors are bent to an
electrical manifold at both ends of the magnet, used to make the coil to coil electrical
connections. Alternate coils are manifolded together at each end of the magnet to
reduce the congestion due to the crossover topology. A quadrupole has four poles
and a null field at its center. Its field magnitude varies linearly with the distance
from the magnet center.

Fig. 5 illustrates the SPEAR3 sextupole magnet. A sextupole magnet has six
poles and a null field at its center. Its field magnitude varies quadratically with the
distance from the magnet center. Two extra coils installed on the vertical poles of the
sextupole are added to produce a skew quadrupole trim field (a linearly distributed
field rotated so that the field directions are parallel to the horizontal and vertical
magnet axes).

Fig. 6 illustrates a combined horizontal and vertical corrector magnet. The
corrector is a low field dipole magnet whose function is to correct the angle orbit
of the charged particle beam by steering the beam horizontally and vertically. For
the illustrated corrector example, the vertical field is shaped by the poles. In this
example, the horizontal field is shaped by the placement of individual conductors.

1.4 Conventions

The right hand rule describes positive directions in vector relationships. Positive
current flows from the positive (+) lead of a power supply to the negative (−) lead
of a power supply. The flux direction due to positive current flowing in a coil
surrounding a magnet pole is determined by the right hand rule. This convention
also determines the polarity. Magnetic flux flows from the positive to the negative
pole of a magnet. In the two dimensional illustrations shown in fig. 8, a © is used
to describe the positive charge direction out of the page and an × is used to describe
the positive charge direction into the page.

1.5 The Field from a Line Current (Biot-Savart law)

The amplitude of the magnetic field is computed using the line integral form of the
magnetic field equation (see page 114)
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Figure 7 Magnet field due to a line current

∮ −→
H · −→dl =

B

µ0

2πr = I,

B =
µ0I

2πr
.

The direction of the magnetic field is described in fig. 7

1.6 Magnetic Force on a Line Current

The vector expression for forces on a particle beam is given by the vector cross product
equation

−→
F = e−→v ×−→

B . (7.1)

1.6.1 MKS Units

Unless otherwise specified, all expressions in this text are expressed in the MKS
system of units

−→
F = Newtons,

e = coulombs,

−→v =
m

sec
,

−→
B = Tesla.
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Figure 8 Coil Currents, Polarities and Force Directions for a Positive Beam Current

1.6.2 Force Directions

The right hand rule force direction on a positive particle beam is described in vector
form in eq. (7.1) and is illustrated for the different magnet types in fig. 8. In
this illustration, the coils have been simplified so that the dipole, quadrupole and
sextupole appear to have one, two and three coils. Later chapters will show that the
number of coils is equal to the number of magnet poles or multiples thereof.

1.6.3 Dipole Magnet

The dipole magnet has two poles and a uniform field. Applying the right hand con-
vention for the coil current flowing in the indicated direction, the magnetic flux flows
downward. Since the convention requires the magnetic flux to flow from the positive
to negative poles, the upper pole is positive and the lower pole is negative. For
positive beam current into the page, force direction, using the right hand convention,
is to the left.

Gradient Magnets Gradient magnets are specialized dipole magnets which, in
addition to a bend field at its center, has a linear gradient. This magnet is a
combined function magnet which simultaneously defocuses (or focuses) and bends
the beam.

1.6.4 Quadrupole Magnet

The quadrupole magnet has four poles and a zero field at its center. The field is
normal to the horizontal and vertical centerlines and its distribution is linear with
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distance from the center. Applying the right hand convention for the coil current
flowing in the indicated directions, the magnetic flux flows outward from the poles at π

4

and 5π
4
and inwards to poles at 3π

4
and 7π

4
. Since the convention requires the magnetic

flux to flow from the positive to negative poles, the poles at π
4
and 5π

4
are positive

and the poles at 3π
4

and 7π
4
.are negative. For the illustrated positive beam currents

at 0 and π planes into the page, along the horizontal centerline, the force direction is
toward the center of the magnet. For the illustrated positive beam currents at π

2
and

3π
2
planes into the page, along the vertical centerline, the force direction is away from

the center of the magnet. The illustrated magnet is considered an F quadrupole for
positively charged beam. Using the conventional definition, the F quadrupole focuses
the beam in the horizontal plane and defocuses the beam in the vertical plane. The
D quadrupole defocuses the beam in the horizontal plane and focuses the beam in
the vertical plane.

1.6.5 Sextupole Magnet

The sextupole magnet has six poles and a zero field at its center. The field is normal
to the horizontal centerline and centerlines at angles π

3
and 2π

3
. Its distribution is

quadratic (∝ r2) with distances from the center. Applying the right hand convention
for the coil current flowing in the indicated directions, the magnetic flux flows outward
from the poles at π

6
, 5π

6
and 3π

2
. The magnetic flux flows inwards to poles at π

2
, 7π

6

and 11π
6
. Since the convention requires the magnetic flux to flow from the positive

to negative poles, the poles at π
6
, 5π

6
and 3π

2
are positive and the poles at π

2
, 7π

6
and

11π
6
.are negative. For the illustrated positive beam currents at at 0 and π, along

the horizontal centerline, the force direction is to the left of the magnet. For the
illustrated positive beam currents at at π

2
and 3π

2
, along the vertical centerline, the

force direction is to the right of the magnet.
The function of a sextupole magnet is to correct for the chromatic aberration

due to dispersion in a dipole caused by the momentum spread in the beam. For a
beam with energy spread traversing a dipole magnet, the higher energy particles are
bent less than the lower energy particles, causing the dipole magnet to disperse a
beam with point distribution into a beam with line distribution along the horizontal
plane. The line beam leaving the illustrated dipole magnet (bending the beam to the
left) is populated with higher energy particles on the right side of the beam and the
lower energy beam on the left side of the beam (looking in the beam direction). The
effect of a quadrupole on this dispersed beam is to longitudinally spread the focal
point of the quadrupole lens, focussing the higher energy beam downstream and the
lower energy beam upstream from the desired focal point. The sextupole magnet is
designed to compensate for this effect. The illustrated magnet is designated an F
sextupole for positively charged beam. The F sextupole selectively bends the beam
on the right side of the magnet towards the beam centerline (shortening the focal
length) and the beam on the left side of the beam away from the beam centerline
(lengthening the focal length), restoring the desired single focal point. Since the
sextupole also steers the vertically displaced beam in the opposite direction, it is
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Figure 9 Dispersion and Chromatic Aberration Correction

usually located in positions in the synchrotron lattice where the beam is vertically
small. Using the conventional definition, the F sextupole bends the beam toward
the center of the accelerator ring and the D sextupole bends the beam away from the
center of the accelerator ring. The orbits are illustrated in fig. 9.

1.6.6 Corrector Magnets

Steering Correctors

Steering corrector magnets are used to provide minor horizontal and vertical steering
(� 1.5 mrad) of the charged particle beam. They are normally located upstream
from main ring quadrupoles and are used to steer the beam to the center of the
quadrupole. Unwanted beam steering occurs when the charged particle beam is
not centered in the quadrupole. In order to conserve lattice space and to simplify
operation, horizontal and vertical steering are often combined in a single magnet.

Skew Quadrupole Correctors

Skew quadrupole corrector magnets are used to correct for the integrated effects of
rotationally misaligned main ring quadrupoles. When the main ring magnets are
rotationally misaligned, radial components of the magnetic field proportional to the
sine of the misalignment angle are introduced along the horizontal and vertical planes.
These small radial fields rotate the beam and mix the horizontal and vertical beam
phases, causing instabilities. The skew quadrupole trims are used to compensate for
these radial field errors. Corrector magnets are normally powered with bipolar power
supplies so that corrections can be made in all directions and angle misalignments for
different magnet polarities. Schematic illustrations of the three types of corrector
magnets are shown in fig. 10.
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Figure 10 Horizontal/Vertical and Skew Quadrupole Correctors

1.6.7 Specialized Magnets

Specialized magnets are used for injection and/or extration of charged particle beams
into/out of accelerator rings. Normally, injection requires the buildup of current into
the ring and occurs after previously stored beam is circulating in the ring. In order
to ensure that the injected beam is stored (incorporated with the previously injected
beam), it must be injected as transversely close to the central orbit of the circulating
beam as possible. This is accomplished by using a combination of several bump
magnets to momentarily move the circulating beam transversely close to the injected
beam. When the bump magnets are turned off, the beam is restored to its central
orbit. A good explanation of this process is described in an article by Dr. Gottfried
Mülhaupt of Grenoble (in section 3.6.1 of reference [4]) covering synchrotron injection
taking advantage of the transverse phase space in an accelerator with a fractional tune
of approximately 1/4.

Bump Magnets

The bump magnet is a dipole usually with a laminated yoke or a yoke made from high
resistive permeable material. This material is selected since it does not carry eddy
currents. The magnetic field in the bump magnet must be raised to its required field
and reduced again to zero in the shortest possible time (usually the time required to
make a single orbit around the ring). Power supply voltage constraints often limit
the rate at which the magnetic field can be changed. Thus, the previous article by
Mülhaupt describes a system which takes advantage of the accelerator fractional tune
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Figure 11 Bumped Beam Orbit

to increase the required time to change the bump magnet field.
The rapid change in the magnetic field excites eddy currents in low electrically

resistive permeable material. Because of the rapid change in the magnetic field, the
bump magnets are normally installed in boxes which are part of the vacuum chamber.
The field for bump magnets with metallic vacuum chambers installed within the gap
will be excluded from the interior of the chamber (the beam space) because of eddy
currents. A simplified illustration of the bumped beam orbit is shown in fig. 11.

Current Carrying Septum

The external field (fringe field) of the injection septum must be as small as possible
to avoid affecting the circulating beam. The current in the outer coil of the current
carrying septum magnet divides the high field region of the magnet from the low field
region. This type of magnet is often operated in the persistent mode and left on for
long periods after injection. The cross section of a current carrying septum, typically
operated in the persistent mode, is shown in fig. (12). The fringe field in the current
carrying septum can adversely affect the orbit of the circulating beam. Its magnitude
is dependent on the design of the iron yoke and is discussed in a later chapter (see
discussion on page 119).

Eddy Current Septum

Another injection septum design (the eddy current septum) is employed for higher
fields requiring higher currents and a very limited space for the septum. The eddy
current septum magnet, illustrated in fig. (13), employs a pulsed current in the coil
around the back leg of the yoke. Eddy currents generated by the rapidly changing
magnetic flux exclude the field from regions outside of the high conductivity copper
eddy current box. In particular, the currents generated in the septum minimizes the
field penetrating into the region of the bumped and circulating beam. In practice,
the eddy current septum has a longer time constant than the pulse width of the
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Figure 12 Current Carrying Septum

Figure 13 Eddy Current Septum

excitation and the fringe field persists longer than the magnet field.

Lambertson Septum

The Lambertson septum magnet is used to inject the beam from above or below the
plane of the accelerator. Its cross section is shown in fig. (14). As in the case of the
current carrying septum, the magnet is left on and its external field must be as small
as possible in the region of the circulating beam. Its fringe field is horizontal rather
than the vertical fringe field for the current carrying and eddy current septa. Thus,
the unwanted vertical steering is a bit more difficult to deal with than the horizontal
orbit perturbations from the horizontally steering septa. Means of estimating the
size of the fringe field is covered in a later chapter in this book (see discussion on
page 120). In general, a larger opening angle in the septum causes an intensification
of the gap H-field in the septum. Since the H-parallel field is continuous across the
iron air boundary, this intensification causes a larger fringe field.



28 Basic Concepts

Figure 14 Lambertson Septum

1.6.8 More Polarity

All the previous figures showing the direction of magnetic flux and the direction of
forces for positive beam flowing “into the paper” employ the conventions outlined
in the beginning of this chapter. However, it is often difficult to remember and/or
employ all the conventions when connecting a power supply or determining the correct
intercoil bussing to connect the two coils for a dipole, the four coils for a quadrupole
or the six coils for a sextupole. Moreover, since all the conventions were defined
for a positively charged circulating beam, one can become confused when considering
electron accelerators with negatively charged beam. One has to remember that the
right hand rule becomes a left hand rule to determine the direction of the magnetic
forces or to reverse the power supply leads assuming positively charged particles to
obtain the correct magnet polarities for electrons. One of the most common errors
in the final stages of accelerator construction projects is the reversing of polarities
on isolated magnets. Another less common error is the mis-connection of the leads
connecting the separate coils of a single magnet.

A simpler means of determining the correct magnet polarities exists.

Magnetostriction

Using the right hand rule force and magnetic flux direction convention, it can be seen
that the magnetic flux and force directions for a series of conductors carrying parallel
positive currents in the same direction are as shown in fig. 15. The forces on parallel
conductors, carrying the same charges in the same direction, are towards each other.
This phenomenon is familiar to those dealing with multi-strand cables. The separate
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Figure 15 Forces on Parallel Conductors

strands of a cable attract each other and the cable cross-section compresses when the
power is turned on. One can take advantage of this behavior and develop a simpler
set of polarity conventions.

1.6.9 Alternate Polarity Convention

• Currents with the same charge travelling in the same direction attract.

Corollaries

• Currents with opposite charges travelling in the same direction repel.

• Currents with the same charge travelling in opposite directions repel.

• Currents with opposite charges travelling in the opposite direction attract.

By considering the charged particle beam as a line current with appropriate
signs, one can use this alternate convention and/or its corollaries to determine the
direction of the power supply currents through the different coils of the magnet to
ensure the proper magnet polarities for positively or negatively charged beams. One
does not have to figure out the polarities of the magnet poles.

1.7 Chapter Closure

This chapter introduces and describes the functions and characteristics of different
types of conventional iron dominated electro-magnets used for low and medium en-
ergy charged particle accelerators and beam transport lines. The main magnet
types are the dipole, quadrupole and sextupole whose field are uniform, linear and
quadratic whose functions are to bend, focus and correct the chromaticity of the
beam. Other magnets are described which correct beam orbits and compensate for
the effects of installation/alignment errors. Some specialized magnets required for
beam injection/extraction are described. Descriptions of the charged particle beam
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orbits through the different magnet types is beyond the scope of this work. The
physics of beam orbits through magnets can be found in texts by Wiedemann [2] and
Lee [3].

Conventions and definitions are introduced to identify the force direction on
moving positively charged particle beams. These conventions are restated using the
principal of magnetostriction to simplify the concepts and to avoid confusion when
attempting to establish the correct polarity for beams with different charges.

For modern accelerators, especially for storage rings and colliders whose beam
lifetimes are measured in hours, the properties of magnets are crucial to the accel-
erator performance and beam lifetime. Magnets need to be installed and aligned
precisely, the excitation of individual magnets must be precise and predictable and
the magnetic field shape must be free of errors to satisfy the requirements needed by
the physics of accelerators. The quality of the magnets depend on the extent that the
fields have the desired shapes. The shapes of the magnetic fields depend on the iron
pole shapes, the mechanical fabrication precison of the construction of the poles and
the assembly of the parts making up the magnet yoke. Later chapters describe means
of satisfying the physics requirements for high quality accelerator magnets. The task
of the magnet designer is to design magnets which satisfy the physics requirements
and can be translated into mechanical components and magnet assemblies accurately,
reliably and economically.
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1.8 Problems

Problem 1.1 (Solution)

Using the eq. (7.1) and the MKS system of units, show that the units for force are
expressed in Newtons.

Problem 1.2 (Solution)

Why are there no forces between two line currents a distance d apart and perpendic-
ular to each other?

Problem 1.3 (Solution)

What is the expression for the magnitude of the force per unit length on one conduc-
tor due to the magnetic field generated by a parallel conductor where the distance
separating the two conductors is given by d?
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Chapter 2

SOLUTIONS OF THE MAGNET EQUATIONS

2.1 Introduction

An understanding of magnets is not possible without reviewing some of the math-
ematics underpinning the theory of magnetic fields. The development starts from
Maxwell’s equation for the three-dimensional distribution of magnet fields in the
presence of steady currents both in vacuum and permeable material. For vacuum
and absence of current sources, the fields satisfy the homogeneous equation. A func-
tion, F , is introduced and the Laplace equation is derived from Maxwell’s homoge-
neous equation. Although three-dimensional fields are discussed, the mathematical
solutions for the differential equations developed in this text is limited to two di-
mensional functions and field distributions. Understanding the mathematics of two
dimensional fields is important since the three dimensional fields linearly integrated
perpendicular to the plane over the region where the magnetic field is non-zero obey
the same two dimensional differential equation and can be characterized by the same
two-dimensional relationships.

The discussion in this chapter finds two different forms for solutions of the two
dimensional Laplace equation for magnetic fields in vacuum. A solution for the more
general condition with current sources and with permeable material is developed in
a later chapter.

2.2 Maxwell’s Magnet Equations

The three-dimensional vector form of Maxwell’s steady state magnet equations in the
MKS system is

−→∇ ×−→
B =

{
µµ0

−→
J

0 in the absence of sources
(2.1)

−→∇ · −→B = 0. (2.2)

2.2.1 Continuity

A later chapter will use Stoke’s theorem applied to eq. (2.1) to develop an integral
form for Maxwell’s two dimensional magnet equation (see page 114). This integral
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form will be used to establish the continuity of H‖, the parallel H vector across
an iron/air boundary. Since we have described the second of Maxwell’s magnet
equations,

−→∇ · −→B = 0, it is convenient to develop the concepts that establish the
continuity of B ⊥, the perpendicular B vector across an iron/air boundary in this
chapter. Eq. 2.2 can be rewritten as

∂Bx

∂x
+

∂By

∂y
+

∂Bz

∂z
= 0,

or
∂
−→
Bn

∂−→x = 0.

Another way to state the second expression is that the B field is continuous
along its vector direction. Thus the perpendicular component of the B field does not
change across material interfaces.

2.2.2 Units

The MKS units (which are used throughout this text) are

−→
B = (Tesla)

−→
J =

(
Amps

m2

)
µ = (Relative Permeability) = 1 in vacuum,

µ ≈ 1000 in high permeable material

and µ0 = (Permeability of vacuum) 4π × 10−7 Tm

Amp
.

2.3 The Function of a Complex Variable

A function of a complex variable introduced in this section is

F =
−→
A + iV (2.3)

consisting of a real part, the vector potential,
−→
A , and an imaginary part, the scalar

potential, V . The magnetic field vectors are defined by the curl of the vector potential
and the divergence of the scalar potential;

−→
B =

−→∇ ×−→
A =

∣∣∣∣∣∣∣∣
î ĵ k̂
∂

∂x

∂

∂y

∂

∂z
Ax Ay Az

∣∣∣∣∣∣∣∣ (2.4)

−→
B = −−→∇V = −î

∂V

∂x
− ĵ

∂V

∂y
− k̂

∂V

∂z
. (2.5)
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Taking eq. (2.4) applying eq. (2.1) with no sources, the homogeneous equa-
tion, and using the vector identity,

−→∇ ×−→
B =

−→∇ ×
(−→∇ ×−→

A
)
=

−→∇
(−→∇ · −→A

)
− �2−→A = 0.

In the previous expression, the Coulomb condition,
−→∇ · −→A = 0, is assumed.−→

A satisfies the Laplace equation

�2−→A = 0. (2.6)

Taking eq. (2.5) and applying eq. (2.2)

−→∇ · −→B = 0 = −�2V.

Thus, V also satisfies the Laplace equation

�2V = 0. (2.7)

and the function, F =
−→
A + iV must also satisfy the Laplace equation

�2F = 0. (2.8)

2.4 The Two-Dimensional Fields

At this point, the generality of three dimensional fields is abandoned and the discus-
sion is limited to mathematical expressions describing two dimensional fields in the
(x, y) plane. Expanding eq. (2.4), the three-dimensional Maxwell’s magnet equation
describing the magnetic fields are

î

(
∂Bz

∂y
− ∂By

∂z

)
+ĵ

(
∂Bx

∂z
− ∂Bz

∂x

)
+k̂

(
∂By

∂x
− ∂Bx

∂y

) = µµ0

(̂
iJx + ĵJy + k̂Jz

)
.

The two-dimensional fields in the (x, y) plane satisfy the scalar equation,

∂By

∂x
− ∂Bx

∂y
= µµ0Jz, (2.9)

where Jz describes the current density in the (x, y) plane in the z direction and can
be treated as a scalar quantity.



36 Theory

2.4.1 Fields from the Two-Dimensional Function of a Complex Variable

The function, F = A + iV , can be written in two dimensions as a function of a
complex variable, z = x+ iy where the complex conjugate of the field is given by eq.
(2.10)

B∗ = Bx − iBy = iF ′ (z) , (2.10)

= i
dF

dz
= i

(
∂F

∂x

dx

dz
+

∂F

∂y

dy

dz

)
,

= i

(
∂F

∂x
− ∂F

∂y
i

)
=

∂F

∂y
+ i

∂F

∂x
.

Equating the real and imaginary parts of the expression;

Bx =
∂F

∂y
and By = −∂F

∂x
.

Substituting into eq. (2.9), we get Poisson’s equation;

∂2F

∂x2
+

∂2F

∂y2
= −µµ0Jz. (2.11)

2.5 Two Dimensional Fields in a Vacuum

The following sections develop the mathematical conventions used to describe the
distribution of two-dimensional magnetic potentials satisfying the homogeneous Pois-
son’s equation. Expressions for the two-dimensional magnetic fields and the ideal
boundary conditions required to produce these fields are derived from these poten-
tials. Mathematics of complex variables are used for describing magnetic fields as
the sum of multipole terms and performing simple conformal maps. The conformal
maps are used in a later chapter to generalize the knowledge of one type of magnet
to other magnets.

Since the relationships developed for two dimensional fields fully describe three
dimensional integrated fields, the mathematics can be exploited for the design of
data acquisition systems and algorithms used to reduce the measurement data and
characterize the field integral and the integrated harmonic error contents in various
magnets.

2.5.1 Multipoles

In the following sections and chapters, the term “multipole” is used. In the context
of magnets, multipoles can be used to designate the number of poles in a magnet or
the harmonic content of the magnetic field. A multipole magnet can be a dipole,
quadrupole, sextupole, octopole or a general multipole magnet where the terms refer
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to a magnet with two, four, six, eight or any number of poles. The term is also used to
describe the harmonic content of the field. Thus, a physical dipole magnet can have
error terms which consist of harmonics called multipole errors. Certain properties
of the multipole content of the magnetic field are derived using the conditions of
rotational symmetry for different magnet types.

2.5.2 Laplace’s Equation

Interaction of charged particles with magnetic fields occur in the magnet gaps. The
gaps are regions where current sources and permeable material are absent. These are
regions where two-dimensional magnet fields can be derived from potential functions
which are the solutions to the homogeneous Poisson’s differential equation, Laplace’s
equation,

∇2F =
∂2F

∂x2
+

∂2F

∂y2
= 0. (2.12)

In this section, two different forms for the solutions are discussed.

2.5.3 Solutions to Laplace’s Equation

Any analytic function of the complex variable z = x + iy where i =
√−1 satisfies

Laplace’s equation which can be verified using ∂z/∂x = 1 and ∂z/∂y = i.

∂F

∂x
=

dF

dz

∂z

∂x
=

dF

dz
∂2F

∂x2
=

∂

dx

dF

dz
=

d2F

dz2
∂z

∂x
=

d2F

dz2

∂F

∂y
=

dF

dz

∂z

∂y
=

dF

dz
i

∂2F

∂y2
=

∂

dy

dF

dz
i =

d2F

dz2
i
∂z

∂x
=

d2F

dz2
i2 = −d2F

dz2
.

Thus,

∇2F =
∂2F

∂x2
+

∂2F

∂y2
=

∂2F

∂z2
− ∂2F

∂z2
= 0,

satisfying the Laplace’s equation, eq. (2.12) for all functions of the complex variable
z = x+ iy.

Since all functions of the complex variable satisfy Laplace’s equation, two
particular forms, F = A+ iV and F = Czn, both satisfy Laplace’s equation. Either
forms is useful with each providing different insights.
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2.6 Two-Dimensional Vector and Scalar Potentials

The vector and scalar potentials are parts of a function of a two-dimensional complex
coordinate, z = x+ iy. However, the expressions derived from the three-dimensional
curl and divergence expressions, summarized in section (2.4), are completely consis-
tent in two-dimensions.

The function of a complex variable is divided among two quantities, the vector
and scalar potentials. The function of the complex variable in two dimensions is given
by the expression F = A+ iV where A, the real part of the complex function, is the
vector potential and V , the imaginary part of the complex function, is the scalar
potential:

A = Re (F ) V = Im(F ) . (2.13)

In general,
−→
A is a vector. Since two-dimensional fields in the (x, y) plane

require Az 	= 0 where Az is the vector component normal to the (x, y) plane, A = Az

is treated as a scalar quantity in the (x, y) plane. (Non-zero fields in the (y, z) and
(z, x) planes require Ax 	= 0 and Ay 	= 0.)

The parts of an analytic function of the complex variable must satisfy the
Cauchy-Riemann conditions,

∂A

∂y
= −∂V

∂x
and

∂A

∂x
=

∂V

∂y
. (2.14)

2.6.1 Magnetic Fields from the Two-Dimensional Potentials

In two-dimensions, the magnetic fields are computed using eq. (2.10),

B∗ = Bx − iBy = iF ′ (z)

where ∗ indicates the complex conjugate and ′ indicates the derivative with respect
to the complex variable, z. Computing the derivative of the function F with respect
to the complex coordinate z;

F ′ (z) = lim
∆z→0

∂F (z)

∂z
= lim

∆z→0

∂A+ i∂V

∂x+ i∂y
(2.15)

Dividing the numerator and denominator of eq.(2.15) by ∂x;

F ′ (z) = lim
∆z→0

∂A

∂x
+ i

∂V

∂x

1 + i
∂y

∂x
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But ∂y

∂x
≡ 0 since x and y are orthogonal. Therefore,

B∗ = Bx − iBy = iF ′ (z) = i
∂A

∂x
− ∂V

∂x
. (2.16)

Similarly, taking eq. (2.15) and dividing both the numerator and denominatore
by ∂y;

F ′ (z) = lim
∆z→0

∂A

∂y
+ i

∂V

∂y
∂x

∂y
+ i

,

=

∂A

∂y
+ i

∂V

∂y

i
= −i

∂A

∂y
+

∂V

∂y
.

But ∂x
∂y

≡ 0 since x and y are orthogonal. Therefore,

F ′ (z) =

∂A

∂y
+ i

∂V

∂y

i
= −i

∂A

∂y
+

∂V

∂y
,

and

B∗ = Bx − iBy = iF ′ (z)

= i

(
−i

∂A

∂y
+

∂V

∂y

)
=

∂A

∂y
+ i

∂V

∂y
. (2.17)

Equating the real and imaginary parts of the expression,

from eq. (2.16), Bx = −∂V

∂x
and By = −∂A

∂x
(2.18)

or from eq. (2.17), Bx =
∂A

∂y
and By = −∂V

∂y
. (2.19)

Either the vector or scalar potentials can be used. The Cauchy-Riemann
conditions are satisfied for the complex conjugate of the field, B∗, but not for B =
Bx + iBy. The expressions in two dimensions are consistent with the more general
three-dimensional expressions.
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2.7 A Particular Function of the Complex Variable, F = Cnz
n

Since all functions of a complex variable satisfy Laplace’s equation, a particular func-
tion satisfying LaPlace’s equation, useful in the characterization of magnetic fields,
is the function F = Cnz

n, where Cn is, in general, a complex constant.

2.7.1 Ideal Two-Dimensional Multipole Magnets

The convention used to describe multipole magnet types is to use a prefix to specify
the number of poles. Thus, a dipole has two poles, a quadrupole has four poles, a
sextupole has six poles, an octopole has eight poles and so on. (The numbers of poles
in a symmetric multipole magnet is always even.) When describing the fields in a
magnetic multipole using the function of a complex variable F = Cnz

n, the index of
the function, the integer n, is half the number of poles. Thus, n = 1, 2, 3, and 4
correspond to a dipole, quadrupole, sextupole and octopole, respectively.

In the following sections, the two dimensional vector and scalar potentials
computed using the complex function, F = Cnz

n, are used to describe ideal two-
dimensional magnet types.

2.7.2 Two-Dimensional Flux Lines and Poles

For two dimensional magnetic fields, it is useful to define a coordinate axis with the
real value of a complex function on the horizontal axis and the imaginary value on
the vertical axis. Using this coordinate system, vector and scalar equipotentials can
be plotted for various values of the function F = Cnz

n for different values of the
index, n. These plots reveal a great deal about the ideal magnetic field pattern and
the shapes of the ideal poles resulting in the field patterns.

Vector and Scalar Equipotentials

The vector and scalar equipotentials are the curves in the z = x + iy plane of the
functions Cnz

n = A+iV for constant values of the potentialsA and V. The convention
used in the mathematics of two dimensional fields is the family of vector equipotentials
represents flux lines. The family of scalar equipotentials are orthogonal to the vector
equipotentials, define boundary conditions for the vector potentials and can represent
possible pole shapes. The combined families of equipotentials are curvilinear squares
and are analogous to families of electrical voltage equipotential lines and current flow
lines.

The plots resulting from the computation of the equipotentials represent ideal
magnetic patterns and are different in small details from real magnetic patterns and
those computed using Poisson or other two-dimensional magnet modeling programs.
These differences are due to non-ideal boundary conditions and the finite permeabil-
ity of iron. The potential plots provide useful information about the ideal generic
multipole pole shapes and resulting magnetic flux pattern.
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Figure 1 Dipole Vector and Scalar Potentials

n=1, the Dipole Magnet

The ideal dipole is characterized by the complex function with n = 1;

F = C1z = C1 (x+ iy) = A+ iV.

If C is real, A = ReF = C1x and V = ImF = C1y. Therefore, the equations
for the equipotentials are,

x =
A

C1
: Vector Equipotentials (2.20)

y =
V

C1
: Scalar Equipotentials. (2.21)

The vector and scalar equipotentials for a dipole are illustrated in fig. 1.

n=2, the Quadrupole Magnet

The ideal quadrupole is characterized by the complex function with n = 2.

F = C2z
2 = C2 (x+ iy)2 = C2

(
x2 − y2 + i2xy

)
= A+ iV.

If C2 is real, A = ReF = C2 (x
2 − y2) and V = ImF = 2C2xy. The equations

for the equipotentials are,
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Figure 2 Quadrupole Vector and Scalar Potentials

x2 − y2 =
A

C2
: Vector Equipotentials (2.22)

xy =
V

2C2
: Scalar Equipotentials. (2.23)

The vector and scalar equipotentials for a quadrupole are illustrated in fig. 2.

n=3, the Sextupole Magnet

The ideal sextupole, characterized by the complex function with n = 3;

F = A+ iV = C3z
3 = C3 (x+ iy)3

= C3

(
x3 − 3xy2

)
+ iC3

(
3x2y − y3

)
= A+ iV

If C3 is real, A = ReF = C3 (x
3 − 3xy2) and V = ImF = C3 (3x

2y − y3).
The Cartesian equations for the equipotentials are,

x3 − 3xy2 =
A

C3
: Vector Equipotential, (2.24)

3x2y − y3 =
V

C3
: Scalar Equipotential. (2.25)

The Sextupole in Polar Coordinates For the sextupole example, polar coor-
dinates are introduced, which are useful in understanding conformal mapping tech-
niques. In polar coordinates;
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F = C3z
3 = C3

(|z| eiθ)3 = C3

(|z|3 ei3θ) = C3 |z|3 (cos 3θ + i sin 3θ) = A+ iV

If C3 is real, A = ReF = C3 |z|3 cos 3θ and V = ImF = C3 |z|3 sin 3θ. Then

|z|V ector Potential =

(
A

C3 cos 3θ

)1
3

and |z|Scalar Potential =

(
V

C3 sin 3θ

)1
3

.

Parametric equations for the vector and scalar equipotentials, written in the
(r, θ) coordinate system are;

xV ector Potential = |z|V ector Potential cos θ =

(
A

C3 cos 3θ

)1
3

cos θ

yV ector Potential = |z|V ector Potential sin θ =

(
A

C3 cos 3θ

)1
3

sin θ

xScalar Potential = |z|Scalar Potential cos θ =

(
V

C3 sin 3θ

)1
3

cos θ

yScalar Potential = |z|Scalar Potential sin θ =

(
V

C3 sin 3θ

)1
3

sin θ. (2.26)

The vector and scalar equipotentials for a sextupole are illustrated in fig. 3.

Real and Skew Magnets

Magnets are described as real when the magnetic fields are vertical along the hori-
zontal centerline (Bx = 0 and By 	= 0 for y = 0). Real magnets are characterized by
C = real. Magnets are described as skew when the fields are horizontal along the
horizontal centerline (Bx 	= 0 and By = 0 for y = 0). The skew magnet conditions
are met for all three of the previous examples when C = imaginary. The skew mag-
net equipotentials of the three illustrated examples are rotated by π

2
for the dipole,

π
4
for the quadrupole and π

6
for the sextupole.

2.7.3 Pole Contours

The previous section describes the scalar potentials and suggests that a scalar equipo-
tential can be selected as a boundary condition for defining the field for different mag-
net types. The boundary is the profile of the iron pole of a magnet. The expressions
for the ideal pole geometries for various magnet types can be generated using the
information available from the different expressions for the scalar potential surfaces.
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Figure 3 Sextupole Vector and Scalar Potentials

n=1, Dipole Magnet Pole

The real dipole field is generated by the boundary condition placing the surface of
the magnet pole at a scalar equipotential line. Using eq. (2.21) and assigning the
dipole half gap, h, as the argument, the equation for the dipole pole is

y = h. (2.27)

n=2, Quadrupole Magnet Pole

The real quadrupole field is generated by the boundary condition where the magnet
pole is located at the scalar equipotential hyperbola. Using eq. (2.23) and assign-
ing the square of the quadrupole radius, h2, as the argument, the equation for the
quadrupole pole with pole radius, h, is

xy =
h2

2
. (2.28)

n=3, Sextupole Magnet Pole

The real sextupole field is generated by the boundary condition where the magnet pole
is located at the scalar cubic equipotential hyperbola. Using eqs. (2.25) and (2.26)
and assigning the cube of the sextupole radius, h3, as the argument, the equation for
the sextupole pole with pole radius, h, is
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3xy2 − y3 = h3 (2.29)

and in polar coordinates, |z| =
√
x2 + y2 =

h
3
√
sin 3θ

. (2.30)

2.7.4 Complex Extrapolation

The desired two-dimensional field distribution for a magnet is specified and one is
occasionally asked to design the pole contour which will produce this field. Compli-
cated magnets have been specified which have combined up to three different magnet
fields. A simple example of a field often specified in accelerator systems is presented
in order to describe the process of complex extrapolation.

Gradient Magnet

A magnet with increasing use in lattices requiring efficient use of the ring perimeter
is the combined function magnet. The gradient magnet combines bending and ver-
tical focusing, thus conserving lattice space. This is important since the cost of an
accelerator facility increases with the size of the machine. A gradient magnet field is
non zero at its center and changes linearly along the horizontal axis. The required
pole contour for this type of magnet can be derived from the field requirements and
the desired aperture. The gradient magnet requirements are given as the field at its
center, B0, its gradient, B′, and gap half height, h, at its transverse center, x = 0.
The field distribution is expressed by the function

By = −B0 −B′x.

Using eq. (2.15) to derive an expression for the scalar potential generating the
required field

By = −B0 −B′x = −∂V

∂y

V =

∫
(B0 +B′x) dy = (B0 +B′x) y

y =
V

B0 +B′x
.

Since the field is B0 at x = 0, where y = h, V = (B0 +B′x) y = B0h.
Substituting, the equation for the pole is given by

yGradient Magnet =
B0h

B0 +B′x
. (2.31)
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Figure 4 Gradient Magnet Pole as Part of a Quadrupole Pole

Fig. 4 illustrates the gradient magnet pole as part of the ideal hyperbola
computed using the requirements. The ideal hyperbola with asymptotes at y = 0
and x = −B0

B′
is the pole of a very large quadrupole.

2.8 Magnetic Fields Using the Function of the Complex Variable

In a previous section (2.18), it was shown that the expression, B∗ = Bx − iBy =
iF ′ (z), can be used to characterize the distribution of the magnetic fields and poles
when the function, F , of a complex variable is written in terms of the vector and
scalar potentials, A and V . Examples were presented for the dipole, quadrupole
and sextupole magnets. In this section, the same expression is used to compute the
magnetic field components directly from the function of the complex variable F =
Cnz

n and describe the characteristics of these same magnets. Using the expression
for B∗,

B∗ = Bx − iBy = iF ′ (z) ,

Bx − iBy = i
∂

∂z
Cnz

n = inCnz
n−1. (2.32)

2.8.1 n=1, the Dipole Magnet

For the dipole

B∗
1 = B1x − iB1y = i

∂

∂z
C1z = iC1.
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Equating the real and imaginary parts of the above expression

B1x = 0

B1y = −C1.

Therefore, the fields in a dipole are constant.

2.8.2 n=2, the Quadrupole Magnet

For the quadrupole

B∗
2 = B2x − iB2y = i

∂

∂z
C2z

2 = i2C2z = i2C2 (x+ iy) = −2C2y + i2C2x.

Equating the real and imaginary parts of the above expression,

B2x = −2C2y

B2y = −2C2x.

The fields in a quadrupole are linearly distributed.

2.8.3 n=3, the Sextupole Magnet

For the sextupole

B∗
3 = B3x − iB3y = i

∂

∂z
C3z

3 = i3C3z
2 = i3C3 (x+ iy)2

= i3C3

(
x2 − y2 + i2xy

)
= −6C3xy + i3C3

(
x2 − y2

)
.

Equating the real and imaginary parts of the above expression,

B3x = −6C3xy

B3y = 3C3

(
x2 − y2

)
.

The fields in a sextupole are quadratically distributed.

The Sextupole in Polar Coordinates

The expressions for the sextupole in polar coordinates are

B∗
3 = B3x − iB3y = i

∂

∂z
Czn = i3C3z

2 = i3C3 |z|2 ei2θ

= i3C3 |z|2 (cos 2θ + i sin 2θ) = −3C3 |z|2 sin 2θ + i3C3 |z|2 cos 2θ.
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Equating the real and imaginary parts of the above expression,

B3x = −3C3 |z|2 sin 2θ
B3y = −3C3 |z|2 cos 2θ.

The radial component of the sextupole field is

B3r = B3x cos θ +B3y sin θ,

= −3C3 |z|2 (sin 2θ cos θ + cos 2θ sin θ) ,

= −3C3 |z|2 sin 3θ.

Real and Skew Magnets

Again, as in the previous section, the field components for skew magnets can be
computed by substituting an imaginary value for Cn.

2.9 Multipole Errors

In this section, the concept of error multipoles is introduced. The multipole errors are
divided among allowed or systematic multipole errors and random multipole errors.
Symmetry conditions allow the existence of certain errors while forbidding others.
Thus, the identification of certain errors can be ascribed to fabrication and/or assem-
bly errors and are considered random while others can be ascribed to the limitations
of the ability to optimize and perfect a pole design. The following chapter discusses
the optimization process for various multipole magnets. A later chapter discusses
the sources of the random or nonsystematic errors and quantifies the mechanical
fabrication and/or assembly errors producing these errors.

2.9.1 The Error Spectrum

Since the function F = Cnz
n satisfies Laplace’s equation, then the Taylor’s expan-

sion of this function, F =
∑

Cnz
n, must also satisfy Laplace’s equation. A perfect

multipole magnet is characterized by a single integer index. In general, a real magnet
is characterized by a spectrum of harmonics including error terms due to the pole
design, fabrication and/or assembly errors. Fields are conventionally characterized
by the complex function

F = CNz
N +

∑
n�=N

Cnz
n, (2.33)

where N is the index of the fundamental (desired) field and
∑
n�=N

Cnz
n represents the

spectrum of error (undesired) terms where Cn is, in general, a complex number.
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Figure 5 Pole Symmetry Conditions

2.9.2 “Allowed” or Systematic Multipole Errors

The undesired error multipoles (n 	= N) are divided among allowed or systematic
multipole errors and random multipole errors. The systematic errors are those sub-
ject to symmetry and polarity constraints. These constraints require the errors to
repeat and change polarities at angles spaced at angular intervals of π/N , where N
is the index of the fundamental field. The symmetry constraints are

Fn

(
θ +

π

N

)
= −Fn (θ) .

Fig. 5 illustrates the angular rotation of the poles for a dipole, quadrupole
and sextupole. In this figure, the illustrated poles are not symmetrical about their
respective centerlines. This is to emphasize that rotational symmetry of the N poles
and not mirror symmetry is assumed.

Consider the function of the complex variable, F =
∑

Cnz
n. Written in polar

coordinates

F (θ) =
∑

Cnz
n =

∑
Cn |z|n einθ =

∑
Cn |z|n (cosnθ + i sinnθ)

F
(
θ +

π

N

)
=

∑
Cn |z|n

[
cos

(
nθ +

π

N

)
+ i sin

(
nθ +

π

N

)]
.

The symmetry conditions require

cos
(
nθ +

π

N

)
+ i sin

(
nθ +

π

N

)
= − cosnθ − i sinnθ
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Equating the real and imaginary terms and rewriting we obtain,

cos
(
nθ +

π

N

)
= − cosnθ

cosnθ cos
nπ

N
− sinnθ sin

nπ

N
= − cosnθ

sin
(
nθ +

π

N

)
= − sinnθ

sinnθ cos
nπ

N
+ cosnθ sin

nπ

N
= − sinnθ.

These conditions can only be satisfied if

sin
nπ

N
= 0 =⇒ n

N
= 1, 2, 3, 4, ... , all integers

cos
nπ

N
= −1 =⇒ n

N
= 1, 3, 5, 7, ... , all odd integers.

The more restrictive condition is n
N
= all odd integers and is rewritten as

nallowed = N (2m+ 1) , (2.34)

where m is any positive integer including zero.

Sytematic or “Allowed” Multipole Phases

In general, the coefficients of the allowed multipoles CN(2m+1) = Complex Numbers.
However, if in addition to the rotational symmetry, the poles are symmetric about
their respective centerlines, CN(2m+1) = Real Numbers. (See problem 2.3 at the end
of this chapter on page 56 and its solution at the end of this text.)

Allowed Dipole Multipole Errors

The allowed dipole multipole errors are ndipole = 3, 5, 7, 9, ...

Allowed Quadrupole Multipole Errors

The allowed quadrupole multipole errors are nquadrupole = 6, 10, 14, 18, ...

Allowed Sextupole Multipole Errors

The allowed sextupole multipole errors are nsextupole = 9, 15, 21, 27, ...
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2.9.3 Multipole Field Errors

One is normally interested in the field errors rather than errors in the potential
functions. The expression for the error fields normalized to the fundamental is;

B∗
n = iF ′ (z) = i

d

dz
Cnz

n = inCnz
n−1 B∗

N = iNCNz
N−1 (2.35)

B∗
n

B∗
N

=
n

N

Cn

CN

zn−N . (2.36)

The expreesion for the amplitudes of these errors normalized to the desired
fundamental field amplitude can be computed as a function of radius.

∣∣∣∣B∗
n

B∗
N

∣∣∣∣
r

=
n

N

∣∣∣∣Cn

CN

∣∣∣∣ rn−N . (2.37)

Finally, if one measures the normalized error spectrum at a give radius r0, the
same spectrum can be computed at a different radius, r.

∣∣∣∣B∗
n

B∗
N

∣∣∣∣
r

=

∣∣∣∣B∗
n

B∗
N

∣∣∣∣
r0

(
r

r0

)n−N

. (2.38)

2.10 Simple Conformal Maps

The previous sections suggest that the characteristics of the different magnet types are
mathematically related. Conformal mapping takes advantage of the similarities in the
expressions for the various magnet types and allows the transformation of one type of
magnet into another. Thus, one can extend the knowledge about the field distribution
and uniformity of one type of magnet and map the boundary conditions which produce
the distribution and uniformity into an entirely different magnet and predict the
magetic field characteristics of the mapped magnet. In this section, simple algorithms
for mapping ideal multipole magnets into an ideal dipole geometry and reversing the
mapping from dipole to multipole magnets are developed. These algorithms are used
in the following chapter to extend canonical design rules associated with high quality
dipole design to multipole magnets with equally high quality.

In the following discussions, two sets of coordinates are used; z = x+ iy, the
coordinates in the multipole space and u = w+iv, the coordinate system in the dipole
space. For the multipole map to dipole space, Cartesian coordinate calculations
are employed. For the reverse map from the dipole to the multipole space, polar
coordinate calculations are employed.
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2.10.1 Mapping Functions

The function of the complex variable, F = Cnz
n = Cn |z|n einθ, where Cn is real,

yielded potential functions for n = 1, 2 and 3, for the dipole, quadrupole and sex-
tupole, respectively. The poles, selected from a scalar equipotential, are asymptotic
to θ = 0 and π for n = 1, asymptotic to θ = 0 and π

2
for n = 2 and asymptotic to θ = 0

and π
3
for n = 3. This suggests that a function which maps the multipole magnet

into a dipole magnet should have the form, w = zn

hn−1 . (The term in the denominator
uses the aperture raised to a power such that the coordinate in the dipole space, w,
remains linear.) The form of this function is suggested since, in polar coordinates
for zn = |z| einθ, the angle domain is multiplied by n. Thus, the quadrupole angle
domain, 0 ≤ θ ≤ π

2
, is mapped into 0 ≤ φ = 2θ ≤ π and the sextupole angle domain,

0 ≤ θ ≤ π
3
, is mapped into 0 ≤ φ = 3θ ≤ π, where 0 ≤ φ ≤ π is the angle domain of

the dipole. (The multipole angle, θ, domain is mapped into the dipole angle domain,
φ.)

2.10.2 Quadrupole to Dipole Map

The function describing the conformal map from the quadrupole to dipole space is

w = u+ iv =
z2

h
=

(x+ iy)2

h
=

x2 − y2

h
+ i

2xy

h
. (2.39)

Equating the real and imaginary parts, the coordinates of the quadrupole
mapped into the dipole space are

u =
x2 − y2

h
and v =

2xy

h
. (2.40)

Substituting the expression describing the quadrupole ideal pole contour, xy =
h2

2
, v = 2xy

h
= 2h2

2h
= h, a constant. The ideal quadrupole is mapped into the (u, v)

coordinate space where v = h =constant, an ideal dipole.

2.10.3 Dipole to Quadrupole Map

For the dipole to quadrupole conformal map, using the pole coordinate form for the
function

w = |w| eiφ =
z2

h
=

(|z| eiθ)2
h

=
|z|2
h

ei2θ

|z| =
√
h |w| and θ =

φ

2
and |w| =

√
u2 + v2

x = |z| cos θ =
√
h |w| cos φ

2
=
√
h |w|

√
1 + cosφ

2
=

√
h |w| 1 + cosφ

2
(2.41)

y = |z| sin θ =
√
h |w| sin φ

2
=
√
h |w|

√
1− cosφ

2
=

√
h |w| 1− cosφ

2
.(2.42)
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The expressions cosφ = u
|w|

, then 1+cosφ
2

= |w|+u

2|w|
and 1−cosφ

2
= |w|−u

2|w|
are

substituted.
The algorithms mapping the dipole w = u+ iv coordinates to the quadrupole,

z = x+ iv coordinates are simplified and given by

x =

√
h

2
(|w|+ u) and y =

√
h

2
(|w| − u). (2.43)

2.10.4 Sextupole to Dipole Map

The function describing the conformal map from the quadrupole to dipole space is
w = z3

h2 . Applying this map in Cartesian coordinates;

w = u+ iv =
z3

h2
=

(x+ iy)3

h2
=

x3 − 3xy2

h2
− i

y3 − 3x2y

h2
.

Equating the real and imaginary parts, the coordinates of the sextupole mapped
into the dipole space are

u =
x3 − 3xy2

h2
and v = −y3 − 3x2y

h2
. (2.44)

Substituting eq. (2.29) which describes the sextupole ideal pole contour 3x2y−
y3 = h3, then v = h3

h2 = h, a constant. The ideal quadrupole is mapped into the
(u, v) coordinate space where u = h =constant, an ideal dipole.

2.10.5 Dipole to Sextupole Map

For the dipole to sextupole conformal map, using the polar form for the coordinates

w = |w| eiφ =
z3

h2
=

(|z| eiθ)3
h2

=
|z|3
h2

ei3θ

|z| = 3

√
h2 |w| and θ =

φ

3
where |w| =

√
u2 + v2 and φ = tan−1 v

u
.

The algorithms mapping the dipole w = u + iv coordinates to the sextupole,
z = x+ iv coordinates are given by

x = |z| cos θ = 3

√
h2 |w| cos φ

3
and y = |z| sin θ = 3

√
h2 |w| sin φ

3
. (2.45)
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2.10.6 Gradient Magnet to Dipole Map

Fig. 4 shows the gradient magnet pole as part of the ideal hyperbola computed using
the gradient magnet requirements. The hyperbola has a horizontal asymptote at
y = 0 and a vertical asymptote at x = −B0

B′
and magnet aperture, h, at x = 0. It

is convenient to introduce a displaced coordinate system X = x + B0

B′
, which has an

origin at the vertical axis The equation for the gradient magnet pole contour is given
by eq. (2.31) ;

y (x) =
B0h

B0 +B′x

y (X) = Y =
B0h

B0 +B′

(
X − B0

B′

) =
B0h

B′X
.

The equation for the hyperbola in the (X, Y ) coordinate system then becomes

XY = H2

2
= B0h

B′
where the radius of the quadrupole is given by H =

√
2B0h
B′

.

Performing the quadrupole to dipole map described earlier

w = u+ iv =
Z2

H
=

(X + iY )2

H
=

X2 − Y 2

H
+ i

2XY

H

u =

(
x+

B0

B′

)2

− y2√
2B0h

B′

v =
2XY

H
= H =

√
2B0h

B′
. (2.46)

Again, it is easy to see that this is an expression for an ideal dipole since
v = H, a contant.

2.10.7 Dipole to Gradient Magnet Map

Using the results of the dipole to quadrupole transformation algorithms given in eq.
(2.43);

X = x+
B0

B′
=

√
H

2
(|w|+ u) and Y = y =

√
H

2
(|w| − u), (2.47)

where H =

√
2B0h

B′
, the radius of the displaced hyperbola. (2.48)

2.11 Chapter Closure

The differential equations required to characterize two dimensional magnet fields
can be derived from Maxwell’s general three-dimensional magnet equation. Using a



Chapter Closure 55

function of the complex variable, z = x+iy, the two-dimensional Poisson and Laplace
equations can be derived from the three-dimensional expressions. The solution of the
Laplace equation (the homogeneous form of the Poisson equation) characterizes the
magnetic field in regions where current sources and permeable material are absent.
Both two-dimensional magnetic fields and three-dimensional magnetic field integrals
can be characterized by solutions of the two-dimensional Laplace equation. These
solutions are relevant since charged beam interaction occurs in magnet gaps where
conditions for the application of Laplace equation are satisfied. It is shown that all
analytic functions of the complex variable z = x+iy, satisfy the Laplace equation. In
particular, two forms of the solution, F = A+ iV and F = Czn, are discussed. The
two dimensional magnetic field components can be computed by the same function,
B∗ = Bx − iBy = iF ′ (z), using either form of the function. The conventions
used to interpret the two parts of the function, F = A + iV , the vector and scalar
potentials, are discussed. Evaluation of the the vector and scalar potentials for
the function, F = Cnz

n, for various values of the integer, n, provides mathematical
expressions describing the magnetic flux distribution and the boundary conditions for
different ideal multipole magnets. Since the function, F = Cnz

n, satisfies the Laplace
equation, the Taylor expansion of this function, F =

∑
Cnz

n, is also a solution of
the differential equation. This form introduces the concept of the fundamental field
and the spectrum of error multipoles. Application of symmetry conditions result in
general rules concerning the allowed or systematic multipole errors associated with
each fundamental field.

The final section of the chapter uses the similarity among the different func-
tions defining the dipole, quadrupole and sextupole magnet types to develop simple
conformal mapping algorithms. These algorithms are used in subsequent chapters
as a powerful tool for the generalization of canonical pole tip design rules. The
algorithms are also useful to map previously developed successful pole contours from
one magnet geometry to another.



56 Theory

2.12 Problems

Problem 2.1 (Solution)

What is the equation for the ideal hyperbolic pole contour for a quadrupole with a
pole radius of 35 mm? What is the equation for the ideal pole contour for a skew
quadrupole with a pole radius of 35 mm?

Problem 2.2

What is the equation for the pole contour for a combined function magnet with
central field B0 = 1.2Tesla, gradient B′ = 3.5 T

m
and half aperture h = 25mm? Draw

the pole contour for a 100 mm wide pole. The gradient magnet pole is a portion
of a much larger quadrupole hyperbolic pole. What is the quadrupole pole radius?
What is the half gap for the dipole field mapped from this quadrupole?

Problem 2.3 (Solution)

Show that for poles symmetrical about their centerlines, the coefficients for the “al-
lowed” error multipole functions of a complex variable are real and not complex.
(Difficult but illustrative problem.)



Chapter 3

POLE TIP DESIGN

Perfect magnets can be built if the boundary conditions described in the previous
chapter were practical. The imaginary parts of the function, Cnz

n, define ideal
boundary conditions for different magnet types. These boundary conditions require
a dipole with an infinitely wide flat pole and a quadrupole hyperbolic pole or sex-
tupole cubic hyperbolic pole whose edges extend infinitely toward their asymptotes.
These conditions are not practical in real magnets. Real magnets require finite poles
whose edges result in imperfect boundary conditions yielding imperfect fields. Two
dimensional design of the pole contour for various magnet types to satisfy field qual-
ity requirements is a crucial part of magnet design. Understanding of tools useful
to visualize the field and to design the poles resulting in magnets with acceptable
uniformity is an important part of magnet design.

This chapter introduces methods of understanding the field distribution in
simple dipole magnets without having to understand the mathematics. An analog
tool, useful for visualizing the field and suggesting means of improving field uniformity
given practical non-ideal boundary conditions, is described. An example of the
application of this model for the design conductor dominated magnet is presented
to demonstrate the power of this tool.

Some canonical rules for the selection of the width of dipole magnet poles
to satisfy field uniformity criteria are introduced. The methods of conformal map-
ping, introduced in the previous chapter, are exploited to extend the dipole rules to
quadrupoles and gradient magnets. The effort of developing similar sextupole rules
is left as an excercise for the reader.

3.1 Understanding the Dipole Magnet

Because of its simplicity, the dipole magnet is the easiest magnet to understand and
visualize. Its ideal field is uniform, resulting in parallel, evenly spaced vector and
scalar equipotential lines.

3.1.1 The Orthogonal Analog Model

A method for approximating the two-dimensional vector and scalar potentials is to
use the orthogonal analog model. This method was originally described and named by
Klaus Halbach[5], and provides a means for mapping scalar and vector equipotential
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functions in a magnet gap when the iron and coil geometry are determined. This
method can be used without having to understand the mathematics of the potential
functions. Briefly, the principles of the orthogonal analog model are:

• Flow lines are analogous to the scalar equi-potentials.

— Flow lines are drawn from the + to - coils.

— Iron boundaries are impervious to the flow lines.

• Flux lines are analogous to the vector equi-potentials.

— Flux lines are normal to the Flow lines.

— Flux lines end and are approximately normal to iron boundaries.

• The combination of the family of flow lines and flux lines describe a set of
curvilinear squares.

The Window-Frame Dipole Magnet

The window frame dipole magnet is one whose aperture is rectangular and whose
coils are distributed uniformly in the vertical gap. It is conceptually the simplest
dipole geometry. Physically, the coils for this magnet are difficul to wind. It requires
a saddle coil to provide room for the charged beam particle orbit. Winding the coils
for this geometry requires a table with two axes of rotation. Fig. 1 illustrates this
geometry.

Results of the application of the principles of the Orthogonal Analog Model
to this magnet geometry are shown in fig. 2. Using the principles of the model, it
can be seen that the field is uniform over the entire magnet gap and extends to the
edge of the coil as long as the current distribution is uniform.

A Conductor Dominated Dipole Magnet

Another example illustrating the principles of the orthogonal analog model is pre-
sented to demonstrate the power of this visual tool. The problem illustrated in Fig.
3 is to place conductor filaments along the inside radius of a circular iron yoke in a
manner which will result in a uniform dipole field. The desired field is described by
a series of uniformly spaced vertical flux lines. The orthogonal analog model rules
require the flow lines to be uniformly spaced lines, perpendicular to the flux lines,
originating in a positive current filament and ending in a negative current filament.
It is then easy to place the conductor filaments at the ends of the flow lines. A later
chapter, analyzing this same geometry, will show that the current distribution is a
cosine current density distribution (see page 121).
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Figure 1 Window Frame Dipole

Figure 2 Window Frame Dipole
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Figure 3 Conductor Dominated Field Distribution

3.1.2 The Orthogonal Analog Model and the Quadrupole

The orthogonal analog model is less useful for understanding the quadrupole magnet
than for the dipole magnet since the ideal hyperbolic vector and scalar equipotential
lines are quadratic hyperbolae. These contours are more complex than the uniform
straight lines for an ideal dipole. Thus, the ideal contours for a uniform quadrupole
field are more difficult to visualize. The mathematical conformal mapping algorithms
developed in the last chapter are useful for desigining a quadrupole magnet whose
field quality corresponds to the uniformity of a window-frame dipole. The following
example describing the means of designing a septum quadrupole demonstrates this
technique.

The Septum Quadrupole

Colliders typically intersect high energy particle beams travelling in opposite direc-
tions crossing at narrow angles. In order to maximize the number of collisions, the
two beams must be tightly focused with final focus lenses longitudinally close to the
interaction point. Because of the small crossing angles between the two colliding
beams, the particle beams are transversely very close to each other. Therefore, a
quadrupole is required where the coil and a portion of the yoke are limited to a small
lateral space between the colliding beams. A septum quadrupole is required for
this application where the pole width is narrow and the coil is restricted to a small
septum space between the intersecting beam spaces. Generally, the field quality of
a quadrupole magnet can be improved by extending the pole edges towards their
ideal asymptotes. Because of the space constraints, a septum quadrupole cannot
take advantage of this design principle. A high quality quadrupole can be designed
by using knowledge acquired about the performance of a uniform field dipole. The
window frame dipole magnet and the results of mapping the geometry of this high
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quality dipole to the quadrupole space are shown in fig 4.
The conformal mapping steps using eqs. (2.41) and (2.42), developed in the

previous chapter for mapping a dipole to a quadrupole are described below:

• Consider the window frame dipole aperture with the centers of the separate
conductors as illustrated.

— The aperture is bounded by the half gap, H, and the half width, W .

• The ideal conductor placement for the window frame dipole requires uniform
vertical spacing of their centers. The edge of the coil package is at the edge of
the square aperture with u = H. The conductor centers locations are given by

(un, vn) =

⎛⎜⎜⎜⎜⎜⎜⎝
H +H/6,H/6
H +H/6,H/2
H +H/6, 5H/6
H +H/2,H/6
H +H/2,H/2
H +H/2, 5H/6

⎞⎟⎟⎟⎟⎟⎟⎠ .

• The iron inner boundary of the window frame dipole is mapped into the quadrupole
space:

Pole x =

√
h

2
(|w|+ u), 0 ≤ u ≤ 5H

3
v = H

Side u =
5H

3
, 0 ≤ v ≤ H

x =

√
h

2
(|w|+ u) and y =

√
h

2
(|w| − u)

xpole =

√
H

2

(√
u2 +H2 + u

)
ypole =

√
H

2

(√
u2 +H2 − u

) for 0 ≤ u ≤ 5H

3

xside =

√√√√√H

2

⎛⎝√(5H

3

)2

+ v2 +
5H

3

⎞⎠
yside =

√√√√√H

2

⎛⎝√(5H

3

)2

+ v2 − 5H

3

⎞⎠
for 0 ≤ v ≤ H
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Figure 4 Window Frame Magnet and Mapped Septum Quadrupole

• The centers of the conductors are mapped into the quadrupole space. Note
in fig. 4 that the separate conductors are centered in the curvilinear squares
defined by the scalar and vector equipotentials for both the window frame dipole
and the septum quadrupole.

— The conductor shape does not have to be mapped since the current acts
as point sources at the conductor centers:

xn =

√
H

2

(√
u2
n + v2n + un

)
and yn =

√
H

2

(√
u2
n + v2n − un

)
.

• The mapping for a septum quadrupole often results in small conductors spaced
at close intervals. Often, in order to achieve the required quadrupole gradient,
the current density is high, resulting in high power and difficulty in designing
the hydraulic cooling circuits (see the discussion on page 128).

3.1.3 The “H” Dipole Geometry

The H-dipole geometry is one whose aperture is approximated by an H (see fig. 5).
It’s coils are installed in the vertical legs of the H-opening in the magnet yoke and
the horizontal leg constitutes the magnet aperture. Most dipoles are built using this
approximate configuration since the coils are easily wound in a single plane using a
single axis winding fixture. The flat coil configuration is called a pancake coil. Fig.
6 illustrates the H-dipole configuration. Since the coils and the pole edges provide
imperfect boundary conditions for a uniform dipole field, design work is required to
improve the size of the aperture in which the field is uniform.
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Figure 5 H-dipole aperture

Figure 6 H-dipole
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Figure 7 Orthogonal Analog Model of Unoptimized and Optimized H-Dipole

The orthogonal analog model, applied to two varieties of the H-dipole, is il-
lustrated in fig. 7. The nomenclature describes the shape of the aperture where the
coil is installed in the legs of the H and the gap is the horizontal leg of this configu-
ration. This configuration is preferred over the window frame geometry because of
the simpler flat pancake coil configuration.

Optimized and Unoptimized Pole Contours

Fig 7 describes an unoptimized and optimized pole contour. An unoptimized pole
contour is flat all the way to the pole edge. An optimized pole contour in one with
bumps near the pole edge to shape the field and increase the width of the uniform
field region at the transverse center of the magnet.

For the unoptimized pole contour, the transition of the flow lines from the
curved paths near the coil to a horizontal line near the center of the magnet is gradual.
Thus, the uniform field region is limited to a small fraction of the pole width. In
addition, the flow and flux lines crowd the sharp corner of the pole. This suggests
that the field quality can be improved by adding smooth bumps near the edge of the
pole, causing the flow lines to squeeze through a narrower gap and causing them to
transition earlier to horizontal lines. This increases the fraction of the aperture with
uniform field distribution. The smooth bumps also reduce the crowding of the flow
and flux lines near the pole corner, reducing the saturation of the iron in this region.

3.1.4 H-Magnet Uniformity

The field uniformity in the required good field region of a dipole can be improved
by adding excess pole beyond the edge of the good field region. This excess pole
overhang extends the region of the ideal boundary conditions for a uniform dipole
field. The excess pole beyond the edge of the required good field region is illustrated
in fig. 7, labeled a, the pole overhang.

The canonical expressions[5] summarized in this section are used to estimate
the amount of pole overhang required to achieve a desired field quality, or to estimate
the field uniformity given the size of the pole overhang for both unoptimized and
optimized pole contours. An unoptimized pole contour is a flat dipole pole. An
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optimized pole contour is a dipole pole whose edges have been shaped to improve the
field uniformity at the center of the aperture. The expressions for estimating the
field uniformity or for the excess pole width to achieve a desired uniformity, given
by eqs. (3.2) to (3.5), are approximate, but have been used successfuly to estimate
the required dipole pole width to satisfy field uniformity requirements. Successful
application depends on the boundary conditions (the location of coils and pole edges)
and the effort invested in the pole optimization process.

Dimensionless Pole Overhang Factor

In the following dimensionless expressions, x is the pole overhang normalized to the
magnet half gap, h.

x =
a

h
. (3.1)

Optimized Pole

The expressions for the potential field quality and the pole overhang required to
achieve a specified field quality for an optimized pole are given in eqs. (3.2) and
(3.3).

(
∆B

B

)
optimized

=
1

100
exp [−7.17 (x− 0.39)] (3.2)

xoptimized =
a

h
= −0.14 ln

∆B

B
− 0.25 (3.3)

Unptimized Pole

The expressions for the potential field quality and the pole overhang required to
achieve a specified field quality for an unoptimized pole are given in eqs. (3.4) and
(3.5).

(
∆B

B

)
unoptimized

=
1

100
exp [−2.77 (x− 0.75)] (3.4)

xunoptimized =
a

h
= −0.36 ln

∆B

B
− 0.90 (3.5)

Graph

These expressions are more easily used when the functions are graphed as shown in
fig. 8.
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Dipole Pole Overhang
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Figure 8 Pole Overhang for Required Field Uniformity

Dipole Optimization

The process of optimizing a dipole magnet pole contour is an iterative process requir-
ing the use of a two dimensional magnet analysis code. An example of the process
is described in more detail in a later chapter. Briefly, the process consists of the
following steps:

1. Select a series of bumps (usually three) at and near the edge of a pole.

(a) Each bump shape is defined with a series of x and y coordinates with the
y coordinates scalar fractions of a height parameter, Hn for each bump,
where n is an index for the number of bumps. Most successful optimiza-
tions employ at least three bumps using three Hn’s for the optimization.

(b) The bumps overlap, so that the final pole shape is the sum of the bumps.

2. Each bump height parameter Hn, is varied and the magnet code is run and a
performance function is measured. This performance function can be one of
several computable factors.

(a) The first few of the allowed multipole errors and/or the square root of the
sum of the squares of the multipole errors.

(b) The square root of the sum of the squares of the error fields at different
positions at the boundary of the required good field region.

3. Compute the derivatives of the performance functions with respect to the height
parameters.



Understanding the Quadrupole Magnet 67

4. Compute the Hn’s which minimizes the performance function.

5. Compute the bump shapes using 80% of the computed Hn’s and run the magnet
code.

(a) Selection of 80% rather than the full value uses an under-relaxation method
to ensure that the iterative process for this nonlinear relationship does not
diverge or oscillate.

6. Using the new pole contour as a baseline, repeat steps 2 to 5 until the perfor-
mance function is sufficiently small.

The steps described above are tedious. With some patience, pole tip opti-
mization can be achieved for simple dipole geometries. Dipole pole tip optimization
had previously been incorporated in the original UNIX version of the POISSON fam-
ily of codes as a program called MIRT. However, this optimization program was not
translated for the Windows version of the family of codes.

3.2 Understanding the Quadrupole Magnet

3.2.1 Quadrupole Uniformity

The expressions and graphs developed in the previous section provide tools for esti-
mating the dipole pole width required for a magnet with a specified field uniformity.
The mathematics of conformal mapping developed in Chapter 2 are employed to
extend the knowledge about the design and performance of dipoles to quadrupoles.

Fig. 9 illustrates a quadrupole pole with pole radius h and required good field
region defined by the radius, r0. It is useful to develop expressions for the location
of the pole cutoff point, (xc, yc), satisfying the requirement ∆B

B
≤ a specified value

within a region bounded by the radius of the good field region, r0. The quadrupole
pole cutoff coordinate is analgous to the dipole pole edge. The location of this pole
cutoff has important design implications. It affects the saturation characteristics of
the magnet since the iron at the edge of the quadrupole pole is the first part of the pole
to exhibit saturation effects as magnet excitation is increased. Also, it determines
the width of the gap between adjacent poles and thus the width of the coil that can
be installed for a two piece quadrupole. (The field quality advantages of a two piece
quadrupole over a four piece quadrupole will be discussed in a later chapter).

Conformal Map

The expression for the function which conformally maps the quadrupole space to the
dipole space is given in eqs. (2.39) and (2.40), w = z2

h
. Using this expression, the

quadrupole good field radius, |r0|, maps into the dipole good field radius |w0| = |r0|
2

h
.

The dipole pole illustration corresponding to the quadrupole pole illustration is shown
in fig. 10.
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Figure 9 Quadrupole Pole Width

Figure 10 Mapped Dipole
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For the dipole, the coordinates of the pole corner are given by (uc, vc) =(
r2
0

h
+ a, h

)
, where a can be computed using eqs. (3.2) and (3.3) or eqs. (3.4) and

(3.5).
Using the shorthand version of these equations, a = h [xoptimized] or a =

h [xunoptimized], and ρ0 = r0
h

is a normalized good field radius, the normalized co-
ordinate of the dipole pole corner is

(uc

h
,
vc
h

)
=

(
ρ20 +

[
xoptimized

xunoptimized

]
, 1

)

where

[
xoptimized

xunoptimized

]
=

⎡⎢⎣ −0.14 ln
∆B

B
− 0.25

−0.36 ln
∆B

B
− 0.90

⎤⎥⎦ .

The expressions to map the dipole into the quadrupole are given by eqs. (2.41)
and (2.42) and can be rewritten in the normalized form

x

h
=

√
1

2

( |w|
h

+
u

h

)
and

y

h
=

√
1

2

( |w|
h

− u

h

)
.

Since |w|
h

=
√(

u
h

)2
+
(
v
h

)2
a final expression for the normalized coordinates of

the quadrupole corner
(
xc
h
, yc

h

)
are

xc

h
=

√√√√√√√√1

2

⎛⎜⎜⎜⎝
√(

ρ20 +

[
xoptimized or
xunoptimized

])2

+ 1

+ρ20 +

[
xoptimized or
xunoptimized

]
⎞⎟⎟⎟⎠ (3.6)

and
yc
h

=

√√√√√√√√1

2

⎛⎜⎜⎜⎝
√(

ρ20 +

[
xoptimized or
xunoptimized

])2

+ 1

−ρ20 −
[
xoptimized or
xunoptimized

]
⎞⎟⎟⎟⎠ . (3.7)

The equations are graphed in a variety of formats. The normalized corner
coordinates are shown in figs. 11 and 12. The expressions are graphed for both the
optimized and unoptimized pole to illustrate the advantages of pole optimization.
The quality at various good field radii are computed since the beam typically occupies
different fractions of the aperture. Since the field for the quadrupole varies with the

radius; Bc

Bpole
= |wc|

h
=
√(

xc
h

)2
+
(
yc
h

)2
, the flux density at the corner of the pole as

a multiple of the flux density at the center of the pole tip can be computed and is
illustrated in fig. 13.
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Quadrupole Horizontal Pole Cutoff
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Quadrupole Vertical Pole Cutoff
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Quadrupole Pole Corner Field
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3.3 Understanding the Gradient Magnet

3.3.1 Gradient Magnet Uniformity

Since gradient magnets are increasingly used in compact accelerators, similar rela-
tionships are derived allowing the calculation of the coordinates of the two edges of
a gradient magnet pole with respect to the required good field region. As shown in
an earlier chapter, the gradient magnet pole can be regarded as the edge of the pole
of a very large quadrupole. In order to determine the coordinates of an ideal gradi-
ent magnet pole and its edges, the specified requirements for the magnet need to be
known. These input variables are the central field, B0, the Gradient, B′, the vertical
half gap at the magnet center, h, the half-width of the good field region, |xGFR|, and
the allowed normalized field error within the good field region, ∆B

B
. The gradient

magnet pole is illustrated in fig. 14. Since the X coordinate is shifted and since the
equation of the hyperbola is XY = H2

2
,

X = x+
B0

B′
and Y =

H2

2X
where H =

√
2Boh

B′
.

Normalized to the quadrupole aperture,

X

H
=

x

H
+

B0

HB′
and Y =

H

2X
.
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Figure 14 Gradient Magnet Pole in (X,Y) Coordinate System

Figure 15 Mapped Dipole
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The expressions derived in Chapter 1, u = X2−Y 2

H
, for the conformal map of

the dipole space to the quadrupole space are used. These expressions are normalized
to the quadrupole “radius”, H, so that the unitless expressions can be used. The u
coordinates of the left edge and right edge of the dipole, shown in fig. 15, u1 and u2

are;

u1 =
X2

1 GFR

H
=

(
−xGFR +

B0

B′

)2

H

u2 =
X2

2 GFR

H
=

(
xGFR +

B0

B′

)2

H

and the coordinates of the pole edges are;

uc1 =
X2

1 GFR

H
− a =

(
−xGFR +

B0

B′

)2

H
− a vc1 = H,

uc2 =
X2

2 GFR

H
+ a =

(
xGFR +

B0

B′

)2

H
+ a vc2 = H,

where a = H

[
xoptimized or
xunoptimized

]
,

where xoptimized and xunoptimized are given by eqs. (3.3) and (3.5).
Written using normalized unitless coordinates.

uc1

H
=

(
−xGFR

H
+

B0

HB′

)2

−
[
xoptimized or
xunoptimized

]
vc1
H

= 1

uc2

H
=

(
xGFR

H
+

B0

HB′

)2

+

[
xoptimized or
xunoptimized

]
vc2
H

= 1.

|w|
H

=

√( u

H

)2

+
( v

H

)2

=

√( u

H

)2

+ 1.
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|wc1|
H

=

√√√√{(
−xGFR

H
+

B0

HB′

)2

−
[
xoptimized or
xunoptimized

]}2

+ 1

|wc2|
H

=

√√√√{(
xGFR

H
+

B0

HB′

)2

+

[
xoptimized or
xunoptimized

]}2

+ 1.

Substituting using eqs. (2.41 and 2.42) for the conformal map from the dipole

to the quadrupole space developed in the last chapter where H =
√

2Boh
B′

is the

quadrupole aperture radius;

X = x+
B0

B′
=

√
H

2
(|w|+ u), Y = y =

√
H

2
(|w| − u) (3.8)

xc1 = −B0

B′
+

√
H

2
(|wc1|+ uc1), yc1 =

√
H

2
(|wc1| − uc1)

xc2 = −B0

B′
+

√
H

2
(|wc2|+ uc2), yc2 =

√
H

2
(|wc2| − uc1) (3.9)

These equations are difficult to deal with and visualize. Therefore, a spread-
sheet has been prepared to perform the calculations and compute and plot the pole
contour and its edges given the required parameters, B0, B

′, h, xGFR, and
∆B
B
, which

are input in the yellow cells in the spreadsheet. The green cells in the spreadsheet
are computed values. (The indicated colors are not shown in this text but can be
found in the Excel c© spreadsheet.) Graphical results are updated in the spread-
sheet illustrating the ideal hyperbolic gradient magnet pole and points on the edges
required to achieve the required uniformity for a optimized and unoptimized pole.
This spreadsheet is included in the CD attached to this publication. A sample page
of the spreadsheet is shown in fig. 16.

3.4 Mapping an Existing Gradient Magnet Design

The previous section describes the means for applying the canonical rules for selecting
an H type dipole pole width and applying these rules to the preliminary design
of a gradient magnet pole contour. (The following discussion assumes that the
magnet engineer/designer has elected to optimize the pole contour to minimize the
pole width.) At some point, a great deal of effort is spent in developing a final pole
contour with the required pole width and several bumps on each pole edge satisfying
the requirements for a specific machine. b0 (the central field), b

′(the gradient), h (the
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Input Parameters Good Field Region Boundary
B0 1.4 Tesla GFR
B' 3.3 T/m -0.05 0
h 0.025 meters -0.05 0.0125
Xgfr 0.05 meters 0.05 0.0125
DeltaB/B 5.00E-04 0.05 0
Computed Values

H 0.1456438 meters

Funoptimized -1.84

Foptimized -0.81

Optimized Unoptimized
w1/H u1/H w2/H u2/H w1/H u1/H w2/H u2/H

5.874321248 5.7885793 11.46054 11.41683 4.870153 4.766381 12.47916 12.43903

Optimized Unoptimized
X1/H Y1/H X2/H Y2/H X1/H Y1/H X2/H Y2/H

2.414839594 0.2070531 3.382113 0.147837 2.195055 0.227785 3.529744 0.141653
X1*Y1/H^2 X2*Y2/H^2 X1*Y1/H^2 X2*Y2/H^2

0.5 0.5 0.5 0.5

x Opt radius Bmax Bmax/B0 x Unopt radius Bmax Bmax/B0
-0.07253597 0.030156 (m) (Tesla) -0.104546 0.033175 (m) (Tesla)
0.068341405 0.0215315 0.493054 1.627079 1.162199 0.089843 0.020631 0.514499 1.697848 1.212748

Point x pole Input Parameters
0 -0.104546 0.033175 B0 1.4 Tesla
1 -0.09529 0.032242 B' 3.3 T/m
2 -0.086033 0.031359 h 0.025 meters
3 -0.076776 0.030524 Xgfr 0.05 meters
4 -0.06752 0.029732 DeltaB/B 0.0005
5 -0.058263 0.02898
6 -0.049006 0.028265
7 -0.03975 0.027585
8 -0.030493 0.026936
9 -0.021237 0.026317

10 -0.01198 0.025726
11 -0.002723 0.025162
12 0.0065333 0.024621
13 0.01579 0.024103
14 0.0250466 0.023606
15 0.0343032 0.02313
16 0.0435599 0.022672
17 0.0528165 0.022232
18 0.0620731 0.021809
19 0.0713298 0.021402
20 0.0805864 0.021009
21 0.089843 0.020631
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Input Parameters Good Field Region Boundary
B0 1.4 Tesla GFR
B' 3.3 T/m -0.05 0
h 0.025 meters -0.05 0.0125
Xgfr 0.05 meters 0.05 0.0125
DeltaB/B 5.00E-04 0.05 0
Computed Values
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Figure 16 Gradient Magnet Edge Calculation Spreadsheet
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aperture at the pole center), xgfr (the half width of the good field region) and ∆B
B

(the field uniformity) are the typical gradient two-dimensional magnet parameters
required for a particular machine resulting in a set of optimized pole coordinates,
(xi, yi), where i is typically a large number representing the selection of many points
on a pole contour. The optimized pole contour satisfies the field quality requirements,
∆B
B
, in the required good field region, −xgfr ≤ x ≤ +xgfr. (In this description, lower

case letters are used to indicate the various parameters for a baseline design. One
exception is for ∆B

B
. The field quality, ∆B

B
, is considered a generic requirement and

assumed, in the following example, to be applied uniformly to all magnets.)
In this section, a process is described where a baseline pole contour, (xi, yi),

optimized originally for one application, is mapped to generate the pole contour
coordinates, (Xj, Yj), where (in general) j > i, to satisfy entirely different design
requirements (except for the uniformity) for another application. These requirements
for the new application are listed as B0, B

′, h2, Xgfr. (h2 is lower case for the new
contour. Capital H is reserved for the quadrupole aperture of the gradient magnet
pole.) Much of the description of the mapping algorithm is graphically represented.
Briefly, the process consists of the following steps.

1. Map the baseline gradient magnet pole into the dipole space.

2. Map the unoptimized new gradient magnet pole into the dipole space.

3. Scale the dipole map of the baseline pole so that it has the same gap as the
mapped new gradient magnet pole.

4. Shift the transverse center of the scaled baseline dipole so that the new B0

B′
ratio

is achieved.

5. Add (or subtract) from the center of the scaled and shifted dipole so that the
new good field region is satisfied.

6. Map the mapped, scaled, shifted and center added (or subtracted) dipole back
into quadrupole space.

The process is rather involved. However, the results are reasonably simple
and elegant. The derivations can be skipped by the reader not specifically interested
in the subject and one can simply use the algorithms presented at the end of this
section. If a gradient magnet is required for a particular project, employing the
mapping techniques described in this section can save a great deal of time. In
addition, measurements from magnets mapped from an old design verifies that field
quality can be successfully duplicated.

3.4.1 Baseline Optimized Pole

The design parameters for the baseline pole are b0 = 1.4 T , b′ = 3.6 T
m
, h1 = 0.035 m,

xgfr = ±0.03 m, ∆B
B

≤ 5× 10−4. The baseline optimized pole is shown in fig.17.
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Figure 17 Baseline Gradient Magnet Pole

3.4.2 New Unoptimized Pole

The usual change in the specifications for a new magnet (and the parameters used for
this example) is for a lower gradient, smaller half gap and a wider good field region.
The design parameters for the new pole are B0 = 1.4 T , B′ = 3.3 T

m
, h2 = 0.020 m,

xgfr = ±0.06 m, ∆B
B

≤ 5× 10−4. The new unoptimized pole is shown in fig. 18.

3.4.3 Baseline Mapped Pole

The pole in the quadrupole z = x+iy plane is mapped into the dipole w = u+iv plane
after the coordinate translation to the X = x + b0

b′
is made. Using the expressions

for the mapped dipole coordinates, u =
(X2−Y 2)

H
and v = XY

H
, the dipole coordinates

of the baseline pole can be computed. The expressions for the mapped dipole pole
and the edges of the good field region from the original optimized pole contour are

ui =

(
xi +

b0
b′

)2

− y2i

H2
, vi =

2XY

H1
=

2

(
xi +

b0
b′

)
yi

H1
, H1 =

√
2b0h1

b′
,(3.10)

u1 =

(
−xgfr +

b0
b′

)2

H1
, u0 =

(
b0
b′

)2

H1
, u2 =

(
+xgfr +

b0
b′

)2

H1
.

3.4.4 New Mapped Unoptimized Pole

Using the same mapping equation employed in the last section, the dipole coordinates
of the new unoptimized pole and the edges of the new good field region are
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Figure 18 New Unoptimized Pole

Ui =

(
Xi +

B0

B′

)2

− Y 2
i

H2
, Vi =

2XY

H2
= H2, H2 =

√
2B0h2

B′
,

U1 =

(
−Xgfr +

B0

B′

)2

H2
, U0 =

(
B0

B′

)2

H2
, U2 =

(
+Xgfr +

B0

B′

)2

H2
.

The results of mapping both the baseline and the new unoptimized poles are
shown in fig. 19.

3.4.5 Scaling and Shifting

If the optimized gradient magnet pole is to have the desired properties, the mapped
optimized pole must be scaled so that the desired dipole gap is achieved. The good
field boundaries and the centers are also scaled. (In this section, the capital U and
V will be used for the final coordinates.) The expressions for the scaling are

Ui−scaled =
H2

H1
ui, Vi−scaled =

H2

H1
vi.

Once the desired dipole gap is achieved, the center of the pole must be shifted
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Figure 19 Baseline and New Unoptimized Pole

to achieve the proper central field gradient ratio. The expressions for the shift are

Ui−scaled−shifted =
H2

H1
ui +

(
U0 − H2

H1
u0

)
Vi−scaled−shifted =

H2

H1
vi.

The expressions for the scaled and shifted edges of the good field region are

U1−scaled−shifted =
H2

H1
u1 +

(
U0 − H2

H1
u0

)
,

=
H2

H1
(u1 − u0) + U0

U2−scaled−shifted =
H2

H1
(u2 − u0) + U0

3.4.6 Center Expansion

The scaled and shifted dipole contour, shown in fig. 20, has a good field region
substantially narrower than the desired good field region for the new pole. Prior to
mapping the contour into the quadrupole space, it is necessary to expand the center
of the constant aperture dipole by the differences in the good field region to the left
and to the right of the magnet center. The expressions for the expanded dipole
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Figure 20 Mapped Dipole, Scaled and Shifted

coordinates are

U

⎛⎝ i-scaled
shifted

left expanded

⎞⎠ =
H2

H1
ui +

(
U0 − H2

H1
u0

)
−
[
H2

H1
(u1 − u0) + U0 − U1

]

U

⎛⎝ i-scaled
shifted

left expanded

⎞⎠ =
H2

H1
(ui − u1) + U1 (3.11)

U

⎛⎝ i-scaled
shifted

right expanded

⎞⎠ =
H2

H1
ui +

(
U0 − H2

H1
u0

)
+

[
U2 −

(
H2

H1
(u2 − u0) + U0

)]

U

⎛⎝ i-scaled
shifted

right expanded

⎞⎠ =
H2

H1
(ui − u2) + U2 (3.12)

Vi−scaled−shifted =
H2

H1
vi. (3.13)

The vertical coordinates remain the same. Expanding the left and right sides
of the good field region
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U

⎛⎝ 1-scaled
shifted

expanded

⎞⎠ =
H2

H1
(u1 − u0) + U0 −

[
H2

H1
(u1 − u0) + U0 − U1

]
= U1

U

⎛⎝ 2-scaled
shifted

expanded

⎞⎠ =
H2

H1
(u2 − u0) + U0 +

[
U2 −

(
H2

H1
(u2 − u0) + U0

)]
= U2

the correct expressions for the required mapped good field regions are obtained.

3.4.7 Mapping Back into the Quadrupole Space

The final step in the process is mapping the dipole pole, derived from the existing
optimized gradient magnet pole satisfying the initial requirements after it has been
scaled, shifted and expanded, back into the quadrupole space. Eqs. (3.6), (3.6) and
(3.6) are used and reviewed below;

X = x+
B0

B′
=

√
H

2
(|W |+ U) and Y = y =

√
H

2
(|W | − U) (3.14)

where H = H2 =

√
2B0h2

B′
(3.15)

Ui−left =
H2

H1
(ui − u1) + U1 Ui−right =

H2

H1
(ui − u1) + U2 (3.16)

Vi =
H2

H1
vi |Wi| =

√
U2
i + V 2

i . (3.17)

In the above expressions, ui and vi are the left and right values of the mapped
dipole coordinates computed for x < 0 and x > 0, respectively, from the original
gradient magnet coordinates. The indices are changed in order to match the indices
used in the mapped geometry. Additional points are needed at the center of the pole
and are obtained by mapping a flat contour with aperture H2. The results of the
mapping from one set of requirements to an entirely different set of requirements is
illustrated in fig. 21.

3.5 Chapter Closure

This chapter begins by introducing the orthogonal analog model, a tool for visualiz-
ing the magnetic field potentials given the two-dimensional geometry of the magnet
aperture and the coils. The utility of this tool is demonstrated by showing that
a window frame magnet with coils uniformly spaced in the aperture can be confor-
mally mapped to produce an almost perfectly linear quadrupole field. The conformal
mapping tools, introduced in the previous chapter, are used to map the gap and indi-
vidual conductors into quadrupole space supplying the boundary conditions so that
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Figure 21 New Gradient Magnet Pole Mapped from an Old Optimized Pole

the potential functions are also mapped. The resulting quadrupole magnet achieves
a nearly perfectly linear magnetic field distribution. This magnet is not without
its difficulties. The mapping algorithms require the individual conductors to be
placed precisely in their mapped locations which are not uniformly spaced, resulting
in a challenging mechanical coil design. In addition, the current density required to
achieve a practical gradient is high, resulting high power and a coil with many water
circuits to dissipate the heat.

The window frame magnet with its inherently uniform field distribution is
compared with the more commonly used H-magnet configuration. Application of the
orthogonal analog model to the H-magnet suggests that uniform field is limited to
the center of the pole. This configuration is used almost entirely in large acceler-
ators since the coils can be ecnomically wound as flat pancakes while the window
frame magnets require more expensive saddle coils to provide room for beam tubes.
Therefore, canonical rules have been developed which predict the field quality of flat
and optimized poles or specify the pole width required to satisfy field quality re-
quirements. Again, the orthogonal analog model can be used to estimate the size
and shapes of the bumps at the pole edges to smooth out the flow lines and enhance
(optimize) the field uniformity and reduce the flux concentration at the pole corners.

The conformal mapping algorithms, developed in the previous chapter, are
exploited to extend the dipole rules for selecting the pole width to achieve a required
field uniformity to quadrupole and gradient magnets. The graphs derived from the
mapped expressions provide useful information regarding the preliminary designs of
quadrupole and gradient magnet poles needed to achieve a desired field uniformity.
The conformal mapping algorithms are exploited again, this time to take an existing
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optimzied gradient magnet pole, satisfying performance parameters for a single appli-
cation, and map it into an entirely different geometry to achieve different performance
parameters for a different application.

One can understand many families of magnets from his/her understanding
of the simplest magnet geometry, the dipole. The dipole magnet is one which can
be understood easily. The potential functions for the ideal dipole are straight and
uniformly spaced and thus means of improving the fields are suggested instinctively.
Therefore, the main task in pole tip design is to optimize a good dipole pole contour.
Although the boundary conditions for the various magnet types (coil locations and
angles at the pole edges) are not perfectly mapped, the pole contours for quadrupoles,
sextupoles and gradient magnets can be mapped using the optimized dipole as a
baseline. The field uniformity of the multipole magnets will nearly reproduce the
performance of the baseline dipole.
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Figure 22 Orthogonal Analog Problem #1

Figure 23 Orthogonal Analog Problem #2

3.6 Problems

Problem 3.1

Using the principles of the orthogonal analog model, plot the flow and flux lines for
the illustrated dipole example shown in fig.(22). How would you characterize the
field quality? What changes would you make either to the yoke design or the coil
placement to improve the field quality?

Problem 3.2

Using the principles of the orthogonal analog model, plot the flow and flus lines for
the illustrated magnet shown in fig. (23). Take advantage of the symmetry lines
represented as the centerlines in the illustration.

From the flux line distribution, what type of magnet is this?
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Figure 24 Sextupole Trim Configurations

Problem 3.3

For the sextupole yoke and the current distribution illustrated in fig. (24), use the
principles of the orthogonal analog model to estimate the field distribution for the
first of the thre cases. What type of field is produced by case#1? For cases #2
and #3, determine the polarities indicated by the current directions and plot flux
lines between the positive and negative (or neutral) poles. What type of fields are
produced in cases #2 and #3?

Problem 3.4 (Solution)

For a 50 mm pole radius and a requiring
(
∆B
B

)
r=40mm

= 5 × 10−4 and a gradient

B′ = 12 T
m
, what is the maximum field on an unoptimized pole pole? What is the

maximum field on an optimized pole? What is the maximum width of coil which
can be installed in a two-piece quadrupole with an unoptimized pole? What is the
maximum width of coil which can be installed in a two-piece quadrupole with an
optimized pole? (Hint - Use the graphs - it’s easier than computing.)
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Chapter 4

PERTURBATIONS

4.1 Introduction

It was shown in a previous chapter that magnet fields can be characterized by a
function of the complex variable written in the Taylor’s series form, F =

∑
n

Cnz
n.

In this chapter, formulae and tables in two papers by Dr. Klaus Halbach [6][7] are
reproduced. Expressions and coefficients used to estimate the value of the change in
the coefficients, ∆Cn, resulting from design assymtry or errors in mechanical, fabri-
cation, assembly and/or excitation of magnet poles are summarized. The shorthand
dimensionless expression n

N
∆Cn = n∆Cn

NCN
rn−N
0 is used to describe the ratio of the error

field normalized to the fundamental field coefficient evaluated at the pole tip radius,
r0. (The n

N
term is needed since the field ratios are ratios of the derivatives of the

various terms, Cnz
n, and d

dz
Cnz

n = nCnz
n−1.) Constants for these normalized er-

ror fields due to various mechanical and excitation perturbations evaluated by Klaus
Halbach are tabulated. These constants make it possible to compute the spectrum
of normalized multipole errors due design assymetry and/or various mechanical, fab-
rication/assembly errors and pole excitation errors. Pole excitation errors, resulting
from other factors rather than incorrect number of coil windings on a pole, are dis-
cussed and evaluated. Some of these excitation errors can result from differences
in pole lengths and pole excitation differences in the scalar potential behind the coil
due to mechanical assymetry. The error tables also list coefficients for n = N and
n = N − 1 so the expressions can be used to predict perturbations in excitation (the
fundamental field) and the magnetic center displacement due to the mechanical and
excitation errors.

The concept and the tools (the mathematical expressions) are extremely im-
portant since physics performance requirements are usually defined by the allowable
maximum amplitude of the multipole error content of magnets, alignment specifica-
tions and required excitation precision. These physics requirements are defined by
a spectrum of acceptable multipole errors, the spilldown multipole (N − 1) which
characterizes the displacement of the magnetic center from the mechanical center
and the fundamental field error, which affects the excitation and magnet to magnet
reproducibility. Using the expressions and coefficients, it is possible to specify the
fabrication/assembly tolerances which satisfy magnet physics requirements.
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Finally, the expressions and the elements in the tables can be used to design
trim coils which superimpose other desired fields in an existing magnet. Examples
of trim windings on a sextupole yoke are presented.

4.2 Algorithms and Tables

Random multipole errors are introduced if the poles are improperly excited or as-
sembly errors which displace poles are introduced. If these errors can be identified
and measured, the resulting multipole content of the magnet can be predicted. The
means for calculating these errors are summarized in two papers published by Klaus
Halbach. The first paper describes the derivation of the relationships, the second
computes and tabulates the coefficients used to calculate the multipole errors from
the perturbations derived in the first paper. A portion of some selected tables of
dimensionless coefficients are reproduced here and the algorithms for computing the
field errors normalized to the fundamental at the pole tip radius are presented.

4.2.1 Quadrupole Pole Error Coefficients, N=2

The first table tabulates coefficients, xn, for the computation of multipole fields, nor-
malized to the fundamental field evaluated at the pole tip, for errors in the excitation,
radial offset, azimuthal offset and pole rotation of individual poles for a quadrupole.

N=2, Quadrupole Individual Pole Coefficients

n
n

N

∆Cn (j)

iεj

n

N

∆Cn (rd)

iεrd

n

N

∆Cn (az)

εaz

n

N

∆Cn (rot)

εrot
1 1.99× 10−1 −4.25× 10−1 7.46× 10−2 1.76× 10−1

2 2.50× 10−1 −5.16× 10−1 2.14× 10−1 5.00× 10−1

3 1.57× 10−1 −2.88× 10−1 2.88× 10−1 6.60× 10−1

4 0 6.76× 10−2 2.31× 10−1 5.00× 10−1

5 −2.05× 10−2 1.08× 10−1 1.08× 10−1 1.91× 10−1

6 0 4.45× 10−2 2.87× 10−2 0
7 −1.61× 10−2 −1.04× 10−2 1.04× 10−2 −3.06× 10−2

8 0 1.28× 10−2 1.56× 10−2 0
9 −1.90× 10−3 1.25× 10−2 1.25× 10−2 7.53× 10−3

10 0 6.37× 10−3 5.81× 10−3 0
11 3.15× 10−3 −2.44× 10−3 2.44× 10−3 −3.62× 10−3

12 0 2.66× 10−3 2.79× 10−3 0
13 −2.45× 10−4 2.27× 10−3 2.27× 10−3 9.28× 10−4

14 0 1.26× 10−3 1.23× 10−3 0
15 6.69× 10−4 −5.55× 10−4 5.55× 10−4 −6.66× 10−4

16 0 5.76× 10−4 5.82× 10−4 0

4.2.2 Sextupole Pole Error Pole Error Coefficients, N=3

The second table tabulates coefficients, xn, for the computation of multipole fields,
normalized to the fundamental evaluated at the pole tip, for errors in the excitation,
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Figure 1 Individual Pole Mechanical Perturbations

radial offset, azimuthal offset and pole rotation of individual poles for a sextupole.
N=3, Sextupole Individual Pole Coefficients

n
n

N

∆Cn (j)

iεj

n

N

∆Cn (rd)

iεrd

n

N

∆Cn (az)

εaz

n

N

∆Cn (rot)

εrot
1 9.79× 10−2 −3.14× 10−1 5.09× 10−2 8.47× 10−2

2 1.56× 10−1 −4.95× 10−1 1.71× 10−1 2.84× 10−1

3 1.67× 10−1 −5.15× 10−1 3.03× 10−1 5.00× 10−1

4 1.33× 10−1 −3.90× 10−1 3.90× 10−1 6.39× 10−1

5 7.09× 10−2 −1.73× 10−1 3.97× 10−1 6.43× 10−1

6 0 6.55× 10−2 3.18× 10−1 5.00× 10−1

7 −1.34× 10−2 1.08× 10−1 1.95× 10−1 2.88× 10−1

8 −1.07× 10−2 9.03× 10−2 9.03× 10−2 1.08× 10−1

9 0 4.16× 10−2 2.51× 10−2 0
10 9.13× 10−3 −1.93× 10−3 1.90× 10−3 −3.38× 10−2

11 9.72× 10−3 −1.45× 10−2 5.49× 10−3 −2.05× 10−2

12 0 1.05× 10−2 1.31× 10−2 0
13 −1.01× 10−3 1.07× 10−2 1.36× 10−2 7.34× 10−3

14 −1.18× 10−3 9.85× 10−3 9.85× 10−3 5.82× 10−3

15 0 5.06× 10−3 4.56× 10−3 0

4.2.3 Computing Error Multipoles

The coefficients are computed for a pole whose baseline position is along the positive
x-axis as shown in fig. 1.

Since the poles for normal multipole magnets are rotated an angle β from the
horizontal axis, the fields relative to the horizontal coordinate axis for normal magnet
poles located at angles, β, are calculated by an axis rotation −nβ for the individual
poles at angle β. The error multipole normalized to the fundamental field evaluated
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at the pole radius due to the errors of poles at an angle β from the positive x-axis is
given by,

(
B∗

n

B∗
N

)
@r=h

=
n

N
∆Cne

−inβ. (4.1)

It is assumed that the fundamental field is real. Then, BNx = 0 and the
expression can be rewritten;

(
Bnx − iBny

−iBNy

)
@r=h

=
n

N
∆Cne

−inβ,

or removing the imaginary term from the denominator,

(
Bny + iBnx

BNy

)
@r=h

=
n

N
∆Cne

−inβ. (4.2)

The expressions for the nth normalized error multipole components due to a
combination of all the perturbations of the pole located at angle β using the tabulated
coefficients, are

(
Bny + iBnx

BNy

)
@r=h

= (iεjxj + iεrdxrd + εazxaz + εrotxrot) e
−inβ,

= (iεjxj + iεrdxrd + εazxaz + εrotxrot) (cosnβ − i sinnβ) ,

(4.3)

where the x′s are the tabulated coefficients and the first two terms are multiplied
by the i× the normalized mechanical and excitation errors and the last two terms
are multiplied by the real error term. The real and skew error components can be
computed by equating the real and imaginary parts of the expression and result in
the skew and real multipole errors. All the mechanical and excitation errors are
dimensionless and given by

εj =
∆J

J
εrd =

∆x

h
εaz =

∆y

h
εrot = ∆Angle (radians) , (4.4)

where εj is the expression for the excitation error, ∆J , normalized to the nominal
pole excitation, ∆x and ∆y are the horizontal and vertical offsets of the unrotated
pole, normalized to the pole radius, h, and εrot is the rotation error (in radians) of the
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individual poles about the center of the magnet. In general, the computation of the
errors requires the characterization of the alignment and excitation errors of all the
magnet poles with respect to a datum coordinate system. Thus, the expression for
the nth multipole error due to the mechanical alignment errors and excitation errors
of all poles for a multipole magnet is,

(
Bny + iBnx

BNy

)
@r=h

=
N∑
k=1

(iεj,kxj + iεrd,kxrd + εaz,kxaz + εrot,kxrot) (cosnβk − i sinnβk) ,

(4.5)

where N = 4 and βk =
π
4
, 3π

4
, 5π

4
and 7π

4
, for k = 1, 2, 3 and 4 for a quadrupole.

For the sextupole, N = 6 and βk = π
6
, π

2
, 5π

6
, 7π

6
, 3π

2
, and 11π

6
, for k =

1, 2, 3, 4, 5 and 6.
Using the expressions, one can compute the multipole spectrum resulting from

excitation, fabrication and assembly errors provided that all the errors for each of the
yoke segments can be accurately measured or identified. (The excitation error can
result from mechanical errors in the length of individual poles, normalized to the
nominal pole length as well as coil fabrication errors.) The computations for the
effects of alignment and excitation errors for individual poles is tedious, complex and
requires many terms. For a multipole with individual yoke pieces for each pole, the
expression for multipole errors may contain 4N terms for each multipole error, where
N is the number of segments making up a single yoke assembly. (There are 4 degrees
of freedom from each segment and for 4 quadrupole segments, the number of possible
permutations is 4× 4× 4× 4.) In addition, since both real and skew terms must be
computed, the expression requires the computation of 2 × 4N terms. This type of
computation is seldom performed or needed. A more practical example of the use of
this tool is presented in the discussion of a two piece quadrupole.

4.3 Two Piece Quadrupole

If the quadrupole yoke construction can be simplified so that the assembly is kinematic
and fabrication or design errors can be predicted and/or measured, the algorithms for
predicting the various multipole errors can be simplified. The obvious simplification
is the reduction of the number of yoke segments to the smallest possible number
satisfying assembly constraints. Assembly constraints include the requirement to
provide room to install coils and vacuum chambers. A quadrupole yoke assembled
from two pieces, each piece having two poles is such a simplification.

• The mechanical assembly errors can be limited to three degrees of freedom,
∆x,∆y and εrot errors of one half of the yoke with respect to the other.

• Errors can be predicted for assymetric designs forced by physics constraints.
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Figure 2 Assymetric Quadrupole

• Mechancial fabrication errors can be limited to the differences in the lengths of
each yoke segment.

In order to provide examples of the computations which the student can follow,
the entries for a table coefficients for errors due to two cases are derived. The two
examples selected are two dimensional yoke assymetry and fabrication errors which
result in differences in the lengths of the two core segments. Table entries (derived
in the cited references using similar techniques) are presented and not derived for the
kinematic assembly errors, ∆x,∆y and εrot.

4.3.1 Magnet Assymetry

Some of the concepts and formulations used in this section rely on the material covered
more fully in the next chapter on pages 114 to 116. If unfamiliar with these concepts,
this material may be reviewed by the student before proceeding with this section.

The first derived example assumes the magnet design is assymetric about the
vertical centerline of the four poles. For synchrotron light electron accelerators, one
side of the magnets must have room for the vacuum chamber housing the photon
light generated by upstream bend magnets, wigglers or undulators. Because of this
requirement, quadrupoles are occasionally constructed assymetrically, causing the
bases of the poles (the area behind the coils) to be at different scalar potentials.
This is due to the differences in the lengths of the reluctance path through the iron.
This is equivalent to reducing the current at two poles nearest the opening. The
condition is illustrated in fig. 2.

The affect of this assymetry can be estimated by making a two dimensional
magnetostatic calculation for the assymetric condition and computing the difference
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in the scalar potential on the top and bottom of the structure,

∆A = ∆I =

∫
path1

H · dl = 1

µ0

∫
path1

B

µ
· dl.

This is equivalent to reducing the magnitude of the excitation currents at the
positive pole #1 and the negative pole #4. The effect on the multipole content can
be computed using the tables for the individual poles and computing

|εa| =

∫
path1

H · dl

I

(where εa signifies the error due to assymetry) for the two poles. Since the
∫

path1

H ·dl
has the effect of reducing the positive current at pole #1 and increasing the negative
current at pole #2, the signs of the errors are both negative for poles #1 and #2.
Moreover, in order to preserve computational symmetry, the errors are distributed
to all four poles. The signs of the errors are both positive for poles #3 and #4.
The perturbations are distributed with appropriate signs to each of the four poles.
The values of the individual multipole errors from this error are computed using the
expression;

(
Bny + iBnx

BNy

)
@r=h

= −i
εa
2
xje

−in
π
4 − i

εa
2
xje

−in
3π
4 + i

εa
2
xje

−in
5π
4 + i

εa
2
xje

−in
7π
4 ,

= i
εa
2
xj

(
− cosn

π

4
+ i sinn

π

4
− cosn

3π

4
+ i sinn

3π

4
+ cosn5π

4
− i sinn5π

4
+ cosn7π

4
− i sinn7π

4

)
,

=
εa
2
xj

⎛⎜⎝ −i cosn
π

4
− sinn

π

4
− i cosn

3π

4
− sinn

3π

4

+i cosn
5π

4
+ sinn

5π

4
+ i cosn

7π

4
+ sinn

7π

4

⎞⎟⎠ .

Equating the real and imaginary parts of the expression

(
Bny

BNy

)
@r=h

=
εa
2
xj

(
− sinn

π

4
− sinn

3π

4
+ sinn

5π

4
+ sinn

7π

4

)
,

= εaxj

Factor1

2
,(

Bnx

BNy

)
@r=h

=
εa
2
xj

(
− cosn

π

4
− cosn

3π

4
+ cosn

5π

4
+ cosn

7π

4

)
,

= εaxj

Factor2

2
.
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In the following table, Factor1
2

is finite for all the odd indices. Factor2
2

= 0 for all

the even indices. Therefore,
(

Bny

BNy

)
@r=h

have only odd indices and
(

Bnx

BNy

)
@r=h

= 0

and the denominator for the error coefficients is real. In the following table, the
coefficients computed for the assymetry conditions are;

n

N

∆Cn (rot)

εa
= xj

(
Factor1

2
+ i

Factor2

2

)
.

Assymetry Calculations

n
n

N

∆Cn (j)

iεj

Factor1

2

Factor2

2

n

N

∆Cn (assymetry)

εa
1 1.99× 10−1 −√

2 0 −2.83× 10−1

2 2.50× 10−1 0 0 0

3 1.57× 10−1 −√
2 0 −2.22× 10−1

4 0 0 0 0

5 −2.05× 10−2
√
2 0 −2.90× 10−2

6 0 0 0 0

7 −1.61× 10−2
√
2 0 −2.28× 10−2

8 0 0 0 0

9 −1.90× 10−3 −√
2 0 2.69× 10−3

10 0 0 0 0

11 3.15× 10−3 −√
2 0 −4.45× 10−3

12 0 0 0 0

13 −2.45× 10−4
√
2 0 −3.46× 10−4

14 0 0 0 0

15 6.69× 10−4
√
2 0 9.46× 10−4

16 0 0 0 0
From this table, it can be seen that the results of an assymetric quadrupole is

to introduce real odd harmonic errors. These errors include the dipole (n = 1) error
which displaces the magnetic center horizontally from the mechanical center of the
quadrupole.

4.3.2 Differences in Lengths of the Upper and Lower Halves

The second derived example assumes the two halves of the magnets are different
lengths. This is equivalent to increasing the integrated excitation of the two upper
poles and decreasing the integrated excitation of the two lower poles. Since the
polarities of the poles alternate, a positive current is added to positive pole #1, a
negative current is added to the negative pole #2. Since the bottom two poles are
shortened, a negative current is added to the positive pole #3 and a positive current
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Figure 3 Differences in the Upper and Lower Half Lengths of a Two Piece Quadrupole

is added to the negative pole #4. The affect of this difference in length is computed
assuming that εj =

∆L
L

and assigning the proper sign for this error to each pole These
errors need to be distributed to all four poles so half the errors are assigned to each
pole. The signs of the errors are both positive for poles #1 and #4 and both negative
for poles #2 and #3. The condition is illustrated in fig. 3.

The values of the individual multipole errors from this error are computed
using the expression,

(
Bny + iBnx

BNy

)
@r=h

= +i
εl
2
xje

−in
π
4 − i

εl
2
xje

−in
3π
4 − i

εl
2
xje

−in
5π
4 + i

εl
2
xje

−in
7π
4 ,

= i
εl
2
xj

⎛⎜⎝ cosn
π

4
− i sinn

π

4
− cosn

3π

4
+ i sinn

3π

4

− cosn
5π

4
+ i sinn

5π

4
+ cosn

7π

4
− i sinn

7π

4

⎞⎟⎠ ,

=
εl
2
xj

⎛⎜⎝ i cosn
π

4
+ sinn

π

4
− i cosn

3π

4
− sinn

3π

4

−i cosn
5π

4
− sinn

5π

4
+ i cosn

7π

4
+ sinn

7π

4

⎞⎟⎠ .

Equating the real and imaginary parts of the expression,
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(
Bny

BNy

)
@r=h

=
εl
2
xj

(
sinn

π

4
− sinn

3π

4
− sinn

5π

4
+ sinn

7π

4

)
= εlxj

Factor3

2
,(

Bnx

BNy

)
@r=h

=
εl
2
xj

(
cosn

π

4
− cosn

3π

4
− cosn

5π

4
+ cosn

7π

4

)
,

= εlxj

Factor4

2
.

In the following table, Factor3
2

= 0 for all the indices. Factor4
2

is finite for all

the odd indices. Therefore,
(

Bny

BNy

)
@r=h

= 0 and
(

Bnx

BNy

)
@r=h

has finite values only

for odd indices and the denominator for the error coefficients is imaginary. In the
following table, the computed coefficients are;

n

N

∆Cn (length)

εl
= xj

(
Factor3

2
+ i

Factor4

2

)
.

Since only Factor4
2

has finite values, the error coefficient is written

n

N

∆Cn (length)

iεl
= xj

Factor4

2
.
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Unequal Length Calculations

n
n

N

∆Cn (j)

iεj

Factor3

2

Factor4

2

n

N

∆Cn (length)

iεl
1 1.99× 10−1 0

√
2 2.83× 10−1

2 2.50× 10−1 0 0 0

3 1.57× 10−1 0 −√
2 −2.22× 10−1

4 0 0 0 0

5 −2.05× 10−2 0 −√
2 2.90× 10−2

6 0 0 0 0

7 −1.61× 10−2 0
√
2 −2.28× 10−2

8 0 0 0 0

9 −1.90× 10−3 0
√
2 2.69× 10−3

10 0 0 0 0

11 3.15× 10−3 0 −√
2 −4.45× 10−3

12 0 0 0 0

13 −2.45× 10−4 0 −√
2 3.46× 10−4

14 0 0 0 0

15 6.69× 10−4 0
√
2 9.46× 10−4

16 0 0 0 0
From this table, it can be seen that the results of a quadrupole with unequal

half lengths is to introduce skew odd harmonic errors. These errors include the dipole
error which displaces the magnetic center vertically from the mechanical center of the
quadrupole.

4.3.3 Sorting

Although the previous section addresses the errors associated with mechanical fab-
rication errors resulting in different lengths of the two halves of a quadrupole yoke,
similar errors can result from another fabrication practice. If the iron used in fabri-
cating the two halves of the magnet are fabricated from iron with different chemistry
or iron that is annealed differently, the fields in the two halves of the magnet, al-
though excited with identical coils, can have different magnetic fields due to different
saturation characteristics. This practice may result in the skew multipole errors
with odd indices which change as the magnet excitation is increased. This potential
source of error can be eliminated by using laminated iron for assembling the core
segments and dividing (sorting) the laminations among the two core halves to ensure
top to bottom material property symmetry. The lamination sorting practice can also
enhance the magnet to magnet excitation reproducibility if the laminations stamped
from different batches of iron sheet are divided among all the parts of all the magnets
of the same family.
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4.3.4 Two Piece Quadrupole Errors

The coefficients for the computation of multipole fields, normalized to the fundamen-
tal at the pole tip, for errors due to horizontal displacement, vertical displacement
and rotation of the upper half of a two piece quadrupole with respect to the location
of the lower half of a two piece quadrupole were computed in references[6][7] assuming
that the poles are displaced or rotated symmetrically. These coefficients are com-
puted assuming that the upper two poles are moved or rotated half the distance or
angle in one direction and the lower two poles are moved or rotated half the distance
or angle in the opposite direction. The effects on the error multipoles are character-
ized by the computed coefficients for the two piece quadrupole. The coefficients, xn,
tabulated for the two piece quadrupole are included in the following table along with
the coefficients derived in the previous two sections.

The field errors using the tabulated coefficients are computed using the ex-
pression;

(
Bny + iBnx

BNy

)
@r=h

= i∆xxx +∆yxy + εrotxrot + εaxa + iεlxl (4.6)

where,

xx =
n

N

∆Cn (x)

i∆x

, xy =
n

N

∆Cn (y)

∆y

, xrot =
n

N

∆Cn (rot)

εrot
,

xa =
n

N

∆Cn (x)

εa
and xl =

n

N

∆Cn (rot)

iεl
, (4.7)

and,

∆x =
∆x

h
, ∆y =

∆y

h
, εrot = rotation (radians),

|εa| =

∫
path1

H · dl

I
and εl =

∆L

L
. (4.8)
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Figure 4 Quadrupole Horizontal, Vertical and Rotational Displacements

Two Piece Quadrupole Coefficients

N = 2

n
n

N

∆Cn (x)

i∆x

n

N

∆Cn (y)

∆y

n

N

∆Cn (rot)

εrot

n

N

∆Cn (a)

εa

n

N

∆Cn (l)

iεl
1 0 0 2.49× 10−1 −2.83× 10−1 2.83× 10−1

2 3.02× 10−1 −7.30× 10−1 0 0 0
3 0 0 −9.33× 10−1 −2.22× 10−1 −2.22× 10−1

4 −9.56× 10−2 −3.27× 10−1 0 0 0
5 0 0 −2.70× 10−1 −2.90× 10−2 2.90× 10−2

6 −4.06× 10−2 −6.29× 10−2 0 0 0
7 0 0 −4.33× 10−2 −2.28× 10−2 −2.28× 10−2

8 1.81× 10−2 2.20× 10−2 0 0 0
9 0 0 1.06× 10−2 2.69× 10−3 2.69× 10−3

10 8.22× 10−3 9.01× 10−3 0 0 0
11 0 0 5.12× 10−3 −4.45× 10−3 −4.45× 10−3

12 −3.77× 10−3 −3.94× 10−3 0 0 0
13 0 0 −1.31× 10−3 −3.46× 10−4 3.46× 10−4

14 −1.74× 10−3 −1.78× 10−3 0 0 0
15 0 0 −9.41× 10−4 9.46× 10−4 9.46× 10−4

16 8.14× 10−4 8.23× 10−4 0 0 0
The displacements are illustrated in fig. 4.
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4.3.5 Tolerances (Examples of Computations)

Given physics requirements, the mechanical fabrication and assembly tolerances can
be calculated. In addition, if an assymetric design is selected, the minimum size of
the yoke leading to saturation effects can be estimated. For the two piece quadrupole
assembly, the tolerances are measureable and can be realistically defined. (This is
not so easily accomplished for a four piece quadrupole.)

In the following sections, typical physics specifications for quadrupole magnets
are used and the mechanical tolerances and limits on the two dimensional design are
computed. These examples are presented to illustrate that realistic fabrication and
assembly tolerances can be assigned based on physics specifications for magnets. All
the following examples require the use of the tabulated coefficients for the quadrupole.
Where a constant appears in the expressions used to compute the allowable assembly
errors, these constants can be found as entries in the quadrupole (N = 2) table for
two piece magnets shown on page (99).

4.3.6 Alignment Error

The example quadrupole has a 35 mm pole radius quadrupole and requires alignment
of the magnetic center within ±250 µm of its ideal position. In this example, the
limits of the optical alignment system is ±150 µm, requiring the magnetic center to
coincide with the mechanical center within ±100 µm = ±0.1mm. The displacements
of the quadrupole magnetic center depends on the dipole field at the mechanical center
of the magnet and is given by;

|∆x| = h

∣∣∣∣B1y

B2

∣∣∣∣ and |∆y| = h

∣∣∣∣B1x

B2

∣∣∣∣ . (4.9)

Rotation

The mechanical motion of a two piece quadrupole which results in a dipole field is
the relative rotation of the upper half of the magnet relative to the lower half. This
motion results in an error component of field, B1y. The computation for this rotation
tolerance is;

|∆x| = h

∣∣∣∣B1y

B2

∣∣∣∣
h

= hεrotxrot1 ≤ ±0.1 mm,

εrot ≤ ± 0.1 mm

35 mm× 0.249
= ±0.0115 radians = ±11.5 mrad.

Assymetry

If an assymetric magnet design is selected, the size of the yoke connecting two adjacent
horizontal poles determines the losses,

∫
path1

H · dl. Thus, if one selects a yoke whose
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magnet efficiency is characterized by the value η, then,

∫
pole

H · dl +
∫

path1

H · dl +
∫

pole

H · dl = (1− η) I.

(Magnet efficiency is explained more fully in the following chapter on page
116.) In particulary, for a typical design;

∫
path1

H · dl ≈
(
1− η

2

)
I,

since much of the losses due to saturation occurs at the root of the pole. Therefore,
the error due to assymetry can be written;

εa =

∫
path1

H · dl

I
=

1− η

2
. (4.10)

The computation for the magnet efficiency is;

|∆x| = h

∣∣∣∣B1y

B2

∣∣∣∣
h

= hεaxa1 ≤ 0.1 mm,

εa =
1− η

2
≤ ± 0.1 mm

35 mm× 0.283
= 0.0101,

1− η ≤ 0.0202

η ≥ 1− .02 = 0.98 = 98%.

Enough iron has to be supplied so that the losses in the iron yoke is ≤ 2%.

Yoke Length Difference

Suppose the 35 mm quadrupole core length is 200 mm. The computation for the
length error is

|∆y| = h

∣∣∣∣B1x

B2

∣∣∣∣
h

= hεlxl1 ≤ ±0.1 mm,

εrl =
∆L

L
≤ ± 0.1 mm

35 mm× 0.283
= ±0.0101,

∆L ≤ ±0.0101L = ±0.0101× 200 mm,

∆L ≤ ±2 mm.
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4.3.7 Excitation Error

Suppose the specification for a collection of the example 35 mm pole radius quadrupoles
requires all magnet to have the identical gradient at a given current to ≤ 1 × 10−3.
This is a common requirement for magnet connected in series using a single power
supply. Even for magnets using separate power supplies, this repeatability require-
ments allows the use of a common algorithm to compute the current required to
achieve a given gradient for each of the magnets.

Since the even multipole errors are due to displacements of the upper half of
the magnet relative to the lower half, the expression for the quadrupole errors are;

∣∣∣∣∆B2

B2

∣∣∣∣
h

=

⎛⎜⎝ ∆xxx =
∆x

h
xx2 ≤ ±0.001

∆yxy =
∆y

h
xy2 ≤ ±0.001

⎞⎟⎠ ,

∆x ≤ ±0.001
35 mm

0.302
= ±0.116 mm,

∆y ≤ ±0.001
35 mm

0.730
= ±0.048 mm.

4.3.8 Random Multipole Error

The most important random multipole errors are those with the lowest indices. This
is because the errors vary as rn−2 for the quadrupole. Thus, the sextupole error
reduces linearly and the octopole error reduces quadratically with the radius. It is
seldom necessary to define fabrication or assembly tolerances based on the multipole
error specifications for indices > 4.

Sextupole Error

The specification for the amplitude of a random multipole requires that its amplitude

evaluated at the good field radius (gfr) .
∣∣∣ Bn

BN

∣∣∣
gfr

≤ 2× 10−4. Since∣∣∣∣Bn

BN

∣∣∣∣
r

=

∣∣∣∣Bn

BN

∣∣∣∣
h

( r
h

)n−N

,

the expression for the alignment tolerance to limit the amplitude of the sextupole
(the largest) error field can be written;

∣∣∣∣Bn

BN

∣∣∣∣
r

=

∣∣∣∣Bn

BN

∣∣∣∣
h

( r
h

)n−N

≤ 2× 10−4,

εrotxrot

( r
h

)3−2

= εrotxrot3
r

h
≤ 2× 10−4.

Suppose the good field radius is 80% of the pole radius. The expression for
∆rot can be rewritten;
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εrotxrot3 × 0.8 ≤ 2× 10−4,

εrot ≤ 2× 10−4

0.8× 0.933
= 0.0003 radians = 0.3 mrad.

Octopole Error

The expression for the alignment tolerance to limit the amplitude of the octopole (the
second largest error field can also be written;

∣∣∣∣Bn

BN

∣∣∣∣
r

=

∣∣∣∣Bn

BN

∣∣∣∣
h

( r
h

)n−N

≤ 2× 10−4,

∆yxy

( r
h

)4−2

=
∆y

h
xy

( r
h

)2

≤ 2× 10−4,

=
∆y

h
xy × 0.82 ≤ 2× 10−4,

∆y ≤ 2× 10−4 × 35 mm

0.64× 0.327
= 0.033 mm.

These example show that, for the typical physics requirements, the quadrupole
assembly tolerances are quite stringent (a few tens of microns and a few hundreds of
microradians).

The assymetry and length errors for the two piece quadrupole also result in
odd harmonics. However, the most difficult specification is usually reflected in the
largest value of the coefficient. Since the coefficients xa and xl are smaller than xrot

and xy, the tolerances for the assymetry and length errors are not calculated.

Orthogonality

Close inspection of the distribution of the table of coefficients on page 99 for the two
piece quadrupole reveals that many of the errors are orthogonal.

• ∆x assembly errors result in skew (imaginary) error multipoles with even in-
dices.

• ∆y assembly errors result in real error multipoles with even indices.

• εrot, relative rotation errors, result in real error multipoles with odd indices.

• εa, assymetric designs, result in real error multipoles with odd indices.

• εl, length errors, result in skew (imaginary) error multipoles with odd indices.
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Thus, it is possible to isolate the causes of the random multipole errors by
close inspection of magnetic measurement data and to correct them. In addition,
since the errors for assymetric design and rotation of the two halves are not orthog-
onal, one can devise means of correcting some errors due to assymetric design by
intentionally introducing a rotation error among the two magnet halves. In general,
the strategy selected is to compute the pole rotation required to compensate for the
sextupole field (n = 3) and compute or measure the center offset (the dipole field).
Compensation for this offset can be achieved by installing the magnet with a small
transverse misalignment.

4.4 Sextupole Trim Windings

Particle accelerator lattice designs are usually compact. Selection of compact lattices
result from efforts to reduce construction and operating costs. Facility costs are
proportional to the building area housing the accelerator and vary with the square of
the lattice ring radius. The costs of magnet power supplies vary with the required
power (∝ I2). These costs as well as operating power costs vary quadratically with
dipole magnet half gaps, as h4 for quadrupole pole tip radius and as h6 for sextupole
pole tip radius. Magnet gaps can increase with distance between magnets and
thus with the lattice size. (Maintaining the same magnet gap with increasing drift
space requires higher focusing element excitation and more power.) In addition
to the power supply costs, the costs of magnet power distribution (cabling) and
power supply operating costs and cooling system costs increase with lattice size.
Because of desires to minimize construction and operating costs, the longitudinal
distances between adjacent magnets is kept as small as possible. Consequently,
adequate longitudinal space for separate corrector magnets is often either overlooked
or intentionally eliminated. Because of this, separate correctors are eliminated and
corrector trim windings are incorporated in other magnets. Compact accelerator
lattices often include sextupole magnets with one, two or a combination of all three
horizontal steering, vertical steering and/or skew quadrupole trim windings. In this
section, the current perturbation coefficients for the sextupole magnet individual poles
are used to compute the required excitation as well as the multipole error content of
the various trim fields incorporated in a sextupole yoke.

4.4.1 Orthogonality

Since the sextupole yoke is primarily designed to supply sextupole field, a desired
feature of trim fields is orthogonality to the sextupole field. That is, the excitation
of a trim field should not alter the primary sextupole field. The windings for the
horizontal steering trim field requires a turns ratio among the windings for the six
coils which nulls the sextupole field. The four coils required to excite the vertical
steering and the two coils for the skew quadrupole fields are naturally orthogonal to
the sextupole field. For this reason expressions for the horizontal trim field and the
coefficients for its error multipole spectrum are derived as a further example of the
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perturbation computations. The expressions and coefficients for the vertical steering
and skew quadrupole trims are merely presented and tabulated.

4.4.2 Horizontal Steering Trim

The horizontal steering trim is achieved by exciting all six poles. The excitation
pattern orthogonal to the sextupole field requires currents, +∆J, +2∆J, +∆J −
∆J, −2∆J and −∆J for the poles at β = π

6
, π

2
, 5π

6
, 7π

6
, 3π

2
and 11π

6
, respectively.

Letting |εj| = ∆J
J
, the expression for the error fields can be written

(
Bny + iBnx

BNy

)
@r=h

= +iεjxje
−in

π
6 + i2εjxje

−in
π
2 + iεjxje

−in
5π
6

−iεjxje
−in

7π
6 − i2εjxje

−in
3π
2 − iεjxje

−in
11π
6 ,

= iεjxj

⎛⎜⎜⎜⎝
cosn

π

6
− i sinn

π

6
+ 2 cosn

π

2
− i2 sinn

π

2

+ cosn
5π

6
− i sinn

5π

6
− cosn

7π

6
+ i sinn

7π

6

−2 cosn
3π

2
+ i2 sinn

3π

2
− cosn

11π

6
+ i sinn

11π

6

⎞⎟⎟⎟⎠ .

Equating the real and imaginary terms

(
Bny

BNy

)
@r=h

= εjxj

⎛⎜⎝ sinn
π

6
+ 2 sinn

π

2
+ sinn

5π

6

− sinn
7π

6
− 2 sinn

3π

2
− sinn

11π

6

⎞⎟⎠ ,

(
Bnx

BNx

)
@r=h

= εjxj

⎛⎜⎝ cosn
π

6
+ 2 cosn

π

2
+ cosn

5π

6

− cosn
7π

6
− 2 cosn

3π

2
− cosn

11π

6

⎞⎟⎠ ,

and the fields can be written

n

N

∆Cn (Htrim)

εl
= xj (Factor5 + iFactor6) .
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Sextupole Yoke - Horizontal Trim Coefficients

n
n

N

∆Cn (j)

iεj
Factor5 Factor6

n

N

∆Cn (Htrim)

εH trim

1 9.79× 10−2 6 0 0.5874
2 1.56× 10−1 0 0 0
3 1.67× 10−1 0 0 0
4 1.33× 10−1 0 0 0
5 7.09× 10−2 6 0 0.4254
6 0 0 0 0
7 −1.34× 10−2 −6 0 0.0804
8 −1.07× 10−2 0 0 0
9 0 0 0 0
10 9.13× 10−3 0 0 0
11 9.72× 10−3 −6 0 −0.0583
12 0 0 0 0
13 −1.01× 10−3 6 0 −0.0061
14 −1.18× 10−3 0 0 0
15 0 0 0 0
From this table, it can be seen that the first multipole error for this configu-

ration is the (n = 5), decapole field error.

4.4.3 Vertical Steering and Skew Quadrupole Trim

In the same manner, vertical steering trim is achieved by exciting four of the six poles.
The excitation pattern for the vertical steering trim orthogonal to the sextupole field
requires currents, +∆J, −∆J −∆J and +∆J for the poles at β = π

6
, 5π

6
, 7π

6
and 11π

6
,

respectively.
Skew quadrupole trim is achieved by exciting two of the six poles. The

excitation pattern for the skew quadrupole trim orthogonal to the sextupole field
requires currents, +∆J and +∆J for the poles at β = π

2
and 3π

2
, respectively.

Letting |εj| = ∆J
J
, the coefficients for the error fields are computed. The

following table consolodates the coefficients for all three of the trim configurations.
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n
n

N

∆Cn (Htrim)

εH trim

n

N

∆Cn (Vtrim)

iεV trim

n

N

∆Cn (SQtrim)

iεSQ trim

1 0.5874 0.3391 0
2 0 0 −0.3120
3 0 0 0
4 0 0 0.2660
5 0.4254 −0.2456 0
6 0 0 0
7 0.0804 0.0464 0
8 0 0 −0.0214
9 0 0 0
10 0 0 −0.0183
11 −0.0583 0.0337 0
12 0 0 0
13 −.0061 −0.0035 0
14 0 0 0.0024
15 0 0 0
We note in the table, that all three configurations have a zero entry for the

sextupole (n = 3) coefficient. The coil configurations have the desired orthogonality
to the sextupole field and excitation of the trim coils does not excite a sextupole field.
From this table, it can be seen that the first multipole error for horizontal steering
configuration is the (n = 5) decapole field error, for the vertical steering configuration
is the (n = 5) skew decapole field error, and for the skew quadrupole configuration,
the (n = 4) skew octopole field error.

The coil excitations and locations for all three trim configurations are illus-
trated in fig. 5.

Sextupole Trim Multipole Spectra

The table reveals that the trim configurations result in poor field quality. If the first
allowed multipole is normalized to the fundamental fields at the pole radius, the ratio,∣∣∣B5

B1

∣∣∣ = 0.72 describe the normalized amplitudes of the first error multipole for both

the horizontal and vertical steering configurations evaluated at the pole tip. The

ratio
∣∣∣B4

B2

∣∣∣ = 0.85 describes the normalized amplitude of the first error multipole at

the pole radius for the skew quadrupole configuration. However, for the sextupole
magnet, the good field radius is typically ≤ 60% of the pole radius, h. Recalling the
relationship of the amplitudes of the normalized multipole with the radius;
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Figure 5 Sextupole Trims

∣∣∣∣Bn

BN

∣∣∣∣
r

=

∣∣∣∣Bn

BN

∣∣∣∣
h

( r
h

)n−N

,∣∣∣∣B5

B1

∣∣∣∣
0.6h

= 0.72× 0.64 = 0.093,∣∣∣∣B4

B2

∣∣∣∣
0.6h

= 0.85× 0.62 = 0.306.

4.4.4 Trim Excitations

From the table

∣∣∣∣ nN ∆Cn (Htrim)

εH trim

∣∣∣∣ = 0.5874 =
B1

B3εH trim

,∣∣∣∣ nN ∆Cn (Vtrim)

εV trim

∣∣∣∣ = 0.3391 =
B1

B3εV trim

,∣∣∣∣ nN ∆Cn (SQtrim)

εSQ trim

∣∣∣∣ = 0.3120 =
B2

B3εSQ trim

.

Solving and using the definitions for the normalized excitations;
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εH trim =
NIH trim

NI3
=

B1

0.5874B3
,

εV trim =
NIV trim

NI3
=

B1

0.3391B3
,

εSQ trim =
NISQ trim

NI3
=

B2

0.3120B3
,

or;

NIH trim =
B1hNI3
0.5874B3

,

NIV trim =
B1vNI3
0.3391B3

,

NISQ trim =
B2NI3
0.3120B3

.

Writing the expressions for some of the terms;

NI3 =
B”h3

6µ0

, B3 =
B”h2

2
and B2 = B′h,

and substituting, we finally get the expressions for the required coil excitations;

NIH trim =
B1h

0.5874

B”h3

6µ0

× 2

B”h2
=

B1hh

1.7622µ0

, (4.11)

NIV trim =
B1v

0.3391

B”h3

6µ0

× 2

B”h2
=

B1vh

1.0173µ0

, (4.12)

NISQ trim =
B′

SQh

0.3120B3

B”h3

6µ0

× 2

B”h2
=

B
′

SQh
2

0.9360µ0

. (4.13)

4.5 Chapter Closure

For engineers/designers defining the fabrication tolerances and specifications for ac-
celerator magnets, this is one of the most important chapters in this publication.
This chapter illustrates that magnet performance, as specified by physics constraints
for field quality, magnet to magnet reproducibility and alignment, can be translated
into fabrication and assembly requirements and tolerances. It also illustrates means
of incorporating trim magnets into yokes designed for other required fields, conserving
space and eventually reducing the cost of new accelerator facilities.
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Means of calculating separate error multipole components due to fabrication,
assembly and excitation errors are reviewed. Exploitation of the algorithms and the
tabulated coefficients result in powerful tools for the estimation of the displacement
of the magnetic center, the changes in the fundamental field and selected compo-
nents of the multipole spectrum due to fabrication and assembly errors for two piece
quadrupole magnets. Because of the orthogonality of the various multipole types,
magnetic measurements can isolate fabrication or assembly errors and suggest means
of correcting them. Reversing the process, examples of calculations using these
tools to determine fabrication and assembly tolerances ensuring achieving adequate
quadrupole performance are presented The examples include calculations of toler-
ances using typical physics specifications. The examples can be used as templates
for identifying tolerances based on the physics requirements for quadrupoles required
for other projects. Identification of these tolerances can provide guidance ensuring
that high fabrication costs due to unrealistic fabrication and assembly tolerances are
avoided. The tools also provide guidance for the design of assymetric quadrupole
magnets forced by certain accelerator operating constraints.

The algorithms and perturbation tables are further exploited to provide for-
mulae for the design of and estimation of the multipole spectrum for various trim
fields incorporated in a sextupole yoke. These trim configurations are useful in
congested accelerator lattices where room for separate correctors can result in high
project costs.
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4.6 Problems

Problem 4.1 (Solution)

Assume a quadrupole with an aperture radius h = 50 mm, whose length is l = 50 cm.
Suppose one half of the magnet core is longer than the other half by ∆l = 5 mm.
What is the magnitude of the first error harmonic, n = 3, at the desired good field
radius r0 = 40 mm?

Problem 4.1a (Solution) By how much has the magnetic center shifted with
respect to the mechanical center?

Problem 4.1b (Solution) For an assymetric magnet whose efficiency η = 98% =
0.98, What is the magnitude of the first harmonic, n = 3, at the desired good field
radius r0 = 40 mm? By how much has the magnetic center shifted with respect to
the mechanical center?

Problem 4.2

A sextupole magnet requires trim coils to supply horizontal steering, vertical steering
and skew quadrupole fields. Assume that the sextupole aperture radius is h = 45mm.
What is the amplitude and the error multipole index of the ratio of the first allowed

multipole error to the fundamental
∣∣∣ Bn

BN

∣∣∣
r0

when r0 = 35 mm. for each of the corrector

modes? Specify whether they are real or imaginary.

Problem 4.3

The angular alignment tolerance for an h = 35 mm. quadrupole is ∆θ = 0.5 mrad.
Assume that the magnet can be perfectly aligned with respect to its mechanical
horizontal datum. What is the shear displacement tolerance required for the assembly
of one half of a quadrupole with respect to the other half of the quadrupole to achieve
a maximum rotational error of 0.5 mrad? (Hint-the angular rotation of the field is
the ratio B2x

B2y
.)
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Chapter 5

MAGNETIC EXCITATION AND COIL DESIGN

5.1 Introduction

Stoke’s theorem is applied to Maxwell’s general magnet equations to convert the
two dimensional differential form of the equation to an integral form. The integral
form is used to develop the expressions for magnet excitation for different magnet
types. Examples are presented to demonstrate that the magnitude of fringe fields
in selected geometries can be estimated using the integral form of the excitation
equation. Additional examples demonstrate that the distribution of conductors for
current dominated magnets can be described.

The integral expressions are used to compute the required current in real
coils to achieve a desired magnet excitation. The relationships between the current
density parameter and the power dissipated in a magnet are developed. Canonical
values of some of the variables in the expressions for the magnet power dissipation
are suggested.

Expressions useful in the design of water cooled coils are developed. These
include expressions for computing flow velocity, volume flow and water temperature
rise. Typical values of some design parameters are listed. The expressions of the
cooling parameters as a function of the selected dimensions (water passage diameter
and number of water circuits) are developed. These expressions are useful for under-
standing the sensitivities of these parameters which changes in the coil water circuit
and conductor cooling channel dimensions.

5.2 Maxwell’s Inhomogeneous Equation

In a previous chapter, Maxwell’s differential magnet equation was written in terms
of the magnetic field as

−→∇ ×−→
B = µµ0

−→
J , (5.1)

where
−→
J is the current density vector. This equation is written more conveniently

in terms of the magnetic field intensity,
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−→∇ ×−→
H =

−→
J , (5.2)

where
−→
H =

−→
B
µµ0

. Applying Stoke’s theorem,, the differential form can be written in

integral form

∮ −→
H · −→dl =

∫
S

(−→∇ ×−→
H
)
· −→dS. Therefore,∮ −→

H · −→dl =

∫
S

(−→∇ ×−→
H
)
· −→dS =

∫
S

−→
J · −→dS. (5.3)

Written in terms of the magnetic field and in two dimensions,

∮ −→
B

µµ0

· −→dl =

∫
S

Jz · dS = NI, (5.4)

or

∮ −→
H · −→dl = NI, (5.5)

where
−→
B = Bx̂i + By ĵ,

−→
H = Hx̂i + Hy ĵ and

−→
dl = dx̂i + dyĵ and î and ĵ are unit

vectors in the x and y directions, respectively. In the eq. (5.4), µ is the relative
permeability which is equal to one for vacuum and is a nonlinear function of field
amplitude in iron and other permeable material. The · indicates an inner product

(a scalar quantity) where
(−→
B or

−→
H
)
· d−→l = |B| or |H| |dl| cos θ and θ is the angle

betwen the two vectors. The surface integral is performed in the area bounded by
the line integral path.

5.2.1 Continuity

An earlier chapter used one of Maxwell’s magnet equations to establish the continuity
of B ⊥, the perpendicular B vector, across an iron/air boundary (see page 33). Since
we used Stoke’s theorem to write the integral form of the Maxwell’s inhomogeneous
equation,

∮ −→
B
µµ0

· −→dl = NI, it is convenient to develop the concepts that establish the

continuity of H‖, the parallel H vector, across an iron/air boundary which encloses
no current sources in this chapter.

Consider the closed rectangular path shown in fig. 1 through the iron and the
air enclosing the region where NI = 0. Eq. (5.4) can be rewritten∮ −→

B

µµ0

· −→dl = 0 =

∫
path1

−→
H iron · −→dl +

∫
path2

−→
H air · −→dl .

Since, for the illustrated path Liron = Lair, Hiron‖Liron and Hair‖Lair, the
expression can be rewritten
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Figure 1 Integral of Hdl at the iron/air Boundary

HironL+HairL = 0 → Hiron = −Hair

and |Hiron| = |Hair| (5.6)

This relationship becomes important when considering the magnitude of fringe
fields and methods for shielding in regions where magnetic fields are undesirable.

5.3 Magnet Excitations

The excitation current to achieve a required magnetic field can be computed for
different field distributions using the integral form of Maxwell’s equation. Since the
permeability in iron is large for unsaturated yokes,

∮
iron

−→
B
µµ0

· −→dl <<
∮
gap

−→
B
µ0

· −→dl and

the excitation current is dominated by the field in the magnet gap. Magnet efficiency,
a convenient concept for the comparison of the required current to drive the field in
the gap and through the iron is introduced.

5.3.1 Magnet Efficiency

The concept of magnet efficiency is introduced in the beginning of this section and
will be used for the expressions for each of the specific magnet types. The magnet
efficiency is an expression used to divide the excitation current among the current
required to excite the desired field and the current required to complete the excitation
through the remaining magnetic circuit. The desired field is the field in the magnet
gap, where the charged particle is bent, focussed or corrected for chromatic aberration.
The excitation through the remaining circuit is the current required to drive the
magnetic flux through the yoke. In eq. (5.4), the line integral is taken through
the gap region of the magnet where the relative permeability, µ = 1 and the yoke,
normally made from steel or iron where µ ≈ 1000. Thus, eq. (5.4) can be rewritten
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as

NI =

∮ −→
B

µµ0

· −→dl =
∮
gap

−→
B

µ0

· −→dl +
∮
yoke

−→
B

µµ0

· −→dl ,
= NIgap +NIyoke,

and the magnet efficiency is defined as

Efficiency = η =
NIgap

NIgap +NIyoke
. (5.7)

Normally, the integrated path length through the yoke is ≈ 10× the path
length through the gap. For a well designed magnet, the yoke is sized so that the
average relative permeability at the yoke field level, µ ≈ 1000 along the integrated
path length and

η =
NIgap

NIgap +NIgap × 10

1000

≈ 0.99 = 99%.

5.3.2 Dipole Magnets

Four varieties of dipole magnet are described in this section. The first is a con-
ventional H-dipole magnet. The remaining types are included in this discussion to
illustrate certain design principals. The current carrying and Lambertson septa
magnets are used for beam injection into and extraction out of an accelerator. The
cosine wound coil is a dipole whose field distribution is determined by the location
of individual conductors and is a distribution approximated in superconducting mag-
nets.

The H-Dipole Magnet

Fig. 2 illustrates the integration path through a conventional H-dipole magnet.
The integration is taken through three different paths,

∮ −→
B

µµ0

· −→dl =

∮
Path1

−→
B

µµ0

· −→dl +
∮

Path2

−→
B

µµ0

· −→dl +
∮

Path3

−→
B

µµ0

· −→dl ,

=
Bh

µ0

+
BironLiron

µironµ0

+ 0 (µair = 1 and B ⊥ Path3) .

Biron ≈ B, Liron � 10h and µiron � 1000. Therefore,
BironLiron

µironµ0

≈ 0.01×Bh

µ0

.

Since
∫
S
JzdS = NI, the integral equation can be rewritten;

NIdipole =
Bh

ηµ0

, (5.8)

where the magnet efficiency, η, is expressed in eq. (5.7).
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Figure 2 Dipole Excitation

Current Carrying Septum Magnet

The current carrying septum magnet is used for beam injection and extraction. The
injection magnet bends beam into the accelerator. The extraction magnet kicks the
beam out of the accelerator. This injection/extraction magnet is called a septum
since a physical object (the septum) separates the high field region from an ideally zero
field region. Normally, during injection and/or extraction, the accelerator circulating
beam is displaced from its orbit in the center of the beam pipe by a series of bump
magnets. For injection, the circulating beam is displaced as close to the septum
as possible. This places the orbit of the injected beam parallel and transversely
close to the circulating beam so that the injected beam can be incorporated with the
circulating beam by beam damping. For extraction, the circulating beam is displaced
across the septum and bent out of the closed synchrotron orbit.

The bump magnets, described in the first chapter, are rapidly pulsed so that
the circulating beam is perturbed during one, or at most a few orbits. Since the
bump magnets are generously spaced along the circulating beam, the fields can be
relatively small and the rapid pulse can be produced with power supplies with high but
achievable voltages. Septummagnets are occasionally pulsed. However, the majority
of septum magnets are operated in the persistent mode. Typically, the layout of the
injection line requires a relatively large bend angle for the septum magnet. The
fields and the volume of the aperture are large. Therefore, a septum magnet stored
energy is sizeable, resulting in a fairly high inductance. The voltages required to
pulse the septum magnet to the required field can be prohibitive (see discussion on
inductance in Chapter 7 on page 191). In order to minimize the perturbation of the
septum magnet on the circulating beam, the primary goal for septum magnet, excited
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Figure 3 Current Carrying Septum Magnet

continously during accelerator operation, is to minimize the effect on the circulating
beam by achieving a low external fringe field in the region of the circulating beam.
A septum magnet geometry is illustrated in fig. 3.

If the coil current is given by NI, eq. (5.4) can be used to describe the
magnetic reluctance along a path through the yoke. The expression is given by;

∫
gap

B

µ0

dl +

∫
iron

B

µµ0

dl +

∫
path1

B

µµ0

dl = NI,

Bgaph

µ0

+
BironLiron

µµ0

+ 0 (Bpath1⊥path1) = NI.

The expression along a second path (path2)which includes the path through
the fringe field is,

∫
gap

B

µ0

dl +

∫
path2

B

µµ0

dl +

∫
Fringe

B

µ0

dl = NI,

Bgaph

µ0

+ 0 (Bpath2⊥path2) +
Bfringe

µ0

Lfringe = NI.

Therefore, noting that Lfringe ≈ h, and equating both expressions since the
value of the closed integrals are NI, we get, finally,
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Figure 4 Lambertson Septum Fringe Field

Bfringe

µ0

Lfringe =
Bfringe

µ0

h =
BironLiron

µµ0

,

or Bfringe ≈ BironLiron

µh
. (5.9)

The final expression demonstrates that the magnitude of the fringe field is
determined by the design of the yoke. A high field in the yoke as a result of too little
iron or low iron permeability results in large fringe fields.

Lambertson Septum Magnet

The Lambertson Septum Magnet serves the same purpose as the current carrying
septum. The primary difference is that the fields are horizontal for vertical in-
jection/extraction into/from an accelerator. Again, as in the case of the current
carrying septum, the primary design goal is to minimize the effect on the circulating
beam by achieving a low external field in the region of the circulating beam. In this
case, the fringe field is horizontal, resulting in a vertical perturbation in the circulat-
ing beam. The Lambertson Septum magnet and the integration paths used in the
following calculations are illustrated in fig. 4.

Using the expression (5.6) since no currents are enclosed and noting that
H = B

µµ0

, ∫
path1

Biron

µµ0

dl +

∫
path2

Bair

µ0

dl = 0.



120 Magnetic Excitation and Coil Design

In this expression, the contribution to the
∫
H · dl along tha paths connecting

paths 1 and 2 are essentially zero. This is because the paths are short and the fields
are essentially perpendicular to the path direction. Also, since path1 = path2,

Biron

µ
≈ Bair.

Taking the integral
∫

path2−3−4

Hdl = 0 (no current sources are enclosed),
∫

path2

B
µ0

dl+∫
path3

B
µ0

dl +
∫

path4

B
µ0

dl = 0. In this expression, the contribution to the
∫
Hdl from∫

path3

B
µ
0

dl ≈ 0 since the fields are nearly perpendicular to the path3 direction. Also,

since path4 < path2, we get finally,

Bfringe ≈
∣∣∣∣path2path4

∣∣∣∣ Biron

µ
. (5.10)

This last relationship reveals that it is important that the septum be fabricated
using material with high permeability at the field level expected in the septum. Also,
the angle of the septum cut must be carefully selected sinceBiron cos

(
angle

2

) ≈ Bseptum.
The fringe field magnitude can be estimated using the final expression;

Bfringe ≈ 1

µ

∣∣∣∣path2path4

∣∣∣∣ Bseptum

cos

(
angle

2

) .

Cosine Current Distribution Dipole Magnet

An earlier chapter, covering the principles of the Orthogonal Analog Model, described
a dipole magnet whose field uniformity is determined by the distribution of the current
along the inner circular surface of an iron yoke (see page 60). This geometry is
illustrated in fig. 5.

Eq. (5.4) can be used to describe the current distribution along the path
described in the illustration. The expression is given by

|Current|θ0 =

∫
gap

B

µ0

dl +

∫
iron

Biron

µironµ0

dl +

∫
path3

B

µµ0

dl =,

=
BgapR sin θ

µ0

+ 0

(
Biron

µiron

� Bgap

)
+ 0 (Bpath1⊥path3) ,

≈ BgapR sin θ

µ0

.



Magnet Excitations 121

Figure 5 Cosine Distributed Current Density

where |Current|θ0 is the total current along path2. But, |Current|θ0 =
∫ θ

0
jt (θ)Rdθ

where j (θ) is the linear current density distribution. Integrating the uniform field
along the indicated path and applying eq. (5.4)

∫ θ

0

j (θ)Rdθ ≈ BgapR sin θ

µ0

.

Differentiating both sides of the equation with respect to the angle, we obtain

j (θ)R ≈ BgapR cos θ

µ0

,

Solving, j (θ) ≈ Bgap

µ0

cos θ, (5.11)

showing that, for a uniform current density, a cosine distribution of the coil configu-
ration is required to obtain a uniform field in this geometry.

The total current in the illustrated upper quadrant of the magnet is given by

NI =

∫ π
2

0

j (θ)Rdθ =

∫ π
2

0

RBgap

µ0

cos θdθ,

=
RBgap

µ0

(
sin

π

2
− sin 0

)
=

RBgap

µ0

,
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Figure 6 Quadrupole Excitation

where NI is the total current in the upper coil of the magnet geometry (for the upper
pole).

5.3.3 Quadrupole Magnet

Fig. 6 illustrates the integration path through a quadrupole magnet.

∮ −→
B

µµ0

· −→dl =
∮

Path1

−→
B

µ0

· −→dl +
∮

Path2

−→
B

µµ0

· −→dl +
∮

Path3

−→
B

µµ0

· −→dl .

For a quadrupole magnet, the gradient, B′ = Constant and B = B′l. There-
fore, ∮

Path1

−→
B

µ0

· −→dl =
∫ h

0

B′l

µ0

dl =
B′h2

2µ0

.

Biron ≈ B′h, Liron � 10h and µiron � 1000. Therefore, BironLiron

µironµ0

≈ 0.01×B′h2

µ0

.

Again, since the field along path3 is perpendicular to the path,
∮

Path3

= 0 and the

expression for the required quadrupole excitation is

NIquadrupole =
B′h2

2ηµ0

. (5.12)
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Figure 7 Cosine Current Quadrupole Magnet

where η < 1 is defined as the magnet efficiency and
1

η
≈ 1.01.

Cosine Current Distribution Quadrupole Magnet

A previous section described a cosine current distribution dipole magnet (see page
120). Fig. 7 illustrates an equivalent quadrupole magnet.

The principles of conformal mapping are employed to show that a similar
geometry can produce a quadrupole field. The polar forms of the z quadrupole
coordinates and the w dipole coordinates are given by;

z = |z| eiθ, w = |w| eiφ.
The expression for the conformal map from the quadrupole to the dipole co-

ordinates are,

w =
z2

R
,

or |w| eiφ =
|z|2
R

ei2θ.

This mapping expression requires the angle 2θ in the quadrupole domain to
be mapped from φ. Therefore, the linear current density distribution is,

j ∝ cos 2θ.
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Eq. (5.4) is used again to describe the current distribution along the path
described in the illustration. The expression is given by;

|Current|θ0 =

∫
path1

B

µ0

dl +

∫
iron

Biron

µironµ0

dl +

∫
path3

B

µµ0

dl,

|Current|θ0 =

∫
path1

B

µ0

dl + 0

(
Biron

µiron

� Bgap

)
+ 0 (Bpath1⊥path3) ,

|Current|θ0 ≈
∫

path1

B

µ0

dl.

From the previous section,
∮

Path1

−→
B
µ0

· −→dl = ∫ R

0
B′l
µ0

dl = B′R2

2µ0

. The total current

integrated from 0 ≤ θ ≤ π
4
is

NI =

∫ π
4

0

Rj0 cos 2θdθ

=
Rj0
2

|sin 2θ|
π
4
0 =

Rj0
2

.

Equating

Rj0
2

=
B′R2

2µ0

,

j0 =
B′R

µ0

,

and finally j = j0 cos 2θ =
B′R

µ0

cos 2θ.

5.3.4 Sextupole Magnet

Fig. 8 illustrates the integration path through a sextupole magnet.
For a sextupole magnet, the field is parabolic and the second derivative of the

field, B” = d2B
dr2

is a constant. Thus,

B′ (r) =

∫ r

0

B”dr = B”r,

B (r) =

∫ r

0

B′ (r) dr =

∫ r

0

B”rdr =
B”r2

2
.
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Figure 8 Sextupole Excitation

Therefore,∮
Path1

−→
B

µ0

· −→dl =

∫ h

0

B”r2

2µ0

dr =
B”h3

6µ0

,

Biron ≈ B”h2

2
, Liron � 10h and µiron � 1000.

Therefore, BironLiron

µironµ0

≈ 0.01 × B”h3

2µ0

. Again, since the field along path 3 is

perpendicular to the path,
∮

Path3

= 0 and the expression for the required sextupole

excitation is

NIsextupole =
B′h3

6ηµ0

, (5.13)

where η < 1 is defined as the magnet efficiency and
1

η
≈ 1.01 for a well designed yoke.

5.4 Coil Design

Magnet design begins by defining two-dimensional magnet cross sections satisfying
magnet excitation and field-quality requirements. Magnet lengths are specified to
satisfy beam bending, focusing and chromatic correction requirements for dipoles,
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Figure 9 Pancake Coil

quadrupoles and sextupoles, respectively. These general shapes are useful for accel-
erator and/or beamline layouts, but provide little information regarding the impact of
proposed designs on other subsystems. The magnet engineer/designer needs to fully
specify the power supply and power dissipation requirements for proposed magnet
designs so that the scale of these subsystems can be developed for project proposals.
The specifications need to be developed without having to fully carry out detailed
magnet designs. In this section, expressions for the approximate power and cool-
ing requirements for various magnet designs are developed using only the physics
requirements for magnets and one design parameter, the current density,

j =
Current

Conductor Area
. (5.14)

Consider the typical flat pancake style coil illustrated in fig. 9.

5.4.1 Coil Power

The power dissipated in the coil is given by

P = I2R,

where R =
ρL

a
. (5.15)

In these expressions

ρ = resistivity (Ω m) ,

(for copper, ρ ≈ 1.86× 10−8 Ω m at T = 40◦C),

L = Coil Length = Nlave,
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where

N = Number of Turns,

and lave = Average Turn Length.

The gross coil area can be expressed as a function of the individual conductor
areas as

Na = fA,

where

A = Coil Gross Area,

and f = packing fraction =
Net Conductor Area

Gross Coil Area

Substituting into the expression for the resistance

R =
ρNlave
fA

N

=
ρN2lave
fA

.

and the expression for the power becomes

P = I2R =
ρ (NI)2 lave

fA
.

But NI
fA

= NI
Na

= I
a
= j, the current density. Therefore

P = ρNIjlave.

The required excitation for dipoles, quadrupoles and sextupoles are

NIdipole =
Bh

ηµ0

, NIquad =
B′h2

2ηµ0

, and NIsext =
B”h3

6ηµ0

,

respectively.
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The dipole has two coils per magnet. The quadrupole has four coils per mag-
net. The sextupole has six coils per magnet. Therefore, the total power dissipated
per magnet is given by

Pdipole = 2ρ
Bh

ηµ0

jlave, (5.16)

Pquad = 2ρ
B′h2

ηµ0

jlave, (5.17)

Psext = ρ
B”h3

ηµ0

jlave. (5.18)

These expressions can be modified for magnets with more than one coil per
pole.

Note that the expressions for the magnet power include only the conductor
resistivity, ρ, magnet gap, h ,the magnet field parameters, B, B′ and B”, current
density, j, magnet efficiency, η, the permeability for vacuum, µ0, and the average
coil turn length, lave. In addition, for most magnets, 2.5 Lmagnet � lave � 3 Lmagnet.
Thus, the magnet power can be accurately estimated knowing only the magnet physics
requirements without having to select the conductor size or the number of turns. In
addition, if one uses the MKS system of units, the expressions compute the power
directly in Watts. An example is given for the expression for the dipole power.

Pdipole = 2ρ
Bh

ηµ0

jlave,

Pdipole = Ω m
T m
T m

Amp

Amps

m2
m,

Pdipole = Ω Amps2 = Watts.

Current and Voltage

Since the power can be expressed as the product of the voltage and current, the
power can be divided among the current and the voltage. Thus, selection of a
coil design with many turns reduces the current and increases the voltage. This is
desirable for individually controlled magnets with single power supplies since the cost
of cabling and the voltage drop through the power distribution system is minimized.
Normally, power distribution cables are convectively cooled and are limited to ≤
1.5 Amps

mm2 , resulting in large, expensive cables if the magnet power is divided using a
high current and low voltage magnet design. Quadrupole and sextupole magnets in
a synchrotron are normally low current high voltage magnets using coils with many
turns.
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A magnet requiring high current will require the installation of heavy cable.
The selection of a coil design with fewer turns reduces the voltage and increases
the current. This is desirable for many magnet in series using a single power sup-
ply. Dipole and gradient magnet in a synchrotron are often connected in series and
normally require low voltage high current magnets using coils with fewer turns.

Canonical Values

In using the expressions for estimating the power, knowledge about the canonical
values of some of the constants is useful. These values allow one to estimate the
cross sectional size of the coils and make rough layouts of the magnet for accelerator
lattices.

• Normally, a good value for the current density is j = 10 Amps

mm2 = 10−5Amps

m2 for
water cooled coils.

— This value usually results in simple coil designs with sufficient conductor
circuit length for simple coils with adequate cooling and acceptable number
of water circuits.

• The value of the packing fraction is typically f ≈ 0.5 for small conductors.
This value may be higher for large conductors carrying currents ≥ 500 Amps.

— This value is useful for estimating the gross coil cross section and provides
allowances for the insulation, coolant channel as well as the radius at the
corners of the conductor.

• The magnet efficiency for a well designed yoke is η � 98% = 0.98.

• In general, the average conductor length per turn is lave � 3Lmag where Lmag is
the magnet core length.

5.5 Coil Cooling

In order to avoid magnets requiring coils with large cross sections, the magnet coils
are normally water cooled. This requires the use of conductors with cooling channels
(hollow conductors). In this section, expressions for the water flow in coils divided
into a number of water circuits and the temperature rise in these coils are devel-
oped. The choice of the number of water circuits depends on the selection of the
size of the water channel through the conductor and the available water pressure in
an accelerator facility. The design of water cooled coils normally requires several
iterations. The sensitivity of the various cooling system parameters to the several
design dimensions is developed so that intelligent dimensional choices can be made
and the number of design iterations reduced.
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5.5.1 Pressure Drop

The following section summarizes expressions summarized in an engineering design
data sheet used for the calculation of pressure drops through smooth pipes and
tubes[8]. The expression for the pressure drop through a water circuit is given
by

∆p = f
l

d

δv2

2
, (5.19)

where

f = friction factor

l, d = water circuit length and diameter, respectively

δ = water mass density

v = water velocity

Friction Factor

The friction factor depends on the non-dimensional Reynolds number, Re =
vd

ν
,

where ν = kinematic viscosity of the water. The value of the Reynolds number
(Re) determines the flow regime for the fluid. For laminar flow, Re < 2000, and
f = 64

Re
. For turbulent flow, Re > 4000, the expression for the friction factor is

transcendental and must normally be solved iteratively. The transitional flow regime
for 2000 < Re < 4000 is usually avoided since flow and pressure drop are difficult to
predict.

The transcendental friction factor equation for turbulent flow is

1√
f
= −2 log10

(
ε

3.7d
+

2.51

Re
√
f

)
, (5.20)

where ε is the surface roughness of the cooling channel expressed in the same dimen-
sions as the hole diameter, d. Fluid flow textbooks list the surface roughness of
smooth copper tubes as ε = 5× 10−6 ft. ≈ 1.5× 10−3 mm.

5.5.2 Flow Velocity

Since the expression for flow velocity using eq. (5.19) and the transcendental equation
for the friction factor, eq. (5.20), requires computation of the Reynolds number, a
function of the flow velocity, the calculation of the final flow has been calculated by
iteration in the past. With some manipulation of the expressions, a direct solution
for the water flow velocity through a water passage with diameter, d, and length, l,
can be found. Solving for the flow velocity, using eq. (5.19)
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v =

√
2∆p

δf

d

l
.

The expression for the Reynolds number can then be written;

Re =
vd

ν
=

d

ν

√
2∆p

δf

d

l
.

Substituting into the expression for the friction factor;

1√
f

= −2 log10

⎛⎜⎜⎝ ε

3.7d
+

2.51

d

ν

√
2∆P

δf

d

l

√
f

⎞⎟⎟⎠

= −2 log10

⎛⎜⎜⎝ ε

3.7d
+

2.51

d

ν

√
2∆p

δ

d

l

⎞⎟⎟⎠ .

In this final form, the friction factor term is eliminated from the right side of
the equation.

The expression for the flow velocity can finally be rewritten;

v =

√
2∆P

δf

d

l
=

1√
f

√
2∆p

δ

d

l
,

= −2

√
2∆p

δ

d

l
log10

⎛⎜⎜⎝ ε

3.7d
+

2.51

d

ν

√
2∆p

δ

d

l

⎞⎟⎟⎠ . (5.21)

5.5.3 Units

Before going too far, it is important to clarify the units used in the calculations.
Most of the world uses the MKS system of units. The US uses the more arcane
English units. Therefore, the following calculations are made so that either system
of units can be used and to demonstrate that, using the correct conversion factors,
the expressions yield consistent results.
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Pressure Drop

The expression for the pressure drop, given by eq. (5.19), is

∆p = f
l

d

δv2

2
,

where the friction factor, f , and the ratio of the length and diameter of the water
circuit, l

d
, are unitless. Therefore, we concentrate on the terms which result in the

units for pressure;

∆p ∝ δv2,

where the mass density of water is expressed in δ
(
Kg

m3

)
and flow velocity is expressed

in v
(

m
sec

)
. The units for pressure drop in the MKS system are

∆p ∝ δv2,

∝ Kg

m3
× m2

sec2
,

∝ Kg −m

sec2
× 1

m2
=

Newton

m2
= Pa.

In the English system of units, the force density (weight) for water is given

in units δg
(

lbf
ft3

)
and flow velocity is expressed in v

(
ft

sec

)
. The units for gravity

acceleration is, g
(

ft

sec2

)
. The units for pressure drop in the English units is;

∆p ∝ δg

g
v2,

∝ lbf
ft3

× 1
ft

sec2

× ft2

sec2
,

∝ lbf
ft2

.

In the US, this pressure unit is converted to pounds per square inch (psi) =(
lbf
in2

)
by multiplying by the factor, ft2

144 in2 .



Coil Cooling 133

Velocity

The expression for velocity is given by

v =

√
2∆p

δf

d

l
,

where the friction factor, f , and the ratio of the length and diameter of the water
circuit, l

d
, are unitless. The units for pressure are given by ∆P (Pa) = ∆P

(
Newtons

m2

)
.

The units for velocity are given by;

v ∝
√

∆p

δ
,

∝

√√√√√√
Newtons

m2

Kg

m3

=

√√√√√√√
Kg

m

sec2

m2

Kg

m3

,

∝
√

m2

sec2
=

m

sec
.

In English units, assuming that the pressure is converted to
lbf
ft2

, the units for
velocity are given by

v ∝
√

∆p

δ
=

√√√√√ ∆p

δweight

g

=

√
g∆p

δweight

,

∝

√√√√√√√
lbf
ft2

× ft

sec2

lbf
ft3

,

∝
√

ft2

sec2
=

ft

sec
.

Pressure Conversion Factor The conversion for pressure from English to MKS
units is,

∆p (Pa) = 6.895× 103∆p (psi) .
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Flow Through the Conductor Coolant Passage

Once the flow velocity through the cooling circuit is computed, the volume flow rate
can be computed. The flow passages through most conductors are circular holes
with diameter d. Most conductor vendors describe conductor dimensions in mm.
The expression for the coolant volume flow rate through a circular conductor coolant
passage is given by

q = vA = v
πd2

4
.

If the diameter is expressed in mm and the flow velocity in m
sec

, the units must
be adjusted for convenient volume flow units. The volume flow rate is rewritten as

q = vA = v
( m

sec

) πd2

4

(
mm2

)× m2

106 mm2
× 103 liters

m3

q

(
liters

sec

)
= 10−3v

( m

sec

) π [d (mm)]2

4
. (5.22)

Flow Conversion Factor The conversion for flow from MKS to English units is
derived in the following expression;

q

(
liters

sec

)
= 10−3v

( m

sec

) π [d (mm)]2

4

q

(
liters

sec

)
× gal

3.875 liters
× 60 sec

min
= 10−3v

( m

sec

) π [d (mm)]2

4
× 60

3.875

q (gpm) = 1.548× 10−2v
( m

sec

) π [d (mm)]2

4
.(5.23)

Convenient Values

• A convenient unit for pressure used everywhere is 1 atm = 14.7 psi = 101352 Pa =
0.101 MPa (Mega Pascals) .

— Pressure drops across magnet cooling manifolds are typically ∆p ≈ 10 atm.
If this value is to be selected at a “green field site”, selection of a lower value
for facility construction may result in complex (and expensive) magnet coil
systems.

• Flow velocity should be high enough so that the flow is fully turbulent, Re �
4000. (See the next section.)
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• Flow velocity v ≤ 4 m
sec

to avoid flow vibration and erosion of the conductor
coolant passage.

• The surface roughness for “smooth” tubes has been estimated as ε = 5 ×
10−6 ft = 1.5× 10−6 m = 1.5× 10−3 mm.

• An acceptable coil temperature rise which protects the coil epoxy encapsulation
from damage is ∆T � 30◦C.

• For synchrotron radiation accelerators where beam stability depends on tem-
perature stability, ∆T � 15◦C.

Reynolds Number

The unitless factor, the Reynolds number, is given by Re =
vd

ν
, where ν is the

kinematic viscosity. ν is expressed in English units in Kreith[9]. The values are
converted to MKS units in the following table.

Temperature Kinematic Viscosity

◦F ◦C
ft2

sec

m2

sec
60 15.4 1.22× 10−5 1.13× 10−6

70 21 1.06× 10−5 9.85× 10−7

80 26.6 0.93× 10−5 8.64× 10−7

90 32.1 0.825× 10−5 7.66× 10−7

100 37.7 0.740× 10−5 6.87× 10−7

Normally, the temperature in the water flow passage increases along the length
of the conductor. Computations using the variation of the kinematic viscosity along
the flow passage is unnecessarily complicated since it requires several iterations. For
the sake of design of the coil system, a simpler and conservative approach is taken
by assuming that the kinematic viscosity is constant and equal to the maximum
value expected over the cooling water temperature range. Thus, one may assume
a constant low water temperature and select ν = 1.13 × 10−6 m2

sec
over the entire

length of the conductor. The water in the conductor will heat up and the average
temperature and the kinematic viscosity will decrease, increasing the flow. The more
conservative approach will result in the computation of the minimum flow and the
worst possible case scenario for the water (and coil) temperature rise.

5.5.4 Coil Cooling

The assumption is made that at high Reynolds numbers (turbulent flow), the heat
transfer through the thin fluid film separating the conductor surface and the bulk fluid
flow is high (a good assumption). Thus, the temperature at the inner surface of the
conductor cooling channel is nearly the same as the water temperature. Moreover,
because of the high thermal conductivity of the conductor, the entire conductor cross
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section temperature is approximately equal to the cooling channel surface tempera-
ture. With these assumptions, it is only necessary to compute the maximum exit
temperature of the coolant flow to estimate the maximum coil temperature. Since
magnet conductors are normally cooled by water, water properties are used in the
following expressions.

The heat (electrical power) absorbed by water flowing across a heated surface
is given by

P =
·
m cp∆T,

where
·
m =mass flow rate= δwaterq, cp =heat capacity and ∆T =Temperature change.

In the expression, q = volume flow rate and δwater =water mass density. The
expression for the heat absorbed by water can be rewritten and solved for the volume
flow rate resulting in the expression

q =
P

δwatercp∆T
. (5.24)

The properties of water required for the expression are;

δwater =
1.0 kg

liter

cp =
1.0 BTU

lbm◦F
= 4.187

kjoules

Kg◦C
= 4.187

kW sec

Kg◦C
= 1.9

kW sec

lbm◦C
.

Substituting into the equation for the required flow;

q =
P

δwatercp∆T

q =
P (kW )

1.0 Kg

liter
× 4.187

kW sec

Kg◦C
×∆T (◦C)

q

(
liters

sec

)
= 0.2388

P (kW )

∆T (◦C)
. (5.25)

Since flow is measured in gpm = gal

min
in the US, the units are converted in the

following expression in the same manner used in a previous section;

q

(
liters

sec

)
× gal

3.875 liters
× 60 sec

min
= 0.2388

P (kW )

∆T (◦C)
× 60

3.875

q (gpm) = 3.7
P (kW )

∆T (◦C)
. (5.26)
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5.5.5 Calculations

The computation of the expressions for all the flow quantities, expressed by all the
equations from (5.19) to (5.26) is tedious. One must substitute the values of the
constants which express the properties of the coolant into the expressions. Also, a
roughness value for the surface property of the inside of the coolant passage with the
proper units must be used in the expression for the friction factor. The required
input parameters are tabulated in a sample set of parameters. The appropriate
units for the calculations in the English and MKS units are listed. In some cases,
the English units are the same as the MKS units.

Quantities English Units MKS Units
Input Information

Hole Diameter (d) (ft) (m)
Roughness (ε) (5× 10−6 m) (1.5× 10−3 mm)

Conductor Length (L) (ft) (m)
Coil Power (P ) (kW) (kW)

Available Pressure Drop, ∆p

(
psi =

lbf
in2

) (
Pa =

N

m2

)
Water Properties

Mass Water Density =

62.4
lbf
ft3

g = 32.2
ft

sec

=
1 kg

liters

Water Heat Capacity = 1.9
kW sec

lbm◦C
= 4.19

kW− sec

kg−◦ C

H2O Kinematic Viscosity (@60◦F ) = 1.216× 10−5 ft2

sec
= 1.13× 10−6 m2

sec
Calculated Values

Friction Factor, f (No Units) (No Units)

Flow Velocity, v

(
ft

sec

) ( m

sec

)
Volume Flow, q

(
gpm =

US gal

min

) (
liters

sec

)
Temperature Rise, ∆T (◦C) (◦C)

In order to reduce the drudgery of the hydraulic calculations, a spreadsheet
was prepared, automating the required calculation, which can be used to compute the
relevant expressions by substituting the appropriate input information for any specific
coil design. This spreadsheet is written on the CD attached to this publication. A
sample page of the spreadsheet is presented in fig. 10 in English units and in fig. 11
in MKS units. The graphical outputs from the spreadsheets are presented in figs.
12 and 13 for the US and MKS units, respectively.
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Units Units Units
d 3.6 mm 0.01181 ft
L 40 m 40000 mm
epsilon 5E-06 ft
nu 0.00001216 ft^2/sec
Coil Power 0.62 kW

DeltaP f v Re q DT
(psi) (ft/sec) (no units) (no units) (ft/sec) (gpm) (deg.C)

30 0.6337 0.0042 4.755 0.0442 3.013 2927 1.48E-01 15.90
35 0.6845 0.0039 4.820 0.0430 3.299 3205 1.62E-01 14.52
40 0.7317 0.0036 4.876 0.0421 3.568 3466 1.75E-01 13.43
45 0.7761 0.0034 4.926 0.0412 3.823 3713 1.88E-01 12.53
50 0.8181 0.0033 4.970 0.0405 4.066 3949 2.00E-01 11.78
55 0.8580 0.0031 5.010 0.0398 4.299 4175 2.11E-01 11.15
60 0.8962 0.0030 5.046 0.0393 4.522 4393 2.22E-01 10.60
65 0.9328 0.0029 5.080 0.0388 4.738 4602 2.33E-01 10.11
70 0.9680 0.0028 5.111 0.0383 4.947 4805 2.43E-01 9.69
75 1.0020 0.0027 5.139 0.0379 5.149 5002 2.53E-01 9.31
80 1.0348 0.0026 5.166 0.0375 5.346 5193 2.63E-01 8.96
85 1.0667 0.0025 5.191 0.0371 5.537 5379 2.72E-01 8.65
90 1.0976 0.0025 5.215 0.0368 5.724 5560 2.81E-01 8.37
95 1.1277 0.0024 5.237 0.0365 5.906 5737 2.90E-01 8.11

100 1.1570 0.0023 5.259 0.0362 6.084 5909 2.99E-01 7.88
105 1.1855 0.0023 5.279 0.0359 6.258 6079 3.08E-01 7.66
110 1.2134 0.0022 5.298 0.0356 6.429 6244 3.16E-01 7.45
115 1.2407 0.0022 5.316 0.0354 6.596 6407 3.24E-01 7.26
120 1.2674 0.0022 5.334 0.0352 6.760 6566 3.32E-01 7.09
125 1.2935 0.0021 5.351 0.0349 6.921 6722 3.40E-01 6.92
130 1.3191 0.0021 5.367 0.0347 7.079 6876 3.48E-01 6.77
135 1.3443 0.0020 5.382 0.0345 7.235 7027 3.56E-01 6.62
140 1.3689 0.0020 5.397 0.0343 7.388 7176 3.63E-01 6.49
145 1.3932 0.0020 5.411 0.0341 7.539 7323 3.71E-01 6.36
150 1.4170 0.0019 5.425 0.0340 7.687 7467 3.78E-01 6.23
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Units Units Units
d 3.6 mm 0.01181 ft
L 40 m 40000 mm
epsilon 5E-06 ft
nu 0.00001216 ft^2/sec
Coil Power 0.62 kW

DeltaP f v Re q DT
(psi) (ft/sec) (no units) (no units) (ft/sec) (gpm) (deg.C)

30 0.6337 0.0042 4.755 0.0442 3.013 2927 1.48E-01 15.90
35 0.6845 0.0039 4.820 0.0430 3.299 3205 1.62E-01 14.52
40 0.7317 0.0036 4.876 0.0421 3.568 3466 1.75E-01 13.43
45 0.7761 0.0034 4.926 0.0412 3.823 3713 1.88E-01 12.53
50 0.8181 0.0033 4.970 0.0405 4.066 3949 2.00E-01 11.78
55 0.8580 0.0031 5.010 0.0398 4.299 4175 2.11E-01 11.15
60 0.8962 0.0030 5.046 0.0393 4.522 4393 2.22E-01 10.60
65 0.9328 0.0029 5.080 0.0388 4.738 4602 2.33E-01 10.11
70 0.9680 0.0028 5.111 0.0383 4.947 4805 2.43E-01 9.69
75 1.0020 0.0027 5.139 0.0379 5.149 5002 2.53E-01 9.31
80 1.0348 0.0026 5.166 0.0375 5.346 5193 2.63E-01 8.96
85 1.0667 0.0025 5.191 0.0371 5.537 5379 2.72E-01 8.65
90 1.0976 0.0025 5.215 0.0368 5.724 5560 2.81E-01 8.37
95 1.1277 0.0024 5.237 0.0365 5.906 5737 2.90E-01 8.11

100 1.1570 0.0023 5.259 0.0362 6.084 5909 2.99E-01 7.88
105 1.1855 0.0023 5.279 0.0359 6.258 6079 3.08E-01 7.66
110 1.2134 0.0022 5.298 0.0356 6.429 6244 3.16E-01 7.45
115 1.2407 0.0022 5.316 0.0354 6.596 6407 3.24E-01 7.26
120 1.2674 0.0022 5.334 0.0352 6.760 6566 3.32E-01 7.09
125 1.2935 0.0021 5.351 0.0349 6.921 6722 3.40E-01 6.92
130 1.3191 0.0021 5.367 0.0347 7.079 6876 3.48E-01 6.77
135 1.3443 0.0020 5.382 0.0345 7.235 7027 3.56E-01 6.62
140 1.3689 0.0020 5.397 0.0343 7.388 7176 3.63E-01 6.49
145 1.3932 0.0020 5.411 0.0341 7.539 7323 3.71E-01 6.36
150 1.4170 0.0019 5.425 0.0340 7.687 7467 3.78E-01 6.23
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Units Units Units
d 3.6 mm 0.01181 ft
L 40 m 40000 mm
epsilon 5E-06 ft
nu 0.00001216 ft^2/sec
Coil Power 0.62 kW

DeltaP f v Re q DT
(psi) (ft/sec) (no units) (no units) (ft/sec) (gpm) (deg.C)

30 0.6337 0.0042 4.755 0.0442 3.013 2927 1.48E-01 15.90
35 0.6845 0.0039 4.820 0.0430 3.299 3205 1.62E-01 14.52
40 0.7317 0.0036 4.876 0.0421 3.568 3466 1.75E-01 13.43
45 0.7761 0.0034 4.926 0.0412 3.823 3713 1.88E-01 12.53
50 0.8181 0.0033 4.970 0.0405 4.066 3949 2.00E-01 11.78
55 0.8580 0.0031 5.010 0.0398 4.299 4175 2.11E-01 11.15
60 0.8962 0.0030 5.046 0.0393 4.522 4393 2.22E-01 10.60
65 0.9328 0.0029 5.080 0.0388 4.738 4602 2.33E-01 10.11
70 0.9680 0.0028 5.111 0.0383 4.947 4805 2.43E-01 9.69
75 1.0020 0.0027 5.139 0.0379 5.149 5002 2.53E-01 9.31
80 1.0348 0.0026 5.166 0.0375 5.346 5193 2.63E-01 8.96
85 1.0667 0.0025 5.191 0.0371 5.537 5379 2.72E-01 8.65
90 1.0976 0.0025 5.215 0.0368 5.724 5560 2.81E-01 8.37
95 1.1277 0.0024 5.237 0.0365 5.906 5737 2.90E-01 8.11

100 1.1570 0.0023 5.259 0.0362 6.084 5909 2.99E-01 7.88
105 1.1855 0.0023 5.279 0.0359 6.258 6079 3.08E-01 7.66
110 1.2134 0.0022 5.298 0.0356 6.429 6244 3.16E-01 7.45
115 1.2407 0.0022 5.316 0.0354 6.596 6407 3.24E-01

Units Units Units
d 3.6 mm 0.01181 ft
L 40 m 40000 mm
epsilon 5E-06 ft
nu 0.00001216 ft^2/sec
Coil Power 0.62 kW

DeltaP f v Re q DT
(psi) (ft/sec) (no units) (no units) (ft/sec) (gpm) (deg.C)

30 0.6337 0.0042 4.755 0.0442 3.013 2927 1.48E-01 15.90
35 0.6845 0.0039 4.820 0.0430 3.299 3205 1.62E-01 14.52
40 0.7317 0.0036 4.876 0.0421 3.568 3466 1.75E-01 13.43
45 0.7761 0.0034 4.926 0.0412 3.823 3713 1.88E-01 12.53
50 0.8181 0.0033 4.970 0.0405 4.066 3949 2.00E-01 11.78
55 0.8580 0.0031 5.010 0.0398 4.299 4175 2.11E-01 11.15
60 0.8962 0.0030 5.046 0.0393 4.522 4393 2.22E-01 10.60
65 0.9328 0.0029 5.080 0.0388 4.738 4602 2.33E-01 10.11
70 0.9680 0.0028 5.111 0.0383 4.947 4805 2.43E-01 9.69
75 1.0020 0.0027 5.139 0.0379 5.149 5002 2.53E-01 9.31
80 1.0348 0.0026 5.166 0.0375 5.346 5193 2.63E-01 8.96
85 1.0667 0.0025 5.191 0.0371 5.537 5379 2.72E-01 8.65
90 1.0976 0.0025 5.215 0.0368 5.724 5560 2.81E-01 8.37
95 1.1277 0.0024 5.237 0.0365 5.906 5737 2.90E-01 8.11

100 1.1570 0.0023 5.259 0.0362 6.084 5909 2.99E-01 7.88
105 1.1855 0.0023 5.279 0.0359 6.258 6079 3.08E-01 7.66
110 1.2134 0.0022 5.298 0.0356 6.429 6244 3.16E-01 7.45
115 1.2407 0.0022 5.316 0.0354 6.596 6407 3.24E-01 7.26
120 1.2674 0.0022 5.334 0.0352 6.760 6566 3.32E-01 7.09
125 1.2935 0.0021 5.351 0.0349 6.921 6722 3.40E-01 6.92
130 1.3191 0.0021 5.367 0.0347 7.079 6876 3.48E-01 6.77
135 1.3443 0.0020 5.382 0.0345 7.235 7027 3.56E-01 6.62
140 1.3689 0.0020 5.397 0.0343 7.388 7176 3.63E-01 6.49
145 1.3932 0.0020 5.411 0.0341 7.539 7323 3.71E-01 6.36
150 1.4170 0.0019 5.425 0.0340 7.687 7467 3.78E-01 6.23
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Figure 10 Flow Calculations Using US Units



Coil Cooling 139

Units Units
d 3.6 mm 0.0036 meters
L 40 m 40000 mm
epsilon 1.50E-03 mm
nu 1.13E-06 m^2/sec
water Density 1.00E+03 Kg/m^3 1.00E+00 Kg/liter
Heat Capacity 4.19E+00 kW-sec/Kg(degC)
Coil Power 0.62 kW

DeltaP f v Re q DT
(Pa=N/m^2) (m/sec) (no units) (no units) (no units) (m/sec) (no units) (l/sec) (deg.C)

2.00E+05 0.190 0.00415 4.763 0.044 0.904 2879 9.20E-03 16.10
2.50E+05 0.212 0.00371 4.860 0.042 1.031 3285 1.05E-02 14.11
3.00E+05 0.232 0.00339 4.939 0.041 1.148 3657 1.17E-02 12.67
3.50E+05 0.251 0.00314 5.006 0.040 1.257 4003 1.28E-02 11.58
4.00E+05 0.268 0.00294 5.064 0.039 1.359 4329 1.38E-02 10.71
4.50E+05 0.285 0.00277 5.116 0.038 1.456 4638 1.48E-02 9.99
5.00E+05 0.300 0.00263 5.161 0.038 1.548 4933 1.58E-02 9.40
5.50E+05 0.315 0.00250 5.203 0.037 1.637 5215 1.67E-02 8.89
6.00E+05 0.329 0.00240 5.241 0.036 1.722 5487 1.75E-02 8.45
6.50E+05 0.342 0.00230 5.275 0.036 1.804 5749 1.84E-02 8.06
7.00E+05 0.355 0.00222 5.307 0.035 1.884 6002 1.92E-02 7.72
7.50E+05 0.367 0.00214 5.337 0.035 1.961 6248 2.00E-02 7.42
8.00E+05 0.379 0.00208 5.365 0.035 2.036 6487 2.07E-02 7.15
8.50E+05 0.391 0.00201 5.392 0.034 2.109 6719 2.15E-02 6.90
9.00E+05 0.402 0.00196 5.417 0.034 2.180 6946 2.22E-02 6.67
9.50E+05 0.414 0.00191 5.440 0.034 2.250 7167 2.29E-02 6.47
1.00E+06 0.424 0.00186 5.462 0.034 2.317 7383 2.36E-02 6.28
1.05E+06 0.435 0.00181 5.484 0.033 2.384 7595 2.43E-02 6.10
1.10E+06 0.445 0.00177 5.504 0.033 2.449 7802 2.49E-02 5.94
1.15E+06 0.455 0.00173 5.523 0.033 2.513 8006 2.56E-02 5.79
1.20E+06 0.465 0.00170 5.542 0.033 2.575 8205 2.62E-02 5.65
1.25E+06 0.474 0.00166 5.559 0.032 2.637 8401 2.68E-02 5.52
1.30E+06 0.484 0.00163 5.576 0.032 2.697 8594 2.75E-02 5.39
1.35E+06 0.493 0.00160 5.593 0.032 2.757 8783 2.81E-02 5.28
1.40E+06 0.502 0.00157 5.609 0.032 2.815 8970 2.87E-02 5.17
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Units Units
d 3.6 mm 0.0036 meters
L 40 m 40000 mm
epsilon 1.50E-03 mm
nu 1.13E-06 m^2/sec
water Density 1.00E+03 Kg/m^3 1.00E+00 Kg/liter
Heat Capacity 4.19E+00 kW-sec/Kg(degC)
Coil Power 0.62 kW

DeltaP f v Re q DT
(Pa=N/m^2) (m/sec) (no units) (no units) (no units) (m/sec) (no units) (l/sec) (deg.C)

2.00E+05 0.190 0.00415 4.763 0.044 0.904 2879 9.20E-03 16.10
2.50E+05 0.212 0.00371 4.860 0.042 1.031 3285 1.05E-02 14.11
3.00E+05 0.232 0.00339 4.939 0.041 1.148 3657 1.17E-02 12.67
3.50E+05 0.251 0.00314 5.006 0.040 1.257 4003 1.28E-02 11.58
4.00E+05 0.268 0.00294 5.064 0.039 1.359 4329 1.38E-02 10.71
4.50E+05 0.285 0.00277 5.116 0.038 1.456 4638 1.48E-02 9.99
5.00E+05 0.300 0.00263 5.161 0.038 1.548 4933 1.58E-02 9.40
5.50E+05 0.315 0.00250 5.203 0.037 1.637 5215 1.67E-02 8.89
6.00E+05 0.329 0.00240 5.241 0.036 1.722 5487 1.75E-02 8.45
6.50E+05 0.342 0.00230 5.275 0.036 1.804 5749 1.84E-02 8.06
7.00E+05 0.355 0.00222 5.307 0.035 1.884 6002 1.92E-02 7.72
7.50E+05 0.367 0.00214 5.337 0.035 1.961 6248 2.00E-02 7.42
8.00E+05 0.379 0.00208 5.365 0.035 2.036 6487 2.07E-02 7.15
8.50E+05 0.391 0.00201 5.392 0.034 2.109 6719 2.15E-02 6.90
9.00E+05 0.402 0.00196 5.417 0.034 2.180 6946 2.22E-02 6.67
9.50E+05 0.414 0.00191 5.440 0.034 2.250 7167 2.29E-02 6.47
1.00E+06 0.424 0.00186 5.462 0.034 2.317 7383 2.36E-02 6.28
1.05E+06

Units Units
d 3.6 mm 0.0036 meters
L 40 m 40000 mm
epsilon 1.50E-03 mm
nu 1.13E-06 m^2/sec
water Density 1.00E+03 Kg/m^3 1.00E+00 Kg/liter
Heat Capacity 4.19E+00 kW-sec/Kg(degC)
Coil Power 0.62 kW

DeltaP f v Re q DT
(Pa=N/m^2) (m/sec) (no units) (no units) (no units) (m/sec) (no units) (l/sec) (deg.C)

2.00E+05 0.190 0.00415 4.763 0.044 0.904 2879 9.20E-03 16.10
2.50E+05 0.212 0.00371 4.860 0.042 1.031 3285 1.05E-02 14.11
3.00E+05 0.232 0.00339 4.939 0.041 1.148 3657 1.17E-02 12.67
3.50E+05 0.251 0.00314 5.006 0.040 1.257 4003 1.28E-02 11.58
4.00E+05 0.268 0.00294 5.064 0.039 1.359 4329 1.38E-02 10.71
4.50E+05 0.285 0.00277 5.116 0.038 1.456 4638 1.48E-02 9.99
5.00E+05 0.300 0.00263 5.161 0.038 1.548 4933 1.58E-02 9.40
5.50E+05 0.315 0.00250 5.203 0.037 1.637 5215 1.67E-02 8.89
6.00E+05 0.329 0.00240 5.241 0.036 1.722 5487 1.75E-02 8.45
6.50E+05 0.342 0.00230 5.275 0.036 1.804 5749 1.84E-02 8.06
7.00E+05 0.355 0.00222 5.307 0.035 1.884 6002 1.92E-02 7.72
7.50E+05 0.367 0.00214 5.337 0.035 1.961 6248 2.00E-02 7.42
8.00E+05 0.379 0.00208 5.365 0.035 2.036 6487 2.07E-02 7.15
8.50E+05 0.391 0.00201 5.392 0.034 2.109 6719 2.15E-02 6.90
9.00E+05 0.402 0.00196 5.417 0.034 2.180 6946 2.22E-02 6.67
9.50E+05 0.414 0.00191 5.440 0.034 2.250 7167 2.29E-02 6.47
1.00E+06 0.424 0.00186 5.462 0.034 2.317 7383 2.36E-02 6.28
1.05E+06 0.435 0.00181 5.484 0.033 2.384 7595 2.43E-02 6.10
1.10E+06 0.445 0.00177 5.504 0.033 2.449 7802 2.49E-02 5.94
1.15E+06 0.455 0.00173 5.523 0.033 2.513 8006 2.56E-02 5.79
1.20E+06 0.465 0.00170 5.542 0.033 2.575 8205 2.62E-02 5.65
1.25E+06 0.474 0.00166 5.559 0.032 2.637 8401 2.68E-02 5.52
1.30E+06 0.484 0.00163 5.576 0.032 2.697 8594 2.75E-02 5.39
1.35E+06 0.493 0.00160 5.593 0.032 2.757 8783 2.81E-02 5.28
1.40E+06 0.502 0.00157 5.609 0.032 2.815 8970 2.87E-02 5.17
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Figure 11 Flow Calculations Using MKS Units
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Figure 12 Graphical Relationships Using English Units
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Figure 13 Graphical Relationships Using MKS Units
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5.5.6 Sensitivities

The design of cooling circuits for magnets is often an iterative excercise. One may
start with a simple case selecting a conductor with a given diameter hole and propos-
ing a design requiring a single water circuit per coil. Preliminary calculation may
result in findings that the water flow needed to limit the coil temperature rise to a
reasonable value requires more water pressure than is available in the facility. On the
other hand, one may find that the required water pressure for the proposed design is
far less than the available pressure. Therfore, one can simplify and/or improve the
magnet design by either combining the water circuits of several coils and connecting
them in series or reducing the size of the coolant hole so that more area is available to
carry the electrical current and reduce the total voltage or power. In any case, it is
desirable to understand the sensitivities of the critical performance factors to selected
parameters so that the results can be estimated prior to repeating the tedious flow
and cooling calculations. In the following sections, it is assumed that the friction
factor, f , is nearly constant (a good assumption).

Number of Water Circuits

The expression for the required flow is determined by the selection of the maximum
allowable temperature and the computed magnet power at the required magnet ex-
citation and given by;

q

(
liters

sec

)
= 0.2388

P (kW )

∆T (◦C)
.

The total flow can be divided among several circuits each of which dissipates
a portion of the magnet power. The pressure drop is roughly proportional to the
length of the water circuit. The length of the water circuit is expressed as;

l =
K N lave

Nw

,

where K is the number of coils per magnet and K = 2, 4 and 6 for a dipole,
quadrupole and sextupole, respectively. N = Turns

coil
and Nw is the number of water

circuits per magnet. In general, K = Nw for magnets with one water circuit per
coil. The flow per water circuit is q

Nw

and the velocity is proportional to the flow per
circuit.
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Therefore, since

∆p = f
l

d

δv2

2
∝ lv2, and v ∝

q

Nw

,

∆p ∝ lv2 =
KNlave

Nw

×

(
q

Nw

)2

,

or ∆p ∝

(
1

Nw

)3

. (5.27)

Thus, for instance, doubling the number of water circuits reduces the pressure
drop to provide the required flow by a factor of eight.

Diameter of the Cooling Channel

Using the expression for the pressure drop, the proportionality can be expressed as

∆p ∝
v2

d
.

But the volume flow rate
•
q= Av =

πd2

4
v, and thus v ∝

1

d2
. Substituting;

∆p ∝
v2

d
∝

1

d

(
1

d2

)2

=
1

d5
. (5.28)

It can be seen that increasing the cooling channel by a small factor can re-
duce the required pressure drop tremendously. Thus asking a conductor vendor to
slightly alter a standard design and fabricate a new die set can result in major ben-
efits. Conversely, the effect of small mechanical fabrication errors, systematically
reducing the cooling channel diameter by a small amount, can have major conse-
quences. Thus, when specifying the diameter of the tooling channel, the dimensions
should be +∆d, −0. It is important to carefully define the mechanical fabrication
tolerances for conductors.

5.6 Chapter Closure

Using Stoke’s Theorem to convert Maxwell’s general differential equation to an in-
tegral form, generalized expressions for the required electrical excitation for various
magnet types are developed. A few examples of different magnet geometries are illus-
trated to develop relationships for a current carrying septum, a Lambertson septum
and conductor dominated geometries. It is shown that expressions for estimating
the magnitude of the the fringe fields in septum magnets can be developed from
the integral relationships. It is also shown that the current distribution for a high
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quality dipole and quadrupole can be computed for magnet geometries where fields
are dominated by the distribution of the conductors. The examples of the current
dominated magnet types are academic examples since, if substituting real magnet
requirements, it will be quickly evident that the required current densities are far
larger than practical to achieve reasonable fields with reasonable geometries. The
examples are useful since they are the first step in developing the coil locations for
superconducting dipole and quadrupole magnets whose coils are divided into blocks
of conductors spaced to approximate a cosine current density distribution.

Manipulation of the expressions for the required magnet excitations result
in expressions for the estimation of magnet power requiring only information about
the physics requirements for the magnet and the selection of one design parameter,
the current density, j. Using canonical values for the design parameters, one can
estimate the cross section of magnets and estimate the requirements for power and
power distribution.

Detailed mechanical design of the magnet coil eventually requires selection of
the number of turns per coil and the conductor size. These involve consideration of
the coil cooling and the availability of cooling water pressure at a facility. Expressions
for the computation of water flow are presented. These expressions can be used to
analyze the hydraulic performance of detailed designs for magnet coils.

Since the first design seldom satisfies thermal and hydraulic constraints, sen-
sitivities of flow parameters to the selection of the number of water circuits and the
diameter of the cooling channel are developed. These hydraulic sensitivity relations
show that, although a first design iteration may exceed desired values by a wide mar-
gin, changes in the topology of the hydraulic circuit or small changes in the diameter
of the hydraulic cooling channel can quickly bring the parameters within limits im-
posed by the facility infrastructure. Typical values of some of the design parameters
are listed. These provide starting points for real designs developed from physics
requirements and typical constraints of materials and facilities.

This chapter is an introduction to practical engineering design of magnets.
This chapter, along with the chapter on pertubations, can be exploited to trans-
late the magnet mathematics covered in the earlier chapters to develop engineer-
ing designs, translated into mechanical fabrication drawings and specifications for
electro-magnetic devices ultimately used in particle accelerators and beam transport
systems.
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5.7 Problems

Problem 5.1

Assuming a dipole with a halfgap, h = 20 mm requiring a field B = 1.3 Tesla,

estimate the required gross size of the coil assuming a coil packing fraction of 50%
and a magnet efficiency η = 98%. Use the “canonical” current density, j = 10 Amps

mm2 .
Assume the dipole length of 0.5 meters with an average turn length of 1.2 meters.
Estimate the magnet power dissipation assuming ρ = 1.86× 10−8 Ω m.

Problem 5.2

Assuming a quadrupole with a pole radius, h = 35 mm and a poletip field B =
0.6 Tesla, estimate the required gross size of the coil assuming a coil packing fraction
of 50% and a magnet efficiency η = 98%. Use the “canonical” current density
j = 10 Amps

mm2 . Assume the quadrupole length of 0.2 meters with an average turn length
of 0.5 meters. Estimate the magnet power dissipation assuming ρ = 1.86×10−8 Ω m.

Problem 5.3 (Solution)

Assuming a sextupole with a pole radius, h = 45 mm and a poletip field B =
0.3 Tesla, estimate the required gross size of the coil assuming a coil packing fraction
of 50% and a magnet efficiency η = 98%. Use the “canonical” current density
j = 10 Amps

mm2 . Assume that the sextupole is 20 cm. long requiring a copper coil with
an average turn length of 50 cm. Estimate the required magnet power assuming
ρ = 1.86× 10−8 Ω m.

Problem 5.4 (Solution)

For problem 5.3, assume selection of standard Outukumpu R© conductor #6881 illus-
trated in fig. 14. The cross sectional area for this conductor is A = 20.323 mm2.
Based on this area and using the “canonical” current density j = 10 Amps

mm2 . the coil
can be designed for I = 200 Amps. Suppose we select a 20 turn coil (two rows of
ten turns each) and assume a 200 Amp power supply, providing a 10% margin over
the physics requirement for this magnet. Recompute the power and perform the
hydraulic calculations. Assume the facility can provide a pressure across the water
manifolds of approximately 10 atmospheres.
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Figure 14 Standard 5.6 mm. Square Copper Conductor
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Chapter 6

POISSON

Fabrication of a three dimensional magnet begins with the two dimensional design.
The effort to design a two dimensional magnet requires the determination of the
pole contour to achieve a specified field amplitude and uniformity using the non-ideal
boundary conditions determined by the excitation, physical size and location of the
coils and the physical boundaries of the steel yoke. The design process involves
defining a baseline pole contour, analyzing its performance, improving the contour
by adjusting its shape, reanalyzing and repeating the process until the desired two
dimensional field amplitude and uniformity are achieved. Since the magnetic behav-
ior of steel is nonlinear, the calculations must be performed iteratively, adjusting the
nonlinear magnetic properties of the steel at the calculated field amplitude at each
iteration.

A two dimensional analysis tool is required to carry out the difficult and te-
dious analysis requiring point by point calculation of the entire two dimensional field
distribution. Poisson and Pandira are two computer codes which carry out this cal-
culation. They both solve the Poisson’s equation (page 36) on a two dimensional
grid generated by defining the boundaries of the coil, yoke and pole. The two codes
differ only in the algorithms used to solve the huge number of nonlinear finite ele-
ment equations generated at an array of two dimensional points in the magnet cross
section. Poisson uses an iterative under-relaxation method to invert the matrix and
solve the array of nonlinear equations. Pandira takes advantage of the nearly diago-
nal structure of the coefficient matrix and successively approximates the solution by
inverting the smaller matrix blocks along the diagonal making up the elements of the
larger matrix. (The few nonzero off diagonal elements coupling the larger blocks are
initially ignored.) The inverted matrix solution is used to adjust the nonlinear iron
properties and the process is repeated. Poisson and Pandira are the solver codes in
a family of magnetostatic codes originally written and developed by Klaus Halbach
and Ron Holsinger[10] at LBNL [11] in Berkeley. These codes were originally writ-
ten in Fortran, converted to UNIX c© and finally ported to operate under MicroSoft
Windows c©.

The Windows c© version of Poisson and Pandira, as well as their descendants
which solve electrostatic and RF problems, are maintained by a US Department of
Energy (DOE) supported Los Alamos National Laboratory[12] program and admin-
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stered by a group headed by James Billen[13]. This family of codes is grouped as
the Poisson and SuperFish c© family. Since the codes were written, developed and
maintained by government funded programs, they are public domain and provided
cost free for any user. Instructions for downloading and installing the family of
codes and supporting help documents can be obtained by email to James H. Billen
<jbillen@lanl.gov>.

Many commercial codes have been written to solve two dimensional magne-
tostatic problems. Most of the codes are subsets of more general three dimensional
codes. Initially, the three dimensional codes were difficult to operate and required a
long learning curve. The commercial vendors have lately developed sophisticated user
interfaces resulting in much more user friendly three dimensional codes and their two
dimensional counterparts. In some cases, three dimensional computer aided design
(CAD) databases can be used as inputs for meshing of the three dimensional space.
Baseline tests of the three dimensional codes have been performed and reported by
various laboratories. It is very difficult to evaluate the accuracy of the three di-
mensional codes because of the difficulty in making accurate and detailed maps of
measured field vectors for comparison with computed values. In general, two di-
mensional codes provide more accurate results than three dimensional codes. This
is because they more accurately characterize the tangential H field at the iron/air
interface than the three dimensional codes.

Commercial two dimensional codes have improved their user interfaces and
presentation formats. Improvements in the Poisson family of codes, since they are
not driven by competitive economics, is steady but substantially slower.

The primary advantage of the Poisson family of codes is its familiarity and
use of the language of magnet theory. Results are presented as edited lists of the
vector potentials and field component values in specified line or rectangular regions.
Vector potential values can be interpolated around arcs defining the good field region.
These quantities are then Fourier analyzed and the field harmonics evaluated at the
radius of the arc are computed from the coefficients of the vector potential Fourier
series. The vector potentials edited around larger radius arcs, incorporating portions
of the pole, can also be used to define the boundary conditions for the solution of
the field distribution in a more limited region of the two dimensional magnet cross-
section. This technique can be used to limit the size of the mesh and provide a
finer mesh for defining the important pole tip configurations. The Poisson code
also provides internal algorithms so that the nonlinear iron properties are properly
scaled during conformal mapping. This allows for Poisson calculations to be made
in conformally mapped geometries, correctly modelling the iron properties from the
original geometry. Examples are presented using the vector potential boundary
conditions in conformally mapped configurations.

Since the Poisson family of codes is familiar to the author (and many users
at other laboratories), it is the code of choice for the description in this text of
the detailed computer calculations required to develop the two dimensional magnet
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cross section design. The design and analysis of the two dimensional magnet cross-
section is the first step in evolving a fabricated magnet meeting the physics needs of
accelerator and beam transport magnets.

6.1 Elements of the Family of Codes

Only the subset of the Poisson and SuperFish c© family of code elements used in
magnetostatic calculations are listed and described. Four main components are of
interest to the magnet designer.

1. Automesh.exe

(a) Automesh is an automatic mesh generator. It takes the (x, y) coordinates
of the boundaries of the coil and yoke written in a text file and generates the
(k, l) coordinates of the boundaries and interpolates the (k, l) coordinates
of the space in the gap and the area sorrounding the magnet, the points
in the iron yoke and the points in the conductors.

(b) Automesh defines boundary conditions, defines the type of iron used in
the calculation and can choose whether the problem is two dimensional or
three dimensional rotationally symmetric.

(c) Automesh input parameters are provided to define the boundaries for the
edit of computed quantities and define the radius and the multipole indices
allowed by the symmetry conditions of particular magnet types (see page
50) for harmonic analysis of the vector potential and the field.

2. Poisson.exe

(a) Poisson solves the series of finite element equations using the boundary
conditions, limits, coordinates and iron properties generated by Automesh
and generates an edit file which summarizes the calculated values (the
desired solutions) and (if requested) the harmonic field values.

3. Pandira.exe

(a) Pandira duplicates the function of Poisson but uses a different algorithm
for achieving the solution of the finite element equations. In general, the
solution algorithm is faster and more robust than the under relaxation
algorithm employed by Poisson and can occasionally achieve converged
results when Poisson cannot.

4. Wfsplot.exe
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(a) Wfsplot is a graphics package which can display the geometry, the mesh
structure and the flux plot. It can be run after the Automesh routine to
display the geometry to help the user ensure that the geometry has been
input correctly. It is also useful to determine whether the mesh density
is appropriate for defining the geometry when many points are required
in a local area with complicated geometry. After solving a problem us-
ing Poisson or Pandira, Wfsplot displays the vector equipotential curves,
whose density is proportional to the flux density. An icon on the display
can be moved to display the components and the magnitude of the flux
density at the location of the icon.

6.2 Documentation

The Poisson and SuperFish family of codes is fully documented with a set of Word c©

documents supplied with an index and links to the subject selected in the index. The
documentation describes all the ProbCons (Problem Constants) and the variable
names used to describe the input quantities required for the AutoMesh program.
The ProbCons can be input using names as well as subscripted constants. Sample
problems are provided as examples which can be used as templates for the generation
of files for different geometries. Because the primary LANL interest are RF problems,
most of the documented examples are in this area. Because of this, example magnet
analysis problems are presented in this chapter that illustrate different features of
different magnet types and different features of the magnet codes.

6.3 Problem Flow

The generation of files and the flow of the computations is schematically represented
in fig. 1.

1. The designer writes a text file describing the boundary conditions, the geome-
try and desired output format for the solution of the two dimensional magnet
problem.

2. Automesh is run using this text file as input.

(a) Automesh generates a temporary file with the same name as the text file
appended with the designation .T35. This designation is a remnant of the
old Fortran version of the code where Automesh and Poisson wrote a file
to a reserved magnetic tape identified as Tape35.

(b) Filename.T35 is the source file for running either Poisson or Pandira or
Wfsplot. When Wfsplot is run using the source file before running Poisson
or Pandira, the graphical output presents a scaled outline of the input
geometry. The pulldown menu allows displaying the geometry with or
without the mesh.
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Figure 1 Poisson Calculation Flow Diagram

3. Poisson or Pandira is executed.

(a) Filename.T35 must be designated as the source for the input data to Pois-
son or Pandira. If Automesh.exe is run just before Poisson or Pandira is
run, the last .T35 file written is used and Filename.T35 does not have to
be designated.

(b) Poisson or Pandira overwrites Filename.T35 after its execution.

(c) The overwritten Filename.T35 is the source file for runningWfsplot. When
Wfsplot is run using the source file after completion of the Poisson or
Pandira calculations, the graphical output presents a plot of vector equipo-
tentials superimposed on the scaled outline of the input geometry. The
pulldown menu allows displaying the geometry with or without the mesh.
The graphical output can be stored in a variety of formats to include in
documentation or for archiving.

(d) During execution, Poisson or Pandira overwrites files OUTPOI.txt or OUT-
PAN.txt. These are text files which record the progress of the program
while converging, review the BH relations of the selected steel used in the
computation, tabulate the vector potential, field and field gradient distri-
bution in the area specified by the input text file and summarize the Fourier
coefficients of the solution (if requested in the input text file). Selected
portions of this file can be copied and pasted into archival documents or
pasted into a spreadsheet for later analysis. These files can be renamed



152 POISSON

Simple Dipole
To test VP boundary conditions

$reg mat=1, kprob=0, mode=0,conv=.1, 
kmax=100, lmax=75, 
icylin=0, 
xminf=0, xmaxf=25,ktop=11
yminf=0, ymaxf=10,ltop=5 
ktype=121,nptc=31, nterm=14,rint=20, 
rnorm=25, angle=90, anglz=0
ienergy=1,
nbsup=0, nbslo=1, nbsrt=0, nbslf=0$

Figure 2 Sample Boundary Conditions AutoMesh Dataset

for archiving since later execution of Poisson or Pandira overwrites these
files.

6.4 AutoMesh

All the labor required to define and set up a problem for Poisson or Pandira is
in writing a text file which is executed by AutoMesh. Examples of the text files
written for various magnet geometries are presented to highlight the nomenclature
and variables.

6.4.1 Boundary Conditions and Constraints

The example of the first part of the text file illustrated in fig. 2 is for a simple dipole.

1. The first two lines in the text file are the title and descriptors for the problem.
These two lines will be copied in the output file OUTPOI.txt or OUTPAN.txt.

(a) Comment lines can follow which provide more detailed information. Each
comment line must be started with a !. All characters on a line following
the ! sign are ignored by the program.

2. The first section of the input file defines the boundary conditions and the cal-
culation and output edit constraints. This section is delineated with a starting
$reg or @reg and ended with a $ or @ and defines the following;

(a) (mat=1) - The region defining the problem boundary is an air region. The
regions which are read later are superimposed on this air region.

(b) (kprob=0) - The problem is a Poisson or Pandira problem. Other values
are used for electrostatic or RF problems.
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(c) (mode=0) - The generic 1010 steel finite permeability table is used for the
nonlinear BH properties of the steel.

(d) (conv=0.1) - The physical dimensions for the input coordinates is mm.
(conv=1 is cm and conv=2.54 is inches.)

(e) The range of the horizontal and vertical axes are determined by the first
region in the text file. In the example shown in fig. 3, the physical bound-
aries are defined by the limits 0 ≤ x ≤ 150 mm and 0 ≤ y ≤ 100 mm.
The range of the horizontal and vertical mesh points are determined by
the values (kmax=50) and (lmax=50). In the example, the unmodified
mesh densities are given by

150 mm

50 mesh points
=

3 mm

horizontal mesh

and
100 mm

50 mesh points
=

2 mm

vertical mesh
.

(f) (xreg1=20, kreg1=20, yreg1=20, lreg1=20) - If more detail is required in
specified regions, both the horizontal and vertical regions can be subdi-
vided with different densities of mesh points. These variables define a
higher mesh density in the horizontal region, 0 ≤ x ≤ 20 mm divided
into 0 ≤ k ≤ 20 mesh points, and a higher density in the vertical region,
0 ≤ y ≤ 20 mm divided into 0 ≤ l ≤ 20 mesh points, a mesh density of
1 mm per horizontal mesh. The remainder of the horizontal space has a
mesh density

150 mm− 20 mm

30 mesh points
=

4.33 mm

horizontal mesh

and the remainder of the vertical space has a mesh density

100 mm− 20 mm

30 mesh points
=

2.67 mm

horizontal mesh
.

i. The horizontal and vertical regions can be divided into an arbitrary
number of subregions by defining the variables xregn, kregn yregn and
lregn where n is an integer in the expressions. The mesh density in
these subregions is

XSubregion Density =
xregn − xregn−1

kregn − kregn−1

YSubregion Density =
yregn − yregn−1

lregn − lregn−1
.

(g) (icylin=0) - The dimensions are given in Cartesian coordinates.
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i. (icylin=1) The coordinates are for a three dimensional solid using
cylindrical coordinates. (x=radius, y=z) coordinates.

(h) (xminf=0, xmaxf=25, ktop=11) - The horizontal range of the output edit
of the calculated values is 0 ≤ x ≤ 25 mm. The number of increments for
the edit is 11. For these range of variables, the calculated vector potential,
field and field gradient are tabulated at ktop − 1 = 10 increments of 2.5
mm in the horizontal direction.

(i) (yminf=0, ymaxf=10, ltop=5) - The vertical range of the output edit of
the calculated values is 0 ≤ y ≤ 10 mm. The number of increments for
the edit is ltop−1 = 4. For these range of variables, the calculated vector
potential, field and field gradient are tabulated at 4 equal increments of
2.5 mm in the vertical direction.

(j) (ktype=121, nptc=31, nterm=14, rint=20, rnorm=25, angle=90, anglz=0)
- If these variable inputs are given, the Fourier coefficients of the vector
potential and the field components are computed from the vector poten-
tials.

i. (ktype=n, ∆n allowed, boundary) - n = field index = 1 (dipole),
∆nallowed = multipole increment = 2,. nallowed = n+∆nallowed. bound-
ary = 1 means the flux lines are perpendicular to the horizontal axis.
boundary = 0 means the flux lines are tangent to the horizontal axis.

ii. (ktype=121) is for a normal (non skew) dipole with allowed multipoles
= 1, 3, 5, · · · .

iii. (ktype=120) is for a skew dipole with allowed multipoles = 1, 3, 5, · · · .

iv. (ktype=241) is for a normal (non skew) quadrupole with allowed mul-
tipoles = 2, 6, 10, · · · .

(k) (nterm=14) - Fourteen multipole terms are computed. A number this
large is seldom needed.

(l) (nptc=31, rint=20, rnorm=25, angle=90, anglz=0) - The vector potential
values edited on a rint=20 mm arc from angle starting at anglz=0 degrees
and ending at anglz+angle=90 degrees divided into nptc=(31-1) = 3◦ an-
gular increments. The calculated values are renormalized at rnorm=25
mm radius.

i. Evaluation of the vector potentials for Fourier analysis must be made
at least two mesh points away from any iron boundary (rint=20 mm).
This is because the vector potential solution has a discontinuity at
the iron boundary and the field is interpolated from the vector poten-
tial nearest two neighboring mesh points surrounding the designated
points for the harmonic analysis. Often, however, the vector poten-
tial and field values are desired at a larger radius. The values are
extrapolated to rnorm=25 mm radius.
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A. An exception to the mapping of the vector potential through the
steel boundary is given in a later section in this chapter. The
exception uses the vector potential as the boundary values for
calculating the field distribution in a limited portion of the full
magnet.

(m) (ienergy=1) - The stored energy in joules

cm
for the two dimensional cross

section is computed when ienergy=1. If ienergy=0, this calculation is not
made. The total magnet stored energy is computed by multiplying this
factor by the magnet length and the number of segments in which the full
magnet is divided to take advantage of summetry. The stored energy is
useful in calculating the inductance of the magnet.

(n) (nbsup=0, nbslo=1, nbsrt=0, nbslf=0) - The boundary conditions for the
problem are defined. nbsup, nbslo, nbsrt and nbslf refer to the upper,
lower, right and left boundaries, respectively. nbsxx=0 and nbsxx=1
are for a Dirichlet (flux parallel) and Neumann (flux normal) boundary
conditions, respectively.

6.4.2 Geometry

The geometry portion of the dataset for a simple dipole is illustrated in fig. 3. Some
of the features and rules governing the format of the geometry textfile are listed
below. Since conv=0.1 was selected in the definition portion of the textfile, all the
input dimensions are in mm.

1. It is useful to insert a comment line starting with a ! describing each geometric
shape.

2. The line defining each geometric point starts with a $po or @po and ends with
a $ or @.

3. The regions can be closed, open or can be defined by a point.

(a) The first and last entries defining a closed region must be identical.

4. The first area is an air region bounded by the points in the first group of
coordinates in fig. 3 and defines a two dimensional area on which the coils and
yoke are superimposed. This region can describe any arbitrary closed space.

5. The second area is bounded by the points in the second group of coordinates
in fig. 3 and defines a two dimensional rectangular area of the coil.

(a) The first line defining this region, ($reg mat=1 cur=-2000$) signifies a new
region, with mat=1 (meaning air) with a total current of -2000 Amperes.
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i. A negative value for the current was selected since, in this example, it
results in a positive vertical field on the horizontal centerline.

ii. The current is uniformly distributed over the geometric shape.

iii. The remaining five points define the boundaries of the rectangular
coil area with the fifth coordinate identical with the first coordinate,
closing the rectangular area.

(b) The coil can be defined by any number of points.

i. A single conductor is defined by a single coordinate point.

ii. A line current is defined by two coordinate points.

iii. More than two coordinate points can be used to define a line current,
or if the first and last coordinates are equal, a coil defined by the area
of the closed coordinates.

6. The third area is bounded by the points in the third group of coordinates in
fig. 3 and defines a two dimensional boundaries of the yoke.

(a) The first line defining this region, ($reg mat=2$) signifies a new region,
with mat=2 (meaning finite nonlinear permeability steel).

(b) The remaining points define the coordinates of the closed area describing
the shape of the two dimensional yoke.

7. New areas are sumperimposed over the previous meshed points. Therefore, if a
hole is desired in the iron, a new region following the third group of coordinates
defining the closed boundary of a hole with mat=1 will superimpose a hole in
the iron.

6.4.3 Setting Up and Testing the Geometry

The process of setting up the geometry can be very difficult without graphical pre-
sentation of the digital data (the coordinates). A useful technique found by the
author was to take advantage of the graphical capabilities of a spreadsheet. The
spreadsheet has the added advantage that coordinate points can be added, deleted
and/or modified and the graphical output will immediately reflect the results of the
changes. The graphical output quickly verifies if areas overlap or fail to fall within
the problem boundary. A simple concatenate instruction can then be used to convert
the coordinates into the text form required by Automesh. The series of text lines
can then be copied and pasted into the input text file. This process is illustrated in
fig. 4.
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!first region is air (mat=1), defines 
the problem limits.  
$po x=0, y=0$
$po x=150, y=0$
$po x=150, y=100$
$po x=0, y=100$
$po x=0, y=0$

!Coil
$reg mat=1 cur=-20000$
$po x=55, y=25 $
$po x=75, y=25 $
$po x=75, y=45 $
$po x=55, y=45 $
$po x=55, y=25$

!Iron Yoke
$reg mat=2$
$po x=0, y=25 $
$po x=40, y=25$
$po x=50, y=50$
$po x=80, y=50$
$po x=80, y=0 $
$po x=120, y=0 $
$po x=120, y=80$
$po x=0, y=80$
$po x=0, y=25$

Figure 3 Geometry Dataset for a Simple Dipole

$po x=
, y=

boundary $
xb yb

0 0 $po x=0, y=0$
150 0 $po x=150, y=0$
150 100 $po x=150, y=100$

0 100 $po x=0, y=100$
0 0 $po x=0, y=0$

Coil
xc yc

55 25 $po x=55, y=25$
75 25 $po x=75, y=25$
75 45 $po x=75, y=45$
55 45 $po x=55, y=45$
55 25 $po x=55, y=25$

Yoke
xy yy

0 25 $po x=0, y=25$
40 25 $po x=40, y=25$
50 50 $po x=50, y=50$
80 50 $po x=80, y=50$
80 0 $po x=80, y=0$

120 0 $po x=120, y=0$
120 80 $po x=120, y=80$

0 80 $po x=0, y=80$
0 25 $po x=0, y=25$

-50

0

50

100

150

-50 0 50 100 150 200

yy

yc

yb

=CONCATENATE(C$1,A5,C$2,B5,C$3)

Copy and Paste

Figure 4 Setting Up the Geometry in a Spreadsheet
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6.5 Symmetries

The previous example of a simple dipole took advantage of the symmetries of the
design and divided the problem so that the geometry was defined only in the first
quadrant of the Cartesian coordinate system. It is seldom necessary, in fact it
is undesirable, to include the symmetric regions of the magnet. In the previous
example, the number of mesh points can be increased from k × l = 50 × 50 = 2500
to 2 or 4 times this number, depending on whether half or the whole magnet is
analyzed. This results in the program having to invert a much larger matrix to
achieve a solution. A second, more crucial reason that it is undesirable to include
the symmetric regions of the magnet is computational. The solving algorithms used
in Poisson and Pandira find it difficult to converge on a solution when the mesh is
symmetric. This is because the solutions oscillate by attempting to balance about
points which are symmetrically located with respect to centerlines. The convergence
factors appear to be asymptotically approaching a small value as the number of
iterations increase, but suddenly appear to grow again. This cycling repeats until
the limit of the number of iterations is reached, resulting in an unconverged and
incorrect solution.

6.5.1 Example - Collins or Figure Eight Quadrupole

Some geometries are inherently assymmetric. A commonly used example of an as-
symetric two piece quadrupole is a Collins or figure eight geometry with very narrow
vertical legs and a wider horizontal leg carrying most of the flux between the hori-
zontal poles. A conventional quadrupole is symmetric about a line at π

4
, with equal

width vertical and horizontal legs. This geometry can be completely and accurately
characterized by calculation of the field distribution for the angular region, 0 ≤ θ ≤ π

4
.

Despite the assymetry of the Collins or figure eight geometry, two dimensional mag-
net calculations achieve very accurate results if the calculations were carried out as
if the geometry were symmetric. The second Poisson/Pandira example is a sym-
metric quadrupole. An example of the input file for the Automesh program for an
assymetric quadrupole, treated as if it were symmetric, is presented.

Boundary and Constraints Dataset

The text entries (shown in fig. 5) are very similar to the entries for the simple dipole.
Some noteable differences are listed.

1. The x and y mesh regions are subdivided into xreg1, xreg2, yreg1 and yreg2 to
achieve a higher mesh density in the pole region of the magnet. The pole can
be optimized and characterized by many densely spaced coordinates.

2. (ktype=241) - This indicates a quadrupole with harmonic indices spaced at
∆n = 4 values (n = 2, 6, 10, · · · ). Again, the last integer 1 indicates flux
normal to the horizontal axis. This overwrites the equivalent ktype=4 line.
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• $reg mat=1, kprob=0, mode=0,conv=.1
• xmin=0, xreg1=50.0, xreg2=235, xmax=301.65, 
• kreg1=60, kreg2=200, kmax=220,
• ymin=0.0, yreg1=30.0, yreg2=108, ymax=301.65,
• lreg1=40, lreg2=120, lmax=220, 
• icylin=0, 
• xminf=0, xmaxf=230, 
• yminf=0, ymaxf=0, 
• ktype=4, 
• nbsup=0, nbslo=1, nbsrt=0, nbslf=1, 
• ktype=241,nptc=46 nterm=14,rint=30, rnorm=32.5, angle=45, anglz=0$
• !first region is air (mat=1) 
• !problem type is poisson
• $po x=0.0, y=0.0$
• $po x=301.65, y=0.0$
• $po x=301.65, y=301.65$
• $po x=0.0, y=0.0$

Figure 5 Quadrupole Boundary Condition and Computation Boundary Textfile

3. (nptc=46, angle=45, anglz=0) - The vector potential edit is performed on an
arc with 0 ≤ θ ≤ 45◦ at (nptc− 1) ∆θ = 1◦ steps.

4. The four points limiting the boundary of the problem are the closed coordinates
of a triangular area.

Geometry Dataset

The pole contour for the sample quadrupole, xy = 352

2
, is an ideal hyperbola with a 35

mm pole radius. The quadrupole geometry along with the solution flux plot derived
from the POISSON calculation is illustrated is fig. 6. The POISSON analysis
indicated that the field quality for this pole geometry does not satisfy the physics
multipole error content requirements. A later section in this chapter describes the
means of optimizing the pole contour to achieve the required field quality.

6.5.2 Coil Geometry

The dataset for the coils is illustrated in fig. 7. Some of the Physics considerations
for the unusual coil design is described before listing some of the meshing practices.

Beam Based Alignment In this example, the coil is divided among two rect-
angular blocks. The second, small block, is added as a trim coil operated at low
alternating currents to perform beam based alignment. A misaligned beam through
a quadrupole will steer the beam. A small alternating current (AC) can be added
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Spear3 Quadrupole  Vector Potential Edit                                                                                  
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Figure 6 Symmetric Quadrupole Flux Plot

during accelerator commissioning to determine whether the charged particle beam is
centered in the quadrupole aperture. If the beam is misaligned, signals at down-
stream beam position monitors (BPM’s) with the frequency of the alternating trim
coil current will identify beam misalignment through that particular magnet. Correc-
tors, located in front of the quadrupole, can then be used to steer the beam through
the quadrupole until the signal amplitude at the beam position electrode is minimized
or nulled. The matrix of steering magnet currents can be developed by individually
conducting the beam based alignment excercise through all the quadrupoles in the
lattice.

Trim coils are added to quadrupoles grouped in a family connected in electrical
series. A small AC power supplies can be connected to each set of trim coils. This
allows the discrimination among the individual magnets in a power supply string.

For magnets with individual power supplies, the trim coil can be omitted
and beam based alignment can be performed by making changes in the main power
supply currents. Because it is often difficult to resolve the small BPM signals when
the currents are changed slowly, some individually powered quadrupoles are supplied
with trim coils so that the BPM signals can be amplified using a frequency analyzer
tuned to the frequency of the trim coil power supply.

Meshing Practices for Abutting Geometries In this example, the two coils
abut, sharing the same boundary for a short distance. The mesh text file for the
two abutting coils is illustrated in fig. 7. The following practices aids the Automesh
routine to converege quickly on a mesh.
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• $reg mat=1 cur=10700$ 
• $po x=128.175, y=55.152$ 
• $po x=205.74, y=99.264$ 
• $po x=230.190, y=56.655$ 
• $po x=152.625, y=12.543$ 
• $po x=140.4, y=33.848$ 
• $po x=128.175, y=55.152$ 

 
• $reg mat=1 cur=135$ 
• $po x=117.380, y=48.379$ 
• $po x=128.175, y=55.152$ 
• $po x=140.4, y=33.848$ 
• $po x=129.605, y=27.075$ 
• $po x=117.380, y=48.379$ 

Figure 7 Coil Package Coordinates

1. The large upper rectangular coil is defined using six, rather than five points.
The additional point, the corner boundary point for the lower coil, is added
along the common boundary of the two coils. The point sequence describes a
clockwise path around the larger rectangular coil.

2. The small lower rectangular coil is defined using five points. The point sequence
describes a counterclockwise path around the smaller rectangular coil.

(a) With these directions, the points along the common boundary of the two
coils are interpolated in the same direction.

3. When more than two shapes abut, it is sometimes difficult to interpolate the
common boundaries in the same direction. The meshing may require additional
common points if the Automesh routine does not converge.

6.5.3 Yoke Geometry

The yoke is defined by a series of points describing the steel boundaries, including the
hyperbolic pole contour, of a symmetric quadrupole. The computation approximates
the geometry for an assymetric quadrupole with unequal vertical and horizontal leg
widths. The width of the vertical leg, in this example, is the average width of the
vertical and horizontal legs.

Line Boundary

In this example, a final line region is added which describes a line and defines the
boundary conditions on this line.

1. ($reg ibound=0$) - This line defines the boundary conditions.

(a) ibound=0 Dirichlet boundary, (flux parallel boundary).
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$reg mat=2$ 
$po x=24.75, y=24.75 $ 
$po x=26, y=23.56 $ 
$po x=30, y=20.42 $ 
$po x=34, y=18.01 $ 
$po x=38, y=16.12 $ 
$po x=42, y=14.58 $ 
$po x=46, y=13.32 $ 
$po x=46.683, y=13.206$ 
$po x=119.38, y=53.379$ 
$po x=130.175, y=60.152$ 
$po x=207.740, y=104.264$ 
$po x=232.19, y=61.655$ 
$po x=232.19, y=0.0$ 
$po x=301.65, y=0.0$ 
$po x=301.65, y=301.65$ 
$po x=24.75, y=24.75$ 
 
$reg ibound=0$ 
$po x=0., y=0.0$ 
$po x=24.75, y=24.75$ 
$po x=301.65, y=301.65$ 

Figure 8 Quadrupole Yoke Dataset

(b) ibound=1 Neumann boundary, (flux perpendicular boundary).

2. $po x=24.75, y=24.75$

(a) This point is identical to the center coordinate of the quadrupole poletip.

3. $po x=301.65, y=301.65$

(a) This point is identical to the upper right hand corner of the quadrupole
yoke.

6.6 The Vector Potential Boundary Condition

Boundary conditions can be used to simplify the mesh. The vector potential can
also provide the boundary conditions to perform Poisson calculations in conformally
mapped geometries. The vector potential calculated from one case can be used as
boundary conditions for another case. Several examples are presented.

6.6.1 Simple Dipole

A simple dipole consisting of a yoke and coil is illustrated in fig. 10. The text file
used to create the mesh for this problem is reproduced as fig. 9

1. ktype=121, nptc=19, nterm=3, rint=58.95, rnorm=58.95, angle=90, anglz=0.
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Simple Dipole 
To test VP boundary conditions 
 
$reg mat=1, kprob=0, mode=0,conv=.1, 
xmin=0 ,xmax=150,  
        kmax=100, 
ymin=0, ymax=100, 
        lmax=75,  
icylin=0,  
xminf=0, xmaxf=43,ktop=11 
yminf=0, ymaxf=33.2,ltop=2  
ktype=121,nptc=19 nterm=3,rint=58.95, rnorm=58.95, angle=90, anglz=0 
ienergy=1, 
nbsup=0, nbslo=1, nbsrt=0, nbslf=0$ 
 
!first region is air (mat=1), defines the problem limits.   
$po x=0, y=0 $ 
$po x=150, y=0 $ 
$po x=150, y=100 $ 
$po x=0, y=100 $ 
$po x=0, y=0 $ 
 
!Coil 
$reg mat=1 cur=-20000$ 
$po x=55, y=25$ 
$po x=75, y=25$ 
$po x=75, y=45$ 
$po x=55, y=45$ 
$po x=55, y=25$ 
 
!Iron Yoke 
$reg mat=2$ 
$po x=0, y=25$ 
$po x=40, y=25$ 
$po x=45.16, y=37.89$ 
$po x=50, y=50$ 
$po x=80, y=50$ 
$po x=80, y=0$ 
$po x=120, y=0$ 
$po x=120, y=95$ 
$po x=0, y=95$ 
$po x=0, y=25$ 

Figure 9 Simple Dipole Mesh File
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Simple Dipole                                                                                                             
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Figure 10 Simple Dipole with a Flat Pole

(a) This line requests an edit of the vector potential at a radius of rint=58.95
mm, normalized to the same radius rnorm=58.95 mm. The vector po-
tentials are computed from anglz=0 degrees to angle=90 degrees and are
computed at nptc=19 points (5◦ equal increments from 0◦ to 90◦.). The
58.95 mm radius was selected since a 40◦ line from the origin intersects
the sloping portion of the edge of the pole at a well defined point on the
yoke, $po x=45.16, y=37.89$.

The flux plot from the Poisson calculations is illustrated in fig. 10.
The output from this computation (shown in fig. 11) lists the values of the

vector potentials around a circular arc which intersects the steel pole.

6.6.2 The Simple Dipole with Vector Potential Boundary Conditions

The example of the simple dipole calculation limited to a small region surrounding
the pole tip and the good field region is presented to demonstrate that computing the
field distribution using vector potential boundary conditions accurately reproduces
the field distribution computed from the full dipole geometry. This illustration also
describe a means of simplifying the pole optimization process so that the magnet
designer can focus his/her attention to the pole tip design. Fig. 12 illustrates the
flux plot from a Poisson calculation for the simple dipole using the values of the vector
potential computed from the output illustrated in fig. 11. This example illustrates
a simple flat dipole pole whose field uniformity may not satisfy the required field
uniformity for the desired dipole magnet. Since the mesh can be arbitrarily dense
for this small region of the magnet, many more points than are necessary to describe
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Harmonic analysis
Interpolated points on an arc of radius = 58.95
centered at (XORG,YORG) = (0.0,0.0)
K,L is nearest mesh point to physical coordinates X,Y.
n Angle X Y K L Avector

1 0 58.95 0 40 1 -5.01E+04
2 5 58.7257 5.1378 40 5 -5.03E+04
3 10 58.0544 10.2366 40 8 -5.09E+04
4 15 56.9413 15.2574 39 12 -5.18E+04
5 20 55.3949 20.1621 38 16 -5.30E+04
6 25 53.4268 24.9133 36 19 -5.43E+04
7 30 51.0522 29.475 35 22 -5.54E+04
8 35 48.289 33.8123 33 26 -5.65E+04
9 40 45.1583 37.8923 31 29 -5.77E+04

10 45 41.6839 41.6839 29 32 -5.26E+04
11 50 37.8923 45.1583 26 34 -4.69E+04
12 55 33.8123 48.289 23 37 -4.07E+04
13 60 29.475 51.0522 21 38 -3.44E+04
14 65 24.9133 53.4268 18 40 -2.82E+04
15 70 20.1621 55.3949 15 42 -2.21E+04
16 75 15.2574 56.9413 11 43 -1.63E+04
17 80 10.2366 58.0544 8 44 -1.07E+04
18 85 5.1378 58.7257 5 44 -5.31E+03
19 90 0 58.95 1 44 -3.83E-11

Figure 11 Poisson Vector Potential Edit

the pole region for the full magnet can be used to describe the pole contour. The
principles of the orthogonal analog model can be used to draw the approximate flow
lines (not shown in the figure) which are orthogonal to the flux lines. With this
visualization, it seems clear that bumps near the edge of the pole can squeeze the
flow lines together, resulting in more vertical (and uniformly spaced) flux lines on
the magnet centerline. The mesh file used for the calculation using the vector
potential boundary conditions can be used to itereate the coordinates of the pole
edge to develop the bumps and optimize the field. In the full geometry, bumps
on the pole edge will slightly alter the vector potential distribution along the arc.
Thus, the boundary condition using the vector potential boundary conditions for
the unperturbed flat pole does not precisely reflect the altered boundary conditions.
However, the changes are small and re-calculating the field distribution using the full
geometry with the optimized pole will demonstrate that the field distribution changes
are minor.

The Boundary

The portion of the mesh file defining the boundaries of the problem is illustrated in
fig. 13. Part of the boundary is determined by the coordinates of the circular arc
from the edit of the vector potential illustrated in fig. 11.
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Figure 12 Simple Dipole Pole Region with Vector Potential Boundary Conditions

Simple Dipole  Vector Potential Boundary Condition 
To test VP boundary conditions 
 
$reg mat=1, kprob=0, mode=0,conv=.1, 
xmin=0 ,xmax=58.95,  
        kmax=100, 
ymin=0, ymax=58.95, 
        lmax=75,  
icylin=0,  
xminf=0, xmaxf=43,ktop=11 
yminf=0, ymaxf=33.2,ltop=2  
!ktype=121,nptc=19 nterm=3,rint=58.95, rnorm=58.95, angle=90, anglz=0 
ienergy=1, 
nbsup=0, nbslo=1, nbsrt=0, nbslf=0$ 
 
!first region is air (mat=1), defines the problem limits.   
$po x=0,y=0$ 
$po x=58.95,y=0$ 
$po x=58.73,y=5.14$ 
$po x=58.05,y=10.24$ 
$po x=56.94,y=15.26$ 
$po x=55.39,y=20.16$ 
$po x=53.43,y=24.91$ 
$po x=51.05,y=29.48$ 
$po x=48.29,y=33.81$ 
$po x=45.16,y=37.89$ 
$po x=41.68,y=41.68$ 
$po x=37.89,y=45.16$ 
$po x=33.81,y=48.29$ 
$po x=29.48,y=51.05$ 
$po x=24.91,y=53.43$ 
$po x=20.16,y=55.39$ 
$po x=15.26,y=56.94$ 
$po x=10.24,y=58.05$ 
$po x=5.14,y=58.73$ 
$po x=0,y=58.95$ 
$po x=0,y=0$ 

Figure 13 Boundary Mesh File
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!Iron Yoke 
$reg mat=2$ 
$po x=0,y=25$ 
$po x=40,y=25$ 
$po x=45.16,y=37.89$ 
$po x=41.68,y=41.68$ 
$po x=37.89,y=45.16$ 
$po x=33.81,y=48.29$ 
$po x=29.48,y=51.05$ 
$po x=24.91,y=53.43$ 
$po x=20.16,y=55.39$ 
$po x=15.26,y=56.94$ 
$po x=10.24,y=58.05$ 
$po x=5.14,y=58.73$ 
$po x=0,y=58.95$ 
$po x=0,y=25$ 

Figure 14 Iron Yoke Mesh File

The Iron Yoke

The mesh points for the iron yoke is illustrated in fig. 14. Note that many of the
points are identical to the boundary points.

The Vector Potential Sources

The mesh coordinates for the vector potential sources (illustrated in fig. 15) are
modelled as line sources using the ibound=-1 special boundary conditions. The
beginning and final coordinates of each line source are the Cartesian coordinates of
the angular points around the 58.95 mm arc. The values of the potentials are the
averages of the vector potential at the beginning and final coordinates of the line.
These values are computed from the edit of the simple dipole vector potential map
shown in fig. 11.

Results

Comparison of the results of the field calculations along the horizontal centerline of
the simple dipole and the dipole using the vector potential boundary conditions is
illustrated in fig. 16. The differences in the normalized values computed using the
full geometry and the vector potential boundary, ∆B

B
, is ≤ 0.004. It is possible to

increase the accuracy of the boundary condition calculation if the radius of the vector
potential boundary is increased and/or the density of line sources is increased.

6.6.3 The Vector Potential Boundary Condition for Optimizing the Quadrupole Pole

One of the most powerful techniques for pole tip design is to combine conformal
mapping techniques with the use of vector potential boundary conditions for the
optimization of a quadrupole pole. As described in earlier chapters, the required
pole shape to achieve uniformity of a dipole field can be easily visualized from the
flux plot. The flux lines for a high quality dipole are uniformly spaced and nearly
vertical. To achieve this dipole uniformity, one needs to add bumps near the pole



168 POISSON

!Vector Potential Lines
$reg mat=1, cur=-50237.7, ibound=-1 $ $reg mat=1, cur=-49759.85, ibound=-1 $
$po x=58.95,y=0$ $po x=41.68,y=41.68$
$po x=58.73,y=5.14$ $po x=37.89,y=45.16$

$reg mat=1, cur=-50609.25, ibound=-1 $ $reg mat=1, cur=-43807.15, ibound=-1 $
$po x=58.73,y=5.14$ $po x=37.89,y=45.16$
$po x=58.05,y=10.24$ $po x=33.81,y=48.29$

$reg mat=1, cur=-51335.95, ibound=-1 $ $reg mat=1, cur=-37566.55, ibound=-1 $
$po x=58.05,y=10.24$ $po x=33.81,y=48.29$
$po x=56.94,y=15.26$ $po x=29.48,y=51.05$

$reg mat=1, cur=-52378.3, ibound=-1 $ $reg mat=1, cur=-31284.35, ibound=-1 $
$po x=56.94,y=15.26$ $po x=29.48,y=51.05$
$po x=55.39,y=20.16$ $po x=24.91,y=53.43$

$reg mat=1, cur=-53642.55, ibound=-1 $ $reg mat=1, cur=-25136.4, ibound=-1 $
$po x=55.39,y=20.16$ $po x=24.91,y=53.43$
$po x=53.43,y=24.91$ $po x=20.16,y=55.39$

$reg mat=1, cur=-54873, ibound=-1 $ $reg mat=1, cur=-19206.65, ibound=-1 $
$po x=53.43,y=24.91$ $po x=20.16,y=55.39$
$po x=51.05,y=29.48$ $po x=15.26,y=56.94$

$reg mat=1, cur=-55966.1, ibound=-1 $ $reg mat=1, cur=-13509.55, ibound=-1 $
$po x=51.05,y=29.48$ $po x=15.26,y=56.94$
$po x=48.29,y=33.81$ $po x=10.24,y=58.05$

$reg mat=1, cur=-57123.85, ibound=-1 $ $reg mat=1, cur=-8014.79, ibound=-1 $
$po x=48.29,y=33.81$ $po x=10.24,y=58.05$
$po x=45.16,y=37.89$ $po x=5.14,y=58.73$

$reg mat=1, cur=-55188.9, ibound=-1 $ $reg mat=1, cur=-2655.49, ibound=-1 $
$po x=45.16,y=37.89$ $po x=5.14,y=58.73$
$po x=41.68,y=41.68$ $po x=0,y=58.95$

Figure 15 Vector Potential Line Sources
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Figure 16 Comparison - Baseline Dipole and Vector Potential Boundary Calculations
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edge of the flat baseline pole to “squeeze” the flow lines (see the section on the
Orthogonal Analog Model) to achieve more uniformly spaced flux lines. In contrast,
it is difficult to visualize and judge the uniformity of a quadrupole field whose flux lines
are quadratic hyperbolae and whose spacing along the centerlines is linear rather than
uniform. It is even more difficult to visualize the sizes and shapes of the bumps at
the quadrupole pole edge to achieve this desired distribution of flux lines. Because
of this difficulty, one can use the techniques of conformal mapping to convert the
quadrupole pole into a dipole pole so that the design of the optimizing bumps can
be performed in the more instinctively understood dipole space. The quadrupole
example described in an earlier section of this chapter is used to illustrate the utility
of using the vector potential boundary condition for conformally mapped geometries.

The process used to optimize a quadrupole pole contour for a given yoke shape
are briefly described in the following steps. These steps are described more fully in
the subsections following this description.

1. A text file is written to generate a mesh describing the boundaries of the yoke
and coil configuration for the desired quadrupole two-dimensional cross section.
The pole shape for the starting quadrupole calculation is an ideal hyperbola
with pole shape described by xy = h2

2
, where h is the pole radius.

(a) The text file includes instructions for editing the vector potential at a
radius which includes the pole tip and a segment of the pole. This radius
should not include any of the coil.

i. The mesh is generated and the Poisson calculations are made.

(b) The text file is altered to include instructions for editing the vector poten-
tial at the radius defining the boundary of the desired good field region
and computing the multipole field spectrum at this radius.

i. The mesh is regenerated and the Poisson calculations are rerun.

2. A text file including only the pole end coordinates and the edge of the pole
is written. The vector potential distribution computed from the step 1-a-i
POISSON run is used to define the boundary conditions for this more limited
area of the full magnet cross section.

(a) The text file is written to include instructions for editing the vector po-
tential at the radius defining the boundary of the desired good field region
and computing the multipole field spectrum at this radius.

(b) The mesh is generated and Poisson calculations are made.

(c) The results of the Poisson calculation are compared with the results of the
Poisson calculations from step 1-b-i.
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3. A text file for the geometry desctibed in step 2 conformally mapped into dipole
space is written.

(a) The text file includes instructions for the vector potential edit and the
computation of multipole errors at the mapped radius of the desired good
field region.

(b) The mesh is generated and Poisson calculations are made. The multipole
spectrum for this case are compared with the results from steps 2-c and 1-b-
i. Since the geometry has been mapped into dipole space, the comparisons

are
∣∣∣Bn

B1

∣∣∣
mapped radius

(is it ≈)
∣∣∣B2n

B2

∣∣∣
good field radius

.

4. The coordinates of bumps (up to three overlapping bumps can be defined) are
added to the text file of the mapped dipole. The amplitudes of these bumps
are paramaterized using coefficients.

5. The values of the optimized coefficients are computed by iteratively running
Poisson. A detailed description of this process is included in a subsection
following this description.

(a) Poisson is run for the optimized pole contour in dipole space.

6. A text file is written with the pole geometry defined by the optimized dipole pole
geometry conformally mapped into quadrupole space using the vector potential
boundary conditions in the quadrupole space.

(a) Poisson is run for the optimized pole contour in quadrupole space.

7. The comparisons,
∣∣∣Bn

B1

∣∣∣
mapped radius

and
∣∣∣B2n

B2

∣∣∣
good field radius

, are made using the

results of step 5-a and 6-a.

8. The text file used in step 1 (the full yoke geometry) is altered to include the
optimized quadrupole pole contour used in step 6.

(a) The final Poisson run is made using the mesh generated from this text file

and the comparison will show that
∣∣∣Bn

B2

∣∣∣
step 8

≈
∣∣∣Bn

B2

∣∣∣
step 1

.

Mapping Algorithm

The Poisson algorithm mapping the multupole coordinates z = x + iy to the dipole
coordinates w = u + iv is given by w = zn

nhn−1 , (w = z2

2h
for the quadrupole to dipole

map and w = z3

3h2 for the sextupole to dipole map). This is different than the mapping
function described in Chapter 2 and uses the convention written into Poisson. If h
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is the quadrupole pole radius, the Poisson mapping algorithm results in the following
expression for the dipole pole contour;

w = u+ iv =
z2

2h
=

(x+ iy)2

2h
=

x2 − y2

2h
+ i

2xy

2h
=

x2 − y2

2h
+ i

xy

h
, (6.1)

u =
x2 − y2

2h
and v =

xy

h
. (6.2)

The equation for the quadrupole ideal hyperbolic pole contour with radius,
r = h, is xy = h2

2
. Substituting

w = u+ iv =
x2 − y2

2h
+ i

h

2
,

an expression for a dipole with half gap 1
2
of the quadrupole pole radius. (It is the

full radius using the algorithm described in Chapter 2.) The reason for using this
algorithm, rather than the one described in Chapter 2 is that the field amplitude at
the center of the pole for the mapped dipole is made identical to the field amplitude at
the center of the pole for the quadrupole and facilitates the mapping of the nonlinear
steel permeability. The amplitudes of the fields at the centers of the quadrupole and
dipole are computed using the following expressions;

NI =
B′h2

2µ0

=⇒ BQuadrupole = B′h =
2µ0NI

h
,

NI =
B
h

2
µ0

=⇒ BDipole = B =
2µ0NI

h
.

Poisson allows the finite element computation in the mapped geometry. The
current densities in the coil are properly scaled and the mapped fields scaled to the
quadrupole space are used to interpolate the appropriate relative permeability of the
iron, µ. Despite these features, computing the field for the fully mapped quadrupole
can be impractical. This is because the mapping algorithm, w = z2

2h
, maps the

corner of the quadrupole yoke |zcorner| >> h at an enormous distance from the origin
compared to the pole radius, h. Thus, the area inside the pole radius is a small
fraction of the area of the balance of the mapped quadrupole yoke. If, on the other
hand, a larger radius h (not the pole radius), is used for the mapping function,
the region of interest, the area defining the pole and inside the pole, becomes tiny
compared to the remainder of the area required to define the mapped quadrupole
yoke.

Using the vector potential as a boundary condition greatly reduces these scal-
ing problems since the radius used to edit the vector potentials, which are ultimately
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mapped into the dipole coordinate system, can be selected as a small multiple of
the pole radius h. As in the dipole example, the entire quadrupole is analyzed and
the vector potential distribution on an arbitrary circular arc boundary is computed.
The results of an edit of the vector potentials distributed on a 71.03 mm arc are
calculated for 0 ≤ θ ≤ π

4
at ∆θ = 1◦ increments. The 71.03 mm radius for the arc

was chosen since a line at θ = 20◦ intersects the pole edge at a fixed point which can
be used as a boundary point for the pole. As in the previous dipole example, the
mesh coordinates for the vector potential sources are modelled as line sources using
the ibound=-1 special boundary conditions. The beginning and final coordinates of
each line source are the Cartesian coordinates of the angular points around the 71.03
mm arc. The values of the potentials are the averages of the vector potential at
the beginning and final coordinates of the line. These values, shown in fig. 17, are
computed from the edit of the quadrupole calculation shown in fig. 6.

The flux plot resulting from the Poisson calculations using these boundary
conditions is shown in fig. 18.

Mapping into Dipole Space

Using the w = z2

2h
to map the quadrupole iron boundary to the dipole space, the mesh

file for the dipole space is generated.
Using the w = z2

2h
for determining the interpolation radius and the nor-

malization radius in the dipole space, |w| = |z|2

2h
where |zinterpolation| = 30 mm,

|znormalization| = 32.5 mm and h (the pole radius) = 35 mm.

|winterpolation| =
|zinterpolation|

2

2h
=

302

2× 35
= 12.857 mm,

and |wnormalization| =
|znormalization|

2

2h
=

32.52

2× 35
= 15.089 mm.

All the coordinate points illustrated in fig. 18 are conformally mapped to the
w = u+ iv dipole coordinates by using the expressions;

u =
x2 − y2

2h
, v =

xy

h
.

Only radial straight lines in the z space are mapped into straight lines in the
w space. The straight line at the edge of the quadrupole pole maps into a line with
a slight curvature in the dipole space.

Mapping the Iron Properties and Boundary Values

In addition, in order to map the iron permeability correctly, the first line of the iron
region is defined by the line;
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Interpolated points on an arc of radius = 71.03
centered at (XORG,YORG) = (0.0,0.0)
K,L is nearest mesh point to physical coordinates X,Y.
n Angle X Y K L Avector

1 0 71.03 0 76 1 4.07E+04
2 1 71.0192 1.2396 76 3 4.07E+04
3 2 70.9867 2.4789 76 4 4.07E+04
4 3 70.9327 3.7174 76 6 4.07E+04
5 4 70.857 4.9548 76 7 4.07E+04
6 5 70.7597 6.1907 76 9 4.08E+04
7 6 70.6409 7.4247 76 11 4.08E+04
8 7 70.5006 8.6564 76 12 4.08E+04
9 8 70.3387 9.8855 76 14 4.09E+04

10 9 70.1555 11.1115 76 16 4.09E+04
11 10 69.9509 12.3342 75 17 4.10E+04
12 11 69.725 13.5532 75 19 4.10E+04
13 12 69.4778 14.768 75 20 4.11E+04
14 13 69.2095 15.9783 75 22 4.11E+04
15 14 68.9201 17.1837 75 24 4.12E+04
16 15 68.6097 18.3839 74 25 4.13E+04
17 16 68.2784 19.5785 74 27 4.14E+04
18 17 67.9263 20.7672 74 28 4.14E+04
19 18 67.5535 21.9495 74 30 4.15E+04
20 19 67.1602 23.1251 73 31 4.16E+04
21 20 66.7464 24.2937 73 33 4.17E+04
22 21 66.3122 25.4549 73 34 4.02E+04
23 22 65.8579 26.6083 72 36 3.87E+04
24 23 65.3835 27.7536 72 38 3.71E+04
25 24 64.8891 28.8905 71 39 3.55E+04
26 25 64.375 30.0186 71 40 3.39E+04
27 26 63.8413 31.1375 70 41 3.23E+04
28 27 63.2882 32.2469 70 42 3.07E+04
29 28 62.7158 33.3466 70 44 2.91E+04
30 29 62.1242 34.436 69 45 2.74E+04
31 30 61.5138 35.515 69 46 2.58E+04
32 31 60.8846 36.5832 68 47 2.41E+04
33 32 60.2369 37.6402 68 48 2.24E+04
34 33 59.5708 38.6857 67 49 2.07E+04
35 34 58.8865 39.7195 67 50 1.90E+04
36 35 58.1844 40.7411 66 51 1.73E+04
37 36 57.4645 41.7504 66 52 1.56E+04
38 37 56.7271 42.7469 65 53 1.39E+04
39 38 55.9724 43.7304 65 54 1.22E+04
40 39 55.2007 44.7006 64 55 1.04E+04
41 40 54.4121 45.6572 64 56 8.70E+03
42 41 53.607 46.5999 63 57 6.96E+03
43 42 52.7856 47.5283 62 59 5.23E+03
44 43 51.9481 48.4423 61 59 3.49E+03
45 44 51.0947 49.3416 61 60 1.74E+03
46 45 50.2258 50.2258 60 61 4.40E-01

Figure 17 Vector Potential Distribution in the Quadrupole Evaluated at 71.03 mm
radius
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Spear3 Quadrupole  Vector Potential Edit                                                                                  
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Figure 18 Hyperbolic Pole with Vector Potential Boundary

1. $reg mat=2, map=2, rzero=35$.

(a) mat=2 indicates that the Poisson 1010 Steel default nonlinear steel prop-
erties are used.

(b) map=2 uses the quadrupole to dipole scaling for the flux density in order
to interpolate the relative permeability.

(c) rzero=35; the mapping function is

w =
zmap

map× rzeromap−1
. (6.3)

The first line of the first vector potential boundary line is defined by;

1. $reg mat=1, cur=40703.2, ibound=-1, map=1$

(a) map=1 restores the unmapped currents to their input values.

i. The average vector potentials between the ends of the line elements
are not scaled when the geometry is mapped.

(b) If map=2, the currents will be scaled.

The flux plot for the mapped, unoptimized quadrupole case is shown in fig.
19.

The results of the multipole analysis of the mapped dipole is compared with
the multipole analysis of the quadrupole and is shown in fig.20.
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Spear3 Quadrupole  - Conformal Map                                                                                        
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Figure 19 Baseline Mapped Quadrupole

Multipole Spectrum Comparison
Unoptimized Pole

1.E-04

1.E-03

1.E-02

6 10 14 18 22

Multipole Index

|B
n

/B
2|

 @
 3

2.
5 

m
m

. m
m

.

HypPole

HypPoleMap

Figure 20 Multipole Spectrum for Baseline and Mapped Quadrupole
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Spear3 Quadrupole  - Conformal Map                                                                                        
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Figure 21 Optimized Quadrupole Pole (Dipole Map)

The graphed results (fig. 20) indicate that the multipole spectra for the un-
mapped (horizontally striped) and mapped (vertically striped) multipoles reproduce
reasonably well (at least for the multipoles with lower indices, n = 6, 10, and 14).
The results also show that the multipole errors are large, approaching 1% errors for
the n = 6 normalized multipole error. The flat pole contour badly needs optimizing.

Optimization of the Quadrupole Pole in Dipole Space

The process of optimizing the pole is iterative. It consists of selecting the x and
y-coordinates of overlapping bumps (up to three), and scaling their amplitudes with
coefficients. Poisson runs are made for different values of these coefficients. The
results of various iterations are evaluated and compared until the field quality criteria
are satisfied. The process of converging on an optimum set of coefficients is to calcu-
late the changes of either selected multipoles or the rms amplitude of the field errors
around an arc at the boundary of the required good field region (the quality param-
eter) as a function of the coefficients. These results of the different runs are used to
compute a derivative of the quality parameter as a function of the coefficients. The
derivatives are used to extrapolate the coefficient values to achieve some minimum
value for the quality parameter.

The Poisson flux plot results of the pole optimization in the dipole space
is illustrated in fig. 21. Note that the corner of the optimized pole contour has
been rounded as a result of the bumps superimposed on the pole corner. This
softened contour helps to avoid flux concentrations and results in fields which are
more independent of the magnet excitation.

The flux plot resulting from the POISSON calculation for the optimized dipole
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Spear3 Quadrupole  Vector Potential Edit                                                                                  
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Figure 22 Quadrupole Poisson Calculations Using Vector Potential Boundary Conditions

geometry mapped back into quadrupole space is shown in fig. 22.

Multipole Spectrum Results

Results can be displayed in terms of the field errors or the amplitudes of the multipole
errors. In the accelerator craft, it is often customary to specify requirements in terms
of multipole errors since the orbit calculations use “k” values, related to the magnet
multipole errors, to compute the beam orbits. The results of all the calculations
described in this section, displayed as multipole errors normalized to the fundamental
field at the pole tip, are summarized in fig. 23. Four sets of data summarize∣∣∣Bn

B2

∣∣∣
@32.5mm

for four different cases.

1. The diagonally striped bars describe the multipole spectrum for the unoptimized
(hyperbolic) pole contour.

2. The horizontally striped bars describe the multipole spectrum for the optimized
pole tip in the dipole space using the mapped vector potential boundary con-
ditions.

3. The vertically striped bars describe the multipole spectrum for the optimized
pole tip conformally mapped into the quadrupole space using the vector poten-
tial boundary conditions.

4. The solid bars describe the multipole spectrum for the optimized pole tip con-
formally mapped into the quadrupole space with the full yoke.
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Multipole Spectra Comparisons
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Figure 23 Summary Multipole Spectrum

The differences in the results of the last three cases are finite but small. This
indicates that the conformal mapping and use of the different boundary conditions
give substantially the same results.

Field Error Results

Comparisons showing the results of the pole optimization for the quadrupole and
the dipole mapped from the quadrupole can also be displayed as errors from the
desired field normalized by the desired field. These curves are generated from the
error multipole coefficients. Because of the manner in which the fields are computed
from differences of the distribution of the computed vector potential, the field edit
presented by the output of Poisson calculations frequently display small discontinu-
ities. These discontinuities are avoided by generating the field from the Taylor’s
series of the multipole coefficients. In many ways, this type of “analog” display is
more meaningful to the engineer and/or designer shaping the pole bumps at the edge
of the pole. For instance, in the dipole space, it is clear that one has to increase
the amplitude of a bump near the edge of the pole to reduce the “sag” in the field.
The improvement in the dipole field translates directly into improvement in the field
from a quadrupole pole contour mapped from the optimized dipole. The results of
the pole optimization for the dipole shown in figs. 19 and 21 are shown in fig. 24.
The results of the pole optimization for the quadrupole shown in figs. 18 and 22 are
shown in fig. 25.

6.6.4 Other Applications of the Vector Potential Boundary Conditions

Beam injection/extraction into/out of accelerators requires the use of septum mag-
nets. Besides the amplitude of the field on one side of the septum, a primary
requirement for these magnets is a low fringe field on the opposite side of the septum
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Figure 24 Dipole Optimization Results
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in the region of the circulating beam. The minimum amplitude of this fringe field
is often limited by the finite permeability of the iron return yoke in the case of the
current carrying septum.

Design of permeable shields is limited by the mesh density. This is because
the space between the surface of the septum and the center of the circulating beam
is small so that the injected beam can be merged as close as possible to the central
orbit of the circulating beam. The shield must be placed in this limited space.
The typical shield thickness and its spacing is small compared to the dimensions of
the magnet. In order to define the shield geometry adequately, the mesh density
external to the magnet must be increased over the density inside of the magnet.
Accurate computation of the fringe field requires a high mesh density since the fields
are computed by taking the differences among vector potentials at several neighboring
mesh points to the location at which the field is calculated. If the mesh density is
too coarse, the field calculations require using vector potentials at mesh points on
the boundary of the shield where the function is discontinuous. Thus, the increased
mesh density accomodates several mesh points in the thin shield and in the space
between the shield and the coil and iron yoke.

Because of these difficulties, means of making accurate calculations and/or
accurately characterizing the effect of shields needed to be developed. Calculations
using the vector potential boundary conditions computed from the calculation of the
fields in a septum magnet are a means of enhancing the accuracy of these calcula-
tions.

The Current Carrying Septum

The example in this section is the current carrying septum magnet. The current
carrying septum is required to bend the injected beam into the accelerator ring.
Besides the field in the gap, the primary requirement for this magnet is a low fringe
field. A low fringe field minimizes the horizontal steering of the circulating beam.

The Poisson flux plot for the septum geometry is illustrated in fig. 26. The
initial tries attempted to use the vector potential values at the boundary of the coil
and iron yoke and the air region outside these regions. The comparison of the field
distribution using these boundary values did not compare well with the field distri-
bution using the entire magnet cross section. It is believed that the computations
using the vector potentials at these points, where the transverse derivatives of the vec-
tor potentials is discontinuous, resulted in the disagreement of the two calculations.
Therefore, the vector potential edit was performed inside the coil at x = 22 mm.
This boundary condition replaces the balance of the geometry for x ≥ 22 mm. The
Poisson flux plot for the calculations in the limited region bounded by the vector
potential is shown in fig. 27. The mesh density is increased in the area adjacent
to the coil so that a 0.25 mm thick septum can be placed 0.25 mm from the surface
of the coil. The flux plot for the POISSON calculation and the mesh for shielded
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Septum                                                                                                                    
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Figure 26 Current Carrying Septum

case is shown in fig. 28. Finally, the comparison of the flux density edits along the
horizontal centerline adjacent to the coil is shown in fig. 29. The upper two curves
compares the results of the full geometry and the vector potential boundary condition
POISSON runs. The lower curve presents the flux plot for the case where a 0.25 mm
thick setptum is placed 0.25 mm from the surface of the coil. The shield reduced the
fringe field adjacent to the coil from 10 Gauss to < 0.5 Gauss.

6.7 Chapter Closure

This chapter is written to describe some of the features of the Poisson family of codes.
These computer programs are used to set up, analyze and display the distribution
of the magnetic field in two dimensional geometries. The separate elements of the
codes and the flow of calculations is described. Several examples are presented
to illustrate the various input parameters used to generate the lattice for the finite
element calculations, define the boundary conditions, select the properties of the iron
and determine the required computed output information and format. An example
is given of a simple dipole geometry. The output of the Poisson calculations for
the dipole is used to show that the size of the mesh can be substantially reduced by
replacing the features of the magnetic geometry and coil excitation by vector potential
boundary conditions, edited from text output of the calculation of the full geometry.

The Poisson calculations for a simple quadrupole with a generic hyperbolic pole
contour is presented. This example illustrates the use of non-rectangular boundaries
for a symmetric multipole magnet. The example is used to compute the distribu-
tion of the vector potential around a circular arc boundary. The vector potential
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Fringe Fields for a Current Carrying Septum
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Figure 29 Results of POISSON Calculations

distribution is used in a further example to illustrate that size of the problem can
be reduced by replacing a large portion of the geometry with the boundary values.
These boundary values are further exploited by mapping the boundary values and the
pole geometry into dipole space using the algorithm, u = z2

2h
. The mapping function

(map = n) in Poisson is illustrated in the text file for generating the lattice to ensure
that the iron properties are properly interpolated at the mapped field levels in dipole
space. Using the vector potential boundary condition for the conformally mapped
geometry is especially useful since the mapping algorithm creates a dipole geometry
whose pole and good field region are small compared to the remainder of the mapped
magnet. When the good field region is mapped in dipole space, it is shown that the

normalized fields in dipole space,
(

Bn

B1

)
mapped radius

, are approximately equal to the

normalized fields in quadrupole space,
(

B2n

B2

)
radius

.

Since the behavior of the dipole magnet is easily visualized, the mapped pole
contour in dipole space is optimized by introducing bumps at the edge of the pole.
After several iterations, a pole geometry is determined satisfying some good field
criteria within the good field region mapped in dipole space. This pole contour is
mapped back into quadrupole space for analysis using the vector potential boundary
conditions and the full quadrupole geometry. Again, the multipole spectra of the
various cases are compared and shown to be approximately equal.

A final example is presented to calculate the fringe field in a current carrying
septum. The vector potential map is used to replace much of the magnet geometry
so that the mesh density can be increased in the fringe field region. This allows more
accurate calculation of the fringe fields and also provides many more mesh points
so that a very thin shield with very small spacing can be adequately defined for the
finite element calculations.
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The Poisson family of codes is only one of many codes available for magnet
calculations. Commercial three dimensional codes with two dimensional compoe-
nents are available which perform well. The Poisson family of codes is discussed
since it is widely used in the National Accelerator community.
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Figure 30 Problem Quadrupole

6.8 Problems

Problem 6.1

Fig. 30 illustrates the coordinates of the core and coil outline for a 50 mm. radius
quadrupole. Compute the gradient required to achieve a magnetic field at the center
of the poletip, Bpole = 0.6T . Using the eq. (5.12), estimate the current required to
achieve this gradient. The estimate assumes magnet efficiency η = 100%. Assume
that the required good field region is r0 = 40 mm. Using the graph on page 70,
estimate the field quality

(
∆B
B

)
r0

inside the good field radius for the edge of the pole
at x = 120 mm.

Problem 6.1a Write a text file to generate a Poisson lattice for this geometry
with pole contour defined by the expression xy = h2

2
where h = 50 mm. The text

file should include the parameters required to perform a vector potential edit at the
good field radius and compute the amplitudes of the multipole errors up to n = 18.
Run POISSON and run WFSPLOT.exe to verify the geometry and whether the flux
distribution is as expected. Read the OUTPOI.txt file written by the computation.
Determine whether the field quality achieved in the required good field region as
determined by the amplitudes of the error multipoles agrees with the estimate made
using the graph on page. 70.

Problem 6.1b Edit the POISSON lattice text file so that the vector potential edit
is performed at r = 180 mm. Select sufficiently small angle increments so that
enough boundary points are available to run the geometry conformally mapped as a
dipole. Rerun the lattice program and POISSON.
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Problem 6.1c Compute all of the w = u + iv coordinates of the dipole geometry
conformally mapped from the quadrupole illustrated in fig. 30 using eq. (6.2). If
all the coordinates are plotted in the w coordinate space, what can be said regarding
the coordinates of the points remote from the pole contour? Can a practical lattice
be generated using the conformally mapped coordinates?

Problem 6.1d Compute all of the w = u + iv coordinates of the dipole geometry
conformally mapped from the quadrupole illustrated in fig. 30 using eq. (6.2) for
points x2 + y2 ≤ 180 mm. (Several points beyond the pole corner along the straight
pole edge should be mapped. A straight line in the quadrupole space does NOT
map to a straight line in the dipole space unless the straight line is radial with origin
at the center.) Compute the w coordinates of the ends of the edit points from
the OUTPOI.txt file written in Problem 4.1b at r = 180 mm.in the z coordinate
space and use the average vector potential values for line currents between the w

coordinates of the conformally mapped circle. These currents are the boundary
conditions along the circular boundary of the problem. Write a text file to generate
a lattice for the dipole conformally mapped from the quadrupole. Include in the text
file the parameters required to perform a vector potential edit at the mapped good
field radius, w0, and compute the amplitudes of the multipole errors up to n = 9.
Compare the amplitudes of the multipole fields from the mapped dipole calculation
to the orginal quadrupole calculation. (The reverse process, mapping a dipole to
a quadrupole, required to solve Problems 4.1b to 4.1d is illustrated in the section
beginning at sec. 6.6.)

Problem 6.1e What is the pole overhang in the dipole space? What field unifor-
mity is predicted in the good field region due to this overhang?

Problem 6.2

Problem 3.2 illustrated on page 84 served to illustrate the usefulness of the orthogo-
nal analog model to visualize the field distribution in a magnet. For the illustrated
square yoke geometry, simplify the discrete square conductors into a uniform line cur-
rent and generate a Poisson lattice. The simplification should include only the upper
quadrant of the problem for 0 ≤ θ ≤ π

2
using the horizontal and vertical centerlines

as problem boundaries. (Should these boundaries be Neumann or Dirichlet bound-
aries?) Use arbitrary dimensions and evaluate the field distribution using Poisson
for some arbitrary magnitude of the line currents. Run Wfsplot.exe from using the
solution. What type of magnet is this?



Chapter 7

STORED ENERGY, MAGNETIC FORCES AND DYNAMIC

EFFECTS

The concept of magnetic stored energy is introduced to formulate expressions for
magnetic forces on poles and the inductance of iron dominated magnets. Forces
on coils are computed by using the relation, d

−→
F =

−→
j × −→

B , and integrating over
the volume of the coil. Pole forces are computed by equating work required for
an incremental pole motion with the increase in the stored energy. Inductance is
computed from the stored energy. The inductance is important since, for pulsed or
cycled magnets, the power supply voltage must be designed for the inductive load
of the magnet as well as the resistive load of the coils. The discussion is limited to
magnets which are cycled or pulsed at relatively slow rates (≥ a few msec.). For
magnets which are operated at faster rates, transmission line issues are important
where the filling time of the current in the conductors exciting the magnets require
consideration of the velocity of the current front in the conductors.

Effects on the magnetic fields inside conductive metallic vacuum chambers, in
the areas where the charged particle beams are bent, focused or corrected, due to time
varying magnetic fields, are estimated. Algorithms describing the field attenuation
and amplification are developed using simple one dimensional differential equations
approximating these effects.

7.1 Force on Coils

Only the simplest geometry is considered here as an exmple to develop the relation-
ships. Consider the window frame magnet illustrated in fig. 1.

The expression for the force due to a current density in a magnetic field is
given by;

−→
F =

∫ −→
j ×−→

B dv. (7.1)

In the figure, the magnet current is “into the page”, and the cross product
gives the direction of force to the left.
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Figure 1 Window Frame Magnet with Uniform Current Density Coils

Since, for the window frame magnet;

NI =
Bh

µ0

and j =
NI

wh
,

j =
Bh

whµ0

.

The distribution of the magnetic field in the conductor is maximum at its
inner edge, linearly decreasing to zero at its outer edge. The expression for the field
distribution in the condeuctor is;

B (x) =
Bx

w
.

The
−→
j and

−→
B are perpendicular so the vector equation can be simplified to

an expression for the magnitude of the force, given by;

|F | =
∫ w

0

j ×B (x)× h× l × dx.

Substituting for j and B (x), we get;

|F | =

∫ w

0

Bh

whµ0

× Bx

w
× h× l × dx,

=
B2h

w2µ0

l

∫ w

0

xdx =
B2h

w2µ0

l

∣∣∣∣x2

2

∣∣∣∣
w

0

,

=
B2h

w2µ0

l
w2

2
=

B2h

2µ0

l,
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or written in terms of pressure,

P =
|F |
Area

=
|F |
l × h

=
B2

2µ0

. (7.2)

7.2 Force on a Pole

The relationship between stored energy and work is used to derive an expression for
the forces on a pole. The magnetic stored energy in the volume of a constant field
window frame magnet is given by;

U =
1

2

∫
BHdV =

1

2
B
B

µ0

a× h× l,

=
B2

2µ0

a× h× l.

If we consider the work performed in pushing the pole up a distance h, the
expression for the work is;

Work = Force× h = P × (a× l)× h,

where P , again, is the pressure.
Equating the Work = U,

P × (a× length)× h = U =
B2

2µ0

a× h× l,

or P =
B2

2µ0

. (7.3)

We note that eqs. (7.2) and (7.3) are identical.

7.2.1 Units

Using the MKS system of units,

P =
B2

2µ0

=
T 2

T m

Amp

=
T Amps

m

=
Webers

m2

Amps

m
=

V sec

m2

Amps

m
=

Watt sec

m3

=
Joules

m3
=

N m

m3
=

N

m2
= Pascals.
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7.2.2 A Reference Point

It is useful to calculate the magnetic pressure at some basline field so that one can
make quick estimates. Computing the magnetic pressure at B = 5 kG = 0.5 Tesla,

P@0.5Tesla =
B2

2µ0

=
0.52

2× 4π × 10−7
= 99, 472

N

m2

= 99, 472
N

m2
× 1 lbf

4.448 N
× m2

39.372 in2
= 14.43

lbf

in2

≈ 1 atmosphere and P ∝ B2.

7.3 Magnet Stored Energy

Computation of the magnet stored energy is often difficult and tedious. The field
distribution is non-uniform in the gap and in the coils and the stored energy distribu-
tion in the magnet yoke depends on the permeability of the iron at the field. Stored
energy computations in real two-dimensional magnet cross sections is best done by
computer programs such as Poisson. Poisson will calculate the stored energy per
unit length of the computed two dimensional field and express it in units of stored
energy per cm. of length of the magnet.

Despite this difficulty, it is instructive to compute the stored energy with a
simple example using a window frame magnet. The magnetic stored energy is given
by U = 1

2

∫
BHdv, 1

2
× the volume integral of the product of H and B in the magnet

gap, coil and core. Consider the stored energy in the window frame magnet illustrated
in fig. 1. Since the field is constant in the gap, the stored energy in the gap is;

Ugap =
B2

2µ0

(V )gap . (7.4)

The field varies linearly across the width of the coil, therefore, the stored
energy in each coil is

Ucoil =
1

2µ0

l × h×
∫ w

0

B2x2

w2
dx,

=
B2

2µ0

l × h× w3

3w2
=

B2

2µ0

lhw

3
,

Ucoil =
B2

6µ0

(V )coil . (7.5)
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Assuming a well designed yoke, the field in the yoke is reasonably constant
and is approximately Bgap. The stored energy in the yoke can then be approximated
by the expression;

Uyoke =
1

2

∫
BHdv =

B2

2µµ0

(V )yoke .

Adding the elements, the total stored energy in the magnet is given by;

Umagnet = Ugap + 2Ucoil + Uyoke,

=
B2

2µ0

(
(V )gap + 2

(V )coil
6

+
1

µ
(V )yoke

)
.

As shown in the section on Units, the units for B2

2µ0

is joules

m3 and, thus, the units

for stored energy is joules.

7.3.1 Inductance

The inductance of a magnet is given by

L =
2U

I2

(
joules

Amp2
= henries

)
(7.6)

The voltage in a ramped or cycled magnet is given by

V = RI + L
dI

dt
. (7.7)

Substituting for the inductance,

V = RI +
2U

I2
dI

dt
.

Using the MKS system of units,

V = Ω×Amps+
Joules

Amps2
Amps

sec

= V olts+
Watt sec

Amp sec
= V olts+ V olts.
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Cycled Magnets

Suppose a sinuisoidal current, I = I0 sinωt, is desired for the magnet excitation. The
expression for the required power supply voltage is;

V = RI + L
dI

dt
, (7.8)

= RI0 sinωt+ LωI0 cosωt,

= RI0

(
sinωt+

Lω

R
cosωt

)
,

= RI0 sin (ωt+ φ) , where φ = tan−1 Lω

R
.

The power supply voltage must provide a sinuisoidal excitation with a leading
phase.

Pulsed Magnets

Suppose a linear current ramp, I = I0
∆t
, is desired for the magnet excitation. The

expression for the required power supply voltage is;

V = RI +
2U

I2
dI

dt
,

= RI0 +
2U

I20

I0

∆t
= RI0 +

2U

I0∆t
,

= RI0 +
2

I0∆t
× B2

2µ0

(
(V )gap +

(V )coil
3

+
1

µ
(V )yoke

)
.

Looking more closely at the term,
2

I0∆t
× B2

2µ0

for the example window frame

dipole;

2

I0∆t
× B2

2µ0

=
B2

I0∆tµ0

.

For most pulsed magnets, the resistive power in the coil operated at low duty
cycle is unimportant. The coil volume is small compared to the gap volume and the
current density, j, can be large. Moreover, the volume of the yoke is a few times
the gap volume and when multiplied by 1

µ
, a small number, the yoke volume term

adds a negligible amount to the magnet inductance. The required excitation for the
window frame dipole is NI = Bh

µ0

⇒ I0 =
Bh
Nµ0

. Making the indicated simplifications;
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V ≈ B2

I0∆tµ0

(V )gap ≈
B2

Bh

Nµ0

∆tµ0

l × h× a,

≈ BN

∆t
l × a. (7.9)

From this expression, the voltage relies on physics specifications,
∫
Bdl ≈ B×l,

the pulse length, ∆t, and the aperture width and height of the magnet, h and a. The
only design variable is the number of coil turns, N . Rapidly ramped magnets are
often designed with a single turn coil to limit the power supply voltage. Again,
analyzing the units,

V ≈ BN

∆t
l × a =

Tm2

sec
,

=
Webers×m2

m2 sec
=

V olt sec

sec
= V olts.

7.4 Eddy Currents

Eddy currents are currents excited by time varying magnetic fields. This is a broad
area and the number of analytic solutions describing the distribution of eddy currents
in complicated shapes is limited. This subject is important in particle accelerators
since the charged particles circulate inside of electrically conductive metallic vacuum
chambers. Eddy currents generated in these chambers will attenuate and distort
the magnetic fields generated by an otherwise well designed accelerator magnet, alter
the field or gradient uniformity and affect the orbit of charged particle beams. This
subject is also important for magnet design since eddy currents can amplify the
distribution of magnetic fields in a solid core magnet resulting in portions of the
magnet yoke to operate on different legs of the material hysteresis curve. This
behavior is equivalent to magnets in the same family being fabricated using iron or
steel with different BH characteristics.

Computer codes capable of solving the complicated distribution of eddy cur-
rents in different chamber shapes imbedded in a time varying field are available. For
the purposes of this text, it is not important to solve for specific complicated shapes
and describe their behavior in a detailed manner. It is instructive, however, to de-
scribe the distribution of eddy currents and the attenuation and amplification effects
in very simple cases. The cases reviewed in this section simplify the mathematics
by considering the distribution of the field in one dimension. The real solutions
are substantially more complex, but the one dimensional solutions give first order
approximations of the two dimensional behavior of the magnetic fields under time
varying conditions. The results of these simple calculations yield relationships which
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describe the field attenuation and amplification in a general way and can be used to
quantify the field perturbations due to the magnitude of various parameters. Al-
though the mathematics are consistent, the cases don’t describe the detailed behavior
in a totally accurate manner. In order to obtain accurate results, employment of
computer calculations using codes specifically set up for these problems is required.
The sensitivities obtained from the simple mathematical computations are important
since one can estimate the magnitude of the eddy currents and the resulting magnetic
field perturbations before embarking on the significant effort of setting up and per-
forming complex computer calculations. The following computations develop field
attenuation relationships for three simple cases, a semi-infinite conductive horizontal
plate and a pair of semi-infinite conductive vertical plates. These two cases are su-
perimposed in order to develop field attenuation relationships for a two-dimensional
simple rectangular vacuum chamber imbedded in a time varying magnetic field. The
third case assumes that the magnet pole is constructed of thick laminations or is solid
and shows that it is possible to amplify as well as attenuate the magnetic field and
demonstrates that the time constant of the magnet can be severely altere. Again,
it is important to emphasize that the mathematical rigor of these simple solutions
is questionable since discontinuities of the otherwise smooth behavior of the time
dependent magnetic field are introduced.

7.4.1 Field Attenuation due to Eddy Currents in a Semi-infinite Conductive Hori-

zontal Plate

The simple case selected for description in this section (illustrated in fig. 2) describes
the boundary conditions for solving for a one dimensional distribution of eddy currents
and the attenuated field due to the presence of a conductive plate of finite width,
2b, and thickness, t. (The solution of the differential equation summarized in this
section is due to work performed by Glen Lambertson[14]). The eddy current field
distribution in the plate is computed for a dipole magnet with a given half-gap, h,
and a uniformly distributed cyclic time varying magnetic field, B = B0 eiωt where
i =

√−1
The distribution of the eddy currents can be computed knowing that the

distribution of voltage in an electrical circuit depends only on the time rate of change
of the enclosed magnetic flux

V (x) =
∂Φ

∂t
=

∂B

∂t
A =

∂B

∂t
L

∫ x

0

dx, (7.10)

where L is the length of the plate in the z direction.
The current flowing in the plate can be described by

I (x) =
V (x)

R

=
∂B

∂t

L

R

∫ x

0

dx, (7.11)
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Figure 2 Eddy Current Field Attenuation due to Horizontal Plate

where

R =
ρL

Area
=

ρL

t dx
, (7.12)

where ρ is the volume resistivity of the metal used in the plate. Introducing the cur-
rent density j (x) where I (x) = j (x) dx and substituting the expression for resistance
into eq. (7.11).

j (x) dx =
∂B

∂t

t dx

ρ

∫ x

0

dx. (7.13)

Taking the integral form of the Poisson’s equation,
∮ −→
H · −→dl =

∫
Area

j dA and

assuming that the fields are vertical,

−H (0) h+H (x) h =
−B (0) h+B (x) h

µ0

=

∫ x

0

j (x) dx. (7.14)

Substituting eq. (7.13) into (7.14)

−B (0) h+B (x) h

µ0µ0

=

∫ x

0

j (x) dx

=
t

ρ

∫ x

0

∫ x

0

∂B

∂t
dxdx.

Differentiating twice with respect to x, we get finally
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∂2B

∂x2
=

t µ0

h ρ

∂B

∂t
. (7.15)

Assume that the magnetic field is given by B (x, t) = B (x) eiωt. Substituting
into eq. (7.15)

∂2B (x)

∂x2
eiωt =

t µ0

h ρ
B (x)

∂eiωt

∂t
=

t µ0

h ρ
iωB (x) eiωt =⇒

∂2B

∂x2
=

i t ω µ0

h ρ
B. (7.16)

Eq. (7.16) is an expression in x only.

Skin Depth

At this point, we introduce a variable called the “skin depth”, δ, where

δ =

√
2 ρ t

ω µ0 h
, (7.17)

with units =

√
Ω m

sec−1 T m
Amp

=

√
Ω m

sec−1 Webers m
m2 Amp

,

=

√
Ω m m2 Amp

sec−1 V olt sec m
=

√
m2 = m (length).

(The “classical” definition of the skin depth is independent of the ratio t
h
.)

Substituting this variable, the differential equation for the distribution of the
magnetic field on the magnet centerline is simplified to

∂2B

∂x2
=

2 i

δ2
B. (7.18)

Solution to the Differential Equation

Eq. (7.18) has the general solution of a hyperbolic function. We limit our attention
to the even (cosh) function because of the symmetry of the field about x = 0.
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B = A cosh kx.

Substituting this expression into eq. (7.18),

∂2B

∂x2
= A k2 cosh kx =

2i

δ2
A cosh kx.

Therefore,

k2 =
2i

δ2
(7.19)

and the distribution of the attenuated magnetic field on the dipole centerline is given
by

B = A cosh

√
2i

δ
x. (7.20)

Assuming that the magnitude of the uniform unattenuated field is B0 at the
edge of the plate, x = b, the value of the constant is given by

B0 = A cosh

√
2i

δ
b =⇒ A =

B0

cosh
√
2i
δ
b
.

Therefore, the attenuated field under the conductive metallic plate is given by

B =
B0 cosh

√
2i
δ
x

cosh
√
2i
δ
b

. (7.21)

Expressions for Numerical Evaluation

For numerical evaluation of eq. (7.21), it can be shown that

√
2i = 1 + i.

Substituting into eq. (7.21) and normalizing with respect to the external field

B

B0
=

cosh (1 + i) x
δ

cosh (1 + i) b
δ

(7.22)
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where

cosh (1 + i)
x

δ
= cosh

x

δ
cos

x

δ
+ i sinh

x

δ
sin

x

δ

and cosh (1 + i)
b

δ
= cosh

b

δ
cos

b

δ
+ i sinh

b

δ
sin

b

δ
.

Attenuation at the Center of the Magnet

Since cosh (0) = 1 and sin (0) = 0, the minimum normalized attenuated field at the
center of the magnet and the phase of the attenuation with respect to the driving
field can be computed by evaluating eq. (7.22) at x = 0.

(
B

B0

)
x=0

=
1

cosh (1 + i) b
δ

=
1

cosh b
δ
cos b

δ
− i sinh b

δ
sin b

δ

(7.23)

Therefore,

∣∣∣∣ BB0

∣∣∣∣
x=0

=
1√

cosh2
(
b
δ

)
cos2

(
b
δ

)
+ sinh2

(
b
δ

)
sin2

(
b
δ

) (7.24)

and the phase is Φx=0 = tan−1 − sinh b
δ
sin b

δ

cosh b
δ
cos b

δ

. (7.25)

Numerical Evaluation

In order to fully appreciate the effect of a conductive plate in the magnetic field,
the expression for the field attenuation at the center of the magnet is numerically
evaluated. The evaluation is made for a magnet with 10 mm. gap, with a 2 mm.
thick metallic plate with a half width of 10 mm. The attenuation is compared for
three different materials, stainless steel with ρss = 70 × 10−8 Ω m, aluminum with
ρal = 3.3× 10−8−8−8 Ω m, and copper with ρcu = 1.89× 10−8−8 Ω m. Graphing eq.
7.24 in fig. 3, one can see that the attenuation at the center of the magnet is large
for a plate with material with higher conductivity.

If one carries out the numerical computation of the phase, one will find that an
almost constant phase ship with π is computed for the range of selected frequencies.

7.4.2 Field Attenuation due to Eddy Currents in a Pair of Semi-infinite Conductive

Vertical Plates

The solution of the field attenuation for a pair of semi-infinite vertical plates, illutrated
in fig. 4, is given by the expressions developed in the previous section. Assume that
the plate height is given by H and its thickness is t and are separated by a distance
2b. The skin depth is given by
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Figure 3 Field Attenuation at the Center of a Plate

δv =

√
2 ρ H

ω µ0 h
, (7.26)

and the attenuated field at the inside surface of the plate is

B

B0
=

cosh (1 + i) b−t
δv

cosh (1 + i) b
δv

. (7.27)

The Vertical Plate as a Boundary Condition for Computing the Attenua-
tion in a Closed Rectangular Chamber

The attenuation at the inside surface of vertical plates is useful since it provides
the boundary condition for the evaluation of the attenuation in a closed rectangular
chamber. However, if one numerically evaluates the attenuation at the inside sur-
face of vertical plates, one finds that the attenuation is small for resistive material
(stainless steel) and low frequencies (≤ a few Hz) and the difference between using
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Figure 4 Eddy Current Field Attenuation due to Vertical Plates

the amplitude of the unattenuated field and the field value at the inside surface of
the vertical plate is small. The attenuation in a closed rectangular chamber is domi-
nated by the presence of the horizontal plate of the rectangular chamber and one can
compute a good approximation by considering only the horizontal plate.

7.4.3 Field Attenuation due to Eddy Currents in a Closed Rectangular Chamber

Although the attenuation in a closed rectangular chamber is dominated by the pres-
ence of the horizontal plate, the more complete solution of a rectangular chamber is
included for completeness. The solution of the field attenuation for a closed rect-
angular chamber, illustrated in fig. 5, is developed by the superposition of the two
previous cases. From eq. (7.27) the attenuated field at the inside surface of the
vertical portions of the chamber is given by

Bb−t = B0

cosh (1 + i) b−t
δv

cosh (1 + i) b
δv

. (7.28)

where δv is given by eq. (7.26).
The attenuated field under the horizontal plate is given by

B = Bb−t

cosh (1 + i) x
δh

cosh (1 + i) b−t
δh

(7.29)

where

δh =

√
2 ρ t

ω µ0 h
. (7.30)
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Figure 5 Eddy Current Attenuation in a Rectangular Chamber

Substituting eq. (7.28) into eq. (7.29) and normalizing to the external field
amplitude, the expression for the attenuated field in a rectangular vacuum chamber
for x ≤ b− t is

B

B0
=

cosh (1 + i) b−t
δv

cosh (1 + i) b
δv

cosh (1 + i) x
δh

cosh (1 + i) b−t
δh

. (7.31)

7.4.4 Field Amplification

In an accelerator, all the magnets of the same family are required to operate with
identical fields or gradients when excited at the same current. This magnet re-
producibility is crucial to the successful, reliable and reproducible operation of a
synchrotron. Iron and steel properties, in addition to the mechanical fabrication er-
rors, described in Chapter 4, can compromise reproducibility among magnets of the
same family. Despite care in sorting material and fabrication and assembly, magnets
made from material with nominally identical magnetic properties can fail to be re-
producible. This lack of reproducibility is due to the material operating on different
hysteresis curves for the same material. The operating curve for the magnet material
depends on its history. Magnet steel taken to identical high fields will operate on
identical curves. Therefore, before they are excited in the ring, magnets of the same
family are excited at fields and/or gradients at least 10% higher than their maximum
operating level. This procedure is called “conditioning” and is normally performed
three times prior to exciting the magnet to its required field and/or gradient. De-
spite rigidly following conditioning requirements, individual magnets can occasionally
be operated in a manner which can compromise the reproducible performance of an
otherwise identical magnet. The operation leading to loss of magnet reproducibility
is rapid field changes, generating eddy currents which amplify the field in portions of
the magnet iron.
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Eddy currents can amplify as well as attenuate magnetic fields. This is a
problem for solid core magnets or magnets constructed using thick steel or iron slabs
since the fields generated by eddy currents for changing magnetic fields can often
cause the field level in the iron yoke to exceed the maximum conditioning field of
the magnet. Portions of the edges of an iron pole can thus become saturated and
operate on a different leg of the iron or steel hysteresis curve than during previous
operation.

Crowbarring

Assume that the electrical properties of the dipole magnet can be described by its
inductance, L, and its resistance, R. The current in a magnet is determined by eq.
(7.7),

RI + L
dI

dt
= V,

where R and L are the resistance and inductance, respectively, of the magnet electrical
circuit.

Crowbarring is the operation of a power supply when a steady voltage source
is suddenly turned off. The voltage and the current as a function of time is illustrated
in fig. 6. It is easily shown that, in a power supply circuit which includes a diode to
allow the control current decay and avoid voltage spikes, the solution of the differential
equation for current for the illustrated voltage step function for t ≥ 0 is

I =
V0

R
e−

t

τ , (7.32)

where τ =
L

R
.

Affect of the Solid Core or Thick Steel Laminations

In the following section, an attempt is made to describe the spatial distribution of
the magnetic field and its time behavior using a very simplified time dependent one
dimensional (in space) differential equation. The behavior of the eddy currents and
the magnetic fields it generates is, of course, far more complex than the mathematical
treatment which follows. The solution of the simple differential equations lead to cer-
tain discontinuities which are not physically possible. The actual spatial distribution
of the field and its time behavior is best computed using MAFIA c© or other computer
codes specially written for these complex time dependent problems. However, the
solution to the simple differential equation and the use of boundary conditions to
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Figure 6 Voltage Crowbar

evaluate integration constants leads to analytic expressions which approximate the
behavior of the time dependent fields due to eddy currents in permeable material for
magnet yokes with certain dimensional and permeability parameters. These expres-
sions are useful since they point out that field amplifications are possible and that the
time response for the rapid field changes can be much longer than the time constant
determined by the electrical parameters of the magnet.

Consider the dipole (or a thick lamination in the dipole) illustrated in fig. 7
operating at a uniform field, B0 and suddenly losing power supply voltage so that the
magnet current is behaves as described in eq. 7.32.

Consider the iron pole in half of the magnet whose length into the page is
given by 
. The distribution of the eddy currents generated in the iron obey the
same differential equation as describes the behavior of the magenet. In the following
expression, the current in an incremental strip in the iron yoke or lamination is given
by I = j (x) H dx.

dRiron j (x) H dx+ dLiron

d (j (x) H dx)

dt
= V,

where V =
∂

∂t
B0e

− t

τ

∫ x

0


dx

= −B0

τ
e−

t

τ

∫ x

0


dx,

where H in this expression is the height of the pole and Liron and Riron are the
inductance and resistance, respectively, of the iron yoke. Rewriting,

j (x) H dx+
Liron

Riron

d (j (x) H dx)

dt
=

B0

τ
e−

t

τ

∫ x

0




dRiron

dx. (7.33)
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Figure 7 Solid Core Field Amplification

Inductance and Resistance Calculating the inductance using the stored energy
for half the steel block,

Liron =
2U

I2
where

U = Stored Energy =
B2 ×Volume

µ µ0

=
B2 × 
 H b

µ µ0

and Iiron =
B H

µ µ0

Therefore Liron =
2U

I2
= 2

µ2 µ2
0

B2 H2

B2 × 
 H b

µ µ0

=
2 µ µ0 
 b

H
.

Calculating the resistance for half the steel block and the incremental resis-
tance, dRiron,

dRiron =
ρiron 


H dx

dRiron =
ρiron 


H dx
.
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The total resistance for half the iron pole is

Riron =
ρiron 


H b

Then

Liron

Riron

=
2 µ µ0 
 b

H

H b

ρiron 


=
2 µ µ0 b2

ρiron
.

Using the MKS system of units, it can be shown that this expression has the
units of time. Therefore, we define the time constant τ 2 by

τ 2 =
Liron

Riron

=
2 µ µ0 b2

ρiron
. (7.34)

Substituting into eq. (7.33),

j (x) H dx+ τ 2
d (j (x) H dx)

dt
= −B0

τ
e−

t

τ

∫ x

0




dRiron

dx,

= −B0

τ
e−

t

τ

∫ x

0



ρiron �

H dx

dx,

Integrating,∫ x

0

j (x) H dx+ τ 2
d
(∫ x

0
j (x) H dx

)
dt

= −e−
t

τ

B0 H

τ ρiron

∫ x

0

∫ x

0

dx dx. (7.35)

Using the relationship,
∫
Area

j (x) dA =
∮

B
µ µ0

· d


∫ x

0

j (x) H dx =
H

µ µ0

[B (0)−B (x, t)] .

Substituting into eq. (7.35) and simplifying,

B (0)−B (x, t) + τ 2
d (−B (0)−B (x, t))

dt
= −B0

τ
e−

t

τ

µ µ0

ρiron

∫ x

0

∫ x

0

dx dx

At this point, we make an assumption that B (x, t) is separable function of x
and t and can be written as B (x) θ (t) .
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Substituting and differentiating twice with respect to x and removing the
negative sign.

d2B

dx2
θ + τ 2

d2B

dx2

dθ

dt
=

B0

τ
e−

t

τ

µ µ0

ρiron
,

d2B

dx2

(
θ + τ 2

dθ

dt

)
=

B0

τ
e−

t

τ

µ µ0

ρiron
.

From eq. (7.34), 2 µ µ0 b2

ρiron
= τ 2. Therefore, substituting µ µ0

ρiron
= τ2

2b2
, the

expression can be rewritten

d2B

dx2

(
θ + τ 2

dθ

dt

)
=

B0

2b2
τ 2

τ
e−

t

τ ,

or separating the variables,

d2B
dx2

B0

2b2

=
τ2
τ
e−

t

τ

θ + τ 2
dθ
dt

. (7.36)

Solution in the Space Domain Taking the left side of the separated differential
eq. (7.36)

d2B

dx2
=

B0

2b2
.

The differential equation has the solution

B =
B0x

2

4b2
. (7.37)

Solution in the Time Domain Taking the right side of the separated differential
eq. (7.36)

θ + τ 2
dθ

dt
=

τ 2

τ
e−

t

τ .

Taking the LaPlace transform of the differential equation in time
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$θ + τ 2 [s$θ − θ (0+)] =
τ 2

τ

1

s+ 1
τ

$θ =
τ 2

τ

1(
s+ 1

τ

)
(1 + τ 2s)

+
τ 2 θ (0+)

1 + τ 2s

$θ =
1

τ
(
s+ 1

τ

) (
s+ 1

τ2

) +
θ (0+)

s+ 1
τ2

. (7.38)

The inverse LaPlace transform for this expression is

θ (t) =
1

τ

exp
(− t

τ

)− exp
(
− t

τ2

)
1
τ2

− 1
τ

+ θ (0+) exp

(
− t

τ 2

)

θ (t) =
τ 2

τ 2 − τ

[
exp

(
− t

τ 2

)
− exp

(
− t

τ

)]
+ θ (0+) exp

(
− t

τ 2

)
. (7.39)

Combination of the Space and Time Domain The second term in eq. (7.39)
is associated with the initial condition in the iron yoke. The field before the rapid
decay of the field due to power supply loss is constant and is equal to B0. This, in
combination of the solution of the spatial differential equation given by eq. (7.37)
and the solution of the differential equation in the time domain, eq. (7.39), yields the
final expression for the time dependent one dimensional magnetic field in the magnet
pole (or thick lamination).

B (x, t) =
B0x

2

4b2
τ 2

τ 2 − τ

[
exp

(
− t

τ 2

)
− exp

(
− t

τ

)]
+B0 exp

(
− t

τ 2

)
,

and the maximum field at the pole edge (at x = b) is given by

B (b, t) =
B0

4

τ 2

τ 2 − τ

[
exp

(
− t

τ 2

)
− exp

(
− t

τ

)]
+B0 exp

(
− t

τ 2

)
.

The ratio of the maximum field in the yoke to the nominal field is given by

Bmax

B0
=

τ 2

4 (τ 2 − τ)

[
exp

(
− t

τ 2

)
− exp

(
− t

τ

)]
+ exp

(
− t

τ 2

)
. (7.40)
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7.5 Chapter Closure

This chapter is added to develop some of the relationships associated with the magnet
stored energy. Expressions for the magnetic forces on poles and on coils for simple
magnet geometries are developed. The concept of stored energy allows one to com-
pute the magnet inductance so that the power supply needs for pulsed and cycled
magnets can be anticipated.

The area of dynamic magnet effects is much more extensive than can be cov-
ered completely in this chapter. Eddy currents, currents induced by time varying
magnetic fields, can exclude fields from selected areas. This subject is important
in rapidly cycled synchrotrons, often used as injectors for larger machines storing
charged particle circulating beam operated in the persistent mode. The field per-
turbation caused by eddy currents in metallic vacuum chambers can distort and at-
tenuate the otherwise uniform fields of the magnets in the regions of the accelerator
where the charged particle beam reside. Eddy currents effects are also important in
the area of corrector magnets which may have to operate at wide bandwidths through
metallic vacuum chambers when used for rapid feedback of beam orbit errors in DC
synchrotrons. They are also important in injection, where the circulating beam is
momentarily (usually during one beam transit time around the ring) “bumped” near
the injection septum to enhance damping into the circulating beam phase space. De-
tailed descriptions of eddy currents and their effects for complicated chamber shapes
is a far broader subject than can be covered in this limited edition. Other texts
are available covering this important subject. However, some simple cases are intro-
duced so that analytic expressions can be developed. These analytic expressions are
important since they describe, in a general way, the effect of chamber thickness and
width as a fraction of the magnet gap and the chamber material conductivity on the
attenuation and field distortion for a simple case.

Another area where eddy currents are important is the area of field amplifica-
tion in the yoke of a magnet. Because of transient fields generated by rapid magnet
excitation or rapid field decay due to power supply problems, large eddy currents
generated in the iron or steel magnet yoke can locally amplify the maximum field in
a magnet. This is an important effect since it can locally change the BH curve of
portions of the magnet pole and cause local field perturbations or cause the magnet
excitation at identical currents to differ before and after the transient.

The transient effects are approximated using simplified one-dimensional mod-
els. More detailed and precise calculations can be made using the many computer
codes which are made available specifically to analyze these complicated problems.
The algorithms developed using the simplifications can be useful to the magnet de-
signer to make estimates of the magnitudes of the field perturbations and can provide
guidance as to the sensitivites of these perturbations to magnet parameters and ma-
terial properties.
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Figure 8 Quadrupole Pole Contour

7.6 Problems

Problem 7.1 (Solution)

Given a two piece quadrupole with a 50 mm. pole radius as shown in fig. with a
gradient of 5 T

m
, what is the maximum magnetic field on the horizontal centerline

directly beneath the edge of the pole?

Problem 7.1a (Solution) What is the maximum magnetic “pressure” on the mag-
net centerline beneath the edge of the pole?

Problem 7.1b (Solution) What is the “shape” of the magnetic pressure curve
and its maximum amplitude?

Problem 7.1c (Solution) Integration of the magnetic pressure curve results in the
force on the magnet per unit length. What is this force per length on the illustrated
quadrupole? Assuming a magnet which is 300 mm. long, what is the total magnetic
force between the upper half and the lower half of the quadrupole?

Problem 7.2

For a sextupole with 100 mm half width and 300 mm length with a sextupole gradient
B” = 10 T

m2 , what is the force between the upper half and the lower half of the
magnet.
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Figure 9 Window Frame Dipole Magnet

Problem 7.3

Assume a 0.5 meter long window frame dipole magnet with the configuration de-
scribed by fig. 9. Suppose the coil has 40 turns and the magnet is designed
to operate at 1000 Amps. The conductor is made with copper with a resistivity
ρ = 1.86× 10−8 Ω m with cross sectional area 100 mm2 and the average turn length
is 1.3 meters.

Problem 7.3a (Solution) What is the field in the gap?

Problem 7.3b (Solution) What is the magnetic stored energy in the air gap?

Problem 7.3c (Solution) What is the magnetic stored energy in the coil?

Problem 7.3d (Solution) What is the approximate total magnetic stored energy
in the magnet?

Problem 7.3e (Solution) What is the magnet inductance? What is the magnet
resistance?

Problem 7.3f (Solution) Write the differential equation for the magnet voltage
as a function of time varying magnet current. Assume that a sinuisoidal current
wave form I (t) = Imax sinωt where ω = 1 Hz, and Imax = 1000 Amps is required.
Compute the voltage required to drive the magnet with this current. What are
the maximum voltage amplitude and the phase difference between the current and
voltage waveforms.

Problem 7.4 (Solution)

Consider a dipole with half gap h = 25 mm with a vacuum chamber whose horizontal
surfaces has a thickness of t = 3 mm and halfwidth b = 50 mm. Compute the ampli-
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tude of the attenuated field in the center of the magnet as a function of frequency for
a stainless steel (ρ = 70× 10−8Ω m) and aluminum chamber (ρ = 3.3× 10−8Ω m).
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Chapter 8

MAGNETIC MEASUREMENTS

Magnetic measurements are used to characterize excitation and field quality. The lo-
cation of the magnet center with respect to mechanical features of a quadrupole and
sextupole can also be found using the results of magnetic measurements. Knowledge
of these characteristics for different magnet types and individual magnets of each
type is important for operation of high performance acclerators. Magnet excitation
is the relationship of the field and/or field integral with power supply current. Char-
acterization of the excitation behavior of each magnet provides information to ensure
that each magnet in an accelerator lattice bends, focuses and trims the beam cor-
rectly and precisely. Field quality is the measure of the difference between the actual
field and/or field integral and the desired field and/or field integral. The measured
magnetic field is characterized by the amplitudes and phases of the fundamental field
and the multipole error fields or their integrals. Field quality measurements are
required to verify that individual amplitudes of the spectrum of error terms are small
compared to the desired fundamental field and satisfy physics requirements. The
relationship between the magnet axis and external mechanical features of the mag-
net need to be measured and characterized to ensure that each magnet is properly
aligned. A multipole magnet whose axis does not coincide with the beam central
axis will introduce unwanted steering or focusing.

Many magnetic measurement techniques are used. Among the different meth-
ods of measuring magnets are Hall probe maps, wire measurements and rotating coil
measurements. In this chapter, the discussion is limited to the description of mea-
surement of different magnet types using relatively slowly rotating coils (≤ a few Hz).
The techniques have long and widespread usage and descriptions of this technique can
be found in the literature. However, it is useful to summarize in this text, features of
the measurement coil design, the rotating coil data acquisition system and algorithms
to convert the electrical data to parameters describing the magnet performance.

Rotating coils have several advantages over other methods of measurement.
It can reproducibly measure the integrated field, the multipole errors and the location
of the magnetic axis in a simple and precise way. The biggest advantage of using this
method is its simplicity, requiring far less measurement time than mapping methods
or wire measurements. A single measurement can be completed in a few seconds.
It also provides more information about the magnetic field (multipole content) than
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flip coil techniques. The rotating coil measurements discussed in this chapter are
different from earlier methods which relied on rapidly rotating coils, requireing data
reduction by spectrum analysis of the output voltage signal. It also provides more
information (the relative amplitudes of the skew and real components of multipole
fields), enhancing the ability to isolate the sources of mechanical errors resulting
in particular multipole errors. (Certain multipole error spectra are generated by
mechanical assembly or fabrication errors violating symmetry conditions. See page
103.) The accuracy of the measurement is enhanced by the design of the rotating
coil which can be wired to reject a large fraction of the fundamental field. In this
compensated configuration, the small error multipole signals can be measured in
the absence of a large signal from the fundamental field. When the measurement
coil wiring does not include the windings which reject the fundamental, it is said to
be uncompensated. The fabrication of the coil in an accurately machined housing
allowing it to be supported using the magnet poles simplifies the mechanical design
of the measurement system and allows measurements leading to the identification of
the displacement of the magnet center from the magnet mechanical center.

The mathematical theory developed in the first chapter is used both to de-
scribe the measurements and to develop the algorithms to reduce the measured data.
This chapter describes magnetic measurements using rotating coils operated in com-
pensated and uncompensated configurations . It begins by developing the theory for
a rotating coil with a single wire at a given radius. The development starts from
the principle that the voltage generated in a loop of wire is equal to the time rate of
change of magnetic flux intersecting the loop area and shows that the time integrated
voltage signal from a rotating coil measures the line integral of the vector potential.
A numerical example is given to demonstrate the difficulty of measuring the error field
components and resolving the error multipoles with a single wire. This motivates
the design of measurement coils wound with many wires whose configuration can be
designed to isolate the small error field signals from the much larger fundamental
field signal. The topology of a rotating coil data acquisition system is described, the
algorithms for data reduction are developed and summarized and a format for the
tabulated summary of the field distribution is suggested.

8.1 The Vector Potential

Consider a wire with sufficient length to span the entire field of the measured magnet.
From the chapter on the mathematical theory, the three-dimensional field integral
satisfies the same differential equations used to develop the two-dimensional fields.
Therefore, the mathematical functions used to describe the two dimensional field can
be extended to three dimensional field integrals providing the range of integration
covers the span where the field is nonzero.

In order to understand magnetic measurements, it is only necessary to un-
derstand that the voltage generated in a closed loop of electrical conductor depends
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Figure 1

on the rate of change of magnetic flux intersecting that loop. The voltage gener-
ated in a rotating wire at radius s with the return at the center of rotation is given by

V =
dΦ

dt
where Φ is the total flux between the wires.

Φ = Leff

∫
B (s) ds

dΦ

dt
=

dΦ

ds

ds

dt
= LeffB (s)

ds

dt
.

Therefore, V = dΦ
dt

= LeffB (s) ds
dt

and the time integrated voltage for a
wire with one filament at the origin and the other filament at radius r is

∫
V dt =

Leff

∫ r

0
B (s) ds.
Computing the field component normal to the plane of the wires and recalling

that Bx =
∂A

∂y
and By = −∂A

∂x
, the expressions are simplified;

B (s) = −Bnx +Bny,

= −Bx sin θ +By cos θ,

= −∂A

∂y

dy

ds
− ∂A

∂x

dx

ds
= −dA

ds
.
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Therefore,

∫
V dt = −Leff

∫
B (s) ds = −Leff

∫
dA = −LeffA (θ) . (8.1)

The integrated voltage from a rotating wire loop is the product of the magnet
effective length and the vector potential at the wire radius.

8.1.1 Fourier Analysis

The time integrated voltage measured while the wire is rotated describes an analytic
function of the angle θ which can be mathematically characterized as,

∫
V dt =

∑
n

(pn cosnθ + qn sinnθ) , (8.2)

a Fourier series expansion of the measurements whose coefficients pn and qn can be
computed using any fast Fourier analysis routine.

Fourier Coefficients

Most data acquisition and data reduction software comes with a fast Fourier analysis
routines included to digitally evaluate the coefficients from the measured data. How-
ever, it is useful to have the “classical” expression for the computation of the Fourier
coefficients summarized in this section. The expressions for the coefficients,

pn
qn

}
=

1

π

∫ 2π

0

f (θ)
cosnθ
sinnθ

dθ, (8.3)

can be found in any calculus text[15].

The Vector Potential from the Fourier Analysis

Since eq. (8.2) described the measurement as the integrated vector potential of the
magnetic field, it is necessary to relate the Fourier coefficients of the measurements
to the coefficients characterizing the components of the functions describing the mag-
netic field. The vector potential is the real part of an analytic function of a com-
plex variable satisfying Laplace’s equation. Using the subscript n to represent the
multipole components, Fn (z) = Cnz

n where in general Cn is a complex constant
and can be written in the polar form, Cn = |Cn| eiψn. The function is rewritten
Fn (z) = Cnz

n = |Cn| eiψnzn where the vector potential and its line integral is evalu-
ated as follows;
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Fn (z) = Cnz
n = |Cn| eiψn |z|n einθ = |Cn| |z|n ei(nθ+ψn),

= |Cn| |z|n [cos (nθ + ψn) + i sin (nθ + ψn)] .

AnLeff = Leff ReFn = Leff |Cn| |z|n cos (nθ + ψn) .

Therefore, substituting for cos (nθ + ψn),

(∫
V dt

)
n

= −LeffAn = −Leff |Cn| |z|n (cosψn cosnθ − sinψn sinnθ) . (8.4)

Equating the common coefficients among eqs. (8.2) and (8.4) and evaluating
at the wire radius |z| = r

pn = −Leff |Cn| rn cosψn,

and qn = Leff |Cn| rn sinψn,

and the phase angle ψn is;

tanψn =
sinψn

cosψn

=

qn

Leff |Cn| rn
pn

−Leff |Cn| rn
,

and ψn = − arctan
qn

pn
. (8.5)

We get, finally, an expression for the amplitude of the integrated vector po-
tential coefficients in terms of the Fourier coefficients,

Leff |Cn| =
√
p2n + q2n
rn

. (8.6)

The Field as a Function of the Complex Variable

Having related the measurement results to the vector potential, it is now necessary
to take the measured parameters and develop expressions for the magnetic field com-
ponents. In an earlier section (see page 46), the components of the magnetic field
are computed from B∗ = iF ′ (z). Using the more general expression for the function
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of a complex variable described in the previous section and evaluating at the wire
radius |z| = r;

B∗
n = Bnx − iBny = iF ′ (z) = i

d

dz
|Cn| eiψnzn = in |Cn| eiψnzn−1,

= in |Cn| eiψn |z|n−1
ei(n−1)θ = in |Cn| |z|n−1

ei[(n−1)θ+ψn],

= in |Cn| rn−1 {cos [(n− 1) θ + ψn] + i sin [(n− 1) θ + ψn]} ,
= n |Cn| rn−1 {i cos [(n− 1) θ + ψn]− sin [(n− 1) θ + ψn]} .

Equating the real and imaginary parts of the expression,

Bnx = n |Cn| rn−1Re {i cos [(n− 1) θ + ψn]− sin [(n− 1) θ + ψn]}
= −n |Cn| rn−1 sin [(n− 1) θ + ψn] (8.7)

Bny = −n |Cn| rn−1 Im {i cos [(n− 1) θ + ψn]− sin [(n− 1) θ + ψn]}
= −n |Cn| rn−1 cos [(n− 1) θ + ψn] (8.8)

Substituting eqs. (8.5) and (8.6),

BnxLeff = −nLeff |Cn| rn−1 sin [(n− 1) θ + ψn] ,

= −n
√
p2n + q2n
r

sin

[
(n− 1) θ − arctan

qn

pn

]
. (8.9)

BnyLeff = nLeff |Cn| rn−1 cos [(n− 1) θ + ψn] ,

= −n
√
p2n + q2n
r

cos

[
(n− 1) θ − arctan

qn

pn

]
. (8.10)

|BnLeff | =
n
√
p2n + q2n
r

. (8.11)

8.2 Output Voltage

This section develops the expressions for estimating the voltage output from a ro-
tating wire and gives an example, illustrating the signal size from measurements of
a typical magnet with typical error multipole spectrum. From eq. (8.2), the ex-
pression for the amplitude of the time integrated signal from the rotating coil is∫
V dt =

∑
n (pn cosnθ + qn sinnθ). The output voltage is
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V =
d

dt

∑
n

(pn cosnθ + qn sinnθ) ,

= n
dθ

dt

∑
n

(−pn sinnθ + qn cosnθ) .

|Vn| = n
dθ

dt

√
p2n + q2n = r

dθ

dt
|BnLeff | .

Assume that the measured fundamental field amplitude is about 1.0 T and
the measured magnet effective length is 0.5 meters. Assume further that the magnet
aperture is limited so that the maximum radius of the wire in the coil is 30 mm.=0.030
meters. As described in the introduction, the rotating coil data is taken at a relatively
slow rotation rate, say dθ

dt
= 3Hz = 2π

3 sec
.

The measurement output voltage is then;

|VN | = r
dθ

dt
|BNLeff | = 0.030m× 2π

3 sec
× 1 Tesla× 0.5 meters

= 0.03142
Tm2

sec
= 0.03142

Webers

secm2
m2 = 0.03142

V sec

sec
≈ 0.03 V.

For a well designed and fabricated magnet, the error terms at the pole tip
radius are ≤ 10−3 of the fundamental. Therefore, the voltage amplitude of the error
multipole if the field could be measured at the pole tip radius is

|Vn| � 10−3 × 0.03 V = 3× 10−5 V = 30 µV.

However, a measurement coil cannot measure the field at the pole tip radius.
Most measurement coils are fabricated so that the wire at the outer radius is < 80%
of the pole radius. From eq. (2.32),

B∗ = Bx − iBy = iF ′ (z) = i
∂

∂z
Cnz

n = inCnz
n−1.

Therefore, |Bn| ∝ rn−1. The first systematic multipole error (see page 50) for
the dipole, quadrupole and sextupole are n = 3, 6 and 9, respectively. Therefore, for
a measurement coil with wire at 80% of the pole radius, the voltages from the first
systematic multipole error are reduced to

|V3| � 0.83−1 × 30 µV ≈ 20 µV for the dipole error.

|V6| � 0.86−1 × 30 µV ≈ 10 µV for the quadrupole error.

|V9| � 0.89−1 × 30 µV ≈ 5 µV for the sextupole error.



220 Magnetic Measurements

Figure 2 Compensated Coil

Signals this small are difficult to measure and resolve in the presence of elec-
trical noise. Therefore, the typical coil is fabricated from multiple turns of wires,
usually ≥ 100. In addition, for a coil with a single set of windings, these error
multipole signals must be resolved in the presence of the fundamental signal, whose
amplitude, computed in the example, is approximately 30, 000µV . Therefore, in ad-
dition to multiple wires in the measurement coil, a coil geometry is employed where
measurements of the error fields can be made while rejecting the signal from the
fundamental field.

8.3 The Compensated Coil

Because of the extremely small electrical signal from the error multipole components
of magnets, some means of accurately measuring these quantities was needed. The
means used in a compensated coil is to reject the large electrical signal from the
fundamental field while measuring the error fields. The compensated coil is a coil
consisting of two sets of windings which can be connected to measure the full field or
the error multipoles. The full field is measured using the outer windings only in the
uncompensated mode. The error multipole measurements are performed with the
both windings connected in opposition so that the measurements are the differences
in the integrated output signal from the two coils in the compensated mode. In the
compensated mode, the coil is designed (in principal) to null the fundamental field
allowing the full range of the data acquisition system to resolve the amplitudes of
the error fields only. In reality, the coil in the compensated mode does not entirely
null the fundamental field because of unavoidable mechanical errors in winding the
two sets of coils. The following discussion develops the theory and summarizes the
algorithms used to collect and reduce the measurement data.

Consider the compensated coil illustrated in fig. 2 with Mouter and Minner

turns. The integrated electrical signal from each of the coils are given by the follow-
ing expression. The expressions include the measurement of the fundamental field.
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(∫
V dt

)
outer coil

= LeffMouter

∑
n

|Cn| (rn1 − rn3 ) cos (nθ + ψn)(∫
V dt

)
inner coil

= LeffMinner

∑
n

|Cn| (rn2 − rn4 ) cos (nθ + ψn)(∫
V dt

)
compensated

= Leff

∑
n

|Cn| [Mouter (r
n
1 − rn3 )−Minner (r

n
2 − rn4 )] cos (nθ + ψn)

Defining the following parameters,

β1 �

∣∣∣∣r3r1
∣∣∣∣ , β2 =

∣∣∣∣r4r2
∣∣∣∣ , ρ =

r2

r1
, µ =

Minner

Mouter

, (8.12)

and substituting into the expression for the outer coil only and for both outer an
inner coils,

(∫
V dt

)
uncomp.

= LeffMouter

∑
n

|Cn| rn1 [1− (−β1)
n] cos (nθ + ψn)(∫

V dt

)
comp.

= LeffMouter

∑
n

|Cn| rn1
[ {1− (−β1)

n}
−µρn {1− (−β2)

n}
]
cos (nθ + ψn)

Defining the following terms,

Uncompensated Sensitivity SN = 1− (−β1)
n
, (8.13)

Compensated Sensitivity sn = 1− (−β1)
n − µρn (1− (−β2)

n) , (8.14)

the expressions for the integrated voltages can be simplified as

(∫
V dt

)
uncomp.

= LeffMouter

∑
n

|Cn| rn1SN cos (nθ + ψn) (8.15)

and

(∫
V dt

)
comp.

= LeffMouter

∑
n

|Cn| rn1 sn cos (nθ + ψn) (8.16)

8.3.1 The Quadrupole Coil

To null the quadrupole (n = 2 fundamental) and dipole (n = 1) fields in the compen-
sated coil configuration,
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Quadrupole Coil Sensitivities
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Figure 3 Quadrupole Coil Compensated Sensitivities

s2 = 1− (−β1)
2 − µρ2

(
1− (−β2)

2) = 0,

s1 = 1− (−β1)− µρ (1− (−β2)) = 0.

These conditions can be satisfied for a variety of conditions. However, for
convenience, the turns ratio, µ, and the ratio of the major radii of the outer an inner
coils, ρ, are selected arbitrarily. The set of parameters for which s1 = s2 = 0 are

β1 = 0.5, β2 = 0.2, ρ = 0.625, µ = 2. (8.17)

8.3.2 The Dipole Coil

The same coil used to measure the quadrupole can be used to measure the dipole
magnet. In principal, a symmetric dipole magnet should not have even multipoles
(n = 2, 4, 6, 10, · · · ). Therefore, the zero sensitivity for the quadrupole field in
the compensated configuration is not important. However, the quadrupole field (if it
exists) can be measured with the coil configured in the uncompensated configuration.

8.3.3 The Sextupole Coil

To null the sextupole (n = 3 fundamental) and quadrupole (n = 2) fields in the com-
pensated coil configuration,

s3 = 1− (−β1)
3 − µρ3

(
1− (−β2)

3) = 0,

s2 = 1− (−β1)
2 − µρ2

(
1− (−β2)

2) = 0.

These conditions can be satisfied for a variety of conditions. One of many
solutions for which s1 = s2 = 0 are
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Sextupole Coil Sensitivities
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Figure 4 Sextupole Coil Compensated Sensitivities

β1 = 0.79139, β2 = 0.83234, ρ = 0.77987, µ = 2. (8.18)

8.4 “Spilldown” and Magnetic Center

In the previous discussions describing the configurations of the compensated quadrupole
and sextupole measurement coils, the coil constants were selected to null both the
fundamental field and the error field whose indices are one below the fundamental
field. The error field with index n = N − 1 reflects the displacement of the magnetic
center for the magnet whose index is N = 2 for the quadrupole and N = 1 for the
sextupole. Nulling this “spilldown” field results in compensated measurements in-
sensitive to misalignment of the measurement coil with respect to the magnetic center
of the measured magnet.

In this section, the mathematics that describe the magnetic centers of multi-
pole magnets are developed. “Spilldown” is a term used to describe the phenomenon
observed when rotating coil measurements are performed with a coil whose axis is
displaced by a constant amount ∆z = ∆x+ i∆y with respect to the magnetic center
of a multipole magnet. (This phenomenon excludes dipole magnets whose field is
constant and thus does not have a center.) The pheonomenon is called spilldown
since the off center measurements appear to generate a field whose index is one below
the index of the fundamental signal. Although compensated coils are designed to
null the apparent fields generated by off axis rotating coils, spilldown can be mea-
sured with the uncompensated coil and is useful to locate the center of a magnet and
provide information for magnet alignment.
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The largest measurement signal for a magnet are generated by the fundamental
field. The function of a complex variable for the fundamental field is given by
F = CNz

N . If the measurement coil is misaligned with respect to the magnet center,
the equation for the fundamental field becomes

F = CN (z +∆z)N = CN

(
zN +NzN−1∆z +N (N − 1) zN−2∆z2 + · · · ) .

In this expression, ∆z is a small constant displacement and ∆zn with (n > 1)
is considered a higher order term. Therefore;

F ≈ CN

(
zN +NzN−1∆z

)
. (8.19)

The size of this signal can be large if ∆z
r
, the displacement normalized to

the measurement coil outer radius, is large. Thus, if the coil axis rotating center
displacement is 1% of the measurement coil radius, the spilldown signal is (N × 1)%
of the fundamental field signal.

Quadrupole Spilldown

For a quadrupole (N = 2) the expression for the fundamental field becomes

F ≈ C2

(
z2 + 2z∆z

)
,

and appears to be a function of the complex variable z describing both a quadrupole,
F = C2z

2, and a dipole, F = (2C2∆z) z. (The power of z is the multipole index.)

Sextupole Spilldown

For a sextupole (N = 3) the expression for the fundamental field becomes;

F ≈ C3

(
z3 + 3z2∆z

)

and appears to be a function of the complex variable z describing both a sextupole,
F = C3z

3, and a quadrupole, F = (3C3∆z) z2.

8.4.1 Quadrupole Magnetic Center

For various reasons associated with errors in mechanical yoke fabrication and assem-
bly, the magnet center may not coincide with the mechanical center of the four poles.
The section on page 224 discusses the spilldown effect of a shift in the center of the
magnet on the multipole spectrum. The same formulae can be used to develop an
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expression which takes the measured data from the rotating coil to compute the dis-
placement of the magnetic center of the quadrupole with respect to the measurement
coil rotational axis. If the fabricated measurement coil and the sleeve centering the
coil in the magnet gap are precisely fabricated so that the installed measurement
coil axis coincides with the magnet mechanical center, the measurement data can be
used to compute the displacement of the magnetic center with respect to the magnet
mechanical center. The spilldown expression written for the quadrupole is

F ≈ C2

(
z2 + 2z∆z

)
,

≈ C2

[
z2 + 2z (∆x+ i∆y)

]
,

and

B∗ = Bx − iBy = iF ′ = iC2 [2z + 2 (∆x+ i∆y)]

= i2C2z + i2C2 (∆x+ i∆y)

The magnetic field appears to consist of a dipole term and a quadrupole term;

B1x − iB1y = i2C2 (∆x+ i∆y)

B1x − iB1y

2C2
= i (∆x+ i∆y)

B1x − iB1y

2C2r
=

i∆x−∆y

r
.

Since 2C2r = |B2|@r, the expression can be rewritten as

(B1x − iB1y)

|B2|@r

= i
∆x

r
− ∆y

r
.

Equating the real and imaginary parts of the expression,

∆x

r
= − B1y

|B2|@r

and
∆y

r
= − B1x

|B2|@r

. (8.20)

This relationship is more easily shown in fig. 5.
Since the relationships rely on using the absolute values of the quadrupole

fields, the sign conventions are suspect. If the quadrupole polarity is reversed, eq.
(8.20) will give the wrong signs for the offsets. Also, whether the measured signals are
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Figure 5 Quadrupole Magnetic Center

positive or negative depends on how the coil is wired into the integrator. The most
reliable method of determining the signs is to intentionally offset the measurement
coil from the mechanical center in a known direction, observe the polarities of the
dipole signals for the required quadrupole polarity and adjust the sign of the algorithm
accordingly.

8.4.2 Sextupole Magnetic Center

The same approach can be taken to locate the magnetic center of a sextupole magnet.
In the case of the sextupole, the apparent quadrupole field characterizes the location
of the magnetic center. The spilldown function of the complex variable written for
the sextupole is

F ≈ C3

(
z3 + 3z2∆z

)
,

≈ C3

[
z3 + 3z2 (∆x+ i∆y)

]
,

and the fields are given by

B∗ = Bx − iBy = iF ′ = iC3

[
3z2 + 6z (∆x+ i∆y)

]
,

= i3C3z
2 + i6C3z (∆x+ i∆y)

The magnetic field appears to consist of a dipole term and a quadrupole term
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B2x − iB2y = i6C3z (∆x+ i∆y)

B2x − iB2y

6C3z
= i (∆x+ i∆y) .

Evaluating at |z| = r and dividing both sides of the equation by r

B2x − iB2y

6C3r2
=

i∆x−∆y

r
.

Since 3C3r
2 = |B3|@r for real values of C3, the expression can be rewritten as

(B2x − iB2y)

2 |B3|@r

= i
∆x

r
− ∆y

r
.

Equating the real and imaginary parts of the expression,

∆x

r1
= − B2y

2 |B3|@r1

and
∆y

r1
= − B2x

2 |B3|@r1

. (8.21)

Again, as in the case of the quadrupole, the signs in eq. (8.21) are suspect and
it is highly recommended to perform an experiment intentionally offsetting the mea-
surement coil in a preliminary measurement to establish the proper sign convention
for a magnet with the required polarity.

8.5 Rotating Coil Magnetic Measurements

The previous section developed the mathematics required to understand the mea-
surement system using fundamental relationships. The diffulculties in measuring the
harmonic field errors in high quality magnets were demonstrated and a means of de-
signing rotating coils with high sensitivities to small harmonic errors was suggested.

This section on measurements describes a data acquisition system which in-
tegrates the compensated rotating coil and its various components. The algorithms
for computing the absolute amplitudes of the integrated fundamental fields and the
relative amplitudes and phases of the integrated error multipole fields are developed.
Finally, an example of a data presentation format useful for evaluating the magnet
field quality is suggested

8.5.1 The Measurement System

Fig. 6 is a schematic of a rotating coil magnetic measurement system.
The major components of this system are;
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Figure 6 Rotating Coil Measurement System

• Computer/Control Chassis. The schematic shows one item. However, this
component consists of many elements.

— Computer with Control/Data Acquisition Software installed.

— D/A Chassis required to control the power supply.

— A/D Chassis to monitor current from a current transducer, labeled in the
illustration as a Shunt.

— Input/Output Channel for the Digital Integrator.

∗ Integrator Converts Electrical Voltage from the Measurement Coil to
digital format and performs an integration with respect to time.

— Input Channel for Shaft Encoder.

— D/A Chassis to control the Motor.

• Digital Integrator

— The Digital Integrator consists of two items. A voltage to frequency
converter and an up-down counter. The v-to-f converter generates a signal
whose frequency increases linearly with the input voltage (see fig. 7). The
up-down counter counts the pulses. The sum of the counted pulses is
proportional to the integrated voltage.

• Shaft Encoder
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Figure 7 Voltage to Frequency Converter Output

— The Shaft Encoder is a digital device which puts out pulses as a function of
angle. At given angle increments, the computer latches an output signal
from the digital integrator.

• Motor

— On a signal from the computer, the motor starts and ends the coil rotation.
Usually, three rotations are specified. The measurement is made during
the second rotation. The first and last rotations ensure that the rotation
is accelerated and decelerated uniformly so that the measurements are
made while the coil is rotated at a uniform rate. Although, in principal,
the integrated signal is independent of the rotation rate, a uniform rota-
tion is desirable to eliminate the effect of a constant voltage noise source
(described in the section on the Measurement Coil).

• The Measurement Coil

— The measurement coil described earlier in the chapter consists of two sets
of coils, usually with many soldered joints. These joints are the junctions
of dissimilar metals and thus constitute thermcouple leads and can gener-
ate small constant voltages. Because of this noise source, it is important
to rotate the coil at a constant angular velocity. The constant rotation
rate provides means of compensating for the effect of the thermocouple
voltage prior to processing the data. Fig. 8 is an example of the typical
measurement output. The graph illustrates the output from a quadrupole
measurement. The integrator is zeroed before the start of measurement



230 Magnetic Measurements

-2.0

-1.5

-1.0

-0.5

0.0

0.5

0 45 90 135 180 225 270 315 360

Angle (deg.)

Figure 8 Voltage Output with Drift

and the graph displays the result of a linear drift due to DC voltage gen-
erated in the coil while measuring the integrated vector potential from
a quadrupole magnet. This linear drift must be subtracted from each
point prior to the data reduction process. If the angle is measured in
degrees, the expression for the correction is, Vcorrected = V − Angle(o)

360
V360.

The corrected data are used in the Fourier analysis described in the next
section.

8.6 Fourier Analysis

As in the case of the measurement using a coil with a single wire, the data collected
with a coil can be Fourier analyzed and the output can be written as a sum of Fourier
terms;

∫
V dt =

∑
(pn cosnθ + qn sinnθ)

Suppose the data are collected and Fourier analyzed for the measurement coil
in two configurations and the coefficients for the two configurations are described by
CAPITAL and lower case letters to differentiate among uncompensated and compen-
sated measurements, respectively.

(∫
V dt

)
uncompensated

=
∑

(Pn cosNθ +Qn sinNθ)(∫
V dt

)
compensated

=
∑

(pn cosnθ + qn sinnθ)
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8.6.1 Uncompensated Signal

From eq. (8.15), the expression for the uncompensated integrated field is

(∫
V dt

)
N uncomp.

= LeffMouter

(|CN | rN1 SN cos (Nθ + ψN)
)
,

= LeffMouter

(
|CN | rN1 SN

[
cosNθ cosψN

− sinNθ sinψN

])
.

Equating common terms for both the fundamental and spilldown measure-
ments;

PN−1 = LeffMouter |CN−1| rN−1
1 SN−1 cosψN−1.

QN−1 = −LeffMouter |CN−1| rN−1
1 SN−1 sinψN−1. (8.22)√

P 2
N−1 +Q2

N−1 = LeffMouter |CN−1| rN−1
1 SN−1. (8.23)

PN = LeffMouter |CN | rN1 SN cosψN .

QN = −LeffMouter |CN | rN1 SN sinψN .√
P 2
N +Q2

N = LeffMouter |CN | rN1 SN , (8.24)

or Leff |CN | =

√
P 2
N +Q2

N

Mouterr
N
1 SN

. (8.25)

Solving for the phase angles;

tanψN−1 =
sinψN−1

cosψN−1

= −QN−1

PN−1
=⇒ ψN−1 = − arctan

QN−1

PN−1

tanψN =
sinψN

cosψN

= −QN

PN

=⇒ ψN = − tan−1 QN

PN

8.6.2 Compensated Signal

From eq. (8.16), the expression for the compensated integrated field is

(∫
V dt

)
comp.

= LeffMouter

∑
n

|Cn| rn1 sn cos (nθ + ψn)

All the signals except from the fundamental and the first spill down field are
of interest since these signals have zero sensitivity in the compensated mode.
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(∫
V dt

)
uncomp.

= LeffMouter

∑
n�=N−1and�=N

|Cn| rn1 sn cos (nθ + ψn)

= LeffMouter

( ∑
n�=N−1and�=N

|Cn| rn1 sn
[

cosnθ cosψn

− sinnθ sinψn

])

Rewriting the Fourier expressions for the measured signal from the uncom-
pensated coil,

(∫
V dt

)
comp.

=
∑

n�=N−1and�=N

pn cosnθ + qn sinnθ.

Equating common terms,

pn = LeffMouter |Cn| rn1 sn cosψn

qn = −LeffMouter |Cn| rn1 sn sinψn√
p2n + q2n = LeffMouter |Cn| rn1 sn (8.26)

Leff |Cn| =

√
p2n + q2n

Mouterr
n
1 sn

(8.27)

Solving for the phase angles,

tanψn =
sinψn

cosψn

= −qn

pn
=⇒ ψn = − arctan

qn

pn
. (8.28)

8.6.3 Expressions for the Integrated Multipole Fields

Using the expression for the complex conjugate of the magnetic field, B∗
n = inCnz

n−1,
and recalling that Cn is generally a complex constant, expressions for the x and y

components of field can be derived.

B∗
n = Bnx − iBny = inCnz

n−1 = in |Cn| eiψn |z|n−1
einθ,

= in |Cn| eiψn |z|n−1
einθ = in |Cn| |z|n−1

ei(nθ+ψn),

= in |Cn| |z|n−1 [cos (nθ + ψn) + i sin (nθ + ψn)] ,

Bnx − iBny = n |Cn| |z|n−1 [i cos (nθ + ψn)− sin (nθ + ψn)] .

Therefore, evaluating at |z| = r1,(
Bnx

Bny

)
Leff = −Leffn |Cn| rn−1

1

(
sin (nθ + ψn)
cos (nθ + ψn)

)
.
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The amplitudes of the multipole fields evaluated at the radius of the measure-
ment coil outer radius, r1 are

|Bn|Leff = Leff

√
B2

nx +B2
ny = Leffn |Cn| rn−1

1 .

The amplitude of the fundamental field is

|BN |Leff =
√
B2

Nx +B2
Ny = LeffN |CN | rN−1

1 .

Substituting for Leff |Cn| rn−1
1 and Leff |CN | rN−1

1 from eqs. (8.27) and (8.25),
we get, finally, expressions for the amplitudes of the integrated fields at the coil radius
r1.

|Bn|Leff =
n
√
p2n + q2n

r1snMouter

. (8.29)

|BN |Leff =
N
√
P 2
N +Q2

N

r1SNMouter

. (8.30)

Again, as in the discussion of the algorithms for the coil in the compensated
configuration, the phase for the fundamental signal is given by

Ψn = − arctan
Qn

Pn

. (8.31)

The expressions for the phases of the fields given by eq. (8.28) and eq. (8.31)
are absolute angles with respect to the angle of the plane of the coil with respect to
the magnet magnetic horizontal plane at the time the shaft encoder is zeroed.

8.6.4 Excitation and Transfer Function

The inevitable mechanical fabrication errors result in uncertainty of the radius of the
center of the outer bundle of wires, r1, for the measurement coil. Thus, it is necessary
calibrate the coil to obtain measurement values with sufficient precision for use for
control of the magnet power supplies. A calibration method employed at SLAC
for the determination of the excitation and transfer functions for quadrupoles and
sextupoles was to compare the values computed from the rotating coil measurements
B′Leff and B”Leff for a quadrupole and sextupole to the results measured using a
wire traversed across the center plane of the magnets. Another method is to rotate
the coils in a dipole magnet whose fields have been carefully measured using a Hall
probe scan and compare the rotating coil integrated dipole field with the results of
the Hall probe scan.
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Quadrupole Excitation and Transfer Function

Assuming that the rotating coils have been calibrated, for a quadrupole, the magnet
excitation and transfer function is expressed in terms of the gradient.

|B2| = B′r1 (8.32)

Excitation = B′Leff =
|B2|Leff

r1
=

2
√
P 2
2 +Q2

2

r21S2Mouter

. (8.33)

Transfer Function =
B′Leff

I
=

2
√
P 2
2 +Q2

2

Ir21S2Mouter

(
units =

T

Amp

)
. (8.34)

Sextupole Excitation and Transfer Function

Assuming that the rotating coils have been calibrated, for a sextupole, the magnet
excitation and transfer function is expressed in terms of the sextupole gradient.

|B3| =
B”r21
2

(8.35)

Excitation = B”Leff =
2 |BN |Leff

r21
=

6
√
P 2
3 +Q2

3

r31S3Mouter

. (8.36)

Transfer Function =
B”Leff

I
=

6
√
P 2
3 +Q2

3

Ir31S3Mouter

(
units =

T

m Amp

)
. (8.37)

8.6.5 Relative Phases

Normally, the measurement coil is rotated counterclockwise with the motor at the
near end and the horizontal plane of the measurement coil starting from the 3 o’clock
position (the zero angle for the Cartesian coordinate system). Because of difficulties
in precisely aligning the horizontal plane of the coil, the beginning angle may be
rotated slightly with respect to the horizontal datum plane of the measured magnet.
Therefore, the fundamental field phase angle will have a small finite value. In order
to properly evaluate the phases of the error multipoles, it is necessary to recompute
the phases of the error multipoles with respect to the zero phase of the fundamental
field. For magnets with mirror symmetry about the centers of their poles, the allowed
or systematic multipole errors will be real and their phases, ψn allowed ≈ 0 or π. The
error spectra of magnets are normally dominated by the allowed multipole errors. For

carefully fabricated and assembled magnets,
∣∣∣ Bn

BN

∣∣∣
systematic

≥ 5×
∣∣∣ Bn

BN

∣∣∣
random

. The error

multipoles which are not systematic will be complex and their phase angles relative
to the zero phase of the fundamental will generally 
= 0 or π. Since mechanical
fabrication and assembly errors contribute the full spectrum of multipole indices, a
phase error will also contribute to the allowed multipole spectrum and the phases for
the allowed multipoles will differ by a small amount from ψn−allowed = 0 or π.
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In order to fully understand the measurements, it is necessary to correct the
absolute phase angles of the error multipoles by subtracting the absolute phase angle
of the fundamental field. In order to do this properly, it is necessary to understand
that the angle for the vector potential function is multiplied by the index number.
Thus, AnLeff ∝ cos (nθ + ψn). Therefore, if the phase angle for the fundamental is

subtracted from the angle, then Nθ = −ψN or θ = −ψN

N
must be added to the phase

angle of the fundamental and each multipole error. Therefore, nθ = −nψN

N
must be

added to the absolute phase of each multipole term to obtain the relative phase of
each multipole error. The expression for the relative phase of each multipole error
is given by

Ψn = ψn −
nψN

N
. (8.38)

From this expression, it can be seen that a relatively small coil alignment error
will result in a relatively large error in the relative phase.

8.6.6 Units

The units for |Bn|Leff = T − m = Webers
m2 m = V−sec

m
. Therefore, since the units

for

√
a2n+b2n
|r1| = V−sec

m
and all the other terms in the expressions are unitless. The

expressions give the integrated field amplitudes directly.

8.7 Measurements and Output

8.7.1 Measurement Plan

A measurement plan must be written for the individual magnets. Information re-
quired prior to developing a measurement plan is the maximum excitation and the
range of excitations for particular families of magnets and their individual polarities.
The maximum measurement current should be Im max ≥ 105% of the maximum oper-
ating current, Imax. Normally, the precision required for the excitation of magnets is
< 0.1% of the true value. Measurement variations for individual magnets exceeding
this tolerance can result from saturation of the magnet steel and remnant field effects,
resulting in magnet excitation on different legs of the steel B-H curve. Therefore,
the measurement plan usually calls for a conditioning cycle prior to the actual mea-
surement. The conditioning cycle requires at least three cycles from zero to ≥ 110%
of Im max and back to zero at rates where the current ramps are ≥ 30 sec. This rate
is sufficiently slow for magnets whose cores are assembled from thin (� 2 or 3 mm)
laminations to avoid effects due to eddy currents, but should be decreased for solid
core magnets or magnets assembled from laminations � 10 mm. The conditioning
and the subsequent measurements must be performed for the power supplies con-
nected with the required polarity for the individual magnets in operation. Reversing
the polarity will result in measured excitation curves on an entirely different leg of
the magnet steel B-H curve than the anticipated operating point. This conditioning



236 Magnetic Measurements

cycle fixes (in theory) the operating point on the upper leg of the magnet steel B-H
curve for all subsequent operations, resulting in reproducible excitation during the
magnet lifetime. If the magnet operation exceeds the conditioning current or is op-
erated (accidentally or intentionally) with the opposite polarity, the magnet should
be reconditioned prior to operation.

The measurement plan includes computed currents at which measurements are
taken. These currents, (I ≤ Im max), include values with the power supply increasing
and decreasing so that measurements are obtained on both legs of the Hysteresis
curve. Normally, if there are three or four operating currents for a magnet family,
at least double the number of current values should be selected to obtain a smooth
curve through these points.

8.7.2 Raw Data Output

Since it is difficult to repeat the experimental setup after a measurement is com-
pleted, information regarding the validity of the measurement is desired immediately.
Measurements are valid if the amplitude of the drift is not excessive and the range of
the measurements has not exceeded the maximum range of the voltmeter resulting
in saturating the instrument. Graphs like fig. 8 for both the uncompensated and
compensated coil measurements are desirable in real time to determine whether it is
necessary to repeat the measurements before removing a magnet from the test stand.
A graph will immediately reveal whether or not the integrator range was exceeded or
whether or not the measurement suffered from excessive DC voltage noise.

• Integrator range saturation is characterized by a flattening of the curve at the
extreme values.

— The Fourier analysis of data where the curve is flattened due to saturating
the range of the voltage integrator will produce large errors in the multipole
amplitudes and their phases.

• Excessive DC voltage noise is indicated by a large drift, where the linear portion
of the curve exceeds the sinuisoidal amplitude by a large factor.

— Since a large drift increases the range of the measurements, the sinusoidal
portion of the collected data is reduced as a percentage of the full range
and the precision of the computed Fourier coefficients will be reduced.

8.7.3 Bucking Ratio

The raw data output (described in the previous section) from the coil in the com-
pensated configuration looks remarkably similar to the uncompensated measurement.
This is because the compensation is not perfect and a large fraction of the signal from
the fundamental field remains when the coil is in the compensated configuration. In
general, a well made coil will have sufficient mechanical errors in the fabrication of
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the coil substrate and in winding so that the signal from the inner coil will differ from
the signal from the outer coil by ≈ 1%. Since the signal from the error multipoles
for a well designed and well assembled magnet are ≤ 10−4 of the fundamental signal,
the error multipole integrated voltage amplitude will still be about ≈ 1% of the fun-
damental compensated coil signal. One way to evaluate the level of compensation is
to compute a Bucking Ratio and present it as part of the reduced data output. The
expression for the bucking ratio is;

RBucking =

√
P 2
N +Q2

N√
p2N + q2N

, (8.39)

where (pN , qN) and (PN , QN) are the Fourier coefficients of the fundamental signal
from the uncompensated and compensated coils, respectively. An acceptable value
is RBucking ≥ 100. Lower values indicate that the signals from the higher order
multipoles may be dominated by electrical noise. One can improve the bucking ratio
for a coil by adding a voltage divider which can shunt some of the signal from either
the outer or inner coil before combining their signals.

8.7.4 Normalized Multipole Errors

Using eqs. (8.29) and (8.30), one can write an expression for the multipole errors
amplitudes normalized to the fundamental amplitude at radius r1,

|Bn|r1 Leff

|BN |r1 Leff

=
nSN

√
p2n + q2n

Nsn
√
P 2
N +Q2

N

. (8.40)

However, physics specifications normally require the evaluation of the spec-
trum of error multipoles at some arbitrary radius (usually the radius of the expected
10 σ beam), different from the outer radius of the measurement coil. This can be
the radius of the required good field region or the pole radius. In most cases, the
radius of the good field region is larger than the measurement coil radius and, in all
cases, the pole radius is larger than the measurement coil radius.

Fig. 9 illustrates the cross-section of a quadrupole measurement coil installed
in the 35 mm. gap of a SPEAR3 quadrupole. The coil is wound on a epoxy fiber-
glass mandrel and is mounted with its rotating axis precisely centered in a precision
machined aluminum tube. This machined tube is necessarily smaller than the mag-
net aperture since any small magnet assembly error will prevent installation of a coil
housed in a tube with the magnet aperture radius in the gap. In order to center
the coil in the aperture, a pair of accurately machined half sleeve cylinders is placed
around the machined tube in contact with the two upper poles. For an accurately
assembled magnet, this four point support is nearly kinematic and repeatable. The
coil is attached to the upper poles rather than the lower poles since the upper poles
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Figure 9 Quadrupole Measurement Coil

of the magnet are part of the upper yoke on which are mounted alignment targets.
All the alignment coordinates are associated with the upper half of the magnet. This
is important since one of the measurements made with the coil is the location of the
axis of the magnet relative to the rotating axis of the measurement coil.

8.7.5 Error Spectrum Normalized to the Required Good Field Radius

In the case of the specific measurements illustrated in fig. 9, the coil radius is <27
mm., substantially less than the required 32 mm. good field radius specified by the
Physics of the machine. Therefore, one needs to renormalize the error multipole for
evaluation at the required radius. Eq.(8.41) is used for the expression of the field
errors normalized to the fundamental at the required good field radius.

∣∣∣∣B∗
n

B∗
N

∣∣∣∣
gfr

Leff =

∣∣∣∣B∗
n

B∗
N

∣∣∣∣
r1

Leff

(
rgfr

r1

)n−N

,

=
nSN

√
p2n + q2n

Nsn
√
P 2
N +Q2

N

(
rgfr

r1

)n−N

. (8.41)

8.7.6 Magnetic Center

Eqs. (8.20) and (8.21) gives the expressions for the x and y magnetic center offset in
terms of the magnetic fields. In order to use these expressions in the data reduction,
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the expressions must be written in terms of the Fourier coefficients from the measured
data. Since the coil sensitivity for the quadrupole and dipole fields are almost zero for
the coil in the compensated configuration, the Fourier coefficients from the measured
data collected with the coil in the uncompensated configuration are used. The general
expressions for the magnetic center offsets for a coil with outer radius r1 are given
by

∆x

r1
= − B(N−1)y

(N − 1) |BN |@r1

=
Leff |BN−1| cosψN

Leff (N − 1) |BN |@r1

.

Substituting the expressions written in terms of the Fourier coefficients,

∆x

r1
=

(N − 1)
√
P 2
N−1 +Q2

N−1

r1SN−1Mouter

(N − 1)N
√
P 2
N +Q2

N

r1SNMouter

× PN−1√
P 2
N−1 +Q2

N−1

,

=
SNPN−1

SN−1N
√
P 2
N +Q2

N

.

Similarly,
∆y

r1
=

SNQN−1

SN−1N
√
P 2
N +Q2

N

.

Therefore, for the quadrupole;

∆x

r1
=

S2P1

2S1

√
P 2
2 +Q2

2

and
∆y

r1
=

S2Q1

2S1

√
P 2
2 +Q2

2

, (8.42)

and for the sextupole;

∆y

r1
=

S3P2

3S2

√
P 2
3 +Q2

3

and
∆y

r1
=

S3Q2

3S2

√
P 2
3 +Q2

3

. (8.43)

8.8 Measurement Output

The tabular example of the reduced data is a useful format for summarizing the
results of rotating coil magnetic measurements for a quadrupole. A similar table can
be devised summarizing the results of rotating coil sextupole measurements.
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8.8.1 Tabular Output

Magnet Type Serial No. Polarity

File Name Meas. Current (Amps)

Coil Radius (mm) Norm. Radius (mm)

V/f Gain Temperature (◦C)

N Pn Qn

√
P 2
n +Q2

n ψn

×10−6

V sec
×10−6

V sec
×10−6

V sec
1 · · · · · · · · · eq.(8.28)

2 · · · · · · · · · ”

n pn qn
√
p2n + q2n ψn

∣∣∣∣B∗
n

B∗
N

∣∣∣∣
gfr

Leff Ψn

2 · · · · · · · · · eq.(8.28) eq.(8.41) eq.(8.38)

3 · · · · · · · · · ” ” ”
4 · · · · · · · · · ” ” ”
5 · · · · · · · · · ” ” ”
6 · · · · · · · · · ” ” ”
7 · · · · · · · · · ” ” ”
8 · · · · · · · · · ” ” ”
9 · · · · · · · · · ” ” ”
10 · · · · · · · · · ” ” ”
11 · · · · · · · · · ” ” ”
12 · · · · · · · · · ” ” ”
13 · · · · · · · · · ” ” ”
14 · · · · · · · · · ” ” ”
· · · · · · · · · · · · ” ” ”
nmax · · · · · · · · · ” ” ”

Magnet Excitation (T ): eq. (8.32) Transfer Function

(
T

Amp

)
: eq. (8.34)

Bucking Ratio eq. (8.39)

Drift page 230

∆x (mm) eq. (8.42)

∆y (mm) eq. (8.42)

Date: Time: Operator:

8.9 Analog Output (Iso-Error Plots)

Tabulated measurement data are often difficult to digest. The relative amplitudes of
the normalized multipoles and their phases are a collection of numbers whose impact
on the performance of the accelerator lattice requires complex and time consuming
modelling. When faced with evaluation of the quality of the production quantity of
many magnets, many sheets of tabulated results are difficult to digest and compare.
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An analog means of presenting and comparing the measurement data can be useful.
The multipole data are constructed into a field error map.

The algorithms used in MatLab c© to construct an iso-error map are

∆Bn =
(
∆Bn

)
r0

(
z

r0

)n−1

∆Bnx = |∆Bn|r0
∣∣∣∣ zr0

∣∣∣∣
n−1

cos ((n− 1) θ +Ψn)

∆Bny = |∆Bn|r0
∣∣∣∣ zr0

∣∣∣∣
n−1

sin ((n− 1) θ +Ψn)

|B2| = |B2|r0
∣∣∣∣ zr0

∣∣∣∣ .

Therefore,

∆Bnx

|B2| =

∣∣∣∣∆Bn

B2

∣∣∣∣
r0

∣∣∣∣ zr0
∣∣∣∣
n−2

cos ((n− 1) θ +Ψn) ,

∆Bny

|B2| =

∣∣∣∣∆Bn

B2

∣∣∣∣
r0

∣∣∣∣ zr0
∣∣∣∣
n−2

sin ((n− 1) θ +Ψn) ,

and

∆Bx

|B2| =
nmax∑
n=3

∣∣∣∣∆Bn

B2

∣∣∣∣
r0

∣∣∣∣ zr0
∣∣∣∣
n−2

cos ((n− 1) θ +Ψn) =
∑

x

∆By

|B2| =
nmax∑
n=3

∣∣∣∣∆Bn

B2

∣∣∣∣
r0

∣∣∣∣ zr0
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n−2

sin ((n− 1) θ +Ψn) =
∑

y
,

where

∣∣∣∣ zr0
∣∣∣∣ =

√
x2 + y2

r0
and Ψn is the phase of the multipole error relative to the

fundamental field phase.
Finally, a contour map is computed using the function

∣∣∣∣∆B

B2

∣∣∣∣ =
√∑2

x
+
∑2

y
.
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Figure 10 Iso-Error Field Distribution for a Measured Quadrupole

-40 -30 -20 -10 0 10 20 30 40

-30

-20

-10

0

10

20

30

x (mm)

y

15Q001 DB/B2 (X104) at 81 Amps

0.
1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.5

0.5 0.5

0.5

0.50.5

1

1
1

1

1

1

1

2

2

2

2

2

22

5

5

5 5

5

5

55

5

10

10

10

10

10

10

10

10

Figure 11 Iso-Error Curve for the SAME Quadrupole with Unallowed Multipole Errors

Removed



Chapter Closure 243

The iso-error curves illustrated in figs. 10 and 11 are for the same measure-
ments. The second curve is reconstructed using only the systematic multipole errors,
n = 1, 10, 14 and 18. From these figures, it can be seen that, although the ampli-
tudes of the random error multipoles are substantially smaller than the amplitudes
of the systematic error multipoles, the random error multipoles dominate the field
quality. This points out the need to adhere to tight mechanical fabrication and
assembly tolerances.

8.10 Chapter Closure

It is difficult and costly to develop and maintain a complete magnetic measurement
infrastructure, especially since projects requiring many magnets occur at sporadic
intervals. A measurement system may include means of three dimensional or two
dimensional mapping of magnets using Nuclear Magnetic Resonance (NMR) tech-
niques or Hall probes. In addition to the costs of the magnetic probes, the data
acquisition electronics and computer hardware, mapping over a volume or an area
require expensive precise mechanical stages with sufficient range to traverse the re-
quired volume/area. Another element in a magnetic measurement infrastructure
may be a means of traversing a wire over a span through the magnetic field. Again,
this requires the investment in at least two precision mechanical stages to move the
ends of the wires. These two techniques represent measuring at a point (the probe)
and the field integral over a two dimensional length (the wire). Both these techniques
are tedious and time consuming when enough data is required to fully characterize
the shape and the distribution of error fields within the volume or area eventually
occupied by the charged particle beam. In addition to the measurement time, the
magnets and probes must be precisely aligned so that the field distribution can be
related to points or lines within the magnet aperture.

Another means of characterizing a magnet is to measure the field integral
within a three dimensional volume. This is a more efficient way of characterizing the
field distribution, requiring a simpler measurement system. The most challenging
components of this system requires the design and fabrication of a rotating coil. This
chapter is written to summarize the rotating coil measurements of magnets, which can
characterize the integrated transverse fields of a magnet within a cylindrical volume.
The chapter starts by laying the theoretical groundwork, relating the time-integrated
voltage to the space integrated magnetic vector potential. A coil configuration is
described which enhances measurement of the small field errors by means of rejecting
the large signal from the fundamental field. A mechanical coil support cylinder is
described which minimizes the time required to align the coil with respect to the
datum coordinate system of multipole magnets (quadrupoles and sextupoles). The
topology of a measurement system is suggested. The algorithms used to reduce the
raw electronic data to parameters useful for the evaluation of magnet performance
and quality are developed. Finally, a data summary format is suggested.
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8.11 Problems

A rotating coil magnetic measurement system can be costly and difficult to assemble.
In order to test ones understanding of the measurements and the algorithms used
to characterize the properties of the tested magnet, one needs to actually design
and assemble a rotating coil and a magnetic measurement system and operate it on
a speciman magnet. Most students will seldom get an opportunity to test ones
skill in this area. Moreover, a fictional problem spanning the theory and concepts
covered in this chapter can be difficult to pose. However, a great many magnets have
been fabricated and tested using the means summarized in this chapter. Therefore,
to approximate the real world of magnetic measurements, an actual case study is
presented so that the student can get an example of the raw data collected from a
measurement of an actual magnet and perform the calculations using the algorithms
presented in this chapter. The results of the calculations performed by the student
can then be compared with the tabulated results generated by the data reduction part
of the magnetic measurement system to determine whether the calculations performed
by the students are correct and/or to determine whether the software written by the
student to achieve the results have been correctly translated from the algorithms.

It is expected that the problem can be solved by the student when he/she has
a fairly large block of time. The calculations can be tedious. It is hoped that the
experience gained by the student performing these calculations will provide him/her
with a familiarity of the techniques and a confidence to apply them when encountering
an opportunity to perform “real” rotating coil magnetic measurements.

Problem 8.1 (Summary Solution)

The data are the actual raw output from the measurements of a SPEAR3 quadrupole.
Two output files are presented, one with the coil in the uncompensated configuration
and the second with the coil in the compensated configuration. Some of the data are
reproduced in this section but are also copied onto a spreadsheet included with this
text so the student can avoid the drudgery of copying a large number of data. The coil
configuration is not the same as that summarized by the set of coil parameters given
in eq. (8.17). Therefore, a new set of sensitivities SN and sn must be computed.

Coil Configuration The measurement coil and the magnet pole configuration are
illustrated in fig. 9. The radii and number of turns for each set of windings schemat-
ically shown in fig. 2 are

r1 = 26.97 mm, r3 = 20.260 mm,

r2 = 15.145 mm, r4 = 8.495 mm,

Mouter = 150 Turns, Minner = 300 Turns.
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Problem 8.1a Compute β1, β2, ρ and µ for the coil.

Problem 8.1b Compute S1 and S2.

Problem 8.1c Compute the spectrum of sn’s for 1 ≤ n ≤ 18.

Problem 8.1d Fig. 12 displays the digital output from the integrator for the
uncompensated measurement of the SPEAR3 quadrupole, serial Number 34Q040, a
340 mm. long quadrupole with a 35 mm radius aperture, measured at 81.1246 Amps.
In the figure, the data are displayed in six double columns, the first column of each
double set displays the shaft encoder counts with 0 ≤ counts ≤ 256 for rotation
angle 0 ≤ θ ≤ 2π. These data are stored in an Excel c© spreadsheet copied onto the
enclosed CD under file name 34Q40.xls.

After subtracting the drift, compute the first two sets of coefficients for the
Fourier series expansion for the voltage, p1, q1, p2, q2. Compute the amplitude and
the phase of the fundamental signal (n = 2). Using the coefficients and the sensitivi-
ties (computed in Problem 8.1b) and the number of turns in the outer windings of the
measurement coil, compute the integrated excitation expressed in terms of

∫
Br1dz∫

B′dz. Compute the phases of the dipole and quadrupole field with respect to the
zero angle of the shaft encoder.

Compute the magnetic center offsets ∆x and ∆y by looking at the ratio of the
spilldown fields to the fundamental at the measurement radius.

Problem 8.1e Fig. 13 displays the graphical output from the integrator for the
compensated measurement of the same SPEAR3 quadrupole, measured at 81.1033
Amps. The graphical presentation demonstrates the operation of the integrator.
When the zeroeth encoder pulse is received, the integrator output is zeroed so that
the cosine 2θ curve varies from 0 ≤ ∫

V dt ≤ −2
∣∣∫ V dt

∣∣
max

instead of
∣∣∫ V dt

∣∣
max

≤∫
V dt ≤ 2

∣∣∫ V dt
∣∣
max

. Since the maximum amplitude is substantially smaller than
the uncompensated data, the drift due to the small constant thermocouple voltage
generated by the coil joints results in a larger drift than the previous data. The data
used to generate the graphical output are stored in an Excel c© spreadsheet copied
onto the enclosed CD under file name 34Q40.xls.

After subtracting the drift, compute the sets coefficients for the Fourier series
expansion for the voltage, pn, qn for 2 ≤ n ≤ 18.

Using the sensitivities computed in Problems 8.1b and 8.1c, compute the mul-

tipole amplitudes normalized to the amplitude of the fundamental field
∣∣∣Bn

B2

∣∣∣
r1
. Sup-

pose the good field radius for this 35 mm radius aperture quadrupole is 32 mm.

Compute
∣∣∣Bn

B2

∣∣∣
r=32mm

..
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===============================
0 0 43 -24558000 86 -24493000 129 2000 172 -25889000 215 -24407500
1 6000 44 -25248000 87 -23782000 130 -47500 173 -26562000 216 -23622000
2 -28500 45 -25911500 88 -23025500 131 -134000 174 -27213500 217 -22871500
3 -101500 46 -26553000 89 -22277000 132 -260000 175 -27883500 218 -22084000
4 -215000 47 -27205500 90 -21515500 133 -426000 176 -28484000 219 -21315500
5 -365500 48 -27794000 91 -20756500 134 -639500 177 -29064500 220 -20530500
6 -567500 49 -28359000 92 -19987000 135 -882500 178 -29610500 221 -19674000
7 -794500 50 -28890000 93 -19154000 136 -1164500 179 -30123000 222 -18870500
8 -1062000 51 -29393500 94 -18356000 137 -1478000 180 -30646000 223 -18049000
9 -1364500 52 -29905000 95 -17563000 138 -1829000 181 -31097000 224 -17246500

10 -1700000 53 -30347500 96 -16777000 139 -2242000 182 -31510000 225 -16436000
11 -2105500 54 -30753500 97 -15982000 140 -2668000 183 -31889500 226 -15555000
12 -2513000 55 -31126500 98 -15124000 141 -3122500 184 -32236000 227 -14733000
13 -2956500 56 -31466000 99 -14323000 142 -3612000 185 -32569000 228 -13930500
14 -3429000 57 -31792000 100 -13533000 143 -4135000 186 -32847500 229 -13130000
15 -3938000 58 -32059500 101 -12755000 144 -4723000 187 -33075500 230 -12350000
16 -4514500 59 -32284000 102 -11986500 145 -5304500 188 -33273500 231 -11505000
17 -5079000 60 -32477000 103 -11168500 146 -5898000 189 -33433500 232 -10732000
18 -5663500 61 -32630500 104 -10409500 147 -6529500 190 -33557000 233 -9989500
19 -6277000 62 -32755000 105 -9692000 148 -7187000 191 -33638500 234 -9246000
20 -6922000 63 -32832500 106 -8962000 149 -7917500 192 -33673000 235 -8528500
21 -7638500 64 -32866000 107 -8263500 150 -8623500 193 -33674000 236 -7777500
22 -8326500 65 -32866000 108 -7530000 151 -9321500 194 -33633500 237 -7088500
23 -9018000 66 -32826500 109 -6866000 152 -10074500 195 -33545000 238 -6447000
24 -9745500 67 -32739500 110 -6243500 153 -10828000 196 -33423500 239 -5803000
25 -10487000 68 -32619000 111 -5612500 154 -11648500 197 -33265500 240 -5197000
26 -11287000 69 -32463500 112 -5027500 155 -12429500 198 -33063500 241 -4588000
27 -12055500 70 -32267500 113 -4432500 156 -13195000 199 -32829000 242 -4028000
28 -12812500 71 -32035000 114 -3897000 157 -14012500 200 -32533500 243 -3523500
29 -13602500 72 -31747500 115 -3405000 158 -14823000 201 -32219500 244 -3024000
30 -14403500 73 -31435000 116 -2920500 159 -15682000 202 -31880000 245 -2565000
31 -15234000 74 -31098000 117 -2479000 160 -16505000 203 -31485500 246 -2121000
32 -16053500 75 -30712000 118 -2059500 161 -17293000 204 -31071000 247 -1715500
33 -16829000 76 -30305500 119 -1676500 162 -18135500 205 -30590500 248 -1367000
34 -17645000 77 -29842000 120 -1349500 163 -18943500 206 -30094000 249 -1039000
35 -18440000 78 -29352000 121 -1037500 164 -19775000 207 -29580500 250 -758500
36 -19258500 79 -28849500 122 -776000 165 -20595500 208 -29012500 251 -521000
37 -20060000 80 -28298500 123 -546000 166 -21363000 209 -28446000 252 -329500
38 -20821500 81 -27736500 124 -350500 167 -22169500 210 -27821000 253 -168500
39 -21601000 82 -27130500 125 -206500 168 -22934500 211 -27172000 254 -35000
40 -22352000 83 -26487000 126 -90000 169 -23698000 212 -26523000 255 56000
41 -23106000 84 -25849500 127 -21000 170 -24477000 213 -25827500 256 100500
42 -23859000 85 -25170500 128 10500 171 -25178500 214 -25133000

Figure 12 Uncompensated Raw Data
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Figure 13 Graphical Compensated Raw Data

Problem 8.1f Compute the phases of each of the multipole error fields with respect
to the zero angle of the shaft encoder. Compute the relative phases of each of the
multipole field errors with respect to the zero phase angle of the fundamental field,
N = 2. Compute the bucking ratio, eq. (8.39).
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Chapter 9

MAGNET YOKE DESIGN AND FABRICATION

9.1 Introduction

The chapter on Perturbations discussed the introduction of errors in the magnet
performance due to fabrication, assembly and pole excitation errors. Errors which
appear to be due to pole excitation errors can be introduced by the iron saturation as
well as mechanical fabrication errors. As shown in the chapter on perturbations, iron
saturation can change the location of the magnetic center for assymetric multipole
magnets, alter the fundamental field reproducibility of individual magnets in the same
family and add to the multipole error spectrum of magnets.

The fields of the magnet fabricated with a yoke and pole contour resulting from
the two dimensional design are three dimensional. Means for visualizing the three
dimensional fringe field shapes contributing to integrated field errors and empirical
techniques for correcting them are discussed.

This chapter is devoted to discussing and listing guidelines for the design
of iron yokes for high quality magnets. It assumes that a pole contour satisfying
two dimensional uniformity requirements has been selected. Fabrication and core
assembly practices developed at different US National Laboratories are described
which resulted in the manufacture of high quality magnets for the accelerators at
those laboratories. These design practices include consideration of the iron saturation
characteristics. The field errors due to the saturation of magnet iron depends not
only on the magnetic properties of the iron, but how the material is distributed in
individual magnets and among magnets of the same family.

The selection of magnet core designs using solid iron blocks or laminations
are discussed. Because of magnet performance issues associated with solid core
magnets and comparitive costs, many modern accelerators have designed, assembled
and installed magnets with yokes fabricated using stamped steel laminations. Issues
associated with this type of fabrication are discussed.

9.2 Saturation

Although all the discussion so far has referred to construction of the magnet yoke
from iron, most magnets use steel (iron with controlled Carbon impurities). The
magnetic performance of steel is highly variable and affected by both the chemical
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impurities in the iron and by its mechanical and thermal processing. The magnetic
performance of steel is dominated by its Carbon content and, to a lesser degree, other
chemical impurities. Because of this, most magnet steel is designated by its equivalent
Carbon content. (The effect of other chemical impurities are incorporated into the
steel designation as an equivalent Carbon content.) The magnetic performance is also
affected by mechanical processing. Thus, rolled steel may have different directional
magnetic properties. Isotropic properties can be restored by annealing the rolled
steel at some temperature high enough to regrow the crystalline grain structure.
Despite these mechanical effects, most rolled magnet steel is rolled at a high enough
temperature so that it has isotropic magnetic properties and may or may not be
annealed after rolling.

Selection of steel is important in some applications where extremely high fields
are required or size constraints force less than ideal designs. Steel selection is also
important for specialized applications where fringe fields are important. However,
for the purposes of this text, it is assumed that special constraints do not apply
and good design practices can be used to select pole and yoke shapes. Therefore,
the discussion will refer to the design parameters limited by the properties of one
of the most commonly used and easily available grades of magnet steel, 1010 steel.
The designation describes the maximum equivalent maximum Carbon impurity as
≤ 0.10% Carbon. A portion of the table of values for the BH relationship taken
from the Poisson program for 1010 steel is reproduced here.

H(
A

m
) B (Tesla) H(

A

m
) B (Tesla) H(

A

m
) B (Tesla)

0.0000 0.0000 0.09533 1.2373 0.86938 1.6726
0.01257 0.1890 0.11461 1.3021 1.04522 1.7019
0.01510 0.2704 0.13779 1.3586 1.25664 1.7336
0.01816 0.3649 0.16566 1.4074 1.51080 1.7679
0.02184 0.4680 0.19916 1.4494 1.81639 1.8046
0.02625 0.5757 0.23945 1.4856 2.18378 1.8432
0.03157 0.6846 0.28788 1.5171 2.62549 1.8831
0.03795 0.7918 0.34610 1.5451 3.15654 1.9236
0.04563 0.8949 0.41611 1.5709 3.79497 1.9636
0.05485 0.9922 0.50028 1.5955 4.56258 2.0022
0.06595 1.0821 0.60146 1.6201 5.48541 2.0384
0.07929 1.1640 0.72312 1.6456
The BH curve using the tabulated data is shown in fig. 1. The BH rela-

tionship becomes highly nonlinear at B ≤ 1.5 Tesla and the material exhibits fully
saturated behavior at B ≥ 2.0 Tesla. (Fully saturated behavior is when the material
permeability µ = ∆B

µ0∆H
→ 1.)
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Figure 1 1010 Steel BH Curve

9.3 Two Dimensional Design

The discussion and example in this section is devoted to design practices for dipole
magnets to minimize the effects of iron saturation. The principles are easily extended
to quadrupole, sextupole and other magnet types. Fig. 2 illustrates an example of
bad two dimensional dipole design practice contrasted with good practice.

The bad features in the left hand illustration improved in the right hand
illustration are:

1. The pole edge is vertical resulting in equal width at the top and at the bottom
of the pole. Transverse magnetic flux enters the pole through the coil resulting
in higher flux at the top of the pole. At high fields, the top of the pole can
saturate. The right hand figure illustrates a tapered pole which is wider at the
top resulting in more uniform magnetic flux density over the pole area.

2. The coil is narrow and is installed in a narrow slot. The magnetic flux through
the low reluctance path through the narrow coil results in high transverse field,
adding to the saturation at the top of the pole. The right hand figure illustrates
a wider coil with approximately the same area and a higher reluctance path and
a lower transverse field due to both the wider coil slot and the tapered pole edge.

3. The corner of the pole has a sharp corner. Using the orthogonal analog prin-
ciple, it can be seen that the flux lines will pile up in this region resulting in a
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Figure 2 Alternate Dipole Two-Dimensional Designs

high iron magnetic field. The steel in this area is likely to saturate, resulting in
a nonuniform field distribution along the horizontal centerline which will change
with excitation. The right hand figure illustrates a radius at the pole corner,
reducing this magnetic flux stress concentration.

The results of the listed improvements in the two dimensional design are mag-
nets whose field remains uniform and whose excitation remains linear over a wider
range of excitation. Also, for magnets in a power supply string, the magnet excita-
tion reproducibility is less sensitive to variations in the BH curve of the steel used in
the yokes. The improvements in the performance are not without costs. The more
generous size of the improved designs results in heavier magnets requiring more steel
sheet material for laminated magnets and larger steel blocks for solid core magnets.

9.4 Three Dimensional Design

Magnet uniformity specifications typically require the integrated field to be uniform,
have a uniform integrated gradient or to have a uniformly parabolic field integral
for the dipole, quadrupole or sextupole, respectively. Although the two dimensional
field may have the desired properties, the distribution of the three dimensional fringe
fields at the ends of the magnet is not uniform. A general rule of thumb is that the
length of the fringe field beyond the edge of the steel pole tip is = h, = h

2
, or = h

3
,

for the dipole, quadrupole or sextupole, respectively, where h is the dipole half gap,
the quadrupole and the sextupole pole radius.

9.4.1 Dipole Fringe Field

In order to achieve a uniform field integral, it is necessary that the magnet effective
length does not change with transverse position. The effective length is given by,

Leff =
∫
Bdz

Bcenter
. The effective length of a magnet is measured by either making a Hall
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Figure 3 Dipole Fringe Field

probe map of the distribution of the vertical field on a grid on the dipole horizontal
plane or measurements of the field integral using a stretched wire. Because of the
finite width of the dipole pole, the distribution of the effective length of the magnet
is maximum at the center and reduces in a nonlinear fashion transversely near the
edge of the pole.

The distribution for a symmetric dipole can be fitted to a polynomial and
has the form Leff =

∑
k

Akx
2k. The allowed dipole multipole errors are nallowed =

N (2m+ 1), odd integers, where m = all the integers starting from zero. Since
the fields have indices nallowed − 1, the allowed multipoles are even functions of the
space variable. Therefore, the distribution of Leff satisfies the rotational symmetry
conditions for the dipole. The first term is quadratic (the sextupole term) and is
usually the most serious error. The process of compensating for the shape of the
fringe field is illustrated in fig. 3 and described in the following list of steps.

1. The field integral,
∫
Bdz, is measured as a function of the transverse position,

x.

2. The effective length, Leff =
∫
Bdz

Bcenter
, is computed as a function of the transverse

position, x.

3. The minimum effective length Leff (xgfr +∆x) =
∫ xgfr
0

Bdz

Bcenter
, is established where

xgrf , is the width of the required good field region and ∆x is some arbitrary
margin beyond the good field boundary.
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Figure 4 Chamfer on Prototype Gradient Magnet Removeable Pole Ends

4. The distribution of the excess fringe field, 2∆z = Leff (x) − Leff (xgfr) =
∫ x

0
Bdz

Bcenter
−

∫ xgfr
0

Bdz

Bcenter
, is computed as a function of x.

5. The four ends of the two pole are machined to a depth ∆z (x).

(a) The angle of the cut is unimportant. However, a 45◦ angle cut is conve-
nient and distributes the same angle at two points and minimizes satura-
tion effects due to the sharp corners.

The chamfer on the SPEAR3 gradient magnet prototype is shown in fig. 4.
Since the gradient magnet superimposes both a constant dipole field with a linearly
distributed quadrupole field, the chamfer was empirically developed to maintain a
constant integrated gradient. In this figure, solid steel pieces, machined with the
two dimensional pole contour, were bolted onto the pole ends. These pieces were
removed, machined with the required distribution of the chamfer depth determined
by the described iterative process and replaced. After replacement, the distribution
of the field integral was measured. The final chamfer shape was achieved after two
iterations. This shape was subsequently machined onto glued end packs which were
then assembled with additional laminations to complete the core assembly for the
production magnets .

9.4.2 Quadrupole Fringe Field

The length of the quadrupole fringe field varies with the “gap”. The quadrupole
gap is approximated by the length along the vector equipotential lines which describe
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Figure 5 Quadrupole Fringe Fields

the directions of the flux lines. Fig. 5 illustrates the distribution of the effective
quadrupole gaps and suggests a means of adjusting the pole lengths to compensate
for the variation of the fringe field. In this figure, the quadrupole gaps decrease as
the distance from the center of the pole. g1 > g2 > g3 > g4 > g5 > g6 > g7 > g8,
which suggests that the center of the pole should be shortened more than the edge of
the pole. The illustration shows a section taken through the radial centerline of the
quadrupole pole and a straight angled machined cut at the end of the pole tip. This
simple cut removes the most material from the center of the pole. The depth of the
cut decreases as one nears the edge of the pole. Thus, ∆z1 > ∆z2 > ∆z3 > ∆z4 >
∆z5 > ∆z6 > ∆z7 > ∆z8, achieving the desired effect. The flat shown as part of the
machined cut is a convenience since measurements of the angle cut at the end of the
pole tip is difficult. This allows the machinist to measure the pole lengths to ensure
that each of the four pole lengths are equal.

The chamfer cut is rotationally symmetric for pole angles at multiples of π
2

and the integrated field satisfies the allowed multipole principal described in an earlier
chapter. The quadrupole allowed multipole indices are n = 2, 6, 10, 14, · · · (see page
50). The first multipole error term is n = 6. The empirical method of determining
the chamfer cut is usually performed on the magnet prototype. This cut is repeated
for the production quantity of the magnet.

The steps used for the determination of the shape of the cut used for the
Advanced Light Source Quadrupoles at LBNL were:

1. Measure the multipole spectrum at the operating gradient for the magnet and
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note magnitude of F1 =
∣∣∣B6

B2

∣∣∣
z=0

.

2. Select the radial distance for the back of the cut and make the cut with depth
z1.

3. Measure the multipole spectrum and note the magnitude of F2 =
∣∣∣B6

B2

∣∣∣
z=z

1

.

4. Compute the derivative ∂F
∂z

= F1−F2

z1
.

5. Calculate a new depth z such that ∆F = F2 =
∂F
∂z
∆z.

(a) ∆z = F2

∂F
∂z

= F2z1
F1−F2

=⇒ z2 = z1 +
F2z1
F1−F2

.

6. Repeat steps 3 to 5 until
∣∣∣B6

B2

∣∣∣
r=r0

−→ ≤ Specified V alue.

At the end of this excercise, the multipole amplitude of the allowed multipole

with the next highest index
∣∣∣B10

B2

∣∣∣
r=r0

may be large. This is usually not a serious

problem since
∣∣∣B10

B2

∣∣∣ ∝ (
r
r0

)8

and becomes very small at small radii.

Machining the End Chamfer

Magnet yoke structures are often assembled from thin steel laminations. The lam-
inations at the two ends of the magnet are often assembled into end packs, glued
from enough laminations for a thick enough structure to compress and support the
balance of the laminations In some cases, the entire yoke is glued. In other cases,
the yokes are either welded or mechanically assembled with the glued end packs used
as mechanical end plates holding the balance of the laminations sandwiched between
them. In either case, the process for shaping the pole end chamfer should be care-
fully specified to avoid delaminating the glued end packs by the mechanical or thermal
stress resulting from machining. Yoke end pack fabrication specifications should call
for slow tool advance rate and multiple shallow cuts to avoid heat buildup. The
machined surface should be cooled with an air stream. (Liquid coolants are often
incompatible with glues.) In addition, a push cut should be specified. The push cut
rotates the cutter toward the surface, rather than away from the surface, as the tool
advances. This cut is illustrated in fig. 6. This type of cut avoids tearing the glued
lamination away from the surface. (The opposite rotation direction is preferred by
machinists since it enhances metal chip removal.)

The chamfer shown on fig. 7 illustrates the straight cut used on the SPEAR3
quadrupole. The small cut at the end further refined the chamfer to reduce the
amplitude of the n = 6 multipole which grew at the maximum excitation due to local
saturation of the iron.
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Figure 6 Push Cut

Figure 7 SPEAR3 Quadrupole End Chamfer
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9.5 Solid Iron or Steel Laminations

Decisions to fabricate magnet yokes made from large, solid pieces of iron or steel
or steel laminations hinge on a variety of requirements. Historically, the primary
consideration for the choice was whether the magnet operated in a persistent mode
or was cycled. Solid iron yokes support eddy currents and magnets using solid
iron yokes cannot be cycled or pulsed rapidly. Except for booster synchrotrons,
which accelerate low energy beam from an injector system to the required energy
for injection into synchrotron light and storage ring accelerators, most synchrotron
magnet applications do not require magnets to cycle rapidly. Based only on this
consideration, magnet yokes fabricated from large solid pieces of iron or steel are
acceptable. However, other issues need to be considered when making this choice.

9.5.1 Reprocucibility and Symmetry

Synchrotron dipole magnets and families of quadrupoles and sextupoles are often
connected in series with a single power supply. In this configuration, it is important
that the magnetic fields for all the magnets in a family reproduce the same fields
and/or gradients at the same excitation current. For magnets with individual power
supplies, reproducibility among the magnets allows the use of the same algorithm for
controlling the magnet field without the necessity of individually measuring all the
magnets. For magnets whose yokes are assembled from several segments, symmetry
requires that the material as well as the mechanical shapes of the individual pieces
be identical.

The reproducibility and symmetry conditions require that the individual pieces
making up the magnet yokes have identical iron properties. That it, the BH satura-
tion characteristics of the iron or steel used to fabricate the individual yoke segments
must be nearly identical.

Iron Properties

The magnetic properties of iron/steel depend on the chemistry and the mechanical
and thermal history of the material. Typically, iron/steel pieces are fabricated from
large cast billets from material melted in a furnace. The capacity of the furnace
can range to several hundred tons. Material in the furnace stratifies, so that the
properties of the steel from a single melt varies and can be expected to be uniform
in the first, second and third pours from a single melt. This is typically referred to
as the head, center and tail of the melt. Each portion may yield up to 100 tons of
material with uniform chemistry and thermal history. Therefore, it is not difficult
to secure sufficient material with identical properties to fabricate all the yoke pieces
for the required number of magnets in a single family.

9.5.2 Solid Iron Cores

One can ensure that the individual yokes making up all of the yokes for a magnet
family have reproducible magnetic properties if the corresponding pieces making up
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the individual yokes are taken from pieces from the same portion of the same melt
of a batch of iron or steel. This requires careful documentation of the fabrica-
tion/purchase specifications.

Eddy Currents

Because of the electrical conductivity of steel, eddy currents can be generated in solid
magnet cores. Depending on the rate of change of field, these eddy currents can
approach the current density of the coils used to excite the magnet fields. For solid
transformer circuits with no gap, the eddy currents can be very persistent. A solid
15 cm. thick piece of steel will support an eddy current whose exponential decay time
constant is 60 seconds if used as a transformer core. (The time constant for magnets
with a few cm. gap fabricated with similar thicknesses of solid steel is measured in the
range of a few seconds.) The eddy currents can generate local magnetic fields in the
magnet yoke larger than the design fields. Therefore, rapid changes in the magnet
field can generate hysteresis effects which locally change the BH characteristics of
the iron or steel in isolated areas of the magnet yoke or pole tip. These effects can be
very damaging to the operation of an accelerator since the BH iron characteristics
affect magnet performance and field quality.

Hysteresis effects on the magnet circuit can change the excitation character-
istics of individual magnets. Thus, if one develops a successful accelerator tune for
an accelerator based on the current settings for individual magnets, changes in the
BH characteristics of the magnet steel due to hysteresis can change the magnet exci-
tations at tune currents and can delay the successful reproduction of the accelerator
performance. In the same manner, changes in the BH characteristics of the magnet
steel due to hysteresis at the edges of the magnet pole can change the field quality.

Normally, an accelerator whose magnets are fabricated from solid yoke pieces
require programming the power supplies for slow, reproducible conditioning cycles and
current settings. A typical conditioning cycles require the power supplies to ramp
the current slowly to ≥ 110% of the maximum operating current at least three times
before slowly ramping the magnet current to the operating setting to ensure that all
the magnets in the same family operate on the same hysteresis curves. Reconditioning
of magnets is required after power supply crashes when eddy currents are generated
by rapid decay of magnet currents.

9.5.3 Laminated Steel Cores

Since the time constant for pieces of solid steel varies at the square of the thick-
ness, eddy currents for the typical lamination thickness (≤ 1.5 mm.) can only be
generated for extremely fast power supply cycling rates or ramp times. Therefore,
hysteresis effects are not important for magnets assembled using laminated cores.
Reproducibility requirements among all the cores can be ensured for laminated cores
by distributing all the steel from different sources (with different BH characteristics)
among all the core segments for a magnet family.
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Shuffling vs. Sorting

The procedure for distributing the steel properties among all the core segments has
often been described as shuffling. Shuffling describes the process of random distri-
bution. A better term used for distributing the steel properties among all the core
segments is sorting. Sorting is the process of systematic distribution. The process
for sorting the steel properties among all the magnet cores is listed as follows:

1. All the laminations stamped from a single batch of steel sheets sharing the same
chemistry and thermal history is stacked separately.

2. Pallets are arranged for each core segment of a magnet family.

(a) If a family of magnets consists of 30 quadrupoles assembled from 2 core
segments, 60 pallets are required.

3. As the lamination stamping from a single batch of steel sheets is completed,
the laminations are distributed as evenly as possible among all 60 pallets.

(a) A few extra laminations are stacked on each pallet to ensure that sufficient
laminations are available for each segment.

4. Core stacking and assembly can begin only after all the stacks are filled.

This procedure ensures that all the core segments of all the magnets in a
family have reproducible magnet BH properties and simplifies the requirements for
procuring the steel yoke material

9.5.4 Economics

A second consideration in selection of solid or laminated core structures is economics.
The cost of machining solid iron yoke pieces for individual magnets must be compared
with the cost of tooling for stamping laminations and stacking, compressing and
assembling the cores.

Laminated Yokes

The cost of the die set for stamping laminations is one of the highest magnet man-
ufacturing costs. Depending on the complexity of the cross section and size of the
lamination, the US costs can be� K$60. US stamping costs are currently≈ $1

lamination
.

Thus, for a 0.5 meter long quadrupole constructed with a two piece yoke employing
0.5 mm. thick laminations, the cost of the stampings (exclusive of material costs)
is ≈ $2000.00. The cost of additional hardware required for assembling the cores
must be added to the material costs. The labor costs for stacking, compressing and
assembling the cores might be 3-4 man-days per core segment and the cost of stacking
and compressing fixtures may add 5K$ to the tooling costs.
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Solid Core Yokes

Core machining costs are more difficult to isolate and evaluate. A simple flat pole
(unoptimized) dipole core can employ simple machine tools. Quadrupole and sex-
tupole cores demand the use of more complicated computer controlled machine tools
such as 3 and 5 axis mills. The labor rates for the use of complex machine tools is
more expensive and requires the addition of programming time. Typically, nearly
half the material must be removed from a solid block of iron or steel in order to
achieve the desired shape of a magnet core. The machining cost must also reflect
the higher rates on more complicated and expensive machine tools.

Cost Comparisons

Typical undocumented studies have shown that the cost of fabricating a few (≤ 4)
laminated magnet yokes is dominated by the tooling costs and exceeds the cost of
machining the same number of yokes from solid blocks. However, these same studies
have shown that the cost of machining exceeds the cost of fabricating laminated cores
for the typical accelerator application where the tooling costs can be shared by the
larger number of core segments.

9.5.5 Laminated Yoke Fabrication

In this section, it is assumed that a laminated yoke designe is selected. Manufacturing
and fabrication of laminated cores are discussed. The issues associated with selection
of lamination material thickness and stamping tooling is discussed.

Although there are as many ways to assemble a laminated yoke as there are
designers and engineers specifying magnet fabrication, only those used by the author
are described. These methods are welding, gluing and mechanical assembly.

Lamination Thickness and Die Set Design

Two dimensional computer controlled machine tools can presently shape hardened
steel bars used for punch and die tooling to within ≤ ±10 µm of the required contour.
The clearance between the punch and die (the male and female parts of a die set) is
selected by the diemaker and is proportional to the thickness of the material being
shaped. For 0.5 mm. thick steel sheets, the clearance is sufficiently small so that the
finished contour of the punched lamination closely reproduces the tolerance achieved
in machining the tooling (≤ ±10 µm). As the thickness of the material increases, the
clearance and thus the tolerance increases. The practical upper limit for the thick-
ness of punched steel lamination appears to be about 1.5 mm. For this thickness,
the clearance between the punch and die are sufficiently wide so that the edges of
the cut are rougher and punching burrs occur. The precision of the cut edge for the
thicker material is about ≤ ±25 µm, still accurate enough for good magnet perfor-
mance. However, the burrs which occur for this thickness material make stacking and
compression of the collection of laminations more difficult and result in less precise
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assemblies. Again, the lack of precision is not sufficient to compromise the magnetic
performance of the individual yoke pieces. However, when the yoke requires the
precise assembly of two or more yoke pieces using keys or other mechanical devices
to locate the pieces accurately with respect to each other, small mechanical errors
in the mating surfaces resulting from stacking the laminations with small burrs may
contribute to larger mechanical assembly errors which can compromise the magnet
performance.

Magnets comprise a large part of an accelerator perimeter. Thus, it is not
unusual to require up to 50 meters of laminations to assemble the several yoke pieces
to assemble 25 meters of magnets of one type. Thus, a die set may be required
to stamp up to 100, 000 1

2
mm. laminations. The tooling for a die set wears by

either rounding or chipping the outside corner of the punch or the inner corner of
the die. Also, laminations with sharp inside or outside corners require that these
corners be machined in the tooling. The tooling in these corners wear quickly.
The frequency of sharpening can be reduced by proper lamination design. Proper
lamination design includes providing radii at sharp corners of the lamination. The
punch and die are sharpened by maching off a small portion of their surfaces, restoring
the sharp corners on the outside edge of the punch and the inside edge of the die.
The hardened steel bars from which the tooling is machined must be sufficiently thick
so that this sharpening can be performed a sufficient number of times to punch the
full quantity of required laminations accurately. This is a process well understood
by diemakers. However, some steel lamination material is coated with an inorganic
coating for electrical insulation. This coating is abrasive and can accelerate tool
wear. It is usually good practice to provide the toolmaker with a sample of the
sheet material so that he can estimate the frequency of the sharpening procedure and
provide the appropriate tooling thickness.

Figs. 8, 9 and 10 illustrate laminations for a gradient magnet, quadrupole and
sextupole, respectively, using a die set manufactured in China.

9.6 Yoke Assembly/Fabrication Techniques

In a previous section of this chapter, comparisons were made among yokes fabricated
from solid and laminated material. Although the author has been involved in the
design of a limited number of magnets constructed with solid yokes, the vast majority
of synchrotron magnet fabrications have involved assembling the yokes from lamina-
tions. This section is devoted to discussing techniques of laminated yoke construction
which satisfy mechanical requirements leading to good magnet performance.

Physics requirements demand that magnets of the same family be repro-
ducible, have predictable centers and have an error multipole spectrum with suffi-
ciently low amplitude error harmonics. After the two dimensional pole contour has
ben developed, these requirements can be met with yokes whose mechanical shapes
and sizes are precise. The mechanical fabrication and assembly tolerances needed to
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Figure 8 Gradient Magnet Lamination

Figure 9 Quadrupole Laminations
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Figure 10 Sextupole Laminations

achieve the required magnetic performance was discussed in the chapter on Pertur-
bations. This discussion assumes that the magnet laminations have been stamped
and sorted to assure the material reproducibility of the assembled yokes and that
the stack and various parts have been fabricated for final yoke assembly. The three
techniques discussed in this section are welding, gluing and mechanical assembly.

9.6.1 Gluing

For all three techniques of yoke assembly, welding, gluing and mechanical assembly,
some lamination gluing is required. All three assembled yokes require two end plates,
stacks of glued laminations with thickness designed for sufficient stiffness to support
and hold the balance of the laminations compressed between them. The end plates
are glued from the stacks of laminations previously sorted for each yoke.

Quadrupole Lamination

A typical yoke lamination for a quadrupole is illustrated in fig. 11.
Some of the features in the lamination cross section are listed as follows:

1. Rectangular key slots are provided at the bottom of the two vertical legs.
These slots receive rectangular keys for transverse alignment of the the two
yoke halves.

2. The angled shoulder at the two edges of the lamination provide surfaces for the
installation of mechanical clamps to attach the upper half of the magnet to the
lower half.
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Figure 11 Quadrupole Yoke Lamination

3. A rectangular slot centered on the vertical centerline is used to install an align-
ment ball for the top yoke and to transversely align the magnet using a rectan-
gular key on the bottom yoke.

(a) This is a feature of a generic fiducialization scheme. The generic scheme
will be contrasted with a pedigreed fiducialization scheme in a later chap-
ter. (See page 319.)

4. A V-groove witness mark is provided on one side of the vertical centerline to
break the symmetry of an otherwise symmetric design.

(a) The witness mark is provided to demonstrate that the laminations are
periodically flipped about their vertical centerlines during the stacking
procedure. (The witness mark creates short v-grooves on each side of the
assembled yoke.) The flipping enhances the symmetry since any errors in
the stamping die set or assymetries in the iron properties can be equally
distributed to the two poles.

5. T-slots are provided for the installation of bars with threaded holes.

(a) Lifting fixtures can be attached using these threaded holes.

(b) Plates for attaching bussing hardware and water cooling manifolds and
electrical termination strips can be attached using these holes.

6. Holes are stamped into the laminations at the centers of the two poles and in
the yoke area.
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(a) These holes are provided to install and secure bolts which maintain com-
pression on the yoke structure and prevent delamination along weak glue
joints. Because of the weight of the iron yokes (typically � 500 kg),
a glued structure without mechanical support can separate during lifting
and handling.

(b) Holes are located in the yoke section of the lamination since this area is
the heaviest and requires the most support.

(c) Two holes are located at radially centered locations near the ends of the
two poles. Since the pole tip fields for a well designed quadrupole are
≤ 0.6 Tesla, the hole is made sufficiently small so that the steel does
not saturate in this area. Bolts are required in these locations since the
balance of the tensioning bolts are located far from the pole ends. The
bolts support and prevent delamination at the ends of the long poles.

7. The components of the fasterner system which secures the yoke structure through
the bolts holes is illustrated in fig. 12.

(a) The illustrated fastener system is electrically shorted to one end of the core
and electrically insulated from the other end of the core. This configura-
tion opens the electrical circuit due to several tensioning bolts enclosing
the magnetic flux and prevents the generation of eddy currents during
changes in currents. Transient currents occur when magnets are excited
to their required currents or when their excitations are changed.

i. A metal washer and an insulating washer is attached below the bolt
head.

ii. A metal washer is attached below the nut.

Glued Core Stacking Fixture

Fig. 13 illustrates a core stacking fixture similar to the fixture designed and fabricated
at LBNL for the ALS quadrupoles and at IHEP for the SPEAR3 quadrupoles.

The fixture is used to assemble the parts, compress the laminations and to cure
the epoxy. The curing cycle for the yoke assembly involves installing the assembled
and compressed yoke into an oven. Therefore, all the fixture material must be
compatible with the curing temperature of the selected epoxy. This tooling is built
robustly and consists of several parts.

1. Baseplate

(a) The baseplate is fabricated from material that resists abrasion and must
be longer than the longest magnet of a given family. Extra length is
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Figure 12 Yoke Fastener System

Figure 13 Glued Quadrupole Yoke Stacking Fixture



268 Magnet Yoke Design and Fabrication

provided so that laminations can be inserted before the structure is com-
pressed. The baseplate upper surface is ground flat and a groove is ac-
curately machined along its longitudinal centerline to receive the center
bar.

2. The Center Bar

(a) The center bar is fabricated from material that resists abrasion. Its width
is designed approximately 25 µm ≤ the horizontal gap between the poles.
Holes are provided so that it can be secured to the baseplate with fasteners.

3. Backplate

(a) The backplate is fabricated from an L-shaped piece of steel and machined
so that its vertical and bottom surfaces are precisely normal to each other.
Holes are provided for the tensioning bolts. Additional holes are provided
so the fasteners permanently attached to the yoke can be installed and
tightened after final compression of the assembled yoke assembly. A cavity
is machined into the backplate front face so that the center bar can be
recessed behind its front surface. The backplate is permanently bolted
and keyed to the baseplate, perpendicular to the axis of the center bar,
with fasteners and dowels.

4. Pushplate

5. The pushplate is machined so that its vertical and bottom surfaces are pre-
cisely normal to each other. Additional holes are provided so the fasteners
permanently attached to the yoke can be installed and tightened after final
compression of the assembled yoke prior to installing into the curing oven. A
slot is machined through the pushplate so that the push place can slide around
the center bar.

6. Tensioning Fasteners

(a) The tensioning fasteners consist of bolts, nuts and washers. The tensioning
bolt lengths must be compatible with the length of the baseplate. Since
it will be used repeatedly during the course of assembly of numerous yoke
assemblies, the threads should be machined for smooth operation.

Glued Yoke Stacking and Compression Procedure

Yoke gluing is employed for magnet yokes ≤ 0.6 meters long requiring precise me-
chanical accuracy (tolerance ≤ 50 µm). The stacking and compression procedures
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for glued, welded and mechanically assembled yokes are similar. The major differ-
ence is that the laminations between the endpacks for the welded and mechanically
assembled yokes are not coated with epoxy. The epoxy used to coat the laminations
must have a long pot life at room temperature to avoid premature curing. The
following procedures assume that the glued endpacks have been assembled and their
chamfers have been machined.

1. Assemble the fixture and install the back glued end pack.

2. Coat the laminations and install a fraction of the laminations between the end
packs. The installed laminations are flipped about their vertical centerlines in
2-5 cm. increments to enhance symmetry. The positions of the witness marks
on the top of the assembled yokes indicate the frequency of flipping. Several
2-5 cm. stacks can be installed before the first compression cycle.

(a) This procedure is repeated until the final length is achieved under com-
pression. The force required for the final compression cycle is described
in fig. 14 and is characterized by three stages. These stages are com-
mon for all the methods of yoke assembly, gluing, welding and mechanical
assembly.

i. Stage 1 - A small force results in a large displacement due to the
removal of the spaces between the adjacent laminations.

ii. Stage 2 - A larger force is required for a smaller displacement due to
the flattening of the laminations and squeezing out of the excess epoxy
between the laminations.

iii. Stage 3 - A very large force is required for a very small displace-
ment. Only a thin film of epoxy remains and the displacement
is a combination of straining the metal and removal of any small
space between the laminations. At this stage, the effective elastic

modulus
(
E = Force/Area

∆Length/Length

)
of the stack of laminations, EStage3 ≈

500, 000 psi = 34, 000 atm = 3, 400 MPa.

iv. The operating line is the maximum pressure on the lamination stack.
Usually for Pressure = Force

Area
� 30 psi = 2 atm = 0.202 MPa, the

stack starts to squirm and it becomes increasingly difficult to keep the
laminations in contact with the baseplate. Often, it becomes neces-
sary to add bars across the top of the stacking/compression fixture to
hold the laminations down against the baseplate.

(b) The ratio of the final stacking pressure to the modulus is the elastic strain.
ε = ∆L

L
= Pressure

EStage3
= 2 atm

34,000 atm
≈ 5 × 10−4. Therefore, it is expected

that the springback, the recovery of the length after the fixture pressure is
released, should be ≈ 5× 10−4, sufficiently small to avoid magnet errors.
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Figure 14 Typical Compression Force Diagram

3. Additional laminations are added and step 2 is repeated until the desired yoke
length, after the front glued end pack is installed, is achieved under compres-
sion.

(a) After the final compression, the lengths of the top and bottom of the stack
or the lengths of the left and right side of the stack may be different. A
few cut laminations may be added in order to make the structure square.
It is usually more important to recover left and right symmetry rather
than top and bottom equality in length.

i. Differences in the lengths of the poles contribute to field errors.

(b) At LBNL, the yoke was stacked dry (without epoxy), to predetermine
the number of required laminations and cut laminations to achieve the
desired yoke squareness and length. The epoxy coating was added and
the procedure repeated.

4. The yoke fastener system, illustrated in fig. 12 is installed and the entire core
and fixture are installed in a curing oven to undergo the temperature cycle
required for epoxy curing.

5. The cured yoke is removed from the oven and the fixture. The excess epoxy is
removed from critical areas (the pole tip, mating surfaces and keyways at the
bottom of the legs and any area used for magnet fiducialization or alignment).
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Glued End Pack Stacking and Compression Procedure

The procedure is exactly the same as described in the previous section, except that
the number of laminations required for the two endpacks (usually making up enough
laminations to build up a pair of 3 to 5 cm. thick stacks) are removed from each stack
of laminations for each yoke segment and glued using the stacking fixture. In order
to accelerate production, several pairs of end packs can be assembled in a single
gluing step. The laminations are coated with epoxy, each end pack is separated
from each other with mylar or other material whose adhesion to cured epoxy is poor,
and the end packs are compressed and cured using the same procedure used for the
core assembly. The finished endpacks are removed from the curing oven, separated,
cleaned and paired. The lamination from each paired endpack are from a single
sorted stack. Since the laminations from each sorted stack are identical, the paired
end packs from any stack can be assembled with the laminations from any other
stack.

9.6.2 Welded Laminated Yokes

The PEPII Low Energy Ring quadrupole and dipole yokes were constructed using
techniques which combined glued endpacks and welded construction. Mechanical
precison comparable to glued construction can be obtained for welded yokes up to
0.6 meters long if proper weld design, techniques and practices are observed. Internal
stresses due to weld bead shrinkage accumulate so that longer yoke structures tend to
bend and warp, contributing to poor magnet performance. Except for the endpacks,
welded yokes avoid the cleanup problems removing excess epoxy from crucial areas of
the yoke. Welded yokes require more parts and some craftsmanship. The features
of a welded yoke are illustrated in fig. 15. Some of the features of the lamination
and the additional parts are listed:

1. In addition to the rectangular slot, the V-groove witness mark and the holes
for the tensioning bars common to both the glued and the welded laminations,
grooves are added near the lamination surfaces in contact with the angle plate.
These grooves limit heat transfer to the bulk of the core resulting in less power
requirements for the weld.

2. The same groove design is incorporated in the steel corner pieces.

3. Thick end plates are fabricated to which the corner pieces are welded with heavy
weld beads for strength. The end plates and corner pieces comprise the frame
in which the laminations are compressed and secured.

(a) The end plates do not cover the poles. The poles are secured against
delamination using the same type of fasteners described for the glued yoke
structure.

(b) The end plates do not cover the rectangular grooves on the two legs.
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Figure 15 Welded Quadrupole Core
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Some of the design and welding techniques contributing to precise mechanical
yokes are listed as follows:

1. Welds require substantial heat and their shrinkage contributes to internal stresses
and can result in distortions.

(a) The previously described heat sink grooves help minimize heating due to
welding.

(b) Bars to lamination weld bead sizes are minimized.

(c) Skip welds are employed.

i. The weld lengths are staggered so that each lamination is secured by
at least two welds.

2. Welding is a craft requiring proper training and a great deal of experience.

(a) Good welds between the endpacks and the yoke structure can be difficult
to obtain because of the presence of glue which burns and smokes at the
required welding temperatures.

(b) High quality small welds required to limit the heating and thermal distor-
tions with sufficient strength to contain the lamination compression forces
are difficult to make. Limiting the heat may result in cold welds, which
are brittle and have a tendency to crack.

3. Welds need to be applied symmetrically in order to avoid unbalanced thermal
stresses which can bend and/or warp the structure.

(a) Symmetric welding requires balanced procedures employing two welders,
welding simultaneously on both sides of the yoke structure and trading
places at frequent intervals.

4. Welding is performed while the yoke is confined in the stacking/compression
fixture. The quality of the finished welded yoke is often unknown until the
fixture is removed, transferring the internal compression and thermal distortion
forces to the welded frame.

9.6.3 Mechanically Assembled Laminated Yokes

The fabrication technique described in this section was originally developed in re-
sponse to the challenges associated with the fabrication and assembly of large, high
quality quadrupoles for the final focus for the PEPI electron/positron collider inter-
action regions. To maximize the luminosity at the collision point, the multipole
error tolerance for these magnets was extremely small. Preliminary perturbation
calculations for the design showed that the required field quality for the 1.5 and 2
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meter long magnets demanded construction of yoke pieces which were straight and
flat within ≤ ±50 µm along their entire length. Welded prototypes quickly demon-
strated that machining limitations and weld distortions resulted in mechanical errors
which exceeded this limit by a wide margin. With accurate fixtures, laminations
can be stacked and compressed to meet the straightness requirements. However the
long 1.5 and 2 meter long steel bars could not be machined to the tight tolerances
demanded for small, uniform weld beads. Good quality welds require uniformly small
gaps between the bars making up the mechanical support structure and the stacked
laminations. The long heavy bars distorted during machining because of the release
of internal rolling stresses. Consequently, welds were not uniform and frequently
needed to be large to fill the gap between the bars and the laminations, contribut-
ing to weld distortion due to shrinkage. The results were welded assemblies which
warped beyond the mechanical precision required for good magnet performance.

The mechanical yoke assembly procedures, resulting in the successful fabri-
cation of high quality magnets for PEPI, were subsequently used to assemble high
quality magnets for other projects. The 0.75 meter long ALS Gradient Magnets and
the 1.45 and 1.09 meter long SPEAR3 Gradient magnets were constructed using the
same methods developed for the PEPI final focus quadrupoles and described in this
section. The design of the 2.1 meter long Australian Light Source gradient magnets
(currently under construction) also adopted the same construction techniques.

The Straight Gradient Magnet Yoke Design

The gradient magnets for the Advanced Light Source (ALS) in Berkeley, SPEAR3
at SLAC and the Australian Light Source in Melbourne were designed with straight
rather than curved yokes. The straight yoke design was selected rather than a curved
yoke because of the anticipated difficulty in assembling a curved yoke which follows
a precise uniform arc. Any transverse error in the placement of magnet laminations
contributes to field errors because of the field gradient. The orbit through a gradient
magnet curved at the anticipated radius of the beam follows a uniform radius arc.
Since a gradient magnet is really a section of a quadrupole with the beam traversing
an orbit far from the quadrupole magnet origin, the orbit follows an orbit which
approximates the hyperbolic cosine curve through a defocusing quadrupole. The
hyperbolic cosine approximation is a result of the solution of the linear differential
orbit equation through a quadrupole. The solution of the nonlinear differential
equation,

x”[
1 + (x′)2

] 3

2

=
e

p
By (x, z) = Kx, (9.1)

gives an exact charcterization of the beam orbit. In eq. (9.1), p = e Bρ is the
momentum of the particle with Bρ the magnet rigidity, x′ and x′′ signify the first and
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second derivatives of the beam displacement with respect to z andK is the quadrupole
coefficient in units of length−2. The derivation of the nonlinear expression is included
in the chapter appendix on page 284. The linear approximation assumes that the
average slope, x′ ≈ 0 and reduces eq. (9.1) to x” = Kx, whose solution is the
hyperbolic sine or cosine curve. (Knowledge about the zero slope at the longitudinal
center of the magnet requires an even function, the hyperbolic cosine curve.)

Exact knowledge regarding the orbit through the SPEAR3 magnets was re-
quired since the two lengths of magnets required for the SPEAR3 racetrack configu-
ration needed to be precisely aligned with respect to each other. Furthermore, the
orbit through the straight gradient magnets is flatter than the uniform radius arc
through a curved gradient magnet, shortening the path length through the magnet
resulting in a shorter closed ring orbit. This shorter orbit results in a shorter transit
time around the SPEAR3 ring requiring a slightly higher RF frequency. For these
reasons, a great deal of effort was invested in the numerical integration of the nonlin-
ear differential equation to accurately predict the orbit through the straight gradient
magnet. This numerical integration included using Hall probe magnetic measure-
ment data to characterize the longitudinal distribution of the fringe fields at each end
of the magnet. These calculations are summarized in a paper to be published in a
future issue of Nuclear Instruments and Methods in Physics Research by Yoon[16]
etal.

Lamination and Bar Designs

Fig. 16 illustrates the SPEAR3 gradient lamination, tension bar and front and back
plate and end plate designs. The engineering design of the tension bar and front
and back plate requires sufficient rigidity of the assembled structure for acceptable
deflection due to the yoke weight with the anticipated magnet support system. The
structural stiffness is determined by the product, EI, where E is the effective elastic
modulus of the structure and I its moment of inertia. The effective EI product is
computed in the usual way, except that the stiffness contributed by the lamination
uses an elastic modulus Elam ≈ Esteel

60
. This is approximately the slope of the final

Pressure
Strain

compression curve for the laminations. The expression for the structural
stiffness is;

EI = ElamIlam +
∑
bars

Esteel

(
Ibar +Abar × y2

)
, (9.2)

where the I ′s are the expressions for the individual moments of inertia about the
centerlines of each bar, A′s are the areas and y′s are the distances from the assembly
centerline to the centerline of the individual bars.

Some of the features of the designs are listed as follows:
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Figure 16 Bars, Laminations and End Plates

1. In addition to the overall shape of the lamination, cutouts are provided for the
installation of the tension bars and back and front plates.

(a) The cutouts are sized to provide substantial clearance (� 3 mm) between
the bars and the laminations.

(b) V-grooves are cut in the laminations at both edges of the cutouts for each
bar.

(c) A witness mark is provided so that, when the laminations are flipped
about their horizontal centerlines, the flipping will be indicated on the
yoke assembly.

2. V-grooves are machined on the edges of all the bars corresponding to the v-
grooves in the laminations.

End Plate Design

The end plates are fabricated from flat grounded solid steel plate. They have sub-
stantially the same cross section as the lamination except that the pole tips are absent
and the cutouts for the tension bars and front and back plates have the same depth
as the plate and tension bar thicknesses. With this configuration, when the struc-
ture is assembled, the end plate cutouts ensure clearance is maintained between the
laminations and the tension bars and the front and back plates.
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Core Assembly

The mechanical core assembly procedure can be described with the aid of several
illustrations. Fig. 17 illustrates the stacking of the SPEAR3 gradient magnet lam-
inations face down on a granite surface plate. Granite straight edges are used for
transverse alignment. This tooling was selected because large, precise ground gran-
ite tooling can be purchased since granite tooling has long been used for optical and
mechanical metrology. Figs. 18, 21 and 20 illustrate the steps described below:

1. The magnet back plate and two tension plates are assembled (permanently
bolted and dowelled). The compression end plate and the magnet front end
plate are then assembled and bolted.

(a) The magnet back and front end plates are fabricated from solid steel and
do not extend to the pole contour. This is a similar design to the end
plates for the welded quadrupole yoke, described earlier.

(b) The tension plates and the front and back frame plates (which are assem-
bled later) can be machined with generous tolerances. This is because the
clearance between the straight stacked laminations is large.

2. Hydraulic jacks are installed symmetrically between the compression end plate
and the magnet front plate.

3. The tension plates are drilled with a series of holes so that the compression
end plate can be moved as more laminations are stacked in the frame and the
assembled yoke grows to its final length.

4. The glued end stacks and a portion of the laminations are stacked between the
tension plates and the front and back end plates and compressed.

(a) As described in the stacking, compression and gluing of the quadrupole
yokes, the laminations are added in small length increments and occasion-
ally flipped about their centerline and recompressed so that the entire core
does not have to be compressed at once.

(b) Partial laminations can be inserted occasionally to ensure that the lengths
of the edges of the compressed core are equal.

5. When the final core length is achieved under the final compression load, the
end plate is permanently bolted and doweled to the tension plates.

6. Since the lamination compression load has been transferred to the tension plates
by bolting and dowelling, the hydraulic jack pressure can be released and the
jacks removed without altering the geometry.
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7. The two tension bars and the front and back end plates are parts of a rigid
frame to which the laminations can be secured. The laminations are secured
to the tension plates by filling the space between the laminations and the bars,
provided by the v-grooves in the bars and in the laminations, with steel loaded

epoxy (trade name Devcon
R©
).

(a) The steel loaded epoxy is extruded into the space provided by the v-grooves
in the laminations and in the tension bars using a pneumatic applicator.

i. A tube is installed on the applicator.

A. The ease or difficulty in extruding the steel loaded epoxy in the
space provided by the v-grooves depends on both the length and
internal diameter of the tube and the viscosity of the steel loaded
epoxy. A viscous mixture is preferred since a more fluid mixture
will leak out of the space. There was no problem extruding a
viscous mixture in the short (0.75 meter long) ALS gradient mag-
net since a 0.4 meter tube could be employed when applying from
both ends of the core. However, there was a great deal of difficulty
in extruding the viscous material in the longer (1.45 meter long)
SPEAR3 gradient magnet. A less viscous material was selected
and means of temporarily providing barriers to prevent the leakage
of the material was employed.

B. For longer magnets, it is suggested that a large v-groove size be
used so that a larger diameter extrusion tube can be inserted.
Experiments can be performed prior to completing the design of
the v-groove to determine the size required to ensure that extru-
sion of the viscous steel loaded epoxy can be accomplished for the
required length of magnet.

ii. Transparent tape is affixed to the external space, covering the gap
between the bars and the laminations.

iii. The tube is inserted in the space from the end of the magnet and the
steel loaded epoxy is extruded as the tube is withdrawn.

(b) The steel loaded epoxy is allowed to cure at room temperature.

8. After curing, the combination of the end plates, tension bars and the laminations
are sufficiently rigid so that the structure can be rotated.

9. After rotation, the front and back plates are installed, bolted and dowelled and
step 7, the filling of the v-groove spaces with steel loaded epoxy, is repeated in
the spaces between the front and back plates and the laminations.

10. After all the epoxy has cured, the ends of the tension bars are sawed or machined
off.



Yoke Assembly/Fabrication Techniques 279

Figure 17 Assembly on Granite Surface Plate

Figure 18 Core Compression
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Figure 19 Schematic Assembly Showing Hydraulic Compression Jacks

Figure 20 Steel Loaded Epoxy “Dowels”
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Figure 21 Assembled Gradient Magnet Core

9.7 Core Grounding

Safety and operating issues need to be addressed, not only for the magnet assem-
bly, but for its components. Safety rules require that all non-powered accelerator
components be grounded to prevent the buildup of static charge. It is usually good
practice to identify a single grounding point and attach grounding straps from the
magnet core to this point. In order to ensure that a single point on the yoke can
be identified for attachment of the grounding strap, all the yoke components must
be electrically connected. For glued and mechanically assembled cores, a small weld
bead is added to the outside surface of the yoke so that each of the individual lami-
nations are electrically connected. The weld is illustrated in fig. 22.

9.8 Chapter Closure

Physics specifications for accelerator magnets require excitation reproducibility and
a spectrum of small amplitude integrated multipole errors. These field properties are
dominated by the properties of the fabricated magnet yokes. Good magnet perfor-
mance require the iron properties of the magnets to by symmetric and reproducible.
Although symmetry and reproducibility can be achieved for yokes fabricated from
both solid and laminated steel, these properties are more easily achievable with lami-
nations by sorting. Sorting is also possible with the pieces used to fabricate solid steel
yokes. However, even if magnetic steel properties of solid steel yoke pieces for a single
family of magnets can be made identical, eddy currents, caused by rapid changes in
excitation, can locally excite small regions of the magnet and cause these regions to
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Figure 22 Grounding Weld Bead

locally undergo large hysteresis excursions and change the magnet properties of the
steel. When solid core magnets undergo very fast excitation changes (ie. due to
accidental power supply shutdown), the magnets must be reconditioned at currents
much higher than their required excitation to restore all the steel properties so that
all the yoke steel will operate along the same hysteresis curve. Because of these
issues, most modern accelerator magnets are fabricated using stamped laminations.
Most of the chapter is devoted to magnet yokes fabricated using laminated steel.

Previous chapters discussed the two dimensional design of magnets. Three
dimensional fringe fields, which can compromise the integrated magnet uniformity, are
discussed. Means of visualizing the dipole and quadrupole fringe fields are discussed.
The shapes of pole end chamfers and the empirical process of developing the shapes
and depths of these three dimensional cuts are listed.

In addition to the steel properties and three dimensional fringe fields, me-
chanical yoke fabrication and assembly errors can contribute to random integrated
multipole errors. The multipole errors resulting from mechanical fabrication and
assembly errors can be far more serious than those associated with iron and three
dimensional effects. Random multipole errors have low indices (which do not reduce
quickly near the center of the magnet) and can have skew as well as real components.
Because of the potential seriousness of these errors, it is imperative that magnet
yokes be made with high mechanical precision. Three yoke assembly methods are
discussed. All three methods can result in precise yoke assembly resulting in magnets
with high quality fields. Welding and gluing are employed for shorter magnets. A
great deal of the discussion is devoted to describing the mechanical yoke fabrication
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processes, which were developed to respond to the needs for fabricating mechanically
precise yokes for larger (� 0.6 meters) magnets.
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9.9 Chapter Appendix

Derivation of the Nonlinear Equation

The expression for the bend angle in a charged particle beam orbit is

Bρθ =

∫
Bds,

where s is the parameter describing the particle beam path. Differentiating the
expression,

Bρ
dθ

ds
= B (x, z) , (9.3)

where the coordinates, (x, z), are the space coordinates along the horizontal plane.
For a straight gradient magnet, B (x, z) = B′x (the field varies linearly with the
transverse coordinate, x. Using the lattice nomenclature for the quadrupole, the
gradient is described by the k factor where B′ = BρK. The units for K are expressed
in units of length−2 for the quadrupole. Substituting into eq. (9.3),

Bρ
dθ

ds
= BρKx,

or rewriting,
dθ

ds
= Kx. (9.4)

The angle can be expressed trigonometrically as

θ = tan−1 dx

dz
,

and
dθ

dz
=

d2x

dz2

1 +

(
dx

dz

)2 . (9.5)

But,

dθ

ds
=

dθ/dz

ds/dz
, (9.6)
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and

ds =
√
dz2 + dx2

ds

dz
=

√
1 +

(
dx

dz

)2

. (9.7)

Substituting eqs. (9.5) and (9.7) into (9.6), the expression for dθ/ds is given
by

dθ

ds
=

dθ/dz

ds/dz
=

d2x

dz2

1 +

(
dx

dz

)2

1√
1 +

(
dx

dz

)2
,

=

d2x

dz2[
1 +

(
dx

dz

)2
] 3

2

.

Substituting into eq. (9.4) yields, finally, the nonlinear differential equation

d2x

dz2[
1 +

(
dx

dz

)2
] 3

2

= Kx, (9.8)

which can be solved by numerical integration.
Note that if one assumes dx/dz is small, the differential equation simplifies to

the linear expression

d2x

dz2
= Kx,

whose solutions are the hyperbolic sine and cosine. For even functions (those sym-
metric about x = 0), the approximate solution is the hyperbolic cosine function.
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Chapter 10

MAGNET COIL FABRICATION

10.1 Introduction

Laboratories and manufacturers have different preferred fabrication techniques. One
can usually obtain lower cost coils by allowing manufacturers to develop bids using
their preferred techniques and practices. However, it is always useful to understand
the different techniques and their strengths and limitations so that one can make
informed choices for the acquisition of magnet coils satisfying unique accelerator
and/or facility constraints or needs. It is also useful to understand that winding
configurations are constrained by practical limitations to avoid specifying a coil which
cannot be physically realized.

Occasionally, coil designs are completely developed and fabrication techniques
are fully specified to ensure that certain unique needs are satisfied. This technique
is called building to print. While assuring that coil fabrication techniques satisfy
the end needs of the coil, building to print can potentially release the vendor of the
responsibility for the design. Moreover, if the specified fabrication technique differs
from the standard technique employed by the manufacturer, high costs may result.

Certain minimum performance requirements are required for magnet coils. A
description of measurements and tests performed on coils is listed for inclusion in
specifications for acquisition of manufactured coils. Decisions for the means used to
acquire coils can be difficult. Example coil designs and coil manufacturing processes
are described in order to enhance the understanding of the design and manufacturing
processes and reduce this difficulty.

The following are examples of coil fabrication techniques, processes and tests.
These examples assume that coil engineering designs and parameters have been de-
veloped and specified by the magnet engineer/designer.

10.1.1 Conductor Size and Turn to Turn Insulation

The conductor size is selected by the magnet engineer/designer based on magnet
requirements and power supply, power distribution and cooling constraints for the
required facility. Convectively cooled magnet coils made with solid conductors are
usually wound from round or square copper conductors up to 3 mm. maximum cross
section. This size conductor is usually preinsulated with a baked on plastic coating

(Formvar
R©

or Polythermaleze
R©
). Normally, the conductor catalogue will list the
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maximum dimension of the insulated conductor so that the final wound coil size can
be accurately predicted.

Water cooled conductors can be wound from square or rectangular hollow
copper conductor, divided among two size ranges. Smaller hollow copper conductor
(≤ 6 mm. maximum dimension) is used to wind individually powered, low current
magnet coils. Magnet coils using these conductors are most efficiently wound if
the conductor is preinsulated. The conductors used for ALS, PEPII and SPEAR3
quadrupole and sextupole magnet coils were preinsulated with a combination of

Dacron
R©

and glass fiber. There are several US and European manufacturers who
specialize in a technique of wrapping small conductors with these fibers. These same
manufacturers will inform the buyer that they will not insure the integrity of insula-
tion for conductors with dimensions > 6mm. The fine fibers break and the insulation
flakes off when larger conductors are bent around a tight radius when winding coils.
This is due to the growth in the vertical dimension at the inside radius of the conduc-
tor when winding around a tight radius (keystoning). The insulation manufacturer
will specify the final insulation thickness for the smaller conductor sizes so that the
final wound coil size can be accurately predicted.

Square and rectangular hollow conductors with dimensions > 6 mm. are em-
ployed for higher current magnets and are usually insulated by wrapping the conduc-
tor in two layers half lapped adhesive mylar tape and woven glass or Dacron tape as
the conductor comes off the spool and before winding on a mandrel. (Half lapped
is a term to describe the partial overlap of the previous insulation winding by the
following winding to ensure that no gaps remain.) Woven Dacron tape is often sub-
stituted for glass tape when the conductor must be pounded in order to ensure tight
bend radii around a winding mandrel. Woven glass tape often disintegrates under
these conditions. The mylar tape is used to ensure that a continuous insulator is
present between the individual conductors so that intermittent turn to turn shorts
are avoided. Many coil designers eliminate the mylar insulation and insulate only
with the woven tape. The woven tape provides a network for the distribution of the
epoxy used to encapsulate the coil assembly. The thickness for this insulation system
should be computed as a bit more (say 125%) of twice the thickness of the adhesive
mylar tape and woven fabric tape to predict the final wound coil size. (Twice the
thickness since the layers of tape are overlapped.)

10.1.2 Coil Winding

Impractical coil configurations can be specified by the magnet engineer/designer not
familiar with winding techniques or limitations. When laying out a coil, a natural
tendency is to assume that a simple two dimensional configuration can be wound
within a simple three dimensional projection of the two dimensional shape. This
is not true. Layer to layer and row to row transitions require additional space.
Moreover, row to row transitions precess around a coil so that they take up more
longitudinal room than anticipated. Designs of row to row transitions often assume
that the transitions stack one above the other. Typically, a coil has one more layer
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or one more row at one end where transitions take place (usually the lead end of
the wound coil) than the two dimensional cross-section. Also, if a tapered coil is
required, the magnet engineer/designer can easily forget that the coils are wound
under tension and it is extremely difficult to wind down a slope (from a wider turn to
a narrower turn). The wider turn tends to move down the taper when wound under
tension unless each turn is temporarily supported until the following turn is wound.
Tapered coils are nearly always required for quadrupole magnets.

Fig. 1 of a 36 turn quadrupole coil and the following descriptions are included
to provide an example to illustrate a coil winding process. This example is wound
in two layers, with each layer wound up the taper in opposite directions.

1. The length of the required conductor is estimated and about half is coiled off
to the side of the winding mandrel.

2. Layer 1 is wound from the center of the length of conductor and is wound up
the tapered mandrel in the clockwise direction (when viewed from above) until
half (18) of the required turns are wound.

(a) A spacer is placed under the first row to provide room for the conductor
to transition from layer 1 to layer 2.

(b) After each bend around a corner, the conductor must be set using a bakelite
(or other non-metallic tool) and a hammer to avoid elastic springback.

(c) The conductor should always be kept under tension when winding to min-
imize elastic springback and to ensure that the conductor is wound tightly
and the coil package falls within the mechanical limits of the design.

3. The reserved coiled conductor is straightened out and the second layer is wound
in the counterclockwise direction (when viewed from above) up the taper over
the first layer until all of the required number of turns (36) have been wound.

4. After all the windings have been completed, a ground wrap is of woven fiberglass
tape is wound around the completed coil to secure its shape.

The actual illustrated quadrupole coil requires 72 turns. The remaining 36
turns are wound in layers 3 and 4 in the identical manner as used for layers 1 and
2 over the first two layers. The leads are brazed together after the coil is vacuum
impregnated to create a single coil with the required 72 turns.

Keystoning

Keystoning is a term used to describe the growth of the conductor dimension in the
perpendicular direction to the bending plane when the conductor is bent in a tight
radius. It is caused by the vertical growth in the conductor on the inside radius of the
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Figure 1 36 Turn Quadrupole Coil

bend compensating the longitudinal compression of the material on the inside radius
of the conductor. In general, if a conductor is bent with an inside bending radius
≤ 3× conductor width, the conductor height will increase. Although curves for
this effect exist, they are a bit difficult to scale. Larger conductors and rectangular
conductors bent the hard way (in the plane of the wider dimension) undergo greater
growth than smaller square conductors. A good conservative constant factor often
used to anticipate the geometric growth of the coil is to assume a 5% growth in one
dimension of the conductor. This growth must be factored into the final size of
the assembled coil, especially if the coil is vacuum impregnated and a coil mold is
fabricated.

Mirror Image

The electrical current in the coils for adjacent poles of a magnet reverse directions.
There is a natural tendency to want to develop layouts for magnets using mirror
image coil configurations for alternate poles. This is an unneeded manufacturing
complication resulting in doubling the inventory of coil designs and increasing the
potential for assembly errors. Identical coils can be installed on all the poles of the
magnets using the coil to coil electrical bussing to alternate directions of the electrical
current for adjacent poles.
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10.1.3 Coil Potting (Encapsulation)

Once the coil is wound, some means must be employed to maintain its shape and
to protect the conductor from dirt and moisture which can cause electrical shorts.
Manufacturers use several methods for coil encapsulation. Some of the techniques
and their advantages and disadvantages are described in the following sections.

Simultaneous Epoxy Impregnation and Winding (Wet Layup)

This method is employed for coils wound from small solid conductors with baked on
plastic insulation. Uncured epoxy is painted on the surface of the coil as it is being
wound. A few turns of woven fiberglass tape is wound around the completed coil
and this ground wrap is painted with uncured epoxy. The assembled coil is then
cured in an oven.

B-stage Epoxy Encapsulation

Woven fiberglass tape can be purchased impregnated with thermo-setting epoxy. If
using this method for large conductors (� 6 mm.), the individual conductors are
wrapped with the impregnated fiberglass tape prior to winding. A final layer of this
tape is wrapped around the wound coil and secured. The tape becomes a ground
insulation for the coil. The wrapped coil is installed in an oven and cured using the
appropriate thermal cycle specified by the B-stage R© tape supplier.

This method is the cheapest of the hollow conductor coil encapsulation tech-
niques. However, the encapsulation is porous. Dirt and/or moisture can contam-
inate the coil and can potentially cause turn to turn shorts. This method is not
recommended for magnets operating in a dirty or humid environment. Moisture can
condense on a cooling coil after the power is turned off and migrate into the epoxy
pores.

Cocooning

Cocooning is similar method to B-stage epoxy encapsulation. The difference is that
the winding is performed using insulated conductor without the B-stage material
impregnation. For small conductors, the Dacron R©-glass fiber insulated conductor is
used. For larger conductors, the mylar tape plus woven glass tape insulation is used.
A layer of the B-stage impregnated glass tape is wound around the completed coil
to form a water-tight skin. This skin is partially cured so that the coil with its skin
forms a volume containing the wound coil. The volume is then filled with a epoxy
mixture and cured. This method results in a less porous product. However, voids
can still be present and the coil is subject to a lesser degree of the same potential
contamination as the B-stage encapsulated coils.

Both the B-stage and cocooning methods result in coils whose final mechanical
dimensions are unpredictable. Therefore, if the coil size and/or shape are crucial
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Figure 2 Vacuum Impregnation System Schematic

to installation (for instance between the poles of a two piece quadrupole), or if lim-
ited clearances are available between the coil and other mechanical constraints (for
instance a vacuum chamber), these method may present potential problems.

Vacuum Impregnation

Vacuum impregnation results in the most robust product with the most predictable
mechanical shape. It is also the most expensive process since it requires the fabrica-
tion and assembly of tooling and equipment. For accelerator magnet coils, the tooling
and equipment can be capitalized over the large numbers of coils fabricated using the
equipment. Vacuum impregnation has been used for the ALS and SPEAR3 magnet
coils. These magnets required tight mechanical tolerances for coil installation be-
tween the poles of the yokes. The tight mechanical tolerances were also needed since
the magnets are installed with minimum clearances between their elements and the
vacuum chamber and other accelerator components. The PEPII Low Energy Ring
magnets also employed vacuum impregnated coils. The PEPII tunnel environment
can be humid and dirty. Fig. 2 is a schematic of a vacuum impregnation system.

The major elements of the vacuum potting system are:

1. The epoxy deaerating tank.
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(a) The deaerating tank is fitted with mixing vanes connected through a vac-
uum seal to a mixing motor.

(b) Some epoxy formulations require heating when mixing the components.
A heater is attached to the tank so that the epoxy can be mixed and
deaerated at warm temperatures.

2. The potting tank.

(a) Small potting molds are sometimes difficult to seal since space for gaskets
is limited. These molds are constructed water tight, so that they can hold
the epoxy fluid but cannot be adequately evacuated. Water tight molds
are installed in a potting tank so that they can be thoroughly evacuated.

(b) Potting molds for larger coils can be sealed with gaskets and evacuated.
For larger coils, the potting tank is often eliminated.

3. The assembled coil mold.

(a) The cavity size for the coil mold defines the outside geometry of the com-
pleted coil.

(b) At least two holes for the delivery of the epoxy should be provided. The
input hole must be drilled at the lowest point in the mold cavity and the
output hole must be drilled at the highest point in the mold cavity.

(c) The coil illustrated in the figure is a quadrupole coil with a tapered inside
surface. The ends of the wound coil are flat. A slight taper must be
machined into the outside surface of the inner mold piece and the inside
surface of the outer mold piece at the ends to facilitate the removal of the
cured coil from the mold.

(d) The schematic figure illustrates heated water connections to the assembled
coil mold. This configuration assumes that the thermo-setting epoxy is
cured by circulating heated water through the coil water passage(s).

4. A mechanical vacuum pump.

(a) Valves are attached so that the vacuum pump can be connected to the
dearation tank, the potting tank and the coil mold output delivery tube.

5. Delivery tubes.

(a) The delivery tubes should be transparent so that transfer of the uncured
epoxy can be monitored.
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(b) The delivery tube connected to the top of the mold should be at least a
meter long before the vacuum valve, p1. Since the epoxy shrinks during
the cure, the excess delivery tube length on the mold exit acts as a reser-
voir, providing excess epoxy during the curing process and ensuring that
there are no voids in the encapsulated coil.

Epoxy Formulation

The choice of the epoxy formulation depends on the application. Epoxy formulations
with low uncured viscosity is preferred for vacuum impregnation to ensure complete
filling of all the pores in the glass tape insulation. Mixing a heated formulation often
reduces the viscosity and enhances the dearation. Formulations with a long uncured
pot life and higher cure temperatures are preferred since higher curing temperature is
often accompanied by better radiation resistance. Frequently, magnets are operated
in very high radiation environments. For coils for these magnets, powder alumina can
be mixed with the epoxy to enhance the radiation resistance of the organic potting
compound.

Vacuum Potting Procedure

Numerous accelerator magnets require many coils and so several potting molds are
built for each type of coil. Normally, the volume of epoxy encapsulant per coil is
small. Often, many coils are encapsulated simultaneously to reduce the labor of
mixing and deaerating the epoxy. The following is a summary of the procedure
developed over several years at LBNL for in house fabrication of magnet coils using
vacuum potting techniques. The same process was used at IHEP in China for the
manufacture of the coils for the PEPII and SPEAR3 magnets.

1. The inside surfaces of the mold cavity are coated with a parting compound to
enhance removal of the cured coil.

2. The wound and ground wrapped coil is placed and sealed in the mold. The
sealed mold assembly is placed in the potting tank.

(a) Silicone rubber or other sealant compound will be needed to locally seal
the coil leads exiting the mold.

3. The components of the epoxy formulation are measured and mixed together
and the mixture is poured into the dearation tank.

4. The dearation tank is covered and the mixture is mixed using the electric motor
attached to the mixing vanes.

(a) If the formulation requires heating during the mixing process, the heating
coils may be energized during the mixing and dearation process.
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5. The dearation tank is evacuated by opening the valve p3 to the mechanical
vacuum pump.

(a) Dearation is indicated by bubbles forming in the mixture and coming to
the surface of the epoxy as a foam.

(b) Dearation can often be enhanced by cycling. That is, the vent valves are
opened and the tank is reevacuated several times.

(c) Dearation is complete when generation of bubbles nearly stops and the
foam layer on the surface of the epoxy disappears.

6. The potting tank and the coil mold are evacuated by opening valves p1 and p2
to the mechanical vacuum pump.

(a) Larger coils can be installed in gasketed molds which are vacuum tight.
These molds need not be installed in a vacuum potting tank and can be
evacuated by opening the valve p1 which connects the mold to the vacuum
pump.

7. The dearated epoxy formulation is transferred under atmospheric pressure to
the mold by simultaneously opening delivery v1 and the dearation tank vent1.

8. Transfer is complete when all the transfer tubes are filled. The transfer tube
connected to the top of the mold should be nearly filled to the pump valve p1
before p1 is closed.

9. After filling the mold, delivery v2 and vent2 are opened to bring everything up
to atmospheric pressure.

10. The epoxy is cured at elevated temperatures.

(a) Heated water can be circulated through the coil.

(b) The filled mold can be removed from the potting tank and placed in a
curing oven.

i. The delivery tubes at the top and bottom of the mold are cut off and
raised so that the surface of the epoxy in the tubes is above the highest
point in the mold.

ii. After cure is complete, it will be noted that the surface of the cured
epoxy has receded into the tube because of shrinkage during the cure.
The lengths of the transfer tubes provide a small reservoir for the
uncured epoxy to replace the volume of the cured epoxy shrinkage in
the mold.
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Coil Finishing

A finished coil, ready for installation on the magnet yoke, requires additional parts.
These parts include water fittings, flags for the connection of electrical busses and
a mounting plate for the installation of thermal interlocks. Good practice requires
these parts to be attached to the coil leads robustly enough so that they cannot be
accidentally broken off. Water fittings need to be attached with leakproof joints.
Electrical connection flags require low electrical resistance joints. Thermal interlock
mounting plates require low thermal resistance joints. All these parts have histori-
cally been attached to the coil leads using high temperature brazing material (silver
solder). High temperature material rather than low temperature lead-tin solders
have been specified for these joints because of the inevitable need to repair broken
joints. Broken joints originally made using high temperature brazing material can be
repaired using lower temperature compounds. Eventually, low temperature solders
can be used to repair joints which have been repeatedly broken and repaired. Be-
cause of the need to use high temperature solders for the initial installation of these
parts and the high thermal conductivity of the copper conductor, it is necessary to
protect the organic encapsulation compound from the conducted heat. This is done
using the same technique used to braze copper plumbing by keeping some distance
between the brazing area and wrapping the area that needs to be protected by a
damp cloth wrapped around the conductor. Brazing of parts to the finished coils
requires some craftsmanship to secure sound joints while simultaneously isolating the
heat from the thermally sensitive parts of the encapsulated coil.

Fig. 3 illustrates some of the points of the finished coil.

1. The water fittings are soldered at the ends of the leads. The illustration
indicates the water flow direction.

(a) The water fittings are different sizes with the water outlet fitting slightly
larger than the water inlet fitting. This feature avoids the possibility of
connecting both ends of the circuit to the same manifold, “deadheading”
the circuit. For small conductors, this is often not possible and the hoses
for the outlet and inlet sides of the circuit must be clearly labeled to avoid
misconnecting both ends of the coil to the same water manifold.

2. The flags for connecting the coil to coil busses are soldered close to the water
fittings. The busses are convectively cooled and thus are limited to j ≤ 1.5 Amps

mm2

compared to the water cooled allowable current density, j ≤ 10 Amps
mm2 . The

heavier copper pieces used for the busses are mechanically attached to the yoke
to avoid mechanical strain on the coil leads. Copper bussing supports close to
the water fittings can reduce the bending stresses on the conductors due to the
water tubes.
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Figure 3 Brazing of Coil Parts

3. Slots machined in the power lead flags to receive the conductor ensure mechan-
ical support during brazing and a good joint to the conductor.

4. The thermal interlock block must be located in a current carrying region of
the conductor between the coil and the power lead flag. A thermal interlock
located outside of the busses will not experience I2R heating. The thermal
interlock block is brazed to the water output leg of the hydraulic circuit where
it can sense excessive water temperature rise or loss of water flow through the
coil.

(a) A thermal interlock attached to the water input leg of the hydraulic cir-
cuit cannot sense high water temperature temperature due to the resistive
heating of the coil.

5. Sufficient distance between the thermal interlock block and the power lead flags
must be provided so that the thermal resistance between the conductor and the
flag and power lead heat sink does not reduce the temperature rate of rise.

6. The distance between the closest brazed joint and the epoxy surface must be
sufficiently large so that the brazing heat can be intercepted and prevented from
damaging organic insulation.

(a) This distance also enhances the elastic compliance between the installed
coil and the bus connection. This compliance makes it easier to install the
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rigid bus connection and enhances the mechanical and electrical contact
between the flags and the bus bars.

10.2 Coil Failures

Magnet coils can potentially fail in several different ways. Mechanically, the manu-
facturer may wind too many or too few turns or the completed coil outside envelope
may not satisfy dimensional tolerances. Hydraulically, the water passage may leak
or be partially or completely blocked. Electrically, the insulation system may be
poor or incomplete resulting in intermittent or complete turn to turn shorts or shorts
to ground. Manufacturing specifications are written to supplement the mechanical
layouts or drawings which make up the package of documentation for the acquisition
of magnet coils. The specifications describe the minimum manufacturing require-
ments reducing the chances of product failure. Required tests and measurements are
included in the specification to ensure and document that coil performance require-
ments are achieved.

10.2.1 Specifications

The specifications list the computed values of the coil parameters such as the resis-
tance and anticipated hydraulic flow at a specified pressure drop. These computed
values can be later compared with measured values for completed individual coils.
Specifications also include minimum shop and fabrication requirements, listed to en-
sure that failures are minimized. Some of these requirements are listed.

1. Coils should not be wound in a machine shop environment.

(a) Metallic chips in a machine shop can contaminate the coil during winding
later causing intermittent or complete turn to turn shorts.

(b) Machining lubricant can contaminate the insulation, potentially jeoparadiz-
ing the encapsulant bond and the insulation performance.

2. A single hydraulic circuit must be wound from a continuous unspliced length
of conductor.

(a) Discontinuities in the hydraulic passage due to a conductor splice can cause
blockage in the hydraulic circuit due to particulate contamination of the
coolant. If the joint is in the middle of the circuit, it is very likely buried
in the encapsulated coil and impossible to repair.

i. Splices may be difficult to locate in a spool of conductor from a man-
ufacturer. A test involving blowing a ball ≤ 60% of the coolant hole
diameter in the length of conductor prior to winding is occasionally
required.
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Many more requirements are listed in a typical coil fabrication specification.
These requirements can be obtained from public domain specifications previously
published by different laboratories to purchase magnets and their coils.

10.2.2 Measurements and Tests

Measurements are compared with computed coil parameters. Tests are performed
to verify that minimum requirements are satisfied.

Hydraulic Measurements and Tests

Flow measurements made at the design pressure drop are made and recorded for each
water circuit for each coil. The water temperature at the time of the measurement as
well as the flow rate and pressure drop should be recorded. The water temperature is
important since water kinematic viscosity changes. The measurements are compared
with flow computations made using the kinematic viscosity at a fixed temperature.

Leaks usually occur at brazed water fitting joints. Leaks are normally detected
by pneumatically pressurizing a sealed water circuit and monitoring the pressure for
some fixed time. Leaks are indicated by rapid or gradual loss of pneumatic pressure
in the sealed circuit.

Electrical Measurments and Tests

1. The ambient temperature is recorded and coil resistance is measured with a
bridge.

(a) The measured resistance is corrected to the resistivity temperature for
comparison to the coil resistance computation.

(b) A bridge is used since other devices, such as voltmeters, require a small
current which can change the coil temperature and the material resistivity.

2. Insulation to Ground (HiPot Tests)

(a) Different tests are performed depending on the means used to insulate the
completed coil. The general requirements for the test is that the isolated
coil should be capable of holding twice the operating voltage plus 1 kV.
At this test voltage, leakage current to ground should not exceed 2 µA.

i. Coils insulated using the wet layup, B-stage and cocooning techniques
should be wrapped in aluminum foil, the aluminum coil grounded and
the coil leads connected together raised to the test voltage.

ii. Coils which are vacuum impregnated can withstand a more severe test
by immersing the potted region of the coil in salted water and raising
the coil leads connected together to the test voltage.
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Figure 4 Coil Null Measurement Schematic

iii. As in all high voltage operations, adequate safety equipment and pro-
cedures should be provided to protect the test personnel.

3. Dead turn to turn shorts.

(a) Dead turn to turn shorts for coils with many turns are difficult to detect
using resistance measurements. Resistance changes due to variations in
the conductor cross-sectional area can be larger than the resistance change
due to the effective change in the conductor length due to a dead turn to
turn short.

i. A null measurement with two coils in a magnetic circuit can reveal
differences in the number of turns in two otherwise identical coils. A
schematic of the null connection is shown in fig. 4. A reference coil
and the test coil are connected in opposite polarities. The errors in
the number of turns can be measured using a Hall probe.

B =
µ0NI

gap
=

µ0 (NIreference −NItest)

gap

=
µ0I [N − (N −∆N)]

gap

∆N =
B × gap

µ0I
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Figure 5 Impulse Test System

(b) Resistance measurements are a more reliable means of detecting a dead
turn to turn short for coils with fewer turns.

4. Intermittent turn to turn shorts can be measured using an impulse test.

(a) To detect intermittent turn to turn shorts, it it necessary to generate
many times the turn to turn voltage expected during operation. Since the
impedence of a coil is primarily a low resistance and inductance, imposing
a high voltage across the leads will lead to a high current and power which
can damage the coil. Therefore, a dynamic rather than static test has
been devised.

(b) The electrical parameters for a coil are its inductance and resistance. The
coil inductance is changed by the presence of steel since its value depends
on the magnetic stored energy of the magnet circuit. It is also changed by
the presence of metallic objects which can support eddy currents since the
eddy currents represent a circuit coupled by the magnetic field generated
by the coil. Therefore, impulse tests must be made with the coil isolated
from metallic or permeable material.

(c) The impulse test system schematic system is shown in fig. 5. In this
system, a voltage source is used to charge the capacitor. The switch
then connects the charged capacitor to the test coil while simultaneously
isolating the power supply. The current then circulates in the closed
circuit and the electrical energy stored in the capacitor is dissipated and
reflected by the coil resistance and inductance.

(d) The differential equation describing the voltage for the continuous current
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Damped Voltage Trace
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Figure 6 Underdamped Sinusoid

around the RLC circuit is

L
dI

dt
+RI +

1

C

∫
Idt = 0 =⇒ d2I

dt2
+

R

L

dI

dt
+

I

LC
= 0

(e) The general form for the solution to this second order differential equation
for an underdamped system is

I = e−αt (B1 cosωt+B2 sinωt) ,

where α = R
2L

and ω = 1
(LC)2

.

i. The complex or natural frequencies for this system are s1, s2 =
−α ± √

α2 − ω2. The system is underdamped only if α < ω and
the expression for the frequencies is complex. The size of the capaci-
tor is selected so that an underdamped response can be obtained.

(f) For the underdamped test system, the voltage response across the coil is

V (t) = V0e
−αt cosωt,

a damped sinusoid whose exponential damping time, τ = 2L
R
, can be de-

termined from the test voltage trace.

(g) The typical signal is shown in fig. 6

5. The Impulse test procedures are as follows:

(a) The coil is connected to the test equipment and a scope is connected to
monitor the voltage signal across the leads of the test coil.
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(b) The voltage across the capacitor is raised to some low voltage, say 10 Volts.
The voltage is switched across the test coil and the voltage trace is stored
and photographed.

(c) The voltage is raised at some arbitrary voltage increment and the test and
scope trace photographs are repeated.

i. During the tests, the scope gain is adjusted so that the maximum
scope amplitude of the damped signal is maintained.

(d) The voltage is finally raised to the equivalent of 100 volts per turn or a
maximum of approximately 1kV and the final test is performed.

i. A good coil will display the identical scope trace at all voltages.

ii. A coil with intermittent turn to turn shorts will display the identical
scope trace until the turn to turn voltage exceeds some breakdown
value. At some voltage level, the signal trace will change. In some
cases, hash (static) will appear at the peaks of some of the first fiew
sinusoidal traces. In other cases, the sinusoid frequency and/or the
damping rate will suddenly change. The photograph of the stored
scope image at the breakdown voltage can be compared with the pho-
tograph at the low starting voltages.

10.3 Chapter Closure

Unless a laboratory has an extensive engineering and manufacturing infrastructure,
accelerator magnets are acquired by purchasing from manufacturers specializing in
magnet or electrical equipment manufacture. One can select the coil geometry which
optimize the purchase and operation of power supplies and power distribution sys-
tems and satisfy hydraulic cooling constraints without understanding detailed design
or the manufacturing process. Fully developing mechanical detailed coil designs and
their specifications to ensure delivery of a robust coil system is more difficult and can
only be accomplished if one is familiar with the manufacturing and quality assur-
ance processes. This chapter is written to describe methods used in past successful
projects to acquire magnet coils which satisfied quality and reliability requirements
for magnets installed in the challenging environment of large accelerators for reliable
operation over the long operating life of typical accelerators.

The chapter describes the winding, encapsulation, measurements and testing
of magnet coils. A sample quadrupole winding is described to illustrate the layer
to layer and row to row transitions which must be anticipated. Different conductor
insulation systems are described. The strengths and weaknesses of different coil
potting techniques are listed and the vacuum incapsulation processes are described.
Failure modes are described and means of developing specifications, measurements
and tests to avoid these failure modes are listed.
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Chapter 11

MAGNET ASSEMBLY

11.1 Introduction

Previous chapters covered the fabrication of the main magnet components, the yokes
and the coils. A completed magnet requires the assembly of these major components,
fabrication and assembly of electrical busses connecting the separate coils, provision
of terminations for magnet power cables, assembly of the water cooling tubes to
separate or integral water manifolds, installation and wiring of protective interlock
systems and provision for any personnel safety related parts. This chapter reviews
the methods employed in the past to complete the magnet assembly. It includes
principles of design for the busses, the interlock system, the cable terminations and
the hydraulic circuit to protect the and ensure long operating life for the magnet and
its components. Bussing topologies are introduced which avoid unwanted magnetic
fields.

Finally, safety rules and design principles applied to ensure personnel safety
are listed.

11.2 Coil Supports and Bussing

Coils are normally assembled and mechanically secured to the yoke segment before
the yoke segments are assembled. Previous examples of laminated quadrupole and
sextupole yoke designs included holes through their poles for installation of bolts
to ensure that the laminations do not separate. These bolts can be exploited to
secure parts used to hold the coils in their coil slots. This releases the space radially
outside of the coil and reserves this room for the bussing, cooling tubes and thermal
interlocks. Quadrupole and sextupole magnets are typically smaller than dipole
magnets. Their numerous coils require more bussing and cooling elements than the
dipole coils. The radial area outside of the quadrupole and sextupole coil can become
congested. Dipole magnets, on the other hand, are larger and coil supports can be
anchored above the upper coil and below the lower coil. Coil supports are designed
primarily to resist gravitational loads. Magnetic external loads are typically small
and internal loads are generally directed radially outward.
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Figure 1 Incorrect Bussing Topology

11.2.1 Bussing

Bussing between the separate coils in a magnet normally uses solid copper bars and
are convectively cooled. The copper bar cross-sectional area must be sized so that the
maximum current density satisfies the current density limit for convectively cooled
copper conductors, j ≤ 1.5Amps

mm2 . Occasionally, when large currents need to be carried,
water cooled conductor similar to the coil conductor is used for coil to coil bussing.

Bussing Topology

The topology and the support of the parts used to carry current from one coil to
another is important. Fig. 1 illustrates the wrong topology for bussing a dipole. The
conductor connecting the two coils wraps a one turn current carrying circuit around
the beamline. This configuration generates a small but measureable solenoidal field.
A solenoidal field can rotate the beam and mix the horizontal and vertical beam
phases.

Fig. 2 illustrates the correct bussing topology for a dipole. Figs. 3 and 4 il-
lustrate the correct bussing topologies for the quadrupole and sextupole, respectively.
The routing of the busses returns the current in the opposite direction and avoids the
solenoidal field. Good bussing practice places the busses near to each other.
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Figure 2 Correct Dipole Bussing Topology

Figure 3 Correct Quadrupole Bussing Topology
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Figure 4 Correct Sextupole Bussing Topology

Electrical and Thermal Connections

Good practices must be followed in connecting the electrical bussing and attaching
the thermal interlocks. Fig. 5 illustrates some of these practices.

1. Thermal interlocks are thermal switches which are normally closed.

(a) The thermal interlock purchased for the SPEAR3 magnets at SLAC open
at temperature 175◦±5◦F (80◦ ± 3◦C) and reset at 155◦±5◦F (68◦ ± 3◦C).

i. Thermal interlocks are usually tested using an instrumented heating
plate prior to installation on a coil.

(b) Thermal interlocks are always attached to the current carrying portion of
the conductor (inside of the electrical busses) and always on the water
output portion of the hydraulic circuit.

i. In this location, I2R heating is measured directly rather than by ther-
mal conduction from the current carrying portion of the conductor.

ii. The placement of the interlock on the water output portion of the hy-
draulic circuit ensures that excessive temperature rise due to reduced
water flow caused by partial or complete blockage of the hydrualic
circuit is sensed.

(c) One thermal interlock is required per water circuit. If an individual coil
is fabricated with N water circuits, N thermal switches are required per
coil.
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Figure 5 Interlock and Bussing Connections

(d) The dipole will have at least 2N thermal interlocks, a quadrupole at least
4N thermal interlocks and a sextupole at least 6N thermal interlocks.
These interlocks are connected in series to a terminal block attached to
the yoke on each magnet. The series connected interlocks are connected
to the power supply and wired so that the power supply shuts down and
cannot be turned on when the circuit is open.

(e) When several magnets are connected in series, the series connected inter-
locks for the individual magnets are connected in series and are connected
to the power supply and wired so that the power supply shuts down and
cannot be turned on when the circuit is open.

(f) Thermal conducting compound is placed between the thermal switch and
its mounting plate.

2. Electrical connections between the solid bus bars and the blocks brazed to the
coil conductors must be made reliably.

(a) Loose joints constitute a high electrical resistance path resulting in local
I2R heating. Heated fasteners expand and further loosen the joint, causing
an unstable situation.
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Figure 6 Hydraulic Connection Practices

i. The mating surfaces of the bus bars and the blocks brazed on the
coils are either coated with an electrically conductive compound or
are silver plated.

ii. The fastener system used to connect the bus bars to the blocks consist
of a bolt, a nut, two flat washers and either a conical or split washer.
The conical or split washers are used to ensure some mechanical stored
energy to prevent the fasteners from loosening.

(b) The busses are secured to the yoke using insulating blocks and fasteners.

i. Securing the busses isolates the mechanical load from the coil leads
and ensures that they are not bent or broken.

Hydraulic Connections

Magnets may or may not be supplied with separate water manifolds. Occasionally,
water manifolds are provided by the user and are attached to the magnet girder to
supply water for several magnets. Fig. 6 illustrates several examples of good hy-
draulic design practice and can be applied to magnets supplied with water manifolds
or for manifolds attached to the magnet girder.

1. Flow Interlocks
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(a) The components of a flow interlock are an orifice plate or a venturi con-
nected to an electrical pressure switch. The pressure switch is normally
closed and opens when it senses a reduced or zero pressure drop due to
reduced or no flow through the hydraulic circuit. The pressure switch
is connected to the magnet power supply and is wired to shut the power
supply off when the switch is open.

(b) The flow interlock is always connected to the output of the return manifold.
An interlock at the input manifold will not detect interrupted flow in the
magnet due to leaks or breaks in coil cooling circuits.

(c) Flow interlocks are usually not attached to individual magnet manifolds
since they are costly.

2. Water Hoses

(a) The water hoses should be at least 1 meter long and assembled from elec-
trically insulating material. Often, water hoses use rubber material filled
with carbon powder. This type of hose is not acceptable since it is slightly
conductive and represents a current loss mechanism resulting in errors in
magnet excitation.

(b) For anticipated long service in radiation environments, the water hoses
should be made from material which can resist radiation damage.

3. Fittings

(a) A quadrupole requires at least eight water hoses, four supply and four re-
turn. A sextupole requires at least twelve. It is very easy to misconnect
the hoses resulting in “deadheading” a circuit. Deadheading a circuit
refers to the error of connecting both ends of the coil hydruaulic circuit
to the same manifold, resulting in no flow. This error occurs quite fre-
quently, especially since magnet hydraulic circuits are often disconnected
and connected repeatedly during testing, magnetic measurements and at
installation.

(b) A means of avoiding deadheading is to use two different size water fittings,
the larger for the return hose and manifold and the smaller for the supply
hose and manifold.

i. Two different size water fittings are often not practical for magnets
wound using small conductors. When the same size fittings are re-
quired, the hoses must be clearly labeled. The hoses may also be
different colors.

ii. Another means of preventing deadheading for coils requiring the same
size fitting is to use right and left handed threads for the connections.
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Figure 7 Power Lead Connections

Although this prevents misconnections, it requires doubling the inven-
tory of different size water fittings.

Power Lead Connections

Power cables are typically constructed from braided copper, heavily insulated and
are fitted with standard terminations. Since power cables are heavy and typically
quite long, the mechanical weight must be transferred to the yoke. Fig. 7 illustrates
some examples of good practice in terminating the bussing in the magnet so that
power leads can be connected safely to the magnet. The magnet busses are securely
connected to the yoke using insulators to prevent the mechanical load from the heavy
cable from stressing the magnet coil components.

Again, as in the bus connections to the magnet coils, the fasteners used to
secure the cable termination to the ends of the busses include split or conical washers
to ensure elastic stored energy and silver plated surfaces to ensure a high conductivity
electrical joint.

Safety

Since magnet testing requires crew presence in the vicinity of powered magnets, per-
sonnel safety rules must be observed. In the US, a facility is not allowed to operate
an accelerator until documentation is supplied and reviewed indicating that all safety
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rules have been observed and all personnel safety devices have been implemented.
The rules for different countries vary. Some of the US electrical personnel safety
rules are reviewed.

1. Coil covers and/or careful taping of all current carrying components is required
to prevent direct personnel contact with any magnet conductor or bus connec-
tion under the following conditions:

(a) IV > 150 V-Amps, I > 30 Amps, V > 130 Volts or when the magnet stored
energy is > 5 joules.

2. Coil covers are recommended for all magnets regardless of their operating con-
dition since it is difficult to audit safety practices when many different magnets
are installed in the typical accelerator and/or beamline.

(a) The coil cover or taping must include the lead ends of the water circuit
fittings which operate at the coil voltage.

(b) Safety rules require that any removable section of a coil cover must be
attached by at least four fasteners.

3. Power cables exceeding 600 Volts must be distributed in separate conduits.

(a) This situation occurs when magnets are connected in power supply strings.
It can often be mitigated by center-tapping the power supply. That is,
the full voltage is split so that the power supply leads are at a ±Vstring

2

potential and one of the leads of the the center magnet in the string is
grounded.

4. All magnet elements designed to operate at ground potential must be connected
to a single ground point. A grounding strap must be connected from this ground
point to the facility ground.

11.2.2 Magnet Tests

Once a magnet has been completed, tests and measurements are made to ensure that
magnets satisfy physics and operation requirements.

Magnetic Measurements

Physics requirements include field quality and excitation reproducibility among mag-
nets of the same family. Performance can be predicted by the precision of the fabri-
cation and assembly of the yoke. Fabrication precision is determined by mechanical
measurements of fabricated parts and comparison with mechanical fabrication tol-
erances. Assembly precision is determined by measuring the displacements and
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rotations of one part of a yoke with respect to the other and comparison with me-
chanical assembly tolerances. Although inspection of parts is required to ensure that
fabrication tolerances are met, assembly precision can be far more difficult to mea-
sure. It involves measurement of displacements along three different coordinate axes
and rotations about those same three axes of the yoke elements which dominate mag-
net performance. The yoke elements dominating magnet performance are the poles
which often do not have convenient datum surfaces for mechanical measurements. A
far better means to ensure that physics requirements are met is to perform magnetic
measurements. Typically, the effort to make magnetic measurements is dominated
by the setup. This includes gathering the elements, power supplies, water cooling
infrastructure and the measurement coils and data acquisition system. Setup also in-
cludes installing and connecting the magnet to the power supply and hydraulic circuit
and installing the measurement coil. Once the setup is completed, the actual mea-
surement can be performed quite quickly for individual magnets. The effort required
for repeated measurements of other magnet in the same family is dominated by the
removal of one magnet and installation of a new magnet. Again, the measurement
time is small in comparison to the setup. A final magnetic measurement of all the
magnets can quickly reveal the results of yoke assembly errors. It will also quickly
reveal any coil fabrication errors such as turn to turn shorts or errors in the number
of turns which were overlooked during the individual coil testing process.

Electrical and Hydraulic Tests and Measurements

Electrical and hydraulic tests are similar to those required for individual coils. Re-
sistance and hydraulic measurements should be compared with computed values.

1. Resistance Test

(a) This measurement should be performed with a bridge connected across the
power lead terminals.

2. Hipot Test

(a) Normally, the completed magnet, including installed thermal interlocks, is
tested.

i. The interlock wires are insulated from the housing. The interlock in-
sulation is not designed for high voltage. Therefore, it is recommended
that the interlock wires and the wiring to the interlock manifold be
connected to the coil circuit prior to performing the high voltage test.

(b) Both power supply connection leads are connected to a voltage source
while the yoke is grounded.

(c) Maximum voltage ≤ 2× Voperating + 1 kV.
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(d) Maximum leakage current must be ≤ 2 µA at the maximum voltage.

3. Hydraulic Test

(a) Measure the total water flow across the water manifolds at the anticipated
operating pressure differential ∆p. The water temperature at the time of
the water flow test should be recorded.

11.3 Chapter Closure

A completed magnet requires more than the fabrication and assembly of the major
components. Various components must be designed, fabricated and assembled in
order to distribute the current from coil to coil, terminate power leads, distribute
the cooling water and provide for equipment safety. Other components must be
designed, fabricated and assembled to ensure personnel safety. Personnel safety
issues are easily overlooked, but can be crucial to facility operation. Certification for
facility operation cannot be granted without documented assurance that all personnel
safety devices have been installed and implemented.

Tests are performed and measurements are made of the individual magnet
components. A list of final tests and measurements of the assembled magnet is
presented to ensure that the completed magnet will satisfy physic, operational and
safety needs. This chapter lists and describes the design, fabrication, assembly and
tests for a completed magnet.
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Chapter 12

MAGNET INSTALLATION AND ALIGNMENT

12.1 Introduction

Accelerator lattice and beam transport magnet locations are defined in terms of the
locations and acceptable errors of the local magnet coordinate system in relation to
a lattice or transport global coordinate system. In order to ensure accurate magnet
alignment, it is necessary to clearly define the magnet local coordinate system. The
local magnet coordinate transverse and vertical (x and y) axes origins are centered
in the magnet gaps and the longitudinal (z) axis origin is located on a line through
the transverse and vertical center of the magnet gap midway between the front and
back faces of the magnet yoke. Physics specifications for magnet installation require
the origins of these magnet axes be aligned within some specified tolerance in the
lattice or transport system u, v, w coordinate system with the magnet vertical (y)
axis aligned with the lattice v coordinate and the longitudinal (z) axis rotated in
the direction prescribed by the lattice shape. Typical accelerator tolerances require
magnets to be aligned transversely and vertically (∆x and ∆y) within ≤ ±200 µm of
their ideal positions. Typical magnet longitudinal alignment tolerances are a more
generous ∆z ≤ ±500 µm of their ideal positions. Roll tolerance (rotation about the
z or longitunal axis) is typically ≤ ±0.5 mrad and pitch and yaw tolerance (rota-
tion about the x and y axes, respectively) is typically ≤ ±1.0 mrad. With modern
optical alignment and laser interferometry equipment coupled to computer data ac-
quisition/reduction systems, measurement of the locations of accelerator components
within these tolerances is easily accomplished. Magnet alignment within these tol-
erances either requires means for making precise adjustments after installation or
requires precise fabrication of magnet support structures. Some of the advantages
and disadvantages of an adjustable alignment technique employing kinematically in-
stalled struts are discussed. The adjustable system is compared with a system where
the support structure is designed to ensure correct alignment at installation.

Since the charged particle beams in a lattice or beam transport system traverse
through the magnet gaps and since vacuum chambers occupy this space, optical
targets used for magnet alignment cannot be placed at the local magnet coordinate
system origin. Because of this, means for identifying the location of external magnet
features with respect to the local magnet coordinate system is crucial to magnet
alignment measurement and/or adjustment. The measurement of the coordinates
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of external features used for optical alignment is called fiducialization. Different
means for the fiducialization of magnets have been employed. Two fundamentally
different fiducialization techniques rely either on design or on measurements. The
two techniques are arbitrarily described as the generic and pedigreed techniques.

This chapter is written to summarize techniques for magnet installation and
alignment and to describe means for magnet fiducialization. Different mechanical
magnet and girder support systems along with survey and alignment techniques are
described in a chapter written by Dr. Robert Ruland in ref. [4]. The type of magnet
fiducialization consistent with the means for support and/or alignment are discussed.
Although earlier chapters discussed designs for magnet yokes independent of means
for installation and/or alignment, installation/alignment issues are important for the
design of magnet yoke external features and should be integrated into the design at
the earliest possible design stage.

12.2 Magnet Support

The choice of magnet support systems depends on the needs of the accelerator and/or
the limitations of the fabrication processes or alignment capabilities. The support
systems described in this section are those for the installation of magnets on girders,
which make up major accelerator lattice subassemblies. Local coordinate system axes
are associated with the girder subassemblies. Eventually, these girder subassemblies
need to be installed and the girder subassembly coordinate axes need to be aligned
with respect to the global lattice coordinate system.

12.2.1 Predetermined Alignment

Support systems, currently favored by many synchrotron light facilities (especially
in Europe), respond to the need for experimental photon line stability. The most
common source of photon instability is resonant coupling with sources of environ-
mental vibrations affecting the electron beam orbit. Small amplitude electron beam
excursions are caused by mechanical motions of the synchrotron magnets. Syn-
chrotron magnets move as a resonant response to environmental vibrations whose
largest amplitude components are in the low frequency region of the vibration spec-
trum. Sources of low frequency environmental vibrations are motors, pumps, water
flow in cooling pipes, traffic on nearby roads, etc. Therefore, magnet support sys-
tems whose resonant frequency is � 25 Hz and/or is critically damped are favored for
heavy magnet support systems. (Damping of support structures is often impractical
since it requires the use of viscoelastic material which are mechanically unstable.)

Since the natural frequency of a mechanical structure is ∝
√

k
m

where k and m are

the spring constant of the support and the mass of the load, respectively, it is im-
portant that k be made as large as possible (a stiff structure). The mass of the
magnet cannot be easily adjusted since it is usually determined by magnetic design
requirements limiting the minimum size of the yoke carrying the magnetic flux.

The predetermined alignment system places the magnets directly onto rails
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machined on a support girder. This is the stiffest support since all the load is carried
over a wide area across a very short support compression member. It relies on
the manufacture of the magnet support structure to precise mechanical tolerances.
Magnet installation using this technique is usually limited to beamlines ≤ 3 meters.
Support structures longer than this are difficult to fabricate to the required mechanical
precision because of machining limitations. The support structure design must be
sufficiently stiff so that elastic deflection under magnet load does not exceed the
alignment tolerance. Because of these limitations, the predetermined alignment
system is usually limited to groups of quadrupoles and/or sextupoles aligned along a
straight line between dipole magnets in a synchrotron lattice. Fig. 1 illustrates the
support of a quadrupole and sextupole using the predetermined alignment technique.
Some of the features of this system and the means of fiducialization are listed as
follows:

1. The fabricated substand must be perfectly level prior to installation of the
magnets.

2. The laminations for different magnet types are approximately the same height
so that the combined height of the substand and the lamination centerline can
be made identical.

3. A center slot is provided in the laminations for the insertion of alignment bars
directly below the centerlines keyed to slots in the support bars on the required
centerline. This slot also provides means for centering an alignment target
directly over the magnet centerlines.

4. The target is placed so that its center is over the x = 0 and z = 0 coordinate
origins. The y coordinate value for each magnet type is fixed.

5. The lamination is designed so that the top and bottom are parallel to the
horizontal axes of the magnets.

6. The assembled magnet roll (rotation about the local z axis) and pitch (rotation
about the local x axis) can be measured with precision levels placed on the tops
of the magnets.

12.2.2 Generic Fiducialization

The magnet fiducials described in the previous section for the predetermined align-
ment system is an example of generic fiducialization. The local x, y and z coordinates
of the center of the alignment target are determined by the design of the lamination
and the yoke and are identical for all magnets in a family. In this example, a single
target defines the x, y and z coordinate origins. The pitch and roll, rotations about
the x and z local coordinate axes, are measured with levels placed across the width
and along the length of the top of the magnets. The yaw, rotation about the y local
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Figure 1 Predetermined Alignment Supports

coordinate axis, is determined by the keys on the magnet base and is not measured.
If verification of the yaw is desired, two targets can be placed on the top of the magnet
using keys for alignment along the longitudinal magnet axis.

12.2.3 Adjusted Alignment

For some accelerator applications, adjusted alignment is required. This is true when
the bend magnets and the multipole magnets are installed on the same girder. For
these applications, a straight line between the anticipated beam orbits through the
installed and aligned bend magnets establish a straight datum axis for the align-
ment of the quadrupoles and sextupoles installed between them. The first adjusted
alignment system developed for the Advanced Light Source (ALS) and subsequently
used for the PEPII Low Energy Ring magnets and the SPEAR3 magnet and vacuum
chamber supports employed a six strut support system. The supports using six
struts are kinematic with the number of struts matching the six degrees of freedom,
translation in the x, y and z local coordinate directions and rotations about the x,
y and z local coordinate axes. This kinematic system requires all six struts and be-
comes mechanically unstable when any single support is omitted. Fig. 2 illustrates
an example of the locations of the six struts providing adjustments in all six degrees
of freedom.

In the following calculations, it is assumed that the rotations occur at an axis
origin translated to the bottom of the magnet at the transverse and longitudinal
center of the magnet so that the translations due to the rotations use the vertical
distance between the bottom of the magnet and the magnet center as a “moment
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Figure 2 Six Strut Supports

arm”. The expressions for the six motions are

Pitch = θx =
s1
lz

− s2 + s3
2lz

Y aw = θy = −s4
lx

+
s5
lx

Roll = θz =
s2
lx

− s3
lx
,

∆x = s6 + lyθ = s6 + ly

(
s2
lx

− s3
lx

)

∆y =
s1 + s2 + s3

3

∆z =
s4 + s5

2
− lyθx =

s4 + s5
2

− ly

(
s1
lz

− s2 + s3
2lz

)
.

The expressions for the rotations are rewritten as follows so that all the perturbations
have length units;
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lyθx =
lys1
lz

− ly (s2 + s3)

2lz

lyθy = − lys4
lx

+
lys5
lx

lyθz =
lys2
lx

− lys3
lx

.

The six equations in six unknowns can be written more conveniently in matrix form;
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.

This simple matrix equation can be rewritten;

(M) (s) = (∆) ,

where (M) is a 6× 6 square matric with unitless values and (s) and (∆) are six term
column matrices with values having units of length.

The error deflections and rotations are measured and the struts are adjusted
to remove the errors. The matrix expression for the required strut adjustements is;

(s) = − (M)−1 (∆) ,

where (s) is the six element column matrix whose values are the required adjustments.
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Figure 3 Adjustable Struts

12.2.4 Adjustable Struts

The adjustable strut used by ALS and PEPII Low Energy Ring magnets is illustrated
in fig. 3. Each strut consists of a barrel, two rod ends and two locking collars. The
spherical bearings in each rod end allows the ends of the supports to rotate. The
rotation is required for the pinned end of a kinematic support. The rod ends are both
right hand thread, but one has a fine thread and the other has a coarse thread. Each
rotation of the barrel adjusts the strut lengths by an amount equal to the difference
in the pitches of the two threads. The adjustments are much more precise than a
turnbuckle, employing right and left hand threaded rod ends whose adjustment is the
sum of the pitches. The locking collars provide sufficient friction to reduce backlash
and to ensure that unwanted adjustments are avoided. With the locking collars
tightened, it takes a great deal of effort to rotate the threaded barrel.

Natural Frequencies

One of the reasons that newer synchrotron light source accelerators presently avoid
struts for installing and aligning magnets is the relatively low natural frequencies
of strut supported magnet structures. If struts are used to support magnets, the
engineer/designer must have some means of estimating the the structure natural fre-
quencies. Although many computer programs are available for performing dynamic
analysis of elastic systems, understanding the analytic expressions for the estimation
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of natural frequencies is useful for determining the sensitivities of the natural fre-
quencies to mechanical parameters. If magnets are installed on rafts, the rafts must
be installed and aligned. Although predetermined alignment can be used for magnet
supports, it is not practical for raft adjustments. Raft supports usually incorporate
adjustable struts. An example for estimating the natural frequencies for a simple
kinematically supported system uses the strut supported magnet structure to develop
the relationships. This example can be used as a guideline for estimating the natural
frequencies of larger raft structures and/or to design the raft struts with adequate
stiffness to avoid resonances with low frequency mechanical vibration sources. The
equations of motion for magnets supported by struts can be written and have the
general form

mẍ = Force

and mIpθ̈ = Torque,

where m and Ip are the mass and polar moment of inertia of the load (the magnet in
this example). A series of equations similar to the equations for computing the strut
adjustments are written. For these calculations, both the rotations and displacements
are computed at a set of coordinate axes translated from the magnet center to a point
on the center of the bottom of the magnet. The resulting motion equations have a
similar form to the displacement equations developed earlier. The rotation equations
are

mIxxθ̈x = lzks1 − lz

(
ks2 + ks3

2

)
,

mIyyθ̈y = −lxks4 + lxks5,

mIzz θ̈z = lxks2 − lxks3,

where Ixx, Iyy and Izz are the polar moments of inertia about the transverse, vertical
and longitudinal axes, respectively, with an origin at the center of the bottom of the
magnet. The polar moment of inertia for a rectangular prism about a central axis
not at the centroid of the prism is given by;

mIp = m
a2 + b2

12
+my2,

where a and b are the width and height of the prism and y is the vertical distance from
the axis to the centroid of the mass. For this example, assume that the magnet can
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be approximated as a rectangular prism with width, height and length (dimensions
along the x, y and z coordinate axes) = W ,H and L, respectively. Then;

Ixx =
H2 + L2

12
+

(
H

2

)2

Iyy =
W 2 + L2

12

Izz =
H2 +W 2

12
+

(
H

2

)2

.

For more complex shapes, the polar moments of inertia, centroids and areas
are computed by most computer aided design (CAD) programs.

Rewriting the rotation equations;

lyθ̈x =
lylzks1
mIxx

− lylz

(
ks2 + ks3
2mIxx

)

lyθ̈y = − lylxks4
mIyy

+
lylxks5
mIyy

lyθ̈z =
lylxks2
mIzz

− lylxks3
mIzz

.

The translation equations are;

mẍ = ks6 = ks6

mÿ = k
s1 + s2 + s3

3

mz̈ = k
s4 + s5

2
= k

s4 + s5
2

.

The six equations in six unknowns can be written more conveniently in matrix
form;

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
k

m
k

3m

k

3m

k

3m
0 0 0

0 0 0
k

2m

k

2m
0

lylzk

mIxx
− lylzk

2mIxx
− lylzk

2mIxx
0 0 0

0 0 0 − lylxk

mIyy

lylxk

mIyy
0

0
lylxk

mIzz
− lylxk

mIzz
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

s1
s2
s3
s4
s5
s6

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

ẍ
ÿ
z̈

lyθ̈x
lyθ̈y
lyθ̈z

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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The natural frequencies of the strut supported structure in this example are =√
eigenvalues of the square matrix.

12.2.5 Adjustable Support Blocks

Application of the previous example for the computation of the dynamic response
for a strut supported magnet system can demonstrate that low natural frequencies
of a strut supported magnet system can be avoided only by very robust design of
the struts. Operation at ALS revealed that the ALS magnet supports resonated at
low natural frequencies. Because the load was carried across the small area of the
threaded barrel over the length of the strut, the mechanical compliance of the struts
paired with the magnet masses resulted in low natural frequencies. Because of this,
a more rigid support system is described which supports the magnet at three points
with three short supports loaded in compression. Fig. 4 illustrates the kinematic
adjustable support system consisting of three assembled elements, a flat block, and
edge block and a corner block.

1. Small buttons (shims) are assembled and screwed onto each of the blocks.

(a) Shim 1 assembled on the flat block provides adjustment in the vertical (y)
direction.

(b) Shim 2 assembled on the corner block provides adjustment in the vertical
(y) direction.

(c) Shim 3 assembled on the edge block provides adjustment in the vertical
(y) direction.

(d) Shim 4 assembled on the corner block provides adjustment in the longitu-
dinal (z) direction.

(e) Shim 5 assembled on the edge block provides adjustment in the longitudi-
nal (z) direction.

(f) Shim 6 assembled on the corner block provides adjustment in the transverse
(x) direction.

2. The magnet is installed with a set of starting shims and the three displacement
and three rotation errors are measured.

3. The differences in the shim thicknesses are computed by solution of the six
linear equations in six unknowns (matrix inversion).

4. New shims with the required adjusted thicknesses are installed and steps 2 to
4 are repeated.

(a) It is expected that conversion to alignment within the required tolerances
should be achieved with 2 iterations.
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Figure 4 Adjustable Support Blocks

Again, as in the computations for the motions due to the struts, it is assumed
that the rotations occur at an axis origin translated to the bottom of the magnet at
the transverse and longitudinal center of the magnet so that the translations due to
the rotations at the magnet center use the vertical distance between the bottom of
the magnet and the magnet center as a “moment arm”. The displacement equations
are identical to the displacement equations written for the strut system. Although
the location of shim 6 is not centered along the centerline as in the strut system,
because it is the only adjustment in the x direction, it does not introduce a rotation
around the y axis.

Since the error deflections and rotations are measured, the button thicknesses
must be adjusted to remove the errors. The matrix expression for the required button
thickness adjustments is

(s) = − (M)−1 (∆) ,

where (M) is an identical matrix as used for the six struts and (s) is the six element
column matrix whose values are the required changes in the button thicknesses.

Generic fiducialization can be employed for a magnet installed and aligned
using a strut adjustable or block adjustable support system. However, it requires at
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least two optical targets in addition to the transverse and longitudinal levels. Two
optical targets, at least one located at the x = z = 0 coordinate location at the top
of the magnet with a second located on the same y plane at some fixed separation δ
will establish the yaw or ωy rotation of the magnet.

12.2.6 Pedigreed Fiducialization

Pedigreed fiducialization has been used for the ALS and SPEAR3 magnets. This
method refers to the measurement of fiducial targets installed on individual magnets.
The results of this fiducialization method is a set of target coordinates unique for
each individual magnet. Thus, it requires the maintenance of a large database.

This fiducialization method does not rely on design features of either the yoke
lamination or yoke assembly. Its precision is limited by measurement precision of
the instrument used to measure the coordinates and does not rely on mechanical
fabrication or assembly tolerances. It is especially useful when optical lines of sight
for alignment are congested or limited since it allows the location of fiducial targets
on any arbitrary surface as well as the flat magnet top surface. This method is
more difficult and expensive than the generic fiducialiation technique. It requires
careful definition of the datum coordinate system according to conventions used in
mechanical metrology. It also requires a three dimensional coordinate measurement
system robust enough to support the weight and large enough to measure the max-
imum span of the fiducialized magnet. Large coordinate measurement machines
(CMM’s) have been employed in the past. However, it is also possible to employ a
laser interferometer measurement system as a portable CMM.

Briefly, the process for pedigreed fiducialization is to measure the three di-
mensional Cartesian coordinates, in the CMM coordinate system, of features on the
magnet, devices installed in the magnet gap and the fiducial targets. The coordi-
nates of the magnet features and the devices are then used to define the coordinate
system of the magnet. The final step is to mathematically transform the fiducial
target coordinates by rigid body translations and rotations to the coordinate system
of the magnet. An example of the fiducialization of a quadrupole magnet, shown in
fig. 5, is presented as an illustration of the process. Metrology practices require that
coordinate systems be defined in three steps by carefully defining a principal plane,
a principal line on that plane, and a principal point on that line. The following
measurement and computation steps reflect this rigid practice.

1. A machined cylinder with radius < h (pole radius) is placed in the magnet gap
with a split sleeve with radius = h in contact with the upper two poles.

(a) Because of inevitable small fabrication and/or assembly errors, a machined
cylinder with radius = h may not fit in the magnet aperture.

2. In the Coordinate Measuring Machine (u, v, w) coordinate system, the follow-
ing measurements are made.
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Figure 5 Quadrupole “Pedigreed” Fiducialization

(a) Several points on the top plane of the magnet yoke.

(b) Several points on the front face of the magnet yoke.

(c) Several points on the back face of the magnet yoke.

(d) Several points on the surface of the cylinder.

(e) The (u, v, w) coordinates of the centers of each of the fiducial targets.

i. Three fiducial targets are required to fully and uniquely describe the
magnet coordinate origin. Four targets are usually employed for re-
dundancy and to protect against having to repeat the measurements
if one target is damaged. Often, more than four targets are installed
to provide more flexibility for viewing the targets with optical or laser
instruments in the congested accelerator environment.

ii. If the fiducial targets are balls, several measurements are needed in
order to compute the least square fit to a sphere.

3. Computations using the results of 2a, 2b, 2c and 2d are used to establish the
magnet (x, y, z) coordinate system.

(a) A least square fit of the measurements on top of the magnet yoke estab-
lishes a plane parallel to the principal magnet plane.

(b) A least square fit of the measurements on front face of the magnet yoke
establishes the front face plane of the magnet.

(c) A least square fit of the measurements on back face of the magnet yoke
establishes the back face plane of the magnet.
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(d) A least square fit of the measurements on surface of the cylinder establishes
a magnet axis.

(e) The point midway between the intersection of the front face plane and
the back face plane with the magnet axis establishes the origin of the
coordinate system, (x, y, z) = (0, 0, 0).

(f) The plane established in step 3a is translated parallel to itself to coincide
with the (x, y, z) = (0, 0, 0) coordinate origin. This is the magnet
principal plane.

(g) The perpendicular projection of the cylinder axis, established in step 3d,
on the principal plane is the magnet z coordinate axis.

i. Ideally, the cylinder axis will lie in the plane. Actually, small errors
due to the cylinder contact at high points on the poles of the assembled
yoke result in the axis intersecting the plane at a small angle.

(h) The line perpendicular to the principal plane at the coordinate origin is
the magnet y coordinate axis.

(i) The line perpendicular to both the y and z coordinate directions with the
positive direction established by the right hand rule for the vector cross
product,−→x = −→y ×−→z at the coordinate origin is the magnet x coordinate
axis.

4. The fiducial ball (x, y, z) coordinates are computed by rigid body translation
and rotation of the (u, v, w) fiducial ball coordinates.

12.3 Chapter Closure

Magnet design is not complete until means for installation/alignment are integrated
with the design. It is extremely difficult to retrofit support points and alignment fea-
tures into a magnet designed and built ignoring these needs. This chapter describes
some of the means used in the past for magnet support, installation, fiducialization
and alignment. The examples illustrate some of the design features which need to
be integrated into the magnet design. These descriptions also illustrate some of the
strengths and weaknesses of the various installation/alignment techniques and allows
informed decisions to be made regarding some of the choices. Computations for calcu-
lating the adjustments required for alignment after translational and rotational errors
have been measured are described. Other computations illustrate that mechanical
natural frequencies can be estimated without employing complex computer codes.
Parameters in the algorithms employed for the estimation of natural frequencies can
be adjusted to improve the behavior of the support system. The sensitivities of the
values of the natural frequencies to these parameters can be evaluated. Computer
codes can then be employed to refine the estimates.



Solutions

Solution 1.1

∣∣∣−→F ∣∣∣ = coulombs× m

sec
× Tesla,

=
coulombs

sec
×m× Webers

m2
,

= Amps×m× V sec

m2
=

Watt sec

meter
,

=
joules

m
=

N m

m
= N.

Solution 1.2

Because the field from one current is perpendicular to the first current and parallel
to the second current. The expression for the force magnitude is,∣∣∣−→F ∣∣∣ =

∣∣∣e−→v ×−→
B
∣∣∣ ,

= ev
µ0I

2πd
sin 0 = 0.

Solution 1.3

The force per unit length is given by

−→
F

length
=

−→
I ×−→

B ,

F

length
=

∣∣∣−→I ×−→
B
∣∣∣ = I1

µ0I2
2πd

=
µ0I1I2
2πd

.

The units for the force per unit length are
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F

length
=

µ0I1I2
2πd

,

=
T m

Amps

Amps2

m
=

Webers

m2
Amps,

=
V Amps sec

m2
=

W sec

m2
=

joules

m2
,

=
N m

m2
=

N

m
.

Solution 2.1

For a real quadrupole,

xy =
352

2
, where x and y have units of mm.

For a skew quadrupole,

answer to be supplied by the student.

Solution 2.3

If the coefficients for the multipole error function is complex, it can be expressed as
the magnitude of the coefficient multiplied by a complex unit vector

F (θ) = |Cn| eiψeinθ,
= |Cn| ei(ψ+nθ).

For a function symmetrical about the pole centerline at θ =
π

2N
,

ReF
( π

N
− θ

)
= −ReF (θ)

and ImF
( π

N
− θ

)
= ImF (θ) .

The real parts of the function, the vector potentials, are opposite sign on each
side of the line of symmetry if the vector potential along the pole centerline is set
at zero. The imaginary parts, the scalar potentials, are the same sign on each side
of the line of symmetry. The student should determine from the ideal flux plots for
some of the generic magnets illustrated in the first part of this chapter that the signs
indicated in this example are correct.

F
( π

N
− θ

)
= |Cn| eiψein(

π
N

−θ),

= |Cn| ei(ψ+
nπ
N

−nθ).
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We know that the “allowed” multipoles must satisfy eq. (2.34) due to rotational
symmetry

nallowed = N (2m+ 1)

nallowedπ

N
=

N (2m+ 1)π

N
= (2m+ 1) π

= odd integer × π.

Therefore;

F
( π

N
− θ

)
= |Cn| ei(ψ+(2m+1)π−nθ)

= |Cn| ei(2m+1)πei(ψ−nθ)

= − |Cn| ei(ψ−nθ).

Symmetry about the pole center requires

Re |Cn| ei(ψ+nθ) = −Re
[− |Cn| ei(ψ−nθ)

]
Im |Cn| ei(ψ+nθ) = Im

[− |Cn| ei(ψ−nθ)
]
.

Equating the real and imaginary parts of the exponential portion of the expressions
and rewriting the expressions for the cosines and sines of the combined angles,

Re
(
ei(ψ+nθ)

)
= cos (ψ + nθ) = cosψ cosnθ − sinψ sinnθ,

−Re
(−ei(ψ−nθ)

)
= cos (ψ − nθ) = cosψ cosnθ + sinψ sinnθ,

Im
(
ei(ψ+nθ)

)
= sin (ψ + nθ) = sinψ cosnθ + cosψ sinnθ,

Im
(−ei(ψ−nθ)

)
= − sin (ψ − nθ) = − sinψ cosnθ + cosψ sinnθ,

which satisfy the required conditions if and only if ψ = 0.

Solution 3.4

Use figures 12 and 13. For the unoptimized case, yc
h

= 0.32 and Bcorner

Bpole
≈ 1.63.

Bpole = B′h = 12 × 0.05 = 0.6 T . yc = 0.32 × 50 = 16 mm. The width between
adjacent poles is 32 mm. Therefore, a coil whose width is < 32 mm can be installed
between the poles. The maximum pole tip field at the edge of the pole is Bcorner =
1.63 × 0.6 = 0.98 T . The calculations for the optimized pole tip is left for the
student.

Solution 4.1

For the sextupole (n = 3) error
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εl =
∆l

l
=

5 mm.

500 mm.
= 0.01∣∣∣∣B3

B2

∣∣∣∣
h

=
n

N
∆Cn (l) = i εl

n

N

∆Cn (l)

iεl
where

n = 3
N = 2

From the table in 99,

n

N

∆Cn (l)

iεl
= −2.22× 10−1.

Therefore,

∣∣∣∣B3

B2

∣∣∣∣
h

=
n

N
∆Cn (l) = i× 0.01× 2.22× 10−1,

= i 2.22× 10−3,

and

∣∣∣∣B3

B2

∣∣∣∣
r0

=

∣∣∣∣B3

B2

∣∣∣∣
h

(r0
h

)n−N

= i 2.22× 10−3

(
40

50

)3−2

= i 1.78× 10−3, a skew sextupole error.

Solution 4.1a For the center shift

∣∣∣∣B1

B2

∣∣∣∣
h

=
n

N
∆Cn (l) = i εl

n

N

∆Cn (l)

iεl
where

n = 1
N = 2

From the table in 99,

n

N

∆Cn (l)

iεl
= 2.83× 10−1.

Therefore, ∣∣∣∣B1

B2

∣∣∣∣
h

=
n

N
∆Cn (l) = i× 0.01× 2.83× 10−1,

= i 2.83× 10−3.
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Since the field is imaginary,

∣∣∣∣B1x

B2

∣∣∣∣
h

= 2.83× 10−3.

From eq.(4.9),

|∆y| = h

∣∣∣∣B1x

B2

∣∣∣∣ = 50 mm× 2.83× 10−3 = 0.14 mm.

Solution 4.1b From 4.3.4, the amplitudes of the coefficients are identical to the
coefficients used to compute the solutions for problems 4.1a and 4.1b. However,
the denominator for the expressions are real and not imaginary. From eq. (4.10),
εa = 0.01 for η = 0.98. Therefore, the amplitude of the sextupole error field is the
same as computed for problem 4.1a, but is real. The dipole field is real, therefore∣∣∣B1y

B2

∣∣∣
h
= 2.83× 10−3 and the center displacement is horizontal and |∆x| = 0.14 mm.

Solution 5.3

For the sextupole Bpoletip =
B”h2

2
. Therefore, the sextupole gradient is B” =

2Bpoletip

h2 .
From eq. (5.13), the required excitation is

NI =
B”h3

6ηµ0

=
2Bpoletiph

3

6ηµ0h
2

=
Bpoletiph

3ηµ0

.

Substituting,

NI =
Bpoletip h

3ηµ0

,

=
0.3 T × 0.045 m

3× 0.98× 4π × 10−7
Tm

Amp

,

= 3654 Amps.

The “canonical” current density is

j = 10
Amps

mm2
=

NI

f A
.

Therefore,

A =
NI

f j
,

=
3654 Amps

0.50× 10
Amps

mm2

= 730 mm2.
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From eq. (5.18),

Psext = ρ
B”h3

ηµ0

jlave,

= ρ
2Bpoletip

h2

h3

ηµ0

jlave,

= ρ
2Bpoletiph

ηµ0

jlave,

= 1.86× 10−8 Ω m
2× 0.3 T × 0.045 m

0.98× 4π × 10−7
T m

Amp

10× 106
Amps

m2
0.5 m,

= 2040 Ω Amp2 = 2.04 kW.

Solution 5.4

The conductor length is NLave, where Lave = 50 cm. The resistance per coil can be
computed using

R =
ρL

a
=

ρNLave

a
,

=
1.86× 10−8 Ω m× 20× 0.50 m

20.323× 10−6 m2
,

= 9.15× 10−3 Ω.

The power per coil and for the magnet are

Pcoil = I2R = 2002 Amps2 × 9.15× 10−4 Ω,

= 366.1 W.

Pmagnet = 6Pcoil = 2.20 kW,

which compares with the solution of Problem 5.3.
The length of a hydraulic circuit for a single coil is L = NLave = 20 × .50 =

10 m. Performing the spreadsheet calculation for one water cooling circuit per
coil (d = 3.6 mm, L = 10m, Pcircuit = 0.366 kW ), the flow velocity is approximately

v = 5
m

sec .
and the water temperature rise, ∆T ≈ 1.7◦C. The flow is a bit high

(hydraulic vibrations occur at velocities ≥ 5 m
sec .

) and the temperature rise is small.
A second iteration combines three coils into a single hydraulic circuit. For case
2, (d = 3.6 mm, L = 30m, Pcircuit = 1.098 kW ), the spreadsheet results are shown
in the Excel c© graphs shown in fig. 6. The flow velocity is a more comfortable
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For L=30m., d=3.6mm. and P=1.098kW.  
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Figure 6 Problem 5.4 Hydraulic Calculation Results

v = 2.7 m
sec .

and the water temperature rise, ∆T ≈ 9◦C. For three coils in series, the
sextupole has two water circuits with

q = 0.028
l

sec . per circuit
.

Thus, the total coolant flow required is

qmagnet = 0.056
l

sec .
= 3.36

l

min .
.

Solution 7.1

The maximum field on the horizontal centerline below the edge of the pole is

Bmax = B′x = 5
T

m
× 0.10 m,

= 0.5 T.

Solution 7.1a Magnetic force distribution is proportional to the field distribution
squared. Since the field distribution in a quadrupole is linear, the force distribution
per unit length is parabolic. The force per unit length of the magnet for 0 ≤ x ≤
0.10 m is parabolic with a maximum amplitude of 1 atmosphere = 0.1 MN

m2 . (See
7.2.2).

Solution 7.1b The pressure curve is proportional to B2. Since B is linear, the
pressure curve is parabolic.
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Figure 7 Pressure Distribution

Solution 7.1c The force per unit length of the magnet for 0 ≤ x ≤ 0.10 m is the
integral of the parabolic curve shown in fig. 7. The area under a parabola is

Force

Length
=

∫ w

0

P (x) dx =

∫ w

0

Pmax
x2

w2
dx = Pmax

x3

3w2

∣∣∣∣
w

0

=
Pmaxw

3
,

=
1

3
× 0.1 m× 0.1

MN

m2
= 0.0033

MN

m
.

The attractive force between the two halves of a 0.3 meter long quadrupole
is twice the Force

Length
computed in the previous paragraph since the magnet width is

−0.10 m ≤ x ≤ 0.10 m.

Force = 2× 0.0033
MN

m
× 0.3 m,

= 0.002 MN.

Solution 7.3a The numerical solutions for the subsections of Problem 7.3 carry the
units. It is usually good practice to carry the units through and derive the resulting
units. This practice provides confidence that the computations are being correctly
executed.

Using eq. (5.8) and solving for the field

B =
ηµ0NI

g
,

≈
4π × 10−7 T m

Amp
× 40× 1000 Amps

0.05 m
,

≈ 1.0 T (approximate assuming η ≈ 100%).
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Solution 7.3b Using eq. (7.4)

Ugap =
B2

2µ0

(V )gap ,

=
1.0 T 2

2× 4π × 10−7
T m

Amp

× 0.1 m× 0.5 m× 0.05 m,

= 995 T Amp m2 = 995
Webers

m2
Amps m2,

= 995 V sec Amp = 995 W sec = 995 joules.

In this example problem, it is helpful to carry the units to verify the calcula-
tion.

Solution 7.3c Using eq. (7.5)

Ucoil =
B2

6µ0

(V )coil ,

=
1.0 T 2

6× 4π × 10−7
T m

Amp

× 0.1 m× 0.5 m× 0.05 m,

= 332 joules.

Solution 7.3d The stored energy in the magnet includes the stored energy in the
gap, the two coils, the iron yoke and the three dimensional fringe field. The magnet
fringe field length is approximately a half gap (≈ 0.025 m) at each end. The field
changes approximately linearly along this length. One can estimate the stored energy
in this small volume. However, the fringe field stored energy is small compared to
the stored energy in the gap and coils and adds very little to the total stored energy.

The stored energy in the iron yoke is U = 1
2

∫
BHdv where Hiron = B

µµ0

so

that

U =
1

2

∫
B2

iron

µµ0

dv,

≈ 1

2

B2
iron

µµ0

(V ol)yoke .

For a well designed magnet where the iron is not saturated and µ ≈ 1000. If
the volume of the iron yoke is approximately ten times the volume of the air gap, the
iron stored energy is ≈ 1% of the gap stored energy. Therefore,
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Umagnet ≈ Ugap + 2Ucoil,

≈ 995 + 2× 332 = 1659 joules.

Solution 7.3e Using eq. (7.6)

L =
2U

I2
=

2× 1659

10002
= 3.32× 10−3 h = 3.32 mh.

Using eq. (5.15)

R =
ρL

a
=

ρNLave

a
,

=
1.86× 10−8 Ω m× 40× 1.3 m

100× 10−6 m2
= 0.0097 Ω

Solution 7.3f Using eq.

V = RI + L
dI

dt
,

= RImax sinωt+ LImax
d

dt
sinωt,

= RImax sinωt+ LImaxω cosωt.

Rewriting

V

Vmax
=

RImax

Vmax
sinωt+

LImaxω

Vmax
cosωt,

where

Vmax =

√
(RImax)

2 + (LImaxω)
2.

The frequency at 1 Hz is ω = 2π sec−1 . The amplitude of the inductive voltage
is

Vinductive = LImaxω,

= 3.32× 10−3 h× 1000 Amps× 2π sec−1,

= 3.32× 10−3 joules

Amp2
× 1000 Amps× 2π sec−1,

= 209
joules

Amp sec
= 209

W sec

Amp sec
= 209 V.
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The amplitude of the resistive voltage is

Vresistive = RImax = 1000 Amps× 0.0097 Ω = 9.7 V.

Therefore, the maximum voltage is

Vmax =

√
(9.7)2 + (209)2 = 209.2 V.

The expression for the normalized voltage can be rewritten

V

Vmax
=

LImaxω

Vmax
cosωt+

RImax

Vmax
sinωt,

= sinA cosωt+ cosA sinωt = sin (A+ ωt) .

But tanA =
sinA

cosA
=

LImaxω

Vmax

RImax

Vmax

=
Lω

R
,

and A = tan−1 Lω

R
.

The expression for the voltage is

V =

√
(RImax)

2 + (LImaxω)
2 sin (A+ ωt) ,

and the voltage must lead the current by an angle

A = tan−1 Lω

R
= tan−1

3.32× 10−3 joules

Amp2
× 2π sec−1

0.0097 Ω
,

= tan−1 2.15

W sec

Amp2
sec−1

Ω
= tan−1 2.15

Ω

Ω
= 1.135 rad = 65◦.

Solution 7.4

Consider a dipole with half gap h = 25 mm with a vacuum chamber whose horizontal
surfaces has a thickness of t = 3 mm and halfwidth b = 50 mm, the skin depth δ is

δ =

√
2

ω µ0 σ
,
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where ω = 2 π f and f is the frequency in Hz (sec−1). Consider the range of
frequency 1 ≤ f ≤ 60 Hz. (Because of magnet inductance, only small magnets can

be cycled at 60 Hz.) For stainless steel
(
σ = 1

ρ
= 1

70×10−8Ω m

)
, the skin depth at the

minimum frequency is

δ =

√
2

2π (sec−1)× 4π × 10−7 T m
Amp

× 1
70×10−8 Ω m

,

=

√
0.18 Amp Ω m sec

T m
= 0.42

√
Amp Ω m sec

Weber
m2 m

,

= 0.42

√
V olt m sec
V olt sec

m2 m
= 0.420.m.

The normalized half width of the plate is β = b
δ
= 0.050 m

0.42 m
= 0.119. The

normalized plate thickness is τ = t
h
= 3 mm

25 mm
= 0.12. The maximum attenuation at

the center of the magnet given by eq. (7.40) is

Ba

B0
=

1

1− τ

[
1− τ

coshβ cosβ − i sinhβ sinβ

cosh2 β cos2 β + sinh2 β sin2 β

]

=
1

1− 0.12

[
1− 0.12

cosh 0.119 cos 0.119− i sinh 0.119 sin 0.119

cosh2 0.119 cos2 0.119 + sinh2 0.119 sin2 0.119

]

=
1

1− 0.12

[
1− 0.12

1− 0.142 i

0.9999 + 0.0002

]
.

Re
Ba

B0
≈ 1 Im

Ba

B0
≈

Solution 8.1

The summary table for the quadrupole is shown in fig. 8. The column for the sen-
sitivities have values normalized to the sensitivity for the fundamental, S2. Neither
the integrated fundamental field,

∫
Br1dz, nor the gradient,

∫
B′dz, are displayed in

this summary table. However, one can compare the computed values with theoretical
values based on the parameters for the magnet

h = 35 mm, N = 124
turns

pole
and Leff ≈ 0.34 m.

One can learn a great deal from the results of the magnetic measurements.
The performance of this magnet, as reflected by the illustrated tabular results, is
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typical of the performance for most well constructed quadrupoles. Note that the
offset of the magnetic center from the mechanical center is < 100 µm. Some of this
amount is real, but a part of it reflects the difficulty of aligning the measurement
coil with its axis precisely along the magnet mechanical axis. Note further that the
amplitudes of the dominant error terms are for multipole indices, 6, 10, 14 and 18, the
“allowed” harmonics. Furthermore, the relative phases of these allowed harmonics
is approximately π

2
. The allowed harmonics are dominated by the design and are

real. Thus they are either in phase or 180◦ out of phase with the fundamental. The
“unallowed” harmonics, those due to mechanical fabrication or assembly errors have
random phases. These random phases are also reflected in small differences from 0◦

and 180◦ for the allowed harmonics.
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Table1:SPECTRUM DISPLAY
(Normalized to the Standard Excitation)

Magnet ID: 34Q-040 polarity: F
File Name: a344081t2
Norm.I(A): 81

n  PHI[n]  Angle  PHI[n]/PHI[2]  Coil Coeffi[n]  B[n]/B[2] Reltative Phase
(*10E-08 V.S) (dgr.) (dgr.)

       u1 394832.933 272.421 2.37400E-2 1.04000E-1 2.46251E-3
1 2800.808 262.755

       u2 16635043.82 1.503 1.00000E+0 1.00000E+0 1.00000E+0
2 178113.857 1.255
3 1287.359 30.481 7.73884E-5 7.60020E-1 5.88170E-5 28.2265
4 767.136 217.461 4.61157E-5 2.45047E+0 1.13005E-4 214.455
5 144.547 90.697 8.68931E-6 1.60306E+0 1.39295E-5 86.9395
6 1135.794 167.022 6.82772E-5 3.39993E+0 2.32138E-4 162.513
7 72.071 159.455 4.33246E-6 3.22454E+0 1.39702E-5 154.1945
8 136.585 148.144 8.21070E-6 5.50157E+0 4.51717E-5 142.132
9 88.034 140.554 5.29208E-6 6.02694E+0 3.18950E-5 133.7905

10 1101.983 183.637 6.62447E-5 9.07477E+0 6.01156E-4 176.122
11 54.699 194.001 3.28819E-6 1.06309E+1 3.49563E-5 185.7345
12 54.741 198.185 3.29072E-6 1.48552E+1 4.88844E-5 189.167
13 48.542 183.175 2.91806E-6 1.79778E+1 5.24603E-5 173.4055
14 295.898 187.825 1.77877E-5 2.40027E+1 4.26952E-4 177.304
15 35.801 216.841 2.15212E-6 2.94960E+1 6.34789E-5 205.5685
16 34.781 219.539 2.09084E-6 3.82787E+1 8.00346E-5 207.515
17 24.851 215.416 1.49387E-6 4.73399E+1 7.07194E-5 202.6405
18 207.067 192.648 1.24476E-5 6.03298E+1 7.50962E-4 179.121

Gain: 100 Room Temp(℃): 27
3.2
93.4

-0.002 Delta Y(mm): 0.079 Delta R(mm): 0.079
-24160 Relative Drift: -0.065

Operator: LLI,YJLI
Test Time: 6/29/2001 14:39

Reference Radius(cm):
Bucking Ratio:
Delta X(mm):
Drift(*10e-8V.s):

Figure 8 Summary Information from Measurements
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alignment, 317
adjusted alignment, 320, 321
adjustments, 321—323
fiducialization, 328
generic, 320
pedigreed, 329, 330

predetermined alignment, 318—320
support blocks, 326, 327
adjustments, 327

supports
vibration, 318, 323, 326

assembly, 305
bussing, 306, 308—310
topololgy to avoid solenoidal field,
306—308

coil supports, 305
flow interlocks, 310
hydraulic connections, 310, 311
fitting sizes used to avoid dead-
heading circuits, 311

personnel safety, 312
power lead connections
stored energy, 312

thermal switches, 308
Automesh code, 149

boundary conditions and constraints,
152

geometry, 155, 157, 158, 185
example-Collins quadrupole, 158—
162

line boundary, 161
using the spreadsheet, 157

Tape35, 150
textfile input, 150
vector potential edit

dipole, 162, 163, 165
using edit values as boundary con-
ditions, 164, 166—168

average turn length, 129

beam dispersion, 23
beam stiffness, 15
Billen, James, 148
Biot-Savart law, 20
bump magnet, 25, 26

Cauchy-Riemann conditions, 38
satisfied for B* but not for B, 39

Cn z to the nth power, 40, 46
complex constant Cn, 40
coordinate axes, 40
ideal field, 40
magnetic fields calculated from the

function
dipole field, 46
quadrupole field, 47
sextupole field in Cartesian coor-
dinates, 47

sextupole field in polar coordinates,
47

coil design, 125
as related to power distribution ca-

bles, 128
current density, 126, 144, 335, 336
canonical values, 129

magnet power as a function of re-
quirements and current density,
128

power, 126
voltage and current relations, 128

348
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coil fabrication, 287
conductor and insulation, 287
encapsulation, 291
B-stage, 291
cocooning, 291
vacuum impregnation, 292, 294,
295

wet layup, 291
failure modes, 298
finishing, 296
electrical terminations, interlocks
and water fittings, 296, 297

electrical terminations-maximum
current density, 296

manufacturing specifications, 298
quality assurance, 299
electrical measurements and tests,
299

hipot test, 299
hydraulic tests, 299
impulse test, 301—303
null test, 300
resistance measurement, 301

winding, 288, 289
keystoning, 289
mirror image, 290
transitions, 289, 290

colliders, 60
complex extrapolation

as a means of determining the pole
contour, 45

complex variable
function of, 34
scalar potential (imaginary part),
34

vector potential (real part), 34
vector potential (real part)
as applied to magnetic measure-
ments, 214

conformal maps, 51
as applied to the septum quadrupole,

60, 62

as used in the Poisson code, 167,
170, 172, 175

dipole optimization, 176
optimized dipole mapped into the
quadrupole, 177—179

optimized dipole results, 179
other uses of the vector potential
boundary, 178, 180—183

vector potential boundary condi-
tion, 169, 172—174, 185

dipole to gradient magnet map, 54
dipole to quadrupole map, 52
dipole to sextupole map, 53
gradient magnet to dipole map, 54
mapping functions, 52
quadrupole to dipole map, 52
quadrupole to dipole maps, 186
sextupole to dipole map, 53

continuity
parallel H field, 114
perpendicular B field, 34

corrector, 19, 20, 24, 25
current density, 126

for convectively cooled coils, 128
for water cooled coils, 129

cycled magnets, 192, 210, 340

dipole magnet, 20
cosine wound coil, 120, 121
force direction, 22
gradient dipole, 17, 22
beam orbit, 274, 275, 284, 285
conformal map, 71, 76
yoke fabrication, 274—277, 279—
281

PEPII dipole, 17

eddy currents, 26, 27
field amplification, 201
field attenuation, 193, 198, 210, 341
due to semi-infinite vertical plates,
198
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in a closed rectangular metallic
vacuum chamber, 200

in a semi-infinite plate, 194
efficiency, 101, 115
equipotentials, 40

curvilinear squares, 40
dipole scalar and vector equipoten-

tials, 41
quadrupole scalar and vector equipo-

tentials, 42
scalar equipotentials as boundary

conditions, 40
sextupole scalar and vector equipo-

tentials, 44
polar coordinates, 42

vector equipotentials as flux lines,
40

excitation, 113
dipole, 116, 210, 338
cosine distribution, 120

efficiency, 116
quadrupole, 122, 185, 234
cosine distribution, 124
transfer function, 234

reproducibility, 102
sextupole, 125, 234
transfer function, 234

field uniformity, 64, 85
dipole uniformity, 186
graphical presentation, 66
optimization procedure, 66
optimized, 65
pole overhang factor, 65
unoptimized, 65

gradient magnet - mapping an ex-
isting optimized pole, 74

gradient magnet uniformity
conformal mapping spreadsheet,
75

dipole space, 72
quadrupole space, 72

using conformal mapping, 71
quadrupole uniformity, 185
optimized and unoptimized poles,
70, 71

using conformal mapping, 67, 68
Fourier analysis, 216, 230

coefficients, 216
related to Cn’s, 216, 217, 231, 232
related to field components, 217,
218, 233

related to harmonic phases, 217,
231—233

fringe field, 26, 27

H-dipole, 62, 63
Halbach, Klaus, 147
Holsinger, Ron, 147

inductance, 191, 210, 340
installation, 317

supports, 318, 320, 321, 327

Lambertson, Glen
eddy current calculations, 193
septum magnet, 27, 119

Laplace’s equation, 37
function of a complex variable, 35
scalar potential, 35
solution as a function of the com-

plex variable z, 37
solution as a function of vector and

scalar potentials, 38
complex conjugate of the field vec-
tor, 38

vector potential, 35
light source accelerators

ALS, 274
Australian Light Source, 274
SPEAR3, 16, 277

magnetic fields
2D fields in a vacuum, 36
from the function of a complex vari-

able, 36
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in three dimensions, 35
in two dimensions, 35

magnetic force, 21, 31, 331
force on coils, 187
force on poles, 189, 209, 338
one atmosphere pressure, 190
pressure on coils, 189
pressure on poles, 189, 190, 209,

337
magnetic measurements, 213, 313

bucking ratio, 236, 237
integrated voltage, 216, 217
magnet center
quadrupole, 239
sextupole, 239

measurement output, 240
iso-error plots, 240, 242

measurement plan, 235
normalized multipole errors, 237
corrected to required good field
radius, 238

raw data output, 236
relative phases, 234, 235, 247, 342
rotating coil
output voltage, 218, 219

rotating compensated coil, 220, 238,
244

parameters, 221, 222, 245, 342
sensitivities, 221—223, 245, 342

spilldown, 223, 224
as related to the magnetic center,
224—227

system, 227, 228
computer and interfaces, 228
digital integrator, 228, 229
motor, 229
shaft encoder, 228
voltage drift, 229, 230

magnetostriction, 28
Marks, Dr. Neil, 16
Maxwell’s equations

integral form, 114

steady state, 33
Mulhaupt, Dr. Gottfried, 25
multipole errors, 37, 48

error multipoles expressed as fields,
51

systematic error multipoles, 49, 50
dipole errors, 50
quadrupole errors, 50
rotational symmetry, 49
sextupole errors, 50
symmetry about pole center, 56,
332

Taylor’s series of Cn z to the nth
power, 48

multipoles, 36, 40

orthogonal analog model, 57, 84, 85,
333

as applied to a conductor dominated
magnet, 58

as applied to an H dipole, 62
as applied to the window frame mag-

net, 58
orthogonality, 103
othogonal analog model, 186

packing fraction, 127, 129
pancake coil, 62, 126
Pandira code, 147, 149

Outpan.txt, 151
PEPII, 16
permeability

relative permeability of soft mag-
netic material, 114

perturbations, 87
algorithm for the use of coefficients,

89
individual pole designations, 90

lamination sorting to assure sym-
metry of core segments, 97

quadrupole individual pole error co-
efficients, 88
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sextupole individual pole error co-
efficients, 88

two piece quadrupole, 91
assymetry, 92
calculation of mechanical assem-
bly tolerances, 100

coefficient table for different per-
turbations, 99

errors leading the excitation er-
rors, 102

errors leading the multipole field
errors, 102

errors leading to magnet alignment
errors, 100

illustration of assembly error modes,
99

length difference between two halves,
94

orthogonality of error multipole
spectra, 103

Poisson code, 147, 149
documentation, 150
Outpoi.txt, 151
problem flow, 150, 151
Tape35, 151

Poisson’s equation, 36
polarity, 20, 28

alternate definition, 29
corollaries, 29

force directions, 22
magnetostriction, 28

pole contours
contours extrapolated from required

field
gradient magnet example, 45

dipole pole design, 57
gradient magnet
as a part of a larger quadrupole,
46

ideal contours from the scalar po-
tential

quadrupole pole, 56, 332

ideal contours from the scalar po-
tentials, 43

dipole contour, 44
quadrupole pole, 44
sextupole pole, 44

pole design, 57
pole cutoff, 67

horizontal, 70
vertical, 70

power
coil, 127
dipole, 128
quadrupole, 128
sextupole, 128

ProCons, 150
pulsed magnets, 192

quadrupole, 18
cosine wound coil, 123
F quadrupole for positively charged

beams, 23
field distribution, 20
PEPII quadrupole, 18
polarities, 22
skew quadrupole, 24, 25
two-piece, 91
yoke fabrication, 264, 265, 267, 272,

282

real magnets, 43
dipole, 44
quadrupole, 44
sextupole, 44

resistance, 210, 340
resistance, coil, 127

saddle coil, 58
septum magnet

current carrying septum, 26
fringe field, 26, 27, 119

eddy current, 26, 27
Lambertson septum
fringe field, 119
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vertical steering, 27, 28
sextupole, 19

F sextupole for positively charged
beam, 23, 24

field distribution, 20
polarities and field distribution, 23

skew magnets, 43
imaginary constant, 43, 48

sorting, 97
Stoke’s theorem, 114
stored energy, 190, 210, 339
Superfish family of codes, 149

Taylor’s expansion, 48
tests, 313

electrical
hipot, 314
resistance measurement, 314

hydrualic, 315
tolerances, 100—103, 111, 333—335
trim windings, 104

all trim modes
multipole spectra, 107

horizontal steering trim, 106
multipole spectra
sensitivity to required good field
radius, 107

orthogonality with the primary field,
104

sextupole trim winding configura-
tions, 108

skew quadrupole, 19, 20, 106
trim excitations, 109
vertical steering trim, 105

units, 31, 133, 331
as related to magnetic measurements,

235
English, 135—138, 140
MKS, 21, 34, 131, 137, 139, 140
pressure
units for 1 atmosphere, 134

vectors, 20, 33—35, 187, 330
curl, 34
divergence, 34

water cooled coils, 129, 144, 336
flow velocity, 130, 131
maximum recommended value, 135
surface roughness, 135

friction factor, 130
laminar flow, 130
turbulent flow, 130, 131

hydraulic calculations, 137
sensitivities, 141
spreadsheet, 138, 139

pressure drop, 130, 142
convenient values, 134

Reynolds number, 130
kinematic viscosity, 135

temperature rise
maximum recommended value, 135
recommended value for light source
accelerators, 135

volume flow, 134, 136
Wfsplot code, 149
window frame dipole, 58, 59

yoke, 249
2D design, 251, 252
3D design, 252
canonical fringe field lengths, 252
chamfer machining, 257
dipole chamfer, 252—254
quadrupole chamfer, 255, 257
quadrupole fringe field, 254

iron saturation, 249, 251, 252
1010 steel BH curve, 250, 251

laminated
die set, 261
dipole lamination, 263
quadrupole lamination, 263, 265
sextupole lamination, 264
sorting, 260

laminated-fabrication techniques, 261
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electrical grounding, 281
gluing, 264, 266—268, 270, 271
mechanical assembly, 273, 275—
277, 279—281

welding, 271—273
laminations or solid, 258
economics, 260
eddy currents, 259
reproducibility and symmetry, 258


