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1. Introduction

1.1 The Status of Cosmology

1.1.1 Dark Energy

Spectacular advances in observational cosmology have revolutionized our view
of the universe. We now understand that ordinary matter in all its forms makes up
a negligible fraction of the mass of the cosmos: the visible stars and galaxies are an
insignificant foam drifting on a vast ocean of dark energy. This mysterious substance
pervades the vacuum and forces the expansion of the universe to accelerate. No one
knows what it is.

The first sign of dark energy came from measurements of type Ia supernovae,
which are explosions of a white dwarf following accretion of matter from a compan-
ion star. We have a rudimentary understanding of the intrinsic luminosity of these
events, so the discovery that very distant supernovae were unexpectedly dim [1,2]
presented a problem. After eliminating alternative explanations, the authors of [1]
proposed that the most distant supernovae, and the galaxies that contain them,
must be accelerating away from us. This amounts to a modification of the famous
Hubble Law, which states that ‘the recession velocity of a galaxy is proportional to
its distance from us. The supernova observations showed that the expansion rate
of the cosmos must have been different, and indeed smaller, in the past.

This accelerating expansion was a profound shock to most theorists. A universe
full of any sort of known matter and radiation cannot accelerate, any more than
a stone tossed into the air can accelerate upward in flight. A cosmos exploding
outward from the violence of the Big Bang may expand indefinitely, but the universal

attraction of gravity will inevitably slow the expansion. The only way to accomodate
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1 Introduction 2

the observed acceleration was to invoke the infamous cosmological constant, the
‘energy of the vacuum’.

The cosmological constant problem has mythic status among the deep problems
of fundamental physics. Einstein first invoked a constant term in his field equations
to create eternal, stationary cosmological solutions, which he found philosophically
appealing. The added term was necessary to keep the universe from contracting
and collapsing under its own gravitation. Later, faced with Hubble’s observation
that our own universe is expanding, Einstein recanted and called the addition of a
cosmological constant the biggest blunder of his life.

The crisis, however, is not simply that the Einstein equations contain an un-
known constant. The problem is that quantum field theory makes a prediction
about the vacuum energy, and it is nearly impossible to square this prediction with
cosmology. This is very important, because we understand quantum field theory
extremely well in the range of energies accessible to particle accelerators.

Precise predictions are difficult or impossible, but essentially any scheme for
computing the vacuum energy in quantum field theory will give an energy den-
sity pg;fT 2 10® GeV. Typical schemes suggest that in fact pg;fT ~ 10 GeV.
However, although the vacuum energy measured in our universe does dwarf the
energy density of matter, it still amounts to only p}\/ * ~ 1073 eV. The theoretical
prediction exceeds the measured value by more than 120 orders of magnitude!

The cosmological constant problem is thus a deep conflict between the macro-
scopic and the microscopic, and between the two great structures of twentieth-
century physics: general relativity and quantum field theory. We believe we under-
stand each theory separately, but our inability to understand the vacuum energy
proves that we do not understand how to combine them. After decades of effort,
the cosmological constant problem still overshadows every scenario in which gravity
couples to vacuum energy to source accelerating expansion. Even worse, the new
cosmological paradigm requires a gradual transition between stages of acceleration
at utterly different scales, from the cataclysmic stretching of inflation to the gentle
tug of dark energy today, so the problem is more complex and more acute than
ever.

String theory is a theory of quantum gravity: among many other virtues, it
provides a complete and consistent description of the quantization of the gravita-
tional field. Should we not expect string theory to resolve the cosmological constant

problem and predict, or at least accommodate, the observed value?
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Unfortunately, string theory has not provided any means of predicting the
observed vacuum energy, at least not in any conventional sense of prediction. How-
ever, advances in moduli stabilization with fluxes [3,4,5] have provided a method
of accommodating the smallness of the vacuum energy within string theory, i.e. of
constructing string vacua that contain a minuscule amount of dark energy. This is
dramatic progress from the point of view of string theory, but it has not yet shed
any light on the observed universe.

In this work we will not provide a solution to any aspect of the cosmological
constant problem. The issue, however, is powerful and pervasive, and it underlies
all our discussions of moduli stabilization, in Chapter 5, and of string cosmology,
in Chapters 6 and 7. Our only concrete step toward accommodating the cosmolog-
ical constant in string theory is our construction, in Chapter 5, of the first stable
solutions of the weakly-coupled heterotic string with non-vanishing vacuum energy.

The positive sign and small value of this energy remain out of our reach.

1.1.2 Inflation

A second great advance in our knowledge of the large-scale universe comes from
studies of the cosmic microwave background (CMB) radiation. This is the afterglow
of the Big Bang, but it has been redshifted by the subsequent expansion down to
a mere 2.7 K. The CMB is the first ‘light’ available to us: most of its microwave
photons last scattered off matter when the universe first became transparent, when
it was roughly 300,000 years old, so there is no direct way to see farther back using
the electromagnetic spectrum. The CMB photons are pervasive and surprisingly
numerous: at 411 per cubic centimeter, they far outnumber baryons. The discovery
of the CMB by Penzias and Wilson was dramatic evidence for the Big Bang theory,
and the detailed properties of the CMB are now providing essential clues about the
very early universe.

The most surprising thing about the CMB is its uniformity: the fractional
temperature difference between various points on the sky is no more than one part
in 10°. Even before this result was known precisely, the near-uniformity presented
a striking problem for the Big Bang model. Each patch of sky of size roughly
one degree is a region that was in causal contact at the moment that the universe
became transparent: physical signals would have been able to cross this region in

the available time, so causal processes could establish thermal equilibrium. Thus,
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it would not be at all surprising to find that the temperature does not vary within
a patch of size one degree or smaller. Amazingly, it is the entire sky that has a very
nearly uniform temperature! The challenge was to explain why the temperature of
the sky is uniform, and, in a related vein, why the distribution of matter is so nearly
homogeneous and isotropic. Without a causal mechanism to smooth the cosmos,
how could all these regions have contrived to look so similar? Moreover, what could
explain the immense entropy, age, and size of the universe?

The theory of inflation [6] provides a superb answer to all of these questions.
An initial epoch of tremendously violent, accelerated expansion could stretch causal
signals across a gigantic space, smoothing inhomogeneities and establishing causal
relations between widely-separated points. When the positive energy driving this in-
flation decayed to more ordinary quanta, the resulting temperature was very nearly
uniform, with a predictable spectrum of minute temperature anisotropies.

Since its creation, the inflationary scenario has had outstanding explanatory
power. However, the source of much recent excitement is the prospect of testing
the predictions of inflation, particularly the spectrum of temperature anisotropies,
through precision measurements of the CMB [7]. Certain models have already been
ruled out, and there is a limited possibility of confirming the whole scenario by find-
ing traces of gravitational waves in the CMB. This is an irreplaceable opportunity
for contact between inflation and reality: no terrestrial experiment is likely to probe
the energy scales relevant for inflation, so cosmological data is the only means of
testing the theory.

As a theoretical structure, inflation is appealing but incomplete. For example,
many well-studied models require field expectation values larger than the Planck
mass; although this is arguably acceptable even without an ultraviolet completion
for the theory, it would be most reassuring to check this assertion in a full theory
of quantum gravity. Furthermore, inflationary potentials need to be exceptionally
flat, but this is hard to achieve in most settings: various corrections, particularly
terms suppressed by the Planck mass, tend to curve the potential. Thus, a complete
computation of an inflating potential in a theory of quantum gravity, such as string

theory, would be invaluable.
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1.2 Prospects for String Cosmology

String theory and cosmology have much to gain from each other. In the preced-
ing section I have reviewed two of the deep questions of theoretical cosmology, the
nature of the dark energy and the fundamental physics underlying inflation. As a
mathematically consistent theory of quantum gravity, string theory ought perhaps
to have something to offer towards solutions of these puzzles, but no clear answer
has yet emerged.

However, in recent years there has been very significant progress toward theo-
retically satisfying, and experimentally testable, string cosmology. For many years
the most significant barrier to meaningful contact between string theory and cos-
mology has been the moduli problem. Correspondingly, most of the progress in
recent years is due to advances in moduli stabilization, culminating in the first
stable string vacua with positive cosmological constant [5]. We will therefore turn
our attention now to the problems posed by compactification moduli, and then,
in §1.2.2, to the solution to these problems: moduli stabilization with fluxes and

nonperturbative effects.

1.2.1 The Moduli Problem in String Cosmology

A modulus is a massless scalar field, often one which parameterizes the cou-
plings of a field theory or the deformations of a geometry. Geometric moduli are
endemic in string compactifications: the preferred compactification manifolds, most
notably Calabi-Yau spaces, have complicated topology, and admit correspondingly
numerous deformations of the complex structure and of the Kéhler parameters. Be-
fore accounting for the superpotentials arising from fluxes and from nonperturbative
effects, each of these scalars appears with vanishing potential in the four-dimensional
theory. Their couplings are of gravitational strength.

Moduli present several problems for cosmological models. First of all, gravi-
tational experiments place strong constraints on the existence of light scalars with
gravitational interactions. In addition, some moduli, especially the string dilaton
and the compactification volume, affect the couplings of Standard Model fields.
Variations in the Newton constant [8] or in the electromagnetic fine-structure con-
stant [9] are strongly bounded, so once again we find that typicai moduli are incom-
patible with the results of experiment. Taken together, these constraints suggest

that moduli must somehow be removed from any workable model.
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Finally, among the great successes of the Big Bang model, and of early universe
cosmology, are the predictions of Big Bang nucleosynthesis. In the first few minutes
of expansion, protons and neutrons combined to form light nuclei, primarily helium,
but with predictable relative abundances of deuterium and lithium. This provides
a powerful tool for excluding new particles that could disrupt this relatively deli-
cate process of synthesis. Moduli are problematic because they almost inevitably
store energy during inflation, by being displaced from their zero-temperature min-
ima. Unless the moduli acquire rather large masses, this energy causes one of two
problems. If the moduli mass m, is smaller than around 100 MeV, the moduli will
not have decayed by the present day, and the energy they stored during inflation
will overclose the universe. If 100MeV < m, < 30TeV then the moduli will have
decayed, but in the process will have released enough entropy to dilute the products
of nucleosynthesis [10]. Only if all the moduli have masses above 30 TeV can we
maintain the success of nucleosynthesis. Thus, we conclude that in the absence of
a mechanism for generating such masses, models based on string compactifications
are incompatible with cosmological observations.

Of great importance for us will be one particularly dangerous modulus, the
overall compactification volume. In the presence of a positive energy density, this
field develops an instability: it becomes energetically favorable for the internal
space to expand. This lifts the volume modulus, but the result is not a stable
model: instead we find a runaway decompactification.

This observation is significant for cosmological models because both inflation
and the present-day acceleration require positive energy density. These two features,
arguably the most important of the new cosmological paradigm, simply cannot be

achieved in string compactifications without moduli stabilization.

1.2.2 Techniques of Moduli Stabilization

Moduli stabilization is a procedure that generates a potential for the moduli.
This potential is usually required to have a minimum in a reasonable range of field
values. For example, the introduction of a spacetime-filling positive-energy source
creates a potential for the volume modulus whose minimum is at infinite volume.
This actually destabilizes the volume modulus, decompactifying the internal space,

and certainly does not qualify as volume stabilization!
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In order to understand what effects are needed to lift the moduli, it will be
helpful to have a partial classification of the moduli of a string compactification on
a Calabi-Yau threefold. The geometric moduli are the complex structure moduli,
which parameterize the space of choices of complex structure on the manifold, and
the Kéhler moduli, which govern the sizes of even-dimensional cycles. In heterotic
string compactifications and type I or type II compactifications with D-branes,
there will also in general be bundle moduli, which control the deformations of the
corresponding vector bundles. Finally, there can be open string moduli associated
with the locations of D-branes.

In the best-understood setting of type IIB orientifolds, the most numerous
and important moduli are the complex structure and Kéhler moduli. Intuitively,
complex structure moduli control the shapes of cycles, so what is needed is a physical
ingredient that associates an energy cost to changes of shape. Three-form fluxes,
the field strengths of the two-form Neveu-Schwarz and Ramond-Ramond potentials
B;; and Cjyj, provide just such an effect [4]. This flux is integrally quantized, so
inclusion of a real three-form flux amounts to a choice of one integer for each three-
cycle in the internal space. There are actually two real three-form fluxes in the
type 1IB theory, Hs = dBy and F3 = d(C5, and it is useful to form the complex
combination G3 = F3 —1Hj3, where 7 is the axio-dilaton. Turning on generic G-flux
usually fixes all the complex structure moduli and the dilaton. (In certain special
cases such as tori this may not be true.)

Kéhler moduli, in contrast, are not lifted by the inclusion of flux. In fact, they
cannot appear in the perturbative superpotential: the combination of holomorphy
of the superpotential and the shift symmetry [11] of the axion paired with each
volume modulus implies that the superpotential can acquire volume-dependence
only nonperturbatively. We must therefore seek nonperturbative effects that are
sensitive to the volume moduli. Two effects are suitable for this purpose [5]: gaugino
condensation on a stack of D7-branes wrapping a divisor, and Euclidean D3-branes
wrapping a divisor [12]. The former requires a suitably small matter content in the
D7-brane gauge theory, and the latter is possible (in the absence of flux) only if the
divisor satisfies a certain topological condition [12].

We conclude that to achieve complete stabilization of the geometric moduli
[5], one must introduce generic three-form fluxes and verify that every independent

divisor admits either gaugino condensation or Euclidean D3-branes.



1 Introduction 8

1.2.3 Inflationary Models in String Theory

Given a reliable technique for constructing stable string vacua with positive
energy, it is quite easy to imagine concrete inflationary models. Slow-roll inflation
does not require much more than the relaxation of an overdamped scalar field
in a potential with a large positive energy. One therefore needs to search for a
relatively flat potential that interpolates between a high-energy configuration and
one of approximately zero energy. Ideally, quantum corrections to this potential
would be computable and under control. The scale and slope of this potential rather
directly determine the magnitude and the spectral index of the density perturbations
that we see as CMB temperature anisotropies. One might also hope to explain the
very small amplitude of these perturbations, i.e. the near-isotropy of the CMB.

As we will see in Chapter 6, the separation of a D3-brane and an anti-D3-brane
in a warped deformed conifold [13] can provide an interaction potential with appro-
priate properties. This is merely a concrete example, a toy model for string inflation;
it seems quite clear that much more generic models remain to be discovered.

One striking consequence of brane inflation models is the possibility of forming
networks of stable cosmic superstrings [14,15]. The literature on cosmic strings had
largely discounted the possibility of a connection to string theory, in part because
the tensions of ordinary F-strings and D-strings in superstring theory are much
too large to be compatible with observations. However, progress in brane inflation,
particularly in warped models, led to the realization that the strings of string theory
could potentially be cosmic in scale.

Cosmic strings stretch for light-years and are so massive that they bend
starlight, creating distinctive lensing signals. Moreover, they emit a powerful flux
of gravitational radiation, with occasional high-intensity bursts. These metric fluc-
tuations affect the travel time of pulsar signals, so pulsar timing experiments can
be used to put bounds on the cosmic string tension. Lensing surveys and direct
observation of gravitational waves are other promising routes to discovering or rul-
ing out cosmic strings. In the event of a discovery, it is just possible that we could
distinguish a network of F-strings and D-strings from the more conventional cosmic
string scenarios that are unrelated to string theory. This thrilling prospect of direct
contact between string theory and experiment is another important opportunity for

string cosmology.
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1.3 Organization of this Thesis

The organization of this work is as follows. In Chapters 2,3, and 4 we discuss
the dynamics of unfixed moduli in quantum field theory and in string theory, with
emphasis on applications to cosmological model-building. Moduli-stabilizing effects
are not included, because our goal is to understand the evolution of moduli whose
potentials remain approximately flat. In Chapter 5 we develop a technique for
stabilizing moduli in the heterotic string, and we construct the first stabilized,
weakly-coupled heterotic vacua. In Chapter 6 we utilize advances in the stabilization
of type IIB compactifications to build the first models of inflation in stabilized string
vacua. Finally, in Chapter 7 we examine the effects of volume-stabilization on the
inflaton mass in closely-related scenarios of string inflation.

Chapter 2 presents a bouncing cosmology seen by an observer on a moving D3-
brane: this is a universe whose scale factor decreases to a minimum value and then
smoothly re-expands [16]. Singularity theorems usually forbid solutions of this form
[17], so we explain the rather surprising way in which our system circumvents these
theorems. The relevant modulus in this model is the position of the D3-brane along
the radial direction of a warped deformed conifold [13]. This particular modulus
will be lifted in the presence of nonperturbative stabilization of the compactification
volume, a result that will have great importance in Chapters 6 and 7.

In Chapter 3 we consider quantum corrections to the dynamics of a system
of coupled moduli in quantum field theory. Certain particles are light at special
points in moduli space, which often exhibit enhanced symmetry. (For example,
the light fields could be gauge bosons whose mass is large away from the special
points, and in this case the enhanced symmetry would be gauged.) We discover that
quantum production of these light particles traps moving moduli at these points of
enhanced symmetry [18]. This effect, which we call moduli trapping, has a variety
of implications for cosmology. Moduli trapping may ameliorate the cosmological
moduli problem by situating moduli at extrema of their effective potential during
inflation. It can lead to a short period of accelerating expansion, which we call
trapped inflation. The most interesting result is that moving moduli are most
powerfully attracted to the points with the highest degree of symmetry. Given
suitable initial conditions, this could help to explain why our universe exhibits a
relatively large degree of (spontaneously broken) symmetry. Some of the surprising

symmetries of our world might have an explanation in the dynamics of moduli.
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In Chapter 4 we study an interesting special case [19] of the moduli trap-
ping scenario. When the moduli in motion correspond to the relative positions
of D-branes, the quantum effect relevant for moduli trapping is pair-production of
stretched open strings. For slow-moving D-branes this is captured by the analysis
of Chapter 2. However, relativistic D-branes exhibit a tremendously strong trap-
ping effect. We show that the brane trajectory receives strong corrections from
copious production of highly-excited open strings, whose typical oscillator level is
proportional to the square of the rapidity. This purely stringy effect makes rela-
tivistic brane collisions exceptionally inelastic. We trace this surprising effect to
velocity-dependent corrections to the open string mass, which render open strings
between relativistic D-branes surprisingly light. Our analysis has applications to
cosmological scenarios in which branes approach each other at very high speeds:
pair production of open strings could play an unexpectedly strong role in the brane
dynamics.

Next, in Chapter 5, we present a technique for stabilizing the moduli of per-
turbative heterotic string compactifications on Calabi-Yau threefolds [20]. We show
that fractional flux from Wilson lines, in combination with a hidden-sector gaug-
ino condensate [21], generates a potential for the complex structure moduli, Kahler
moduli, and dilaton. This potential has a supersymmetric AdS minimum at moder-
ately weak coupling and large volume. In this way we construct the first stabilized
heterotic string models. Our solutions have a nonvanishing, although negative, cos-
mological constant, so our methods are a step toward controllable de Sitter vacua of
the heterotic string. Our technique circumvents a well-known problem [21] arising
from flux quantization by introducing a Chern-Simons invariant that does not have
an integer quantization condition. The necessary Chern-Simons invariant can arise
naturally from the GUT-breaking Wilson lines that are already present in most
phenomenologically appealing models.

In Chapter 6 we use earlier, fundamental advances [5] in stabilization of type
IIB compactifications to build the first concrete model of inflation in a stabilized
string compactification [22]. Our construction involves a D3-brane moving down a
warped deformed conifold [13] geometry in a Calabi-Yau orientifold stabilized by
fluxes [4] and by nonperturbative effects [5]. Condensation of a brane-antibrane
tachyon ends inflation, so our model is a string embedding of hybrid inflation. One

particularly appealing feature is the possibility of light, stable cosmic strings.
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In Chapter 7 we reconsider the effect of nonperturbative volume stabilization
on inflation [23], and observe that certain geometric shift symmetries constructed
to protect the inflaton mass are broken by threshold corrections [24,25]. We con-
clude that in typical configurations, some degree of fine-tuning is still required.
This presents a mild but relevant challenge for inflationary model-building in such

scenarios.

Note on Collaborative Research

Modern theoretical physics is a science built on collaborations. Most progress
in string theory, in particular, results from the work of small groups, not of individ-
uals in isolation. The unwritten rule governing this system is that each co-author
is expected to contribute in some way to every major aspect of a paper.

I was intimately involved in all the research reported in this dissertation. Fur-
thermore, in each project I was continually involved in the writing and rewriting
of our results. My contributions and those of my collaborators have been woven
together to create complete works, and there is no meaningful way to partition the

finished product.



2. Bouncing Brane Cosmologies

ABSTRACT OF ORIGINAL PAPER

We study the cosmology induced on a brane probing a warped throat region in
a Calabi-Yau compactification of type IIB string theory. For the case of a BPS
D3-brane probing the Klebanov-Strassler warped deformed conifold, the cosmology
described by a suitable brane observer is a bouncing, spatially flat Friedmann-
Robertson-Walker universe with time-varying Newton’s constant, which passes
smoothly from a contracting to an expanding phase. In the Klebanov-Tseytlin
approximation to the Klebanov-Strassler solution the.cosmology would end with
a big crunch singularity. In this sense, the warped deformed conifold provides a
string theory resolution of a spacelike singularity in the brane cosmology. The four-
dimensional effective action appropriate for a brane observer is a simple scalar-tensor
theory of gravity. In this description of the physics, a bounce is possible because the

relevant energy-momentum tensor can classically violate the null energy condition.

2.1 Introduction

There has recently been considerable interest in the properties of string theory
cosmology. A generic feature of general relativistic cosmologies is the presence
of singularities, which is guaranteed under a wide range of circumstances by the
singularity theorems [17]. Since string theory has had great success in providing
physically sensible descriptions of certain timelike singularities in compactification

geometries, one can hope that it will similarly provide insight into the spacelike

This chapter is reprinted from Shamit Kachru and Liam McAllister, “Bouncing Brane Cos-
mologies from Warped String Compactifications,” JHEP 0303 (2003) 018, by permission
of the publisher. (© 2002 by the Journal of High Energy Physics.
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or null singularities which arise in various cosmologies. Proposals in this direction
have appeared in e.g. [26,27,28,29,30,31,32,33,34,35,36,37).

In a slightly different direction, the possibility of localizing models of particle
physics on three-branes in a higher-dimensional bulk geometry has motivated a great
deal of work on brane-world cosmology (see [38,39,40,41,42] and references therein
for various examples). Of particular interest to us will be the “mirage” cosmology
[38] which is experienced by a D3-brane observer as he falls through a bulk string
theory background. In this chapter, we present a simple and concrete example
where such an observer would describe a cosmology which evades the singularity
theorems: his universe is a flat FRW model which smoothly interpolates between a
collapsing phase and an expanding phase.

The background through which the D3-brane moves is a Klebanov-Strassler
(KS) throat region [13] of a IIB Calabi-Yau compactification. Compactifications
including such throats, described in [4], yield models with 4d gravity and a warp
factor which can vary by many orders of magnitude as one moves in the internal
space (as in the proposal of Randall and Sundrum (RS) [43]). The backgrounds
discussed in [4] would also admit, in many cases, some number of wandering D3-
branes. Such a brane can fall down the KS throat and bounce smoothly back
out, as the supergravity background has small curvature everywhere. The induced
cosmology on this probe, as described by an observer who holds particle masses
fized, is a spatially flat Friedmann-Robertson-Walker universe which begins in a
contracting phase, passes smoothly through a minimum scale factor, and then re-
expands.! A D3-brane probe in this background satisfies a “no-force” condition
which makes it possible to control the velocity of the contraction; in addition, the
background can be chosen so that the universe is large in Planck units at the bounce.
For this reason, the calculations which lead the brane observer to see a bounce are
controlled and do not suffer from large stringy or quantum gravity corrections. It
is important to note that in this scenario, the effective 4d Newton’s constant Gy
varies with the scale factor of the universe; this results from the varying overlap of
the graviton wavefunction with the D3-brane.

The KS solution is actually a stringy resolution of the singular Klebanov-

Tseytlin (KT) supergravity solution [45], which ends with a naked singularity in

1A different approach to using the KS model to generate an interesting string theory
cosmology recently appeared in [44].
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the infrared. A brane falling into a Klebanov-Tseytlin throat would therefore un-
dergo a singular big crunch. In this sense, the cosmology we study involves a stringy
resolution of a spacelike singularity, from the point of view of an observer on the
brane.

Although one can describe the cosmological history of these universes using the
behavior of the induced metric along the brane trajectory, it is also interesting to
consider the 4d effective field theory that a brane resident could use to explain his
cosmology. We construct a simple toy model of these cosmologies using a 4d scalar-
tensor theory of gravity. The scalar can be identified with the open string scalar
field @, (corresponding to radial motion down the warped throat) in the Born-
Infeld action for the D3-brane. It is well known that such scalar-tensor theories
can classically violate the null energy condition, making a bounce possible. Related
facts about scalar field theories coupled to gravity have been exploited previously
by Bekenstein and several subsequent authors [46,47,48,49].

The organization of this chapter is as follows. In §2.2 we use the construction
of [4] to study the cosmology on a brane sliding down the KS throat. In §2.3 we
provide a discussion of the effective scalar-tensor theory of gravity a brane theorist
would probably use to explain his observations. We close with some thoughts on
further directions in §2.4.

Several previous authors have investigated the possibility of bounce cosmologies
in scalar-tensor theories and in brane-world models. For FRW models with spherical
spatial sections (k = +1), examples in various contexts have appeared in [46,47,48].
As we were completing this work, other discussions of bounces in brane-world models
appeared in [50,51]. To the best of our knowledge, this chapter provides the first
controlled example in string theory of a bouncing, spatially flat FRW cosmology

with 4d gravity.

2.2 Brane Cosmology in a Warped Calabi-Yau Compactification
2.2.1 The Compactifications

In [52,4,53], warped string compactifications were explored as a means of re-
alizing the scenario of Randall and Sundrum [43] in a string theory context. It

was shown that compactifications of IIB string theory on Calabi-Yau orientifolds
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provide the necessary ingredients. In such models, one derives a tadpole condition

of the form .
1
- = N ———— | H3AF;3. 2.2.
1 Nos D3+ L CIE /X 3N\ F3 (2.2.1)

Here X is the Calabi-Yau manifold, No3 and Np3 count the number of orientifold
planes coming from fixed points of the orientifold action and the number of trans-
verse D3-branes, and Hg, F3 are the NSNS and RR three-form field strengths of
the IIB theory.? In general, the left-hand side of (2.2.1) is nonzero and can be
a reasonably large number, giving rise to the possibility of compactifications with
large numbers of transverse D3-branes or internal flux quanta. Since both of these
lead to nontrivial warping of the metric as a function of the internal coordinates,
(2.2.1) tells us that these Calabi-Yau orientifolds provide a robust setting for finding
warped string compactifications [52,4,53].

We can make this somewhat vague statement much more precise in the example

of the warped deformed conifold. The conifold geometry is defined in C* by
22+ 2+ 22+ 22 =0. (2.2.2)

It is topologically a cone over S? x $3; we will refer to the direction transverse to
the base as the “radial direction” (with small r being close to the tip and large r

being far out along the cone). The deformed conifold geometry
212+ 29% 4 232 + 242 = €2 (2.2.3)

has two nontrivial 3-cycles, the A-cycle S2 which collapses as € — 0, and the dual B-
cycle. Klebanov and Strassler found that the infrared region of the geometry which
is holographically dual to a cascading SU(N + M) x SU(N) N = 1 supersymmetric
gauge theory is precisely a warped version of the deformed conifold geometry, with

nontrivial 3-form fluxes

1 1

and N = kM. In particular, the space (2.2.3) is non-singular and the smooth geom-

etry dual to the IR of the gauge theory reflects the confinement of the Yang-Mills

2 In an F-theory description, the left-hand side of (2.2.1) is replaced by MZXT‘Q, where

X4 is the relevant elliptic Calabi-Yau fourfold.
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theory (with the small parameter ¢ mapping to the exponentially small dynamical
scale of the gauge theory). In a cruder approximation to the physics, Klebanov and
Tseytlin had earlier found a dual gravity description with a naked singularity [45];
this heuristically corresponds to the unresolved singularity in (2.2.2).

In [4], the warped, deformed conifold with flux (2.2.3), (2.2.4) was embedded
in string/F-theory compactifications to 4d. The small r region is as in [13], while
at some large r (in the UV of the dual cascading field theory), the solution is glued
into a Calabi-Yau manifold. The fluxes give rise to a potential which fixes (many
of) the Calabi-Yau moduli (and in particular the € in (2.2.3)), while the fluxes plus
in some cases wandering D3-branes saturate the tadpole condition (2.2.1). If one
considers one of the cases with Np3 > 0, then it is natural to imagine a cosmology
arising on a wandering D3-brane as it falls down towards the tip of the conifold
(2.2.3).

2.2.2 The Klebanov-Strassler Geometry

The KS metric is given by (we use the conventions of [54])
ds? = h=Y2(1)n,, detdz” + hY2(7)ds? (2.2.5)

where ds? is the metric of the deformed conifold,

1 1 T
ds? = — A8k dr? 512 h2(TVi(43)2 4\2
2= 56K (3 dr” + 6]+ cosh(3)[(6°) + (6] 226
) T
+sinh?($)[(g)? + (6%)7])-
Here
g = s § =
V2 V2
&= e+e ,_e+el (2.2.7)
Vi T
P =é
where
81 = —-sin(@l)d(bl, 62 = d01
3 = cos(1)sin(8)dds — sin(y))dbs,
(2.2.8)

e* = sin(vy)sin(02)dds + cos(1)db;
e = di + cos(6;)dp + cos(02)dgs .
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¥ is an angular coordinate which ranges from 0 to 47, while (61, ¢1) and (69, ¢2)
are the conventional coordinates on two S%s. The function K(7) in (2.2.5) is given
by

(sinh(27) — 271)%/3
K =

(7) 21/3ginh(1)

(2.2.9)

Clearly in (2.2.5) 7 plays the role of the “radial” variable in the conifold geometry,
with large 7 corresponding to large 7.

Finally, the function A(7) in (2.2.5) is rather complicated; it is given by the

expression
h(r) = (gsMa')?2*3 3/ 1(r) (2.2.10)
where
°  zcoth(z) -1/, 1/3

It will be useful to note that this reaches a maximum at 7 = 0 and decreases
monotonically as 7 — o0o. There are also nontrivial backgrounds of the NSNS 2-
form and RR 2-form potential; their detailed form will not enter here, but they
are crucial in understanding why the D3-brane propagates with no force in the
background (2.2.5).

Since the form of h(7) will be important in what follows, we take a moment
here to give some limits of the behavior of formulae (2.2.10),(2.2.11)[54]. For very
small 7, one finds I(7) ~ ag + O(7?%), with ag a constant of order 1. In this limit

the complicated metric (2.2.5) simplifies greatly (c.f. equation(67) of [54]):

, 4/3

% —
21/3a(1)/2gsM0/

1 1
Az den+ay 2673 (g, M a’)(§d72 +5(9°)° +(9°)* + ()

+ 17716 + (69)7)
(2.2.12)
This is R3®! times (the small 7 limit of) the deformed conifold. In particular,
the S has fixed radius proportional to /g, M, and so the curvature can be made
arbitrarily small for large g, M. In the opposite limit of large 7, the metric simplies

to Klebanov-Tseytlin form. Introducing the coordinate r via

3 .
r? = M3 (2.2.13)
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_4r
3

and using the asymptotic behavior I(7) ~ 3 x 271/3(7 — 1)e~%, one finds

2 L2/In(r[r,)
ds? —-———r-——da:ndx + = L2 + L2 /In(r [rs)dsa, 2.2.14
- 12 /ln(r/rs) n r2 T (r/rs)dsin ( )

where dsZ,, is the metric on the Einstein manifold T*! and L? = %. This
means that up to logarithmic corrections, the large T behavior gives rise to an AdSs
metric for the z* and 7 directions. This is the expected behavior from the field
theory dual, since large 7 corresponds to the UV, where the theory is approximately

the Klebanov-Witten ' =1 SCFT [55].

2.2.8 Trajectory of a Falling Brane

We will start the D3-brane at some fixed 7 = 7* and send it flying towards 7 = 0
with a small initial proper velocity v in the radial 7 direction. Before describing
the trajectory we will briefly explain our notation. 7 always indicates the radial
coordinate in the KS geometry (2.2.5) and is dimensionless in our conventions. We
will reserve t for proper time (for the infalling brane) and " for %, while £ represents

the coordinate time, in terms of which the metric is

ds* = h(T)_% (—de* + Z dz?) 4 grrdr? + angles (2.2.15)
and thus 5 2 g ?
t _1 1 T
(g8) =MD 7H (1= e () ) - (2.2.16)

To leading order in the velocity we have ( ) ~ h(r)"z.

Proper distance is given by d = [ dr’ gTT , and proper velocity by v = d = Tgig.
The initial values of the position, proper distance, coordinate velocity, and proper
velocity are denoted by 7., d«, 7o and vy, respectively.

The D3-brane trajectory is determined by the Born-Infeld action

Spr = 2}4/d30d§ h(T)~ \/l—h(7)2grr( —) —h(r)7t (2.2.17)

where we have neglected contributions from the U(1) gauge field on the brane. At
leading order in a low-velocity expansion, rewritten in terms of derivatives with

respect to proper time,

Spr = 2l4/d3ad§ h(T) g, 72 (2.2.18)
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where the cancellation of the potential h(7)~! is the realization of the no-force

condition. Conservation of energy then yields

_ 2 0@ 97 (1) (2.2.19)

= Oh(r) g (@)

#(t)?

From the profile of g% it follows that the brane accelerates gradually toward the
tip of the conifold. For large 7 we may use the KT radial coordinate r (2.2.13), in
terms of which (2.2.19) is %2% = 0, which is another expression of the balancing of

gravitational forces and forces due to flux.

2.2.4 The Induced Cosmology

An observer on the brane naturally sees an induced metric
ds%)rane = _dtz + h_l/z (7') (d.’]?% + dmg + dx?;) . (2220)

But given that the brane trajectory is a function 7(¢), (2.2.20) gives rise to a stan-
dard FRW cosmology

ds? = —dt?* + a®(t)(da? + dz} + dz3) (2.2.21)

with a(t) given by
a(t) = h™Y4(r(t)). (2.2.22)

Notice that the graviton wavefunction has a 7-dependent overlap with a brane
located at various points in the metric (2.2.5). This is simply the effect exploited

in [43]. The dimensionless strength of gravity therefore scales according to
GN ()M e ~ W(T(£)) 77 ~ a(t)? (2.2.23)

where Mopen, is the mass of the first oscillating open string mode. A physicist
residing on the brane may choose to fix one of the dimensionful quantities Gy,
Mopen 1N order to set his units of length. Grinstein et al. [56] have shown that
a brane observer who uses proper distance to measure lengths on the brane will
necessarily find fixed masses and variable G . One can argue for the same system
of units by stipulating that elementary particle masses should be used to define the
units, and should be considered fixed with time. In this model we will use the mass

of the first excited open string mode to fix such a frame; in a more realistic model,
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one would want other (perhaps “standard model”) degrees of freedom to be the
relevant massive modes.

A brane observer following an inward-falling trajectory in the background
(2.2.5) would therefore make the following statements.
1. Elementary particle masses, e.g. Mopen, are considered fixed with time.
2. In these units, the proper distance between galaxies on the brane scales with
a(t) as in standard FRW cosmology. In consequence, for the infalling brane (moving
towards 7 = 0) one observes blueshifting of photons.

3. The gravitational coupling on the brane is time-dependent,
Gn(t) ~ a(t)? . (2.2.24)

Therefore, as the universe collapses, the strength of gravity decreases.

In fact, (2.2.22) together with (2.2.24) imply that in 4d Planck units, the size
of the universe remains fized. From this “closed string” perspective, the cosmology
is particularly trivial; the brane radial position is described by a scalar field ®,. in
the 4d action which is undergoing some slow time variation (and, for small brane
velocity, carries little enough energy that backreaction is not an issue). However,
in this frame particle masses vary with time. We find it more natural, as in [56],
for a brane observer to view physics in the frame specified by 1-3 above; we will
henceforth adopt the viewpoint of such a hypothetical brane cosmologist. In §2.3.1
we describe the field redefinition which takes one from the “brane cosmologist”

frame to the “closed string” frame in a toy model.
The Bounce

As the brane falls from 7* towards zero, the scale factor decreases monoton-
ically. It hits 7 = 0 in finite proper time. However, as is clear from the metric
(2.2.5), there is no real boundary of the space at this point; 7 = 0 is analogous
to the origin in polar coordinates. The brane smoothly continues back to positive
7, and the scale factor re-expands. Although it is hard to provide an analytical
expression for a(t) given the complexity of the expressions (2.2.10) and (2.2.11), we

can numerically solve for a; a plot appears in Figure 1.
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a

t

Fig. 1: The scale factor a(t) as a function of proper time for a brane near
the tip of the Klebanov-Strassler geometry. This particular bounce begins
from radial position 7 = 4.

In the approximate supergravity dual to the cascading gauge theory studied in
[45], there is instead a naked singularity in the region of small 7, which is deformed
away by the fluxes (2.2.4). In the KT approximation to the physics, then, the
cosmology on the brane would actually have a spacelike singularity at some finite
proper time. The evolution in this background agrees with Figure 1 until one gets
close to the tip of the conifold; then, in the “unphysical” region of the KT solution,
the brane rapidly re-expands, and a singularity of the curvature scalar of the induced
metric arises at a finite proper time. A plot of a(t) for this case appears in Figure

2.

t

Fig. 2: The scale factor a(t) as a function of proper time for a brane near
the singularity of the Klebanov-Tseytlin geometry. The explosive growth
of a(t) on the right coincides with a curvature singularity in the induced
metric.
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Hence, we see that string theory in the smooth KS background gives rise to a
bouncing brane cosmology, while the KT approximation would have given rise to a
cosmology with a spacelike crunch. There has been great success in understanding
the resolution of timelike singularities in string theory, so it is heartening to see
that in some special cases one can translate those results to learn about spacelike

singularities as well.
Limiting behaviors

In the two asymptotic regimes of 7 ~ 0 and very large 7, the formulae simplify
[54] and the behavior of a(t) can be given explicitly. For small 7, the geometry is
just the product (2.2.12). Hence, in this limit, the brane is effectively falling in an

unwarped 5d space, and the cosmology is very simple:
a(t) = constant + O(t?) . (2.2.25)

In the large 7 regime, the metric (2.2.14) differs from AdSs by logarithmic
corrections, and so the brane trajectory deviates very gradually from that of a
D3-brane in AdS. For simplicity we present here the induced cosmology on a D3-
brane in AdS; the logarithmic corrections require no new ideas but lead to more

complicated formulae. From (2.2.18), using the D3-brane form of the AdSs metric

dr?
ds® = r?(—d¢® + dz? + dz3 + dx3) + rLz (2.2.26)

we find, in terms of proper time,

a?(t) = a2(0)(1 + 2?1&) (2.2.27)
0
for a brane with initial position and velocity 7o, 7o at ¢ = 0. It follows that
a., C
) == 2.2.2
r== (2:2.29)
where C = a* (O)(%‘)l)2 Because the right hand side of (2.2.28) scales like the energy
density of radiation, this has been termed “dark radiation” [57,58]. In the language
of [38] it might also be called “mirage matter with equation of state p = 3p.”
The Friedmann equation (2.2.28) has been thoroughly investigated in the con-

text of Randall-Sundrum models. In particular, just such a law was found to arise
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on a visible brane which is separated from a Planck brane by an interval whose
length varies with time (see [59] and references therein). This is entirely consistent
with our scenario, as the Calabi-Yau provides an effective Planck brane and the
bulk motion of the probe changes the length of the interval between the branes.
As the brane proceeds to larger 7, eventually it will reach the region where
the KS throat has been glued onto a Calabi-Yau space. Beyond that point it is
no longer possible for us to say anything universal about the behavior of the brane

cosmology.

2.2.5 Issues of Backreaction

There are several issues involving backreaction that merit consideration. To
argue that the bounce we have seen in §2.2.4 accurately describes the behavior of
the brane as it propagates in from 7, and back out again, we must ensure that the
state with nonzero 7 on the brane does not contain enough energy to significantly
distort the closed string background geometry. In fact we must check both that a
motionless brane in the throat creates a negligible backreaction, and that the kinetic
energy on the brane does not undergo gravitational collapse (yielding a clumpy
brane) on the relevant timescales. It is also important to understand the extent
of the backreaction from semiclassical particle production. Finally, the presence of
nonzero energy density on the brane leads to a potential for the Calabi-Yau volume
modulus (as in §6 of [60]). We will imagine that this modulus has been fixed and
will neglect this effect.

The first concern can be dismissed quickly. In the limit of small g; the back-
reaction on the closed string background is small. The second concern needs to
be discussed in somewhat more detail. The falling brane necessarily has energy
density localized on its worldvolume. After a sufficiently long time this initially
uniform energy can become inhomogeneous because of the Jeans instability. In this
subsection we demonstrate that, for a suitable choice of the parameters of the KS
geometry, this instability is negligible during the bounce portion of the history of

the brane universe.
Jeans Instability

For a uniform fluid of density p, the Jeans instability appears at length scales

greater than Ljeans = —ii—\/;g_, where v; is the velocity of sound. Perturbations with
N
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this wavelength could destabilize the brane given a time tingtabitity > Lieans. In

terms of the volume Vg of the Calabi-Yau,
G = g215Vs  h(ryv) T h(r) "% (2.2.29)

where we choose Tyy such that ryy (as given in (2.2.13)) is of order one (so the
throat extends slightly into the KT regime before gluing into the Calabi-Yau). For
19,3

the compactifications of interest Vg > so that for 7 < Ty

Gn < 95212 . (2.2.30)

From (2.2.18), (2.2.19), we see that the energy density on the brane is constant,

1
2g21%

p= h(T*)_lgTT(T*)'fOz (2'2'31)

50

v 1 1
t’instability > ;:h(T*)éQTT(T*) ;ls . (2232)

Because the brane accelerates toward the tip of the conifold, to fall from d, to the

tip and rebound requires a time

2d*
thounce < . (2.2.33)
Vo
This leads to (we now drop numerical factors of order one)
_bounce o Z2p(r)7T . (2.2.34)
tinstability ls
Using the asymptotic form of I(r), K(r) we find
t ounce 1 =2 — 2
b < Tl "3 (2e™)? (2.2.35)

tinstability Vg M

3 In fact, as discussed in [4], warped compactifications really reproduce the RS scenario
when the volume is not very large in string units (since the flux and brane backreaction
which produce the warping become larger effects at small Calabi-Yau volume). We are
assuming we are at the threshold volume where the warping becomes a significant effect,
which should justify the estimate (2.2.29).
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Because we have glued the KS throat into the Calabi-Yau geometry at a loca-
tion where r = ryy of (2.2.13) is of order one, we see that e2e™ = (O(1). This leads

to

thounce 1 3/4
< T . 2.2.36
tinstability V gsM ( )

Finally, since the hierarchy between the UV and IR ends of the throat is exponential
in 7., it is natural to take 7, to be a number of order 5-10 (in the language of RS
scenarios, T, controls the length of the interval in AdS radii, up to factors of 7).
Therefore, in the supergravity regime where g;M > 1, (2.2.36) demonstrates that
we can neglect the Jeans instability on the brane in discussing the dynamics during

the bounce.
Particle Creation

Because the bounce cosmology is strongly time-dependent, it is also important
to consider the spectrum of particles created semiclassically by the bounce. We will
argue that the energy density due to such particle production is small enough that
its backreaction is negligible.

The bounce geometry (2.2.21) is conformally trivial, so massless, conformally
coupled scalar fields will not be produced by the cosmological evolution. Massive
fields break the conformal invariance. The relevant massive scalar fields on the
brane are excited string states with mass m > 71; Quite generally we expect that
modes with frequencies w > % = H will not be significantly populated by the
bounce, i.e. the probability that a comoving detector will register such a particle
long after the bounce is exponentially small in #. The cases of interest involve
slow-moving branes, so the maximum value of H is far below the string scale. Thus
we expect the energy density due to particle creation should be quite small.

Concrete calculations of the production of massive scalar and fermion fields in
a bouncing k¥ = 0 FRW cosmology were carried out in [61] (though the system in
consideration there did not satisfy Einstein’s equations). The scale factor in [61] has
the same limiting behaviors as our own, and the results there are consistent with
our expectations. It would be interesting to carry out the relevant particle creation
calculation directly in string theory. A particle creation calculation in closed string

theory was described in worldsheet (2d conformal field theory) language in [62].
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2.3 Four-dimensional Lagrangian Description
2.3.1 Effective Lagrangian

In the limit of low matter density on the probe brane, the cosmology is de-
termined entirely by the bulk geometry. The D3-brane trajectory is determined
by the Born-Infeld action, and the induced metric along this trajectory provides a
time-dependent mirage cosmology. The mirage cosmology proposal of [38] includes
another step: one can write down the Friedmann equations for the cosmology and
identify the right hand side with mirage density and mirage pressure.

This is not yet an ideal formulation from the perspective of a brane resident.
One would like a four-dimensional Lagrangian description of the mirage matter,
of the cosmological evolution, and of the variation of Gn. In particular, since a
bounce in a flat Friedmann-Robertson-Walker universe necessitates violation of the
null energy condition, it would be interesting to understand this violation in terms of
a 4d Lagrangian and energy-momentum tensor. In this section we will propose a toy
scalar-tensor Lagrangian which admits cosmologies reproducing the basic features
of our “bouncing brane” solutions; similar Lagrangians have arisen in the study of
RS cosmology [63].

The massless fields in our 4d theory include a 4d graviton and the massless open
strings on the D3-brane: a U(1) gauge field A,, a scalar ®, corresponding to radial
motion in the compactified throat, and scalars ®;,7 =1, - - -, 5 parametrizing motion
in the angular coordinates. All other scalar fields are massive. (In fact without a
no-force condition there can be a potential and a mass for ®,.. For simplicity we
will work only with the BPS case, but the trajectory of anti-branes in the KS throat
would also yield an interesting time-dependent solution.*) We will choose to fix the
®;, and the requirement of negligible energy density in open string modes on the
brane means that A, is not relevant for cosmological purposes. This leaves @, and
Juv as the only massless fields entering the 4d Lagrangian.

Our goal in this section is to show explicitly how an observer who sees parti-
cle masses which depend on @, could change his units of length and see an FRW

cosmology with varying Gy. (In §2.2.4 we provided several arguments motivating

4 In particular, anti-branes near the tip of the conifold can annihilate by merging with
flux [60]. This could potentially lead to a cosmology which begins or ends with a tunneling

or annihilation process.
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this choice of frame.) Because the full Lagrangian for a brane observer in the KS
background, including all massive fields, is quite complicated, it will be most prac-
tical to work with a simpler Lagrangian which has the correct schematic features.
In particular, all particle masses depend on @, in the same way, so it will suffice
to consider a single massive field x (which could be, for example, an excited open
string mode).

A “mass-varying” Lagrangian with the appropriate features is

R R 1
L= [ dzy=g - =2 - ~¢g"V,9,.V,9,
/ A (167rGN g% 39 VbV (23.1)
1, 1 "
~5g* VuxVux — "mz(q)r)Xz - V(X))
2 2
where x is a matter field on the brane whose mass depends on &, as
m?(®,) = Q*(®,)u? (2.3.2)

for fixed u. The form of the potential for x and the coupling of x to the curvature
scalar will be unimportant for this analysis, and we will henceforth omit these terms.
Note that ®,. is conformally coupled.

As discussed in §2.2.4, an observer confined to the brane most naturally holds
fixed the masses of fields on the brane. This can be accomplished by performing

the change of variables

g;w = Qz(q)'r)gy,u (233)
d, = Q7 1(2,)®, (2.3.4)
=071 (@)x (2.3.5)

The resulting “mass-fixed” Lagrangian is

R 3 R .
— 3 ~ ~ur v 52
L / dzv =4 (167rGN§22(<I>r) T srara@yid vVl - 5

| B S
= 58" Vi@V, 8 — SFV VX - §M2X2) :

(2.3.6)

We have discarded terms which look like (VQ)2%? because Q < pu (at least in
our example, where x represents a massive string mode). Terms which look like

(VQ)282 cancel due to the conformal coupling of ®,.
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The effective gravitational coupling is given by
Gyl = GNQ% (D)) . (2.3.7)

According to the discussion in §2.2.4, we expect that Q%(®,) = h(T(‘I’r,.))_%, o)
indeed the strength of gravity scales as required by (2.2.24). (We will not need the
explicit relation between 7 and ®,..)

We are interested in the limit where the backreaction due to ®,, % is small, so in
particular ®,, ¥ < m;%n o+ This means that for the purpose of solving the Einstein
equations in the mass-fixed frame we may neglect terms which are suppressed by a

factor of Gy. Defining
3
4G N

we may write the effective Lagrangian

Q1(2,) (2.3.8)

’Y:

Mplanck

/ d3x\/—g <—'y + g‘“jvu'yv,/y-i—O(L)). - (2.3.9)

Observe that the kinetic energy term is now negative semidefinite (we are using
signature —+-++), so it is easy to violate the null energy condition which is relevant
(via the singularity theorems) in constraining the behavior of the metric g,,.°
The equation of motion which follows from this Lagrangian is
"'V oy — E’y O(L) (2.3.10)
6 MPlanck

Now let us see that this system reproduces our expectations from §2.2.4. Given
an FRW cosmology specified by a(t), if we set v(t) = ca™*(t) for some constant c
then (2.3.10) is satisfied identically. From (2.3.3), (2.3.4), (2.3.5) it is clear that we
should identify

alt) o Q@ (). (2.3.11)

Then the Einstein equations for (2.3.9) are satisfied if the varying-mass metric
9uv = N and the mass-fixed metric §u, = a?(t)nu,. So as discussed in §2.2.4,
we have two complementary perspectives: the brane observer uses the mass-fixed
action (2.3.6) and sees an FRW cosmology with varying Gy, while the “closed

string” observer sees gravity of fixed strength in Minkowski space.

5 Notice that because of the non-minimally coupled scalar, it is also possible to violate

the null energy condition which governs the behavior of g,..
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2.3.2 Relation to Warped Backgrounds

We can be slightly more explicit about how the toy model of §2.3.1 would be
related to a given warped background. Given any function a(t), we can construct a
warped background h(r) such that a no-force brane probe of that geometry experi-
ences an induced cosmology specified by a(t). We simply define { = [ E%’ r=v€
(v constant), and h(r) = a(r)~*.

A few comments are in order:

1. Very few backgrounds h(r) will correspond to solutions of IIB supergravity. One
which does, and indeed corresponds to a D3-brane in the warped deformed conifold,
is given by taking 7(¢) to solve (2.2.19) and setting a(t) = h~ % (7(t)) with h given
by (2.2.10).

2. The no-force condition is only a convenience. We could instead take r(§) to
be any function of £&. This would correspond to a brane which accelerates due to
external forces. Again, very few systems of this sort arise from known branes of

string theory moving in valid supergravity backgrounds.

2.4 Discussion

As demonstrated in general terms in §2.3, and in a special example in string
theory in §2.2, in the presence of scalar fields it is easy to evade the singularity the-
orems (from the perspective of a reasonable class of observers), even with a k = 0
FRW universe. It there’fore seems likely that many examples of such constructions,
arising both as cosmologies on D-branes and perhaps even as closed string cosmolo-
gies, should be possible. The cosmology we presented is just a slice of evolution
between some initial time when we join the brane moving down the throat, and a
final time when it is heading into the Calabi-Yau region. The later evolution of
our model is then non-universal; it depends on the details of the Calabi-Yau model
(or in the language of [43], the detailed structure of the Planck brane). It would
be very interesting to write down models with 4d gravity whose dynamics can be
controlled for an eternity; some controlled, eternal closed string cosmologies were
recently described in [62].

The cosmology discussed here is far from realistic. As a first improvement, one
would like to study probe branes with a spectrum of massive fields below the scale

% (which could be called “standard model” fields). It may be possible to construct
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such examples by using parallel D3-branes which are slightly separated in the radial
direction, wrapped Dp-branes with p > 3, or anti-branes in appropriate regimes. It
is also important to control the time-variation of G during/after nucleosynthesis,
since this is highly constrained by experiment (see for instance [8]). To improve the

” That is, one

situation, one can envision a program of “cosmological engineering.
could try to design IIB solutions with background fields specifically chosen to give
rise to interesting mirage cosmologies (various authors have already proposed mirage
models of closed universes [64], inflation with graceful exit [65], asymptotically de
Sitter spaces [50], etc., though most of these models do not include 4d gravity).
Each desired feature of the cosmology would result in a new condition on the closed
string fields. Then one would simply impose these conditions along with the field

equations of IIB supergravity.



3. Moduli Trapping at Enhanced Symmetry Points

ABSTRACT OF ORIGINAL PAPER

We study quantum effects on moduli dynamics arising from the production of parti-
cles which are light at special points in moduli space. The resulting forces trap the
moduli at these points, which often exhibit enhanced symmetry. Moduli trapping
occurs in time-dependent quantum field theory, as well as in systems of moving
D-branes, where it leads the branes to combine into stacks. Trapping also occurs in
an expanding universe, though the range over which the moduli can roll is limited
by Hubble friction. We observe that a scalar field trapped on a steep potential can
induce a stage of acceleration of the universe, which we call trapped inflation. Mod-
uli trapping ameliorates the cosmological moduli problem and may affect vacuum
selection. In particular, rolling moduli are most powerfully attracted to the points
with the largest number of light particles, which are often the points of greatest sym-
metry. Given suitable assumptions about the dynamics of the very early universe,
this effect might help to explain why among the plethora of possible vacuum states
of string theory, we appear to live in one with a large number of light particles and
(spontaneously broken) symmetries. In other words, some of the surprising proper-
ties of our world might arise not through pure chance or miraculous cancellations,

but through a natural selection mechanism during dynamical evolution.

This chapter is reprinted from Lev Kofman, Andrei Linde, Xiao Liu, Alexander Maloney,
Liam McAllister, and Eva Silverstein, “Beauty is Attractive: Moduli Trapping at Enhanced
Symmetry Points,” JHEP 0405 (2004) 030, by permission of the publisher. © 2004 by
the Journal of High Energy Physics.
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3.1 Introduction
3.1.1 Moduli Trapping Near Enhanced Symmetry Points

Supersymmetric string and field theories typically contain a number of light
scalar fields, or moduli, which describe low-energy deformations of the system. If
the kinetic energy of these fields is large compared to their potential energy then the
classical dynamics of the moduli is described by geodesic motion on moduli space.

At certain special points (or subspaces) of moduli space, new degrees of free-
dom become light and can affect the dynamics of moduli in a significant way
[66,67,68,69,70]. These extra species often contribute to an enhanced symmetry
at the special point. We will refer to any points where new species become light as
ESPs, which stands for extra species points, and also, when applicable, for enhanced
symmetry points.

A canonical example is a system of two parallel D-branes. When the branes
coincide, the two individual U(1) gauge symmetries are enhanced to a U(2) sym-
metry, as the strings that stretch between the branes become massless [71]. Similar
points with new light species arise in many contexts; examples include the Seiberg-
Witten massless monopole and dyon points in N' = 2 supersymmetric field theories
[72], the conifold point (2.2.3) and ADE singularities in Calabi-Yau compactification
[73], the self-dual radius of string compactifications on a torus, small instantons in
heterotic string theory [74], and many other configurations with less symmetry.

Classically, there is no sense in which these ESPs are dynamically preferred
over other metastable vacuum states of the system. We will argue that this changes
once quantum effects are included. In particular, quantum particle production of
the light fields alters the dynamics in such a way as to drive the moduli towards
the ESPs and trap them there.

The basic mechanism of this trapping effect is quite simple. Consider a modulus
¢ moving through moduli space near an ESP associated to a new light field x. For
example, ¢ could be the separation between a pair of parallel D-branes, and x a
string stretching between the two branes — in this case the ESP ¢ = 0 is the point
where the branes coincide and x becomes massless. As ¢ rolls through moduli space,
the mass of x changes; x gets lighter as ¢ moves closer to the ESP and heavier as ¢
moves farther away. This changing mass leads to quantum production of y particles;

as ¢ moves past the ESP some of its kinetic energy will be dumped into x particles.
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As ¢ rolls away from the ESP, more and more of its energy will be drained into the
x sector as the x mass increases, until eventually ¢ stops rolling. At this point the
moduli space approximation for ¢ has broken down, and all of the original kinetic
energy contained in the coherent motion of ¢ has been transferred into x particles,
and ultimately into all of the fields interacting with x (including decoherent quanta
d¢). As we will see in detail, the x excitations generate a classical potential for ¢
which drives the modulus back toward the ESP and traps it there.®

In the example of the pair of moving D-branes, the consequences of this are
simple: two parallel branes that are sent towards each other will collide and remain
bound together. The original kinetic energy of the moving branes will be transferred
into open string excitations on the branes and eventually into closed string radiation
in the bulk.

In §3.3.2 we will describe the general trapping mechanism and study its range of
applicability using a few simple estimates. In §3.3 we will write down the equations
of motion governing trapping in more detail, and describe the numerical and analytic
solutions of these equations in a variety of cases.

It is important to recognize that this trapping effect is in no way special to
string theory. Flat space quantum field theory with a moduli space for ¢ and an
ESP is an ideal setting for the trapping effect, and it is in this setting that we will
perform the analysis of §3.2 and §3.3. In §3.4 we will generalize this to incorporate
the effects of cosmological expansion, and in §3.5 we will discuss the possibility
of significant effects from string theory. Having established the moduli trapping
effect in a variety of contexts, we will then study its applications to problems in
cosmology.

The most immediate application is to the problem of vacuum selection. As
we will see in §3.6, the trapping effect can provide a dynamical vacuum selection
principle, reducing the problem to that of selecting one point within the class of
ESPs. This represents significant progress, since the vast majority of metastable

vacua are not ESPs. Trapping at ESPs may also help solve the cosmological moduli

6 There are also corrections to the effective action for ¢ from loops of x particles,
including both kinetic corrections and a Coleman-Weinberg effective potential. Both effects
will be subdominant in the weakly-coupled, supersymmetric, kinetic-energy dominated

regimes we will consider.
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problem, as we will see in §3.7. In particular, trapping strengthens the proposal of
[75] by providing a dynamical mechanism which explains why moduli sit at points
of enhanced symmetry.

Finally, as we will explain in §3.8, the trapping of a scalar field with a potential
can lead to a period of accelerated expansion, in a manner reminiscent of thermal
inflation [76]. This effect, which we will call trapped inflation, can occur in a steeper
potential than normally admits such behavior.

From a more general perspective, moduli trapping gives us insight into the
celebrated question of why the world is so symmetric. The initial puzzle is that
although highly symmetric theories are aesthetically appealing and theoretically
tractable, they are also very special and hence, in an appropriate sense, rare. One
expects that in a typical string theory vacuum, most symmetries will be strongly
broken and most particles will have masses of order the string or Planck mass,
just as in a typical vacuum one expects a large cosmological constant. Vacua with
enhanced symmetry or light particles should comprise a minuscule subset of the
space of all vacua.

Nevertheless, we observe traces of many symmetries in the properties of ele-
mentary particles, as spontaneously broken global and gauge invariances. Moreover,
all known particles are hierarchically light compared to the Planck mass. Given the
expectation that a typical vacuum contains very few approximate symmetries and
very few light particles, it is puzzling that we see such symmetries and such particles
in our world.

For questions of this nature, moduli trapping may have considerable explana-
tory power. Specifically, the force pulling moduli toward a point of enhanced sym-
metry is proportional to the number of particles which become massless at this
point, which is often associated with a high degree of symmetry. This means that
the most attractive ESPs are typically the ones with the largest symmetry, and
rolling moduli are most likely to be trapped at highly symmetric points, where
many particles become massless or nearly massless. Moreover, the process of trap-
ping can proceed sequentially: a modulus moving in a multi-dimensional moduli
space can experience a sequence of trapping events, each of which increases the
symmetry. These effects suggest that the symmetry and beauty we see in our world
may have, at least in part, a simple dynamical explanation: beauty is attractive.

We will discuss this possibility in §3.6.
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3.1.2 Relation to Other Works

Similar effects have been described in the literature. There has been much
work on multi-scalar quantum field theory in the context of inflation, especially
concerning preheating in interacting scalar field theories. Some of our results will
be based on the theory of particle production and preheating.developed in the series
of papers [66,67,68], which explores many of the basic phenomena in scalar theories
of the sort we will consider. Likewise, Chung et al. [69] have explored the effects
of particle production on the inflaton trajectory and on the spectrum of density
perturbations. Although we will derive what we need here in a self-contained way,
many of the technical results in this chapter overlap with those works, as well as with
standard results on particle production in time-dependent systems as summarized
in e.g. [77]. Although we will not study the case in which x goes tachyonic for
some range of ¢, our results may nevertheless have application to models of hybrid
inflation [78,79], including models based on rapidly-oscillating interacting scalars
[80,81,82].

In strong ’t Hooft coupling regions of moduli spaces which are accessible
through the AdS/CFT correspondence, virtual effects from the large numbers of
light species dramatically slow down the motion of ¢ as it approaches an ESP, with
the result that the modulus gets trapped there [70]. This also provides a mechanism
for slow roll inflation without very flat potentials. In the present work, which ap-
plies at weak ’t Hooft coupling, it is quantum production of on-shell light particles
which leads to trapping on moduli space.

Other works in the context of string theory have explored the localization of
moduli at ESPs. The authors of [83,84] studied the evolution of a supersymmetric
version of the ¢ — x system arising near a flop transition using an effective super-
gravity action. They showed that, given nonvanishing initial vevs for both ¢ and
X, the fields will settle at the ESP even if one formally turns off particle production
effects. Our proposal, by contrast, is to take into account on-shell quantum effects
which dynamically generate a nonzero {x2?). In works such as [85] attention was
focused on the boundaries of moduli space, while here we focus on ESPs in the inte-
rior of moduli space. In [86], production of light strings was studied in the context
of DO-brane quantum mechanics; as we explain in §3.2.3, this has some similari-
ties, but important differences, with our case of space-filling branes. Scattering of

Dp-branes was also studied in [87].
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Dine has suggested that enhanced symmetry points may provide a solution to
the moduli problem, as moduli which begin at an enhanced symmetry minimum
of the quantum effective potential can consistently remain there both during and
immediately after inflation [75]. One would still like to explain why the moduli
began at such a point. As we discuss in §3.7, our trapping mechanism provides a
natural explanation for this initial configuration.

Horne and Moore [88] have argued that the classical motion on certain moduli
spaces is ergodic, provided that the potential energy is negligible. This means that
all configurations are sampled given a sufficiently long time, and in particular a given
modulus will eventually approach an ESP. We will argue that quantum corrections
to the classical trajectory are significant, and indeed lead to trapping, whenever
the classical trajectory comes close to an ESP. Combining these two observations,
we expect that in the full, quantum-corrected system the moduli are stuck near an
ESP at late times. This means that the quantum-corrected evolution is not fully
ergodic: the dynamics of [88] (see also [89]) implies that the modulus will eventually
approach an ESP, at which point quantum effects will trap it there, preventing the

system from sampling any further regions of moduli space.

3.2 Moduli Trapping: Basic Mechanism

We will now describe the mechanism of moduli trapping in more detail. Our
discussion in this section will be based on simple estimates of particle production
and the consequent backreaction, generalizing the results of [66,67,68] to the case
of a complex field. A more complete analysis, along with numerical results, will be
presented in §3.3.

We will consider the specific model
1 - 1 g2 o 9
L= 50,90 + 50ux0"x — T |¢°x (3.2.1)

where a complex modulus ¢ = ¢; + i@y interacts with a real scalar field y. We
are restricting ourselves to the case of a flat moduli space which has a single ESP
at ¢ = 0, where x becomes massless, and a particularly simple form for the x
interaction. This simple case illustrates the basic physics and can be generalized as

necessary, for example to include supersymmetry.
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We will consider the case where ¢ approaches the origin with some impact

parameter u, following a classical trajectory of the form
@(t) = ip + vt. (3.2.2)

Classically, if x vanishes then (3.2.2) is an exact solution to the equations of motion,
and the presence of the ESP will not affect the motion of @.

Quantum effects will alter this picture considerably, because the trajectory
(3.2.2) will lead to the production of x particles, as we discuss in §3.2.1. The
backreaction of these particles on the motion of ¢ will then lead to trapping, as we
will see in §3.2.2. In §3.2.3 we will illustrate this effect with the example of colliding

D-branes.

3.2.1 Quantum Production of x Particles

Let us first study the creation of x particles without considering how they may
backreact to alter the motion of ¢. In this approximation we may substitute (3.2.2)
into the action (3.2.1) to get a free quantum field theory for x with a time-varying

mass

m2 (1) = g*l6(0)> (3.23)

This time dependence leads to particle production.

Consider a mode of the x field with spatial momentum k, whose frequency

w(t) = k% + g%o(t)[? (3.2.4)

varies in time. This mode becomes excited when the non-adiabaticity parameter
w/w? becomes at least of order one. This parameter vanishes as t — +o0, indicating
that particle creation takes place only while ¢ is near the ESP. It is straightforward

to see that, for the trajectory (3.2.2), w/w? can be large only in the small interval

|¢| < A¢ near the ESP, where
v
Ad =4/~ 3.2.5
o= 325)

k? 2,,2
NIOE < (3.2.6)
gv

and only for momenta
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When the quantity on the left hand side is small, particle creation effects are very
strong. They are strongest if the modulus passes sufficiently close to the ESP, i.e.
if

pSVv/g. (3.2.7)

In this case x modes whose momenta k fall in the range (3.2.6) will be excited.”
Qualitatively, we expect that the occupation numbers ny of such modes will vary
from zero (no real particles) for modes with vanishing non-adiabaticity to of order
unity for modes with very large non-adiabaticity. The full computation of ny given
in Appendix 3.A yields

k2 + g2 M2> |

p (3.2.9)

ng = exp (—7r

which agrees with this qualitative expectation. Note that even when (3.2.7) is
not satisfied, there is generically a nonvanishing, though exponentially suppressed,
number density of created particles; even in this case we will find a nontrivial
trapping effect.

Before discussing the backreaction due to the production of x particles, it is
crucial to control other effects from the x field. In particular, there is another im-
portant quantum effect which arises in motion toward the origin: loops of light x
particles give corrections to the effective action. These include both kinetic correc-
tions and the Coleman-Weinberg potential energy. The latter we will subtract by
hand, as we will explain in §3.3.1. This gives a good approximation to the dynamics
in any situation where kinetic energy dominates.

The kinetic corrections are organized in an expansion in v2/¢* [70]. The pa-
rameters controlling both remaining effects — the nonadiabaticity controlling par-

ticle production and the kinetic factor v?/¢* controlling light virtual x particles —

7 This may be checked as follows. We have argued that unsuppressed particle pro-
duction occurs only when the modulus is sufficiently close to the ESP, |¢| < 1/v/g. The

modulus remains within this window for a time

At ~ _vz/g ~ (gv) 7Y%, (3.2.8)

The uncertainty principle implies in this case that the created particles will have typical
energy E ~ (At)™! and thus momenta k ~ (gv — g2u2)1/ 2. This agrees with the estimate
(3.2.6).
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diverge as we approach the origin. However, at weak coupling, the nonadiabatic-
ity parameter is parametrically enhanced relative to the kinetic corrections, i.e.
v2/g%¢* > v?/¢p*, so we can sensibly focus on the effects of particle production.
More specifically, we can ensure that the kinetic corrections are insignificant by
including a sufficiently large impact parameter u.

We will also analyze the case of small u, including g = 0. This relies on the
plausible assumption that the effects of the kinetic corrections remain subdominant
as we approach very close to the origin, and that in particular in our weak coupling
case they do not by themselves stop ¢ from progressing through the origin. It would
be interesting to develop theoretical tools to analyze this issue more directly and

check this hypothesis.

3.2.2 Backreaction on the Motion of ¢

One might expect a priori that any description of the motion of ¢ which fully
incorporates backreaction from particle production would be immensely compli-
cated. Fortunately, this turns out not to be the case, and a simple description is
possible. The key simplification is that creation of x particles happens primarily
in a small vicinity of the ESP ¢ = 0, so one can treat this as an instant event of
particle production. These particles induce a very simple linear, confining potential
acting on ¢, V ~ |¢|. The motion of ¢ in this potential between successive events
of particle production can be described rather simply.

Let us now explore this in more detail. We have seen that as ¢ moves in moduli
space, some of its energy will be transferred into excitations of x. This leads to a
quantum vacuum expectation value (x2) # 0. As ¢ rolls away from the ESP, the
mass of the created x particles increases, further increasing the energy contained
in the x sector. At this point the backreaction of the x field on the dynamics of ¢
becomes important, and the moduli space approximation breaks down.

We will concentrate on the backreaction of the created particles on the motion
of the field ¢ far away from the small region of non-adiabaticity, i.e. for ¢ >
Ap ~ \/z% At this stage the typical momenta are such that the x particles are
nonrelativistic, & < /gv < g|¢|. Therefore the total energy density of the gas of x

particles is easily seen to be

b= [ (—g%nm TP ~ glé®in.. (3:2.10)
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where n, is the number density of x particles,

= o=

n (3.2.11)

As ¢ continues to move away from the ESP ¢ = 0, the number density of x particles
remains constant, as particles are produced only in the vicinity of ¢ = 0. However,
the energy density of the x particles grows as g|¢(t)|n,. This leads to an attractive
force of magnitude gn_, which always points towards the ESP ¢ = 0.

This force of attraction slows down the motion of ¢, and eventually turns ¢ back
toward the ESP. This reversal occurs in the vicinity of the point ¢, at which the
initial kinetic energy density 3¢ = 1v? matches the energy density p, contained
in x particles. We find

_

bu = —grzv 2™, (3.2.12)
g

Observe that for g < 1 the trapping length on the first pass is always much greater
than the impact parameter y, which means that the motion of the moduli after the
first impact is effectively one-dimensional.

After changing direction at ¢, ¢ falls back toward the origin. On this second
pass by the ESP, more x particles are produced, leading to a stronger attractive
force. This process repeats itself, leading ultimately to a trapped orbit of ¢ about
the ESP, in a trajectory determined by the effective potential and consistent with
angular momentum conservation on moduli space.

We conclude that, in this simplified setup, a scalar field which rolls past an
ESP will oscillate about the ESP with an initial amplitude given by (3.2.12).

In fact, in many cases the amplitude of these oscillations will rapidly decrease
due to the effect of parametric resonance, similar to the effects studied in the theory
of preheating [66], and the field ¢ will fall swiftly towards the ESP. This important
result will be described in more detail in §3.3.3.

So far we have not incorporated the effects of scattering and decay of the
x particles. These could weaken the trapping potential (3.2.10) by reducing the
number of x particles. Specifically, the energy density p, contained in a fixed
number of x particles (3.2.10) grows at late times, since the y mass increases as ¢
rolls away from the ESP. However, if the number density of x particles decreases

due to annihilation or decay into lighter modes, this mass amplification effect is
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lost. It is therefore important to determine the rate of decay and annihilation of
the x particles.

In Appendix 3.B we address these issues and demonstrate that the trapping
effect is robust for certain parameter ranges, provided that the light states are
relatively stable. This stability can easily be arranged in supersymmetric models,
and in fact occurs automatically in certain D-brane systems.

Rescattering effects, in contrast, may actually strengthen the trapping effect.
Once x particles have been created, they will scatter off of the homogeneous ¢ con-
densate, causing it to gradually decay into inhomogeneous, decoherent ¢ excitations

[66,90,91]. However, we will not consider this potentially beneficial effect here.

3.2.3 The Example of Moving D-branes

Before proceeding, it may be illustrative to discuss these results in terms of
a simple, mechanical example — a moving pair of D-branes. The moduli space of
a system of two D-branes is the space of brane positions. In terms of the brane
worldvolume fields the separation between the two branes can be regarded as a
Higgs field ¢. The off-diagonal components of the U(2) gauge field are the W
bosons. At the ESP of this system, ¢ = 0, the W bosons are massless. Away
from ¢ = 0 the W bosons acquire a mass by the Higgs mechanism, breaking the
symmetry group from U(2) down to U(1) x U(1). If we identify x with the W
field® and g% ~ g%,, ~ g, with the string coupling, then we find that the brane
worldvolume theory contains a term like (3.2.1). We therefore expect this system
to exhibit moduli trapping.

The trapping effect is a quantum correction to the motion of D-branes. As the
D-branes approach each other, the open strings stretched between them become ex-
cited. When the D-branes pass by each other and begin moving apart the stretched
open strings become massive and pull the D-branes back together. We depict this
in Figure 3.

This effect can be a significant correction to the dynamics of any system with
a number of mobile, mutua,liy BPS D-branes. Consider, for example, N D3-branes
which fill spacetime and are transverse to a compact six-manifold M. Let us take

these branes to begin with small, random, classical velocities in M. The classical

8 For simplicity we ignore the superpartner of the x boson.
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Fig. 3: This figure illustrates the creation of open strings as two D-branes
pass near each other. The left corner shows the target space picture of the
creation of the open strings.

dynamics of this system is similar to that of a nonrelativistic, noninteracting, clas-
sical gas. When we include quantum production of light strings, the branes begin
to trap each other, pairwise or in small groups, then gradually agglomerate until
only a few massive clumps of many branes remain.

One interesting consequence is that such a system will tend to exhibit enhanced
gauge symmetry, with gauge group U(N) if the final state consists of a single clump.
(Hubble friction may bring the branes to rest before the aggregation is complete,
in which case the gauge group will be a product of smaller factors; we will address
related issues in §3.4.1.) Another important effect of massive clumps is their grav-
itational backreaction: a large cluster of D-branes will produce a warped throat
region in M, which may be of phenomenological interest [92].

There are additional corrections to the classical moduli space approximation of
the D-brane motion which come from velocity-dependent forces. These correspond
in the D-brane worldvolume field theory to higher-derivative corrections generated
by virtual effects. When this field theory is at weak ’t Hooft coupling, open string

production is the dominant effect as one approaches an ESP. However, sufficiently
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large clusters of branes will be described by gauge theories at strong ’t Hooft cou-
pling, where the dynamics of additional probe branes is governed instead by the
analysis of [70].%

A similar interaction was studied in the context of the scattering of DO-branes in
[86]. There is a crucial difference between that system and the case of interest here,
in which the branes are extended along 3+ 1 dimensions. In the DO-brane problem,
there is a nontrivial probability for the DO-branes to pass by each other without
getting trapped: because the D0-brane is pointlike, there is some probability for no
open strings between them to be created or for those created to annihilate rapidly.
This is the leading contribution to the S-matrix. In our case, there is always a
nonzero number density of particles created. As we argue in Appendix 3.B, for
certain ranges of parameters these particles do not annihilate rapidly enough to

prevent trapping.

3.3 Moduli Trapping: Detailed Analysis

In the previous section we gave an intuitive explanation of the trapping effect,
which we will now describe in more detail. In §3.3.1 we will present the equations
of motion which govern the trajectory of the modulus ¢, including the backreaction
due to production of light particles. These equations are difficult to solve exactly,
so in §3.3.2 we will integrate the system numerically. In §3.3.3 we focus on the
special case 4 = 0, where the modulus rolls directly through the ESP. In this
case analytic techniques are available, and as we will see the trapping effect is

considerably stronger than in the u # 0 case.

3.83.1 Formal Description of Particle Production Near an ESP

The full equations of motion are found by coupling the classical motion of ¢ to
the time-dependent x quantum field theory defined by (3.2.1).1°

In general, the presence of an ESP will alter the moduli dynamics in two ways.
First, any x excitations produced by the mechanism described above will backreact

on the classical evolution of ¢. In particular, as we saw in (3.2.10), a non-zero

9 A further correction to our dynamics could arise if, as we will discuss in §3.5, the
branes keep moving until the system is beyond the range of effective field theory.

10 We remain in flat space quantum field theory, reserving gravitational effects for §3.4.
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expectation value (x?) # 0 arising from particle production effectively acts like a
linear potential for ¢ and drives the moduli towards the origin. This is the effect
we wish to describe. Second, virtual x particles generate quadratic and higher-
derivative contributions to the effective action as well as an effective potential for a
spacetime-homogeneous ¢.

As we discussed in §3.2.1, we can neglect the kinetic corrections in our weakly-
coupled situation. The interaction in (3.2.1) also induces important radiative cor-
rections to the effective potential. Specifically, it leads to a Coleman-Weinberg

effective potential and three UV-divergent terms:

Verf(8) = Aes + g°mls ;% + g*Aesro?. (3.3.1)

These UV divergences could be subtracted by hand using appropriate counterterms.
In a supersymmetric system these divergences are absent.

In order to isolate the effects of particle production at the order we are working,
we will subtract by hand the entire Coleman-Weinberg effective potential for ¢ that
is generated by one loop of x particles. This mimics the effect of including extended
supersymmetry, which is a toy case of interest in string theory and supergravity. For
the more realistic N’ = 1 supersymmetry in four dimensions, radiative corrections do
generically generate a nontrivial potential energy. Nevertheless, particle production
effects can still dominate the virtual corrections to the potential after spontaneous
supersymmetry breaking. The reason is that bosons and fermions contribute with
opposite signs in loops, but on-shell bosons and fermions, such as those produced
by the changing mass of x, contribute with the same sign to backreaction on ¢.

To describe the production of x particles, we first expand the quantum field x

in terms of Fock space operators as
X = arxk +aLxi (3.3.2)
k

where the xj are a complete set of positive-frequency solutions to the Klein-Gordon

equation with mass
m2(t) = g% (8)|". (3.3.3)

Expanding in plane waves
Xk = uk(t)e*? (3.3.4)



8 Moduli Trapping at Enhanced Symmetry Points 45

the equation of motion is
(af +EE 4+ gz|¢(t)|2)uk =0. (3.3.5)

The modes (3.3.4) are normalized with respect to the Klein-Gordon inner product,

which fixes

whi — Uhug = —i. (3.3.6)

The wave equation (3.3.5) has two linearly-independent solutions for each k, so
in general there will be many inequivalent choices of positive-frequency modes x.
Each such choice of mode decomposition defines a set of Fock space operators via
(3.3.2), which in turn define a vacuum state of the theory. The wave equation
depends explicitly on time, so there is no canonical choice of Poincaré invariant
vacuum. Instead, there is a large family of inequivalent vacua for y.

We can choose a set of positive frequency modes u!™ that take a particularly

simple form in the far past,

s 1 e~ VRECIROPA ag y o (3.3.7)

\/2\/192 +9%9[?

This choice of mode decomposition defines a vacuum state |in). In the far past
the phases of the solutions (3.3.7) are monotone decreasing with ¢, indicating that
the state |in) has no particles in the far past. This state, known as the adiabatic
vacuum, evolves into a highly excited state as the modulus ¢ rolls past the ESP.
We can now write down the classical equation of motion for ¢ including the

effects of x production. Including a subtraction d,s, to be determined shortly, it is

(6% + *(6®) = ar) )0 = 0. (3.3.8)

The expectation value (x?) depends on time and is calculated in the adiabatic

vacuum |in). At time ¢

(inb? @)in) = [ (;‘F’T’;luzn(mz. (33.9)

where the u}"c” are determined by the boundary condition (3.3.7) in the far past.
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In order to subtract the Coleman-Weinberg potential, we must remove the
contribution to (x2?) coming from one loop of x particles, replacing the y mass-
squared with g%|#(¢)|2. That is, the subtraction dp; can be written as

d3k
6 / 3.3.10
" k? + 92|¢|2 (3:3:10)

With this form it is straightforward to see that when the impact parameter is very

large, ((x2) — &) is negligible and ¢ follows its original trajectory (3.2.2).
To summarize, the effects of quantum production of x particles on the classical

motion of the modulus ¢ are governed by:
(62 +9*(x®) = dun) )¢ = 0
(3? + K2+ g% ()]l =0 (3.3.11)

3
) = [ ol ©F,

The above equations of motion can be reformulated in terms of the energy
transferred between the two systems. In particular, it is straightforward to show
that the coupled equations (3.3.11) are equivalent to the statement

d d
g % — (in|H,|in). (3.3.12)
The left-hand side of (3.3.12) involves the classical energy of the rolling ¢(t) fields,

whereas the right hand side is an expectation value of the time-dependent xy Hamil-

—Hgy =

tonian calculated in quantum field theory. This is the more precise form of energy
conservation which applies to our rough estimate in §3.2.2.

Furthermore, the angular momentum on moduli space is conserved, since the
action (3.2.1) is invariant under phase rotations ¢ — ¢e®®. In the present case
(3.2.1), the x particles do not carry angular momentum, so the orbit of ¢ around
the ESP will have fixed angular momentum. The result is an angular momentum
barrier which keeps the modulus at a finite distance from the ESP.

More complicated scenarios allow for the exchange of angular momentum be-
tween ¢ and x. This includes the case of colliding D-branes, where the strings
stretching between the two D-branes can carry angular momentum. Moreover, as
we will see in §3.4, the situation changes once gravitational effects are included,
as angular momentum is redshifted away by cosmological expansion. This leads to
scenarios where the moduli are trapped exactly at the ESP, rather than orbiting

around it at some finite distance.
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3.3.2 Moduli Trapping: Numerical Results

The coupled set of integral and differential equations (3.3.11) governing the
trapping trajectory is hard to solve in general. Some analytic results can be obtained
through an expansion in the non-adiabaticity parameter w/w?, combined with a
systematic iteration procedure. However, as time goes on, the mass amplification
of the x particles makes higher-order terms asvwell as non-perturbative terms in the
adiabatic expansion crucial for the motion of the moduli. This makes it very hard
to proceed analytically to obtain the detailed evolution of the system.

We have therefore numerically integrated the coupled equations (3.3.11) in
Mathematica, using a discrete sum to approximate the momentum integral &, and

implementing the subtraction of the Coleman-Weinberg potential described above.

Fig. 4: This figure shows the evolution, in the complex ¢ plane, of a system
with parameters g2 = 20,4 = 0.3,v = 1. The field rolls in from the right
and gets trapped into the precessing orbit exhibited in the plot. The orbit
is initially an elongated ellipse, but gradually becomes more circular. In an
expanding universe, the field would lose its angular momentum, so that the
radius of the circle would eventually shrink to zero.

In Figure 4 we plot a trajectory for the case p > 0, where ¢ becomes trapped
in a spiral orbit around the ESP. The radius of the orbit varies with the parameters,

but the qualitative features shown are typical.
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Fig. 5: This shows one-dimensional trapping, in which ¢ passes directly
through the ESP ¢ = 0. The vertical axis is the real part of ¢, and the
horizontal axis is time. The amplitude of the oscillations decreases expo-
nentially as a result of parametric resonance, as we explain in §3.3.3.

In Figure 5 we plot the trajectory of a modulus which is aimed to pass di-
rectly through an ESP, with vanishing impact parameter. In this case the motion
becomes effectively one-dimensional, and the field moves directly through the ESP
¢ = 0. The trapping effect in this case is especially strong, and can be understood

analytically to come from resonant production of x particles, as we will now explain.

3.8.8 The Special Case of One-Dimensional Motion

In this section we will concentrate on the interesting and important special
case of one-dimensional motion, i.e. vanishing impact parameter u. Perhaps sur-
prisingly, this is a good approximation to the general case. Indeed, the results of
§3.2 demonstrate that trapping becomes exponentially suppressed when the impact

parameter 4 (the imaginary part of the moduli field) becomes greater than , / wig.

On the other hand, for u < , /;"5 the motion of the field ¢ stops at ¢, ~ 4—7‘;g‘§:ﬁ.

The ratio of ¢, to u in the regime where trapping is efficient (i.e. for p < ﬂlg) is

therefore

T g9°
Thus, in the case of efficient trapping and weak coupling, the ellipticity of the moduli

. 4 7/2
o AT (3.3.13)

orbit is very high, so that the motion is effectively one-dimensional.
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In the case p = 0 the number density of x particles created when the field ¢
passes the ESP is

n, = gz))z . (3.3.14)

At || > f , when the x particles are nonrelativistic, the mass of each particle is

equal to g|¢|, and their energy density is given by [67]

(2 )3

We have written |¢| because this energy does not depend on the sign of the field ¢.

p,(®) =gn |¢| = l¢| (3.3.15)

This will be very important for us in what follows.
One should note that, strictly speaking, the x particles have some kinetic energy

even at ¢ = 0, but for g < 1 this energy is much smaller than the kinetic energy of
¢ [67]:

2 2 gz i
p, (¢=0)~ in 7/2 5 =52 Pe (3.3.16)
This means that the energy of ¢ decreases only slightly when it passes through the
ESP ¢ = 0. Although the initial energy in x particles is small, this energy increases
with |¢|, p, ~ gn, |¢|, and creates an effective potential for ¢. The equation of

motion for ¢ in this potential is [66]:

2
—0. 3.3.17
¢+ gn, Tl ( )

The last term means that ¢ is attracted to the ESP ¢ = 0 with a constant force
proportional to n_ .

At some location ¢] the x energy density p, equals the initial kinetic energy
density 2q52 2v%; at this point ¢ stops and then falls back toward ¢ = 0.

On this second pass by the origin, the energy density of the x particles again
becomes much smaller than the kinetic energy of ¢. Energy conservation implies
that ¢ will pass the point ¢ = 0 at almost exactly the initial velocity v. Since the
conditions are almost the same as on the first pass, new x particles will be created,
i.e. n  will increase. The field ¢ will continue moving for a while, stop at some
point ¢35, and then fall back once more to the ESP, creating more particles. Because

each new collection of particles is created in the presence of previous generations of
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particles, the process occurs in the regime of parametric resonance, as in the theory
of preheating.

A detailed theory of this process was considered in [66]; see in particular Eqgs.
(59),(60). By translating the problem into a one-dimensional quantum mechanics
system (as in Appendix 3.A) with a particle scattering repeatedly across an inverted
harmonic potential, [66] calculated the multiplicative increase of the Bogoliubov
coefficients during each pass in terms of the reflection and transition amplitudes. In
application to our problem, the equations describing the occupation numbers of
particles with momentum & produced when the field passes through the ESP j + 1
times look as follows:

nitt = nd exp(2mul), (3.3.18)

where
) 1 .z
pl = oI (1 +2e~™ —25in6? e 58 1+ e—"€2) : (3.3.19)
i3

Here £2 = ’g“—f)— and 7 is a relative phase variable which takes values from 0 to 2.
In a cyclic particle creation process in which the parameters of the system change
considerably during each oscillation (which is our case, as will become clear shortly),
the phases 67 change almost randomly. As a result, the coefficient u; for small k
takes different values, from 0.28 to —0.28, but for 3/4 of all values of the angle
67 the coefficient p; is positive. The average value of u; is approximately equal
to 0.15. This means that, on average, the number density of x particles grows by
approximately a factor of two or three each time that ¢ passes through the ESP
¢ =0.

But this means that with each pass, the coefficient n_ in (3.3.15) grows by a
factor of two or three. It follows that the effective potential becomes two to three
times more steep with each pass. Correspondingly, the maximal deviation |¢}| from
the point ¢ = 0 exponentially decreases with each new oscillation. Since the velocity
of the field at the point ¢ = 0 remains almost unchanged until ¢ loses its energy to
the created particles, the duration of each oscillation decreases exponentially as well.
Therefore the whole process takes a time (O(10)¢;] /v, after which the backreaction
of the created particles becomes important, and the field falls to the ESP.

This process is very similar to the last stages of preheating, as studied in

[66]. The main difference is that in the simplest models of preheating the field
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oscillates near the minimum of its classical potential. In our case the effective
potential is initially absent, but a potential is generated due to the created particles.
This is exactly what happens at the late stages of preheating, when the effective
potential (with an account taken of the produced particles) becomes dominated by
the rapidly-growing term proportional to |¢|; see the discussion in Section VIII B
of [66].

We would like to emphasize that until the very last stages of the process,
the backreaction of the created particles can be studied by the simple methods
described above. At this stage the total number of created particles is still very
small, but their number grows exponentially with each new oscillation. This leads
to an exponentially rapid increase of the steepness of the potential energy of the field
¢ (3.3.15) and, correspondingly, to an exponentially rapid decrease of the amplitude
of its oscillations. This extremely fast trapping of ¢ happens despite the fact that
at this first stage of oscillations the total energy of ¢, including its potential energy,
remains almost constant.

Once the amplitude of oscillations becomes smaller than the width of the nona-
diabaticity region, |¢p(t)| < A¢d ~ \/17/— , one can no longer assume that the number
of particles will continue to grow via a rapidly-developing parametric resonance.
The amplitude of the oscillations is given by %, so the amplitude becomes
(9(\/1_1—/—53) when the total number of the produced particles grows to

ny ~ v*/2g7Y2 (3.3.20)

Note that the typical energy of each x particle at |¢(t)| ~ \/z% is of the same
order as its kinetic energy O(,/gv). One can easily see that the total energy density
of particles x at that stage is roughly /gon, ~ O(v?), i.e. it is comparable to the
initial kinetic energy of ¢.

Thus, our estimates indicate that the regime of the broad parametric resonance
ends when a substantial part of the initial kinetic energy of ¢ is converted to the
energy of the x particles, and the amplitude of the oscillating field ¢ becomes

comparable to the width of the nonadiabaticity region,

|6 ~ Ap = /v/g . (3.3.21)

We will use these estimates in our discussion of the cosmological consequences

of moduli trapping. In order to obtain a more complete and reliable description of
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the last stages of this process one should use lattice simulations, taking into account
the rescattering of created particles [90,91]. An investigation of a similar situation
in the theory of preheating has shown that rescattering makes the process of particle
production more efficient. This speeds up the last stages of particle production and
leads to a rapid decay of the field ¢ [93], which in our case corresponds to a rapid

descent of ¢ toward the enhanced symmetry point.

3.4 Trapped Moduli in an Expanding Universe
3.4.1 Rapid Trapping

In this section we will study the conditions under which the trapping mechanism
in quantum field theory survives the effects of coupling to gravity in an expanding
universe.

First, we should point out one very beneficial effect of cosmological expansion.
The field-theoretic mechanism presented above often leads to moduli being trapped
in large-amplitude fluctuations (3.2.12) around an ESP when y # 0. On timescales
where the expansion is noticeable, Hubble friction will naturally extract the energy
from this motion, drawing the modulus inward and leading the modulus to come to
rest at the ESP.

Let us now ask whether the expansion of the universe can impede moduli
trapping. Consider a system of moduli coupled to gravity, with the fields arranged
to roll near an ESP. For simplicity we will consider FRW solutions with flat spatial
slices,

ds® = dt® — a(t)%dz>. (3.4.1)

The Friedman equation determining a(t) is

1

3H? = —p
My

(3.4.2)
where H = a/a and p is the energy density of the moduli.

The trapping effect will be robust against cosmological expansion if the
timescale governing trapping is short compared to H~!, i.e. if H < v/, where
¢« is given by (3.2.12). Assuming that the potential energy of the moduli is non-

negative, this implies that



3 Moduli Trapping at Enhanced Symmetry Points 53

43 pl/2
61729572 M,

This condition suffices to ensure that trapping is very rapid.

b < V6M, — emIRY 1 3.4.3
p

If this condition is satisfied, trapping occurs in much less than a Hubble time,
in which case the analysis of §3.2 and §3.3 remains valid. We will show in §3.4.3 that
even when (3.4.3) is not satisfied, trapping does still occur, although with somewhat

different dynamics.

3.4.2 Scanning Range in an Ezpanding Universe

An important effect of the gravitational coupling is that during the expansion
of the universe, the energy density in produced x particles dilutes like 1/a3 if they
are non-relativistic and like 1/a* if they are relativistic. The energy in coherent
motion of ¢, however, has the equation of state p = p and therefore dilutes much
faster, as 1/a®.

This effect reduces the range of motion for the moduli even before they en-
counter any ESPs. Hubble friction slows the progress of any rolling scalar field, and
if the distance between ESPs is sufficiently large then a typical rolling modulus will
come to rest without ever passing near an ESP. In order to apply our results to the
vacuum selection problem, we will need to know how large a range of ¢ we can scan
over in the presence of Hubble friction. This can be obtained as follows [94].

If we are in an FRW phase,
a(t) = agt? (3.4.4)
then the equation of motion for ¢ (ignoring any potential terms)
é+3Hd=0 (3.4.5)

has solutions of the form
to

. sﬁ
We can integrate this to determine how far the field rolls before stopping.
Let us first consider the case § = 1/3, which corresponds to the equation of
state p = p. This includes the case where the coherent, classical kinetic energy of ¢

drives the expansion. The value of ¢,

(t) = vto log (%) (3.4.7)
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diverges at large t. Thus ¢ can travel an arbitrarily large distance in moduli space.

In the more general case § > 1/3 the field will travel a distance

v B
H(to) 36 - 1

o(t) — ¢(to) = (3.4.8)

before stopping.

In order to be in a phase with # > 1/3, the kinetic energy of ¢ must not be
totally dominant; that is, we must have %qﬁz < p, where p = 3M2H? is the total
energy density appearing on the right hand side of the Friedman equation. Plugging
this into (3.4.8) we obtain the constraint

o(t) — ¢(to) < \/éMpr_r

(3.4.9)

Let us consider a specific example. Suppose that we start at o with kinetic
energy domination: Ky/pg = 1 — €, € < 1, in some region of the universe that
can be modelled as an expanding FRW cosmology. The kinetic energy drops like

K ~ po(ag/a)® ~ po(to/t)?, while the other components of the energy dilute like

p(t) = epolto/t) ™, (3.4.10)

with w < 1. The universe will stop being kinetic-energy dominated at the time
te = toe~ /(=) at which point, according to (3.4.7), the modulus has travelled a

distance

Blte) — B(to) =~ . —utologe. (3.4.11)

After this the field keeps moving and covers an additional range

B(t.) — d(te) = V3M, 2

pEZ]__—u))‘ (3.4.12)

To get a feel for the numbers, consider the case where vty ~ M, € ~ 1072,
and w = 0. Then ¢ will travel a total distance ¢(t.) — ¢(to) ~ 6M,, in field space,
which is not particularly far. However, as we will discuss in §3.6, certain moduli
spaces of interest have a rich structure on sub-Planckian scales, so in these cases
there is a good chance that the modulus will encounter an ESP and get trapped
before Hubble friction brings the system to rest.

There is another natural possibility if we assume low-energy A/ = 1 supersym-

metry. If the moduli acquire their potentials from supersymmetry breaking then
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there is a large ratio between the Planck scale and the scale of these potentials,
leading to significant scanning ranges. Specifically, consider a contribution to the
energy density coming from a potential energy V at the supersymmetry-breaking
scale. If the initial kinetic energy of the moduli is Planckian and the supersymmetry-
breaking scale is TeV then there will be a prolonged phase in which kinetic energy
dominates, since € = V/M][‘,1 ~ 107%4, This allows ¢ to scan a significantly super-

Planckian range in field space.

3.4.8 Trapping in an Expanding Universe

We are now in a position to combine all the relevant effects and consider trap-
ping during expansion of the universe. For simplicity, we will concentrate on the
case of effectively one-dimensional motion, u < \/1% Suppose that, taking into
account Hubble friction, the modulus field passes in the vicinity of the ESP at some
moment %o, so that x particles are produced, with n, (to) = %. We will now
determine the remaining evolution including both our trapping force and Hubble
friction. After the particles have been produced, the field ¢ becomes attracted to-
ward ¢ = 0 by a force gn,, so taking into account the dilution of the produced

particles, for ¢ > 0 the equation of motion is

3
¢+ 3H = —gn, (to) (‘;(;t‘)))) (3.4.13)

For the general power law case, a(t) o t%, this becomes

g

b+ 3?45 = —gny (to) (to/t)% . (3.4.14)

The general solution of this equation is

_ —38+1 —38+1 gny(t )tz gnx(t )
B(t) = B(to) + c(tyPHt — =38+ 4 (2X_ §ﬂ)0 T (2- 30[3) (to/t)%P4%  (3.4.15)

where c is some constant. In the important case § = 2/3, which corresponds to a

universe dominated by pressureless cold matter, the general solution is
-1 _ 4—1 2 t
¢ =¢0) +c(ty” —t7 ") — gnytslog ral (3.4.16)
0

According to these solutions, in a universe dominated by matter with non-negative

pressure (i.e. 8 < 2/3) the field ¢ moves to —oco as t — oo.
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Of course, as soon as the field reaches the point ¢ = 0, this solution is no longer
applicable, since the attractive force changes its sign (the potential is proportional
to |@|). The result above simply means that the attractive force is always strong
enough to bring the field back to the point ¢ = 0 within finite time. Then the field
moves further, with ever decreasing speed, turns back again, and returns to ¢ =0
once again. The amplitude of each oscillation rapidly decreases due to the combined
effect of the Hubble friction and of the (weak) parametric resonance. This means
that once ¢ passes near the ESP, its fate is sealed: eventually it will be trapped
there.

3.4.4 Efficiency of Trapping

It is useful to determine what fraction of all initial conditions for the moving
moduli lead to trapping. There are several constraints to be satisfied. First of all, if
the impact parameter y is much larger than \/17 , the number of produced particles
will be exponentially small, and the efficiency of trapping will be exponentially
suppressed. Of course, eventually ¢ will fall to the enhanced symmetry point, but
if this process takes an exponentially large time, the trapping effect will be of no
practical significance. Thus one can roughly estimate the range of interesting impact
parameters to be O(1/v/g).

Another constraint is related to the fact that even if initially the energy density
of the universe was dominated by the moving moduli, as discussed in §3.4.2, these
fields can only move the distance given by (3.4.11),(3.4.12). This distance depends
on the initial ratio 1 — € of kinetic energy to total energy, leading to a scanning
range C'M,, in field space, where the prefactor C' is logarithmically related to e.

Thus, the field becomes trapped only if there is an enhanced symmetry point
inside a rectangle with sides of length C'M,, along the direction of motion and width
O(y/v/g) in the direction perpendicular to the motion.

Interestingly, the total area (phase space) of the moduli trap

Strap ~ C’Mp\/g (3.4.17)

increases as the coupling decreases. This implies that the efficiency of trapping
grows at weak coupling. Although this may seem paradoxical, it happens because

the mass of the x particles is proportional to the coupling constant and (fixing the
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other parameters) it is easier to produce lighter particles. On the other hand, if
g becomes too small, the trapping force gn, ~ g°/2v3/2 becomes smaller than the
usual forces due to the effective potential, which we assumed subdominant in our
investigation.

So far we have studied the simplest model where only one scalar field becomes
massless at the enhanced symmetry point. Let us suppose, however, that N fields
become massless at the point ¢ = 0. If these fields interact with ¢ with the same
coupling constant g, then particles of each of these fields are produced, and the
trapping force becomes N times stronger. In other words, the trapping force is

proportional to the degree of symmetry at the ESP.

3.5 String Theory Effects

It is interesting to ask if there is any controlled situation where string-theoretic
effects become important for moduli trapping. Here we will simply list several
circumstances in which stringy and/ or quantum gravity effects might come into
play, as well as some constraints on these effects. In Chapter 4 we will revisit this

subtle and interesting situation.

3.5.1 Large x Mass

One way stringy and quantum gravity effects could become important in the
colliding D-brane case is if the x mass at the turnaround point is greater than string
scale, g¢. > m,. This can happen even if the velocity is so small that during the
non-adiabatic period near the origin only unexcited stretched strings are created.

Then, as in our above field theory analysis, we have

4 3
gu = 93—7;2111/2@“9#2/”. (3.5.1)

In this case, the full system includes modes, namely the created x strings, which are
heavier than the string oscillator mode excitations on the individual branes. This
means that the system as a whole cannot consistently be captured by pure effective
field theory. However, it may still happen that the created stretched strings are
relatively stable against annihilation or decay into the lighter stringy modes. Their

annihilation cross section is suppressed by their large mass, as discussed in Appendix
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3.B.}! Furthermore, an individual stretched string will not directly decay if it is the
lightest particle carrying a conserved charge.

This latter situation happens in the simplest version of a D-brane collision.
The created stretched string cannot decay into lighter string or field theory modes

because it is charged and they are not.

3.5.2 Large v and the Hagedorn Density of States

If we increase the field velocity ¢ = v, then we may obtain a situation in which
excited string states are produced as ¢ passes the ESP. The number of string states
produced in this process is enhanced by the Hagedorn density of states, so the

Bogoliubov coefficients have the structure

1Bu]? = Ze;/—i—ge_w(kunmygzm)/(gv) (3.5.2)
n

where in the D-brane context, g = ,/gs is the Yang-Mills coupling on the D-branes.
Because of the e—™ms/(9v) suppression in the second factor, this effect is only

significant if gv > m?2.
However, in the case of colliding D-branes, and any situation dual to it, there
is a fundamental bound on the field velocity from the relativistic speed limit of
the branes. That is, for large velocity one must include the full Dirac-Born-Infeld

Lagrangian for ¢, which takes the form

S = L d*zq/1 2& 3.5.3
=" | CHT T (3:5:3)

This action governs the nontrivial dynamics of ¢ for velocities approaching the
string scale, and in particular, it reflects the fact that the brane velocity géa’ must
be less than the speed of light in the ambient space. Applied to our situation,
(3.5.3) implies that the D-brane velocity cannot be large enough for the Hagedorn
enhancement (3.5.2) to substantially increase the trapping effect.

However, in the presence of a large velocity, the effective mass of the stretched
string also has important velocity-dependent contributions [70]. As we will explain
in Chapter 4, this will increase the non-adiabaticity near the origin and dramatically

enhance the particle production effect.

11 For stringy densities of stretched strings, there could be additional corrections to the

annihilation rate, but we will not consider this possibility.
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3.5.3 Light Field-Theoretic Strings

A further possibility is to formally reduce the tension of strings by considering
strings in warped throats, strings from branes partially wrapped on shrinking cycles,
and the like. In these situations, the strings are essentially field-theoretic, though
string theory techniques such as AdS/CFT and “geometric engineering” of field

theories may provide technical help in analyzing the situation.

3.6 The Vacuum Selection Problem

We can now apply the ideas of the previous five sections to the cosmology of
theories with moduli.

A natural application of the moduli trapping effect is to the problem of vacuum
selection. One mechanism of vacuum selection is based on the dynamics of light
scalars during inflation. Moduli fields experience large quantum fluctuations during
inflation and can easily jump from one minimum (or valley) of their effective poten-
tial to another. It was suggested long ago that such processes may be responsible,
e.g., for the choice of the vacuum state in supersymmetric theories [95] and for the
smallness of the cosmological constant [96]. The probability of such processes and
the resulting field distribution depends on the details of the inflationary scenario
and the structure of the effective potential [97].

The mechanism that we consider in this chapter is, in a certain sense, com-
plementary to the inflationary mechanism discussed above. During inflation the
average velocities of the fields are very small, but quantum fluctuations tend to
take the light scalar fields away from their equilibrium positions. On the other
hand, after inflation, the fields often find themselves not necessarily near the min-
ima of their potentials or in the valleys corresponding to the flat directions, but on
a hillside. As they roll down, they often acquire some speed along the valleys, see
e.g. [68]. At this stage (as well as in a possible pre-inflationary epoch) the moduli
trapping mechanism may operate.

This mechanism may reduce the question of how one vacuum configuration is
selected dynamically out of the entire moduli space of vacua to the question of how
one ESP is selected out of the set of all ESPs. This residual problem is much simpler

because ESPs generically comprise a tiny subset of the moduli space.
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3.6.1 Vacuum Selection in Quantum Field Theory

In pure quantum field theory, discussed in §3.2, we saw that if a scalar field ¢
is initially aimed to pass near an ESP, then ¢ gets drawn toward the ESP and is
ultimately trapped there. This appears to be a basic phenomenon in time-dependent
quantum field theory: moduli which begin in a coherent classical motion typically
become trapped at an ESP. This leads to a dynamical preference for ESPs.

In many of the supersymmetric quantum field theories that have been studied
rigorously [72], the moduli space contains singular points at which light degrees of
freedom emerge. We have seen that moduli can become trapped near these points

given suitable initial conditions.

3.6.2 Vacuum Selection in Supergravity and Superstring Cosmology

Compactifications of M/string theory which have a description as a low energy
effective supersymmetric field theory can have a natural separation of scales: the
string or Planck scale can be much larger than the energy scales in the effective
field theory potential. Thus, the intrinsically stringy effects of §3.5 are unimportant
in this limit. On the other hand, the effects of coupling to gravity given in §3.4
continue to provide a crucial constraint, as we will now discuss.

First of all, as in the case of pure quantum field theory, there exist very instruc-
tive toy models with extended supersymmetry, for which there is no potential at
all on the moduli space. For these examples, in situations where higher-derivative
corrections to the effective action are suppressed, a rolling scalar field has the equa-
tion of state p = p. This corresponds to the § = 1/3 case (3.4.7) of §3.4, for which
one can scan an arbitrarily large distance in field space. Therefore, in this case, the
trapping effect applies in a straightforward way to dynamically select the ESPs for
regimes in which (3.4.3) is also satisfied.

More generally, however, one may wish to implement cosmological trapping in
theories with some potential energy. In this case the requirement that the scanning
range of ¢ (as constrained by Hubble friction in §3.4) should be large enough to cover
multiple vacua is an important constraint. The absolute minimum requirement
is that the scanning range is sufficient for the moduli to reach one ESP before
stopping from Hubble friction; but to address the vacuum selection problem one

should ideally scan a number of ESPs.
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One context in which this can happen is in a phase in which the kinetic energy
of the rolling scalar fields dominates the energy density of the universe so that the
B = 1/3 result (3.4.7) applies. This may occur in a pre-inflationary phase in some
patches of spacetime, though it is subject to the stringent limitation in duration
given in (3.4.11). Given such a phase, the field will roll around until it gets trapped
at an ESP.

During the ordinary radiation-dominated (8 = 1/2) and matter-dominated
(B = 2/3) eras, the more stringent constraint (3.4.9) applies. As we indicated in
§3.4, this scanning range is not large in Planck units, so we can usefully apply moduli
trapping to the problem of vacuum selection in these eras only if the vacuum has
appropriately rich structure on sub-Planckian scales. In other words, the average
distance in moduli space between ESPs should be sub-Planckian.

Gravitationally-coupled scalars ¢ generically have a potential energy V(¢/M,)
which has local minima separated by Planck-scale distances. In this cases, the lim-
ited scanning range during the 8 # 1/3 cosmological eras prevents our mechanism
from addressing the vacuum selection problem. However, it is generic for compact-
ification moduli to have special ESPs where the gravitationally-coupled system is
enhanced to a system with light field theory degrees of freedom. Given a rich enough
effective field theory in this ESP region, there will generically be interesting vacuum
structure on sub-Planckian distances. In this sort of region moduli trapping will

pick out the ESP vacua of the system.

3.6.3 Properties of the Resulting Vacua

Let us now consider the qualitative features of the vacua selected by moduli
trapping, assuming that the constraint imposed by Hubble friction has been evaded
in one of the ways described above.

First of all, it is important to recognize that what we have called ESPs may well
be subspaces of various dimensions, not points. For example, in toroidal compacti-
fication of the heterotic string, there is one enhanced symmetry locus for each circle
in the torus — new states appear when the circle is at the self-dual radius. Each of
these loci is codimension one in the moduli space, but of course their intersections,
where multiple radii are self-dual, have higher codimension.

When moduli trapping acts in such a system of intersecting enhanced symmetry

loci, we expect that the moduli will first become trapped on the locus of lowest
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codimension, but retain some velocity parallel to this locus. Further trapping events
can then localize the modulus to subspaces of progressively higher codimension.
The final result is that the moduli come to rest on a locus of maximally enhanced
symmetry.

The simplest examples of this phenomenon are toroidal compactification, in
which all circles end up at the self-dual radius, and the system of N D-branes
discussed in §3.2.3, in which the gauge symmetry is enhanced to U(N).12

Quite generally, we expect that within the accessible range in field space, taking
into account Hubble friction and the form of the potential, moduli trapping will
select the ESPs with the largest number of light states, which often corresponds to
the highest degree of symmetry.!3

In some very early epoch the rolling moduli can have large velocities, so trap-
ping can occur even at points where the “light” states x have a relatively large
mass, and the enhanced symmetry is strongly broken. However, Hubble friction
inevitably slows the motion of the moduli. Thus, trapping at late times is possible
only at ESPs with weakly-broken symmetries and very light particles. One could
speculate about a possible relation of this fact to the mass hierarchy problem.

Note that even though we emphasized the natural role of enhanced symmetry
in moduli trapping, in fact the only strict requirement was the appearance of new
light particles at the trapping points. In some of the many vacua of string theory,
particles may be light not because of symmetry but because of some miraculous
cancellations. Invoking such unexplained cancellations to produce a small mass
is highly undesirable. However, moduli trapping may ameliorate this problem, as
those rare points in moduli space where the cancellation does happen are actually

dynamical attractors.

12. A toy model for this situation, in the case of three D-branes, has the potential
923 [xf[qsz — ¢s)® + x3|b1 — b3)> + X351 — ¢2|2], where ¢; and x; are six different fields.
Suppose that ¢2 moves through the point ¢2 — ¢p3 = 0. This creates x1 particles and traps
the system at ¢2 = ¢3, where x1 is massless. Subsequent motion of ¢ can trap it at the
point ¢1 = ¢2 = ¢z, making the remaining fields x2 and xs massless.

13 Moreover, as we discuss in Appendix 3.B, the trapping effect is far more effective at
ESPs for which the x particles do not decay rapidly. We therefore expect moduli trapping
to select ESPs which have relatively stable light states.
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Thus, the attractive power of symmetry and of light particles may have impli-
cations for questions involving the distribution of vacua in string theory (3,98,5,99].
Given the strong preference we have seen for highly-enhanced symmetry, the distri-
bution of all string vacua obtained by a naive counting, weighted only by multiplic-
ity, may be quite different from the distribution of vacua produced by the dynamical
populating process discussed in this chapter. It is therefore very tempting to spec-
ulate that some of the surprising properties of our world, which might seem to be
due to pure chance or miraculous cancellations, in fact may result from dynamical

evolution and natural selection.

3.7 The Moduli Problem

One aspect of the moduli problem is that reheating and nucleosynthesis can
be corrupted by energy locked in oscillations of the moduli. The source of the
problem is that the true minima of the low-temperature effective potential appli-
cable after inflation do not coincide with the minima of the Hubble-temperature
effective potential which is valid during inflation. It follows that moduli which sit
in minima of the latter during inflation will find themselves displaced from their
true, low-temperature minima once inflation is complete. The energy stored in
this displacement, and in the resulting oscillations about the true minimum, poses
problems for nucleosynthesis.

One way to address this problem is to permit initial displacements of the mod-
uli, as described above, but somehow arrange that the oscillating moduli decay very
rapidly to Standard Model particles. Alternatively, one could fix the moduli at a
scale high enough that the Hubble temperature during inflation does not destabilize
them. This may work in string models with stabilized moduli such as [98,100,5,20].

Another approach to this problem [75] is to posit that the moduli sit at an
enhanced symmetry point minimum of the finite-temperature effective potential
during inflation. Then, when inflation ends, the moduli are still guaranteed to be
at an extremum of the effective potential. If this extremum is a minimum then the
moduli have no problematic oscillations after inflation. Our trapping mechanism
allies nicely with this idea by providing a preinflationary dynamical mechanism
which explains the initial condition assumed in this scenario. That is, in parts of
the universe where ¢ kinetic energy dominates well before inflation, the trapping
effect can explain why the moduli find themselves in ESP minima at the onset of

inflation.
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3.8 Trapped Inflation and Acceleration of the Universe

The main motivation of our investigation was to study the behavior of moduli
in quantum field theory and string theory. However, the results we have obtained
have more general applicability. To give an example, in this section we will study
the cosmological implications of the trapping of a scalar field ¢ with a relatively
steep potential.

Consider the theory of a real scalar field ¢ with the effective potential m2¢? /2.
In the regime ¢ < M, the curvature of the effective potential is greater than H?2,
with H the Hubble parameter, so ¢ falls rapidly to its minimum, and inflation does
not normally occur.

We will assume that ¢ gives some bosons x a mass g|¢ — ¢1|. Let us assume
that ¢ falls from its initial value ¢g = ¢1(1 + ) < M), with vanishing initial speed.
If we take o < 1 and neglect for the moment the expansion of the universe, then ¢
arrives at ¢; with the velocity v = v2ame;.

As ¢ passes ¢1, it creates x particles with number density n, = (gv)%/2/8r3.
After a very short time these particles become nonrelativistic, and further motion
of ¢ away from ¢; requires an energy g|¢ — ¢1|n,. In other words, the effective

potential becomes

1 | 1 v3/2
V(¢) = —2-m2¢2 + gny|é — ¢1] = §m2¢2 + 95/2@@ — ¢1]. (3.8.1)
For ¢°/2 8;;3/; > ¢1, the minimum of the effective potential is not at ¢ = 0, but at
the point ¢, where the particle production takes place. The condition g%/2 8;;3:;
¢1 implies that
m < 27927=64503/2¢, . (3.8.2)

Thus, if the mass of ¢ is sufficiently small, the field will be trapped near the point

é1.
To give a particular example, take ¢y ~ M,/2, a ~ 1/4. Then ¢ is trapped

near ¢; if
m < 107%¢° M, (3.8.3)

For a very light field, such as a modulus with m ~ 102 GeV ~ 10716M,, this

condition is readily satisfied unless g is very small.
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Once the field is trapped, it starts oscillating around ¢; with ever-decreasing
amplitude, creating new y particles in the regime of parametric resonance. Even-
tually ¢ transfers a large fraction of its energy to x particles. One can easily check
that in this model the fall of ¢ to the point ¢; and the subsequent process of creation
of x particles occurs within a time smaller than H~!, so one can neglect expansion
of the universe at this stage. This process is therefore governed by the theory de-
scribed in §3.3. In particular, we may use the estimate (3.3.20) of the total number
of x particles produced in the process. At the end of the particle production, the
correction to the effective potential becomes much larger than at the beginning of
the process:

AV = gl¢ — lny ~ v*/2g"2|¢ — ¢4 , (3.8.4)

Subsequent expansion of the universe dilutes the density of x particles as a3,

which eventually makes the correction to the effective potential small, so that ¢
starts moving down again. The field ¢ remains trapped at ¢ = ¢; until the scale

factor of the universe grows by a factor

1/6
a ~ ot/ (ﬂ) (3.8.5)
m

since the beginning of the trapping process.

In the beginning of the first e-folding, the kinetic energy of the x particles and of
the oscillations of ¢ is comparable to the potential energy of ¢. However, the kinetic
energy rapidly decreases, and during the remaining time the energy is dominated
by the potential energy V(¢;). This means that the trapping of ¢ may lead to a
stage of inflation or acceleration of the universe, even if the original potential V(¢)
is too steep to support inflation.

Let us consider various possibilities for the scales in the potential, to get some
simple numerical estimates for the duration of inflation. For example, if we take
a,g = 0(1), ¢1 ~ M, and m ~ 102 GeV, then the scale factor during a single trap-
ping event will grow by a factor of €°. If one considers a model with m ~ 10730M,,,
which can arise in a radiatively stable manner (as in the “new old inflation” model
[81]), the scale factor during a single trapping event can grow by a factor of e!l.
Finally, if the moduli mass is of the same order as a typical mass taken in theories of

quintessence, m ~ 10_60Mp, we can have an accelerated expansion of the universe
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by a factor €3, in a sub-Planckian regime of field space, just from trapping. (In
this last case, as in ordinary quintessence models, tuning is required.)

Thus, the stage of inflation in this simple model is shorter than the usual 60 e-
folds, but it may nevertheless be very useful for initiating a first stage of inflation in
theories where this would otherwise be impossible, or for diluting unwanted relics at
the later stages of the evolution of the universe. Moreover, this scenario can easily
describe the present stage of acceleration of the universe.

One can also make the effect more substantial by constructing a more compli-
cated scenario, consisting of a chain of N particle production events at locations
¢ = ¢;, where some fields x; become light. The field ¢ may be trapped and enter
the stage of parametric resonance near each of these points. Correspondingly, the
universe enters the stage of inflation many times. One could arrange for 60 e-folds

of inflation by taking, for example, m ~ 10?2 GeV, N ~ 10.
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Fig. 6: The D-brane picture of a series of trapping events.
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A D-brane example provides a useful geometrical model of this process. Sup-
pose we have an observable brane B and another brane A approaching it. Suppose
also that there are a number of other branes in between A and B. Each time the
moving brane passes through one of the standing intermediate branes, stretched
strings are created and slow the motion of A. The cumulative effect of a number
of standing branes is perceived on the observable brane as a slowing-down of the
motion of A due to the interactions.

One should note that inflation in our scenario is rather unusual: the inflaton ¢
rolls a short distance, then oscillates for a long time, but with period much smaller
than H~!, then rolls again, etc. This may lead to peculiar features in the spectrum
of density perturbations. One can avoid these features if the points ¢; are very
close to each other, and each of them does not stop the rolling of ¢ but only slows
it down. In this case, particle production will not lead to parametric resonance, so
it is not very important to us whether the fields x; are bosons or fermions, as long
as their masses vanish at ¢;.

This scenario is similar to the string-inspired thermal inflation considered in
[76] (see also [101]), but our proposal does not require thermal equilibrium. The
main effect which supports inflation in our scenario is based on particle production
and has a nonperturbative origin. (A closely-related mechanism uses the corrections
to the kinetic terms in the strong coupling regime, where the particle production is
suppressed [70].) We hope to return to a discussion of this possibility in a separate

publication.

3.9 Conclusion

We have argued that the dynamics of rolling moduli is considerably modified
due to quantum production of light fields. In flat space quantum field theory,
moduli typically become trapped in orbits around loci which have extra light degrees
of freedom. In the presence of gravity, Hubble friction limits the field range the
system samples, but any trapping events which do occur are enhanced by Hubble
friction, which rapidly brings the modulus to rest at an ESP. Moduli trapping may
aid in solving the cosmological moduli problem by driving moduli to sit at points
of enhanced symmetry. Furthermore, the trapping of a scalar field which has a

potential can lead to a short period of accelerated expansion in situations with
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steeper potentials than would otherwise allow this. Finally, the trapping effect has
important consequences for the problem of vacuum selection, as it can reduce the
problem to that of selecting one point within the class of ESPs. An intriguing
feature of this process is that the trapping is more efficient near points with a large

number of unbroken symmetries.

3.A Particle Production Due to Motion on Moduli Space

In this section we will calculate the quantum production of y particles, ignoring
the effect of backreaction on the motion of ¢.

A mode of x with spatial momentum k& obeys the wave equation
(02 + 82 + g2(u® + v*#%) Ju, = 0. (3.A.1)

There are two solutions to this equation, u{® and ug“*, associated to vacuum states
with no particles in the far past and no particles in the far future, respectively.

These two sets of modes are related by a Bogoliubov transformation
ul® = apudtt + Brugttt. (3.A.2)

If we start in the state with no particles in the far past, then one can calculate the

number density of particles in the far future to be
ng = | Bl (3.A.3)

in the k** mode. This may be evaluated by solving equation (3.A.1) in terms of
hypergeometric functions (see e.g. §3.5 of [77]), but we will present here a more
physical argument.

One can view (3.A.1) as a one dimensional Schrédinger equation for particle
scattering/penetration through an inverted parabolic potential. If we send in a wave
¥i" from the far right of the potential, part of it will penetrate to the far left, with
an asymptotic amplitude Tx12"*, and part of it will be reflected back to the right,
with an asymptotic amplitude Rgyi™*, Whefe Ty and Ry are the transmission and

reflection amplitudes.4

* jout*

14 The modes in the two problems are related by ul(t — —00) = Ty 2ut™, etc.
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The Bogoliubov coefficient in (3.A.2) is determined in terms of these transmis-
sion and reflection amplitudes via

_ B

Bx = T (3.A4)

Now we use a trick from quantum mechanics to relate R and T using the WKB
method. If we are moving along the real time coordinate, the WKB form of the
solution ui"(¢) will be violated at small ¢, due to non-adiabaticity. However, if we
take t to be complex then we can move from ¢t = —o0 to t = 400 along a complex

contour in such a way that the WKB approximation

P (t) ~ L R L (3.A.5)
\/2\/k2 + 92(/1/2 + ’U2t2)

is valid. Here the integral [ *dt' becomes a contour integral along a semicircle of
large radius in the lower complex ¢ plane. For large |t|, we can estimate the phase

integral in (3.A.5) by expanding

V% + g2(p? + v2t2) ~ gut + 16—2——;—9—;(—)]—:—/5 (3.A.6)
As we go around half of the circle, this term generates a factor
(e7tm) ik +g*u?)/29v=1/2 _ jo—m(k*+g"u*)/29v (3.A.7)
This is exactly the ratio between R* aﬁd T, so we find
nk = |Be]? = e~k +g" ) /gv, (3.A.8)

It is important to note that this result applies much more generally than for
¢ = ip + vt. (3.A.9)

In many cases the nonadiabaticity is only appreciable near the origin ¢ = 0, so that
the near-origin trajectory can be approximated by (3.A.9) with some appropriate
near-origin velocity v, even if the evolution away from the origin is very different
from (3.2.2).
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Moreover, in analogous circumstances (T-dual in the brane context) with a
nontrivial electric field, we obtain a similar expression due to Schwinger pair pro-
duction; a related point was made in [87]. In addition, formula (3.A.8) applies not
only to scalar fields, but also to fields of arbitrary spin. From this universal be-
havior, it is tempting to speculate that (3.A.8) could provide an effective model for
string theory effects, but we will not pursue this direction here.

The result (3.A.8) is nonperturbative in g (with g, not g2, appearing in the
denominator of the exponent); it is interesting to ask whether there is a simple
interpretation of this nonanalytic, nonperturbative effect. Similarly, it is interesting
to note that as discussed in §3.3, the potential for ¢ induced by particle production
is linear, so that if extended to the origin it would have a nonanalytic cusp there.

Our results correspond to the low-velocity limit of the D-brane calculation by
Bachas [87]. Bachas obtains an imaginary part to the action for moving D3-branes

of the form ()
X (1) +1 3/2
Im S Z =0 (ﬁ) exp(—nmgu’/v) (3.A.10)
n=1

n T

where we have translated his results into our variables. The first term in this ex-
pansion is proportional to the overlap [ d3E|Bx|? giving the number density (3.3.14)
of produced particles; this agrees with what we expect from unitarity. More gen-
erally, backing away from this low-velocity limit, the calculation in [87] combined
with unitarity provides a generalization of our results to the string case, as we will

explain in Chapter 4.

3.B Annihilation of the xy Particles

In this section we study the effects of collisions and direct decays of the created
x particles, and demonstrate that for suitably chosen parameters the trapping effect
receives only small corrections. More specifically, we place limits on the reduction
of the x number density through processes like xx — ¢¢ and x — 77, where 7 is
some light field.

Direct decays, if present, could easily ruin the trapping mechanism: if the x
particles decay too rapidly into light fields then the energy stored in created x
particles will not suffice to stop ¢. In this case the modulus will roll past the ESP,
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feel a transient tug toward the ESP while the x particles remain, and then gradually
break free and glide off to infinity at a reduced speed.

We will therefore consider only models in which couplings of the form x,
with 1,1 very light, are negligible. As an example, one can easily exclude such
decays in a supersymmetric model with a superpotential of the form W ~ ¢g®X2,
Here X is a chiral superfield with scalar component x and fermion %,, and ®
is a chiral superfield with scalar component ¢ and fermion 4. This generates
Yukawa couplings of the form x, %4 and ¢, 1,, which do not allow decays from
a component of X to purely ® particles. Thus, if all components of X are heavy, the
X-particle energy density we produce cannot decrease by direct decays. In some of
the simplest brane setups, exactly this situation is realized: a string which is heavy
because it stretches between two branes separated in a purely closed string bulk
space cannot decay perturbatively into two light, unstretched strings.

On the other hand, a priori we cannot ignore the coupling %—2 x2¢? as it is this
which gives rise to the desired trapping effect. This means that we must tolerate a
certain rate of annihilation (as opposed to direct decay). We will now review the
cross section for this process and determine its effect on the number density n
appearing in (3.2.10).

The Lorentz-invariant cross section for the annihilation process xx — ¢ s,
written in terms of center of mass variables,

41./
= Zﬁ%’ (3.B.1)
where k and k' are the momenta of the ingoing and outgoing particles and E is the
energy of the ingoing x particles. The reverse process ¢¢ — xx tends to enhance
the trapping effect. As we are in search of a lower bound on the number of x
particles, we will simply omit this reverse process.
We now determine the annihilation rate to find the rate at which x particles

are lost. If we assume that all the x’s are produced at t = 0, we find

k1ko)2 — m4
k) _ / dFan (R, 1) V (Fuka) X (R, o). (3.B.2)

n(ky, ) Ey By

Here u = /(k1k2)? — mi /E1E, is the Lorentz-invariant relative velocity of the

initial x’s and o(ky, k2) is the cross section, to be calculated using (3.B.1) in the

center of mass frame.



3 Moduli Trapping at Enhanced Symmetry Points 72

We can simplify (3.B.2) to get an upper bound on how fast x decays. Ignoring
the momentum dependence on the right hand side of (3.B.2), which amounts to
taking the non-relativistic limit, and ignoring the mass of ¢ produced by the x

particles, we have

n(iﬁ,t) - 271'm§<

We can bound the integral in the second term on the right hand side by n_, the total

/ dfyn(Fa, B). (3.B.3)

number of x’s produced, as given in (3.3.14). To approximate the time-dependence

of the mass m,, we take m2 = u? 4 v?¢?, which is what the uncorrected motion for

¢ would give. So we have finally

2k, t 4
G (3.B.4)
n(ky, ) 27 (u? + v2t?)
which yields
7 4
t
n(ﬁ, 2 > exp (_g et arctan v_) . (3.B.5)
n(k,0) 27 pv %
This is clearly bounded from below by
4
g nx)
— . 3.B.6
e~ (3.B.6)

so that the number density is reduced over time by at worst the factor (3.B.6).

The total energy density in the x particles at a given time is therefore

E =/dl§n(13, )V k2 + g2(p? + v2t2)
4

n t
>n,+/9%(u? + v2t%) exp (— gﬂ'p;) arctan %) .

From this we see that the mass amplification effect of the x particles inevitably

(3.B.7)

prevails and stops ¢ from rolling arbitrarily far past the enhanced symmetry point.
This reduction of the number density softens, but does not ruin, the trapping
effect. Using the energy density (3.B.7) in the simple estimate leading to (3.2.12),

we find a new estimate for ¢.:

3
by = gfl———;r/zv”ze’fguz/veg“"x/‘w (3.B.8)

Thus, although collisions never lead to an escape, they do lead to a somewhat

increased stopping length ¢..
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For suitably chosen parameters we can arrange that the effect of collisions is
unimportant and the estimates (3.2.12),(3.B.8) approximately agree. For example,
the final exponential factor, which encodes the consequences of annihilations, will
be less important than the factor e™9#°/? as long as g3v < 2.

We conclude that direct decays can be forbidden using symmetry, whereas

collisions increase the stopping length (3.B.8) but do not ruin the trapping effect.

3.C Classical Trapping Versus Quantum Trapping

In this section we will compare our quantum trapping mechanism with the
purely classical trapping proposed in [102].

Consider for simplicity a theory of two real scalar fields, ¢ and x, with the
interaction ‘923¢2X2- In our discussion in the main text we assumed the initial
conditions (x) = 0, (#) # 0, x = 0, = v. Potentially interesting classical dynamics
arises in the more general case in which the initial velocity of x is nonzero [102].

Let us therefore consider the classical behavior of these fields, ignoring particle
production entirely. If we define v = /%2 + $2, then energy conservation implies
that the trajectory of ¢ and x is bounded by the surface ¢2¢2x? = v2. The fields
will evidently start bouncing off the curved walls of the potential. This bouncing
will be highly random.

Naively, one would expect that on average the fields become confined in the
region

v

(%) = (X°) ~ . (3.C.1)

This result would coincide with our estimate for the amplitude of the oscillations
of ¢ at the end of the stage of parametric resonance, cf. (3.3.21).

However, the situation is more complicated. As we are going to show, the fields
spend most of the time not at |¢| ~ |x| ~ \/g , but exponentially far away from this
region, moving along one of the flat directions of the potential.

To see this, note that because of the chaotic nature of the bouncing, it will
occasionally happen that the fields enter the valley x < ¢ at a small angle to the
flat direction, i.e. with velocities obeying |X| < é. Defining |x| = av, we are

interested in the case that the angle o happens to be small.
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Energy conservation implies that the amplitude of the oscillations of x at the

initial stage of this process is approximately %. Because of the interaction term
5;¢2 x?, these oscillations act on the field ¢ with an average returning force ~ az;f’z ,

which corresponds to the logarithmic potential V(#) ~ a?v?log¢ [102]. Clearly,
this potential will eventually pull the field ¢ back to the ESP ¢ = 0. However, this

happens at exponentially large ¢: the field starts moving back only after its value

¢:lass ~ \/_E‘ eC/a) (3.0.2)
g
where ¢ = O(1).

Once again, because the bouncing process is highly random, we do not expect

approaches

that the probability to enter the valley at a small angle o is exponentially sup-
pressed. This means that after bouncing back and forth near the point ¢ = xy =0,
the fields ¢ and x eventually enter one of the valleys at a small angle, and sub-
sequently spend a very long time there. In general, the fields will spend an expo-
nentially ‘long time at an exponentially large distance from the origin. Thus, the
classical trapping mechanism, unlike the particle production mechanism described
in this chapter, does not lead to a permanent trapping of the fields in the vicinity

of the point ¢ = x = 0.



4. Relativistic D-brane Scattering

ABSTRACT OF ORIGINAL PAPER

We study the effects of quantum production of open strings on the relativistic scat-
tering of D-branes. We find strong corrections to the brane trajectory from copious
production of highly-excited open strings, whose typical oscillator level is propor-
tional to the square of the rapidity. In the corrected trajectory, the branes rapidly
coincide and remain trapped in a configuration with enhanced symmetry. This is a
purely stringy effect which makes relativistic brane collisions exceptionally inelas-
tic. We trace this effect to velocity-dependent corrections to the open string mass,
which render open strings between relativistic D-branes surprisingly light. We ob-
serve that pair-creation of open strings could play an important role in cosmological

scenarios in which branes approach each other at very high speeds.

4.1 Introduction

Thought experiments involving the scattering of strings or of D-branes pro-
vide the key to understanding certain essential phenomena in string theory. The
discovery of strings in the theory is perhaps the most striking case, but other ex-
amples include the elucidation of the sizes of strings under various conditions and
the appreciation of another length-scale in the dynamics of slow-moving D-branes.

Despite much early interest in the scattering of D-branes, certain important
aspects of the dynamics have remained unexplored. In particular, the simplest

treatments involve parameter regimes governed either by supergravity or by the

This chapter is reprinted from Liam McAllister and Indrajit Mitra, “Relativistic D-Brane
Scattering is Extremely Inelastic,” JHEP 0502 (2005) 019, by permission of the publisher.
(© 2005 by the Journal of High Energy Physics.

75



4 Relativistic D-brane Scattering 76

effective worldvolume field theory of massless open strings. In the latter case, there
can be significant quantum corrections arising from loops of light open strings or
from pair-production of on-shell open strings.

A key consequence of the pair-production of open strings is the trapping of D-
branes [18], which we now briefly review. Consider two Dp-branes, p > 0, moving
with a small relative velocity. As the branes pass each other, the masses of stretched
open strings vary with time. This leads to pair production, in a direct analogue
of the Schwinger pair-creation process for charged particles [103] or strings [104] in
an electric field. Because the velocities are low, the production of stretched strings
with oscillator excitations is highly suppressed. The resulting unexcited stretched
strings introduce an energy cost for the branes to separate; unless these strings
can rapidly annihilate, the branes will be drawn close together. In collisions with
a nonzero impact parameter, the brane pair carries angular momentum; in this
case the branes spiral around their center of mass, radiating closed strings, until
eventually they fall on top of each other. The final outcome is that the open strings
trap the branes in a configuration with enhanced symmetry. Because this process
involves the production of only unexcited open strings, it falls within the purview
of effective field theory.

Our goal is to explore related processes which are not describable in the low-
energy effective field theory but which instead involve intrinsically stringy physics.
We will show that the ultrarelativistic scattering of D-branes is a suitable laboratory
for such an investigation, as corrections from the massive string states turn out to be
essential. In particular, we will demonstrate that production of highly-excited open
strings generates crucial corrections to the brane dynamics and leads to spectacular
trapping of the branes over distances which can be of order the string length. As we
will show, these corrections are much stronger than a naive application of effective
field theory would predict; hence this is a setting where the importance of purely
stringy effects is a surprise. The explanation of such a huge production of highly
excited strings is that these states effectively become quite light — the mass receives
velocity dependent corrections. The fact that open string masses are in principle
velocity-dependent is well-known, but we have not found any explicit computations
of these masses in the literature. Our result leads to a formula for the masses of

open strings between moving D-branes.



4 Relativistic D-brane Scattering 77

The intuition underlying this result is that in relativistic D-brane scattering,
it should be possible to pair-produce highly-excited open strings. The density of
string states at high excitation levels grows exponentially with energy; this is the
well-known Hagedorn density of states. For this reason, even if the production of a
given excited string state is exponentially suppressed compared to production of a
massless string state, the competition of the growing and decaying exponentials will
typically cause highly-excited strings to dominate the process, in terms of both their
number and their share of the total energy. Thus, one expects pair production of a
huge number of highly excited strings. This is indeed the case, as was first explained
by Bachas in the important work [87]. Our further observation is that because the
energy transferred into these open strings can easily be comparable to the initial
kinetic energy of the D-brane pair, the massive open strings are absolutely central
to the dynamics. This means that the backreaction arising from purely stringy
effects is crucial.

We will study the effect on the dynamics of this explosive pair-production of
massive modes. Our conclusion is that for a large range of velocities and impact
parameters, almost all the initial kinetic energy of the branes is transferred to
open strings and to closed string radiation. After the collision the branes are drawn
together and come to rest. In near-miss scattering events with an impact parameter
b, the branes revolve around their center of mass in a roughly circular orbit whose
initial radius is of order b; this orbit swiftly decays via radiation of closed strings.
This is to be contrasted to the much weaker trapping of nonrelativistic branes,
which typically proceeds via very elliptical orbits, i.e. the stopping length is much
greater than the impact parameter.

To recap, the dynamics of ultrarelativistic D-branes is strikingly inelastic: co-
pious production of highly-excited stretched open strings rapidly drains the brane
kinetic energy and traps the branes into a tight orbit, eventually leading the branes
to coincide.

In this simple and controllable example it proves possible to understand aspects
of the backreaction of open string production on the dynamics of colliding D-branes.
The lessons of our analysis could be extended to cosmological models in which other
sorts of fast-moving branes approach each other and collide. As we will discuss, these

include the ekpyrotic/cyclic universe scenario, brane-antibrane scenarios, and the
DBI model.
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It is useful to indicate the various regions of parameter space that we will probe.
We will outline this now to apprise the reader of our strategy; later, in §4.5.3, we
will provide a more complete discussion.

The dimensionless quantities of interest are the impact parameter b measured
in units of the string length; the string coupling gs, which determines the mass of
the D-branes in string units; and the initial relative velocity of the branes v. We will
find it more convenient to convert this velocity into the rapidity, n = arctanh(v).
We will usually set o = 1, except for a few cases where we will retain explicit
factors of the string length for clarity.

Our goal in this work is to understand open string effects in relativistic dynam-
ics; the nonrelativistic case is already well-understood [105,18]. We will therefore
impose 1 — v <« 1 so that n > 1. Another important consideration is that the
D-branes should have Compton wavelengths small compared to the impact pa-
rameter. Because the D-branes grow light at strong string coupling, this amounts
to a requirement that the coupling should be sufficiently weak. Another obvious
advantage of weak coupling is the suppression of string loop effects; our primary
computation is a one-loop open string process. A further requirement is that the
D-brane Schwarzschild radius should be much smaller than the impact parameter.
This too can be achieved with a suitably small string coupling, as we will demon-
strate in §4.5.3. Furthermore, although energy loss through closed string radiation
can be an important effect in a system of moving branes, there is a wide range of
string coupling, depending on 7, for which this effect is subleading compared to
open string production. Although all these considerations show that weak coupling
is desirable for control, it is important to recognize that as the coupling decreases,
the D-branes grow heavy and hence stretch the strings farther before coming to
rest.

In summary, there is a range of values of the string coupling in which the
backreaction of open strings is significant and competing effects are suppressed.

The organization of this chapter is as follows. First, in §4.2, we review the
trapping of nonrelativistic branes, which provides the basic intuition for the more
complicated, stringy process which we aim to study. Then, in §4.3, we study the
interaction amplitude for moving branes. We compute the brane interaction via
an annulus diagram and examine its imaginary part, which corresponds to open

string pair production. This result is well-known, but we include it for logical
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completeness and to set our notation. Our primary result appears in §4.4, where
we study the backreaction of open string production on the brane trajectory and
estimate the stopping length on energetic grounds. In §4.5 we discuss potential
corrections and additional effects, in particular the production of closed strings,
and explain how they affect our considerations. We conclude with a few comments
in §4.6. In Appendix 4.A we give a detailed check of our formula for the velocity-
dependent string mass. Finally, we collect useful identities about the theta functions

in Appendix 4.B.

4.2 Overview of the Trapping of Nonrelativistic Branes

We will now briefly review the trapping of D-branes in nonrelativistic motion,
which was studied in [18]. (See also [106,107] for earlier work on related mechanisms
in field theory and cosmology.) This process is governed by pair production of
massless open strings and hence is describable in effective field theory. It provides
the basic framework for understanding corrections to the brane dynamics, and so
is a useful background for the stringy trapping which we will study in §4.3.

Because the field theory description is entirely sufficient, we can abstract the
relevant properties of the worldvolume gauge theory and represent the system with

a simplified model,
L= l(9 PO+ + 18 xOHx — L|<;5|2><2 (4.2.1)
2k 2 K 82

in which a complex scalar field ¢ couples to a real scalar field x. We have normalized
the cross-coupling term so that the mass of x is precisely the mass of a stretched
string whose length is |¢| in string units. At the origin ¢ = 0, x becomes massless.

Let us consider the trajectory
o(t) =ib+ vt (4.2.2)

in which ¢ is separated from the origin by the impact parameter b. This is a
solution to the classical equations of motion of (4.2.1) provided that x = 0. Along
this trajectory, the mass of x changes: in the limit where we impose (4.2.2) and

ignore the effect of the coupling to x, we may rewrite (4.2.1) as

1 -1 1
- = 7 - M, 2 2;2y. 2
L 5 L POH D + 28,0(8 X~ g3 (* +v“t%)x (4.2.3)
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so that the effective mass of x varies with time. This results in production of x
quanta.

This effect is easily understood in the quantum mechanics example of a har-
monic oscillator whose frequency changes over time from w; to wy. If the oscillator
begins in its ground state at frequency w; but the frequency changes nonadiabati-
cally then the final state will not be the ground state of an oscillator of frequency
ws.

One can readily compute the occupation numbers ny of modes with momentum
k. The result [18] is

4m%k? + b2
= - ). 4.2.4
e = exp( =) (424
If instead we consider a model in which the mass of x is nowhere zero,
1 -1 m? 1
S " - 170N T 1Al2 2
£ = 50,0046 + 50,x0"X ( >+ o5l )x (4.2.5)
the result is instead
4 2k2 4 2,2 b2
ng = exp(— TR 27; m ) (4.2.6)

The crucial, though intuitive, observation is that production of a massive species
is exponetially suppressed. For this reason, production of massive string modes is
entirely negligible when the velocity is small.

We may now apply the result of the simplified model to a pair of D-branes.
Suppose that two Dp-branes, p > 0, are arranged to pass near each other. The brane
motion changes the masses of stretched string states and induces pair production of
unexcited stretched strings. As the branes begin to separate, these strings stretch
and pull the branes back together.

This process can be followed in detail by numerically integrating the quantum-
corrected equations of motion which follow from (4.2.1). Such an analysis was
presented in [18]. However, analytical estimates are more readily generalized to the
case of interest in this chapter, which is the stringy scattering of relativistic branes.
We will therefore explain how one can use energetics to estimate the stopping length
in the system (4.2.1). (It was shown in [18] that such estimates are in excellent
agreement with the numerical results, although only the nonrelativistic case was
studied there.)
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After the branes have passed each other, the stretched open strings grow in
mass. Even though pair production has ceased, the energy contained in open strings

grows with time, because the strings are being stretched:

Popen 2 () Mopen (4.2.7)

When the energy in open strings is of the same order as the initial brane kinetic
energy, the backreaction of the open strings is of order one and the brane mo-
tion slows down significantly. We therefore define the ‘stopping length’ ¢, via
Popen(®x) = $T,v* where T}, is the tension of a Dp-brane.

A few qualitative features of low-velocity trapping are worth mentioning. First,
the greater the number density of produced strings, the shorter the stopping length.
On the other hand, the stopping length increases if the brane velocity increases or
the string coupling decreases (making the branes heavier in string units).

The behavior in the limit v — 1 is not obvious a priori. To estimate the total
number density vy Of all string modes, wescould take the nonrelativistic result
(4.2.6) for the occupation numbers of a massive species and sum it over the levels n
in the string spectrum, including a factor of the density of states N(n). The result
(which was also presented in [18]) is

Viotal X i N(n)exp (_g_:_? (n + %)) (4.2.8)
n=0

As we explain in §4.4.1, the density of states at high levels n obeys
N(n) ~n~11/4 exp(\/ 87r2n) (4.2.9)

This does not grow rapidly enough to compete with the exponential suppression
(4.2.6) of high levels, so the limit v — 1 does not display strong production of
excited strings.

However, we will show in detail in §4.3, following [87], that the actual number
density of produced strings is very much larger than the nonrelativistic estimate
(4.2.8) suggests. We will find instead

Viotal X i N(n) exp(—2ni2 (n + %)) (4.2.10)
n=0

where = arctanh(v) > 1. This result does not follow from special relativity
alone; it is instead a stringy effect arising from velocity-dependent corrections to

the stretched string masses, as we will show.
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4.3 The Interaction Amplitude for Moving D-branes

We will now derive the interaction potential for two D-branes in relative motion
with arbitrary velocity. Although this result is well-known [87], we include the

calculation for completeness and to set notation.

4.8.1 Interaction Potential from the Annulus Diagram

We will derive the interaction potential by computing the open string one-
loop vacuum energy diagram. This diagram is an annulus whose two boundaries
correspond to the two D-branes. By the optical theorem, twice the imaginary part
of this amplitude is the rate of pair production of on-shell open strings. Thus, our
goal is to determine the imaginary part of the vacuum energy.

Several equivalent methods can be used to compute the vacuum energy. The
original treatment [87] involves a direct computation of the spectrum of open strings
between the moving branes; that is, it is possible to impose appropriate boundary
conditions and solve for the mode expansion. The vacuum energy is then the sum
of the zero-point energies of these oscillators.

We choose instead to review the perhaps more transparent computation given
in [108]. Let us stress that in this subsection we follow the treatment of [108] in
detail, with very minor modifications.

By double Wick rotation, a pair of branes in relative motion, separated by a
transverse distance b, can be mapped to a stationary pair of branes at an imaginary
relative angle, again separated by a distance b. We will make this precise below.
Because the partition function for branes at angles is very well understood, the
vacuum energy is easily computed in this approach.

Following [108], we begin with two D4-branes which are parallel to each other,
extended along the directions 0,1, 3, 5, 7, and separated by a distance b (the impact
parameter) along X°. (To regulate the computation we compactify the spatial
dimensions on a T® of radius R.) Now let one brane move towards the other along
the direction X8 with velocity v. That is, the coordinates of the moving brane are
X8 = vX9 X° = b while the other brane has X8 = X° = 0. This is our actual
problem.

We now perform the Wick rotation X° — —iX'’?, X7 — X0, This transforms

the moving branes into static branes which are misaligned by an angle ¢ in the
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(7',8) plane. The angle ¢ is given by X'"tan¢ = X®. The brane velocity v and
rapidity 7 are related to this angle by ¢ = —i arctanh(v) = —in.

Next, it is useful to combine the coordinates into complex pairs Y,, where
Vi=X'+iX2 Y, = X3 +iX4Ys = X54+4iX6,Y, = X7 +iX8. Define also the
angles ¢; = ¢ = ¢p3 = 0,4 = ¢. The rotation then takes Yy — exp(ip)Yy. It is
now a simple matter to set up the boundary conditions satisfied by strings which

stretch between the branes:
01=0: H1RelY,] =Im[Y,] =0

(4.3.1)
o1 =T O1Re[exp(idy)Ya] = Im[exp(ig,)Y,] = 0.

The solutions to the wave equation which satisfy these boundary conditions are:

a *

Yo (w, @) = i4/ o Z o exp(irw — 2igy) — Z or exp(irw)
a $ 2 r a r ’

r=Z+¢a/m r=Z+¢a/m ( )
4.3.2

where w = o1 + i02. We can readily write down the partition function for these

four scalars:

.exp(¢at/m)n(it)
z = — 4.3.
scalar(¢a) 1 911(’i¢at/ﬂ', it) ( 3 3)
so that the resulting bosonic partition function is
4
Zboson = H Zscalar(¢a) (434)

a=1

In a similar way, one can compute the fermionic partition function, keeping in mind

the various spin structures:

4
Zferm = H le (¢a/2, ’Lt) 9 (435)
a=1

where

oll(igbat/zﬂ'a it)
exp(¢3t/4m)n(it)

We conclude that the one-loop potential is

®dt 1 th? 011 (idgt/2m, it)
V I _ . WO
/0 t /8m2a't exp( 27ra’) H 011 (igat/m, it) (4.3.7)

Z3(¢a/2,it) = (4.3.6)
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This potential governs D4-branes at a relative angle. To map into the case
of interest, we T-dualize as many times as needed, each time introducing the re-
placement 611 (ig.t/7,it) — ivV8mw2a/tn®(it)/R, where R is the size of the spatial
torus. '

This finally brings us to the potential for p-branes at an angle ¢:

. dt, /2 _th? > 611 (igt/2m, it)*
V= szA — (87%a’t)™P exp( Sral ) Ora (it ), tm(it)® (4.3.8)

Our final interest is in the number density and energy density of open strings, so

the spatial volume RP = iV}, will eventually cancel.

To read off the desired result for moving branes, we set ¢ = —in to get
o0 th? 611(nt/2m,it)*
— —p/2 11\ ) 4.3.9
v V;)/o (87r 7 exp ( 2”“') O11(nt/m,it)n(it)® (4.3.9)

One can easily show that this agrees precisely with the result of [87], equation
(11). To see this, use (4.B.2) and (4.B.8), define tspere = 2¢, e = I, and set o’ = 1.

A useful equivalent form for (4.3.9) is

_ 611(nt/2m, it)4
2./t p/2 11 )
V= V/ d’”/ = 8 Bu (it €)1 (i)

exp ('zm/ (6% +v%r >> Vo

In this form the time-dependence of the stretched string masses is manifest.

(4.3.10)

4.8.2 Imaginary Part and Pair-Production Rate

The above expression from the interaction potential is rich in information. The
real part tells us about the velocity-dependent forces from closed string exchange,
while twice the imaginary part is equal to the rate of production of open strings.

The potential (4.3.9) would be real if the integrand had no poles. However,
611(nt/m,it) has a zero for integral values of nt/m = k, so we can compute the

imaginary part of the integral by summing the residues at the corresponding poles.

2

Im{V] = (;/;';)p i% (%)p/ ’ exp(—%)Z(ikﬂ/n) (1 - (—1)k) , (43.11)
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where we have defined the partition function Z(7) = 203,(0|7)n(7)~'2. (The factor
projecting out even values of k arises because of J acobl s ‘abstruse identity’.)

This expression, which was first derived in [87], will be essential to our inves-
tigation. By extracting its behavior in various limits we will be able to study the
effect of open string production on the brane dynamics.

First of all, we can check the normalization of (4.3.11) by taking the low-velocity

limit, in which n — v. The result is
8V, . 1 v\p/2 b2k
I = p (= ——). 3.12
mlV] (2m)P k:lz k (wk) exp( 2v ) (4.3.12)

This is identical to Schwinger’s classic result (4.3.12) for the pair-production rate of

electrons in a constant electric field. In the present case, the interpretation is of pair
production of massless open strings between the branes, which was also obtained
by the method of Bogoliubov coefficients in [18].

Our interest is in the case of velocities approaching the speed of light. We
expect that the dominant contribution to pair production in this limit will come
from highly-excited string states. Because the density of states grows exponentially
(4.2.9) at high levels, we anticipate copious production of massive strings and, as a
result, dramatic backreaction on the brane motion.

To investigate this, we begin with the high-velocity limit n > 1 of (4.3.11):

Im{V] = (% f: % (—)p/H > exp(% - b;—:) (1 + O(e‘"”“)) (4.3.13)
k=1,3,5,...

where we have used the asymptotics (2.B.5).
Keeping the dominant contribution, which comes from k¥ = 1, and expressing
the result as a number density vopen, of open strings stretching between the branes,

we find
2_y4 b?
Vopen & Cpl2 —~ X €Xp (77 - —2—5) (4.3.14)

where ¢, = (2(2w)p7rp/2_4> -

There are three important differences between the low-velocity effect in
(4.3.12)and the high-velocity relation of (4.3.14). The first is that production of
strings is exponentially suppressed at low velocities: this can be understood from

the fact that the amount of strings produced at a given energy falls off exponentially



4 Relativistic D-brane Scattering 86

with energy, while the density of states for such low energies is a simple power law.
At high energies, however, the density of states grows exponentially and these two
competing exponentials lead to copious string production if the initial velocity of
the branes is sufficiently high. |

The second important difference is that at low velocities, the efficacy of the
trapping process is strongly dependent on the impact parameter. For large impact
parameters, b > 1 (recall that b is measured in string units), the trapping is ex-
ponentially weak. For ultrarelativistic branes, however, the trapping weakens only
when b > 7. The effective range of strong trapping is evidently much increased in
the ultrarelativistic limit.

Finally, in the low-velocity limit, the energy of produced open strings is a
negligible fraction of the D-brane energy [18] until the branes separate far enough to
stretch the open strings significantly. The associated distance, the ‘stopping length’,
is generically much larger than the impact parameter. In the ultrarelativistic limit,
in contrast, the energy carried by the open strings can be comparable to the brane
kinetic energy even before any stretching. This occurs because high speeds make
possible the production of highly-excited strings with significant oscillator energy.
This consideration suggests that the backreaction of open strings is much more
dramatic for relativistic branes than for nonrelativistic ones. We undertake a careful

study of this in the following section.

4.4 Backreaction from Energetics

We have seen in the previous section that relativistic brane motion leads to the
production of a tremendous number density (4.3.14) of stretched open strings. We
would now like to estimate the effect of this process on the brane motion, and to

do so we must estimate the energy density carried by the produced open strings.

4.4.1 Open String Energy

An open string stretched between two moving branes receives velocity-
dependent corrections to its mass. The change in mass is understood to be due
to a rescaling of the effective tension, and in the limit that the branes move towards
each other at the speed of light, the strings must become massless. This rescaling

can also be understood from the T-dual electric field perspective: as the electric
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field approaches a critical value, the strings can no longer hold themselves together,
so their effective tension goes to zero [104]. We will now determine this rescaling in
a simple way; in Appendix 4.A we will provide a detailed consistency check of this
result.
The factor depending on b in (4.3.14) indicates that the effective area of a brane
moving with rapidity 7 is [87]
rees el (4.4.1)

This corresponds precisely to the logarithmic growth in cross-sectional area of a
highly-boosted fundamental string, rgf s ~ o In(a’s), where /s is the center-of-
mass energy. The explanation for this growth is that a Regge probe of an ultrarela-
tivistic string is sensitive to rather high-frequency virtual strings, whose considerable
length creates a large cloud of virtual strings [109]. We conclude that a D-brane
with rapidity # has an apparent radius refy = \/mT/v, where we have inserted the
factor of v to produce the correct behavior in the zero-velocity limit.

We therefore propose that the effective string tension is:

T(n) = =

. 4.4.2
2raln ( )

This rescaling of the effective tension of the string means that the energy of a string

excited at level n is: o 9\ .9
By = 22 4 0 iy u
a'n A C¥/27']2

(4.4.3)

In this expression b is the usual impact parameter, while r is the brane separation
along the direction of motion.

In Appendix 4.A we demonstrate that precisely this dependence of mass on
velocity explains the dramatic difference between the naive result (4.2.8) and the
complete annulus computation (4.3.14) for the number density. Note also that the
mass formula (4.4.3) does reduce to the usual formula for low speeds (n — v).

We now proceed to calculate the energy density of the produced open strings.
This energy is easily computed if we first rewrite the partition function Z as a sum
over string states. This is conveniently parametrized in terms of the excitation level

n and the number of states N(n) at each level.

27r2nk).

Z(ikﬂ/n)zéﬁlo(o,ikw/n) (ikm /n) 12 ZN exp(— (4.4.4)
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We would first like to determine the behavior of N(n) at high excitation levels n.

Taking the ansatz
N(n) =~ cyn®exp (b\/ﬁ) , (4.4.5)

approximating the sum by an integral, evaluating this integral by stationary phase,

and demanding the asymptotics (2.B.5), we find
N(n) =~ (2n)_11/4exp(7r\/8n>. (4.4.6)

The numerical prefactor was chosen for convenience; strictly speaking, the approx-
imate evaluation of the integral does not determine constant prefactors of order
unity, but for our purposes it suffices to choose the factor now as in (4.4.6).

With this result in hand, we can rewrite (4.3.11) as

ImfV] = ; 2‘7/:)p kzi % (%)p/ ’ exp(—b;—:) gN(n) exp(- 2”727"’“ ). (a7

An equivalent form for this relation is

Im[V] = 6% /_Z di:;i;,m% (%)P—E_l j;)N(n) exp(—ﬂgi(—z)-) (4.4.8)

n  b% 4 vir?
wi(r)=—

a, W. (4.4.9)

We can now express the energy density of produced open strings as

oo / 2 e 2
Popen = (—2—%; k ; 71; (:—k)p 2exp(—%—n’f) ;E(n)N(n) exp - 2”77”’“ ),

) (4.4.10)

where (4.4.3) is used for E(n). Because of the competition of the growing and

decaying exponential factors, this sum is dominated by terms near some npeqx > 1.

As indicated above, we approximate the sum on levels using the relation
o0
2 2 9] 2 2
Z N(n)n®exp (—ﬁ) A 27 11/4 / dnn® 14 exp (71'\/ 8n — ﬂ) (4.4.11)
n=0 n no n

where the lower bound ng > 0 is chosen so that the integral is dominated by

N & Npeak, N0t n = 0. We have kept the leading term in the sum on k. By the method
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of stationary phase we find that the integral is dominated by n & npeqr = 7 (271'2)_1,

leading to

oo 21%n 1 /47 n?\@
—11/4 a—11/4 _ =T )
2 /;O dnn exp<7r\/8n ” ) %€ (77) (———-—271_2 . (4.4.12)

l

For o = 0 this reproduces the asymptotic behavior (4.B.5); we normalized (4.4.6)
to arrange this.

This approximate result provides an important physical lesson: the primary
contribution to the open string energy comes from strings at levels 2m2n =~ n?. For

such a string,

nv (B2 +r2e? 1 b2 472

Let us now examine this result in the parameter ranges of interest. If the
stretched string length is large compared to 7%/2, /62 + r2 > 13/2, then the sum

(4.4.10) is simply
Vb2 + r?
2rn

On the other hand, when 73/2 > /b2 + r2, we have instead

Vopen - (4.4.14)

Popen =

Ui
Popen ~ 71'\/\/_—. '2'Vopen (4415)

where we have used (4.4.12) with a = 1/2.

The key observation which follows from (4.4.15) is that the energy density
carried by produced pairs of stretched open strings can be a significant fraction
of the kinetic energy density of the Dp-brane. The backreaction from open string
production is therefore an important contribution to the dynamics of relativistic

D-branes. We will now examine this in detail.

4.4.2 Estimate of the Stopping Length

It will be very important to recognize three length-scales which arise in the
problem: the effective size ref¢ (1) = \/no’ of a relativistic brane, the critical impact
parameter b.i;(7) beyond which the trapping rapidly weakens, and the size 7,,4(n)

of the region in which the stretched open string masses change nonadiabatically.
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To find the critical impact parameter, we note that the open string energy

density obeys
b2

Popen X exp( - Z?->, (4.4.16)

so that for n > 1, the critical distance is evidently b.;; ~ 1. For impact parameters

less than b.,;;, the open string energy density is generically large. The trapping

effect is therefore very strong for impact parameters of order b..; and smaller.

(Nevertheless, trapping still occurs for impact parameters much larger than bgp;.)

The nonadiabaticity is characterized by how rapidly the frequency changes with

time. Quantitatively, it is measured by the dimensionless quantity £ = w%, where

w is the frequency. Using (4.4.3) with r = vt we find

_ 2mnutt N 2rnr
T (Am2non 4+ (2 4+ r2)w2)3/2 T (4n2ny + b2 4 r2)3/2

§ (4.4.17)

which reaches its peak at r? = £b? + 2w2nn. For the energetically-dominant levels,

2, so that the effective region of nonadiabaticity has size rpqq ~ 77% for

21in = q
n > b. Open strings are produced in large quantities when —7peq S 7 S Tnad-

In summary, for relativistic speeds the critical impact parameter is b..;z ~ 7,
and is smaller than the size of the nonadiabatic region. The effective radius of a
moving D-brane, i.e. the size of the stringy halo, is much smaller, resf ~ /1 < berit-

For any fixed, large n we can require
Teff K b < berit (4.4.18)

so that the trapping is very strong but the stringy halos are small enough to be
unimportant. The case of a head-on collision, b S 7esy, is also interesting, particu-
larly for the question of string production in the cyclic universe models, but we will
first explore the better-controlled regime (4.4.18).
With these estimates in hand we can at last compute the stopping length for
a scattering event. Taking one brane to be at rest and the other to have velocity v,
we define as before
1 = arctanh(v). (4.4.19)

Working instead in the center of mass frame, the branes approach each other with
velocities
u = tanh(w) = tanh(n/2) (4.4.20)
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so that the center-of-mass v factor for either brane is

1
(Vi

when w > 1. The energy density of the brane pair is then

1
~ 5 (4.4.21)

Eiot = 2Tppy ~ Tppe® = Tppe/2. 4.4.22
P I4 P

We therefore find that for n — oo,

1

- on/2
gs(%)pe . (4.4.23)

PDp = TDpen/2 =

In the case of strong trapping, b < b.-i: = 1, the open string energy at the minimum

brane separation is
220 )
e ex 4.4.24
Popen N — 7511 p(n ( )

whereas for weak trapping, b > b.,.;:, the open string energy is instead

Popen = g—zn%*%/m—r? exp( — %) (4.4.25)
where ¢, = (2(27r)p7r”/ 2‘4> _1. Of course, the open string energy depends on r even
in the case of strong trapping, but this dependence is relatively unimportant until
T~

Comparing (4.4.23),(4.4.24) we conclude that if an external force compels the
branes to pass each other at constant, ultrarelativistic velocity, then, unless the
string coupling is exponentially small, the energy stored in open strings at the
point of closest approach is considerably larger than the initial kinetic energy of the
branes. This means that without an artificial external force, the branes will not
pass each other with undiminished speed, as this is energetically inconsistent.

We expect instead that as open strings are produced, the branes slow down
gradually, leading to diminished further production of strings. The final result, of
course, will be consistent with conservation of energy. (In §4.4.3 we will address
the production of open strings between decelerating branes, and in §4.5.1 we will
explain that the emission of closed string radiation also serves to reduce the rate of

production of open strings.)
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Although the open string energy in (4.4.24) is an overestimate for the reason
just mentioned, we will nevertheless use it now to find an estimate of the stopping
length. This will serve to illustrate our technique in a manageable setting; it will
then be a simple matter to repeat the analysis including the corrections of §4.4.3
and §4.5.1, which will not alter the form of our result.

We define the stopping length r. by popen(r«) = ppp, so that at 7 = r, all
the initial energy has been stored in stretched open strings. Equating (4.4.23) and
(4.4.25), we find the stopping length

472 n b2\ /n\5-p/2
. 0Ly (o , 442
™, exp( 2 " 277) (w) (4:4.26)

This is our main result. It manifests the surprising property that for sufficiently
large rapidity, the stopping length decreases as the rapidity increases. (More pre-
cisely, for any fixed g,, b there exists a rapidity 7,,:, such that the stopping length
decreases as 7 increases past Nmin-) To understand this unusual property, it is useful
to keep in mind the behavior of D-branes scattering at even greater speeds, so great
that the stringy halos themselves collide. For any b there is an 1 such that refs 2 b;
the scattering of the branes is then described by the collision of absorptive disks of
radius r.¢s [87]. Moreover, for a suitable range of g, the brane Schwarzschild radii
are so large that black hole production is an important consideration. We have
carefully chosen our parameter ranges to exclude these effects and focus instead on
the more controllable regime of strong stringy trapping; however, the black disk
collisions and black hole production serve to illustrate that the limit of arbitrarily
high rapidity involves very hard scattering and high inelasticity, in good agreement
with the large-n behavior of (4.4.26).

The stopping length (4.4.26) is large in string units only when

n b 77)5"1’/ 2

b wen(1+0) (2

5) (4.4.27)

which is an exponentially small value of the coupling provided n > b,17 > 1. Thus,
although backreaction from open string production is a higher-order correction to
the dynamics [110] which one might suppose is unimportant at moderately weak
coupling, we have shown that for relativistic branes with b <« 7 the backreaction of

open strings is crucial unless the string coupling is extraordinarily small.
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4.4.8 Corrections from Deceleration

All of our computations so far have applied exclusively to a pair of branes
approaching each other at constant velocity. On the other hand, we have demon-
strated that the backreaction from open string production, as computed along this
trajectory, necessarily causes the branes to decelerate. Clearly, the next step is to
understand how the amount of string production changes when the branes follow a
decelerating trajectory.

The analysis of string production during deceleration turns out to be tractable
in the nonrelativistic limit. However, we have not found an exact answer for the rel-
ativistic case. Upon double Wick rotation the amount of string production between
decelerating branes is mapped to the interaction between curved branes, which is
not obviously solvable with conformal field theory techniques.

Even though we will not find an exact result for the string production, we will
be able to place bounds on the resulting number density. This suffices to reveal the
qualitative features of the trapping process: copious production of excited strings
and very high inelasticity.

First, however, we will examine the limit of instantaneous deceleration. Take
the branes to move with a velocity vg for all ¢t < 0, but to come to rest for ¢ > 0.
This problem can be solved exactly by matching the parabolic cylinder functions
(and their derivatives) to the plane wave solutions at ¢ = 0. However, this setup
clearly involves enormous non-adiabaticity and so there would be an extremely large
amount of pair-production, far greater even than in the case of constant velocity.
This is readily computed, but it is not useful; we would like a more conservative
estimate.

A more realistic picture is one in which the relative velocity of the branes varies
as a function of time, for example as v(t) = vo(1 — tanh(¢/f)), where f measures
how abruptly the brane slows down. (Note also that in this setup the initial velocity
is v(—00) = 2vp.) The wave equation governing the stretched strings is therefore

b2 2
(02 48+ 5 +

22 T 32 [t — log(cosh(t/ f))]z)x =0. (4.4.28)

It is instructive to consider the non-adiabaticity parameter £ = &/w?, where

4m%w?(t) = 4%k + b2 + v2[t — log(cosh(t/ f))]2. (4.4.29)
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Let us first take f <« 1, which is the case of very rapid deceleration. In this limit
the deceleration is concentrated at t = 0, so that for slightly later times, when
the branes have come to a halt, we have £ = 0 and hence no particle production.
Comparing this scenario to that of branes moving with uniform velocity 2v and
no deceleration, we see that an abrupt stop reduces the effective time available for
particle production by a factor of two. Thus, for branes which come to a halt very
rapidly, the total number of particles produced is approximately half the number
produced when the branes move with uniform velocity.

We can analytically solve the problem in the opposite limit of very gentle
deceleration, f >> v/4n?k2 + b2 /v,. Using the steepest descent method to determine
the Bogoliubov coefficients [111,39,112] and observing that in this limit there is a
branch point very near the imaginary axis, at —iv/4m2k2 + b2 /vg, we find
L (4n2? +6%)). (4.4.30)

Vo

|6r|? = eXp(

This coincides with the exact result for the constant-velocity problem with velocity
v(t) = vo. However, as we already noted, in the present case the initial velocity is
v(—00) = 2vy. Our very simple conclusion is that this gradually decelerating trajec-
tory leads to the same amount of string production as an unaccelerated trajectory
in which the branes move at a uniform velocity which is smaller by a factor of
two. The effective velocity, for purposes of particle production, is thus the average
velocity 3(v(—00) 4 v(00)).

We conclude that very gradual deceleration results in significantly reduced
string production. In particular, comparing the limits of large and small f, we see
that the reduction in number density is much greater for gradual than for rapid
deceleration.

The above result applies to nonrelativistic motion. The string computation
which would be analogous to the annulus partition function but incorporate de-
celeration is considerably more complicated. In particular, the acceleration of the
branes breaks conformal invariance, so it is difficult to use conventional techniques
to compute the string production in this case.

Fortunately, it is possible to estimate the stopping length without an exact
result for the string production during deceleration. The simple argument relies

only on energetics and on the constant-velocity result (4.3.14).
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Suppose that open string production slows a moving brane, bringing it from
- an initial kinetic energy E; = v;T) to an energy (at the point of closest approach)
Ef = ~4T,, where v;, vy are the usual relativistic factors. The stopping length,

defined again by E; = E,pen(T«), is easily seen to be

2mnE; E;
Tx N # = \/5773/2—& _zEf, (4.4.31)
where we have used (4.4.14),(4.4.15).

Consider first the case vs > 1. If the stopping length is large compared to
the size rpeq of the nonadiabatic region, 7, > 13/2, then the branes are moving
quickly as they leave the region of nonadiabaticity. This means that the result
(4.3.14) applies directly, and we return to an apparent inconsistency: the open
string energy is large compared to the initial energy. This is a clear signal that the
stopping length cannot be much larger than rpqq ~ 7°/2.

A stopping length of order 7%/2 or smaller is indicative of strong trapping: the
branes come to rest around the time that the nonadiabaticity grows small, which
means that a few strings are still being produced.

On the other hand, in the case vy ~ 1, we have Ey <« Ej;, so that (4.4.31)
yields the stopping length 7, ~ v/2n3%/2.

We conclude that no matter how the deceleration affects open string produc-
tion, if the only process acting to slow the branes is loss of energy to open strings,
then the stopping length is no more than of order 32, i.e. the size of the nonadi-
abatic region. Thus, the trapping is very strong: very little stretching is required
before the branes are brought to rest.

Given a good estimate of the open string production along a decelerating path,
we could give a more accurate estimate of the stopping length. However, we have
just demonstrated through energetics and the result (4.3.14) that in any event
this stopping length is no larger than 7%/2. In fact, we expect that it is actually
considerably smaller than this, as suggested by (4.4.26).

It remains a possibility that loss of energy through closed string radiation could

modify this result. We now proceed to show that this is not the case.



4 Relativistic D-brane Scattering » 96

4.5 Further Considerations
4.5.1 Production of Closed Strings

By incorporating the effects of open string production we have seen that rel-
ativistic D-branes decelerate abruptly as they pass each other. This deceleration
will lead to radiation of closed strings, in a process analogous to bremsstrahlung.
This drains energy from the brane motion, and, unlike the transfer of energy into
stretched open strings, this energy is forever lost from the brane system. Closed
string radiation therefore serves to increase the inelasticity of a brane collision.
Now, the end state of a near-miss is a spinning ‘remnant’, i.e. two D-branes or-
biting rapidly around each other, connected by a high density of strings. Loss of
energy and angular momentum to closed string radiation will swiftly reduce the
rotation of this remnant, at least until the velocities become nonrelativistic.

One potential worry is that the energy loss to radiation might be so large that
the quantity of open strings produced during a near-miss is quite small, leading to
weak trapping and a large stopping length. This is an example of the more general
concern that string production could be highly suppressed if any other effect caused
the branes to decelerate to nonrelativistic speeds before reaching each other. We
will show that the radiation of massless closed strings can be energetically significant
but, even so, does not alter our conclusion that the stopping length is not large in
string units.

To estimate the energy emitted as massless closed strings, we will make use
of the close analogy of this process to gravitational bremsstrahlung [113] and to
gravitational synchrotron radiation [114]. Of course, one of the massless closed
string modes is the graviton, but we also expect radiation of scalars, including the
dilaton and, when present, the compactification moduli. Even so, it will not be at
all difficult to convert results from general relativity to the case at hand, because in
practice, relativists often use the far simpler scalar radiation to estimate the basic
properties of gravitational radiation. We will do the same. .

Consider a small mass m moving rapidly past a large mass M in a path which
is, to first approximation, a straight line. A burst of gravitational radiation will
be emitted in a very short time, at the moment of closest approach. This is called
gravitational bremsstrahlung. The peak radiated power is approximately [113]

G3 M2m?2

p W

o (4.5.1)
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where G is the Newton constant, b is the impact parameter, and + is the relativistic
factor. For the remainder of this section we omit numerical prefactors: it will suffice
to have the dimensional factors and the powers of ~.

The case of interest to us is extremely strong binding by open strings, for if
the acceleration caused by the open strings is small then the closed string radiation
should not play a key role, and the argument for trapping given in §4.4.3 suffices.
Thus, we model the brane scattering by a gravitational scattering event in which
the impact parameter is not much larger than the Schwarzschild radius of the larger
‘mass. This gives

Gm?
7z 74, (4.5.2)

Another useful case is that of gravitational synchrotron radiation from a mass

P~

m moving in a circular orbit with period wg. The power is [114]

2
Gm* 4

P ~ Gm*wiy* ~ e (4.5.3)

where we have identified the inverse frequency with the minimum expected orbital
radius, which is of order the impact parameter. This result will be very useful for
understanding the decay of the initial circular orbit.

Furthermore, one can directly compute, in the supergravity limit, the radiation

from an accelerated D-brane. The result for circular motion with radius b is [115]

Gm?
b—2~/4 (4.5.4)

The results (4.5.3),(4.5.2), and (4.5.4) are thus in good agreement.

Knowing now the power lost to closed strings for a given decelerating trajectory,

P =

we also wish to compute the quantity of open strings which would be required to
produce this trajectory. Stated more generally, given an object being accelerated by
an external force, we are interested in the ratio of the radiated power to the power
associated with the driving force. For an accelerating electron this is a textbook
problem; see e.g. [116], chapter 14.

The result is that there is a characteristic length L, = %7;;22 governing radiation
by electrons, and unless an electron’s energy changes by of order its rest energy
during acceleration over a distance of order L., the radiation is negligible compared

to the external power. More specifically,

Eradiated AE Le
—_— =, — .b.
Edriving ¢ Az mc? (4 5 5)
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where the total change in energy, from all causes, is AE over a distance Az.

One can readily estimate the corresponding characteristic length Lp for mass-
less closed string radiation from a D-brane by comparing to the power (4.5.4). The
outcome is that Lp ~ g,ls.

Let us now consider a brane whose initial kinetic energy is E; = ~;T,, where
~; > 1. Suppose that the brane decelerates over a distance Az to a new kinetic
energy Ef = v4T,, Ay = v; — . The ‘driving force’ here is loss of energy through
open string production; we will now compare this to the energy lost to radiation.

ls

Eeciosea _ AE Lp A
gS ’YA
T

Q D= ~ — =
Eopen T, Az

(4.5.6)

If Qp <« 1 then our previous conclusions hold automatically, as the closed
strings are energetically negligible. If Qp > 1, there are two cases to consider.
First, if yf ~ 1, so that Ay ~ 7; > 1, the branes have slowed down to nonrelativistic
motion. In this case the energy in open strings can be estimated to be
AE T,Azx

i 4.5.7
Qp gs s ( )

Eopen =

To arrive at this rough estimate we did not need the Bogoliubov coefficients derived
from the annulus amplitude; we have used instead the fact that the external driving
force (open string production) can be determined based on the postulated trajectory.

Proceeding to estimate the stopping length, we find

ls
Az’

T« 2mnEy V2n*/2Ey & 2T, /2
~ ~ s

= 4.5.8
ls Vopen Eopen Eopen ( )

The distance Az is roughly order n3/2, because that is the size of the nonadiabatic
region in which open strings are created. (Two branes approaching each other will
begin to decelerate when they enter this region.) To make a very conservative
estimate, however, we will use Az 2 I;. Then, because we are working at weak
string coupling, the stopping length is

Tx

ls
< n?2g, -2 < n*/? (4.5.9)

Ax

so that the stopping length is much smaller than 73/2[,.
The second case is {1p > 1,5 > 1, so that the brane is moving relativistically

even after decelerating, and the relative velocity is large when the branes pass each
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other. Our general conclusion will be invalid only if the branes do not rapidly
trap in this final case. However, if the branes separate to a considerable distance
while moving rapidly, our annulus amplitude computation of open string production
applies directly. In other words, by assuming that the branes can separate, we are
arranging that they leave the region of nonadiabaticity, so that the number density
of open strings is accurately given by (4.3.14), and the trapping length by (4.4.26).
Thus, the assumption that the branes separate at high speed is not consistent.

We conclude that closed string emission can slow the motion of the brane
pair, but it does not substantially increase the stopping length. In fact, radiation
helps considerably to bring the branes to rest: once the branes are trapped and are
spiraling around each other, rapid radiation losses will slow their rotation. This
is enhanced by the familiar fact that, for relativistic objects, radiation losses are
greater in circular motion than in rectilinear accelerated motion. Once the branes
are trapped they slow down through this closed string synchrotron radiation. From
the power (4.5.3) we conclude that the branes lose energy so rapidly that they
would require only a few orbits to come to rest. In practice the spin-down process
is prohibitively complicated, but this result suffices to show that the lifetime of the
highly-excited, rapidly revolving remnant is in any case very short.

One important additional point is that the closed string radiation is strictly
negligible only when the coupling is so small that the branes are rather heavy, and
hence stretch the open strings farther before stopping. There is consequently a
tradeoff between computability and control, which are best at extremely weak cou-
pling, and the strength of the trapping, which is best for couplings above the bound
(4.4.27). It is essential to recognize that for any nonzero coupling, the collision is
inelastic and trapping eventually does occur; however, the stopping length increases
when the coupling grows very small.

A further question which we have not addressed is the production of massive
closed strings. In the case of very abrupt deceleration we would expect nonvanishing
production of these modes. We will leave a precise computation of this effect within
string theory as an interesting problem for future work.

For the present analysis, we can make a very crude estimate of massive string
production by using a result on the spectrum of gravitational synchrotron radiation.

For a mass in an orbit with period wp, the power per unit frequency is [114]

) (4.5.10)

dP
— X eXp (—
dw Werit
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where werip = g’)’sz. Thus, for wer¢ < 1771, massive closed strings should play a
negligible role, but when gravitons of frequency I;! are being produced, it is natural
to expect massive modes as well. We therefore expect some emission of massive
closed strings in processes where y% > %. This will further increase the rate of
energy loss from the revolving brane pair, speeding the trapping and increasing the

effective inelasticity of the collision.

4.5.2 Summary of the Argument

For clarity, we will now briefly review our argument that the trapping of rela-
tivistic D-branes is powerful and abrupt.

The annulus partition function for open strings between moving D-branes in-
dicates that the density of produced open strings is given, in the relativistic limit,
by (4.3.14). The characteristic impact parameter below which the backreaction of
these strings is strong can then be seen to be b.¢ ~ nls. If the D-branes are as-

3/2, they have left the region of

sumed to separate to a distance larger than of order
nonadiabaticity, so that (4.3.14) applies. The energy (4.4.15) in open strings then
exceeds the initial brane energy, so that the assumption of significant separation
was inconsistent.

The same argument applies when closed string radiation is taken into account.
A straightforward estimate of the energy lost to radiation over a distance 7%/2 shows
that the energy transferred to open strings is still sufficient to stop the branes before
their separation exceeds 7%/2.

We expect that a detailed computation of the string production along a de-
celerating trajectory would show that the stopping length is at most of order b,
which can be much smaller than 1%/2. In particular, we expect that in a head-on
collision with negligible impact parameter the stopping length would be of order
the string length. However, estimates involving (4.3.14) are strictly valid only when
the branes eventually leave the window of nonadiabaticity, leading to the very con-
servative estimate r, ~ n3/2,.

A few potential objections remain. First of all, one might worry that the
branes somehow slow down before reaching each other, so that at the moment of
closest approach the velocities are nonrelativistic. In this case excited open strings
would not be produced and we would simply have field theory trapping. We have

already explained in §4.4.3 that if the branes slow down exclusively due to open
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string production, then they will still experience rapid trapping. Then, we showed
in §4.5.1 that additional loss of energy through closed string radiation also does not
ruin the trapping.

A final worry is that the branes could interact by creating string pairs at
extremely high excitation levels. A vanishingly small number density of arbitrarily
highly excited strings (with level much higher than 5?) could absorb all the initial
kinetic energy and yet not generate a strong attractive force between the branes.
However, we have seen that in fact string production peaks around level npeqr ~
n? (27r2)_1, which is sufficiently small to ensure that the trapping is strong.

We therefore conclude that D-branes in relativistic motion generically trap each
other through copious production of open strings, with a trapping length no larger
than the size 7%/2l, of the nonadiabatic region. A sizeable fraction of the initial
energy is eventually emitted in the form of massless closed string radiation.

The limitations to our argument which we have discussed above make it chal-
lenging to precisely and controllably compute the stopping length in an ultrarela-
tivistic D-brane collision. However, these issues, and others — such as massless and
massive closed string radiation, annihilation of the produced strings, and dilution
of the produced strings in a cosmological background — do not in any way weaken
our argument that the brane collision is inelastic. In fact, it is easy to see that radi-
ation, annihilation, and dilution all extract energy from the brane system, slowing
the brane motion. (See [18] for an analysis of these issues in the nonrelativistic con-
text.) Happily, for applications to cosmological models, it is the inelasticity rather

than the stopping length which is most immediately relevant.

4.5.8 Regime of Validity and Control

We will now examine the characteristics of the trapping process as a function
of the dimensionless parameters g, b, n.

First of all, we will never work at strong string coupling (g > 1), since then we
would have to include higher string loop effects. Furthermore, at strong coupling
the D-branes become very light, and their Compton wavelength Ap grows. We
require Ap < b so that we can neglect these quantum effects.

Secondly, we should require that the Schwarzschild radius R, of the D-brane is

negligibly small compared to b. To estimate this, we treat the Dp-brane as a point
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source in 10 — p dimensions. The black hole solution in (10 — p) dimensions for a

p-dimensional extended object of tension T and zero charge is [117]

8—p\ RIP
= s 4.5.11
T (7—;0) (27)7dpg2 (4.5.1)

where dp, = 5Pt (552).

We are interested in the limit of zero charge because the highly-boosted branes
have far greater effective mass than the BPS bound requires. Note that in fact the
metric for one of these moving branes is of a shock-wave form, not a static black
hole. We are imagining that the branes collide inelastically and then asking whether
the Schwarzschild radius of the excited remnant, seen in the center of mass frame,
is comparable to the initial impact parameter.

In this scheme, the effective tension is the center-of-mass energy 27,y ~ Tpe”/ 2,

We therefore find, using the tension of a p-brane,

T—p N
(%) =0s (-;—_—%) (2m)7Pd,e"/? (4.5.12)

from which we conclude that for p < 7, the Schwarzschild radius can be made para-
metrically less than any given impact parameter by reducing the string coupling.
Let us now fix b and 7 and take the string coupling to be small enough so that
string loops, the brane Schwarzschild radius, and the brane Compton wavelength
can be neglected. As we further decrease the coupling, the brane becomes heavier
and the stopping length becomes greater. Now, recall that when we examined
the open string production along a constant-velocity path, we found an energetic
inconsistency: unless the coupling was exponentially small, the open string energy
exceeded the initial kinetic energy of the system. Of course, deceleration reduces
string production, so for any controllable coupling the energy in open strings will
not exceed the initial energy. However, we can still define a value of g, at which
the energetics is consistent even before we incorporate the deceleration which arises
from backreaction. Comparing (4.4.23) and (4.4.24), we find that the energetics are

automatically consistent provided that
gs < 23/27rp/2_3777_53 e /2, (4.5.13)

Thus, only for exponentially small string coupling are the branes so heavy that they

stretch the open strings substantially before coming to rest.
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4.6 Discussion

We have argued that the relativistic scattering of Dp-branes, p > 0, at small
impact parameters is almost completely inelastic as a result of pair production of
excited open strings. The time-dependence induces production of an extremely high
density of highly-excited, stretched open strings, which rapidly draw the branes into
a tight orbit. The resulting acceleration results in significant closed string radiation,
which acts to further brake the motion.

Powerful stringy trapping of this sort occurs whenever the impact parameter,
measured in string units, is small compared to the rapidity n. This is a much larger
range of distances than that controlled by collision of the stringy halos of the two
branes, whose radius grows as /7. Moreover, the strength of this stringy trapping
was a surprise: it does not follow from summing the low-velocity result of [18] over
the string spectrum. Instead, the velocity-dependence of stretched string masses
enters in a crucial way to enhance the production effect.

Our result, which is essentially a simple observation about the quantum-
corrected dynamics of D-branes, has obvious implications for scenarios involving
branes in relativistic motion. One example!® is the stage of reheating in cosmo-
logical models with fast-moving branes and antibranes. Brane-antibrane inflation
models typically end with the condensation of the open string tachyon, leaving a
dust of closed strings in the bulk as well as excited open strings on any remaining
branes [118]. Despite much effort, this process is not fully understood [119]. Sup-
pose, however, that the antibrane is moving relativistically toward the end of its
evolution, and then passes by or collides with a stack of branes. (Ultrarelativistic
brane motion is natural in the DBI models [120,121], for example, and could occur
elsewhere.) In this case tachyon condensation governs only a small fraction of the
energy released; most of the kinetic energy goes into open string pair production.
Thus, reheating in such a model proceeds by stringy trapping (for related work, see
[122]).

More speculatively, moduli trapping may be a useful mechanism for vacuum
selection [18], as it gives a dynamical explanation for the presence of enhanced
symmetry. (See also [123,124] for related work on moduli dynamics in string/M

theory.) The stringy trapping presented here extends the trapping proposal not

15 YWe are grateful to S. Kachru for suggesting this.
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just to a new parameter range, but to a regime where the strength of the effect
increases dramatically.

The inelasticity of D-brane scattering may be viewed as a calculable example
of a more general question: to what extent do particle, string, and brane production
affect motion toward or away from a given ‘singular’ configuration? Time-dependent
orbifolds [125,126,127,128,129,130,131] (see also [132] and references therein) pro-
vide a relatively tractable setting for such a question. Berkooz and Pioline [130]
and Berkooz, Pioline and Rozali [131] have emphasized the possibility of resolving
a spacelike singularity through the pair production and condensation of winding
strings. It would be very interesting to extend these results and repair more general
spacelike singularities through the production of branes or strings; see [133] for work
in this direction. Our analysis suggests that string production could be surprisingly
important in such a setting.

Another interesting open question is whether the inelasticity of quantum-
corrected D-brane collisions can be used to place bounds on the elasticity of other
sorts of collisions. In the cyclic universe model [134,135], the orbifold boundaries of
heterotic M-theory [136] approach each other and collide. An intrinsic assumption
of these cyclic models is that the collision is very nearly elastic; this is essential
to make possible a large number of collisions and the associated cyclic behavior.
Our result makes it plain that D-brane collisions, which appear elastic classically,
are highly inelastic when the quantum effects associated to fundamental strings are
included.

In the cyclic model, the M2-branes stretched between the boundaries become
tensionless at the instant of collision. In the weakly-coupled four-dimensional de-’
scription these objects are heterotic strings whose tension, in four-dimensional
Planck units, goes to zero at the moment of impact. Because the masses vary
rapidly during the collision, the nonadiabaticity is large and we expect copious pro-
duction of these strings. It would be extremely interesting to compute the energy
loss through this string/membrane production and to understand the implications
for the cyclic models [137].

We should point out that in the most realistic cyclic models, the brane veloci-

ties are required, for phenomenological reasons, to be nonrelativistic.!® The results

16 We are grateful to P. J. Steinhardt for helpful discussions on this point.
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in this chapter appear to give an independent upper bound on the velocity of the
branes before collision — this bound is one which is required for the self-consistency
of the model, rather than one imposed by observational requirements. However,
this argument is qualitative at present; an explicit extension of our results involv-
ing stretched fundamental strings to the case of stretched membranes would be
nontrivial.

Another interesting application would be to investigate inelasticity in the rel-

ativistic dynamics of networks of cosmic strings [138].

4.A Masses of Strings Between Moving Branes

In this appendix we provide a consistency check of our result (4.4.3) for the
mass of an open string stretched between moving branes. We motivated this result
with several independent arguments for a rescaling of the string tension. We will
now show that precisely for this value (4.4.3) of the mass, our WKB estimate of
string production (4.2.6) is consistent with the complete string result (4.4.7) in their
regime of common validity.

In order to compare these two results, we need to work in a regime where the
WKB result is reliable. We therefore require that the occupation numbers of all
string states are small, i.e. we work in the nearly-adiabatic limit. By examining the
full string result (4.4.7) we see that this can be achieved by requiring that b? > 7.
Moreover, we are interested in the relativistic limit n > 1.

We can use the result of §4.2 to conclude that if the time-dependent x mass is
given by o
m2(t) = C’;T(;’)(b? + v?t?) (4.A.1)

then the number of produced x particles is

C(v)b?

U X exp (—T> . (4.A.2)

Requiring consistency with (4.4.7) we see that
C(v) =v/n, (4.A.3)

exactly matching our proposed formula (4.4.3).
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This analysis allows us to determine the velocity-dependence of that part of
the string energy which comes from stretching, i.e. the second term in (4.4.3).
The necessity of working in the nearly-adiabatic limit prevents us from extracting
the velocity-dependence of the string oscillator energy, which is the first term in
(4.4.3). However, we view the exact agreement between (4.A.3) and the energy
resulting from the rescaling of the string tension (4.4.2) as compelling evidence that
the rescaled tension correctly encodes the properties of this system. We therefore
propose that the oscillator energy is likewise given by the same rescaling of the
tension as in (4.4.2). This leads to (4.4.3).

4.B Theta Function Identities

In this section we collect various identities about the elliptic theta functions.
Because of the existence of several canonical notations for these functions, we define
the functions as used in the chapter.

The theta functions are often expressed in terms of the variables v and 7, or
in terms of the nome ¢ = exp(27iT) and z = exp(2niv). The four theta functions

are written down below in both their series and product forms:

Ooo(v, 7) = 03(v|T) = Z qn2/22n — H (1- qm)(l + zqm—l/z)(l n Z_1qm_1/2)

n=—oo m=1

o1 (v, 7) = O4(v|7) = i (=1)ngn"/2m

= H(l_qm)(l__ m— 1/2)(1 o1 7 1/2)
m=1
010(1/7 T) - 02(1/'7') = 2 q(n-—l/2)2/2zn_1/2
n=—oo

= 2¢™7/4 cos(mv) H (1—¢™) 1+ 2g™)(1 + 27 1¢g™)

m=1

O11(v, T)=—0:1(v|T) = —i Z( 1" (n~1/2)2/2zn—1/z

n=—oc

o0
= —2¢"*sin(mv) [] (1 - ¢™)(1 ~ 2¢™)(1 ~ 27*¢™).
m=1

(4.B.1)
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In addition to the theta functions, we shall also need the Dedekind eta function:

0o 71/3
n(r)=¢/* [[1-¢™) = {a—”e—l—l(o’—)} : (4.B.2)

27

These functions have the following modular transformation properties:
Ooo(v/7, —1/7) = (—iT)*? exp(wiv? /7)000 (v, T)
Bo1(v/ 7, ~1/7) = (=ir) /2 exp(miv?/7)010(v, 7)
010(v/T, —1/7) = (—i1)Y? exp(miv? /7)001 (v, T) (4.B.3)
011(v/7, —1/7) = —(—i7)* % exp(wiv?/7)011 (v, T)
n(=1/7) = (=ir)/*n(r).

We will often need the asymptotic behavior of the theta and eta functions.
When g <« 1 we can immediately find the asymptotics using the above expansions,
whereas for ¢ — 1 we must first perform a modular transformation.

The asymptotic behavior of a particular combination will be especially helpful.
Define the fermionic partition function Z(7) = 264,(0|7)n(r)~'2. Then for —ir =
s > 1 we have

Z(is) = 8 + O(e™ ") (4.B.4)

whereas for s < 1 we find, using the modular transformations above,
1 x
Z(is) = 534 exp(%) (1 +O0(e” > ) (4.B.5)
We will also need a few identities involving the theta functions:

030(0,7) — 05,(0,7) — 03,(0,7) =0  011(0,7) =0

4 4 4 4 4
[T 28(¢arit) = [ 29(¢asit) — [] 25($arit) — [] 21 (Barit) = 2] 21(¢}. i),
a=1 a=1 a=1 a a=1

=1

(4.B.6)
where
wrr o Baplidt/m,it)
25000 = (@t mmit
¢$ = %(qsl +g2t g3t ds) g = %(m +¢2 — ¢3 — ¢4) (4B.7)

¢§=%(¢1-¢2+¢3—¢4) ¢ﬁ;=%(¢1—¢2—¢3+¢4)-

The identity (4.B.6) leads in the case ¢ = ¢3 = ¢4 = 0 to

29‘111 (v/2,7) = bgo(v, 7')080(0, T) — Bo1(v, 7')931 (0,7) = B10(v, 7')9?0(0, 7). (4.B.8)





