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Preface

This thesis discusses various physical scenarios in which the particles of the standard
model are trapped on a 4-dimensional manifold in a higher-dimensional space.

First, we study a model suggested by Hofava and Witten which resolves the dis-
crepancy between the gravitational and gauge couplings at the fundamental scale of
string theory. In their model there is a scale at which space is effectively 5-dimensional
and the standard model particles, confined to one 4-dimensional boundary, feel the
effects of soft supersymmetry breaking in a hidden sector located on the other bound-
ary. We use auxiliary fields to derive supersymmetric couplings between boundary
matter and bulk super-Yang-Mills fields. We then display two methods of supersym-
metry breaking and compute the Casimir energy of the system.

We then discuss Arkani-Hamed, Dimopoulos, and Dvali’s solution to the hierar-
chy problem. In their model, the standard model particles live on a 4-dimensional
membrane in a space with large ( mm) extra dimensions. We calculate the cross
section to emit gravitons into the extra dimensions. Current collider constraints on
these cross sections demand a compactification scale less than 0.47 mm, while future
experiments could push that constraint to .012 millimeters.

Finally, there is an exploration of Arkani-Hamed and Schmaltz’s mechanism for
generating hierarchies among Yukawa couplings through the relative displacement
of the locations of the standard model fields within a 4-dimensional membrane in a
higher-dimensional space. We find only one configuration of displacements consis-
tent with experiment, with a prediction for the strange quark mass m}ﬁ(2 GeV) =
(1.19) X (VasVis/Vius) /2 x mMS(my) = 120 MeV.
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Chapter 1
Introduction

In this thesis, we study various physical models which assume the existence of spatial
dimensions beyond the familiar three. While everyday observation suggests only three
dimensions, there is no shortage of potential explanations for how extra dimensions
could have escaped our detection for so long. For instance, the extra dimensions
could be compact, curled into a microscopic volume so that you can never move far
in the extra dimension without ending up back where you started. Or, the elements
of everyday experience could be trapped on a three-dimensional membrane floating
in a higher dimensional space. The models studied in this thesis each use both of
these mechanisms in tandem (see figure 1.1), with electrons, photons, quarks, and
the like being confined to a three-dimensional membrane that sits in a space with
compact extra dimensions. Gravitons (and perhaps other new types of particles)
could travel beyond the three-dimensional membrane, so we can feel the effects of
the higher-dimensional space, but because the extra dimensions are compactified on

a small scale, the effects are subtle.

1.1 Force Unification from Extra Dimensions

Around the turn of the century, physicists hoped to follow up the unification of
electric and magnetic forces with a unification of electromagnetism with the other
long-range force: gravity. Kaluza-Klein theory provided such a unification, but it
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Figure 1.1: Hiding extra dimensions.

required the introduction of an extra dimension. The theory could be extended to
include the strong and weak forces, but it could not be made realistic, as it could not
accommodate light charged fields or charged matter with a definite helicity, which
are present in the real world.

About thirty years ago, string-theory models were found which not only unified
gravitational and gauge force phenomena, but also unified fermion matter fields and
bosonic force fields in terms of different excitations of a single object: the supersym-
metric string. However, at the quantum level, the theory required extra dimensions
for consistency. These extra dimensions created new tools for model building-the
non-observation of these dimensions demanded that they be wrapped up into a small
compact manifold, and different compactification choices led to different low energy
models, with different types of matter and forces.

The E5 x Ej heterotic variant of string theory, suitably compactified on a Calabi-
Yau manifold, appeared particularly promising, as it could contain the observed three

generations of matter appropriately charged under standard model gauge forces (or
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super-grand-unified generalizations thereof). It even suggested a mechanism for low-
energy supersymmetry breaking—standard model matter would be charged under one
Eg, whose sub-group Ej5 had just the right complexity to contain the standard model
forces, while the other E3 could become strongly coupled at low energies, leading to
gaugino condensation and supersymmetry breaking, which could then be mediated
to standard model particles via gravitational forces.

However, the string paradigm was not without problems. One of the few clues that
current experimental results provide for physics beyond the standard model is that the
interaction strengths of the strong, electroweak isospin, and electroweak hypercharge
forces, directly measured at distance scales as small as 10~'® meters, all extrapolate
to a single strength at the much smaller distance scale ¢gyr = 10732 meters (if the ex-
trapolation is calculated under the assumption of electroweak-scale supersymmetry).
This suggests that physics beyond the standard model can be described by a super-
symmetric “grand unified” theory, in which the strong and electroweak forces derive
from a single force at short distance scales of order ¢gyr. The most straightforward
weakly-coupled string theory models predict the existence of effective grand unified
theories, but they generally predict that the forces unify at a length scale roughly
thirty times smaller than the extrapolated unification scale ¢gyr. It is remarkable
that the string theory prediction for the unification scale should be so close to the
observed unification scale, but the discrepancy is large and robust enough to demand
explanation. Another problem with the string paradigm was that weakly-coupled
string models seemed to generically suffer from a “runaway modulus” problem in
which the scalar field which controls the interaction strength of the theory would
relax so as to move the theory from weak coupling towards zero coupling. This was
considered an argument that realistic string theories must not be weakly coupled, but
at the time string models were defined solely in terms of a perturbative weak coupling
expansion, and nonperturbative string effects could not be discussed.

With the recent “revolution” in nonperturbative string/M theory, clues about the
behavior of string/M theory at large coupling emerged. Hofava and Witten demon-
strated that the low energy physics of strongly coupled ten-dimensional Eg x Ejs het-
erotic string theory was mimicked by weakly coupled eleven-dimensional supergravity
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interacting with two ten-dimensional Eg gauge theories, with the eleventh dimension
compactified on the orbifold S'/Z, (i.e. a line segment) and the ten-dimensional Eg
gauge theories localized in the eleventh dimension at the orbifold fixed points (i.e.
the line segment endpoints). It appears that strongly coupled string theory “grows”
another dimension!

In addition to providing a strongly coupled model, Witten has shown that this
theory, further compactified on a Calabi-Yau manifold and given appropriately chosen
values of the string coupling and the line segment size, can remove the factor of thirty
discrepancy between the predicted and observed gauge force unification scales. Briefly
put, in the weakly coupled model, at low energies, the universe could be described by a
four-dimensional effective field theory, with the standard model interaction strengths
unifying as mentioned earlier. If the gauge and gravitational forces both experience
some extra dimensions at distances smaller than some compactification scale, they
both have similarly altered extrapolations to smaller distances, so that the gauge
forces still unify with each other at some particular scale, and they still do not unify
with the gravitational force at that scale. But if, as in the strongly coupled model,
there is a scale at which gravity experiences a new dimension but the gauge forces do
not (being stuck on the endpoints), then the extrapolation of the gravitational force
will be altered at distances smaller than this scale while the behavior of the gauge
forces is not. The size of the line segment can then be tailored so that the altered
gravitational extrapolation meets up with the gauge coupling strength at the length
scale gyr.

When the line segment size is tailored in this fashion, it is larger than the Calabi-
Yau, creating a length regime between these scales in which the theory can be treated
as a five-dimensional supersymmetric effective field theory with two four-dimensional
boundaries at the Z; fixed points. Thus realistic string-derived models may be stud-
ied in the context of a five-dimensional effective field theory coupled to two four-
dimensional effective field theories at the boundaries of the fifth dimension. In this
context, supersymmetry breaking in the “other” Ej is supersymmetry breaking on
the “other” boundary of the extra dimension. Low-energy supersymmetry breaking,
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which may be observed at near-future collider experiments, would thus involve extra-
dimensional physics in an essential way. The possibility that the distinctive nature
of such a model might lead to distinctive signatures in low-energy physics makes this
system worth investigating.

In chapter 2, we study the dynamics of a “toy model” inspired by such a system.
We examine the dynamics of a five-dimensional flat-space gauge supermultiplet (with
Z; projected boundary conditions) coupled to four-dimensional boundary N=1 chi-
ral supermultiplets and devise an algorithm for deriving general couplings between
boundary matter and bulk super-Yang-Mills fields through the use of auxiliary fields.
We explain the appearance of certain formally divergent terms in the supersymmetry-
invariant Lagrangian, and then show that these divergences do not interfere with
standard perturbative calculations, which we use to display two scenarios exhibit-
ing the transmission of supersymmetry breaking effects from one boundary to the
other. After supersymmetry breaking, the Casimir vacuum energy of the system can
be nonzero, and in a model with gravity, the minimization of this energy would fix
the size of the extra dimension. We compute the vacuum energy in the presence of
supersymmetry breaking. This work was originally presented in [1], and chapter 2 is
based closely on that publication.

1.2 Extra Dimensions and Hierarchies

Physical models with extra dimensions have traditionally allowed all the fields of the
model to experience the same number of extra dimensions, but with recent results
in nonperturbative string/M theory involving quantum fields confined to membranes
and “D-branes” as well as degrees-of-freedom in higher dimensions, there has been
increasing interest in models in which different numbers of extra dimensions are ac-
cessible to different fields. As such theories were, until recently, largely unexplored,
they offer many new possibilities for exotic solutions to familiar theoretical problems,
such as the electroweak hierarchy problem and the flavor problem described below.

In the contemporary understanding of quantum field theory, the special form of
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the standard model Lagrangian is understood to be derivable as the low energy limit
of a rather generic effective quantum field theory defined at a high energy scale such
as the Planck scale. Whatever the correct fundamental physical theory is, it can be
approximated by local quantum field theories at low energies. Making no assumptions
about the fundamental theory, one can write down a generic effective field theory for
a collection of fields at the Planck scale by including all possible Lagrangian terms
allowed by the gauge symmetries of the theory.

When these Lagrangian terms are renormalized to an effective theory at the weak
scale, most terms are suppressed by powers of Myeak/Mpianck, With the remaining
dominant terms being the familiar renormalizable ones: canonical gauge-covariant
kinetic terms, mass terms, Yukawa couplings, and cubic and quadratic scalar self-
interactions. Mass terms allowed by gauge symmetries (i.e. scalar, Majorana, and
Dirac masses) would generically be roughly of order Mpi,cx and fields with these
masses could be neglected in the weak-scale theory. Then the only fields visible
at the weak scale should be gauge fields and fermions charged under chiral gauge
symmetries.

The most prominent exceptions to this understanding are the cosmological con-
stant (i.e. the vacuum energy density) and the Higgs field mass and expectation
value. In the aforementioned framework it is difficult to understand why these should
not all have magnitudes of roughly the Planck mass raised to the appropriate power.
Instead, the observed energy scale of electroweak breaking as set by the Higgs expec-
tation value is observed to be approximately 10~!7 times the Planck mass, and the
cosmological constant, which is expressed in units of mass raised to the fourth power,
is measured to be less than 10~!! times the fourth power of the Planck mass.

Additionally, there is a less extreme problem with the sizes of the first and second
generation fermion masses. Given that the electroweak symmetry which prevents
the standard model fermions from having masses is broken at an energy scale of
roughly 100 GeV, we would expect the fermion masses to be roughly 100 GeV as
well, corresponding to dimensionless Yukawa couplings which are O(1). Instead, we
find a hierarchical spectrum of Yukawa couplings among the different flavors of quarks,
and while the top quark Yukawa is roughly equal to one, the up quark coupling is
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about fifty thousand times smaller.

While the cosmological constant problem is still unsolved, tentative theoretical
resolutions of the electroweak “hierarchy problem” exist based on low-energy super-
symmetry and technicolor models, and various flavor models exist which could explain

the Yukawa structure.

Arkani-Hamed, Dimopoulos, and Dvali propose a more radical solution® to the
hierarchy problem in a model which confines non-gravitational standard model fields
to a membrane floating in a higher-dimensional space. They propose that the funda-
mental scale of quantum gravity is the weak scale, and that the observed weakness
of the gravitational force relative to the other forces is a result of the spreading of
the graviton wavefunction into extra dimensions that the fields of the standard model
cannot enter. This is similar to Witten’s mechanism for achieving gauge and gravita-
tional unification described in section 1.1, except that the size of the extra dimensions
are tailored to make the gravitational interaction G(1) at an energy of 1 TeV rather
than making it of order agyr at 103 TeV.

To sufficiently reduce the potency of the gravitational force on the four dimensional
membrane, the compactification scale of the extra dimensions must be quite large—
as large as a millimeter if there are only two extra dimensions. This is quite a
change from traditional string/M models which assume extra dimensions to have a
compactification scale on the order of the Planck, string, or grand-unification length
scales (and thus safely hidden from experimental resolution at terrestrial energies).
Models with such large extra dimensions suggest the exciting possibility that bizarre
physics involving Kaluza-Klein modes, string excitations, and quantum gravity effects
should be experimentally accessible in the near future.

Amazingly enough, such large extra dimensions are not already ruled out by cur-
rent gravitational experiments (which have not probed much below a millimeter),
nor are they ruled out by order-of-magnitude estimates of corrections to standard

model particle physics experiments, as long as the extra-dimensional “thickness” of

It would be more honest to say they transform the hierarchy problem, since one now has to
explain why the extra dimensions are 10'® — 10° times larger than the (new) fundamental scale.
Possible explanations for this hierarchy can be found in [4].
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the four-dimensional membrane is less than a TeV~'. This has led to many ex-
plicit calculations quantifying the constraints that experimental data places on the
magnitudes of the large extra dimensions.

In chapter 3, we calculate the rates-of-production of extra-dimensional gravi-
tons from gluon-gluon, quark-antiquark, and electron-positron reactions in a generic,
model independent fashion. We then show how these annihilation channels would
affect measurements done in present and near-future lepton and hadron collider ex-
periments, and use the results to constrain the extra-dimensional compactification
scale. For the case of two extra dimensions, results from LEP2 constrain the scale to
be smaller than 0.47 millimeters, while results from a next-generation linear collider
could push that constraint to .012 millimeters. This work was originally presented in

[2], and chapter 3 is based closely on that paper.

Arkani-Hamed and Schmaltz gave a novel solution to another familiar problem
through the trapping of standard model fields in a membrane floating in a higher
dimensional space. They addressed the hierarchy of Yukawa couplings, and pro-
posed that they could be explained as a result of the slight displacement of the
standard model field wavefunctions inside a four-dimensional domain wall in a higher-
dimensional space. The effective four-dimensional Yukawa coupling is a product of
the fundamental higher-dimensional Yukawa coupling and the overlap of the field
wavefunctions. If the wavefunctions are highly peaked, a small relative shift be-
tween wavefunctions leads to a large suppression of the effective Yukawa through the
smallness of the overlap of the wavefunctions. Even with a universal O(1) higher-
dimensional Yukawa coupling, one could produce Yukawa hierarchies through the
relative displacements of the wavefunction peaks.

Although much of the recent work on fields confined to membranes derives from
nonperturbative methods in string/M theory, one can actually trap chiral fermions on
a domain wall using purely field-theoretic methods, and in this framework one finds
that wavefunction displacements can occur in a natural way: a random collection
of fermion masses in the higher-dimensional theory, which one would expect in the

absence of any symmetries, leads to a random collection of displacements of the
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trapped fermion wavefunctions.

In chapter 4, we explore such a model and make it concrete by finding a configura-
tion of relative displacements which leads to the observed masses and mixings of the
standard model. We find that the constraints on such a configuration lead to a predic-
tion for the strange quark mass m™S(2 GeV) ~ (1.19) X (Ve Vs / Vias) /2 x mPS (my) =

120 MeV. This work was originally presented in [3].

1.3 Fantasy?

While the possibility that our world contains more than three spatial dimensions
may seem to be unlikely at best (and ridiculous at worst), it is worth remember-
ing that forty-four years ago the notion of an inherent handedness to the universe
seemed absurd. While right-left parity appeared to be an obvious symmetry of the
universe, Lee and Yang proposed that parity violation in the weak force could explain
certain puzzling experimental results. Upon closer examination it was found that a
parity-violating weak force was not in conflict with the approximate parity symmetry
observed in nature, and less than a year after Lee and Yang proposed experiments
to test their ideas, Wu demonstrated unambiguously that parity is, in fact, not a
symmetry of the world. Now, parity-violating chiral gauge theories form the founda-
tion of the standard model of particle physics. The work in this thesis reflects the
real possibility that, despite the apparently three-dimensional nature of our universe,
near-future measurements of supersymmetry breaking parameters, measurements of
electron-positron and proton-proton cross-sections, and precision determination of the
strange quark mass may indicate the presence of extra dimensions. In the context of
the conventional wisdom that extra-dimensional physics (if it exists) is permanently
beyond direct experimental detection, the mere possibility that the next few decades

might uncover extra spatial dimensions is quite exciting!



Chapter 2

Broken Supersymmetry on a 4-d
Boundary

In the strong-coupling limit of the heterotic string theory constructed by Hofava
and Witten, an 11-dimensional supergravity theory is coupled to matter multiplets
confined to 10-dimensional mirror planes. This structure suggests that realistic uni-
fication models are obtained, after compactification of 6 dimensions, as theories of
5-dimensional supergravity in an interval, coupling to matter fields on 4-dimensional
walls. Supersymmetry breaking may be communicated from one boundary to another
by the 5-dimensional fields. In this chapter, we study a toy model of this communi-
cation in which 5-dimensional super-Yang-Mills theory in the bulk couples to chiral
multiplets on the walls. Using the auxiliary fields of the Yang-Mills multiplet, we
find a simple algorithm for coupling the bulk and boundary fields. We demonstrate
two different mechanisms for generating soft supersymmetry breaking terms in the
boundary theory. We also compute the Casimir energy generated by supersymmetry
breaking.

2.1 Introduction

In their recent investigation of the structure of strongly-coupled heterotic string the-
ory, Hotava and Witten have introduced a new paradigm for models of unification

10
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[5, 6, 7]. To construct the strong-coupling limit of the heterotic string, they began
from the 11-dimensional strong-coupling limit of the Type IIA string theory. They
compactified this model on S'/Z,, that is, on an interval of length ¢ bounded by mir-
ror (orbifold) planes. They then argued that a 10-dimensional Es super-Yang-Mills
theory appears on each plane. The final structure is a set of two Eg gauge theories
on the mirror planes, coupling to supergravity in the interior of the interval.

This arrangement had an immediate phenomenological advantage over the weakly
coupled Eg x Eg heterotic string theory [7]. When ¢ was increased, the low-energy
value of Newton’s constant decreased proportional to 1/¢, while the E gauge cou-
pling remained fixed. Thus, by adjustment of ¢, one could arrange a unification of
gauge and gravitational couplings. Choosing a large value of ¢ relative to the 11-
dimensional Planck scale justified the use of only field-theoretic, and not intrinsically
string-theoretic, degrees of freedom. At the same time, Hofava and Witten obtained
reasonable values for the gauge and gravitational couplings for values of ¢ not so large,
in the sense that both of these scales could be considered to be of the order of the
grand unification scale of 2 x 10'® GeV inferred from the values of the gauge couplings
at low energy.

In a realistic phenomenology, 6 of the transverse 10 dimensions should be compact-
ified. Then one would obtain a 5-dimensional theory on an interval with mirror-plane
boundaries. Plausibly, this theory could be described as a 5-dimensional supergravity
field theory, perhaps with some additional bulk supermultiplets, coupling to matter
supermultiplet fields on the walls. If ¢ is the largest dimension in this geometry, it is
reasonable that the theory should make sense in the limit in which ¢ is taken to be
nonzero while the finite size of the 6-dimensional compactification space is ignored.

Hotava and Witten introduced another very interesting idea on the nature of these
compactifications. They pointed out that the matter theory could be at strong cou-
pling on one boundary, and could break supersymmetry spontaneously there. Then
the supersymmetry-breaking effects could be communicated to the other boundary
by 11- or 5-dimensional fields. In this way, the theory on one boundary would be-
come the ‘hidden sector’ for the phenomenological supersymmetry theory on the other

boundary.
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Horava tried to make this mechanism of communication explicit by exhibiting a
term in the 11-dimensional Lagrangian which coupled the gaugino condensate on the
boundary to the 3-form gauge field C4pc of the bulk supergravity theory [8]. He
found that this term had a perfect-square structure

2
AL = _ﬁln_z/d“z (3110Aac - 1%-% (4—':?)2/3YFABCX 5(1‘“)) ) (2.1)
where x is the 10-dimensional gaugino and 87x? is the 11-dimensional Newton con-
stant. Hofava argued that, if the gaugino bilinear obtains a nonzero value, there is
no solution for C4pc which is consistent with supersymmetry.

Horava’s observations raise two interesting questions of principle. The first con-
cerns the structure of (2.1). We might want to know how the delta function on the
boundary shown in (2.1) arises. The square of this term integrated over z'! gives a
factor 6(0) in the boundary Lagrangian. It is a puzzling issue whether this term is
reasonably included in a purely field-theoretic description of the Hofava-Witten com-
pactification, or whether the presence of this term implies that any such field-theoretic
description is incomplete.

The second question comes from the fact that the communication between the
two boundaries comes from the 3-form gauge field, a rather exotic agent. From the
general form of the potential energy in supergravity, the 4-dimensional theory which
we would obtain by compactifying 6 dimensions and then taking the limit £ — 0 must
contain a direct coupling of the superpotentials on the two boundaries. We would
like to know how this coupling arises, and how much of this coupling is present in
the compactified theory before we take the limit £ — 0. In the standard approach
to supersymmetry breaking mediated by supergravity, this coupling is the source of
the soft supersymmetry-breaking mass terms for squarks and sleptons. It would be
wonderful if the presence of an extended fifth dimension had specific consequences
for the superparticle mass spectrum which could be verified experimentally.

We have tried to find the answers to these questions by studying a toy model
in which supergravity is replaced by a Yang-Mills supermultiplet. Consider, then,
5-dimensional super-Yang-Mills theory on an interval of length ¢ bounded by mirror
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planes, coupled to chiral multiplets ¢, ¢’ on the 4-dimensional boundaries. In the
limit £ — 0, this theory must have a potential energy with the D-term contribution

2
V=2(Qs'e+ Q¢ (2:2)

where g is the effective 4-dimensional coupling constant and @, Q' are the gauge
charges of ¢, ¢'. So we can ask in this system also how much of the coupling between
boundaries which is required in the limit £ — 0 survives when ¢ is kept nonzero. The
related problem of coupling 5-dimensional hypermultiplets to a superpotential on the
boundary has been studied previously by Sharpe [9], but, we feel, without giving the
insight that we are seeking.

A convenient strategy for coupling 5-dimensional supersymmetric multiplets to
a 4-dimensional boundary is to work with the off-shell supermultiplets, including
auxiliary fields. Under straightforward dimensional reduction, 5-dimensional multi-
plets reduce to 4-dimensional N = 2 supermultiplets. A mirror plane, or orbifold,
obtained by a Z; identification has lower supersymmetry, and so on such a plane a
5-dimensional multiplet should reduce to a 4-dimensional N = 1 supermultiplet. Nev-
ertheless, if we have the correct off-shell multiplet, we can couple it straightforwardly
to 4-dimensional fields on the boundary.

In Section 2, we will present the necessary formalism for coupling a 5-dimensional
super-Yang-Mills multiplet to an orbifold boundary. We will identify the off-shell
4-dimensional supermultiplet which couples to the boundary fields and use this mul-
tiplet to construct the 4-dimensional boundary Lagrangian. In Section 3, we will
discuss the role of the §(0) terms which appear in this Lagrangian, illustrating our
conclusions by some explicit one- and two-loop calculations.

In Section 4, we will use the formalism that we have developed to discuss the
communication of supersymmetry breaking from one boundary to the other. We will
first analyze the case in which supersymmetry is spontaneously broken by a Fayet-
Iliopoulos term on one boundary. Then we will present a more involved example
in which supersymmetry is communicated by loop diagrams which span the fifth

dimension.
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If supersymmetry is spontaneously broken, the vacuum energy can be nonzero.
In general, the vacuum energy will contain a term, called the Casimir energy (10],
which depends on the separation of the two boundaries. In the eventual application
to supergravity, this dependence is needed to fix the size of the compact geometry.
Though the case of 5-dimensional Yang-Mills theory is simpler than that of super-
gravity in several respects, it is still interesting to compute the Casimir energy for
this case. In Section 5, we evaluate this energy for the models of the communication
of supersymmetry-breaking studied in Section 4 and note the similarities of the two
computations.

In Sections 3 through 5, we will be carrying out weak-coupling perturbation the-
ory computations in the nonrenormalizable 5-dimensional Yang-Mills theory. Our
attitude toward this nonrenormalizability is a pragmatic one; we will be pleased if
quantities of physical interest turn out to be ultraviolet-finite at the leading order
of perturbation theory. That will be true in our explicit calculations of the scalar
mass term and the Casimir energy. Presumably, the higher-order corrections to these
computations are cutoff-dependent and are regulated by the underlying string theory.
In this discussion, we will not be concerned with effects beyond the leading nontrivial
order.

Finally, in Section 6, we will discuss the relation of our formalism to Hofava’s
analysis and give an explanation of the coupling shown in (2.1).

Our approach to the Hofava-Witten theory complements the many attempts to
understand the structure of this theory by direct analysis of the 11-dimensional La-
grangian. General properties of the strong-coupling limit of the heterotic string theory
have been discussed in [11, 12, 13]. More explicit studies of the compactification of
the Horava-Witten theory have been discussed recently by several groups. Some of
these analysis (14, 15, 16, 17, 18] have emphasized the connection to the venerable
mechanism of supersymmetry breaking in string theory by Eg gaugino condensation
[19], while others [20, 21] have relied on the Scherk-Schwarz mechanism [22] in the
bulk to provide a new source of supersymmetry breaking. Brax and Turok [23] have
contributed an observation on the possibility of large hierarchies in the 5-dimensional
geometry, if all of the relevant 5-dimensional fields can be made massive. We hope
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that the methods of analysis that we introduce here, when generalized to supergrav-
ity, will clarify the many possible sources of supersymmetry breaking which may
contribute in the Hofava-Witten approach to unification.

2.2 Bulk and boundary supermultiplets

In this section, we will set up the formalism for coupling 5-dimensional super-Yang-
Mills theory to an orbifold boundary. The 5-dimensional Yang-Mills multiplet con-
tains a vector field AM, a real scalar field ®, a gaugino \'.

In this chapter, capitalized indices M, N run over 0,1,2,3,5, lower-case indices m
run over 0,1,2,3, and ¢, a are internal SU(2) spinor and vector indices, with ¢ = 1, 2,
a=1,2,3. We use a timelike metric nyny = diag(1,-1,-1,-1,-1) and take the following

basis for the Dirac matrices:

(e H ) B

where 0™ = (1,5), @™ = (1,—~&). Though it is conventional in the literature to use
raised and lowered spinor indices, we find it less confusing to write out explicitly the

2 x 2 and 4 x 4 charge conjugation matrices

Y c 0
c=—io°, C= ( ) . (2.4)
0 ¢

In 5-dimensional supersymmetry, it is convenient to rewrite 4-component Dirac
spinors as symplectic-Majorana spinors, Dirac fermions which carry an SU(2) spinor

index and satisfy the constraints
W = ciCyT . (2.5)

A symplectic-Majorana spinor can be decomposed into 4-dimensional chiral spinors

(2

according to
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where d)}“ R are two-component spinors connected by
¢y =cedl .,  dh=ccgl . (2.7)
Symplectic-Majorana spinors ¥*, x* satisfy the identity
PAM - yPxd = R Myt (2.8)

including the minus sign from fermion interchange.

In this notation, the 5-dimensional Yang-Mills multiplet is extended to an off-shell
multiplet by adding an SU(2) triplet X° of real-valued auxiliary fields [24]. Write
the members of the multiplet as matrices in the adjoint representation of the gauge
group: AM = AMAA | etc. The supersymmetry transformation laws are

G AM = EyMpi

5e® = LN
dN = (oMNFyn — YMDy®)E - i(X°0®)T ¢
§eX® = E(o*)IyMDpN — i[®,E (c°)9N] (2.9)

where the symplectic-Majorana spinor &' is the supersymmetry parameter, Dy® =
Om® — i[Ap, @] (and similarly for Dy A ), and oMN = 4™, 4N].

Now we would like to project this structure down to a 4-dimensional N = 1
supersymmetry transformation acting on fields on the orbifold wall. In a field theory
description, an orbifold at z°> = 0 is described by imposing the boundary condition
on bulk fields a(z, z°)

a(z™,z°) = Pa(z™, —z°) (2.10)

where P is an intrinsic parity equal to +1. The quantum number P must be assigned
to fields in such a way that it leaves the bulk Lagrangian invariant. Then fields of
P = —1 vanish on the walls but have nonvanishing derivatives d;a. Note that, since

A’ vanishes on the boundary, 35 = D5 on the boundary and dsa is gauge-covariant.
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Let £} be the supersymmetry parameter of the N = 1 supersymmetry transfor-
mation on the wall. Then the P assignments of the fields in the bulk supermultiplet

are determined as follows:

P=+1 | P=-1
§ L &
M Am 5
Aq) ’; 2.11)
Al AL A2
G X3 X1,2

On the wall at z° = 0, the supersymmetry transformation (2.9) reduces to the fol-

lowing transformation of the even-parity states generated by &} :
§A™ = ig'a™AL — icflomel

dAp = 0™ Fna€l —i(X° - 059)E;
6 X3 = EF™DpAL —i€ltcdsA® + hec.

0c0s® = —i€iTcOsA2 — i€fTcOs N2 . (2.12)
The last two equations imply
0e(X3 — 35®) = £}/™ DAL + hec. . (2.13)

These are just the transformation laws for an N = 1 4-dimensional vector multiplet
[25], with A™, A}, and (X3 — 8;®) transforming as the vector, gaugino, and auxiliary
D fields.

The appearance of the quantity ;P in the auxiliary field should not be a sur-
prise. It is the expectation value of this quantity that breaks supersymmetry in the
Scherk-Schwarz mechanism [22]. Thus, 85® should appear in the order parameter of
supersymmetry breaking.

Now it is obvious how to couple the 5-dimensional gauge multiplet to 4-dimensional
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chiral multiplets on the boundary. We write the Lagrangian as
S = /dsl‘ {55 + 2(5(1‘5 - z?)&;.} s (214)

where the sum includes the walls at z} = 0,¢. The bulk Lagrangian should be the

standard one for a 5-dimensional super-Yang-Mills multiplet,

L; = ;}?(_%tr(Fm)%tr(DM@)z+tr(Xi7MDw\)
+ (X~ u(X[e, ) ) (2.15)

with tr[t4¢8] = §48/2. The bulk fields should be constrained to satisfy the boundary
conditions (2.10) at the walls. Since the supersymmetry generated by £} relates fields
with the same boundary conditions, this N = 1 supersymmetry is an invariance of
(2.15) under the constraint.

The boundary Lagrangian should have the standard form of a four-dimensional
chiral model built from supermultiplets (¢, ¥, F'). Here and in the rest of the chapter,
it is important to distinguish boundary chiral scalar fields, which we will label by ¢,
from the bulk scalar field ®. The explicit form of this boundary Lagrangian is

Ly = Dn¢'D™¢+4Licg™Dpnipr + FIF
~V2i (¢! 2[eyr +ledis) +4'Dg (2.16)

with D, = (O, — iAp), and with with the gauge fields (Ap, AL, D) replaced by the
boundary values of the bulk fields (A4,,, A}, X3 — 85®). The boundary Lagrangian L,
is invariant by itself under an N = 1 supersymmetry transformation of the boundary
fields and the supersymmetry transformation (2.12) of the bulk fields. Thus, the
complete action (2.14) is N = 1 supersymmetric.

In principle, we could add to (2.14) additional terms involving a four-dimensional
integral of the boundary values of the vector fields, or terms coupling the chiral fields
to higher 05 derivatives of the vector fields at the boundary. These terms would
correspond to contributions that are more singular at the boundary that the ones we
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have considered. For our present purposes, we only point out that these terms are
not necessary for supersymmetry, and we neglect them from here on. We will show in
explicit calculations that the terms we have written suffice to give amplitudes which
converge to the correct 4-dimensional limits as ¢ — 0. With the action (2.14), the
boundary scalar field ¢ at z° = 0 couples to the auxiliary field X3 through the terms

/ &z { —tr(X3)? + 8(z%)p!(X? ascp)¢}. (2.17)

The field @ is a dynamical field in the interior, but X3 is an auxiliary field and may
be integrated out. This gives a boundary Lagrangian of the form

[ &'z {-¢'@2)s - 6t 9)5(0)} (2.18)

Thus, our formalism does contain singular terms proportional to §(0) on the
boundary, which arise naturally from integrating out the auxiliary fields. In principle,
the complete description of the orbifold wall in string theory could contain additional
couplings involving higher derivatives d5 of the bulk fields and representing a finite
thickness and a shape of the wall. However, the Lagrangian we have written, with the
4(0) but no additional singular terms, is a completely self-consistent supersymmetric

system.

2.3 Bulk and boundary perturbation theory

In the previous section, we have found that singular terms proportional to 6(0) on the
boundary arise naturally when bulk and boundary fields are coupled supersymmetri-
cally. What is still unclear is whether these terms can lead to sensible results when
one performs computations in this theory, or whether these terms signal the break-
down of a purely field-theoretic description. We believe that these singular terms do
make sense at the field theory level. Their role is to provide counterterms which are
necessary in explicit calculations to maintain supersymmetry. In this section, we will
illustrate this conclusion with some explicit calculations in perturbation theory.



CHAPTER 2. BROKEN SUPERSYMMETRY ON A 4-D BOUNDARY 20
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Figure 2.1: Feynman diagrams contributing to the scattering process ¢¢ — ¢¢.

As a first, simplest, example, consider the scattering amplitude for scalars on a
wall. The Feynman diagrams contributing to the process ¢, + ¢, — @+ ¢4 are shown
in Figure 2.1. The propagator of a free massless bulk field is

¢ —ik-(z— ik3(z% - i
(a(z,2%)a(y,y")) = /ks (e k(-1) (ke ~v") | peik*e* %)) | (2.19)

where

dk 1
-/Ics /(27r 4922 (2.20)

with &° summed over the values 7m/¢, m = integer. Here and in the rest of our
discussion, k represents the 4-dimensional momentum components of k.
The sum of diagrams in Figure 2.1 is given by

Mo+ 80> 0c00) = ~ig't8td (55 oy i +90)

_ls (i’;:“_ P;z)z(fd (:5’)’3)) +cord). (221)

If we represent
6(0) = Z 1= Z K- (&) (2.22)
2 20 < 2 — (k3)2’ '

the first two terms have a neat cancellation and we find the finite result

1 c ™ Pa 2 c a) *
iM(at b~ b+ 0a) = —ig'tiuts (ﬂ > p(; —;p )z+ = &5)(54 HM))
k5 c a

+(c & d)
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Figure 2.2: Feynman diagrams contributing to the ¢ self-energy at one-loop order.

. 1 —2u
= —zg2t$t2‘b (-27 % Z-—_(—k‘s—)f) + (C < d) . (223)

If £ — 0 with the dimensionless coupling ¢g2/¢ fixed, the terms with k° # 0 become
negligible. Then we recover the scalar particle scattering amplitude of a 4-dimensional
N =1 supersymmetric gauge theory.

As a second example, consider the self-energy of the scalar ¢, computed at the one-
loop level. By supersymmetry, the ¢ cannot obtain a mass in perturbation theory, but
it is interesting to see explicitly how the cancellation occurs. The Feynman diagrams
for the ¢ self-energy are shown in Figure 2.2. The first four diagrams all involve one
field that propagates in four dimensions and one field that propagates in the fifth
dimension. Thus, if p is the external 4-momentum, all of these diagrams will have

the structure

1 1
2;A4,A
et | R (b (p= k)2

—iM*(p’) =g N(k, k% p) , (2.24)
where NV is a polynomial in momenta. Using the representation (2.22), we can bring
the last diagram into this form as well. Then the five diagrams give contributions

N = —(2p— k)P +4(p— k) - 4k (k —p) + (k)2 + (K — (K°)?)
= 0. (2.25)
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Figure 2.3: Feynman diagrams contributing to the mass shift of a scalar ¢ on one
wall due to loop effects of the supermultiplet on the other wall.

Here the §(0) term enters quite explicitly as a counterterm which cancels the singu-
lar behavior of the ® exchange diagram and thus allows the complete cancellation
required by supersymmetry.

To prepare for the next section, it will be useful to illustrate one more cancellation
required by supersymmetry. Consider the renormalization of the mass of a scalar ¢
on one wall due to loop diagrams involving the supermultiplet on the other wall.
This mass shift is given by the sum of the two-loop diagrams shown in Figure 2.3. In
our discussion of these diagrams, we will assign the chiral fields ¢ at z° = 0 to the
representation R of the gauge group, and we will assign the fields ¢’ at ° = ¢ to the
representation R'.

The diagrams of Figure 2.3 form a gauge-invariant set. We might characterize
them as the diagrams of order g*N, where N is the number of matter multiplets on
the second wall. Thus, by supersymmetry, their sum must vanish.

It is not difficult to see this explicitly. Since we are interested in the shift of the
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¢ mass term, we can set the external momentum equal to zero. Then let ¢ be the
loop momentum of the matter loop on the wall at z° = ¢, Let (k, k5) and (k, k5) be
the momenta carried by the two propagators of the gauge multiplet that connect the

two walls. These momenta are quantized, with
K =mnjt, kK =rn/t, (2.26)

but the integers n and 7 are summed over independently, since &% is not conserved
in the interaction of bulk fields with the walls. Then all of the diagrams shown in

Figure 2.3 can be written in the form

N(k, k%, k%, q)

= , (2.
R e = ER e -Ry | 2

—iM? = ig'C,(R)C(R') /q-/lc55 (k2)(k?

where N is a polynomial in momenta, C(R')648 = trp[t*t5] is the sum over the
gauge quantum numbers of the multiplet at ° = ¢, the integral over ¢ is a simple

4-dimensional momentum integral, and

k1 o
/kﬁs / (27r)42eE 232 4o (=)™, (2.28)

This expression includes the k°-dependence of the propagators, obtained by evaluating
(2.19) at 28 =0, y5 = €.

To see that the diagrams of this set must cancel, it is easiest to compare this
calculation to the corresponding two-loop mass renormalization in four dimensions.
The diagrams on the first two lines of Figure 2.3 contain, from the five-dimensional
gauge multiplet, only the propagators of the fields A, and A} which appear in a 4-
dimensional gauge multiplet. Thus, their contributions to the numerator polynomial
N are exactly those of the corresponding diagrams in 4 dimensions. To treat the last
three diagrams, we note the identity

k52
0—2162 (-1)" = 82( -1)® k2 Ek5;2’ (2.29)
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since the second term is a representation of &(z°) evaluated at z° = ¢. Each &
propagator comes with a factor (k°)2, due to the couplings (2.18) at each wall. The
identity (2.29) allows us to replace this (k*)2 by k2. Then each diagram gives the same
contribution to the numerator as the corresponding 4-dimensional diagram with the
® replaced by a D-term interaction. Thus, the numerator polynomial N turns out to
be exactly the one that appears in the 4-dimensional calculation.

At this point, we know that the integral (2.27) must vanish. It is not difficult to
evaluate the various contributions to the numerator and to see that they cancel. In
the Appendix, we give a formula for the numerator factor N from which this can be

verified explicitly.

2.4 Wall to Wall Supersymmetry Breaking

We have now described and tested an explicit form for the coupling of 4-dimensional
supermultiplets on the boundary to gauge supermultiplets in the bulk. Now we can
use this formalism to see how supersymmetry breaking on one wall is communicated
to the other wall to provide soft supersymmetry-breaking terms. In this section, we
will give two examples of such communication, one through a direct tree-level coupling
and the other induced by loop effects.

The simplest example of the communication of supersymmetry breaking is ob-
tained in a theory in which the wall at z° = ¢ contains no boundary matter fields.
We choose the gauge group to be U(1) and write a Fayet-Iliopoulos D term on this
boundary. With the identification of the D term given in Section 2, the following

boundary action preserves N = 1 supersymmetry:
Ly = r(X? - 0;0) . (2.30)

Integrating out the auxiliary field X3 leads to a §(0) term which is an irrelevant
constant. The dynamical & field is affected by (2.30) in a manner that we can compute

from the action !
S = / dz {Z];(a,mb)2 — kOs®6(z° — e)} : (2.31)
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Varying this action with respect to ®, we find that the Fayet-Iliopoulos term induces
a background expectation value of ® which depends only on % and satisfies the

equation )
?ag (®) + kBs0(z°> - €) =0 . (2.32)

In solving this equation, we should remember that the geometry with mirror planes
arose from a identification of points in a compactification of z° on a circle. Thus,
(@(z°)) must be a periodic function of z3 with period 2¢ and so 9;® must integrate
to zero around the circle. This boundary condition requires that we choose as the
solution to (2.32)

85 (&) = g% (8(z° ~ ) - 512) . (2.33)
Inserting this result into the D-term coupling on the wall at z° = 0, given by (2.17),

we find a scalar mass term given by
M: =g'Qs (2:34)
¢ 20’ '

where @ is the U(1) charge of the scalar field, with no corresponding mass term
induced for the fermions on the wall. If the dynamics on the wall at z° = ¢ gives a
D-term of fixed magnitude there, the ® field transfers this across the fifth dimension
to create a soft scalar mass term on the wall at z° = 0.

One subtlety of the Fayet-Iliopoulos mechanism of supersymmetry breaking is
that the symmetry breaking D term can sometimes be compensated by shifting the
vacuum expectations value of a scalar field. We can see a similar possibility here.
Generalize the previous model to include several chiral multiplets ¢; on the wall at
z® = 0, and additional chiral multiplets ¢; on the wall at z° = ¢. (As always, it is
important to distinguish between the boundary scalar fields ¢ and the bulk field ®.)
Assign these multiplets the charges Q;, Q; under the U(1) symmetry. In the most
general situation, all of the scalar fields might acquire vacuum expectation values.

Then the Lagrangian for ® will take the form

s = [ dsz{%z-((X3)2+(6M‘I>)2)+(zi:Qi¢I¢i)(X3—35‘I’)5(Is)



CHAPTER 2. BROKEN SUPERSYMMETRY ON A 4-D BOUNDARY 26

it Qo) (X - 8:2)6(s° - )} . (2.35)

For simplicity, we assume that the ¢; and ¢; are represented only by vacuum expec-
tation values that are independent of position on the walls. Then varying the action
(2.35) with respect to ® gives an equation analogous to (2.32) whose solution is

5@ = -7 |(C Q) (56 - )
+(k + Z Q,~¢>}¢j) (6(1‘5 - ¢) - %)] . (2.36)

This result reduces to (2.33) when we turn off the expectation values of the ¢; and
@;. If we insert this expression into (2.35), and also integrate out the auxiliary field

X3, the various §(0) terms cancel, leaving behind
gZ
= [@{ - Lix+ T Qutloi+ T Qislen)?} (237)
i j

To minimize the vacuum energy, we must set the various vacuum expectation values

to the supersymmetric condition
K+ Qidlei+ Y Qidlg; =0, (2.38)
i J

if this is possible.

If the supersymmetric theory on the wall at % = ¢ breaks supersymmetry spon-
taneously without inducing a D term, it is necessary to go to a higher order in
perturbation theory to find the supersymmetry-breaking communication. If super-
symmetry breaking causes a mass splitting among chiral supermultiplets on the wall
at z° = ¢, and these multiplets couple to the gauge field in the bulk, then the dia-
grams shown in Figure 2.3 induce a supersymmetry-breaking mass for scalars on the
wall at z° = 0. Since, in the scheme we are studying, the particle number of a chiral
multiplet at z° = 0 is conserved, this is the only soft supersymmetry-breaking term

that can be generated.
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The generation of the scalar mass term in this example is very similar to that in
‘gauge-mediated’ 4-dimensional models of supersymmetry breaking [26]. The same set
of diagrams appears, with only the difference that our gauge fields live in 5 dimensions.

To illustrate the computation of these diagrams, we study the simplest multiplet
which appears in models of gauge-mediation. We introduce on the wall at 3 = ¢
two chiral superfields (¢', ?5') which transform under the gauge group as a vectorlike
representation (R'+ R'). (Recall that we are using R to denote representations of the
chiral fields ¢ at £ = 0.) We give this multiplet a supersymmetric mass m and induce
an additional mass term for the scalar fields from the vacuum expectation value of
an F-term. Then the fermions have a Dirac mass m, while the bosons have a (mass)?

(5)= (e W) (&)
M (5" “\mze m2 ) \57) (2.39)

The eigenvectors of this matrix are species ¢/, ¢’ in the representation R’. Thus, we

matrix

find the mass spectrum on the wall at z° = ¢,
mi(¢,) =mi, mi(¢ )=ml, mi(y)=m?, (2.40)

with m% = m?(1+z). This spectrum satisfies str[M?] = 0. Our calculation will follow
closely the discussion of gauge-mediated scalar masses in this model given by Martin
[27]. It is straightforward to generalize our calculation to models of supersymmetry
breaking with nonvanishing supertrace. However, in that case, the scalar masses
induced by gauge-mediation are cutoff-dependent even in 4 dimensions [28]. Similar
divergences appear also in the 5-dimensional case.

To compute the scalar mass, we repeat the calculation of the diagrams in Figure
2.3, now assigning to the particles in the loop the mass spectrum described in the
previous paragraph. As in the previous section, the identity (2.29) can be used to
replace (k%) by k2 in the numerator of the diagrams with ® exchange. Then the
result reduces to a sum of two-loop scalar integrals, just as in the 4-dimensional case.
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Figure 2.4: The basic integral which appears in the two-loop contribution to the
scalar field mass.

To write the result precisely, define [29]

d d
dk/(dq 1 1 1 1 (2.41)

(myma|majms) = / (2m)4J (2m)e k2 +m? k2 + mdq? +md (g — k)2 + m3

to be the Euclidean (Wick-rotated) scalar two-loop integral with four propagators,
and denote Euclidean scalar integrals with additional or fewer propagators by brackets
with more or fewer labels m;. In our calculation, &% is summed over the values mn/¢;

denote the sum in (2.28) as
1 1 n+n 5 1.5
Al =32 52 4 A(KS, B) . (2.42)
The basic scalar integral shown in Figure 2.4 is then written
[(K°K° | my)] - (2.43)

Finally, though a term with k2 in the numerator can be reduced to scalar integrals, it
is more convenient to retain this factor under the integral in (2.41). By abuse of nota-

tion, we will write a term with k? in the numerator as, for example, (k2 (k3k®|m,|m;)].
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Using the notation, the scalar mass due to the diagrams of Figure 2.3 is
m3 = —g*C,(R)C(R')[k’R + 4S] , (2.44)
where

R = (K°k*|my|m,) + (K*E%|m_|m_)
+2(kE%|m|m_) + 4(k°k®|m|m)
—4(KSE®|my |m) — 4(KSE®|m_|m)
S = mi{(*Fmilmy) - (K°k°|m|m)}
—m? {(k*k*|mim) — (k°k|m..|m)}
+m? {(k°k°|m_|m_) — (k*k*|m_|m)}
—m? {(k*k*|mim) — (k°k%|m_|m)} . (2.45)

This expression is full of cancellations which reflect the fact that the answer vanishes
when the mass spectrum is supersymmetric. To evaluate this answer more explicitly,
we must perform the sums over &° and &° and then carry out the two four-dimensional
integrals.

The sums can be performed conveniently using a standard trick from finite tem-
perature field theory. Write a contour integral representation

1 1 dk® 2ei*° 1
ﬂz,,: 2V e = w1 (e

(2.46)

where the contour encloses the poles of the integrand at k% = nn/¢. Draw the contour
as a line from left to right just below the real axis and another line from right to left
just above this axis. Push the first line down and pick up the pole at k% = —ik;
push the second line up and pick up the pole at k* = ik. We find two identical

contributions which sum to L1

ksinhké

This manipulation can be performed separately on each of the propagators joining

(2.47)
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the two walls.
At the same time, the scalar integrals over the momentum ¢ can be evaluated
explicitly. Define the function b(k?, m?, m2) by

dig 1 1 1,2 2 2 2
/ Gy +mi (g - R m] ~ @maae ~ 77 L mimy) + O} (2.48)

for d = 4—¢. When we evaluate the loop integrals on the wall in (2.45), the divergent

terms cancel and we are left with differences of these scalar functions,

R — R(k*) = b(k®,m%,m2) + b(k?,m?,m?)
+2b(k?, m2,m?) + 4b(k?, m?, m?)
—4b(k?, m2, m?) — 4b(k®, m?, m?)
S = S(k*) = m2{b(k?* m2,m2) - b(k?,m?,m?)}
—m?{b(k?, m?, m?) — b(k®, m%,m?)}
+m? {b(k?, m?, m?) — b(k%, m?,m?)}
—m?{b(k?, m?, m?) — b(k%, m%,m?} . (2.49)

If we then define
P(k?) = k*R(k?) + 4S(Kk?) , (2.50)

then the combination of these two tricks brings (2.44) into the form of an integral
over k. Since this integral is spherically symmetric, we can replace d*k = 2n2dkk?
and write (2.44) as

2
m2 =2 ( ( 45; )2) C2(R)C(R) / dk— nh2 —P(K). (2.51)

The function P(k?) is elementary, and it is not difficult to work out its asymptotic
behavior for large and for small k2. We present these formulae in the Appendix. It is
relevant that P(k?) ~ k? as k% — 0, so that P(k?) is a field-strength renormalization
(30] (as the notation is meant to suggest). As k? — oo, P(k?) ~ log(k?/m?)/k2. With

this information, one can work out the asymptotic behaviors of mj.



CHAPTER 2. BROKEN SUPERSYMMETRY ON A 4-D BOUNDARY 31

For small ¢, we might expect to go back the the 4-dimensional situation. Formally,
taking £ — 0 in (2.47) turns this expression into

21 (2.52)

which is the £ = 0 term in the sum (2.46). Using the explicit asymptotic behavior
of P(k?), we can see that the integral (2.51) remains well-defined in this limit. Thus,
the manipulation is permitted and the result for mi becomes just the 4-dimensional
gauge-mediation result with the replacement

((42:)2)2 - ((T{q;;—z)zé : (2.53)

We will write out this result explicitly below. Note that g2/¢ is the effective 4-

dimensional gauge coupling obtained by simple dimensional reduction.

Another way to derive this result is to show that, for £ — 0, all terms in the sum
over k% and k® are explicitly suppressed by the factor ¢2 except for the term with
k5 = kS = 0. Again, the asymptotic behavior P(k®) ~ 1/k? is necessary to complete
this argument.

For large ¢, the hyperbolic sine in the denomination of (2.51) cuts off the integrand
for all but very small k. Thus, we can find the asymptotic behavior by replacing
P(k?) by its leading term for small k2, which is proportional to k2. This gives a result

proportional to
@ \’1
(L)L o
Working out all of the details (with the help of some formulae from the Appendix),
we find, as m{ — 0, the 4-dimensional form [27, 31]

2
m2

2 g
my = 2C(R)C(R') ((411')2) vy

z

2z
l1+z ﬂ

l1+z

-{2(1 + 1) [log(l + ) — 2Lia( )+ -;'Liz(
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Figure 2.5: Behavior of the induced supersymmetry breaking mass for scalars at
z° = 0 as a function of ¢.
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+(z & —a:)} , (2.55)

where Liy(z) is the dilogarithm, and, as mé — oo,

. 2\ 1
my = RO () 3¢

{_Ii [4+a:—2:z:2

5 = log(l+ z) — i;_x] +(z & —x)} . (2.56)

In both of these expressions, the quantity in brackets tends to z2 as £ — 0. We
see that the induced soft supersymmetry breaking mass term crosses over from the
4-dimensional behavior to a smaller functional form as ¢ becomes larger than 1/m. In
Figure 2.5, we graph the form of the mass term as a function of ¢ for the illustrative
value z = 0.3.

There is another way to understand the behavior of the scalar mass term for m#
large. If m is large, we can consider the inner loop in Figure 2.4 to contract to a point.
More precisely, because the function P(k?) is proportional to k2 when & is small, this
loop gives the pointlike operator (—V?) acting on the two propagators which run
from one wall to the other. The remaining one-loop integral may be evaluated in
Euclidean coordinate space. There is one small subtlety to note. The representation

of (2.19) in Euclidean coordinate space is

1 1
<a(x, xS)G(y’ys» T ; ([(x - y)% + (25 — yd + 2me)2)3/2
1
+P[($ -y)2+ (¥ +y5+ ng)zla/z) ) (2.57)

with m summed over all integers. When this expression is evaluated with one end at
z® = € and the other at y> = 0, we find (for P = +1)

8m2 4 (22 + (2m + 1)202]3/2 °

(a(z, £)a(0,0)) = (2.58)

Then the evaluation of mi involves the expression
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2 2
_ 4 o2
I= ,,.Z,,./ O S+ Em + )EPE .V 8t t § o ¥ 1B

(2.59)

containing two propagators which run from a point 0 on the wall at z° = 0 to a
point z on the wall at z° = ¢. By combining the two denominators with a Feynman
parameter, it is not difficult to do the integral explicitly and then sum over m and

m. The result is 3 )
I= Er_?C(3)€_4 . (2.60)

Multiplying this by the coefficient of k% in P(k?), we find again the result (2.56). This
presentation explains the physical origin of the 1/¢* behavior of the diagrams.

2.5 Casimir energy

At the same time that supersymmetry breaking on the wall at z° = ¢ induces soft
supersymmetry-breaking terms in other parts of the theory, it also creates a nonzero
vacuum energy. We are particularly interested in the part of this energy which de-
pends on {—the Casimir energy [10]—since this term will eventually form a part of
the balance which determines the physical value of ¢. In this section, we will compute
the Casimir energy due to the two mechanisms of supersymmetry breaking discussed
in the previous section. We find it interesting that these calculations run almost in
parallel to the calculations of the induced scalar mass term.

Consider first the case of a Fayet-Iliopoulos D-term on the boundary at z° = ¢.
'The coupling of this term to the bulk fields is described by the Lagrangian (2.31),
plus a term proportional to §(0) resulting from integrating out X3. Since (2.31) is
quadratic in ¢, we can integrate this field out explicitly. Using the propagator (2.33),
the coupling of ® to the boundary leads to

2
Scf/ = /d515($5 - e) . %K (_‘227&) 3 (2.61)
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Figure 2.6: Feynman diagrams contributing to the Casimir energy due to loop effects
of the supermultiplet on the wall at z° = ¢.

plus an &-independent term proportional to §(0). Thus, we find for the Casimir energy
per 4-dimensional volume,

2,.2
Ec/Vi = +% : (2.62)

If there are D-terms on both boundaries, or if the fields ¢; on the two boundaries
obtain expectation values as in (2.35), the sum of the two D terms appears in place of
k in (2.62). If the two D terms are equal and opposite, the Casimir energy vanishes.
Also, as we observed already in (2.37), the §(0) terms from integrating out X3 and
® precisely cancel. Thus, in this case, the vacuum energy remains just at zero, as
expected from the supersymmetry of the situation.

In the case in which the spectrum at z° = ¢ violates supersymmetry but there is no
induced D term, the Casimir energy must be generated by radiative corrections. The
leading contribution comes from the diagrams shown in Figure 2.6. These diagrams
involve a closed loop on the boundary at % = ¢ and a propagator from the 5-
dimensional Yang-Mills theory which winds around the compactified direction.

Though perhaps it is not completely obvious from the beginning, the structure of
the diagrams in Figure 2.6 is very similar to that of the diagrams in Figure 2.3. As
in the previous section, we will describe the calculation for the case str[M?] = 0.

In the diagrams of Figure 2.6, we have only one sum over k5. Thus, define for this

section

[B] = 2172 B(k°) . (2.63)
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Then the Casimir energy resulting from this set of diagrams can be written in terms
of Euclidean scalar two-loop integrals as
1

Ec/Vy = 5

9°dcC(R)[K*R¢ + 48] , (2.64)

where dgC(R') = trp [t*t4], and

Re = (klmylmy) + (Km_|m_) + 2(km.|m_) + 4(k%|m|m)
~4(K*|m.o|m) ~ 4(k®|m_[m)
Se = mi{(Fmslm.) = (k*|myjm)} — m? {(k|mlm) — (*|m.|m)}

mZ {(K¥m_|m_) = (k*|m_[m)} — m? { (k*|m|m) - (k*|m_|m)} (2.65)

The inner loop of each of these two-loop integrals can be evaluated explicitly, giving
the same functions R(k?), S(k?), P(k?) that we saw earlier in (2.49) and (2.50).

Again we can simplify the sum over &° using the contour trick from finite temper-
ature field theory. Write

1 rdk® 1 1

1
275,,: K2+ (k3)2 ~ J 21 2R _1k2 £ (k5)2 (2.66)

where the contour encloses the poles of the integrand at k% = wn/¢. Draw the contour
as a line from left to right just below the real axis and another line from right to left
just above this axis. Push the first line down and pick up the pole at k% = —ik. For

the contour integral on the line above the axis, replace

1 1
prr=r g st Sl 7 Sl (2.67)

In the second term, push the contour up and pick up the pole at k> = ik. These
manipulations convert (2.66) to the form

1 1 o k3
ket _1 T /-oo (2m) - (2.68)

The second term in (2.68) is independent of ¢; it represents the contribution to the
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vacuum energy of the 4-dimensional wall in an infinite 5-dimensional volume. Equiv-
alently, from the point of view of propagators in coordinate space, this term is the
contribution of the propagators that go from the wall back to the wall without wind-
ing around z°. In any event, this term does not contribute to the Casimir energy,
and we may drop it.

After these manipulations, the Casimir energy (2.64) takes the form

1

Ec/Vi=—= ( T )dGC(R') |7 dwk PG (2.69)
where P(k?) is the same field strength renormalization function that appeared in
(2.51).

As in the previous section, we can analyze the two-loop integral in the limits of
small and large ¢. Consider first the limit £ — 0. If we formally take the limit of
small ¢ in (2.69), we obtain a divergent integral

Ec/Vy~ — / k" -5 1 ogk? . (2.70)

Thus, unlike the case of mg, the contributions to the Casimir energy are dominated

by large values of k2. The estimate

/ AR g — 7 L logk? ~ zelog ie (2.71)

and the asymptotic formula for P(k?) given in the Appendix gives a precise formula
for the small ¢ behavior:

2

(4m)*

Ec/Vi= -+ ( ) deC(R) - m? log2 — (2.72)

For large ¢, the analysis can be done along the same lines as those we used for mﬁ,.
The denominator of (2.69) cuts off the integrand for all but small £2. Thus, we can
replace P(k) by its leading term as k* — 0. With this approximation, the integral is
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Figure 2.7: Behavior of the Casimir energy as a function of ¢.
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easily evaluated, and we obtain

2
Eole = —3 (i) deCRYCE)5
{3[4+z—2x

5 log(1 +z) — 4—2—] +(z & —:1:)} . (2.73)

Comparing (2.72) and (2.73), we see the same crossover that we found previously
from (2.55) to (2.56). In Figure 2.7, we graph the form of the Casimir energy as a
function of £ for the illustrative value z = 0.3.

As in the previous section, the behavior of the Casimir energy for large ¢ is studied
most easily in Euclidean coordinate space. If ¢ or m is large, the inner loop of each
two-loop diagram can be contracted to a local operator proportional to (—V?2). Then
the Casimir energy is proportional to an expression in which this operator acts on a
propagator which runs around the compact direction. More specifically, the Casimir
energy is proportional to

) 1
J= Z("V )871'2(1'2 + (m£)2)3/2 =0

m

(2.74)

where the sum over m runs over all integers except m = 0. This expression evaluates
to
J= 3 (5) . (2.75)
327 3272%
Multiplying this by the coefficient of £? in P(k?), we return to the result (2.73).
Both of the individual contributions to the Casimir energy that we found in this
section are monotonic in . We find it interesting, though, that these two contributions
have opposite signs. Thus, it is possible that, in a realistic theory, we could find
balancing contributions to the Casimir energy that stabilize the value of ¢ at a nonzero

value.



CHAPTER 2. BROKEN SUPERSYMMETRY ON A 4-D BOUNDARY 40

2.6 Horava’s supersymmetry-breaking structure

Now that we have analyzed mechanisms for supersymmetry breaking in our toy model,
it is interesting to ask whether this sheds light on the mechanism of supersymmetry
breaking in string theory proposed by Hofava [8]. We can see the connection by
making a dimensional reduction of Hofava's system from 11 to 5 dimensions, taking
the compact 6 dimensions to be a Calabi-Yau manifold. Under this reduction, the
boundary gaugino condensate becomes a 4-dimensional scalar gaugino bilinear on the
boundary. The relevant components of the 3-form gauge field in the bulk are those
that multiply the the (3,0) or (0,3) forms of the Calabi-Yau space,

CABC(zv 151 y) = c(xi xS)QABC(y) + (276)

These components form two complex 5-dimensional fields which belong to a hyper-
multiplet in the bulk. Thus, we can try to recover Hofava’'s coupling of the bulk and
boundary fields by considering the coupling of a hypermultiplet in the bulk to chiral
fields on the boundary.

We can analyze this problem using arguments similar to those in Section 2. The
five-dimensional hypermultiplet consists of a pair of complex scalars A!, a Dirac
fermion x, and a pair of complex auxiliary fields F*. Under supersymmetry they

transform as follows [24]:

6¢Ai = —ﬂe‘jzjx
dex = +\/§i’yM O A€ €T + V2F? '3
§eF' = —V2iEyMayx . (2.77)

To carry out the orbifold projection, we must consistently assign parities P to the
various fields and impose the boundary conditions (2.10). Here is a consistent set of
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assignments which gives V = 1 supersymmetry on the wall:

P=+1| P=-1
£ 33 &
At Al A? (2.78)
X XL XR
F! F! F?

As in Section 2, we project out the odd-parity states and consider the supersymmetry
on the boundary generated by &}. The transformations (2.77) specialize to

§A' = V2§ X,
dexe = V2io™0, AN} — V20, A%} + V2F'EL
SF' = V266 0mxs + V26,05 xr
505 A* = V2 Osxr . (2.79)

These transformations imply that
Se(F' — 05 A%) = V2l o™ 0n XL (2.80)

Then A!, x., (F! — 85A%) transform as the complex scalar, chiral fermion, and aux-
iliary field components of a four-dimensional N = 1 chiral multiplet.

We can use this set of fields to write a coupling of the bulk hypermultiplet to
chiral superfields on the boundary. In particular, the boundary theory might have
a superpotential which depends on the boundary chiral fields ¢; and the boundary
value of the field A'. The superpotential term then includes the boundary action

ow
__._..+..-

— 1 __ 2
£4—(F 65A)3A1

(2.81)

If we integrate out the auxiliary field F' and write the resulting action in 5 dimensions,
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we arrive at the structure

2

dW
o (2.82)

Ls = [0y A%? - §(z°) [asAzj—Z‘f + h.c.] + (8(z%))?

If we identify A with the scalar component of C4pc shown in (2.76) and (dW/dA!)
with the Ej gaugino condensate, this reproduces the perfect-square structure (2.1)
found by Hofava [6, 8].

From here, we could go on to discuss the communication of supersymmetry break-
ing. If we simply assume a fixed value of the gaugino condensate and solve for A2
as in (2.33), we find a universal gaugino mass proportional to 1/¢, as in [14, 15, 16).
This leads to conventional supergravity-mediated supersymmetry breaking scenario.
It would be very interesting to know whether there are other possibilities. In partic-
ular, it would be interesting to find a perturbative hierarchy of soft supersymmetry-
breaking terms similar to the one that we discussed in Section 4. To search for such
possibilities, it is necessary to understand the general coupling of boundary matter

fields to supergravity.

2.7 Conclusion

In this chapter, we have shown how easy it is to construct consistent couplings of five-
dimensional supermultiplets to matter multiplets on orbifold walls by analyzing the
transformation properties of the associated auxiliary fields. We applied this method to
some simple models with bulk and boundary fields and exhibited several possibilities
for the communication of supersymmetry breaking from one wall to the other. We
hope that this method will generalize to supergravity and allow a more complete
understanding of the supersymmetry breaking and its phenomenology in the Hofava-

Witten approach to unification.
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2.8 Appendix:
More about the two-loop self-energy

In this appendix, we will give some further details of the two-loop self-energy calcu-
lations discussed in Sections 3 and 4.
As we explained in (2.27), our strategy for computing the diagrams shown in

Figure 2.3 began with bringing each diagram into the form

M? = —g'Cy(R)C(R')
N(k, k5, k%, q)

g /q/kss (k2)(k? — (K®)2) (k2 — (k5)2)(q2 — m3)((g — k)? — m3) (283)

for the m,, m, appropriate to the inner loop of the diagram. We now give the
contributions of the various diagrams to the numerator polynomial N. In the following
formula, we write the contributions to NV as a sum, following the order of the diagrams
in Figure 2.3, although properly each separate term should receive the appropriate
particle masses in the denominator. The expression is given for the mass spectrum
(2.40) considered in Section 4; for the analysis of Section 3, one should set all masses

equal to zero. With this explanation,

N = 2(k- (29— k))® — 2(q* = m2 + ¢* — m?)k? — 2(2q - k)*k?
+8(¢* — m2 +¢* — m?)k?
+4(q- (q — k)k* — 2q - k(g — k) - k — m?k?)
—8k*(g- (g — k) — 2m?) + 16k%k - (g — k) + 2k +0+0.  (2.84)

If we set all masses equal to zero, this expression vanishes after the use of the ¢ & (k—
q) symmetry of the denominator. With nonzero masses, some simple rearrangements
and a Euclidean rotation bring the expression for m3 into the form (2.44).

In our analysis of (2.44), we made use of the self-energy integral b(k2, m?, m2)
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defined by (2.48). We can write b more explicitly as

b(k?, m?, m2) = /0 " dzlog (z(1 — z)k? + zm? + (1 - z)m})

(A+ B)(A+ Bg)]
= Alo
s [(A “B)(A-B)
+B;logm? + B, logm2 - 2, (2.85)
where a2
k' + 2k2(m? + m2) + (m2 — m2)?
- [Er 2t ) o = | (2.86)
and k2 2 2 k2 2 2
B, = Em+my —my : B, = k-t mp —mi ) (2.87)

2k2 2k2
From b(k? m?,m3), we can compute the combinations R(k?), S(k2), P(k?) defined
in (2.49) and (2.51). We evaluate these expressions using the mass spectrum de-
rived from (2.40). It is straightforward to work out the asymptotic behavior of these
functions for large and small values of k2. For P(k?), we find, as m2k? — 0,

92
P(k?) = k? [‘ﬁi‘x—z—?“— log(1 +2) + 1+ (z ¢ —x)} +O(kY) . (2.88)
and as m2k? — oo,
2 dm! [ , k? 2 2
Pk*) = = |® log—"? - (z°+3z+2)log(l+z)-z°+ (z & —1)
+O(k™4) . (2.89)

The computation of the Casimir energy reported in Section 5 is very similar to
the computation of mg and, in particular, uses the same auxiliary function P(k?).



Chapter 3

Emission of Gravitons into Extra

Dimensions

Recently, Arkani-Hamed, Dimopoulos, and Dvali have proposed that there are extra
compact dimensions of space, accessible to gravity but not to ordinary matter, which
could be macroscopically large. In this chapter, we derive the effective coupling be-
tween ordinary matter and higher-dimensional gravitons, and compute various cross
sections to produce extra-dimensional gravitons in particle collisions. We argue that
high-energy collider processes in which gravitons are radiated into these new dimen-
sions place significant, model-independent constraints on this picture, and we present
the constraints from anomalous single photon production at ete~ colliders and from

monojet production at hadron colliders.

3.1 Introduction

The Standard Model of strong, weak, and electromagnetic interactions has been dra-
matically successful in explaining the rates of high-energy ete~ and pp reactions and
the properties of the W and Z bosons. This great success, however, has focused
attention on the fact the Standard Model (SM) requires a number of choices for its
input parameters which are very difficult to understand. Among these are the value
of the Higgs boson mass parameter u? and the value of the cosmological constant

45
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A. If one assumes that the most fundamental scale in Nature is the Planck scale,
Mpianck = G3* = 10" GeV and writes these parameters in terms of this scale, one
finds p? ~ 10°¥ M2 ks A ~ 10711603,

‘The mystery of these small parameters has motivated many authors to consider
radical ideas for the manner in which gravity is unified with the other fundamental
interactions. The introduction of supersymmetry can lower the natural mass scale
for u? and A to 1 TeV. This ameliorates the problem of the Higgs mass but is not
nearly enough of a reduction to solve the cosmological constant problem. Many
authors have investigated whether a string theory of quantum gravity can provide
a further reduction. String theory includes the possibility of additional microscopic
space dimensions. In this context, Antoniadis [32] has proposed that Nature may
contain additional compact dimensions of size A/TeV [33].

Recently, several groups [34, 35, 36] have extended this proposal using new ideas
about the strong-coupling behavior of string theory. In this regime, string theory
may contain solitons or mirror surfaces that occupy lower-dimensional hypersurfaces,
with some species of particle restricted to these objects. One can then imagine that
the quarks, leptons, and gauge bosons of the SM live on a 4-dimensional hypersurface
inside the full space-time, while gravity lives in the full, higher-dimensional space.
Arkani-Hamed, Dimopoulos, and Dvali (ADD) [35] have argued that, in these models,
the fundamental gravitational scale can be as low as TeV energies, while the size of
the extra dimensions can be as large as a millimeter.

If indeed gravity becomes strong at TeV energies, gravitons should be radiated
at significant rates in high-energy particle collisions. In collider experiments, higher-
dimensional gravitons (G) appear as massive spin-2 neutral particles which are not
observed by collider detectors. As ADD pointed out, G radiation leads to missing-
energy signatures in which a photon or a jet is produced with no observable particle
balancing its transverse momentum.

In this chapter, we calculate the cross section for emitting a real graviton off of
the four-dimensional membrane into the extra-dimensional bulk. We begin in section
3.2 with a summary of the scenario proposed by Arkani-Hamed, Dimopoulos, and
Dvali in [35]. In section 3.3 we describe the interaction of the Standard Model (SM)
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particles with the extra-dimensional gravitons in this scenario, and in section 3.4 we
calculate the cross sections for the processes gluon + gluon — gluon + graviton and
quark + antiquark — gluon + graviton. In section 3.5 we present some expected
signals at current and future lepton and hadron colliders from the processes e*e~ —
v + (missing) and pp — jet + (missing) and briefly conclude in section 3.6. Section
3.7 contains a brief discussion of the gravity-fermion coupling used, and 3.8 gives the
expressions for center-of-mass momenta and polarizations used in calculating matrix

elements and polarizations sums.

3.2 The Large Extra Dimension Scenario

In this section we summarize the scenario of Arkani-Hamed, Dimopoulos, and Dvali
described in [35]. They begin by supposing that there are n extra spatial dimensions
compactified to a volume R™. For distances r much smaller than the compactification
scale R the gravitational potential has behavior characteristic of a (4+n)-dimensional

space:

mym 1
v~ (M;"“';) (P A), (3.1)

where Mpyqq is the fundamental scale setting the strength of the higher-dimensional
gravitational force. For large distances 7 > R the compact dimensions can be ignored
(except for their use in relating large-distance potentials to the short-distance scale
M/unq) and the potential has behavior characteristic of a 4-dimensional space:

mma

Vo)~ () 7 >R (2)

For this to agree with the familiar large-distance behavior of the potential given by:

mymso 1
V(r) (jvliz’lanck) 1‘, (33)

we must have:
MPFAR = Mpype, (3.4)
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or: 1/
n
A/Il%lanck ) R (3.5)

~1

R 7 (e
Note that for an arbitrary ratio between the fundamental scale My,,4 and the four
dimensional Planck scale Mpjgnci, the required compactification radius approaches
the fundamental length scale My,,q as the number of extra dimensions is taken to
infinity. The authors of [35] then assume there is no hierarchy between the fundamen-
tal high-energy physics scale M4 and the electroweak scale. This single scale sets
the strength of both the electroweak force and (higher-dimensional) gravity. Using
Mgyna = 1 TeV gives:

R~ 10%"2 meters. (3.6)

A model with one extra dimension (n = 1) would have a compactification scale R on
the order of the size of the solar system, leading to scaling for the potential V' ~ 1/r?
at planetary scales which is grossly excluded. However, for two extra dimensions the
compactification scale is roughly a millimeter, and direct measurements of gravity at
this scale have not yet been performed[37, 38].

In contrast to gravitational physics, SM gauge physics has been explored up to
roughly the electroweak scale with no observed deviations from the expected four-
dimensional behavior, and so matter and gauge forces must be confined to a four-
dimensional membrane with an extra-dimensional volume no larger than this scale
(which we might expect if the membrane comes from dynamics characterized by the
scale Myyng = 1 TeV). Only gravitational (and, potentially, new non-standard-
model) fields are allowed to propagate in the bulk. Although gauge and matter fields
can be localized on a membrane through nonperturbative string/M dynamics, the
authors of [35] point out that field theoretic effects can also be used to achieve such
a localization. We remain agnostic concerning the detailed dynamics confining the
SM fields to the membrane, and study the scenario in a model-independent fashion
based on an effective field theory.

Even with the confinement of the standard model particles to a four-dimensional
membrane, one still has to worry about non-observation of new physics signals at
high energies, as this new model predicts that the usual weakness of the gravitational
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coupling disappears at energies close to the electroweak scale. The authors of [35]
present an order-of-magnitude estimate of the cross section for emission of gravitons
off of the four-dimensional membrane and into the bulk. They estimate that the
effective four-dimensional cross section to produce an individual graviton should be
~ 1/MB ..« based on dimensional analysis, and reactions at an energy scale E can
produce any of the (ER)™ Kaluza-Klein excitations of the graviton with a mass below
FE, so the total cross section is roughly (ER)"/M3,,...- Using the relation of equation

3.5 makes this cross section ~ E™/MZ%.

3.3 Graviton Interactions

In this section, we determine the interactions between the SM particles and the gravi-
tons in the extra dimensions. We remain uncommitted to any particular underlying
dynamics and ignore the possibility of additional model-dependent bulk fields!. We
will also assume that the four-dimensional manifold is flat and of negligible thick-
ness and that the energies required to excite fluctuations of the four dimensional
membrane itself are larger than the energy scales under examination, so that such
fluctuations can be ignored. We will further assume that the deviation of the higher-
dimensional background metric due to the presence of the membrane is negligible.
For definiteness, we will assume that the n extra dimensions are compactified on an
n-dimensional torus of periodicity 27 R.

Coordinate invariance dictates the form of the couplings of the graviton to SM
particles on the membrane, which may be derived in the familiar manner by writing
a covariant SM Lagrangian on a manifold using the induced metric on that manifold,
and then introducing the graviton field as the difference between the full metric
and a flat-space background: gy n = nan + Ahpry (where A = 24/87G yew: for four-
dimensional graviton normalization) as is done by Sundrum in [39]. Fermion couplings
require tetrads e}, and spin connections w® consistent with the induced metric on the

M
four dimensional membrane. Although Sundrum provides a method of construction of

! These fields would presumably couple with gravitational strength and would produce additional,
model-dependent, missing-energy signatures beyond those we consider here.
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these entities in terms of explicit frame rotations along the four-dimensional manifold,
one may use the simplified strategy described appendix A of this chapter (section 3.7)
if the intrinsic curvature of the membrane is perturbatively small.

If one restricts attention to interactions which are first-order in the gravitational

coupling A, one may use the elegant coupling term:
4 A uy
Si"lt = _/d th“uTshl’ (3.7)

(where T%), is the flat-space four-dimensional stress-energy tensor of the Standard
Model). This equation may be derived in the above framework by simply writing:

S(guw) = S(Muy) + Ahyy (%ﬂ) +0()\?), (3.8)

and using the definition of the stress-energy tensor:

my 148 SM

SM = 2 30 (3.9)

(where Ssy = [ d*z\/—det(g,,)Lsn is the Standard Model action).
This leads to the following interaction Lagrangian for a graviton h,,, a gauge field

A}, and a chiral fermion :

Lint = Linysm)
- 1 .
+5hu (FuaFfaTlaﬂ = gMwFasFaen™ i )

Fh DY . plvEP

¥+ h.c.), (3.10)

where Fji, = 0,A] — 3, A5 + gf**AL A and D, = 8, ® 1 — igA2 ® t°. By inspection,
this gives the interaction vertices displayed in figure 3.1. Note that when coupling to
spin-2 gravitons h,, in the traceless gauge we can ignore the terms ~ np**.

The interaction Lagrangian of equation (3.10) provides the same coupling as in

ordinary four-dimensional gravity—the difference between the scenario we discuss and
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Vertices defined with inward momenta. All vertices should be symmetrized on
p and v or projected onto symmetric polarization states eff,,").
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Figure 3.1: Interaction vertices between Kaluza-Klein graviton modes and Standard
Model particles.
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Figure 3.2: Feynman diagrams contributing to the process gg — ¢G.

standard gravitational physics is that there is a Kaluza-Klein tower of massive spin-2
gravitons with this coupling.

The propagation of the higher-dimensional gravitons may be treated through
four-dimensional methods by summing over their Kaluza-Klein modes. In a four-
dimensional description, the sum over graviton momenta in the compact directions
becomes a sum over gravitons with Kaluza-Klein masses related to the momentum
in the n extra dimensions by m? = F{* | k?. For processes involving many such

modes, we can replace this sum with an integral:

> = R [dn
— _]_‘_ n 2\(n-2)/2 2
= SR /(m) dm

= —89—;]\/1‘("“) / (m*) "D 2dm? Gy, (3.11)

where (2, is the volume of the unit sphere in n dimensions (= 27 for n = 2).

3.4 Calculation of g9 — gG and ¢qg — gG

In this section, we calculate the cross sections for the processes gluon + gluon —
gluon + graviton and quark + antiquark — gluon + graviton in the context of the
large extra dimension scenario.

The Feynman diagrams for the process gg — gG are displayed in figure 3.2. Using
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the interaction rules from figure 3.1 and using the conditions:
P €@ = pb) . €O = k) ) = gOWe(G) = puvelO) = (3.12)

leads to the following expression for the amplitude for a gluon with 4-momentum p(®,
polarization vector ¢/ and color a and a gluon with 4-momentum p®), polarization
vector €®) and color b to scatter into a gluon with 4-momentum k), polarization
vector € and color ¢ and a graviton with 4-momentum k(©) and polarization tensor

G(G)Z

1 2 3 4
A = rgf e (Aglzwu + -Aszgwu + Afrﬂ)'ruu + Agg‘w") e(a)ae(b)ﬂe(‘:he(a)w’ (3.13)

where we have:

1 a
Asprr = = (1080 ~ BY) + 2m5p) — 2m005”) (3.14)
(=K - KO ung — kR + KOk ny, + kE0,,kL)

1 a
A = 3 (2 + 2K+ oo (—K ) (3.15)

G
(@ - k) mung, — mxsplp + 2P s, — ki 0 )

1
Agprr = = (=200 + 15y (B + k) — 2m () (3.16)

(0 - K)oy — MaxpPpl — KO0 + PP 10,0l )

'Agﬂ)wu = (_1)(1,%“),77“,’0” = naﬂnwpff‘) (3.17)

+00u80 = Moo Napp®

+("k¢(:c))rlﬂu777u - 777o77ﬂp("k‘(1c))

~P 84Ny + Ny TP

=280 + NBaTlyup?

- (-kg))nau"'w + My8Nay (-k.(,c) )
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and we use Mandlestam variables s = (p{® + p®)2, ¢t = (k(©) — p@))2 and u =
(K(6) — pla)y2,

In the center-of-mass frame we square the amplitude and average over initial colors
and polarizations and sum over final colors and polarizations using explicit formulas
for the 4—momenta and polarization vectors and tensors described in appendix B of
this chapter (section 3.8). This gives the matrix element:

Ca(adj) 1,, 5cos’ Ok? + 6.cos® Ok? + 6 cos® Om? + 9k + 2m? + m? /k?

dim(adj) 4 9s (1 — cos?6) (3’18)

where C3(adj) is the quadratic Casimir operator of the adjoint representation of the
gauge group (i.e. Cp = N for SU(N)), dim(adj) is the dimension of the adjoint
representation, k = (/s/2)(1 — m?/s) is the graviton momentum, and @ is the angle

|A]* =

between the initial and final momenta satisfying:

cos(8) = (st__:z) . (3.19)
Using: 4 !
o
dcosf  8r E3 |A|2 (3.20)

and specializing to SU(3) with a, = g%/(47) gives:

m

do 3 oGy
Toosg = T mQ/j)(l_coszo) [(3+cos 6)? <1+(—;—

3\/

—4(7 + cos* 0)— (1+ -—) )

s

+6 (9 — 2cos? § + cos’ o)('f)] . (3.21)

To compute the amplitude for g7 — gG we sum the diagrams shown in figure 3.3

and use the conditions:

k) . o) — k(G)”Gﬁg) = ,’;wefg) =0, (3.22)



CHAPTER 3. EMISSION OF GRAVITONS INTO EXTRA DIMENSIONS 55
IG cj tG c; :G CXG
a b a b a b a b

Figure 3.3: Feynman diagrams contributing to the process q§ — ¢G.

to obtain the following expression for the amplitude for a quark with 4-momentum
p'@ and color A and a quark with 4-momentum p® and color B to annihilate into a
gluon with 4-momentum (), polarization vector €(© and color ¢ and a graviton with

4-momentum k(%) and polarization tensor €(@):

Asip = Agtspu®t AL, + AD), + AD), + AW, |u@elne@m (3.23)

where we have:
1 )
(1“)‘, - _g(iqmqna—k _ lmekﬁn

_ i
—i7 - qq"n™ + £(q + Q) - g7"1"™)

1, i_p, _
A = (=570 o~ 0")
1y i —
A = (57 @ - ao")
4 —_ —| k
AL, = +28mp.

Specializing to the center-of-mass frame and using the explicit formulae for mo-
menta and polarizations from appendix B of this chapter (section 3.8), we square the
amplitude and sum over final colors and polarizations and average over and find that
the helicity violating cross sections are zero, and the remaining cross sections have
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|A(gLdr — 9G)|? = | A(qrd,, — 9G)|? = |A|? with:

A%g2 tr(te - t2) s m?
2 _ 2 m’4
|A]* = 6 No_ (d—m/a)e (1 + cos®6) (1 + ( . ) )

1 —3cos?8 + 4cos? 8\ m? m? ,
+( 1 —cos?6 )T(l-i-(?))

2
+6 cos2o(’—’;—)‘~’] , (3.24)

where Noiors is the dimension of the quark representation of the gauge group.
Using equation (3.20) and again specializing to SU(3) gives:
do 2 7ma,Gy

m2
dJosd = S=m?/5) [(1 + cos? 6) (1 + (T)4)
. (1 —3c0520+4cos“0) mT2 (1+(_"Sl_2)2)

1 — cos26

+6 c0820(ﬂs2-)2] . (3.25)

SM backgrounds may be calculated using standard four-dimensional techniques (or
computed automatically using such freely-available software as MADGRAPH [40]).

3.5 Results

In this section we present the expected collider signals due to emission of gravitons
into the extra dimensions appearing in (2]. The first signal considered is that of ete~
annihilation into an anomalous single photon recoiling against an unobserved G. This
reaction could potentially be observed at the CERN e*e~ collider LEP 2, or at a
higher-energy e*e™ collider.

The differential cross section for the reaction e; e}, — yG, considered in the center
of mass system for a G of mass m can be derived from the differential cross section

for the reaction q;Gr, — gG using:

9 a
dUeEvG = 'é'a—sda’qagc. (326)
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The same formula holds for epef; the helicity-violating cross sections are zero. These
expressions must be integrated over the phase space of equation (3.11). The cross
section then behaves as o ~ s"/2/M™*2 ~ E™/M"*? as estimated in section 3.2. Thus,
the production of anomalous single photons increases dramatically as the center-of-
mass energy is raised.

In the SM, single photon events are produced in the reaction ete~ — yu¥, which
can proceed through s-channel Z° exchange or (for the case of v,) through ¢-channel
W exchange [41]. The effect of G emission would be observable as an enhancement of
the cross section for single-y production above that of this SM source. The single-y
cross section has been measured by the LEP 2 experimental groups at /s = 183
GeV [42]. The measurements agree with the SM prediction to 6% accuracy. If we
integrate our prediction for the G signal over the kinematic region studied in these
experiments, we find, for the case n = 2, the limits R < 0.48 mm, M > 1200 GeV at
95% confidence. Limits for higher values of n are given in Table 3.1.

In Figure 3.4, we show the energy distribution of single photons recoiling against
G particles for the cases n = 2 and n = 6, for the parameter values at our limit,
compared to the single-photon distribution from the SM process. The peak in the
SM cross section results from the process in which the v recoils against an on-shell Z°
which decays invisibly. Some additional advantage can be gained, then, in applying
a cut which excludes this peak. For the kinematic region 20 < E, < 50 GeV,
|cosf,| < 0.95 and /s = 183 GeV, we find the cross section for G production:
o = 630/M*,46/M%,1.8/M® fb. for n = 2,4,6 and M in TeV.

Higher-energy studies of e*e~ annihilation will be done at a linear ete~ collider
(LC). We have already noted that higher energy alone should lead to much higher
sensitivity to G production. But the LC also offers another advantage, the possibility
of electron beam polarization, which can be used to suppress the dominant ¢-channel
W exchange piece of the SM background process. At \/s = 1 TeV, with electron
polarization P = +0.9 (right-handed), integrating over the kinematic region 50 GeV
< E, < 400 GeV, |cosé,| < 0.95, we find a SM background cross section of 82 fb
and a G signal cross section of o = 20/M*, 46/M®,55/M® pb, for n = 2,4,6 and M
in TeV. To quantify the effect of this measurement, we assume that this cross section
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do/dEy (fb/GeV)

Ey (GeV)

e*e” collisions at /s = 183 GeV with an angular cut |cosf| < 0.95. The dotted
curve is the Standard Model expectation. The solid curves show the additional cross
section expected in the model of ref. 4 with (a) n = 2, M = 1200 GeV, (b) n = 6,
M =520 GeV.

Figure 3.4: Energy spectrum of single photons recoiling against higher-dimensional
gravitons G.
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can be measured with 5% accuracy, and that the value to be found agrees with the
SM. Then the measurement would give very strong limits on R and M which are
listed in Table 3.1.

The second signal considered is that of a single jet plus missing transverse energy
(ET)—which may be visible at the Fermilab Tevatron collider. The search for this
reaction complements the search in e*e™ reactions in the familiar way, with the higher
energy available in hadron collisions compensating important losses in the definition
of the signal.

The production of jets with large Er recoiling against G particles can arise from
the parton subprocesses qf — Gg, q¢g — ¢G, g9 = qG, and gg = gG. The
polarization- and color-averaged cross sections for g¢g — ¢G and §g — §G can be
obtained from the expression for g§ — Gg of equation (3.25) by re-writing it in terms
of the Mandlestam variables s, t, and u and crossing s +» ¢. For the process gg — ¢G,
we use the polarization- and color-averaged cross section of equation (3.21).

All of these formulae must be integrated over the G mass spectrum using the
measure found in equation (3.11). The rate of monojet production can then be found
by integrating these cross sections with appropriate parton distributions.

The processes q7 — gZ°, g9 — qZ°, followed by an invisible decay of the Z°, give
an irreducible physics background to G production. We will refer to this process as the
‘SM background’, and we will estimate the observability of our signal by comparing
its cross section to that of this reaction. There are other important background
sources from mismeasured jets and W production with forward leptons, but these
backgrounds decrease sharply as the lower bound on missing E7 is increased. Unlike
the case of ete~ reactions, the detector does not measure the imbalance in longitudinal
momentum, and there is not enough kinematic information from the single observed
jet to exclude the kinematic region in which the Z° is on-shell. On the other hand,
the parton center of mass energies available at the Tevatron are higher than those
of LEP 2, and we have seen that the G signal increases rapidly with energy. It is
therefore reasonable to look for the monojet signal as an excess above the SM cross
section for on-shell Z° production.

The CDF collaboration has presented a bound on monojet production based on
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pp collisions at /s = 1.8 TeV, with a rapidity cut |y| < 2.4. The dotted curve is
the Standard Model expectation. The solid curves show the additional cross section
expected in the model of ref. 4 with (a) n = 2, M = 750 GeV, (b) n = 6, M = 610
GeV.

Figure 3.5: Spectrum of missing energy in events with one jet.

its first 4.7 pb~! of data in pp collisions at /s = 1.8 TeV [43, 44]. This analysis
searched for events with missing Er greater than 30 GeV and one jet in the rapidity
region |y| < 1.2. The result was consistent with the Z° background and can be
represented as a limit on the number of neutrinos into which the Z° decays: N, < 5.0
(95% confidence). We convert this to a limit on G production by comparing the cross
sections for the G signal and the SM process, computed in the same framework. For
simplicity, we carry out the calculations of both signal and background at the leading
order in QCD, using the CTEQ4 lowest-order (set 3) structure functions [45]. We
find a SM background cross section of 37 pb for the cuts listed above, and, for n = 2,
a signal cross section of 20 pb/M*. This implies a limit R < 1.2 mm, M > 750
GeV. Limits for higher values of n are given in Table 3.1. In Figure 3.5, we show the
missing Er spectrum of the signal and background processes.

It is advantageous to make a tighter cut on missing Er to remove the backgrounds
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Collider R/M(n=2) R/ M (n=4) R/M(n=6)
Present: LEP2 [4.7x102/1200] 1.9x10-°/730] 69 x 10-2 /520
Tevatron | 11.0 x 10~2 / 750 24x1079 /610 | 5.8x10° 12 / 610
Future: Tevatron | 3.9 x 10~ / 1300 1.4x 1077 /900 | 4.0 x 10~ 12 / 810
LC 1.2 x 10-% / 7700 | 1.2 x 10~ / 4500 | 6.5 x 10~ / 3100
LHC 3.4x 1073 /4500 | 1.9 x 10-° / 3400 | 6.1 x 10-3 / 3300

Table 3.1: Current and future sensitivities to large extra dimensions, expressed as
95% confidence limits on the size of extra dimensions R (in cm) and the effective
Planck scale M (in GeV). The assumptions of each analysis are explained in the text.

from mismeasured jets which were a problem for the CDF analysis [43]. Integrating
the signal and background rates over the region with missing Er > 60 GeV and
jet rapidity |y| < 2.4, we find a SM background cross section for Z production of
10 pb, and signal cross sections in the ratios S/B = 0.85/M*,0.15/M¢®,0.052/M?3,
for n = 2,4,6 and M in TeV. Assuming that this measurement can be performed
with 20% accuracy, and that the value to be found agrees with the SM, we find the
potential limits on R and M listed in the third line of Table 3.1.

Hadron-hadron collisions will be studied at higher energy at the CERN LHC. We
find that both the signal and the SM background processes are dominated by ¢g and
qg collisions. Repeating the analysis at the LHC energy of 14 TeV using the kinematic
cuts Er > 200 GeV, |y| < 5, we find a SM background cross section of 11 pb and
signal cross sections in the ratios S/B = 110/M*,420/M?%, 3600/M8, for n = 2,4,6
and M in TeV. With the same assumptions as before, we find the potential limits
listed in the last line of Table 3.1. It is important to note that, in the case n = 6, the
dominant parton-parton center of mass energies are comparable to the quoted limit
on M, so the effective coupling of equation (3.7) might not be appropriate for this

case.
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3.6 Conclusions

In this chapter, we have shown that high-energy collider searches for events with miss-
ing energy and transverse momentum provide a relevant, model-independent test of
theories with large extra space dimensions. Current high-energy experiments at e*e~
and pp colliders already place strong direct constraints on these theories. Higher-
energy experiments may place much stronger constraints. Or, more optimistically,
they may allow us to observe an excess of missing-energy events above the SM ex-
pectation, providing direct evidence for this remarkable extension of our conception

of the universe.

3.7 Appendix A:
Fermion Couplings

Fermion couplings to the gravitational field derive from the kinetic term:

£~ iptefo® (@, + swibou)y, (3.27)

and thus require tetrads e} and spin connections w,‘i" consistent with the induced
metric on the four-dimensional membrane. The tetrad must satisfy:

ezeznab = Guvs (3.28)

which may be related to the graviton wave-function h,, by a perturbative solution in
the gravitational coupling A. For Euclidean signatures the consistency condition of
equation (3.28) is the matrix equation e’ - e = g, and with the gauge choice e’ = e?
(i.e. €T = e ), this consistency condition becomes e - e = g and has the following

solution to arbitrary order in A:

ece = g=1+)h
2
e = VI+Ahsl+g-h—%—h-h+... (3.29)
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where the matrix square root is defined by its Taylor expansion. To first order in A,
we may simply use: .
€ap = Tap + 5/\11,,,,. (3.30)
The spin connection may be derived from the tetrad:
a.b_lpu[a b] lpu-rzr[ab] a d
w, = 397¢ B[“e,,] + Zg g"’eye; Qae,]eunad

A
= —Eal"hf} + O(N\?). (3.31)

3.8 Appendix B:

Center-of-mass Momenta and Polarizations

For both gg — ¢G and qg — Gg we use the geometry displayed in figure 3.6 and the
following expressions for the momenta and final-state particle polarizations:

1 ( 1
o = 8 sin(f) ) = 3 — sin(6)
2 0 2 0 ’
cos(f) \ — cos(6)
1 ( 0
0 1
k) =k ’ () _ 1 :
0 € Vi Fi
-1 \ 0
e +1 0 0 0 0
0 0 1 +i 0
kG =k ., &9 =1 :
0 T2 4 1 0
1 0 0 0 0
0 1 +2 0

@_ x|l 0 0 1+ m2/k? |
SR 0 0 +iy/1 4+ m2/k?
0 1+m2/k? =i\/1+m2/k? 0
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Figure 3.6: Center-of-mass reaction geometry.

—2k%/m? 0 0 -2k%/m?/1+m?/k?
0 10
(G) 1
= 3.32
0 TVE 0 0 1 0 (3.32)
—2k?/m?\/1+m2/k?2 0 0 —2(1 + k*/m?)
For gg — gG we use initial-state particle polarizations:
0 0
@ _ 1 cos(0) @ _ . | cos(6)
€ = 7-2- +i ’ €L = 75' ;2 y (333)
—sin(6) — sin(0)
and for gg — Gg we use initial-state particle polarizations:
@ _ 1/2 c05(9/2)) @ 1/2 (—sin(0/2))
Y=gt (v3) (sin(0/2) Un=-4 (V5) cos(8/2) )’
) 12 [~ cos(0/2) ) u® 1/2 ( —sin(6/2) )
= ’ - = . 3.34
Un=1t (vVs) ( —sin(8/2) h=-3 (vs) cos(6/2) (334



Chapter 4

Yukawa Hierarchies From
Displaced Fermions

Here we explore Arkani-Hamed and Schmaltz’s mechanism for generating hierarchies
among Yukawa couplings through the relative displacement of the locations of the
standard model fields within a four-dimensional membrane in a higher-dimensional
space. We find only one configuration of displacements consistent with experiment,
with a prediction for the strange quark mass mM5(2 GeV') & (1.19) x (Vi Vip/Vius) /2 x
mMS (my) ~ 120 MeV.

4.1 Introduction

The parameters of the standard model contain a mystery: why do the Yukawa cou-
plings vary over so many orders of magnitude? The up quark Yukawa coupling is
of order unity, which we would naively expect, but the other couplings are strewn
randomly over several orders of magnitude below this. Why are most matter particles
so light?

Traditional explanations of this Yukawa hierarchy invoke new symmetries, but
in [47] Arkani-Hamed and Schmaltz suggested an explanation which operates in the
absence of any special symmetries. They suggest that the hierarchies present in the
Yukawa couplings of the standard model can be explained as a result of the slight

65
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displacement of the standard model field wavefunctions inside a four-dimensional
domain wall in a higher-dimensional space. The effective four-dimensional Yukawa is
a product of the fundamental higher-dimensional Yukawa coupling and the overlap of
the field wavefunctions. If the wavefunctions are highly peaked, a small relative shift
between wavefunctions leads to a large suppression of the effective Yukawa through
the smallness of the overlap of the wavefunctions. Even with a single O(1) higher-
dimensional Yukawa coupling, one could produce Yukawa hierarchies through the
relative displacements of the wavefunction peaks.

They provide a natural, field-theoretic mechanism for producing such displace-
ments, and demonstrate how it can lead to the appearance of a small Yukawa coupling,
but their discussion is very general, which raises the question of whether a realistic
model using their mechanism could actually be constructed, or whether their are hid-
den constraints and relations among the masses and mixing angles of the standard
model that preclude their generation from a set of displaced wavefunctions.

In this chapter, we seek to address this question. We find that while it is easy
to arrange two- (or higher) dimensional arrays of wavefunctions which reproduce the
parameters of the standard model, it is difficult (but not impossible!) to do so in
a minimal one-dimensional version; we find essentially one possible configuration of
wavefunctions, and out of the constraints on this configuration we find a definite
prediction, which may be confirmed or falsified by more accurate determinations of
the strange quark mass.

In section 4.2, we summarize the mechanism of {47}, and in section 4.3 we summa-
rize the outline of a model suggested in that paper. In section 4.4 we demonstrate the
mechanism on the simple case of the lepton sector, and in section 4.5 we outline the
challenges present when trying to model the quark sector. In section 4.6 we describe
our efforts to find a set of locations for the quark wavefunctions, and in section 4.7
we analyze the (essentially) unique set, which leads to the prediction for the strange
quark mass m, = (1.19) x my(VypVes/Vis)t/? =~ 120 MeV. Section 4.8 presents a
complete landscape of wavefunctions, with the separation of the quark and lepton
wavefunctions chosen to safely suppress proton decay, and we briefly conclude in sec-
tion 4.9. The first appendix to this chapter (section 4.10) contains a derivation of the
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form of the zero mode for a minimal five-dimensional spinor coupled to a scalar with
a domain wall profile expectation value. The second appendix to this chapter (section
4.11) contains the experimentally allowed masses and mixings we used, as well as the
renormalization multipliers used to evaluate those parameters at a common scale.

4.2 Producing Hierarchies With Exponentially
Small Overlaps

In this section, we summarize the mechanism of [47] for producing hierarchies between
mass matrix elements. We start by considering a theory in which the standard model
fermions are trapped in a four-dimensional membrane in a five-dimensional space.
Although non-perturbative effects in string/M theory can be used to achieve such
localizations, one can also study models in which the localization occurs in the context
of an effective field theory.

One concrete field-theory method of achieving such a localization is to couple
a massless five-dimensional fermion ¥ to a five-dimensional scalar field ® through
a Yukawa coupling term ~ [d°z®VPW¥ in the Lagrangian, and then to include an
effective potential for ® with two or more isolated vacua (such as a & potential), so
that it attains a position-dependent vacuum expectation value with a domain-wall
profile in the extra dimension, interpolating between regions with different choices of
vacuum (see figure 4.1).

The fermion then acquires a zero-energy state localized near the zero-crossing of ®.
Heuristically, one may think of the Yukawa coupling to the position-dependent scalar
expectation value as giving the fermion a position-dependent mass which greatly sup-
presses field fluctuations far from the domain wall at z5 = 0 while leaving fluctuations
at the origin massless. Although a single minimal spinor in five-dimensional space de-
composes into a left-right mirror pair of chiral fermions in four-dimensional language,
only one chirality zero-energy state is trapped on the wall.

In the first appendix of this chapter (section 4.10) we derive the zero mode solution

in the approximation in which the scalar field profile is a linear function of the extra
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— scalar expectation <P>

------ fermion wavefunction ‘¥

Figure 4.1: A chiral fermion trapped on a domain wall.

dimension ® = 2u2z5 (which is valid for points close to the center of the domain wall
pzs < L) and find that zero mode solutions for the fermions have Gaussian profiles

in the extra dimension centered on the zero of ®(zs):
‘I’(I) = A e—#2$52 X w(z‘o, I, x27x3)7 (401)

where 1 is a canonically normalized massless left-handed four-dimensional fermion
field, A = p'/?(7/2)~'/% is a normalization constant, and y is related to the slope of
the scalar field profile by y? = 95(®)/2. Higher modes, which come in mirror pairs,
have minimum energy = u.

In [47], it was pointed out that adding a five-dimensional fermion mass term
[ A5z MUV to the above system acts like an effective shift of the scalar field ® —
® + M as far as the fermion is concerned, which (in the approximation in which
the scalar field profile is linear) leads to an effective shift of the location where the
scalar has a zero expectation value, i.e., a shift in the effective location of the domain
wall as seen by the fermion (see figure 4.2) so that it ends up localized around ¢; =
—M/2u2. If different fermions have different masses M;, they each end up localized
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Figure 4.2: A mass term shifts the location of the domain wall.

around different locations ¢(;5 = —M;/2u2, each fermion being centered on a different
“effective” zero of the same scalar field.

Assuming a generic five-dimensional Yukawa coupling between two fermions and
a Higgs scalar field H (assumed for simplicity to have a constant profile in the extra
dimension) leads, upon substitution of the zero mode solution from equation (4.1)
and integration over the extra dimension, to a four dimensional coupling modulated

by the mutual overlap of the fermion wavefunctions:

Lyukawa = / d°z kHU, ¥, (4.2)
= / &z kH (A e300y, ) (4 emwiles-tay,) (4.3)
= /d“a: (/ dzs kA e~HEs=0)" 4 e"‘z(zs“"—')z).ertﬁg (4.4)
- / diz(e= 3@~ ) Hypy g, (4.5)

/ d*TAH P e, (4.6)
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where the effective four-dimensional Yukawa coupling:
A= -k’ (4.7)

depends on the mutual overlap of the zero modes of the fermions through the relative
displacement of their peaks |¢; — €;|. If the fermions are more than a few Gaussian
widths ~! from each other then an order-one coefficient for the five-dimensional
Yukawa coupling x results in an exponentially small four-dimensional Yukawa cou-
pling A. Setting the Higgs field to its expectation value and generalizing to many

generations gives a mass matrix element:

my = ((H) k) e"s#°-4)

= pe it (4.8)

where p = (H) «. In this paper we seek to obtain the hierarchical pattern of masses
and mixings in the standard model as a result of a particular configuration of wave-
function locations with relative separations of a few Gaussian widths u~!.

It is useful to invert equation (4.8) to find the relative displacements associated

with a mass matrix:

|6 — ] = p~'y/-2log(mi;/p) = p(my;). (4.9)

To produce a particular mass matrix m;;, we need to find a set of wavefunction
locations which have relative displacements |¢; — ;| related to the mass matrix by
the above formula. The function u‘l\/ —2 log(m;;/p) appears often in expressions to

follow; we refer to this function as p(m;;).

4.3 The Model

We now summarize the model outlined in [47]. By the standard model gauge symme-
try, all fields in a given gauge multiplet are assumed to have the same effective five
dimensional fermion mass M; and thus are assumed to have wavefunctions peaked at
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the same location in the extra dimension. This means that there are fifteen wavefunc-
tion locations g;, u;, d;, l; and e; for the left-handed standard model fields Qi Us DS L;
and Ef (with ¢ = 1,2,3). The fermions are all taken to have equal couplings to the
domain wall scalar ® (meaning their Gaussian wavefunctions all have equal widths),
and so as not to add extra complication, we take the Higgs field H to have an expec-
tation value which is constant throughout the domain wall, and we take the effective
five dimensional Yukawa couplings between the fermions and the Higgs to have a
single magnitude. Although these restrictions could be relaxed, the structure already
present proves sufficient to generate the standard model masses and mixings. We
defer a discussion of the CP violating complex phase of the CKM matrix to later
work, and for the present time study only real Yukawa matrices.

The analysis of Arkani-Hamed and Schmaltz constrains the scales present in the
model. For the description to make sense, we need the wall thickness L to be larger
than the Gaussian width x~!, which in turn should be larger than the length scale
of the ultraviolet cutoff 1/M,. For the four dimensional effective top Yukawa cou-
pling A to be perturbative at M, we must further constrain NA?/16m? < 1 where
N = (M.L)/2r is the number of Kaluza-Klein modes below the cutoff. If a field the-
ory description is to apply throughout the wall, we must have ®(L/2) ~ u?L/2 < M,.
And finally, the width of the wall should not be much larger than a TeV-! for con-
sistency with the conventional physics observed at colliders. To summarize:

L' < u<M, (4.10)
M./L7' < 3273/A% ~ 1000 (4.11)
w/L' < \2M. /L'~ 44 (4.12)

L™ > 0O(1) TeVv. (4.13)

In equation (4.8) the mass matrix element is bounded from above by p, with the
maximal value achieved when the fermion wavefunctions are localized around the
same point. This means that to generate the top mass from a single matrix element
the condition p > m, is required. On the other hand, naturalness and perturbativity

of couplings lead us to want p as small as possible. For concreteness, we choose
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p to be 1.5 m;. Our model works for any p > m,, with larger p values requiring
greater suppressions from the overlaps, and thus requiring larger separations between
wavefunctions. The mass prediction of equation (4.43) is independent of p, since the
wavefunction positions are always chosen to reproduce the same mass matrices.
Before trying to reproduce the masses of the standard model, we first run the
masses of the standard model to a common scale m, using the scaling factors found
in the appendix (the running of the CKM elements to that scale is small compared

to the experimental uncertainty in their magnitudes).

4.4 Lepton sector of the model

We begin our efforts to reproduce the standard model masses and mixings by finding
a set of wavefunction positions for the L; and E¥ fields which reproduce the observed
charged lepton masses. This is easy, since we are only trying to fit three parameters
and we may adjust five parameters (six locations, minus one freedom to shift the
locations by an overall displacement since only relative locations matter in equation
(4.8) ). Assuming a simple diagonal texture for the lepton mass matrix:

me O 0
me=| 0 m, 0], (4.14)
0 0 m,

leads, using equation (4.9) to a matrix of relative distances:

5.1275 (far) (far)
i —ejl =p~'| (far) 3.9475 (far) |. (4.15)
(far) (far) 3.1498

We have three constraints on the locations, with the only other constraints being
that the relative displacements indicated by ( far) be great enough to lead to negligible
off-diagonal matrix elements. In fact, it turns out that little care is necessary to insure
that the off-diagonal elements are negligible; one need only insure that, for a given L
field, the closest E* field is roughly one width closer than the second-closest E¢ field.
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It proves to be a general property of this model, due to the exponential in equation
(4.8), that if one wavefunction is near two others and the two others are not the same
distance away then the overlap with the farther one will often be negligible compared
to the overlap with the closer one. In other words, it is easy to generate elements of
the Yukawa matrix that are effectively zero.

One possible set of locations for the lepton fields is:

11.075 ez + p~ ' + p(m,)
L = p'] 10 | = Ii +u! (4.16)
0.0 0
5.9475 I, — p(m,)
e = pu~t| 49475 [ = | L +p(m,) | .. (4.17)
—3.1498 l3 — p(m,)

This configuration is depicted graphically in figure 4.3. This is by no means the only
set of wavefunction locations that reproduce the e, u, and 7 masses. For instance, the
mass spectrum is essentially unchanged if one moves the L; further apart while keeping
each Ef wavefunction the same distance from its partner L; (i.e. replacing the !
with a larger distance in equations (4.16) and (4.17). Also, one can consider textures
differing from that of equation (4.14)—since lepton mixing angles are unobservable,
all that is necessary is that the eigenvalues of the mass matrix equal the lepton masses.
Different textures would lead to different sets of wavefunction locations.

4.5 Quark sector of the model

We now outline the challenges present when trying to model the quark sector. It is
more difficult than the lepton sector because one has to fit nine observables (six masses
and three mixing angles) by adjusting eight parameters (the nine locations of the Q;,
Uf, and Df, minus one freedom to shift the locations by an overall displacement).
In fact, equation (4.8) determines the mass matrices m, and my. To obtain the
physical masses and CKM elements from the mass matrices we must perform unitary
redefinitions of the Q(;=y1/2)i, Q(r=-1/2)i, U and Df fields to a basis where the mass
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L wavefunction
E wavefunction ------
‘cR u R eR eL
l. 'l L L 1 1 .;l 'l 'l l A Il 'S
-5 5 10

In this and following diagrams, the fields, when possible, have been labeled by their
more common names, such as E\ = eg, Ey = ug, E3 = 7p, etc.

Figure 4.3: The locations of the lepton wavefunctions.

matrices are diagonal. The masses can be read off the diagonal entries, and the CKM

matrix appears in the weak interaction terms as a result of the mismatch between the

redefinitions of the isospin-up and isospin-down components of the quark doublets.
A useful method of computing the parameters is to calculate[48]:

(mi 0 0 \
mm,=U,| 0 m2 o0 [U} (4.18)
\0 0 m})
(m?, 0 0)
mgmh=Us| 0 m?2 o |U} (4.19)
\0 0 m)
VekMm = ULUd. (4.20)

The eigenvalues of the hermitian squares of the up(down) mass matrices give the
squares of the masses of the up(down) type quarks, and the products of the eigen-
vectors of the hermitian square of the up mass matrix with the eigenvectors of the
hermitian square of the down mass matrix give the CKM matrix elements. Ignoring
the CP violating complex phase, it is sufficient to match the magnitudes of the three

components of the CKM matrix above the diagonal to match the entire matrix.
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However, we seek to do more than simply reproduce the standard model masses
and mixing angles—we seek to reproduce the hierarchies present in a natural way,
as a result of the exponential in equation (4.8). This excludes certain mass matrix
textures from consideration.

For example, consider the mass matrices:

00 S5
( ) and ( ) . (4.21)
01 5 5

Both yield a spectrum with a hierarchy (in fact, they each yield a spectrum containing
one massless and one massive particle) but in the first matrix the hierarchy is a result
of the hierarchy between the last element and all the other elements, which equation
(4.8) easily produces, while in the second matrix the hierarchy is a result of a delicate
cancellation between all the matrix elements, which would be exponentially fine-tuned
if these elements came from equation (4.8). Although these fine tunings could possibly
be explained by adding further symmetries, our philosophy is to seek a set of generic-
looking positions which lead to small masses and mixings as a result of small numbers
coming from the exponential in (4.8). We only allow small numbers to come from
the product of small numbers, but not from a cancellation or sum. One might be
tempted to allow cancellations or sums from numbers which are of the same order-of-
magnitude as the quantity they cancel or sum to produce, since it does not seem like
fine-tuning to have O(€") £ O(e") = O(e™), but we avoid doing this here because in
this model it would usually involve an unexplained coincidence—generically any two
elements of the mass matrix resulting from equation (4.8) have vastly different orders
of magnitude and it takes a strange coincidence or a fine tuning for two elements to
have an O(1) ratio. An exception to this is the third generation: the masses of the
top and bottom approach the upper-bound scale p, and as we approach this scale
such coincidences become less fine-tuned!, so we allow models which produce a mass
parameter ~ m, or ~ my through the sum or difference of two terms of roughly that
order of magnitude. We first consider the case where m, comes from a single mass

!The fine tuning 8m;;/3¢; — 0 as |¢; — ¢;| — 0, which happens when m;; — p. For |£; — ¢;]
larger than a few widths z~!, that is, for m;; below the mass scale of the third generation, 9m;;/9¢;
grows rapidly.
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matrix element and m, also comes from a (different) single matrix element (we will
later need to relax the constraint on my).
A simple mass matrix texture appropriate to our philosophy is:

My 0 0

m, = 0 me O (4.22)
\0 0 m,
[Ma MmsVis mpVi mg 0 O

mg = 0 mg m,,Vcb ~ VCKM . 0 mg 0 y (4.23)
\ 0 0 my 0 0 m

in which each small mass and mixing arises directly from the exponential suppression
of equation (4.8).

We now try to construct these matrices from the model. Translating the matrices
from equations (4.22) and (4.23) into a matrix of constrained relative distances using

equation (4.9) gives:

4.8701 (far) (far)
lgi —uj| = w™'| (far) 3.4840 (far) (4.24)
\ (far) (far) .90052
(4.7416 4.4278 4.5319
lgi — d;] U1 (far) 4.0715 3.9378 |. (4.25)
\ (far) (far) 3.0029

I
T

These constraints can easily be satisfied in two-dimensional extensions of the current
model involving string defects in place of domain walls (see figure 4.4). Unfortunately,
the configuration cannot be collapsed down to one dimension without bringing some
wavefunctions too close to preserve the smallness of the “zero” elements of the texture.

A similar texture can be found by taking the down mass matrix diagonal and

using:

My MmVus my(l — Vi) m, 0 0
m,=( 0 m mV ~Vigm-| 0 me 0|, (4.26)
0 0 m, 0 0 m;
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(The lines represent constrained distances between wavefunction locations.)

Figure 4.4: A possible set of locations for quark wavefunctions in a model with two
extra dimensions.
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and, at the same level of approximation, one can use textures where two of the Vekm
elements come from one mass matrix and one comes from the other. The textures
can be further extended by allowing the small masses to result from products of two
small mass matrix entries by generalizing the observation that the 2 x 2 mass matrix:

0 b
(c D), (4.27)

with b,c < D has masses D and bc/D. For instance, the mass matrix:

0 msVus meub
myg = md/Vus m, mpVes | (4'28)
0 0 my

leads to a down quark mass my.

4.6 Searching Parameter Space

In this section we describe our efforts to find a set of locations for the quark wave-
functions. The textures described in section 4.5 (where each mixing parameter comes
from a nonzero above-diagonal element in either the up mass matrix or the down
mass matrix, and the masses come from either a diagonal element or a product of a
below-diagonal element and an above-diagonal mixing term) were searched analyti-
cally with no success. The closest match allowed one to fit all the masses and two of
the mixings by hand, with all the “zero” elements of the texture being of negligible
magnitude. Fitting these parameters determined all the wavefunction positions, and
thus predicted the remaining mixing (parameterized by V,;) which was found to be
many orders of magnitude too small. We then resorted to numerical methods, and
also relaxed our assumptions to allow for m, to result from the contributions of two
or more elements of roughly equal magnitude (and later extended this relaxation to
mp).

We implemented a brute-force scan over the parameter space, which yielded a

solution with two mass matrix elements of magnitude m; described in section 4.7
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below.

4.7 Analysis of Solution

We now describe the configuration of quark wavefunction locations which was found
to produce agreement with the observed masses and mixings of the standard model.

The configuration:

(—7.6057\ dy — p(m,V,,/cos(8))

@ = p'| 69522 | = | dj+ p(myVy/cos(6)) (4.29)
\ 0.0 \ 0
{—2.7357\ (ql + p(my,)

u; = p~'| 10.4362 ¢z + p(m,) (4.30)
\ 09012 ) \ g3+ p(my)

(11.3682 [ g2 +p(ma/V.s)

di = p'] —3.2250 g3 — p(mgsin(8)) |, (4.31)
\ 3.0511 ) \ g3 + p(macos(8))

Q

Q

was found to produce mass matrices:2

( 1.7630 5.1637 x 107% 4.8087 x 10~!!

m, = | 1.0365x 10-15 576.06 2.7882 x 1073 | MeV  (4.32)
\ 5902.8 5.5689 x 10~19 165900
( m, 0 0
~ |0 m 0], (4.33)
\0 0 m
and:
1.6660 x 10~73 16.947 5.4422 x 10~20
my = 14.510 8.0344 x 1018 123.42 MeV  (4.34)
2.1526 x 10~ 1373.2 2370.2

2The element my(1,3) = 5902.8 M eV is negligible because it is in the same row as the much larger
top mass, and can be removed by a small 1-3 rotation redefining the U fields.
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Figure 4.5: The locations of the quark wavefunctions.

0 ms Vs /cos(6) 0
~ ma/Vus 0 myVes/cos(f) | . (4.35)
0 mpsin(6) mpcos(6)

which, using equations (4.18) - (4.20) and running using the scaling parameters in
the appendix, gives masses:

my = 3.24 MeV mqg = 6.01 MeV
m, = 1250. MeV ms = 120 MeV (4.36)
m, = 166000 MeV  my = 4250 MeV

and CKM matrix elements:

0.9755 0.2200 0.0031
Vekm = | 0.2197 0.9748 0.0390 |, (4.37)
0.0116 0.0373 0.9992

which are consistent with experiment. The configuration is depicted graphically in
figure 4.5.

The down mass matrix texture of equation (4.35) differs from the example texture
of equation (4.28) only by a 2-3 rotation by # re-defining the D¢ fields, given that
a certain additional relation among the entries holds. The rotation on the Df fields
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transforms the down mass matrix from equation (4.35) as:

0 msVis ms Vs sin(8)/cos(0)
my = my = | ma/Vys mpVy sin(8)/cos(6) myVey y o (4.38)
0 0 myp

which agrees with the texture of equation (4.28) if we can make:

msVys sin(8)/cos(8) = mpVi, (4.39)
myVe sin(f)/cos(8) = my,. (4.40)

We can choose @ so that one of the equations is satisfied (for example, we could
choose tan(0) = m,/(myVz) to satisfy equation (4.40) ). If one equation is satisfied,
the other will be as well if the relation:

my Vs /M Vys = sin(8) /cos(8) = m,/mpVy, (4.41)

is satisfied. As the mass of the strange quark is the most uncertain of the quantities

in equation (4.41), we re-write this relation as:
my = (1/ubvcb/‘/us)l/2 X My, (442)

which holds at the common scale m,. Running the masses down to their physical

scales using the factors in the appendix gives:
mM5(2 GeV') = (1.19) X (Vi Vis/Vis) /2 x mI3 (my) = 120 MeV. (4.43)

The relation of equation (4.43) is consistent with experiment, and represents the
“prediction” present in this model which allows it to fit nine observables with eight
model parameters.

There are also seven other configurations giving the same masses and mixings
which result from the fact that, for all three i, moving the Uf fields to the opposite
side of its partner quark doublet Q; while keeping their relative distance fixed leaves
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Figure 4.6: The constrained distances between the quark wavefunctions.

the diagonal elements of m, unchanged while not carrying the Uf so close to the
other quark doublets Q,.; that they create large off-diagonal elements in m,. These
solutions are described by changing the + signs to — signs in equation (4.30). As these
other configurations produce the same mass matrices, they yield the same prediction
for the strange mass of equation (4.43).

No other such distance preserving re-arrangements to the configuration can be
made without bringing otherwise distant fields too close and thus creating large un-
wanted mass matrix elements which destroy the predictions above. The constrained
distances between the wavefunction locations are illustrated in figure 4.6.

4.8 The Complete Landscape

We now present a portrait of the complete wavefunction landscape. The final con-
straint for including both the lepton and quark wavefunctions together is to separate
the leptons and quarks sufficiently to suppress proton decay. The analysis of [47]
shows that a separation distance ~ 10 x u~! between the nearest quark and lepton
fields is sufficient. Putting together the configurations found in section 4.4 and section
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Figure 4.7: The locations of all the wavefunctions.

4.7 gives us one possible configuration:

~7.6057 ~2.7357 11.3682
g=p" 69522 |, wi=p'| 104362 |, & =p'|-3.2250],
0.0 0.9012 3.0511
35.593 30.465
=p'| 25518 |, e =p"'] 29466 |, (4.44)
24.5184 21.368

which is depicted graphically in figure 4.7. This requires a wall thickness L ~ 44
which is just within the boundary of applicability of our treatment as defined by
equations (4.10)-(4.13). The analysis in [47] is for a theory with a cut-off scale M, ~
1 TeV. Higher cut-off scales allow for smaller lepton-quark separations, and at a scale
M, ~ 10'3 TeV the leptons and quarks do not need to be separated at all.

4.9 Conclusion

It is pleasing to discover that Arkani-Hamed and Schmaltz’s solution to the Yukawa
hierarchy problem can be made concrete, and that the masses and mixings of the
standard model, while highly constraining, do not have any hidden relations that
prevent their generation from a configuration of wavefunction displacements. It is
also gratifying that the minimal model described contains a prediction which may be
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falsified or supported by future experimental data.

4.10 Appendix A:
Derivation of the Zero Mode

In this appendix we demonstrate that a minimal five-dimensional spinor coupled to a
scalar field with a generic domain-wall expectation value profile in the fifth dimension
leads to a single chiral fermion zero mode localized at the zero crossing of the scalar
field. We show that if the scalar profile is linear, the zero mode has a Gaussian profile,
with the higher modes having the spectrum and profile associated with harmonic
oscillator wave-functions.

The five-dimensional action:

S = / &z Wiy, + ®(zs)]¥, (4.45)
can be decomposed into four-dimensional terms:
S = / d'z / dzs T[iv"0, + iv°0s + ®(zs)] V. (4.46)
In chiral spinor notation, this is:

9,0 ~05+ @(xs)] : [w”] . (447)

B togtt.
s_/d“z/dms [¥1 vk] [+65+‘I>(15) i0,0% ¥r

We can split the spinors into a 4-dimensional spinor part ¥ multiplied by an extra-

dimensional profile (with no spin indices) (:

[11/1,(:') (zu)F (2s5) ] (4.48)

U(zm) =Y Yre) (Tu)(F(zs)

i

and integrate over z5 to get:

S = / &'z} ) [iT,0,]¥1(0) +¢}z(0)[iduau]¢ﬂ(0)
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+2 W [inu0 — mi W), (4.49)

where the m; and CiL’R are chosen such that:

(=85 + ®(xs))(Hxs) = miCH(zs) (4.50)
(+05 + ®(xs))¢(z5) = miCf(zs), (4.51)
and we have defined: breo ()
W(z,) = | O ] . 4.52
(Zu) ) [ Yreo (2.) (4.52)
From equations (4.50) and (4.51) we find zero modes:
(=85 + ®(z5))¢F(zs) = 0 (4.53)
(+05 + ®(z5))¢y (z5) = 0, (4.54)
with solutions:
Ezs) = AReJo" Pus)dus (4.55)
F(zs) = AbeJo® otusidns (4.56)

where the A are normalization constants chosen to make [dz3¢*¢ = 1. In the ap-

proximation ®(z5) = 2u2zs this is:

(G(zs) = Aetw'= (4.57)
Cilzs) = Ae '3, (4.58)

so the left-handed solution (¥ (zs) is a Gaussian and the right-handed solution C&(zs)
is non-normalizable—only the left-handed solution is physical. By inspection of equa-
tions (4.55) and (4.56) we see that this is a generic feature of any function ®(zs) that
goes from a finite negative asymptotic value to a finite positive asymptotic value with
one zero crossing. If the Yukawa coupling were multiplied by —1 or if the scalar
profile went from positive to negative, the right-handed solution would have been the
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physical solution and the left-handed solution would have been non-normalizable.

If the scalar expectation value dipped back through zero, as in a configuration of
two domain walls coming from a kink/antikink profile, there would be a mirror zero-
energy chiral fermion stuck on the other wall. In the limit that the second domain
wall (and its mirror fermion) are infinitely far away, we recover the case discussed
above.

To examine the massive spectrum, we operate on equation (4.50) with (+3s +
®(zs5)) and equation (4.51) with (—35 + ®(z5)) and use ®(z5) = 2u?z;5 to obtain:

(=83 + (2p%z5)? + 20°)GF(2s) = mi¢f(xs) (4.59)
(03 + (2u’zs)® — 2u®)¢f (zs) = mi¢K(zs). (4.60)
(4.61)

Recognizing these as harmonic oscillator Schrédinger equations for a particle with
mass h?/2, characteristic angular frequency wg = 4u2/h and ground state energy
+242, we can immediately write down the solution:

m2: = 44°n (n=0,1,2,3,..) (4.62)

1 - 2
o) = Calas) = (F=Glas) = = (CRE M Bnchiay). (463)

In this framework we can see the chirality of the zero mode by noting that the ground
state energy shift term +2u? of the Schrédinger equation shifts the eigenvalue tower
from the usual ~ 1/2,3/2,5/2... down to ~ 0, 1,2... for the left handed modes and
up to ~ 1,2, 3... for the right handed modes.
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4.11 Appendix B:

Standard Model Parameters

For the experimentally allowed values of the standard model parameters, we used[49)]:

My
myq

ms

mu/ mq

(my + md)/2 =

(ms — (my + ma)/2)/(mg — my,)

1.5t0 5 MeV
3to9 MeV
60 to 170 MeV

0.20 to 0.70
2to 6 MeV
34 to 51

1100 to 1400 MeV
4100 to 4400 MeV
166000 + 5000 MeV

0.217 to 0.224
0.0018 to 0.0045
0.036 to 0.042

0.5110 MeV
105.7MeV
1777 MeV,

(4.64)

where the quark masses are in the M S renormalization scheme. The up, down, and
strange masses are evaluated at a scale of 2 GeV', while the other quark masses are
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evaluated at a scale equal to their M'S mass. The lepton masses are pole masses.
To run the quark masses to the common scale m,, we used the three-loop QCD

and one-loop QED scaling factors[50]:

U Nd s e b Us ( 4. 65)
1.84 | 1.84 | 1.84 | 2.17 | 1.55 | 1.00

where 7; = m;(m;)/mi(m,) for i = ¢, b,t and 7; = m;(2 GeV)/m;(m,) for i = u,d, s.
The lepton pole masses were related to their M'S masses evaluated at m, using the

relation L 3 .
mPole = mMS(y) (1 + % [1 + Zlog(%)]) (4.66)
to give scaling factors
11.7(;5 17.7(‘)‘3 1?(;2 (467)

where n; = mP*'*(m;) /mMS(m,).
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