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ABSTRACT

We solve two problems in computational geometry. The first is to
characterize the behavior of the nearest neighbor search algorithm based
on the k-d tree data structure. The second isto derive an efficient al-
gorithm for the construction of the intersection of a finite set .of half
spaces in three dimensions.

The k-d tree is a data structure useful in classification and anal-
ysis of multidimensional data. Each nonterminal node of the k-d tree
represents an ordinate axis and a partition hyperplane on that axis. The
terminal nodes represent bins delimited by the partitions of its ancegor
nodes. The entire k-d tree is a partition of Euclidean k-space.

If S is a finite set of points 1in Euclidean k-space, and p is a
point in S, the nearest neighbor of p in S is a member of S, distinct
from p which minimizes the distance from p. We find bounds for the time
for finding the nearest neighbor of all points using the k-d data struc-
ture. In particular, we examine three different criteria for choosing
the partition ordinate of each node in the k-d tree, based on the test
point set. We obtain tight bounds for the best of these criteria,
which generates the "square tree'.

The second problem is to efficiently construct the intersection of a
finite set of half-spaces in three dimensions. If N is the number of
half-spaces, our_é]gorithm takes time proportional to N1ogN. Intuitively,
the algorithm first constructs a northern and a southern cap, then inter-
sects these two polyhedra to generate the result polyhedron. We can
efficiently construct the caps from their constituent half-spaces by a
divide-and-conquer technique . After constructing the caps, we vertically
stratify space into slabs by passing horizontal planes through the ver-
tices of the caps. By elementary geometry, we can examine the slab
between two vertically consecutive vertices to determine whether the caps
intersect within that slab. If not, we can determine whether any inter-
section must be above or below the slab. Thus using a binary search, we
can find an edge of the final intersection, and need merely extend this
edge around the polyhedron to complete the intersection.
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PREFACE

We solve twvo probleas:

1. Find the worst case average search time for the
nearest neighbor search using the k-d tree data

structure, and

2. Detersine efficiently the intersection of a finite

- set of half-spaces in three dimensiors.

Both results are obtained using the technique of divide
and conquer. The first result is of interest in pattern
matching and data analysis, while the second result is bet-
ter than the worst case of the simplex algqorithm for three-

variable probleas.
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Chapter I

NEAREST NZIGHBOR SEARCH OUSING K-D TFEES

1.1 GENERAL NOTATION

Y S S A e T . S

We shall be discussing finite sets of points in Pucli-~
dean k-space. If S is a set, |S| will denote the number of
members of S, If p is a point, pi will derote the ith coor-
dinate of p. HWe shall use the notation 4(x,y) to denote the
distance from object x to <cbject y, and r(p,S) to be the
distance to the nearest peighbor of ©point p in the se* S.
We shall also use the notation BALL({p,S) to represent the
subset of Euclidean k-space within distance r(p,S)} of poirnt
ps The term logN will mean the logarithm of ¥ *o the base
2,

we shail need some notation to describe order of magni-
" tude calculations. We =shall say gi(n} = O(f(r)) if there
exist a constant ¢ arnd an integer ¥ such that g(n) € ¢ f(r)
for n>%¥. We shall say g(r) = @(£f(n)) if there exist a con-
stant ¢ and an integer ¥ such that g(n) 2 c £(a) for nd¥.
lastly, we shall say g{n) = &(f(n)) if there exist coastants
c and d and an integer M such that c¢ f(n) € g(n) <1 £M)

for n>k.




1.2 koD I8EES
1.2.1 History

Bentleyt developed. the concept of a npultidimensional
binary_tree,‘and indicated thét this data structure would be
dsefulr.in ansvwering nearest neiqhhot gueries, Friedman,
Bentley, and Pinkel? used a rodified form of the k-d tree to

answer nearest neighbor enqueries,

-1.2.2 Definition

A k-d tree is a binary tree with distinct types of
nodes for the internal and leaf nodes. The internal nodes
are called "partitions", the leaves are called "buckets". 1
bucket contains a list ¢f points in k-dimensional Euclidean
space. A vpartition is coapcsed of four elements: a left
subtfee called the "lowson", a right subtree called the
"highson", a partition axis called the "discriminant", and a
partitién value called the ‘"position"., The discriminant
will in general be ar iateger between 1 and k, the position
will be a real pumber.

A partition divides the poincs in the buckets below it.

For example, suppose L is a partition which discriminates

1J, L. Bentley, "#ultidimensional B8inary Search Trees for
Associative Searching®, Cormunications of the ACY,
18(1975), pp. 509-517.

2J, H. Priedman, J. L. Bentley, and K. A, Finkel, "A&n Algor-
ithm for Finding Best Yatchzs in logarithmic Jime", S+ar-

ford Lirear Accelerator Center Report SLAC-PU3-1549, Febrn-
ary 1975.
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along the ith axis., If p is a point ir a bucket in the low-
son subtree then pi < position(L), likewise if q is a point
in a bucket in the highson subtree then qi 2 positiocn(l).

With each node, we shall associate a ser of bounds,
There vill be 2 lower and an upper bound along each axis,
For the root of the tree, the lower lounds will be -o0, and
the upper bounds +oo. If L is a partition in the tree with
discriminant i, then'lowsontl) has the same bounds as 1L, ex-
cept that the upper bound aloag the ith axis is position{(l).
Likewise, highson has the same bounds except that the lower
bound along the ith axis is posiiibn(L). Obviously, in or-
der that +the upper bound alorg an axis always be greater
than or equal to the lower beurd along that axis, the posi-
tion of a partition must be betweer the upper and lover
bounds of the discriminant.

Pinally, we shall call the space delimi%ed by the
bounds set of a node the "bin" of that ndda. I£ g is in a
bucket 1, then BIN(q) will denote the tin associated with L.
The sequence of partitions leading down to BIN{q) we will

call the bin partitions of g.

1.2.3 Construction

Given a set S of N points in k-space, we wish tc con-
struct a k-d tree on these points., Cons*ruction of the k-4
tree proceeds by topdowh generation of the partitisns. Ve

. shall use the term refirement to mean the s=lection of a




.discrininant and position, and the division of the set of
points between the lovson and highson,

As the root node, we first create a sirgle large backet
vhich contains all the points., We then refine all bins un-
til they contain no wmore +than some ccnstant number of
points. The method of choosing the discriminant we shall
leave until later, We shall always choose . the position as
'the median coordinate alcng the discriminant axis, so that
the lowson and highson subtrees will contaip as equal a num-
ber of points as possible. This guarantees +that “he devth
of the tree will be at most logN., 1In the illustration of
our arguments below, we shall assume that the maximum number
of points in a bucket is one. Appendix A gives a pseudo-

ALGOL description of the refinement procedure,

1.2.4  Nearest Feighbor Searchizg

The nearest—ﬁeighbor of a point p in'a point set S is a
pepber of S different from p with minimal distance fronm p,
The nearest-neighbor problem is to find the nearest-neighbor
of a given point p. The brute force sclution tn this prob-
lem is to find tke distance to all cther points, and sélect
the minimum,

Clearly, the time for finding the nearest neighbor of
all points using the brute force methoed is prOportional'to
the square of the number of points. Friedmar, Baskett, and

Shustek3 developed an algorithm using projecticns which has



expected time stirictly less than che trute forcz me+thoad. It

is possible tec find the nearest neighbor of a point even
more efficiently if we have a k-d tree already ceonsiructed
on that set,

We give a recursive definition of the search procedure
using a k-d tree. For a bucket node, the procedure simply
~scans the point list, computing the Qistance from *he proto-
type point p, and keeping track of the identitj of +he near-
est one, For 2 partition ncde, it first seirches the sub-
tree vwhich is ir the same direction as p from the position
along the discriminant axis. If any part of the bin of the
opposite subtree 1lies within the distance to the current
closest neighber, that subtree must also be searched. Ap-
pendix B gives a pseudo-ALGOL description of the nearest
neighbor search.

Dobkin and Lipton* develored an algorithm whick c¢an
find the nearest neighbor of a point in O(N loglk) time. Un-
fortunately, this quick search is possible orly after a

. costly preprocessing step, generating a data structure of

3J. H. Friedman, F. Baskett, ard L, J. Shustek, "Ai1 hlgor-
ithm for Findirg Nearest Neighbors", IFFT Trancactions on
Computers, October 1975, pp. 1000-1006.

*D. Dobkin and BR. J., Lipton, "Multidimensional Searching
Problems", Yale University Computer Science Pesearch Feport

#34, October 1974,
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elemeats, By comparison, the k-d ¢«ree data structiuce zakes
only O(N log¥N) tire to gererate, Thus in applications whare
preprocessing costs are impertant, the k-4 tree may be an
important method.

1.3

HE PEOBLEY

3

Bentley suggests that one can construct 2 k-d tree in
which the discriminant cycles among tke axes as the lavel of
refirement increases, We shall call such a *ree "cyclic",
In order to make use of the geometrical structure of the set
of points in constructing the tree, it would seem to be ap-
propriate to use the spread of a bin along an axis, that is,
the difference between the largest and smallest values aloang
that axis among the points in the bin, Friedmanp, 3entley,
and Finkel recommend that the discriminrant be chosen as the
axis along which the points in the bin have the largest
spread. We shall call this type of tree "spresai®", e pro-
pose a slight variation on this idea and choose tha+ axis in
wvhich the separation of the bounds is currently greatest.
We shall «call such a k-d tree "“sguare", since it tends to
have eguilateral bins, |

We know that the search for the nearest neighbor of a
point in the set using a k-4 tree can be guite poor, irdeed,
we may be forced to look at all other points in the set. We
might ask however, about the average sa2arch behavior,

Friedman, Bentley, and Finkel empirically established that



the average search time for the spread tree is proportioral

to logN. . Here. we shall analyze the worst case &verage
search time behavior. Our interpretation here is that we
should find the worst case time for finding the neiqhbcfs of
all the points in the tree, arnd then compnte the worst case
average by dividing by the number of points. <Call the weorst
case total search time for all nearest neighbors in 2a k-4
tree TStype (N,k), where type is either "cyclic" or "square",
N is the number of points, and k is the dimension of the
space,

e immediately have the straightforvard bound

TStype (N,kK) = 0(N2)o
since the worst that could happen is that vwe search the en-
tire tree to find the nearest neighbor of each point. Bent-
ley'aﬁd ShamosS describe an algoarithm vwhich can solve the

'problem of finding the nearest neignbor of all poirts in

(¥ log 1N)
time, for k>1, We shall now develop upper and lower hounds
on the maximum search time for the nearest neighbors of all
points, first for cyclic tfees, and +hen for square trees.
#e shall also demonstrate that the spread tree has vorse

worst case behavior.

o e . Tl S ol S —— ————

5J. L. Bentley ard 4. I, Shamos, "Divide ard Conquer in Mul-
tidimensional Space", Proceedings of the Eighth Symposiam
oh the Theory of Computing, ACYM, ¥ay 1976, pp. 220-230.
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1.4  BOUYDS FOR CYCLIC TEEE STARZHES
T.4,1 Upper Bourzd

The followirg theorem establishes an upper bourd for
the search time for finding the nearest neiqhbors of all

points using a cyclic k-4 tree,

2-1/k
THEORZM: TScyclic(¥,k) = O (¥ log Ny .

PROOF: Since the k-d tree nearest neighbor search proceads

by first finding the nearest neighbor on the same side of

the upper-most partition, and then if necessary, finding the

nearest neighbor on the opyoéite side, we can say

TScyclic(2K,k) € 2TScyclic(N,k) + R(¥,k), (N
where R represents the cost used ir looking for nearer
neighbors on the opposite sigde,

Let us investigate the size of the term R (N,k), TIf ve
say that the first partition hyper-plane L divides the set
of points into subsets A and B, then we carnr write

E(N,K) < (IP(A,B)| + {E(B,8) ) logN,
where (p,q} in P(A,B);iff p in A, q in 8, ard d({p,3ZN(q)) =<
r{p,A). The set P(A,B) contains the distance comparisons
that must ke done in crossing over from R to -8, The factor
of logN derives from the fact that it takes at most logV
time to find q starting from the root of the tree.

Consider any pair (p,q in P(A,B). Project RIN({q)
onto L, the partitioning hyperplane. If some correr of the

projected bin lies within BALI (p,A)Y, then siy that



(peq) e C(A,B); assign all other pairs to

C'(A,B) = P(A,B) - C(A,B). (See Figure 1.)

BALL(p. A

(Pfa_) in C(A!B)' (prq') in ¢ (A,B)

Figure 1: Bin Corner Inclusioa Examples

Now let us see how many members are in each of C(A,B)

and C* (a,B). I1f g is in B, then the procjection of EFIN(q)
onto L has at most

k=1
2

corners, Also for any prcjection point u in L, at most some
constant number ck of points p ir A have r(p,4) 2 d(p,u), 59

that DALL(p,A) ircludes u®, Thus"



' k=1 .
IC{A,B)] £ Bt 2 ck = 0(N).

Snppose q is a point in B such thatl BALL{p,4) inter-
sects BIN(q). If the projeétion of BIN(d) onto L has no
corners within BaLL (p,A), then'clearly BIN (q) has no corners
in EBALL (p,2). We shall bound C'(AR,B) ]| using this looser
criterion, '

We approach the question of hovw large |C' (4,5)} ié from
the other side. That is, for each p in A, what is the maxi-
mum bumber of q in B sﬁch that BIN(q) is within distance
r(p,A) of p, yet no corner of BIN(q} is within distarnce
r{p,A) of p? With this question in mind, let us examine the
censtruction of the k-d tree for B. #e shall bourd *+he num-
ber of bins whose corners lie outside the BALL(p,3), but
such that they alse overlap that ball.

As ve start, no*:e that all bins so far defired, namely
all of B, satisfy the definition if BALL{p,A) intersects L,
for there are nd corners (unless x=1)., If the firs* refine-
ment does not create a corner, and the parctition divides
BALL(p,A), then wve have two bins.

As we continue the refinement, we note that at e=sach
level, we may pcssibly double the number of bins, if the
partitions are placed so that they divide the previous bhins,

but do Lot create corners within BALL(p,A}., 1If a discrimi-

6J, L. Bentley ard 4. I, Shamns, "Divide and Conjuer ir ¥a1l-
tidimensional Space", Proceedings cf +the Zighth Svmposiunm
on the Theory of Computing, ACY, May 197¢, up. 220-230.
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nant is chosen that Tust create a correr, choosiag the posi-

tion so that the partition dces not overlap R2ALL(p,A) leaves
the same number c¢f bins overlapping +that ball, without cor-
ners., As we cycle through the axes in further-iherations.of
the refinement, at legst one of the partitions must lie out-
side the ball, or else we divide our hin into subbinms with
corners, and all lover bins would have corrers, Thus for
each k levels, we can double the bin count at mdst k;1
times, and we car have at most

logN (k=-1)/k 1-1/k
JlogN (k=1 /k _ -1/

bins, This is true for each p in A, thus

2=-1/k N2--1/1{

IC'(2,B)) =KX = 0 ).

We thus find

_ 2-1/% . 2-1/k
E(2N,k) = (C(N) + O(N }) logN = € (N log%}.

Substituting this in (1), and solving the recurrence rela-

tion, ve finally obtain

2-1/k
TScyclic(li,k) = O(¥N log). =

1.4,2  Lower Bound

de can exhibit ‘a particularly bad case for the nearest

neighbor search using the cyclic k-d tree.

THEOREM 3 For k22, there exist point sets such that the

tctal runaing time for the nearest neighbor search for all

points using the cyclic tree is

- 11 -



2=-1/k

e ).

_PROOP; We proceed by construction, We first chonse the
"wain partition L, say xi=0; We want the set A to be strung
out along the 1xk-axis, so we might choose the set A of
points as (0, 0, 0, ..., 0, 1), for 1<igN/2. Thus for
p in A, r(p,A)=1 and the overlap of BALL{p,A} with the nther
side of L is a complete hemiéphere.

The points of B will be chosen arbitrarily, with orly
two restrictions. The first restriction is that all points
of B must have all coordinates negative, Thus the k-d tree
search will not £ind any new closer neighbors in B for
points in A. The second restriction is that the points of B
must be within distance 1/2 ¢f <the xk-axis. Those bins de-
termined by these points B which alsc extend in the region
of points xk>0 are long, spindly bins which pass within dis-
tance 1/2 of each of the points of A.

Now at each level, %he numbef of bins of B entering the
region xk>0 doubles, except when +he discriminant axis is
xk, in which case, the number remains the same. Thus there
are

logN{1=-1/% 1-1/k
109N (1=K =1/

bins of B entering the xk>0 reagion, aznd hence

-
-

1-1/k 2=1/k
N } N

distance tests must be made by the k-d tree search, =«



Pigure 2 shows an example of +his cornstructinr for k=2,

N=32, For each of the sixteen points of A, the nearest

reighbor search must investigate the four topmost bins of B,

Horizontal
Scale exaggerated

L ]

)

. . Bins not shouwn for A
(B) .

L

Figure 2: Worst Case Example of a Cyclic Tree

T.4.3 Suppary

Combining the results of the previous two theorems, we
know that the vworst case time for firdirg the nearest neigh-
" bors of all points using a cyclic tree is bounded such that

2-1/k

o (N ) = Tscyclic(N,k) = o(n” 7%y 0guy .«

We do not  attempt to find tighter bounds here for, as
ve shall see in the next section, the square tree exkibits

significantly better characteristics.

- 13 -



1.5  BOUNDS FCR SQUAEREZ TEEZ

194]
t=)
b
Az}
]
5 o]
i=3
kn

1.5.1 Upper Bound
The followirg <theorem establishes an upper bournd for
the search time for the nearest neighbkors of all points us-

ing a square tree.

k
THEORZM: TSsquare(N,k) = O(N log W).

PROOF: In the case of TScyclic, we fournd that there were
two types of bucket overlap in the search, Here, we shall
first divide the computation on this basis. Thus, we write

TSsquare(N,k) = TCsquare (N,k) + TCl'sguare(N,k), {2)
vhere TCsquare represents the search time involved with
buckets which, wien projected onto the separating partition,
have a corner within the search ball, and TIC*square repre-
sents the search time involved with buckets which overlap
the search ball, but when projected snto the separating par-
tition, have no correr within the search kall., Actually, we
shall estipate TC'square Ly overlapping somewhat with
TCsquare, and computing the search fime involved with buck-
éts vhich intersect the search ball, but have 5o corner in
the search ball,

8y the same divide and conguer reasoning as in the

cyclic case, ve readily find

-1

k 2 2
TCsquare(N,k) € N 2 ck log ¥ = O(N log N).
We shall not use the divide and conquer techaique to

bound TC'square. Instead, we start by 1oting that for each



point p, the nearest neighkor search first £finds the se-

quence of length logN of bin partitions of p, Suppnse thaﬁ
L is a bin partition of p, separating the sets A and B, and
that p in A. We then again ask the gquestion: Por any
p it A, wvhat is *+he pmaximum numkter of q in B such that
d(p,BIN(q))sr{p,2) 2and no corner of BIN(y) 1lies within
BALL(p,A)? As before, vwe answer this question by following
the construction of the k~d tree on side B. .we say that a
bound of a bin intersects BALL(p,A) if the ball contains a

segrent of the face created Lty that bcund.

xjL ¥ ¥2 ’ xjo

- - - xi0

BIN

- — - xil

BALL{p,2)

x§0 - xjL 2 2{y2 - y1)
¥y2 - y1 2 xiv - xil

Figure 3: Projection onto xi,xj-axis plane
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At the first level, the only tin is all of B with the

boundary L and ary preceding bin partitions o¢f p, and it
satisfies the criterion if L intersects BALL({p,}). Now cor-
sider the process of refinement of a bin at some later
stage. JIf the bin has both upger and lower ©becunds along
sope axis which intersect BALL {p,A), then this axis canrnat
be chosen as the discrimirant at some further stage, unless
the bin s¢ split has a cqtner which 1lies within BALL (p,A).
This is because we always choose the axis with the largest
spread between upper and lower bounds as the next discrimi-
nating axis., As can be seen in Figqure 3, once a bin has up~-
per and lower bounds along some axis which iﬁtersects the
ball, then the spread along that axis is less that +that
along any axis for which reither upper nor lower bounds in-
tersect the BALL(p.A).

Let us nov examine how this limits the number »f buck-~
ets vhich intersect BALL(p,A), but have no corner within
BALL (p,A). Let F(h;k1,k0) denote the number of such‘buckets
generated in h more refinement steps of a bin havinq_k1 axes

with a single bound intersecting BALL (p,A), and k0O axes with

no bounds intersecting BALL {p,2). Then we have F(h:k1,k0)
P(h=-1:k1,k0), if we chcose a discriminatisng axis and
partitior which does not intersect

BALL{p.,A), oI
2 F(h-1:k1+1,k0-1), if we chonose a discriminating axis
from the second set, and 2 partition

which intersects BALL(p.2), OT
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F(h=13k1-1,k0)+F (k—-1:k1,k0), if we choose a2 discrimi-

nating axis frem the first se+t, 27d a
partition vhich intersects BALL(p;A).
Note that if k0=0, then we have a bin which must have a
cornet which projects orto L within BALL(p,A), and any
bucket within this bin must alsc have this property. Hence
" we have the end conditions Pth:k,C)=0 and F(0:k1,kN)=1, for
k0#0,
#e now ask, what is the pmaximun possible value of
P(h:k1,k0y? The solution to the recurrence relation defined

above is

' kO=1 | h=k0+1 kO+k1-1
Fhik1,k0) = 2 Cth ).
k0 +k1-1

]

Although the set B may ke bounded by preceding bin par-
titions of p which intersect BALL(p,A), *the relevarnt bin
partitions are thcse which have the same discriminant as L,
and which of course lie on the same side of p. 1If 23LI (p,A)
dces not reach a relevant preceding bin partition of o, we
shall call 1 a "termirating" partition. Then the rumber of
bins in B to be searched is lipited by

k-1
F{loglN;1,k=-1) = 0(log K) .

If EALL (p,A) does reach a relevant preceding bin partition
of p, then the number of bins in B to be searched is linmited
by

F(logN:0,k=1) = O(log NY .



A terminating bip partition is called that because *he

search ball for p will not intersect any preceding relevarnt
bin partition of p. Thus along each axis direction, +he

search ball intersects at most

k=2 k-1 k
logN 0{log N) + O(log ¥} = 0{log N)

buckets., Considering all directions, all poirts p, and a

factor of logN to find each bucket, we have

k+1 k-1 k
TC'square(N, k) <€ 2 N 0(leg ¥) logN = O(N log N).

Substituting this in (2), we have

13
TSsquare(N,k) = O(N log N). =

1.5.2 ower Bound

We can exhibit a particularly tad case for tha square

k-d tree.,

THEORZM: PFor k22, there exist point sets for which the ac-

tual search time using a square tree is

k
P(N log N).

PROOF: The construction 1is similar to that for the cyclic
tree, The set A is constructed strung out at unit intervals
along the positive xl1-axis. All memhers of B will have all
non~-positive coordinates, and most will lie close %¢c *the
x1-axis. Some vpoiants of B will be chosen so as to force

elongation of some of +the bins,



de shall be building sets of points composed »f trans-
lated sets of points. Because these sets of points are as-
seobled in layers, vwe shall call our scructures "pla+s", In
order to recall how much bﬁildinq has been done in con-
structing a plat, ve shall give it an order number, such as
"k-plat" where k is a positive irnteger,

Let z = 1/(2N). Define a 1-plat of size ¥ to be the
set of ¥ points in k-space, {nz, 0,..., 7)), whkere O<ag¥, If
the contents of some subbin of B was A 1-plat, thke k-4 tree
nearest neighbor search for a point in R would take logX
time to find that there is no closer neighbor in that sub-
bin.

B shgll now he defined as a structure composed of many
translated 1-plats, such that the square k-d tree construc-
tion algorithm generates subhiﬁs coincident #ith the plats,
The structure will be composed oOf repetitions of substruc-
tures, which will be composed c¢f repetitions. of suhstruc-
tures, and =0 on, down to 1-plats.,

For j>1, define &a j-plat of size M to be log¥ trars-
lated (j-1)-plats of decreasing size, and a single  extra

point. The ith subplat will be a (j=1)-plat of size

translated by the subtraction of (i-1z from from the jth
coordinate of each point, The extra point's only non-7ero

coordinate will be the jth, which will be =44, Thus the j-
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plat's widest spread is along the jth axis. The squire k-d

tree construction.procedure vill partitior betweern the larg-
est (j—i)éplat and the rest cf the subplats. This remainder
will 4in turn be ©partitioned retween the secord largest
(-1)-plat and the remainder, and so or, down to the =ingle
extra point, It is easy to verify that the rearest neighbor
search time for the j-plat wculd be at least

logM

3

We fipnally defire B to a k-plat of size N/2, Consider-
ing that for each point in A, the nearest neighbor search

must make an urnsuccessful search of E, we ob*ain

' k
TSsguare{N,k}y = N/2 Q{logWN} J({log N} = 3(¥ log N)., =

Pigure 4 gives an example of this cornstruction for k=2,

N=32,

1.5.3 Surmary

Combinikg the preceding two theorems, we know that the
worst «case time for finding‘ the nearest neighbor of all

pocints using a sguare tree is bouaded

: k
Tssgquare{l,k) 8(X log N).

This is within & factor of 1logR of the behavior of the
algorithm of Bentley 2and Shamos, which was designed to s»olve
the protlem of finding the nearest neighbor of all points

only. Thus we have determined the worst case performance of .
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Figure 4: Worst Case Example of a Square Tree

the nearest neighbor search in a square k-4 %ree to within a

constant factor. The above arguments can be extended with
snall changes +to bucket sizes greater than one. The only

effect is a change in the constant cf proportionality.

1.6 SPREEIAD TIREE NZAREST NERIGHEORING SEARCHSS

Although Ffriedman, Pentley, and Finkel found <+hat the
expected behavior of the spread tree was quite good, and in-
deed was better than that 6f the éyclic tree, the worst casa

for the . nearest neighbor search using <the gpread tree is

worse.



We can construct examples fcr which time is used in +he
search for the rearest neighlbor of all coints is of the sane
order of magnitude as the brute force solution. We develnp
an example for k=2, in the x,y-pline. We choose the first
N/2 points as (0,i), for 1i1<i<N/2, We choose the next N/2-1
points as (i/N,0), for 1<i<N/2-1. 1lastly, ve chocsa the Nth

point as {N,0}.

L

Figure 5: Worst Case Example of 2 Spread Tree

Now the spread in ghe x dimension is X, while
along the y dimersion it is ¥/2, Thus the firs:t partition L
vill separate &lcang the x-axis, between the points on the
'x-axis and those on the y-axis. Now the points on the x-

axis have zero spread in the y dimension, so all partitions
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of those points mus+t have the x~axis as discrinminan+*. Hence

the search ball of each point on the v-axis aust intersact
the bin of each point on the x-axis. 7This forces the search

time to be at least

(8/2) (N/2) = C(NZ)-

Using a statistical definition of the soread still does
not preclude the construction cf such tad examples, as long
as some fixed fraction of the pcints can be squeezed along-
side the initial partition. This seems to irndicate that in
the creation of k-4 trees, the geometry of the bins is more
important than that of the pcint set. The choice of the me-
dian position seems +o force the shape of the tree as auch

as is necessary.

1.7 CONCLUSICN

1.7.1 Suppary
Table 1 summarizes the known behavior of <the k-4 tree

nearest neighbor search.

1.7.2  Further Eegearch

We have not found the average behaviof of the nearest
neighbor search usirg a k-d tree, Despite the exisrence of
strong empirical evidence, there is‘ po analytic evidence
that the k-4 tree should have logariﬁhmic expected search
time, Our results hint that it should be pos=ible to find
an analytic logarithm-squared becuad for the expected search
time,
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Takle 1,

Search Time EBehavior ¢f K-d Trees

WC3RST CASE WOEST CASE E{PICTED
TBEE-TYPZ LOWER BOUND UPFER BCUND ENPIEICAL
2=-1/k 2= 1/k 2
CYCLIC F(N ) C(N log W) 0(¥ logX)
2 2
SPREAD (N ) C(N ) O(§ logw)
k k
SQUARE (N log N) C(N log K} O(N log\)
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Chagter II

INTERSECTION OF A PINITE SET CF HALF-SPACES

Consider a set S of N half-spaces in three dimensions,

The problem is to construct the polyhedron which represents
the intersecticn of the half-spaces as quickly as possible,
The lower bound for this prchblem is O(N logN) time, since
any algorithm which can solve this problem could solve the
corresponding problem in two dimensions, where the 1lower
bound is C(N 1logN). Fecent work ty Preparata and Muller?,
and Brown? has led to algorithms which can solve this prob-
lem in O(N logN) time. We shall demcnstrate here our algor-
ithm for the solution of this protlem in O(N 1logN) tinme.
This would enable us to solve three-variable linear program=
Bing problems in time less than the worst case of the sia~-

plex algorithnm.

t¥, P, Preparata and D, E. Muller, "Finding the Intersection
of a Set of n Half-spaces in Time O{nlogn}", Universitv of
Illinois Coordinated Science laboratory Technical Teport
$R-803 (ACT-7) ;UILU-ENGT77-2250, December, 1977,

2K, Q. Browr, "Fast Intersecticn of H Spaces", Draft,
fo 1

alf
Carnegie-Mellon University, Movember, 1977,
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21 TERMS

Each half-space is determined by a  rlane called the
supporting plane_dnd an.orientation. The'qrienﬁation speci~-
fies wvhich of the twvo half-sgpaces defined by the supperting
plane is in the set. For each kalf-space, consider the nor=
®al to the supporting plane pointing away frcm the half-
space, If we focllow a vecter parallel to this rormal from
the center of the unit spﬁete at the origin, it intersects
the sphere at a unigue point. This point we shall call the
 corresponding sphere point. If x is a Ealf-spaée in the set
S, ve shall refer to the suppcrting plane as the plane x,
and the corresponding sphere point as the sphere point x.
(See Figure 6).

The role to be played ty the sphere points in the al-
gorithm might be best illustrated by considering an extreme
case of the problen. Suppose that all the half-spaces in-
clude a unit sphere, and that the sugrorting plares are 211l
tangent to that sphere. Then the sphere points are the
pbints of tangency, vhile proximate sphere points correspond
to neighboring faces in the intersection polyhedror.

We shall use the term corner to mean the vertex of a
polygon, and the term vertex to mean the vertex of a polyhe-
dron,

On the plane, the convex closure of a set 2f peints can
be defined as the intersection of all half-planes which con-

tain all points in the set, and the convex hull as ‘hose

- 26 =



Figure 6: Connections between HRalf-space, Plane, ard
Sphere Pcint

points in the set on the bourdary of the convex closure., On

the surface of the sphere, we similarly define the convex
closure of a set of points as the intersecticn of all hemi-
spheres which cortain all poiats in the set, and the convex
bull as those points in the set on the boundary of the con-
vex closure., For some point éets, such as the vertices of
an inscribed regular tetrahedron, these structures do not
exist, If a sphere point is in the convex hull, and does
not lie Lbetween two other toints on the convex hull, we
shall say that it is independently in the convex hull.

Points that are the in the convex hull, but are not inde-
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pendéntly in the convex hull, wculd thus lie on the short

segment of the great circle doining sowme pair ¢of other
sphere poirnts; ve shall say that these pcints are dépend-
ently in the convex hull, |

| By constructing the convex hull of a set, ve mean the
creation of a linked list of tke points on the corvex hull
in order. By cbnstructing the intersection polyhedron, we
mean the creation of a data structure which ercodes the
planes which are faces of the intersection polyhedron and
the relationship of "neighbering face®. W#e =shall call a
face of a polyhedron an infirite face if it contains an in-

finite ray.

2.2 THE ;LQOB;THH

Our algorithm proceeds in three stages, In the firs+t
stage, the set of plares is partitioned into two pacts, In
the second stage; a divide and conquer method is used to
construct the intersectior of the half-spaces in each rpart,
The method here is similar to the construction of the Voro-
roi diagram in the plane3, In the third stage, the polyhe-
dra found in the second stage are intersected. It is rot
until this last stage that we shall discecver vhether the

total intersection is finite ¢or even null,

3IM, I, Shamos, "Geometric <Cchplexity", Conference Eescord of
Seventh Annual ACY Symposium cn Theory of Compucing,
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2.2.1 Eirst Stage

We first partition the set § of ¥ half-spaces into *wd
parts, We do this by picking an arbitrary hemisphere of <he
unit sphere, thern assigning a half-space to the first part
if its sphere point lies in the hewmisphere, and to the sec-
ond part if the sphere point 1lies in the opposite hemi-
sphere.

We shall €ind the following lemma useful,

LZ¥MA: let H be a nonempty set of half-spaces whose corre-

spopding sphere points lje within a hemisphere.

a. The set of sphere points of the members of H has a

convex hull on the surface of the sphere.

b, 1f the supporting plane of a half-space appears as
an infinite face of tte intersection polyhkedron of
the half-spaces then the corresponding sphere
point appears on the corvex hull of the sphere
points., If a sphere point 1s inderendently in the
convex hull, the corresponding supporting -plane
appears as an infinite face c¢f +the intersection
polyhgdron. If a sphere point is dependently in
the convex hull, the corresponding supporting
plane either does not appear in fhe intersection

polyhedron, or appears as an infinite face.
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PRQOF:

a. By defipition, there is at least omne hemisphere
which contains all points in the set, and *thus +he
intersection of all such hermispheres is well-de-

fined,

Figure 7: Eelationship bgtween Convex Hull ard Infinite
aces
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b.

If a supporting planre x aprears as an infinize

face, by definition there is an infinite ravy in
that face. Consider the great «circle passing
through sphere point x, and orthogonal to the in-
finite ray (See Figure 7). The hemisphere genexz-
ated by the great circle in the directior opposite
the ray contains all srhere pcints of the set.
For suppose there is some sphere point y not in
this hemisphere. Then planes x and y must inter-
sect such that y cuts o¢ff a terminal segment of
the ray, vhich is contrary to the ray's being in-
finitg. Since sphere point x is on the boundary
of this hemisphere, it must aléo be on the convex
hull.

Conversely, if sthere point x is on the con-
vex hull between points y and 2z, where x is 20t on
the great circle joining y and 2z, fhen there is 2a
hemisphere with x on the boundary and all other
sphefe points in the interior. Thus the re@aining
rlanes can only cut off initial portions of the
ray in the vplane x which is orthogonal to the

great circle and oriented in thke direction oppo-

site the hemisphere. Since there are only fin-

itely many other planes, an infinite segmeat of
that ray must remain in face x, and thus x is an

infinite face. If x lies on the great circle be-

- 31 -



tween y ard z, then face x may c¢r ray not be pfes-
ent; if it is present, it has infinite parallel
edges perpendicular to the plare of the grea:t cir-

cle yxz., =

2.2, 1.1 Tining
Since we only need to examine each half-space once %o

assiga it to a part, the first stage takes O(¥) time.

2,2.2 Second Staqge

2,2,2.1 Divide and Conguer

This stage makes use of a recursive divide and conguer
procedure,

The procedure takes as an arqument a set of half-spaces
vhose corresponding sphere peints all lie in the same hepi-
sphere, The procedure first partiticns this set into two
parts, applies itself recursively to each part +to produce
the convex hull of the sphere points and the intersecticn
polybedron of the half-spaces. It combines the two convex
hulls to form the corvex hull of the whole set. Lastly, it
intersects the tvwo partial polyhedra, to produce the inter-
section of all the half-spaces in the input set,

To separate the half-spaces, the procedure chooses a
great circle vhich partitions the set of sphere points into
twvo equinumerous parts. | For example, if we had sor+ted all

the points in a hemisphere ty angle around some axis lying
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in the diameter plane of the sphere, *her we can chdiose the

median of the angular coordinates to separate the set. The
choice of a great circle as a éartition ersures that the
convex closures of the two parts are disjoint,

suppose ﬁov that the intersection of <the half-planes
and the convex hulls of the sphere pcints have been found
for each part by using the procedure recursively. We first
copbine the convex hulls to find the convex hull of all the
pcints. Since the two cenvex closures are disjoint, from
any sphere point on the first part we can find a lirk of the
convex hull of the second part such that the point of the
first part is known to be on the exterior side of that face
of the convex <clesure. Llikewise vwe car find a2 link of the
first part which faces out tc some point in the second part.
We then delete these links, and link the two hulls +ogether.
Finally we iteratively delete concave verticeg un+il no more
exist, The worst case time to construc* the convex hull of
the entire set is proportionral to +the number of points on
the convex hulls,

There exists in the combired convex hull a 1link from
the first part to the second and ancther 1link back., These
links are between points which by the above lemma correspond
to planes which are infinite faces of the intersection poly-
hedron of all the half—spaces, ard the intersection of these
planes appears as an edge on that polyledron. We c2n easily
check for dependent presence on the convex hull and the loss

of faces in linear tinme,



Aﬁplying the edge extension procedure Jdescribad below .
by starting at tte known infinite edge, we can gererate the
set of edges of the polyhedron détermined by fhe intersec-
tion of the partial polyhedra. During the extension, some
faces &nd edges of the partial poclyhedra may be "cut offn
and thus must be deleted, The edges and faces of the inter-
section polyhedron are those created by the extension proce-
dure together with thQse in the partial intersection polyhe-

dra which vere not "cut offv.

2,2,2,2 The Edge Extension Procedure

The edge extension procedure is an important part of
the algorithm. This procedure starts from an edge that is
known to be created by the intersection ¢f two polyhedra,
extends that edge in a specified direction, and generates
all edges formed by the intersection along that direction.
The polyhedra must have a special relation, namely that the
convex hulls of the sphere points cf the face rlanes are
disjoint.

For example, say.that the known edge et is the inter-
section of a face x of the first polyhedron and a face v of
the second polyhedron. e extend this edge until it first
intersects an existing edge of x or y, say edge e2 of y (See
Pigure 8}, This edge is the intersection of y with a1 face z
in the second polyhedron. We termirate et at <+the point of

intersection with e2, and tow begin the extension of the
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edge e3 defired by the intersection c¢f x atd z. If el does

not strike any opposite edge of x or y, then x and y are in-

finite faces, and the extension procedure terminates,

,/
-
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-
,<___
P ——
rs . —
/’ \\'\ . -’--"--
, -
e
—_ el E
ef

‘Figure 8: 'Operation of the Edge Extension Procedure

Since the search for the next edge of face x ts> be in-

tersected by e3 can comménce at that edge intersected by e1l,
ve can design the search fcr the €first intersecting edge
such that the extension procedure takes time proportional to
the number of edges.

The use of a great circle to separate the sphere points

of the parts ensures that the partial polyhedra will have
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the special relation specified above, If we were to project

the intersection polyhedron onto the plane detezmined hy the
Vgreat circle, the intersecticn edges form the convex ﬁull nf
the projection polyhedron. Thus we see that the relation
forces a connected sequence of nrew edges and *he extension

procedure will generate all new intersection edges.

2.2.2.3 Timing

Thus we can coastruct the convex hull of the corre-
sponding sphere points apd the intersection polyhedron of
our set of half-spaces. The divide and conquer procedure is
applied to both parts constructed in Stage 1. The combining
of the convex hulls and apglication of the edge extension
procedure each take C(N) tize., Thus like the .time for the
ccustruction of the Voronoi.diagram in the rlane, the execu-

tion time of Stage 2 is O(N logN).

2.2.3 hird Stage

Ay S et e AR

Let us examine ouyr current situation, We have reduced
our N half-spaces to two polyhedra, both with infinite ex-
tent., To illustrate their relative crientation, we might
say that these polyhedra are two flowers facing in exactly
opposite directions. The relative ponsition of these flowvers
is still wunknown however. They may be facing each other,

back to back, or displaced laterally.
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If we can now find a pair of faces, one from each poly-
hedron, whose intersection appears as an adge in the palyhe-
dron which is the intersection of all half-spaces, ve éan
again apply the edge externsicn rprocedure tc generate the fi-
pal intersection, Most of the repainder of the algorithm is
concerned with finding just such a pair of faces.

Let us exasine just how we might fird such a pair of
intersecting faces, For descriptive rpurposes, we assunme
that the diameter plane used in Stage 1 is a horizontal

plane, the first polyhedron is below all its faces, and the

second is above all its faces, We shall call the first po-

lyhedron down-facing, the second up-facing. We construct a

list of the vertices of the polyhedra, augmented by the ad-
dition of virtual vertices at the zenrith and nadir, ard or-
dered by the vertical or z-coordinate.

Consider any borizortal plane passing through one of
the real vertices 4imn our 1list., Such a horizontal plane
would intersect a fixed set of faces of ¢the polyhedra, de-
terained by the chkosen vertex. The intersection of each po-
lyhedron with the horizontal plane may be a convex pblygon
lying in the piane, may be null, or'if the choser veriex is

virtual, may be the entire plane,

2.2.3.1 Binary Search

Our global strategy in the search for a pair of inter-

secting edges will be a binary search, Our search investi-
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gates the regior between a pair of vertices in cur sorted

list. We use the horizontal planes passing through the ver-
tices, and generate the polygors which are the intersections
of the planes with the polyhedra. Thus we cal construct the
intersection of each polyhedron with the slab delimited by
the horizontal planes passing through our chosen vertices.
Wwe call these intersection polyhedra slices, and observe
that their vertices all lie in one or the other of the lim-
iting horizontal planes and that the non-horizontal faces,
or “sides", have at most four edges and vertices,

#e nov look for an intersection edge of the two slices.
We first project the top and bottom polvgons of each slice
into a single horizontal plane*. We then examire the inter-
section relationship between these four polygons in that
plane,
| If we 1intersect two ccnvex polygons A and B in the
plane, we have four possible outcomes. First, 2n edge of 12
may cross an edge of B; we shall call this an "actual" in-
tersection. Secondly, we may find that A is within B, or
thirdly, we may likewise find <that B is within 3}, The

fourth possibility is that the. intersection is null since a

—— A —— — — - ——

4For brevity, we shall assign two character names to each
polygon. The first character will be U or D, if the pnoly-
hedron is the up-facing or down-facing, respectively. The
second character will be 1T or B, if *he intersection is
vith the top or bottom limitirg plane, respectively., Thus
0T is the projection of the intersection of the up-facing
polyhedron with the top limiting plane. HWe note that 0B is
vwithin UT and DT is within DB,
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3x

4%
FOOUND
DISJOINT
CAN'T BRE
HILL CLIMB
and B are
polygon in

Takle 2.

~Decision Tree of Iolygon Intersectioas

PCLYGOKS INTERSECTION RESULT
ACTUAL A 8

NULL
within B within A
uT=-DB 2 3 4 DISJOINT
UT-DT FOUND! CAN'T BE 1% 5
UT=-DT POUND!? 3* 2% 2*
UB-DB FOUOND! 1* 4 * 1=
UB-DE TFOUND1 2% CAN'T B= HILL CLINME

DT is within UT. Any edge cf DT appears in
the irtersection polyhedron and evern inter-

sects a side face of the up~-facing slice,

UB is within DB. Any edge of UB appears in
the intersection polyhedron and even inter-
sects a side face of the down-facing slice.

The u§7facing slice is within the down-fac-
ing slice. ,

The devwn-facing slice is within the up-fac-
ing slice.

We have found a Eair of irntersecting edges,
which are in the intersecting faces we

vanted.

We have established that the slices do not
intersect, and bhave a separating plane,

which is the vertical extensior of the sepa-
ratirg line between the polygons UT and D3.

This outcome will not arise.

We sust "hill climsb® to find a possible in-
tersection.

disjoint. Table 2 represehts a2 decision tree

o]

£

e

tersections to be tested. W®e always start at 1 by

finpding the intersection of UT and DB,
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2.2,3.2 The Hill Climb

Decision table 2 resoclves the questicn of the intersec-
ticn of the two slices, with the excegption of the hill-clim-
bing outcome, Let us examine the hill clieb in detail.

The slices wmay yet have an intersection. If so; its
projection lies within the intersecticn of UT and DR, For
each point x in the horizontal plane, let US{x) denote the
point on the surface of the up-facing polyhedror which pro-
jects onto x; similarly define DS({x) for the down-facing po-
lyhedron., We define the function U(x) where x is in the in-
tersection of UT and DB to te the z-ccordinate of the point
US(x). Thus U(x) is a piece-wise linear convex func:ion on
its domain., Similarly, we Jdefine D(x) as the z-coordinate
of the point DS (X}, and observe that it is a piece-wise lin-
ear concave furction on its domain,

Now consider the function L(x)-U(¥), It is a piece-
vise linear concave functior, although theré may ke more
than O(N) pieces. If it has a Vaiue less than <zero at x0,
then the lirne segmenf joining US({x0) to DS (x0) lies outside
both polyhedra. If it has a value greater fhan zero at x0,
then the line segment joining US(x0) and DS(x0) lies within
both polyhedra. The function D(x)-U(x) attains the value
zero at x0 if and only 4if the pclyhedra intersect at
US(x0)=DS{x0). Thus if we do an ﬁphill search on the value
of D(x)-U(x), we can determine whether the polvyhedra inter-

sect in the slab.
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We first evaluate D(x)-U(x) arcund the perimeter of the

intersection of UT ard DB, %e know for instance that, at a
corner generated by this intersection, the function has a
value which is the negative distance between the limiting
planes. We only need evaluate at the corners of the inter-
section polygon, since D(x)-U(x) is linear between corners.
If the pclygon has infinite edges, it is an easy matter to
ch;ck whether the function becomes positive along that edge.
We choose a maximal corner, and proceed to the actual
search, which follows along the prcjections of the side
edges of the slices,

Consider the general case of our search., We find our-
selves at the intersection of the projections of an up-fac-
ing edge and a down-facing edge, There are two other edges
in the upper slice addjacent to our current edge, and simi-
larly for the down-facing edge, Thus we have three-lines,
which do not intersect each cther while intersecting each of
three similar lines (See Figure 9), Thus a total of nine
intersection points are defined, the center one of which is
our current position. In constant bounded time, we can
evaluate D(x)~U{x) at the other eight pcirts, and move on to
the highest, If all are lower, then we are at the maximum
and no intersection occurs, The.fact that some of the eight’
nevw points may not be defined tecaunse we are too clbse to
‘the perimeter can be handled in constant bounded time also,
Note that we dor't have to follow any edges irduced by the

slicing, since we started at the maximal perimeter corner.
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Pigqure 9: Typical Step Options

0f course, we want +to know how many steps might be

taker by the hill climb, As we noted above, within the in-
tersection of UT and DB there are no intersections between
up-facing edges, and none between down-facing edgesz. Thus
the intersection pattern of the up-facing edges with the
down~facing edges is 1like that ¢f two fanmilies of parallel
lines.

Now let us examine Figure 9, If the climbing procedure
noves to one of the points adjacent to X, say 1, then we
know that D(1)-U0 (1) 1is greater than each of D(a)-U(2),
D(d)—U(d), and D{NY-U{X). But alX and 1dX' define bounding
planes for the surface of the function D({x)-U(x), thus all
pcints to the right of the 1line ald evaluate to 1less than
b(1)-0 (1), Hence we can make steps to adjacent intersec-
tions at most N times in each direction, and thus af post 2N

steps will be to adjacent intersections.
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Figure 10: Example of Diagonal Stepping

Now consider a sequerce of diagonal steps termirated by
a step in some o*her direétion, such as a,a2,a3,24,41 in
Figufe 10.

Since the function D(x)-U(x) has greater value at ‘a
than at 1, 2, or X, ve see that the guadrant below the line
a2b and right of atld is now known to be lower. 1Ihis is true
for each a-type step, thus whén we reach a4, vwe have domi-
nated the siashed area, Then the step to 41 dominates the
dotted quadrant also. But the total dominated area is the
same as if we had started at Y and used 1-itype steps to al,

then the single step to d1. Similaﬁly we can rTeplace any

sequence of diagonal steps whtich is followed by 2 diffarent
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step with a2 sequence of adjacent steps of the same length.

This sequence would also dominate the same set of intersec-
tion points. The only case left is a long sequence of the
same steps, which as before can be at most 1length N. Thus
any cl@mb sequence has lergth at most 2W.

of course, as we make the ascent, at each step we check
vbhether ve are crossing the threshcld D(x)-U(x)=0. TIf we do
Cross it.-we can stop, having fcund our intersecting faces.
If the polygon is infinite, the search may terminate because
there are no more intersection pcints in the direction of
ascent, We can easily check whether the infinite faces
which remain undomirnated do indeed intersect, If rot, ve
find the maximum at the intersection of the projection of
two edges, A plane parallel to koth of these edges and ly-

ing between them is a separating plane for the slices.

2,2,3.3 Onvard and Upward

We now know how the slices intersect. We thave four
possible conditions: - the sliqes have a actual intersection,
one slice is in the interior of +the other, one or beoth of
the slices is null, or the slices fail io intersect. In the
case of a actual intersection, one of the edges of the in-
tersection polyhedron is formed by the intersection of faces
from each of the slices. This pair of faces is the pair we

have been looking for, and we terminate our search.
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If one slice is in the interior of the other or ozly

one is null, our next investigation is in the direction of
the polyhedror with the smaller or pull slice., If ©both
slices are =null, we have a separating plane and hence the
intersection of the two polyhedra must be null.

If the slices do not intersect, we need to firnd in
vhich direction, up or down, we should move so that ve might
find a pair of intersecting faces. If one of the poirts is
virtual, ve are at one end of ;he list, s¢ we know we must
move in the other direction. Thus we may assume that both
vertices of our pair are real. VEach polyhedron is a subset
of the larger polyhedron defined by the side faces of the
slices. The intersection of these larger polyhedra is a
convex polyhedron either strictly - atove or strictly below
our slab., This intersection of +the larger polyhedraz con-
tains the intersect;on of the origiral polyhedra, and thus
both intersections must lie on the same side of the slab,
¥hile attempting to construct the intersection 2f +the
slices, we found no intersection, but we were able to con-
struct a separating plane. This separating plane intersects
the limiting planes in a pair of pérallel lines. In each
limiting plane, and for each polyﬁedron, find the corner of
the intersection polygon closest to the parallel line lying
in that 1limiting plane, ard constrﬁct a parallel..line
through that point (See Pigure 11), The two lines for each

polyhedron define a plane which in fact is a bounding plane

- 45 =



for that polyhedron. The irtersecticn of these bplines is

another parallel line outside the slab,

direction in which these planes intersect

Scpurwf'mﬁ Plcne. —\ ,;

He

t+hen mave ia the

slice

o | dersection Paralle |

'Figure 11: Choosing the Direction in ¢he Binary Search

As lorg as we find ro intersecticn and have not 3hown

that one does not exist, we continue the
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search directions indicate that the intersectiosn must be

both strictly above and below some vertex. This is imenesi-

ble, so the intersection must be null.

2.2.3.4 The Final Edge Extension

As mentioned above, once we have found ar edge formed
by the intersection of the up-facing and down~-facing polyhe-
dra, we can simply apply the edge extension procedure to
generate the final intersection, Because we do ot know
that the final edge is infinite, we will need to apply *he
edge extension procedure in both directions. Also, because
the intersection of the polyhedra wmay now bé €inite, we
shall need to check for a 1loop, or more specifically,
wvhether the current edge is betvween +the saze faces as the

originally fourd edge.

2.2.3,5 Timing

Bach step in the search takes O(N) time: intersecting
the horizontal planes with the polyhedron, doing the polygon
intersection tests, climbing the hill, and choosing the di-
rection of the next investigation, . tThe binary search takes
0 (logH) steps, thus the total search time is O(N logN). The

final edge extension will take O (N) time,
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2.3 TINING SUNFARY
Each of the Stages takes O(N loglN) tirme to combplete,

thus the total running time of the algorithm is J{¥ log¥}.
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Appendix 2

The Bin Refirement Frocedure

The following is a pseudo-Algol description of the bin re-

finement procedure,

PROCEDURE binRefine (NODE x);

INTEGER axisChoice;:
REAL positionChoice;
NODE iowx,highx:
COMMENT axisChoose(a,x) is a procedure to ke specified
elsewhere which selects the DISCRIMINANT to be used
to partition the bucket x.,
axisChoose {axisChoice, x);
rositionChoice = MEDIAN (x,axisChoice);
lowx = BUCKET ([x!lx[axisChoice]<positionChoice});
highx = BUCKET ({x|x[axisChoice}>positicnChoicel)
X = PARTITION(LOWSON=lowx HIGHSOW=highx,
DISCRIMIKANT=axisCholce ,PGSITION=posicionChaice);

END binPRefine;
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Appendix B

The Nearest NKeighbor Search

The following is a pseudo—Algol description of the nearest

neighbor search.

PROCEDURE nearestNeighbor (NODE x, POINT test,bestYe);

NODE xson;
JF x IS BUCKET
THEN FOR i IN «x
IF distance (i, test)}<distance(bestYet,test)
THEN bestYet = i:
ELSE IF test[DISCRIMINANT(x)} € POSITION {x)

LOWSO¥ (x) 3

THEN xson

ELSE xson HIGHSON (x):
nearestMeightor (xson, test, bestYet):

IF test[DISCRIMINANT(x) ] > POSITION (x)

THEN xXson LOWSON {x)

ELSE xson HIGHSON (x)
IF distance (test,bin{xson))<distance(test,bestY¥et)
THEN nearestNeighbor(xscn, test, bestYet) s

END nearestNeighbor;
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Appendix C

Coconut Crunchies

1/2 cups butter
1/2 cups white sugar
1/2 cups brown sugar
egygs -
172 tsps vanilla extract
cups flour
1/2 tsps double—-acting baking powder
/4 tsps baking soda
cups catmeal (uncooked)
cups cornflakes
7-ounce package shredded coconut
1/2 cups raisins)
medium bananas)

[ - FY N U FY R N N U FU W

L Y

Melt butter, mix with sugars in large mixing
bowl, Beat in eggs, and stir in vanilla. If us-
ing bananas, peel, mince ard stir in.

Sift tcgether flour, baking powder, and bak-
ing soda, Sift this wmixture intc the sugar aix-
ture a cup at a2 time, ther stir well, Similarly,
add the oatmeal and cornflakes a cup at 2 *ine,
Lastly, stir in the coconut, agd raisins if de-
sired.

Drop by 1lz2rge spocnfuls opto cookie <cheet.
Bake in 3259 oven for 12 tc¢ 15 minutes. This rec-
ipe pakes six to eight dozen cockies,
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