
*Ph.D . Dissertation

TOPICS IN COMPUTATIONAL GEOMETRY*

JOHN EDWARD ZOLNOWSRY

STANFORD LINEAR ACCELERATOR CENTER

STANFORD UNIVERSITY

Stanford, California 94305

PREPARED FOR THE DEPARTMENT OF ENERGY

UNDER CONTRACT NO . EY-76-C-03-0515

February 1978

Printed in the United States of America . Available from National Technical
Information Service, U.S . Department of Commerce, 5285 Port Royal Road,
Springfield, Virginia 22161 . Price : Printed Copy $5 .25 ; Microfiche $3 .00 .

SLAG REPORT 206
STAN-CS-78-659
UC 32

ABSTRACT

We solve two problems in computational geometry . The first is to

characterize the behavior of the nearest neighbor search algorithm based

on the k-d tree data structure . The second is to derive an efficient al-

gorithm for the construction of the intersection of a finite set . of half-

spaces in three dimensions .

The k-d tree is a data structure useful in classification and anal-

ysis of multidimensional data . Each nonterminal node of the k-d tree

represents an ordinate axis and a partition hyperplane on that axis . The

terminal nodes represent bins delimited by the partitions of its ancestor

nodes . The entire k-d tree is a partition of Euclidean k-space .

If S is a finite set of points in Euclidean k-space, and p is a

point in S, the nearest neighbor of p in S is a member of S, distinct

from p which minimizes the distance from p . We find bounds for the time

for finding the nearest neighbor of all points using the k-d data struc-

ture . In particular, we examine three different criteria for choosing

the partition ordinate of each node in the k-d tree, based on the test

point set. We obtain tight bounds for the best of these criteria,

which generates the "square tree' .

The second problem is to efficiently construct the intersection of a

finite set of half-spaces in three dimensions . If N is the number of

half-spaces, our algorithm takes time proportional to NlogN . Intuitively,

the algorithm first constructs a northern and a southern cap, then inter-

sects these two polyhedra to generate the result polyhedron . We can

efficiently construct the caps from their constituent half-spaces by a

divide-and-conquer technique . After constructing the caps, we vertically

stratify space into slabs by passing horizontal planes through the ver-

tices of the caps . By elementary geometry, we can examine the slab

between two vertically consecutive vertices to determine whether the caps

intersect within that slab. If not, we can .determine whether any inter-

section must be above or below the slab . Thus using a binary search, we

can find an edge of the final intersection, and need merely extend this

edge around the polyhedron to complete the intersection .

ii

We solve two problems.

PRIPACE

1 . Find the worst case average search time for the

nearest neighbor search using the k-d tree data

structure, and

2.

	

Determine efficiently the intersection of a finite

set of half-spaces in three dimensions.

Both results are obtained using the technique of divide

and conquer . The first result is of interest in pattern

matching and data analysis, . while the second result is bet-

ter than the worst case of the simplex algorithm for three-

variable problems .

ACKNOWLEDGEMENTS

I am indebted to Andrew Yao for the planar form of the

bounds on near neighbor search times using k-d trees . I

would also like to thank Michael Shamos for suggesting the

prcblem of intersecting half-spaces in three dimensions . A

special note of thanks goes to Jon Bentley for stimulating

my interest in computational gecmetry, and to Forest Baskett

for being a patient and helpful advisor . And last but not

least, deepest appreciations are due the large supporting

cast which kept me going and made this possible .

This work was sponsored by the Computation Research

Group of the Stanford Linear Accelerator Center, under con-

tract with the United States Department of Energy .

TABLE OF CONTENTS

Preface	 iii

Acknowledgements	 iv

	

Chapter page

I . Nearest Neighbor Search using K-d Trees	 1

1
2
2
3
4
6
8
8

11
13

General Notation	
K-d Trees	

History	
Definition	
Construction	
Nearest Neighbor Searching	

The Problem	
Bounds for Cyclic Tree Searches	

Upper Bound	
Lower Bound	
Summary .

Bounds for Square Tree Searches	14
Upper Bound	 14

18
20

Lower Bound	
Summary

Spread Tree Nearest Neighboring Searches	21
Conclusion . 23

Summary	:	 23
Further Research	 23

II . Intersection of a Finite Set of Half-Spaces 25

Terms • . .t	•
The Algorithm	 39

First Stage	 29
Timing	 32

Second Stage	 32
Divide and Conquer 32
The Edge Extension Procedure	 34
Timing	 36

Third Stage	 36
Binary Search 37
The Hill Climb 40
Onward and Upward 44
The Final Edge Extension	47
Timing	 47

Timing Summary •	 48

Appendix

	

page

A .

	

The Bin Refinement Procedure	 49

B .

	

The Nearest Neighbor Search	 50

C •

	

Coconut Crunchies	 51

BIBLIOGRAPHY	 52

LIST OF FIGURES

Figure

	

page

1 . Bin corner inclusion Examples	 9

2 . Worst Case Example of a Cyclic Tree	13

3. Projection oLto xi,xj-axis plane	 15

4. Worst Case Example of a Square Tree	21

5. Worst Case Example of a Spread Tree	22

6. Connections between Half-space, Plane, and
Sphere Point	 27

7. Relationship between Convex Hull and Infinite
Faces	 30

8. Operation of the Edge Extension Procedure	35

9 . Typical Step Options	 42

10 . Example of Diagonal Stepping	 43

11 . Choosing the Direction in the Binary Search	46

LIST CF TABLES

Table page

1 . Search Time Behavior of K-d Trees	 24

2 . Decision Tree of Polygon Intersections	39

Chapter I

NEAREST NEIGHBOR SEARCH USING K-D TFEES

1 .1 GEI EBAL NOTATION

We shall be discussing finite sets of points in Eucli-

dean k-space . If S is a set,)S) will denote the number of

members of S . If p is a point, pi will denote the ith coor-

dinate of p . We shall use the notation d(x,y) to denote the

distance from object x to object y, and r(p,S) to be the

distance to the nearest neighbor of point p in the set S .

We shall also use the notation BALL(p,S) to represent the

subset of Euclidean k-space within distance r(p,S) of point

p . The term logN will mean the logarithm of N to the base

2 .

We shall need some notation to describe order of %agni-

tude calculations . We shall say g (n) = 0 (f (n)) if there

exist a constant c and an integer I such that g(n) <_ c f(r)

for n>u . We shall say g (n) = m (f (n)) if there exist a con-

stant c and an integer " such that g(n) >_ c f(n) for n>M .

Lastly, we shall say g(n) = e(f(.n)) if there exist constants

c and d and an integer N such that c f(n) S g (n) <_ d f(n)

for n>C .

1 .2 K=2 MIS

1 .2 .1

	

H-}story,

Bentley' developed the concept of a multidimensional

binary tree, and indicated that this data structure would be

useful in answering nearest neighbor queries . Friedman,

Bentley, and Finkelt used a modified form of the k-d tree to

answer nearest neighbor enqueries .

1 .2.2 Definition

A k-d tree is a binary tree with distinct types of

nodes for the internal and leaf nodes . The internal nodes

are called "partitions", the leaves are called "buckets" . A

bucket contains a list of points in k-dimensional Euclidean

space . A partition is composed of four elements : a left

subtree called the "lowson", a right subtree called the

"highson", a partition axis called the "discriminant", and a

partition value called the "position" . The discriminant

will in general be an integer between 1 and k, the position

will be a real number .

A partition divides the poincs in the buckets below it .

For example, suppose L is a partition which discriminates

'J . L . Bentley, "Multidimensional Binary Search Trees for
Associative Searching", _2mm Z icaio-r.s of the AC :'.,
18(1975), pp . 509-517 .

2J . H . Friedman, J . L . Bentley, and R . A, Finnkel "Aq Algor-
ithm for Finding Best Matches in Logarithmic rime", Star-
ford Linear Accelerator Center Report SLAC-PUB-1549, Febri-
ary 1975 .

- 2 -

along the ith axis . If p is a point in a bucket in the low-

son subtree then pi <- position(L), likewise if q is a paint_

in a bucket in the highson suhtree then qi > position(L) .

With each node, we shalll associate a set of bounds .

There will he a lower and an upper bound along each axis .

For the root of the tree, the lower rounds will be -oo, and

the upper bounds too . If L is a partition in the tree with

discriminant i, then lowson(l) has the same bounds as L, ex-

cept that the upper bound along the ith axis is position(L) .

Likewise, highson has the same bounds except that the lower

bound along the ith axis is position(L) . Obviously, in or-

der that the upper bound along an axis always be greater

than or equal to the lower bound along that axis, the posi-

tion of a partition must be between the upper and lower

bounds of the discriminant .

Finally, we shall call the space delimited by the

bounds set of a node the "bin" of that node . If q is in a

bucket L, then BIN (q) will denote the bin associated with L .

The sequence of partitions leading down to BIN(q) we will

call the bin partitions of q .

1 .2 .3 Construction

Given a set S of N points in k-space, we wish to con-

struct a k-d tree on those points . Construction of the k-d

tree proceeds by topdown generation of the partitions . We

shall use the term refinement to mean the selection

	

f

- 3 -

discriminant and position, and the division of the set of

points between the lowson and highson .

As the root node, we first create a single large bucket

which contains all the points . We then refine all bins un-

til they contain . no more than some constant number of

points. The method of choosing the discriminant we shall

leave until later . We shall always choose the position as

the median coordinate along the discriminant axis, so that

the lowson and highson subtrees will contain as equal a num-

ber of points as possible . This guarantees that the depth

of the tree will be at most l ogN. in the illustration of

our arguments below, we shall assume that the maximum number

of points in a bucket is one. Appendix A gives a pseudo-

ALGOL description of the refinement procedure .

Nearest Neighbor_ Searching

The nearest-neighbor of a point p in a point set S is a

member of S different from p with minimal distance from p .

The nearest-neighbor problem is to find the nearest-neighbor

of a given point p . The brute force solution to this prob-

lem is to find the distance to all other points, and select

the minimum .

Clearly, the time for finding the nearest neighbor of

all points using the brute force method is proportional to

the square of the number of points . Friedman, Baskett, and

Shustek3 developed an algorithm using projections which has

1 .2 .4

expected time strictly less than the brute farce method .

is possible to find the nearest neighbor of a point even

more efficiently if we have a k-d tree already constructed

on that set .

We give a recursive definition of the se3ich procedure

using a k-d tree . For a bucket node, the procedure simply

scans the point list, computing the distance from the proto-

type point p, and keeping track of the identity of the near-

est one . For a partition node, it first searches the sub-

tree which is ir. the same direction as p from the position

along the discriminant axis . if any part of the bin of the

opposite subtree lies within the distance to the current

closest neighbor, that subtree must also be searched . Ap-

pendix B gives a pseudo-ALGOL description of the nearest

neighbor search .

Dobkin and Lipton+ developed an algorithm which can

find the nearest neighbor of a point in O(N logN) time . Un-

fortunately, this quick search is possible only after a

costly preprocessing step, generating a data structure of

3J . H . Friedman, F . Baskett, and L . J . . Shustek,'"An Algor-
ithm for Finding Nearest Neighbors", T_EF_ Transactions on
C_omEuters, October 1975, pp . 1000-1006 .

4D . Dobkin and F . J . Lipton, " ultidimensional Searching
Problems", Yale University Computer Science Research report
#34, October 1974 .

elements . By comparison, the k-d tree data structure takes

only 0(N logN) time to generate . Thus in apDlicatio-.s where

preprocessing costs are impcrtant, the k-d tree may be an

important method .

1 .3 THE _PE^0`d_LJ

Bentley suggests that one can construct a k-d tree in

which the discririnant cycles among the axes as the level of

refinement increases . We shall call such a tree "cyclic" .

In order to make use of the geometrical structure of the set

of points in constructing the tree, it would seem *_o be ap-

propriate to use the spread of a bin along an axis, that is,

the difference between the largest and smallest values along

that axis among the points in the bin . Friedman, Bentley,

and Finkel recommend that the discriminant be chosen as the

axis along which the points in the bin have the largest

spread . We shall call this type of tree "spread". We pro-

pose a slight variation on this idea and choose that axis in

which the separation of the bounds is currently greatest .

We shall call such a k-d tree "square", since it tends to

have equilateral bins .

We know that the search for the nearest

point in the set using a k-d tree can be quite poor, indeed,

we may be forced to look at all other points in the set . We

might ask however, about the average search behavior .

Friedman, Bentley, and Finkel empirically established that

neighbor of a

the average search time for the spread tree is proportional

to logN . Here we shall analyze the worst case avenge

search time behavior . Our interpretation here is that we

should find the worst case time for finding the neighbors of

all the points in the tree, and then compute the worst case

average by dividing by the number of points . Call the worst

case total search time for all nearest neighbors in a k-d

tree TStype(N,k), where type is either "cyclic" or "sq'iare",

N is the number of points, and k is the dimension of the

space .

we immediately have the straightforward bound

2
TStype (N,k) = O (N) ,

since the worst that could happen is that we search the

tire tree to find the .nearest neighbor of each point . Bent-

ley and Shamoss describe an algorithm which can solve the

problem of finding the nearest neighbor of all points in

k- 1
0 (N log

	

N)

time, for k>1 . We shall now develop upper and lower hounds

on the maximum search time for the nearest neighbors of all

points, first for cyclic trees, and then for square trees .

We shall also demonstrate that the spread tree has worse

worst case behavior .

- 7 -

en-

SJ . L . Bentley and M . I . Shamos, "Divide and Conquer in Mul-
tidimensional Space", Proceedings of the Eighth Symposium
on the Theory of Computing, ACM, May 1976, pp . 220-230 .

1 .4

	

BOUNDS FOR CYCL'_C ilEE 3°_APCHES

1 .4 .1 Upper Bound

The following theorem establishes an upper hourd for

the search time for finding the nearest neighbors

points using a cyclic k-d tree .

THEOREM : TScyclic(N,k) = O (N
2-1/k

log N) .

PROOF: Since the k-d tree nearest neighbor search proceeds

by first finding the nearest neighbor on the same side of

the upper-most partition, and then if necessary, finding the

nearest neighbor on the opposite side, we can say

TScyclic(2N,k) <_ 2TScyclic (N,k) + R (N,k) ,

	

(1)

where R represents the cost used in looking for nearer

neighbors on the opposite side .

Let us investigate the size of the term R(N,k) . If we

say that the first partition hyper-plane I divides the set

of points into subsets A and 8, then we cat write

R (N, k) S (1P(A,B) I + (P(B,A) I) logN,

where (p,q) in P(A,3) iff p in A, q in B, and d(p,3-~N(q)) <_

r(p,A) . The set P(A,B) contains the distance comparisons

that must be done in crossing over from A to B . The factor

of logN derives from the fact that it takes at mast logN

time to find q starting from the root of the tree .

Consider any pair (p, q)

	

in ' P (A,B) . Project FIN (q)

onto L, the Partitioning hyperplane . If

projected bin

	

lies within

	

BALL(p,A), then

	

ssy that

of all

some corner of the

(p,q) e C(A,B) ;

	

assign

	

all

	

other

	

pairs

	

to

C' (A,B) = P(A,B) - C(A,B) .

	

(See Figure 1 .)

(p, a) in C (A, B) , (P,q') in C' (A,B)

Figure 1 : Bin Corner Inclusion Examples

Now let us see how many members are in each of C(A,S)

and C'(A,B) . If q is in B, then the projection of EIN(q)

onto L has at most

k-1
2

corners . Also for any projection point u in L, at most some

constant number ck of points p in A have r(p,A) ? d(p,u), so

that BALL(p,A) includes u 6 . Thus'

- 9 -

k-1
IC(A,B) I 5 IBI 2

	

ck = 0(N) .

Suppose q is a point in B such that BALL(p,A) inter-

sects BIN(q) . If the projection of BIN(q) onto L has no

corners . within BALL(p,A), then clearly BIN(q) has no corners

in BALL (p .1) . We shall bound IC'(A,B)I using this looser

criterion .

We approach the question of how large IC'(A,B)I is from

the other side. That is, for each p in A, what is the maxi-

mum number of q in B such that BIN(q) is within distance

r(p,A) of p, yet no corner of BIN (q) is within distance

r(p,A) of p? With this question in mind, let us examine the

ccnstruction of the k-d tree for B . We shall bound the num-

ber of bins whose corners lie outside the BALL(p,A), but

such that they also overlap that ball .

As we start, note that all bins so far defined, namely

all of B,, satisfy the definition if BALL(p,A) intersects L,

for there are no corners (unless k=1) . If the first refine-

ment does not create a corner, and the partition divides

BALL(p,A), then we have two bins .

As we continue the refinement, we note that at each

level, we may possibly double the number of bins, if the

partitions are placed so that they divide the previoas pins,

but do not create corners within BALL(p,A) . If a discrimi-

&J . L . Bentley and M . I . Shamos, "Divide and Conquer in X'xl-
tidimensional space", Proceedings of the Eighth Symposium
on the Theory of Computing, ACN, May 1976, pn . 220-230 .

nant is chosen that must create a corner, chooaing the posi-

tion so that the partition does not overlap 3ALL(p,A) leaves

the same number of bins overlapping that ball, without cor-

ners . As we cycle through the axes in further iterations of

the refinement, at least one of the partitions must lie out-

side the ball, or else we divide our bin into subbins with

corners, and all lover bins would have corners . Thus for

each k levels, we can double the bin count at most

times, and we cat have at most

2 logN (k-1) /k = N 1-1/k

bins . This is true for each p in A, thus

)C' (A,B) (< N 2-1/k = 0 (N 2-1/k)

We thus find

R (2N,k) _ (0 (N) + 0 (N2-1/k))
logN = 0

(v 2-1/k loq!1) .

Substituting this in (1), and solving the recurrence rela-

tion, we finally obtain

2-1
Tscyclic (N,k) = O (N

	

/k
logN) .

1 .4 .2 Lower- Bound

Ae can exhibit a particularly bad case for the nearest

neighbor search using the cyclic k-d tree .

THEOREM :

	

For k22, there exist point sets such that the

total running time for the nearest neighbor search for all

points using the cyclic tree is

k-1

2-1/k
V (N

	

) .

PROOF : We proceed by construction . We first choose the

main partition L, say x1=0 . We want the set A to be strung

out along the xk-axis, so we might choose the set A of

points as (0, 0, 0, . . ., 0, i), for 15i5N/2. Thus for

p in A, r(p,A)=1 and the overlap of BALL(p,A) with the other

side of L is a complete hemisphere .

The points of B will he chosen arbitrarily, with only

two restrictions . The first restriction is that all points

of B must have all coordinates negative . Thus the k-d tree

search will not find any new closer neighbors in B for

points in A . The second restriction is that the points of B

must be within distance 1/2 cf the xk-axis . Those bins de-

termined by these points B which also extend in the region

of points xk>O are long, spindly bins which pass within dis-

tance 1/2 of each of the points of A .

Now at each level, the number of bins of B entering the

region xk>0 doubles, except when the discriminant axis is

xk, in which case, the number remains the same . Thus there

are

logN(1-1/k)

	

1-1/k2
N

bins of B entering the rk>0 region, and hence

1-1/k

	

2-1/k
N (N

	

) = N

distance tests must be made by the k-d tree search .

Figure 2 shows an example of this constructior for k=2,

N=32 . For each of the sixteen points of A, the nearest

neighbor search must investigate the four topmost bins of B .

Horizontal
Scale exaggerated

(B)

. (.

L

Figure 2 : Worst Case Example of a Cyclic Tree

1 .4 .3 Summary

Combining the results of the previous two theorems, we

know that the worst case time for finding the. nearest neigh-

bors of all points using a cyclic tree is bounded such that

•

	

(N2-1/k) = TScyclic (N ,k) = 0 (N 2-1/k logtl) .

We do not attempt to find tighter bounds here for, as

we shall see in the next section, the square tree exhibits

significantly better characteristics .

(A)

Bins not shown for A

1 .5 kOUN-D_S FCR SQUARE TEES S EAPC.9ES

1 .5 .1 Upper_ Pound

The following theorem establishes an apoer bound for

the search time for the nearest neighbors of all points us-

ing a square tree .

k
THEOREM : TSsquare(N,k) = O(N log 11) .

PROOF : In the case of TScyclic, we found that there were

two types of bucket overlap in the search .

	

Here, we shall

first divide the computation or this basis . Thus, we write

TSsquare(N,k) = TCsquare(N,k) + TC'square(N,k),

	

(2)

where TCsquare represents the search time involved with

buckets which, when projected onto the separating partition,

have a corner within the search ball, and TCsquare repre-

sents the search time involved with buckets which overlap

the search ball, but when projected onto the separating par-

tition, have no corner within the search hall . Actually, we

shall estimate TCsquare by overlapping somewhat with

TCsquare, and computing the search time involved with buck-

ets which intersect the search ball, but have no corner in

the search ball .

By the same divide and conquer reasoning as in the

cyclic case, we readily find

k-1

	

2

	

2
TCsquare(N,k) <_ N 2

	

ck log N = O(N log N) .

We shall not use the divide and conquer technique to

bound TC'square. Instead, we start by noting that for each

point p, the nearest neighbor search first finds the se-

quence of length logN of bin partitions of p . Suppose that

L is a bin partition* of p, separating the sets A and B, and

that p in A . we then again ask the question: For any

p in A, what is the maximum number of q in B such that

d (p,BIN (q)) Sr (p,A) and no corner of BIN (q) lies within

BILL (p,A)? As before, we answer this question by following

the construction of the k-d tree on side B . We say that a

bound of a bin intersects BALL(p,A) if the ball contains a

segment of the face created ty that bound .

BIN

xjL Y1 y2

xlU - xjL > 2(y2 - yl)

y2 - y 1 >_ xiU - xiL

Figure 3 : Projection onto xi,xj-axis

xjU

I

BALL (pr A)

plane

At the first level, the only bin is all of B with the

boundary L and any preceding bin partitions of p, and it

satisfies the criterion if L intersects BALL(p,A) . Now cor-

sider the process of refinement of a bin at some later

stage . If the bin has both upper and lower bounds along

some axis which intersect BALL(p,A), then this axis cannot

be chosen as the discriminant at some further s=age, unless

the bin so split has a corner which lies within BALL(p,A) .

This is because we always choose the axis with the largest

spread between upper and lower bounds as the next discrimi-

nating axis. As can be seen in Figure 3, once a bin has up-

per and lover bounds along some axis which intersects the

ball, then the spread along that axis is less that that

along any axis for which neither upper nor lower bounds in-

tersect the BALL(p,A) .

Let us aov examine how this limits the number of buck-

ets which intersect BALL(p,A), but have no corner within

BALL(p,A) . Let F(h ;kl,k0) denote the number of such buckets

generated in h more refinement steps of a bin having k1 axes

with a single bound intersecting BALL(p,A), and kO axes with

no bounds intersecting BALL(p,A) . Then we have F(h ;kl,k0) _

F(h-1 ;kl,kO), if we choose a discriminating axis and

partitior. which

	

does not

	

intersect

BALL(p,A), or

2 F(h-1 ;k1+1,kO-1), if we choose a discriminating axis

from the second set, and a partition

which intersects BALL(p,A), or

F(h-1 ;k1-1,kO)+F(h-1 ;k1,kO), if we choose a discrimi-

nating axis from the first set, and a

partition which intersects BALL(p,A) .

Note that if k0=0, then we have a bin which rust have a

corner which projects otto L within BALL(p,A), and any

bucket within this bin must also have this property . Hence

we have the end conditions F(h ;k,C)=O and F(O ;k1,kO)=1,

kO*O .

for

We now ask, what is the maximum possible value of

F(h ;k1,kO)? The solution to the recurrence relation defined

above is

kO-1 h-kO+1

	

kO+k1-1
F(h ;k1,kO) = 2

	

= C(h

	

) .
kO+k1-1

Although the set B may be bounded by preceding bin par-

titions of p which intersect BALL(p,A), the relevant bin

partitions are these which have the same discriminant as L,

and which of course lie on the same side of p . If ?ALI(p .A)

does not reach a relevant preceding bin partition of n, we

shall call L a "terminating" partition . Than the number of

bins in B to be searched is limited by

k-1
F (logN ; 1,k-1) = 0 (log

	

N) .

If BALL(p,A) does reach a relevant preceding bin partition

of p, then the number of bins in B to be searched is limited

by

k-2
F (logN ;O,k-1) = O (log

	

N) .

A terminating bin partition is called thit because the

search ball for p will not intersect any preceding relevant

bin partition of p . Thus along each axis direction, the

search ball intersects at most

logN 0 (log k-2
N)

+ 0 (log
k-1

N) = 0 (log k-1 N)

buckets . Considering all directions, all points

factor of logN to find each bucket, we have

a

P, and a

k+ 1

	

k-1

	

k
TC'square(N,k) 5 2

	

N 0(log

	

N) logN = 0(N log N) .

Substituting this in (2), we have

k
TSsquare (N,k) = 0 (N log N) .

1 .5 .2 Lower Bound_

We can exhibit a particularly bad case for the square

k-d tree .

TR80RBN : For k>_2, there exist point sets for which the ac-

tual search time using a square tree is

k
T (N log N) .

PROOF: The construction is similar to that for the cyclic

tree . The set A is constructed strung out at unit intervals

along the positive x1-axis . All members of r will have all

non-positive coordinates, and most will lie close to the

x1-axis . Some points of B will be chosen so as to force

elongation of sore of the bins .

de shall be building sets of points composed of trazs-

lated sets of points. Because these sets of points are as-

sembled in layers, we shall call our structures "plats" .

order to recall how much building has beer, done in

n

con-

strutting a plat, we shall give it an order number, such 3s

"k-plat" where k is a positive integer .

Let z = 1/(2N) . Define a 1-plat of size M to be the

set of I points in k-space, (nz, 0, . . ., 0), where 05a<M . If

the contents of some subbin of B was a 1-plat, the k-d tree

nearest neighbor search for a point in A would take logs

time to find that there is no closer neighbor in that sub-

bin .

B shall now be defined as a structure composed of many

translated 1-plats, such that the square k-d tree construc-

tion algorithm generates subtins coincident with the plats .

The structure will he composed of repetitions of substruc-

tures, which will be composed cf repetitions of substruc-

tures, and so on, down to 1-plats .

For j>1, define a j-plat of size ?1 to be logy trans-

lated (j-1)-plats of decreasing size, and a single extra

point . The ith subplat will be a (j-1)-plat of size

translated by the subtraction of (i-1)z from from the ith

coordinate of each point . The extra point's only non-zero

coordinate will be the jth, which will be -IN . Thus the j-

plat's widest spread is along the jth axis . The square k-d

tree construction procedure will partition between the larg-

est (j-1)-plat and the rest cf the subplats . This remainder

will in turn be partitioned between the second largest

(j-1)-plat and the remainder, and so on, down to the single

extra point . It is easy to verify that the nearest neighbor

search time for the 1-plat wculd be at least

loges

j

ire finally define B to a k-plat of size N/2 . Consider-

ing that for each point in A, the nearest neighbor search

must make an unsuccessful search of E, we obtain

k-1

	

k
TSsquare (N,k) = N/2 Q (1ogw) ;)(log

	

N) = 4(N log N) . ∎

Figure 4 gives an example of this construction for k=2,

N=32 .

1 .5 .3

	

Summary

Combining the preceding two theorems, we know that the

worst case time for finding the nearest neighbor of all

points using a square tree is bounded

k
TSsquare(N,k) = 49(N log N) .

This is within a factor of logN of the behavior of the

algorithm of Bentley and shamus, which was designed to solve

the problem of finding the nearest neiqhbor of all points

only . Thus we have determined the worst case performance of •

- 2 0 -

1 .6

Horizontal
Scale Nonlinear

(B)

.

Figure 4 : Worst Case Example of a Square Tree

the nearest neighbor search in a square k-d tree to within a

constant factor . The above arguments can be extended with

small changes to bucket sizes greater than one. The only

effect is a change in the constant cf proportionality .

SPREAD TREE NEAREST NEIGHBORING SE U CH_S

Although Friedman, Bentley, and Finkel found

(A)

Bins rot shown for .4

that the

expected behavior of the spread tree was quite good, and in-

deed was better than that of the cyclic tree, the worst case

for the nearest neighbor search using the spread tree is

worse .

We can construct examples Or which *ime is use3 in the

search for the nearest neightor of all points is of the sane

order of magnitude as the brute force solution . We develop

an example for k=2, in the x,y-plane . We choose the first

N/2 points as (O,i), for MAN/2 . We choose the next N/2-1

points as (i/N,0), for 15i<_N/2-1 . Lastly, we choose the Nth

point as (N,0) .

	so

L

Figure 5 : Worst Case Example of a Spread Tree

Now the spread in the x dimension is N, while

along the y dimersion it is N/2 . Thus the first partition L

will separate along the x-axis, between the points on the

x-axis and those on the y-axis . Now the points on the x-

axis have zero spread in the y dimension, so all partitions

- 2 2 -

of those points must have the x-axis as disc rimina r.t . Hence

the search ball of each point on the v-axis must intersect

the bin of each point on the x-axis . This forces the search

time to be at least

2
(N/2) (N/2) = C (N) .

Using a statistical definition of the spread still does

not preclude the construction of such bad examples, as long

as some fixed fraction of the pcints can be squeezed along-

side the initial partition . This seems to indicate that in

the creation of k-d trees, the geometry of the bins is more

important than that of the pcint set . The choice of the me-

dian position seems to force the shape of the tree as much

as is necessary.

1 .7 ggONCLUSICN

1 .7.1 Summary

Table 1 summarizes the known behavior of the k-d tree

nearest neighbor search .

1 .7 .2

	

Further Fe.RttrSh

We have not found the average behavior of the nearest

neighbor search using a k-d tree . Despite the existence of

strong empirical evidence, there is no analytic evidence

that the k-d tree should have logarithmic expected search

time . our results hint that it should be possible to find

an analytic logarithm-squared bound for the expected search

time .

- 2 3 -

Tatle 1 .

Search Time Behavior of K-d Trees

TREE-TYPE
WORST CASE

LOWER BJUND
WCFST CASE

UPPER BJUND
EXPECTED
E'EPIEICAL

2-1/k 2-1/k 2
CYCLIC 7 (N) 0(N log N) 0 (`N logN)

2 2
SPREAD ~(N) C(N) O(N logN)

SQUARE
k k

O(N logN)%(N log N) O(N log N)

This would enable us to solve three-variable linear

ming problems in time less than the worst case of the sim-

plex algorithm .

1F . P . Preparata and D . E . Muller, "Finding the Intersection
of a Set of n Half-spaces in Time o(nlogn)", University of
Illinois Coordinated Science Laboratory Technical report
#R-803 (ACT-7) ;UILU-ENG77-2250, December, 1977 .

2K . Q . Browr. "Fast Intersection of Half Spaces" , Draft,
Carnegie-Helion University, November, 1977 .

Chapter II

INTERSECTION OF A FINITE SET OF HALF-SPACES

Consider a set S of N half-spaces in three dimensions .

The problem is to construct the polyhedron which represents

the intersection of the half-spaces as quickly as possible .

The lower bound for this problem is O(N logN) time, since

any algorithm which can solve this problem could solve the

corresponding problem in two dimensions, where the lower

bound is 0(N logN) . Fecent work by Preparata and Muller',

and Brown2 has led to algorithms which can solve this prob-

lem in o(N logN) time . We shall demonstrate here our algor-

ithm for the solution of this problem in O(N logE) time .

-25-

program-

2 .1

	

TERMS_

Each half-space

supporting plane and

fies which of the two

plane is in the set .

mal to the

space . if

the center

the sphere

corresponding sphere

supporting plane pointing away from the half-

we follow a vector

of the unit sphere

at a unique point .

is determined by a plane called the

an orientation . The orientation speci-

half-spaces defined by the supporting

For each half-space, consider the nor-

point . If x is

parallel to this normal from

at the origin, it intersects

This point we shall call the

a half-space in the set

S, we shall refer to the supporting plane as the plane x,

and the corresponding sphere point as the sphere point x .

(see Figure 6) .

The role to be played by the sphere points in .the al-

gorithm might be best illustrated by considering an extreme

case of the problem . Suppose that all the half-spaces in-

clude a unit sphere, and that the supporting planes are all

tangent to that sphere . Then the sphere points are the

points of tangency, while proximate sphere points correspond

to neighboring faces in the intersection polyhedron .

We shall use the term corner to mean the vertex of a

polygon, and the term vertex to mean the vertex of a polyhe-

dron .

On the plane, the convex closure of a set of points can

be defined as the intersection of all half-planes which con-

tain all points in the set, and the convex hull as `_hose

Figure 6: Connections between Half-space, Plane, and
Sphere Pcint

points in the set on the boundary of the convex closure . On

the surface of the sphere, we similarly define the convex

closure of a set of points as the intersection of all hemi-

spheres which contain all points in the set, and the convex

bull as those points in the set on the boundary of the con-

vex closure . For some point sets, such as the vertices of

an inscribed regular tetrahedron, these structures do not

exist . If a sphere point is in the convex hull, and does

not lie between two other points or the convex hull, we

shall say that it is independently in the convex hull .

Points that are the in the convex hull, but are not inde-

- 27 -

pendently in the convex hull, would thus lie on the short

segment of the great circle joining some pair of other

sphere points ; we shall say that these points are depend-

ently in the convex hull .

By constructing the convex hull of a set, we mean the

creation of a linked list of the points on the convex hull

in order.

	

By constructing the intersection polyhedron, we

mean the creation of a data structure

planes which are faces of the intersection polyhedron and

the relationship of "neighboring face" . we shall call a

face of a polyhedron an infinite face if it contains an in-

finite ray .

2 .2

	

LE 4LGOEITHN

Our algorithm proceeds in three stages . In the first

stage, the set of planes is partitioned into two parts . in

the second stage, a divide and conquer method is used to

construct the intersection of the half-spaces in each hart .

The method here is similar to the construction of the Voro-

noi diagram in the plane3 . In the third stage, the oolyhe-

dra found in the second stage are intersected . It is not

until this last stage that we shall discover whether the

total intersection is finite or even null .

encodes the

3H . I . Shamos, "Geometric Complexity", Cor.ference Fecord of
Seventh Annual AC" Symposium en Theory of Computing,
(1975), pp . 224-233 .

2 .2 .1

	

FFiLst Stage

we first partition the set S of N half-spaces into two

parts . We do this by picking an arbitrary hemisphere of the

unit sphere, then assigning a half-space to the first part

if its sphere point lies in the hemisphere, and to the sec-

ond part if the sphere point lies in the opposite hemi-

sphere.

We shall find the following lemma useful .

LEMMA : Let H be a nonempty set of half-spaces whose corre-

sponding sphere points lie within a hemisphere .

a .

	

The set of sphere points of the members of H has a

convex hull on the surface of the sphere .

b . If the supporting plane of a half-space appears as

an infinite face of the intersection polyhedron of

the half-spaces then the corresponding sphere

point appears on the convex hull of the sphere

points . if a sphere point is independently in the

convex hull, the corresponding supporting plane

appears as an infinite face of the intersection

polyhedron . If a sphere point is dependently in

the convex hull, the corresponding supporting

plane either does not appear in the

polyhedron, or appears as an infinite face .

intersection

PROOF :

a . By definition, there is at least one hemisphere

which contains all points in the set, and thus the

intersection of all such hemispheres is well-de-

fined .

Figure 7 : Relationship between Convex Hull and Infinite
Faces

b .

	

If a supporting plane x appears as an infinite

face, by definition there is an infinite rav in

that face. Consider the great circle passing

through sphere point x, and orthogonal to the in-

finite ray (See Figure 7) . The hemisphere gener-

ated by the great circle in the directionn opposite

the ray contains all sphere points of the set .

For suppose there is some sphere point y not in

this hemisphere . Then planes x and y must inter-

sect such that y cuts off a terminal segment of

the ray, which is contrary to the ray's being in-

finite . Since sphere point x is on the boundary

of this hemisphere, itt must also be or, the convex

hull .

Conversely, if sphere point x is on the con-

vex hull between points y and z, where x is not on

the great circle joining y and z, then there is a

hemisphere with x on the boundary and all other

sphere points in the interior . Thus the remaining

planes can only cut off initial portions of the

ray in the plane x which is orthogonal to the

greatt circle and oriented in the direction oppo-

site the hemisphere . Since there are only fin-

itely many other planes, an infinite segment_ of

that ray must remain in face x, and thus x is an

infinite face . If x lies on the great circle he-

tween y and z, then face x may or may not be pres-

ent ; if it is present, it has infinite parallel

edges perpendicular to the plane of the great cir-

cle yxz . ∎

2 .2 .1 .1

	

Timing

Since we only need to examine each half-space once to

assign it to a part, the first stage takes o(N) time .

2.2.2 Second Stage

2.2 .2 .1

	

Divide and Conquer

This stage makes use of a recursive divide and conquer

procedure .

The procedure takes as an argument a set of half-spaces

whose corresponding sphere points all lie in the same hemi-

sphere. The procedure first partitions this set into two

parts, applies itself recursively to each part to produce

the convex hull of the sphere points and the intersection

polyhedron of the half-spaces . It combines the two convex

hulls to form the convex hull of the whole set . Lastly, it

intersects the two partial polyhedra, to produce the inter-

section of all the half-spaces in the input set .

To separate the half-spaces, the procedure chooses a

great circle which partitions the set of sphere points into

two equinumerous parts . For example, if we had sorted all

the points in a hemisphere ty angle around some axis lying

- 3 2 -

in the diameter plane of the sphere, then we can ch3ose the

median of the angular coordinates to separate the set . The

choice of a great circle as a partition ensures that the

convex closures of the two parts are disjoint .

Suppose now that the intersection of the half-planes

and the convex hulls of the sphere points have been found

for each part by using the procedure recursively . We first

combine the convex hulls to find the convex hull of all the

points. Since the two convex closures are disjoint, from

any sphere point on the first part we can find a link of the

convex hull of the second part such that the point of the

first part is known to be on the exterior side of that face

of the convex closure . Likewise we car. find a link of the

first part which faces out tc some point in the second part .

We then delete these links, and link the two hulls together.

Finally we iteratively delete concave vertices until no more

exist . The worst case time to construct the convex hull of

the entire set is proportional to the number of points on

the convex hulls .

There exists in the combined convex hull a link from

the first part to the second and another link back . These

links are between points which by the above lemma correspond

to planes which are infinite faces of the intersection poly-

hedron of all the half-spaces, and the intersection of these

planes appears as an edge on that polyhedron . We can easily

check for dependent presence on the convex hull and the loss

of faces in linear time .

- 3 3 -

Applying the edge extension procedure described below

by starting at the known infinite edge, we car. generate the

set of edges of the polyhedron determined by the intersec-

tion of the partial polyhedra . During the extension, some

faces and edges of the partial polyhedra may be "cut off"

and thus must be deleted . The edge- and faces of the inter-

section polyhedron are those created by the extension proce-

dure together with those in the partial intersection polyhe-

dra which were not "cut off" .

2 .2.2 .2

	

The Edge Extension Procedure

The edge extension procedure is an important part of

the algorithm . This procedure starts from ar. edge that is

known to be created by the intersection of two polyhedra,

extends that edge in a specified direction, and generates

all edges formed by the intersection along that direction .

The polyhedra must have a special relation, namely that the

convex hulls of the sphere points of the face planes are

disjoint.

For example, say that the known edge el is the inter-

section of a face x of the first polyhedron and a face v of

the second polyhedron . We extend this edge until it first

intersects an existing edge of x or y, say edge e2 of y (See

Figure 8) . This edge is the intersection of y with a face z

in the second polyhedron . We terminate el at the point of

intersection with e2, and now begin the extension of the

edge e3 defined by the intersection of x and 2 . If el does

not strike any opposite edge of x or y, then x and y are in-

finite faces, and the extension procedure terminates .

'Figure 8 : Operation of the Edge Extension Procedure

Since the search for the next edge of face x to be in-

tersected by e3 can commence at that edge intersected by el,

we can design the search for the first

such that the extension procedure takes time proportional to

the number of edges .

The use of a great circle to separate the sphere points

of the parts ensures that the partial polyhedra will have

- 3 5 -

intersecting edge

the special relation specified above . If we were to project

the intersection polyhedron onto the plate determined by the

great circle, the intersection edges form the convex hull of

the projection polyhedron . Thus we see that the relation

forces a connected sequence of new edges and the extension

procedure will generate all new intersection edges .

2 .2 .2 .3

	

Timing

Thus we can construct the convex hull of the corre-

sponding sphere points and the intersection polyhedron of

our set of half-spaces . The divide and conquer procedure is

applied to both parts constructed in Stage 1 . The combining

of the convex hulls and application of the edge extension

procedure each take C(N) tiae . Thus like the time for the

construction of the Voron.oi diagram in the plane, the execu-

tion time of Stage 2 is 0(N logN) .

2 .2 .3 Third Stage

Let us examine our current situation . We have reduced

our N half-spaces to two polyhedra, both with infinite ex-

tent . To illustrate their relative orientation, we might

say that these polyhedra are two flowers facing in exactly

opposite directions . The relative position of these flowers

is still unknown however . They may be facing each other,

back to back, or displaced laterally .

If we can now find a pair of faces, one from each poly-

hedron, whose intersection appears as an edge in the polyhe-

dron which is the intersection of all half-spaces, we can

again apply the edge extensicn procedure to generate the fi-

nal intersection . Most of the remainder of the algorithm is

concerned with finding just such a pair of faces .

Let us examine just how we might find such a pair of

intersecting faces . For descriptive purposes, we assume

that the diameter plane used in stage 1 is a horizontal

plane, the first polyhedron is below all its faces, and the

second is above all its faces. We shall call the first po-

lyhedron down-facing, the second up-facing . We construct a

list of the vertices of the polyhedra, augmented by the ad-

dition of virtual vertices at the zenith and nadir, and or-

dered by the vertical or z-coordinate .

Consider any horizontal plane passing through one of

the real vertices in our list . Such a horizontal plane

would intersect a fixed set of faces of the polyhedra, de-

termined by the chosen vertex . The intersection of each po-

lyhedron with the horizontal plane tray be a convex polygon

lying in the plane, may be null, or if the chosen vertex is

virtual, may be the entire plane .

2 .2 .3 .1

	

Binary Search

Our global strategy in the search for a pair of inter-

secting edges will be a binary search . our search investi-

- 3 7 -

gates the region between a pair of vertices in cur sorted

list . We use the horizontal planes passinq through the ver-

tices, and generate the polygons which are the intersections

of the planes with the polyhedra . Thus we can construct the

intersection of each polyhedron with the slab delimited by

the horizontal planes passing through our chosen vertices .

We call these intersection polyhedra slices, and observe

that their vertices all lie in one or the other of the lim-

iting horizontal planes and that the non-horizontal faces,

or "sides", have at most four edges and vertices .

we now look for an intersection edge of the two slices .

We first project the top and bottom polygons of each slice

into a single horizontal plane4 . We then examine the inter-

section relationship between these four polygons in that

plane .

If we intersect two ccnvex polygons A and B in the

plane, we have four possible outcomes . First, an edge of A

may cross an edge of B ; we shall call this an "actual" in-

tersection . Secondly, we may find that A is within B, or

thirdly, we may likewise find that B is within x . The

fourth possibility is that the, intersection is null since A

+For brevity, we shall assign two character Lames to each
polygon . The first character will be Ti or D, if the poly-
hedron is the up-facing or down-facing, re pectivel_v . The
second character will be T or 3, if the intersection is
with the top or bottom limiting plane, respectively . Thus
UT is the projection of the intersection of the up-facing
polyhedron with the top limiting plane . We note that UB is
within UT and DT is within DB .

- 3 8 -

Table 2 .

Decision Tree of polygon Intersections

1* DT is within UT . Any edge of DT appears in
the intersection polyhedron and even inter-
sects a side face of the up-facing slice .

2* UB is within DB . Any edge of UB appears in
the intersection polyhedron and even inter-
sects a side face of the down-facing slice .

3* The ap-facing slice is within the down-fac-
ing slice .

4* The down-facing slice is within the up-fac-
ing slice .

FOUND We have found a pair of intersecting edes,
which are in the intersecting faces - we
wanted .

DISJOINT We have established that the slices do not
intersect, and have a separating plane,
which is the vertical extension of the sepa-
rating line between the polygons UT and Da .

CAN'T BE This outcome will not arise .

HILL CLIMB We must "hill climb" to find a possible in-
tersection .

and B are disjoint . Table 2 represents a decision tree of

polygon intersections to be tested . We always start at 1 by

finding the intersection of UT and DB .

PCLYGONS INTERSECTION RESULT

1 UT-DB

ACTUAL

2

A
within B

3

B
within A

NULL

DISJOINT4
2 UT-DT FOUND! CAN'T BE 1* 5
3 UT-DT FOUND! 3* 2* 2*
4 UB-DB FOUND! 1* 4* 1*
5 UB-DB FOUND! 2* CAN'T BE HILL CLIME

2 .2 .3 .2

	

The Hill Climb

Decision table 2 resolves the question of the intersec-

tion of the two slices, with the exception of the hill-clim-

bing outcome . Let us examine the hill climb in detail .

The slices may yet have an intersection .

projection lies within the intersection of UT and DP . For

each point x in the horizontal plane, let US(x) denote the

point on the surface of the up-facing polyhedron which pro-

jects onto x ; similarly define DS(x) for the down-facing po-

lyhedron . we define the function U(x) where x is in the in-

tersection of UT and DD to to the z-coordinate of the point

US(x) . Thus U(x) is a piece-vise linear convex function on

its domain . Similarly, we define D(x) as the z-coordinate

of the point D5(x), and observe that it is a piece-wise lin-

ear concave function on its domain .

Now consider the function D(x)-U(x) . It is a piece-

wise linear concave function, although there may be more

than 0(N) pieces . If it has a value less than zero at x0,

then the line segment joining US(xO) to DS(xO) lies outside

both polyhedra . If it has a value greater than zero at x0,

then the line segment joining US(xO) and DS(xO) lies within

both polyhedra . The function D(x)-U (x) attains the value

zero at xO if and only if the polyhedra intersect at

US(xO)=DS(xO) . Thus if we do an uphill search on the value

of D(x)-U(x), we can determine whether the polyhedra inter-

sect in the slab .

If so, its

we first evaluate D(x)-U(x) arcund .the perimeter of the

intersection of UT and DB . he know for instance that, at a

corner generated by this intersection, the function has a

value which is the negative distance between the limiting

planes. We only need evaluate at the corners of the inter-

section polygon, since D(x)-U(x) is linear between corners .

if the pclygon has infinite edges, it is an easy matter to

check whether the function becomes positive along that edge .

We choose a maximal corner, and proceed to the actual

search, which follows along the projections of the side

edges of the slices .

Consider the general case of our search. We find our-

selves at the intersection of the projections of an up-fac-

ing edge and a down-facing edge . There are two other edges

in the upper slice adjacent to our current edge, and simi-

larly for the down-facing edge . Thus we have three - lires,

which do not intersect each ether while intersecting each of

three similar lines (See Figure 9) . Thus a total of nine

intersection points are defined, the center one of which is

our current position . In constant bounded time, we can

evaluate D(x)-U(x) at the other eight points, and move on to

the highest . If all are lower, then we are at the maximum

and no intersection occurs . The fact that some of the eight

new points may not be defined because we are too close to

the perimeter can be handled in constant bounded time also .

Note that we don't have to follow any edges induced by the

slicing, since we started at the maximal perimeter corner .

1

planes for the surface of the function

Figure . Typical Step Options

Of course, we want to know how many steps might be

taken by the hill climb . As we noted above, within the in-

tersection of UT and DB there are no intersections between

up-facing edges, and none between down-facing edges . Thus

the intersection pattern of the up-facing edges with the

down-facing edges is like that of two families of parallel

lines .

Now let us examine Figure 9 . if the climbing procedure

moves to one of the points adjacent to X, say 1, then we

know that D(l)-U(1) is greater than each of D (a) -TJ (a) ,

D (d)-U (d) , and D (X)-U (X) .

	

But a 1X and 1dX define bounding

points to the right of the line aid evaluate to less than

D(1)-U(1) . Hence we can make steps to adjacent intersec-

tions at most N times in each direction, and thus at most 2N

steps will be to adjacent intersections .

D (x)-U (X) , thus all

Figure 10 : Example of Diagonal Stepping

Nov consider a sequence of diagonal steps termitated by

a step in some other direction, such as a,a2,a3,34,d1 in

Figure 10 .

Since the function D(x)-0(x) has greater value at

than at 1, 2, or X, we see that the quadrant below the line

alb and right of aid is now known to be lower . This is true

for each a-type step, thus when we reach a4, we have domi-

nated the slashed area. Then the step to dl dominates the

dotted quadrant also .

	

But the total dominated area is the

same as if we had started at Y and used 1-type steps to a4,

then the single step to dl .

	

Similarly we can replace any

sequence of diagonal steps which is followed by a different

- 43 -

.

.

.

dt . . .

.

. . . .
a4

.

.

a3

. . .
.

.

.

a2

.

.

.

a

a

.

.

.

2 ////

Y

.

. . . .
Y

h

step with a sequence of adjacent steps of the same length .

This sequence would also dominate the same set of intersec-

tion points. The only case left is a long sequence of the

same steps, which as before can be at most length N . Thus

any climb sequence has length at most 2N .

of course, as we make the ascent, at each step we check

whether we are crossing the threshold D(x)-U(x)=O . If we do

cross it, we can stop, having found our intersecting faces .

If the polygon is infinite, the search may terminate because

there are no more intersection points in the direction of

ascent. We can easily check whether the infinite faces

which remain undominated do indeed intersect . If not, we

find the maximum at the intersection of the projection of

two edges. A plane parallel to both of these edges and ly-

ing between them is a separating plane for the slices .

2.2.3 .3

	

Onward and Upward

We now know how the slices intersect. we have four

possible conditions : the slices have a actual intersection,

one slice is in the interior of the other, one or both of

the slices is null, or the slices fail to intersect . In the

case of a actual intersection, one of the edges of the in-

tersection polyhedron is formed by the intersection of faces

from each of the slices . This pair of faces is the pair we

have been looking for, and we terminate our search .

If one slice is in the interior of the other or only

one is null, our next investigation is in the direction of

the polyhedron with the smaller or null slice . If both

slices are null, we have a separating plane and hence the

intersection of the two polyhedra must he null .

If the slices do not intersect, we need to find in

which direction, up or down, we should move so that we might

find a pair of intersecting faces. If one of the poirts is

virtual, we are at one end of the list, so we know we must

move in the other direction . Thus we may assume that both

vertices of our pair are real . Each polyhedron is a subset

of the larger polyhedron defined by the side faces of the

slices. The intersection of these larger polyhedra is a

convex polyhedron either strictly above or strictly below

our slab. This intersection of the larger polyhedra con-

tains the intersection of the original polyhedra, and thus

both intersections must lie on the same side of the slab .

While attempting to construct the intersection of the

slices, we found no intersection, but we were able to con-

struct a separating plane . This separating plane intersects

the limiting planes in a pair of parallel lines . T_r. each

limiting plane, and for each polyhedron, find the corner of

the intersection polygon closest to the parallel line lying

in that limiting plane, and construct a parallel . line

through that point (See Figure 11) . The two lines for each

polyhedron define a plane which in fact is a bounding plane

for that polyhedron . The ittersectien of these planes is

another parallel line outside the slab . We then move L :. the

direction in which these planes intersect .

- 46 -

Figure 11 : Choosing the Direction _n the Binary Search

As long as we find no intersecticn and have not shown

that one does not exist, we continue the search, until the

search directions indicate that the intersection must be

both strictly above and below some vertex . This is imcnssi-

ble, so the intersection must be null .

2 .2 .3 .4

	

The Final Edge Extension

As mentioned above, once we have found an edge formed

by the intersection of the up-facing and down-facing polyhe-

dra, we can simply apply the edge extension procedure to

generate the final intersection . Because we do not know

that the final edge is infinite, we will need to apply the

edge extension procedure in both directions . Also, because

the intersection of the polyhedra may now be finite, we

shall need to check for a loop, or more specifically,

whether the current edge is between the same faces as the

originally found edge .

2 .2.3 .5

	

Timing

Each step in the search takes 0(N) time: intersecting

the horizontal planes with the polyhedron, doing the polygon

intersection tests, climbing the hill, and choosing the di-

rection of the next investigation . The binary search takes

o(logN) steps, thus the total search time is 0(N logy) . The

final edge extension will take 0(N) time .

2 .3

	

TIMING SU`1'APY

Each of the Stages takes 0(N logN) time to complptp,

thus the total running time of the algorithm is 0(11 logN) .

Appendix A

The Bin Refinement Procedure

The following is a pseudo-Algol description of the bin re-

finement procedure .

PROCEDURE binRefine(NODE x) ;

INTEGER axisChoice ;

REAL positionChoice ;

NODE lowx,highx ;

COMMENT axisChoose(a,x) is a procedure to be specified

elsewhere which selects the DISCRIMINANT to be used

to partition the bucket x . ;

axisChoose(axisChoice,x) ;

positionChoice = MEDIAN(x,axisChoice) ;

lowx = BUCKET (fxIx[axisChoice)SpositionChoice)) ;

highx = BUCKET((x(x[ax ;sChoice)>positicnChoice)) ;

x = PARTITION(LOWSON=lowx,HIGHSON=highx,

DISCRIMINANT=axisChoice,POSITION=positionChoice) ;

END binPefine ;

END

ELSE IF

Appendix B

The Nearest Neighbor Search

The following is a pseudo-Algol description of the nearest

neighbor search .

PROCEDURE nearestNeighbor(NODE x, POINT test,bestYet) ;

NODE xson ;

IF x IS BUCKET

THEN FOR i IN x

IF distance(i,test)<distance(bestYet,te3t)

THEN bestYet = i ;

test[DISCRIMINANT (x) J <_ POSITION (x)

THEN xson = LO WSON (x)

ELSE xson = HIGHSON(x) ;

nearestNeightar(xson, test, bestYet) ;

IF test(DISCRIKINANT(x)) > POSITION (x)

THEN xson = LOWSON(x) ;

ELSE xson = HIGHSON(x) ;

IF distance(test,bin(xson))<_distance(test,beStYet)

THEN nearest Neighbor(xscn, test, bestYet) ;

nearestNeighbor ;

Appendix C

Coconut Crunchies

1 1/2 cups butter
1 1/2 cups white sugar
1 1/2 cups brown sugar
3

	

eggs
1 1/2 tsps vanilla extract
3

	

cups flour
1 1/2 tsps double-acting baking powder
3/4 tsps baking soda
3

	

cups oatmeal (uncooked)
3

	

cups cornflakes
1

	

7-ounce package shredded coconut
(1 1/2 cups raisins)
(4

	

medium bananas)

Melt butter, mix with sugars in large mixing
bowl . Beat in eggs, and stir in vanilla . If us-
ing bananas, peel, mince and stir in .

Sift together flour, baking powder, and bak-
ing soda . Sift this mixture into the sugar mix-
ture a cup at a time, then stir well . Similarly,
add the oatmeal and cornflakes a clip at a time .
Lastly, stir in the coconut, and raisins if de-
sired .

Drop by large spoonfuls onto cookie sheet .
Bake in 325° oven for 12 to 15 minutes . This rec-
ipe makes six to eight dozen cookies .

1 .

2 .

	

J. L. Bentley and M . I . Shamos, "Divide and Conquer in
Multidimensional Space", Proceedings of the eighth
Symposium on the Theory cf Computing, ACM, May 1976,
pp . 220-230 .

3 .

	

K. Q . Brown, "Fast Intersection of Half Spaces", Draft,
Carnegie-Mellon University, November, 1977 .

4 .

	

D. Dobkin and R . J . Lipton, "Multidimensional Searching
Problems", Yale University Computer Science Research
Report #34, October 1974 .

5 .

	

J. H . Friedman, F . Baskett, and L . J . Shustek "An
Algorithm for Finding Nearest Neighbors", EE2
Tra-nsacti_ons on Computers, October 1975,
pp . 1000-1006 .

6 .

	

J. H . Friedman, J . L . Bentley , arid F . A . Finkel, "An
Algorithm . for Finding Best Matches in Logarithmic
Time", Stanford Linear Accelerator Center Report
SLAC-PUB-1549, February 1975 .

7 .

	

D. H. McLair, "Two dimensional interpolation from
random data", Com ucg- J -u-nna_1,_1, 1(1976),
pp . 179-181 .

F. P. Preparata and D . E. Fuller "Finding the
Intersection of a Set of n Haif-spaces in Time
0(nlogn)", University of Illinois Coordinated
Science Laboratory Technical Report
#R-803(ACT-7) ;UILU-ENG77-2250, December, 1977 .

8 .

BIBLIOGRAPHY

J . L . Bentley, "Multidimensional Binary Search Trees
for Associative Searching", Coornf ications of the
ACM_, 18(1975), pp . 509-517 .

9 .

	

M. I. Shamos "Geometric Complexity", Conference Fecord
of Seventft Annual ACM Symposium on Theory of
Computing, (1975), pF . 224-233 .

10. M. I . Shamos, "Geometrical Intersection Problems",
Proceedir.gs of the 16th Annual Symposium on
Foundations of Computer Science, (1g75),
pp . 208-273 .

-52-

11 . T . P . Yunck, "A technique to identify nearest
neighbors", IF~~ --Transacti ons on System_, FFan, and
Cybernetics 6(1976), pp . 676-693 .

12 . G. Yuval, "Finding nearest neighbors", Infor_Pa_tion
Pso_gsstng _Letters_, °_(1976), pp . 63-ES .

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	Scan 59.PDF
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29

