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Chapter I

INTRODUCTION

R W § SCOPE

The goal of this study is to examine, understand, and
justify some of the many architectural decisions that are
involved in the design of a computer. We will concentrate
on an analysis of instruction sets, and will, by measurement
of the characteristics of their current use, produce conclu-

sions that are useful for future design efforts.

By interpretively tracing programs on a number of
existing architectures, a great deal of data is produced
which can be used for such architectural studies. The

results discussed here can be divided into six types:

l. Particular conclusions about the architecture and

implementation of the computers studied,

2. General conclusions about machine architecture

which can be inferred,

3. Proposals for improvement which are indicated by

these conclusions,



4. A set of techniques and tools which are generally

applicable to studies of this type,

5. The use of these techniques to predict the effect

of proposed design changes, and

6. A collection of quantitative data which can be
used for further study or as a basis of comparison

for other architectures.

The techniques will be applied to the extremes of
current computers: from high performance implementations of
sophisticated processors (the IBM 370/168 and Amdahl 470
V/6), to a comparatively simple LSI microprocessor (the
Intel 868@). Particularly for the larger machines, it will
be important to demonstrate that the approximation involved
in analysis can be verified using the real machines. The
true value of these techniques, however, lies in the ability
both to predict the effect of changes to particular imple-
mentations, and to draw conclusions about the instruction

set architectures.

Although a range of architectures is examined, the
emphasis is on the characteristics of instruction sets for
high performance implementations. As a specific example,
the IBM 370 is studied in detail to provide a framework for
discussing the conflicting goals of high speed and

instruction set complexity.



1.2 MOTIVATION

"Errors using even inadequate data are much
less than those using no data at all."

-~ Charles Babbage (1792-1871)

The design of a modern computer is a complex process
‘ that must first begin with an understanding of the general

goals, the available resources, and the technological
limitations. Even within these constraints, however, the
space of possible designs for even modest subparts of the
system is extremely large, and hun@reds of major decisions
must be made before the specificati;n is complete.

This lengthy design process requires that a large
number of difficult architectural questions be resolved
rather early in the development of the machine. Some of the
decisions will have only a small effect on the ultimate
performance and others will be crucial, but is it often
difficult to distinguish between the two before the devel-
opment 1is complete. There are problems of architectural
definition which apply to all members of a computer "family"
" as well as more specific questions that arise during imple-

mentation of particular models.

Unfortunately, there is very little information
available which can serve as a guide for any of these
issues. There is almost no formal theory of computer archi-

tecture which is of use to the designer, and there is a



notable lack of retrospective analyses of existing computers
in open literature. The result is that the success of the
design often depends on the intuition, experience, and good

luck of the designers.

The design of the instruction set is an area which can
‘ particularly benefit from measurement and analysis of
existing computers, especially for architectures which will
eventually have high performance implementations. It is
important to avoid features for which the commonly occurring
cases cannot be easily optimized, yet there are many such
examples in popular architectures. In other cases, small
changes to the specification of the instructiog formats
(start/end versus start/length for sequences, for example)
can make a large difference in implementation cost yet are

almost transparent even to assembly language programmers.

An equally important and perhaps even more fruitful
application of such analysis is for the improvement of
existing designs. The high cost of software development
(and the continuing dependence on machine languge
progamming) dicates that radical changes in machine archi-
tecture be made only at infrequent intervals. Although
users of a given computer are often willing to expound at
length on the deficiencies which seem to them to be the most
obvious, it requires careful and precise measurements to

identify those areas where efforts to improve the design



will have the greatest effect. It is tempting to concen-
trate on the defects which most offend aesthetic sensitiv-—
ities rather than on those whose elimination will do the

most to improve performance overall.

Because of the likelihood of later extensions, it is
- important that the initial design of an instruction set be
flexible enough to adapt to such changes. This at the very
least requires some unused slots in the encoding scheme, and
may also require that some features be left out in order to
avoid incompatiblity with likely future additions. The lack
of hindsight is a problem, but even later measurements may
not be enough to show what the correct decision s@ould have
been. It often is easy enough to recognize and measure the
effects of mistakes in architecture or implementation, but
it is much harder to see what the good features are.

Failures are much more obvious than sucesses.

Although it is primarily the computer architecture that
is being studied, it is crucial that any such measurements
be based on performance while executing typical real
programs. The <characteristics of a computer system is as
much a product of the software which is used as the design
of the hardware, and any study which is based only on a
theoretical examination of the properties of the design must
bear the burden of demonstrating whether it applies to the

way the computer is really used.



1.3 APPROACH

Any study concerned with the way computers are used
must have models fof both the computers and the programs
which are to run on them. The difference between various
models is most often a difference in the level of detail
‘ considered; each model makes assumptions about which param-—

eters are significant and which can be neglected.

In queuing theory representations of computer systems,
the programs are modeled by their resource request and use
characteristics. At this level, the detailed sequence of
operations performed by a program are either generated
randomly based on known or measured averages (for simulation
studies), or are represented by simple mathematical models
(where analytic techniques are feasible). This approach has
had great success for subsystem—level modeling, where the
basic units are memories, processors, and I/0 devices. This
success is based primarily on the accuracy with which
requests to resources can be modeled in a simple,

independent fashion.

When the basic wunits to be studied are at a more
detailed level -~ registers, cache memory locations,
execution'pipeline slots -~ the queuing model approach fails
because no statistically simple model of the resource
requests and service can be supplied. The way programs

behave at this level is complex, time dependent, and varies



greatly from program to program. For this reason it is best
to avoid constructing a model of program activity in favor
of using program execution directly to supply the needed
data. A convenient way to accomplish this is to use a
software interpreter which simulates the execution of a real
_ program exactly as the hardware would but collects, as a
side effect, information about that program's use of
hardware resources. It is that approach which has been used

to collect much of the data used in this study.

1.4 SE OF INTERPRETIVE TRACES

A software interpreter has a number of attractive
elements which contribute to its usefulness for irstruction
set analysis and performance evaluation. One of the most
important aspects is that a real (non~-synthetic) program is
executed while the data are collected, so that the resulting
evaluation concentrates precisely on the important resources
that are used by that program. Put another way, the inter-
pretive technique correctly weights the costs of basic
operations with their true frequency of use. We will see
later how this‘can'be combined with design information to
yield quantitative information that is both specific to
particular implementations and applicable to the archi-

tecture generallyl.

1The term "implementation" will be used throughout to mean a
particular computer design which executes a given
instruction set; the design of the instruction set itself
will be called the "architecture". Many of the instruction

-7 -



In addition to hardware-oriented data, an interpreter
also provides program-level information that is useful to
programmers, compiler-writers, and operating-system
builders. The results of particular compilef optimizations,
or the cost of certain software conventions can be deter-
mined and evaluated. Equally important is the simple satis-
faction of curiosity about how the computer is really being
stressed. Although the individual instructions were written
by the programmers, their aggregate effect (aside from
occasionally producing correct results) often comes as a

surprise.

An approach often used to gather very similar data is
to write (or build!) a detailed simulator of the hardware
for a particular architecture implementation. 1In comparison
to this full simulation of the hardware at a detailed level,
instruction-level interpretation is relatively easy to do.
Although motre implementation-specific information can be
obtained from a hardware simulator, the high cost of writing
and using it has discouraged its casual wuse. It is
generally difficult to modify, expensive to run, and very

specific to the particular implementation.

architectures we look at will have several implementations
("models") consituting a family of computers, such as the
DEC PDP1l and IBM 378 series. An abstract processor which
implements a particular architecture is often called an ISP
("Instruction Set Processor").

-8 -



Rather than get information which is tightly coupled to
the implementation and the hardware, we would like a similar
technigue which 1is closer to the architecture and program
levels. An instruction interpreter with some knowledge of
the implementation is a good compromise that provides a

large part of the relevant data at moderate cost.

Much of the information used in this study comes from
data produced by an instruction interpreter, augmented by
detailed simulation of specific subsystems where necessary.
This will be referred to as "dynamic" analysis, that is,
analysis of executing programs as seen by the instruction
processor, and provides most of the information of interest
about performance and resource utilization. In addition,
other information will come from "static" analysis of
programs before execution; this provides insight into memory
requirements (both size and bandwidth), and influences the

choice of instruction encoding technques.

1.5 ORGANIZATION OF THE THESIS

The remaining chapters of the thesis are as follows:

Chapter 2 discusses some of the previous work on
processor or architecture evaluation, and shows how the work

here is related.

Chapter 3 describes the basic instruction timing model.

used for processor evaluation, The methodology is

-9 -



explained, and the various factors in the model are examined
and evaluated. The model is validated by comparing its

prediction to the result of running programs on the real

machines.,

Chapter 4 is devoted to an analysis of the IBM 370
" instruction set architecture. Some of the topics covered
are: opcode distributions, instruction 1lengths, branch
analysis, branch and execution distances, opcode pair
distribution, displacement values, register use, operand
lengths, memory references, and pipeline effects. The
discussion includes both architectural points and results
related to the specific implementations studied: the IBM

378/168~1 and the Amdahl 470 V/6.

Chapter 5 contains some similar studies of other archi-
tectures, but not to the level of detail done for the 378 in
Chapter 4. The intent is tc complement the 370 analysis by
examining those aspects of several other computers that can
contribute new information because of their difference from

the 370 architecture.

Chapter 6 gives several examples of the way in which
the techniques described here can be used for prediction.
Examples at three different levels are presented: (1)
modification to existing implementations, (2) design of new
implementations, and (3) the use of this information in

deriving more abstract models of computer and program

behavior.

- 10 -



Chapter 7 contains a list of the architectural conclu~
sions which result from this study. The emphasis is on
design rules which should be followed to allow instruction
sets to be implemented in very high-performance processors.
Other observations about the interaction between hardware

and software are included.

-1l -



Chapter II

PREVIOUS WORK

There has been work in at least six areas that is
related to the studies described here, or which serve to

supply a perspective from which to view this work. Those

areas are:
1, System—-level performance evaluation
2. Benchmarking for processor evaluation

3. Modeling for processor evaluation (both analytic

and simulation)
4. Measurement of language characteristics
5. Instruction timing studies
6. Measurement and evaluation of instruction types

The common thrust of these fields is an evaluation of
the ultimate performance of a computer system; each
approaches it from a different 1level or with different

techniques.

- 12 -



2.1 SYSTEM~LEVEL PERFORMANCE EVALUATION

From the user's point of view, the performance of a
computer system is a composite of the performance of the
hardware, the system software, the language processors, and
the application programs. The most difficult part of
improving such a system is often simply identifying the
bottlenecks for which modest additional work could achieve
dramatic changes. A substantial literature exists which
describes available technigues and examples of system
performance evaluation; a recent bibliography appears in

[AGAT5].

Since the analysis of the total syétem is such a
complicated affair, purchasers must rely on benchmark runs
for comparative evaluation of competing systems. While this
is an adequate technique for determining the overall
performance of a complete computer system, it gives little
useful insight about the individual components. It also
encourages the attitude which blames all performance diffi-
culties on the instruction-execution hardware because it is
the obvious base. It is often much easier to improve
'performance by spending a few extra million dollars on a
faster CPU than by considering alternative operating
systems, languages, or problem-solving techniques. The work
we are here most concerned with is related to the
performance of the instruction-execution part of the CPU,

but this emphasis should not be taken to indicate that the

- 13 -



other aspects of total system performance are not signif-

icant.

2.2 BENCHMARKING FOR PROCESSOR EVALUATION

Benchmarking has always been used to compare computers,
‘ but almost all such attempgs result in a composite
comparison of processor, I/0 devices, operating system, and
applications software. Some benchmark studies have been
made to compare specific machines, but only when the archi-
tecture and software is the same for both is the comparison
easy to interpret. Examples of this type are Amdahl 473V/6
to IBM 370/195 [SNI76] and the same Amdahl to the 1IBM
379/168 [EME75]. These studies, however, are concerned only
with performance analysis for the wuser's benefit; one of
the goals of ﬁhis dissertation is to extend that analysis so

that it is useful to the computer designer.

There has been some systematic work done to use
benchmark programs for the evaluation of a variety of
processors. Wichmann, for example, has used machine~inde-
pendent languages to measure processing speed; in [WIC73]
the time taken to execute 42 different basic statements in
ALGOL 60 was measured on some 50 machines. By assuming that
the time Tij for a statement i on machine j can be factored
as Tij=Si*Mi, where Si depends only on the statement and Mj
depends only on the machine, then a least-squares fitting
process yields the Mj as comparative measures of machine
performance.

- 14 -



One of the major difficulties with such an approach is
that it is very sensitive to the quality of the compiler on
each of the different machines. The IBM 370-series
machines, for example, were at a disadvantage because the
only commercially available ALGOL compiler (ALGOL-F) is
‘ known to produce rather inefficient code. Another problem
is that the statements were not chosen or weighted to
account for the unequal frequency of use in typical
programs. In an attempt to overcome these difficulties,
Curnow and Wichmann [CUR] developed a "synthetic benchmark"
which has the following properties: (1) The program was
made to match, as closely as possible, the same distribution
‘of intermediate Whetstone code [RAN] as was produced by 949
programs previously collected and analyzed [(WIC78]. (2) The
program had to be translatable into a variety of languages
(ALGOL, FORTRAN, PL/I) (3) No constructions should be used
which would give a particular 1language or -compiler an
obvious advantage. For example, they attempted to "ensure
that the program could not be logically optimised" so that
statements would not be removed from loops by compilers
‘clever enough to detect when it would be possible. That
this had been achieved was verified by examining the object

code produced.

The ranking of 10 different machines was compared using
the results of the synthetic benchmark in different

languages, and also compared to the ranking obtained by a

- 15 -



Gibson Mix (see section 2.5) and the original ALGOL
statement mix. The result was that despite the care taken
to avoid the influence of compiler differences, the effect
of the language often made the machine differences insignif-
icant. Two computers with one twice as fast as the other in
o a FORTRAN comparison could be the same when compared with
the ALGOL versions of the program. The conclusion may well
be that it is impossible to make language-~ and compiler-in-
-dependent performance comparisons of machines with different_
architectures without simultanéously comparing the language
and compilers. The study of a computer as an Algol machine,
while useful for some purposes, tells 1little or nothing

about the instruction-set processor beneath it.

2.3 PROCESSOR MODELING

Although a model of a CPU is a model of an instruction
set processor, such models provide little insight into the
design of the instruction set. The work in processor
modeling has been mostly concerned with the internal organi-
zation of the compﬁter, and not with representation at the
level of the instruction set and the relationship to

programs.

The elements of the models are the physical structures
of a particular implementation ~- the instruction fetch

mechanism, the arithmetic units, the pipeline controls, etc.
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The models (and the element characteristics) are sometimes
simple endugh to be approached analytically, but discrete
simulation 'is more often necessary. Such studies are
valuable both for understanding existing processor implemen-
ations ([NEW] is a simulation example applied to the PDP10),
and for the analysis of proposed new structures ([BOW] is an
example of an analytic model for multiple function-unit
processors). Such modeling has not been appropriate for the
analysis of instruction sets, however, since the emphasis is
on the structure of the implementation and not the conse-

quences of instruction set design.

2.4 MEASUREMENT OF LANGUAGE CHARACTERISTICS

One way to approach computer architecture is to begin
with a study of the languages to be used. By determining
what the common constructions are, one might then be able to
design appropriate machine language primitives for efficient
execution., Language studies could also be used to evaluate
existing machines by examining the extent to which the
frequent basic operations can be translated to efficient

machine code.

Such studies have been made for several languages;
among them are FORTRAN [KNU,LYO,SLA], PL/I [ELS76a,ELS76b],
COBOL [SAL], ALGOL [BAT], XPL [ALE72,ALE75], and APL
[SAA75] . Most of .the results are concerned with the

frequency of use of various source-language constructs, and
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many of the results are surprising. For example arithmetic
expressions, whose code optimization ‘has received a great
deal of attention, are almost always trivial; Knuth's
FORTRAN study [KNU] found that 68% .of all assignment state-
ments were replacements of the form A=B, and that the
average number of operands for all expressions was only 2!
" Such information is clearly important both for the design of

languages but especially for the design of compilers.

Useful as these studies are for language research,
little light is shed on the problem of matching the language
to the hardware which supports it. Much of the work on the
interface concentrates on compiler optimization rather than
instruction set optimization. Among the few notable excep-
tions are the theses by Wortman [WOR72] and Hehner [HEH74].
Even there, however, the emphasis is almost entirely on the
use of clever encoding techniques to reduce memory use, and
the designs are therefore based on static program
statistics. The result, in Hehner for example, is a 75%
decrease in space compared to conventional machines, but at
the cost of "an increase in hardware complexity" whose

effect on performance is not considered.

2.5 MEASUREMENT AND EVALUATION OF INSTRUCTION SETS
A great deal of the literature on the evaluation of.
instruction sets is concerned with frequency of execution

counts., The seminal work was an unpublished study in the
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late 1950's by Gibson, which presented the result of
measurements for the then popular IBM 7098. (The Gibson
Study was finally distributed a decade later as an IBM
Technical Report [GIB].) In addition to instruction
frequencies obtained by tracing program execution, Gibson
defined 14 different basic instruction classes and their
fractional use; this "Gibson Mix" has come to be used as
the representation of a "standard load" for an instruction

processor.

By classifying an arbitrary instruction set according
to Gibson's categories, and using an average execution time
for each class, the resulting instruction execution rate can
be used to compare different computers. The difficulty with
this approach, of course, is a conseguence of its
simplicity. Many instructions are hard to classify into the
original categories, and variations in execution tiﬁe due to
address modification, operand variations, and data depend-
ences are - difficult to assess. In fact, reliable timing
information for any of the high—~performance computers is
complex to interpret if it is even available at all. Never-
theless, some systematic uses of Gibson-like mixes have been
useful in obtaining crude rankings of various dissimilar
computers, especially when the mix results are presented
along with results of benchmark tests, as they are in the
NPL dat; base of computer performance information [VER].

Specialized mixes can be of wuse if a particular application



is involved; computer evaluation by the U.S. Army [WOL]
concentrated on the solution of differential equations and

developed a mix based on an analysis of the algorithms used.

A variety of data has been published for several
machines since the years of the Gibson study, and many have
- extended the information collected to include opcode pairs,
register utilization, and static vs dynamic frequency
comparisons [LUN, FLY, WIN, HAN, AGA73, ANA, FOS7la,b,
SAA72, ROE]. Most cof these studies are unfortunately rather
small in scale, due to the high cost of the data collection.
In addition, little timing or performance information is
provided, and no analysis of the effect of instruction-set

design and use on the implementation of processors is done.

Most of the instruction-set analysis as a result of
measurement has concentrated, as have the language-oriented
instruction set analyis, on efficient encoding of instruc-
tions [FOS71a, HEH76, HEH77, WIL]. Although there is
certainly some relationship between instruction encoding and
performance, it is becoming less significant as a result of
techniques such as instruction caches, pipelines, and the

general increase in memory bandwidth and capacity.

A more recent systematic comparison of instruction sets
has been done as part of the Computer Family Architecture
study for miliary computers [FUL]. Three quantitative -

measures of instructions were defined: the S-measure for the
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static space taken by the program, the M-measure for the
amount of memory traffic generated, and the R-—-measure for
the amount of internal processor computation required. Test
programs coded for several machines were traced so that the
S, M, and R measures could be determined, and a variety of
programmers and programs were used so that the differences
" due only to the instruction set could be statistically

isolated.

This approach is probably the best to date for
comparing architectures independent of implementations, but
it is difficult to extend its use to issues of
cost/performance. It may be possible to demonstrate a
correspondence between the quantitative measures and
processor complexity or speed, but that work remains to be
done. There are other issues with regard to the choice of
test programs and the effect of higher—-level languages (all
test programs were in assembly language) that need to be
studied further. The more important issues of what
instruction types should be included at all, and what the
tradeoffs are between instruction set complexity,
‘programming ease, and processor performance have not been

addressed by any of the measurement-based studies.,
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2.6 INSTRUCTION TIMING STUDIES

Accurate timing information for instructions and
unusual conditions is required in o;der to be able to
evaluate a processor at the instruction execution level,
That information is hard to get, and the major difficulty is
the lack of published data from the manufactureré, in
particular for the high-performance machines. There is a
distressing trend toward providing as little information as
the buyer will tolerate. The excuse 1is often that the
information is complex and difficult to present, but given
the examples set by some [AMD] one cannot help but conclude
that information is often withheld because it is a potential
‘source of embarrassment. Some expurgated papers reveal
glimpses of large-scale efforts with sophisticated tools
[VAN, HUG, MUR], but few of the results are ever presented

publicly.

_ This situation has forced users into the position of
empirically measuring the machine characteristics; notable
examples are for the CDC 7604 |[LIP, MAR], and the IBM
378/168 [EME]. None ' of these are concerned with the
relationship between the design of the instruction set and
the ultimate machine performance, but they supply useful
data.

The methodology involved in doing accurate timing
studies for high-speed computers in real environments is
complex, and some other experiences in this field were

useful in developing the techniques we used [WOR76, GEN].
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Chapter III

INSTRUCTION TIMING MODEL FOR MACHINE EVALUATION

One of the most important tasks for a computer designer
is the evaluation of a computer architecture implementation.
As a specific instance of that task, this chapter compares
the implementation and performance of the IBM 370/168~1 and
the AMDAHL 478 V/6, which are two high~performance machines
with the same architecture [IBM70] but different implementa-

tions.

This chapter explains, in detail and by example, the
methodology used for the analysis of instruction sets. It
discusses the model based on instruction timing, the process
of evaluating important factors, the tools needed for such a
study, and the verfication procedure. Although presented in
the context of the IBM 378, the approach is a general one.
Results in detail for the 378 architecture and similar
results for other architectures appear in subsequent

chapters.
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3.1 THE MODEL

The basic goal of the measurement system is to
apportion the time spent by an executing program among the
various system components such as the cache memory, the
instruction pipeline and the individual instructions, so
that resource utilization and system bottlenecks can be
determined. This is achieved by using simple models of the
CPU of each machine which also provide estimates of the
total CPﬁ times. The total time is important insofar as it
is used to verify the accurécy of the model, since the
predicted times can then be compared to the actual

performance of the machines.

The decision to make implementation dependent measures
of CPU performance for two members of a specific archi-

tecture family has several advantages:

1. Some of the traditionally difficult problems
encountered when comparing two different architec-
tures are not present, since many confounding
factors relating to performance evaluation have

the same efféct on both machines.

2. The success of one of the levels of a complex
system can _often be measured by the character-
istics of the levels below. Performance evalu-
ation which is close to the implementation level
of a computer gives valuable design information at

the architecture level.
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3. The speed of collection and the precision of the
reéults are greatly enhanced by having tools that

are tailored for a specific instruction set.

4, Practical and useful results can be obtained
quickly, so that those results can be used to

further refine the tools.

3.1.1 The Technique

| The models of the CPUs used here are based on the
instruction timing formulas available from the manufac~
turers' documents which describe their computers
(AMD,IBM74]. These documents sometimes sacrifice details
for ease of exposition (which is not to say that they are
easy to read!) and represent only the best efforts of an
engineer to describe the existing machine. Efforts which
are described later were made to verify the accuracy of the
information. In deriving the model for the Amdahl machine

we were quite fortunate to get some help from the designers.

The programs to be measured were traced in user state,
and all the information required to compute the instruction
execution time from the formulas was collected. A record
was made of counts of occurrences, values of instruction
variables used in the formulas, and information about memory
performance. Typical wvariables depend on the specific

instruction but may also depend on the implementation
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details. For example, the number of bytes moved is imple-
mentation independent, but measures of pipeline interlocks
and timing delays are not. Some variables depend on
instruction environment and therefore require information

about instruction pair and triple distributions.

Two primary constraints caused us to trace only user-
state instructions. (1) Tracing system software, with the
attendant performance degradation of at least 50 to 1, would
modify operating system behavior in timing dependent 1I/0O
sections. By tracing only in user mode, which 1is usually
not speed dependent, we eliminate a source of error which
would necessitate a complicated interpretation of the
results, (2) Tracing the operating system introduces a
large number of problems involving the recording of the
trace data. One standard solution is the use of samples
rather than complete traces, but then the verifiéation of

the predicted CPU time is not possible.

Since the timing formulas do not include the effects of
cacﬂe memory misses, the cache memory is simulated for each
machine. The cache miss penalty is added to the instruction
execution time to obtain the expected program execution
time. To verify the model the expected time is compared to
the operating system accounting time corrected to compensate

for the differences between the measurement methods.
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The effects of instruction interaction, which can
generally be attributed to pipeline resource interlocks, are
rather explicitly accounted for in the Amdahl formulas. For
IBM, however, the pipeline effects have been averaged into
the formulas in a way which was not clearly indicated. This
was a potential source of difficulty, but the effort
required to obtain this information from the logic diagrams
and microcode listings was prohibitive, and unjustified when

an error of a few percent is acceptable.

The techniques wused here are much more complex than
benchmarking, but not as costly as total hardware
simulation. The tools are general enough so they can be --
and have been ~- used for other studies with different
objectives. The importance, however, lies in the ability to
change the model variables to reflect proposed changes to
the existing hardware and to accurately predict the

performance effects of those changes.

3.1.2 Evaluation of Important Factors

The development of the CPU model has been greatly
.influenced by the idea of an evolving system of tools --
development by successive refinement., A crude model and
simple tools were first assembled and by successive
iteration new tools, new measurements, and a more refined
model were designed. This approach reduces the number of

false starts and the elapsed time of the whole study by
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quickly allowing the effort to concentrate on the most

important factors.

The CPU model used. is an intermediate one between full
simulation at the hardware register level and a machine~in-
dependent representation of performance. The decision to

* include some factors and exclude others was based on an
estimate, often supported by experimentation, of the effect
of those factors on the final results. Some of the justifi-

cation for the decisions are presented below.

The accuracy of the model is supported by the match
between the program execution time as predicted by the model
and the same time measured by the operating system during
actual ”;;ns. Performance evaluation by benchmarking is
repeatable only within 2-3% because of the large number of

uncontrollable variables, and this therefore puts an upper

bound on the precision of the validation.

An examination of previously published instruction
frequencies might suggest that the more frequent instruc~-
tions are those whose duration is constant and therefore do
not heavily depend on execution variables like the length of
operands. If this were true, then those variables could be
set to program~independent values without introducing a
significant error in the result. To test this hypothesis,
the program which cbmputes executicn times was given three-

we.sets of execution variables with 'which to predict program

-
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running time. One was a programmer's best guess of the true
values, and the other two were the smallest and largest
extremes which could realistically be expected. The results
showed that an instruction could jump £from 4% to 50% of the
total time depending on the value of its variables with all
others remaining the same. This is an wunacceptable error,
especially since errors in the variables for many instruc-
tions could combine to form large systematic errors. Most
.of the variables which affect execution time were therefore

measured exactly or estimated from related measurements.

The predicted execution time is composed of the
aggregate instruction timing results and a penalty for cache
memory misses. The aggregate instruction timing results
have already taken into account the instruction counts and
basic execution speed, as well as the pipeline in£erlocks.
The cache miss penalty depends on the reference pattern of
the program, the cache organization, and the data flow
pattern within the machine. The two machines differ rather
markedly in those respects: the 370/168 wuses aligned
doubleword (8~byte) accesses and an associative set size of
8, while the 470 accesses unaligned fullwords (4-~bytes),
uses a set size of 2, but has the same total amount of data
(16K bytes). Both caches use an LRU algorithm to determine
which 32-byte line within a set is replaced when new data is

to be fetchedl. There are also significant differences in
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the amount and type of instruction lookahead performed. To
accurately measure the cache penalty, the trace analysis
program haé a detailed simulation of the cache and

instruction fetch mechanism of both machines.

Although cache memory miss ratios are known to be low
[MER], it is easily shown that the contribution of the time
penalty for the misses is too large to be neglected. If the
miss ratio is 5%, with a 480 nsec penalty for a miss, 1.6
memory requests per instruction, and an average instruction
execution time of 300 nsec (reasonable values for the
376/168) then the cache misses represent a 13% increase in

the execution time.

Two other cache organization features nmust be
considered in the cache penalty correction. For IBM, stores
always access main memory ("store-through") which may cause
extra delays. For Amdahl, there is an extra penalty when a
4-byte access crosses a cache 1line boundary. These and the
other cache corrections are not attributed to the instruc-

tions which caused them, but rather accumulated separately.

lAlthough the 168 set size is 8, the LRU algorithm treats

each pair of two lines as a group and the 1least recently
used group is replaced. This is "worse" than a true 8~-way -
LRU algorithm since very old data may be paired with new
data in a group and never be replaced, but the cache was

originally designed for 8K and was expanded with minimal
hardware additions.
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The measurement of user—state instructions in a
production operating system environment caused some diffi-
culty in determining the true CPU time. The execution time
reported by the operating system includes all user-state and
some supervisor-state instructions [BEN], whereas the trace
program measures only user-state instructions. The time
attributed to these supervisor-state instructions executed
in the processing of user-initiated supervisor calls (SVCs)
must therefocre be subtracted from the reported CPU time.
Measurements were made of tﬁe charged time for all the
relevant SVCs as the programs were traced. The correction
is very significant for almost all programs, since both the
number and cost of the SVCs are high. For the 168, for
example, the time charged varies from 107 usec for an I/0

operation to 26 msec for opening a file.

Although the SVC time correction could have been
measured for the original benchmark programs, they were
somewhat modified in view of the substantial correction
required (as much as 20%). Wherever possible, the number of
1/0 operations was - reduced by increasing the €£file blocking
factors, but the operation of the programs was not otherwise
altered. Despite this effort, the SVC time correction
remained the factor which introduced the largest error in
the measurements. We also traced a FORTRAN numerical
analysis.program from which the I/0 parts were excised, so

that few supervisor services were requested.
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Since supervisor-state and user-sﬁate instructions
share the.same cache, there will be some displacement of the
user's "working set" from the cache in response to an SVC,
which will manifest itself as a lower than normal hit ratio
when the user's program is resumed. An unpublished note by
‘ Rossman suggested that this would have a large effect [ROS].
To verify this the cache activity for one job with a large
number of SVCs was simulated -~ first assuming a 100% cache
flush for each SVC, and then again with no flush. The
number of cache misses changed by a factor of 18. Measure-
ments showed that the actual fraction of the cache displaced
by the various SVCs varies from 0.16 to 1.6, and that almost
all non~trivial requests completely replace the cache. The
cache simulator therefore took this into account by flushing
the appropriate fraction of least~recently-used cache

entries when an SVC was executed.

Interrupts which occur during the execution of the
program do not account for a significant increase in
accounted time (since the user—state CPU timer is disabled
during interrupt processing) but there could be an effect
due to cache displacement caused by the interrupt routine.
On a heavily loaded machine interrupt rates as high as 48089
per minute are common, representing at worst 16.4 ms of
extra time (1.7% for IBM) to completely refill the cache for
each second of CPU time. Since most of those interrupts are

due to other jobs, this effect was reduced to a negligible
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level by running the 3job on on otherwise idle system, so
that only the few interrupts caused by the benchmark job
itself could cause interference. This is wunlike the SVC
correction, for which no change in the number of cache
flushes is possible simply by controlling the environment of
the benchmark run. Similar calculations for the effect of
channel I/0 transfers to memory show that they have even
less effect on CPU performance. This is true both for IBM,
.where the channels transfer directly to main memory and
invalidate corresponding cache entries, and for Amdahl,

where the channels transfer into the cache.

3.1.3 Instruction Timing Formulas

An instruction may have several timing formulas
associated with it, corresponding to different modes of
execution, Each individual timing formula may depend
linearly on the variables (the most common case) or have a
more complicated dependence. In general, three types of

linear formulas are encountered.

Some timing formulas reduce to a constant, and often
only one formula is associated with an instruction.
Examples of this case are most register-to-register arith-

metic or logical instructions.

ADD REGISTER IBM «080 usec
(AR) Amdahl «065 usec
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Many formulas have a simple linear dependency on
execution variables. Aﬁ—example is a Load Multiple (LM)
instruction which can be expressed as

Load Multiple IBM «520+.080*R usec
(LM) Amdahl .#65+.865*R usec
where R is the number of registers loaded.

Some formulas may involve variables which are concerned
with the general environment of the instruction. These are
often measures of the effect of pipeline interference which
causes a delay in the execution of an instruction. Examples
are the Amdahl variables S1 and DWD. S1 accounts for some
cases of pipeline interlocks, and ranges from 8 to .665 usec
depending on the "number of execution cycles attributable to
the three words of the instruction stream following the
instruction of interest" [AMD]. DWD, which is either 0 or
.B325 usec, compensates for the occurrence of a doubleword
result instruction before the subject instruction, because

the machine is fundamentally single word oriented.
Store (ST) Amdahl .065+S1+DWD

When several formulas are associated with one
instruction, each formula applies only to a specific case of
its execution. For example, the Move Character instruction
execution formulas depend in important ways on the degree of
overlap of the two operands. The different cases involve
not only different coefficients, but often different

variables.

- 34 -



Move IBM .760+.040*B usec (no overlap)
Character .640+,.240*B usec (any ‘overlap)
(MVC)

Amdahl .195+S1+.130*WB+MV usec

where MV

= ,130*W (no overlap, or
overlap>32 bytes)
MV = .1625*W (3<overlap<=32 bytes)
MV = .130*B (1<overlap<=3 bytes)
MV = ,195*B (overlap=1 byte)

and where B
W
WB

number of bytes moved

number of words moved

number of bytes which must be
moved to have the destination
field on a word boundary when B>63.

For all the individual linear formulas, only the
counts and average variable values for each of the timing

formula cases need to be accumulated.

Unfortunately, some formulas are not linear in their
variables. Typical examples are the decimal arithmetic
instructions, where the duration depends on the product of
the lengths or the average value of the digits used. For
these the appropriate products of variables are accumulated
at the time the program is analyzed, and these values are
averaged for use by the other programs in an equivalent
linear form. These cases of non-linear formulas are suffi-
ciently infrequent to justify this special treatment, but
the effect on timing values is too important to ignore them.
A simpier approach would assume that the product of the
averages is a sufficient estimate of the average product,

but the potential error is great.
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Divide IBM 2.42+.,60%(N1-N2) *N2-

Decimal o

(DP) Amdahl 20+ (5+4%*Q) *(N1-N2)+2*RW if N2<=3
Amdahl 27+(9+6*Q) *(N1~-N2)+2*RW if N2>d3

where N1 = length of first operand
N2 = length of second operand
Q = 1 + average value of the quotient
digits
RW = number of fullwords in the result

The formulas are encoded as a string of records, each
corresponding to the coefficient of a term in a subcase of a
timing formula for a particular instruction; there are a
total of 3200 variable names and coefficient values. A
numbering and naming scheme was devised that allows
variables which are common to many formulas to be propagated
to all appropriate places, as well as giving individual

identities to variables which are used more restrictively.

3.1.4 Measurement Approximations

Ssome of the variables required for the computation of
the instruction times are difficult to measure; this is
especially true for those which involve interactions of
sequences of intructions. An approximation technique was
used for the computation whenever it could be shown that it

would not significantly degrade the accuracy of the result.

As an example of this approximation technique, consider
the interlock variables called Ssl, S2, and S3 for the 476, -

which represent time penalties added to an instruction
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because the instructions which follow do " not have enough
execution cycles to "hide" the completion of the subject
instruction. The time penalty caused by these pipeline
"breaks" depends on a particular sequence of instruction
types, but can be more simply described as an addition to
the execution time of particular instructions whenever they
are in certain environments. For the Sn interlocks, the

definitions are:

sl =0 if M= 8
1 if M=17
2 if M =6

where M is the number of execution cycles attrib-
utable to the three words of the instruction stream

following the subject instruction, and

s2=06 if P =28 S3 =0 if P =6
=1 if P=7 =1 if P =5
=2 if P =6 =2 if P =4
=3 if P =5
=4 if P =14

where P is the number of execution cycles attrib-
utable to the two words of the instruction stream following

the instruction of interest.

In order to avoid computing the frequency of occurence
of all 7-tuples of instructions (at most 6 instructions can
follow the subject instruction in the three words which
follow), a set of instruction classes was defined where each
class coqtains instructions of the same size and approxi-

mately the same execution time. It is then computationally
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feasible to accumulate the occurence of relatively 1long
sequences of classes and use these to estimate the true
value of the variables. For each instruction which'incuts
any of the Sn penalties, all possible sequences of subsé—
quent classes are examined. For each sequence, classes are
' examined until the sum of the instruction 1lengths exceeds
three words (for S1) or two words (for S2 and S3). The sum
of the average execution time of the instructions of each
class in the sequence is then used as the value of M (for
Ssl) or P (for S2 and S3).' Each possible sequence is
weighted by its probability, estimated by the frequency of

occurence.

The characteristics of the 18 classes were chosen to
minimize the error in the computation. All instructions
with the same length which have execution times greater than
6 cycles are put in the same class, since the occurence of
any instruction of this type in the sequence will automati-
cally force the interlock parameter to be zero. The other
classes make much finer distinctions between instructions
with small execution time, since they have the potential of

making a whole cycle difference in the final value.

Note that the class assignment depends on the estimated
execution time, which in turn depends (because of the values
of the interlock variables) on the class assignments.

Initial class assignments were based on rough estimates of



executioﬁ time using what seemed to be reasonable guesses
for interlock variables. The class aséignments were refined
as a result of getting more accurate execution times but the
differences were negligible because the averaged value of
the interlock variables is so small that it has a very weak
effect on execution times and hence made almost no

difference in class assignments.

3.1.5 Description of the Measurement System

The heart of the measurement system is an interpretive
trace program (TRACE) which executes arbitrary load modules
(relocatable program files) containing user-mode instruc-
tions. Programs are interpreted with precisely the same
environment that would be experienced without the tracer;
the real data files are used, the same supervisor services
are requested, and the same results are produced. As a side
effect, howéver, instruction trace records are produced
which can be used to form a detailed characterization of the
program. Other trace records are produced which contain
information relevant to the tracing process, or to program

activities such as exception interrupts.

The record produced by the interpreter for each
instruction contains the instruction type, memory addresses
referenced, and the other required information. These
records are processed by a trace analysis program (ANALYSIS)

which generates instruction counts, variable values, and
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memory access statistics such as cache memory miss counts,
which are stored in a summary file. In order to avoid
saving massive amounts of intermediate trace information (25
megabytes per traced second), the TRACE and ANALYSIS
programs may execute as coroutines. The combined overhead

of the trace and trace analysis programs amounts to 300
seconds per second of real time. This compares favorably to
other more detailed hardware simulations, where the overhead
has been as high as 6000 seconds per second of real time

[VAN].

The summary file 1is converted into a count file by an
intermediate program (CONVERT). The count file contains all
the information required to compute the timing formulas for
both machines (the 168 and the 478) condensed into about 608
numbers. An instruction statistics program (INSTAT) uses
the count file and files of encoded instruction timing

formulas to produce the timing and performance information.

Several test programs were devised for verifying the
formulas and understanding the measurement factors. A
‘general instruction timing program (LTIMER) was designed for
precise measurements of instruction times, cache memory miss
penalties, SVC times, and the effects of SVCs on cache
memory contents. Each instruction, instruction sequence, or
memory access pattern can be executed in a variety of
environments so that a systematic study of the variations in

execution time can be made.
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The measurement system therefore consists of a number
of independent programs which communicate through well-de~
fined interfaces, as shown in Figure 1. Each of the inter-
faces is general enough so that other programs could have
been used -- and in fact at various times were used =-- for
other types of processing. A number of address traces for
other cache and virtual memory simulations have been
produced [RAF,SMI,YU]. We could have merged some of the
.processing programs, but in doing so would have lost some
generality. By requiring " that generality we have
guaranteed, for example, that neither the trace program nor
the trace analysis program knows anything about the details
of the timing formulas. In fact, only CONVERT has specific
knowledge of them; INSTAT knows only about the timing
formula description convention, and in that sense is
independent even of the general architecture of the machine
being studied.

Writing an interpretive trace program is basically a
straightforward exercise, but there are two classes of
problems. The first are a consequence of the hardware
architecture, and may require some awkward but tractable
solutions. The requirement for having a base register for
the trace program, for example, is often made difficult by
instructions which can potentially modify all registers,
such as Load Multiple. The second and more serious class of

problems ' are a consequence of the software architecture.
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The manufacturer's hardware manual is a complete and
accurate description of all instructions except one: Super-
visor Call (SVC). The operating system makes SVC a
difficult and unpredictable instruction to trace, primarily
because of the variety of cases in which control is not
transferred to the instruction following the SVC. Fully
half of the trace interpreter is devoted to problem SVC's,
such as LINK ({(dynamic transfer to a relocatable program
file), SPIE (create a program~interrupt environment), EOV
(test for unusual file conditions), and many others. It
would be to the great benefit of many computer users if the
designers of software were required' to be as accurate and
complete in the description of their systems as the

designers of hardware.

3.2 VERIFICATION

This section explains the procedure for verifying cache
miss and SVC times, describes the benchmark jobs used, and
shows the computation of predicted times and comparison with

benchmark runs.

3.2.1 Cache Miss Penalty

Although cache miss penalty information is available
from the manufacturers, it was difficult to interpret
precisely what the effect on instruction time is. Since

measurements are not difficult and the correction could be
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significént, the values were verified experimentally. To
determine ‘the cost of a cache miss, é test program simply
£ills the cache with known data. A second 1loop is then
timed, in which either the same data is reloaded, or new
data displaces the old. The difference in time between the
two versions of the second loop, divided by the number of
cache misses caused by the 1loop which displaces the data,
provides the cache miss time. The value found for 1IBM is
488 nsec, which is not inconsistent with the (rather
confusing) information from the hardware manuals. For
Amdahl, cache misses are found to cost 650 nsec, which also

agrees with information from the designers.

Once the cache miss penalty is established, the effect
of a supervisor request on the user data in the cache can be
measured easily. In a similar fashion the cache is filled
with known data, the SVC is 1issued, and the cache is
refilled with the same data. The second loop is timed, and
compared to the identical loop when the SVC is not present.
The time difference divided by the cache miss penalty gives
the number of cache lines that were displaced by the SVC.
Note that the second 1loop must £fill the cache 1in the
opposite order from the first 1loop, otherwise the LRU
replacement algorithm would cause the original data to be
removed instead of the data added by the SVC. Table 1 shows
the fraction of cache displacement for some of the more .

common supervisor requests.
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Table 1.
SVC Times and Cache Requests

(Averaged for all programs)

-------- IBM Amdahl ===

Name CPU time % cache CPU time $cache
usec. displaced usec. displaced

OPEN 26658 100% 17605 100%
CLOSE 16929 100% 13488 100%
EXCP I/0 107 58% 101 24%
WAIT 234 16% 139 7%
REGMAIN 394 30% 219 17%
LINK 3629 100% 1613 41%
OVERLAY 5214 100% N/A N/A

One of the interesting differences of implementation
between the two machines is the effect of data stores on the
-cache. The 1IBM approach is to always store data directly
into main memory, and to update the cache only if the line
already exists, The Amdahl machine updates the cache line
if the data is present without storing into main memory. If
the data 1is not in the cache, the 1line will be read from
memory. If the replacement algorithm must remove a liné
which was modified in the cache, the memory is updated at
the time the 1line 1is replaced. The 1IBM method, called
."store-through”", has often been criticized because it
requires a main memory access for all stores ([KAP].
Although the store can proceed in parallel with subsequent
instructions, any subseguent main memory accesses must be
suspended until the memory becomes available. Since the
timing formulas do not explicitly account for this effect,

it is important to determine its magnitude.
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There are three factors which combine to minimize the
possible deliterious effects of the store~through policy
used by IBM., The first is that the memory is organized with
four-way interleaving of adjacent doublewords, so that
consecutive stores may well reference separate memory banks.
‘The second is simply that based on the opcode pair distrib-
ution we have accumulated, consecutive instructions which
store data into memory are relatively infrequent. The third
is that even for pairs of such instructions, there is a
level of buffering for data tﬁat is to be written to main
memory, at least for the case when that data is also in the
cache. A penalty appears only for the third consecutive
store, and then is 368 nsec. The full write cycle time
penalty of 640 nsec occurs only for the fourth and subse-
quent store. These factors are sufficient to Jjustify not

including a correction for store-through writes.

3.2.2 SVC Times

As previously discussed, the CPU time charged for SVCs
was measured in order to be able to correct the time given
by the operating sYstem. The time charged for each SVC is
often larqe and varies from program to program even for the
same SVC type. To account for these variations the time
charged' to the user for each SVC was measured as the
benchmark programs were being traced. The SVC correction

computed by summing the measured SVC times is therefore
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quite accurate for the 168 because it was 'the machine used
for the tiacings. For the 470, the timing program LTIMER
was used to. give estimates of the average SVC costs. This
latter method does not take into account the variation from
program to program and the SVC corrections are much less
‘accurate than for the 168. Table 1 shows the time charged

for some important SVCs averaged over all programs.

It is interesting that the time charged for supervisor
services is often comparable to what would be required if
there were no operating system. For I/0 operations,
previous measurements have shown that the hardware 1/0
instructions (SIO, TIO, etc.) are incredibly expensive; 100
usec is not unusual [JAY]. This is to be compared with, for
instance, the measured charge of 187 usec for the request to
the operating system for an I/O operation. Note that both
of these are more than two orders of magnitude larger than,
for example, the #.61 usec needed for a double precision
floating point multiplication. It would seem that improve-
ments in the arithmetic units of computers have not been
accompanied by similar improvements in the I/O interface

despite the existence of I/0 channels.

3.2.3 Benchmark Jobs

The results presented here are derived from the
complete analysis of seven benchmark jobs written at the -

Stanford Linear Accelerator Centerz. Except for one
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(LINSY2) they were all production jobs written for purposes
other than performance evaluation. To avoid biasing the

results with artifacts from specific languages or programs,

we purposely chose the three most used 1language compilers

and programs compiled by them,

1. FORTC is a compilation by the IBM Fortran-H optim-

izing compiler.

2. FORTGO is the execution of the FORTRAN program
compiled by FORTC. It is a numerical analysis
program which solves partial differential

equations.
3. PL1C is a compilation by the IBM PL/I-F compiler.

4, PL1GO is the execution of a PL/I program which
accumulates and prints accounting summaries from

computer use information.

5. COBOLC is a compilation by the IBM ANSI Standard

COBOL compiler.

6. COBOLGO is the execution of a COBOL program which

reformats and prints computer use accounting

information.

2Dozens of other jobs were traced to provide other data
presented elsewhere, but only these seven were fully
analyzed and run in carefully controlled benchmark condi-
tions on both machines. Several hundred million instruc-
tions were traced and analyzed in the course of this study.
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7. LINSY2 is the execution of a FORTRAN subroutine
which solves large~order simultaneous equations.

No I/O i= done.

Table 2 summarizes some characteristics of the

benchmark jobs.

Table 2.
Program Characteristics
Data Data Inst/Cache Miss

Program # Instr. reads writes
per inst per inst IBM Amdahl

COBOLC 6,048,476 P.431 0.130 82.57 36.95
FORTGO 23,865,168 2.352 9.204 104.06 28.07
PL1GO 23,863,497 0.473 0.261 73.28 61.16
LINSY2 11,719,853 #.195 0.067 28597 19598
coBOLGO 3,559,533 A.738 0.453 13.42 30.93
FORTC 17,132,697 0.433 f.146 39.86 24.47

PL1C 24,338,101 8.379 0.137 145.33 63.48

3.2.4 validation

Verification basically consists of comparing the time -
predicted by our model for each benchmark 3job with the
corrected real execution time. The time predicted for each

benchmark, Tpred, consists of the following terms:

Tins, the total time predicted from the timing

formulas, which does not include the cache miss penalty.

M * Tmiss, where M is the number of cache misses as -

reported by the cache simulator, and Tmiss is the cache miss
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penalty. The number of cache misses includes the effect of

SVC execution on the cache contents.

Tcross, the time penalty, for Amdahl only, paid when
references to the cache cross a line boundary. The penalty
is two cycles (.065 usec) for reads and three cycles (.0975
usec) for writes, and is computed using numbers provided by
the cache simulator. Virtually all the penalty arises from
instruction fetch, since none of the programs access
unaligned data. There is no equivalent penalty for IBM
because its 1larger instruction buffer prefetches enough so
that two successive doublewords can be accessed without

introducing an additional delay.

The corrected time for the actual execution, Trun,

consists of the following terms:

Tacc, the time as given by the standard IBM accounting

routines.,

-Tsvc, the time attributed to the wuser for the
execution of all the supervisor «calls, which must be

subtracted from Tacc.
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Table 3 provides the values for each df these times for
each of the benchmarks. For Tpred and Trun, the relative
percentage 'of each of their components is given. The
absolute error, Trun-Tpred, and the percent error, (Trun~
Tpred) /Trun, appears on the last lines. The verification

process points to 1large discrepancies between the basic
execution time of instructions (Tins) and the speed as

perceived by the user (Tacc).

There are a variety of methodological problems involved
in accurate benchmarking. Because these were real programs
doing I/0 to real devices and interacting in complex ways
with the operating system, it was very difficult to get
accurate and repeatable measurements. In order to achieve
accuracy to within about 1%, it was necessary to carefully
control running conditions: using otherwise idle time at
night (the computers are normally multiprogrammed), removing
operating system variations by specific device allocations,
memory control to isolate paging variations, etc. Each
program was run many times, and the resulting averages were
used only if the deviation with particular set of conditions
was small; these same conditions were then used during the
tracing phase. The goal of repeatable measurements was

achieved, but the difficulty of doing so was rather more

than expected.
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Table 3.

Predicted and Benchmark Times

COBOLC rerenes TBM weesuee -== Amdahl =--- RATIO
Time % Time % IBM/Amd
Tins 2.213 98.44 1.179 88.45 1.878
~ M*Tmiss . «B35 1.56 «106 7.95 «330
"~ Teross .048 3.60
Tpred 2.248 100.00 1.333 100.09 1.686
Tacc 2.57 108.00 1.71 100.00 1.583
-Tsvc «348 13.54 320 18.71 1.088
Trun 2.222 86.46 1.399 81.29 1.599
Trun-Tpred -.026 -.857
$ error -1,170 -4,101
FORTGO omesms TBM ermsves ~=—= Amdahl ---~ RATIO
Time % Time % IBM/Amd
Tins 6.176 98.25 3.286 83.81 1.879
M*Tmiss 110 1.75 «553 14.10 «199
Tcross : .082 2.09
Tpred 6.286 100,00 3.921 106.90 1l.60
Tacc 6.42 100.00 N/A
-Tsvc .082 1.28
Trun 6.338 98,72
‘Trun-Tpred .052
$ error #.82
PL1GO mememes TBM comecee ~=e Amdahl --- RATIO
Time % Time % IBM/Amd
Tins 4,561 96.69 2.233 85.88 2.042
M*Tmiss «156 3.31 «254 9.77 .614
Tcross o113 4,35
Tpred 4,717 100.00 2.600 100.00 1.814
Tacc 5.45 100.69 3.42 1090.00 1.594
Trun 5.157 94.62 3.214 93.98 1.604
Trun-Tpred «440 .614
$ error 8.53 19.10
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LINSY2 eeeme TBM =eweomwm wwe Amdahl =---~ RATIO
Time % Time $ IBM/Amd
Tins 1.970 100.00 1.561 96.48 1.262
M*Tmiss 000 8.00 000 .00 1.000
Tcross .857 3.52
Tpred 1.970 100.00 1.618 106.00 1.218
Tacc 1.98 109.00 1.69 100.608 1.172
-Tsvce .040 2,02 «031 1.83 1.290
Trun 1.946 97.98 1.659 98.17 1.169
Trun—-Tpred -.030 . 041
COBOLGO wmeemeve TBM —meeee e Amdahl --- RATIO
Time % Time % IBM/Amd
Tins 4,291 97.13 2.451 95.67 1,751
M*Tmiss «127 2.87 «875 2.93 1.693
Tcross .036 1.48
Tpred 4.418 100.00 2.562 100.906 1.724
Tacce 4,82 106.00 2.92 106.80 1,651
~Tsvce «428 8.88 .289 9.9 1.481
Trun 4,392 91,12 2.631 90,10 1.669
Trun-Tpred -.026 -.069
$ error ~@.59 2.62
FORTC wmeeee JBM mee—eme =e—e Amdahl --- RATIO
Time % Time % IBM/Amd
Tins 3.711 94.74 1.886 77.62 1,968
M*Tmiss «206 5.26 +455 18.72 «452
Tcross _ _ .089 3.66
Tpred 3.917 163.00 2,430 100.00 1.612
Tacc 4.64 1006.00 3.10 106.00 1.497
~TsvC «652 14,05 .430 13.87 1.62
Trun 3.988 85.95 2.676° 86.13 1.494
Trun-Tpred 071 «239
% error 1.78 8.95
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PL1C et IBM = -== Amdahl -~- RATIO

Time % Time ] IBM/Amd

Tins 7.372 98.93 3.846 88.94 1.917

M*Tmiss .080 1.87 «250 5.78 «320

Tcross - . «228 5.27

Tpred 7.452 100.00 4.324 100.00 1.723

Tacc 8.16 100.00 4,93 100.00 1.655
-Tsve «794 9,73 «388 787 2.046

Trun 7.366 96.27 4,542 92.13 1.622

Trun-Tpred -.086 «218

$ error -1.17 ' 4.80

The results for. IBM are generally extremely good; for
all except one program the differences between the predicted
and actual running time are less than 2%. The agreement for
Amdahl is not as good, but most of the error can be traced
to the crude method for measuring the SVC time correction.
A factor of two in the the SVC correction, which is
certainly conceivable when an OPEN as measured on the 168
can vary from 6 to 33 msec, can easily account for all the
error. For both machines, the programs for which the match
was the poorest (such as PL1GO) were those that had high I/O

activity and therefore required the largest SVC correction.
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Chapter 1V
CHARACTERISTICS OF THE IBM 378 ARCHITECTURE

This chapter contains the results of measurements for
the 370 which were produced by the procedures described in
Chapter III. The results are often presented in a largely
descriptive fashion; more information by way of conclusions
and summary appear in Chapter 7. Similar results for other

architectures appear in Chapter 5.

4.1 OPCODE DISTRIBUTIONS

Figures 2 through 11 show opcode distributions for a
variety of different programs, including all the penchmark
programs discussed in Chapter 31. The "Static Count" column
shows the frequency of occurence of opcodes as they occur in
the program text. The "Dynamic Count" column represents
counts of instructions executed when the program was run.
The two "Time" columns show how the execution time was

distributed among the various instructions for the 168 and

the 470 computers.

1Appendix A contains a brief explanation of the instruction

mnemonics for the 3790 and the other machines examined.
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As has been observed many times, very few opcodes
account for most of a program's execution. The COBOLC
program, for example, executes 84 of the available 183
instructions, but 48 represent 99.08% of all instructions
executed, and 26 represent 90.28%. Note that it is common
for an instruction to have a ratio of 1 to 5 in execution
time percentage versus execution frequency. For example,
.the "Move Chararacter®™ (MVC) instruction in the COBOLC job
represents 3.,92% of all instructions executed, but accounts
for 14.97% of 1IBM execution time, and 16.47% of the Amdahl
execution time. 1In contrast, the "load" (L) instruction in
the COBOLGO job represents 16.58% of all instructions
executed, but accounts only for 1.65% of IBM execution time,

and 1.57% of Amdahl execution time.
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It is clear that the most commonly executed instruc-
tions are often not the ones which account for most of the
execution time. some of the more exotic and many of the
variable~length instructions of the 370 architecture demon-
st;ate their influence; Divide Decimal (DP) accounts for
' 18.65% of the Amdahl time for COBOLGO, and Translate and
Test (TRT) accounts for 5.38% of the IBM time for PL1C. The
particular strengths and weaknesses of the implementations
are apparent; the Amdahl implementation of Divide Register
(DR) suffers in comparison tb IBM (FORTGO), whereas IBM
fares rather poorly on Store Multiple (STM). Certain dips
in performance are are clearly evident, and two such
examples appear in COBOLC. The Execute (EX) instruction,
which the Amdahl.designers expected not to be important, is
a particularly obvious problem, and has been noted before
{EME]. The Exclusive Or Character (XC) instructioéon, which
accounts for 8.31% of the execution time, is almost always a
case of overlap discussed in section 4.7, which IBM

optimized but Amdahl did not.

4.2 INSTRUCTION LENGTH

The 370 architecture has three instruction lengths: 2,
4, and 6 bytes, which 1loosely correspond to register ‘to
registef, register to memory, and memory to memory instruc-—
tions. Table 4 gives the fraction of each type encountered

and the average instruction length., The average instruction
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length varies from program to program; thé range is 2.92 to
4.49, with the average around 3.6 bytes. The extremes are
represented'by the COBOL programs, for which 6-byte storage
to storage instructions predominate, and the LINSY2 program,
for which 2-byte register to register instructions predo-~
minate. Although the average varies moderately, the
proportion of 4-byte instructions varies dramatically from
46% to 81%, and similarly 2-byte instructions vary from 15%
to 60%. The high fraction of 2-byte instructions for LINSY2
results from the fact that most of the instructions executed
are part of a short (26 byte) inner loop that was highly

optimized by the compiler.

Table 4.
Instruction lengths

Program %2-byte %4-byte %6-byte Average

COBOLC 16.15 75.91 7.94 3.836
FORTGO 29.02 70.69 .29 3.425
PL1GO 16.99 82.37 .64 3.673
LINSY2 53.96 46.04 f.00 2.920
COBOLGO 14,74 45,77 39.49 4.495
FORTC 18.52 80.86 .62 3.642
PL1C 17.20 75.45 7435 3.883

4.3 BRANCH ANALYSIS

For most programs studied, branch instructions
represent a considerable fraction of all instuctions
executed (usually 15% to 30%). In five of the seven

programs traced, at least one of the branch instructions
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(usually the simple conditional branch BC) is in the group

of instructions that represent 50% of program execution.

In Table 5, the column marked '$ Brnchs' indicates the
fraction of all instructions executed that were potential
branch instructions. The column marked '$ Success' which
follows, shows the fraction of those potential branches that
were successful., In the 378 architecture there are two
classes of branches: unconditional branches, and condi-
tional branches whose success depends on values at execution
time. Each class contains both successful and unsuccessful
branches. The only unusual subclass is the unconditionally
unsuccessful branch, which is a no-op instruction. The
second part of Table 5 shows the fraction of branches in
each of these four subclasses as a fraction of all potential

branches encountered.

Table 5.
Branch Instructions

Unconditional Conditional
Program $%$Brnchs $%$Success %Succ %Unsucc %Succ 3Unsucc

COBOLC 31.26 61.75 35.01 6.22 26.74 32.03
FORTGO 13.49 8l.81 31.89 6.62 49,92 12.57
PL1GO 6.65 76.04 11.80 9.17 64.25 14.78
LINSY2 14.13 49.34 0.29 0.05 49.64 50.01
COBOLGO 15.78 71.23 35.87 2.75 35.36 26.02
FORTC 21.60 64.41 24.59 3.22 39,82 32.37
PL1C 35.27 67.65 33.50 4.03 34.15 28.32
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Branch instructions can create difficulties for
pipelined implementations of computér architectures. The
instruction fetch mechanism is often a stage in the pipeline
which is independent of the instruction decoder, and
therefore does not recognize branch instructions. A naive
implementation results in a 1large number of unnecessary
instruction fetches following a branch instruction, since
the recognition of the need to fetch instuctions from the

branch target comes too late.

To address this problem the 168 has a rather sophisti-
cated mechanism by which both the instructions following the
potential branch and the instructions at the bragch target
are fetched into two separate sets of instruction buffers.
Although the fraction of success for potential branches
seems to be a fairly consistent 60-890%, table 6 demonstrates
that it depends heavily on the particular type of branch
instruction., The designers of the 168 accounted for this
fact by having the instruction fetch mechanism wuse the
specific opcode of the branch to estimate the likelihood of
success.

In contrasf, the 478 simply treats branch instructions
as if they had memory operands, and uses the normal memory
operand fetch mechanism to fetch the first two words at the
branch target location. Pipeline complexity is minimized by
having the execution unit determine the results required for

conditional branches as early as possible. This - is



Table 6.
Instructions Which Caused Branches, Sorted By Frequency

COUNT

OPCODE % OF BRANCHES % SUCCESS FOR THIS OPCODE
BC 1343374 56.365% 60.260% OF 2229306
BCR 555745 23.318% 69.504% OF 799591
BXLE 272120 11.418% 92.208% OF 295116
BALR 97039 4.071% 53.303% OF 182036
BCT 81041 3.400% 96.562% OF 83926
BAL 19646 0.824% 100.000% OF 19646
BXH 14387 0.604% 25.434% OF 56565
BCTR 3 p.000% 0.009% OF 34229
svC 1 0.000% 0.420% OF 238

2383347 100.00%

consistent with the very successful philosophy of the Amdahl

designers to keep the pipeline as simple as possible, Since

we generally find that branch instructions represent a

smaller percentage

of the execution time for the

470 than
the 168, it appears as though the decision to use a simpler

mechanism did not cause a bottleneck.

Section 6.1 contains a proposal, supported by
simulation results, for an improved mechanism for branch
prediction.

4.4 BRANCH AND EXECUTION DISTANCES

One of the common criticisms of the 370 architecture is

the absence of program—-counter-relative branch instructions.

Figure 12 1is a typical branch distance distribution which

supports this attack, since 75-85% of the branch distances -

are within 2048 bytes of the program counter. The
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displacement of 12 bits used in RX branch instructions could
therefore have been used for most branches so that base
registers would have been unnecessary for most program
references. The fact that 50-608% of the branch distances
are within 128 bytes of the program counter indicates that

even an 8-bit displacement could be used to considerable

advantage.
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Figure 12: Branch Distances
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Although 95-99% of the longer branch distances are
within 32K bytes, there are still a substantial number of
longer branches (4M bytes and above) representing calls to

supervisor routines far from the user's program area.

Most programs show a few important peaks in the branch
. distance distribution corresponding to the important program
loops. Note that the asymmetry around the program counter
is not sufficient to justify other thaﬁ a symmetric signed

displacement for relative branch instructions.

Table 7 shows information related to execution
distances, which is defined to be the number of bytes of
instructions executed between successful branch instruc-
tions. The last column gives the equivalent distance in
number of instructions, obtained by' dividing the average
execution distance by the average instruction length for
that program; it is a reasonable estimate of the true

average number of instructions between successful branches.

Table 7.
Execution Distances

Program Average std. Dev. Avg. # Inst

COBOLC 19.86 17.25 5.18
FORTGO 28.52 31.03 8.33
PL1GO 69.40 34.11 18.89
LINSY2 41.490 25.92 14.17
COBOLGO 33.96 48.07 7456
FORTC = 26.05 25.08 7.15
PL1C 15.94 13.51 4,19
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For most programs, the average execution distance is
surprisingly small (less than 32 bytes, which 1is the cache
line size) but the standard deviation is large. There are
often isolated peaks for relatively large execution
distances (see Figure 13). With the exception of the PL1GO
program, which has the highest average execution distance,
77% to 85% of execution distances are less than 32 bytes.
Distances less than 16 bytes account for 40-60% of the
execution distances. This tends to justify the choice of 32
bytes for the linesize of the cache on both machines, at
least as far as instruction fetch is concerned. This is
also consistent with older designs for instruction fetch
_buffers, such as the 1IBM 366/91 which has a 64 byte

instruction stack.

4.5 OPCODE PAIR DISTRIBUTION

The measurement of opcode pair frequencies confirms
that the overall frequency of an opcode is not independent
of the surrounding instructions. Pair occurrences are also
important in performance analysis because of pipeline inter-
.locks and other miscellaneous issues such as memory store-
through. Table 8 gives the five most frequent opcode pairs
for each program. It is not uncommon for the measured
frequency of those péirs to be 4 to 9 times greater than the

product of the individual opcode frequencies.
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Figure 13: Execution Distance Between Branches

An examination of the frequent opcode pairs fails to
discover any pair which occurs frequently enough to suggest
creating additional instructions to replace it. Many of the
instruction pairs which do occur frequently are those that
when combined would save only one opcode field since the
other instruction fields would still be required. Examples
of this nature are test or compare instructions followed by
conditional branches (TM/BC, C/BC). Many other frequent

pairs are artifacts of the program structure; a simple
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Table 8.

Opcode Pairs

$ Pair % Freq.
Count Product Ratio
4.74 1.09 4.36
4.08 8.93 4.36
2.67 g.61 4.40
2.57 9.93 2.75
2.00 1.99 1.84
$ Pair % Freq.
Count Product Ratio
7.37 1.72 6.29
5.34 1.27 4,20
5.29 1.45 3.64
5.28 0.64 8.21
5.13 0.59 " 8.66
% Pair % Freq.
Count Product Ratio
7.65 2,51 3.85
7.65 2.20 3.47
7.16 4.18 1.71
6.67 4.18 1.60
6.00 1.71 3.50
$ Pair % Freq.
Count Product Ratio
7.26 1.31 5.55
6.65 2.24 2.97
5.39 g.40 13.54
5.22 1.01 5.19
4.72 2.35 2.00
$ Pair % Freq.
Count Product Ratio
5.79 1.48 3.92
5.20 B.72 7.28
4,21 8.79 5.31
3.96 1.11 3.58
3.73 1.48 2.52
% Pair % Freq.
Count Product Ratio
6.29 3.57 1.76
6.19 7.54 .82
4.03 3.34 1.21
3.76 1.28 2.94
3.66 1.09

3.34



PL1C First Second % Pair & Freq.

Instr Instr Count Product Ratio
1l CLI BC 6.54 1.65 3.96
2 BC LA 4,20 1.99 2.22
3 BC CLI 3.76 1.65 2.28
4 ™ BC ‘ 2.93 8.79 3.71
5 CR BC 2.26 B.58 3.89

. example is the pair which consists of a loop branch and its
target instruction. Alexander [ALE75] mentions the load-
branch pair as an extremly frequent one for the XPL compiler
" (L~BC is 12.4% of the count) where it is used for the GO TO
in the absence of a known baée register. We £find no pairs
with such high frequencies, and in particular £ind the
load-branch combination to be significant only in two of the
seven programs. Frequent pairs often result from peculiar-
ities of software conventions; the subroutine-call
instruction (BALR) is often followed by the unconditional
branch (BC) because the first instruction in almost all
subroutines is a branch around the name of the program. For
the FORTGO program, the extra branches (which could be
easily eliminated by putting the name before the first
instruction of the subroutine) cost 8.79% of the execution
time of the entiré program. Many of the programs have a

similar extra cost of between 0.5% and 1.06% due to the same

convention.

The distinction between the distribution of instruction
pairs executed and the static distibution of instruction

pairs in the program text should be carefully made. Our
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results do not contradict findings based on static analysis
[FOS71a, HEH74] that certain pairs of instructions might be
frequent enough to Jjustify replacement by a single

instruction to improve code density.

4.6 DISPLACEMENT VALUES

The 370 architecture expresses addresses as the sum of
a 24 bit base value in a register with a 12 bit displacement
in the instruction. The limited size of the displacement --
which is interpreted as an unsigned number from # to 4895 --
is the source of much of the criticism of the instruction
set. The small displacements force many registers to be
‘dedicated as program base pointers, and make local variable
accesses awkward., Figure 14, which shows the 1log distrib-
ution of displacement values as measured statically in the
program, supports this allegation. Each additional bit
which makes the displacement larger is used about as much as
the preceeding bits; it is not the case that small
displacements, like small data constants, are common. It is
likely (as supported by the evidence) and obvious (to
.assembly language programmers) that a larger displacement

would be a considerable advantage.

4.7 REGISTER USE

All memory addresses in the 370 are formed with a 24

bit base value in a register which 1is added to the
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displacement, and some instructions allow an additional 24
- bit quantity in a second register to be used as an index.
In a;l cases specification of register #§ for the base or
index indicates that a value of zero is to be used in lieu
of the contents of the register. The hardware does not
distinguish between registers which contain addresses and
registers which contain index values, so the interpretation
of statistics about base and index register utilization are
difficult to relate to the program organization. Never-
theless information about the occurrence of =zero in the
register fields can be easily interpreted. Table 9 shows
that it is very infrequent for instructions to specify the
_use of both index and base registers. Except for the
program LINSY2, which is known to have many array refer-
ences, 806% to 95% of the instructions which ailow indexing
do not use both base and index registers. A reorganization
of the 378 addressing modes could profitably include a
non-indexed mode in which the space saved is used for a
longer displacement.

The distribution of register utilization for address
. calculation shows that no more than 3 registe;s account for
most of the use. The others are used for address calcu-
lation less frequently, or are used for program accumu-

lators.
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Table 9.
Register Use for RX Instructions
(Effective Address Calculation)

Program $No Regs %1 Reg $2 Reg

COBOLC .39 95,51 4.09
FORTGO f.96 77.25 21.79
PL1GO .09 82.05 17.86
LINSY2 0.24 65.04 34.72
COBOLGO .01 98.93 1.06
FORTC 4.08 87.95 7.97
PL1C 1.93 92.48 5.59

4.8 OPERAND LENGTHS

The TRACE program accumulates the distribution of the
lengths of all the operands for instructions for which the
operand lengths are not implied by the opcode. These
operand lengths are either fixed and defined in other fields
of the instructions (like the number of registers specified
in the Load Multiple instruction), or are data dependent
(like the number of bytes which must be referenced before an
inequality is detected in a Compare Character instruction).
These variables are required to calculate the instruction

execution times.

For the purposes of exposition we have divided the
variable operand length instructions into three classes:
(1) the multiple register load and store instructions (LM
and STM), (2) the character manipulation instructions, like
Move Character (MVC); and Compare Character (CLC), and (3) -

the decimal arithmetic instructions like Add Decimal (AP).
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4.8.1 LM/STM

The STM and LM instructions save and load a contiguous

set of registers designated by a starting and ending

register. From one to sixteen registers may be moved by a

single instruction. Figure 15 shows a typical distribution

(from FORTGO) of the number of registers stored and loaded.

It is common for there to be two peaks, one for a low value

of about 2 to 3 registers for accessing data stored in
consecutive words, and another at a high value of 11 to 15
registers for saving and restoring registers across
procedure calls. The LM and STM are not used symmetrically:
fqr a given number of registers 1loaded or stored the

frequency counts are often quite different. For the FORTGO

program, the average number of registers used for STM is
13.23, and for LM is 5.99. For both machines, the marginal

cost. of storing one more register is smaller than the
execution time of a load or store instruction, but there is
a much higher overhead for starting each instruction for IBM
than for Amdahl. 1In both cases it is faster to use several

store or 1load instructions when 3 or fewer registers are

-involved. Despite the fact that these instructions are
never among the most frequent, they contribute much more to

the CPU time than their frequency would suggest because of

their 1long execution time. For the FORTGO program for

example, the 8.67% of instructions which are STM account for

6.66% of the IBM execution time and 4.59% of the Amdahl

execution time,
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4,8.2 Character Instructions

The second group of storage~to-storage (SS) instruc-
tions are those which specify a source and destination
location for a character string and a single length for both
operands in the range 1 to 256. One of the characteristics
of these instructions that makes their implementation very
difficult is that overlapped operands are allowed and must
be treated a byte at a time. This allows, for example, a

single byte to be propagated throughout a string by a move



instruction whose destination address 1is one greater than
the source address, since the fields are processed left to
right. Loﬁer performance machines in the 378 family
implement these instructions in all cases by processing each
byte individually, but for high performance machines this
would obviously be too slow. Therefore both computers
exhibit execution speeds for the non-overlapped cases which
are much higher than that for overlapped. For the IBM Move
Character instruction, for example, the non—-overlapped case
takes 40 nsec per byte moved, but 240 nsec per byte of

overlapped move.

on jobs for which MVC is a frequent instruction (PLI1C
and COBOLC) the nonoverlapped case occurs about 58 times
more frequently than the overlapped case. However the
average number of bytes moved is 1less than 8 for the
nonoverlapped move, and greater than 50 for the overlapped
move, The result is that the 2% of the MVCs which are

overlapped are responsible for 28% of the total MVC time.

The overlapped MVC instructions are used primarily to
£ill a work area with a specific character, and are probably
most used to initialize I/0 buffers. This is confirmed by
the peaks near 88 and 133 which correspond to card and line
printer buffers. For programs which don't otherwise use MVC
but still do I/0, the overlapped case is an even higher.
fraction of all occurrences of MVC. For FORTC, for example,

the 6% overlapped MVCs account for 52% of the MVC time.
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Figure 16 shows the distribution of operand length for
MVC instruction in FORTC. It is representative of the other
distributions in the presence of 1large peaks for small
values, and an overall average of 108.06 bytes. Since the
startup overhead for these instructions is large, there is
‘ almost always a less expensive way to do the equivalent
operation for a small number of bytes. For one byte, a
IC/STC combination takes less than half the time of a

one~byte MVC on both machines.
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Most of the other instructions in this variable operand
class are much 1less frequent than MVC. Among them are the
instructions for which the number of bytes processed may be
much smaller than indicated in the instruction, such as
Compare Character (CLC) and Translate and Test (TRT). For

these instructions, the distribution of the length specified
in the instructions is a poor indicator of the 1length
actually used. A typical examples is COBOLC, where the
average CLC instruction specifies 4.53 bytes, but an average

of only 1.74 bytes are examined by the hardware.

Another instruction of note is the Exclusive Or
Character (XC) which is predominately used in total overlap
mode 1in order to =zero fields. This fact was wused to
advantage in the 168, where the total overlap case is
specially optimized to be 15 times faster than the other
overlap cases. This was not done for the 478, which
explains that XC accounts for 9.6% of the COBOLC program for
the 478, but only 3.8% for the 168.

4.8.3 Decimal Instructions

The third group of storage~to~storage instructions
consist primarily of those for decimal arithmetic. They
appear in significant numbers only in the COBOLGO program.
For that program, however, they account for 26.29% of the
count, and represent 66.39% of the IBM execution time and

64.30% of the Amdahl execution time. These instructions can

- 86 =~



vary in execution time by as much as 16 Eo 1 depending on
the operand 1lengths, but the large éxecution time arises
despite the fact that relatively short operands are common.
Most operands are 2 to 6 bytes long even though the maximum
possible is 16. The average execution time of the Divide
Decimal (DP) instruction is about 15 usec for both machines.
Not suprisingly, the average execution rate in millions of
instructions per second for the COBOLGO program (.810 MIPS
for IBM, 1.353 MIPS for Amdahl) is drastically smaller than
the average for all the programs (3.519 MIPS for IBM, 5.518
MIPS for Amdahl). Considering the popularity of COBOL as a
programming language, these instructions, which require slow

serial byte processing, represent a major degradation of the

speed of the machines.

In view of the poor performance of many of the variable
operand length instructions, their inclusion in the the
architecture of a high-performance computer is questionable.
The absence of such instructions in machines like the CDC
76008 and the CRAY-1 is indicative of their emphasis on high
speed. The arithmetic which must occur before these
instructions begin their data transfer suggests that it is
quite difficult to optimize them for short operands. A
compromise, if the execution of these instructions cannot be
optimized, may be to supply simpler instructions from which
the more complex chéracter and decimal instructions can be

composed, as 1illustrated by the byte instructions of the
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PDP-14. An immediate improvement could be obtained 1if
compilers were to replace these instructions by faster
equivalents when they are available, although this would
require tailoring the cémpilers to specific models of the

computer series.

4.9 MEMORY REFERENCE AND CACHE EFFECTS

The correction due to cache misses ranges from 1% to 5%
for IBM, but from 3% to 19% for Amdahl, indicating that the
memory subsystem is a major' bottleneck for the Amdahl
machine. In some sense the memory architecture forces the
476 to 1lose some of the raw speed advantage of the CPU.
There are two factors which contribute to the problem: (1)
the cache otganization of the Amdahl machine produces from
1.7 to 3 times the number of cache misses, and (2) the
penalty for each miss is 1.56 times that for IBM. 'Thus the
overall cache penalty for Amdahl is 2.5 to 4 times more than
IBM, whereas the raw execution speed, defined as Tins (the
time required to execute the instructions with no cache
misses) is 1.9 times faster for Amdahl than for IBM. The
loss due to the caéhe organization could have been elimi~-
nated, but to maintain the raw speed advantage would have
required a cache miss penalty of 250 nsec, which would not
have beén economically feasible at the time. The dilemma of
Amdahl results from a mismatch between the MOS memory chips
available commercially and its proprietary ECL LSI

technology which is so much faster.
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4.10 PIPELINE EFFECTS FOR THE 474

Because the timing formulas for the Amdahl machine
include spécific pipeline variables, we can assess their
effect on the execution. The pipeline is optimized for
4-byte instructions which have single word operands, and any
deviation causes potential conflicts with subsequeht

instructions,

The seven pipeline variables depend upon local
instruction sequences (see the definition of S1 in section
3.1.4 for examples), and therefore cannot be computed from
global averages. The exact evaluation of these variables
would require a complete and complex simulation of the
pipeline at the time the program is traced. As a
compromise, we use the pair and triple frequency data
collected while tracing to reconstruct instruction sequences

and average the variable value for each sequence.

In general, the speed degradation due to pipeline
conflicts seems to be quite small. For most programs, each
of the variables contributes 1less than #0.5% to the total
execution time. The only cases of a larger contribution are
when the variables affect specific instructions which occur
frequently. For the COBOLGO job, an average additional 1.1
cycles (35.75 nsec) is added to each decimal instruction.
This represents a 1.35% increase in execution time. For

PL1GO, the doubleword store pipeline break results in an
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additional 1.17%. For LINSY2, the delay caused by late
setting of the condition code néeded for conditional
branches adds 6.3%. Although there are wide variations,
these worst case examples demonstrate the overall good

design of the pipeline,

l 4.11 SUMMARY

Results of two types are evident in the measurements
presented here: specific statements about the 168 or 470
implementations, and general observations about the 370
architecture. This is precisely the advantage of doing a
study at this level, because the effect of architecture on
implementation is made clear in a way that is hard to see

otherwise.

Comparing the two implementations leads to the general
impression that the 168 is a more balanced design; All of
the subsystems seem well matched to each other, and it is
hard to identify particularly vulnerable "critical paths" to
improved performance. The 478, on the other hand, benefits
from improved technology but suffers from uneven improvement
compared to the 168. There are particular isolated items -~
certain special instructions and the cache/memory organi-
zation, for example == which have not scaled up in
proportion with the rest of the machine. The result is that
specific.attention paid to those areas can have a signif-

icant effect; in essence the design seems to need another
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pass before the result is performance which seems

"consistent"” among all its parts.

An improved version of the 478 V/6 has recently been
announced, and some improvements to the areas discussed here
have been made; in particular the cache has been improved,
* the the XC instruction has been optimized £for the fully
overlagped case, and the EX instruction no longer causes a
complete 22 cycle pipeline break. Not to be outdone, an
improved version of the 168 (labeled the 168-3) has been
produced. In addition to changes unrelated to performance
(the addition of an independent diagnostic computer, for
example) there was improvement in a few of the important
storage~to~storage instructions and a doubling of the cache

to 32K, resulting in a speed increase of several percent.

The overall impression of the architectural measure-
ments is two-fold: (1) the basic instruction set seems
balanced and completez, and (2) there is a significant
problem with high-performance implementations of complex
instructions, and their use may not be justified. More

discussion of this issue appears in Chapter 7.

2this impression will be somewhat modified by the results of

Chapter 5.



Chapter V

OTHER ARCHITECTURE CHARACTERISTICS

This chapter contains an examination of some architec-
tures which are different from the IBM 374. The intent is
to complement the 370 analysis by examining those aspects of
several other computers that can contribute new information

because of their difference from the 374.

The architectures for which information is given are:
the INTEL 8080 microprocessor, the DEC PDP1ll, and the PASCAL

PCODE pseudo-machine.,

5.1  INTEL 8080

The LSI microprocessor has sparked a minor revolution
in the use and distribution of computing ability. These
relatively sophisticated but inexpensive components have
permitted both the application of standard computer techn-
igques to a wider'body of problems and the development of new
applications to problems previously approached in other
waysS. It is natural to apply the same measurement
techniqués for this extreme of the computer spectrum that we
have applied to examples of the largest computers, and in

this way attempt to determine if any fundamental differences

- 92 -



in their use can be measured which arise from differences in

architecture or application.

The microprocessor used for this study is the INTEL
8080 [INT], which is the oldest and most widely used of the
"second generation" single~chip microprocessors. An 8080
. simulator running on a large computer was instrumented so
that information about instruction execution could be
collected, and additional programs were written to analyze
source programs so that static information could be

obtained.

Gathering benchmark programs for microprocessors 1is
more difficult than for large computers because many of the
programs so far written are trivial and uninteresting. Five
large programs were analyzed, none of which was written
espeéially for this study. JBASIC is a standard 8K BASIC
interpreter which also includes a simple program editor.
TBASIC is a much smaller BASIC interpreter which is imple-
mented as a two-level 1layered machine ([WAN]. VGT is the
software used in a sophisticated text and graphics terminal
- [SHU] . MUSIC is a realtime music synthesis and display
pattern generator, and EDITOR is a disk~oriented program and
text editor. The text editor was written in the high-level
langauge PL/M [KIL]; all the others were written directly in

assembly language for the 8684.
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Table 10.
8680 Dynamic Instruction Statistics

----- Instruction Size-=--~--  Avg. bytes
Program #Inst $ l-byte % 2-byte & 3-byte per Inst

VGT 85,798 52.50 11.24 36.26 1.838
TBASIC 177,486 64.90 13.37 21.73 1.568
MUSIC 168,768 70.38 19,63 19.07 1,398
JBASIC 226,826 76.61 4.03 19.36 1.428
EDITOR 197,330 73.51 10.57 15.92 1,424

Bytes Bytes
Read Written # Cyles MIPS at
Program per Inst per Inst per Inst 2 Mhz

VGT «350 «303 8.967 «223
TBASIC «343 .204 7.851 «255
MUSIC .178 «165 6.771 «295
JBASIC «226 «169 7.002 .286
EDITOR «209 .160 7.024 «285

5.1.1 Opcode Distribution

As expected, a small number of the 86808 opcodes account
for most of each of the program's execution. In’  the VGT
(Figure 17) only seven instructions represent 53.7% of all
instructions executed, and 39 represent 99.2%. The most
common instruction (14.9%) is the conditional jump (JMP
CC,xxx) followed closely by the 8«~bit register~to-register
load (LOD r,r). Iﬁ the EDITOR, the same two instructions
ire important, but the more unusual rotate instruction (ROT)
appears in second place because it it used in the inner loop
of the multiply subroutine. For the VGT the rotate appears
only as the 34th instruction; clearly some generally infre-

quent instructions are occassionally very important for
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specific programs. The jump, load, push (PUSH rr) and pop
(pOP rr).instructions, however, appear to be universally
important for all programs.

There is a considerable difference between the
occurence distribution and the time distribution of opcodes
_ for the 8088, but not nearly as much as for the high-per-
formance 370 machines. Instructions 1like the unconditional
subroutine call (CALL U,XXX) are more significant in
execution time than in frequency (7.2% vs. 3.8% for VGT)
because of the costly stack references to memory, but simple
instructions like LOD take less time than their frequency

would indicate (7.5% vs. 11l.4%).

The static opcode distributions (Figure 18) are often
quite different from the dynamic distributions. Although
loads and jumps still predominate, lengthy but infrequently
executed initialization code is represented by the presence
of the load-immediate instructions (LODI r,n for 8-bit data,
and LODI rr,xxx for 1l6-bit data) in the top 50% group. The
simple byte movement instructions are statically common, but
the dynamically important stack push and pop instructions

are not.

5e¢1le2 Opcode Pairs

Dynamic opcode pair frequencies often clearly reveal
the dominant 1loop of an executing program. In TBASIC for

example (Table 11), a string search constructed from an
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index register

(CMP (HL)), and

9.3%

variation

addition 4.9%.

, replaced by a

increment (INC HL), a

ending with the

These simple seguences

single

compare, increment and

seldom

statistics.

Program: VGT

seen

in the

faster

of the program execution,

same

more complete

Table 11l.

and a

sequence

instruction

repeat (CPIR) of the

370

808¢ Dynamic Opcode Pairs

Opcode #1  Opcode #1
PUSH RR PUSH RR
ANDI n JMP CC,xXxX
JMP CC,xxX LOD R,R
LOD R,R ANDI n
POP RR POP RR
Program: TBASIC

Opcode #1 Opcode $#1
JMP CC,xxx INC RR
CMP (HL) JMP CC,xXX
INC RR CMP (HL)
CMPI n RET CC
CMPI n JMP CC,xxXX

character comparison
a conditional jump (JMP CC,xxx) represents

slightly 1longer

represents

that could well be

(such as

2ilog 78@) are

instruction

Ratio
Meas./Exp.

9.89
4,16
1.41
4.31
6.85

Ratio

Measured Expected Meas./Exp.

$ Inst $ Inst

Measured Expected
3.72 .38
3.02 8.72
2.84 2.02
2.84 0.66
2.40 8.35

$ Inst % Inst
6.69 1.71
6.07 .96
4.76 f.82
3.63 f.39
3.47 1.03
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The static opcode pair frequencies (Table 12) often
reflect cbmmon code sequences. Some of these sequences, .
like a coméare (CMPI n) or a test (IOR r) followed by a
conditional jump, are reasonable and unsurprising. Many
others are indications of common sequences that should, from .
_an architectural point of view, be incorporated into a
single instruction. Rotate instructions often followed by
other rotate instructions show that multiple-bit rotation is
indeed a common operation; note that the rotate pair is 12
times more frequent than would have been expected from a
simple count of its occurrences. Pairs of 8-bit register-
to-register loads are common because they are used to
simulate the missing 16-bit register-to-register loads. The
static pair distribution for the EDITOR reflects the simple
code-generation schemes used by the PL/M compiler.
Addressing is often done by loading an address into the HL
register and referencing the variable in a subsequent regis—
ter~indirect instruction since the available full~address

instructions are limited.

5.1.3 Instruction Length

The 8080 has instructions ranging from a single byte to
three bytes. The first byte is always the opcode, which
includes register designators, and the following bytes are
either immediate data or memory addresses. The average
instruction length for the samples varies from 1.4 to 1.8

bytes.
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Table 12.

8080 Static Opcode Pairs

Program: VGT

% Inst % Inst Ratio
Opcode #1 Opcode #2 Measured Expected Meas./Exp.

LOD R,R LOD R,R 2.59 1.33 1.95
CMPI n JMP CC,xxx 1.74 8.18 9.71
ROT ROT 1.69 f.14 12.26
IOR R JMP CC 1.22 0.19 11.89
LODI R,n ST A,XXX 1.08 f.28 3.83

Program: EDITOR

: $ Inst $ Inst Ratio
Opcode #1 Opcode #2 Measured Expected Meas./Exp.

ST R, (HL) INC RR 3.29 .43 7.73
INC RR ST R, (HL) 3.17 .43 7.41
LODI RR,xxx LOD R, (HL) 3.10 1.24 2.49
INC R LODI R,n 3.85 .74 4.09
LOD R, (HL) 1INC R 2.89 .72 4,00

5.1.4 Branch and Execution Distance

The 8088 also suffers from the absence of jump instruc-
tions which are relative to the program counter; as
indicated in Table 13, about 88% of the successful branches
are made to locations within 127 bytes of the Jjump
instruction. Considering the importance of jump instruc-
tions, a sizeable savings in program size as well as speed
(because the jump instruction can be smaller) results from

the introductioh of a relative jump.
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Table 13.
Types of 8080 Jumps

—=—-— Types of Jumps ===- Branch Distances

Jumps as %Uncond conditional --= All Branches --

Progm &% Inst $ Succ % Unsucc 8 to 127 @ to -127
VGT 16.15 7.62 58.08 34,30 65.36 27.69
TBASIC 17.64 19.43 33.55 47.02 25.13 64.83
MUSIC 4.67 26.72 38.92 34.36 37.58 56.59
JBASIC 8.94 13,63 41.81 44.55 36.75 27.95
EDITOR 10.65 20.45 51.21 28.34 47.61 43.83

The number of instructions executed between successful
branches - the execution distance - is just as low for the
microprocessors as for the larger machines. Table 14 shows
that typically only 5 to 18 instructions on the average are
executed in a single run. Although this is not as important
for microprocessors because the execution pipeline is small
or non-existent, it is surprising that the relatively
unsophisticated instruction set does not lead to longer code
séquences for most operations. Part of the explanation is
thaf the simple operations to which all these computers
devote most of their time are single instructions in both
machines, such as the 1load/store/test operations. The
 complex operations which would result in long code sequences
for the 8888 may not appear simply because either they
contain conditional subparts (which break the execution
run), or because the relative simplicity of the applications
does not require such operations. There is also a feedback

effect: the iack of some operations results in the choice
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of a fundamentally different algorithm,. rather than the
original élgorithm with the missing instructions simulated.
The set of .available primitives often strongly affects, as
well it should, the design of efficient algorithms,
programs, and systems; this is a point that the devotees of
rigid top—-down structured programming techniques do not

sufficiently address.

Table 14.
8088 Execution Distance

Program Average Std. Dev. Average

(bytes) (instr)
VGT 9.526 6.771 5.184
TBASIC 7.098 6.629 4,526
MUSIC 10.547 11,770 7.546
JBASIC 12.685 10,287 8.886
EDITOR 15.879 13.888 11.150

5¢1e¢5 Memory References

The number of data references per instruction is
important because the data references contribute directly to
the exection time; there 1is 1little overlap of memory
accesses with instruction execution., It turns out, however,
that compared to the cost of instruction fetch, operand
accesses are a minor part of the execution time. Table 10
shows that the number of operand bytes read per instruction
is typically .35, and the number of bytes written is
typically 4.2, Using a cost of 4 cycles per byte of-

instruction fetched and 3 cycles per byte of operand refer-
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enced (reasonable for the 8880), this-implies that a typical
instruction of 1.6 bytes requires 6.4 cycles for the
instruction fetch and execution, but only 1.6 cycles for the

operand references.

,5°1'6 Summary

The 8080 is a worthwhile computer to examine for two
reasons: (1) because the primitive instruction set makes an
‘interesting comparison to the 378, and (2) because, by
count, there are more 8080 cbmputers being used than any
other computer ever built; its numerical superiority

justifies our interest.

The first observation is that in many respects it is
"indistinguishable from larger machines. There seem to be
certain invariants -- such as the number of instructions
between successful branches -- which hold for at least
representative architectures at both extremes. The second
observation is that, in many ways, the 8088 is an "incom-
plete® architecture, and the results of that incompleteness,
unlike for the 370, appear clearly in the measurements.
There is reassurance, however, in the fact that the 8088 is
an experiment in LSI implementation of computers, and will
quickly . be overtaken by much improved processors as the

industry progresses.
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5.2 PASCAL P-MACHINE

Both of the machines so far considered have been
conventional register—oriented computers, and the similarity
in measured characteristics may be due primarily to the
similarity in architecture. To choose a radically different
machine organization on which to make the same kinds of
measurements, we turn to the hypothetical P-machine used in
implementation of the Zurich PASCAL P~Compiler [NOR]. The
p-Machine is a stack computer with no registers others than
those necessary to maintain the stack and the program
counter. P-Code is generated by the compiler and can be
used directly as a vehicle for intepretive execution, or as
an intermediary in the production of machine code- for other
computers. The measurements made here are for code
generated by the SLAC/Stanford version of the compiler

(HAZ].

5.2.1 Opcode Distribution

The static opcode frequencies for P-machine code are
most reminiscent of those for the 8088 microprocessor (see
Figure 19), but the distribution is more sharply skewed.
The top two instructions, which account for an incredible
358 of all instructions in the program, are the "load
variable® (LOD) and "load constant" (LDC) opcodes. The
procedure call opcodes (MST/CUP) are also, as for the 80840,

rather high in the static distribution: 7.15%. The
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ubiquitous jump is, as usual, among the top few; here the
combination of conditional (FJP) and unconditional (UJP)

jumps account for 11.82% of all opcodes.

5.2.2 Opcode Pairs

Table 15 shows the first few static opcode pairs in the
list ordered by decreasing frequency. Most of the pairs
have 1little architectural significance except for those

which are used for conditional jumps (EQU-FJP, for example).

5¢243 Branch and Execution Distances

The distribution of static jump distances for P-code is
even more strongly biased towards small distances than the
other machines we have looked at. For the conditional jump
(FJP) 62.8% of the jumps are to targets which are 16 or less
instructions ahead of the jump; 75.7% are to targets 32 or
less away. For the unconditional jump (UJP) the equivalent
numbers are 39% and 5@%. Almost all (93.7%) of the condi~
tional jumps are forward; they are produced primarily to
branch around THEN clauses. Unconditional Jjumps have

‘backward targets about one third of the time; most of these

are loop terminators.,
5.2.4 Summary

In some ways, looking at the P-Code generated by the

PASCAL compiler has many of the same disadvantages as other
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Figure 19: PDP1ll and Pcode Static Opcode Distributions
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Table 15,

Pascal P-CODE Opcode Pairs

First Second Percent
Opcode Opcode Occurence
LOD LDC 4.41
MST LDC 3.00
FJP MST 2,79
STR LOD 2,63
LDC cup 2.56
CUP LOD 2.42
LOD IND 2.31
LOD INC 2.20
EQU FJP 2.17
LDC EQU 2.09

language~oriented studies ([ALE75] for XPL, for example); it
tells more about the compiler than it does about the
instruction set. P-code is interesting, however, because it
describes a stack machine, and the influence of that archi-
tecture 1is seen by the high fraction of 1load and 1load

constant instructions.

The other 1lesson to be learned is that it 1is likely
that various special processors or languages will contradict
some of the more general findings. One such example is the
~predominance of forward jumps among the P-Code conditionals;
this is a peculiarity of the code generation scheme and it
would be dangerous to use such information to design branch
mechanisms unless nothing but P~Code programs were to be

run.
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5.3 DEC PDP1L

The PDPll is an interesting architecture to study
because of the regularity and operand symmetry of the
instruction set compared to the other machines we have been
looking at. There is no question that from an aesthetic
- point of view such reqularity facilitates programming
because any reasonable combination of opcode and operand
addressing modes is valid. The question remains, however,

whether that full generality is exploited in practice.

5¢3.1 Opcode Distribution

Figure 19 shows the static distribution of PDPll
opcodes derived £from an analysis of about 10,800 lines of
code from one of the operating systems (RSX~11M). Because
of the symmetrical nature of the instruction set, all load
store and move instructions are subsumed under the MOV and
MOVB opcodes, which accounts for their predominance. The
high percentage of branch instructions (20%) is familiar,
but the unusually high number of CALLs (6.3%) is due to the
highly modular structure of the operating system. In order
to determine more about the use of the instruction set it‘is
necessary to examine the way in which the addressing modes

are used.
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5.3.2 Addressing Modes

?or each operand in most PDPll instructions there is a
3-bit field to indicate the addressing mode, and another
3-bit field which specifies a register to be used. In
addition to the 8 addressing modes, special effects for
_ immediate operands can be obtained by using the program
counter (PC) as a register; these should be counted as
separate addressing modes because they are fundamentally
different operations (and are written in assembly language
with special syntax.) There.are then 12 distinguishable
operand addressing modes, and table 16 shows how often they

were used in our sample.

Table 16.

PDP11 Addressing Modes - All Operands (Static)

Register R 31.992%
Register indirect (R) 8.783%
"push" (R) + 9.863%
"push" indirect @(R)+ «337%
"pPop" - (R) 4.979%
"pop" indirect @~ (R) .026%
Indexed E(R) 17.312%
Indexed indirect @E (R) «553%
Immediate #E 14,896%
Absolute Q#E - «.026%
PC relative E 11.105%
PC relative indirect @E «202%
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The four most common -modes are ﬁerhaps the four

' simplest: ' Register, Indexedl, Immediate, and PC relative

'1porma1 "direct addressing”). These four account for 75.3%
of all operand references, and are the basic set needed for
any efficient = instruction set. The frequent use of
immediate operands is particularly telling for the 370
architecture, for which the lack of immediate operands

causes a space and time penalty to be paid for access to

literal data which cannot be placed with the instruction.

The four least-used addressing modes are precisely the
four memory-indirect references, accounting for only 0.9% of
the operands. Their disuse in an architecture which is so
limited by the number of opcode bits (only 15 two-operand
instructions are allowed!) raises serious questions about
their inclusion. An extra 2 bits of opcode 5pace (1 for
each operand) could be used to great advantage, and the
penalty of extra instructions when memory-indirect is needed

would be small indeed.

It may well be that the stylized code generation of
some language processors makes much heavier use of memory-
indirect addressing, perhaps for parameter accessing. One

must question, however, whether their use is the result of

1The heavy use of indexed addressing is in part due to the

frequent use of record-like data structures within the
operating system; indexed addressing is used for field
references within the record.
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forcing the coding conventions so that efficient instruc~
tions could be used, rather than designing a mechanism
appropriate from the point of view of the language imple~-
mentor. If this is the case, even greater efficiency might
be gained by removing the otherwise unused addressing modes
. to allow new instructions, and implementing higher-level
primitives which directly match the language requirements.
This must be done with careful cooperation between language
and machine designers, however; the danger is the design of
baroque and beautiful but practically unusable instructions.
Wirth [WIR] points to the PDP1ll CALL and RET instructions
(in other than their simple use) as such an example.

Table 17 shows how the addressing modes are used in the
various operand positions, and Table 18 shows ' the complete
two-operand distribution of addressing modes both’ for all
instructions and for the important special case of MOV and

MOVB.

The most common single~operand addressing mode by far
is the simple address, which the assembler generates as PC
relative (unless directed otherwise) so that the code will
be relocatable. Full addressing, combined with the oéher
three non—-indirect and non-autoincrement modes (Register,
Indirect Register, and 1Indexed), accounts for 86.8% of all

single~operand references., The memory indirects account for
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Table 17.
PDP11 Addressing Modes ~ By Operand (Static)

Single-Operand Addressing Modes

R 21.942%
(R) 11.045%
(R)+ 7.190%
e(R)+ 1.111%
-(R) 3.484%
@-(R) «074%
E(R) 12.083%
€E (R) 1.0837%
$E «000%
@4E -080%
E 41.734%
@E : «296%

Two~Operand Addressing Modes

Operand 1 Operand 2
R 21.709% R 46.750% "
(R) 6.466% (R) 9.897%
(R)+ 12,075% (R)+ 8.841%
@(R)+ «065% @(R) + «263%
-(R) 1.517% - (R) 9.105%
E(R) 19.630% E(R) 17.321%
@E (R) «362% @E (R) «527%
#E 34.147% #E 2.276%
@#E .000% @Q4E «065%
E 3.959% E . 4.618%
QE «965% QE «296%

2.2%, and the non~indirect autoincrement modes make up the

remaining 10.6%.

It . is important to be aware of various idiosyncratic
uses of the addressing modes before reaching conclusions
about their wutility. The relatively high use of autoin-

crement for one-operand instructions, for example, (7.19%)
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Table 18,

PDP1ll Two-operand Addressing Modes
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-

is quite misleading. It turns out that 73.1% of those are
uses of the TST instruction to increment the register by 2,
and are not intended to test the addressed word at all. A
common use is "TST (SP)+" to remove a word from the stack.
The conclusion is not, therefore, that autoincrement is of
. significant use for single~operand instructions, but that
there should be an instruction which increments by small

numbers other than 1.

The two-operand instructions are dominated by the
MOV/MOVB instructions, which are used to get the effect of
Load, Store, Push, and Pop as well as the more exotic uses.
Reading from Table 18, we can reconstruct the .following

significant special uses of MOV/MOVB:

Table 19.

Special Uses of PDP11 MOV/MOVB

Use $ of MOV/MOVB $ of pgm

Load Register (Including POP,
load immediate, and load from reg) 51.9 16.8
Store register (including push) 15.7 5.1
Move simple-address to simple~address‘ 3.2 1.0
PUSH memory word 2.6 .84
Store immediate (indirect register) 2.6 » .84
Store immediate (simple address) 2.4 .78
Total 78.4% 25.5%
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The other two-operand instructions which are important
are CMP/CMPB, ADD, BIT, BIS, BIC, and SUB. Each of them is
used primarily in only a few particular ways. Rather than
include all the data for these instructions, Table 20 shows
the important cases and the percent of that instruction's

occurrences which are represented.

Table 20.

Special Uses of PDP1ll 2-Operand Instructions

Compare Immediate CMP x,#E

or CMP #E,x 51.2%
Compare Register~Indexed CMP R,E(R) 11.1%
Increment by 4 CMP (R)+,(R)+ 10.4%
Add Register~Immediate | ADD R, #E 53.7%
Bit Test Immediape | BIT #E,Xx 88.8%
Bit Set Immediate ' BIS $E,x 61.5%
Bit Clear Immediate BIC #E,x 66.3%
Subtract Immediate SUB #E,x 50.0%

5¢3.3 Summary

From what we have seen, it certainly appears that the
full generality of the PDP1l addressing modes are not used.
Many of the instructions are used predominately in
"stylized" ways for which less symmetric instruction subsets
would be perfectly adequate, and the penalty for substi-

tuting more than one instruction for the more exotic cases
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is small because their frequency of use is low. This is
especially true of the indirect addressing modes, but the

case for eliminating any of the other modes is less strong.

what about the symmetry of the two-operand instruction
format? Certainly the "ordinary" operations predominate:
68% of the moves are 1load/store/push/pop of a register, 83%
of the compares have one operand that is either a register
or an immediate value, and so on. This suggests that
perhaps limiting the addressing modes by forcing one of the
operands to be either a register or an immediate value would
save opcode bits and processor complexity and result in only

a modest number of additional instructions.

"Modest", however, is not "insignificant"; for our
sample, 9.7% additional instructions would result if only
register and immediate two~operand instructions were
availablez. Although the use of each of the remaining
exotic combinations of addressing modes is individually
quite small, the cumulative effect is non~trivial. The
value to be placed on the additional opcode bits depends on
constraints imposed by byte or word boundaries and on the

need for additional operations. In the case of the PDPll,

2This assumes that only a single extra instruction is

necessary to simulate the missing addressing mode. The
9.7% results from the fact that 19.9% of two-operand
instructions would need expansion, and two-operand instruc-
‘tions are 48.7% of all instructions.
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the extra 2 bits that would come from removing indirects
would seem to make it unnecessary to buy any extra space by
destroying the symmetry of two—-operand instructions. The
final decision, however, 1is always one of judgment and

aesthetics.

One of the other points well illustrated . by the PDPll
example is that operations with small integers are very
common and warrant special instructions or addressing modes.
It is important to be able to increment and decrement
address registers efficiently, at least by the size of any

of the standard data elements.
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Chapter VI

PREDICTIVE MODELS

This chapter will contain a number of examples of
models of programs and computer subsections that are either
driven by the data generated from interpretive traces, or
verified with that data. The examples are presented in
increasing order of generality; the first is an example of
analyzing the effect of a change to an existing implemen-
tation, the second is the analysis of a proposed new imple~
mentation, and the third uses some of the measurement

results to validate more abstract models of program

behavior.

6.1 378 BRANCH IMPROVEMENT

The instruction fetching mechanism is one of the most
complex parts of highly pipelined high performance
computers. The difficulty is simply that any interruption
in the sequential execution of instructions may cause a
delay in pipeline sequencing unless the target of the branch
is fetched well in advance. Unconditional branches cause a
new instruction stream to be fetched, but since the decision
to do so can be made as soon as the branch is decoded, no

delay will be necessary as long as the memory subsystem can
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supply ' the data soon enough. For gonditional branches,
however, the success of the branch often depends on results
of previous instructions which have not been executed at the
time that the branch instructicn is decoded. Rather than
wait for that instruction to complete execution, both the
470 and the 168 make an assumption about the success of the

branch, and proceed with instruction decoding accordinglyl.

Of the two machines studied, the 168 uses the more
complicated (but still simple) decision mechanism: the
success of a conditional branch is predicted on the basis of
the opcode and (in the case of BC and BCR branches based on
the condition code) the branch mask. Whenever the branch
decision can be made without reference to the condition code
(BC/BCR with mask # or 15, BCTR/BALR with R2=0) the correct
decision is made at the time of decoding. All loop branches
(BCT, BCTR, BXLE, and BXH) are guessed to be successful, and
all other conditional branches (BC/BCR with mask not @ or
15) are guessed to be unsuccessful. As can be seen from
Table 21, the success rate for this procedure is not

outstanding.

Some improvement could be obtained by simply changing

the choices made. The rarely used BXH probably should be

1Both machines also prefetch instructions from the alternate
path, but those instructions are held in the instruction
buffer without being decoded.
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Table 21.

Branch Prediction Success For The 168

Program BCT/BCTR BXH  BXLE BC BCR
FORTC 95.3% 18.1% 97.1% 40.5% 87.0%
FORTGO 87.8% 97.2% 47.2% 43.1%
PL1C 99.7% 99.1% 40.4% 99.9%
PL1GO 90.2% 96.3% 71.5% 27.0%
COBOLC 93.3% 94,9% 40.7% 11.3%
COBOLGO 98.6% 61.4% 55.9%
LINSY2 85.7% 93.,4% 44.1% 33.3%
PASCAL 87.5% 54,2% 98.0%
SNOBOL 98.3% 93,.6% 26.8% 25.4%

168 Expectation 100% 190% 190% 2% 2%

guessed to be unsuccessful -- which is the choice that seems
obvious based on its use as a top—of-loop conditional. The
success of the "no branch" guess for the alwayS'imbortant
BC/BCR is highly program dependent and often close to 50%,

so the direction of the guess is almost irrelevant.

In order to improve the branch prediction success, more
information about the circumstances of the branch must be

involved in the decision. Some of the possibilities are:
1. The direction of the potential branch
2, The distance to the target

3. The condition being tested (the value of the mask

for BC/BCR)

4, The preceeding opcode which set the condition code
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S5 The past history of success for the particular

branch instruction

All of these possibilites were examined, but none of
them except the last turns out to be a good predictor of the

branch success over a large range of programs.

Table 22, for example, shows that the direction of the
branch would contribute negligibly to a better guess of
success. To assess point 4, all instructions were divided
into 18 classes according to basic operation (fixed vs.
floating, add vs. subtract. etc.) and the class of the last
instruction before the branch which set the condition code
was recorded. No program—independent relationships between
the coﬁdition—setting opcode and the success of the branch
were found, except for relatively infrequent and stylized

sequences.

Table 22,

Branch Success as a Function of Branch Direction

Program Forward Backward
FORTC 37.6% 61.8%
FORTGO 39.5% 83.7%
PL1C 17.2% 90.9%
PL1GO 39.1% 92.0%
COBOLC 36.0% 63.1%
LINSY2 19.8% 94.7%
PASCAL 57.3% 54.7%
SNOBOL 29,.0% 12.2%
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Although conditional branch instructiéns as a class are
extremely' unpredictable, branch instructions individually
" are remarkably consistent. Figure 28 shows, for PL1GO as an
example, that most of the conditional branch instructions
(BC or BCR with mask not 8 or 15) either always succeed or
' always fail; 1less than 36% of the branch instructions
actually go in both directions any time during the history
of the program. The second column of Table 23 shows, for
all the programs, the fractions of conditional branch
instructions which either always succeed or always fail.
Not surprisingly, then, the use of the past history of a
particular branch is a good estimator of future success. If
the guess is that the instruction will branch the same as it
did last time, the third column of Table 23 shows that the
success of the prediction is consistently above 85% for all
programs,

Since the success of the prediction is largely deter-
mined by the branches which are heavily executed, it is not
the first execution of branch instructions which prevents
the prediction success from being even higher. Even some of
those heavily executed branches occasionally have prediction
successes that are rather low (78%), which contributes
strongly toward preventing the overall success from being
any higher. Table 24 shows, using the PASCAL compiler as an
example, how the average prediction success varies with the_

number of executions of the branch instructions.
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The implementation of such a scheme is relatively
straightforward; the cache 1is the appropriate place to
record the previous success of the branch, and it can be
forwarded to thé instruction decoder for use in prediction.
If the prediction fails, the new state is written into the
cache whenever it is convenient, The results will be
somewhat degraded by cache misses which fetch instructions

without a history bit, but the effect will be small.,
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Table 23.

Conditional Branch Consistency and Prediction Success

Program Consistent Prediction
Branches Success
FORTC 65.0% 89.5%
FORTGO 64.1% 86.5%
PL1C 73.0% 93.4%
PL1GO 71.4% 92.7%
COBOLC 67.7% 89.7%
COBOLGO 61.9% 96.5%
LINSY2 70.1% 92.9%
PASCAL 70.8% 91.0%
SNOBOL 78.7% 97.9%
Table 24.

Branch Prediction Success vs. Number of Executions

Number of Executions Success
1 54.2%
2-3 76.6%
4-7 77.7%
8-15 86.0%
16-31 87.5%
32-63 82.5%
64-127 90.8%
128-255 95.5%
256~511 91.1%
512-1023 71.6%
1024-2047 88.9%
2048-4095 76.9%
4096-8191 99.6%
8192-16383 90.2%
16384-~-32767 98.7%

Another approach toward implementing a predictive
scheme of this type is to mark conditional branch instruc-
tions with a prediction before execution; there would essen-
tially be both ‘'probable' and 'improbable' versions of’

conditional branches., In most cases the information would
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have to be 'supplied directly or indirectly by the
programmer, and although in many cases the choice is clear
(the zero—argument test of the SQRT routine, for examplé)
there would be many others that are difficult. Higher=-level
languages would need a mechanism for getting advice from the
_ programmer == like the "FREQUENCY" statement in FORTRAN II
for indicating the relative frequency of the different exits
from a 3-way IF statement. This scheme, while requiring
less hardware sophistication, is cumbersome and in almost
all cases2 would result in a lower prediction success than

the same~as—-before estimate.

Related techniques have been used in other architec-
tures, but wusually with limited scope. The Manchester
University MU5, for example, [IBB] wuses a small associative
memory containing the addresses of instructions which caused
successful branches, and it is interrogated as eaﬁh branch
is decoded. If the address is found, the associative memory
provides the target address of the branch from which
instructions will now be fetched instead of continuing
sequential execution. Simulation studies indicate that
correct prediction occurs in only 75% of the cases, which is

significantly less than for the scheme presented here.

2Exceptibns are the rare branches for which the last

execution 1is a poor prediction =-- for example a branch
which alternately succeeds and fails would do better with a
static prediction.
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6.2 PREDICTION OF NEW PROCESSOR PERFORMANCE

It is sometimes the case that general—-purpose computers
are used pfedominately for special purposes, and it is
reasonable to consider whether a specialized processor is
not a more cost-effective solution. This section describes
_one such effort at the Stanford Linear Accelerator Center

(SLAC) .

There is a computer currently being built at SLAC which
will execute a restricted class of 378 programs at speeds up
to 1/2 of the 168, yet the cost of the processor is antici-
pated to be under $1PK. Called the "168/E" [KUN], the CPU
is made of LSI bit-slice components executing.with a 158 ns
cycle time, but the traditional microcode overhead for
instruction interpretation is avoided by macro-expanding 370
instructions into sequences of micro-orders at compile time.
Separate high-speed memories are used for program and data
storage to allow two—instruction pipelining. The subset of
37¢ instructions supported initially include only halfword
and fullword arithmetic (sufficient £for integer FORTRAN
programs compiled by the 378 optimizing compiler) but
planned expansion will later include some floating-point

instructions.

The only way that such high performance can be obtained
from relatively modest hardware is if the match between the

load imposed by the software and the efficiently executed
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instructions is high. 8Since the software (physics analysis
programs for the LASS Large Aperturev Solenoid Spectrometer
at SLAC) is already in use on the 168, it was possible to
use the trace analysis system described here to predict the
performance of proposed designs for the 168/E with almost

absolute accuracy.

Figure 21 shows that the distribution of time for the
(proposed floating~point version of) the 168/E is quite
different from the IBM 168, ye£ the relatively high fraction
of easily—-executed instructions results in an overall
execution time only 2.1 times that of the 168. This is the
result of fine-tuning both hardware and 379-to-~168/E trans-
lation software to match the characteristics of the appli-

cation software to be executed.

Note that the attibutes of the LASS softwa¥e which
allowed a special-purpose processor to have such an enormous
cost/performance increase over general—~purpose Pprocessors
are not particularly unique. Specifically, the character-

istics are:

1. Small, well-defined software available before

processor construction
2, Separable program and data space

3. Low use of complex instructions
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4, Relatively small data area
5. Modest I/0 requirements

These are not attributes that are unique to high-energy
physics applications by any means. The 168/E is a good
‘ example of how high~performance can be achieved at low cost
if the instruction set is kept simple. The difference
between a complex instrucfion set and a simple one 1is far
more significant for the implementation of the processor

than for the implementation of the program.
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6.3 MARKOV INSTRUCTION-FETCH MODEL

Measﬁrement and analysis of existing or proposed
computers is in itself a worthwhile pursuit, but one of
important side benefits is the support it gives to abstract
models. It is productive to use the results of such
' measurements to inspire and parametrize simplified models of
either programs or computer subsystems. When the models
have been analyzed, qu=ntitative comparisons can be made
between model predictions and other real measurements so

that the model is verified.

The models presented here attempt to abstract and
simplify the process of instruction fetching. State—trans-
ition diagrams are used to represent simplifications of
program behavior, and measured values are used for the
transition probabilities. The basic motivation is to derive
a model which will predict the execution distance distrib-
ution by correctly generating branches imbedded within

instruction fetches.

The initial model is based on the measured frequency of
branches and instructions of various lengths, and is shown
in Figure 22, States S2, S4, and S6 represent execution of
2, 4, and 6~byte instructions with probabilities p2, p4, and
p6 respectively, and state B represents the occurence of a
branch (with probability Pb). Since for the construction of

the execution distance distribution only the occurence of
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states S2, S4, and S6 are of interest, the model - can be

redrawn to eliminate unnecessary states (Figure 23).

¢
O
e Pe

P

Figure 22: Instruction Fetch Model 1

The execution distance between branches can be computed
as a multinomial distribution describing the probability of
runs instructions without intervening branches. The proba-
" bility of executing exactly ni i-byte instructions (for
i=2,4,6) is

n2 nd né6
(PZ') ° (p4') . (p6') « Pb o (n2+n4+n6) !

p(n2,n4,né6)

n2! n4! neo!
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P’z P li-Pp)

Py' = Py (1-Fp)
P! = Py (1-Pp)

N\

Figure 23: Modified Instruction Fetch Model 1

for which the execution distance 1is n2+n4+né6. By
summing the probabilities of all combinations of n2, n4, and
n6 in a bin for the sum n2+n4+n6, the execution distance
distribution predicted by the model can be computed. 1f
PD(n) is the probability of an execution distance of n
bytes, then

PD(n) = 2 ' p(n2,n4,né6)

2n2+4n4+6n6=n

which distribution is shown in Figure 24 as Model 1.
In comparison to the actual execution distance distrib-

ution of the program from which the probabilities were taken

(Figure 24) the model fares poorly,
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Figure 24: Execution Distance Distributions

mostly because zero—-length execution distances
(branches to branches) are allowed in the model although
they rarely occur in reality. The model of Figure 25
corrects this by forcing a branch to be followed by a true
instruction and not another branch. The new execution
distance can be computed from the old one by "shifting”" it
one instruction. If PD' is the new execution distance

distribution, then
PD' (n+i) = PD(n). pi for i=2,4,6
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Figure 25: Instruction Fetch Model 2

The result is shown in Figure 24 as Model 2. The match
is now better, and the average distance (19.03 bytes) is in
better agreement with the true average (19.52 bytes). The
details of the true execution distance curve obviously
cannot be reproduced by a model with as few parameters as

this one.

The distributions and averages so far computed from the
' models have required sums over combinations of integers; the
sums were truncated when the contribution of the terms
became negligible. In fact, however, an analytic solution
to the model as a Markov chain 1is possible, and 1leads to
direct computation of the average and variance of inter-

esting quantities, especially the execution distance.
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The quantity we can compute directlf from the Markov
model is the passage time bétween two states, i.e. the
number of intermediate states visited between the two
states. If the occurence of a branch is represented by a
single state b, and if all other states represent the
execution of one byte of non—branch instructions, then the
mean passage time from state b back to state b is the
average execution distance as we have measured it. This can
be accomplished by breaking each state which represents a
single instruction into a number of states proportional to
the 1length of the instruction (Figuré 26) . Note that
branch-to-branch transitions have been eliminated, as well
as é-byte branch instructions. The state transition matrix

P for this model is

p2(l-pb) p4(l-pb) pé(l-pb) pb 2 g 9
g ) g ) 1 0 g

g ) 2 ) g 1

p2 o4 pé ) ) (' 0
p2(1-pb) p4(l-pb) p6(l-pb) pb 0 2 2
9 8 8 0 g g 1

p2 p4 p6 )

The first quantity of interest is the state probability
vector A which gives the steady-state probability of being
in each of the states. For any vector a of state proba-
bilities the new vector of state probabilities after one
step is aP. The steady-state state probability vector is
thereforé that vector ~a which satisfies aP=a. This

vector can be shown [KEM] to be unique for any regular
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Figure 26: Modified Instruction Fetch Model 2

Markov chain (a regular Markov chain is simply one in which
every state is eventually accessible from every other

state).

The computation of the mean and variance of the passage
time is best done by first computing the "fundamental
matrix"™ of the Markov chain as

-1
Z = (I-(P-Aa))

where A is the matrix all of whose rows are the state

probability vector aand I is the identity matrix. The

matrix of mean passage times is then
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M = (I-Z+EZ )D
dg

where 2 is the fundamental matrix Z with all off diagonal
dg

entries set to @, and D 1is the diagonal matrix with
elements d(i,i)=1/a(i). (For the proof of these expressions
‘ see [KEM]). The matrix of variances of the passage time, V,

can be computed by

W= M(2Z D-I) + 2(ZM—-E(ZM) )
dg dg
2

V=W-M

2

where M is formed by squaring each element of M.
Table 25 shows the result of these computations for the
benchmark Jjobs compared to the measured values; the

agreement is reasonably good in all cases.

Table 25.

Measured vs Predicted Execution Distances

----- Measured - Predicted ~==-
Program Average Std. Dev. Average Std. Dev.
COBOLC 19.86 17.25 21.58 17.91
FORTGO 27.33 30.38 29,54 25.84
PL1GO 69.40 34.11 73.53 . 69.75
LINSY2 30.42 19.40 38.55 27.11
FORTC 26.04 25.87 26.35 22,57
PL1C 15.94 13.51 17.20 13.52
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A model such as this one can be useful as a subpart of
larger models of computer systems; it is essentially one of
the components of a model which describes program behavior.
It is simple enough to be mathematically tractable, but
accurate enough to make the use of detailed traces unnec-
_ essary. It could, for example, be used as an address
generator for modeling instruction pipelines or caches when
combined with a similar model for branch distances based on
‘the measured branch distance distribution. The result is a
program model which is specifiéd by a small number of param-
eters (the transition probabilities) derived from measure-

ments.
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Chapter VII

ARCHITECTURAL CONCLUSIONS

A large amount of data has been collected in the course
of this study, only a part of which has been included and
interpreted here. This section will summarize some conclu~-
sions, assertions, and allegations that can be derived from
the data. Some are obvious but often overlooked, some are
surprising, and some ==~ particularly some of the recommenda-

tions that seem warranted -- may be controversial.

Many of the conclusions will be concerned with the
effect of architectural features on the implementation of a
high-performance processor. The emphasis on performance
rather than aesthetics is deliberate. Without an interest
in 'performance the study of architecture is a sterile
exercise, since all computable problems can be solved using
trivial architectures, given enough time. The challenge is
" to design computers that make the best use of available
technology; in doing so we may be assured that every
increase in processing speed can be used to advantage in
current problems or will make previously impractical

problems tractable.
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Just as increasing basic device speed does not reduce
the importance of efficient architectures, neither does the
trend toward small distributed.computers. It is clear thét
compared to current large computers, the new generation of
small computers will be small in physical size only. The
. CPUs, even if implemented as single-chip LSI micropro-
cesgors, will be straining the 1limits of speed imposed by
the technology much more than the limits of complexity, and
the same techniques for producing today's high~performance

large computers will be required.

7.1 TIME 1 F THE ESSENCE

The basic point here is that instruction frequency
distributions, much discussed in the literature, are often
dangerously misleading. This is particularly true for the
increasingly common architectures which have extremely
complex and time consuming instructioﬁs as well as the
normal complement of simple and fast operations. There is
no substitute for ' careful analysis of both program and

processor to determine how time will be distributed.

Many dramatic examples have been shown of instructions
which are negligible by static or dynamic count but are very
important or even dominant in the processor per formance.

Because of the emphasis on efficient execution of the simple
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instructions, the Amdahl 479 is particularly prone to suffer
from this effect. For LINSY, floating point multiplication
rises from 3% by count to consume 18% of the time. For
FORTC, multiple register loads and stores rise from less
than 2% by count to almost 15% by time (for the 1IBM
. 378/168). By far the most astounding example is a COBOL
program for which a negligible number of executions of
decimal divisions consumed 19% (for IBM) or 33% (for Amdahl)

of the total program execution time.

7.2 ELIMINATE DECIMAL INSTRUCTIONS

The inclusion of decimal arithmetic is most often
‘justified by the assumption that the cost of conversion to
and from binary format is too costly compared to the
relatively meagre amount of arithmetic which will be
performed. We have seen that no small amount of decimal
arithmetic can safely be called meagre, and it would
probably be better to eliminate directly computing decimal

arithmetic and do the conversions when necessary.

Several points can be made to further support this

recommendation.

1, Practically none of the uses of decimal arithmetic
we have seen are required because the precision is
greater than that afforded by single-precision

binary arithmetic; almost all the decimal
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2.

3.

operands are 4 bytes (7 decimal digits) or less.
Evén if this were not the case, the argument would
then.be to include (say) double-precision binary
arithmetic =~ not long precision decimal arith-

metice.

There is a space penalty to be paid for the
decimal encoding, as well as the time penalty. At
the byte 1level the penalty is about 28% (4 bits
instead of 3.32 bits needed for digits 8 to 10)
but due to the treatment of byte boundaries and
the sign, the .practical penaity can be 50% (it
takes 6 bytes to express a 32-bit binary number).
There have been some proposals for a more
efficient decimal encoding [CHE], but binary
encoding is still optimal as well as computa-

tionally simple.

As the speed and capacity of computer systems
increases, a smaller and smaller fraction of the
computation is performed on data which will " be
directly viewed. Much of the manipulation,
particularly of the type for which decimal arith-
metic is currently used, is for database inform-
ation which 1is being searched, summarized, or
organized, and only a small part of the data will

be (or indeed could be!) produced for examination
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by humans at any one time. Avoiding the use of
decimal encoding within the database results in a
significant savings in space as well as an
important reduction in conversion to and from
binary which would have been necessary for

processors without decimal arithmetic.

7.3 STRING MOVES ARE DANGEROUS

There is a class of instructions, of which the MVC byte
move instruction is a good example, whose members suffer
from from the "overhead dominance" effect. These instruc-
tions typically process variable length operaan at an
efficient rate per element compared to the equivalent
program loops, but have a relatively expensive startup
overhead. This is not necessarily bad, but the effects
become unpleasant if the typical use is for short operands,
in which case the execution time is dominated by the
overhead. Such is the case for MVC; it is typical for the
median string-length to be near 4 bytes and is often word-a-
ligned. Figure 27 shows that MVC 1is almost the worst
possible way to move such short data.

The solution is to avoid MVC for moving short operands
whose length is known at compile time (the majority of the
cases) and to have the compiler ~- or assembler macro-gen-
erator =~- produce the code which is efficent for the

operand. The remaining cases of MVC are either for long

- 143 =~



168 STORAGE MBVES

:' T  § | [ H 4 T L] | I LB 1) L] I ] ¥ ] L] I 1 1 L ) ' T ] | { 1 §
45— L/S -
[ i
3 =
A -
€ [ g
o - .
) - -
[} B .
o o -
3 = -
Zl __-
8] ' —
-l 1 [l 1 l [] 1 1 1 I J I ] 1 1 | 1 1 4 1 I i ] L ] 1 l 1 i 1 l-
0 2 4 6 8 10 12

Number of Words

Figure 27: Alternate MOVE schemes

operands (which are not overlapped: see the next section) or
for variablé length operands. Those cases, however,
represent such a small fraction of the time that they may be
safely implemented as a call to a short subroutine or an
inline expansion of a small 1loop. The conclusion,

therefore, is that MVC should be eliminated.

This recommendation is one of a series whose common
" theme is that the determination of special cases should be
done in software rather than hardware whenever possible.
This simple form of very local optimization, when done once
by the compiler, frees the processor from making the same
optimization repeatedly as it tries to keep several million

instructions executing per second. In some cases the
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decisions m;de by the compiler will depend on the particular
computer ﬁodel to be used, but it doesn't seem at all incon-
sistent for the low-level code generators to use model-de-
pendent information to advantage when it is available. 1In
most cases, however, the decisions are not strongly model-
. dependent, and optimizations designed for the high-speed

models will not generally have a negative effect for the

other models.

A frequently-voiced objection to this proposal is that
it is somehow "aestheticaliy unpleasing® to design a machine
without a uniform mechanism for simple operations 1like
string movement. This lack, however, is certainly invisible
from any moderately high~level programming language, and can
be made so for assembly-language programmers by judicious
use of macros (which are already becoming popular for intro-
ducing reasonable control structures to low=-level
programming). The day of mandatory one~to-one corre-
spondence between "primitive" operations and machine
jnstructions is over. The fastest single~processor general
purpose computer currently available does not even have a

"divide" instruction as a single primitive [CRA].

7.4 WATCH OUT FOR UNUSUAL SPECIAL CASES

It is wunavoidable that any sufficiently rich archi-
tecture will have instructions for which special cases can

be used for unusual purposes. It is sometimes the intention
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of the designer that they be so used, but it is sometimes an
accident .of regular design that was not specifically
included. It is important to search for these cases (and to
study them retrospectively) to determine whether it would be
prudent to either (1) provide a new architectural feature to
. substitute for a perverse special case, Or (2) take special

care for efficient implementation.

A good example where the first course of action would
have been recommended is the use of the two-operand auto-in-
crement TST instruction on the PDPll, where 73% of the cases
examined were TST (SP)+ used for incrementing the stack
pointer by 2, making unnecessary memory references. It is
clearly desirable to have instructions which increment and
decrement registers by small values, especially for

registers used primarily to hold addresses.

Another example, but one for which an efficient imple-
mentation can be achieved once the special case 1is recog-
nized, is the 370 Exclusive-Or Character ("XC") instruction.
Almost all cases ever encountered in any of the programs
traced .had identical first and second operands; the
instruction is wused to simulate the missing "store zero"
instruction. The IBM 370/168 recognizes this case and
efficiently executes a doubleword at a time, so that XC
rarely appears as a significantly time~consuming

instruction. For the Amdahl V6, however, the "store zero"

- 146 ~



XC is identified as one of the awkward cases of overlap
between the first and second operands, for which processing
must proceed a byte at a time to insure correct execution,
The XC instruction implemented'in this fashion takes almost
1% of the execution time of one of the traced programs
("COBOLC"). Another example of this type is the overlapped
move character instruction used for blanking or zeroing

fields.

7.5 INDIRECT ADDRESSING — NO!

In the only architecture studied which has memory
indirection as a basic addressing mode (PDP1ll) it seemed
clear that the frequency of use did not justify its
inclusion. Other data for the PDP1# [AGA73] confirm this

conclusione.

The inclusion of a particular addressing mode =--
especially one which, like indirect addressing, can be so
easily constructed with an extra instruction -~ must have
strong quantitative justification. The penalty paid in
wasted bits for an used mode is high, since it appears with
every instruction. The two bits wasted in the PDP1ll for
indirect addressing modes, for example, could have been
better used to provide either additional two-operand

instructions or an additional eight registers,
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7.6 IMMEDIATE ADDRESSING - YES!

Immediate addressing was heavily used in all the archi-
tectures which include it; for example 34% of all first
operands in PDPll two-operand instructions are immediate.
There can be no question that it is one of the more

) successful architectural features.

It is, incidentally, a feature for which the harmful
effects of its absence are much harder to measure than the
benficial effects of its inclusion. The 378 architecture
has no immediate operands larger than 1 byte, but it is not
possible to distinguish which uses of other addressing modes
would actually have been immediate. The penalty, both in
space and time (for addressing and accessing an out-of-se-

quence literal) is certain to be significant.

7.7 BEWARE OF EXPENSIVE SOFTWARE CONVENTIONS

The time-consuming effect of some unnecessary software
conventions are easy to detect with even simple measure-
ments. The most outrageous example encountered was the
_program PL1GO, for which 16% of the instructions executed
were Move Byte Immediate (MVI), representing 23% of the
execution time on the 168, and 13% on the 470. What makes
this outrageous is that essentially all occurences are used
to record the statement number of the source program which
produced the code about to be executed, so that an intelli-

gible traceback can be printed if a fault occurs. (In fact,
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two MVI instructions are used if the statement numbers

exceed 255!)

There afe obviously more efficient ways to get the same
information (a table of statement offsets, for example) and
no doubt an alternative would have been used if the language
* implementors knew what the expense of their solution was.
Other examples (although less dramatic in effect) are the
use of NOP instructions in FORTRAN~generated code to record
source statement numbers, and the operating system
convention which requires a branch around the character name

at the entry to every routine.

The moral is simple: The effect of software conven-
tions should be carefully measured, especially when alterna-

tives exist.

7.8 ARCHITECTURAL INCONVENIENCES CAN BE OVERCOME
BY COMPILER OPTIMIZATION

There are some features (or absence of features) in
particular architectures which are initially perceived to be
awkward, but can often be overcome by clever compilation
techniques. An example, for the 378, 1is the lack of
indexing modes or instructions which implicitly multiply the
index by the 1length of the operand. The naive compiler is
therefore forced to explicitly multiply (often by shifting)
‘in order to computé the byte address of a subscripted-
variable., This not only takes an extra instruction, but
destroys the register copy of the index.
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In many cases, however, identification of the loop
structure reveals that the index variable is used only as a
subscript and can be replaced by a scaled version of Ehe
variable within the 1loop. The extra shift or multiply
instructions may then be removed., The IBM Fortran—~H
' compiler does this optimization, and the effect can be seen
from Figure 9 which shows the dynamic instruction counts for
a program compiled under increasing levels of optimization.
At the "OPT=1" level the shifts to multiply by eight for
double~precision floating point arrays ("SLL") are still
8.6% of the instructions, but at the "OPT=2" they have all

but disappeared.

This is not to say that more effective indexing modes
or instructions are not important. There are other cases,
particularly where the index is used both as a subscript and
in a non-subscript expression, where this optimization may
not be possible. The point here is that moderately sophis-
ticated compiling techniques can overcome inadequacies in

the architecture for most of the simple cases.

7.9 THE IMPORTANCE OF BRANCHES

It is clear from almost any study of instruction
frequencies that branch instructions are crucial, and the
point won't be belabored here. Suffice to say that any
implementation with inefficient execution of either
successful or unsuccessful branches will suffer substan-
tially for it.
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It is significant to - note that there are few program—
independent measures that can characterize branches in more
detail. In particular, the fraction of conditional branch
success and the branch direction vary considerably and
cannot be used to optimize branch implementation. Although
. certain idiosyncratic code generation may result in more
predictable branches -- 1like the predominance of forward
conditionals in the PASCAL P-Code -~ it would be dangerous
to design a machine with that assumption unless only P-Code
is to be run. A design prepared for a wide variety of
branching patterns is necessary for general purpose
machines, but much can be gained from adaptive schemes such

as the branch history mechanism described in section 6.1l.

7.16 THE CONSEQUENCES OF SMALL EXECUTION DISTANCES

The high frequency of successful branch instructions
results in remarkably short execution distances. For all
the architectures examined the average execution distance
betweeen successful branches was typically between 5 and 12
instructions; this is one of the few universal character-

" istics of all programs for all machines.

The more primitive instruction sets did not produce
longer instruction sequences in order to compose complex
operations out of simpler ones. Either that composition
requires that branch instructions be embedded within the
sequence, or the units of work -being performed are
themselves simpler.
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The execution distance has a number of important conse-
quences for instruction prefetch and cache design, botﬁ—é%
which contribute to having instructions available before
they are needed for decoding and execution. The amount of
prefetch and especially the cache line size should be
. commensurate with the number of bytes of instructions that
will be executed before a branch causes the prefetched data
or the data in the cache line to be abandoned. Making the
cache line size much smaller than that amount will cause
both pipeline breaks and excessive memory traffic to fetch
subsequent instruétions. Making the line size too large
wastes valuable space in the cache with instructions which
are not executed. The choice of 32 bytes (8 average
instructions) for the cache line size of both the 168 and

the 470 is justified on this basis.

Since the cache line must be aligned, some inefficiency
will occur when the target of a branch is near the end of
the line. This occurs for two reasons: first, unneeded data
(from the start of the 1line to the target of the branch)
will be fetched and will displace other cache data.
Secondly, the prefetch effect will be small, since another
line access and perhaps a cache miss will likely occur
before another branch is taken. Rather than increase the
line size to reduce this occurence, a better scheme is to
prefetch a second line when a branch occurs to an

instruction near the end of a line but not when the branch
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is to an instruction near the beginning of a line. The 479
has an optional mode wherein cache lines are prefetched, but
it is triggered by any instructions executed near the end of
a line, not just those for the beginning of an execution
sequence., It is not successful because the unnecessary
‘ fetches which occur when an execution sequence terminates
near the end of a line outweigh the benefit from the

prefetch of sequences which start near the end of the line.

7.11 ADDRESS DISPLACEMENT SIZE SHOULD BE LARGE

Unlike immediate constants, displacements in address
expressions are not predominately small values. Although
encoding efficiency can be gained by allowing "variable-
length displacement fields, it 1is a mistake to 1limit the

displacement value to anything less than the full size of an

address.

7.12 ARE THERE MISSING INSTRUCTIONS?

One technique for detecting "missing" instructions is
to examine sequences of executed instructions to see if any
combinations occur frequently enough to warrant their combi-
nation as single instructions. Such sequences do not appear
in the "mature" instruction sets like the 374. The

sequences which are frequent are of two kinds:

1. Logical pairs which would save only a single

opcode pair by being combined, since all other
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fields would be necessary. Test-~branch pairs are

an example.

2. Sequences which are the result of the particular
inner loops dominating a program. These have no

particular architectural significance.

For the "immature" microprocessor architectures,
however, there are several examples of instruction
sequences which could profitably be combined (see section
5.1.2). They have not yet reached the level at which single
instructions are well-matched to the fundamental operations

to be performed.

7.13 THE EFFECT OF TASK SWITCHES ON CACHE CONTENTS

There are two complementary facts about cache memories
which are quite clear: (1) a modest cache (16K bytes for
example) is sufficient to provide a hit ratio well over 98%
for almost all programs, but (2) the effectiveness of the
cache is easily destroyed by frequent task switches, inter-
rupts, and supervisor calls. The measurements made here
- show that, for supervisor calls at 1least, the entire
contents of the cache are often destroyed each time, and the

same is likely to be true for interrupts and task switches.

One solution to this dilemma is to establish multiple

caches and manipulate the ownership of the cache as part of
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the state information of a process. Sharéd data would have
to be pre&ented from becoming resident in a "private" cache,
so two cachés might be active at any one time -~ the system
cache containing shared data and the currently active "user"
cache of private data. (The page table entries could contain
. a record of ownership for use in deciding which cache to
use.) Note that since only two caches are active at a time,
the hardware complexity for an N~cache system is not N times
that for a single cache system, since the accessing
mechanism (the associative search and replacement logic) can
be shared among all the user caches. In a way the storage
part of the caches share the accessing logic in the same
fashion that peripheral processors share the control logic
in the CDC 66808, except that rotation of the "barrel" occurs
between task switches rather than between instructions. The
hardware that must be duplicated for each user cache is only
the data part, which is highly integrated and therefore both
small and cheap in the quantities required (16K to 64K

bytes, say).

This is only one of many possible schemes for dealing
with the problem of degraded cache efficiency in multipro-
grammed systems, and certainly would need further study to

justify. The existence of the problem is clear, however.
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7.14 EPILOGUE

It would be wonderful if, as a result of the measure-
ments and analysis done here, a manual could be produééd
which would describe the procedure to be followed to design
a complete and efficient instruction set. Unfortunately it
is impossible to do so; designing a computer is as much a
mixture of science and art as is architecting a building or,
indeed, writing a computer program. Cleverness and intel-
-ligent intuition is a necessity, but both of those facil—-
ities can be developed and iﬁproved as a resuit of careful

study of the failures and successes of previous designs.
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This

appendix

Appendix A

INSTRUCTION MNEMONICS

contains

a brief explanation of the

instruction mnemonics which appear in the text or in tables.
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For more information, see the appropriate manufacturer's
literature.
A.l IBM 378 INSTRUCTIONS
KEY: Reg Register—-to~register instruction
Unn Unnormalized
Char Character (string) data
Compl Complemented (2's complement)
Float Single-precision floating point operand
Dfloat Double-Precision floating point operand
Qfloat Extended~precision floating point operand
Logical Logical (unsigned) operand
Dec Packed decimal operand
Halfword Halfword (2 byte) operand
A Add AD Add Dpfloat
ADR Add Dfloat Reg AE Add Float
AER Add Float Reg AH Add Halfword
AL Add Logical ALR Add Logical Reg
AP Add Dec AR Add Reg
" AU Add Float Unn AUR Add Float Unn Reg
AW Add Dfloat Unn AWR Add Dfloat Unn Reg
AXR Add Qfloat Reg BAL Branch And Link
BALR Branch And Link Reg BC Branch Conditional
BCR Branch Conditional Reg BCT Branch and Count
BCTR Branch and Count Reg BXH Branch Index High
BXLE Branch Index Less/Equal C Compare
CD Compare Dfloat CDR Compare Dfloat Reg
CE Compare Float CER Compare Float Reg
CH Compare Halfword CL Compare Logical
CLC Compare Strings CLCL Compare String Long
CLI Compare Byte CLM Compare Under Mask
CLR Compare Logical Reg Cp Compare Dec
CR Compare Reg CVB Convert Dec to Binary



CVD
DD
DE
DP
ED
EX
HER

LCDR
LCR
LDR
LER
LM
LNER
LPDR
LPR
LRDR
LTDR
LTR
MD
ME
MH
MR
MVCL
MVN
MVZ
MXDR

NI

OI
PACK
Sbh
SE
SH
SLA
SLDL
SLR
SPM
SRA
SRDL
SRP
STC
STD
STH
Su
svC
SWR
™
TRT
UNPK
XC
XR

Convert Binary to Dec
Divide Dfloat

Divide Float

Divide Dec

Edit Dec to Char
Execute Instruction
Halve Float Reg

Load
Load
Load
Load
Load
Load
Load
Load
Load
Load

Compl Dfloat Reg
Compl Reg

Dfloat Reg

Float Reg

Multiple

Negative Float Reg
Positive Dfloat Reg
Positive Reg
Rounded Dfloat Reg
Load and Test Dfloat Reg
Load and Test Reg
Multiply Dfloat
Multiply Float

Multiply Halfword
Multiply Reg

Move Strings Long

Move Dec Numeric

Move Dec Zones

Multiply Qfloat Reg

AND _

AND Byte Immediate

OR

OR Byte Immediate

Pack Char to Dec
Subtract Dfloat
Subtract Float

Subtract Halfword

Shift Left Algebraic
Shift Left Dbl Logical
Subtract Logical Reg
SET PROGRAM Mask

Shift Right Algebraic
shift Right Dbl Logical
shift Dec Rounded

Store Char From Reg
Store Dfloat

Store Halfword

Subtract Float Unn
Supervisor Call
Subtract Dfloat Unn Reg
Test Under Mask
Translate/Test String
Unpack Dec to Char
Exclusive OR String
Exclusive OR Reg

DER
DR
EDMK
HDR
IC
LA
LCER
LD
LE
LH
LNDR
LNR
LPER
LR
LRER
LTER

MDR
MER
MP
MvC
MVI
MVO
MXD
MXR
NC
NR
oC
OR

SDR
SER
SL
SLDA
SLL
Sp
SR
SRDA
SRL
ST
STCM
STE
STM
SUR
SW
SXR
TR
TS

XI
ZAP
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DDR

Divide
Divide Dfloat Reg
Divide Float Reg
Divide Reg
Edit/Mark Dec to
Halve Dfloat Reg
Insert Char Into
Load Address

Load Compl Float
Load Dfloat

Load Float

Load Halfword
Load Negative Dfloat Reg
Load Negative Reg

Load Positive Float Reg
Load Reg

Load Rounded Float Reg
Load and Test Float Reg
Multiply

Multiply Dfloat Reg
Multiply Float Reg
Multiply Dec

Move Strings

Store Byte Immediate
Move Dec Offset

Multiply Qfloat

Multiply Qfloat Reg

AND Strings

AND Reg

OR Strings

OR Reg

Subtract

Subtract Dfloat Reg
Subtract Float Reg
Subtract Logical

shift Left Dbl Algebraic
shift Left Logical
Subtract Dec

Subtract Reg

shift Right Dbl ALGBRAIC
Shift Right Logical
Store
Store

Char
Reg

Reg

Chars Masked
Store Float

Store Multiple
Subtract Float Unn Reg
Subtract Dfloat Unn
Subtract Qfloat Reg
Translate String

Test and Set

Exclusive OR

Exclusive OR Immediate
Zero and Add Dec



A.2 INTEL 8088 INSTRUCTIONS

KEY: R Register operand
M Memory operand
1 Immediate operand

Data 1st 2nd

Instr Length oper oper
ADD HL 16 R R Add
* ANDI 8 R I And immediate
CALL Call (stack return addr)
CMPI N 8 R I Compare immediate
DEC R 8 R Decrement
INC R 8 R Increment
INC RR 16 R Increment
IOR R 8 R R Inclusive Or
JMP Jump
JMP CC Jump conditional
JMP U Jump unconditional
LD A 8 R M Load
LD HL 16 R M Load
LD R 8 R M Load
LOD 8 R R Load
LOD M,R 8 M R Store
LOD R,M 8 R M Load (indirect addr)
LOD R,R 8 R R Load
LODI R 8 R I Load immediate
LODI RR 16 R I Load immediate
POP RR 16 Pop Stack
PUSH RR 16 Push Stack
RET Return (pop return addr)
RET C Conditional Return
ROT 8 R Rotate accumulator
RST ‘Restart (a short CALL)
ST A 8 R M Store
ST HL 16 R M Store
ST R 8 R M Store
SUBI 8 R I Subtract immediate
XCH 16 R R Exchange register pair
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A.3 DEC PDPll INSTRUCTIONS

Single-Operand Instructions

CLR Clear

CoM 1's Complement

INC Increment

DEC Decrement

NEG Negate

TST Test

ROR Rotate right

ROL Rotate left

ASL Arithmetic shift left

SWAB Swap bytes

Two~Operand Instructions

MOV Move (load, store)
CMP Compare
ADD Add
"SUB Subtract
BIT Bit test (And)
BIC Bit clear
BIS Bit set (Or)
XOR Exclusive Or
Others
Bxx Relative Branches (xx is condition)
JMP Jump (full address)
JSR Jump to subroutine
RTS Return from subroutine
MARK Mark stack
SOB Subtract 1, branch not zero

All one~ and two-operand instructions except SWAB, ADD,
SUB, and XOR may have "B" appended to indicate that the
operand length is one byte (8 bits) instead of a word (16
bits).
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A.4 PASCAL PCODE INSTRUCTIONS

ADI
AND
cse
cup
DEC
ENT
EQU
FJP
GRT
INC
IND
INN
IOR
IXA
LCA
LDA
LDC
LEQ
LES
LOD
MOV
MST
NEQ
NEW
NOT
ORD
RET
SBI
STO
STR
uJp
UNI
XJp

Add integer

And

call standard Procedure
Call user procedure
Decrement address

Enter block

Equality test

False jump
Greater—than test
Increment address
Indexed fetch

Test set membership
Inclusive or

Compute indexed address
Load address of constant
Load address

Load constant

Less~than or equal test
Less~than test

Load contents of address
Move

Mark stack

Not~equal test

New allocation

Logical negation
Ordinal value

Return from block
Subtract integer

Store at base-level address
Store at address
Unconditional jump

Set union

Indexed jump
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