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ABSTRACT

A relativistic theory of the inclusive scattering of nuclei is

given . The theory is applicable to meson production reactions as well

as to the yields of light nuclei . A characterization of the relativis-

tic nuclear wave function is given and its connection to the standard

wave function is explicitly shown . Counting rules are derived that

allow one to simply characterize the behavior of the reaction cross

sections in terms of the short range behavior of the nucleon-nucleon

force . Good agreement with experiment is achieved if the force is

assumed to be due to the exchange of vector mesons with monopole form

factors at each vertex . The predictions are successfully compared to

several reactions . The theory can also be applied to electromagnetic

interactions in light nuclei . Using our relativistic nuclear wave

functions, form factors and deep inelastic structure functions are

analyzed,

A simple proton-model interpretation of the approach to scaling

observed in lepton scattering off protons and deuterons is also pre-

sented . Different final state configurations are classified and their

behavior predicted using quark counting rules . Good fits to the proton

data are obtained . An extraction of the neutron structure function is

performed by fitting the deuteron data . Several characteristics of the

resulting parametrizations are shown to support our general model .

Further experimental consequences are described .
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CHAPTER 1. INTRODUCTION

The theoretical description of reactions of systems with baryon number

equal to one and zero has been usually very different from that of systems

with larger baryon number . Historically this situation reflects itself in

the separate development of two areas of physics, called respectively par-

ticle physics and nuclear physics .

The methods used in nuclear physics have had a remarkable success in

describing static properties of nuclei and reactions at reasonable low

energies . In the mean time, the requirements of special relativity and

nonconservation of number of particles at high energies made the development

of particle physics quite different from that of nuclear physics .

There is one place in which these two areas of physics meet quite

naturally, and that place is high energy interactions of nuclei . In fact,

recent experiments
1-5 using very high energy ion beams have already created

great theoretical activity
6-10 and many ideas that had been previously

applied to hadron collisions are being tested and confronted with these new

data .

Probably the moat successful set of models for scattering of hadrons

are the relativistic hard-collision models, 11 based on a form of the impulse

approximation . Here the colliding hadron emit virtual sub-systems, which

are in the end the ones responsible for the scattering process to occur .

One of the purposes of this thesis is to generalize this model to high

energy interactions of nuclei .

It is interesting to recall the origins of these hard-collision models .

They are an extension of the parton model ideas of composite hadrons . In

the original parton model, a hadron is considered composed of elementary

constituents called partons, and this idea was conceived having in mind the

analogous situation in which a nucleus is composed by nucleons . So what we

want to do is to apply this model to the nuclear case, where it had its

origins in the first place. The important point is that we can incorporate

in a natural way the key elements of special relativity and nonconservation

of number of particles .

We expect our generalization to work reasonably well, because in the

nuclear case the characteristics of the constituents (nucleons) are well

known. On the other hand, it is clear that it must work with sufficiently

general wavefunctions and interactions, so our purpose is to find a

reasonably simple description of the process and of the main results .

Perhaps our most important formula for the inclusive scattering of

nuclei is

Rc = 1(c) c
F+1+H (1

- xR Cos e c )-F (1 + xR Cos 8cm)-F+ J(CT) ,

which characterizes the behavior of the cross section for all angles . The

powers F,F+,F_,H can be calculated using very simple rules (see section

(III .1C) for definitions and details) .

One important restriction that we face is that our model must have a

correct nonrelativistic limit, that is, it must join in this limit with the

usual nuclear physics description based on Schrodinger wavefunctions and

interaction . This connection will provide us with useful information on

the parameters of our relativistic model . It is important to stress the

fact that the model contains the usual nonrelativistic results, provided

appropriate wavefunctions with correct limits are incorporated . However,



since we will concentrate for the most part on the kinematic regime that

explores the short distance behavior of the nuclear wavefunction, we will

obtain new information that is not accessible from the nonrelativistic

description .

The model is quite general, and in fact should be applicable to the

relativistic scattering of almost any composite system, provided the impulse

approximation is a reasonable one for the situation under consideration, and

provided correct wavefunctions and interactions are inserted . However, since

the model is based on the impulse approximation, in which the effects of

rescattering and shadowing are neglected, our analysis should be moat

applicable to light nuclei . This also means that we will not try to explain

the anomalous dependence on nucleon number observed in large transverse

events, 12 which is presumably connected to the effects mentioned before .

As we have said, our treatment will be fully relativistic . On the other

hand, some effects due to the creation and destruction of particles will be

neglected, which means that although we are working at high energy so that a

relativistic analysis is necessary, it is still not too high for all the

effects due to the nonconservation of the number of particles to be impor-

tant. In parton model language, the "sea", which corresponds to the virtual

pionic cloud in the nuclear case, will be neglected .

The model is not only applicable to strong interactions, but also to

electromagnetic and weak interactions in nuclei . In fact, the fourth chapter

of this thesis contains applications to the electromagnetic case . First the

form factors of several light nuclei are computed, and then we present a

detailed analysis of deep inelastic scattering off deuterons . The study of

weak interactions in nuclei can be handled in an analogous fashion .

One of the important lessons that we will be able to learn from the

analysis of nuclear scattering is that there are terms which dominate in

certain regions of phase space, and which correspond to scattering of

coherent sub-systems emitted by the nucleus (deuterons, a-particles, etc .) .

It is interesting to note that in the CIM model for the scattering of

hadrons11 this same coherence idea appears, and it is quite successful in

interpreting the experimental data, specially at high transverse momentum .

In the fifth chapter of this dissertation we will consider deep inelastic

scattering off protons . Using the same coherence idea mentioned above, we

will find that it is possible to have a simple parton-model interpretation

of the approach to scaling observed in lepton scattering off protons . Further-

more, by using the formalism developed before for the deuteron inelastic

structure functions and by fitting the experimental data for these same

functions, we will be able to perform an extraction of the neutron structure

functions, whose properties will be shown to support our general picture

for the approach to scaling .



CHAPTER II . NUCLEAR HARD-SCATTERING MODEL

1 .

	

Introduction

In this chapter the hard-scattering model for the nuclear case will be

presented in detail . Our discussion will be based in the diagram shown in

Fig. 1, which represents the inclusive process A + B + C + X . Here the

interaction takes place through the emission of virtual sub-systems (a and

b), which are the ones that scatter in an internal basic process a + b

C + X, where C is the detected particle . MO is the amplitude for this basic

interaction, and the amplitudes for the emission of the a and b sub-systems

will be contained in distribution functions G(x, kT), to be defined shortly .

As was mentioned in the introduction, a and b may be (off-shell) nucleons or

composite states that are virtually present in the nucleus, such as deuterons,

alpha particles, etc . . .

It is clear from the diagram that the main ingredient is the impulse

approximation. This means that rescattering and shadowing have been neglected,

and that we expect the model to work when the effective energy of the internal

interaction is large, and for nuclei with a relatively small number of

nucleons . Another way of saying this is that multiple scattering will pro-

duce small values for the momentum of the detected particle C, due to a loss

in momentum in each collision . Thus the model should work best when particle

C is not too far away from the edge of phase space .

The internal amplitude M O will be taken from experiment, where it is

given only on-shell, and extrapolated as indicated below . We could also go

one step further, and express MO in terms of the even more basic interactions

of the constituents of the hadrons . This will not be done because it com-

plicates the model, and also our purpose is to separate these two levels .

m

0
a

b

310341

Fig. 1 . The basic hard scattering model
diagram with the notation used
in the text .



We should point out, however, that the various fitted MO that we will use

are all consistent with the behavior expected in constituent models of

hadrons .

We will assume that the detected particle comes from the internal inter-

action, and this will be true when it has momentum (either longitudinal or

transverse) substantially different from the initial beam or target . In our

diagram this means that the detected particle does not belong to the multi-

particle state a(or B) . This situation could be analyzed in a similar way,

however .

We should point out that a and a can have a mass spectrum and do not

need to be definite states. This only generalizes the definition of the G

function given below . For simplicity, however, we will assume that the

energy is such that they are incoherent states with a definite number of

nucleons . In other words, the energy is high enough so that the nucleus has

broken apart completely, but not too high so that more particles have been

created . If the nucleus remains bound, the (1-x) power to be expected in

the G function (see Section 11-4) should decrease with respect to the one

predicted for the unbound case .

Other simplifications will be that in this section we will not distin-

guish between neutrons and protons, and that spin effects will be neglected .

Its inclusion deserves further analysis, because it would allow polarization

effects and the spin structure of the short range nuclear force to be studied .

2 .

	

The Model

For the analysis of the diagram of Fig . 1, it is convenient to parametrize

the different momenta using "infinite momentum frame" variables as follows :

A2

	

A2

A = (P1 + 4P 1 , OT, p 1 4P1 .

B2

	

B2 /B=
(P2+4P2

	

+ 4P2

where a particle's name and four-momentum are denoted by

except for the off-shell particles a and b . A and B have been defined in a

general set of frames along the interaction axis . A specific frame in this

set is selected by relating P 1 and P2 . For example, the center-of-mass frame

is defined by the conditions

A2

	

- B
2

P1 4P1 - P2 4P2

and

2

	

2

's - P1 + 4P + P2 + 4P1

	

2

Also we define the other momenta that are on-shell as

a2 + 2

	

a2 +
2

~
a - 1`1 x)P1 + 4(1-x)P1 ' -kf ' (1-x)Pl 4(1-x )P1

0 2+212

	

i

	

B2 +212,

B = ,`1-Y)P2 + 4(1-y)P2 ' -2T' -(1-Y)P2 + 4(1 -y)P2

This rather cumbersome set of variables will greatly simplify our later

discussion . For example, note that with these parametrizations, the phase

space integrals are of the form

4

	

2	dx 	2
d a - d kT 211-x1 d

o

the same symbol



and then the a2 integral, due to the corresponding on-mass-shell 6-function,

is trivial .

The off-shell momenta are calculated by momentum conservation :

k 2+kT2,

	

k2+kI2,
Iak

a

	

xPl + 4xP1 ' T • xP1

	

4xPI

2 2

	

2 2
b (Yr2 + i +1T 1T, -yP2 + R +i

T

4yP2

	

4yP2

where

(1-x)A 2 - xa2 - i2) /(,-x)

12 - (y(l-y)B 2 - Y02 - 1,22 ) /(1-Y)

Note that with these parametrizations,

aO+a3
X AO+A3

which is the usual light-cone variable . Then x can only have values between

zero and one .

Using the Feynman rules, it is a Simple matter to evaluate the diagram

of Fig . 1. After squaring and integrating over the final state phase space

of d and a and 6, the inclusive cross section

EC 3o = RC
d C

achieves the form

-10-

RC - S
J
dx AT dy d21T Ga/A (x ' T ) Gb/B (Y+1T)

a,b

r(s',s,x,y) [EC 3 (a+b + Otd s',t',u')1
d C

where

- I(s' k 2~tr

	

)

xya(s,A2-2 )

and where the x and y integrals run only from zero to one . The variables s'

t', u' are those that describe the internal basic process and defined in

terms of a, b, and C . The G functions will be defined below . The ratio r

of the A factors is the ratio of the corresponding phase space factors in

the cross sections, and

A 2 [x,y,z) - 2(xy+yz+zx)

One finds that throughout the range of variables we are interested in, rzl .

A precise definition of the variables will be made later, but the inter-

pretation of the various factors in Eq . (IL-7) is clear . The factor

t
Ga/A(x,kh ) is the probability of finding a constituent of type a in nucleus

i
A with fractional "momentum" x and transverse momenta kT . A similar inter-

pretation holds for Gb/B . The basic cross section factor that actually

produces the detected particle C also has a clear probabilistic meaning .

The probability functions are defined as

Ga/A(x,k.r) -
2(2,)3 (l xx)I

*(x,kr ) I Z

where y is the bound state Bethe-Salpeter wavefunction with one leg (a) on-

shell. It is related to the vertex function 0 by



y(x'kT)
-

k 2-a 2
'

One can also derive an equation for the electromagnetic form factor of the

state A in terms of y and the result is

2

	

2

	

dxd2k1
FA(gT) -£,Fa(q)

	

3 (1-x)

	

(x,k i,) y(x,l~{1-x)4T)a

	

f

2(2n)
(II-10)

where the integral multiplying Fa is the body form factor of the nucleus .

We will see in our analysis that these distribution functions are

explicitly measured in the experiments we are considering . For this reason

it is important to have a reasonably good knowledge of their properties . In

the next sections we will analyze these functions in detail, trying to get

information about them from limiting cases, like the nonrelativistic and the

short distance behaviors .

3 .

	

The Nonrelativistic Limit

We expect our theory to join, when the energies and momenta are small,

onto the familiar nonrelativistic treatments . In particular, the G function

must be closely related in this limit with the square of the nonrelativistic

wavefunction. This requirement will allow us to achieve a clearer under-

standing of these functions and their expected behavior, and also to explore

the way masses should enter into our formalism .

First we want to see the meaning of the x-variable in a nonrelativistic

limit . For momenta small with respect to the masses, and in the rest frame

of the nucleus, Eq . (11-6) becomes :

ka

	

z
x = A + A

Then x is related to the longitudinal momentum, measuring deviations with

respect to a central value 6 . Since on the average, and in the rest frame

of the nucleus, we expect kZ - 0, this means that on the average x - A

In other words, each nucleon carries the same fraction of the total momentum

of the nucleus . A very reasonable result in the zero binding limit .

Remember also that G is the probability of finding a constituent of A

with longitudinal momentum x and transverse momentum k.I . This means that G

must have a maximum at x = A , the average nucleon longitudinal momentum,

t
and at kT - 0. Consider Eq . (11-8), the definition of G, and using equations

(11-9) and (11-5), we see that

G - $2x(1-x)

(k2I + M 2 (x)) 2

where we have defined

142 (x)

	

(1-x)(a2-k2) - kT - (1-x)a2 + xa 2 - x(1-x)A2 .

This form implies that G has

is a minimum. We find

A2 + a2 a
2A2

as expected .

In the limit of small momenta one then finds

k2I + M2(x) = 2ac`AA1 ) + k 2

where it has been assumed that the binding energy for nucleon c is the same

for both A and a . The G function becomes

(11-12)



where

+NR xo (1-x0)$2
In order to have a better understanding of the function PNR , consider

the Schradinger equation in momentum space

+

	

+2 -1 3

	

+ +

	

-~

	

--2 -1

	

-~
yNR(k) - (ae + k)

	

d P V(k - P) yNR(p) _ (ac + k) 0NR(k)
so that the vertex function expresses more or less directly the behavior

of the potential V . The falloff of + is related to the softness (or hardness)

of the potential. As a simple example consider a general Hulthen model of

the nuclear wavefunction :

NR
- (ac + k2)-l(ac1 + k2 ) 2

	

,
where for the familiar Hulthen deuteron case, one usually chooses g=3,

cI-36c. The second factor is then much flatter in k2 than the first .

A relativistic version of this wavefunction can be achieved by writing

y =	N(x)	1	
1(k2-a2 ) (k2aI )B2

where N(x) is slowly varying for x near 1, and where

(1-x)(a1

	

M2 (x) + 62 + 4 = M, (x) + ki

	

,

since we want M2(x) to have a minimum at the same place as M 2 (x) (x=xo) .

*I2IR(k)
(ac + k,r2 2

G

	

(yNR(k) I2 -
F2 (g 22 ) _ (q22)-g-1

for large q2 . Thus the falloff of the form factor and the behavior of G

for large 4 are closely related and also we see that the behavior of G for

x .l is closely related to the form factor falloff . This latter relation

is the Drell-Yan-West relation .13

- 14 -

The form factor for this type of wavefunction is easily seen to fall as

For general x, the relativistic G function can then be written as

G(x,kT) -
N2 (x)x(3-x)9 [M2 (x) + 152]-2 [M2(x) + kT)

1-8
2(2w)

(11-16)

For x-x0 , the denominator factors are rapidly varying and as has been dis-

cussed, this reduces to a familiar nonrelativistic Hulthen form . For x»xD ,

the numerator factors control the behavior of G, and

G(x,kT) - (1-x) g
while its large 4 behavior is (4)-g-1

In our analysis, the behavior of G for x>>x0 will be especially impor-

tant . Note that this is new information not directly contained in the non-

relativistic wavefunction. We shall also discuss quasielastic scattering

which explores the G function for x-x 0 as well . Let us now turn to a dis-

cussion of the calculation of the power g in selected theories of the nucleon-

nucleon interaction .

4 .

	

Counting Rules

In this section, the choice of appropriate wavefunctions will be dis-

cussed . This is not a trivial matter since one would like to have wavefunc-

tions that reduce to familiar forms in the nonrelativistic limit but yet
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reflect the correct relativistic behavior (for large k T and for x-1) arising

from a specific theory of the nucleon-nucleon interaction . Once the wave-

function is given, our main contact with experimental data is through the

structure functions G(x,kT) . A helpful tool for expressing the predictions

of specific theories is in terms of "counting rules" . These allow one to

characterize the asymptotic behavior of G in terms of the number of con-

stituents and the basic interactions of the theory .

The procedure here is to extract the leading behavior from the lowest

order diagram in perturbation theory . For "soft" theories, one can show

that the higher orders either are small compared to the leading term or have

the same behavior . Consider the wavefunction (or structure function) diagram

given in Fig. 2, where k is the momentum of particle a and is defined by

Eq . (11-4) . We shall assume scalar particles for simplicity . Note that A

now also means the atomic number of particle A .

Theory A

For a renormalizable interaction between the constituents, such as

1¢ 4 (vector exchange also is in this category), the falloff of the vertex

function arises solely from the constituent propagators . One finds

P - (k 2 - a2
J
-n

	

(11-17)

where the masses in kl (see Eq . (11-15)) depend on detailed properties of the

force. The wavefunction is

y - (k2 - a2)-l(k2 - a2 )1-n
1

	

1

Comparison with Eq . (11-14) immediately tells us that

g = 2A - 3

	

(1T-19)

- 16 -

a

0103A2

Fig. 2 . The wavefunction diagram used to compute the
probability functions .



This is the usual dimensional counting prediction for the structure function
14

where one counts nucleons (assumed to be structureless paint particles) .

Theory B

For a superrenormalizable theory, such as A 2 X (scalar exchange),, the

vertex function behaves as

(k2
- a2)1-n ( k2 - a2~n

1

	

1

	

2

	

22

where the additional factor arises from the falloff of the gluon propagators .

The masses in k2 are to be chosen appropriately . The prediction for g is

g - 4A - 5 ,

	

(11-21)

which reflects the increased softness of the potential .

Theory C

As a final and perhaps most relevant example, consider a nucleon-nucleon

interaction mediated by the exchange of vector mesons, . such as rhos or omegas,

with a monopole form factor at each vertex (vector dominance would assume

such a behavior to fit the dipole nucleon form factor) . One finds

"
(k1

-
al)l-n (k2 - a2

)-2n

(11-20)

(11-22)

where the masses in the form factors and/or gluon propagators are chosen to

be the same for simplicity . The final result is

g = 6A - 7 .

	

(11-23)

This is the same result as found in a
A 4 theory with a dipole form factor at

each four-point vertex, and also is exactly the same result one would get

by counting quarks . While one might expect that the quark degrees of free-

dom become relevant at ultrahigh energies where they can be excited, we see

that one gets the same prediction for g in this theory when the nucleon form

factor effects play a role. These, of course, may in turn be due to internal

structure, but the internal degrees of freedom need not be fully excited .

For more general structure functions Ga/A,
where the state a is a bound

state of a nucleons, a similar analysis can be carried through . One finds in

this case

g - 2T(A-a) - 1

	

(11-24)

where T - 1, 2, or 3, depending upon the theory as discussed earlier . Again,

we have assumed full breakup of the nucleus after a is extracted .

Now that it is clear that one can differentiate between theories of the

nucleon force by extracting values of g from the data, let us turn to a more

detailed discussion of the probability functions . 15 The G's that will be

considered here are all of the form (see Eq . (11-16))

where

+	1	N 2 (x x(1-x) 9
Ga/A(x'kT) =

2(2x)3[4 + M2 (x)j 2 [4 + M2(x)] g-1

where N(x) is a slowly varying function of x, and

M2(x) _ (1-x)a2 +

M
1
2(X) = M2 (x) + 6 2 .

For large values of A, g is large, and the second term in the denominator

controls the falloff in kT . For small kT, G becomes

G - e
-R24

2 - 2

	

g-l

R - M2 (x) + M1(x)

- x(1-x)A2

(11-25)
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For x-x0, one expects R-
1/3

, the normal nucleus radius, and hence

t2(x0)-A
1/3

This is then a restriction on the behavior of the parameter

62 introduced before . In any case one can fit it directly from the above

relation .

The normalization constant of t can be computed by the condition

S fdx d2141 x G
a/A (x,kT)

-
1 ,

a

which expresses the fact that the sum of the fractional momenta of the

nucleons is the total (fractional) momentum of the nucleus . Note that here

we are neglecting the effect of pious that are virtually present in the

nucleus, and which are analogous to the "sea" for the parton model of hadrons .

Also it should be noted that the number of particles of type a in the

nucleus is given by

Na .fdx d2kT G
a/A(x,k,1 )

	

,

so that the total number of nucleons is

A = F,fdx d2kT G
a/A (x,1C1 )8

N2(x) - N0 xa 1 , where

s

which is consistent with Eq. (11-10), so that FA(0) = 1 . In these expres-

sions our approximation of neglecting some effects due to the nonconservation

of particle number has been explicitly used .

The function N 2(x) that appears in G will be chosen so that N 2 (x) x(l-x) g

has a maximum at x = x0 = a/A. This means that

(11-26)

(11-27)

(11-28)
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For the case of the deuteron, for example, g = 5, so that

N(x)

(See Section (IV-1) for a more detailed analysis of the deuteron .)

The general form for G that we have adopted, Eq . (11-25), has several

properties that are worth noting :

G is peaked at kT - 0 and the transverse momentum distribution

falls more and more rapidly as A increases .

G is peaked at x - a/A. The most likely momentum configuration is

that one in which the nucleons share equally the total momentum

of the nucleus .

The power g which controls both x - 1 and large kT is very simple

to characterize in terms of the basic binding interaction and the

number of constituents .

The shape of G in the nonrelativistic limit does not restrict

the behavior for x - 1 for general models (although they are

strongly correlated in our simple models) . A measurement of G

for x - 1 is new information that is not accessible to conven-

tional nuclear theory .



CHAPTER III. RELATIVISTIC INTERACTIONS BETWEEN NUCLEI

After having presented the formalism of our model, as a first application

we will consider inclusive scattering of nuclei. The next chapter will con-

tain electromagnetic interactions in nuclei .

1 . High Energy Limit

In order to get simple predictions that can easily be compared with

experiment without extensive numerical calculation, we will first analyze

the situation in which the energy per nucleon is large compared to the

nucleon mass . The kinematics for this regime is quite simple :

a' = xys

t' - yt

u' = xu

d2 =xys+yt+xu

(111-1)

and

2 ut = Cf2CT = s

The condition d 2 > 0 restricts the range of x and y that contribute for

fixed values of s, t, u .

Note that the internal reaction can be inclusive (d 2 > 0) or exclusive

(d 2 = 0) . This last situation is the case in quasielastic scattering, for

example .

All inclusive basic processes of interest to us here will be parametrized

as

[EC d
3

JC
I , = E(s') (1 -

	

,.l)" f(kf)

	

(111-2)

and exclusive processes as
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LEC
3 J' = E(s')d [(k+t-C) 2 - d2) f(4)

	

,

	

(111-3)
d f

where 1$ = CT - kT - ET and E(s') is assumed rather slowly varying . H will

be assumed to be constant, but a dependence on transverse momentum can

easily be included . The function fOt;) is strongly peaked for kT - 0 (for

small kf it could be written as an exponential a

	

or example) .

Now we will go into a discussion of our model in some regions of phase

space in which it is easy to get predictions .

First define (mis the missing mass)

2
e- s =

	

'R
I Ccml

CT

XT = C

	

2

	

(III-3)
xR =

	

+ xL
max

CL , t-u
x l. = C

	

smax

and for the most part we will concentrate in the region a close to zero .

A.

	

Projectile fragmentation region

When t is fixed (and s,u large), one finds (x E = xF , Feynman's variable)

1 -xF= l+ [su

and

1-x' = l+yt+xu
F

	

xys

and hence xF = xF/y. The condition d 2 > 0 becomes y > x F . In this regime

formula (11-7) becomes
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RC - L, f 1dxd2kT G./A(x,kT ) X1 dyd2tT Gb/B(Y'IT ) [ECd3C]'

	

(111-5)

F

Al . First consider an inclusivebasicprocess . Since f(k1) in formula

(111-2) is strongly peaked in k'T' we can approximate the kT and ET integrals

by replacing kT and 4 in the G's by the mean value K 2 which should be of the

order of CT . The inclusive cross section is the proportional to

8
	N2(Y) y(1-y)	

B

	

(1-x /Y)R
]K2 +M2(Y)]2]K2+M1(y)lg-1

	

F

	

-

Note that the distribution for the target Ga/A has integrated out in this

limit, and that R depends on A through its normalization only .

If CT > M2 (x0), and if xF is not small compared to x0 , then the main

variation in the integrand is from the factors of (1-y) and (1-xF/y) . The

first factor cuts off the integrand near y = 1 and the other near y = xF . If

only their variation is retained, and the denominators taken constant, we have

R a fl dy(1-Y) gB (1-xF/Y)RxF

gB+N+1
R - (1-x F)

	

(111-7)

A more accurate treatment is possible but the above will suffice for our

purposes. In the target fragmentation region, where u is fixed and s,t

large, the above arguments can be repeated with the result that

gA+N+l
R - (l+xF)

	

(III-B)

R a fx1
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where gA is the power behavior of the target distribution function Ga/A'

This result could also have been achieved by simply interchanging the target

and beam particles in the previous result . These predictions will be com-

pared to data in a later section .

One can estimate the range of validity in xF of the above formulas by

a simple argument . The momentum fraction xF must be large enough so that the

particle is out of the "quasielastic" peak where the denominator factors in

Eq. (111-6) are rapidly varying . The average momentum fraction xB of particle

B is <xB> = 1/B . The average x retained by the detected particle of Eq . (111-2)

is roughly = 1/(N+2) . Therefore, the behavior given by Eq . (111-7) should

hold reasonably well for xF > 1/B(11+2) . For example, for the process deuter-

ons + n , this limit is x F > 1/2x5 = 1/10, and most of the xF range is

covered .

A2 . For an exclusive basic process, which yields a familiar quasi-

elastic reaction, the calculation is also quite simple . Using Eq. (111-3) and

expanding the arguments of the delta function for the case b + n + C + n,

where b and C are nucleons, one finds that a reasonable approximation is :

/E d3 CJ - E(s')d [x(s-A2-B2)(xFA-Y) f(k )

where the shift A has to be calculated using more exact kinematics . At high

energies A + 0 .

Again the x integral is not restricted and the full inclusive cross

section is

R
a
GC/B(xF A,K2) \dt/,
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The quasielastic peak should occur at x l, - C/B + A. This is slightly larger

than the naive expectation C/B, the moat likely momentum in the state B . This

shift will be included in all our numerical calculations . Equation (111-9)

can be interpreted as a relativistic generalization of the Glauber approxima-

tion but with a more precise definition of the covariant wavefunction .

Although for simplicity we have discussed in detail the kinematics of

the high energy region only, it can be shown that our results should be quite

accurate at lower energies . For example, one important conclusion of our

analysis was that the lower limit of the y-integral is equal to x F . This

comes from the condition (k+t-C) 2 > d 2 . We have calculated this equation

more exactly, assuming small transverse momenta and <x> - d/A, and found

that the corrections are small for the range of energies of the experiments

we want to analyze here (kinetic energies per nucleon =1 or 2 GeV) . At the

quasielastic peak, for example, we find

A = .07

	

(dC + pX)

A = .05

	

(CC + pX)

	

(III-10)

A - .075

	

(CC +HeX)

and these shifts show clearly in the experimental data (see Figs . 7 and 8) .

The values were calculated assuming a specific internal process. For example,

in the case CC + HeX, the internal process was Hep + HeX . Another possibility

could have been He + He + He + X, but this gives a shift at the quasielastic

peak that does not agree with the experimental data . The approximate naive

position of the quasielastic peak (b/B) is determined by the nature of the

fragment b arising from the beam. The kinematical shift A then determines

the fragment, a, arising from the target . Additional subsidiary peaks or

shoulders in the data could be due to more than one basic process being

important . These can be identified using the above procedure even if the

dominant ones change with angle .

B . Large T region

Another situation in which we can get simple predictions from the model

is when the produced particle (C) has large transverse momentum (s,t,u large,

and masses negligible) . In this regime (B cm `= 90 °), we have that

xL =O

and

d2 Xf 1 1 '̀
1 - xR s' - 2 Cx + Y/ .

-26-

Bl. Inclusive basic process . The condition d 2 > 0 means that in the

limit of primary interest to us x and y in formula (11-7) are going to be

both close to one . By a similar analysis as in section A, the

	

and RT

can then be integrated out and we can write approximately (G(x) - (1-x)g)

)'1

	

/'~

	

r
BC -+ dx J dy (l-x)ga (1-Y)~

L
R,,(a+b + C+X) 6(d2)

	

(111-12)

0

	

0

which can be applied, for example, to pion and proton (not including the

quasielastic peak) production at large transverse momentum .

We will consider two different parametrizations for the internal cross

section :

(a)

	

- (1-xR)Hf(C' 2T)a

	

(III-13)

and then one finds, using Eq . (111-12) :

CF+H+1 (CT)Ff(CII)

(111-11)

(111-14)
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where F - 1 + ga + gb and where e is close to zero . For c not near zero,

there is a function which is slowly varying in c that multiplies this result .

We see that this regime gives. us information about the distribution

functions of both target and projectile . It also follows that the CT

dependence is the same for the complete process as it is for the internal

interaction, except for the (C 2) p factor. -

(b) Assume the form

H	1	
RC - (1-xg) (-t,)T(-u,)T(a')N-2T

which can be written as

2 N-T

(1 4)H -2N (4xy/
(CT )

Inserting this expression into Eq . (111-12), we get

F+H+1 1
RC c

	

(C2)N

It is then clear that this is just a special case of Eq . (111-14) with

f(CT) - 1/(CT)

	

.

B2 . Exclusive basic process . In some cases (quasielastic scattering),

the internal basic process is going to be dominated by elastic scattering .

This means that the cross section can be written as (G(x) - (1-x) g)

1

	

1

RC -Idx Idy (1-x)ga (1-x) 8b [RC'(C + b + C + d)] ,

	

(111-16)

where R' - d(d2) s' do (C + b + C + d) and R' now contains a factor d(d 2) .C

	

n at

	

C

(111-15)
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As before, we consider two possible parametrizations for the internal inter-

action :

(a)
d[

- s' pf(C,T )

which gives the prediction

RC - I(E) EF (C2 )pf(CT)

	

(III-17)

Note that in this case the multiplying function I(e) is going to be

rapidly varying, in order to reproduce the quasielastic peak . Right at the

quasielastic peak we have <y> = 1/B, <x> = 1/A, where A and B are the atomic

number of the states A and B respectively. Using d2 = 0, we get for the peak

value (neglecting kinematic mass effects)

2
EQ

= 1 A+B

One expects that I(e) c F will be rapidly varying and will lead to a quasi-

elastic peak for c - EQ . For e > c Q , 1(E) should vary much less, and the main

e dependence should come from the cF factor .

This result can be formally connected with the one obtained in Section

Bl for inclusive (N + N + N + X) internal scattering by taking the limit

H = -1 in this latter case . The data for (N + N + N + X) seems to have a

large inelastic component with H - -1 which contributes a term to R C with the

same e power as an elastic basic scattering process . The elastic processes

should have a quasielastic peak whereas the inelastic will not, in general .

(b) Consider now the parametrization

do _	1
dt

	

(-t')T(-u')T(a')N-2T

which gives the result



in the same general form as before but with a power law dependence

verse momentum .

The results given above can be generalized with the inclusion of mass

effects . We expect, for example,

I(e) eF

NC

	

(C.2T)N

_29_

on trans-

RC - 1(t)sF+I+MJ(CT)

	

(111-18)

where F - 1 + ga + gb as before and I(e) is a slowly varying function of e

for e • 0 (but rapidly varying around the quasielastic peak) . J(C2) is

determined by the fit to the basic reaction using model a or is (p2 + M2
) -N

for model b where M is some effective mass . e also contains mass effectse

because it must have the correct threshold behavior and its general definition

is

t = 1 -
Ikml

	

(III-19)

ICcmImax

The fit to the data has to be made at different energies, with ICTI

fixed, in order that the e dependence can be extracted . For the ICiT I depen-

dence, we need data for fixed a (all data at 0 cm = 90 ° ) .

C .

	

Summary

In the previous sections we have presented a detailed analysis of our

relativistic model and the predictions it gives when applied in specific

regions of phase space (projectile fragmentation, target fragmentation and

large PT)' While because of their simplicityy we have considered only these

special cases, it is possible to obtain a generalization of these results

that is valid for all angles . In fact, using Eq . (111-12) it can be shown

that when a is close to zero,
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EC = I(e)
tP+1+H (1_x82)-P- (l+xgz) -P+ J(Cf)

	

, (111-20)

where z - cosecm , F_ = 1 + g a, F+ - 1 + gb . As before F = I + ga + gb , and

I(c) is a slowly varying function of c . This result is valid for an inclusive

internal process parametrized in the form

R1 - (1-xR)N J(C'T)

Although Eq. (111-20) was derived assuming Iz1 not near one (outside the

forward and backward cones), we see that it also has the correct limit inside

those regions. This expression can then be used to characterize the inclusive

nuclear reaction at all angles . Furthermore, since we expect a smooth transi-

tion from the regions of validity of Eq . (111-20) to other regions of the

Peyrou plot (central region), this equation can be used to fit the data

everywhere (with effective powers) .

2 .

	

Pion Production

As the first application of the model, we shall consider n production

in the projectile fragmentation region for several different reactions . The

data in Fig . 3, taken from J . Papp et a1 . , 2 clearly supports a prediction of

the model that the cross section does not depend upon the target except for

an overall factor (which goes as A1/3 due to the circumferential nature of

the scattering) except very near threshold .

A proper treatment of these kinematic effects is necessary in certain

kinematic regions . For example, one expects that in the fragmentation region

of processes such as p + A + n + X, the cross section will be the same as for

p + p + n + X . This is not so at the lower energies because of a kinematic

effect that is essentially the same for all targets (A > 2) and which changes

(111-21)



Eu

10 3

10 2

10 1

10-2
0 I 2 3 4 5

k,r (GeV/c)
6
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the shape of the cross section . The point is that near threshold, the

integration over x (the target longitudinal momentum variable) does not go

from zero to one and actually the allowed interval shrinks to a point for

xF -• 1 . Now k2 is negative for most values of x, and for xF - 1 some of the

energy for the reaction must be extracted from the Fermi motion in the target .

The basic reaction p + p -• n + X will be parametrized as

-4

	

-15k' 2
R' = R0 (1-"F) e

	

T .

	

(111-22)

This is a reasonable representation to the data of Akerlof et al .
16

and E .

Gellert . 17 We will treat neutrons and protons the same in order to keep the

treatment simple .

pC-•n

	

Using the R' given above, and calculating numerically using

exact kinematics, we get the result shown in Fig . 4 . We have not computed

the normalization (this would require a careful treatment of absorption) and

have normalized our calculation to the data . 2 For energies in the range of

interest, one finds that R scales (for different energies) and for fixed

(small) t, that

R ` (1-xF ) 3 , (111-23)

which is not very different from Eq . (111-22) except near xF = 1 . Note that

a change in the power by 1 is a factor of two difference at xF - 0.6 if

normalized at xF - 0.2. This form does not depend upon the specific target

distribution function and hence is the same for all the different counting

rules. The properties of the target wavefunction do not enter except in the

overall normalization constant .
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Fig . 4. The xF spectrum compared to the carbon data illustrating
scaling .
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For backward scattering, i.e., u-fixed, the result depends strongly on

the theory of the target wavefunction . We find (A - 12)

R - (1+xF)b

where b - 23, 45, 67 for the three possible theories (A, B, C, respectively)

of the previous section .

DC+ n : From the analysis of the previous section, we know that R = 3 .

The prediction for R should now depend upon the deuteron wavefunction. For

t-fixed, we find

R - (1-x

	

(111-24)

where f - 5, 7, and 9 for the three theories . If we compare with experiment, 2

Fig. 5, the value 9 is clearly favored . Recall that this is the theory of

vector meson exchange (omegas or rhos) with monopole form factors . These

counting rules are the same as quark counting, i.e ., T = 3 .

For backward scattering, u-fixed, one finds

R - (1+xF) b

where b = 25, 47, 69 for the respective theories .

ReC + 11 : This reaction clearly shows, see Fig . 6, the effects of

strong correlation in the initial wavefunction since pions are observed with

one-half of the incident alpha particle momentum . The predictions are

R - (1-xF) f (111-25)

where f - 9, 15, and 21 . The data2 of Fig. 4 shows that f is definitely

between 17 and 25, and 21 is a good fit . This data again favors model C,

T = 3 .
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Fig . 5 . The prediction for T-3 compared to the data of Ref . 2
for a deuteron beam .
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Fig . 6. The prediction for T-3 compared to the data of Ref . 2
for an alpha particle beam.
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In the backward direction, we find

R - (1+xF ) b

where b = 25, 47, and 69 .

We have also compared our predictions for forward scattering from beryl-

lium and the agreement with the data of Ref . 4 is quite satisfactory .

3 .

	

Proton Production

Now let us consider inclusive proton production . First, some examples

will be discussed outside the quasielastic peak, that is, xF > 1/8. Then

quasielastic scattering will be treated . As we have stressed before, this

is a test of the wavefunction in the relativistic regime, whereas the quasi-

elastic peak depends upon the most likely nucleon configuration which can be

adequately described by a nonrelativistic wavefunction .

As explained before, the effective internal cross section should include

some kinematical effects arising from the target due to the low energy but

this will be neglected here . From pp + pX data, we conclude that Heff -l

(recall Eqs . (111-2) and (111-3)) .

DC + P : For this case, the prediction follows just as in the pion case

and one finds in the forward direction

R - (1-x F)

	

(111-26)

where f = 1, 3, or 5 for the three theories . The data does not extend very

far above the quasielastic peak . In Fig. 7 the prediction for f = 5 is

graphed. The data3 seems to indicate that f is between 4 and 5 . This is

again consistent with theory C . The full curve in Fig . 7 will be discussed

shortly .

u
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Fig. 7. The prediction for inclusive protons from a deuteron beam
for T=3. The full curve is a fit to the quasielastic peak
using the theory in the text . The curve asymptotes to
(1-xF ) 5 but is steeper near the quasielastic peak as dis-
cussed'in the text .
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For backward scattering, the prediction is

R - (1+xF) b

where b 21, 43 and 65 .

CC + P : Just to see how far our model can be pushed, consider this

reaction. Obviously, the predicted powers are going to be very large but

nevertheless are susceptible to analysis. The consistency of this model

can at least be tested and its trend as the nucleon number increases . In

this case, the forward and backward predictions are the same and one finds

R - (1 - IxF I) f (111-27)

where f - 21, 43, or 65 . The data from Ref . 3 in Fig . 8 seems to indicate

a large value of f, with 65 being a quite acceptable fit, but more data is

needed for a definitive test .

CC + Re4 : The predictions for f are 15, 31, or 47 if the intermediate

state b is an alpha particle . In Fig. 8 the curve for f - 47 is consistent

with the data .3 The other possibilities are nowhere near the experimental

curve .

Quasielastic : We have computed quasielastic scattering for one sample

process, DC + pX . The deuteron wavefunction was chosen from model C, so that

g - 5 and in order to get a reasonable rms radius, 6 2 - 200 ae . Setting

k2 - T in Eq . (111-9), one gets the curve shown in Fig . 7 . The agreement is

quite good throughout the peak region and above . The excess rate at low xF

must be due to multiple scattering in the nucleus which we have made no

attempt to calculate .

We have compared predictions of the above type for beryllium target

data4 and the fit is satisfactory .

I 2
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Fig. 8. Two inclusive processes for a carbon beam illustrating the
counting rules and the positions of the quasielastic peaks .



4 . Conclusions

The model we have presented here is quite general and can be applied

to many different types of reactions . In this chapter we have analyzed the

case of strong interactions, and in the next one we will consider electro-

magnetic interactions in nuclei . Weak interactions can be treated in a

similar way .

We must point out that in order to compare our simple predictions with

experimental data, this has to be done for x p away from quasielastic peaks

(near one), and at high energies per nucleon . This last point is worth

commenting on a little more . The energy has to be high for two reasons,

first so that masses can be neglected, and second so that we are sure that

the nuclei in the reaction have broken apart, without leaving any nuclear

bound states . A generalization that includes this last situation should not

be difficult, however . -Also note that the incident energy per nucleon is

not a good measure for "high" energy if we are, for example, in the target

fragmentation region . Then it is better to consider some invariant quantity,

like the center of mass energy .

The effects of absorption were completely neglected in the present

treatment, and this is a very important omission that must be remedied if

one wishes to compute the absolute normalization of the reactions discussed

here .

In conclusion, we feel that the general approach used here to describe

the high energy scattering of heavy ions has many advantages over the con-

ventional approach using Schrtdinger wavefunctions and standard scattering

theory . Some aspects of our model that are worth mentioning are :
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(1) We have presented a fully relativistic formulation of the scatter-

ing of bound states. The formalism has a very simple physical interpreta-

tion . The relativistic wavefunctions are shown to be simply related to

familiar nonrelativistic choices . The relativistic situation is described

in terms of distribution functions G(x,k, T), which can be explicitly measured,

and which have a simple probabilistic interpretation .

(2) We have developed counting rules that allow one to predict in a

simple way the general behavior of the reaction cross sections . These counting

rules are expressed in terms of the basic short range behavior of the nucleon-

nucleon force .

(3) Good agreement with several experiments is attained for one simple

model . This model has as its basic force the exchange of vector mesons with

monopole form factors at each vertex . The agreement with experiment holds

for both meson production and proton inclusive processes . Once the force is

given, there are no parameters (except for normalization) outside the quasi-

elastic peak, and even this needs & 2 only . It is important to add that we

have checked several other reactions not included here, and all are consistent

with the prediction of the counting rules for the same simple model .

(4) The force model that fits experiment is shown to have the same

counting rules as the quark-dimensional counting model discussed by Brodsky

and Chertok . 18 Since the reactions discussed here are certainly at too low an

energy to fully excite the quark degrees of freedom, the agreement between

the quark model and the elastic deuteron data can perhaps be more easily under-

stood in terms of our model . Evidently, the theory is much smoother than one

would expect a priori in its connection between very high energies (excitation

of quark degrees of freedom) and the range of energies we have discussed here .
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This connection does not continue, however, when we consider reactions

like elastic pp scattering, in the region where s + m,
s

fixed . Our force

model gives da/dt - 6 f (e), which differs significantly from the quark
s

dimensional counting prediction 10 f
(s)'

The latter result agrees with the
s

data at very high energies, while the former does the same in the range of

energies we are considering here .

(5) Our results for the forward and backward directions scale in the

sense of being a function only of xF , independent of the energy . This is

clearly shown in the data . It is interesting to note that this is true even

when all the effects of masses are included, as we checked explicitly by

computing the cross section for the case (p + C + n + X) numerically. For

the large pT region, this scaling means that the cross sections are functions

of xF and
PT

only .

(6) The model used here provides a simple yet relativistic description

of quasielastic scattering . It contains the standard Glauber theory and the

standard impulse approximation in the low energy limit .

(7) Predictions are easily made and are given for as yet unmeasured

processes which can serve as a more severe test of our model . Large PT

reactions were analyzed in detail, and results given for backward scattering .

Furthermore, a general expression that is valid for all angles was presented .

(8) The model allows one to simply describe a region of the wavefunction

that cannot be described sensibly in the nonrelativistic approach . The experi-

mental data is thus exploring a new regime of nuclear physics and providing

new tests of nuclear theory .
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CHAPTER IV . ELECTROMAGNETIC INTERACTIONS IN NUCLEI

The analysis of the previous chapter showed that our relativistic model

gave good results when applied to collisions between nuclei, and that the

data under consideration explores new aspects of the nuclear wavefunction

which have a very simple interpretation in terms of the basic interactions

between nucleons in the nucleus . A similar regime can be explored with

electromagnetic probes . In this chapter we will consider this situation,

in particular electromagnetic nuclear form factors at large transfer momentum

and deep inelastic scattering off light nuclei . For the most part we will

concentrate on the deuteron .

1 . Nuclear Electromagnetic Form Factors

As we saw in Section (11-2), for scalar nucleons we can write the form

factor at four-momentum transfer q2 (_ -q
2
T
) in terms of the nuclear wave-

s
function with one particle on-shell *a (x,kT) as

2

	

2) dxd2kT
FA

	

a
(9) -

	

Fa(4 f2(2n) 3 (l- x) On
(x,kT+(1-x)QT) 00a (x,kT

where the sum runs over the nucleons (protons and neutrons) in the nucleus A .

F a (g2 ) has been replaced by its on-shell value, and the integral multiplying

it is then the intrinsic body form factor of the nucleus .

A very plausible wavefunction y, which we saw before gives a C function

(see Eq . (11-16)) with several correct properties, is

N(x)(l-x) 2

gi(x,kT) _

[k2 + M2(x)J [k2 + M2 (x) + 62]

&2

where for the case of the deuteron g - 5 for theory C of Section (11-4)

(exchange of vector mesons with monopole form factors at each vertex) . We

(IV-2)
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showed before that this theory gave good results for inclusive reactions,

and that this form for * was quite successful in reproducing quasielastic

scattering data involving the deuteron .

Since for the most part this chapter will be devoted to the deuteron

case, let us analyze the G function for this situation . First, since y

describes one off-shell and one on-shell particle, neither y nor G are

necessarily symmetric around x - 1/2. Isospin symmetry implies that

Gp/D(x) = Gn/D(x), not that Gp/D(x) - Gn/D (1-x) . However, this is a good

approximation at not too high energies, when we consider a deuteron as com-

posed of only one proton and one neutron, which means (see Eq . (11-27))

J
dx d2 kT Ga/D (x,it) = 1

	

.

	

(IV-3)

Note that then this is equivalent to the momentum normalization condition

(Eq . (11-26)) . The symmetry of G around x = 1/2 fixes the function N(x) _

2
N0x .

The deuteron form factor can now be computed from y(x,k T ) . A fit that

can be achieved for our spinless model is given in Fig . 9 for the value

6 22 = 200 M c

	

(IV-4)

where M is the nucleon mass and s is the binding energy of the deuteron .

Here the isoscalar form factor was taken to be equal to the proton form fac-

tor . Note that this is the same bD value that was used before in the analysis

of quasielastic scattering (Section (111-3)) . The data is from Ref . 19 .

If spin were put into the model, and especially if D-state effects were then

included, the fit could be made much better since the quadrupole contribution

naturally gives a shape that is similar to that of the data points . 20 The
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Fig. 9 . Fit to the (deuteron form factor) 2 .
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form factor has, with g - 5, the asymptotic behavior in q2 given by quark

counting . 21

As was mentioned before (see Section (111-4)), our force model predicts,

when applied to elastic processes like pp - pp . a behavior with s that is

different from the result obtained using quark dimensional counting rules .

This means that at high energies our force model has to change, providing a

factor of the form 1/(1-t/A2)
2
in the matrix element (A2 large) . But then

the behavior of the deuteron form factor would not agree withthat given by

quark counting at large 82 .18 One possible solution of this problem could

be that the number of resonances produced when one of the nucleons absorbs

the virtual photon increases with q 2 , in such a way that cancels this extra

factor, and restores the q2 dependence predicted by quark models. In fact,

there are models that have this resonance behavior built in . 22

We have also calculated form factors for other light nuclei, like He 3

and He4 . For He, g - 11, and by choosing 6He3 = 6, we can fit the low q2

data. The result is given in Fig . 10 .

For He4, g - 17, and with 6 2 -
He4

	

.8, we get the curve presented in Fig .

11 . It is important to have in mind that these results depend on the 6 2

value chosen in each case, which should be adjusted in order to compare with

precise experimental data at larger q 2 .

2 .

	

Deep Inelastic Scattering from Light Nuclei

Now that we have a relativistic wavefunction for the deuteron that has

correct properties and has given good results for the form factor calculation

and in inclusive reactions, including quasielastic scattering, we can apply it

to other situations with some confidence . In this section we are going to

describe the formalism for deep inelastic scattering from the deuteron, which

7-77
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Fig. 10. Prediction for the form factor of He 3 , for a specific value
of the parameter 6 2 (see text) .
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Fig . 11 . Prediction for the form factor of He4 , for a specific value
of the parameter 6 (see text) .
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then in the next chapter is going to be used to extract the neutron structure

function from deuteron data . Although we will consider deuteron as the nuclear

target, the analysis is exactly the same for other light nuclei .

We shall work in terms of the natural Bjorken variable for the deuteron

which is one-half the x defined in terms of the nucleon mass . The following

procedure should be compared with that used by Atwood and West . 23

At very large q2 , one expects that the dominant term has one quark of

one of the nucleons in the deuteron absorbing the photon momentum ; as q2

decreases, more and more components of the deuteron will participate . This

suggests the following classification scheme for the different contributions

to deep inelastic scattering from the deuteron : (a) a highly inelastic term

in which a fragment of one of the baryons recoil with momentum - q, the photon

momentum, (b) one baryon recoils with - q (quasielastic scattering), and

finally, (c) both nucleons recoil together (elastic or resonance scattering) .

This classification is described graphically in Fig . 12. Note also that the

relative importance of these terms will depend, as we will see shortly, not

only on q but also on the region of xD we happen to be considering .

Large q2 : In this limit, the scattering from the constituent nucleons

is highly inelastic and the photon momentum is absorbed by one or perhaps

two quarks as we will see in the proton case . The term in which three quarks

share the photon momentum will be considered separately (quasielastic scatter-

ing) . Thus for large q2 we can write (neglecting small T effects)

1

F2D (xD . 2) _Ef dY F2a(xD/y,q2)
Ga/D (Y )

LLa

XD

(IV-5)
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7-D (c)

Fig . 12 . Contributions to the deuteron structure function, with
partons of one of the nucleons (a), one nucleon (b), and
both nucleons (c) recoiling coherently .
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where the sum runs over the proton and the neutron, and certain off-shell

effects in F 2a have been neglected. This formula has been discussed in

the scaling limit by Landshoff and Polkinghorne 24 for several types of

reactions . Note that since Ga/A(y) is strongly peaked at y - 1/2, for

xD < 1/2 one has the very approximate relation

F2D(xD'Y2) -

	

F2a(2xD >92) D(2

	

xD)

	

,
a

FZD (xD,g2 )

	

xD Ga/D (XD ) F2 (g 2 )
a

(IV-6)

which strictly holds only in the limit of zero binding but has a simple

physical interpretation. It turns out that this approximation overestimates

the deuteron function by about 5% .

Moderate q 2 : If we lower q 2 , the next term that becomes important is

quasielastic scattering, which should appear for xD - 1/2 . This contribution

can be evaluated by the expression

(IV-7)

And finally the last term, which should be important for x D close to

one, corresponds to the possibility of having a final state resonance .

Explicit numerical calculations of all these terms will be presented

in the next chapter, when we describe the extraction of the neutron structure

function from deuteron data .
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CHAPTER V . THE PROTON AND NEUTRON STRUCTURE FUNCTIONS

1 .

	

Introduction

Our nuclear scattering analysis has shown that there are coherence

effects that dominate in certain regions of phase space, and which correspond

to virtual emission of nuclear bound states by the interacting nuclei . It is

interesting to note that in the CIM model of hadron collisions the picture

is very similar, and the interacting particles emit coherent sub-systems

(diquarks, mesons, baryons, . . .) which are the ones that give rise to the

internal basic interaction . This means that there are several different terms

whose relative importance will depend on the region of phase space that we

are considering. In this chapter we will analyze deep inelastic scattering

from protons and neutrons, using the same general ideas .

For deep inelastic events, that is, large energy (v) and momentum (q 2)

transfer, Bjorken predicted that the structure functions would remain finite

and would depend only on a single variable x = -q 2 /2Mv . The approximate

validity of this prediction25 has had a considerable influence on the theory

of hadrons, which most people consider today as being composite states of

(almost) point-like objects .

The success of such a picture and the models it leads to in interpreting

the major features of both weak interactions 26 and certain limiting behaviors

of electromagnetic and strong interactions (the mass spectra and the large

mass and large transverse momentum behavior, for example) is striking and

perhaps even better than one should expect . The next problem is to find the

set of fundamental theories that leads to models in the above successful

class .
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The observation that asymptotically free gauge theories 27 of strong

interactions are capable of exhibiting scaling to within logarithmic factors

whose powers are controlled by the anomalous dimensions in the theory 28 was

an important step in this direction. The next question is whether or not

these theories can quantitatively fit the various features of the data .

This task has been undertaken by several groups who have stressed the impor-

tance of studying the nonscaling, or rather the approach to (approximate)

scaling, behavior of the inelastic structure functions and of comparing

features of the observed behavior with the predictions of a basic theory .

In particular, Tong 29 has compared the predictions of asymptotically free

theories to those of conventional theories and De Rujula, Georgi and

Politzer 30 have examined and defended a study using asymptotically free QCD

theory in a series of papers and talks . The practical problems of carrying

out such a program have been discussed by Gross, Treiman and Wilczek 31 who

have examined uncertainties in making mass dependent corrections . Other

authors32 have discussed possible difficulties in using perturbation theory

with the operator product expansion . This program is indeed an extremely

important one for weak, electromagnetic, and strong interactions .

Our purpose in this chapter is quite modest in comparison to the total

program of the above authors . We only wish to point out that there are

certain scale breaking effects that are very simple from a physical point

of view and which would seem to be present in any theory susceptible to a

parton interpretation. These terms are a priori expected to be important

for large x, the Bjorken scaling variable . At small x, they do not neces-

sarily dominate from general arguments and there are many additional effects

that could become important . Indeed, the data indicates that the terms under

consideration are certainly not dominant there .
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These contributions show up first in the twist-6 terms in the language

of the operator product expansion and would thereby be normally neglected .

However they would be expected to be large from physical arguments . While

they fall rapidly in q 2 , their coefficient is expected to be large . They

do not correspond to interference terms between various final state configu-

rations that prefer to populate different regions of the final phase space .

If such "trivial" scale breaking terms are present in the data with its

necessarily finite q 2 range, it is certainly important to recognize their

effect before asking more fundamental and specific questions of such data

since these terms should be present in almost any theory .

In order to separate the terms that contribute, we will follow the

same classification scheme as in the deuteron case, which is based on the

idea that as q 2 increases more and more substructure is revealed in the

hadronic bound state . The different contributions to the structure function

are most easily described in the parton-quark language . The structure func-

tions will be written as a sum over final states in which all the quarks

have low transverse momenta except for (a) one quark which recoils with

momentum oq, (b) two quarks that recoil with a total of -q but each has

a finite fraction of q, (c) three quarks that recoil with a total of - q,

etc . The above classification neglects the coherence between such states

and should be applicable for sufficiently large q values where the final

configurations become incoherent . The importance of type (b) terms, for

example, will be show to be the fact that while they fall in q 2 at fixed x,

they vanish less rapidly than type (a) terms for fixed q2 as x -' 1 . We

should point out that the partons in our model do not have form factors as
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used in the extended parton model of Chanowitz and Drell33 (but our two

quark system does) .

One point worth mentioning is that there are many variables that

asymptotically become equal to the Bjorken x, and which make data at small

q2 satisfy scaling to different degrees . An often used one is the Bloom-

Gilman x' (= x(1+M2/2Mv) -1) . Most of these improved scaling variables, how-

ever, do not have a clear theoretical significance . We shall neglect such

effects for the most part, although an estimate of both mass and initial state

effects will be mentioned. Our purpose is to see if one can fit the approach

to scaling with terms that have a clearer and more direct physical interpreta-

tion .

2 .

	

Proton Structure Function

In order to illustrate the physical point that we wish to make without

obscuring the issue with algebra, we will treat only the spin averaged case

and hence will neglect the spin of the quarks in the formulation of the model .

Following the classification discussed in the introduction, the contributions

to the proton structure function to be considered here are illustrated in

Fig . 13 . Our analysis is very much in the spirit of the CIM model of hadron

collisions, 11 in the sense that it is clearly necessary to consider all pos-

sible final states in order to extract those configurations that are expected

to dominate in a particular region of phase space . And also as in the CIM,

we shall use dimensional counting to predict the behavior of form factors and

generalized structure functions . 14

In Fig. 13a, one quark absorbs all the momentum q carried by the virtual

photon . This is the dominant diagram of the parton model . In Fig. 13b, the

photon is absorbed by a two quark system which then recoils, each quark having



	q
q
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(0)

(b)

+

(c) 31M1

Fig . 13 . Contributions to the proton structure function, with one
(a), two (b), and three (c) quarks recoiling coherently .

FZp - AV (x) (1-x)3

	

,
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a finite fraction of q. This diquark state need not be thought of necessarily

as a bound system, but a photon striking a virtual meson in the target that

remains bound will also be of this type . In Fig. 13c, the photon is absorbed

by a triquark, or baryon, system and this obviously involves the form factors

for nucleon elastic scattering and resonance production . This latter contri-

bution is very small in the region of interest and will be neglected .

Since the diagram in Fig . 13a approximately scales, for the present pur-

poses its contribution to vW 2 (x), or rather F2 (x), will be written in the form

(V-1)

where the (1-x) 3 dependence is given by dimensional counting (two spectator

quarks) . Here AV(x) is a rather slowly varying function of x (for large x)

which is expected to behave such that the most likely valence quark momentum

is near (or less than) 1/3 . Since it describes the interaction of valence

quarks, it must vanish for x -' 0 (Regge behavior) . AV (x) may also be a very

slowly varying function of q2 . Such slow variations can arise from a funda-

mental scale breaking, such as QCD, or from the kinematic effects of the

binding of the quarks . This latter effect could be called a mass effect, an

off-mass-shell effect, or a wavefunction effect, as the reader prefers . It

has been estimated using a choice for the relativistic bound state wave-

function that was successful in the nuclear case of the previous chapters .

We find an effect which for large x goes in the opposite direction from

that to be discussed shortly . Such effects will be neglected here but if

they were included, they would simply increase the normalization of our explicit

nonscaling term. Our object here is to see if the observed scale breaking

at moderate and large x values (x > 1/3) can be explained with an A V(x) that

does not depend strongly on q 2 . At small x (< 1/3), however, such wavefunction



effects could be more important, providing all or part of the increase with

q2 of F2p that is seen experimentally .

There is also another contribution in which only quark (or anti-

quark) interacts, but in this case that quark belongs to quark-antiquark

pairs in the parton sea . This means that this term must be constant for

x + 0 (pomeron behavior), and since the number of spectator quarks now is

four, it must vanish as (1-x) 7 for x + 1 . Then we write it in the form

Zpa (x,q )

	

Aa (x,q2 ) (1-x)~

Since this term is only important at small x, where there are many effects

that could be present (Regge, asymptotic freedom, wavefunction effects, etc .),

the q2 and x dependence of Asea(x,g2) will be found by directly fitting the

experimental data .

In the first diagram of Fig . 13b, the photon is absorbed by a diquark

system that has a form factor Fd(g 2 ) that falls as l/q 2 from dimensional

counting. The x-dependence is quite easy to infer from the graph . This con-

tribution must vanish as (1-x) for x + 1 since there is only one spectator

quark. Now the most likely diquark momentum fraction is -2/3, and this fol-

lows automatically if the nonscaling term is chosen to have the form calcu-

lated for valence constituent :

F2p (x,g2)

	

AdFd(g2) x2 (1-x)

This has all the desired limiting properties if F d is parametrized as

Fd (g2) - d2 (d2-q
2 ) -1
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(v-2)

(V-3)

(V-4)

Note that if a virtual meson absorbs the photon and remains bound, as in the

second diagram in Fig . 13b, the structure function will have the same q 2

dependence as above arising from the pion form factor but it will fall as

- 60 -

(1-x) 5 It is estimated to have a small overall normalization for x > 1/3 .

Hence it will be neglected in our fits .

The total structure function in this approximation is

F2p = F2p (x) + F2p (x,g2) + FZPa (x,g2 )

	

(V-5)

and higher terms have been neglected . Fits to the proton data 34 are shown

in Fig. 14, and one sees that it is possible to have both a consistent and

simple picture of the approach to scaling in this framework for large enough

x and (-q 2 ) > 2(GeV) 2 . If scale breaking is to differentiate between specific

basic theories, it evidently met be studied at small x, say x < 0 .3, not at

large x where the observed scale breaking can be simply explained in terms

of physically expected effects in any scale invariant theory with even an

approximate parton interpretation . This is not to say that our term neces-

sarily explains all the scale breaking observed in this region, but without

prior prejudice and information, it is not possible to decide how much is to

be ascribed to the more fundamental (and interesting) properties of the

theory under consideration .

The parameters used in the above fits are A d - 2 .5, d 2 = 2 . AV (x) is

quite slowly varying for large x, with an average of - 0.8. Graphs of

F
2P

(x,q2 = -w) and A V (x) are given in Fig. 15. A possible fit to AV (x) is

1 .58 x0.6

	

(0 < x 5 1/3)

AV (X) -

	

(V-6)

1 .58 x0.6(0 .93-0 .85 x-2/31-1 .15(x-2/3)) (1/3 < x < 1) .

The value of d 2 we find uncomfortably large, but it is necessary in order to

fit the data at small q 2 (> 2) . A value of d2 - 1 fits for q2 > 3. Since

AV(1) J 0, F2 satisfies the Drell-Yan-West relation for x - 1 .
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our fitting of the small x region yields the form 35

As (x,g2) _ (0 .6 - &)(l - 2F2(92))

	

(v-7)

for x < .36, and zero otherwise. Since we have considered only the region

(-q2 ) > 2(GeV)2 , the fact that this term becomes negative for small q 2 has no

significance and should not be taken seriously . We chose the same function Fd

as in the diquark term to parametrize the q 2 behavior of this sea contribution

because experimentally the first moment of the structure function is indepen-

dent of q 2 in the range 2 < (-q2) < 30(GeV) 2 . 34 Notice that this particular

form makes F2p increase with q 2 for small values of x, while the diquark term

makes it increase for large x, as seen experimentally. In fact, we have

calculated the first moment using our parametrization, and obtained

1/

/'F2p dx = .17, constant for q 2 > 5(GeV) 2 . As expected, this result agrees

0
very well with the data . 34 At this point we should mention that the asymp-

totic freedom prediction with respect to this first moment is a logarithmic

fall-off, which will have to be quite slow in order to reproduce the experi-

mental data .

While the data34,36 for FI has not been fully analyzed, we have found

that the valence terms in FI and F2 extracted by the above procedure agree

better with the Callan-Gross 37 relation (x 1 = FZ) than the total structure

function at low q 2 . Since the diquark term is an effectively integer spin

object, it could break this relation for the full (unseparated) structure

functions in regions where it is important .
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3 . Drell-Yan-West Relation

The threshold limit of the structure functions should be smoothly con-

nected, in the sense of Bloom-Gilman duality, 38 to the elastic or resonance

form factors G(q 2) . According to the - Drell-Yan-West relation,
13 as x

approaches one from below (x = 1 + (m2 - M2)/q2 , where m is the missing mass

and M is

( -q2) GMp(g2) = fdm2 F 2p (x,g2 )

q8 GMp(g 2 ) - fdm2
[A
V(1)(m2 - M 2 ) 3 + Add4(.2 - M2 )]

and the integral runs roughly from the nucleon mass M up to the effective

threshold for pions . 39 Thus the nonscaling terms contribute to the leading

asymptotic behavior of the form factors and for our fit, dominate . The above

is clearly not the complete story since there are other contributions,

especially interference terms, that become coherent in the limit x + 1 and

also contribute to leading order in q 2 . This is necessary since G must con-

tain a coherent sum over charges, whereas the contribution to the usual struc-

ture functions involves the sum of the squares of the charges of the elemen-

tary constituents . The nonscaling terms Ad contain some of the interference

effects, but not all . In any case, the relation (V-8) is approximately

satisfied if m is integrated from M to the threshold for two pions, H + 2p .

Finally, we note that if the above connection also holds for the neutron,

with the same integration region and Gp(g2)/Gn (g2) - constant, then if the

scaling term dominates one has (pn/pp ) 2 = (AA(l)/Ap(l)1, whereas if the non-
/

	

2
scaling term dominates, which is the case in our fits, then (pn/pp) =

(
An/Aa). Otherwise the value is an intermediate one . Our fit for the first

ratio will be shown in a later section to be -0 .40, whereas the ratio for

(V-8)



is nonscaling term is -0 .33 . Both of these are somewhat below the square of

is experimental ratio of magnetic moments (-0 .47) but are consistent within

ne errors of our extraction . This relation is not to be taken too quanti-

atively due to the coherence problems alluded to above .

The Neutron Structure Function Extraction

In order to analyze the neutron structure function and see if its proper-

lea agree with our general model of scale breaking, we will first extract it

rom deuteron data . This extraction will be done using a fully relativistic

odel for the deuteron, which we do not believe has been done before . The

'ormalism for deep inelastic scattering from the deuteron was developed in

:he previous chapter, so here we will apply it and present the numerical

'esults .

Large q2 : Following the classification given in Section (IV-2), in

:his limit the photon momentum is absorbed by one or two quarks in one of the

nucleons of the deuteron .

Since the distribution function Ga/D (x) is known with some accuracy,

Eq . (IV-5) will be used to extract the neutron structure function F 2n(x,g2 )

from the large q 2 deuteron data. In order to carry out the fit in a convenient

form, define

where

F2n(x,g2) - Fv (x) + F2n(x,g2) + Fsea (x,g2 )

P2n(x) - B,(x) F2p (x)

F2n (x,g2) - B2(x) F2p (x,g2 )

F2na(x,q ) ,q 2 )

	

,
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(V-9)

- 66 -

and where, due to the isoscalar character of the parton sea, the last term is

the same for protons and neutrons . A fit to the data can be achieved with

the BI(x) given in Fig . 16 and with B2(x) - constant - 1 .3. Error bars in

the graph for B 1(x) are due to uncertainties in the experimental data . Also

in Fig . 16 we show the asymptotic ratio R of neutron and proton structure

functions . We have restricted the extraction to x D < 1/2 in order to decrease

the sensitivity to the assumed form of G a/D(y) . The resultant fit to data 34

in this region is given in Fig . 17 . The separate parts (valence, diquark,

sea) of the neutron and proton structure functions and their am are given in

Fig. 18 for q 2 = -5(GeV)2 , and in Fig . 19 we compare the asymptotic values

for the resultant total proton and neutron structure functions with the results

obtained for q2 = -5(GeV)2 .

There are several points worth mentioning . The function B 1 (x) is slowly

varying over the range of x considered, x > 0 .1. The average value of B I (x)

around the valence peak (x - 1/3) is roughly consistent with 2/3 which is the

ratio of the sum of the squares of the valence quark charges, neutron/proton =

(2/3)/1 . The ratio of the asymptotic neutron to proton structure functions

decreases for large x, and the extrapolation seems to give the value of

1/4 at x - 1, which is the lower bound that holds in the valence quark

model .
40

At x - 0, on the other hand, this ratio goes to 1, which reflects

the isoscalar character of the parton sea. The value of 1/3 found for B2 (x)

is the ratio of the sum of the squares of the valence diquark charges,

neutron/proton = (2/3)/2 . (A slightly better fit can be obtained by taking

B2 (x) to be slowly varying, with an average value of 1/3 .) These features

of the fit are evidence of the consistency of our interpretation and fit (but

certainly not its uniqueness) .
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In performing our extraction of the neutron structure function we have

used a distribution function Ga/D (x) which is symmetric around x - 1/2 . This

fixes N(x) in Eq. (IV-2) to be N(x) - NDx2 . We have also tried N(x) -

constant, which does not change noticeably the fit to the deuteron form fac-

tor, but which gives a somewhat larger B I(x) in the large x region . Although

the symmetric model is more realistic, this result means that there is some

extra uncertainty in the extraction . Measurements of the quasielastic peak

in deuteron deep inelastic electroproduction, and of the deuteron form factor

at larger values of q 2 would be very useful in determining the correct form

ofN(x) .

Moderate q2: Using only the above terms, we can now compute F2D(xD,g2)

for all values of xD using Eq . (IV-5) . The result labelled inelastic is

given in Fig. 20 at large q 2 and in Figs . 21 and 22 at moderate q 2 as a

function of

2
1

	

M
w 2xD - q2

which has been used in the presentation of the data of SchUtz et al .
41

At

this stage our curve for the inelastic contribution falls below the present

data for (-q2) > 2(GeV/c) 2 for 1 > w' > 1/2 (xD -+ 1) . This is not surprising

since the quasielastic and fully coherent "resonance" contributions have not

been included . Quasielastic scattering should be important for x D - 1/2 and

for the lower range of q2 values .

This contribution which should be added to the F2D(xD,g 2) given by

Eq. (IV-5) is

Q

	

2 _

	

2 2
F2D x11'q ) -

	

Ga/D(xD) Fa(4 )
a

(V-10)
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3
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Fig. 20. Prediction for the deuteron structure function for very large
q2 . The data is from Refs . 34 and 41 .
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It has been plotted separately in Figs . 21 and 22 for (-q2) = 6 and l(GeV/c) 2

respectively. For the smaller q2 value there is a clear quasielastic peak

which has been suppressed at the larger q 2 by the nucleon form factor . It

would be very interesting to have data in this region to explore the proper-

ties of the quasielastic peak .

In the region of xD very close to one, the data are clearly larger than

the sum of the contributions considered so far, even if the experimental

resolution is used to smear the prediction . In Ref. 41, the suggestion is

made that this could be due to a final state resonance in which the two

nucleons share the momentum of the virtual photon . This contribution can be

fitted to the data if written in the form

1

	

3-2 2
FZD(x,,g2) _ (-q 2 ) FD(g2 ) 10 XD

which for q 2 = -6 and 1 is shown in Figs . 21 and 22 . We are not sure that

this is a correct interpretation but a contribution which roughly has the

above structure was predicted by Jankus 42 in scattering from the deuteron near

the inelastic threshold . Jankus found a strong localized enhancement in

this region that was due to nonresonant (scattering length) final state

interactions . Such an effect was found experimentally .43 It would be very

interesting to compute this effect with a relativistic treatment of the

deuteron to check its consistency with the data . A different approach to

fitting this data has been described by Frankfurt and Strikman . 44

5 .

	

Conclusions

In this chapter we have shown that the ordinary parton model, which

normally is assumed to scale (except for mass corrections), has physically

identifiable terms that do not scale . The final states that were of most

- 76 -

interest here were one quark recoiling with the photon momentum and two

quarks sharing this momentum . The predicted form of the structure functions

and form factors for these terms were shown to provide a reasonable fit to

the proton and neutron data for x > 1/3 and (-q 2) ? 2(GeV) 2 . The ratios

between the proton and neutron are as expected in the model . Due to the

uncertainties involved, our parameters should be considered as having

"typical" values . The errors are correlated between the parameters of the

scaling and nonscaling terms and no systematic error analysis has been made .

Our model and fit is certainly not the only way to understand the non-

scaling behavior of the structure function at large x . This behavior is

also fitted by using "6-scaling"45 plus asymptotic freedom models . 29,30 There

should be experimentally measurable differences between this approach and

ours, however . While we do not know precisely what the latter models pre-

dict, if our explanation is correct there should be protons in the photon

fragmentation region for large x. The single quark recoil or scaling term

should prefer to decay to mesons (the leading mesons would then have a

(1-x) decay function behavior) . The diquark recoil term should decay not

only to mesons but also should decay strongly to baryons (the leading baryons

should also have a (1-x) decay function behavior) . Therefore if our explana-

tion is correct, the proton/pion ratio should follow the ratio of the non-

scaling term to the full structure function . The observation of recoil

protons arising from a preferred x value of 2/3 and a q 2 behavior of (-q 2 ) -2

would be confirmation of our general picture . The absence of such protons

may be more consistent with asymptotic freedom models . At the present time,

the proton/pion ratio cannot be predicted since we do not know the decay

probability functions for a diquark system to produce pions and protons .
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These functions can be measured in principle in several independent ways,

however, such as in a+e annihilation and in the target fragmentation region

of deep inelastic lepton scattering.

The scaling terms in F 1 and F2 were found to be in reasonable agreement

with the Callan-Gross 37 relation . If the diquark system is predominantly

spin one, then one expects large asymmetry effects in deep inelastic lepton

scattering with polarized beam and target . 46

It is clearly possible to ascribe the lack of scaling at large x to

either our model or to asymptotic freedom models or to any combination .

This is not the case at small x. Our model is not able to explain the

probable rise in q 2 at small x of the structure function suggested by high

energy p-scattering47 or the nonscaling behavior at small x seen in neutrino

scattering . 48 (A general fit to all this data has been given in Ref . 49 .)

This behavior is strong evidence for asymptotic freedom and/or the production

of new, heavy quarks, and/or Regge-duality effects,
50 but this is unfortunately

in a region where it is difficult to make quantitative calculations . How-

ever, since the diquark terms can be used to decrease the size of the non-

scaling effects due to asymptotic freedom at large x, then there may not be

enough rise left at small x to explain the data in such theories .

A relativistic model of the deuteron has been developed and used to

extract the neutron structure functions . We do not believe this has been

done before . Our method is easily susceptible to a more accurate treatment

(especially important here would be the inclusion of spin effects) . We have

checked our deuteron model by comparing it with the measured elastic form

factor and inelastic data for all x0 .
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To conclude, we have shown that a simple extension of the parton model,

together with dimensional counting, provides a reasonable fit to the non-

scaling behavior of the proton and neutron structure functions for x larger

than the valence quark peak at 1/3 . 51 The model can be tested by looking at

the proton yield in the photon fragmentation region . We therefore conclude

that if one wants to differentiate between basic theories of hadrons by

studying only the structure functions, it must be done at small x where the

above nonscaling terms are probably unimportant . Even in this region of x,

however, one is faced with the problem of demonstrating that such effects

are indeed small, especially if one is making a quantitative comparison with

a particular basic theory .
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