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ABSTRACT

This thesis considers the problem of automatic file migration . In
a computer system, program and data files are stored on secondary memory
such as discs . If the capacity of the secondary memory is not
sufficient to hold all the files, some sort of back-up memory (e.g .
magnetic tape) is used to supplement secondary storage . The transfer of
files between secondary and back-up storage is refered to here as
"migration." Migration may be done explicitly by each user or
automatically by the operating system . This work studies automatic
migration strategies .

We seek the migration strategy which maximizes the probability that
a file that is accessed will be found in secondary memory and which
minimizes the migration activity. The problem of deciding .which files
should m1grate, the file replacement problem, is analogous to the
well-studied page replacement problem . It reduces to the problem of
predicting the next inter-access interval for a file . An important
difference between the file replacement problem and page replacement is
that files are not equal in size . In addition, the size and time scales
for file accesses are much larger than for page references .
Consequently most page replacement results need to be reconsidered .

Trace data of file system activity on a general purpose computer
system have been collected for one year . This type of data has not been
published previously . The data provide the basis for a quantitative
study of migration . Statistical analysis of the trace data reveal
characteristics of files stem activity . Special attention is paid to
possible correlations of files' inter-access intervals to other factors,
which may be useful in predicting inter-access intervals .

Various possible file replacement, or migration, strategies are
presented . Two non-equivalent criteria, the miss ratio and migration
traffic rate, are used for evaluating strategies . LRU (least recently
used) and MIN (the theoretically optimum strategy for fixed sized page )s
are studied . Other strategies, including LFU (least frequently used),
that are suggested by the results of statistical analysis, are examined .

The fact that files are not equal in size can be used to advantage
and the previously mentioned replacement strategies are shown to be
improved when the size of a file is taken into consideration . Finally
some non-realizable strategies using knowledge of files' future accesses
are presented for comparison with the practical strategies already
mentioned .

A simulation model of file system activity is examined . The model
is useful for generating artificial trace data . Simple parameter
changes allow the model to simulate other environments .
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CHAPTER I

INTRODUCTION TO FILE MIGRATION CONCEPTS

In most current large computer systems, program and data files are

stored primarily on secondary storage, such as magnetic discs . When the

amount of disc space available is not adequate to store all existing

files, some files must be moved to a slower and less expensive medium,

called back-up store, generally magnetic tape . The process of

transferring files between secondary storage and back-up storage is

referred to in this paper as "migration' . The decision as to which

files should migrate may be made in a number of ways . For instance,

many computer systems allocate to each user a fixed amount of disc

storage and require the user to arrange for migration of his own files

when necessary . This thesis explores algorithms for automatic

migration, that is, migration controlled by the system and (possibly)

hidden from the user . The primary goal of this work is to determine

what migration strategies are most effective and efficient . It will be

demonstrated that with proper automatic migration in a computer system,

the amount of disc space required, and therefore the total system cost,

can be substantially reduced .

The work presented here is in two major parts, a model of a file

system environment, and a study of migration algorithms . First,

extensive trace data on file system activity are presented . These data

are used to characterize the activity of a disc file system on a modern

computer . In addition, the trace data are used as input to simulations

of the various migration algorithms to be studied .

A detailed model of disc file activity has been developed . The

model generates artificial trace data that simulate the empirical data

mentioned above . Thus, the model provides a useful source of input to

migration algorithm simulations . Furthermore, while the empirical trace

data characterize only the computer system that was actually measured,

the model, by changing appropriate parameter values, can be used to

simulate other environments as well . Finally, the model provides

insights into the nature of the file accessing process .

The second part of the thesis uses the file system characterization

developed in the first part to study migration algorithms .

This chapter presents concepts of file migration and outlines and

motivates the rest of the work in non-technical terms .

1.2 The File System Environment

We assume in the following that the computer system under

discussion is configured as follows :

- There is a limited amount of fairly expensive "secondary storage"

(typically disc storage) on which users may store their program

and data files .

- There is an unlimited amount of "back-up storage" which is

relatively less expensive, but much slower than secondary storage

(this is usually magnetic tape) . This back-up storage may

consist of a hierarchy of storage devices (such as magnetic

strips at one level and removable tape reels at a lower level) .

Either the top level (secondary storage) of this memory hierarchy

is the only level directly accessible from a running program

(this effectively implies that secondary storage is randomly, as

opposed to serially, accessible), or program access to files on

lower levels of the hierarachy (back-up storage) is so time

consuming as to be highly undesirable .

If the system can be managed so that only those files which will be

accessed in the near future are kept in secondary storage, the amount of

secondary storage capacity, and thus the total system cost, can be

reduced without significantly changing system performance . This is the

purpose of implementing a migration algorithm .



The need for some sort of migration system is fairly evident .

Computer systems' users often have a number of saved files that are not

currently in use but which are still kept in the computer's storage

system. Thus, a significant portion of the secondary store is used to

hold inactive files that should be stored on back-up storage . We might

expect that a file that has been idle for some time is less likely to be

accessed in the near future than a file that has been used recently .

Both of these fairly evident statements, that there are many idle files

on the secondary store and that idle files are likely to remain idle,

will be supported mathematically in Chapters II and III . These two

conditions supply the intuitive rationale for having an automatic

migration scheme .

1 .3 File Migration Concepts

Given that the need for migration has been established, there

remain the questions of how to implement migration (the migration

algorithm) and how to decide which files should migrate (the migration

strategy) . Most users will not move their files to back-up storage

unless encouraged or coerced to do so . Even if this were not the case,

it would be attractive to have the operating system take care of

migration automatically without requiring user knowledge or

intervention .

In the automatic migration system envisioned here, the user need

not know on what type of storage files are saved . The system keeps

track of the location of all current files and makes the decisions as to

which files should be most accessible and which can migrate to less

expensive storage. Making the migration scheme invisible to the user

frees the user from having to understand the exact configuration of the

storage system and the details of using the various devices . It also

ensures that any changes in the number and type of storage devices that

are available will necessitate changes only in the migration system

programs. In fact, though this thesis generally refers to the storage

system as though it consisted of only two levels, disc and tape, the

number of levels in the system hierarchy could be changed with very

little impact if the hierarchy is accessed only through the file

migration programs . This would allow system designers to easily add

various new devices that may become available (charge-coupled devices,

magnetic bubbles, laser addressed storage, etc .) for back-up storage .

It is desirable, in some instances, in spite of the transparency to

the user of the file system hierarchy, to allow a user to direct the

migration system to move files . The user should be able to specify, for

instance, that a certain file will not be used for a given period of

time so that the system can immediately transfer it to the appropriate

level in the storage hierarchy . Also, users need the ability to specify

that a certain file be stored on some transportable medium, such as

magnetic tape or removable disc pack, that can be physically removed

from the computer site .

Basically then, what the file migration system does is to

automatically move files to back-up store when they are inactive, and

automatically restore them to more accessible hierarchy levels when they

are re-accessed. The major portion of this thesis deals with how the

migration system can decide which files should be migrated .

1 .4 File Migration Strategies

Currently running computer systems generally do not provide

automatic migration . The problem of secondary storage being

unnecessarily filled with inactive files is ignored or avoided . One way

to deal with the problem is to provide enough secondary storage to

satisfy all users' demands. This solution ensures that no migration

needs to be done, but as we will see, is unnecessarily expensive . Very

nearly the same level of service (as measured by access time to saved

files) can be provided with significantly smaller secondary storage

capacity (and therefore lower cost) if appropriate migration is done .

A more common solution in current computer systems is

	

to

pre-allocate to each user a fixed amount of secondary storage . The user



then is responsible for deciding which files to keep in secondary

storage and which files to manually "migrate" to back-up storage . This

strategy may, in fact, be quite efficient since the person with the most

knowledge of a file's accessing pattern, the user, makes the decision as

to which file to migrate. On the other hand, this scheme is probably

too inflexible to be very efficient . A new user may not have developed

enough files to fill the allocation so some storage remains unused .

More active users may have insufficient storage allocation to cover

their needs, so that they increase the processing load on the I/0 system

by requiring many transfers of files back and forth from back-up

storage. This is analogous to the thrashing problem in paging systems

(De68] . Another problem with this fixed allocation method is that the

amounts of allocation are likely to be determined, not on the basis of

level of activity of the respective users, but on some other measure

such as rank in the company or the amount of money the user is prepared

to spend.

In any case, this fixed allocation scheme is probably the most

common method of controlling secondary storage . We shall see in this

thesis that very simple migration schemes can provide much more flexible

and efficient use of expensive storage. At the very least, a file

system should provide easy to use system routines that enable the user

to move his own files to and from back-up storage . It might be

convenient for the file system to automatically cause a file to migrate

whenever the user attempts to save another file that would overrun his

secondary storage allocation . If this system were used, the system

probably should ask the user which old file should migrate since the

user has the best knowledge of which files are likely to be active in

the future .

A simple form of automatic migration in use on some computer

systems is one where all files that have been idle for a given amount of

time are caused to migrate . This and the following migration algorithms

are discussed in detail in Chapter V . The time quantum for which a file

is allowed to be idle before migration must be adjusted according to the

activity in the system and the capacity of secondary storage . If the

quantum is on the order of several weeks or a month, then the percentage

of migrated files that are immediately brought back to secondary storage

will probably be small . Notice that if many files show cyclic activity,

for instance being accessed once a month, then the time quantum should

be large enough to contain one cycle, or extra migration activity will

be necessary . If most files have cyclic accessing patterns, however,

some other form of migration, such as immediate migration and

pre-fetching, might be more appropriate . The data used in this study,

obtained from an actual computer system and analyzed in Chapter III,

does not show any such cyclic behavior .

Choosing a fixed quantum size as a threshold idle time for

migration will involve some storage inefficiencies . Storage usage will

vary over time, and the total size of all files that have been idle less

than the idle quantum will vary as well . If the idle quantum chosen is

too small, then the total size of the files in secondary storage will be

less than the total available secondary storage, and some secondary

storage will be unused . If the quantum is too big, then secondary

storage may not be large enough to hold all the files that have not

migrated. Clearly, what is needed is continual adjustment of the

quantum size so that secondary storage is always just full. In other

words, we migrate only enough files to assure that secondary storage can

contain all files that have not migrated, and we migrate files that have

been idle the longest time . This scheme iss called the least recently

used replacement (LRU) algorithm and is familiar from studies of page

replacement algorithms . Chapter V presents the LRU replacement

algorithm in detail .

Throughout the preceding non-technical discussion, we have used the

idea that a file that has been accessed in the recent past is more

likely to be accessed in the near future than a file that has been idle

for some time . This idea is intuitively appealing . That this is, in

fact, the case will be shown in Chapter III. LRU replacement then, uses

the file's current idle time as a measure to predict the file's future

idle time (that is, to predict when the file will be accessed next) .

While current idle time is an obvious predictive measure, it is not



clear that it is the best possible measure . We seek the measure that

will best predict which files will be accessed in the near future . Some

other measures that might be useful are the file's accessing rate (a

measure of past activity), the file's size, the file's age since

creation, etc . In addition, some combination of these orr other measures

might be the best predictor . The main emphasis of this work is to

evaluate these potential predictors .

Because, in general, the computer system cannot know the future

accessing pattern of a file, the migration predictors are only

heuristics for guessing future activity . Using trace data or

artificially generated activity data however, we can study algorithms

which take into account the future accessing pattern of a file . These

algorithms, though not implementable, give us theoretically near-optimal

or optimal behavior against which to compare our practical algorithms .

Algorithms with knowledge of the future are also discussed in Chapter V .

1 .5 Relation to the Page Replacement Problem

The page replacement problem in a virtual memory system, how to

decide which page to swap out when a new page must be brought in, has

been studied extensively . A file migration system is similar to a

virtual memory system in that we manage a top level of memory, that is

not big enough to hold all the necessary information, by transparently

(to the user) moving information to and from a back-up memory when

needed . This analogy is useful and this work takes advantage of some

paging results and methods . There are important differences, however,

that must be noted . One obvious difference is that of scale. In the

time domain, page replacements may occur many times per second, whereas

in this study, we will measure time in days . Page sizes are usually on

the order of 512 or 1K words while file sizes range from 1K words to

lOOK or larger . The crucial difference, however, is that pages are

assumed to be of one fixed size but files may vary in size over a large

range. Allowing variable sizes violates an assumption that is crucial

to some paging results so that these results do not necessarily apply to

the file replacement problem. We find, in general, that we can prove

less about the file migration environment and that, consequently, file

migration algorithms must depend more on heuristic methods .

1.6 Thesis Summary

Chapters II and III discuss the empirical data on file system

activity that were collected and which form the basis for this study .

Chapter II describes the trace data and its collection, and makes some

observations on the data. Chapter III presents a more detailed

statistical analysis of the data. This analysis uncovers some

characteristics of file system activity that are crucial for designing

file migration algorithms .

In Chapter IV, we discuss a model that has been constructed to

generate simulated trace data similar to the empirical data presented in

the previous two chapters .

The main results of this work are presented in Chapter V on

migration strategies . Readers primarily interested in migration, but

not a study of file system activity, can read Chapter V as a

self-contained unit . A detailed development of migration schemes

through various refinements is given . Possible predictors are presented

and evaluated. Also, various theoretically near-optimal (through

unimplementable) algorithms are need for comparison to the realizable

algorithms .

Chapter VI gives some examples (using representative values) of

possible savings resulting from using migration . Multilevel storage

hierarchies using newly emerging technologies are briefly discussed .

The relation of the present work to computer networks and distributed

data bases is mentioned .

A conclusion and discussion of possible directions for future study

are given in Chapter VII . Chapter VII also relates this work to other

related studies and gives a review of the relevant literature.



Appendices A and B provide further development of some ideas in

Chapters III and V . Appendix A shows the mathematical derivation of the

negative binomial distribution as a compound Poisson. The

non-optimality of the MIN algorithm is demonstrated in Appendix B .
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CHAPTER II

EMPIRICAL DATA ON FILE SYSTEM ACTIVITY

The first step toward gaining an understanding of file system

migration is to make measurements and gather trace data on file system

activity for a real computer system . These data, and their collection,

are described in this chapter . The environment for this empirical study

was a large computer center used primarily for physics research .* The

user population is quite large (700 users) and the job stream is a

mixture of short runs for program debugging and the like, and large

production jobs for physics data reduction, information retrieval, etc .

In this sense, the system under study may be more typical (or at least

more diversified) than one which only handles small student programs or

an industrial or business situation where most jobs are large, batch

mode, production runs . In any case, the results of this paper are

applicable to the environment under study. They apply to other

environments only to the extent that this environment is typical . The

model of file system activity presented in Chapter IV can be scaled by

changing various parameters to simulate other file system environments .

However, the question of validating the scaled model by comparison to

some other real system, though discussed in Chater IV, is not directly

addressed in this work.

Disc storage** serves as the secondary storage for this system .

Backup storage is magnetic tape . All users store their files on disc .

Each user is allowed a fixed amount of disc space for storing files . No

migration of files is done by the system, but routines are available for

users who wish to transfer files to back-up storage (magnetic tape)

themselves .

Kihe btaniord Linear Accelerator Center . Equipment consists
of two IBM/370/168's and an IBM 360/91 loosely coupled with
ASP and supporting WYLBUR, an interactive text editing and
remote job entry system .

**IBM 2314 and 3330 type devices

- 10 -



2.2 Description of the Data

The data consist of a day to day accessing pattern for all user

disc files on the system . The measurement period was just over one

year. A similar set of data was collected independently during this

time at another installation . It is briefly described in [Re74] . For

each disc file present in the system, with the exception of temporary

scratch files which were ignored, the following data were recorded :

file identifier
file creation date
file deletion date
file size
day by day accessing pattern

The accessing pattern consists of a bit string, one bit for each

day in the measurement period, with bits set for each day that the file

was accessed (read or written) .

The collection of these data records gives a complete trace (with

time unit of one day) of all user disc file activity in the system for

one year . From the data, we can derive day to day system activity, age,

creation, and deletion patterns of files, size distributions of files,

idle time distributions for files, etc .

2.3 Method of Collection

The data collection process was very simple . A system accounting

program is run every night which prepares a file listing all user files

on the system, their size, and other information . The data collection

program was simply attached to this accounting program as an extra job

step . The data collection program maintained a trace file which it

compared every night to the newly created accounting file . The trace

file was then updated, recording file creations and deletions and

setting the appropriate bit in the access bit string associated with

each file that the accounting file indicated had been read or written

during the previous day . No modifications, either to the accounting

routines or the file accessing routines, were necessary for this data

collection . In fact, the only input used by the collection program, the

listing of all files on the system, is public information available to

- 11 -

all users .

Other computer installations maintain a similar listing of all

current files . Usually however, the date of last update is recorded for

each file . In the present case, the data of last access is recorded .

This is crucial in determining the accessing pattern of a file. The

data collected here are somewhat unique, therefore, because they cannot

be easily generated on other computer systems .

2 .4 Strengths and Shortcomings of the Data

As mentioned above, the data was very easy to collect . More

importantly, the cost of data collection was negligible and the impact

on the system of making these measurements was also negligible . This

was not a case, as sometimes happens with system measurement, where the

measurement itself causes the system to behave differently from the way

it would if no measurement were being done .

The nature of the migration process requires that we look at file

system activity on a macroscopic, or relatively high, level . The costs,

speeds and capacities of secondary storage devices imply that we must

deal with migration in terms of hours or days rather than minutes or

seconds . Furthermore, in order to be able to average local variations

over time, we needed data for a number of months, not just a few days .

Thus, the file trace data for a period of one year, in time units of one

day, are quite adequate and appropriate for this study . In fact, if the

data had consisted of a trace of each individual file access, the amount

of data collected over a full year would probably have been

unmanageable .

There are some disadvantages to this set of data . In particular,

having the unit of time equal to one day, though advantageous in some

ways as discussed above, masks some information that could be useful .

In the study of various migration algorithms in Chapter V, we look for

various predictors for the time of the next access to a file . One

possible predictor is the access rate a file has experienced in the

- 12 -



past . Generally, files are not accessed every day and so we can derive

a fairly accurate access rate from the trace data . For very active

files, however, the data does not allow us to distinguish between a file

that is accessed once a day and a file that is accessed 100 times a day .

This lack of resolution in the time scale also impedes the statistical

analysis in Chapter III .

Another shortcoming of the trace data is the unit of measurement of

size. The accounting data file used to gather the trace data lists file

sizes in units of one track (about 7200 characters or 1800 words) .

Thus, any file whose actual aim is less than 1800 words (1 track) is

shown as being one track in length . This masks the actual aim of many

files. This is particularly unfortunate since, as we will show later in

this chapter, the size distribution of files is strongly skewed to small

files (there are many more small files than large files) . One

mitigating factor in this situation is the existence in the system of

"libraries".* Because some of the secondary storage devices use a track

as the smallest unit of transfer, it is impossible to store files that

are smaller than one track without wasted space . The system discourages

users from storing files smaller than one track and provides the

alternative of libraries . A library is a single physical file that is

made up of a collection of small logical files . Because libraries are

used extensively in this file system, there are fewer files whose size

is less than one track, and thus the lack of resolution in determining

file aim is not as much of a problem as it might have been without

libraries .

The existence of libraries means that the distribution of file

sizes that we derive from the trace data does not match the aim

distribution we would find if there were no libraries . As we will see

later in this chapter, there is a preponderance of small files on the

system . Libraries mask this effect ; users actually use many more small

files than the trace data show .

*caiiea far itioned Data bets by IBM
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The nature of the trace data has some other disadvantages . For

instance, no indication is made as to whether an access to a file was a

read or a write operation . All we can determine about a file is whether

it was accessed on a given day, not how often it was accessed and

whether or not it was modified. Knowledge of whether a file had been

modified might have helped in designing algorithms for choosing files to

replace when migration must take place . As in paging systems, a file

that has not been altered while in secondary storage need not be

rewritten onto back-up storage because its image on back-up storage,

provided one is kept, is still valid . Thus, it might be advantageous to

choose for replacement those files that haven't been written in

preference to those that have been altered . The nature of the trace

data does not allow this distinction to be made .

Some indication of which files tend to be accessed together can be

derived from the trace data . However, no explicit indication of this is

available. Thus, if there is some kind of locality, or clustering of

references to files as there is in page references [De66), such

information, which might be useful in migration replacement decisions,

can be determined only indirectly. More detailed data might also be

able to take advantage of naming conventions that reflect groupings of

files by project or usage, groupings of files by usage in nodes of the

catalog hierarchy, or actual indications by the user of files that will

be used together .

The trace data include only disc files . Files stored on tape are

not included. Since each user has a fixed allotment of disc space, some

users must do their own migration of inactive files to tape . This is

not reflected in the trace data .

No system files (compilers and utility programs, etc .) are included

in the data . Systems files are assumed to be used often enough that

they must be kept in secondary storage and never migrate .

Finally, the data trace file activity only for the computer system

- 14 -



that was measured . What differences there may be with other computer

systems' file activity is not known . Comparison with the only other

similar data on file systems known to the author [Re74], [Re75] shows

that these data may be fairly representative of file activity in a

large, general purpose computing system .

2 .5 Characteristics of File System Activity

A total of more than 25,000 files were recorded during the

measurement period. There were typically 5000 files present in the

system at any one time, using about 45,000 tracks . The secondary

storage capacity of the system is 67,000 tracks (500 million

characters) .

The data collected do not allow us to determine who the owner of a

given file is so we cannot break down the file population by user .

However, there is nearly a one-to-one correspondence between users and

user ID's (the identification a user must supply to the computer) . Some

users have more than one user ID, some users share a common ID . The

file naming conventions used in this system prefix each file name with a

user ID . We can, therefore, distinguish between files belonging to

different user ID's . A total of 707 distinct user ID's were recorded .

On a typical weekday about 225 user ID's would have some files accessed .

On the average, about 650 separate files are accessed each weekday . The

total space occupied by the files accessed in one day averages about

13,000 tracks . These figures are intended to give a general impression

of the size of the computing environment under study .

It is instructive to look at some daily statistics of the data and

see how they vary over time . For instance, the number of files created

each day is a randomly varying number averaging about 68 new files per

day. Statistical analysis* shows that the number of new files is a

stationary process (its average value does not vary over time) .

*The statistical methods used in this study are described in
Chapter III .
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Similarly, the number of files deleted each day is a stationary process

with mean 64 .

This would indicate that the number of files present in the System

is increasing at a rate of 4 (68-64) per day . Indeed, the plot of files

present in the system by day shows clearly an increasing trend with

slope of about 4 .

The number of files accessed per day is also increasing with time,

but at a rate of about 2 files per day . Since this rate is slower than

the total growth rate of the system, it is clear that the percentage of

idle files in the system is increasing . This is one indication of the

need for, a migration policy .

The data also reveal some interesting facts about how a file's size

is related to its activity and lifetime in the system . Figure 2.1 shows

the size distribution of files present in the system at a typical point

in time. The mean file size is around 8 .4 tracks (as indicated earlier

by 5000 files occupying 45,000 tracks) . The expected size of a file

that is accessed, however, is about 20 tracks . This indicates that

larger files are accessed more frequently than smaller files .

Similarly, the average size of all files recorded in the system for

the entire measurement period is 7 tracks . This means that more

distinct small files have been created than their proportion of the

total population would indicate . This implies that the expected

lifetime of small files is less than that for large files .

These phenomena, large files being more frequently accessed and

small files having shorter lifetimes, are partly explained by the

presence of libraries. A library is a single file that contains many

small logical files . The data do not distinguish libraries from other

files. We would expect that libraries would be larger than average

files. Because they contain more than one logical file, libraries

should be accessed more often than non-libraries (each access to an

individual library member counts as an access to the library) . Also,

because libraries can contain a varying collection of files, with some
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being deleted and new ones created, we expect the lifetime of a library

to be longer than average . Thus, libraries help account for the

different characteristics of large and small files .

Figure 2.1 shows the size distribution is strongly weighted to

small files . Of all files, 32% are one track or less in length . This

does not mean however that a migration scheme need only worry about

small files, just because they are the most numerous . Figure 2 .2 shows

the fraction of the total space used that is occupied by various sized

files . Point A in this figure indicates that 75% of the disc space in

use is covered by only 20% of the files . Large files, while they don't

dominate in number, do dominate in total space occupied . This balance

between large and small entities may suggest a general rule . It is

similar to the rule of thumb commonly used for CPU time in computing

systems : 20% of the jobs use 80% of the CPU time .

One indication that a migration policy would Save storage is the

number of idle files stored in the file system. Figure 2.3a and 2.3b

show the fraction of all files by idle time (time since last access) and

the fraction of all space in use (allocated to files) by idle time . Of

all files, 40% have typically been idle for more than 30 days . Of all

file storage space, 20% has been idle for more than 30 days . Migrating

these files, on the assumption that if they have been idle as long as 30

days they are not likely to be accessed soon, could save a substantial

amount of secondary storage .

Perhaps the simplest migration scheme is to migrate files that have

been idle longer than a certain amount of time . Figures 2 .3 give an

indication of what the appropriate migration threshold might be . A

reasonable first estimate might be to stay near the knee of the curve in

Figure 2 .3b (i.e ., about 20 to 25 days) . This must be balanced by a

knowledge of the amount of migration, activity required for each

migration threshold . Short thresholds save secondary storage space but

cause more input/output traffic for migration . Larger thresholds have

the opposite effect . This trade-off is examined in more detail in

Chapter V on migration algorithms .
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This section has presented some characteristics of the file system

as indicated by the trace data . The intent is to give an overall

feeling for the environment under study and to provide some informal

indication of why migration is needed . Chapter III gives a more

complete statistical analysis of aspects of the data pertinent to

modeling the file system and understanding migration strategies .

CHAPTER III

STATISTICAL ANALYSIS OF FILE ACTIVITY DATA

Before studying migration strategies themselves, it is appropriate

to do a detailed analysis of the file system trace data . Such a study

can be useful in several ways . Basically, we hope to be able to

understand the intrinsic structure of the processes underlying file

system activity. This knowledge is necessary for building a reasonable

model of file activity (Chapter IV) . For example, it is necessary

before building a model to know the most appropriate probability

distributions for describing various events and elements in the system .

Among other things, we need the distribution of inter-access intervals

(idle times) for files . Distributions for sizes of files and lifetimes

of files are also necessary . A basic approach in this work has been to

verify the appropriateness of any distribution used in the model, rather

than making convenient but untested assumptions (for instance, that a

certain distribution is exponential or normal or whatever) .

Beyond the particular (marginal) distributions that describe

various aspects of the system, it is crucial to understand the

dependencies of variables on one another . For instance, we need to know

if the lifetime of a file is correlated with its size, if successive

inter-access times to a file are correlated, etc .

Knowledge of the underlying structure of file system activity will

also aid in choosing and understanding various migration strategies

(Chapter V) . Here we are looking for predictors of the next idle time

(inter-access interval) for a file . Any dependency of idle time on

other variables (previous idle time, file size, etc .) may indicate

potentially useful predictors .

This chapter presents statistical analysis of the trace data

described in Chapter II . Particular attention is placed on the

accessing pattern of individual files since this is the basis both for

the model and for understanding migration algorithms . Many different

mathematical and statistical tools are available for such a study . We
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start by describing the tools and procedures used in this particular

study .

3.2 Analytic Methods

The analysis presented here draws heavily on the theory of

stochastic processes and on the branch of statistics dealing with the

analysis of a series of events . The theoretical concepts are reviewed

and referenced below . To augment this theory, several computer programs

were used . These include a statistical analysis package, a probability

distribution curve fitting program, and a program which extracts

probability distributions and moments from the trace data . The first

step in the analysis was to run the distribution plotting program on the

trace data . This custom program merely extracts from the data the

distribution and moments of various variables of interest . It also

plots the time sequence of variables when appropriate. Informal study

of the resulting plots served to provide familiarity with the data . It

also helped point out outlying data points and anomalous or unexpected

behavior of the data. For example, the fact that weekend activity is

markedly different from weekday activity is immediately evident . Unless

specifically stated otherwise, this paper deals only with normal weekday

activity. Also, the presence of several days in the measurement period

when the accounting program, whose output was used for gathering the

trace data, was not run, was detected . This allowed the error points to

be eliminated or smoothed before more rigorous analysis was performed .

This basic information suggested appropriate probability

distributions for some variables . It also indicated the possible

structure of some underlying processes, in particular, the series of

inter-access intervals for a file . It remained to verify or disprove

the hypotheses suggested by this exploratory analysis . The next step in

studying the trace data was to use a probability distribution curve

fitting program.* This program aids in matching a set of data to

*Originally written by John Zolnowsky at SAC and modified
by the author .
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commonly used probability distributions . It first computes the beat

known estimators of the various parameters of each of nine well known

probability density functions . These estimators are either method of

moments estimators or maximum likelihood estimators, as appropriate .

The program outputs graphs of the empirical data (and empirical hazard

function, defined below) plotted with each of the various theoretical

probability densities (and theoretical hazard functions), drawn with the

appropriate (best estimate) parameter values . The output proved

extremely useful in deciding which functions beat described various

input data, in the absence of specific statistical tests .

It should be noted that graphical analysis such as this should be

supplemented with statistical testing whenever possible . In many cases

this was done here, as described below . One reason that graphical curve

fitting is sometimes inadequate, however, is the practice of fitting

probability distribution functions (cumulative probability functions)

rather than probability density functions . Cumulative distribution

functions tend to be very similar in shape and hard to distinguish .

Density functions are somewhat easier to tell apart . Two other factors

employed here help increase the accuracy of graphical curve fitting .

First plotting monotone decreasing density functions with a log scale on

the vertical axis tends to expand the resolution in the midrange of the

functions, enabling closer fitting . Secondly, the use of hazard

functions (h(x) - f(x)/(1-F(x)), also called age-specific failure rate,

is very helpful for determining a distribution's behavior in the tail .

For each theoretical distribution tested by the fitting program, the

theoretical and empirical hazard functions are plotted together . While

probability density functions approach zero as the argument approaches

infinity, the hazard function may tend to zero, a constant positive

value, or infinity, thus providing a better indication of the upper tail

behavior of the probability function . (The hazard and density functions

are completely equivalent ; one can be derived from the other .) Other

investigators have used the log survivor function instead of the hazard

function . These approaches are equivalent since the hazard function is

the derivative of the log survivor . The log survivor function has some

of the same smoothing and masking effects with respect to the hazard

function as the cumulative function has with respect to the density
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function . For a more complete discussion of the hazard function see Cox

(Co62) pages 3-7 .

The statistical testing done in this study used a publicly

available statistical analysis program : SASE IV [Le66a] . This program

provides a wide range of tests for analysis of a series of events .

Thus, it was ideal for analyzing the inter-access time sequence for

files . Some of its routines are useful for other types of data as well .

It can be used for detection of trends and for determining serial and

cyclic correlations in sets of data . The theoretical background for the

program is discussed fully by Cox [Ca66] . Use of the program in a

number of studies is also well documented (Le66b], [Le71], [Le73]) .

This paper will not discuss the statistical theory, but will include a

discussion of the use and appropriateness of some of the tests provided

in SASE IV .

3 .3 The Accessing Process of a File

In this section, we study in detail the series of accesses to a

typical individual file . We will deal with this series of events as a

stochastic point process . Some of the results of this treatment will

directly affect our choice of migration strategies in Chapter V . Our

approach is to think of the file system as a collection of individually

characterized files, rather than as an amorphous set of files . For

example, we deal here with the accessing pattern of individual files

rather than the probability distribution of the number of files accessed

per day, though we will mention the latter as well and discuss its

derivation from our more detailed model . This approach is in contrast

to other studies of the same type of data [Re75] but is necessary to our

understanding of migration strategies and for modeling file system

activity in detail . All tests described in this section were performed

on the inter-access trace data for a number of randomly selected files,

with various sizes and liftimes . Testing a variety of files chosen at

random should point out typical file characteristics . Therefore, the

following stated results apply to files in general unless specifically

noted otherwise .
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The intent, then, is to understand the probablistic structure of

the sequence of accesses to a typical file. Several models suggest

themselves from the theory of stochastic point processes [Pa62) . A

stochastic point process, as usually defined, is a series of point

events, i .e . events distinguishable only by their time of occurance,

that are separated by random time intervals . The sequence of accesses

to a file fits this general model and so the theory of stochastic point

processes is used here. For our purposes, a stochastic point process

can be described by its marginal distribution of interval lengths and by

the dependency structure of the intervals . The marginal distribution of

intervals is obtained from the empirical interval distribution with the

curve fitting progrom described earlier . We first discuss the

dependencies of intervals on preceding intervals . The simplest

dependency model (no dependency) is the renewal process, described at

length by Cox [Co62] . In a renewal process, successive interval lengths

are independent of each other . The marginal distribution of interval

lengths, therefore, completely describes a renewal process . The

simplest model with dependencies is the Markov process . Here the length

of the current interval is again a random variable but depends on the

length of the immediately previous interval . A generalization gives the

nth order Markov chain in which the current interval length depends on

the lengths of the previous n intervals. A semi-Markov process is a

further generalization . In this model, the system can be in any of a

number of states. The current interval length is drawn from the

distribution associated with the current state and at the end of each

interval, transition to another state occurs with prescribed

probability . Other models (branching renewal process, doubly stochastic

Poisson process) are discussed by Cox [Co66] .

For modeling the inter-access interval process for files, several

models are plausible. A renewal process model implies that consecutive

idle intervals are independent . This may be true, and the renewal

process is attractive because of its simple structure, but it implies a

lack of "locality" of reference for files . In studies of accessing

patterns to pages of programs, it has been shown that accesses to pages
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tend to be clustered in time so that a page may be very active for

awhile, then relatively inactive when the references move to a new

locality. It is possible that references to files might show the same

type of behavior . If this is the case, then a semi-Markov model with

two states might be appropriate. While the file is in the "active"

state, inter-access intervals are described by some distribution with

relatively small mean. There is a certain probability of switching to

the "inactive" state where inter-access times have a larger mean value

(and possibly a differently shaped distribution) . Discussion of the

application of a similar two-state semi-Markov process in a different

situation (modeling page reference stack distances) is in [Ch76],

[Le73) . To choose among the various possible models, we perform

statistical tests (using the SASE IV program) on sequences of

inter-access intervals for a number of files taken from the trace data .

First, the presence of trends in the data must be tested . A stochastic

process is said to be stationary if the distribution of interval lengths

(or equivalently, the distribution of the number of events in a fixed

interval) does not change with time . Stationarity, therefore, is the

absence of trends in the data. The theory of stationary stochastic

processes is much more developed than the theory of non-stationary

processes . The existence of trends, or non-stationarity, in the data,

invalidates many of the statistical tests that can be applied. The SASE

IV program has tests for uniform trends and indications of cyclic trends

as well .

Tests for trends have been applied to access interval sequences of

files in the trace data . Though there are exceptions, the typical file

does not show any linear trend in its inter-access intervals . In cases

where trends are identified, they are almost always caused by the

presence of one long idle period before the deletion of the file . In

other words, those files that do show a trend tend to be accessed

frequently for a period after they are created and then fall idle for

some time before they are deleted.

In the absence of trends, other tests may be applied . The next

question to be answered is whether there are serial correlations in the
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data. If the intervals are serially correlated, then the relatively

simple renewal process model is not applicable and other, more complex

models must be investigated .

The analysis program tests for serial correlation or independence

of intervals by computing the correlation coefficients of adjacent

intervals (and those separated by a fixed number of intervals) and

testing their closeness to zero (the value of correlation coefficients

for independent intervals) . Other tests based on the spectral density

function of intervals were also used . These tests are only strictly

applicable to intervals whose distribution is normal, not the case here

as we shall see, but the results are generally so strong that the

conclusions drawn seem to be warranted .

The tests show that, again in the vast majority of cases,

inter-access intervals are not correlated. The indication of

independence of intervals is usually quite strong, though in some

instances some serial dependence is shown . This is an important result

with implications in building a model of file activity and for under-

standing migration strategies . It means that we can characterize the

accessing process of a typical file as a renewal process, without any

further consideration of possible dependency structure . We discuss Some

implications of this result in the next section .

It ruins to determine the distribution of interval lengths (idle

times) to completely characterize the accessing process . The general

shape of this distribution resembles an exponential distribution . The

curve fitting program indicates that exponential, Pareto, Weibull, or

hyperexponential distributions may be appropriate . The most attractive

alternative, from an analysis point of view, is that the intervals be

exponentially distributed. Several tests are provided in the

statistical analysis program for determining if a series of intervals

are exponentially distributed . Again, of course, the result does not

hold for all files . However, the large majority of files do pass the

test indicating that their inter-access intervals can be modeled by an

exponential distribution . A renewal process whose intervals are
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exponentially distributed is called a Poisson process (the number of

events in a given time interval is Poisson distributed) .

We thus have the following model for accesses to a typical file .

The rate of accessing is constant (stationary process), the lengths of

successive idle intervals are independent (renewal process), and the

distribution of inter-access intervals is exponential (Poisson process) .

Although this characterization is not true for all files, it is very

often applicable. Restricting our discussion to a theoretical

population of files with Poisson accessing processes is a useful and not

unwarranted simplification .

We have not mentioned the accessing rate of a typical file .

Although the structure of files' accessing processes are the same, the

accessing rate (or mean inter-access interval) varies from file to file .

Thus, files' accessing patterns, though described by Poisson processes .

are not identical . How the accessing rate varies with file size is

discussed in section 3 .6 .

3.4 Implications of the Accessing Process Model

The characterization of the access process of a file as a Poisson

process will influence how we choose migration algorithms in Chapter V .

It especially affects how we make use of the concept of locality that is

so useful in the study of page replacement algorithms . In this section,

we consider implications of the Poisson process on some higher level

aspects of the file system, in particular, the accessing pattern of

libraries and the accessing pattern of the file system as a whole .

From a systems design point of view, a characterization of the

accessing process of the whole file system is much more useful than the

processes for individual files . Measures such as accessing rate and

number of accesses per day are of interest . Since the file system is

the collection of all the individual files, its accessing process is the

superposition of the individual accessing processes . The process
-2g-

consists of the combined output of the component processes .

	

Some

mathematical results are available for superposed renewal processes .

When the component processes are Poisson, their superposition is

also a Poisson process . So if we model each file's accessing as a

Poisson process, the accessing process of the entire system will also be

Poisson. Even when the component processes are not Poisson, the

superposition of a large number of independent (but not necessarily

identical) processes tends to be Poisson . This result is from

Khintchine [Kh60] . Re proves that in the limit, the superposition of a

number of independent renewal processes is a Poisson process . The

result iss true even in the case that the component renewal processes

have different interval distributions . Khintchine's theorem helps

explain why the Poisson process seems to describe very well a number of

processes that occur in real life . Khintchine points out, for example,

that telephone calls arriving at a telephone switching machine are the

combined output of a large umber of independent processes, i.e., the

calls made by individuals, and so can be expected to be Poisson . In our

case, we might expect that the pooled accesses to all files can be

described by the Poisson process . We investigate here whether this is

true .

First we point out that the assumptions needed for Khintchine's

result may not strictly hold . The theorem deals with a fixed population

of component processes, while the file system is a dynamic population .

The number of files in the system varies from day to day . This

variation is a small percentage of the total population ( .1Z per day),

but could perhaps affect the validity of this result . Another more

subtle problem is the independence of component processes required in

Khintchine's theorem . To some extent, this assumption does not hold .

Users sometimes access (and create and delete) a set of related files

together so that their access processes are dependent and possibly

synchronized . The total file population, however, is spread over more

than 700 users, mostly using their files independently, so the effect of

this violation of assumptions is probably negligible .

-30-



Unfortunately, we cannot accurately measure the accessing process

of the entire file system from the data collected . Because of this, it

is impossible to directly verify the hypothesis that accesses to the

file system as a whole are Poisson by applying tests for Poisson

processes . The reason that we can't measure the accessing process of

the whole system is outlined below, and is a result of the trace data

being measured on a time unit of one day . This means that for each

file, we have an indication of whether or not it was accessed on a given

day, not how many times it was accessed on that day . This implies that

for the entire file system, we cannot get a count of the number of file

accesses each day but only a count of the number of distinct files that

were accessed each day . The empirical distribution of this data, the

count of separate files accessed per day, has been gathered and plotted

(Figure 3.1) . This distribution is distinctly non-Poisson. This is

shown most directly by comparing the sample mean and sample variance .

The sample mean is 678 and the sample variance is 14,400, whereas for a

Poisson process, the mean is equal to the variance . The appropriate

discrete probability function, when the variance is greater than the

mean, is the negative binomial distribution,

x-a-1
fn (x) -

	

px (1-P) a
x

The negative binomial distribution fitted to the data by the method

of moments is also shown in Figure 3.1 (solid curve) .

The distinction between the number of distinct files accessed per

day and the total number of accesses per day is very important . The

fact that the distribution of files accessed per day is a negative

binomial is not inconsistent with the prediction that the number of

accesses per day is Poisson . The following paragraphs outline a

construction of the negative binomial distribution from the assumption

that individual file accesses are Poisson .

We assume that the accessing pattern to a single file is Poisson .

This has been demonstrated above and is valid on a macroscopic level

whenn the file is viewed over a period of days . Our grain of measurement
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of time (one day) affects what a file's accesses look like in the trace

data at a more microscopic level . For each day, the trace data only

show whether or not a file was accessed . Since the Poisson process

model assures that the probability of access of a file in one day is

independent of accesses on other days, we can think of the access to a

file in a day as a Bernoulli trial (takes either the value 0, no access,

or 1, some access) . Bernoulli trials imply that, at this level where

time is measured in discrete units of one day, the inter-access

intervals of a file are geometric distributed and its access process is

binomial . (The discussion earlier in this chapter dealt with time over

a larger range where, though measured in days, it could be thought of as

continuous. In continuous time, of course, the geometric intervals

become exponential and the binomial accesses become Poisson .)

Within each day then, we have a series of N Bernoulli trials where

N is the number of files in the system. The parameters of these various

Bernoulli trials are not equal, being the accessing probabilities of the

individual files . Feller (Fe50), page 263, proves that the number of

sucesses (here interpreted as file accesses) in a sequence of Bernoulli

trials with variable probabilities (also called Poisson trials) is

described, in the limit of a large number of trials, by the Poisson

distribution .

The final step in this construction is to note that the number, N,

of files in the population varies from day to day according to an Erlang

distribution (Figure 3 .2, the Erlang being a special case of gamma

distribution) . Since the rate parameter of the Poisson distribution of

files accessed in a day is proportional to the population, N, which is

gamma (Erlang) distributed, the distribution of files accessed per day

is a so-called compound Poisson distribution (Poisson randomized with

gamma) . A simple proof, given in Appendix A, shows that the compound

Poisson randomized with Erlang rate parameter is the negative binomial .

Thus, we see that the model of individual files is consistent with

the experimental determination of the distribution of files accessed per

day being negative binomial . Furthermore, a physical interpretation can
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be given to the negative binomial distribution .

3.5 Accesses to Libraries

Modeling the typical file's accessing process with a Poisson

process also - has implications to our understanding of libraries . A

library is a collection of Small files that is dealt with in the file

systems directory structure and storage allocation as a single

contiguous unit. From the trace data, we cannot distinguish accesses to

individual member files of a library. Extending our model of individual

file accesses as Poisson processes, we can postulate that member files

in libraries are also accessed according to Poisson processes . As

before, the accessing to the whole library, as the superposition of

Poisson processes describing the accessing to library members, is also a

Poisson process . This is borne out by the trace data in most cases .

The statistical analysis program generally shows that access intervals

to libraries are trendless, independent and exponentially distributed,

indicating that the underlying process is Poisson . In those libraries

where this is not true, the time grain of one day may be having an

effect again. For actively used libraries where the mean idle time is

near one day, the trace data may show an insufficiency of small

intervals (since the smallest interval the data can record is one day)

causing rejection of the Poisson hypothesis in statistical tests [Co66] .

Also, in libraries where the component files are often used together,

the independence assumption for superposition of accessing processes may

be violated, causing a library's overall accessing to be non-Poisson .

3.6 Distribution Fitting for Inputs to the Model

As discussed in Chapter IV, a model has been constructed to

generate artificial trace data which simulate the actual trace data .

The model's inputs are a number of probability distributions derived

from various empirical distributions describing the real data . This

section discusses the distribution fitting process and illustrates the

results. Although the purpose of this distribution matching was to

provide input for the model, the distributions characterize the file
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system activity and so their study increases our understanding of this

activity. The distribution fitting program plots the input data against

various standard probability distribution functions . The parameters are

matched by standard methods, usually method of moments, or maximum

likelihood estimation. Both the density functions and the hazard

functions are plotted .

The model assumes that lifetimes of files are independent .

Artificial lifetimes can, therefore, be generated by sampling the

probability distribution of lifetimes of files . Figures 3 .3a and 3.3b

show the empirical distribution of lifetimes plotted with the

corresponding fitted exponential distribution . This is the distribution

used in the model to generate lifetimes of files . The mean is 257 days .

A related model input is the ages since creation (again in days) of

files in the system at the start of the measurement period . Again we

find that this distribution can be modeled by the exponential (Figures

3.4a, 3.4b) . This distribution is needed by the model to create a

starting population for simulation .

Clearly, there is a relationship between the age distribution and

lifetime distribution. By sampling the age of a file at a given time,

we obtain what is called the backward recurrence time of the file's

lifetime . This concept was developed for renewal theory [Co62] . A

distribution, f(x), is related to the distribution, r(x), of its

backward recurrence times by r(x) - (1-F(x))/m where F(x) is the

cumulative distribution of f and m is the mean of f . For the special

case here of exponentially distributed lifetimes

r(x) - 1-(1-e) 1%/(1/1) -1*exp(-lx) - f(x)

So we expect the age and lifetime distributions to be identical

exponentials . In fact, the mean age is 276 days and the mean lifetime

is 257 days. Some of this discrepancy may be explained by the non-

infinite measurement period limiting the measurement of some long

lifetimes .
-36-



0 03

pj 0 02

W
A

EXPONENTIAL FIT

-37-

o so

I
0

	

60

	

10o

	

ISO

	

Zee
LWEIBtES OF FILES ONLINE AT ONE TBIE (WEEKS)

FIG. 3 .3A

EXPONENTIAL FIT

•

	

20 40 60 60 too
LIFETUIES OF FILES ONLININC AT ONE TIME

FIG. 3.311

0 00

	

-

x
0 el

0 00

0

	

V0

	

100

	

ISO

	

200
AGES OF FILES ONLINE AT ONE TIME (WEEKS)

FIG. 3 .4A

EXPONENTIAL FIT

I

	

I

	

I •

-38-

•

	

50 100 150 200
ACES OF FILES ONLINE AT ONE TM

FIG . 3 .411

0 04
0 04

'L 0 03
z~ 0 03 0~~++

V
z

V
z 0 02

u e2



The size distribution of files in the system is shown in Figure

3.5a,b,c. This distribution is very strongly skewed to small file

sizes . The exponential distribution fits poorly and we use, instead,

the Pareto distribution,

fp (x) - cxc-l

The size distributions of files created and files deleted are

practically identical to the size distribution of files in the system .

This means that the size mix of the file population is stable, not

changing with time .

The size distribution of files accessed also has Pareto shape but

is substantially less skewed toward small files . The mean size of files

in the system is 8 .4 tracks, but the mean size of files accessed is 19 .9

tracks . This means that large files are accessed more frequently than

small files . Figure 3 .6 shows how the average inter-access time for

files varies with file size . The distribution of inter-access intervals

for specific files has been discussed earlier as exponential . A plot of

mean inter-access intervals for files of a given size is shown in Figure

3.7. Either a Pareto or a Weibull distribution

fw (x) - cxc-1 /bc * e (x/b)c

is appropriate here, and for other file sizes as well .

3.7 Dependency Relationships of Access-time Intervals

In Chapter V, various migration strategies are discussed . The

migration strategies may be thought of as using different predictors of

the next idle interval of a file . For instance, LRU (least recently

used) uses the most recent idle time as a predictor of the next idle

interval . LFU (least frequently used) uses the average idle interval

(or accessing rate) to predict the next idle interval . One purpose of

our analysis of the trace data should clearly be to discover any

dependency relationships that a file's inter-access intervals might
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show. If inter-access intervals are correlated with any file

characteristic that is easily measurable, we may be able to use that

measure to help predict idle intervals .

The most obvious correlation would be between successive

interaccess intervals . It has been demonstrated that the accessing

process is a renewal process ; therefore, that previous idle times are

not correlated with subsequent inter-access intervals .

The inter-access interval distribution of a file is influenced by

other factors . The previous section showed (Figures 3.6, 3.7) how the

size of a file is correlated with its accessing rate. Another

possibility is that a file's accessing rate depends on its lifetime in

the system (or its current age in the system) . Figure 3.8 plots this

relationship . With the exception of files with very short lifetime, and

several outlying points where the number of files in the system of that

size is very small, there appears to be very little correlation between

lifetime and accessing rate (inter-access time) . Chapter V discusses

the design of migration strategies using the dependence of inter-access

intervals on file size and their independence on file age, and previous

inter-access intervals .

3.8 Summary

This chapter describes statistical analysis of the empirical file

trace data. First a model of accesses to a typical individual file is

developed . The Poisson process is shown to be appropriate . This

conclusion is consistent with the observation that the number of files

accessed per day is described by the negative binomial distribution .

Accesses to libraries are discussed and again the Poisson process is the

model used .

Results from curve fitting experiments are given. The age and

lifetime distributions of files are described by the exponential

distribution. File sizes vary according to a Pareto distribution .

Finally, the dependence of file accessing rate on other file

-43-

H

30

aA

0

•

	

I I I • .
1

• . I . I . I I 1 I • r

-44-

~r 1-1J-1-1 .L11	L_LII	
A

	

20

	

40

	

60

	

80

	

100

FILE LIFTIDE (WEEKS)
FIG. 3.8



characteristics is investigated. The Poisson accessing model implies

that there is no serial correlation of inter-access period&. The

expected value of the inter-access time is shown to be independent of

the file's lifetime in the system but correlated to the file's size .

CHAPTER IV

SIMULATION MODEL

The trace data described in Chapter II provide the basis for

simulating file system activity used in the study of migration

strategies presented in Chapter V. The data could also be useful in

many other studies of file system, file structures, and storage

hierarchies . File system data can be expensive and time consuming to

collect, however . An alternative is to build a computer program model

of file system activity which will generate artificial file system trace

data. This chapter describes such a simulation model, Its structure,

its validation, and possible uses .

4.2 Basic Structure

A file system model can have varying complexity depending on the

level of detail required in the artificial trace data robe generated .

For instance, some studies would only require a simulation which gave

various system-wide activity figures, such as the number of files

accessed by day, number of files deleted by day, etc . In this case the

model might consist merely of a set routines that generate values for

files accessed per day, etc. from the corresponding fitted

distributions . For this work on file migration however, much more

detail is needed. The migration algorithm to be studied deal with

individual files, making migration declaims based on the

characteristics and past accessing history of each specific file . A

macroscopic model which only deals with number of files accessed, etc .

cannot supply the necessary information . A detailed micromodel is

required which simulates the activity of individual files .

Another reason for using a detailed model is that it requires a

much better understanding of the characteristics of individual files, of

the dependencies of these characteristics on other file characteristics,

and of the relationships between files . This increased level of

knowledge and detail makes the model useful for many types of

experiments in which the model's structure or its inputs are modified in

-45 -
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order to simulate different environments .

	

Examples of possible

experiments are listed in a later section of this chapter .

The model built for this study is detailed to the level of

individual files . The file system is viewed as a collection of

independent files . Each file is individually characterized by its size,

lifetime, and its accessing trace . A population of files is seemed to

exist at the start of the simulation and for each simulated day a umber

of new files are created . No assumptions are made about the number or

distribution of files or tracks accessed per day, of files or tracks in

the system at a given time (except at the start of the simulation) or of

files deleted per day . These global values are generated as the

simulation proceeds, resulting from the simulated accesses to individual

files and the simulated deletions of files as their "lifetimes" run out .

The inputs to the model are

-size distribution of files
-inter-access interval distribution of files
-lifetime distribution of files
-distribution of new files per day .

Given these distributions the program simulates file system activity and

generates artificial file accessing trace data .

4 .3 Development of the Model

Development of the simulation model was done in two steps. The

first step was to construct a valid model using as inputs the empirical

distributions derived from the actual trace data . This permitted

building the basic model structure and discovering the important

dependencies, with known, valid input distributions (in the form of

tables of values) . The second step was to replace the empirical input

distributions with analytic formulas for standard probability

distributions fitted to the empirical data .

Major iterations in building the model were necessitated by the

discovery of three important dependencies . First it was found that the

lifetime of a file depends on the file's size . The model was adjusted

so that smaller files have shorter lifetimes than large files . A more
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important dependency is the relationship between file aim and the

accessing rate of files . The distribution of sizes of files in the

system is different from the distribution of sizes of files that are

accessed, large files are accessed relatively more often than mall

files . Furthermore, the accessing of files of a given aim is

randomized so that all files of that size are not accessed at the same

rate . The procedure finally used in the simulation model iss to pick,

given a particular file, the mean accessing rate of files of this aim .

The mean accessing rate for the particular file in question is then

generated randomly from an exponential distribution with mean equal to

the mean accessing rate for this file size . This assures that files of

a given size do not all have the same mean accessing rate . The

inter-access intervals for the file are then generated randomly from the

appropriate distribution (exponential) whose mean is the derived

accessing rate for that particular file .

Another factor that significantly affects a file's characteristics

is its type. The only type distinction of interest here is whether or

not a file is a library (collection of smaller files) . The existence of

libraries is quite evident in the trace data described in Chapter II .

Libraries are larger than most files, they are preallocated by their

owner so that their sizes tend to be multiples of five tracks, they are

accessed much more often than ordinary files and they are rarely created

or deleted. Accordingly the model includes a small subset of files that

simulate libraries . Their lifetimes are infinite, their sizes are

multiples of five, and their accessing intervals are exponentially

distributed with small mean .

4.4 Validation

Validation of a simulation model of this complexity is a difficult

and largely subjective process . No attempt has been made to

mathematically demonstrate the applicability of the model, although the

model is based on demonstrated mathematical properties (distributions

and inter- relationships) of the real file system data .
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Each iteration of the model was validated using two computer

programs. The most useful was a program mentioned in Chapter II which

extracts daily activity plots and distributions of pertinent file

characteristics from trace data input . The output of this program when

run on the trace data generated by the model was compared to

corresponding output from the empirical trace data . The program was

designed to demonstrate any differences in the traces . For instance

trends (increasing or decreasing) in such quantities as files in the

system, files accessed, etc . or imbalances (too many large files, small

files accessed too often, etc .) were easy to detect. The second method

of validation was to run the various migration strategy simulations

discussed in Chapter V on the artificial trace and compare the

performance to that of the real trace data- The performance of migration

strategies depends very closely on the accessing patterns of individual

files, so matching the migration performance of the artificial trace

data to that of the real data inspires high confidence in the validity

of the model .

4.5 Uses of the Model

The artificial trace data generated by the model could be used in

place of empirical trace data whenever the latter is not available .

Studies of migration strategies (as in Chapter V), evaluation of

proposed storage hierarchy changes, projections of future file storage

requirements are examples of uses of this type of trace data .

There is another very useful application of the simulation model in

which the real trace is not useful . Because the model simulates the

structure of the file system activity, not just its gross properties, it

can be used to simulate related file systems with slightly different

structure. This could be done by changing various input distributions

to the model or dependency assumptions used by the model to reflect the

hypothetical file system environment . For Instance, the model could

simulate environments with half (or twice) as many users, or

environments in which there are no libraries or where there is serial

dependence structure to the accessing patterns of files . The resulting
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trace data could be analysed to show the activity properties of the

hypothetical file system environments . An interesting experiment would

be to study the sensitivity of the behavior the various migration

strategies studied in Chapter V to changes in file system activity .
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CHAPTER V

FILE MIGRATION

This chapter applies the understanding of file system activity

developed in previous chapters to the problem of file migration .

Secondary storage, the highest non-executable level in the storage

hierarchy of a computer system, is treated as a scarce resource . It is
desired to manage this resource by transferring files to and from the

lower levels of the hierarchy (back-up storage), so as to maximize the

probability that the next file to be accessed is stored in secondary

storage . The transfer of files between secondary storage and back-up

storage is referred to as migration . The implementation of the

management of secondary storage, that is, of migration, involves

physical transfer of the files and proper maintenance of directory

structures by operating system routines . This implementation is the

migration algorithm . The process of deciding which files should be kept

in secondary storage and which files should migrate is called the

migration strategy. This chapter discusses the migration algorithm and

introduces and evaluates various migration strategies .

The motivation for file migration can be either to decrease

computing cost or increase computer performance . Proper management of

secondary storage can reduce system costs by requiring less secondary

storage capacity to achieve the same level of performance .

Alternatively, effective migration can increase system performance by

decreasing the amount of input from back-up storage, at the same level

of secondary storage capacity.

Figures 5 .1a and 5.1b provide a clear indication that file

migration can be useful . Figure 5 .1a is the same as Figure 2 .3b . It

shows the fraction of total file space that is occupied by files that

have been idle less than any given length of time . Figure 5 .1b gives,

for each idle time, the "hit ratio" or the fraction of file accesses for

which the file has been idle for less than the corresponding idle time .
From Figure 5 .1a, for instance, we see that 202 of the file space used

is occupied by files that have not been accessed for 30 days .

	

Figure
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5.1b shows that 98% of all accesses are to files that have been idle for

30 or fewer days . This means that a simple migration scheme could save

202 of the secondary storage cost with a very small (22) performance

penalty, by causing files that stay idle for more than 30 days to

migrate to back-up storage . If a bigger performance penalty is

acceptable, say 10%, then files would migrate when they were idle for

more than five days and 45% of the secondary storage capacity could be

saved. This simplified argument hides the fact that a 90% hit ratio

ears that 10% of all file accesses cause input from back-up storage .

Depending on the access time and transfer rate of the back-up storage

medium, this may cause an intolerable wait time or load on the

input/output system .

5.2 The Implementation of File Migration

The migration algorithm, or in other words, the practical details

of implementing file migration, is discussed only briefly here. The

migration programs must cooperate with the file system and input/output

programs, and so depend on their specific structure . Several principles

are clear, however .

The migration algorithm implements automatic migration of files

between secondary and back-up storage. It relieves the user of

knowledge of where his files are kept and assumes responsibility for

managing all levels of the storage hierarchy, not just secondary

storage . This implies that while the directory structure in many

current file systems only describes the set of files in secondary

storage, a directory structure with automatic migration must include

pointers to all files in the storage hierarchy . In other words, when a

file in secondary storage is selected for migration, its directory entry

is not erased . The directory entry must be kept but modified so that

the address pointer in the entry points to the new location on back-up

store . Similarly, when a file migrates from back-up store to secondary

storage, its directory entry will already exist and will need only to

have the address field updated .
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The migration algorithm also implements the process of deciding

which files should migrate. Selection of a suitable decision making

process, or migration strategy, is discussed in the next sections .

These migration strategies make decisions based on some information

about files' past histories or physical characteristics . For instance,

LRU replacement uses the current idle period of each file as a parameter

in its decision. Other strategies to be discussed use the average idle

interval of a file, the file size, etc . The file directory entries must

be changed to add fields to hold the information needed by the migration

strategy. Further, these fields must be updated whenever the

corresponding value changes (usually when a file is accessed) .

If secondary storage is kept full, then each time a file migrates

from back-up" store to secondary store, one or more files in secondary

store must migrate to back-up store to free space for the new file in

secondary store. To avoid having to search through the directory

entries of all files in secondary storage to determine which should

migrate out, some type of ordered list of the files should be

maintained . For simplicity this discussion assumes only two levels in

the storage hierarchy. If there are more levels, an 'ordered list of

files is needed for all but the lowest level . For LED replacement, for

instance, the files are ordered by current idle time and the file with

the longest current idle time is selected for migration . Other

replacement strategies use other measures on which to order the files,

but for each strategy to be discussed there is a unique ordering of the

files .

A sorted list of the files is not completely necessary however

since only the first element of such a list (the file to be migrated)

needs to be readily accessible. A partial ordering such as is provided

by a "heap" is all that is needed . Reaps, which are discussed in Knuth

[Kn73), provide a very efficient mechanism for maintaining partially

ordered lists . When a file is accessed or its place in the ordering

changes for any other reason, its directory entry must be removed from

the heap and re-inserted in sort order. For LIU replacement, the

accessed file is inserted at the bottom of the heap .

	

For other
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replacement strategies, insertion may be required other than at the head

of the list, and some searching through the heap may be necessary. All

the migration strategies to be considered in this work have the

characteristic that the sort measure of a file (i.e., current idle time,

or average idle time, etc .) can only change when a file is accessed .

This important property implies that when a file is accessed, other

directory entries in the heap do not change their relative sort order .

Only the directory entry for the accessed file need be removed and

re-inserted .

This added structure of linking the directory entries on a sorted

list can be avoided if the secondary storage is not kept completely

full. If at the beginning of each day, sufficient free space is

allocated in secondary storage to hold all newly created files and all

files that migrate from back-up storage during the next day, then the

migration of files to back-up storage can take place late at night

during the system's minimum load time . Many systems run accounting

routines during this time which scan all the directory entries in the

file system. If a complete scan is being made anyway, the most likely

candidates for migration can be identified at this time and all the

migration to back-up storage that is required to free space on secondary

storage can take place during low usage time .

The migration algorithm need have very little impact on the file

system code. The directory entries must be changed, as discussed, to

point to files on back-up storage as well as secondary storage, and to

hold additional information needed for the replacement strategy .

Migration into secondary storage can take place on demand . If

sufficient free space is allocated in secondary storage, then migration

to back-up store can be delayed until low usage time when its impact on

the system will be small .

5 .3 Evaluation of Migration Strategies

The remainder of this chapter deals with a number of possible

migration strategies . This section describes the simulation and

evaluation of these strategies . Each strategy to be studied is built

into a migration simulation program. This programm simulates the running
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of the migration algorithm discussed in the previous section, using the

migration strategy under study as the decision making process . Each

simulation is run using the empirical trace data discussed in Chapters

II and III as input . Since the input to the simulation is real trace

data, as opposed to artifically generated data, the results of the

simulations are identical to the results that would be obtained by

running the corresponding migration strategy on a real computer . . The

outputs of the simulations, which provide an indication of the

effectiveness of the particular migration strategy, are discussed below .

The output from such a simulation program should give a measure of

the performance of the migration strategy in question that can be

compared with the corresponding measure for other migration strategies .

Two performance measures are used here for evaluation of migration

strategies. The first is the "miss ratio" . This number gives, for a

given secondary storage capacity, the fraction of file accesses that do

not find the accessed file in secondary storage, under the migration

strategy in question . That is,

miss ratio - accesses to back-up storage/total accesses

where

total accesses - accesses to files in secondary storage

+ accesses to files in back-up storage

also

0 < miss ratio < 1

Clearly, the migration strategy that gives the lowest miss ratio,

for a given secondary storage capacity, is preferred . The closer the

miss ratio is to zero, the fewer the number of file that accesses fail

to find the required file in secondary storage . Each such failure, or

"miss", causes a file to migrate to secondary storage from back-up

storage, causing additional load to the input/output system and greatly
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increasing the effective access time to the file . The miss ratio thus

gives a measure of how effectively the particular migration strategy

manages secondary storage in the sense of keeping the most used files in

secondary storage and reducing the number of file transfers from back-up

storage .

The second evaluation measure is migration traffic . The migration
traffic gives the average volume of input/output transfers per time unit

(tracks per day) needed for migration with a given secondary storage

size, under the specified migration strategy . In a page replacement
environment where pages are all the same size, the miss ratio and I/0

traffic are equivalent measures (traffic is proportional to the miss
ratio) . This is because each miss, or page fault, requires the transfer

of one page to main memory, so the same amount of I/0 traffic is

required for each page fault . In the file migration environment, this
is not true . Since files are not all the same size, the migrations of

different files may cause different amounts of input/output traffic . A

migration strategy with a low miss ratio may be a worse strategy with

respect to migration traffic than another strategy with a higher miss

ratio . As a trivial example, suppose that one strategy results in only

one miss, to a file of three tracks . Another strategy causes two

misses, each to files of one track . The former strategy has a lower

miss ratio but the latter causes less migration traffic .

The two performance measures for file migration strategies, miss

ratio and migration traffic, are thus not equivalent . Both will be used

in this chapter to evaluate the migration strategies presented . Which
measure is more appropriate will depend on the implementation used for

migration. In most situations the migration traffic load is easily

handled by the data path between back-up and secondary storage . The
miss ratio evaluation measure is more important in these cases, since it

directly affects the average access time to files . If the data path for
migration is saturated because it has very small capacity or very high
use from other sources, then it may be more crucial to minimize

migration traffic than the miss ratio .

	

The difference is explored
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further in Chapter VI . This discussion of evaluation of migration

strategies has purposely avoided reference to actual costs and specific

memory hierarchies and devices . The miss ratio and migration traffic

measures do not depend on these installation-specific measures . The

actual costs of a migration system can be derived from the miss ratio

and migration traffic measures. See for example papers by Lum et al .

[Lu74] and Kimbleton [Ki72] where the miss ratio and migration traffic

are assumed to be known, and specific costs are derived . Chapter VI of
this thesis also gives some examples .

5.4 Stack Algorithms and Stack Processing

Both the miss ratio and the migration traffic measures described

above are functions of the secondary storage capacity . For comparison

of two migration strategies, it is extremely useful to have performance

measure curves, that is, to know the value of the performance measure

for every possible secondary storage capacity . It is possible, using a
technique first described by Mattson at al . [M00], to derive the

entire performance measure curve in one pass through the input trace

data. Mattson et al. call this method stack processing and describe

the set of replacement algorithms, called stack algorithms, for which

stack processing is valid .

A simulation program that uses stack processing maintains for each

instant of simulated time an ordered list (called the "stack") of all

elements (pages or files) that have been accessed . The list is ordered

on a sort measure which is unique to the replacement strategy being

used . For instance, for LRU replacement, the elements of the list are

ordered by their current idle times . Whenever the sort measure of an

element changes (in the cases considered here, this only occurs when the

element is accessed), the list must be resorted so that the ordering is

maintained . The sort measure used is precisely the measure that the

corresponding replacement strategy would use in deciding which file

should migrate when secondary storage becomes full . Associated with
each element on the sorted list is a "depth" . The value of the depth of

an element is_ the sum of the sizes of all list elements ahead of and
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including the current element . Because of the nature of the ordering of
the list, the depth of an element has an important physical

interpretation . The list is sorted so that all the elements ahead of a

given element currently have a higher priority of being in secondary

storage . Thus, if the element in question were stored in secondary

storage at a given time, then all the elements ahead of that element

would also be contained in secondary storage . The depth of a list

element thus gives the minimum secondary storage capacity, such that the

element would be in secondary storage, under the migration strategy in

use, at this point in simulated time .

A "stack algorithm" is a replacement strategy which, at each moment

in time, defines a total ordering of the elements that have been

accessed. This property is necessary (and sufficient) for the proper

operation of stack processing . All of the migration strategies

considered in this work are stack algorithms . A stack algorithm has the

property that the miss ratio curve is monotone decreasing as the size of

secondary storage increases . This means that increasing the size of

secondary storage cannot cause worse performance (more misses) . The

same property, monotonicity, holds for migration traffic curves of stack

algorithms. Mattson et al . [Ma70] give an example of a replacement

strategy, which is not a stack algorithm, for which this may not be

true .

Two important changes were made in the stack processing algorithm

for paging to apply it to file migration . First, in paging, the stack

depth of a page is simply the page size (which is fixed) times the

number of pages with higher priority (i.e., ahead of it on the sorted

list) . Therefore, all that is needed to compute a page's depth is its

ordinal position in the list . Files, by contrast, are variable in size

and the simulation must maintain for each file, not merely its ordinal

position; but the sum of sizes of all files ahead of it in the sorted

list . A second change was necessitated by the nature of the input trace

data, but has the side effect of substantial savings in computer time

for the simulations . The input data indicates whether or not each file

was accessed on a given day. There is no indication of the order in
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which files were accessed within each day . Therefore, the accesses to

files for each day cannot be distinguished and can be treated as if they

all occurred simultaneously . The simulation program, therefore, only

reorders the sort list and re-computes depths after all accesses for a

given day have been processed .

The stack processing simulation program maintains an ordered list

of all files that have been accessed and associates a depth with each

file in the list . Whenever the input trace data indicate that a

simulated access is being made to a file, the current depth of that file

is recorded . Thus, as the simulation proceeds, a histogram of depths is

developed, where for each possible depth the number of accesses to that

depth is recorded . The miss ratio curve is generated very simply from

the depth histogram . When the histogram is normalized, it becomes the

depth density function, giving forr each depth the probability of access

to that depth. The corresponding probability survivor function gives

for each depth the probability of access to depths greater than the

given depth. This function, interpreted correctly, is the miss ratio

function . When the abscissa is thought of as representing secondary

storage capacity, then the curve gives for each secondary storage

capacity the probability that an access is to a file not stored in that

secondary storage capacity . This is exactly the miss ratio as described

previously .

Two sample miss ratio curves are given in Figure 5 .2a, one dotted,

one solid . Clearly, the strategy which generated the dotted curve is

preferred since its miss ratio is lower for every secondary storage

capacity. The most interesting area of comparison is at low miss ratios

(close to zero) since this is where a migration system would probably be

tuned to run . To show this region of the curves better, we perform a

simple transformation. The transformation is to show the miss ratio on

a logarithmic scale in order to expand the interesting region near zero .

This is shown in Figure 5 .2b . This is the type of curve we will use for

evaluating migration strategies with respect to miss ratio .

The other performance measure we will use is the migration traffic
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rate curve. An example of this type of curve is in Figure 5 .3 . The
horizontal axis is the same as for miss ratio curves ; capacity of
secondary storage . The vertical axis measures migration traffic, in
average number of tracks migrated per day, for the corresponding
secondary storage capacity .

As mentioned above, for the paging environment, the miss ratio
curve and the traffic curve are identical to within a scaling factor .
In the file migration environment, where the migrating elements are not

all equal in size, this equivalence no longer holds . The traffic rate

curve, though never reported before, is a natural extension of the miss

ratio curve and can be generated by the stack processing algorithm with

a simple change .

In determining the miss ratio, the program essentially records for

each file access the fact that, for each secondary storage capacity less

than the current depth of the file, a miss has occurred . The traffic

rate modification records for each file access the information that, for

each secondary storage capacity less than the current depth of the file,

migration traffic proportional to the size of the accessed file must

take place. The resulting traffic rate curve is not equivalent to the

miss ratio curve and provides a second evaluation criterion for

migration strategies .

5 .5 A Primitive Migration Strategy

We now begin to discuss migration strategies . The first is a

migration strategy that is used on some current machines . It is

mentioned previously in Chapter II and Chapter V as an example . This
strategy simply forces files to migrate when they have not been used for

some pre-determined length of time . We will refer to that length of

time as the migration threshold . Clearly, if the threshold is

increased, fewer files migrate and the chance of accessing a file not in

secondary storage (i .e . the miss ratio) decreases and less migration
traffic results . On the other hand, if the threshold is small less

secondary storage capacity is required . Figures 5.4a, 5.4b and 5.4c
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show these relationships . A trade-off must be made between secondary

storage capacity and migration traffic . The trade-off decision depends

on the actual costs involved . Chapter VI gives several examples with

representative costs . The miss ratio curve for this strategy can be

generated, without using the stack processing algorithm, by combining

Figures 5.4b and 5 .4c and removing the common parameter, "migration

threshold". Figure 5 .4d gives the result .

The choice of migration threshold determines, as shown in Figure

5.4b, the amount of secondary storage required . Using a fixed migration

threshold, however, causes inefficient use of the secondary storage .

This is because day to day variations in usage will cause the total

space occupied by files whose idle time is less than the threshod to

vary . Thus, secondary storage will not always be kept full . This

inefficiency can be avoided by varying the migration threshold so that

secondary storage is always kept full . The migration strategy then

becomes :

- files migrate in order of their current idle
times, largest idle time first

- a migration need take place only when secondary
storage cannot hold all files not yet migrated .

This is precisely the least recently used (LRU) replacement

strategy . The next section develops the LRU strategy and generates its

miss ratio by stack processing .

5.6 The LRU and MIN Replacement Strategies

Figure 5.2 shows the miss ratio and traffic curves for LRU (least

recently used) replacement . The solid line is the performance of LRU,

the dotted line is for the MIN strategy. The MIN curve is shown in all

plots, both miss ratio and migration traffic, and serves as a basis for

comparison. The MIN replacement strategy, also called OFT, was first

described by Belady [Be66I . Belady shows that for replacing fixed size

elements (pages) no strategy can do better than the one (MIN) which

first replaces those elements which will be accessed furthest in the
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future . In the context of stack processing described previously in this

chapter, MIN sorts the elements on the length of time to next access .

This strategy minimizes migration activity by assuring that those files

which will be accessed in the near future are available in secondary

storage .

Because it requires knowledge of the future, in the form of the

next access time for each file, MIN cannot be implemented on a running

system . It is used in paging studies as a reference for practical

replacement strategies . MIN is used here for the same purpose .

The MIN strategy is, however, not the optimal strategy in the file

migration environment . The proof of optimality of MIN requires that the

elements all be the same size. Files are unequal in size and so MIN is

not optimal for files . A simple counter-example is given in Appendix B .

The optimal replacement algorithm for variable sized elements is not

known . A study by Casey and Osman [Ca74) discusses this problem in

another context . (Other work, such as Pabry and Prieve's VMIN [Fa76),

deals with fixed size pages in a variable sized store, a different

problem.) The MIN strategy performs quite well however and is used here

for reference. In some instances, other strategies do slightly better

than LAIN for some storage capacities .

5.7 Alternatives to LRU

The performance of the LRU replacement strategy was shown in Figure

5.2. We shall see that this is a reasonable strategy though there are

strategies which perform better . In page replacement situations, LRU is

usually the best choice. This is because of a property of program

performance called "locality" . Locality refers to the fact that at any

given time in the execution of a typical program, there is a set of

pages that are being frequently accessed . This set of pages is the

current locality. The pages in the locality can be identified as those

that have been used in the recent past . They are the most likely pages

to be accessed in the near future, though the locality changes from time

to time and some pages become less frequently used and others form the
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new locality and become active .

With respect to the accessing pattern of an individual page, the

locality property means that there is serial dependence between

successive inter-access times . Short inter-access times indicate the

page's presence in the current locality and indicate that short

inter-access times are expected in the near future . This is precisely

why LRU is effcctive in the paging environment, the most recent idle

time (the LRU measure) is a good predictor of the next idle time .

Chapter III discussed tests for serial dependence of inter-access

intervals of files . For the typical file, there is no serial dependence

of inter-access intervals . Files are generally accessed at the same

rate throughout their lifetime . The accessing rate, however, does vary

from file to file and LRU works in the file migration environment

because the latest idle time is an estimator of the mean idle time, or

equivalently, of the accessing rate . This section investigates

migration strategies based on other estimators of the mean idle time ; a

running average of the file's idle times and the true average of the

file's previous idle times .

For the running average used here, the exponentially smoothed

running average, the idle interval is updated at each access, using the

new idle interval sample as follows :

RA - k*RA' + (1-k)*X

where RA is the new running average RA' is the old running average

X is the moat recent idle interval and k is the averaging factor (0 <

k < 1) .

The exponentially smoothed running average is an unbiased estimator

for the mean idle interval (E(RA) - E(X)) . Also, in the limit with

infinitely many samples, the variance of this running average is less

than the variance of a single sample

Variance(RA) - (1-k)/(l+k)*Variance(X) < Variance(X)
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so this running average is a better estimator .

In practical situations, there are not infinitely many samples to

average and this greatly effects the power of this running average

estimator. If only one sample idle interval is available for a file (or

if k-0), then the running average and LRU estimators are identical . As

the number of samples increases, the running average improves as an

estimator, as plotted in Figure 5 .5 . The variance of the running

average estimator is shown plotted against a number of samples for

various values of k . The optimal choice of k, the averaging factor,

depends on the number of sample intervals expected . Unfortunately, as

Figure 5 .6 shows, there are usually very few sample idle intervals for

each file . Both the axes in Figure 5 .6 have logarithmic scales . This

relationship is often found in real life and is known as Zipf's

law[Zi62] . The vast majority of files have only one or two accesses to

them in their lifetimes . This means that the running average idle time

cannot be expected to be much better than the previous idle time as an

estimate of the mean idle time . Figure 5.7 shows the performance of the

migration strategy that uses the running average idle time as the

measure for sorting files in migration order. It is nearly

indistinguishable from the performance of LRU replacement . For

reference, in Figure 5 .7 and following figures, theperformance of the

LRU strategy is shown as a dotted curve .

The running average has the advantage over the true average of

requiring only one extra piece of information to be stored with each

file. The true average, while requiring two pieces of information, the

current average and current number of samples, is a slightly better

estimator . The power of the true average estimator is shown in Figure

5.5 as a dotted curve. Again, because of the low number of accesses to

most files (Figure 5.6), we expect that the true average estimator

cannot perform much better than the LRU estimator . In fact, it is

slightly worse, as Figure 5 .8 shows . The reason for this poorer

performance is not clear . A possible explanation is that the running

average and LRU strategies, by weighting the moat recent intervals more
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30000

heavily, do a much better job of managing those atypical files which do

have some serial dependence of idle intervals and for which, therefore,

the most recent idle intervals are better estimators than the average .
This strategy, in analogy with least recently need, is called least

frequently used because the file with the highest average idle time, and

thus the lowest average accessing rate (i.e., the least frequently used

file), is the first to migrate. Least frequently need is abbreviated

LFU .

5.8 Migration Strategies Based on File Size

The fact that files are not equal in size can be exploited in

designing migration strategies . A situation where this property can be

used to improve performance is visualized as follows . Consider three

files, one large file and two small ones, such that the total size of

the small files is equal to the size of the large file . Suppose,

further, that the migration priority, as defined by the migration

strategy in use, is slightly higher for the small files (they will

migrate before the big file) . If the secondary storage capacity is such

that the small files are kept on back-up store and the large file is on

secondary storage, then if all three files are accessed, one "hit" and

two "misses" will result . An alternative migration strat- egy, using as

priority measure the priority measure of the above strategy multiplied

by the file size, would have placed the small files in secondary storage

and the large file on back-up storage . The same series of file accesses
would then result in two "hits" and one "miss", for a better miss ratio .

What is needed is a migration strategy whose measure makes use of

the size of the file as well as some estimate of the next idle time. A
natural way to combine the file size and an estimate of the files' next

idle interval is to use their product . The result is an estimate of the

space-time product of the file's occupancy until next access . Small
files with short estimated future idle period will be the least likely

to migrate because their estimated cost in secondary storage measured in

space-time until next access is small. Another way to think of the

product of aim and next idle time is as an estimate of the accessing
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"density" of the file . Small, active files are accessed more densely

than others .

This type of measure has been used in related problems . The

problem of dynamic file migration with unknown future accessing

probabilities has not been studied before . Other research however has

been published on the file allocation problem for a fixed population of

files with known access probabilities (see Chapter VII for a more

complete discussion) . In particular Morgan (Mo74], Ramamoorthy and

Chandy [Ra70], Arora and Gallo (Ar73], and Kimbleton [Ki72] all use an

accessing density measure to solve particular formulations of the file
allocation problem. Gilmore and Gomory [Gi66] show that a value density

measure is a good heuristic for finding solutions to the knapsack

problem. The knapsack problem is related to the file migration problem

(fitting unequal sized elements with unequal values into a fixed space

so as to maximize the total value) though the element values do not

change over time. The migration strategies considered in this section

are extensions of the least recently used and least frequently used

strategies developed in the previous section. In each case, the new

strategy sorts files on a new measure which is equal to the old measure

(most recent idle time or average previous idle time) times the file

size . Figures 5.9 and 5.10 show the resulting performances . As

expected, the miss ratio curves are better . The migration traffic

curves, however, are not as good because, although the miss ratio's are

lower, the new strategies cause larger files to migrate so that those

misses that do occur cause more migration traffic . Thus the selection

of migration strategy between the strategies in the previous section and

those same strategies extended to take file sizes into account, depends

on which evaluation criterion, miss ratio or migration traffic, is

considered more important . The choice of evaluation criteria is

discussed in Chapter V, Section 3, and in Chapter VI .

The migration strategy which sorts files by size alone is shown in

Figure 5 .lla . This strategy migrates large files in preference to small

files without regard for past accessing history . As a result, its

performance is poor . In fact, this strategy works in direct opposition
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to the fact, shown in Chapter III, that large files are accessed more
frequently than small files . This would indicate that a migration
strategy should favor large files and cause small files to migrate
first . The latter strategy (Figure 5 .116) also performs poorly because
it again ignores the past accessing history of the files .

The extended strategy corresponding to MIN, that is the strategy
that sorts files on the product of next idle interval and file size, is
shown in Figure 5 .12 . This strategy performs substantially worse than
MIN. MIN is near optimal and the strategy shown reverses many of the
correct decisions made in MIN by favoring small files .

5.9 Other Migration Strategies

Figure 5 .13 shows the performance of random replacement as a

migration strategy. This is useful as a worst case comparison . Figure
5.14 is shown here to corroborate statements made in Chapter III . It

was shown there that there is essentially no correlation between a

file's lifetime or age since creation and its accessing rate . This

implies that a migration strategy which orders files by age (time in the

system) would perform like the random replacement strategy . This is
shown to be the case in Figures 5 .14.

5.10 Conclusion

This chapterr on file migration has presented the major results of

this work. File migration is discussed in general and its

implementation is outlined. Then the specific question of the migration

strategy to be used is discussed . Two measures, the miss ratio and the

migration traffic rate, are suggested for evaluating migration

strategies . Each strategy is simulated running on empirical trace data

of real file system activity .

LRU replacement is shown to be a useful strategy .

	

Related

strategies, the running average idle interval and least frequently used,

do not provide any improvement . Modifying these strategies to favor_78_
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small files gives good improvement with respect to the miss ratio
measure, but not with respect to the traffic rate measure. Chapter VI

discusses examples of situations where one or the other measure is

appropriate . Finally, the performance of the MIN strategy and random

replacement strategy is given as near-beat and near-worst cases for

comparison .

- 8 2 -

CHAPTER VI

EXAMPLES

This chapter presents some examples of file migration systems. The

purpose here is to put into context the results of previous chapters and

to give a feeling for file migration . These examples are intended to

demonstrate the cost and performance improvements that are possible, and

to put into meaningful terms the two evaluation measures for migration

strategies presented in Chapter V .

It is important to be careful in applying results based on

empirical measurements of one computer system to radically different
systems . For this reason, the hypothetical systems presented here are

closely related to the one used in gathering the data on which this

study is based . Other file systems with radically different scale or

purpose, for example- a small minicomputer file system with one disc or a

very large data base system with hundreds of discs, can, of course, be

analyzed using the methods of this thesis . The results of this work may

not apply directly to such systems however .

6.1 Improved Performance from New Migration Strategies

Some file systems use a primitive form of LRU replacement for

automatic migration of files . This strategy assigns a migration

threshold and a file migrates when it has been idle for a longer period

of time than the threshold value . This migration strategy has been

discussed in Section 5 .5. From Figures 6 .1a,b (the same as Figures
5 .4b,c), we can determine the miss ratio and secondary storage needs

that result from a choice of migration threshold . Some migration

thresholds and corresponding miss ratios and secondary storage capacity

requirements, are :

Migration Miss Storage

Threshold

	

Ratio

	

Required

7 days

	

.10

	

20000 tracks
14 days

	

.057

	

23750
21 days

	

.038

	

26250
30 days

	

.026

	

28599
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The discussion in Chapter V of this migration strategy pointed out

that using a fixed migration threshold is wasteful of secondary storage .

Because of day to day fluctuations in the accessing of files, the size

of the population of files accessed within the migration threshold

period (i.e., the files not currently migrated) will vary . This will

cause some secondary storage to be unused some of the time . Using the
LRU replacement strategy overcomes this inefficiency . LRU migrates only

enough files so that secondary storage is just full . This is equivalent
to using flexible migration threshold . The miss ratio for LRU is given

in Figure 5.2b (reproduced here as Figure 6.2) . From this figure, we

can derive miss ratios for various secondary storage capacities . The

LRU miss ratios and miss ratio improvements over those for the migration

threshold strategy are :

Storage LRU Miss Ratio

Capacity

	

Miss Ratio

	

Improvement
20000 tracks .085 .015
23750 .049 .008
26250

	

.036

	

.00228500

	

.024

	

.002

The performance increase shown in these tables is achieved at no

extra cost and with no change in storage hierarchy configuration. The

only change required is to the migration strategy software .

It was shown in Section 5.8 that a simple modification of the LRU

migration strategy, to take into account the sizes of files, provides

better migration performance with respect to the miss ratio evaluation
criterion. The modified strategy orders files for migration on the

product of the current idle time and the file size, thus favoring (in

the sense of not migrating) small files as well as recently accessed
files . The miss ratio curves for LRU and modified LRU (referred to as

"LRU times size") are shown in Figure 6.3 . A migration system using the

LRU strategy can get a substantial performance improvement by changing

to the modified LRU strategy . The following table lists, for various

secondary storage capacities, the miss ratios achieved by LRU and

modified LRU .
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Secondary Modified Miss

Storage
Capacity

LRU

	

LRU Miss

	

Ratio
Miss Ratio

	

Ratio

	

Improvement

10000 tracks

	

.367

	

.234

	

.133
20000

	

.087

	

.074

	

.013
30000

	

.021

	

.013

	

.008

The effect of various miss ratio values on system performance is

discussed in the next section . It is clear though that by changing

migration strategies, again at no cost in increased hardware,

non-negligible performance improvement can be made .

6.2 Changes in Storage Hierarchy for Improved performance or Costs

Unless there is a surplus of secondary storage capacity, any

reduction in the secondary storage capacity will cause an increase in

the miss ratio . This is because when less secondary storage is

available, more files must be kept on back-up storage and there is a

higher probability that a file being accessed is found only on back-up

storage . The effect of increasing the miss ratio will depend on the

type of back-up storage being used and on the cost of delaying running

programs while they wait for file migration. The cost of delaying a

running program is system dependent and very hard to quantify . No

attempt will be made to do so here . The effect of the type of back-up

storage and, in particular, the access time to back-up storage is

discussed later in this section .

If an increased miss ratio can be tolerated in a particular system,

then secondary storage capacity can be reduced and hardware costs

decreased accordingly . The secondary storage requirements for various

miss ratio values can be determined from Figure 6 .3. The following

table summarizes the relationship .

Secondary Storage Capacity Required

Miss Ratio

	

Modified LRU

	

LRU

.01

	

33000 tracks

	

33000
•

	

025 26500 28500
•

	

05 22500 24000
•

	

1 18000 19000
•

	

25 9000 12500
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As an example, a system that requires 992 of all file accesses to

be to secondary storage (miss ratio - .01) needs 33000 tracks, but if a

miss ratio of .1 (one-tenth of all accesses cause migration from back-up

store) is tolerable, then only 18000 tracks are required . The savings

in cost of secondary storage is 45%. Such a reduction in secondary

storage capacity, besides increasing the miss ratio, also increases the

amount of migration traffic . It is important to assure that the data

path between secondary and back-up stores can handle the increased load .

Figure 6.4 shows the migration traffic curves for LRU and modified LRU .

In the example above, reducing secondary storage capacity from 33000 to

18000 tracks increases the migration traffic from 250 to 6000 tracks per

day. If this traffic occured mostly in the 6 hour peak work period then

the rate would be 1000 tracks per hour or one track every 3 .6 seconds .

This amount of traffic would be insignificant for most data channels.

The most obvious effect of increased miss ratio in a file system is

the resultant increase in average access time . When all files are kept

in secondary storage and the miss ratio is zero, the average access time

to a file is just the average access time of the secondary storage

device . If the miss ratio is not zero, then some file accesses are

handled by the back-up storage. Since the access times to typical

back-up storage devices are much longer than for secondary storage, an

increase in miss ratio can have a large effect on the average access

time to a file . The relationship is

T - (1-MR)*s + MR*(Tb + Tt)

where

T - effective average access time
Ts - average access time to secondary storage
Tb - average access time to back-up storage
It - average time to transfer a file from backup to secondary

storage
MR - miss ratio .

The hypothetical system to be examined here uses disc for secondary

storage and magnetic tape for back-up storage . The following values

will be used in these examples :
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Secondary store average access
(typical disc storage device)

50 meet

Back-up storage average access

	

200 seconds
(typical tape access time
including mount by human
operator)

Transfer time to secondary storage

	

200 meet
(aversge 20 track file at
800,000 characters/second)

The effective average access time varies linearly with the miss

ratio from 50 wee, for miss ratio of zero, to 200 seconds for miss

ratio of one .

Effective average access times for various miss ratio values are :

Miss ratio

	

0

	

.0001

	

.001

	

.01

	

.1

Average
access time

	

50msec 70msec

	

250msec 2.05sec 20sec

Increase

	

-

	

1.4 times

	

5

	

41

	

401

Clearly, the much slower access to back-up storage has a strong

effect on the average access time . The distribution of access times,

however, is strongly bimodal . Most accesses take only the 50

milliseconds required to access the disc, while a small percentage take

much longer (> 200 seconds) . Because of this, the average value for

access time can be somewhat misleading and so must be considered with

the corresponding miss ratio kept in mind .

Access to back-up storage in magnetic tape form is slowed primarily

by the time it takes a human operator to find and mount the tape .

Several new systems are available [Jo75], [Ha75), however, which

eliminate the need for human intervention . These devices, called was

storage systems, store files on magnetic tape strips which can be

physically accessed by the machine and automatically brought to and

loaded on reading stations . Average access time is on the order of 15

seconds (compared to three minutes for tape) . Pricing for these systems

is such that, once the minimum storage capacity is purchased, costs are
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approximately the same as for magnetic tape of equivalent capacity . The

minimum capacity available is large (16 billion bytes ; or 2 million

tracks) so for file systems like the one under study, purchase of a

magnetic strip file may not be justified for file migration alone . The

data in this study, however, do not include files currently saved on

tape . Replacing this population of tapes with a mass storage system

could well be economical and have the added advantage of providing fast

back-up storage for migration of disc files .

The following table shows effective access times and increases for

various miss ratio values assuming the use of a 15 second access time

mass storage system .

Miss ratio

	

0

	

.0001

	

.001

	

.01

	

.1
Average
access time

	

50msec 5lmsec

	

65msec 201ms

	

1 .56sec

Increase

	

-

	

1 .03 times

	

1.3

	

4

	

31

The faster mass storage system lessens the penalty caused by

increasing the miss ratio . If, for example, an effective average access

time of two seconds (miss ratio - .01) was considered adequate in a

magnetic tape system, then secondary storage capacity of 27500 tracks is

required. With a mass storage system, the same average access time is

achieved with miss ratio of 0 .14 . Only 15000 tracks of secondary

storage are required to obtain a miss ratio of 0.14, a savings of 45% .

Similary, if effective access time of 250 maec is required, mass storage

allows a 16% saving in secondary storage capacity .

With a =as storage device for back-up storage, the file system can

run at various miss ratio levels, depending on system performance

requirements . Figure 6.5 shows that the optimal migration strategy for

a given range of miss ratios may not be the optimum for a different

range . For storage capacities from 22000 to 33000 tracks, the "least

densely used" (modified "least frequently used", see Sections 5.7 and
5 .8) performs better than "LRU times size" (modified LRU) . In the range

of secondary storage capacities of 10000 to 18000, the opposite is true .
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6.3 The Migration Traffic Evaluation Measure

All the preceding examples have used the miss ratio, rather than

migration traffic load, to compare performance of various configurations

and strategies . This is appropriate because the miss ratio directly

relates to highly visible performance characteristics, like average file

access time. Furthermore, when a file system is configured to operate

with a low miss ratio, there is very little migration activity and the

migration traffic will not be significant . The migration traffic level

for various secondary storage capacities should be kept in mind to

assure that the data channel between back-up and secondary store is not
4

overloaded . In a typical large scale computer system, the data channels

	

10

have no problem handling the migration traffic of one thousand or more

tracks per day (see Figure 6 .6) . There may exist systems, however,

where the data path between secondary and back-up storage is very slow,

or very busy, so that the volume of migration traffic becomes a major

consideration. This situation will influence the choice of migration

strategy .

A possible example is a distributed computing system with local,

inexpensive processing nodes connected to a large central data base

through a slow and crowded communications network. Consider a computer

node of such a network with medium scale computing power and large

demand for access to the central file system, and assume that the speed

of the communication link, and its use by other traffic, requires that

file migration traffic be limited to 5000 tracks per day . It is desired

to minimize the amount of local secondary storage needed . Figure 6 .6

shows the relevant plots . Previous examples used the miss ratio as an

evaluation measure. Here it is appropriate to use migration traffic

volume. As explained in Section 5 .8, migration strategies modified to

favor small size files perform poorly with respect to migration traffic,

because the traffic they cause involves larger files . Figure 6 .6 shows,

for example, that LRU replacement performs much better than does "LRU

times size" .

To keep traffic below the 5000 tracks per day limit, LRU requires
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11000 tracks of secondary storage .

	

The "LRU times size" strategy

requires 19000 tracks .

Another aspect of this example is the miss ratio . Using LRU

replacement with 11000 tracks of secondary storage, the miss ratio is

.32 . If this is not considered adequate, changing to the "LRU times

size" strategy may still not be the best choice because "LRU times size"

requires 19000 tracks of secondary storage to meet the migration traffic

limitation . Using LRU with more than 11000 tracks, but still less than

the 19000 tracks required by "LRU times size" miss ratio as low as .11

can be achieved (Figure 6 .3) .

6.4 Summary

The examples in the preceding sections are intended to illustrate

some of the decisions involved in file migration system design . The

results of a study such as the one described in this thesis can be used

to make those design decisions in an intelligent manner . The two major

characteristics of file systems that have been discussed are the choice

of migration strategy and the structure of the storage hierarchy .

The miss ratio and migration traffic plots give a good indication

of which migration strategies should be considered . Typically, the

migration traffic load will be small enough, compared to the data path

capacity, that only the miss ratio need be studied closely . The

modification to standard replacement strategies introduced here, in

which small files are less likely to migrate than large files, often

significantly improves the miss ratio performance of a migration

strategy .

The file storage hierarchy has not been covered as thoroughly here,

for several reasons . The primary emphasis of this work is on migration

strategies. There has been a large amount of research on memory

hierarchy structure and sizing (this related work is reviewed in Chapter

VII), but little work on replacement strategies . Another reason to

emphasize migration strategies instead of the storage hierarchy is that
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changes in strategy involve software and not hardware changes and,

therefore, usually are less costly and involved . If changes can be made

in the storage system, however, performance may be greatly improved .

The mess storage systems used in examples in this chapter eliminate the

need for human intervention in loading volumes of back-up storage . The

resulting improvement in access time can have a large effect on file

system performance . Future technological advances that further reduce

the need for mechanical motion of the recording medium will help still

more. The results and methods of this thesis allow a detailed

performance evaluation of any proposed storage system modifications

before the changes are actually made .
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CHAPTER VII

DISCUSSION

7.1 Summary and Conclusion

It has been the goal of this work to develop useful migration

strategies based on empirically observed characteristics of file system

activity . The initial chapters of this thesis discuss file migration

concepts and the analysis performed to extract the relevant properties

of file system activity from the trace data. Chapter V applies this

understanding of file systems to the development and evaluation of

migration strategies .

It is hoped that the following contributions have been made . File

system activity data of the type presented here has rarely been

gathered. This is the first time that a detailed analysis of such file

system data has been published . The file allocation problem has been

discussed and solved in other research only in the restricted cases of

fixed sized files, a priori accessing probabilities and static

(non-changing) allocation. In a real computer environment, none of

these assumptions hold . This work presents and evaluates storage

allocation heuristics (migration strategies) for the dynamic allocation

of files with unequal sizes and unknown future accessing probabilities .

The performance of dynamic storage allocation algorithms has

traditionally been measured (in paging systems) by the miss ratio . A

new non-equivalent evaluation criterion, the migration traffic, is used

in this thesis . Also, a new class of replacement algorithms based on

file size (or, more correctly, on the predicted accessing density of a

file) are shown to provide better file system performance in many cases .

Finally, the problem of file migration in real systems, its

implementation, its user interface, its migration strategies, and its

performance and cost improvements are discussed in detail here, for the

first time .
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7 .2 Previous Work

Much previous work has been done in areas related to file

migration, though very little is available on file migration itself .

Some of this related work is reviewed briefly here . Several approaches

have been taken in this previous research. Many researchers discuss

optimizing the storage allocation of a fixed population of equally sized

files with known probability of access . The derived allocation in these

cases is always a fixed, static allocation, files not migrating as

conditions change over time . Ramamoorthy and Chandy [Ra70] discuss this

allocation problem . Yue and Wong [Yu731 offer proofs of the optimality

of allocating blocks with the highest access probability to the highest

levels of the storage hierarchy, for several different hierarchy

structures .

This approach is extended by other researchers to cover unequally

sized files . Arora and Gallo [Ar73] discuss this problem, as does

Morgan [Mo74] . Both of these papers use the accessing probability

"density" (i.e ., access probability divided by file size) for ordering

files for allocation . This is the basis for the modification to

migration strategies that takes file size into account, introduced here

in Chapter V . The Arora and Morgan papers assume known, fixed access

probabilities, however . Lum et . al [Lu74) deal with a similar problem

in which a file is considered to be in one of two states, active or

inactive, with known probabilities . The optimal hierarchy level for

allocation of the file in each state is derived given storage and

transfer costs . Their solution is thus a limited form of dynamic

allocation .

The work on static allocation is extended by Buzen [Bu71] and Chen

[Ch73a], [Ch73b] who deal with the same type of problem, using queueing

theory to study the effect of storage contention on optimal storage

allocation . A different approach to storage allocation is taken in the

work of Bovet and Estrin [Bo70a], [Bo70b] . They model the interactions

between various parts of a running program with a graph structure .

Decisions as to which parts should be kept in executable memory can be
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made using this a priori program structure to predict future accessing

patterns . No work has been done on the interactions between files .

Another field of research deals with proper sizing of various

levels of the storage hierarchy, usually assuming that the miss ratio

curve is known . These studies assign costs to the different storage

levels and also to file transfer times, and seek to minimize total

system cost or maximize performance within a given cost limitation .

Papers by Ramamoorthy and Chandy, Lum et . al., and Chen, mentioned

above, discuss hierarchy sizing .

A large body of work from the paging environment deals with dynamic

allocation of pages in different memory levels, but always with the

restriction that the pages are all the same fixed size . Mattson et .al .

[Mi7O] discuss many replacement strategies and their evaluation . The

stack processing method they describe is used in this thesis . Belady

[Be66] developed the MIN algorithm which gives the best possible

replacement performance for fixed size pages, but uses knowledge of

future accessing . Kimbleton [K172] takes another approach to dynamic

allocation of pages, similar to the approach to file allocation in Lum

et al., based on (known) inter-reference times for pages .

An interesting related problem is how to allocate storage within a

given device when access times to different areas of that device are

different. A paper by Denning [De67] alludes to this problem . Frank

[Fr69], Ramamoorthy and Blevins [Ra71], Yue and Wong [Yu73] and Grossman

and Silverman [Gr73] discuss this type of allocation for disc devices .

Mitra (M1741 studies the same problem in relation to magnetic bubble

memories .

Revelle [Re74], [Re75] has published some analysis of a set of file

activity data similar to the data used in this thesis .

The work in this thesis relaxes most of the restrictions in the

previous work on file allocation . The goal is still to find the optimal

allocation across a hierarchy of storage levels . The population of
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elements to be allocated (files) is variable (files are created and

deleted) over time . The files are not assumed to be all the same size .

And, most importantly, neither the miss ratio curve nor the accessing

probabilities of individual files are assumed to be known. Furthermore,

the allocation derived is dynamic, changing as accessing to various

files changes .

The allocation strategies developed here are only heuristics,

however. In fact, the optimal allocation strategy, even given the

future accessing of files, is not known .

7 .3 Future Work

There are many areas for continuing and extending this research .

In the area of migration strategies, a major unsolved problem is the

optimum replacement strategy when future accessing is known . In the

paging environment, the MIN algorithm [Be661 has been shown to be

optimal . In the file migration environment, where files are of unequal

sizes, no equivalent strategy is known. Casey and Osman [Ca74] discuss

the same problem from a different viewpoint .

Another aspect of file migration is the structure of the storage

hierarchy . The miss ratio and migration traffic curves show migration

performance for any size hierarchy levels, but only for a linear

hierarchy. If the hierarchy is a tree rather than a simple linear

structure, the performance and allocation strategies are not obvious .

More work is needed in this area . Another situation where the storage

hierarchy structure is not straightforward is the computer network where

files may be distributed throughout a complicated network structure .

Storage hierarchy levels are generally thought of as being

delimited by physical device boundaries . Many devices, however, have

different access times to different storage locations on the same

device. Thus, allocation decisions within the limits of one device,

based on predicted future accessing, may help increase performance .

Other work has been done on this subject [Yu73], [De67], [Fr69], [Ra71],
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(Cr73] but usually only in relation to disc devices .

An assumption throughout the work presented in this thesis is that

files always migrate as a whole and cannot be split and stored partially

on one level, partially on another . A more flexible file structure in

which files are divided into equal sized blocks that can be stored

non-contiguously might be advantageous . Such a scheme would allow only

the most active blocks of a file to be stored on secondary storage so

that large files with rarely used sections would not cause unnecessary

migration traffic . A further advantage of dividing files into fixed

sized blocks is the elimination of problems of finding variable sized

blocks of free space and of storage fragmentation and garbage

collection . This type of file structure has not been studied from the

point of view of file migration .

The model of file system activity of Chapter IV makes many areas of

further study possible . For instance, the sensitivity of migration

strategy performance to changes in the file environment can be studied .

New devices, file structures, and storage hierarchies can be evaluated .

New measurements could be made to improve the model, in particular, to

improve the time resolution of the trace data to smaller than one day,

and the size resolution to less than one track .

Some computer systems structure running programs as a collection of

variable sized segments ("segmentation") . The results of this thesis

may provide some insight into the scheduling and memory allocation

problems of segmented systems .

We seek a closed form for the compound distribution of Poisson

occurences with variable rate, t, described by the Erlang distribution .

(A similar proof is given in [Re75]) .

where

	

m
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0
Removing the condition in (1) gives
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which is the probability function for the negative binomial with

parameters a and b/(b+1) .

APPENDIX A : The Negative Binomial as a Compound Poisson

Prob(X-x[T-t) - tx /xl e-t

0

1

OD

xa-1 abx dx - (a-1 )!
be

0

(1)



APPENDIX B : Non-optimality of MIN Replacement

Belady (Be66] proves the optimality of the MIN replacement

algorithm for fixed size pages . Other papers [Be74], [Le74], [Ma70]

discuss the computation of miss ratios for MIN . When the elements

(pages or files) to be replaced are variable in size the MIN algorithm

is not optimal . The optimal replacement algorithm for . variable sized

elements, with known future accessing, is an open problem . In the

following counter-example the population of files is (A, B, C), with

(relative) sizes 1, 2, and 2 respectively, and the accessing sequence is

A, B, C, B, A. The first table shows the contents of memory (the

"stack") at the time of each access for the MIN algorithm which orders

the elements in the stack by time to next access .

time

	

1

	

2

	

3

	

4

	

5
access

	

A

	

B

	

C

	

B

	

A
------------------------------------
memory

	

A

	

B

	

C

	

B

	

A
contents

	

B

	

C

	

B
A

	

B•
- - - - - B	

•
- - -

•
-

A

	

A
-----------------------------------
access

	

-

	

-

	

-

	

4

	

5
depth

The average access depth (to files already in the stack) is

(4 + 5)/2 - 4.5 .

If at time = 3, file B is placed below file A in the stack,

violating the MIN algorithm, the following table results

time

	

1

	

2

	

3

	

4

	

5
access

	

A

	

BC

	

B

	

A
-------------------------------------
memory

	

A

	

B

	

C

	

B

	

A
contents

	

•

	

B

	

C

	

B
A

	

A

	

A

B

----------------------------------
access

	

-

	

-

	

-

	

5

	

3
depth

Here the average access depth is (5 + 3)/2 - 4, an improvement over

the MIN algorithm . With respect to miss ratio, if the top level storage

capacity is three (dotted line in the tables) then the MIN algorithm

results in two misses, the modified algorithm has only one miss .
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