SLAC-200
uc-32

STAN-CS-77-594

FILE MIGRATION™

EDWARD P. STRITTER
STANFORD LINEAR ACCELERATOR CENTER
STANFORD UNIVERSITY
Stanford, California 94305

PREPARED FOR THE ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
UNDER CONTRACT NO. E(04-3)-515
January 1977
Printed in the United States of America. Available from National Technical

Information Service, U S Department of Commerce, 5285 Port Ro al Road,
Springfield, VA 22161. Price: Printed Copy $5.50: Microfiche $3.00

*PﬁD dissertation

ABSTRACT

This thesis considers the problem of automatic file migrationm. In
a computer system, Erogram and data files are stored on secondary memory
such as discs. f the capacity of the secondary memory 1is not
sufficient to hold all the files, some sort of back—up memory {(e.g.
magnetic tape)} is used to supplement secondary storage. The transfer of
files between secondary and back~up storage i1is refered to here as
"migration.” Migration may be done explicitly by each user or
automatically by the operating system. This work studies automatic
migration strategies.

We seek the migration strategy which maximizes the probability that
a file that Is accessed will be found in secondary memory and which
minimizes the migration activity. The problem of deciding which files
should migrate, the file replacement problem, is analoﬁous to the
well-studied page replacement problem. It reduces to the problem of
predicting the next inter-access Ilnterval for a file. An_ important
difference between the file replacement problem and gage replacement is
that files are not equal in size. In addition, the slze and time scales
for file accesses are much larger than for page references.
Consequently most page replacement results need to be reconsidered.

Trace data of file system activity on a general gurpose computer
system have been collected for one year. This tgpe of data has not been
published previously. The data provide the basis for a guantitative
study of migration. ~Statistical analysis of the trace data reveal
characteristics of file s{sten activity. Sgecial attention is paid teo
possible correlations of files® inter-access Intervals to other factors,
which may be useful in predicting inter-access intervals.

Various possible file replacement, or migration, strategies are
presented. o non-equivalent c¢riteria, the miss ratio and migration
traffic rate, are used for evaluating strategies. LRU (least rtecentl
used) and MIN {(the theoretically ogt mum strategy for fixed sized pages
are studied. Other strategies, including LFU (least frequently used},
that are suggested by the results of statistical analysis, are examined.

The fact that files are not equal in size can be used to advantage
and the wgreviousl¥ mentioned replacement strategies are shown to_be
improved when the slze of a file 1s taken into conaideration. Finally
some non-realizable strategies using knowledge of files” future accesses
are ipregented for comparison with the practical strategies already
mentioned.

A simulation model of file s¥stem activity is examined. The model
is useful for generating artificlal trace data. Simple parameter
changes allow the model to simulate other enviromments.



This work could never have happened without the guidance and

encouragement of Forest Baskett.

Thanks also go to my other committee members, Vint Cerf,lTom
Bredt and Don Perkel for their valuable suggestions. I wish
to acknowledge the Computation Research Group at SLAC for
supporting me, and Harriet Canfield for her typing. Finally,
the job was made made easier by the excellent computing
facility provided at SIAC by the Stanford Center for
Information Processing, and by the graphics programs of Bob
Beach and Roger Chaffee.

Work supported by the U. S. Energy Research and

Development Administration contract E(043)-515 and the Joint
Services Electronics Program number NO0QOl4-67-A-0112-0044.

- 1il -

LIST OF

CHAPTER
1.1
1.2
1.3
1.4
1.5
1.6

CHAPTER
2.1
2.2
2.3
2.4
2.5

CHAPTER
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

CHAPTER
4.1
4.2
4.3
4.4
4.3

TABLE OF CONTENTS

FIGURES e eevranncossasanssessnssnsnssssnnsnacnacssconusssvrnnnnasVl

1. Introduction to File Migration ConceptSceeeiessvecesasssnsal
INtroQUCEiON. s evvossvssnnssssnnaansasnsossassassassssanenssstasl
The File System ENvironment. sseosssssnsvesessncsssssvansnvsns?
File Migration CONCEPLSecassarsonarsannvssvtasssssasnsrosacnsel
File Migration BLrategles.scsescassssreencrnsosstasassnsransecsd
Relation to the Page Replacement Problemescessssssverasncessaad

Thesis Summary..........-.....................................8

1I. Empirical Data on File System ActivitYesvoasrasecscasnsarll
Ttroduction. cosuessrosrrosssnsceasensssnnrssonarsnscssrnsseasll
Description of the DbAesacccosssssssnasnnsnsanecssssssncsssall
Method of Collection.issseensosvovccacnssssonssassarssassanssell
Strengths and Shortcomings of the DatA3ecsscsnssssasnnvcnssssasl?
Characteristics of File System Activity.esesesscacsssscsssacsl’

I1I. Statistical Analysis of File Activity Dataseeessccccscesll
INtTOdUCEION. sorescsosesssassnsnsnrsnesavsassassnssssaassveonsll
Analytic MEthodBe cosacsssnasnsernosasnnevsscnsvannnonnnssnsssld
The Accessing Process of a Fil@ceovornossssnnsnconsvsssscasnsssdld
Implications of the Accessing Process Modelevessnsronoacnssssl9
Accesses to LibrarieS.eeecussresssccsacsesanrsssssnssnnsnaess3s

Distribution Fitting for Inputs to the Model.eescsssvveosress3dd

Dependency Relationships of Access Time IntervalB.sssnsassaas 3D

Summary......................................................43

IV. Simulation Model..cessessnosasasscescasssosasaasasransneesib
INErOdUCTiOns ccrersssssnsassnaranseactosasasnasssansrnassunosdf
BAasic SLIUCLULE.ie-sassssssrsnvsvssnccssssssassasssnaransnssshh
Development of the Modeleveeseerrastsassaconacacnasrsanassesel?
Validation.eesevessonnscnsssnsoannssstssasarvsnvsssrrsansnsssnsi

Uses Of the Modelesessceisssosssssassansnsrsnacssanasssverssnid

- iV -



CHAPTER V. File Migtation............................................51
5.1 IRtrodUctiODesssseecssosnssessssscescossrrasarsnancnasssssnnsil
5.2 The Implementation of File Migration..icesssereresessascsaavssdd
5.3 Evaluation of Migration StrategieS.scssossssencasransrsscesnsds
5.4 Stack Algorithms and Stack ProcessingeesssesecnscsssesssnasssdB
5.5 A Primictive Migration Strategy..........:....................63
5.6 The LRU and MIN Migration StrategleSescisssrccsessascsssacsssbb
5.7 Alternatives to LRUiuescvoossscscsnsesncassrrnsnsssvasossnsssb8]
5.8 Migration Strategies Based on File SiZCussvvavcesssnacnnnnres i
5.9 Other Migration StrategleBeeccsesasssrorsanacsvasssssrnnsrass /8

5.10 Conclusion.........................-...........-.............78

CHAPTER VI. Examples.................................................83
6.1 Improved Performance from New Migration StrategiesSseascececese83
6.2 Changes in Storage Hierarchy for Improved

Performance OF COSESecsveesrssssovenssssssverasancrarsansS8

6.3 The Migration Traffic Evaluation Measureesssssssvrecscscsessns b

o4 Summaty......................................................96
CHAPTER V1I. DiSCUSS1ONesocsssonasnnssonnnsssvssssssassssansvesssnsnsedIB
7.1 Summary and ConclusionseervessecsassconssvanvaccvssssssnsnnvsdB

7.2 Previous WOTKesonnoasossassessanansasassanrasnsonnansssscaacsId

7.3 Future WOTKeovanaaeussanaersansnsssssssnsasnsrsnannsasnansselOl
APPENDIX A: The Negative Binomial as a Compound Poi880MNsassssnsesessl0]

APPENDIX B: Non-optimality of MIN Replacement.ssssssssssrssrasescsssl0b

BIBLIOGRAPHY--....-......--.......-................-.................105

Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Flgure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
5.1
5.2
5.3
5.4
3.3
5.6
3.7
5.8
3.9
5.10
5.11
5.12
5.13
5.14
6.1,
6.2
6.3
6.4
6.5
6.6

LIST OF FIGURES
Distribution of file 5iZeS.eceerecssscssssasnanannansl?
Fraction of storage by file Bizeseeusvescacosenavenssl?d

Fraction of files and space by age since
1aSt ACCESBEisssersenracnssssssnavsvsssssnsssldl)

Number of files accessed by dayessscseeasrrescsnnesss3dl
Number of files on line DY daYseeesscsovesscsaveanves b
Lifetime distribution of fileS.esesceversarvsrsaceessd?
Age distribution of fileBistssesssevnerrssrrsancacesss38
Size distribution of flleSesscssscsssassnnascssnsnrsaél
Mean idle time by file 8izZesveveessnrsrancccsssnsaseaatl
Mean idle time diBtrubutionsseesvesssansaccasesvsansadl
Mean idle time by file lifetime..cessesesasccarcansaodhid
Hit ratio by age since last aCCEBBesrssvesancasscesesll
Least recently used miss ratioesesssseassesecscrsssacabl
Least recently used migration trafficecsscccssccocsssb
Migration threshold Teplacementeesarscansnsssansesasbl
Variance of running average estimat€.escresssssanenss?0
Number of accesses in lifetime.eessansescvssncecsssee?l
Running average BLTALEEYssnvsvesrercrssssassasanannsall
Least frequently usedescsssessecsrearccsssssnscansesss?d
Least recently used times 81Z€.eeceenssscassnsnvsanss?b
Least densely uedeeesssvecsossrnssasssannsrnasasscaelt
Replacemeni by file Blze.sersessssssnsnansrosvearacansl]
Sort on next idle time times 8iZecccecsscannvcassnssa?P
Random replacement..........-....-...................80
Replacement by file lifetime..ssscccsasasaacccensennsBl
Migration threshold replacement mias TatiDeecscsnssso Bl
Least recently uSed..cececssssesssvarnsevscssanssasesBb
Least recently used times 8izZ@seececsssrsvearcccarseee8?
Least recently used times slZecessrserccrasssrecnneeed0
Comparison of miss ratioB.scesesscescrsrsssscaesensss9d

Least recently used migration trafficeccasensarsnasssd5

-yl -



CHAPTER 1
INTRODUCTION TO FILE MIGRATION CONCEPTS

In most current large computer systems, program and data files are
stored primarily on secondary storage, such as magnetic discs. When the
amount of disc space avallable is not adequate to store all existing
files, some files must be moved to a siower and less expensive medfium,
called back-up store, generally magnetic tape. The process of
transferring files between secondary storage and back-up storage is
referred to in this paper as "migration”. The decision as to which
files should migrate may be made in a number of ways. For 1instance,
many computer systems allocate to each user a fixed amount of dise
storage and require the user to arrange for migration of his own files
when  necessary. This thesis explores algorithms for automatic
migration, that is, migration controlled by the system and (possibly)
hidden from the user. The primary goal of this work is to determine
what migration strategles are most effective and efficiemc. It will be
demonstrated that with proper automatic migration in a computer system,
the amount of disc space required, and therefore the total system cost,

can be substantially reduced.

The work presented here is in two major parts, a model of a file
system enviromment, and a study of wmigration algorithms. First,
extensive trace data on file system activity are presented. These data
are used to characterize the activity of a disc file system on a modern
computer. In addition, the trace data are used as input to simulations

of the various migration algorithms to be studied.

A detailed model of disc file activity has been developed. The
model generates artificial trace data that simulate the empirical data
mentioned above. Thus, the model provides a useful source of imput to
migration algorithm simulations. Furthermore, while the empirical trace
data characterize only the computer system that was actually measured,
the model, by changing appropriate parameter values, can be used to
gimulate . other environments as well. Finally, the model provides
insights into the nature of the file accessing process.

-1 -

The second part of the thesis uses the file system characterization

developed in the first part to study migration algorithms.

This chapter presents concepts of file migration and outlines and

motivates the rest of the work in non-technical terms.
1.2 The File System Environment

We assume in the following that the computer system under

discussion is configured as follows:

- There is a limited amount of fairly expensive "secondary storage"
{typically disc storage) on which users may store their program
and data files.

- There is an unlimited amount of "back-up storage' which is
relatively less expensive, but much slower than secondary storage
(this 1is wusually magnetic tape). This back-up storage may
consist of a hierarchy of storage devices (such as magnetic

strips at one level and removable tape reels at a lower level).

- Either the top level (secondary storage) of this memory hierarchy
is the only level directly accessible from a running program
(this effectively implies that secondary storage 1is randomly, as
opposed to serially, accessible), or program access to files on
lower levels of the hierarachy (back-up storage} is so time

consuming as to be highly undesirable.

1f the system can be managed so that only those files which will be
accessed in the near future are kept in secondary storage, the amount of
secondary storage capacity, and thus the total system cost, can be
reduced without significantly changing system performance. This 1s the
purpese of implementing a migration algorithm.
-2 -



The need for some sort of migration system 1s fairly evident.
Computer systems’ users often have a number of saved files that are not
currently in use but which are still kept in the computer’s storage
system. Thus, a significant portion of the secondary store ig used to
hold inactive files that should be stored on back-up sterage. We wmight
expect that a file that has been idle for some time is less likely to be
accessed in the near future than a file that has been used recemtly.
Both of these fairly evident statements, that there are many idle files
on the secondary store and that idle files are likely to remain idle,
will be supported mathematically in Chapters II1 and III. These two
conditions supply the intuitive rationale for having an automatic

migration scheme.

1.3 File Migration Concepts

Given that the need for migration has been established, there
remain the questions of how to implement migration {the migration
algorithm) and how to decide which files should migrate (the migration
strategy). Most users will not move their files to back-up storage
unless encouraged or coerced to do so. Even if this were not the case,
it would be attractive to have the operating system take care of
migration automatically without requiring user knowledge or

intervention.

In the automatic migration system envisioped here, the user need
not know on what type of storage files are saved. The system keeps
track of the location of all current files and makes the decisions as to
which files should be most accessible and which can migrate to less
expensive storage. Making the migration scheme invisible to the user
frees the user from haviag to understand the exact configuration of the
storage system and the details of using the various devices. It also
ensures that any changes in the number and type of storage devices that
are available will necessitate changes only in the migration system
programs. In fact, though this thesis generally refers to the storage
gystem as though 1t consisted of only two levels, disc and tape, the

-3 -

number of levels in the system hierarchy could be changed with very
little impact if the hierarchy 18 accessed only through the file
migration programs. This would allow system designers to easily add
various new devices that may become available (charge-coupled devices,

magnetic bubbles, laser addressed storage, etc.) for back-up storage.

1t is desirable, in some imstances, in spite of the transparency to
the user of the file system hierarchy, to allow a user to direct the
migration system to move files. The user should be able to specify, for
instance, that a certain file will not be used for a given period of
time so that the system can immediately transfer it te the apprepriate
level in the storage hierarchy. Also, users need the ability to specify
that a certain file be stored on some tranSportaﬁle medium, such as
magnetic tape or femcvable disc pack, that can be physically removed

from the computer site.

Basically then, what the file migration system does is to
automatically move files to back-up store when they are inactive, and
automatically restore them to more accessible hierarchy levels when they
are re-—accessed. The major portion of this thesls deals with how the

migration system can decide which files should be migrated.
l.4 File Migration Strategies

Currently runpning computer systems generally do not provide
automatic migration. The problem of secondary storage being
unnecessarily filled with inactive files is ignored or avoided. One way
to deal with the problem is to provide enough secondary storage to
satisfy alil users’ demands. This solution ensures that no migration
needs to be done, but as we will see, is unnecessarily expensive. Very
nearly the same level of service (as measured by access time to saved
files) can be provided with significantly smaller secondary storage

capacity (and therefore lower cost) if appropriate migration is done.

A more common solution in current computer systems is to
pre-allocate to each user a fixed amount of secondary storage. The user
-4 -



then is responsible for deciding which files to keep in secondary
storage and which files to manually "migrate™ to back-up étorage. This
strategy may, in fact, be quite efficient since the person with the most
knowledge of a file”s accessing pattern, the user, makes the decision as
to which file to migrate. On the other hand, this scheme is probably
too inflexible to be very efficient. A new user may not have developed
enough files to fill the allocation so some storage remains unused.
More active users may have 1nsufficient storage allocation to cover
their needs, so that they increase the processing load on the I/0 system
by requiring many trensfers of files back and forth from back-up
storage. This is analogous to the thrashing problem in paging systems
[Deb8]. Another problem with this fixed allocation method is that the
amounts of allocation are likely to be determined, not on the basis of
level of activity of the respective users, but on some other measure
such as rank in the company or the amount of money the user is prepared

to spend.

Iln any case, this fixed allocation scheme 18 probably the wmost
common method of controlling secondary storage. We shall see in this
thesls that very simple migration schemes can provide much more flexible
and efficient use of expensive storage. At the very least, a file
system should provide easy to use system routines that emable the user
to move his own files to and from back-up storage. It might be
convenient for the file system to automatically cause a file to migrate
vhenever the user attempts to save another file that would overrun his
secondary storage allccation. If this system were used, the system
probably should ask the user which old file should migrate since the
user has the best knowledge of which files are likely teo be active in
the future.

A simple form of automatic migration in use on some computer
systems i3 one where all files that have been idle for a given amount of
time are caused to migrate. This and the following migration algorithms
are discussed In detail in Chapter V. The time quantum for which a file
is allowed to be idle before migration must be adjusted according to the
activity in the system and the capacity of secondary storage. If the

-5 -

quantum is on the order of several weeks or & month, then the percentage
of migrated files that are immediately brought back to secondary storage
will probably be small, Notice that if many files show cyclic activity,
for instance being accessed once a month, then the time quantum should
be large enocugh to contaln one cycle, or extra migrationm activity will
be necessary. If most files have cyclic accessing patterns, however,
some other form of migration, such as immediate wmigration and
pre-fetching, might be more appropriate. The data used in this study,
obtained from an actual computer system and analyzed in Chapter ILI,

does not show any such cyclic behavior.

Choosing a fixed quantum size as a threshold 1idle time for
migration will involve some storage inefficiencies. Storage usage will
vary over time, and the total size of all files that have been idle less
than the idle quantum will vary as well. If the idle quantum chosen 1is
too small, then the total size of the files in secondary storage will be
less than the total avallable secondary storage, and some secondary
storage will be unused. If the quantum is too big, then secondary
storage may not be large emcugh to held all the files that have not
migrated. Clearly, what 1is needed is continual adjustment of the
quantum size so0 that secondary storage i1s always just full. In other
words, we migrate only encugh files to assure that secondary storage can
contain all files that have not migrated, and we migrate files that have
been idle the longest time. This scheme is. called the least recently
used replacement (LRU) algorithm and is familiar from studies of page
replacement algorithms. Chapter V presents the LRU replacement
algorithm in detail. |

Throughout the preceding non-technical discussion, we have used the
idea that a file that has been accessed in the recent past is more
likely to be accessed in the near future than a file that has been idle
for some time. This idea is intulitively appealing. That this is, 1in
fact, the case will be shown in Chapter III. LRU replacement then, uses
the file’s current idle time as a measure to predict the file’s future
idle time (that is, to predict when the file will be accessed next).
While current i1dle time is an cbviocus predictive measure, it is not

-6 -



clear that it is the best possible measure. We seek tﬁe measure that
will best predict which files will be accessed in the near future. Some
other measures that might be useful are the file’s accessing rate (a
measure of past activity), the file’s size, the file’s age since
creation, etc. In addition, some combination of these or.other measures
might be the best predictor. The main emphasis of this work is to

evaluate these potential predictors.

Because, in general, the computer system cannot know the future
accessing pattern of a file, the migration predicters are only
heuristies for guessing future activity. Using trace data or
artificially generated activity data however, we can study algorithms
which take into account the future accessing pattern of a file. These
algorithms, though not implementable, give us theoretically near—optimal
or optimal behavior against which te cowmpare our practical algorithms.
Algorithms with knowledge of the future are also discussed in Chapter v.

1.5 Relation to the Page Replacement Problem

The page replacement problem in a virtual memory system, how to
decide which page to swap out when a new page must be brought in, has
been studied extemsively. A file migration system is similar to a
virtual memory system in that we manage a top level of memory, that is
not big enough to hold all the necessary information, by transparently
(to the user) movipg Information to and from a back=-up memory when
needed. This analogy 1s useful and this work takes advantage of some
paging results and methods. There are important differences, however,
that must be noted. One obvious difference is that of scale. In the
time domain, page replacements may occur many times per second, whereas
in this study, we will measure time in days. Page sizes are usually omn
the order of 512 or 1K words while file sizes range from LK words to
100K or larger. The crucial difference, however, ia that pages are
assumed to be of one fixed size but files may vary in size over a large
range. Allowing variable sizes violates an assumption that 1s crucial
to some paging results so that these results do not necessarily apply to

-7 -

the file replacement problem. We find, in genmeral, that we cam prove
less about the file migratfon environment and that, congequently, file
migration algorithms must depend more on heuristic methods.

1.6 Theasis Summary

Chapters I1I and III discuss the empirical data on file system
activity that were collected and which form the basis for this study.
Chapter II describes the trace data and its caollection, and makes some
observations on the data. Chapter III presents a more detalled
statistical analysis of the data. This analysis uncovers some
characteristics of file system activity that are crucial for designing
file migration algorithms.

In Chapter IV, we discuss a model that has been constructed to
generate simulated trace data similar to the empirical data presented in

the previous two chapters.

The main results of this work are presented in Chapter V om
migration strategies. Readers primarily interested in migrationm, but
not a study of file system activity, can read Chapter V as a
self-contained unit. A detailed development of migration schemes
through various refinements is given. Possible predictors are presented
and evaluated. Also, various theoretically near—optimal ( through
unimplementable) algorithms are used for comparison to the realfzable

algorithms.

Chapter VI gives some examples (using representative values) of
possible savings resulting from usiag migratiom. Multilevel storage
hierarchies using newly emerging technologies are briefly diacussed.
The relation of the present work to computer networks and distributed

data bases is mentioned.

A conclusion and discussion of possible directions for future study
are given in Chapter VII. Chapter VIl also relates this work teo other
related studies and gives a review of the relevant literature.

-8 -



Appendices A and B provide further development of sgome ideas 1n
Chapters III and V. Appendix A shows the mathematical derivation of the
negative binomial distribution as a compound Poisson. The

non-optimality of the MIN algorithm is demonstrated in Appendix B.

CHAPTER I1
EMPIRICAL DATA ON FILE SYSTEM ACTIVITY

The first step toward gaining an understanding of file system
migration 1is to make measurements and gather trace data on file system
activity for a real computer system. These data, and their collection,
are described in this chapter. The enviromment for this empirical study
was a large computer center used primarily for physics research.* The
user population is quite large (700 users) and the job stream is a
mixture of short runs for program debugging and the like, and large
production jeobs for physics data reduction, informatfon retrieval, etc.
In this sense, the system under study may be more typical (or at least
more diversified) than one which only handles small studeat programs or
an industrial or business situation where most jobs are large, batch
mode, production runs. In any case, the results of this paper are
applicable to the eavirooment under study. They apply te other
environments only to the extent that this environment is typical. The
model of file system activity presented in Chapter IV can be scaled by
changing various parameters to simulate other file system environments.
However, the question of validating the scaled model by comparison to
some other real system, though discussed im Chater IV, is not directly

addressed in this work.

Disc storage®* serves as the secondary storage for this system.
Backup storage 1s magnetic tape. All users store their files on disc.
Each user is allowed a fixed amount of disc space for storing files. No
migration of files is done by the system, but routines are available for
users who wish to tranafer files to back-up storage (magnetic tape}

themselves.

ccelerator Center. Equipment consists

XThe Staniord Lioear A
of two IBM/370/168°s and an IBM 360/91i loosely coupled with
v

ASP and supporting WYLBUR, an interact
remote job entry system.

**IBM 2314 and 3330 type devices

e text editing and

- 10 -



2.2 Description of the Data
The data consist of a day to day accessing pattern for all user
disc files on the system. The measurement period was just over one
year. A similar set of data was collected independently during this
time at another installation. It is briefly described in [Re74]. For
each disc file present in the system, with the exception of temporary
scratch files which were ignored, the following data were recorded:
file identifier
file creation date
file deletion date
file size
day by day accessing pattern
The accessing pattern consists of a bit string, one bit for each
day 1in the measurement period, with bits set for each day that the file

was accessed {read or written).

The collection of these data records gives a complete trace (with
time unit of one day) of all user disc file activity in the system for
one year. From the data, we can derive day to day system activity, age,
creation, and deletion patterns of files, size distributions of files,
idle time distributions for files, etc.

2.3 Method of Collection

The data collection process was very simple. A system accounting
program 1s run every night which prepares a file listing all user files
on the system, their size, and other information. The data ceollection
program was gimply attached to this accounting program as an extra job
step. The data collection program maintained a trace file which it
compared every night to the newly created accounting file. The trace
file was then updated, recording file creations and deletions and
setting the appropriate bit in the access bit string associated with
each file that the accounting file indicated had been read or written
during the previous day. No modifications, either to the accounting
routines or the file accessing routines, Were necessary for this datas
collection. 1In fact, the only input used by the collection program, the
1listing of all files on the system, is public information available teo

-11 -

all users.

Other computer installations maintain a similar listing of all
current files. Usually however, the date of last update is recorded for
each file. In the present case, the data of last access 1s recorded.
This is crucial in determining the accessing pattern of a file. The
data collected here are somewhat unique, therefore, because they cannot

be easily generated on other computer systems.
2.4 Strengths and Shortcomings of the Data

As mentioned above, the data was very easy to collect. More
importantly, the cost of data cocllection was negligible and the impact
on the system of making these measurements was alsc negligible. This
was not a case, as sometimes happens with system measurement, where the
measurement itself causes the system to behave differently from the way

it would if no measurement were being ‘done.

The nature of the migration process requires that we look at file
system activity on a macroscopic, or relatively high, level. The costs,
speeds and capacities of secondary storage devices imply that we must
deal with migration in terms of hours or days rather than wminutes or
seconds. Furthermore, in order to be able to average local variations
over time, we needed data for a number of months, not just a few days.
Thus, the file trace data for a pericd of one year, in time units of one
day, are quite adequate and appropriate for this study. In fact, if the
data had consisted of a trace of each individual file access, the amount
of data collected over a full year would probably have been

unmanageable.

There are some disadvantages to this set of data. In particular,
having the unit of time equal to one day, though advantageous in some
ways as discussed above, masks some informztion that could be wuseful,
In the study of various migration algorithwms in Chapter V, we look for
various predictors for the time of the next access to a file. One
possible predictor 1is the access rate a file has experienced in the

-12 -



past. Generally, files are not accessed every day and 80 we can derive
a fairly accurate access rate from the trace data. For very active
files, however, the data does not allow us to distinguish between a file
that is accessed once a day and a file that is accessed 100 times a day.
This lack of resclution in the time scale also impedes the statistical
analysis in Chapter III.

Anvther shortcoming of the trace data is the unit of measurement of
size. The accounting data file used to gather the trace data lists file
sizes in units of one track (about 7200 characters or 1800 words}).
Thus, any file whose actual size is less than 1800 words (1l track) 1s
shown as being one track in length. This masks the actual size of many
files. This is particularly unfortunate since, as we will show later in
this chapter, the size distribution of files is strongly skewed to small
files (there are many more small files than large files). One
mitigating factor in thia situation is the existence in the system of
"]ibraries".* Because scme of the secondary storage devices use a track
as the smallest unit of transfer, it is impossible t¢ store files that
are smaller than one track without wasted space. The system discourages
users from storing £iles smaller than one track and provides the
alternative of libraries. A library is a single physical file that is
made up of a collection of small logical files. Because libraries are
used extensively in this file system, there are fewer files whose size
is less than one track, and thus the lack of resolution in determining
file size 1s not as much of a problem as it might have been without

libraries.

The existence of libraries means that the distribution of file
sizes that we derive from the trace data does not match the size
distribution we would f£ind if there were no libraries. As we will see
later in this chapter, there is a preponderance of small files on the
system. Libraries mask this effect; users actually use many more small
files than the trace data show.

Wcalled Partitioned Data sets by IBM

-13 =

The natutre of the trace data has some other disadvantages. For
instance, no indication is made as to whether an access to a file was a
read or a write operation. All we can determine about a file is whether
it waé accessed on a given day, not how often it was accessed and
whether or not it was modified. Knowledge of whether a file had been
modified might have helped in designing-algorithms for choosing files to
replace when migration must take place. As in paging systems, a file
that has not been altered while in secondary storage need not be
rewritten onto back-up storage because its image om back-up storage,
provided one is kept, is still valid. Thus, it wmight be advantageous to
choose for replacement those files that haven’t been written in
preference to those that have been altered. The nature of the trace

data does not allow this distinction to be made.

Some indication of which files tend to be accessed together can be
derived from the trace data. However, no explicit indication of this 1s
available. Thus, if there is some kind of locality; or clustering of
references to files as there 1s in page references [De6b], such
information, which might be useful in migration replacement decisions,
can be determined only indirectly. More detailed data might also be
able to take advantage of naming conventions that reflect grouplngs of
files by project or usage, groupings of files by usage in nodes of the
catalog hierarchy, or actual indications by the user of files that will
be used together.

The trace data include only disc files. Files stored on tape are
not included. Since each user has a fixed allotment of disc space, some
users must do their own migration of imactive files to tape. This is

not reflected in the trace data.

No system files (compilers and utility programs, etc.) are included
in the data. Systems files are aasuméd to be used often enough that

they must be kept in secondary storage and never migrate.

Finally, the data trace file activity only for the computer system
-14 -



that was measured. What differences there may be with other computer
systems’ file activity is not known. Comparison with the ounly other
gimilar data on file systems known to the author fRe74], [Re73] shows
that these data may be fairly representative of file activity in a

large, general purpose computing system.
2.5 Characteristics of File System Activity

A total of more than 25,000 files were recorded during the
measurement period. There were typlcally 5000 files present in the
system at any one time, using about 45,000 ctracks. The secondary
storage capacity of the system 1s 67,000 tracke (500 million

characters).

The data collected do not allow us to determine who the owner of a
given file is so we cannot break down the file population by user.
However, there is nearly a ome—to-one correspondence between users and
user ID's (the identification a user must supply to the computer). Some
users have more than one user ID, some users share a common ID. The
file naming conventions used in this system prefix each file pame with a
user ID. We can, therefore, distinguish between files belonging to
different user ID’s. A total of 707 distinct user ID"s were recorded.
On a typlcal weekday about 225 user ID's would have some files accessed.
On the average, about 650 separate files are accessed each weekday. The
total space occupled by the files accessed in one day averages about
13,000 tracks. These figures are intended to give a general lmpression

of the size of the computing environment under study.

It is instructive to look at some daily statistice of the data and
gee how they vary over time. For instance, the number of files created
each day is a randomly varying number averaging about 68 new files per
day. Statistical analysis* shows that the number of new files is a

stationary process (its average value does not vary over time).

*The statistical methods used in this study are described in
Chapter IILI.

-~ 15 =

Similarly, the number of filee deleted each day is a statlonary process
with mean 64. :

This would indicate that the number of files present in the system
is increasing at a rate of 4 (68-64) per day. Indeed, the plot of files
present in the system by dJay shows clearly an 1ncreasing trend with
slope of about 4.

The number of Files accessed per day is also increasing with time,
but at a rate of about 2 files per day. Since this rate is slower than
the total growth rate of the system, it is clear that the percentage of
idle files in the system is increasing. This 1s one indication of the
need for a migration policy.

The data also reveal some Interesting facts about how a file’s size
ig related to its activity and lifetime in the system. Figure 2.1 shows
the size distribution of files present in the system at a typical point
ip time. The mean file size 1s around 8.4 tracks (as indicated earlier
by 5000 files occupying 45,000 tracks). The expected size of a file
that 1s accessed, however, is about 20 tracks. This indicates that
larger files are accessed more frequently than smaller files.

Similarly, the average size of all files recorded in the system for
the entire measurement period is 7 tracks. This means that more
distinct small files have been created than their proportion of the
total population would -indicate. This dimplies that the expected
lifetime of small files is less than that for large files.

These phenomena, large files being more frequeatly accessed and
small files having shorter 1lifetimes, are partly explained by the
presence of fibraries. A library is a single file that contains many
small logical files. The data do not distinguish libraries from other
files. We would expect that libraries would be larger than average
files. Because they contain mere than one logical file, libraries
should be accessed more often than non-libraries {(each access to an
individual 1library member counts as an access to the library). Also,
because libraries can contain a varying collection of files, with some

~16 =



DISTRIBUTION OF FILE SIZES

[_I_J__‘_JLLILILJ;IILALLIIIlll.lll_l.l-

llllllll_l

e
——y
-
-
-
-
-
-

o ] 80 100

4@ 60
STZE (TRACKS)
FIG. 2.1

- 17 -

being deleted and new ones created, we expect the lifetime of a library
to be longer than average. Thus, 1libraries help account for the

different characteristics of large and small files.

Figure 2.1 shows the size distribution is strongly weighted to
small files. Of all files, 32X are one track or less in length. This
does not mean however that a migration scheme need only worry about
small files, just because they ate the most numerous. Figure 2.2 shows
the fraction of the total space used tha£ is occupied by varicus sized
files. Point A in this figure indicates that 75% of the disc space in
use 18 covered by only 20% of the files. Large files, while they don’t
dominate in number, do dominate in total space occupied. This balance
between large and small entities may suggest a general rule. it 1is
similar to the rule of thumb commonly used for CPU time in computing
systems: 20 of the jobs use 80% of the CPU time.

One indication that a migration policy would save storage is the
number of idle files stored in the file system. Figure 2.3a and 2.3b
show the fraction of all files by idle time {time since last access) and
the fraction of all space in use (allocated to files) by idle time. of
all files, 40% have typically been idle for more than 30 days. Of all
file storage space, 20% has been idle for mere than 30 days. Migrating
these files, on the assumption that if they have been idle as long as 30
days they are not likely to be accessed soon, could save a substantial

amount of secondary storage.

Perhaps the simplest migration scheme is to migrate files that have
been idle longer than a certain amount of time. Figures 2.3 give anm
indication of what the appropriate migration threshold might be. A
reagonable first estimate might be to stay vear the knee of the curve in
Figure 2.3b (i.e., about 20 to 25 days). This must be balanced by a
knowledge of the amount of migration activity required for each
migration threshold. Short thresholds save secondary storage space but
cause more input/output traffic for migration. Larger thresholds have
the opposite effect. This trade-off is examined in more detail in
Chapter V on migration algorithms.

- 18 -



FRACTION OF SPACE

o

1*]

!]IIEYTIlillllllll'l[l'll'

@

|.—T_']|l"'_'!'ll'l'll—l_1'l_']‘ll""'

Y lllAJllllllLlLllllli

ll.lllllllllLllilllllllllll

2o 40 €0 8o 100
PERCENT OF FILES RANKED BY SIZE

FIG. 2.2

- 19 -

FRACTION OF ALL FILES

FRACTION OF ALL TRACKS

2.6

e e

'_I_l‘]'T_IITIUI'IiIlf_TtI_YIT_IY

.rws]-

£1}_lllll|l1l;IAIAIILIIJ..I_I_III

lﬁr‘[rrltlrrr.
H

PUPY VPP PP

° 50 1¢e 150 200 ase
AGE SINCE LAST ACCESS (DAYS)
FIG. 2.9A

%

|Illlll|1||lL1_llIllllll]

l:..l, A a.,A_L.LJ._A a. l LL..A.._Ll.J.-L_I_L.L_LJ_-L_I__[_L_Aj

-} =1t 100 1580 Fadsl-} 258
AGE SINCE LAST ACCESS (DAYS)
FiG. 2.30
- 20 -



This section has presented some characteristics of the file system
as indicated by the trace data. The inteat is to give an overall
feeling for the environment under study and to provide some informal
iodication of why migration is needed. Chapter 1I1 gives a more
complete statistical analysis of aspects of the data pertinent to

modeling the file system and understanding migration strategies.

- 21 -

CHAPTER III
STATISTICAL ARALYSIS OF FILE AGTIVITY DATA

Before studylug migration strategies themselves, it is appropr iate
to do a detalled analysis of the file system trace data. Such a study
can be useful in several ways. Basically, we hope to be able to
understand the intrinsic structure of the processes underlying file
system activity. This knowledge is necessary for building a reasonable
model of file activity (Chapter 1IV}. For example, 1t is necessary
before building a model to know the most appropriate probability
distributions for describing various events and elements in the system.
Among other things, we need the distribution of inter-access intervals
(idle times) for files. Distributions for sizes of files and lifetimes
of files are also necessary. A basic approach in this work has been to
verify the appropriateness of any distribution used in the model, rather
than making convenient but untested assumptions (for instance, that a

certain distribution is exponential or normal or whatever).

Beyond the particular (marginal) distributions that describe
various aspects of the system, 1t is crucial to understand the
dependencies of variables on one another. For instance, we need to know
if the lifetime of a file is correlated with its size, if successive

inter-access times to a file are correlated, etc.

Knowledge of the underlying structure of file aystem activity will
also ald in choosing and understanding various migration strateéies
(Chapter V). Here we are looking for predictors of the next idle time
(inter—-access interval) for a flle. Any dependeacy of idle time on
other variables (previous idle tiwe, file size, etc.) may indicate

potentially useful predictors.

This chapter presents statistical analysis of the trace data
described 1in Chapter IlI. Particular attention is placed on the
accessing pattern of individual files since this is the basis both for
the model and for understanding migration algorithms. Many different
mathematical and statistical tools are available for such a study. We

-22 =



start by describing the tools and procedures used 1in this particular
study.

3.2 Analytic Methods

The analysis presented here draws heavily on the theory of
stochastic processes and on the branch of statistics dealing with the
analysis of a series of events. The theoretical concepts are reviewed
and referenced below. To augment this theory, several computer programs
were used. These include a statistical amalysis package, a probability
digtribution curve fitting program, and a program which extracts
probability distributions and moments from the trace data. The first
step in the analysis was to run the distribution plotting program on the
trace data. This custom program merely extracts from the data the
distribution and moments of various +variables of interest. It also
plots the time sequence of varlables when approptriate. Informal study
of the resulting plots served to provide familiarity with the data. It
also helped point out outlylng data points and anomalous or umnexpected
behavior of the data. For example, the fact that weekend activity is
markedly different from weekday activity is immediately evident. Unless
specifically stated otherwise, this paper deals only with normal weekday
activity. Also, the presence of several days in the measurement pericd
when the accounting program, whose output was used for gathering the
trace data, was not run, was detected. This allowed the error points to

be eliminated or smoothed before more rigorous analysils was performed.

This basic information suggested appropriate probability
distributions for some variables. It also 1indicated the possible
structure of some underlying processes, in particular, the serles of
inter—-access Iintervals for a file. It remained to verify or disprove
the hypotheses suggested by this exploratory amalysis. The next step in
studying the trace data was to use a probability distribution curve

fitting program.* This program aids in matching a set of data to

*Oriﬁiuall written by John Zolnowsky at SLAC and modified
by the author.

- 23 -

commonly used probability distributions., It first computes the best
known estimators of the varlous parameters of each of nine well known
probability density functions. These estimators are either method of
moments estimators or wmaximum likelihood estimators, as appropriate.
The program outputs graphs of the empirical data (and empirical hazard
function, defined below) plotted with each of the varlous theoretical
probability densities (and theoretical hazard functions), drasm with the
appropriate (best estimate) parameter values. The output proved
extremely useful in deciding which functions best described various
input data, in the absence of specific statistical tests.

It should be noted that graphical amalysis such as this should be
supplemented with statistlcal testing whenever possible. In many cases
this was done here, as described below. One reason that graphical curve
fitting is sometimes inadequate, however, is the practice of fitting
probability distribution functions (cumulative probabllity functioms)
rather than probability density £functions. Cunulative distribution
functions tend to be very similar in shape and hard to distinguish.
Density functions are somewhat easier to tell apart. Two other factors
employed here help increase the accuracy of graphical curve ficting.
First plotting monotone decreasing density functions with a log scale on
the vertical axis tends to expand the resolution in the midrange of the
functions, enabling closer fitting. Secondly, the use of hazard
functions (h(x) = £(x)/(l-F(x}}, also called age-specific failure rate,
is very helpful for determining a distribution’s behavior in the tail.
For each theoretical distribution tested by the fitting program, the
theoretical and empirical hazard functions are plotted together. While
probability density functions approach zero as the argument approaches
infinity, the hazard function may tend to zero, a constaat positive
value, or infinity, thus providing a better indication of the upper tail
behavior of the probability function. (The hazard and density functions
are completely equivaleant; one can be derived from the other.) Other
investigators have used the log sutvivor function instead of the hazard
function. These approaches are equivalent since the hazard function is
the derivative of the log survivor. The log survivor function has some
of the same smoothing and masking effects with respect to the hazard
function as the cumulative function has with respect to the density

~ 24 =



function. For a more complete discussion of the hazard function see Cox

[{Co62} pages 3-7.

The statistical testing dore in this study used a publicly
avallable statistical analysis program: SASE IV [Le66al. This program
provides a wlde range of tests for analysis of a series of eveats.
Thus, it was ideal for analyzing the inter-access time sequence for
files. Some of its routines are useful for other types of data as well.
It can be used for detection of trends and for determining serial and
cyclic correlations in sets of data. The theoretical background for the
program is discussed fully by Cox [Cob66]. Use of the program 1in a
number of studies i1s also well documented (Le66b], [Le7l], {Le73]).
This paper will not discuss the statistical theory, but will include a
discussion of the use and appropriateness of some of the tests provided
in SASE IV.

3.3 The Accessing Process of a File

In this section, we study in detail the series of accesses to a
typical individwal file. We will deal with this series of events as a
stochastic point process. Some of the results of this treatment will
directly affect our cholce of migration strategiles in Chapter V. Our
approach 1s to think of the file system as a collection of individually
characterized files, rather than as an amorphous set of files. For
example, we deal here with the accessing pattern of individual files
rather than the probability distribution of the number of files accessed
pér day, though we will mention the latter as well and discuss its
derivation from our more detailed model. This approach 18 in contrast
to other studies of the same type of data [Re75] but is necessary to our
understanding of migration strategies and for wodeling file system
activity in detail. All tests described in this sectiom were performed
on the inter-accees trace data for a number of randomly selected files,
with various sizes and liftimes. Testing a varlety of files chosen at
random should point out typical file characteristics. Therefore, the
following stated results apply to files In general umnless specifically
noted otherwise.

- 25 -

The intent, then, is to understand the probablistic structure of
the sequence of accesses to a typical file. Several models suggest
themselves from the theory of stochastic point processes ([Pa62]}. A
stochastic point process, as usually defined, 18 a series of point
events, l.e. events distinguishable only by their time of occcuraace,
that are separated by random time intervals., The sequence of accesses
to a file fits this general model and so the theory of stochastic point
processes 1s used here. For our purposes, a stochastic point process
can be described by its marginal distribution of interval lengths and by
the dependency structure of the intervale. The marginal distribdcion of
intervals is obtained from the emplrical interval distribution with the
curve fitting progrom described earlier. We first discuss the
dependencies of 1ntervals on preceding intervals. The simplest
dependency model (no dependency) 1is the renewal process, described at
length by Cox [Co62]. In a renewal process, successive interval lengths
are independent of each other. The marginal distribution of interval
jengths, therefore, completely describes a remewal process. The
simplest model with dependencies is the Markov process. Here the length
of the current interval is again a random variable but depends on the
length of the immediately previous interval. A generalization gives the
nth order Markov chain in which the current interval length depends on
the lengths of the previous n intervals. 4 semi-Markov ‘process is a
further generalization. In this model, the system can be in any of a
number of states. The current interval length i1is drawn from the
distribution assoclated with the current state and at the end of each
interval, transition to  another state occurs with prescribed
probability. Other models (branching remewal process, doubly stochastic

Polsson process) are discussed by Cox [Co66].

For modeling the inter-access interval process for files, several
models are plausible. A renewal process model implies that comsecutive
idle intervals are independent. This may be true, and the repewal
process 1is attractive because of its simple structure, but it implies a
lack of "locality" of reference for files. In studies of accessing
patterns to pages of programs, it has been shown that accesses to pages

-~ 26 =



tend to be clustered in time so that a page may be very active for
awhile, then relatively i1nactive when the references move to a new
locality. It is possible that references tolfiles might show the sanme
type of behavior. If this is the case, then a2 semi~-Markov model with
two states might be appropriate. While the file ias in the "active"
state, inter—access intervals are described by some distribution with
relatively small wmean. There is a certain probability of switching to
the "“inactive" state where inter—access times have a larger mean value
(and possibly a differently shaped distribution}. Discussion of the
application of a similar two-state semi-Markov process 1n a differeat
situation (modeling page reference stack distances) 18 in [Ch76],
[Le73]. To choose among the various possible models, we perform
statistical tests (using the SASE IV program) “on sequences of
inter-access intervals for a number of files taken from the trace data.
First, the presence of trends in the data must be tested. A stochastic
process is said to be statlonary 1if the distribution of interval lengths
(or equivalently, the distribution of the number of events in a fixed
interval) does not change with time. Stationarity, therefore, is the
absence of trends in the data. The theory of statiomary stochastic
processes 18 much more developed than the theory of non-stationary
processes. The existence of trends, or non-stationarity, in the data,
invalidates many of the statistical tests that can be applied. The SASE
IV program has tests for uniform trends and indications of cyclic trends

as well.

Tests for trends have been applied to access interval sequences of
files in the trace data. Though there are exceptions, the typical file
does not show any linear trend in its inter-accesa intervals. 1In cases
where trends are identified, they are almost always caused by the
presence of one long idle period before the deletion of the file. In
other words, those files that do show a trend tend to be accessed
frequently for a period after they are created and then £fall i1dle for

some time before they are deleted.

In the absence of trends, other tests may be applied. The next
question to be answered is whether there are serial correlations in the
-27 -

data. If the intervals are serially correlated, then the relatively
simple renewal process model is not applicable and other, more complex

models must be investigated.

The analysis program tests for serial correlation or independence
of intervals by computing the correlation coefficients of adjacent
intervals {and those sgeparated by a fixed number of intervals) and
teating their closeness to zero (the value of correlation coefficients
for independent intervals). Other tests based on the spectral density
function of intervals were also used. These tests are only strictly
applicable to intervals whose distribution is normal, not the case here
as we 8hall see, but the results are generally sco strong that the

conclusions drawn seem to be warranted.

The tests show that, again iIin the vast majority of cases,
inter-access Intervals are not correlated. The  indication of
independence of intervals is usually quite strong, though in some
instances some serial dependence is shown. This 18 an important result
with implications 1n bullding a model of file activity and for under-
standing migration strategies. It means that we can characterize the
accessing process of a typical file as a remewal process, without any
further consideration of possible dependency structure. We discuss some

implications of this result im the next section.

1t remains to determine the distribution of interval lengths (idie
times) to completely characterize the accessing process. The general
shape of this distribution resembles an exponential distribution. The
curve fitting program indicates that exponential, Pareto, Weibull, or
hyperexponential distributions may be appropriate. The most attractive
alternative, from an analysis point of view, is that the intervals be
exponentially distributed. Several tests are provided in the
statistical analysis program for determining if a series of intervals
are exponentially distributed. Again, of course, the result does nunot
held for all files. However, the large majority of files do pass the
test indicating that their inter—access intervals can be modeled by an
exponential distribution. A renewal process whose intervals are

- 28 -



exponentially distributed is called a Poisson process {(the number of

events in a given time interval is Poisscn distributed).

We thus have the following model for accesses to a typical file.
The rate of accessing is constant (stationary process), the lengthe of
successive 1dle intervals are independent (remewal process), amd the
distribution of inter-access intervals 1s exponential (Poisson process).
Although this characterization 1s not true for all files, it is very
often applicable. Restricting our dJdiscussion to | & theoretical
population of files with Poisson accessing processes 1s a useful and not

unwarranted simplification.

We have not mentioned the accessing rate of a typiecal file.
Although the structure of files’ accessing processes are the same, the
accessiné rate (or mean inter—access interval) varies from file to file.
Thus, files” accessing patterns, though described by Poisson processes,
are not identical. How the accessing rate varies with file size is
discussed in section 3.6.

3.4 Implications of the Accessing Process Model
The characterization of the access process of a file as a Poisson

process will influence how we choose migration algorithms in Chapter V.
It especially affects how we make use of the concept of locality that is

8o useful in the study of page replacement algorithms. 1In this section,

we consider implications of the Polsson process on some higher level
aspects of the file system, in particular, the accessing pattern of
libraries and the accessing pattern of the file system as a whole.

From a sysiems design point of view, a characterization of the
accessing process of the whole file system is much more useful than the
processes for individual files. Measures such as accessing rate and
number of accesses per day are of interest. Since the file system 1is
the collection of all the individual files, its accessing process is the
superposition of the individual accessing processes. The process

-29 -

consists of the combined output of the component processes. Some

mathematical results are available for superposed renewal processes.

When the component processes are Polsson, their superposition 1s
also a Poisson process. So if we model each file”s accessing as a
Poisson process, the accessing process of the entire system will also be
Poisson. Even when the component processes are wnot Poisson, the
superposition of a large number of independent (but not necessarily
identical) processes tends to be Poisson. This result is from
Khintchine [Kh60]. He proves that in the limit, the superposition of a
number of independent renewal processes 1s a Poisson process. The
result 1s true even in the case that the component renewal processes
have different interval distributions. Khintchine’s theorem helps
explain why the Polsson process seems to describe very well a number of
processes that occur in real life. Khintchipe points ocut, for example,
that telephone calls arriving at a telephone switching machine are the
combined output of a large number of independent processes, i.e., the
calls made by individuals, and so can be expected to bé Poisson. In our
case, we might expect that the pooled accesses to all f£files can be
described by the Polsson process. We investigate here whether this 1s

true.

First we point out that the assumptions needed fdr Khintchine’s
result may not strictly hold. The theorem deals with a fixed population
of component processes, while the file system is a dynamic population.
The number of files iIn the system varies from day to day. Thia
variation is a small percentage of the total population (.1% per day),
but could perhaps affect the validity of this result. Another more
subtle problem is the independence of component processes required in
Knintchine’s theorem. To some extent, this assumption does not hold.
Users sometimes access (and create and delete) a set of related files
together so that their access processes are dependent and possibly
synchronized. The total file population, however, is spread over more
than 700 users, mostly using their files independently, so the effect of
this viclation of assumptions is probably negligible.

- 30 -



Unfortunately, we cannot accurately measure the accessing process
of the entire file system from the data collected. Because of this, it
is impossible to directly verify the hypothesis that accesses to the
file system as a whole are Poisson by applying tests for Poisson
processes. The reason that we can’t measure the accessing process of
the whole system 1is outlined below, and is a result of the trace data
being measured on a time unit of one day. This means that for each
file, we have an indication of whether or not it was accessed on a given
day, not how many times it was accessed on that day. This implies that

NEGATIVE BINOMIAL FIT

for the entire file system, we cannot get a count of the number of file

accesgses each day but only a count of the number of distinct files that T T 1 L B B T TT l T T T —TrT I Y
were accessed each day. The empirical distribution of this data, the _ . . o
count of separate files accessed per day, has been gathered and plotted i . _'.'
{Figure 3.1). This distribution is distinctly non-Poisson. This is 0.004 - -
shown most directly by comparing the sample mean and sample variance. : j
The sample mean is 678 and the sample variance is 14,400, whereas for a EO 003 [H _:
Poisson process, the mean 1s equal to the variance. The appropriate B t -
discrete probability function, when the variance is greater than the E i i
mean, is the negative binomial distributiom, (=] L -
@ ooz L—-— ":
x=-a-1 E - a
£ (x) = X p* (1-p)3 a E by
The negative binomial distribution fitted to the data by the method ge W1 ':' . _:
of moments 18 also shown in Figure 3.1 (solid curve). E L . :
The distinction between the number of distimct files accessed per o e — - £t =
day and the total number of accesses per day is very important. The ;_-_,_Hl___LA__,_J__l_ PO I T LJ_. A n_l PR T i-
fact that the distribution of files accessed per day 1s a negative 400 600 geeo 1009 1200
binomial 18 not Inconsistent with the prediction that the number of NUMBER OF FILES ACCESSED BY DAY
accesses per day i1s Poisson. The following paragraphs outline a . ' FIG. 3.1

construction of the negative binomial distribution from the assumption

that individual file accesses are Poisson.

We assume that the accessing pattern to a single file 1s Poigson.

This has been demonstrated above and 1s valid on a macroscopic level

when .the file is viewed over a period of days. Our grain of measurement
- 31 - - 32 -



of time {one day) affects what a file’s accesases look like in the trace
data at a more microscopic level. For each day, the trace data only
show whether or not a file was accessed. Since the Poisson proceas
model assures that the probability of access of a file in one day is
independent of accesses on other days, we can think of the access to a
file in a day as a Bernoulli trial (takes elther the value 0, no access,
or 1, some access). Bermoulli trials imply that, at this level where
time is measured in discrete units of one day, the inter—access ERLANG FIT

intervals of a file are geometric distributed and its access process is

binomial. {The discussion earlier in this chapter dealt with time over
a larger range where, though measured in days, it could be thought of as
continuous. In continuous time, of course, the geometric intervals

become exponential and the binomizl accesses become Poisson.) :

4
®
!

1

Within each day then, we have a series of N Bernoulli trials where
N is the number of files in the system. The parameters of these various
Bernoulli trials are not equal, being the accessing probabilities of the
individual f£files. Feller [Fe50], page 263, proves that the number of
sucesses (here Interpreted as file accesses) in a sequence of Bernoulli
trials with variable probabilities (alsc called Poisson trials) is
described, in the limit of a large number of trials, by the Poisson
distribution.

PROBABIJTY DENSITY ¢
—
|

-4

The final step in this construction is to note that the number, N, 0.¢000 I— s e r ™
of files in the population varies from day to day according to an Erlang . EJ.AL_L T | o 4 s P
distribution {(Figure 3.2, the Erlang being a special case of gamma 4000 4509 5000 5509 6000
distribution). Since the rate parameter of the Poisson distribution of NUMBER OF FILES ON LINE BY DAY
files accessed in a day is proportiomal to the population, N, which is 511;, a2

gamma (Erlang) distributed, the distribution of files accessed per day
is a so-called compound Poisson distribution (Polsson randomized with
gamma). A simple proof, given in Appendix A, shows that the compound
Poisson randomized with Erlang rate parameter is the negative binomial.

Thus, we see that the model of individual files 1s consistent with

the experimental determination of the distribution of files accessed per

day being negative binomial. Furthermore, a physical interpretation can
=33 - - 34 -



be given to the negative binomial distribution.
3.5 Accesses to Libraries

Modeling the typlcal £file’s accessing process with a Poisson
process also’ has implications to our understanding of libraries. 4
library is a collection of small files that is dealt with in the file
system’s directory satructure and storage allocation as a single
contiguous unit. From the trace data, we cannot distinguish accesses to
individual member files of a library. Extending our model of individual
file accesses as Polsson processes, we can postulate that member files
in libraries are alsc accessed according to Poisson processes. As
pbefore, the accessing to the whole library, as the superposition of
Poisson processes describing the accessing to library members, is also a
Poisson process. This is borne out by the trace data in most cases.
The statistical analysis program generally shows that access intervals
to libraries are trendless, independent and exponentially distributed,
indicating that the underlying process is Poisson. In those libraries
where this is mnot true, the time grain of one day may be having an
effect again. For actively used libraries where the mean idle time 1is
near ome day, the trace data may show an insufficiency of small
intervals (since the smallest interval the data can record is one day)
causing rejection of the Poisson hypothesis in statistical tests [Co&6].
Also, in libraries where the component files are often used together,
the independence assumption for superposition of accessing processes may

be violated, causing a library’s overall accessing to be non-Poisson.
3.6 Distribution Fitting for Inputs to the Model

As discussed in Chapter IV, a model has been constructéd to
generate artificial trace data which simulate the actual trace data.
The model’s inputs are a number of probabilitry distributions derived
from various empirical distributions describing the real data. This
section discusses the distribution fitting process and illustrates the
results. Although the purpose of this distribution matching was to
provide input for the model, the distributions characterize the file

- 35 -

system activity and so their study lncreases our mderstanding of thie
activity. The distribution fittimg program plots the input data against
various standard probability distribution functions. The parameters are
matched by standard methods, usually method of moments, or maximum
likelihcod estimation. Both the density functions and the hazard

functions are plotted.

The model assumes that lifetimes of files are Iindependent.
Artificial lifetimes can, therefore, be generated' by sampling the
probability distribution of lifetimes of files. Figures 3.3a and 3.3b
show the empirical distribution of lifetimes plotted with the
corresponding fitted exponential distribution. This is the distribution
used in the model to generate lifetimes of files. The mean is 257 days.

A related model input is the ages since creation (again in days) of
files in the system at the start of the measurement period. Again we
find that this distribution can be modeled by the exponential (Figures
3.4a, 3.4b). Thie distribution is needed by the model to create a
starting population for simulation.

Clearly, there ies a relationship between the age distribution and
lifetime distribution. By sampling the age of a file at a given time,
we obtain what is called the backward recurrence time of the file’s
lifetime. This concept was developed for remewal theory [Cob2]. A
distribution, f(x), 1is related to the distributiom, r(x), of its
backward recurrence times by r(x) = (1=-F(x))/m where F{(x) is the
cumulative distribution of £ and m is the mean of f. For the special

case here of exponentially distributed lifetimes
r(x) = 1-(1-e) M/(1/1) =a%exp(-x) = £(x)

So we expect the age and lifetime distributions te¢ be identical
exponentials. In fact, the mean age is 276 days and the mean lifetime
1s 257 days. Some of this discrepancy may be explained by the non-
infinite measurement pericd limiting the measurement of some long
lifetimes.

- 36 -



EXPONENTIAL FIT

-

1|Illr‘||li.lll‘lvl!r

@ o3

-
-]
n

PROBABILITY DENSITY
]
s

A TIPS SR B BN

5
-
L
L..

Y Q- _l...l_..nl A I_A_J__I_«L_-I..FJ.—L-—J-—J——I—I-—J_LA_

100 150 aoe
LIFE'I'IMES OF FILFS ONLINE AT ONE TIME (WEEKS)

FIG. 3.3A

EXPONENTIAL FIT
—T‘T-r"f—r"—r"i_‘lllllillllliillfu

0 o4

l.l'-'TlI"'
I .

+

4

...
T FONYY P

HAZARD FUNCTION
e
@
]
]llil]l""
A

-]
2 .
[T

P I I

A d J‘,l bl -1 I b d ol I y W N l A b A
20 : 40 160
LIFETIMES OF FILES OIIL[Nr., AT ON'E TIKE

FiG. 3.3B

®

-~ 37 -

HAZARD FUNCTION

PROBABILITY DENSITY

L

L1}

9 oe

9 04

9 a3

0 e2

2 o1

L
e e3p—

EXPONENTIAL FIT

llrllltvvll!'_llrllll

IlllT'l'

L .
N BT SR EPETO AP

L_.1 . .I..-l‘]-l LJ_JJ A—b A . & l -1 Aod l

iee 150
AGES OF FILES ONLINE AT ONE TIME (WEEKS)
FIG. 3.4A

EXPONENTIAL FIT

: L3 T L] T I T Y L T I w1 L T I. ¥ T L] T [ :
b -
- L
f— ——
9 P
- PR S 1
[ i
o -1
9 . 4
9 . o
; :
e —
;.._1_.1 a - J [P R R '} l PR S Y ;_I_ P S 1 1 Fil

100 159 200
ACES OF FILES GNLIJE AT ONB TIME
FIG. 3.4B

- 38 -



The size distribution of files in the system 18 shown 1in Figure
3.5a,b,c. This distribution is very strongly skewed to small file
gsizes. The exponential distribution fits poorly and we use, 1instead,
the Pareto distribution,

fp(x) = cx—c-l

The size distributions of files created and files deleted are
practically identical to the size distribution of files in the system.
This means that the size mix of the £file population is stable, not
changing with time.

The size distribution of files accessed alsoc has Pareto shape but
is substantislly less skewed toward small files. The mean size of files
in the system 1s 8.4 tracks, but the mean size of files accessed 1s 19.9
tracks. This means that large files are accessed more frequently than
small files. Figure 3.6 shows how the average inter-access time for
files varies with file size. The distribution of inter—access intervals
for apecific files has been discussed earlier as exponential. A plot of
mean inter-access intervals for files of a given size is shown in Figure

3.7. Either a Pareto or a Welbull distribution
£y (x)} = ex®l /pe % e=(x/b)¢
is appropriate here, and for other file sizes as well.
3.7 Dependency Relationships of Access-time Intervals

In Chapter V, various migration strategles are discussed. The
migration strategies may be thought of as using different predictors of
the next idle interval of a file. For instance, LRU (least recently
used) uses the most recent idle time as a predictor of the next idle
interval. LFU (least frequently used) uses the average idle interval
{or accessing rate) to predict the next idle interval. One purpose of
our analysis of the trace data should clearly be to discover any
dependency relationships that a files inter-access intervals might

-39 =

¥ DENSITY

PROBAD,

PROBABILITY DENSITY

HAZARD FUNCTION

3
S
L

oaL

RIS BUR R B
3

EXPONEKTIAL FIT

II!Iru

| DL I

PRy

PP Y

0 P : Rk o . —
SPPUPP ESRYVIP RSP PP IS B
[ ) ap 1] ae 100
SIZFS OF FILES ONTINE AT ONE TIME (TRACKS)
FIG. 3.54
PARETO FTT
S AR RS DAL LA B
o -
8.3 -
o aH —
! ]
e} ot
. J
[ ]
8 efl— ~ = 2 . ]
) o oy .J‘l.l..l-l L .l..t..n..;-l_l._l__‘_l_l_l_‘..-..a_n_i_l_a:
] 20 40 60 20 100
SIZES OF FILES ONLINE AT ONE TIME (TRACKS)
FIG. 3.50
PARETO FIT
la;: A T i i [ {
osh- ﬁ
o 6} {
[ = - T AT — 1a]
e o4 & 1 '.n Y l 1. L.L-I_J_..L ;_Al e ,L,-,L.L.J,

]

- 40 -

FiG. 3.5¢

° i £9 B0
SIZES OF FiLkT ONLINE AT OFE TIME (TIACES)

108




MEAN IDLE TIME

WEIBUL FIT

| e | Tl Tr I LML B B | ]l" LI ', r LN I B | r d
-1
10 -
E ]
‘é .
A -3
C] . ]
o . .
T
Ae
LI L _' ¥ r 11 i L r LIS ] £ T T I'T‘T . _g
S . - I L_.l._ . 1_1_1_4. \
- 1 L] 25 59 75 100 185
- 4 MEAN IDLE TIMES FOR FILES OF SIZE 2
1s L_ - — FIG. 3.7A
Lo . PARETO FIT
2 7 v
10 b . o T r l_l L Bk ek [ T F 1 % l Ty l LA I M ) ‘ -
A . - . . i
: TR : ] T E
St - . E 3
: . , 1
i . . ;% .
: e S E N ;
.;_1 A1 l LY S R | l_J_.L._J_L.LJ.Jq..I__L..l_I_L_I._L_l__I_.Ij g _a [ - . ]
<) 40 SRL = C —
FILE SIZE ('I'[b’\CKS) f k ]
FIG. 3.8 IV I Lu._x_._l_‘_ ]
] as T80 75 100 125
MEAN IDLE TIMES FOR FILES OF SIZE 2
FIG. 3.7B

- 41 - - 42 -




show. 1f inter-access intervals are correlated with any f£file
characteristic that is easily measurable, we may be able to wuse that

measure te help predict idle intervals.

The most obviocus correlation would be between succesaive
interaccess intervals. It has been demonstrated that the accessing
process is a remewal process; therefore, that previous idle times are

not correlated with subsequent inter—access intervals.

The inter-access interval distribution of a file 1s influenced by
other factors. The previous section showed (Figures 3.6, 3.7} how the
size of a file 1s correlated with i1its accessing rate. Another
possibility is that a file's accessing rate depends on its lifetime in
the system {(or its current age in the system). Figure 3.8 plots this
relationship. With the exception of files with very short lifetime, and
several outlying points where the number of files in the system of that
size 1s very small, there appears to be very little correlation between
lifetime and accessing rate (inter-access time). Chapter V discusses
the design of migration strategies using the dependence of inter-access
intervals on file size and their independence on file age, and previous

inter-access intervals.
3.8 Summary

This chapter describes statistical analysis of the empirical £ile
trace data. First a model of accesses to a typical individual file is
developed. The Poisson process is showm to be appropriate. Thise
conclusion is consistent with the observation that the number of files
accessed per day is described by the negative binomial distribution.
Accesses to libraries are discussed and again the Poisson process is the

model used.

Results from curve fitting experiments are given. The age and
lifetime distributions of files are described by the exponential
distribution. File sizes vary according te a Pareto distribution.
Finally, the dependence of file accessging rate on other file

- 43 -

MEAN IDLE TIME

-t

-t

100

30_-1|1—rlllﬁ_r—li—!11'lilrrll|!llr_'l'_‘
3
ed—
-
10} e ..
[1) ==
L3 J-A-l_-‘—J-—J—-L-J._J...J.._L_l 1 LI I X J_Lll_,_.l Ak l 1
") cQ 42 (=-) 8o
FILE LIFETIME (WEEKS)
FIG. 3.8
- 44 -



characteristica is investigated. The Poisson accessing model implies
that there 18 no serisl correlation of 1inter-access periocds. The
expected value of the inter-access time is shown to be independent of
the file’s lifetime in the system but correlated to the file’s size.

- 45 -

CHAPTER 1V
SIMULATION MODEL

The trace data described in Chapter 11 provide the basis for
simulating file syatem activity used in the study of migration
strategles presented in Chapter V. The data could alse be useful in
many other studiea of file systems, file structures, and atorage
hierarchies. File system data can be expensive and time consuming to
collect, however. An alternative is to build a computer program model
of file system activity which will generate artificial file system trace
data. This chapter describes such a simulation model, its structure,
its validation, and possible uses.

4.2 Basic Structure

A file system model can have varying complexity depending on the
level of detall required in the artificial trace data to be genmerated.
For instance, some studies would only require a ainulition which gave
various system—wide activity flgures, such as the naumber of files
accessed by day, number of files deleted by day, etc. In this case the
model might consist merely of a set routines that generate values for
files accessed per day, etc. from the corresponding fitted
distributions. For this work on file migratiom houéver, much more
detail is needed. The migration algorithms to be studied deal with
individual files,  making  migration decisions ©based on the
characteristics and past accessing history of each specific file. A
macroscopic model which only deals with number of files accessed, etc.
cannot supply the necessary information. A detailed micromodel is
required which simulates the activity of individual files.

Another reason for using a detalled model is that it requires a
much better understanding of the characteristics of individual files, of
the dependencies of these characteristics on other file characteristics,
and of the relationships between files. This increased level of
knowledge and detail wmakes the model useful for many types of
experiments in which the model’s structure or its inputs are modified in

- 46 -



order to simulate different envirconments. Examples of possible

experiments are listed in a later section of this chapter.

The model buiit for this study 1is detailed to the level of
individual files. The file system is viewed as a collection of
independent files. Each file 1s individually characterized by its size,
lifetime, and its accessing trace. A population of files is assumed to
exist at the start of the simulation and for each simulated day a number
of new files are created. No assumptions are made about the number or
distribution of files or tracks accessed per day, of files or tracks in
the system at a given time (except at the start of the simulation) or of
files deleted per day. These global values are generated as the
simulation proceeds, resulting from the simulated accesses to individual

files and the simulated deletions of files as their "lifetimes" run out.

The 1inputs to the model are
~gize distribution of files
~inter-access interval distribution of files
~lifetime distribution of files
-distribution of new files per day.
Given these distributions the program simulates file system activity and

generates artificial file accessing trace data.
4.3 Development of the Model

Development of the simulation model was done 1r two steps. The
first step was to construct a valid model using as inputs the empirical
distributions derived from the actual trace data. This permitted
building the basic model structure and discovering the important
dependencies, with known, valid input diatributions (in the form of
tables of values). The second step was to replace the empirical imput
distributions with analytic formulas for standard probability
distributions fitted to the empirical data.

Major iterations in building the model were necessitated by the
discovery of three important dependencies. First it was found that the
lifetime of a file depends on the file’s size. The model was adjusted
so that smaller files have shorter lifetimes than large files. A more

- 47 =

important dependency is the relationship between file size and the
accessing rate of £iles. The distribution of sizes of files im the
system is different from the distribution of sizes of files that are
accessed, large files are accessed relatively more often than small
files. Furthermore, the accesaing of files of a given size is
randomized so that all files of that size are not accessed at the same
rate. The procedure finally used in the simulation model is to pick,
glven a particular file, the mean accessing rate of files of this size.
The mean accessing rate for the particular file in question is then
generated randomly from an exponential distribution with mean equal to
the mean accessing rate for this file size. This assures that files of
a given size do not all have the same mean accessing rate. The
inter-access intervals for the file are then generated randomly from the
appropriate distribution (exponential) whose mean is the derived
accessing rate for that particular file.

Another factor that algnificantly affects a fille’s characteristics
ia its type. The only type distinction of interest here is whether or
not a file is a library {(collection of smaller files). The exiatence of
libraries is quite evident in the trace data described in Chapter II.
Libraries are larger than most files, they are preallocated by their
owner so that their sizes tend to be multiples of five tracks, they are
accessed much more often than ordinary files and they are rarely created
or deleted. Accordingly the model includes a small subset of files that
simulate libraries. Their lifetimes are infinite, their sizes are
multiples of five, and their accessing intervals are exponentially
distributed with small mean.

4ok Velidetion

Validation of a simulation model of this complexity is a difficulc
apd largely subjective process. No attempt has been made to
mathematically demonstrate the applicability of the model, although the
model 13 based on demonstrated mathematical properties (distributions

and inter- relationships} of the real file system data.

- 48 -



Each iteration of the model was validated using two computer
Programs. The " most useful was a program mentiocned in Chapter II which
extracts daily activity plots and distributions of pertinent £file
characteristics from trace data input. The output of this program when
run on the trace data generated by the model was compared to
corresponding output from the empirical trace data. The program was
designed to demonstrate any differences in the traces. For instance
trends (increasing or decreasing) in such quantities as files in the
aystem, files accessed, etc. or imbalances (too many large files, small
files accessed too often, etc.) were easy to detect. The second method
of wvalidation was to run the various migration strategy simulations
discussed in Chapter V on the artificial trace and compare the
performance to that of the real trace data~ The performance of migration
astrategies depends very closely on the accessing patterns of 1ndividual
files, so matching the migration performance of the artificial trace
data to that of the real data inspires high confidence in the wvalidity
of the model.

4.5 Uses of the Model

The artificial trace data generated by the model could be used in
place of empirical trace data whenever the latter is not available.
Studies of migration strategies (as in Chapter V), evaluation of
proposed storage hierarchy changes, projections of future file storage

requirements are examples of uses of this type of trace data.

There is another very useful application of the simulation model in
which the real trace is not useful. Because the model simulates the
structure of the file system activity, not just its gross properties, it
can be used to simulate related file systems with slightly different
structure. This could be done by changing various input distributions
to the model or dependency assumptions used by the model to reflect the
hypothetical file system environment. For <4nstance, the wmodel could
simulate environments with half (or twice) a8 many users, or
environments in which there are no libraries or where there 1s serial
dependence structure to the accessing patterns of files. The resulting

- 49 =

trace data could be analysed to show the activity properties of the
hypothetical file system enviromments. An interesting experiment would
be to study the sensitivity of the behavior the varlous wmigration
strateglies studied in Chapter V to changes in file system activity.

- 50 -



CHAPTER V
FILE MIGRATION

‘This chapter applies the understanding of file system activity
developed in previous chapters to the problem of file migration.
Secondary storage, the highest non—executable level in the storage
hierarchy of a computer system, {s treated as a scarce resource. It 1is
desired to manage this resource by transferring files to and from the
lower levels of the hierarchy (back-up storage), so as to maximize the
probability that the next file to be accessed 1s stored 1in secondary
storage. The transfer of files between secondary storage and back-up
storage 1s referred to as migratiom. The d1implementation of the
management of secondary storage, that is, cof migration, involves
physical transfer of the files and proper maintenance of directory
structures by operating system routines. This implementation is the
migration algorithm. The process of deciding which files should be kept
in secondary storage and which files should migrate is called the
migration strategy. This chapter discusses the migration algorithm and
introduces and evaluates various migration strategies. '

The motivation for file migration can be either to decrease
computing cost or inerease computer performance. Proper management of
secondary storage can reduce system costs by requiring less secondary
storage  capaclty to achleve  the same level of performance.
Alternatively, effective migration can increase system performance by
decreasing the amount of input from back-up storage, at the same level

of secondary storage capacity.

Figures 5.la and 5.1b provide a clear indication that file
migration can be useful. Figure 5.ia is the same as Figure 2.3b. It
shows the fraction of total file space that is occupied by files that
have been idle less than any given length of time. Figure 5.lb gives,
for each idle time, the "hit ratio" or the fraction of file accesses for
which the file has been idle for less than the corresponding idle time.
From Flgure 5.la, for instance, we see that 20X of the file space used
18 occupied by files that have not been accessed for 30 days. Figure

- 5] =

‘|'Ill[l[lll'llI'll'l]'flllll

FRACTION OF ALL TRACKS

4

JUPET PP PRI I PR |

0.0-|||1Llll|llllllllll_l_.l_llll
a =1 109 i5e 200 250
AGE SINCE LAST ACCESS (DAYS)
FIG. 5.1A

-vllr.llllllrrllEIlrl!rllIIl

HIT RATIO

'llljllllllluljllj_:tllﬂ

5
3
:‘_L,,L_l_,l__;__‘_,_l_Jlnnalllajjlllnn]l

-] 1o Ae 30 49 sa

AGE SRICL LAST ACCLSS (DAYS)
FIC. 5.1B

- 52 -



5.1b shows that 98X of all accesses are to files that have been idle for
30 or fewer days. This means that a simple migration scheme could save
20%Z of the secondary storage cost with a very small (2X%) performance
penalty, by causing f£files that stay idle for more tham 30 days to
migrate to back-up - storage. If a bigger perfopmancgl penalty is
acceptable, say 10X, then files would migrate when they were idle for
more than five days and 45% of the secondafy storage capacity could be
saved. This simplified argument hides the fact that a 90 hit ratio
eans that 10X of all file accesses cause input from back-up storage.
Depending on the access time and transfer rate of the back-up atorage
medium, this may cause an intolerable wait time or load on the

input/output system.
5.2 The Implementation of File Migration

The migration algorithm, or in other words, the practical details
of implementing file migration, is discussed only briefly here. The
migration programs must cooperate with the file system and input/output
programs, and so depend on their specific structure. Several principles

are clear, however.

The migration algorithm implements automatic migration of £iles
between secondary and back-up storage. It relieves the user of
knowledge of where his files are kept and assumes responeibility for
managing sll levels of the storage hierarchy, not Jjust secondary
storage. This implies that while the directory structure in many
current file systems only describes the set of files in secondary
storage, a directory structure with automatic migration must include
poiﬂters to all files in the storage hierarchy. In other words, when a
file in secondary storage is selected for migration, its directory entry
ig not erased. The directory entry must be kept but modified so that
the address pointer in the entry points to the new location om back-up
store. Simflarly, when a file migrates from back-up store to secondary
storage, its directory emtry will already exist and will need only to
have the address field updated.

- 53 -

The migration algorithm also implements the process of deciding
which files should migrate. Selection of a suitable decision making
process, or'migration strategy, 1s discussed in the next sections.
These migration strategies make decisions based on some information
about files” past histories or physical characteristics. For instance,
LRU replacement uses the current idle period of each file as a parameter
in 1its decieion. Other strategies to be discussed use the average idle
interval of a file, the file size, etc., The file directory entries must
be changed to add fields to hold the information needed by the migration
strategy. Further, these fields must be wupdated whenever the

corresponding'value changes (usually when a file is accessed).

If secondary storage is kept full, then each time a file migrates
from back-up store to secondary store, one or more files in secondary
store must migrate to back-up store to free space for the new file in
secondary store. To avoid having to search through the directory
entries of all files in secondary storage to determine which should
migrate out, some type of ordered liat of the files should be
waintained. For simplicity this discussion aesumes only two levels in
the storage hierarchy. If there are more levela, an vrdered list of
files is needed for all but the lowest level. For LRU replacement, for
instance, the files are ordered by current idle time and the file with
the longest current idle time 18 selected for wigration. Other
replacement strategies use other measures on which to order the files,
but for each strategy to be discussed there Is a unique ordering of the
files.

A sorted list of the files 1is not completely necessary however
since only the first element of such a 1ist (the file to be migrated)
negds to be readily accessible. A partial ordering such as is provided
by a "heap" is all that is needed. Heaps, which are discussed in Knuth
[Kn73], provide a very efficient wechanism for maintaining partially
ordered 1lists. When a file is accessed or its place in the ordering
changes for any other reason, its directory eantry must be removed from
the heap and re-inserted in sort order. For LRU replacement, the
accessed file is inserted at the bottom of the heap. For other

- 54 -



replacement strategies, insertion may be required other than at the head
of the list, and some searching through the heap may be necessary. All
the migration strategies to be considered in this werk have the
characteristic that the sort measure of a file (i.e., current idle time,
or average ifidle time, etc.) can only change when a file is accessed.

This important property implies that when a file is accessed, other

directory entries in the heap do not change their relative sort order.

Only the directory entry for the accessed file need be removed and

re~inserted.

‘This added structure of linking the directory entries on a sorted
list can be avoided 1f the secondary storage is not kept completely
full. If at the beginning of each day, sufficient £free space 1is
allocated 1in secondary storage to hold all newly created files and all
files that migrate from back-up storage during the next day, then the
migration of files to back~up storage can take place late at night
during the system’s uminimum load time. Many systems run accounting
routines during this time which scan all the directory entries in the
file system. If a complete scan 18 being made anyway, the most likely
candidates for migration can be identified at this time and all the
migration to back-up storage that is required to free space on secondary

storage can take place during low usage time.

The migraﬁion algorithm need have very little Impact on the file
system code. The directory entries must be changed, as discussed, to
point to files on back-up storage as well as secondary storage, and to
hold additional information needed for the replacement strategy.
Migration into secondary storage can take place on demand. If
sufficient free space is allocated in secondary storage, then migration
to back-up store can be delayed until low usage time when its impact on
the system wilil be small.

5.3 Evaluation of Migratiom Strategies

The remainder of this chapter deals with a number of possible
migration strategies. This section describes the simulation and
evaluation of these strategles. Each strategy to be studied 18 bullt
into a migration simulation program. This program simulates the running

- 55 =

of the migration algorithm discussed in the previous section, using the
migration strategy under study as the decision making process. Each
simulation is run ueing the empirical trace data discussed in Chapters
II and III as input. Since the input to the simulation is real trace
data, as opposed to artifically generated data, the results of the
simulations are identical to the results that would be obtained by
running the corresponding wmigration strategy on a real computer. The
outputs of the simulations, which provide an indication of the

effectiveness of the particular migratiom strategy, are discussed below.

The output from such a simulation program should give a measure of
the performance of the migration strategy in question that can be
compared with the corresponding measure for other migration strategiles.
Two performance measures are used here for evaluation of migration
strategies. The first is the "miss ratio". This number gives, for a
given secondary storage capacity, the fraction of file accesses that do
not find the accessed file in secondary storage, unmder the wmigration
strategy iln question. That is,

miss ratio = accesses to back-up storage/total accesses
where

total accesses = accesses to f£iles in secondary storage

+ accesses to files in back-up storage

alsc
0 < miss ratio < 1

Clearly, the migration strategy that gives the lowest miss ratioe,
for a given secondary storage capacity, is preferred. The closer the
miss ratio 18 to zero, the fewer the number of file that accesses fail
to find the required file in secondary storage. Each such failure, or
"miss", causes a file to migrate to secondary storage from back-up
storage, causing additional load to the fnput/ocutput system and greatly

- 56 =



ilucreasing the effective access time to the file. The miss ratio thus
gives a measure of how effectively the particular migration strategy
manages secondary storage in the sense of keeping the most used files in
secondary storage and reducing the number of file transfers from back=up

storage.

The second evaluation measure is migration traffic. The migration
traffic gives the average volume of input/output transfers per time unit
(tracks per day) needed for migration with a gliven secondary storage
8ize, under the specified migration strategy. In a page replacement
environment where pages are all the same gize, the miss ratio and 1/0
traffic are equivalent measures (traffic is proportional to the miss
ratio). Thie is because each miss, or page fault, requires the transfer
of one page to main wmemory, sc the same amount of I/O traffic is
required for each page fault. In the file migration environment, this
is not true. Since files are not all the same size, the migrations of
different files may cause different amounts of input foutput traffic. A
migration strategy with a low miss ratic may be a worse strategy with
respect to migration traffic than another strategy with a higher miss
ratio. As a trivial example, suppose that one strategy results in only
one miss, to a file of three tracks. Another strategy causes two
misses, each to files of one track. The former strategy has a lower

miss ratio but the latter causes less migration traffic.’

The two performance measures for file migration strategies, mizs
ratio and migration traffic, are thus not equivalent. Both will be used
in this chapter to evaluate the migration strategies presented. Which
measure 1s more appropriate will depend on the implementation used for
migration. In wmost situations the migratien traffic load is easily
handled by the data path between back-up and secondary storage. The
miss ratio evaluation measure is more important in these cases, since 1t
directly affects the average access time to files. If the data path for
migration 1s saturated because it has very small capacity or very high
use from other sources, them it wmay be more crucial to minimize
migration traffiec than the miss ratio. The difference is explored

- 57 =

further in Chapter VI. This discussion of evaluation of migration
strategiea has purposely avoided reference to actual costs and specific
memory hierarchies and devices. The miss ratio and migration traffic
measures do not depend on these installatlon-specific measures. The
actual costs of a migration system can be derived from the miss ratio
and wmigration traffic measures. S5ee for example papers by Lum et al.
[Lu74] and Kimbleton [K172] where the miss ratio and migration traffic
are assumed to be known, and specific costs are derived. Chapter VI of

this thesis also gives some examples.
5.4 Stack Algorithms and Stack Processing

Both the miss ratio and‘the migration traffic measures described
above are functions of the secondary storage capacity. For comparison
of two migration strategies, it is extremely useful to have performance
measure curves, that 1s, to know the value of the performance measure
for every posaible secondary storage capacity. It is possible, uaing a
technique first described by Mattson et ai. M170]1, to derive the
entire performance measure curve in one pass through the input trace
data. Mattson et al. call this method stack processing and describe
the set of replacement algorithms, called stack algorithms, for which
gtack processing 1is valid.

A simulation program that uses stack processing maintains for each
instant of simulated time an ordered list (called the "stack") of all
elements (pages or files) that have been accessed. The list isa ordered
on a sort measure which 1s unique to the replacement strategy being
used. For instance, for LRU replacement, the elements of the 1list are
ordered by their current idle times. Whenever the sort measure of an
element changes (in the cases considered here, this only occurs when the
element is accessed), the list must be resorted so that the ordering is
maintained. The sort measure wused is precisely the measure that the
corresponding replacement strategy would use in deciding which file
should migrate when secondary storage becomes full. Associated with
each element on the sorted 1list is a "depth". The value of the depth of
an element 18 the sum of the sizes of all list elements ahead of and

- 58 -



including the current element. Because of the nature of the ordering of
the 1list, the depth of an element has an Iimportant physical
interpretation. The list is sorted so that ﬁll the elements ahead of a
given element currently have a higher priority of being in secondary
storage. Thus, 1f the element in question were stored 4in secondary
storage at a given time, then all the elements ahead of that element
would also be contained in secondary storage. The depth of a 1list
element thus gives the minimum secondary storage capacity, such that the
element would be in secondary storage, under the migration strategy in
use, at this point in simulated time.

A "stack algorithm" 1s a replacement strategy which, at each moment
in time, defines a total ordering of the elements that have been
accessed. Thias property 1is necessary (and sufficient) for the proper
operation of stack processing. All of the migration strategies
considered in this work are stack algorithms. A stack algorithm has the
property that the miss ratio curve is monotone decreasing as the size of
gsecondary storage increases. This means that fncreasing the size of
secondary storage cannot cause worse performance (more misses}. The
same property, monotonicity, holds for migration traffic curves of stack
algorithms. Mattson et al. Ma70] give an example of a replacement
strategy, which is not a stack algorithm, for which this may not be

true.

Two important changes were made in the staéﬁ processing algorithm
for paging to apply it to file migration. First, in paging, the stack
depth of a page is simply the page size (which is fixed) times the
number of pages with higher priority (i.e., ahead of it on the sorted
list). Therefore, all that is needed to compute a page’s depth is its
ordinal position in the list. Files, by contrast, are variable in size
and the simulation must maintain for each file, not merely its ordinal
position; but the sum of sizes of all files ahead of it in the sorted
list. A second change was necessitated by the nature of the input trace
data, but has the side effect of substantizl savings in computer time
for the simulations. The input data indicates whether or not each file
was accessed on a given day. There 18 no indication of the order in

- 59 -

which files were accessed within each day. Therefore, the accesses to
files for each day camnot be distinguished and can be treated as if they
all occurred simultaneously. The simulation program, therefore, only
reorders the sort list and re-computes depths after all accesses for a

given day have been processed.

The stack processing simulation program maintains an ordered 1list
of all files that have been accessed and associlates a depth with each
file in the list. Whenever the input trace data 1ndicate that a
simulated access is being made to a file, the current depth of that file
is recorded. Thus, as the simulation proceeds, a histogram of depths is
developed, where for each possible depth the number of accesses to that
depth is recorded. The miss ratio curve is generated very simply from
the depth histogram. When the histogram is normalized, it becomes the
depth density function, giving for each depth the probability of access
to that depth. The corresponding probability survivor function gives
for each depth the probability of access to depths greater than the
given depth. This function, interpreted correctly, is the miss ratio
function. Hhén the abscissa is thought of as representing secondary
storage capacity, then the curve gives for each secondary storage
capacity the probability that an access is to a file not stored in that
secondary storage capacity. This is exactly the miss ratio as described

previously.

Two sample miss ratio curves are given in Figure 5.2a, one dotted,
one solid. Clearly, the atrategy which generated the dotted curve is
preferred since its miss ratio is lower for every secondary storage
capacity. The most interesting area of comparison is at low miss ratios
(close to zero) since this is where a migration system would probably be
tuned to run. To show this region of the curves better, we perform a
simple transformation. The transformation is to show the miss ratioc on
a logarithmic scale in order to expand the interesting region near zero.
Thie is shown in Figure 5.2b. This is the type of curve we will use for

evaluating migration strategles with respect to miss ratio.

The other performance measure we will use is the migration traffic

- 60 -



LEAST RECENTLY USED

i . e L L l Li T Ll L I Ll Li Ll L] I L) I'—.:
9 -
] ]
é’ >
3
L e ]
0.0
? woaa
STORAGE CAPACITY {'rmcxs)
FIC. 5.2A
LEAST RECENTLY USED
.50 :
o9 100 |-
= F
éa ose b
(/] L
m
g L
@ 010 b~
@ S .-_. L_.A..J._.l..__l i Al 3 I_ d A A A l A -
2 18000 20000 30000
STORAGE CAPACITY (TRACKS)
FiC. 528

- 61 -

MIGRATION TRAFFIC PER DAY

10

3
10

2
19

LEAST RECENTLY USED

S I T T T T I L) T
E ."'--....‘_ '_:
—
- ... -
L_-. \-
CUNUR WY U W _l A f - il l I [l ' 1 l
-] o000 20000 30000
STORAGE CAPACITY (TRACKS)
FIG. §.3
- 62 =



rate curve. An example of this type of curve is in Figure 5.3. The
horizontal axis is the same as for miss ratio curves; capacity of
secondary storage. The vertical axis measures migration traffic, in
average nupber of tracks migrated per day, for the corresponding

gecondary storage capacity.

Ag mentioned above, for the paging environment, the miss ratio
curve and the traffic curve are ldentical to within a scaling factor.
In the file migration environment, where the migrating elements are not
all equal in size, this equivalence no longer holds. The traffic rate
curve, though never reported before, is a natural extension of the miss
ratio curve and can be generated by the stack processing algorithm with
a simple change.

In determining the miss ratio, the program essentially records for
each file access the fact that, for each secondary storage capacity less
thar the current depth of the file, a miss has occurred. The traffic
rate modification records for each file access the information that, for
each secondary atdrage capacity less than the curreat depth of the file,
migration traffic proportional to the size of the accessed file must
take place. The resulting traffic rate curve is not equivalent to the
miss ratio curve and provides a second evalustion criterion for

migration strategies.
3.5 A Primitive Migration Strategy

We now begin to discuss migration strategies. The first 1is a
migration strategy that 18 used on some current machines. It is
mentioned previously in Chapter II and Chapter V as an example. This
strategy simply forces files to migrate when they have not been used for
some pre-determined length of time. We will refer to that leogth of
time as the migration threshold. Clearly, if the threshold 1is
increased, fewer files migrate and the chance of accessing a file not in
secondary storage (l.e. the wmiss ratio) decreases and less migration
traffic results. On the other hand, if the threshold is small less
secondary storage capacity is reguired. Figures 5.4a, 5.4b and 5.4c

- 63 ~

4
10

3
1o

MIGRATION TRAFFIC PER DAY

-
]

Miss .RATIO
3

e 018

[

lllll"‘f]lll"]".‘llI'I-IT"IT

T BN |

i

P U S RN PR T
-] 10 29 30 AQ
MIGRATION THRESHOLD (DAYS|
FIG. 5.4A
B

T

-
L4 A

]

NI P DS D .

10 20 aa a0
MIGRATION THRESHOLD (DAYS

FIG. 548

ltt"lliillfrllrfr‘l—l‘rr-l[l

50

o bt

"




Rl bl r-r-r—ﬁ—[ﬁ ] A B [Ty T

QUIRED

- // R

20000 |- : . ' -

19000 |— B : - -

i b

eloceccalova el b o b 4y
° 10 a3 30 40 5o
MIGRATION THRESHOLD (DAYS)

FIG. 5.4C

SECONDARY STORAGE CAPACITY RE

MIGRATION THRESHOLD REPLACEMENT

o soal 1

L ]

E;p 100 g- =
gie oso f ]
[ 1

e 010 b~ -

PR SR B b

e i0ee0 22000 F00u0
STORAGE CAPAC“T'(“UKﬂG”
FIG. 564D

- 65 -

show these relationships. A trade—off must be made between secondary
storage capacity and migration traffic. The trade-off decision depends
on the actuzl costs involved. Chapter VI gives several examples with
representative costs. The miss ratio curve for this strategy cam be
generated, without using the stack processing algorithm, by combining
Figures 5.4b and 5.4c and removing the common parameter, "migration
threshold”. Flgure 5.4d gives the result.

The choice of migration threshold détermines, as shown 1n Figure
5.4b, the amount of secondary storage required. Using a fixed migration
threshold, however, causes inefficient use of the secondary storage.
This 41is because day to day variations in usage will cause the total
space occupled by files whose idle time is less than the thréshod to
vary. Thus, secondary storage will not always be kept full. This
inefficiency can be avoided by varying the migration threshold so that
secondary storage is always kept full. The migration strategy then

becomes:

- files migrate in order of their current idle
times, largest idle time first

- a migration need take glace only when secondary
storage cannot hold a2ll files not yet migrated.
This is precisely the least recently used (LRU) replacenent
strategy. The next section develops the LRU strategy and generates its

miss ratio by stack processing.
5.6 The LRU and MIN Replacement Strategiles

Figure 5.2 shows the wmiss ratio and traffic curves for LRU (least
recently used) replacement. The solid line is the performance of LRU,
the dotted line is for the MIN strategy. The MIN curve is shown in all
plots, both miss ratio and migration traffic, and serves as a basis for
comparison. The MIN replacement strategy, also called OPT, was first
described by Belady [Be66]. Belady shows that for replacing fixed size
elements {(pages) no strategy can do better than the one (MIN) which
first replaces those elements which will be accessed furthest in the

- 66 ~



future. In the context of stack processing described previoualy in this
chapter, MIN sorts the elements on the léngth of time to next access.
This strategy minimizes migration activity by assuring that those files
which will be accessed in the near future are available £{n secondary

storage.

Because it requires knowledge of the future, in the form of the
next access time for each file, MIN cannot be implemented on a running
system. It is used in paging studies as a reference for practical

replacement strategies. MIN is used here for the same purpose.

The MIN strategy is, however, not the optimal strategy in the file
migration enviropment. The proof of optimality of MIK requires that the
elements all be the same size. Files are unequal in size and so MIN is
not optimal for files. A simple counter—example is given in Appendix B.
The optimal replacement algorithm for variable sized elements is =not
known. A study by Casey and Osman [Ca74) discusses this problem in
another context. {(Other work, such as Fabry and Prieve’s VMIN [Fa76),
deals with fixed size pages 1In & variable sized store, a different
problem.) The MIN strategy performs quite well however and is used here
for reference. In some instances, other strategies do slightly better
than MIN for some storage capacities.

5.7 Alternatives to LRU

The performance of the LRU replacement strategy was shown in Figure
5.2. We shall see that this is a reasonable strategy though there are
strategies which perform better. In page replacement situations, LRU is
usually the best choice. This is because of a property of program
performance called "locality". Locality refers to the fact that at any
given time in the execution of a typlcal program, there is a set of
pagee that are belng frequently accessed. This set of pages 1s the
curtent locality. The pages in the locality can be identified as those
that have been used in the recent past. They are the most likely pages
to be accessed in the near future, though the locality changes from time
to time and some pages become less frequently used and others form the

67 - .

new locality and become active.

With respect to the accessing pattern of an individual page, the
locality property means that there 1s serial dependence between
successive inter-access times. Short inter-access times indicate the
page’s presence in the current locality and indicate that short
inter-access tilmes are expected in the near future. This is precisely
why LRU is effective in the paging environment, the most recent idle
time (the LRU measure) is a good predictor of the next idle time.
Chapter III discussed tests for serlal dependence of inter-access
intervals of files. For the typical file, there is no serial dependence
of inter-access intervals. Files are generally accessed at the same
rate throughout their lifetime. The accessing rate, however, does vary
from file to file and LRU works in the file migration environment
because the latest idle time is an estimator of the mean idle time, or
equivalently, of .the accessing rate. This section investigates
migration strategies based om other estimators of the mean idle time; a
running aversge of the file’s idle times and the true average of the

files previcus idle times.

For the running average used here, the exponentially smoothed
running average, the idle interval is updated at each access, using the

new idle interval sample as follows:

RA = k*RA” + (1-k)*X

where RA is the new running average RA® is the old running average
X is the most recent idle interval and k is the averaging factor (0 <
k<1).

The exponentially smoothed running average is an unbiased estimator
for the mean idle interval (E(RA) = E(X)). Also, in the 1limit with
infinitely many sawmples, the variance of this running average is less

than the variance of a single sample

Variance(RA) = (i-k)/(l+k)*Variance(X) < Varlance(X)
- 68 -



80 this running average is a better estimator.

In practical situations, there are not infinitely many samples to
average and this greatly effects the power of this running average
estimator. If only one sample idle interval is available for a file (or
if k=0), then the running average and LRU estimators are identical. As
the naumber of samples increases, the running average improves as an
estimator, as plotted in Figure 35.5. The wvariance of the running
average estimator d4is shown plotted against a number of samples for
various values of k. The optimal choice of k, the averaging factor,
depends on the number of sample intervals expected. Unfortunately, as
Figure 5.6 shows, there are usually very few sample idle intervals for
each file. Both the axes in Figure 5.6 have logarithmic scales. This
relationship is often found in real life and 1is known as Zipf's
law([Zi62]. The vast majority of files have only one or two accesses to
them in their lifetimes. This means that the running average idle time
cannot be expected to be much better than the previous idle time as an
estimate of the mean idle time. Figure 5.7 shows the performance of the
migration strategy that uses the running average i1dle time as the
measure for sorting files 1in migration order. It is nearly
indistinguishable from the performance of LRU replacement. For
reference, in Figure 5.7 and following figures, the performance of the

LRU etrategy is shown as a dotted curve.

The running average has the advantage over the true average of
requiring only one extra plece of information to be stored with each
file. The true average, while requiring two pieces of information, the
current average and current number of samples, ts a slightly better
estimator. The power of the true average estimator is shown 1a Figure
5.5 as a dotted curve. Again, because of the low number of accesses to
most files (Figure 5.6), we expect that the true average estimator
cannot perform much better than the LRU estimator. In fact, it is
slightly worse, as Figure 5.8 shows. The reason for this poorer
performance 1is not clear. A possible explanationm is that the running
average and LRU strategies, by welghting the most recent intervals wmore

- 69 -

RELATIVE VARIANCE OF ESTIMATE

Y
&

(LI

g ® b
™ » o

ofTII!rFT‘IY'[l’.T_I'IIIIIT'!"TITI!-IH

®
®

RUNNING AVERAGE ESTIMATE

L

T L3 T T T T 1 l ¥ ¥

A i l A 1 - A l A A

-

llllllkllillEJIJIII]IISLII

pr

5 ie
NUMBER OF SAMPLE POINTS
FIG. 5.5

- 70 -



T4
10

[
[~
"

[
e

FREQUENCY
n

1
10

1
NUMBER OF A

11771 LI T L] L N B II ¥ 1] T T rYuvy
- )
B
|
.
-
o L)
B -
e,
= .
E .
- -
- -~ .
r .
- A
s ‘ e S
-I" LICH

e
_r- - - . C.
E -
E P

.8 ..
[ . .
2 .
’ |
W A A 1 A A1 L .l - N L 'l A% 2 4 4

s 1@ 58 100

CCESSES IN LIFETIME

FIG. 5.6

- 71 -

RUNNING AVERAGE IDLE TIME
AVERLGEIO #/CT01 = 0.8

[
g
!

MISS 'RA.TIO
g

@ 010 |~

@ o5 —

LR I LN R Y i - T

RUNNING AVEEAGE IDLE TILE
AVERLGING FACTOR = 0.5

S :
4

]

t

A ¥ ) 1 I A 'l A F l A L A A I
10000 20000
STORAGE CAPACITY (TRACKS)
FIG. B.7A

lﬁ‘ d
. f
g L
5 -
& 50? —
[ &) o
E s
3 =
e -
o i
b= [
e_.

PR RIS N

10000 caond
STORAGE CAPACITY {TRACKS)

FIG. 5.78

-72 -



LEAST FREQUENTLY -USED

e 199

T lIlllI

T

Miss @RA’I'IO
3

o o019

® 205 Lttt

PR T A Y

i

18000 20000 30009
STORAGE CAPACITY (TRACKS)

FIG. 5.8A

LEAST FREQUENTLY USED

L F L L] L] Li l L
104 o -

i - f
& ’,
ﬂo:ea — “ =
(8] s . 3
E; i .~ :
g 2
B NE
g 1 ;
g3 [ ]

.. bl octmen e 4o

@ 1dd8a 20020 e

STORAGE CAPACITY (TIUACKS)
FIG. 5.68D

- 73 -

heavily, do a much better job of managing those atyplcal files which do
have some serial dependence of idle intervals and for which, therefore,
the most recent idle intervals are better estimators than the average.
This strategy, in analogy with least recently used, 13 called least
frequently used because the file with the highest average idle time, and
thus the lowest average accessing rate (i.e., the least frequently used
file}, is the first to migrate. Least frequently wused 1is abbrevia;ed
LFU.

5.8 Migration Strategies Based on File Size

The fact that files are not equal 1In size can he exploited in
designing migration strategles. A situation where this property cam be
used to improve performance is visualized as follows. Consider three
files; one large file and two small ones, such that the total‘size of
the small files is equal to the size of the large file. Suppose,
further, that the migration priority, as defined by the migration
strategy in use, is slightly higher for the small £files (they will
migrate before the big file). If the secondary storage capacity 1s such
that the small files are kept on back-up store and the large file is on
secondary storage, then if all three files are accessed, one '"hit" and
two "misses” will result. An alternative migration strat- egy, using as
priority measure the priority measure of the above strategy multiplied
by the file size, would have placed the small files in secondary storage
and the large file on back-up storage. The same series of file accesses

would then result in two "hits" and one "miss"™, for a hetter miss ratio.

What is needed is a migration strategy whose measure makes use of
the size of the file 2s well as some estimeste of the next idle time. A
natural way tc combine the file size and an estimate of the files’ mnext
idle interval is to uge their product. The result 15 an estimate of the
space~-time product of the file’s occupancy until next access. Small
files with short estimated future idle period will be the least likely
to migrate because their estimated cost in secondary storage measured in
space~time wuntil next accese 13 small. Another way to think of the
product of size and next idle time ig a5 an estimate of the accessing

- 74 -



"density" of the file. Small, active files are accessed more demsely

than others.

This type of measure has  been used 1in related problems. The
problem of dynamie file migration with unknown future accessing
probabilities has not been studied before. Other research however has
been published on the file allocation problem for a fixed population of
files with known access probabilities (see Chapter VII for. a more
complete discussion). In particular Morgan [Mo74], Ramamoorthy and
Chandy [Ra70), Arora and Galle [Ar73), and Kimbleton [Ki72) all use an
accessing density measure to solve particular formulations of the file
allocation problem. Gilmore and Gomory [Gi66] show that a value density
measure is a good heuristic for £inding solutions to the knapsack
problem. The knapsack problem is related to the file migration problem
(fitting unequal sized elements with unequal values into a fixed space
80 as to maximize the total value) though the element values do not
change over time. The migration strategles considered in this section
are extensions of the least recently used and least frequently used
strategies developed in the previous section. In each case, the new
strategy sorts files on a new measure which is equal to the old measure
(most recent idle time or average previous idle time) times the file
size. Figures 5.9 and 5.10 show the resulting performances. As
expected, the miss ratio curves are better. The migration traffic
curves, however, are not as good because, although the miss ratio’s are
lower, the new strategies cause larger files to migrate so that those
misses that do occur cause more migration traffic. Thus the selection
of migration strategy between the strategles in the previous sectiom and
those same strategies extended to take file sizes into account, depends
on which evaluation c¢riterion, miss ratio or migration traffic, is
considered more ilmportant. The choice of evaluation criteria is

discussed in Chapter V, Section 3, and in Chapter VI.

The migration strategy which sorts files by size alone is shown in
Figure 5.1la. This strategy migrates large files in preference to small
files without regard for past accessing history. As a result, its
performance is poor. In fact, this strategy works in direct opposition

-75 =

LEAST RECENTLY USED TIL(ES SIZE

A ]
a8 560 4
1
Qe 186 ‘;- —
B - ]
ﬁe 050: o
0 - 4
n
5 - i
@ ote | ]
N N BV B B '
] 190000 2¢ede 32000
STORAGE CAPACITY (TRACKS)
FIG. 604
LEAST RECENTLY USED TIMES SIZE
I F L T Ll ' Ll ¥
wt b E
: ]
[ ]
% | ]
a i ]
&
°-103 L
o F
& 3
E L
a |
8. L
g i
3 i ]
S ] A FY I i 1 3. s I - L a. i ’ L "
a 10090 20209 30002
STORAGE CAPACITY (TRACKS)
FIG. 591

- 76 -



LEAST DENSELY USED

p

" -

I ] I_ "ol
i A A . -l A A, A ’ il

10008 20009
STORAGE CAPACITY (TRACKS)

FIG. 5.10A

LEAST DENSELY USED

4
10

MIGRATION TRAFFIC PER DAY

PP R B

10800 20020 W00
STORAGE CAPACITY {TRACKS)

FIG. 5.10B

- 76a -

REPLACE LARGEST FILES FIRST

T l L} L T I

Q9 100
13 X
a9 058 [
g -
o e10 p—
e m h_. .  § A y I
@ 19200 22000
STORAGE CAPACITY (TRACKS)
FIG. 6.11A
REPLACE SMALLEST FILES FIRST
"'\._. Lame £ l T
eseel o
b 'l\
‘."-
o9 100~ -
g s . ,
go ase
s \"\___‘\_‘\
e oie |~ ., =
[ R
-] m :...-.l..._.l_J A l 'y e Fu 1 A L i 'S A "

) 10080 20002 00

STORAGE CAPACITY {TRACKS)
FIG. 5.11B

- 77 -




to the fact, shown in Chapter III, that large files are accessed more
frequently than small files. This would dindicate that a wmigration
strategy should faver large files and cause small £files to migrate
first. The latter strategy (Figure 5.11b) also performs poorly because
it again ignores the past accessing history of the files.

The extended strategy corresponding to MIN, that is the strategy
that sorts files on the product of next idle interval and file size, is
shown in Figure 53.12, This strategy performs substantially worse than
MIN. MIN is near optimal and the strategy shown reverses many of the

correct decisions made in MIN by favoring small files.
5.9 Other Migration Strategies

Figure 5.13 shows the performance of random replacement as a
migration strategy. This is useful as a worst case comparison. Figure
5.14 is shown here to corroborate statements made in Chapter III. It
was shown there  that there 18 essentially ne correlation between a
file’a lifetime or age since creation and its accessing rate. This
implies that a migration strategy which orders files by age (time in the
system) would perform like the random replacement strategy. This is

shown to be the case in Figures 5.14.

5.10 Conclusion

This chapter on file migration has presented the major results of
this  work. File  migration 18 discussed in general and its
implementation is outlined. Then the specific question of the migration
strategy to be used is discussed. Two measures, the miss ratio and the
migration traffic rate, are suggested for evaluating migration
strategies. Each strategy is simulated running on empirical trace data

of real file system activity.

LRI replacement 1s shown to be a useful strategy. Related
strategies, the running average ldle interval and least frequently used,
do not provide any ilmprovement. Modifying these strategies to favor

- 78 -

SORT ON NEXT IDLE TIME TIMES SIZE

MISS RATIO
o [
§ 8

Ad

lg.LJlllll

|

L Add

L L A y - J 1 e L 'y l L A A i l F |
10000 coo0e 0000
STORAGE CAPACITY (TRACKS)

FIG. 5.12

- 79 -



RANDOM REPLACEMENT -

-r.- L L T l T ¥
L &,
0.500}t h
Q9 100
H 1 . ]
2 osef L :
7 [ 1
E I k\\--\ &
@ 018 — —
¥ 3
o 005 :._ L Ao A _l F) i L 1 l R A A l ' -
° 10000 2oaeo 32008
STORAGE CAPACITY (TRACKS)
FIG. 5.13A

RANDOM REPLACEMENT

30

- rvrln[

c
w

;N
A | T v—rv—ruul
/

MIGRATION TRAFFIC PER DAY

L

Ly a2 _1,,_‘__‘_ Ao i, t IS DA W\ l '

sal

e bbbl L

el d L2

MISS RATIO

10000 20000 Jee0s
STORAGE CAPACITY {TRACKS)

FIG. 6.13D

_80_

REPLACE YOUNGEST FILES FIRST

—T T

: .‘... I, 1 1 __’t ¥ ¥ L
ool
geop ;
Eo w50 X ]
g T w
i |
| -
0 010 : el
o 005 |:_L_...J_...._.A i l IS R R T 1 " M A l A 1.-
e 10000 2ce00 30009
STORAGE CAPACITY (TRACKS)
FIG. 5.14A
REPLACE OLDEST FILES FIRST
I
eseal -
L
o 10|
3
o ose |
® 010 \ —
g hats
o A0S :_ PR SR YU __l, PR SRt ’ Ae.y a4 l e a ]
°

10000 20000 30000
SVORAGE CAPACITY (TRACKS)

FIG. 6.14B

- 81 -



small files gives good 1wmprovement with respect to the miss ratio
measure, but not with respect to the traffic rate measure. Chapter VI
discusses examples of situations where one or the other measure is
appropriate. Finally, the performance of the MIN strategy and random
replacement strategy 18 gilven as near-best and near-worst cases for

comparison.

- 82 -

CHAPTER VI
EXAMPLES

This chapter presents some examples of file migration systems. The
purpose here 1s to put into context the results of previous chapters and
to give a feeling for file migratiou. These examples are intended to
demonstrate the cost and performance improvements that are possible, and
to put into weaningful terms the two evaluation measures for migration

strategies presented in Chapter V.

It is important to be careful in applying results based on
empirical measurements of one computer system to radically different
systems. For this reason, the hypothetical systems presented here are
closely related to the one used in gathering the data on which this
study is based. Other file systems with radically different acale or
purpose, for example-a small minicomputer file syste; with one disc or a
very large data base system with hundreds of discs, can, of course, be
analyzed using the methods of this thesis. The results of this work may

not apply directly to such systems however.
6.1 Improved Performance from New Migration Strategies

Some file systems use & primitive form of LRU replacement for
automatic migration of files. This strategy assigns a migration
threshold and a file migrates when it has been idle for a longer period
of time than the threshold value. This migration atrategy has been
discussed in Section 5.3, From Figures 6.la,b (the same as Figures
3.4b,c), we can determine the miss ratio and secondary storage needs
that result from a cholce of migration threshold. Some migration
thresholds and corresponding miss ratlos and secondary storage capacity

requirements, are:

Migration Miss Storage

Threshold Ratio Required
7 days 10 20000 tracks
14 days . 057 23750
21 days . 038 26250
30 days .026 28599



Rt ]

&
&
&
E -
:

Fen i)

20000

[]

19000

e

lflrllltlitll'lrﬁillllllll

it a7

bt d

I

_l LAk

18 20 » 49
MIGRATION THRESHOLD (DAYS)
FIG. 8.1A

MIGRATION THRESHOLD REPLACEMENT
—y —r—l"r'“l""l"‘i“l ‘I'_I ""f—T""l‘r T'rT‘Y‘T”'I“I"T"‘"I"‘l"T'I—T

I —

° 19 23 30 40
MIGRATION THRESHOLD (DAYS)

FIC. 8.1B

- 85 -

P N PR VP RO
°

L ——

:.J-l_l- .I._I_.I‘ LIS R I_I._l_.L.-.L_l_.L.—A_L—.I_l_.J._-I—L—L—l._

b

lLlleLjLilll}I

5@

The discussion in Chapter V of this migration strategy pointed out
that using a fixed migration threshold is wasteful of secondary storage.
Because of day to day fluctuations in the accessing of files, the size
of the population of files accessed within the migration threshold
period (i.e., the files not cutrently migrated) will vary. This will
cause some secondary storage te be unused some of the time. Using the
LRU replacement strategy overcomes this Inefficiency. LRU migrates only
enough files so that secondary storage 1s just full. This is equivalent
to using flexible migration threshold. The miss ratio for LRU is given
in Figure 5.2b (reproduced here as Figure 6.2). From this figure, we
can derive miss ratios for varlous secondary storage capacities. The
LRU miss ratios and miss ratio improvements over those for the migration

threshold strategy are:

Storage LRU Miss Ratilo

Capacity Miss Ratio Improvement
20000 tracks . 085 .15
23750 « 049 . 0038
26250 036 « 002
28500 024 .002

The performance increase shown in these tables {s achieved at no
extra cost and with no change in storage hlerarchy configuration. The

only change required is to the migration strategy software.

It was shown in Section 5.8 that a simple modification of the LRU
migration strategy, teo take into account the sizes of files, provides
better migration performance with respect to the miss ratioc evaluaﬁion
criterion. The modified strategy orders files for migration on the
product of the current idle time and the file size, thus favoring (in
the sense of unot migrating) small files as well as recently accessed
files. The miss ratlo curves for LRU and modified LRU (referred to as
"LRU times size™) are shown In Figure 6.3. A migration system using the
LRU strategy can get a substantial performance improvement by changing
to the modified LRU strategy. The following table lists, for various
secondary storage capacities, the miss ratios achieved by LRU and
modified LRU.

- 85 ~



LEAST RECENTLY USED TIMES SIZE

LEAST RECENTLY USED NG LU I ™ r—T 1 } T 77 ] LI
" .[..-. T l T | g | 1 [ T T ™t I T ] @ 500 : 3 " :
G 509 ¢ A 3 1
~ - : 1
090 100 —
08 100 p— - g E
B ‘ ] o ose |
éo oso b ; n i
7° - g |
g 5 ; i
0 012 —
e 01@ — — E
- 3 9 005 b L—a 2.1 ] PR
1 l PR | i l T R ¥ 1 1 l » 9 10009 20026
e opsb—a 1 V. i ey
STORAGE CAPACITY (TRACKS) FIG. 6.3

FIG. 8.2

- 86 - - 87 -



Secondary Modified Miss

Storage LRU LRU Miss Ratio
Capacity Miss Ratio Ratio Improvement
10000 tracks « 367 234 . 133
20000 . 087 074 013
30000 021 .013 . 008

The effect of various miss ratio values on system performance 1is
discussed in the next section. It is clear though that by changing
migration strategies, again at no cost in increased  hardware,

non-negligible performance improvement can be made.
6.2 Changes in Storage Hierarchy for Improved Performance or Costs

Unless there is a surplus of secondary sterage capacity, any
reduction in the secondary storage capacity will cause an increase in
the miss ratio. This 1s because when less secondary storage is
available, more files must be kept on back-up storage and there is a
higher probability that a file being accessed is found only on back-up
storage. The effect of increasing the miss ratio will depend on the
type of back-up storage being used and on the cost of delaying running
programs while they wait for file migration. The cost of delaying a
running program is system dependent and ﬁery hard to quantify. No
attempt will be made to do so here. The effect of the type of back-up
storage and, ipn particular, the access time to back-up storage is

discussed later in this section.

If an increased miss ratio can be tolerated in & particular system,
then secondary storage capacity can be reduced and hardware costs
decreased accordingly. The secondary storage requirements for various
niss ratic values can be determined from Figure 6.3. The following

table summarizes the relationship.

Secondary Storage Capacity Required

Miss Ratio Modified LRU LRU
.01 33000 tracks 33000
. 025 26500 28500
.05 22500 24000
.1 18000 19000
.25 9000 12500

- 88 -

As an example, a system that requires 99%% of all file accesses to
be to secondary storage (miss ratio = .0l) needs 33000 tracks, but if a
miss ratio of .1 (one-tenth of all accesses cause migration from back-up
store) is telerable, then only 18000 tracks are required. The savings
in cost of secondary storage 1s 45%. Such a reduction in secondary
storage capacity, besides increasing the miss ratio, also increases the
amount of migration traffic. It is important to assure that the data
path between secondary and back-up stores can handle the increased load.
Figure 6.4 shows the migration traffic curves for LRU and modified LRU.
In the example above, reducing secondary storage capacity from 33000 to
18000 tracke increases the migration traffic from 250 to 6000 tracks per
day. If this traffic occured mostly in the 6 hour peak work period then
the rate would be 1000 tracks per hour or one track every 3.6 seconds.

This amount of traffic would be insignificant for most data chanpels.

The most obvious effect of increased miss ratio in a file system is
the resultant increase in average access time. When all files are kept
in secondary storage and the miss ratio is zero, the average access time
to a file 1is Jjust the average access time of the secondary storage
device. If the miss ratic is not zero, then some file accesses are
handled by the back-up storage. Since the access times to typical
back-up storage devices are much longer than for secondary storage, an
increase in miss ratio can have a large effect on the average access

time to a file. The relationship is

T = (1-MR)*Ts + MR*(Tb + Tt)
where

effective average access time

average access time to secondary storage

average access time to back—ug storage

average time to transfer a file from backup to secondary
storage

MR = miss ratio.

[ ]
-2
L0 I ]

The hypothetical system to be examined here uses disc for secondary
storage and magnetic tape for back-up storage. The following wvalues

will be used in these examples:

- 80 -



MIGRATION TRAFFIC PER DAY

4
io

3
10

1¢

LEAST RECENTLY USED TIMES SIZE

LI ]’ L) v Li L] I T
P - -
e '. —
F E
-
—
s E
o o

i 1 i 1 l A 1 i I ] i i i L l i
] 10000 ceoee B 30000

STORAGE CAPACITY (TRACKS)
FIG. 6.4

- 90 -

Secondary store average access 50 msec

(typical disc storage device)
Back-up storage average access 200 seconds
(typical tape access time

including mount by human
operator

Transfer time to secondar¥istorage 200 msec

(averaﬁe 20 track file at
800,000 characters/second)

The effective average access time varies linearly with the miss
ratio from 50 msec, for miss ratio of zero, to 200 seconds for miss

ratio of one.

Effective average access times for various miss ratio values are:

Miss ratio 0 . 0001 . 001 N1} .1
Average
access time 50msec 70msec 250msec  2.05sec 20sec

Increase - 1.4 times 5 41 401

Clearly, the much slower access to back-up storage has a strong
effect on the average access time. THe distribution of access times,
however, is strongly bimodal. Most accesses take only the 50
milliseconds required to access the disc, while a small percentage take
much longer (> 200 seconds). Because of this, the average wvalue for
access time can be somewhat misleading and so must be considered with

the corresponding miss ratic kept in mind.

Acceas to back-up storsage in magnetic tape form 1s slowed primarily
by the time it takes a human operator to find and mount the tape.
Several wnew Bystems are avallable [Jo75], [Ha?3}, however, which
eliminate the need for human intervention. These devices, called mass
storage systems, store files on magnetic tape strips which can be
physically accessed by the machine and automatically brought te and
loaded on reading stations. Average access time is on the order of 15
seconds {compared to three minutes for tape). Pricing for these systems
is such that, once the minimum storage capacity is purchased, costs are

-9] -



approximately the same as for magnetic tape of equivalent capacity. The
{16 billion bytes; or 2 million
tracks) so for file syastems like the one under study,

minimum capacity available iz large
purchase of a
magnetic strip file may not be justified for file migration alone. The
data in this study, however, do not include files currently aaved on

tape. Replacing this population of tapes with a mass storage system
could well be economical and have the added advantage of providing fast

back-up storage for migration of disc files.

The following table shows effective access times and increases for
various miss ratioco values assuming the use of & 15 second access time

mass storage system.

Misa ratio 0 . 0001 . 001 .01 W1
Average '

access time 50meec S5lmsec 65msec  2Clms l1.56sec
Increase - 1.03 times 1.3 4 31

The faster mass storage system lessens the penalty caused by

increasing the wiss ratio. 1f, for example, an effective average access

time of two seconds {(miss ratio = .0l) was considered adequate in a

magnetic tape system, then secondary storage capacity of 27500 tracks is
required.
achieved

With a mass storage system, the same average access time 1is
with of 0.l4. Only

étorage are required to obtain a miss ratio of 0.1l4, a savings of 45%.

miss ratio 15000 tracks of secondary

Similary, 1if effective access time of 250 msec 1s required, mass storage

allowe a 16% saving in secondary storage capacity.

With a mass storage device for back-up storage, the file system can

run at various miss ratic levels, depending on system performance

requirements. Figure 6.5 shows that the optimal migration strategy for
a given range of miss ratios may not be the optimum for a different

range. For storage capacities from 22000 to 33000 tracks, the "least

densely used" (modified "least frequently used”, see Sections 5.7 and

5.8) performs better than "LRU times size" (modified LRU). In the range

of secondary storage capacities of 10000 to 18000, the opposite is true.

- 92 -

" LEAST DENESTLY UCE
AND LEATT KICSNTLY LoD 1 i

T T L T l T L]

0 509

<
3

MISS oRA'I'IO
&
]

&
n!

r

Al

lllllll

8 010 .
o ws A DU | — ) b ] I l "y ' i 'y 1 A-
%] 19000 £¢002. 3e02e
STORAGE CAPACITY (TRACKS)

FIG. 6.5

- 93 -



6.3 The Migration Traffic Evaluation Measure

All the preceding examples have used the miss ratio, rather than
migration traffic load, to compare performance of various configurations
and strategies. This 1s appropriate because the miss ratio directly
relates to highly visible performance characteristics, like average file
access time. Furthermore, when a file system Is coafigured to operate
with a low miss ratlo, there is very little migration activity and the
migration traffic will not be significant. The migration traffic level
for various secondary storage capacities should be kept in mind to
assure that the data channel between back-up and secondary stere is not
overloaded. In a typlcal large scale coﬁputer system, the data channels
have no problem handling the migration traffic of one thousand or more
tracks per day (see Figure 6.6). There may exist systems, however,
where the data path between secondary and back-up storage is very slow,
or very busy, so that the volume of migration traffic becomes a major
consideration. This situation will influence the choice of migration

strategy.

A possible example is a distributed computing system with local,
inexpensive processing nodes connected to a large central data base
through a slow and crowded communications network. Consider a computer
node of such a network with medium scale computing power and large
demand for access to the central file system, aml assume that the speed
of the coumunication link, and its use by other traffic, requires _l:hat
file migration traffic be limited to 5000 tracks per day. It iz desired
to minimize the amount of local secondary storage needed. Figure 6.6
shows the relevaat plots. Previous examples used the miss ratic as an
evaluation measure. Here it is appropriate to wuse wmigration traffic
volume. As  explained in Section 5.8, migration atrategies modified to
favor small size files perfofm poorly with respect to migration traffic,
because the traffic they cause involves larger filee. Figure 6.6 shows,
for example, that LRU replacement performs much better than does "LRU

times size".

To keep traffic below the 5000 tracks per day limit, LRU requires
- 94 -

MIGRATION TRAFFIC PER DAY

4
10

-
QU

2
p

LEAST RECENTLY USED

- | 'l l A ek 'l A I ' A

L A l.l_l_lll

2L llllll

A

10000 20000
STORAGE CAPACITY (TRACKS)

FIG. 6.6

- 05 .



11000 tracks of secondary storage. The "LRU times size" strategy
requires 19000 tracks.

Another aspect of this example is the mias ratio. Using LRU
replacement with 11000 tracks of secondary storage, the miss ratioc is
.32. If this is not considered adequate, changing to the "“LRU ctimes
size" strategy may still not be the best choice because "LRU times size"
requires 19000 tracks of secondary storage to meet the migratiom traffic
limitation. Using LRU with more than 11000 tracks, but stiil less than
the 19000 tracks required by "LRU times size" miss ratioc as low as .ll
can be achieved (Figure 6.3).

6.4 Summary

The examples in the preceding sections are intended to i1illustrate
some of the decisions involved in file migration system design. The
results of a study such as the one described in this thesis can be used
to make those design decisions in an intelligent manner. The two major
characteristics of file systems that have been discussed are the choice

of migration strategy and the structure of the storage hierarchy.

The miss ratio and migration traffic plots give a good imdication
of which migration strategies should be considered. Typically, the
migration traffic load will be small enough, compared to the data path
capacity, that only the wmiss ratio need be studied closely. The
modification to standard replacement strategies introduced here, in
which small files are less likely to migrate than large files, often
significantly improves the miss ratio performance of a migration

strategy.

The file storage hierarchy has not been covered as thoroughly here,
for several reasons. The primary emphasis of this work is on migration
strategies. There has been a large amount of research on memocry
hierarchy structure and sizing (this related work is reviewed in Chapter
VII), but little work om replacement strategies. Another reason to
emphasize migration strategies instead of the storage hierarchy is that

- 96 =

changes in strategy involve software and not hardware changes and,
therefore, usually are less costly and involved. 1If changes cam be made
in the storage system, however, performance may be greatly improved.
The mass storage systems used in examples in this chapter eliminate the
need for human intervention in loading volumes of back~up storage. The
resulting improvement in access time can have a large effect omn file
system performance. Future technological advances that further reduce
the need for mechanical motion of the recording medium will help still
more. The results and methods of this thesis allow a detailed
performance evaluation of any proposed storage system modifications

before the changes are actually made.

- 97 -



CHAPTER VII
DISCUSSION

7.1 Summary and Conclusicn

It has been the goal of this work to develop useful migration
strategies based on empirically observed characteristics of file system
activity., The initial chapters of this thesis discuss file migration
concepts and the analysis performed to extract the relevant properties
of file system activity from the trace data. Chapter V applies this
understanding of file systems to the development and evaluation of

migration strategies.

It is hoped that the following contributions have been made. File
system activity data of the type presented here has rarely been
gathered. This is the first time that a detailed analysis of such file
system data has been published. The file allocation problem has been
discussed and solved in other research only in the restricted cases of
fixed sized files, a priori accessing probabilities and static
(non—~changing) allocation. In a2 real computer environment, none of
these assumptions hold. This work presents and evaluates storage
allocation heuristics (migration strategles) for the dynamic allocation

of files with unequal sizes and unknown future accessipng probabilities.

The performance of dynamie storage allocation algorithms has
traditionally been measured {(in paging systems) by the miss ratio. A
new non-equivalent evaluation criterionm, the migration traffic, is used
in this thesis. Also, & new class of replacement algorithms based on
file size (or, more correctly, on the predicted accessing density of a

file) are shown to provide better file system performance in many cases.

Finally, the problem of file migration 1in real systems, its
implementation, 1ts user interface, its migration strategies, and its
performance and cost improvements are discussed in detail here, for the

first time.

- 98 -

7.2 Previous Work

Much previous work has been done in areas related ﬁo file
migration, though very little is available on file migration Iitself.
Some of this related work is reviewed briefly here. Several approaches
have been taken im this previous research. Many researchers discuss
optimizing the storage allocation of a fixed population of equally sized
files with known probability of access. The derived allocation in these
cases 1s always a fixed, static allocation, files not migrating as
conditions change over time. Ramamoorthy and Chandy [Ra70] discuss this
allocation problem. Yue and Wong [Yu73] offer proofs of the optimality
of allocating blocks with the highest access probability to the highest
levels of the storage hierarchy, for several different hierarchy

structures.

This approach is extended by other researchers to cover unequally
sized files. Arora and Gallo [Ar73] discuss this problem, as does
Morgan [Mo74}. Both of these papers use the accessing probability
“density" (i.e., access probability divided by file size) for ordering
files for allocation. This is the basis for the modification to
migration strategies that takes file size into account, introduced here
in Chapter V. The Arora and Morgan papers assume known, fixed access
probabilities, however. Lum et. al [Lu?4] deal with a similar problem
in which a file is considered to be in one of two states, active or
inactive, with known probabilities. The optimal hierarchy level for
allocation of the file in each state 18 derived given storage and
transfer costs. Their solution 1s thus a limited form of dynamic

allocation.

The work on static allocation is extended by Buzen [Bu7l] and <Chen
[Ch73a}, [Ch73bh] who deal with the same type of problem, using queueing
theory to study the effect of storage contention on optimal storage
allocation. A different apprcach to storage allocation is taken in the
work of Bovet and Estrin [Bo70al, [Bo70b)l. They model the interactions
between varlous parts of a ruoning program with a graph structure.
Decisions as to which parts should be kept in executable memory can be

- 99 -



made wusing this a priori program structure to predict future accessing

patterns. No work has been dome on the interactions between files.

Another field of research deals with proper sizing of wvarious
levels of the storage hierarchy, usually éssuming that the miss ratio
curve is known. These studies assign costs to the different storage
levels and also to file transfer times, and seek to minimize total
system cost or maximize performance within a given cost limitation.
Papers by Ramamoorthy and Chandy, Lun et. al., and Chen, mentioned

above, discuss hieratchy sizing.

A large body of work from the paging envircnment deals with dynamic
allocation of pages in different memory levels, but always with the
restriction that the pages are all the same fixed size. Mattson et.al.
[M170] discuss many replacement strategies and their evaluation. The
stack processing method they describe is used in this thesis. Belady
[Bebb] developedv-the MIN algorithm which gives the best possible
replacement performance for fixed size pages, but uses knowledge of
future accessing. Kimbleton [Ki7/2] takes another approach to dynamic
allocation of pages, similar to the approach to file allocation in Lum

et al., based on (known) inter-reference times for pages.

An interesting related problem is how to allocate storage within a
glven device when access times to different areas of that device are
different. A paper by Denning [De67] alludes to this problem. Frank
[Fr69]), Ramamoorthy and Blevins [Ra7l], Yue and Wong [Yu73] and Grossman
and Silverman [Gr73] discuss this type of allocation for disc devices.
Mitra [Mi74] studies the same problem in relation to wmagnetic bubble

memories.

Revelle [Re74], [Re75] has published some analysis of a set of file
activity data similar to the data used in this thesis.

The work in this thesis relaxes most of the restrictions in the
previous work on file allocation. The goal 1s still to find the optimal
allocation across a hierarchy of storage levels. The population of

- 100 -

elements to be allocated (files) is wvariable (files are created and
deleted) over time. The filles are not assumed to be all the same size.
And, most importantly, neither the wriss ratlio curve nor the accessing
probabilities of individual files are assumed to be known. Furthermore,
the allocation derived is dynamic, changing as accessing to various

files changes.

The allocation strategles developed here are only heuristics,
however. In fact, the optimal allocation strategy, even given the

future accessing of files, is not known.
7.3 Future Work

There are many areas for continuing and extending this research.
In the area of migration strategies, a major unsolved problem is the
optimum replacement strategy when future accessing 4is known. In the
paging environment, the MIN algorithm {Be66] has been shown to be
optimal. In the file migration envirooment, where files are of unequal
sizes, no equivalent strategy is known. Casey and Osman [Ca74] discuss

the same problem from a different viewpoint.

Another aspect of file migration is the structure of the storage
hierarchy. The miss ratio and migration traffic curves show migration
performance for any size hierarchy levels, but only for a linear
hierarchy. If the hierarchy is a tree rather than & simple linear
structure, the performance and allocation strateglies are not obv Lous .
More work 1s needed in this area. Another situation where the storage
hierarchy structure is not straightforward is the computer network where
files wmay be distributed throughout a complicated network structure.

Storage hilerarchy levels are generally thought of as being
delimited by physical device boundaries. Many devices, however, have
different access times to different storage locations on the same
device. Thus, allocation decisions within the limits of one device,
based on predicted future accessing, may help increase performance.
Other work has been done on this subject {[Yu73], [De67], [Fré69], [Ra7l],

- 101 -



{Gr73] but usually only in relation to disc devices.

An assumption throughout the work presented in this thesis is that
files always migrate as a whole and cannot be split and stored partially
on one level, partially on another. A more flexible file structure in
which files are divided into equal sized blocks that can be stored
non-contiguously might be advantageous. Such a scheme would allow only
the most active blocks of a file to be stored on secondary storage 8o
that large files with rarely used sections would not cause unnecessary
migration traffic. A further advantage of dividing files into fixed
sized blocks 1s the elimination of problems of finding variable sized
blocks of free space and of storage fragmentation and garbage
collection. This type of file structure has not been studied from the

point of view of file migration.

The model of file system activity of Chapter IV makes many areas of
further study possible. For instance, the sensitivity of migration
strategy performance to changes in the file environment can be studied.
New devices, file structures, and storage hierarchies can be evaluated.
New measurements could be made to improve the model, in particular, to
{improve the time resolution of the trace data to smaller than one day,

and the size resolution te less than one track.

Some computer systems structure running programs as a collection of
variable sized segments ("segmentation™). The results of this thesis
may provide some inmsight into the scheduling and memory allocation

problems of segmented systems.

- 102 -

APPENDIX A: The Negative Binomial as a Compound Poisson

We seek a closed form for the compound distribution of Poisson
occurences with variable rate, t, described by the Erlang distribution.
(A similar proof is given in [Re75]).

Prob{X=x|T=t) = t* /x| et (1)

where a0
Prob(T=t) = | a1 # o~t/b /(2 % (a-1)1)
o)
Removing the condition im (1) gives
Prob(X=x) =

o x! b&(a~1)!
Usi
8 1]
x3-l o=bX gy = jf:lli
ba
0
glves
(b/ (b+a))X+a
Prob(X=x) = —————————% (xt+a-1)!
x[b&(a-1)!
xta-1 b}* bi2
X b+l b+l

which is the probability function for the negative binomial with
parameters a and b/(b+l).

- 103 -



APPENDIX B: WNon—optimality of MIN Replacement

Belady [Be66] proves the optimality of the MIN replacement
algorithm for fixed size pages. Other papers [Be74), [Le74], (Ma70]
discuss the computation of wmiss ratlos for MIN. When the elements
{pages or files) to be replaced are variable in size the MIN algorithm
is not optimal. The optimal replacement algorithm for variable sized
elements, with known future accessing, 1 an open problem. 1In the
following counter-example the population of files 18 {A, B, C}, with
(relative) sizes 1, 2, and 2 respectively, and the accessing sequence is
A, B, C, B, A The first table shows the contents of memcry (the
"stack") at the time of each access for the MIN algorithm which orders

the elements in the stack by time to next access.

time 1 2 3 4 3
access A B c B A
memory A B C B A
contents . B C B -
. A B . .

. . B .
. . A A -
access - - - [ 5

depth

The average access depth (to files already in the stack) is
(4 + 5)/2 = 4.5.

1f at time = 3, file B 1is placed below file A in the stack,
violating the MIN algorithm, the following table results

time 1 2 3 [ 5
access A B C B A
memory A B Cc B A
contents . B c B .

. A A A .

. B N

- B . .
access - - - 5 3
depth

Here the average access depth is (5 4+ 3)/2 = 4, an improvement over
the MIN algorithm. With respect to miss ratic, if the top level storage
capacity is three (dotted line fn the tables) them the MIN algorithm
results in two misses, the modified algorithm has only one miss.

- 104 -

BIBLIOGRAPHY

[Ar73] Arora, S.R. and Gallo, A., “Ogtimal Static Loadinﬁ and Sizing of
Multilevel Memory Systems," Journal of the ACM, April 1973.

{Be66] Belady, L.A., "A Study of Replacement Algorithms for Virtual
Storage Computers," IBM Systems Journal, p. 78, June 1966.

[Be74} Beladg L.A. and Palermo, F.P., "On~line Meagurement of Pagin%
avior by the Multivalued MIN Algorithm IBM Journal
-Research and Development, p. 2, Japuary l§

[Bo70a] Bovet, D. and Estrim, G., iy Dynamic Memorﬁ Allocation
Algorithm," IEEE Trans. on Computers, p. ay 1970.

[Bo70b] Bovet, D. and Estrin G., "On Static Memory Allocation in
ComButer Systems," IEEE Trans. on Computers, p. 492, June

[Bu71] Buzen Queud Metwork Models of Multiprogrammi
ﬁes Harvargg University, May 1971. o8 8

orithms 1in a Relational Data Base," ACM ST HOD Workshop on
ata Description, p. 101, May 1974.

[Ch73a] Chen, P., Dgtimal File Allocation (thesis), Harvard University,
August

[CaT4l Casg{, R. G, and Osman, I., “Geueralized Page Replacement

[Ch73b] Chen, P., '"Optimal File Allocation in Multilevel Storage
Systems," National Computer Conf. 1973, p. 277.

[Ch76] Chu, W. W., and Opderbeck, H,, ' Analysis of the PFF Replacement
éigogé%%m via a Semi-Mackov Model,” Comm. of ACM, p. 98,
v .

[Co62} Cox, D.R., Renewal Theory, Methuen, 1962.

[Cob6] Cox, D. R. and Lewis, P.A.W., The Statistical Analysis of Series
of Events, Methuea, 1966.

[De66] Denning, P.J., Resource Allocation in 1tiprocess Computer
Systems(thesis), MIT, MAC-TR-50 (AD675554), May 1966

[De67] Denning P. J., "Effect of Scheduling on File Memory Operations,”
Spring Joint Computer Conf. 1967, p. 9.

[De68] Denning, P. J., "Thrashing: its Causes and Prevention,” Fall
Joint Computer Conf. 968, p. 9l5.

{Fa76] Fabry, R. 5. and Prieve, B.G,, "VMIN~An timal Variable~Space
Page Replacement Algorithm, Comm. of ACM, p. 295, May 1i976.

{Fe50) Feller, W., An Introduction to Probability Theory and Its
Applications, Wiley, 1950.

[Fr69} Frank, H., "Analgsis and Optimization of Disk Storage Devices for
Time Sharing Systems," Journal ACM, p. 602, October 1969.

[Gi66] Gilmore, P.C. and Gomory, R.E., "The Theory and Computation of
Knagsack Functions," Operations Research, p. 1045, Dec.

[6r73] Grossman, D.D. and Silverman, H.F., “"Placement of Records on a
econéary Storage Device to Minimize Access Time," Journal of
the ACM, p. 429, July 1973,

[Ha75] Harris, J. P., Rohde, R.D., and Arter, N.K., "The IBM 3850 Mass
Storage gstem. Design Aspects,” Proc. of IEEE, p. 1171,
August 197

- 105 -



[Jo75]} Johnson, C.T., "The IBM 3850: A Mass Storage System with Disk
Characteristics," Proc. of LEEE, p. 1166, August 1975.

[Kh60] Khintchine, A., Mathematical Models in the Theory of Queuveing,
Griffin, 1960, pp. 50-56.

[Ki72] Kimbleton, P., "Core Complement Policies for Memory Allocation
and Analysis," Fall Joint Computer Conf. 1972, p. 1161

[Kn73] Knuth, D., The Art of Computer Programming, Volume 3: Sorting
and Searching, Addison-Wesley, 1373, pp a5-150.

{Le6ba] Lewis, P., "A Computer Program for the Statistical Analysis of a
Series of Events," IBM Systems Jourmal, p. 202, October 1966.

{Le66b] Lewis, P. and Cox, D., “A Statistical Analysis of_ Telephone
Cirewit Error Data," IEEE Trams. on Communicatioan Technology,
p. 382, August 1966.

[Le7l] Lewis, P. and Yue, P.,, "Statistical Analysis of Program
Reference Patterns in a Paging Environment," IEEE Proc. Conf.
on Computers, Boston, 1971.

[Le73} Lewis, P. and Shedler, G. "Empirically Derived Micromodels for
Sequences of Page Exceptions ' IBM Journal of Research and
Development, p. 86, March 1473, )

{Le74] Lewis, C.H. and Nelson, R.A., "Some One Pass Algorithms for the
Generation of OPT Distance Strings,” IBM RC-4758, March 1974.

{Lu74] Lum, V.Y., Senko, M.E., Wang, C.P., Ling, H. "A Cost Oriented
Algorithm for Data Set Allocation in $torage Hierarchies,"
Internal IBM Report, 1974.

[Ma7{)] Mattson, R., Gescei, J., Slutz, D., Traiﬁer, I., "Evaluatiom
Techniques for Storage Hierarchies," IBM Systems Journal, p.
78, March 1970.

[Mi74] Mitra, D., "Some Aspects of Hierarchical Memory Systems,” Journal
of the ACH, p. 4, January 1974,

[Mo74} Morgan, H.L., "Optimal Sgace Allocation on Disk Storage Devices,"
Eomm. of ACM, p. 139, March 1974.

[Pab2} Parzen, E., Stochastic Processes, Holden Day, 1962Z.

[Ra70] Ramamoorthg, C.V. and Chamdy, K.M., '"Optimization of Memory
Hierarchies in Multiprogramming Systems,” Journal of the ACM,
ps 426, July 1970.

{Ra7l] Ramamcorthy, C.V. and Blevins, P.R., "Arranging Frequency
Dependent Data on Sequential Memories," Sprimg Joint Computer
Conf. 1971, p. 545,

[Re74) Revelle, R., "Characteristics of a Large Scale On Line Data
Base," IBM RJ-1416, July 1974. :

[Re?5] Revelle, R. "an Empirical Study of File Reference Patterns,"
IBM RJ-13557, April 1975.

(Yu73] Yue, P.C. and Wong, C.¥., "On the Optimality of the Probability
Ranking Scheme,” Journal of ACM, p. 624, October 1973.

[Zi49] Zipf, G.K., Human Behavior and the Principal of Least Effort,
Addison-Wesley, 1949,

- 106 -



	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	Scan 45.PDF
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30


