SLAC-197
uc-32

EMPIRICAL AND ANATYTICAL STUDIES CF

PROGRAM REFERERCE BEHAVIOR®

ABBAS RAFII
STANFORD LINFAR ACCELERATCR CENTER
STANFORD UNIVERSITY

Stanford, California 94305

PREPARED FOR THE ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATICN
UNDER CONTRACT NO. E(OL-3)-515

July 1976

Printed in the United States of America. Available from National Technical
Information Service, U.S. Department of Commerce, 5885 Port Royal Road,
Springfield, VA 22161. Price: Printed Copy $8.00; Microfiche $2.25.

*Ph.l). dissertation,

ABSTRACT

Several aspects of program reference behavior, page reference behavior
medeling and evaluation of multiprogramming paging systems have been considered.

In the first chapter, an experimentsl trestment of the generated working
get size and LRU stmck distance s‘tfings of actual prograsme is given. The effects
of pege slze and other parameters on the distribution, serial correlstion and
frequency dowmain behavior are studied. A number of working set size models are
discussed and the ability to capture the cbserved degree of the serial depend-
ency in the working set size string is exsmined.

In the hiersrchicsl design of memory systems, the effectiveness of paging
algoritims can be measured by thelr performance, the processing overhead and
the implementation cost. In the second chapter, some new results on the per-
formance and cost of many practical peging systems are presented, and the re-
lated evalustlon techniques sre discussed. The independent reference model is
used to I'ind some analyiical results for the expected page fault rate of some
algorithms. The potential of program behavier models in predicting performsnce
of different page replacement algorithms is demonstrated. 7

The development of a useful, simple and analytically tractable program
page reference model is pursued in the third chapter. A new technique to es-
timste the parsmeters of an independent reference model is proposed. It is
shown that by inverting the AP optimal fauit rate expressions and substituting
the obgerved MIN fault rates of an actusl program for the optimal fsult rates,
one can obtain a model with predictive capabilitles. The Aﬂ inversion model is
capable of securately predicting the IRU and FIFO page fault rate of programs
for different main memory sizes. The model is also successful in predicting
the average working set silze and working set fault rates of progrsms for a wide
range of window sizes. A comparison of the LRU stack model with the A¢ Inver-
sion model is included. The potential of expsnding the model into the areas of
simple program restructuring techniques and evaluation of memory hilerarchies
with unequal resd/write cost is discussed.

In the last chapter, some basic relations between the interaction of device
acheduling snd page scheduling in a multiprogrsmming virtual memory system are

Investigeted. Queuelng snalysis end trace driven simulaticns ere used to show the

. effect of memory asllocation policies and various service disciplines on the re-

source utilization and Job walting times. BSome Interesting implications of par-
titioning memory smong competing jobs are explored.

TABLE OF CONTENTS

Page
Introduction - - & v s v 4 e v e ke e e e e s e e s e 1
ACKNOWLEDGMENTS Bibliography . . « - - - L
CHAPTER 1. BEmpirical Studies of Progrsm Reference Behavior . 6
I sm deeply indebted to my dissertation adviscr, Professor Forest
. . 1.1 Introduction . 6
Baskett, for his understanding and ccnstant encoursgement during the
) 1.2 Simulation . « « 2 v e e o1 0 e e e e s e . Ni
course of this work, and for his guidance and suggestions which have 1.3 Address Reference Helated Sequences 11
contributed immeasurably in the development of this research. 1.3.1 Working Set Size Sequence 12
1.3.2 Working Set Size Models - . . 33
I would like to thank my readers, Professor Vinton C. Cerf and 1.3.3 Predicting Working Set Sizes. Al
1.3.4 Stack Distance String . . - . . - 50
Professor Allen M. Peterson, for their comments snd prompt ettention. i.b Conclusion . . « « + «+ « = ¢ « o o 4 4w oeoa o= 5h
I am also grateful to the staff of the SIAC Computation Research L.5 Bivliography - « + « « v« ¢ 4 4 e e v s e s 56
Group who have created sn excellent resesrch and development environ- CHAFTER 2. Comparative Study of Practical Paging Algorithms . 57
ment. Special thanks go to Leonerd Shustek for generating the program 2.1 Introduction . - + « » « « o =+ o 4 v o o000 - 3T
2.2 The Virtual Memory Computer . . - . . « « &« = . 59
address traces used in this work, Roger Chaffee and Robert Beach for
2.3 Independent Reference Model. . « « « « -« . . . 62
the graphics esystem, snd Harriet Canfield for her excellent typing. 2.4 Demand Paging Algorithms . . « . - « + « & « o & 62
I would also like to thank my colleagues in the Digital Systems 4.1 BRR (kendom Replecement) . . « « « . » . . 63
2.4.2 FIFO (First In First Out) « . . 64
Laboratory and the Computer Science Department for the stimulating 2.3.4 LRU (ILesst Recently Use‘i) P e . G
2.4 CLIMB 68
discussions, and the staff of the SLAC Computer Center fer providing 245 CLOCK « v« v v v v v o s e e e e ... BT
. 2.h.6 MIN . . S
a fine cowmputing feeility. 2.4.7 W8 (Work.lng Set) .. B9
2.4.8 wsvr (WS with Variable Window slze) e .. T2
Finelly, I wish to express my sppreciation to Dr. Aziz Rafii and 2.4.9 PFF (Page Feult Frequemey). . . - - - . . T3
2.4.10 MW (Modified WS) . . e e .. Th
Mrs. Iran Rafii for their encouragement and constant support through- 2.4.11 VMIN (Variable Memory Size M]:N) e . T7
out my studies. 2.5 Test Resulta T
2.6 COMCIUBIOR « + « v « = = + o = « o s s o o+ . 81
2.7 Appendix: Fxpected Page Fault Rate of RR g6
2.8 Bibliography . « - « « « s o ¢ v ¢ ¢+ = = -+« 98
CHAPTER 3. AP Inversion Model . - + « + « « « « + « o« o « «» - 100
3.1 Introductlon - « « « « » v s s oo = e s o+ oa . - . 100

3.2 Program Reference Models . . . - .« .« . « 101

ili iv

TABLE OF CORTENTS (cont.)

3.3
3.h

3.7
3.8

CHAPTER k.

b3
k.2

3.2.1 Loeality Model . . . C e e e e s
3.2.2 Denning and Schwariz Model e e e

3.2.3 Markovian Models . - . . .« + « « + « &
3.2.4 IRU Stack Model. . . e e e
3.2.5 Independent Reference Model e e e e
A;ﬂ Inversion Model. . . « - « + .«

Test Results. « « o ¢ o v+ 4 o & v 0 v 4w s e
31.%.1 Fault Rete Prediction . . e e

3.4.2 Average Working Set Size Prediction v e .
3.4 3 Comparison with IRU Stamck Model
3.4.% Anelyticel Form for AP Inversion Perameters

Extensions and Other Applications of the Model.
Problems snd Limitations of AP Inversion Model.

3.6.1 Problems with Finding the Reference
Probabilities . . - [

3.6.2 Problems with Tail Probabili’ties e e

3.6.3 Execution Characteristics of the Model .

Conclusicn
Bidliography - + « + + + & o« e .

Queneing Anslysis of the Interaction of Page
Scheduling and Device Scheduling . .

Introduction . . . « « « + - 0 e . .
Model o« « v « v v &t & o o x4 e r e s e e e
4.2.1 Program Paging Behavior - -
4.2.2 IO Device Model . . .
4.2.3 Scheduling of the CPU and IOD Requestg ..
k.o 4 Queueing Analysis of the Model . .
4.2.5 gtate Identification snd General Solution
of the Model.
4.2.6 Definition of Performance Measures ..
.2, 7 Case 1: Two Jobs and Type I (FCFS- FCFS)
Scheduling . .
4.2.8 Case 2: Two Jobs and Type II (1ndependent

priority) Scheduling. . . e
4.2,9 An Algorithm to Set Up and Solve the
Balance Equstions . .
4.2.10 Case 3: Three Jobs and Type I (independent
priority) Scheduling - .
4.2.11 Cese 4: Three Jobs and Type ‘11 (CEU
priority} Scheduling
k.2.12 Case 5: Type IV (proceﬁsor sharlng FCFS)
Scheduling I [

Page
. 103

. 105

. . 106

. 110

. 112

. 120

. 120
. 121
- 126

131

. 133
.1

. 1h1
. 1he
. 143

.1k
. 148

. 150

. 150
. 151
. 155

. 161
. 161

. 162
. 162

. 164
. 166

. 168
. 169
LT
. 172

TABLE OF CONTENTS {cont)

4.3

b
4.5
4.6

CHAPTER 5.

Discussion of the Numerical Results
k.3.1 Effect of Memory Allocation Policies on

Device Utdllizetion
4.3.2 Effect of Page Scheduling on Cumpletlon
Rate e e e s . -

4.3.3 Effect of Page Scheduling on Queuelng Tlmes.

4.3.4 Effect of Degree of bh.tltlprogramming on the
Performance of the Mcdel.

4.3.5 Effect of Device Scheduling on CPU and IOD

Utilization - . .
4.3.6 Effect of Device Schedullng on Queueing
Times
4.3.7 Bffect of IO Device Speed on the
Performwance of the Model« .
%.3.8 Psging Drum Model . . .
4.3.9 Simmlation of the Model Using Actual
Program Traces. . « « + . . .
Conclusion .+ « ¢« « & o« & 4 s v e e a4 e e e .
Appendix - . . - 4 4 e 0 e 0 e e e e e e e e
Bibliogra8PhY + « + « « = s = o = o « 3 s & o+
Summary and Further Work « + « « « + + -

vi

Page

173

175

179
18k

190
201

205
206

208
212
214
215

217

Figure
1.2
1.3
1.4
1.5
1.6
1.7

1.8

1.11
1.12
1.13

1.14
1.15

1.16

LIST OF ILLUSYRATIONS

Page
FFT1 program ¢ats reference pattern « . 8
FFT2 progrem data reference pattern+ .« . . 9
FFT1 and FFL2 data reference patterns for
n=l6 points e e 10
Working set size vs. time, WATFIV, W=B00O,
P=512,1k, 4k e e e e e e e e e e e e e e e 1
Working set size vs. time, WATFIV, P=lk,.
W=8000, 2000 15
Working set size vs. time, WATEX, W=8000,
P=512,1k,4k . 15
Working set size va. time, WATEX, P=lk,
w=8000, 24000 e e e e e e e e e e e e e 158
Working set size vs. time, AL, W=8000,
P=512,1k,bk . . 16
Working set size vs., time, APL, P=lk,
w=L000, 24000 . 16
Data working set size vs. time, FFT1, FFT2 T
Histogram of working set sizes, WATFIV 18
Histogram of working set sizés, WATEX . + + v ¢ o &« 19
Histogram of working set sizes, AFH - 20
Autocorrelation coeffictents of workilng set
sizes, WATFIV . e e e e e e e e e e e e 28
Autocorrelation coefficlents of working set
sizes, WATEX T 29
Autocorrelation coefficients of working set
sizes, AFL e e e e e e e e e e e e 29
Power Spectrum of working set stzes, fixed
window size, WATFIV . e e e e e e e e e 30
Power Spectrum of vorking set aizes, fixed
page silze, WATFIV . P 30

vii

Figure

1.19

1.21

1.22

1.29
1.3
1.91

1.32

1.34

2.1

LIST OF TLLUSTRATIONS(Contd.}

Power Spectrum of working set sizes, fixed
window size, AFL . « « « & .+ 4 o 4 e e

Power Spectrum of working set B‘[zel, fixed
page size, AFL0 0 0 0 4 e e . .

Fower Spectrum of working set sizes, FFIl, FFI2

Power Spectrum of data working set sizes,

Autocorrelation coefficients of working set
size model, model WATFIV .,

Power Spectrum of working set model, model
VATFIV. . . . + P

Autocorrelation coefficlents of working set
size model, medel WATEX . - - - « . = » « &« « - -

Power Spectrum of warkmg set size model,
model WATEX . - - e . S e .

Prediction error for working set sizes,
exponential smoothing

Prediction error for working set sizes,
N polnts moving average . . .

Histogram of LRU stack distances, WATFIV . . ., . .

Histogram of LEU stack distances, WATEX .
Histogram of LRU stack distances, AFL

Autocorrelation coefficients of LEU stack
distances, WATFIV . - - - e e e e

Autocorrelation coefficients of LAY stack
distances, AFL -

Power Spectrum of IRU stack ¢istances, WATFIV,

Performance of LRU, FIFO, MIN and W3 algorithms
WATFIV. . . . - . .

Performance of LRU, FIFQ, MIN and WS elgorithms,
WATEX © v 4 v b 6 h v e v s v s s a n e e e e e

viii

d

31

31
32

32
3
39

40

46

16
51
51
51

52
52
53
83

83

Figure

2.3

2.4

2.5

2.6

2.7

2.8

2.9

T 2.10

2.11

3.1

3.2

3.4

3.5

LIST OF ILLUSTRATIONS(Contd.)

Performance of LRU, FIFQ, MIN and WS algorithms,
Performance of LRU, FIFC, MIN and WS algorithms,
Performsnce of LRU, MIN, WS and VMIN algorithms,
Performance of LRU, MIN, WS and VMIN algorithms,

Performance of LRU, CLOCK and CLIMBE algorithms,

Performence of LRU and CLIMB on independent
reference models. + + - . .

Performance of WS, WSVT, FFF and VMIN algorithms,
WATFIVWATEX.‘........... .

Changes of mean memory capacity with FFF
elgorithm, 1/P=P000, WATFIV . . -

Performance of MWS, WS, and LRU algorithms,
WATFIV, AFL

Average memory size v&. window size for MWS and
WS algorithms, WATFIV, AFL Ce e e

Performence of MWS and WS on mdependent reference
models « o+ v 4 s 8 s a4 aoa ok . e

Average memory slze vs. window size for MWS and
WS on independent reference models

Histogram of LRU stack d'lstances, WATFIV and
WATFIV model - . .

Page fauit rate of WATFIV and reference frequency
model under MIN and LRU algorithms - .« « -

Page fault rate of WATFIV and AY inversion model
under MIN and LRU algorithms. .

Reference probabllities of reference frequecy and
AP inversion models D e e e e e

Page fault rate of WATFIV and A,O inversion models
under FIFC algorithm. . . . PR .

ix

g

8L

84

85

86

86

87

ar

89

107

116

116

118

118

Figure
3.6

3.7

3.8

3.9

3.0

111

3.12

3.13

3.4

3.15

3.16

3.17

318

3.19
3,20

3.21

3.22

LIST OF ILLUSTRATIONS{Contd.)

Page fault rates of WATEX and A$ inversicn model
under MIN and LRU algorithms e e e s

Page fanlt rates of AFL and AP inversion model
under MIN and LRU elgorithms e e

Page fault rates of FFTL and AP inversion model
under MIN and LRU algorithms e e e e .

Page fault rates of WATFIV and A inversion model
under MIN and LRU algorithms with 1k page size..

Average working set sizes of WATFIV and A)ﬁ inversion
model, P=512,1k

Average working set sizes of AFL and FFTL, and
Ap inversion models . e e e e e e e

Page fault rates of WATFIV and AP . inversion
model under WS algorithm, P=512,1k

Page fault rates of AFL and FFT1, and A¢ inverston
models under WS algorlithm

Page fault rates of WATFIV and LRU stack model
under MIN and LRU slgorithms. . . .

Average working set sizes of WATFIV =nd LRU stack
model

Page feult rates of WATFIV and LRU stack model
under WS algorithm [

Page fault rates of AFL and LRU stack model
under MIN and LEU algorithms . .

Average working set sizes of AFL and LRYU stack
model . . . 0 b 0 v a e e e e e e e e

Histogram of working set sizes, APL, W=4000

Page fault rates of APL and LRU stack model under
WS algorithm , « . o v 000

Reference probabilities of Ap inversion models

Reference probabllities of Aﬁ‘) inversion and
functional models e e e e e

g

123

123

1ok

125

125

125

125

129

129

130

130

130

130

132

132

Figure

3.23 Page fault rates of restructured WATFIV and
AP inversion model under MIN and LRU

3.2k Page fault rates of regtructured WATFIV and
Af inversion model under MIN snd LRU; page
fault of the model mulb%tiplied by 2 . .

3.25 Tege fault rates of restructured AFL and
AP inversion model under MIN and LRU .

3.26 Page fault rates of restructured AFL and
Ap inversion model under MIN and LRU; page
fanlt rates of the model multiplied by 2 .

3.27 Page fault rates of restructured WATFIV and
actusl WATFIV with Lk page size .

3.28 Page fault rates of restructured AFL and
actugl AFL with 1k page size . .

3.29 Fault and transfer rates of WATFIV and Ap
inversion model under MIN and LRU .

3.30 Feault and traenasfer rateg of WATEX and Ajb
inversion model under MIN and LRU

3.31 Coefficient of variastion of inter.fault pericds,
WATFIV, AP inversion and LRU stack models,

k.1 Two stage cyclic gueue model with N customers

k.2 Distribution of mean 1nter-faul‘b per'lods,
WATFIV, aFL [.

4.3 Comparison of the ovserved distributions of inter-
fault periods with exponential model, M=40,50

4.4 CHJ and IOD utilizations with differnt memory
allocations; W=2; type I and IT sch= dul1ngs,
10D speed—l/hzoo e e e e

4.5 CHJ and ICD utilizations; K=2; type I and II
schedulings; 10D speed=1/10000 . e

4.6 CPU and 10D utilizations; N=3; type T scheduling . .

L.7 Conceptual modifications of the model to permit the

LIST OF ILLUSTRATIONS(Contd.)

computation of completlon rates

xi

LIST OF TLLUSTRATIONS(Contd.)

Page
Figure Page
138 4.8 Completion rates for 2 job classes,
type I scheduling - B £ 5
4,9 Average CPU queueing tims; n=2; type T and
138 II schdeulings ¢ 4« 4 o v 0 4w v s ow o« . 183
) k.10 Reciprocal of average dilation times in CFJ
138 and IOD; N=3: type I scheduling - « « + « + » - « « - . 187
L.11 CPJ and IOD ut'llizat'l.ons, N—3, type I
28 scheduling - . . . - . O
1 .
L,12 CPJ and IOD uttlizatlons, N—B, type I
3 scheduling e L
139
4.13 CFJ and I0D ut1.11zations, N—3, type IIT
scheduling . . . - e e e e e ... 196
139
4.14 Compariscn of CHU utilizetions with
type I,I1,IIT and IV Schedulings, K=3; IOD
140 speed=l/h200, P [X
4.15 Comparsion of IOD utilizaetiona with
140 type I,II,IIT s=nd IV schedulings; N=3; IOD
speed=lfU200. o 198
14k : 4,16 Compsrisorn of CPJ utilizations with
pa
type I,1I,IIT and IV schedlll‘ings, N—3, 10D
152 speed—l/lOOOO.._.. e e e e e 199
h,17 Comparison of IOD utilizations with
158 type I,II,IIT and IV schedulinga, N=3; IOD
speed—-l/lOOOO...... =+ 0]
158 4.18 Compsrison of the reciprocal harmonic average
dilation +times in CHJ and I0OD with type 1% and
type ITT schdulings- . . f e e e .. 203
177 k.19 Comparison of the results from simulation with
drum model with the results of anelysis with expo-
netial TOD service time assuuption 207
177
4.20 Comparison of the trace driven simulation with the
178 analytical results; type I scheduling 210
%.21 Comparison of the trace driven simulation with the
180 analyticel resulis; type II secheduling. 210

xii

INTRODUCTION

The development of autcmeied memory management technigues [ll,lh]
hes erested interest in studying the fsctors which are important in the
performance of these systems [2,6,8,12,17,18]. In this pesper, seversl
aspects of program reference behavior, pege reference tehsvior modeling,
and evalusiion of multiprogramming paging systems have been considered.

Inzight into the reference behevior of progrems is essentisl in the
architecture of new memory systems, cowputer modeling efforts [9], sna
the design of effective and efficient algorithms for some fundemental ss-
pects of an opersting system, such as scheduling and resource allocation
policies. In order to study the sddress reference characteristics of the
actusl programs, the execution of several programs hsve been monitored.

The first chepter is an experimentsl trestment of the page reference be-
havior of these programs. Statistical snd time series snalyses are per-
formed on the generated working set size [10) end IRU steck diztonce [9]
strings. The effects of page size snd other parsmeters on the distribution,
serisl correletion and frequency domsin behsvior are studied. A number of
working set size models sre discussed, and the ability to capture the ob-
served degree of the serial dependency in the working set size string is
examined. A discussion on the observed accuracy of s number of algorithqs
to predict the working set size of & progrem, tased on the past observations,
is included.

In the second chepter, we address the problem of memory management
policies in a peging system [11], and we specifically consider the per-
formsnce efficiency of the page replacement algorithms. In the literature,
many useful results in this ares heve been presented [1,4,7,12,15). How-
ever, the problems regesrding the performasnce and complexity of the stra-

-1~

tegies have not received enough treatment . 'In thia chapter, we ccomsider
8 number of practical slgorithms which are essy to implement and which do
not require much processing time. We compare the performsnce of these
algorithms with more elsborate schemes and discuss the advantages of sim-
ple approaches. In studying the paging algoriibms, we discuss seversl
useful evalustiion techniques [5,17].

The program reference behavior models {9] sre valusble tools to study
and predict the operstion of peging tecimigues. TIn Chapter 2, we use the
independent reference model to obtain analyticsl results for the expected
page fasult [15] end the average memory ussge of seversl slgorithms.

The development of s useful, simple, and =anslytically tractable pro-
gram psage reference model is pursued in the third chapter. We propose 8
new technique to estimate the parameters of an independent reference model.
We show that by inverting the A [1] optimel fault rete expressions snd
substituting the observed MIN [4] fault rates of sn sctusl progrsm for the
optimal fauli rates, ote cen obtein a model with predictive capasbilities.
The Aﬁ inversion medel is cepable of accurately predicting the LRU [9] and
FIFQ page fault rate of programs for different main memory sizes. The
model is slso succesgful in predicting the aversge working set size and
working set fault retes of progrems for s wide range of window sizes. We
8lso consider ancther program reference model, namely, the LRU stack
wodel [9]. We compare the behevior of the models under similer environ-
ments. Chapter 3 is concluded with & discussion of the iimitatlon and the
possitle applications of the A¢ inversion ﬁodel in the sress of simple pro-
gram restructuring techniques [13], snd evalustion of memory hiersrchies

with unequal page read/write operation costs.

In Chapter 4, the modeling effort is extended to include the CPU and

its paging device. We investigate some basic relations between the inter-

action of deviece scheduling and page scheduling in 8 multiprogremming
virtual memory system. Queueing snalysis [3,16) is used to show the

effect of memory sllocation policies sand verious serviece disciplines on

the resource utilizetion and job waiting times. Some interesting impli-
cations of sharing memory smong competing jobs are explored. Trace driven

simylations are used to verify the results under alternative ssgumptions.

BIBLIOGRAFHY

1,

‘10,

11

Aho, A.V., Demning, P.J., Ullman, J.D., "Principles of optimal psge
replacement,"” Journal of ACM, 18, 1 (197L).

Bard, Y., "Experimentsl evaluation of system performsnce," IBM Sys-
tems Journel, 12, 3 (1973).

Packett, F., Chandy, J.M., Muntz, R.R., "Open, closed and mixed net-
works of queues with different classes of customers," Journal
of ACM, 22, 2 (1975).

Belady, L.A., "A study of replacement algorithms for a virtual storage
computer, " IEM Systems Journal, 5, 2 (1966).

Belady, L.A., Palmero, F.P., "On line messurement of paging behavior
by multivalued MIN algorithm," IEM J. of Res. and Develop. 18, 1
(Jan. 1974).

Chamberlin, D.D., Fuller, 5.H., Iiu, L.Y., "An snslysias of page allo-
cation strategies for multiprogrammsing systems with virtual
memory,” IRM J. of Res. snd Develop., 17, 5 (Sept. 1973).

Chu, W.W., Opderbeck, H , "The page fault frequency replacement algo-
rithm,” AFIPS Conf. Proc., Fall Joint Computer Conferemce (1972).

Chiu, W., Dupont, D., Wood, R., "Performsnce analysis of a multipro-
granming computer system,” IBM J. of Res. snd Develop. {(Msy 1975).

Coffman, E.G. Demning, P.J., "Operating system theory," Prentice Hall,
Englewood CLliffs, New Jersey (1973).

Denning, P.J-., "The working set model for program behavior,” CACM
11, 5 {Mey 1968).

Detning, P.F., "Virtusl memory," Computing Surveys, 2, 3 {1970}.

Hatfleld, D.J., "Experiments on page size, progrem access patterns,
and virtual memory performance,” IBM J. of Res. end Develop.

16, 1 (1972).
h

13,

1k,

15,

16.

17.

18,

Hetfield, D.J., Gerald, ., "Program restructuring for virtusl memory,"
IEM Systems Journsl 10, 3 {1971).

Kilturn, T., Edwerds, D.B.G., Lanigsn, M.J., and Sumner, F.H., "One
level storage system," IRE Trans. on Elec. Camputers, EC-11,
No. 2 (1962).

King, W.F., "Anslysis of dewsnd paging algorithms,” Proc. TFLFS
Conf., Ljublisna, Yugoslavia (1971).

Kleinrock, L., "Queueing systems,” Vol. 1, II, Jobn Wiley and Sons,
New York (1975, 1976).

Mattsen, R.L., Gecsei, D.R., Slutz, D.R. end Treiger, I.L., "Eval-
ustion techniques for storsge hierarchies," IBM Systems Journal,
9, 2 (1970).

Rodriguez, Rosell J., Dupuy, J-FP., "The evaluation of a time sharing
page demand system," AFIES Conf. Proc., Spring Joint Computer

Conference {1972).

CHAFTER 1
EMPTIRICAL STUDTES OF PROGRAM REFERENCE BEHAVIOR

1.1 IXNTROIXNCTION

The execution reference behavior of progrems in genersl casn be
studied with several different cbjectives. A hardware designer can
chopse a cost effective instruction etack size by measuring the mean
number of instructions between successlve jumps on programs writtén for
some earliler models. In the design of new instruction sets, the statis-
ties of the successive occcurrences of groups of codes on scme typical
programs can be used to determine the scope =nd the function for the
instructions. In a similar way, tbé insight into the behavior of pro-
grams L4} 1s essential in the architecture of nev memory systems, the com-
puter modeling efforts, and the design of effective and efficient algo-
rithms for some fundamental aspects of an opersting system complex, such
as scheduling and resource slloeation policies.

In this chapter, we sre mostly concerned with studying the dynamie
(page) reference characteristics of programs, perticularly those aspects
which are independent of the identity of peges. The traces of several
actual progrzms are used throughout the chapter. The p;ttern of gen-
erated references sre investigated by considering the corresponding
working set size [4] snd stack distence sequences [1]. Some topls from the
snalysis of time series [8] sre used to demonstrate the stochastic proper-
ties of each sequence and compare the effect of scme parameters, such
as the pege size, on the behavior of these sequences. The success of
some proposed models for the working set size sequence are examined in
terms of the ability of these models to capture the time and frequency

domsin properties of the sctual sequence. The slgorithms to predict

-6 -

the working set size, based on the past execution behavior of the pro-
grams, are compared.
1.2 SIMULATION

In this paper, the address trace cof five programs are used for
most of the experiments. A trace program monitors the execution of
esch program and records the amddress references, except those generated
bty the 360 privileged instructions, on @ tape. ZFech entry of the ad-
drecs trace consists of a 22 bit address field and 2 type bits. The
address Tield covers en address space of UOOOK bytes, and the type bits
indicate if the referenced address is for an instruction fetch, date
read, or data write. A paging enviromment is simulated by putting a
page grld on the address space of each program. Thus, each address
reference is the page mumber in which the referenced location falls.

These programs are selected to cover a broad range of applicaticn
programs . However, we acknowledge the fact that we have omitted a dis-
tinetive category of programs, namely, list processing routines. These
kinds of programs usually prcbe a large address space by following
linked lists or tree structures which can easily go across many page
boundaries. The use of these routines are not #ery common in general
computing environments; however, they may be the most important elements
for some particular centers for some dedicated applicetions. In the
following, a brief description of easch monitored program is given.

WATFIV Compiler: This program is an incore, cne pass, load

and go processor to compile FORTRAN programs. It was monitored

while compiling a FORTRAN program named WATEX.

WATEX : This program is written in FORTRAN and is supposed to
f£ind 8 minimum of a multi-persmeter function. Given a functiom,
execution proceeds until 8 convergence condition is satisfied
or an iteration count is exhausted. Ii requires little I/0 and
consists of many small loops and few cases of repested sub-
routine calls.

FFT1: Tais program is a Fast Fourier Transform using the
Ccoley-Tukey algorithm. It wes monitored while computing the
finite Fourier Transform of n=208L4 dats points. In Figure 1.1,
we show how the dsta points sre referenced with this algorithm.
For n=32 data points, Figure 1.3 shows the pattern of references.

There are 1052:1 basic iterations. In the first iteration, pairs
dl=n/2=ﬂ3words spart are referenced, namely, pairs (1,16}, (9,25},

(2,18), ..., (16,32). In the second iteration, pairs d,= E%—-=B

n

words apart are referenced, nawely, (1,9), {(5,13), {17,25), (21,29},

{2,10), ... (24,32}. Similsarly, in the third iteraticn, pairs

d
4y = —
3 2

= 23 = 4 words apart are referenced. In the final step,

_data points sre referenced sequentially from 1 to n. The refer-

ence sequence is schematically shown in Figure 1.1.

FIGURE 1.1

FFT1

FFT2

8 . T

]
ﬂ b sasenas . .
L eemmmmcemr oo e ecmem———m—mer————=msc—asasmo—o—-—se
o L TITIIIIIIINITICIICIITIITIICIIITIIIIIIIITIIIIILTTT
R st e R Z
o i~ [o S B VR o W Yo Qe T * ¢ B A R R A
Ao M o o g 4y e g GO g 0l RFd s NN s . e
1 oo L
x| L ummemm—mmeeme——m—m——se_wmmmemsmeere—e-————-o——
1 P . .
]
Jﬁ; Tt CCITTITInTITIIIIIIIIIZL..
= 7 Y
|||||||||| Prastrssnnasanans
Lo F e
= T T ldccaaas ssseeeres e
ceies
¥
L
-]
—
[T S SRR S e bt ersasenes sammae
[T
b
E=| - ~ 1]
v (3] o] — [T 0 &
1] - g [} m Q = =3 + 0 m @
o K] M o 2} [L o & + R
- =) = + ~ O .m _m .m m €
g % © L . T 8 - 14 @
B g + M o o] — ~ [} =} o + s
H m @ 4 [] o | FEE +] 7] o =4 [Ta¥
) =] =TI V] o @ =] . o m [—

Mu [w = ~ o - . -] - [s
fer] ..m w i @ — 3] + Ww L o~ H + oy
- Wu -~ g O e Ty Q0 m [i] —

Y o @ g ~H o« -~ O o & g ~ & L]
] + = m L} -~ =] 124 =11] [= t =} -

m 0 @ —~ @ [LI . < T <] @ —
W [=] ¢ T ~ o =2 % o ad @ ©

=} @ o] o =) & =] L] 3 Q o o~
Ral L] m [1] + m w - =] -~] @ € =" Q o s [

(4] w0 .W =1 2] — i —~] a N M [—r

] =} =] ~ Ll ol + (a T = =] F

[@ =] [o k] @« m o — i +] g & - '] + m
& 2 @ 0 =" =1 =k bs] . m &

o B hne]] =] k) o Rs])] o

M m [] m @ — + =] w -) =N

+ H 2] + + — o] [T Bt 4+ e~ [B

o e =4 [}] o} Q = Loy] =} -l
i) o had i) he] + =] "] L =l Q [S) - N
= M =]] + = =4 o [at M o] ~ o
o o i3 m o w o [S R 1 o] o o o] <] « H ~ M

o o = o © o @ Qo =] [} + o -t
] [T IR Q =T] L] i} @ 33 [= &

i s [R]] v Moo g oo ~
= + =~ S < + - + H H o~ a o Q o
+ 0 s © + m b O 2] @ o oo G =] £ [

] Q =]] r~ F=] mA = a B~ L + o
© =] S — E~] o] 7] 0] + =] =~ o o o =
[m o 3 w + =] - @ [} @ o] - [3
] o = k2! [=1 o w & + o~ [B
=) m & g H = o o] H o [

+ < b] w + + + i + [=+
€&] © o o - ~ - =] H H o]
E=l ! foms + o B =4 S] [a) o Eal © @ + [}

@ Q A M — Q ~ 4 Lo g Q =3 R -~ -
Py O m. — L] = =1 o A P + o
% w (4] - =] i Rl 1] - =1] =] O =]

Ll — [} .m € - = n w =i @ L2l + = oy
—~ Qo @ [B L ~W o BH O odH R =" u @

] - w & A @ + Q ~ U A @ T @ @ g +*
=1 e e e S e e L5 o - o { + o+ 0
] w - o4 o = . -] T o o g
£ o = L] = = A - 2] a ~ 1] o o
[T 6 A - o 9 ~ & o o —
B~ o -~ © o o 0o o o -4 (7] [
+ o o — 8] s H - oo — i3 Q — = o
£ @ © W“ Il H @Q _— [0} Q + 2] 2] @ =
L]] 2] -] 1 o o P = =} 0 =] m i
2] 4 o a =] = g + [sY]] = - m —~ L]
Ll o £ @ o] - 0 \D =] o~ + i I []
+ o = [+) N o P oA o W o~ n P | I
o Em H =i] 5 ~ o @ TR VR | m g ©
= ot o1 @ fxy ~ ® — M gy o N —t =1 @ 1A

FIGURE 1.3

- 10 -

There is an anslogy between the order of references to data
here, and treversing o binary tree depth first.

Programs FFI'L and FFT2 sre written in AIGOL W language-
APL: This is & trace of an Intersctive session with APL
processor . The session begins by giving some initial commands;
then a computstion is performed snd finslly an output (plot of
a graph) is cbtained. .

Table 1.l gives & summary statistics shout each pro-

gram.
Totel Type (percent) Size in Peges

Program | Ref's read write fetch 512 | 1K| 2K 4
WATFIV | 1048661 23.4 15.7 60.9 1 168{ 95| 54 32
WATEX 2748339 2.0 7.6 67.3 T0t ¥1| 23f 14
FFIL 2954786 30.8 6.2 63.0 Bz2{ 48] 291 18
FFT2 2256197 29.0 6.7 64.3 8k hg] 29| 1B
APL 2670920 21.7 10.0 68.3 | 205 115] 67 W

TABLE 1.1 Size and reference type statistics of the
monitored progrems

1.3 ADDRESS REFERENCE REILATED SEQUENCES

The page reference seguence rl,ra,r3,...,rk.... is & string of page
addresses generated by the execution of a program. The page nsmes are
from the set of n program pages [1,2,3,....,n] which eonstitute the ad-
dress space of the program. Except with some varying degree of seguen-
tinlity and repetitive patterns which are cbserved in page reference se-
gquences, programs tend to generate page addresses in a fairly non-hone-

genous way. Oome weak underlying stochastic structures may be recognized

-1l -

in esch program segment which are tightly related to the identity of the
pages. However, as we remove the page ldentity constraint, many distinct
festures emerge from the sequences relsted to the page reference string.
Among such sequences, we consider the working set size [4] and stack
distance [1] strings.

The working set size seguence can describe the time dependent
locality propertiss {the tendency to reference in the vicinity of the
location sddressed in the recent past) of the page references, and the

stack distance string gives s space characterization of the references.

1.3.1 Working Set Size Sequence

The working set slze sequence on a psge reference string is a se-
quence of working set sizes defined at each reference. The working set
(LT at time t, WS{t,T), is the set of pages addressed in the past T ref-
erences. The working set size st the same time, ws(t,T), is the number
of pages referenced at the same interval. T is the working set perameter;
thus, the working set size sequence ws(t,T)}, t=T,T+1,T42,... can be vis-
ualized as the number of distinet pages whlch are conteined in a window
of size T, which slides over the pasge reference string (7T snd W are used
interchangeably to denote the working set pérameter in the figures of
this chepter).

One cen also define the working sets over the dates references ex-
clusively. Denote this set by data working set. Thus, the data working
set is the set of distinct deta pages which sre referenced in the last T
data references.

The working set size sequence of several programs are sampled snd

plotted in Figures 1.4 to 1.10. In each figure, the horizontal exis is
- 12 -

the reference count (time)} where each unit is 1280 references snd the
vertical axis is the working set size in number of pages of each size,

gs Indicated in the plots. From these graphs, we can see that the working
set size variations can be very significent during the execution of a
progrem. However, there 1z s high degree of sérial éependence betweean
the neighboring points which can be revesled by further investigation.
The peaks correspend to the sc-called locality changes; such &8 Jumps
with large offset, subroutine cslls, snd similar changes in the concen-
tration points of the references. In such cases, the working sets include
the peges from both adjscent localities. Frequently, the working set size
drops sherply, which indicates that the references are heavily clustered
on o small segment of the progresm (e.g., execution of s smail leop). The
peak points, as well as the sherp low points, can creste difficulties for
a process which should conform itseif with the working set slze require-
ments of programs.

The page size snd the window slze parameters cen heve significant
effect on the shspe of the sequence. In Figures 1.4, 1.6 and 1.8, the
e¢ffect of pege size on the working set size sequence of each program sre
shown. As we expect, large pege sizes have a demping effect on the ampli-
tude of variamtion of the sequence. The mesn and coefficlent of varistion
of the ssmpled points sre shown for different page sizes in Table 1l.2.

We note that the variance decreases as we incremse the page size. but
the coefficient of varistion remains felrly uniform for the renge of

selected page sizes.

-13 -

PAGES BF EACH SIZE

PAGES 2F SIZE IK

WBRKING SET SIZE VS. TIME [WATFIV], W=8000, P=512,1K,4K

5\12 .
]
60 | i it A =
il | 1
LI
! k
aoff Ly
1 ol]
.]
l]
!]
ol o ey by]
0 200 400 E00 800
EACH UNIT 1S 128D REFERENCES
Fig. 1.k

WORKING SET SIZE VS. TIME [WATFIV], P-1K, W=8K,24K

BG T T T T I T T T T i L] T T T l T T T T

6O—

40

20

4] 1 I} TR | I L 1 i L I 1 I L 1 | 'l 1 1 L

llll[lll

Ja] 200 400 600
EACH UNIT IS 1280 REFERENCES
Fig. 1.5
- 1 -

800

PAGES BF EACH SIZE

WORKING SET SIZE VS. TIME, WATEX, W=8000,P=512,1K,4K

S0

40

30

10

20 |

T

T 7 L

| NP SRR |

200 400 600

TIME: EACK UNIT IS 1000 REFERENCES
Fig. 1.6

- 15 -

800

1000

PAGES @F @F SIZE 1K

PAGES BF EACH SIZE

WBRKING SET SIZE VS. TIME [APL), P=1K, W~4000,24000
80

604

40

20

LIRS B R | I T T I T TTT I L B B I T

0
0 200 400 600 800
EACH UNIT 1S 1280 REFERENCES
Fig. 1.9

WBRKING SET SIZE ¥S. TIME [APL 1, W=B0O0O, P=512,1K,4K

BG[Ilsilllll,[lltllll[ill

[

o 200 400 600 a00
EACH UNIT IS 1280 REFERENCES
Fig. 1.8
- 16 -

NUMBER OF PAGES IN WORKIKG. SET

50 DATA WORKING SET SIZES - FFT! and FFT2
[1) 3 T ’ L]) 1 N] 1 j T [} ' T H T L) l i_
" P=512]
» FFT1 W=8000 -
agk SRZ1280 -
30— —
20}]
10+ -]
A,
0 | i N | L L | 1] L L [1 L L 1 1 1 i L 1 f Ij
0 200 400 600 800
EACH UNIT IS 1280 INSTRUCTIBNS
Fig. 1.10
- 17 -

COUNTS X 1000

COUNTS X 1000

HISTAGRAM @F WBRKING SET SIZES - MATFIY

P-512, T-8000

P-1¥, T-8000

4 L T

1

COUNTS ¥ 1000
g
T

T

L1

- 18 -

" AM"JI\IILIL‘\ | °f i
0 o all 1 o g : Y 1 i A
40 60 [:] 0 20 40 60 A
° b WRRKING SET SI1ZE WORKING SFT 817F
P-2¥, T-8000 Pad)t, T-&O0C
300 TR T 7 300 T T T -
280 9 2s0f]
‘200 b g 200]
150 § x mof K
100 e g 100 |- -
5O j 50F -
0 - L 1, o 1 1
1] 20 40 560 1] 1] 20 40 10} B0
WBRKING SET SiZE VBRIING SET SIZE
Fig. 1.11

COUNTS X 1000

CRUNTS X 1000

HISTPGRAM BF WORKING SET SIZES ~ WATEX

pP=-512, T-8000 P=1K, T-8000
m T T T ¥ ’ m T - T L 1
s00) 9 ook 4
400 18 proa k
200 4 = soof 4
e _ I
200 3 g 200} E
1
100] 100 4
0 [dm o | 0 i1 1o, 1 1
] i0 20 30 40 50 1] 10 20 30 40
WBRKING SET SIZE WBRKING SET SIZE
P=-2K, T=8000 P-4, T-8000
600, T T T T 800, T T T T
500 4 sa0}- 3
400 18 ‘oo £
a0 4 x b 5
Fis
20| 3 § 200} E
100 -] 160 |- -]
3
o Al] 1 1 o L 1 1 1
o 0 20 30 40 50 o 10 . 20 30 40 50
WERKING SET SIZE WARKING SET SIZE
Fig. 1.12

- 19 -

COUNTS X 1000

COUNTS X 1000

HISTAGRAM BF WBRKING SET SIZES - APL

T-4000, P=1K T=8000, P=1K
L T T T ¥ T L
i 5
- 4
o0 g ool
40 4 = aoF
2
20 3 E 20
ol L] i 0 I""LLJ 1 1
80 80 1] 20 40 80
° i VG;EINB SET SIZE VPPKING SET SIZE
T=-16000, P-1K T=24000, P=-1K
T ¥ T 80, L + T
[o -1 [
g
40 9 = 40:
[
20f . % 20f-
: Wl
0 A 0
1] 20 40 o0 80 4] 20 40 o0
VERKING SET SIZE VBRKING SET SIZE
Fig. 1.13
- 20 -

- 21 -

Window

Size = 4000 8000 16000 2h000

o Page

351ze Mean| Var. ! C.V. | Mean Var.|{ C.V. | Mean] Var.|C.V. | Meon} Var.|C.V.

o
;,.%512 50.1f 136.L4]1 0.23]58.0] 112.7| 0.18 [65.3| B2.710.1%[69.5] T3.2] 0.12]
= IS
b | 1k | 33.2] s50.4]0.20}36.7F 385107 k0.3 27.8] 0.3 42.5] 27.1| 0.17
e o
4“5"\ 2k | 22.5f 19.7]0.20| 2.1 .7l o0.16]|26.1] 9.4loasfer.ef 7.6]0.10
e O

Sl e | w8 8| o.20]| 6.2 640161 17.3] 3.9{0.317117.8] 2.7] 0.09]

Window

Size - Looo 8000 16000 24000

Page .

% Size | Mean| Ver.|C.V.|Mean| Ver.|C.V.|Mesn| Var.(C.V.|Mean| Vear.|cC.V.

=]

5512 19.5| 30.6{0.28]23.8| 28.3{0.22]|28.6| 33.1]0.20]30.8] s2.k{0.23
oy —
m& 1k f13.0] w.7}0.25}15.0{ 10.6|0.2217.h] 16.3|0.23]18.5] o4.1]0.23
[e
q\ﬁ 2k 8.6 3.9j0.23] 9.8 hs|lowpez|11.2 7.3] 0.24 | 11.9§ 10.1} Q.27
= Q

Al e | 6.2 2.3|o.24| 6.9 2.3fo0.e] 75| 3.2(0.24| 7.8] B.4]o.27

Window | —T

Size - 4000 8000 i 16000 24000

@l Page

gSize Mean| Var. | C.V.|Mean| Var.|C.V.|Mean| Var.| C.V. | Mean| WVar.|C.V.

8l512 [31.0{ 143.70.37139.7| 211.8{ 0.37 | 48.7 | 353.9 0.38 [57.2| 479.4 | 0.39

Q!

._1;"; 1k J22.5| Th.L4jo.38{o2B.0l 97.610.35(33.1) 18k 0.36] 37.6] 185.9] 0.36

AN

<d zx [16.7] %1.3]0.38[18.8] 43.4]0.35 | 21.7| €0.9{ 0.36|24.5{ 77.3]0.36

& he fil.99 15.5]0.33]13.3] 17.810.31| th.9| zh.2]0.33] 15.6] 29.3]| 0.35
TARLE 1.2

The effect of the window size parsmeter is not as obvious as page
size. In Figures 1.5 and 1.9, for a given page size, the working set
slze sequence is pleotted under different window sizes. A large window
size can encompass several localities. On the other hand, s small window
size cen come short of containing & single locality in most cases. There-~
fore, the effect of window size gn the working set size seqguence is very
dependent on the characteristics of esch program. For the APL program,
¥igure 1.9, many high frequency components in the waveform of the working
set size for smsll window sizes have been eliminated when a larger window
gize is used. This effect is especially notable in the beginning of the
program. In Table 1.2, we nrote that the variance of the sampled points
for a given page size does not always decresse a3 we incresse the window
slze.

In Figure 1.10, the dasta working set size for FFT1l and FFIZ2 progrsms
pre shown. We note that FFT2 weintains s fairly uniform dsta working set
size compared with FFT1l. More locelized data references in FFIZ2 may
partly account for this behavior.

The histogram of working set sizes for a number of programs are
plotted in Figures 1.11, 1.}2, and 1.13, under different page snd window
sizes. The distribution of the sampled points are generally clustered
around one or more points. For the AFL progrsm, We can See three pesks.
The peaks demonstrate the distinetive locality regions in this program.
The frequent locality transitions ean also centribute to the creatlon of
peaks in the histogram and may give spurious large locelity sizes.

The distributicn of working set sizes around the respective peaks
can hardly be considered as being normal. Tn the progrems considered

here, the test of normality for the points which sre ssmpled far apsrt

“- PO -

(to get fairly independent samples) are strongly rejected.

The serial dependence of successive working set aize samples and
the frequency domain features of this sequence can be evaluated by com-
puting the estimated sutocorrelation function and spectrsl density of
this sequence.

Let x(t),t=..,-l,0,l,2,3,... be the observations from a stationary
process in the wide sense. The covarisnce function over this sequence
with lag h is defined as:

cov[x{t),x{t+h)] = Ex{t)x(t+h) - Ex(t).Ex(t+h)
and [x{t},x(t+h)] = c(h). &n unbiased estimator for the covariance func-

tion is:

n-h
e(n) = e(-n) = (z&) tgl [x(t)-5] [x(t+h)-5]

h=0, 1,2,3,...,N-1
where N is the sample size and x is the semple mean. This function has
a local maximum at the periods of the frequencies present in the data.
The sample eutocovariance function, c(h), is normslized by the
. variance of the sequence to get the estimated autoceorrelation function:

-153(11)523}51 '
The sutocorrelation function R{h) is a meassure of serial direct or
reverse dependence between the chservations h units spart. In fact, under
certain conditions, the test for R(1) = O is the most powerful test for
the independence of a staticnsry time series [5].
For two different sequences of observations x(t) and y(t),
t=..-1,0,1,2,3.., & similar function can be defined. Denote the cross-

covariance function of x{t) and y(t) by:

- 23

K-t
1 z - -
e = {z=} [x(t)-x] [y(t+n)-y]
N-h
t=1
h=0,1,2,3,N-1
where x and y are respective semple mesns for x{t) snd y(t). From this

Tunetion, the estimated crosscorrelation coefficients sre obtained by:

-1 =R _(n) = oy <1
<R T o o =

The crosscorrelation coefficients are meesures of serial dependence
between two different sets of observation. Some csre should be tsken
when interpreting the values of this estimator. A large and spurious
crogscovariance can be obtained if x(t) and y(t) sre highly correlated
within themselves [7].

The frequency domsin formulation of a discrete time observation,
x{t), by its spectral demsity f(w), is obtained by taking the Fourier

transform of the covarlance funetion:

©0

f{w} = E% Z; cov[x(t),x(t+h)]e-ihw

h=-co

An unstable cstimator for f(w) is

N

B(w) = 5 L ot o L

-itw-2"
[x(t)e™™]
he-N 2n

o+
L=

where w=2aN. p(w) is called the raw pericdgrem. This is not & statisti-
cally consistent estimstor and its veriance around the true value does

not decrease as the sample size N incresses. To stabilize the eatimator,
one takes a loecal average over the frequencies surrounding the frequency

- 24 -

for which the power i1s desired. If a linesr trend exists in data, it
causes high power in the lowest frequency range of_thé computed power
spectrum. .

The estimate of autocorrelation coefficients snd the spectrsl density
for the ssmple pointg are computed by the peckege described im [11]. For
estimeting the spectral density, a cosine window of 10% taper iz applied
ot data, and an equally welghted moving aversge is appllied 1n the fre-
quency domain.

Before we proceed to evaluate these funétions on our sampled working
sets, we perform a test for trend in the data. A test for the existence
of trend in the sample points coneists of comparing the centroid of ob-
gserved values with the mid-point of the sum of observations [3]. The

test statistics for the sampled working set sizes esre:

(%) EW, - 0.5 W_

u =
LA
n 12n
i
where Wi = I ws(t,T) end n is the number of observations.
t=1

When Wi's are independent random variatles, u has a normal distri-
bution with mesn zero and variance cne. In Table 1.3 for the WATFIV and
APL progrems, the u statisiics for different numbter of samples of 100 d4if-
ferences apart show that the data from WATFIV is fairly consistent with
the null hypotheszis that there is no significsnt trend in this dsta, while

data from the AFL program clearly shows the existence of trend.

-25_

No. of T wa{T)

Program Seuples Window Mean WS u
WATFIV 10005 1000 27 - 0.327
LgBs 1000 27 1.468
2h63 1000 28 0.592
WATFIV 10005 4000 kg - 2.919
Lo8s 4000 48 0.668
2463 Lo 50 0.671
APL 11084 1000 17 -23.898
5513 1000 13 -16.425
PEYT 1000 11 g.kog
APL - 11084 - 4ooo 30 -22.587
5513 Looo 23 -10.022
2697 Looo 21 9.300

TARBLE 1.3 u-statisties for the trend in the

string of working set sizes of
WATFIV and AFL programs

The sutccorreletion function of working set size ssmples for WATFIV,
WATEX and APL programs in Figures 1.14, 1.15 and 1.16 respectively, show
g high serisl c¢orrelstion in deta with small lags. In each figure, a8
unit leg is equal to 64 actual references. Thus, for instance, in the
WATFIV program working set size samples of up to 6400 references show
signifieant serial correlation.

The power spectrum of sampled working set sizes for three different
progrems sre computed, and the results are shown in Figures 1.17 to 1.20. -
The data 1s gamplied at every N3 points as indicated in each figure. The
horizontal axis is the frequency coordinate. The period, in terms of the

number of references at esch point in this axis, c¢sn be found by evalu-

- 26 -

ating NS*16384/N where N is read from the horizontal axis in each Tigure
(16384 samples have been considered in esch case).

We generally note that significant power lies in the low freguencies.
In the case of the APL program, the trend in the data might have alse
contributed to the power in this region. The power drops sharply as we
move toward higher frequencies.

In Figures 1.17 and 1.19, the power spectrum of weorking set size AUTACARRELATION CAEFF'S BF WS SIZES (WATFIV)

10— r r

samples under different page sizes are plotted. We note that the general W - 8000
pericdical patterns of the string sre fairly invarisnt with respect to 0.8

changes in page sizes. However, as we lncrease the page size, the power

T Y

at the corresponding frequencies decresse and the high frequencies are

smeothed cut. Unlike the previous cese, changing the window size results

PedK
in different periodical patterns, es we see in Figures 1.18 and 1.20.

P-5i2
We cannoct make a strong statement on the effect of window size on these
P=1K

v
P ETEPETEPE EPEPEPITY AP AP EPE

0.2
patterns btecouse mest of the observed chenges are very much relsted to

LA

the charscteristics of each program. In Figure 1.20 for the AFL program,

we notice thet the drop in power in the higher frequenciles is much mere

ESTIMATED AUT@CZRRELATION CREFFICIENTS
o
-~
T

significant when we increase the window sige. This shows that in this -0.2 M B B R

200 400 600 800
progran many high frequency componenis sre filiered out by incressing LAG (1 UNIT - 60 REFERENCES]

' the window size. Fig. 1.2k
As we have mentioned earlier, FFT1 anrd FFT2 programs use different

arrangements for referring to their data. 4s we see in Figure 1.21, the

power spectrum of sampled working set sizes, when all type of references

are considered, are uneffected by the dissimilarity in the way these data

are handled in each program. However, when we compute the power spectrum

of only data references, the difference is more significant (Figure 1.22).

The more localized data references in FFT2 is reflected in its estimates

- o8 -
- 27 -

AUTBC@RRELATIBN FUNCTIBN BF WBRKING SET SIZE (WATEX!
L T T T T T ¥ L T T T
[] I

¥=8000

AUTBCBRRELATION COEFFICIENTS

LO —

0.8

0.8

0.4

0.2

|||!llllllll|llT!'l

f

T T

200 400 800
LAG {1 UNIT=64 REFERENCES]
Fig. 1.15

800

AUTBCERRELATIEN FUNCTIBN @F WBRKING SET SIZE (APL)

AUTPCORRELATION CREFFICIENTS .

1.0 T T T T] T L) 1 T'I T T T T [T T T T
- -4
-]
0.8 ¥=0000 1
0.6/~ \ - -
" I]
L]
04— N = 1k]
- ak 512 :
0.2f- —
I SR S I B
0 200 400 600 800
LAG (1 UNIT-64 REFERENCES]
Fig. 1.16

- 26 -

PSD BF WORKING SET SIZE - FIYED WINDBY SIZE (WATFIV)

LPGIOIPBVER)

5 r‘lll'l'i||'11‘l|‘ll“l|l"l

—

o 500 40D 60G 800 1000 1200
FREQUENLCY

Fig. 1.17

PSD BF WEBRKING SET SIZE - FIXED PAGE SIZE (WATFIV)

LOGIO(PAWER)

'rlil|I11l||||llllxltlllllllul

P=1lk

|!|1||I|ll||-||l|l|||

o 200 400 600 800 1000 1200
FREGUENCY
Fig. 1.18

- 30 -

LAGI10(PBWER)

PSD OF WORKING SET SIZES - (FFT1 and FFT2)

3 TT1T1¢ I1 TrT I 1t l T 171 ‘_l' T1rr I LANLEN B |
5 FSD OF WORKING SEY SIZES - FIXED WINDOW {AFL) FFT1]
|Illl‘{lIllTlllll’TllllllIlllll_ 4
! ¥=8000] 2 -
4 SR=6L - J
NS=15 : b]
b w
] u i
3 -] 3 4
i ‘8 1 -
. b i
- = -
2 —] = _.
] o
- o
1 —d
E b a g ! 11 I £11s] L1 I 1111 l "
A’\M ;] 50 1CO S0 200 250 300
o ALY FREQUENCY
0 200 400 600 800 1000 1200 Fig. L.21
FREQUENCY '
Fig. 1L.19

"lllli!'lllllllT‘lI-l|I!lllllll

FST OF WORKING SET SIZES - FIXED PAGE STZE (AFL)
LES Al

AR]y

P=512
¥=8000
SRE4
NS=5

PelK

PSIj OF DATA WORKING SET SIZES - (FFTL and FFT2)
R« B4 _:

V=4000

LBeGI0PAVER]

FFT2

I'lllll]lll

lI'Ill]..Lll!lj'll!l'llII1III|

F 0 100 200 300 400 S00 600
1 1 l] FREGUENCY
200 400 500 0o 1000 Fig. 1.22

-3 - - 32 -

power spectrum bty okbtzining lower power wvalues compsred with those of the

FFT1 progrsm-
1.3.2 Working Set Size Models

In this section, we consider a number of modeis for the working set
size sequence and examine the cepatility of one model to capture the
stochestic properties of the sctusl string, and particularly its corre-
leticn estimates.

A working seti size, Wy at time t, can be expressed in terms of

v and another element §

61 £ bty the following relstion:

where 61: can assume integer vealues -1, O and +1. The boundary condition
is 1 = wt = min (T,n) where n is the program size in pages, and T is the
window size. Since T is usually grester then n, we can simply reguire
thet 1 < L < n.

Now we cen assume different probebility structures on the velue of
ét. As the first step to simplify the model, we assume that the walue
of 5t cnly depends on at-l’ and this holds for all values of t. In
Tables 1.4 and 1.5, using the sctusl program traces of the WATFIV and
WATEX programs, We have shown the frequency transition metrix of § using
the ocbserved working set sizes. We note that § has three ststes, -1, O
and +1, and each entry, Jjk in the matrices, iz the freguency of being at
state J end going to state k. We can see that there is a grest tendency

thet § remains in or returns to state 0. We also note that we seldom see

the transition from state +1 directly to -1 and viece versa.

- 33 -

Kext, we assume that the value of 61: is independent of 6t-1 and,
therefore, we have a fixed probatility description for & as follows:

or [6 = -1]

1]
1

Y
pr[6 =411 =4
pr [= 0] = 1l-p-g
The model of working set size sequence becomes s finite state Masrkov
chain with n states. In the boundaries, we can essume that pr[6=+l] = ©
and pr [6=0] = 1-p when W, =n and pr[6=-1] = ¢ and pr[6=0] = l-q when
By adding up the columns of the matrices in Tables 1.k and 1.5 and
normalizing, we ean get estimstes for p and g from actusl programs. In
doing so, we note thet from both WATFIV and WATEX programs, p and q are
estimated very close together. Therefore, we can further simpiify the

model by sssuming

prlé=-1] =

prlé=41]

pr[6=0]

The covarisnce coefficients of the Markov chain cen be found from

B
2
P
2
1-

P

the transition probabilities. Let %’f; be the probability of going from

state 1 to stete j in exactly m steps. Assume that the chain starts from

state 1 &snd pi = pij' Then

J
cov{v vy) = Ew o~ BV By

we have:
_ ()
Ew, = ZJ

plj

T

and

B4y) = BB e
= JZE[wt"'tm'"t = 3] prlv =] +
- o
- ¥
L BLS v,y fw =31 prlvi=i) p! +
:
. 1 [73 u
Jk 19 p(t) :
Je T
Therefore:
The probatility transition st each state iz, therefore, s funcetion of
—— . Z&'k (b) f6) _) . (1) g o _
t+h J 3k Y13 d 13 the state #nd can be found from the following expressions:
prifeti] = p - —Eu (weir)
n-w
prls=-1] = p + E= (w-w)
Unfortunately, this model does not necesssrily give zn average working
pri8=0] = 1-2p.
set size which is equal or close to the average working set size of the
actual program from which the transition probabilities were obtained. As before, we cen estimete p from the sctusl cbservations (Tatles L.k

Another model which partially alleviates this problem is to parameterize and 1.5).

8 Markov chain, which has some degree of central tendency, to a state
which is equal to the observed working set size w,[6). One approasch is

to formulate the transition probabtilities such that the central attraction
lineeriy Increases ss the function of the distance of the chain from the

state [G]. 4 possible scheme is shown in the following sketch:

- 35 - - 36 -

WATFIV: T = 1000 w =27
-1 0 +1
-1 602 12h99 130
0 12k88 gk9293 12309
+1 142 12297 808
13232 974089 13247
P = L0oo % =50
-1 o] +1
-1 103 3180 14
0 3181 987591 3150
+1 14 3150 185
3298 993921 3349
T = 8000 w o= 57
-1 0 +1
-1 48 1301 2
o 1298 995142 1354
+1 6 1350 67
1352 997793 1423
0.0013 C.9973 0.0014
TABLE 1.4 The one-step transition frequencies of

obeerved successive working set sizes
of the WATFIV program

- 37 -

p=0.0013

WATEX : .
T = 1000 v =18
-1 ¢} +1
-1 251 4373 2

0 LTy 1090491 4377
+1 2 hW377 2k7
Lest 1099241 heot

T = booo w =19

=1 o] +1
-1 Ly 1348 0
o] 1348 1102974 1362
+1 1 1361 Lg
1393 1105683 1408

T = BOOO w=23
-1 0 +1
-1 33 961 0
0 961 1104527 990
+1 1 989 22
995 1106477 1012

0.0009 0.9982 0.0009 p = 0.0009
TABLE 1.5 The one-step transition frequencies of

observed successive Wworking set sizes of
the WATEX program

- 38 -

L00

I
3

ESTIHATED CORRELATION COEFFICIENTS

§

AUTBCORR. COEFFICIENTS OF WORKING SET SIZE MODEL

T —] — T

V « 1000
*.m2

1 o 1
200 400 800 [:13v]
LAS [1 UNIT = 60 REFERENCES 1}

Fig. 1.23

P2WER SPECTRUM BF WORKING SET SIZE MBOEL
1

¥ = 1000
P22

— VATFIV

-39 -

L0

0.8

0.8

o4

ESTIMATED AUTSCBRRELATIGN CREFFICIENTS

AUTRCERR. COEFFICIENTS BF WORKING SET SIZE MBOEL

—————r—— ——— r—r— .
¥ = 9000]
PeB2 4
naoEL]
VATEX :
L J
1
a i a2 1 1 “
1] 200 400 [] 800

LAG [} UNIT = B0 REFERENCES?
Fig. 1.25

PBVER SPECTRUM @F WBRKING SET SIZE MPREL
SR —y T T

J T T

¥ - 3000
£ =512 1

-— WATEX
HaDEL

e

100 200 300 400
FREQUENCY

Pig. 1.26

- bo -

In Figures 1.23 and 1.25, we compare the estimated correlation and
estimated power spectrum of the working set size string of the WATHIV
and WATEX programs and thelr respective models, based on the central
tendency assumption. We note that the model is fairly successful in
capturing the amount of serisl correlation snd the general frequeney do-
main behevior in the case of WATFIV progrsms. However, it overestimates
the correlation coefficients in the WATEX program. Other tests suggest
that the behavior of the model 1s very sensitive to the choice of p.
Considering the small value of p as estimated by the actusl programs, .
this sensitivity can be very undesirable. Therefore, the usefulness of
thiz model may be limited to the cases where the behavior of the model

can be validated by the actusl cbgervations for any chosen value of p.

1.3.3 Predicting Working Jet Sizes

In s multiprogramming system where progrems compete for main memory
regources, a way of sharing memory among the processes is te allocate
memory space according to each job's working set requirements. The motie-
vation behind this is that when the working set of a program is loaded
into the memory, the program can effliciently run in this environment
without putting hesvy demends on the paging facility and other resources
of the computer. This approach to sharing memory iz used by a working
set dispetcher and its varistions. BSuccessful implementations of these
digpatchers require & good estimetion of the working set size demand of
the programs in the near futwre. This estimeation is most possible by
chserving the passt behavior of the programs. In thls subsection, we will
exsmine a number of approesches to estimsting the working set size of a
single progrsm, and will present the results of case studies comcerning

the success of each methoed.
- h1 -

Esrlier we ﬁave geen that the werking set sequence of programs
generally exhibit a high serial correlation im short range intervals,
Therefore, in any estimation methpd which predicts the future working
set size of s program based on its past occurrences, we weuld like to
puf the highest weight on the most recent observations.

A convenlent point to stop the processing and estimate the next
working set slze value is after the e¢lapse of an interval which is equal
to the chosen window size paremeter. These points are the inspection
points where a sample of the working set size sequence 1s taken. The
cholece of a semple interval equsl to the window size slso facilitates
the implementation of s kind of W8 dispatcher. In the next chapter, we
will see that s high performance modified WS dispatcher, which measures
the working set size at the same points, csn be implemented with the
available facilities in wmeny recent computers.

We have used three algorithms to predict the working set sizes for
the next execution interval. Let wi,i=1,2,3,... be 8 sequence of working
set sizes generated by a program, sndé which sre sempled at the inspecticn
points which are T references spert. T is alsoc equal to the window size

parsmeter. Denote by ¥, the predicted value of the true working set size

i

at point i. We want to estimate Y besed on the past observations

1+3
Wys Wigs Wy gaeeens ¥y We are not assuming a perticular model for the
working set sizes and, therefore, the feollowing procedures are chosen

purely empirieally.

- 4o -

a) Exponential smoothing algorithm:
Let r be the parsmeter of the algorithm. The working set

set size w is estimated by:

i+l
~ -~
G =Tw o+ (1-r) W 0<rgl
i-1
E: k ina
=7 {1-1) Vit (1-r) ¥,
k=0

This predictor places the highest weight on the most recent
cbservation and the weight given to the other observations de-
creases geometrieally with age- When r 1s close to one, the
is heavily influenced ty w

value Qi Therefore, in this

+1 i
case, the prediction mechenism becomes very responsive to the
immediate changes in the sequence. As r approaches to zero,
the time required by the estimated value to respond to the
changes in the psst observaticns, increases.

b) First order auto-regressive algorithm:

ILet the working set size difference at time, i, be de-

fined by

For the actual programs, the observed sverage value of the
differences is close to zerc. For instance, for WATEX and AFL
programs with window size egual to 4000 references, the re~
spective sverage differences are 0.032 and -0.043. Thus, we

can estimate ﬁi+1 using the last difference value by:

"1+l
where sgain 0 <r £ L.

~
=rw, ¥ (r-1) W+ dwy

- h3 -

¢} Moving average algorithm:

"~
The estimate Wi

age of the past N observations. N is the parameter of the al-

gorithm. Thus,

1
S T &
i+l N k=i H+l i i N

The rate of response of the estimated velue is controlled by
the cheoice of the parameter N. It also determines the amount

of past information that must be retained in order to estimate

the future working set size.

The predictive pocwer of each algorithm is measured by the computed

mean squere error, MSE, and the relative error, E. Let k be the number

of observaticns. Define

)t

i=1

MSE =

==

2
1= ¥y

and

o en)/?

=il =

where w is the observed average working set size.

The performance of each algorithm tested on actual programs is shown

in Pebles 1.6, 1.7 and 1.8, and also in Figures 1.27 and 1.28.

Algorithm (a) is the most successful smong the other algorithms in
predicting the working set sizes. The best relative error for this al-

gorithm ranges between 178 to 28% in the experiments. The algorithm does

not seem to be very sensitive to the value of the parameter.

in most eazes r = 0.5 is a good cholce and gives an estimaticn error

Ly -

is obtained by an equsl weighted aver-

comparable with the optimum performsnce of the algorithm in each case.

Toe inclusion of the difference guantity in algorithm (b) decreases
the accurscy of the prediction compared with the first algorithm. The
best result with algorithm (b} is cbtained when the psrameter of the al-
gorithm is kept small. The best relatlve error in our tests with this
algorithm ranges between 19% to 42%.

The performence of algoritim (c) is very close to slgorithm {a).
The beat prediction relative error under this algorithm renges between
188 to 27%- In our experiments, a good choice ¢f N varies between 2 to
4., The change in the relstive error is fairly insipgnificent within this
renge of the parsmeter.

Since the fluctuation of the working set size string usually reduces
85 the window size incresses, the relative predictilon error lmproves for
large window silzes. However, we cah see instances in which this argument
does not hold. For exsmple, in the case of AFL progrems, the relative
error with T = 8000 is higher than the relative error with T = 4000 under
all three slgorithms. Thils indicates the lnappropriste choice of a win-
dow size which freguently goes across the boundaries of the program

locglities.

- b5 -

MEAN SQUARE ERRIR

MEAN SQUARE ERRER

PREDICTION ERRDR FPR WS SIZES - EXPONENTIAL SHMPPTHING

AL T T ¥
2001+ X VBBV SIZE 4000
AL + YINOBV SIZE $000
L VS,q = 1 V5, * Ut VS,
150]
100}
50§~
VATEX
1 i .. 1 e
%o 02 o4 o8 T
PARAMETER
Fig. 1.27

PREDICTIBN ERRZR F@R W5 SIZES - N PRINT MBVING AVERABE

200, T Ty Ty
X VIND@J STZE AROQ
+ WIND@Y SIZE 8000
150 -
[]
|
160 |- —
]
o 1 | I | 1 ' .
[) 2 3 4] o
N
Fig 1.28
- 46 -

Window size=4000

Average working set size=hg

exp. smoothing

auto-regressive

moving average

(a) (t) (o)
T MSE E r MSE E N MSE B
0.1 [122.9 6.23 0.1 154.6 0.25 i 139.0 0.2k
0.2 [111.6 C.22 0.2 169.2 0.26 2 116.3 0.22
6.3 |106.5 0.21 0.3 185 .8 0.28 3 1i2.2 0.22
0.4 [105.2 0.21 0.4 204 .5 0.29 iy 112.2 0.22
0.5 |106.3 Q.o% G.5 205 .8 0.31 5 114.8 0.22
0.6 |109.5 0.21 0.6 254 .0 0.33
0.7 |11k.2 o.22 lio.7T | 277.9 C.34
0.8 [120.6 0.22 0.8 310.4 Q.36
0.9 |128. 0.23 0.9 348.6 0.38
1.0 [139.0 0.24 1.0 394 .5 Q.40
o.% [105.2 0.21 0.1 154 .6 C.25 3 112.2 0.22

Window size=8000

Aversge working set size=57

exp. smoothing auto-regressive moving average
(a (b) i) .-

r MSE E r MSE E il MSE E
0.1 |108.4 0.18 0.1 118.8 .19 1 105.2 0.18
o.2 |we.7 0.18 0.2 127.7 0.19 2 101.5 0.18
0.3 8.6 Q.17 0.3 138.2 c.21 3 110.1 0.18
0.4 95.9 0.17 0.4 149.9 0.21 4 111.5 0.19
0.5 ok 4 0.17 0.5 163.0 Q.92 5 118.9 0.19
c.6 ol .1 0.17 c.6 177.9 ¢.23
0.7 95.0 C.17 0.7 195.0 0.24
0.8 96.9 0.17 c.8 215.1 0.26
0.9 }100.2 0.18 0.9 239.1 0.27
1.0 |105.2 0.18 1.0 268 .4 0.29
0.6 gk .1 0.17 0.1 118.8 0.19 2 101.5 0.18

TABIE 1.6 The prediction errors in working set size

- b7 -

estimation for WATFIV program

Min

Window size=4000

Average working set size=18

exp. smocthing suto-regressive moving average
{a) (x) (e)

r MSE E r MIE B N MSE E
c.1 25 .6 0.28 0.1 57.7 0.k2 1 43,2 0.36
0.2 23.7 0.27 0.2 58.5 0.42 2 29.9 0.30
.3 2h L 0.27 0.3 62.9 0.Lh 3 27.2 0.29
o.h 25.7 0.28 0.4 68.8 0.46 L 23.8 0.27
0.5 27.5 0.29 0.5 7.9 0.48 5 2h .3 o.27
0.6 29.7 0.30 0.6 8l L 0.51
0.7 32.2 0.31 0.7 gk b 0.54
0.8 35.3 0.33 0.8 1064 0.57
C.9 38.9 0.35 ¢.9 120.7 0.61
1.0 13.2 0.36 1.0 138.4 0.65
0.2 23.7 0.27 0.1 57.7 0.4z 4 23.8 0.27

Window size=800C Average working set size=23

exp. smoothing auto-regressive moving average
(e) (e) (e}

r MSE E r MSE E N MSE E

0.1 28.9 0.23 0.1 7L.0 0.37 1 h7.2 0.30

0.2 2.2 G6.21 0.2 67.5 .36 2 25.0 0.22

¢.3 2k .o 0.21 0.3 70.6 0.37 3 25.2 Q.p2

0.4 25.1 0.22 0.4 76.3 0.38 L 23.9 0.21

0.5 27.0 0.23 0.5 83.9 0.40 5 22.6 0.20

0.6 29.5 Q.24 0.6 93.4 0.h2

0.7 32.6 0.25 0.7 105.1 0.5

0.8 36.4 0.26 0.8 119.1 o.47

0.9 Ly.2 0.28 0.9 137.4 G.51

1.0 Li.2 0.30 1.0 159.9 0.55

0.3 2h.0 0.21 0.2 67.5 0.36 5 22.6 0.20
TABIE 1.7 The prediction errors in working set

- 48 -

size estimation for WATEX program

Min

Min

Window size=h000

Aversge working set size=30

exp. smoothing auto-regressive moving aversge
(a) (b} (e)

r MSE E r MSE E N MSE B
0.1 81.6 0.30 0.1 1.9 0.28 1 61.5 0.26
0.2 66.5 0.27 0.2 T76.0 0.29 2 59.2 0.26
0.3 59.9 0.26 0.3 81.9 0.30 3 63.6 0.26
0.k 56.6 0.25 o.L 83.6 0.31 L 64 . 0.27
0.5 55.0 0.25 0.5 96.8 0.33 5 66.7 0.27
0.6 54,7 0.25 0.6 105.8 0.34%

0.7 55.2 0.25 6.7 116.3 0.36

0.8 56.4 0.25 0.8 128.4 0.38

0.9 58.5 0.25 0.9 bz, 7 0.4%0

1.0 61.5 0.26 1.0 160.2 c.he

0.6 sh,7 0.25 0.1 71.9 0.28 2 59.2 0.26
Window size=8000 Average working set size=38

exp. smoofhing auto-regressivg moving average

{a) (e} {e)

T MSE E T MSE E i} MSE E
0.1 [203.7 [037 |0 Jae9s5 | oo || 1 J129.6 | 0.30
0.2 |153.3 0.33 0.2 206.5 0.38 2 127.1 0.27
0.3 |13k.5 0.30 0.3 207.6 0.38 3 130.4 0.30
0.4 Jiok.6 0.29 0.4 215.9 0.39 i 14k k4 0.32
0.5 |119.4 0.29 0.5 228.6 0.h0 5 153.9 0.33
0.6 |117.2 0.28 0.6 2hh g 0.k '

0.7 |[117.5 0.28 0.7 264 .8 0.43

0.8 |[119.7 0.29 0.8 288.5 0.45

0.9 | 123.7 0.29 0.9 316.6 .47

1.0 {129.6 0.3C 1.0 349.7 0.k

C.6 {117.2 0.28 0.2 206.5 0.38 2 127.1 0.07

TABLE 1.8 The prediction errors of working set

gize estimation for AFPL program

- hg Z

1.3.4 1gta
For a page reference string, rl,rg,rj,...,rt,..., the stack dis-

tance st time t, 4 is the pumber of distinct pages sddressed since

t.‘

the last reference to page r When ry is referenced for the first

o
time, then the distance can be set to gome specisl value, say, infinity.
Then the stack distance string {or 5imply distance string) is the se-

. associated with the string r

quence dl’d2’63"""dt"

l,r2,r3,....,rt,..

The distsnce string provides most of the information in the refer-
ence string and the reference string, up tc the identity of pages, can
be reconstructed from this sequence.

The distance string of actusl programs tend to exhitit some common
properties which are readily verified. A majority of distances have
values close to one. We can see this point by examining the histogram
of stack distance siring of & numker of progreams in Figures 1.29, 1.30
end 1.31. A lerge number of distances with veslues one and two indicate
that many successive reference pddresses are in the ssme page, end there
are frequent occurrences of reference patferns like instructicn-data-
Instruction-data-.... where instruction and the respective data sre in
different pages. Although the distribution of distances are heavily
bissed towsrd very smell values, the more interesting information in the
level of memory management protlems lies in the region of relatively
higher distances.

The estimated autocorrelation function of distance string, Figures
1.32 snd 1.33, show 8 sharp drop to values close to zerc for lags greater
than zero. These estimstes are computed by taking successive 16384 dis-
tances from different parts of the programs. This btehavior suggests thst

there is no correlstion of practical significance in the successive stack

distances generated by these programs.

- 50 -

YT T M IR SR L B

v I |
=

e

e

— T
oy =7

AUTBCHR, CREFS, PF STACK DISTANCE STRING - WATFIY
v T
Ay N

Tig.

LAG IN WKITS BF REFERENCES
.32

di stance

Fig 1. %

distence

1.29

Fig.

qunop Aousnbarl

. .
be :
by .
e - .
L .
. .-
u L]
+ .
1 o .
LY 3 .
'z ‘g M
I~ .
Fe [t .
it =1y :
"-—— -f M
=
w2k M
1% jre] b
o O .
Sl M
bt = M
1 -l .
o1 o -
Ddd 1o .
1l Qa *
e o= .
oot 1) M
Pl ——— .
| =0 .
Faurl M
[vt .
Five T
Fuvd .
i :
Fovy M
["red +
It .
LYo +
Fires
Pecannd
Patesl
Feilel
e
[*aid Tt
Feeebid
reved Ly
aungd Lousnbaxd
v
o .
= :
- il
| M
- .
nr
- "
o - M
=]
[T .
=154 n
- 1] .
-l -
[-42) .
[T 3 v
= . u .
—t
I u
=a n
- N : .
H
*LavE .
i . .
LIS v
b
*ei00¢ .
“guial
tocir
*arved
ovLek
“lridy
"vhbEL
b et
BT CT

AUTBCER,

APL

COEFS. @F STACK DISTANCE STRING -

A
30
LAG [N UNITS @F REFEREMCES

g
40

Fig. 1.33

L
10

HK1STOGRAK OF BACKWARD
pi

STARCES (APL)

28 e pae oan w B

distance

1.51

Fig.

qunos Lolsnbaid

- 52 -

- 51 -

POVWER

3 PSD BF STACK DISTANCES

L S S A S R RN S L RN

SR~
N=16384
107
!,W
i
10}
IF !
10° . S
0 1000 2000 3000 4000 5000
FREQUENCY
Fig. .34
- 53 -

When we plot the power spectrum of stack distances, Figure l.3h,
we obtain a fairly flat spectrum which supports the previous cbgervation
of the existence of a degree of randomness in the generated distences.
In a clogser inspection of the estimated power spectrum, we can, however,
see that in both programs in the high frequency renge, relatively sig-
nificant power lie on periods leass then ten instructions. Each periocd
determines the more frequently cbserved time it takes for the sccess
mechanism of each program to address the same page in two successlve
references.

Because of its wesk stochastic preoperties, the exact modeling of
this string does not seem to justify the effort. However, the observed
distritution of the stack distances can be a basis for strong program

models (Chapter 3).

1.4 coNCTUSION

In this chapter, we studied the properties of working set aize and
stack distance strings of some actusl programs.

We zsw the working set size of the programs vary significantly
during the execution of & progrem. However, there are high correlation
in the nelghboring samples and the extent of this serial dependence can
be messured by compuiing the estimated sutocorrelstion ecefficients.

It is inaccurate to sssume that the distribution of the independent
working set size semples fit a normel distribution. The change of pege

size parameter retains most of the perilodicel patterns of working set

size waveform, and es we increase the page size, we can see @ gradual
reduction of the power in corresponding frequencies. The window size
parsmeter can drastically change the perlodical charscteristies of this
string. A notable effect, as we Increase the window size, 1s the damping
" of the high frequencies in the working set size string as 1t is cbserved
in some programs. The change in the data reference pattern in the high
level language formulation of sn slgoritim is reflected in the actual
machine references only after the other type of the references are fil-
tered out. In other words, the effect on the overall reference pattern
1s very small.

The working set size models were considered and their sbility to
capture the degree of the serial dependence of the string were examined.
The Markov model with reflecting barriers and central attraction cen
come close to mimicing the working set sizes in this respect; however,
the accuracy of the model is very sensitive to the choice of the values
for the porsmeters.

The algorithms for predicting the working set reguirement of a

‘program in the near future, based on the past observations, were examined.

The exponential smoothing algorithm seems to give the best result. The
accuracy of the prediction when the window size changes, were discussed.
The analysis of the generated stack distances shows that the dis-
tribution of the distances is heavily biased toward small values. There
is no significant serial correlation between the successive distances.
A measure of the page locality transition periods were obtained by in-

specting the observed domlnant high frequencies in the data.

- 55 -

1.5 BIBLIOGRAPHY

0.

11.

Coffmen, E.G.Jr., Denning, P.J., "Operating system theory,"
Prentice-Hall, Inc., New Jersey (1973).

Coffmsn, E.G. Jr., Ryan, T.A. Jr., "A study of storage pertitioning
using the msthematical model of lccality,” CACM 15, 3, (March
1972), pp 185-19%0.

Cox, D.R., Lewis, P.A.W., "The statistical analysis of series of
events," Mathuen end Co., Ltd., London (1966).

Denning, P.J., "The working set model for progrem behavior,”

CACM 11, 5, {May 1968).

Feller, W., "An introduction to probability theory and its appli-
eation,” Vol. II, John Wiley and Sons, Inc., N.Y. (1966).

Ghenem, M.Z., and Kobayashi, H., "A persmetric representation of

. program behavior in e virtual memory system," IEM Research
Report RC-4560 (October 1973).

Jenkin, G.M. and Watts, D.G., "Spectral analysis and its appli-
eations," Holden-Day, Inc., San Franciseco (1958).

Kendall, M.G., "Time Series', Griffin snd Co., Itd., London (1973).

Singleton, R.C., "On computing the Fast Fourier Transform," CACM
10, 10 (Oetobver 1967), pp €47-654.

Singleton, R.C., Algorithm 338, "Algol procedure for the Fast
Fourder Pransform,"” CACM 11, 11 (November 1968).

Wekb, C., "Practical use of the Fast Fourier Transform (FFT) in
time series snalysis,” Applied Research Leb., University of

Texas at Austin, ARL-TR-70-22 (June 1970).

- 56 -

CHAPTER 2

COMPARATIVE STUDY OF PRACTICAL PAGING ALGORITHMS

2.1 INTRODUCTION

The ides ©f virtual memory computers heve recelved great acceptance
since the concept of a one-level memory store was introduced snd effec-
tively implemented on the ICT Atlas Computer [I0]. The srchitecture of
many couputers has been chenged sccordingly, to provide a sultable host
for the implementation of the mechanisms and.algorithms regarding the -
address interpretation and mansgement of the information in the storage
hierarchies (e.g., IBM 360/85, Burroughs B6500, GE 645). Becouse of this
development, the need for a cereful study of the probleﬁs relating to the
. efficlency of the operstions in virtusl memory computers soon emergeé.
The study of psging slgorithms has Leen one of the msjor concerns in de-
signing the policies for the dynamic orgsnization of program pages [1, 3,
6, 13, 15}. The overhesé involved in the paging operstions, due to the
processing of the paging algorithm and the time to place snd replace o page
in the memory hierarchy, necessitates the development of the efficient
paging slgorithms which result in the speedy execution of the jobs and
the lesst amount of paging traffic.

In all levels of current and newly emerging memory technclogies, we
can see the need for data monsgement techniques similar to paging oper-
ations. One exsmple is the control of dsta movement between very fast
(cache type) memories and the slower main memory devices. This technology
seems destined to stey around, especially if we lock st the ever-inereasing
speed of processors, while the speed of economicsl memories incresses but

st1ll lags behind. The exchange of dates blocks between direct access de-

_57-

vices and mass storage fecilities is encther example which shows the need
for the scheduling of dsts between relatively slow memory devices.

Since the performance evalustion of the psging algoriihms requires
processing of large amounts of data, valuable efforts have been directed
in developing efficient evaluestion techniques [2, 12, 13]. In this chap-
ter, some of the important techniques will be discussed.

The peging algorithms which we are going to consider in this paper
can be cetegorized into three different groups, tesed on their complexity
and the lmplementation cests. Some slgorithms require lsrge amounts of
processing and bookkeeping. Using these algorithms can be very costly
in terms of the space they need to keep the data, and in terms of the
execution overbead.

If we gpecify the performance of 8 paging algorithm with the number
of page faults 1t ceuses, then we can see that not all of the expensive
algorithms yield a performance level whick cen Justify thelr costs. On
the other hand, we will show that some simple and efficient algorithms
glve performences which are competitive with more elsboraste slgorithms.

We will consider three groups of slgorithms. In the first group,
we put scuwe well known slgorithms such ss LRU, WS, CLIMB and MIN. The
smount of storege required for bockkeeping and the processing cost of
these sigorithms are set to be in the middle of our ecmperison seale.

The slgoritims in the second group require the most amount of pro-
cessing compered to their counterpsrts in the first group. Members of
this group include FFF {counterpart of LRU)}, WS with verisble window size

{counterpart of W8). We will attempt to see whether the extra work in-

_volved in the execution of these slgorithms is justified in the finsl re-

sult.
~ 58 -

The more practical algorithms fall into the third group. All the
algorithms in this group require the least amount of processzing compared
to their counterpsrts in the other groups. They can use the hardware
faecilities availatle in mest virtusl memory computers very effectively
tc manage their bookkeeping requirements. The use of theae algorithm§
becomes more advantageous by keeping down the overheamd when the tentrsl
processor is glow, or there is a need to have a small and efficlent
memory mansger as part of a supervisor. Within this group, we discuss
FIFO, CLOCK (two versions)} and Modified WS (MWS).

Inclusion of the program model into the study of the paging algor-
ithms is important becsuse the use of the model can brosden the scope of
the study. We will use the independent reference model which is tractable
for snalysis and simulation.

In this chepter, we will start by giving the descriptlon and proper-
tiee of a number of paging algorithms. Whenever an important evalustion
teehnique 1s available, it will be presented. In some ceses, the analy-
tical results of the independent reference model will be given too. This
chapter concludes by giving the performence result of most of these algo-
rithms on setual progrsm traces, and independent reference models con~
structed, based on actual progrsms.

2.2 THE VIRTUAL MEMORY COMPUTER

Consider a two-level memory system where st each level the memory
is pertitioned into equal sized consecutive words, generally called page
frawes. The transfer of the information between the two levels is done
in 8 unit of a psge. The address space of the program running in this
hierarchy is slsc partitioned into pages. Program psges are initislly
mapped to the psge frames in the secondary level. A progrem, with some

59

of its pages loaded into the first level memory, issues references to
its logical sddress spasce which, in turn, 1is interpreted and mapped toc
setual addresses in the primary level. When the program sddresses a
page which is not in the wain memory, a page fault occurs. At this time,
the_supervisor halts the execution of the program and starts 1oading.in
the reguested page from the secondary storage. If the allowsble space

of the program (memory cepacity or buffer cepascity) in the first level

is exhsusted, one of the pages of the program must be copied back {if it
had been modified) to the secondsry level to make room for the incoming
page. The decision to select a page to be pushed out of the memory is

taken by a peging or replacement aigorithm. When the missing page is

brought intc the main memory, the delsyed program cen resume 1ts execution.
If the replacement selection is always done from the pages cf the program
which has caused the page fault, the slgorithm is ssid to orgenize the
program pages on & local basis. In a multiprogrsmming system where more
than one progrem may be active and they compete for main memory resources,
8 paging algorithm is said to w?rk on & globgl basis if it considers all
the psges of the active programs as s common pool and, at the time of a
page feult, it may replsce a page from e progrem which has not necessarily
generated the fault. .

The allocated space of a progrem in the main memcry csn either re-

main fixed durirg the entire execution of the program (fixed memory size)

or it cen very sccording to the requirements cof the program (varisble
memory size).

The objective of the paging algorithm is to organize the program
pages in such a way that the likelihood that 8 page is found in the main

memory {or first level memory) when it is referenced, is incressed. The

. 60 -

common criterion to compare the performence of puging algorithms is the
number of page faults that a program experiences during its execution
for a given memory capecity. Therefore, Tor & fixed memory size, m, and
under the replacement algorithm, A, define the pege fsult rate or miss
ratio, FA(m), ss the retio of the number of page faults over the total
number of references. Denote the success function by 1 - FA(m).

¥or the varisble size memory algorithms, we substitute fer m the
averasge memory Size over the totel execution time. The average memory
gize is obtained by summing up the memory sizes st the time of each ref-
erence and dividing the total by the number of refsrences. This criterion
is called virtual spsce-time product versus the page fault rate. Another
slternative criterion to compsre paging algorithms is the resl space-time
product versus the page fault rate. This criterion takes into account
the cost of page transfer time in terms of the mein memory space occupled
and idle during the transfer. This can be summerized as the curve of

k

zj[I{i)mi+I'(i)*C*mi]/(k+F*C) versus page fsult, where m, is the memory
i=1

size at the time of reference i, ¢ is the time it takes to read a page
in terms of the number of references, k is the total numker of references,
and I{1) and 1'{i) are indicator functions such thst

¢ if reference i couses page fault

(i) =
1 otherwise
and
0 if (i) =1
I'(1) =
1 ifI{1) =0

Socme suthors use a virtusl space-time product versus page fault rate

- 61 -

which is similar to the earlier cne except the memory sizes sre normalized
to the mumber of actual program references k.

We will use the first representation becsuse it does not ilnveolve the
parsmeter, C , which cen essume different values in different coxponents .
2.3 INDEPERDENT REFERENCE MODEL .

For some of the paging sigoritims in this chepter, we will give some

analytical results for the performence, and the average amount of mein

memory used by a program which generates reference sequences according to

the independent reference model. We will exiensively study this model in
the next chapter. For our purpose here, it suffices to mention thst this
model can be s very good predictor of the performance of actusl programs
under meny replacement slgorithms [Ch. 3].

In the independent reference model, the sequence cof page references
Tos FppeoeerTy are 1id rasndom numbers with probatility density function
[pl, p2,...,pn] where,

Prir,=1] = p;

with n being equesl to the total number of model progrem psges. Without
loss of generality, we label the page nemes so that B = pza.. - Pye
2.4 [DEMAND PAGING ALGORITHMS

In the remaining part of this chaspter, we will do a ccmparative
study of a variety of paging algorithms end measure their performances
and the relative smount of processing and bookkeeping which is involved
in each of them. The most important evalustion techniques will be men-
tioned in each case.

The following algorithms are considered:

BR {rendcm replacement)
FIFO {first in first out)

- 62 -

LRU (least recently used)

CLIMB

CLOCK

MIN

WS (working set)

WSVT (working set with varisble window size)
PFF (page fsult frequency)

MHS (modified working set)

WMIN {variasble memory size MIN}

For the following discussion, we denote by n the total number of
program pages end by m the mein memory size (m < n). All algorithms sre
demand paging; i.e., & page will be brought into the memory when it is

requested.

2.4.1 RR_(Rsndom Replacement)

At the time of & page fault, this slgorithm will replsce, st random,
one of the pages from the content of the main memory. Therefore, it is
not required tc keep any informstion about the past paging sctivity of
the program. We can expect poor performance from this slgorithm becsuse
it replaces the pages indiscriminately and, therefore, it might remove s
page which is going to be referenced again in the near future, or else
it will retsin an idle page for an unnecesssrily long time.

For the independent reference model, the long run page fsuli rate

i equel to (see Appendix 2.7 in this chspter):

Frp(e) -t Z IT p. L Py { TRM)

seq JEB :['QS
= Z P
G {l .

s5€Q 1les
- 63 -

and Q 1s the set of all combination of m numbers out of n.

2.k.2 EIFQ (First In Firet Out)

The program pages are ordered besed on the time of their first
arrivel into the main memory. At the time of a page feult, the page
which was first referenced is removed.

This algorithm has some unusual behsvior. The function of page
fault rate with respect to incressing values of memory sizes iz not al-
ways non-increasing. It is also known that the initial buffer content
(the set of pages which are initially loaded into the main memory prior
to the execution of the progrsm)} mey have a significant effect on the
final numkter of fsults. -

For the independent reference wmodel, the FIFO fault rate is equal
to the RR fault rate at equsl memory sizes [5].

It is interesting to see that even for the actusl programs the per-

formence of FIFQO is close to HR [1].

2.3.4 LRU (Least Recently Used)

This is by far one of the most discussed replacement algorithms.
The algorithm maintains & stack of the main memory pege nemes based on
the time of last reference. The most recently used page is on the top
of the stack and the lesst recently used page is st the tottom of the
stack. At esch reference to & page in mezin memory, the stack is updated'
by moving the pege name to the top of the stack and pushing the rest of
the page nsmes one position down. At the time of s page fault, the page
wnich has not referenced for the longest time (the page in the bottom
position in the stack) is removed and the new page is placed on the top

of the stack.
- 64 -

The LRU algorithm is an important memter of s class of paging algo-
rithms called stack sigorithms [13]. An algorithm is e stack algorithm
if the tuffer conteant of size m is o subset of the buffer content of size
m+l 8t each reference time and for ell velues of m. In [13], an efficient
algorithﬁ is presented which can te used to evaluate the perforumance of
steck algorithms for the entire range of memory capacities. For each
reference, this slgorithm generstes s number d, called the stack distance,
which has the property that if & > m for sny memory capacity less than or
equal to m, this reference will cause s psge fsult. Therefore, for a
sequence of references to eveluste the number of psge faults for all
memnory capecities, one needs only to generate stack distances. Then the
nunkter of fsults for s memory of size w is simply the total number of
stack distances greater than m.

The performance of LRU is generally supericr to FIFD (Figures 2.1,
2.2, 2.3, 2.4) because 1t uses the recent past history of the references
to prediet the future psge requirements of the program. The implementetion
of LRU in its idesal form requires meintaining stacks snd the stack oper-
ation can be costly. We will see later that by using s much less complex
algorithm {CLOCK), we can spproximate the operation of the LRU end get
performance which is very close to ILRU.

A similar algoritbm is used in IBM 3850 Mase Storsge Facility [4] to
schedule blocks of data between the direct access devices and mess storage
system.

The long run page fault rate of the independent reference model under

IRU is obtained in {11] and [5] and is equal to

S o 04
ORI ROR RO (Tre)

where

m-i+l
D{s)=1 - Ej P,

1 k=1 ‘k
and s = (31, 52,...,Jm) and § is the set of all permutstions of m cut of

n. The size of the set @ is equal to m'(H).

Another result cobteined for IRU on the independent reference model
is given in [B). Motiveted Ly actual observetions, they show the inde-
pendence of the LRU miss ratio from the page size by glving an upper

limit to the difference of approximste LRU fault rates with two different

‘pege sizes.

2.4k CLIMB

This esigorithm worke ss follows: A stack of ail pages in the main
memory 1s msintsined. At the time of & reference to s page inside the
memory, the position of that page is interchanged with the page immedistely
above it (if eny) in the stack. Therefore, if s pege is frequently ref-
erenced, it will migrate to the top of the stack. At the time of a page
feult, the psge on the bottom of the stack is removed snd the new page
goes to the tottom of the stack. This slgorithm was proposed in [16]
for self-orgenizing files. The ides is thst the files (or pages, in our
case) thet are frequently used will be likely to remain in the faster
memcry. CLIMB, as z paging slgorithm for sctusl programs, hes the dis-
advantage of making the wrong decision on removing a page for traces
which have long runs of page reference sequences Like .. .XyXyXyXy....
{(e.g., x=instruction reference and y=dats reference). In such csses, the

algorithm replaces a page which is going to be referenced again immediately

- 66 -

after it is removed. The performance of CLIMB is coapared with other
algorithms in Figures 2.7 snd 2.8.

For the independent reference model, CLIMB does generally better
than IRU (Figure 2.8). Awong sll the slgorithms we have considered, this
iz the only slgorithm for which the independent reference model gives an
incorrect estimation of the relstive performance of the sctusl programs

under two (CLIMB snd LRU} algorithms.

2.4.5 CLOCK

This algorithm is most widely known es the one used in the Multics
opereting systems. It is basically a very simple sligorithm with a good
performence. Associsted with each page in msin memory is a reference
tit {or use Eit). A list of the names of the pages present in mein mem-
ory is maintained. A pointer scans through the list in & cireulsr path.
When 2 page is addressed, its reference bit is set fo one. When a page
fault occurs, the pointer starts searching the list from its current
position. As the pointer moves, it turns off the use bit of all pages
on its way. The first page with the zero flag (reference bit) is removed
and is replaced by the new page. The reference bit of the new page is
set to ocne and the pointer stays there until the time of the next page
fault. This algorithm spproximates the behavior of.LRU in & very effi-
cient way. The implementation of CLOCCK is generslly very essy using the
capsbilities of many small and large virtusl memory computers. The over-
head of processing this algorithm is much less than LRU. The rate of
paging activity can be effectively monitored by messuring the average
speed of the pointer. Clearly a high pointer speed indlcates heavy
paging sctivity. This information csn be used by the memory allocator

- 67 -

to tune the memory requirement of active programs in & multiprograming
system.

In Figure 2.7, the performsnce of CLOCK is compared with LRU. We
notice that the performance of CLOCK is very close to LRU for most of the
memory sizes.

There are other variations to the CLOCK slgoritbm. In one scheme,
which we refer to as second change CLOCK, after a page is brought into
the memory the flag is set to one end the pointer moves one position for-
ward without furning the flag off. Therefore, as the results of upcoming
faults, the pointer has to pass over this page at lesst twice until it
¢an be removed by an incoming page. In our experiments, the measured
performance of this algorithm is just about the ssme as the usual CLOCK

algorithm.

2.k.6 MIN

The sighificance of this algoritim is that it gives the minimum num-
ber of page faults among all fixed memory size algorithms. In one of the
esrliest papers sbout paging algorithms, Belady [1] describes this algo-
rithm. later im [13], it is proved to be optimal.

At the time of a page fault, this algorithm removes & page which is
not golng to be referenced for the longest time in the future. To process
this algorithm, we, therefore, need a complete knowledge of future ref-
erences and clearly it is not reslizable in sctual situatlions. However,
the MIN algorithm is valusble when we want to see how well other algo-
rithms perform with respect to the optimal strategy.

The MIN algorithm is a stack slgorithm. Therefore, for a reference

trace, We can efficiently measure the performence of this algorithm for

- 68 -

the entire renge of memory sizes. In [13] an evaluation technigque is
given which requires two passes over the reference string. In the first
pess, a sequence of forward distances {forward distance 1s tlie number of
distinct pages referenced until the next reference to the current page}
is generasted. In the second pess, the reference siring and forwerd dis-
tance string are scamned to generste the sequence of MIN stack distances.
The MIN stack distance {like the LKU stack distance for IRU) is the mini-
mm memory capacity associated with the referenced page, such that no
page fault occurs if the optimal strategy is used up to that point. Im
[2], it was shown that the MIN stack distence at each reference time is
a function of pest references and, lence, te generate the MIN stack dia-
tances nc look~shead is necessary. In other words, once the next refer-
ence is determined, it is possible, by using the past history of refer-
ences, to find the associated MIN stack distance. Based on the algorithm
presented in [2], Lewis and Nelson [12] give an algorithm which generates
the MIN stack distsnces and LRU stack distances in one pass over the ref-
erence string. In the evaluation of MIN and LRU algoritbms, we have
mostly used their algorithms.

The fault rate of the MIN or OPT algoritlm for the independent ref-

erence model is given by [5]:

o n
z o 11
Foppln) = Py -3 {TrM)
i=m PI)
i
i=m

»

The remaining algorithms are varisble space paging slgorithms.

2.4.7 WS {Working Set) [6,7]

This algoritim removes & page only if it hasn't been referenced in

- 69 -

the pest T references. The perameter T 1s called the window gize. The
working set at time, t, Ws(t,T), is the set of distinct pages which has
been referenced in the intervsl_(t-T+l,t). The working set slze at time
t, ws(t,T), is the number of pages in the working set. The average

working set size 1s defined by:

k
ws{T) = (1/k) Z: [w{t,T)]
t=1

A multiprogremming virtusl memory system which uses & WS dispatcher,
only dispstches the progrem which bas all its working set in the main
memory .

In the MANIAC IT computer [14], the working set wechanism is actually
built into the hardware. Each page has a register associated to it. When
a page 1s refefenced, the value T is loaded into the corresponding regis-
ter. At each genersl reference, all registers are decremented by ome.

The first register to become zero will have its page removed from memory.

The working set dispetcher in it; ideal form is not simple to Iimple-
ment. Nonetheless, it has very useful properties which make it desirable
as & psging algorithm. By using the W3 strategy, the wewory 8llotment of
the progrsms become responsive to the locality (loosely, the set of pages
which are hesvily referenced in a time intervel) chenges of the program.

The performance of this algorithm is compared with other algorithms
in Figures 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6. There is sn efficient
technique [5,17] to evaluste the performance of WS for the entire range
of the parameter T. The inter-refefence statistics can be used to find
the average memory size snd the fault rate of the WS algorithm: the
inter-reference perlod, Rys ot time t is the number of references since
the last reference to the page addressed st time t. If a page is ref-

- 70 -

erenced for the first time, we set the inter-reference at thast time equal
to infinity. ILet I(.) be an indicator function which esgumes the value 1
if the expression Inside the parentheais is ture snd 0 otherwise. For a

reference Btring Iy, Tps----,Ty, define g(x) as

K
g{x) = (1/x) z I{x,=x).
t=1

A page fault csn occur 1f x 1 > T: therefore,

L
T

FWS[WB(T)] =1 - z ag(x).

x=1

The average working set size is obtained from

T-1 t

ws{T) =T —Z Z g(x).

t=1 x=1
For the independent reference model, the fault rate probability 1s
equsl to the produet of the probablility that s page hasn‘f been referenced
in the past T references and the probability that 1t will be addressed in

the next reference, summed over all pages, 1.e.,

n
Fus[#s(P)] = 21 (1-p,)", (1y)

The average working set size is the probability that a page Is in
main memory summed over all peges. A page is in memory if it has been
referenced at least once in the pat T units of time (or is equai to one

minus the probasbility that i1t has never been referenced):

ws(T) = Z 1- (1—pi)T] { TRM)
1=1

-Tl_

2.4.8 WSVT (WS with Varisble Window Size)

The choice of the working set persmeter T for WS stretegy has alweys
been @ proklem. In [6], Denning originally suggested that T should be
equal to twice the time required to load e pesge block. This choice of T,
of course, does nct take into sccount the paging charascteristics of the
program and, therefore, cannot be considered s right choice in all cases.
The tradeoff in choosing the size of T is between inefficient use of the
memory (for T too lerge) or suffering a high page fault rate (for T too
small). Thus, if the overall peging behavior of the progrem is initislly
unknown, the nastursl thing to do is to use tbe cobserved recent pest paging
behavior of the program to determine dynsmleally the size of T for the
near future. In doing 80, one can specify an scceptable range for the
paging sctivity of the program by setting lower snd upper limits oan the
page fault rste of the program. At the decislon points, 1f the page
fault rete had been higher then the upper limit, one incresses T, and 1f
it had been lower than the lower 1limit, one decresses T (7). Part of the
problem with this spproach is the extra processing time at the decision
pointas and the choice of the lower and upper pege feult rates. The most
gsignificent prcblem, however, 1s that it is not usually known how sensi-
tive the paging asctivity is to changes in the window size and whether
observed high paging activity ocecurs because of s locality change {where
increasing T ie the incorrect decision) or occurs beceuse of an actual'
increase in the lccality size.

We tried s version of variabie slze WS to see how the performance
of this algorithm comperes with fixed WS strategy (Figure 2.9). In ocur
algorithm, we start with s given T and follow & normsl WS algorithm until

8 page fault occurs. At this point, the page fault rate (obteined by
-T2 -

measuring the time between the last two faults) is compared with the
given lower end upper limits, snd 1f the observed rate fells ocutside the
acceptable renge, we incresse or decrease the window size sccordingly
with the amount equasl to some fraction of the window size.

In [16], & page pertitioning algorithm is presented which assumes &

window size parameter for each page, Thisz i3 a generslization to

TPaSE'
the idea of having two different window size parsmeters for data references
and Instruction references. The parsmeter Tpage 1s the maximum permiss-
sble unreferenced interval for which a page can still be kept in the

Memory . Tpage is obtained by taking into sccount the cost of keeping a
page in msin memory until its next reference and the cost of processing

a page fault.

2.k.g PFF {Psge Fault Frequency) [3]

The objective of this algorithm is, like WSVT, {0 respond to the
page demand of‘the progrems dynamicelly. FFF adapts itself to the psging
characteristies of programs by using the messured page fault frequency tc
change the memory capacity directly. Whenever s page faﬁlt oceurs, if
the fault frequency lies above the given criticel value P, then the mem-
ory capacity is increassed, and if it lies below this value, the memory
capacity is decreased. The critical fault freguency P is the persme{er
of this algorithm. When shrinking the memory, only those pages are re-
moved which have not been referenced sinee the lest pege fsult time.

The performsnce of this algeorithm 1s compared with WS in Figure 2.9.
We found this slgorithm sometimes too responsive to the changes of the
program paging cheracteristics. In the seme wsy, WSVT makes incorrect
decisions during the locelity chenges.

- 73 -

2.4.10 MIS (Modified WS)

One of the disadventages of the WS algorithm in its ;dealized form
18 the implementation complexity snd ;he overhesad involve& In processzing
the algoritbm. MWS is intended to reduce the overhead to & great extent
while mminteining the poeitive points of the actusl WS algorithm (1ike
capability to respond to the loeality changes of the program).

Thls algorithm uses the reference bit {use bit or flag) associated
with each page. This feature is commonly available in meny small and
large virtual memory computers. Unlike the WS algorithm, MWS deoes not
require the information about the last time & page was used. A window
Bize parameter, T, is defined in this algorithm similar to the same par-
asmeter in the WS algoriihm. As the program is running, only after the
elapse of T time units does the elgorithm interrogate the reference biis
to determine which pages have been referenced in the pest interval.
These pages are kept in the memory and constituie the working set for
the next interval. The steps of the algoritim are ss follcws:

- Initialize the reference bits teo zerc (off).

~ For an interval of length T, repeat 1 to 3

1) Next reference (page)
2) If it is a new page, incremse memory capacity by cne
3) Set reference bit to one {on)

- After T 1s elapsed, do 4 to %

L) Remove all the psges which have not been referenced
{use bit = 0) in the last interval

5) Set the use bit of the remaining pages to zero {now the
main memory slze is equal to the numbter of pesges which

have been referenced in the last interval).

- T -

The performance of MWS 1s compared with W8 in Figure 2.11. We can

see that MWS does 83 well as WS for most memory sizes and 1s slgnificantly

superior to LRU. We also notice that for a given window size T, the MWS
algorithm gives a larger average working set size compared to WS with the
same parameter.

For sn independent reference model, assume that the peage reference
atring is divided into intervals of lenmgth T (see the sketech) TLet the
first reference of an interval I be

| I-1 I] I+l |

r,. Denote the kth reference of this interval by r The probability

J J+k©
that a page 1 iz preszent in the memory at time j+k is equal to the pro-
bability that it has been referenced at lesst once in the past T4k units

of time. This probability is egual to

1-pr page i hssn't been referenced in the past
T+k references

- [1- ()™

Therefore, the expected number of pages present in the memory is the

above expressicon summed over all pages, i.e-,

Lo- (1-p)™
1=1

The average number of psges in the memory at the end of esch Inter-

val is denoted by mws{T) and is equal to:

_75..

T n
mws(T) =% IE:L izl[l - {1- pi)Tﬂ:]

it

i
e al
[~-1ra

[1 - (- p,)T“‘]

[
[]

1k

1

I
i~
I

T
T - (1-p,)" gl (1- pi)“]

L
o] - (1_' yo+L
=-Tl- Z T - (L- piT—-——-———--—?-j-'——--l
1=1 1-(1-p,)
n n
) y2THL
i % z (1 pi % Z (1- . [xzi]
1=1 =1 p;

Io the interval I,the first reference tc page 1 causes a page fault
only if this page hasn't been referenced in the last interval I-1. There-
fore, the number of page faults during interval I is the product of the
probability that & page has not been referenced in an interval of length
T by the probability that the ssme page is referenced, at least once, in
an: Interval of the same length, summed over ell pages. Thus, the page

fault rate of the MWS algorithm is obtained by the following expression:

- l_‘ X T
Fyglms(T] = % (1 - (12,0 (1- p,)"
1=1
s n
) T z oT
= = - - 1-
T i (202 nf1-2y)
As we will show shortly, F__ and F , with the same sverage memory

WS MWS
usage, are very close together for the independent reference models which

sre constructed, based on the paging behavior of an actusl program.

- 76 -

2.h.11 VMIN (Variable Memory Size MIN) [20

Like MIN for the elass of fixed memory size algorithms, VMIN
gives the least fault rate smong variable size memory slgorithms in the
plene of aversge virtual Space-_time/page fault rate. This algorithm
removes & page which Is not going to be referenced in the next T units
of time. By changing the T parameter, the plot of average memory size
versus page fault rate is obtained. This algorithm is proved to be
optimal by the following argument. Iet U be the. cost associated with
keeping a page in memory per reference. Let R be the cecst of processing
a page fault. After a reference to page i, a decision must be made by
comparing the cost of keeping this page in the wemory until the time of
next reference to the same page,with the cost of immediately removing the
page from the memory and facing a page fault processing cost at the next
reference to this page. The cost assgociated with the former decision is
equal to Cl= d.U, where d 1s the time until the next reference and the
cost assoclated with the latter decision is egual to CE==R. Let R/U=T,
then Cl= é.U and 02= U.T. Repgardless of the velue of U, the optimsl
algorithm keeps page i if 4= T and removes it immediastely sfter it is
referenced if 4<T.

For a given T, the fault rate of the VMIN algorithm is equal to the
fault rate of the WS slgorithm with the same window size. .Tne average
memory usage of the VMIN slgorithm csn be obtasined from the sverage
working set size for any window size if we note thst, at the time of esch
page fsult using & WS algorithm, the VMIN algerithm, having been used in-
stead, would have kept one less page during the past T references. This
15 because VMIN removes a page immedietely if it is not going to be
referenced agaln in the next T time units. Let wa(T) and Fq be the

-7 -

average working set size snd the fault rate of the WS algorithm for window
size T, respectively. Denote vmin(T) the average space time product of

the VMIN algorithm, then

voin(T) = ws(T) - T~ Fug'

For the independent reference model the sversge memory size and

page fsult rezte are oktained by [19:}:

Fipy [vein(T)] = lgl p,(1- pi)T
vmin{T) = n - Z (1“Pi)T(1' TPi)- [1red]
i=1

2.5 TEST RESUITS

The performance of the paging slgorithms described in the previous
section was obtained using the trsce of four computer programs. The
testing environment is a simulated virtual mewory system with page sizes
Eequal to 512 bytes.

The programs used in the experiments are:

WATFIV: ‘Trace of Watfiv compiler while it is ecmpiling & Fortran
program called WATEX (1048662 references).

WATEX : Trace of a Fortran program to find & minimum of & multi-
parameter function (1108485 references).

APL: Trace of an intersctive session with the APL processor
(1108485 references}).

Fril: The traee of Fast Fourier Transform using ihe Cooley-

Tukey algorithm (1108485 references).

- 78 -

In the presentstion of the results the initial pége faults are
excluded.

In Tables 2.1, 2.3 and 2.5 the page faults generated by WATFIV,
WATEX, and APL programs under s number of fixed memory size replacement
algorithms are shown (the results for WS are also shown for comparison.)
In Figures 2.1, 2.2, 2.3, and 2.4 the performances of ILRU, FIFO, MIN,
and WS on four different traces are shown. We note that the relative
performances of these algorithms with respect to each other are roughly
the same. The FIFQ algorithm gives the worst performance among them.
The performance curve of the WS lies between LRU and MIN in most cases.
However, in Figure 2.4 we note that, on the average, for certain memory
zizes, the WS algorithm gives a smaller page fault reate for a given
average memory usage compared to the MIN algorithm.

In Figures 2.5 and 2.6 the performances of LU (e fixed memory
size algorithm) and WS (a veriable space algorithm) are compared with the
optimal algorithms corresponding to each class using the traces of the
WATFIV and APL programs. VMIN, which is coptimsl among the variable space
algorithms, gives significsntly better performance.

In Figure 2.7, the performances of CLOCK and CLIMB algorithms axe
compared with LRU, using the WATFIV and WATEX programs. It is interesting
to cobserve that the CIOCK algorithm, with its simple astructure, gives a
performance which is very close to the more elaborate LRU algoritha.

CLIMB does not seem t¢ be very suitable as a peging algorithm.
Its performance is comparable with FIFO, and it is uswally worse than
IRU on actual traces.

In Figure 2.8, the performances of LRU and CLIMB on two indepen-
dent reference models are shown. As it wes expected for independent

-79_

reference models, CLIMB gives Lower page faults than LRU.

The fault rate of veriable spsce slgoritims is shown in Tables
2.2, 2.4, and 2.6 for WATFIV, WATEX, APL, and FFTLl programs.
in Figure 2.9, the performance of PFF and WSVT {vworking set with

varisble window size) iz cowpared with the WS algorithm on the traces of

the WATFIV snd WATEX progrsas. The PFF zlgorithm does slightly worse

than W8. In Figure 2.10, the memory demand of FFF versus time is shown.
We can see that this slgorithm constantly chenges the main memory space

of the progrem. Each sherp drop in the memory size is followed by a high

.demend for a larger memory size 1n the coming references.

The slight improvement which is obtsined by using WSVT over the
WS algorithm does not justify the extra work which is required to change
the window size asccording to the paging choracteristics of the program
(Figure 2.9).

In Figure £.11, the page fault rate of MWS (modified WS), LRU and
WS sre plotted for the WATFIV snd APL programs. We note that on the ave-
rage MWS usually does better then LRU. The performance of MAS is only
slightly worse than WS. Considering the efficiency of MWS, the use of
this slgorithm is definitely more adveniagecus than WS.

In Figure 2.12, the average memory usage of the MWS and W3 algo-
rithms with respect to the window size psrsmeter T iIs shown. ¥For &
given T, MWS gives a larger asversge memory size. If we let ms{T)} and
wa(T) be the sversge memory size with window size T for MWS and WS algo-
rithms, respectively, then ws(T) < wws(T) < ws(2T).

We basically get the ssme results when we compare the performance

of MWS and WS on two specilally constructed independent reference models.
- B0 -

IRM1 and IEM2 are two independent reference models which are parsmetrized,

based on the actusl trace of the WATFIV and AFL prograws using the AB
irversion technlque deseribed in the next chapter. In Figures 2.13 end
2.14 the performsnce and sverage memory (buffer) size of these two
models under the MWS and WS algoritbms are shown. The compatibility of
these results with those we obtained using the actusl traces shows that
there is a potentlsl for using models instead of sctwal traces to pre-
diet the behavior of certain slgorithms.
2.6 CONCLUSTON

In this chapter, we have presented some new results on the perfor-
mance of paging algorithms, end have reviewed many msjor findings in
this area.

Because of the ever-incressing demand for on-line dirgct accesi-
bility of very lsrge dats spaces snd the current gsp between the process-

ing speed and the speed of cost-effective memory components, the use of

peging algorithms in different echelens of memory hiersrchies is inevitable.

We have examined two mejor categories of paging algorithms with
fixed or veriable size buffers. Considering the uncertsinty of the exact
pattern of future references, the algorithms which, in their pege selec-
tlon process and buffer sdjustment decisions, use the least recently
referenced criterion, seem to be most effeective. Among such slgorithms,
however, the implementstion of the exset ILRU and W5 schemes in e typical

processing environment is costly end involves provision of gizable hard-

ware and software mechinery. In an slternstive approach, cne can signifi-

cantly bring down the overhesd by using simpler and more practical algo-
ritims, like CLOCK and MWS, and still achieve compsrable performance.
One of the resgons which makes the varisble size buffer algorithms

- 581 -

more effective than the fixed size memory slgorithms is the capsbility

to respond rapidly to the changes in the program reference pattern.

But being too responsive can sometimes degrade the performance. Rever-
theless, it is important to have this flexibility to a certain degree.

We have seen thst if an algorithm hes totsl freedom to chenge ite buffer
size, it will do so very frequently. Since it is not conceivable that
this freedom cen be provided in an actusl, say, multiprogramming envircn-
ment, we should expect the performance of such elgorithms under more
reslistic conditions to degrade sccordingly. In this respeet, the use of
algoritoms like MWS, perticularly on smeller computers, seems mere reason-
able. This algorithm, desplte its simplicity, can respond gufficiently
to the dynemic buffer requirements of programs ané meanwhile moderate the
demand on the eervice of the memory manager-

The results of the study of fixed size memory slgorithms may be
appliceble to the overall performance of systems which use a globel re-
placement scheme. In such a system, the collection of active progrems can
cen be considered as s single lerger progrsm running in s fixed size buf-
fer. The dispatching of jobs is then analogous to the locslity transiti-
ons in a single program.

We heve presented some exsmples of the potential of program models
in predicting the realistic performance of some of the paging elgorithms.

The development of this idee is pursued in the next chapter.

- 82 -

BAGE FAULT RATE

-

LRU, FIFY, HIN AND VS PERFBRMANCES (APL PRBGRAH)

., LRU, FIFQ, MIN AND W5 PERFBRMANCES (MATEIV PRAOGRAM] 10? . | . ,
L+] : 3
b o - T T T E i — E
x e] [\F T |
T) o\
w? | -
o]
3 ve
] F .]
1 Hoa3 x n
n ::é 10 3 ~. %
3 s "~
]] _ x . 3
p = \\\ x . E
‘D" 3 = . * X oy 7
x x x - '_'“h_\ :
r -
X ’0-5 1 1 1 »
10 - = ‘ o 50 100 150 200
° = 100 158 MEM BRY SIZE IPAGES]
MEMCRY SIZE (PAGES} 7 Fig. 2.3
Fig 2.1 .
a LRU. FIF@, MIN AND VS PERFBRMANCES (EFT] PREGRAMN
1 LRU FIFR, MIN AND WS PERFORMANCES WATEX PROGRAMI 10 I T , .
10 * T T T 3 x FIF@a 3
x FIFR 1 . au
s-.LRU p 10‘2 -
10'2 = i 3
3 W]
] =]
=] &]
=
& . g0 3 -
b " <5
5103 k- . w 3
= \m E
w F 2 4
& [a]
= | w? =
4 |
10 - E ¥ . i
- 3 A :
-] _ oS SRR
we 1] 1
8] - 2 40 &0 HEM .BRY SIZE (PABES)
MEMORY BIZE (PAGES) Fig. 2.4

Fig. 2.2

- B3 - - 84 -

LRU, MIN. WS AND YMIN PERFBRMANCES [MATFIV PRAGRAMI

10

-
al
N
T

LULT RATE

PAGE FA

10

-1

20

40

IAVERAGE] MHEM @RY SI1ZE (PABES)
Fig. 2.5

LRU, MIN, US AND YMIN PERFRRMANCES [APL PREGRAM)

PAGE FAULT RATE
“

-
(=]
T

w?

20

40

1AVERAGE) HEM .BRY SIZE (PAGES)

Fig. 2.6

-85 -

PAGE FAULT RATE

FAULT RATE

-1 LRY, CLBCK AND CLIMB PERFBRMANCES VATFIV &L WATEX)

10 , - .
we L
w? | =
w? b __
1w L I 1 1

2] Q0 40 60 80

MEM .BRY SIZE (PAGES)
Fig. 2.7

PERFBRMANCE BF LRU AND CLIMB @N INDEP. REF. MBOELS

10 T —7 v T

MEMPRY SI1ZE [PAGES)
Fig. 2.8

- B6 -

1 BUS, WS L LRU FAULT RATEE FBR VATFIV AND APL PRBGRAHS

I VS, VEYT, PFF AND VMIN PERFBRMANCES 10 - T T T
10 B T T 3 ’ E ve
]] - v tws
o FFF o A
* wevT . VATFIY
VATFIV 10-2 E
-2 _ F
wil " E w F
[3 [
g | - g
pr [] o
= L 1 5
- -
il % w
w w3 L
o g 3
D I -
o ot 1 [.
w0t 1 1 CA] o 20 40 60 an
1] 20 40 60 80 tAVERAGE) MEMBIRY SIZE
[AVERASE] MEM BRY SIZE (PAGES) Fig. 2.11
Fig. 2.9
KVS AND S AVERAGE MEMBRY SIZE VS T FBR YATFLY & AP PROGRAMS
CHANGE. BF MAIN MEMBRY CAPACITY IN PFF.1/P=20D0 (VATEIV) -] - r T
B0 T MEMEE T T T T —us
j v mus
w -
o | f
® 6ol by ﬂi’ ﬁ aﬁﬂ - w
8 l _ i] W
(=] - n
\a 1] J >
= &
z 1 E
o 40~] ¥
wl wr
z] -
b 1 &
-
“ 1 z
- 20 -]
- 4
-
o]
0
>
& of ._
kil g . . 1]
Y e 1)]] 1 : 10! 102 e 104
o 200000 400000 600000 BOQUOO 100KQ00 ' VR SIZE T
REFERENCES Fig. 2.12
Fig. 2.10

- 87 - . - B8 -

FALT RATE

AVERABE MEMZRY SIZE

10"

' PERFBRMANCES BF MWS AND WS BN INDEP. REF. M@DELS

102 L

w? |

| BT | PP N

107

HMWS AND WS AVR.

20 40 80

AYERAGE MEMBRY S1ZE (PAGES)
Fig. 2.13

80

MEMBRY S1ZES VS T @N INDEP.REF.MPDELS

[; — ————ry .
60 _
IRML (VATFIV)
401 .
4
20} IRMZ (APL) -
o lssaat pead . 1
162 10° 307
VINDBW SIZE T
Fig. 2.1
- 89 -

WS
Window Fault
M FIFO LRU CLIMB CLOCK MIN Size Rate
51 .121616 t .102273 069809

10| .oc5302h | 043416 027715 100 | 043991
15| -031814 017306
16 .Gol703 .016139 300 | .02k823
20| .022607 | .0L6972 | .029b459 | .0L7815 | .012690 500 | .017220
23 014586 .010765 TO0 | .015488
2k .0lip72 .010210
o5 | .017710 { 013829 009678 800 { .01kos56
30| .001561 | 011864 | 016727 | .Ol285k | .0QOT33T 1200 | .012235
33 .01103C 006246 1400 | 011kl
35 | 014279 | 010452 005594 1600 | 010465
40| .012360 § 008463 | .010332 | .009433 | .00L23T7 2200 | .007766
43 .007Lok .003378 | 2600 | .006151
45 | .010588 | 006809 00292k 2900 | 005228
501 .008447 | 005160 | 005306 .0053T19 | .001891 3100 | .00Q3070
54 003545 .001236 5800 | .001787
55 | Q05761 | .003237 .001101 6300 | .001603
56 .002787 .000979 6900 | .001LkTL
60| .003k0T | 001645 | 002208 | .001Ll73| .000590 9700 | .001068
61 .001341 .000518 | 10600 { .000g9u4B
62 .001150 .000k60 | 11500 | .0008T8
65 | .002037 | .000T29 .000317 | 1k700 | .000E31
70| .001128 | .co0ko06 | .001063 | .c00b59 | .000186 | 21500 | .000458
T2 000357 .000162 | 25300 | .000387
75 | 000824 | 000308 L0003k
80 | .000611 | .000246 | 000643 | .000252| .000099
90 | .o00k43 | L000166 | .000353 | 000199 | -00C052

100 | 000247 | 000096 .000023

110 | .000148 | 000028 000009

120 | 000092 | .000013 .0

130 | 000047 | 000013

140 | .oo00b1{ 000011

150 | .000038 | .00000k

160 | .000018 | 000001

164 .0

TABLE 2.1 Performance of Different Paging Algorithms on WATFIV

Program

- 90 -

WS MWS VMIK PFF
Window | Fault | Window| Feult | Window | Feult | L/P Pe-| Fault

M Size Rate Bize Rate Size Rate raneter Rate

> 100 | .Q43991

10 100 | .043991 koo | .019423

15 1100 | .0126hk

16 300 | -024823 1300 | .011833

20 500 | .017220 1900 | .0C9125

23 TO00 | 015438 2200 | 007698 15¢ | -015487
2k 500 |.015068| 2300 | .COT260

25 800 | .01d256 2L00 | 006858

30 1200 | .012235 2900 | .005228

33 1400 | .011811 | 1000 |.011045(340G | 004156 300 | .0LO661
35 1600 | .010k4e5 3700 | .003595

4o 2200 | .00TT766 700 | .0024o8

43 2600 | 006161 5500 | 001902 500 | .006320
ks 2000 | .005228 | 2000 |.005553] 6300 | .001503

50 Lico | .003070 9900 | 001037} 1000 |[.003752
5k 5800 | .00L787 | 4000 |.002578| 13500 | .000734] 1500 .002589
55 6300 | .00L603 14100 | .000670

56 6900 | .00L1hTL 14300 | .000617| 2000 |.00L894
60 9700 | .00L068 21900 | .000456

61 | 10600 { 000948 23500 | .oookzz | 3000 {.00L23L
62 | 11500 | .000878 1 8000 | .00LOO4 | 25000 { .000393

65 | 18700 | .00063L | 16000 |.00059L| 29700 | .000308(LOOO |.0Q0960
70 | 21900 | .000456

72 | 25300 | 000387 6000 | .00058k
™ 24000 | .0003Lk9

8o

g0
100
110
120
130
140
150
160
164

TABLE 2.2 Performance of Different Variable Space 'Paging Algorithus

on WATFIV Progrea
- 91 -

ws
Window | Feult

M FIFO LRU CLIMB CLOCK MIN Size Rate

1 589950

2 216472

3 Lhose

k .113409

5 095367 | .080320

10 .009328 | .007337 { .010883 | .00T513 005717
11 2006355 4oo | .00LBY3
1h .00k632 1300 [.003964
i5 005706 | .003TOT | .004E51 | 003454 1460 | .002908
19 .00L758 3700 | .001251
20 .002086 | 001566 | .002936 | .001677 45001 .001151
25 .001317 | .00cB0% | .001123 | .000885 ghkoo | .000768
29 000433 16700 | .000272
30 000686 | 000394 | .000512 | .000332 20000 | .000223
32 000226 ,000127| 300001 .000157
35 .00033k { .000LTT

4o 000159 | .000109 | .000LTL | .000131
ks .0001%5 | .00C0B8
Lt 000076

L7 000076

y7 000076
50 L000071 | 000060 | 000060 | .000065
55 .000045 | 000033
57 .0
60 .0C00LT
65 Q00009

TABLE 2.3 Performance of Different Paging Algorithms on WATEX

Program

- 92 -

oo

Ws M3 VMIN FFF

Window| Fsult | Window| Feult | Window| Fault |1/P Ps-} Fault
M Size Rate Size Rate Size Rate |rameter Rate
1
2
3
L
5 100 | 021189
10 koo | .005TLT 1400 | .003486
11 600 | .ook893 1800 | .002643 150 | .oobT20
s 1300 | .00396h 3000 | .001336 300 | .ookoo3
15 1400 | .002908 5200 | .COL137 500 | .00LO9L
19 3700 | .00L251 10800 | .000645| 1000 | .00Lkok
20 4500 | 001151 11100 | .000556
25 9400 | .000788 17500 | .000239
29 | 16700 | .000272 1500 | .000hoh
30 | 20000 | .o00223
32 | 30000 | .000157
35
ko
45
L7 3000 | .000L30
L7 4000 | .0001IL
L7 5000 | .000111
50
55
57
60
&5
TABLE 2.4 Performance of Different Variable Spsce Paging

Algorithms on WATEX Program

-93_

u | tmy o [V | R
5 0.068350 0.0434h6

10 0.028335 0.021101 0.021996 200 ¢.0L7631
11 0.017098 0.0112k42 300 0.013939
i5 0.0l14k2 0.007508 600 0.009887
20 0.011886 0.00877L 0.00kT46 1300 0.005462
21 0.008289 0.004330 1500 0.004968
25 0.006109 0.003025 2400 0.003719
27 0.005120 0.0025k1 2900 0.003373
30 0.006156 0.003916 0.001962 3800 0.00270k
35 0.002738 0.00L327 6000 0.001745
40 0.003272 0.001919 0.000923 9200 0.0011%96
43 0.001519 0.000756 11500 0.001003
13 0.001318 0.00066k4 13300 0.000900
5Q 0.001877 0.001042 0.000507 18300 0.000757
5k 0.000835 0.000k21 22800 0.000661
55 ©.000779 0.000401 24000 0.000638
&0 0.001201 0.000645 0.000315 30000 . 0.000520
£5 0.000553 0.000246
10 0.000816 0.000367 0.000199
80 0.000570 0.000339 0.000187
90 0.000453 0.000231 0.000089

100 0.000346 0.000187 0.000063

110 ©.000231 0.000139 0.000045

120 0.000165 0.000008 0.000027

130 0.000161 0.000086 0.000009

140 0.000135 0.000055 0.

150 0.00011k 0.000050

160 0.000077 0.0000k5

170 0.0000TH 0.000028

180 0.000067 0.000026 -

190 G.000024

195 0.0

TABIE 2.5 Performance of Different Paging Algorithms

_9)4.

on AFL

ws MHS VMIN

M Window Fault Windaw Fault Window Faalt

Size Rate Size Rate Size Rate
10 200 0.017631 700 0.008995
) €00 0.006887
20 1300 0.005462 Looo 0.002598
21 15C0 0.004568 1000 0.005277 4400 0.002378
25 2koo 0.003719 6300 0.001659
a7 2900 0.003373 2000 0.003484 7300 0.001413
30 3800 0.002704 10000 0.001116
35 6000 ©.001745 4000 0.001953 15900 . 0.000B00 |
40 9200 0.001196 2h600 | 0.000629
L3 11500 0.001003 8000 0.001192 | 29500 ' .000551
5 13300 0.000900 :
50 18300 0.000757 '
54 22800 0.000661 16000 0.000833
60 30000 0.000520
62 24000 0.000673

1

TABLE 2.6 FPerformence of different variable space algorithms on AFL

- G5 ~

2.7 AFFENDIX

in the following, we derive the long run psge fault rate for the
independent reference wodel with parameters [pl,pe,...pn} unéer the ran-
dom replacement (RR) algorithm fer a buffer size m < n.

Define a buffer state s as the collection of m pages present in the
buffer at sny reference time. There are a total of (E) distinguishable
states. The long run psge fault rate is equal to the probability of being
in & state s by the probability of referencing » page outside the buffer

summed over all the states, i.e.,

T L
F(a) = LPr(s) 2 »,. (1)
s igs
Under our replacement slgorithm, the buffer state transitions can
be modeled bty a discrete finite state Markov chain with the state space
Q= {Si}} i=l:2:"'(2)'

Define & neighbor of & state s by s(-1,+]) which is identical to s
except for cne page, namely, les, but ifs{-i,+)} sna jfs btut jes(-1,+3)-

Let Pr{s,s') be the state transition probatility of going from state
s to s8' in one reference. With the random replacement of the pages in

the buffer, we have

o
Z, By for s=g'
ies

Pr(s,s’) =) s
z pj for s'=s(-i,+3)
o otherwise

One can find the steady tuffer stste probabilities by solving the
equilibrium equations of the Merkov chain. Let m = (ns) ke the vector of
steady state probatilities 2nd P = [Pr{e,s')] be the state trepsition matrix.

- 96 -

We can verify that the normalized solution for the equilibrium

equations = = nF 1= glven ty:

m, = G-ljlzrs P (3)
where G = Z ” Pk .
seQ kes

For s state s, the equilibrium equation becomes:
iy R -

n_==n_ L p, + Z. & b n

5 5 b] if m

Jes je s(-j,+1)
from (3) sbove we get:

[
w

Sukbstituting fo s
* & 100 Tg(~g,+1)

A
[}

- I
) o) E% kes{—jz+i)pk

8 § Jjes J Jes ifs G
)
™
Z i) Z PiPy kes Pk
o it m G
5 jes jes ifs Py
= g Z p, + - Z P, .n
® jes 3 = ifs L8

(S o -

Jjes d 1¢.’s

We just showed that {3) is the solution for the normelized eguilibrium
equaticns. We cen now substitute for the stete probabilities in (1) the
solution from {3) to get the pege fault rate of the independent reference

model under random replacement slgorithm:

_prj o
Feg(m) = L 2o Loy,
seq ids T

- 97 -

2.8 BIELIOGRAPHY
1. Belady, L.A., "A study of replacement algorithms for virtusl-
storage computer,” IEM Systems J. 5,2 (1966).
2. Belsdy, L.A., Palmero, F.P, "On line measurement of paging behavior
by multivalued MIN algorithm,” TEM J. Res. Develop (Jan. 197L).
3., Chu, W.W., Opderbeck, H., "The page fault frequency replacement
algorithm," AFIPS Conf. Proc., Fall Joint Computer Conf. {1972)
PP 597-609.
4. Cleyton, J., "IBM 3850 ~ Mass storsge system,” IFIPS National Com-
puter Conference {1975), pp 509-514.
5. Coffman, E.G., Denning, P.J., “Operating systems theory," Prentice-
Hall, Ine., Englewood, N. J. {1973).
6. Denning, P.J., "The working set model for program be-
havior,” CACM 11,5 (Msy 1968).
7. Denning, P.J., "On modeling progrem behavior,"” AFIPS Conf. Proe.,
Spring Joint Computer Conference (1972), pp 937-Gkk.
8. Fagin, F., Easton, M.C., "The independence of LRU miss ratio on page
size,” IBM Res. Report RCS006 (August 1974).
9. Frensszek, P.A., "An algorithm for ccmputing MIN fault statistics,”
I Res. Report RCS291 (February 1975).
10. Kilbugn, T., et.al., "One level storage system," IRE Trans. Elec.
Computers, EC-11, No. 2 (1962).
11. King, W.F., "Analysis of deménd peging slgoritims," Proc. IFIPS Con-
ference, Ljublisna, Yugoslavia (1971).
i2. lLewis, ¢.H., Nelscn, R.A., "Some one pess algorithms for the gener-
gtion of QPT distance strings," TEM Watson Res. Center Report
RCHTS8 (March 1974).
- 98 -

13.

1k,

15.

16.

7.

18.

19.

20.

Mattson, K.L., Gecsei, D.R., Traiger, I.L., "Evalustion techniques
for storage hiersrchies,”" IEM Systems J. 9,2 (1970).

Morris, J.B., "Demand psging through utilization of working sets on
MANIAC T1," CACM 15, 10 (October 1972).

Oliver, W.A., "Bxperimental dots or page replacement algorithm,”
IFIPS Netionsl Computer Conf. {.1971") .

Rivest, R.L., "On self-organizing sequential search heuristics,"”
CACM 19,2 (February 1976).

Slutz, D.R., Trsiger, I.L., "A note on the caleulztion of sverage
working set size,"” CACM 17,10 (October 197h4).

Smith, A.J., "Analysis of optimal, look aheag demsnd paging algo-
rithms," Computer Science Division, University of Californmis,
Berkeley, {Msrch 1975}.

Prieve, B.G., Febry, R.5., "Evalustion of page pertitioning replace-
ment slgorithm,” Computer Science Division, University of
Californis, Berkeley, {1975).

Prieve, B.G., Fabry, R.S., "VMIN - An optimsl variable space re-

"

placement eigorithm,” Computer Science Division, University of

Californis, Berkeley, (May 1975).

CHAPTHER 3
A$ INVERSION MOIEL
3.1 INTRODUCTION

In every computing system, programs are the basic entities which
determine and control the dynemics of the system. The sddress reference
behavior of pregrams is one of the fundamental factors affecting the de-
gign of useful and efficlent control algorithms throughout a computing
system.

In this chapter, some sspects of progrsm page reference modeling
techniques are considered. We will be particularly interested im the
charscterization of a compact process to generste s sequence of page
references which can effectively replace the page reference sequence of
the resl programs. This effort hes immediste spplicetion in the perfor-
mance evsluation of virtusl memory [9, 10, 21] systems end cen be extended
to the evelusticn of high speed buffers (caches) [2, 8] for nigh speed
CPUs as well as slower automated filing systems [3].

A new and effective tectmique will be introduced which takes the
optimal fault rate (5] characteristics of & program and projects them
back into an independent reference [7] model. The new model is referred
to as A¢ inversion model. This model maintains the simple probablistic
structure of the independent reference model, yet it has excellent pre-
dictive power: the AD inversicn model can predict the paging performance
of actual programs under several well-known replscement slgorithms [5],
and is capable of estimating the average working set sizes [11] of actusl
programs for a wide range of window sizes.

We begin this chapter with & discussion of the uses of program ref-

erence models in the performance evalustion of different aspects of com-
- 100 -

puting systems and we point out the goals and motivations for construct-
ing simple and yet powerful models. A deseription of a number of pro-
posed program reference models follows. The properties and features of
the notable models are mentioned. HNext, we define the b inversion
model and demonstrate the technique for finding its parameters. The
capabilities of the model are validated by presenting some simuletion re-
sults and comparing them with thé observed behavior of real programs.
New experimentsl results with the IRJ stack model are presented. The
performance of both models are compared. A possible functional form is
considered which can describe fhe parameters of the Aﬁ inversion model.
Other spproaches that yield similar models, possible extensions, and

other applications are suggested. Following that, we discuss some of the

problems which may be encountered when we construct the Aﬁ inversion model.

The execution characteristics of the model, which limits its use in cer-
tain spplications, is discussed. Some coneluding remerks will end this

chapter.

3.2 PROCRAM REFERENCE MODELS

The sequence of page references (reference string) gemerated by a
running progrem generslly exhibit periods of conceatrated references
over d sub-space of the program address space, repetitive reference pat-
terns, and some degree of rﬁndom behavior. CQur modeling efforts easen-
tially are based on constructing a stochastic process which can character-
ize the sddress reference behavior of a program or other sequenees which
are extracted from the reference string. Exemples are the modeling of
the seguence of page exceptions generated by a program [19], and the

modeling of the seguence of working set sizes [Chapter 1].

- 101 -

The modeiing of a page reference sequence itself is of more interest
for us because it provides a flexible tool for z more generalized set of
applications. A model of page reference sequences, for example, can be
used as an efficient tool in the evaluation and comparative study of
several paging slgorithms for e wide range of memory end page sizes in a
virtual memory system.

Qur motivation to study program reference models can be explained
by considering the areae in which these models cen be applied, and a set
of qualifieations which makes each model s convenient tool for the anal-
ysis of different sspects of & computer system.

The analysis of some of the algorithms which work on progresm address
reference sequences is only possible if we can find a menageatle and
realistic formulation of the prcblem. The analytical approaches enable
us to get a better insight into the subjeects ranging from finding the
performance bounds, the long run behavior, the relative efficiency of
different mechenisms, etc. In this regard, we prefer program models
which are snalytically tractable and, meanwhile, posses a good degree of
realism with respect to the real world.

The trace driven simulstions are widely used computer performsnce
evaluation techlmiques. We may resort to simulation when the analytical
gpproaches are difficult to formulete or when the analytical expressions
which deseribe the behavior of the system is inappropriste for the nu-
merical evaluations. The trace driven simulation runs are usually
costly operations in terms of CPU and other resocurce utilizstions. There-
fore, 1t is very desirablé to have s silmple program model which can te
used efficiently in simulation packages, and which could free us of the
need for the trace of real programs.

~ 102 -

The generslity and the predictive power of & model sre important
factors which ensble us to get realistic results using the model. The

models which can minic certain behavior of the real programs, but dras-

tically fail in other aspects, are of limited use in certain applicaticns.

We say a model has predictive power if it can be used successfull& under
new clrcumstasnces which are different from those that sre directly built
into the model. For exsmple, the IRU stack model {71 is comstructed,
based on the LRU stack depth distribution of actual programs. It is no
surprise that it gives the same LRU fault rate as the original program.
However, 1f on the average it generates the same number of faults és the
actual program under another replacement Qigorithm, say MIN, we can claim
that it has a certain degree of predictive power.

In the litersture, s number of program reference models have been
proposed. In each model, the progrem references are generated according

to some mechenism which is built into the model. Let T,T be a

prr Ty
sequence of consecutive page references which are generated by a prograw.

At each instance t, r, is a page name from the set of n program pages

t
.[1, 2, 3,....,n). This set constitutes the virtusl sddress space of the
program.

In the following,a number of proposed program page reference models

are discussed.

3.2.1 Locality Model [12]

Progreme tend to cluster their references on a (slowly) varying sub-
set of pages during an execution sub-interval. Locality models are pro-

posed in an attempt to formalize this behavior. The locality sets L, L',

- 103 -

L",.... are defined where each iz a subset of £ progrem pages. In &
genersl locality model, P(L,L'}, give the probabilities of inter-locality
trensitions snd esch loeslity has a holding time distribution hL(x)
which determines the probability of steying in the loeality L for X
units of time. In s simple loeality model, a page inside the current
locality is referenced with the fixed probability (1-u), therefore,
[hL(x) = (l-u)xdlu]. An interior page i is referenced with probatility
a(i), which cen be & function of past loeality transitions. The proba-
bility of referencing a page outside the locality is uniform for ell those
pages and is equal to n—L_";E . One of the restrictions imposed on this model
is that sny interior page has a higher reference probability than any ex-
terior page, l.e., (L-u)a(i) = B.P;E for sll i inside the current locality.
A restricted form of the IRU stack model can be considered & gen-
eralizetion of @ simple locality model and we shsll discuss this model

in more detail.

3.2.2 Denning snd Schwartz Model [7, 13]

In this model, it is assumed that the inter-reference intervals
(i.e., the distence between two successive references to the same page)
of any page i is distributed, independent of the other pages, with the
probability density funetion fi(.). The mesn inter-reference interval
for each page iz finite and is equal to:

)
xg S x :fi(x)-
A useful closed form solution for the averasge working set size with

window size T, ws{T), can be found for this model. Let Fi(x) be the

~ 1ok -

cumulative probsbility distribution function of the inter-reference in-
tervals of page i, i.e.,

X

F(x) = 3};1 £,(3)

and define the overall inter-reference distribution es

n

)
F(x) = Z -F—'%(—x-—
=1 ¥

It can be shown thet the mean working set slze with parameter T is given
by:
T-1

ws(T) = z ri - m(x)J.

x=0

Thus, when F(x) iz known, this result can e used to find the aver-

age working set sizes and the average WS favlt rate for 8ll window slzes.

3.2.3 Markovlan Models [4, 15]

For this class of models, the consecutive address references are
genersted by a Markov process. With first order Markov dependence, the
probability that page 1 is referenced at time t only depends on the page
name referenced at time t-1, i.e.,

Prir, = il vy, rp ety = 3] = Prlr, = ir,_, =41 = 45

The qij's, 1<4i, j<n, are the state transition probabilities of
the meodel.

This model hes s fairly simple probability structure. However,
when n 18 large, using this model becomes practically impossible. There
hasn't been much evidence supporting the capability of this model in
simulating sctual progrem behavior.

- 105 -

3.2.4 LRU Stack Model [7, 12]

The IRU stack model is based on the probabllity distribution of LRU
gtack depths. The LRU stack is a stsck in which the pages are ordered
according to their last references. The most recently referenced page
ig .on the top of the stasck, the next wmost recently referenced page is
below that, and so on. In this way, the least recently referenced page
resides at the bottom of the stack.

The LRV stack depth or distance st each instance is the stasek posi-
tion of the referenced page. After esch reference, the stack is updeted
by moving the page to the top of the stack. The distribution of the LRU
stack depths are constructed by counting the number of times s particular
LR depth 1s sccessed. These counts can be used to approximate 2 dilscrete
probability density function for an IRU stsck model.

In the LRU atack model, the segquence of IRU distances are 1.i.d.
random numbers with probability density funcition [dl, d2, .. .,dn] where:

Pr[IRU distence st time t=i] = d;

This model, therefore, generates s segquence of LRU stack distances
and, from this sequence, s unique sequence of page names can be recon-
structed by maintaining en ordinary LRU stack of 2ll the referenced pages-

We note that if the distribution of stack distances are biased toward
the smeller distances, then a highly localized sequence of pege names is
generated by this model. Scattered references are generated depending
on the spresd of the probability weights over the stack positions.

In Figure 3.1, the relative frequency count of the observed LRU
stack positions genersted by a WATFIV compiler trace is shown. This
histogram cen be used to construct an LRU stack model based on the seme

program.

- 106 -

OBSERVED FRFQUENCIES

-
1o

LRU STACK DISTANCE HISTOGRAM OF WATFIV PROGRAM AND MODEL

T T T T } T T T T l' T Y Al T I ¥ T

Program

Ap Inversion
Program Model

se 190 15e
STACK DEPTH PASITIONS —»

Fig. 3.1

- 107 =

The LRU stack mcdel has 8 number of significant properties. Namely,
in a model with n pages, the probability that any page, independent of
its identity, is in any stack positionm is 1/n. To show this, let
[di], i=1,2,...,n be the probability density function of the IRU staek
positions. Define a Markov chain Xq(t) in which the states are the
positions of some page q in the LRU stack. Let M=(mij) be the state
transition metrix of this chain where mij is the prcbability that at the
time of s page reference page q goes from stack position i to position
}. In this model, the position of page q is updsted according to the

following probability transition metrix:

[~
[=T)
e1s
[=1)
Q

o
[
"
1
o
=

[»T]

Q
[~
[=T]
[~
Qu

(=]

X = 3 i=1 T ogoh 1
dn—l dﬂ
n-1
i
a .) s
L o i=1 i)

- 108 -

Expressions like the distribution of worki set sizes can be found
Let ¥ = ("i)’ i=1,2,...,n be the steady state probability of the P e
for this model; however, the results soon become computationally un-

position of page q in the stack. When the chain is an irreducible
. attractive.
ergodic process, the solution to W.M=M and the normalization term

This model has good predictive power and we shall return to it later

n

}: ‘ , in this chapter.
TTi = 1 give the steady state probabilities of the position of page

q in the stack. Since matrix m is doubly stochastic {i.e., its rows and
3.2.5 Independent Reference Model

columns sum to one), the soluticn for the steady staie probabilities is:
This wodel hss s very simple probability structure, yeit it 1s the

Tr]_ = TT2 oo = TTn = n most interesting and versatile smong the models discussed so far. A set

This result holds for all pages and it implies that the relative refer- of page reference probabilities [pl"pe’PB’ .‘.,pn] is defined. The se-
ence frequency of all pages In s reference string gemerated by this quence of page refersnces rl,rz,ha, ceee,T) ATE drawn independently from
model (2 realization of the model) is the same for all pages. This be- the set of reference probebilities, such that
havior, of ccurse, is against ocur intuition about the reference patterns Pr[rt=1} =By
in res) program traces. This might be one of the reasons why the model Among the fime properties of thils model 1e its snelytical tractability.
has not received enough émpirical treatment in the literature. This model has beer extensively used in the litersture [chapter 2, T, 13,

If the stack positicn probability density functicn [diJ’ i=1,2,...,10 14, 18], especisily for the performance eveluation of a number of replace-
in sn LRU stack model is such that di = 622 63 = ... = dn, then the ex- ment algoritbms. Since the sequence of actual program references do net

pected fault rate generated by this model under the LRU replacement rule exhibit the strict serial independence ac dietated by the model, the ana-

is optimal (minimal) among all fixed memory size amlgorithms and for all lytical results are assumed to be of limited significance when carried
memory sizes. This can be seen by noting thet with memory eize m, (m < n), over to actual situsticns. However, as we shail shortly see, the validity
at the time of a page fault the LRU algorithm replaces a page which 1is of this srgument 10 a grest extent depends on the methed by which the
least recently used (i.e., the page in the bottom of the stack of the parsmeters of this model are found.
main memory puges) angd, in this model, smong all pages in the memory, The poarameters of the independent reference model are its page ref-
this page 18 the one which i1g lemst likely to be referenced in the future. erence probabllities. One can estimate a set of reference prcbebilities
o by using the trace of a real program. The trivial approach is to count
The optimal fault rate probability is, therefore, Fm[I"RU] = i=§+l di' the number of references to each page and assume that these references

were generated by sn independent reference model. Using the page refer-

- 109 - . - 110 -

ence frequency {counts), we then spproximaste sn independent reference
model which has the same relative reference probasbilities. ILet us esll
this method of determining the parameters ss the frequency methed. Now

we ssk ourselves how well this model can mimic the behavior of an actual
program with respect to the aversge feult rate performence under different
paging algorithms.

In Figure 3.2, the fault rate curves of & WATFIV compiler under LRU
and MIN paging algorithms sre shown with solid lines. In this figure,
the horizontal axis is the memory capacity and the vertical axis is the
fault rate, i.e., {number of faults}/{total number of references).

We use the trace of the WATFIV program to construct an independent
reference model by the frequency method. The long run fault rate of this
model, under the LRU and MIN slgerithms, are shown by dotted line on the
same figure. We notiee that the model generates far more foults for a
given memory size compared to the real progrsm. These results lead us
to0 believe that other festures of the model zlsc will bte grossly off the
observed values in the actusl program. For exsmple, this model signifi-
cantly overestimates the observed working set sigzes in the actusl program.

In the next section, we shall introduce & new and important method
which we use to find the parsmeters of an iﬁdependent reference model.

We will see that even though keeping fhe model s simple as the inde-
pendent reference model, we can substsntially improve its predictive
power. This glves us more confidence in interpreting different types

of results which are based on this medel.

- 111 -

3.3 A¢ INVERSION MODEL

The Aﬁ inversion model (the cholce of the name beccmes clesr shortly)
is basically a member of the class of independent reference wmodels. What
distinguishes this model is the method by u?ich the parsmeters are ob-
tained. Earlier we showed thst the frequency method produces an inde-
pendent reference model which is 8 poor predictor of actusl program be-
havior. Referring to Figure 3.2, we note, however, that although by the
frequency method we obtain s model which grossly feils to estimate the
fault rate of the sctusl program, the model is fairly successful in cap-
turing the relstive performsnce of LRU snd MIN slgorithms. This property
of the independent reference model is important because it suggests that
if we are able to come up with a model which can predict tﬁe fault rate
behavior of a program correctly under one replacement algorithm, then the
performance of the model under other algorithms might also be close to
the performance of the actusl program under the ssme slgorithms.

We observe that one way of binding the model to the characteristics
of 8 real program is to require that the lower bound on the pege fault
rate of both the model and the actusl progrem under optimsl replescement
algorithms be close together. We can then be sure that enough atructure
is built into the model so that, at least in the long run, the model Is
capable of predieting the tehavior of the sctusl progrem under the optimal
paging algorithm.

For a given psge reference sequence of an actual program, we know
that MIN algorithm gives the least smount of faults among all fixed memory
size algorithms. We can, in fact, measure the MIN fsuli rate of the pro-
gram, FMIN{E)’ for different memory sizes m (1 =m < n}. For the inde-

pendent reference model, the so-called AP [4] algoritbm gives the optimal

- 112 -

fault rate. A%t the time of a page fsult, the Aﬂ algorithm pushes out a
page whick is least likely to be referemced in the future.
= > e 2 F -
Let [Pl,P2:P3, ,Pn] and S B, te the set of ref
erence protabilities for an independent reference model. The A¢ fault

rate produced by this model, FA¢(m), for s memory size m is equal to [7]:

n
y
n /. p2
z: i=m i
Fm=FA¢(m)= B, —— 1<isn (1)
i=m Y1
LBy
1=m

Therefore, 1f the reference probstilities sre known, (1) can give the
optimal fsult rate for different values of m, 1 £m =n. Conversely, if
a set of n fault rete valuee are given, we should be able to find a set
of reference probabilities whiech setisfy the relstions in (1).

We observe that 1f our independent reference model is te capture
the fsult rate behavior of actusl progrems, then we expect that the fault
rate of the model under the Ad algorithm should be close to the fsult rate
of the sctual program under the MIN algorithm snd for sll memory sizes.
This gives us & procedure to find pi’s from the relations in (1). In
other words, we now substitute for Fm's in (1} the observed MIK fault
rote values, and then we invert (1) to get & set of recurrence expressions
for finding pi's. The independent reference model which is obtained by

this procedure is referred to henceforth as the A¢ inversion model.

n

o
ES o™

We carry out this procedure by letting Sm = Py and Rm = Z,pi. We
i=m i=1

then successlvely get:

- 13 -

m s i n
i=m -
L Py
1=
n
Lo
i
_ i=m
Em sm 3
m

Similarly:

)
- p2

F i
i=m+1

m+1sn+l = Sm+1

Subtracting the above two expressions we get:

2 e 2
F - = - -~
msm Fm+lsm+l Sm Sm+l Pm
- - 2 2_2
Fﬁ(pm+sm+l} Fael®m1 = (pm+sm+l) - Sp Pp
Fp +F8 -F .8 2 2 2_2
1 = - -
mn'm o mt o+l m+l Pn Sm+1 + Epmsm+1 Sm+1 Py
or
3 (F -F)
_ m+1 m m+1
L T l1€Em=n (2)
m+1 m

If p, is known, then {2} cen be used successively to find P,_q
Ph.o and so on. HoWwever, we can arrange {2) so that first we can find
Py and having Py, We can find Py and so on. Sinece pi’s are probabilities,

we have

- 11b -

Replascing this in {2), we find:
PAGE FAULT RATE BF WATFIV PRBGRAM

w® T T T
o - (1-Ry_,-pp) (F-F .4) L<m<n (3) . [
o 2(-R ;-p.) - F, w! LRu « - - REF. FRED. HBOEL 1
In (3), we sssume that Ry = 0. Eschp,, i=1,2,3,...,n-1 cen be succes- _!
sively computed from {3} by solving a guedratic equation. ILster in this g

- Rk
chapter, we return to this derivetion for more comments. % E

w

We now examine the ability of the Af inversion model to predict the "
fault rate behavior of real programs. We expect to get much improvement -4
over the previously mentioned frequency method. Indeed, by inspesting]

) -

1 [L.
Figure 3.3, we can see the success of the model. In this figure, the o =0 100 150
MEMORY S12E
solid lines represent the fault rate eurves of WATFIV programs under MIN Flg. 3.2
and LRU algorithms. Using the A inversion technigue, we construct sn
independent reference model based on the same program. The MIN snd LRU
fault rate which sre produced by the model are shown by dotted lines on
o PAGE FAULT RATE BF WATFIV PROGRAM
the same figure. As we expected, the MIN fault rate curve belonging to Ll T 7 T
—amm MATT YV PROGRAN

the model closely follows the MIN feult rate curve of the actusl program w? ...ummmﬂ!
for a wide range of memory sizes. It 1s interesting, however, that even 2

L .
the LRU fault reste curves of both the model and the actual program are » i

5 4
fairly close together. The success of the model becomes more slgnificant ;m 3 7

-

o p
if we compare Figure 3.3 with Figure 3.2 to see the amount of improvement 1w r £ ~
over the frequency method. This demonstrates the fact that by using an .5

o !‘ "~ -
appropriate method, we can build substantial predictive power lnto a Y "'\

. - 3 -]

b1} - »
gsimple independent reference model. 1 1 1 3

-] s0 -] 150

Another way of locking at the fsult rate bebavicr of the model, with mn;:su; “;‘555’
g 3.

respect to the actual WATFIV program, is to compare the observed histogram
of LRU stack distances generated by easch of them. In Figure 3.1, both

histograms are shown.
- 115 - , - 115 -

It is interesting to inspect the set of reference probakilities
which are obtesined by the A inversion model. We can get a better im-
sight into the structure of this model by compsring these refereunce
probabilities with the reference probabilities which might have been
cbtained if we had used the simple frequency method. In Figure 3.4, the
two sets of reference probatility densities based on the WATFIV compiler
are shown. The horizontal axis is the page number and the vertical axis
is the probability weight.

In the frequency method, the reference probabilities are found by
taking the global averages on the entire string. In the sveraging pro-
cess, most of the information about the regional characteristics of the
string is lost. [Along the same lines, we have tried other approaches
to get = better representative set of probabilities. One method we used
was to divide the trace intc intervals end find the relative reference
frequencies in each interval, and order each set and combine over all in-
tervals. The results, which are not reported here, showed only & slight °
improvement over the usuasl frequency method].

In the A inversion model, & compietely different spproach is taken
snd the reference probablilitles which sre obtained in this case bear no
direct relaticm with the relative reference frequency of easch page in the
actual program. In Figure 3.4, we note that the A¢ inversion model pro-
duces a reference probability wass distribution which has a distinctive
resemblance to the fault rate curve of the program upon which the model
is based. We can see that some importent inforwation, guch as the memory

sizes where the sctuasl fault rate changes curveture, is precisely carriled

over to the corresponding page numters in the reference probsbllity curve.

- 117 -

FIFD PAGE FAULT RATE OF WATFIV PROGRAM

10 T -T T
1 s WATFIV PROGRAN 3
w? wuu AB DIVERSION MOOEL _
1
w? E- -
wo f
5 ;
E 10 E- -
5" | -
M
w? E— 1
i
E 3
-5
10 3 1
-6
p: 13
3 1 i 1 i 1
1] S0 - e ¢] 150
MEHDRY SIZE (PAGES)
Fig. 3.5
0 REFERENCE PRBBABILITIES FBR TW@A WATFIV MADEL FROGRAMS
o g —T = T

a =0 100 150
PAEE NUMBER

Fig. 3.4

- 118 -

Generally, the Aﬁ inversion model assigns large probebility mass to
a few top peges (1.e., peges with the lowest subscript) end the remaining
pages receive probability weights in sharply decreasing quentities. One
can interpret the top pages {e.g., the first 20 peges in Figure 3.4) as
the set of the current locality pages of the program. References to
these pages are mostly favored in the reference string generated by the
model. The pages which receive the least probability weights can be
imagined to produce the instances corresponding to locality transitions
in the actual program. The remaining pages which recelve probability
welghts between the above two extremes can be considered to contribute
to the small veriation of the locality sizes in time.

We can support cur claim about the predictive power of the A¢ in=-
version model by presenting more evidences about the success of the model.
For another replacement algorithm, we test the behavior of the model under
the FIFQ paging slgorithm. In Figure 3.5, the solid line is the fault
rate of the actual WATFIV program versus memory sizes under FIFO algorithm.
In the ssme figure, the dotted line represents the feult rate curve of
the model under the same algorithm. We can see thst the model is capable
‘of predieting the sverage fault behsvior of the progrsm on the lower range
of memory capacities. For very large memory sizes the dotted line slightly
drifts away from the solid line. The behavior of the model in this region
can be partially sccounted for by enyone of the following ressons. Since
we simulate the model, in this case the ssmpling error becomes slgnifi-
cant for large memory sizes. The other source of the error is the in-
accursey in defining the tail (i.e., the pages with the lowest subscripfs)
page reference probabilities. We shell return to the problem of finding
the tail probabilities later in this chapter.

- 119 -

The performance of the model using some other programs and with
different page sizes, and the sbility of the model to prediet the actuasl

working set sizes are discussed in the next section.

3.4 TEST RESULTS

In 8 series of experiments, we sre going to present more deta for
validation of the model. We have construcied an A¢ inversion model
based on the page reference trace of several real progrems. These pro-
grams include a trace of & WATFIV compiler, a FORTRAN progrsm cslled
WATEX, an APL program, and the trsce of & program to calculate the Fest

Fourier Transform, called FFT, of a set of deta polnts.

3.k.1 Fsult Rate Prediction

In Figures 3.6, 3.7, 3.8 and 3.9, the fault rate curve of each model
under the MIN and LRU algorithms are compesred with those of the corres-
ponding actual programs. In each figure, the solid lines belong tp the
actual progrsm and the dotted lines represent the data points from the
model. We note that in each case the model is sble to prediet the LRU
fault rate of the actusl program in e sstisfactory way. Alil these models
are egpecially successful in the range of lower memory sizes. It is sig-
nifiésnt, for instance, to note that the A¢ inversion model has been able
to capture the odd behavior of the FFT program as can be seen in Figure
3.8, We observe that the fault rate curves of the model bresks in exactly
the right point (memory elze)} in this cese. This is e rather promising
result which shows that the technigue can be used successfully to model

highly structured program behaviors.

- 120 -

In the range of relatively large memory sizes, since the fault rate
velues are very small, the behavior of the model in these regions matches
lese well with the actual situstion.

In Figure 3.9, the same results sre demonstrated for the case of the
WATFIV program with page sizes which are twice as large as the earlier
case (Figure 3.3). It is notable that the model is robust to chenges in

page sizes.

3.h.2 Aversge Working Set Size Prediction

The degree of spread of the references over the program address
gpace 18 of interest in efforts to charscterize a computer progrem. A
messure of the sesttering of references can be obtained by observing the
size of and chsnges of program working sets. The working set [ll]_, ws(t,T),
at time t,1is the set of peges addressed in the pest T references. The
gize of this set is demoted ty ws{t,T). The window size T is the working
gset parsmeter. The messured working set sizes can be averaged over the
entire progrem trace and lumped into one number, called the aversge work-
ing set size, ws{T).

The average worklng set size cen be defined for the references gen-
erated by the model. Since the probebilistic structure of the model is
known, the expected working set slze can be readlly obtained by & prob-
alistic sergument. Let [pl’Pa’FS""’Pn] be the parsmeters of the AY
inversion independent reference model. The expected working set size
with peremeter T is equal to the probability that a page is in the working
get summed over Bll pages. A page is in the working set 1f it hes Teen

referenced at least once in the past T unite of time; therefore,

- 121 -

n
ws(T) = z [1 '(l-Pi)TJ : (%)
i=1

We can now exsmine the capability of the model in predicing the
average working set sizes of actusl progrems. In a serdies of experiments,
we have measured the sverage working set sizes of s number of programs
with different windew sizes. For each actusl program, the average work-
ing set sizes of the corresponding A¢ inversion model is calculated from
{:). The results are illustreted in Figures 3.12 and 3.13 for the WAT¥IV,
APL and FFT programs. In each figure, the horizontal sxis is the window
size in terms of mddress reference units and the vertieal axis is the
average working set size. The solid lines are obteined from the messure-
ments on the actusl programs end the dotted lines are computed from the
parameters of each model.

We con see thet the predicted sverage working set size values de-
rived from the model are strikingly close to those of the actual programs.
This result demonstrates the capability of the Ad inversion model in cap-
turing an important feature of the address reference behavior of real
Programs «

Once the sverage working set size is known, the fault rate values
under WS algorithm can be obtained. For the independent reference model,
the WS fault rete is equal to the probability that e page hasn't been
addressed in the past T references and that it will be addressed in the

next reference summed over all pages, l.e.,

E,glT] =1§=:1 (1-p,)"p,

- 122 - .

PASE FAULT RATE OF WATFIV PROGRAM WITH 1K PAGE SIZE

2 TAOOH HOPRCIANT v *

WU 1Lt —=
i

Wvut@Nd tidd S8 ALV LWV 39vd

LH
1

-3
-

ALYy FINVL

ALve ANV

-
10

107>
1078

1ee

80
"MEMORY SIZE (PACES)

Fig. 3.9

40

re

WOOH MOTSUBANE Y
WV Y —
1

Hvaddud

TV J8 JLVH LYW 39vd

L

GO0 NOLSWIAMT BY © "
HYNDHN X3AVA —

HYHOBH X

ZLVA J8 LV LIVA JOVd

31V LWV

a
=]
ALVH LWwd

2

ot

- 124 -

- 123 -

In Figures 3.12 end 3.13, the WS feault rate of the WATFIV program

W& PABE FANLT RATE OF VATFIV PRIGRAM

]
-
-
-
w
i
-
y
-3

with two different page sizes, and the WS feult rate of AFL end FFI pro-

AYERAGE VBRKING SET SIZE OF WATFIY PRBGRAN

! f _
ii § i i! @ grams are shown. In each figure, the WS fault rete prcbability of the
%!‘ TEE E %* { E corresponding A¢ Inversioh model is shown by dotted lines. The horizontel
’ "EE', , § |) B En.‘,'_,? axls i1s the aversge worklng set size {or the sverage memory size used)
a / Jsaﬂf g E“; and the vertical axls is the fault rate. The fit of the points obtained
g f . gé? E g A from the model to the polnts messured on the actuwsl programs, basicelly
5 L i] reflects the results illustrated in Figures 3.10 end 3.11.
! -8R g :] l In Figure 3.11, we notice that the model slightly cverestimates the
] ' E working set size of the APL program. An explesnstion for this behavior
Y 7 ° R e will follow in the mext part.
" ® NNHE;N! 2 8 2 R 1n£iiwi * :
3.4.3 Comparison with LEU Stack Model
We have defined the IEU stack model for the seguence of page refer-
ences earlier in this chapter. This model is strongly bound to the ob-
gerved LRU stack depth distribution of the programs. The long run fault
4= 3 E rate of LRU stack model, under LRU algorithm, converges to the LBU fault
rate of the progrem upon which the model is bsaed. This property is
. L £ built into the LRU steck model by setting the stack depth hit probabilities

{di], i=1,2,...,n of the model equal to the relative observed stack dis-

tances generasted by an actual program. It iz interesting to investigate

e

e

VINODV S1ZE

the behavior of LRU stack mopdel under systems other than IRU.

Fig. 3.10
Fig. 3.11

Similar to our earlier #set of experiments, the trace of several pro-

307

grams have been used to construet the empirical IRV stack distence dis-

AVERAGE VBRIING SET GIZE BF APL AND FFT1 PREGRAMS

tritutions. In esach case, an LEU stack distribution is used to construct

‘,.
e

S D A e

S ANGHIN

the corresponding ILRU stack model. In order to compare the optimal fault

rate behavior of an actual program with the respective LRU stack model,

- 125 - - 126 -

the MIN algorithm is used for both of them. We note that since the ob-
served IRU stsck distance densities are not monotone decressing values,
we don't expect that LRU would be optimal for the model.

In Figures 3.14% end 3.17, the result of the experiments on the
WATFIV and APL progrems using MIN and IRU slgorithms are shown. The
golid lines belong to the actual programs and the dotted lines represent
data points from the corresponding IRU stack models. The LRU algoritlm,
as well ss the MIN algorithm, were applied by a simuletion run for the
actual program and the model. Therefore, the discrepency between the

LRU fault rate curve of the model and the corresponding progresm gives o

significant messure of the ssmpling error in the simulation of the model.

The more interesting information in these figures is, of course, the be-
havior of LRU stack model under the MIN algorithm. We note that in both

cases the models give a good prediction of the MIN fault retes of the

actual programs. Like the AOQ inversion model, the good fits are especlally

notable for lower range of memory sizes.

In Figures 3.15, 3.16, 3.18 end 3.20, the average working set sizes
and the W8 fault rate of WATFIV and APL programs are compared with the
same terms in the respective IRU siack models. If we inspeet Figures
3.11 Benad 3.18, we notice that both the A¢ inversion model and the LRU
gteck model give up to about & 10% overestimetion of the actual average

working set sizes of the APL program for most values of window sizes.

We can give an explanation for this by taking a closer look st the distri-

bution of working set size of the AFL program. In Figure 3.19, a histo-
gram of the observed working set gizes for window size T=4000 units for

this progrem iz plotted. In this plot, we can distinguish three major

peaks. Although this is not a typical working set histogram, nevertheless,

127

FAULT RATE
L
o

PAGE FAULT RATE BF WATFIV PRBGRAM & LRU STACK MBOEL
— —
- WATFI¥ PRBGRAM
» « » LRU STACK MBDEL

|

- 1
E LR 3
3 3
i MIN ;
= “‘\‘- -
N
"\.‘. '.- o
E ."‘1. .h._ . -
E N\
. o1 .] PN T 3
v} 100 150
HEMARY SIZE {PAGES}
Fig. 3.1k
- 128 -

02'¢ 'B1d §i€ 3

1530Y.h JIIS ANRGW JIviEAY AZIS ARONIA
o or oz o K 0 201 {0t o
T T ¥ T ™ Ly -
Tﬂ-
-....l-.-l.lf oo doz
.I/...- i
-
!/,....... m
...... 3 . m
. E- i
> S oy
m
i /
L R TLY T R BN MIVLS WY -og
YR WY —— HYMDBU Y —
i 1 L 1] L 1
na.—

IO JA¥1S T 7 HYEoRud TV ¢ 31vY L1WJd 39vd SA TI00H HOVLS NE1 7 HVHORYd 1V 48 321 135 DNDIMBR WAV

AVERAGE WPRKING SET SIZE 8 WATFIV PRGM. & STACK MACEL

61'¢ "3 . LT B
339401 3215 135 DHINHEA (539Vd) 3LIS AU
] or o [} e ogt o ¢] [
~T T ¥ o ML T T
- oonot
Jonooz
2
-uuoﬁm
-foooor
L oomoogviamnctt 0
S2m5u434 000Y & JIUS AKMIN 00005 W HYUORYd W
1 A 1 i 1 1 ot
WYNOaKd LIV 48 SITIS 135 SNINNGR S0 HVHOBLSTH 33080 HOVLS NE1 T MVEOBNd TV S8 JAVH LMW 39Vd o
A ' SR v T ™ T — &
AN N .
m kL ¥ o
1 [=]
i i RL]
g2 2l kY .
m H Wl W & -8
33 P g| 58 &
| 2 =15 ‘ ! B
. I < D
1 w ... m- 1;._
' =] H W e
0 o y g .
8 > I 1¥Fz 2
Ih e I F=
i3 . e
] §% s
5 &
[T1]
L
& |- 8
E] s
3
£’
o]
9 .
=] e)
L L 1 =) 1] L .
8 g R =R 5 — - - _—
‘a '3 s ‘2 !
IS 135 ENDIMRA 38Va3AV 3LVH 1WIVS

[539¥ch 3215 135 DNINUBA FOVHIAV

-]_30-

- 129 -

programs sometimes do exhibit this behavior. ZEsch pesk can be associated
with a large period of time which the program predominstely spends in a
locality whieh is different in size from other major localities. The
frequent locality changes msy also contribute to the clusters of fairiy
large working set sizes in the histogram.

Programe like APL which exhibit distinctive multiple loecality
reglons give the illusion for the mechanisms which build the wodels
(e.g-., A¢ inversion and IRU stack models) se being programs with fairly
scattered reference patterns. The overestimation of the average working
set sizes can be attributed to this mis-interpretaticn of the actual ref-

erence patterns.

3.h.4 Anelyticel Form for A¢ Inversicn Perameters

In this section, we exsmine a possible analyticel function which
fits the reference probabilities produced by the A¢ inversion model.

Our motivation here 1s to give sn approximste compact form to deseribe
the parameters of this model.

In Figure 3.21, three different sets of Aﬁ inversion model reference
protstilities are plotted on a log-log scale. In this graphical repre-
sentation, we ¢en see thst large portions of each set of probabilities
can be spproximated by straight lines in the log-log domain. There is
usually one msjor breskpoint in esch curve. This breakpoint for the
WATFIV model Is quite distinct at page number 54%. For the other program
models, the breakpoints are not as obvious as in the case of the WATFIV
model. TFor instance, for the WATFIV model we cen roughly set this point

at page number six.

- 131 -

A INVERSION REFERENCE PRUBABILITIES

N
7
-
£
&
m
&
[~]
E 4
N
.
.
PAGE NJMBER —
Fig 3.21
HODEL VATFIV Ag INVERSION REFERENCE PROBABILITIES
T - T T
lﬂ‘ 1
E
w? 1
w? -
E Functionasl Mcdel
-3 1
< 10 -
= 3
E F
I.lil-4 -
-5
o Ap Inversion 7
Model 3
ID" -3
[s0 i 150
FAGE NJMBER —=
Fig. 3.822
- 132 -

Using the page number at the breakpoint, we can iry to fit two or
more power law functions for esch segment. These functions and the page
number at the treskpoint can approximately describve the parameters of
themodel. For ianstance, the reference probabilities of the WATFIV Aé

inversicn model esn be spproximated by the following function:

0 .1'381k'2'13’5h7li L=<k <53
P, = 116::1061;'6‘8832 54 £ k S 120

0.00000L 121 = k < 168
In Figure 3.22, the actuml reference probabilities sre compared with

those found by the above function.

3.5 EXTENSIONS AND OTHER AFPLICATIONS OF THE MODEL

In this section, we consider some possible extensicns and appli-
cations of the AY¥ inversicn model. We would like to point out here that
inverting the A¢ feult rate expression 1s not the only way to find the
reference probabilities. For exemple, one might consider inverting the
average working set size expression (b) snd substituting for the ws(T)
values the cbeserved sverage working set sizes from an actual program.

One po@sible area for the extension of the Aﬁ inversion medel is the
study of the menagement and organization of file systems in the storage
hierarchies. A file csn be thought of a block of data which is handled
by IO communication faeilities as one integral pert. In the context of
earller discussions, the flle blocks can be considered ss variable gize
pages.

A posslble spplication of the model is the areas of program and
deta restructuring technigques. Restruecturing cen be used to increase

gome performance measure, such as access efficiency. Grouping of the

- 133 -

records which are referenced together is » common approsch in restrue-
turing efforts. The pages of a program can slso be combined into one
larger block, based on some frequency of reference criterion. For in-
stance, assume there are n pages and we would kike to combine esch k= n
pages 1nto one block. One way of dolng this is to combine the first k
most referenced psges 1nte the first block, the next k most referenced
pages into the next block, and so on. We call this simple restructuring.
In corder to find out the behavior of the medel in this spplication,
we have done some experiments on the trace of the WATFIV end AFL programs.
The psges of these programs are sorted in the order of the freguency of
reference to each page. Then, each successive peir of pages in esch list
are combined together to create a larger page slze twice the size of the
original pages. For esch program, before restructuring, we find the
A¢ reference probabilities [pl,pa,pj,...,pn}. Next, we restiructure each
model so thet firat and second pages are combined, third and fourth are
combined, and so on. (¥ reczll thet pl?. p2.>._ p32...pn.) In this wmenner,

we obtain new restructured models with % parameters
EPL + PE, PS + 1JERERN) p(n/E)—l + ‘pn/2:| (n even) .

We can now find the performance of the restruciured programs under
MIN end LRU replacement algorithms. These are shown by solid lines in
Figures 3.23 and 3.25. Next, we find the performance of the restructured
models under the same slgorithms. We don't expeet 1o get similer results
because the parameters of the Aﬂ inversion model are not directly relsted
to the reference probabilities in each actusl program. The dotted lines
in Figures 3.23 and 3.25 demonstrate the performance of each model. We

note that the models underestimete the fsult rate of the restructured

- 13k -

programs by some factor. It is Interesting to note that the restructured

models underestimate the performance of restructured progrems by a fixed

factor over all memory sizes. For both the WATFIV snd AFL progrems,

these factors are 0.5. This is shown in Figures 3.2% and 3.26 where we
multiply the fault rates of the restructured models by fwo, snd plot the

. new curves by dotted lines. We note that for both programs now, the
models follow the fault rate curves of restructured progrems reasconably

- well and for APL we have a particularly good fit. The significance of
this result is thet we can now work with the medel and obtain numbers
which are off from the sctual results by a falrly constant proporticmality
factor over all memory sizes. Determining this factor probably needs
more experiments with different programs. It seems that its value should
not have great varistion zmong felriy homogehcous representative programs.

In Figures 3.27 and 3.28, we have compared the effect of silmple pro-
gram restructuring on the fsult rate behavior of WATFIV and APL progrsems -
The so0lid lines show the performance of the restructured programs, as
descrived éarlier, and the dotted lines give the performesnce of unsltered
programs with the natursl doutlling of the papge size of each program. We

.can see that simple restructuring csn have significant effect on the
memory utllizetion in the case of the APL program, and hss mixed positive
and negstive effect on the performance of the WATFIV program over dif-
ferent renge of memory sizes.

Ancther feasible application ares of thls medel is the study of
read/write characteristics of the programs snd the paging algorithms
which teke these operstions into eongiderstion. In the remsining part
of this section, we point ocut the significance of the problem and give

some suggestlons for desling with the problem.

- 135 -

In & paging system, an important task of the supervisor is to take
note of the modified pages (i.e., write psges). This informstion Le-
comes important when a page needs to te pushed out of the memory £0 make
room for an incoming page. Clearly, if the content of the psge hes not
been modified since 1t was first brought into the mein mewory, it is
generally not necessary to copy it bteck on, ssy, the peging drum. This,
of course, ¢sn seve the I/Q channel time snd reduce the channel traffic.
In this respect, in the study of paging algerithms the number of trans-
fers produced under an algorithm can be considered a meassure of perfora-
ance. Thus, we can associate a cost or weight of cne for a page which
iz brought into the memory and is not modified by the time it has to
leave., Similerly, & cost of two is associated with & page which is
brought into the memory and is modified by the time it has to be copied
back to the backup memory. The performance of the aigorithm is the total
cost (total number of trensfers) sssocisted with each memory capscity.

The significance of the subject cen aiso be seen when we study the
operational specifications of scme of the newly evolving memery technol-
cgies. At leagt in two of the promising technologies, namely, the bubble
domein memory [22] and the electron beam sddressed memory (EBAM) [17]
systems, the write operation cen be slower thsn read operstion. For in-
stance, in cone prototype of an EBAM system the write speed 1s ten times
slower then read. Both systems are simed at providing reliable and large
storage medis and direct block access capavility. Therefore, the need
for dats management similer to paging operstion is fessible for a memory
hlerarchy which include any of the devices.

We now proceed 1o give some data on the number of trensfers caused
by some actual programs under two important replacement algorithms,

- 136 -

nemely, LRU and MIN. We are slso Interested in the relation between the

Fig. 3.26

40

PMEMBRY SIZE IN DQUSLE PABES

Fig. 3.2

1
220

Ll L L Lt ™ § T [l Lo
transfer rate (i.e., number of transfersfnumber of references) and the 4 éﬂ . EE
B w "
~
page fTault rate st different memory sizes. E |] : dg % - t .
B : N
In Figures 3.29 and 3.30, the fault rate and transfer rate of the 8, % ;
2
WATFIV and WATEX progrems under LEU and MIN slgorithms are shown. The § L HF- 'é‘ -
g & z
fault rate curves sre the same @s those presented esrlier. The transfer % = § g“:‘ - %
g i £ g
rate curves {dotted lines) are cbtained using sn efficient stack algorithm. g B f _9§ E g L
g A & g =l
¥or each memory size, when a pege is brought into the memory, one trans- E 3 E g ‘E" =]
. w
fer is counted. When the same page has to be pushed out, the wodify Wit g R -8 g N
>
o
of that page is exsmined to determine if that page has been modified. % '@
w w
E-3 - -4
If it is modified, snother transfer is counted. The dotted lines in N [UWITE I SOV U a - NL_ OL 'n_ nn... ol_. -~
- - o ~ - . X H 0 0 .
% % % % e % % % 2 e 8 = =z § = @4
the figures actually represent 0.5 x Transfer Rate Curves. Fuve 1nvd aLve Lnvd
On the upper corner of the plots, the ratio of 0.5 x Transfer Rate/
Page fault rate for bhoth algorithms are shown. We note thet in each
figure, these curves follow a fairly straight line for a major range of
lower memory sizes. This indicates that a constant relationship can be L ™ T T T E prmrr—p T ™
-t ! -
approximated between the transfer rate and the fault rate for relatively § EB g Eg
T a]
. =
amsll memory sizes. As the memory size beccomes large, the retio moves E: I~ i : 48 Wi 1 :
[
%
2lightly upward 1n each figure, showing higher transfer rates relative § g g
[=] oL <
to the fault rates. This behavior is expected because when the size of ir "sgm g L i
Z o b~ ,‘ g
the mein memory is large, the program pages tend to spend more time in § 2 gm % 2
] i
[= oo 13 =
the memory and, thus, the likelihood that a page is modified Guring l1t=s E B 19 8 E’ ; B &
= = s
b= w &
- = 5
prolonged stay incresses. = a3 5 E3 4
g S 8 8 g
The A¥ inversion model can be extenmded in this applicetion in two 20 18 5 2
2 g
ways: 5 7 E
w it !
x Y | w
a) A single new parsmeter q is defined which indicates the - o ..,L .,L .,L_ :_h - & = “l—" "|_. ,L
N 02 .E’. .2 .E .2 .9. '_0. '2 c)E '.'E .9) a v o
probability that a page refersnce 1z of modify (or write} type. v 1Yy vy LW

- 137 - . -1387

FAULT AND TRANSFER RATES OF WATFI
PERFBRMANCE BF RE-STRUCTURED WATFIV PROGRAM 0® AR A R [S B A B A
10 R e T ; ; 1
; snens RE-STRUCTURED FREGRAM] Wy 1
10! F =« 44 ACTUAL VATFIY PRAGRAN] g1 FaLts -4
» E ™ s1ene TRANSFERS 3
.2 F - a0 h
w 1 i 1
w .af 5 3 3
£ | : try 1 s18 .
o 3 3 =
50t 3 E :
2 0 3 -! é‘ __________ 'g
5 f] et]
0 N 5 -
F 2 §
6 - 1.
wor 1 DU R B S
w? L Lo 1 1 1 — " * w':.unr B2E - =
0 2 40 oo BO 100 Fig. 3.29
MEMBRY SIZE I 1K PAGES
Fig. 3.27
PERFURMANCE BF RE-STRUCTURED APL PRBGRAM
1w° e p— T e _ FAULT AND TRANSFER RATES OF WATEX
—— RE-STRUCTURED PREGRAM] o : L T T 3
wt +u 00 ACTUAL APL PRBGRAN TRWSEERS/FALTS 3
3 3 - . FALTS p
" N] g 1 « TRANSFERS ‘;
I o -3 i 3
3 3 .
Ew? - > 2 3
2
-] 8 E
=0 r - 2 3
fr3 3 " 3
5 1 g 3
10 1 < 3
] B]
A 9 H
m‘o 3 - 1 = 2
w07 L 1 N | i ol ._-‘
0 20 40 &0 ed 100 .
MEMBRY SIZE IN 1K PAGES PERCWY S{TE =
Fig. 3.28 Fig. 3.30
- 139 -

Therefore, the AP inversion model is characterized by n reference
probabilities and one modify probability, as:

[Py, Pys Pys +o 5 Bys] -
This approsch can capture the constant relationship between the
transfer rate and the fault rate in the region of smeiler memory
gizes.
b) ‘The MIN transfer rate function can be used in much the same
way as the MIN fault rate function was used, and we can obtain a
set of n new perameters

[ay, aps 930 +ov 5 9yl
These parameters, when added to the reference probabilities
[pl,pe,...,pn], give a comprehensive model which can characterize

the resd/write and the fault rate behavior of the actwsl programa.

3.6 PROBLEMS AND LIMETATIONS OF A¢ INVERSION MQDEL

In this section, we return to the subject of finding the parameters
of A¢ inversion model. Essentislly, we may encounter two kinds of prob-
lems in finding the reference probebilities. The first problem deals
with solving the recurrence relations (3) and the secopnd problem is re-

lated to the tell probabilities.

3.6.1 Problems with Finding the Reference Probabilities

We recall that the MIN fault rate of an n page program are substi-

tuted for Fi's in the relatioms (3) snd, subsequently, the equations are

solved for pi's. It is theoretically qulte possibie that & set of F&'s,

1 =<i<n and Fi > F, for i < j, be defineqd, for which there is nc reel

J

- 141 -

valued solution for pi's. In fsct, it is much harder to come up with
aome empirical values for Fi‘s where we cén solve for pi's.

The case where we can't solve the equations signifies the situation
where there is no independent reference model with its fault rate under
optimal algorithm exsctly equal to those values that we have substituted
for Fi‘s.

Our experiments in using the sctual progrom trsces show that for
traces of reasonsble length, we usually can find fairly accurate velues
for pi's. However, when the messured MIN fault rate values sre such
that the equations {3) cannot be sclved for all velues of pi‘s, we can
find approximete velues for these parameters by using the relations:

p, =F -F {s)
Cnce a by is found in this way, we can try to use relations (3) to find
the successive parsmeters. For instance, in the FFTL program, P, wes
found using (5) and the remsining probabilities were obtained by (3).
The model seems to function properly even with approximate reference

probabilities obtained from the above procedure.

3.6.2 Problems with Tail Probabilities

Consider s progrsm with n peges. Denote by Fm the fzult rate of
the program with mehory size m under the MIN algorithm. When m becomes
large, it is possible thet for some memory size n' the observed
Fi’ i=n', n'+l,...,n will become éero- Here we agsume that initial
faults, due to the initieml loading of the memcry, are excluded from the
total fault counts. Since FE is the minimum fault rate with memery size
m, then for any other fixed memory size paging algorithm the lower bound

on the meximum memory size, n", for which it produces non-zero fsult rate,

- b2 -

iz equal or grester tham n'. TFor instance, for the WATFIV program,
n'=120 snd n"=164 (under IRU) and for the WATEX progrem, n'=n"=57 under
MIN snd¢ LRU.

The point is that the AP inversion method, which uses the MIN fault
rate of the progrems, can give us only n'~l non-zerc reference probabil-
ities. Therefore, We get 2 model with n'-1 pasrameters snd, clearly,
when we uge the model as it is, the pages n' through n never get refer-
enged. For the lower range of memory sizes, the model with n'-1 param-
eter 8till gives satisfactory results. This is becsuse in the practicsl
cases, the reference probsbilities closerto the tail of the model are
wlatively very small. However, the behavior of the model cen grestly
be degraded for large memory sizes if we don't extend the tail probabil-
ities to get a full gize n parameter model.

Extending the tail érobabilities to get n non-zZero reference prob-
abilities iz still an open question here. We have chosen sn ad;hoc
method to get around the problem; we hove simply extended the last non-
zero reference probability so that Pn'-l = pn, S iee. = pn. Then we
need to normelize to get 8 consistent set of probabilities. This solu-
tion has almost no effect on the performance of the model for small
memory sizes, but it has greatly improved its performance in the region

of large memory sizes.

3.6.3 _ Execution Characteristics of the Model

Thus far in this peper, we hove demonstrated the capstilities of the

Aﬂ inversion model to capture most of the long run characteristics of
actusl programs. However, we point cut the fact that this model, and
in this matter none of the models which are mentioned in this report,

- 143 -

LRU)

L | LI I T L) T T l_l T T L I) T

CORFFICTENT OF VARIATION OF INTER-FAULT PERIODS (AFL Under
T

ll_lllLLllllllll_l_llllll

IND REF MODEL PR,
1 STACK DEPTH MODEL . W, —
T rr——
-
= A Ak I i A 'l i l A A 1 1 l A b H
50 100 150 200
HEMORY SIZE
FIGURE 3.31
STV

are stle tc capture some of the complex non-stationary features of
actual programs .

In the aspplications where the varience of quantities, like the
inter-fault distances, sre criticel, the A¢ inversion model would be of
limited use. To illustrate this point, we compute the coefficient of
variation of actual inter-fault distences for the WATFIV program under
the IRU algorithm, and for different memory sizes (coefficient of ver-
istion, C.V., is egual to standard deviation/mean and is 8 scale of de-
parture from geometric or exponential distribution}. In Figure 3.31,
the horizontsl exis is the memory size end the vertieal axis is the
C.V. of the actual IRU inter-fsult values for the WATFIV progrem. We
can see that, in this case, C.V. is generally greater then one. The
fluctuation of the C.V. of inter-faults with differeni memory sizes is
notable. When the memory becomes very large, the computed velues become
erratic because of insufficient samples.

The coefficient of verietion of the inter-fault distances for the
Ad inversion model, as well as the LRU steck model, is equal to cne.
This is because at each reference there is s fixed probability of a
fault independent of previous references. Thus, the inter-fauit periode
are geometricslly distributed for both models snd the C.V. of this dis-

tribution is egual to one.

3.7 CONCIUSION

Counstructing progrem models can be a compact way of characterizing
the page reference behavior of actual computer programs. In this chapter,
we have presented the technique tc duild an Ad inversion independent

reference model, based on the sctual MIN fault rate of a page reference

- 1bs -

trace. We noted that the independent reference model preserves the
relative fault rate of sctusl progrsm traces under MIN snd LRU slgorithms.
Thus, the Ad inversion model should be capeble of predicting the true

LRU and FIFO fesult rates of real programs for different main memory
sizes. We presented the results of experiments on several progrsms to
validate the model.

The Af inversion model is zlso successful at predicting the average
working set size snd the WS fault rate of programs for a wide range of
window sizes.

We have seen that when an LRU steck model is constructed, based on
the sctual LRU distribution of a reference string, it can ressonably
predict the MIN fault rete of the same program. The performence of the
LBU stack model and the Ad inversion model have been compared by pre-
senting experimental data.

The snalytlcal tractability and the simple probability structure of
the &A@ inversion model make this model @ convenient tool for the analysis
and evaluation of virtuwsl memory systems and the performance of CPU's
with high speed buffers.

We have shown the potential of expanding the model into the aress
of simple progrem restructuring techniques and the evelustion of memory
hiersrchies with unequal read/write costs.

When a program has several very distinetive locality regions, the
Af inversion model, as well as the LRU stack model, overestimates the
average working set size by a small percentege.l However, the predicticn
accuracy of the average fault rate under fixed memory size algorithms

are virtually uneffected.

- 146 -

The problem of finding the tail prcbebilities has been dealt wi
here in an ad-hoc manner. More elsborate treatment of this subject
should justify the desired accursey of the model under very lerge me
sizes, where the effect of these probabilities sre most noticeable.

The independent reference assumption on the successive referenc
of a progrem is against our intuition and the actual observations.

ever, we have demonstrated that by putting enough structure into the

th

wory

es

How =

model, we can obtsin a powerful model which produces realistic results,

and can be used effectively in the analysis, simuletion and evaluation

of several problems in the ares of memory management technigues.

- 147 -

3.8 BIBLIOGRAPHY

1.

10.

11.

13.

"The Cray-l eomputer preliminery reference manual,” CRAY Research,
Inc.

"IRM System 360 Model 85 functionsl characteristics,” Form A22-6916.

"Introduction to the IEM 3850 Mass Storsge Systém (MSS)" Form
GA32-0028-1.

Aho, A.V., Denning, P.J., Ullman, J.D., "Principles of optimal page

replacement, J. of ACM 18, 1 {January 1971), pp 80-93.

Belady, L.A., "A study of replacement algorithme for virtusl stor-

age computer, IEM System J., 5, 2 (1966), pp 79-10L.

Boyce, J.W., "Execution characteristics of programs in a page-on-
demand system, Comm. ACM 17, 4 (April 197h).

Coffman, E.G., Denning, P.¥., "Operating system theory,"” Prentice
Ball, Englewood Cliffs, New Jersey {(1973}.

Conti, C.J., "Concepts for buffer storage,” Computer Group News
{March 1969).

Denning, P.J., "Thrashing: its causes and prevention,” AFIPS Conf.
Froc., Fall Joint Computer Conference, 33, (1968), pp 9i5-922,

Denning, P.J., "Virtual memory,” Computing Surveys, 2, 3, (1970).

Denning, P.J., "On modeling program behavior,” AFIPS Conf. Proc.,
Spring Joint Computer Conference {1972}, pp 937-9hk.

Denning, P.J., Savage, J.E., Spirn, J.R., "Models for loeality in
program behavior," TR 107, Computer Scienee Laborstory, Dept.
of Electrical Engineering, Princeton University (1972).

Denning, P.J., Schowartz, S.C., "Properties of the working set model,"

Comm. of ACM, 15, 3 (March 1972).

- 148 -

1h.

5.

16.

17.

18.

19.

20.

2l.

Frapaszek, P.A., Wagner, T.J., "Some distribution free sspects of
peging algorithm performance," J. of ACM, 21, 1, (Jan. 1974),
pp 31-39.

Franklin, M.A., Gupta, R.K., "Computation of page feult probability
from program transition diegram," Comm. of ACM, 1T, &, (April
1974).

Ghanem, M.Z., Kobaysshi, H., "A perametric representation of pro-
gram behavior in virtual memory systems," IEM Research Report
R 4560 (October 1973).

Kelly, J., "The developmént of an experimental electron beam-address
memory module, " ComputerVIEEE 8, 2 (February 1975).

King, W.F., "Anelysis of paging slgorithms,” IBM Watson Resesrch
Center, Report RC-3288 (Merch 1971).

Lewis, P.A.W., Shedler, G.S., "Empiricelly derived micromodels for
sequenee of page exceptions,” IEM J. of Research and Develop-
ment (March 1973}.

Shedler, G.S., Tung, C., "Locality in page reference strings,”
SIAM J. on Computing 1, 3 (September 1972}.

Watson, R.W., "Time sharing system design concepts,” McGraw-Hill,
N.Y. (1970).

Ypua, J.E., "Bubble domsin memory systems,” AFIFS Conf. Froc.,

(1975}, pp 523, 528.

- 1hg -

CHAPTER 4

QUEUEING ANALYSIS OF THE INTERACTION OF PAGE SCHEDULING
ARD DEVICE SCHEDUGLING

4.1 INTRODUCTION

Multiprogramming onr virtuel memory ccmputers has been with us for
more then s decade. It has become a commen computing environment on many
large and, recently, on small computers. Programs running in such systems
compete with each other for resources, such as meln memory, procéssing
time snd IO devices. The cperating system haes the complex task of man-
aging the affairs of the system. They include the Initiation of jobs,
geheduling and assignment of rescurces, supervising the execution of the
jobs, etc. Performance has slways been & criticel issue here. The per-
formance gosl is ususlly to have a belanced and efficient utilization of
the resources under the constraint that an acceptable service level be
provided for the diverse computing requirements of the community of users.
A wilde range of techniques hsve been used to study end, therefore, to im-
prove the performsnce of these systems. They inelude direct messurewents,
modeling, similation and s wide range of analyticsl technigues. In this
regard, some questions heve been answered and meny others need to be ex~
plored further.

In this chepter, we are concerned with s part of the system which
econsists of the central processor with its memory and the paging device.
These two fairly independent units interact strongly with esch other to
meet the paging requirements of active programs.

The basic assumpiion is that the mein memory is pertially loaded with
a sutset of the pages of each active progrem. The number of active pro-

grams determine the degree of multiprogramming. The remeining pages of

- 150 -

esch progrem reside in fast suxilisry storsge, like a drum. A progrem
runs on part of its sddress spece which is in the msin memory. When a
reference is issued to s loestion outside this region, the execution of
the progrem will be delayed until the page which contains this sddress is
fetched into the mein memory .

A two-stage cyclic gueue will be used to model the structure of the

system. Using the actusl and approximated paging behavior of programs, —_— .

we will study the performence of the model with different memcry allo-

CPU

cation polieies and scheduling disciplines. Quantities like utilization ‘ rm
(efficiency) of the devices, job completion rates snd job waiting times
will te considered. The robustness of the results, with respect to dif-

ferent sssumption, will be investigeted. FIGURE 4.1

4.2 MODEL

A multiprogrsmmed CPU with its peging device {here, mostly celled IO
device or IQD) is modeled by s two-stage cyclic queue with fixed number
of customers. The number of customers ls determined by the degree of multi-
prograwaing (Figure b.1).

Actual systems could be more complex thsn this scheme. For example,
we can have more than one IO channel which is essentislly a communiestion
1ink between the CPU and the suxilisry storsge wmedis. In this case, the
I0 requests can be routed to different IO devices. Nenetheless, the above
model captures the basic structure of the intersction of the CFU with its
paging device. Using this compact model, we sre sble 1o interpret the re-
sults without getting involved in detasils snd questioneble sssumptions.
The goal of this study is to explore the underlying nature of the inter-
action of the page scheduling and device scheduling under fairly reallstic

typical progrem behavior assumption.
- 151 -

Two Stage Cyelic Queue Model with N Customers

- 152 -

Cyclic queueing models have been used by several cther authers in
this area. In [11], e Markov model for the sequence of LRU atsck dis-
tances is given. Then & two-stage cyeclic gueue mogel with two statis-
tically identical programs esnd equasl memory partitioning is considered.

By changing the persweters of the Markov medel, CPU execution intervals
with different variances are obtalned. The numerical results suggest
that a lower CPU utilization is obtained when the variance of execution
intervaels is incressed. In [9], & single server queus with feedback and
N > 1 customers (programs} is used to model a.paging machine with varisble
partitioning memcry. The customers sare N statistically identical programs.
These programs are characterized by the distribution of their LRU distance
values. When 8 program experlences s page fault, one page is sdded io its
.main memory space at the expense of stesling one page from another program.
The long run aversge execution intervsls snd the distribution of the num-
ber of pege fremes sllocated to & program sre sought. In [4], the suthors
conslder s multiprograsmming system with variatle memory partitioning where
. queueing delays sre neglected. Carrying out an aversge value snalysis
over the time epochs during which the memory allocation is fixed, they
basically conclude thet the mean processing efficiency is higher snd the
mean page feult rate is lower compared to the cese where s fixed parti-
tioning scheme Is used. ¥For N=2, the numericsl results are presented.
In [2], the page frame allocation stretegies smong competing processes in
mtuliprogreming systems sre investigeted. The basic performence messure
is teken to be the cost of allocsted page fremes in mailn memory and the
contention on the paging deviece. The sverage waiting times of the requests
to the paging drum ss e function ¢f load on the drum snd the number of

active jobs is found bty simulating a two-stage cyelic gueue. The execution

-]_53..

intervals of the jobs on the CPU is drewn from & common exponential dis-
tribution model. A rate of accrual value for the whole system under each
memory allocation scheme for N jobs is defined. This value gives s mea-
sure of how efficlently the avallable main memory is used tsking inte
accéunt the average delays of the peging device, the progress rate of the
jobs, snd psge frome demsnd of each progrem present in the system. They
conclude that the optimsl sllocation policy for two identical programs,
when there is sufficient sveilsble space, is to divide the wmain memory
evenly between them. For non-identicsl programs, they suggest that the
main memory should be divided in such a way that the page fault rate of
the jobs become equal. In [5] end [13], the suthors use a two-stage
cyelic queue to model the CFJ and its IO device in their work. In [5],
the average wsiting time in a SLIF filing drum and the central processor
utilizestion versus the ratio of transmission time to the cowmputing time
are illustrated. In [13], under the sssumption thest the mean executicn
time between pege fsults is a linear function of the sllocated main memory
gize, the optimsl memory partitioning, in terms of CPU utilization, is
found. A processor shering scheduling policy is sssumed for the CFU. In
[15]1, = two-level eyclic queue is used to study the effectiveness of the
HASP Execution Task Monitor {(05/360) which gives the issks s preemptive
execution priority in the inverse order of thelr CPJ usage history.

The model that we have considered here works as follows: There are
N custcmers (programs, jobs)} in the system. When & jJob is ready to re-
ceive CPU service (ready to run on the CPU), it will rum until it exper-

iences & page fault. The job with its request for the missing peage will

join the IOD queue. When the service of the job in IOD completes (equiva-

lent of transferring the missing page from the drum to main memory), it will

- 154 -

Join the CAU queue and is ready to resume its execution. CPJ and IOD can
work independently. The overhead of switching the jobs in the CPU is
neglected. There is only one progessor {server), the CFJ. The main mem-

Doy oee sy, where m, 1s the

ory is divided into N fixed partitions o,
R i
%

main memory space of job i and ZL mi=M- Each program runs in its fixed
i=1

allotment and no sharing of the pages 1s allowed {in cne large computer
installation, the shared pages account for leas than 15% of all pages).
By chenging the amount of main memory which is assigned to sach job, we
con manipulste the mesn CPU service time (between page faults) of that
job on that processor.

We cen either simulate the model or solve it directly. For simu-
lation, we ean use the reference traces of sectual programs to drive the
simulation. In the latter case, an IRU replacement rule will be used to
mansge the pages of the programs. For solving the model, we make some
gimplifying aasumptions about the program behavior.

The extent of getting useful results from the model depends on how

realistic we make the asssuwptions about the paging behavior of the programs,

scheduling disciplines, the distribution of psge trensfer time, etc.

b1 Prograem Paging Behavior

Program paglng behavior has been extensively discusseé in the previous
chapters. We will extend some of the relevant peints here.

Assuming a fixed partitioning of the memory, the mesn service time
for a job with memory allotment m is assumed to be equal to the mean inter-
fault tiwes (i.e., the time between two successive page faults). For each

Jjob, the mean interfault time 1s a function of the main mewmory space m and

- 155 -

the replacement rule which is in effect. We dencte this function by By
and will assume a suitable replacement rule. For most replacement rules,
this function is non-decreasing for increasing values of m. In Figure
h.E, gm functicns are plotted for the WATFIV and APL programs under the
IRU algorithm. These curves sre obtained by taking the reciprocal of
page fault rate functions, fm, for each c¢ase, 1.e.,

8y = 'f; , m=1,2,.....,M.

m

For our model, we need some mechanism to generate the Interfault
periods for s given Wwemory allotwent, m. In simulating the model, we can
actually monitor real progrems end measure the interfaulte directly. This
approach can sometimes be very costly. For analysis asnd more efficient
simulation runs, we can use a model for progrem paging hehsvior. Later
in this chapter, we will compare the results obtained from both methods.

Let gm(x) be the interfault density funetion for s given memecry size
m, i.e.,

Pr[in‘terfauit =x] = gm(x)

For the independent reference model, and under any replacement rule
{e.g., OPT, LRU, FEFO, FR) where the page fault rate converges to some
value fm, the steady state interfault intervals have 8 geometric distri-
bution with parameter fm’ i.e.,

Pr[interfeult = x] = fm(l-fm)x-l-

For the LRU stack modeil, under the LRU algorithm, gm(x) is geometri-

cally distributed with rete f = Z a

where M is the program size and
di = Pr[LHU distance=1] .

- 156 -

These two models have been shown to be good models for program
paging behavlor [Ch. 2 snd 3]. In both models, the distribution of gm(x)
has a simple form. 3f the paging behavior of the programs are assumed
to follow cne of these models, then a natursl assumpiion for the inter-
fault distribution in continucus time is exponential.

For the geometriec (or exponential) distribution, the coefficient of
variation (C.V.) is equel to one. The C.V. of interfaults from measure-
ments on sctual programs has generally values higher than one. In Table
4.1, the coefficient of variation of interfaults for different memory
gizes for two programs are shown. In Figure 4.3, the survivor functicns
of the actual interfeult distribution with two different main memory sizes
are shown. In the same figure, the survivor function of a fltted expon-
ential distribution for each of the sctusl observetlons are alsc plotted.

The results show that the coefficient of veriatior of the sctual
interfault periods is genmerally higher than one, and the exponential fit
15 not a perfect choice in this case. We shall take this faet into con-
sideration in simulstion of the model when we use the actusl trsce of pro-
grams to run the simulation. Iater in this chapter, we shall compare the
results of the snalytical approech, where we asssume exponential service
times, with the results of simulstion where more realistic program be-

havior considerations ere possible.

- 157 -

s DISTRERUTION §F INTER FAULTS FOR GIVEN MEMORY SIZE

SURVIVER FUNCTION: PR X > T)

OBSERVED DISTRTBUYION OF MEAN INTER PAGE FAULTS
T T T

WATFIV

I L I

o ~ S0 100 150 - 200

BEMRRY SIZE (PASE FRAMES)
Fig. 4.2

COMMARTSON WITH EXP. MODEL WITH SAME MEAN

Memory Size=50
-

Q 200 400 600 800 1000

INTERFAULTS T
Fig. 4.3

- 158 -

Actusl WATFLV Progream Txp. Model |
Memory Standard Standerd
Sige Mean Q.v. Deviation Devisticn
10 23 3.01 69 23
20 59 2.52 149 59
30 8l 3.82 321 8l
40 118 3.47 410 118
50 193 3.29 635 193
60 607 2.94 1785 607
i 2kég 1.96 48L6 shéz
80 ho62 1.20 hgos 4062
{2}
Actual APL Program Exp. Model
Memory Standard Standard
Size Mean C.V. Deviation Deviation
10 38 k.00 152 38
20 92 3.19 293 92
30 188 2.11 398 188
Lo 390 2.15 8h1 390
50 T4l 2.18 1620 Thl
60 1161 2.20 2564 1161
T0 1815 1.67 30Lk0 1815
80 2623 1.56 L4107 2623
{v)
TABLE U4.1 Mean and C.V. Of LRU Interfaults for

Different Memory Sizes.
deviation 1s given for sctual programs
and exponential distribution with equsl

mesn .

..159..

The standard

h.2.2 I0 Device Model

The nature of the service time in IOD depends on the type of device
which is used to store the progrem pages. With todey's technology, the
most common device is a paging drum. In s paging drum, each track is
divided into equal size secotrs snd each sector contains one page block.
The service time of a request which arrives at this center is equal to
the rotationsl latency until the read/write hesd reaches the beginning
of the reguested sector and the time to transfer one sector. Therefore,
it geems that the distritution of the service time can be best formulsted
by e random component describing the rotational latency and a constant
time for trensferring one page tlock (see [5] for more detail}. We
should, however, reslize that each request for this center can experience
different rotationsl latency periocds, depending on the utilization facter
of the device. For instance, if there is more then cne request uaitiné
for service in this center, the completion of the transfer stage of the
first request with s high probatility, can leave the hesd on the teginning
of the sector of the next request, and resulf in zero seek time for the
latter request.

For the newer technologies that might replace paging drums, there is
no reeson to believe that each read/write request for the IOD needs a
preparation period like the istency time described for the paging drum.
To free ourselves from the internal organization of the IO devices, we
will use 8 simple single exponentisl service time for the snalysis of the
model and, in order to find the effect of other device dependent service
times on the performasnce of the model, we shall use 8 more accurate peging

drum scheme for the gimulation of the model.

- 160 -

y,2.3 Scheduling of the CPU and I0D Requests

The effects of the scheduling diseiplines in both centers on the
performance of the model is an Ilmportant concern in this chapter. The
decision to choose a request for service in each service stetion may be
based on one of the foellowing criterions:

- Reguests are served in the order of arrivels, nemely, first

come first serve {FCFS) policy.

- Reguests sre divided into classes and each c¢lass hes a service
priority. The server chooses the reqguest with the highest
pricrity first. In this policy, the arrival of a higher
priority request may breempt the execution of 8 Lower priority
job. In our case, the service priorities st & center are based
on the service rate of the job st thet center or on the service
rate of the job at the other service center.

- The gervice discipline is processor sharing, i.e., when there
are N jobs present in the center each job will receive serviée
st the rate of % . Processor sharing is considered the limit
of round robin scheduling when the gusntum size approsches zerc.
It is @ good approximation to the serviece policies in time sher-
ing systems with smell quantum size (e.g., 10 ms).

We will see later that under certain conditions the service disei-

plines hsve s significant effect on the resource utilization and the

waiting times in the model.

k oh Queueing Analysis of the Model

We agsume thet there are N joks circulsting in the queue where N is

the degree of multiprograwming. The IOD service times for all jobs are

- 161 -

the same, and are exponentially distributed with rate A . The CPU service
time of each job j is exponentislly distributed with the rate uj.

Each center may service the arrival requests based on its own service

poliecy. Four types of service modes have been considered here:

- Type I (FCFS-FCFS): IOD snd CPU both use FCFS poliey.

- Type II (Independent Pricrity}: IOD uses FCFS policy snd Cfﬂ
uses @ Preemptive priority scheme based on the service rate of
each job at this center.

- Type IIT (CPU Priority): IOD and CPU toth use priority disci-
pline based on the service time of the job in CPU. The higher
priority jobz in CPU preempt the lower priority Jjobs in this
center. The priority ordering of the jobs in CEFU is the reverse
of the priority ordering of the jobs in IOD.

-« Type IV (ES-FCIS): I0D uses FCFS end CHFU uses processcr sharing

policy.
k.25 State Identification snd Genersl Scluticn of the Model
The states of the queue are elements of the set [, Spr-vees 5]

where n is the total mmber of stetes. A state § is defined by a vector
5 = (x,, XE)
where

x = (xsl’xsz’ X), 8=1,2 (or s= 10D, CPU),
e

n_ is the number of customers {jobs) in service center 5 and x_, is the

8]
ciass of customer who 1s jth in the FCFS or priority order. The customer
undergoing service in center s is, therefore, identified by Xop-
With the assumptions we have made, the state transitions constitute

8 positive recurrent Markov chain.‘ Iet the Infinitesimal transition rate

- 162 -

matrix of this chain be q=(qij), then the steady state probabilities are

the solution for the system n §=0, where n=[P(Sl),P(SE), P(S

RIET

the vector of steady state probabilities and n 1s the number of states.

o

o
The normslizing egustion is Z, P(Si) = 1.
i=1

The linear system of equetions n.Q=0 .cen be set up by writing the
so-called global balance equations. These are cbtained by eguating the
rate the chain enters a state, to the rate it leaves that state.

This model becomes 8 special case of the general model analyzed in

[1] for Type I scheduling when all service rates st esch center sre the

sawe, and for Type IV scheduling. For other ceses, one needs to write the

balance equations and solve the equilbrium probebilities for esch case.

h.2.6 Definition of Performance Measures

These terms will be used In the following discussion:

- CPUJ or IOD UTILIZATION (Ucp , U The fraction of time the

u iod):

CPJ or 10D is busy. These terms Bre defined by the equilibrium

probatility of each center being busy.

4» &= TI0D or CHU): The

time period that job 1 spends st center . This value consists

- WAITING TIME of job i at center s (W_
=

of the queueing time plus the service time of the job.
- DILATION TIME of job i et center s (Dﬂ 4+ 8= I0D or CPU): This
?

quentity indicates the smount of time a job waits in & center
relative to its service time, end iz equsl to ﬁﬁli where R
5,1

is the service time of jJob 1 &t center s.

- 163 -

- COMPLETION RATE (denoted Tty C): The averasge number of jobs which
terminate their execution snd leave the system in s unit of time.

- PROGRESS RATE: The average rate jobs sre processed. This gquan-
tity is equel to the CPU utilization becsuse the CFU service 1s

the real processing requirement of the jobs.

We begin solving the model starting with two speciel ceses with N=2
Jjobs, end type I and type II scheduling policies. The explicit solution
for the steady state probabilities, for these cases, is given. When the
number of jcbs increeses, it is more convenient te use an elgorithm to

get up end solve the steady stete equetions with s computer program.

Yoo Cage 1: Two Jobs and Type I (FCFS-FCFS) Scheduling

CPU: FCF3S
Service discipline:

TOD: FCFS
n, = number of jobs in center 1{10D)
n, = number of jobs in center 2 {CPJ)

State identification:

o 2o

1 i 8, = [{1),(2)] 8, = [{2),(1}]
8] 2 33 = [',(1,2)] Su = ["(211)]
2 0 5. = [(L,2),-1 s = [(2,1),-]

The balance equations:
o+ }12) - H5)) = pl.P(SB) + X P(s.)
(A +) - 2(S,) = uy B(8)) + 1 .K(s5;)
mo- B(Sy) =4 . B(8,)
Ao-HE5) = e, R(S)

- 164 -

A P(Sé) By .P(SE)

It

A - R(8))

The solution to the telance equations will give the steady state
probabilitlies:

. 2 2
et D = 21.l15.L2(A+u1)(l+1.12) +A ul(“pl) + A pz(hﬂ.le)

Then:

P{Sl)

P{SE)

Mg (A)/D

|

Ay (A4,)/

P(85) = 2%u,(+u)/D

]

B(s5,) = 4 2u1(l+|-11)/D

P(s) = o o4y)/D

P(Sg) = i Hy{A+,)/D

The steady stste probabilities can be used to find the equilibrium
device utilization snd job weiting times, as follows:

The device utilization is the probability thst each deviee is busy,
ie.,)

u

)
It

tod Pr[IOD busy] =1-Pr[IOD idlel 1-1=(33)-P(s,+)

ucpu Pr[CPU busy] =1-Pr[CPU idle] = 1-?(35)-1=(36) .
The walting time of each job at each center can be found using
Little's Theorm [Little, 1961]. We need to calculate the mumber and the

arrival rete of each job clasgs at the center.

- 165 -

Let n 5 denote the number of jobs of class 1 at center s. Then:
5,

Pyop,1 = P(Sl) + P(Ss) + P(Ss)
Nrop,2 P(SE) + P(s5) + P(S6)
opy,1 P(SE) + P(s3) + P(Sh)

fopy,2 = P(sl) + ?(33) + P(Sh)

Since we have a cyelic queue, the arrivel rate of a job at a center
is the produect of the probability thet this job 1s under service in the
other center by the service rate of the job in that center. Thus, the
walting times of the jobs at esch center are:

n

e T RS
iy (P05, +H(E,

W LoD, 2
I0D,2 =
R TR ECR RO
W fopy, 1
cPU,l = s
& .(P(Sl)+P(S5))]
W “epy,2

cPU,2 =
l.iPiSE§+PiS6§5_

The aversge weiting times st each service center are:

(¥rop,1 * ¥1op,2!

¥iop >
. Moy 1 * Yoru,0
cRy 2

L.2.8 Case 2:

Two Jobs snd Type II (independent priority) Scheduling

Service discipiine

CPU: preemptive priority:
prio{jot 2) > priof{jot 1}

i0nD: FCFS

- 166 -

1]

n number of jobs in center 1 (IGD)

1
number of jobs in center 2 (CPJ)

i

o5

State identification:

nl n2

1 1 s, = [(1),(21 s, = [(2),(1)]
0 2 55 = [-,(2,1)]

) ¢} SI+ = [(1,2),-} 55 = [(231);']

The balance equations:
(A + py).B(5} =2 .P(S5)

(o + pl) .P(Se) = ua.P(SB) + A.P(Sh)

by - P(SB) =i . [P(sl)+P(52)}
Ao B(8,) =ow, - B(S))
A . P(S5) =w o P(Sa)

X . P(Ss) = - P(Sa)

The normalizing equetion is:

121 P(Si) =1 .

The solution to the balance equations will give the steady state
probabilities:

2 2
Let B = (A+pg)(A+uy)™ + wyny

Then:

i

B(s) = Ay /B

B(5,) = Au(h+p,) /E

P(SB? 12(l+u1+u2) /E

- 167 -

_ 2
P(5,) = kb, /E

P(S5) Bybo(A+n,) /E

As in the previous case, we can find terms like device utilizstions

and waiting times. For instence, the ICD and CPU utilizetion for this

case is:
Uggp = 1 - B(S;)
Uopy = P(5,) + P(SE) + P{S3) .
h.2.9 An Algorithm to Set Up and Solve the Balance Egqustions

As the degree of the multiprogresmming incresses, the number of states
grows very fast. For exsmple, for N=bt and Type I scheduling, the number
of states becomes 4'(4+1)=120. 1In such cages, we can use s computer pro-
gram to solve the steady state equations. But first, we need s comvenient
way to set up the infinitesimel trensition metrix, Q-

Let the states be the elements in the set [sl, 8 SnJ. Denote

2,.--.,

by x=(xij) the watrix such that x,. is equal to the rate state 5; goes to

ij
S,- Thus, the balsnce equations become:
J 3\ - “~ -, ~
[n
g} X ' IP(S]_) P(Sl)
n
gl o o X ﬁP(sg) Loyt 4 P(SE) \
{
o] . . .
n
(_v_ X e P(Sn) P(Sn)
L = T G L A
- 168 -

Re-writing it, we get:

P(Sl) 1 o o
P(SE) | 0 [_xii +k§; X5 1f i=3
Q. .. = . where Qz(qij} -

l-xij if i=j

B(s,) L

If we couple & normalization equation to the above system of Lineer
equations, we can solve for the steedy staie probabilities. Therefore,
we only need to find the X matrix in each case, which is much essier than
construeting the Q metrix, and let & computer program find the @ matrix
and solve the equations for the numeric solutions.

In the following sectlons, two more cases with N = 3 jobs are

treated.

4.2,10 Case 3: Three Jobs and Type II (independent priority)
Scheduling

CPU: preemptive priority:
prio(jot 3) > prioc(job2)} >

Service discipline: prio(icb 1)

T0D: FCFS

...169 -

The states are:

In this case, the X matrix is:

-

[¢]

o

0O o o o0 o O0CcC o oo o o ™

4

o o Q

o 00 0 C Q0o O o0 ™ OO

¢}

o O

o o o0 Cc o o0 Q o™ o

2]
i

o Roz]
I I

0
m
|

= [':(33211)3
= [(l):(3;2)]: SB = [(2);(3)1)]: Su = {(3)3(2:1)3
= [(1;2)3(3)]J 56

= r{3,1),{2)1, 8,

Sll = [(152:3)1']) 512

83, = [(2,3,1),-1, 55

o
I

C

O 0 0C C oo ® o o0 0

o

c O

0o * o0 0 o0 C 06O 0000

o]

o O

» o 00 o0 o0 o o000 00

0 o
By o
0 0
0 ©
G 0
0 o
0 0
¢ 0
o 0
0o o
G 0
o 0
A0
0 A
0 o
0 0

-]_70 -

[(2,1),(3)]s 8¢ = [(1,3),(2)],
£(2,3),(1)], 8,4 = [(3,2),(2)]
- [{1,3,2),-), 8,5 = [(2,1,3),-],
= [(3,1,2),-1, 5,¢ = [(3,2,1),-]

0o 0 0 0
0 0O 0 0 0 0 ©

Wy © 0 0 0 0 0 0
0w, 0 0 0 0 0 0

0 0 ug 0 0 0 0 0

© 0 0 0 p 0 0 O

0 0 0 w0 0 0 0 p
© 0 0 0 0 0 0

© 0 0 0 0 w0 O

0 0 0 0 0 0 0 i

A 0 0 0 0 0 ¢ 0

0 2 0 0 0 © ¢ 0
00 0 0 0 0 0 O

9 0 0 0 0 0 0 O©

0O 0 0 0 0 0 0 ©

¢ 0 0 0 0 ¢ 0 0

h.2.11

Case U4:

Three jJobs snd Type III (CPU prierity) Scheduling

Service discipline:

The states are:

i

H

]

i

[-.(3,2,
[(3),(2,
[{2,3)(
[(3,1),(

CPU: preemptive priority:
prio{ job 3) > prio{jcb 2} >
prio{ job 1)

I0D: opriority:
prio{job 1) > prio{job 2} >
prio(job 3)

1]

11, 85 = [(2),(3,1)], 5, = [(1),(3,2)]
11, 8 = [(3,2),(1)], 8, = [(1,3),(2)],
2)1, 85 = [(1,2),(3)], 835 = [(2,1),(3)]

Sll = [(3;1)2):‘13 512 = [2)1:3))'}3 513 = [(1:2:3)1-]

And the X mstrix for this case is:

/

o}

A

o o o >

o ©

o O O

Y

»

c o > © Q

o]

0

o]

0

[=] 0\.3:

(=]

o 0
Ha ¢
o 0
0 ug
c o
o 0
0 0
o 0
o 0
o 0
0 o0
(OB §
0 ¢

o ¢ ¢ 0 O 0

¢ 0 0 0 0 0

o o 0 0 0 0

c 0 0o 0 0 o©

0 0 0 0 u O

0 0 0 0 o0

o o ¢ 0 0 Ko f
0 .0 o} My 0 ¢

¢ 0 0 o0 Q0 ;.13
¢ 0 0 0) 0

o A c ¢ 0 0

o ¢ 0 o o 0

0o 0 9 0 0 0 J

where

k.2.12 Cese 5: Type IV (processor sharing - FCFS} Scheduling

A closed form solutiom for the steady stste probabllities.can be

found for this model when the scheduling policy at the CPJ 1s processor

sharing. In thie case, we use & derivation of a more genersl model dis-

cussed in [1].
CPU: Provessor shering
Service discipline is Type IV:

10D: FCFS

There are N job clesses end each class has cne job. The states of

. the queue sre denoted by

S = (xl, xa)

where x_ = (nsl’ n “""nsN)’ s = 1{10D), 2(CPU) and n,, is the number

82’

. of customers of cless r present In service center & (we note that the

state definition is different from esrler cases and oo, = 0 or 1). Let

n

n = Z N 5=1,2 be the total pumber of jobs present in statlon s, we
: n=1
then have n, + n_ = N.

1 2
The joint equilibrium state probability distribution has s product

form solution as follows!

Pr(s = (x),x,)] = K gl(xl)-ge(xg)

%}
' 1 ')
g,(x) =“1‘f=1(f) =t ()1
and : By
=nt 1
ge(xa) = n,' rf‘;rl(Er)DEr

~ The coefficlent K 1s the normalization factor which makes the prob-
abilities sum to one, and c¢an be ¢btained from:

- 172 -

k= Z g, (%)) gy(x,) =

for all
states S
1 1 1 ¥
~ n
- Z Z Z nytnyt ()%)ILL 1 (u—l) er
8,070 Ppy-10 Py, 0 =1 'r

The CPU and I0D utilizations can be found from the expression for

the steady state probabilities:

i

Uopy= 1 - Pr(cPU is 1dle] = 1 - Pr[n2=0]

] N
=1 -fx'l N! ﬁ —l—]
’ r=1 “r

bl

Uzop=* - Br[10D 1s 1dle] = 1 - Pr[n;=0]

Io

=1t (N

The expressions for K and the device utilizatlions lopk awkward but,
in faet, for the numericasl evalustions, they can be conveniently evaluated

with a program with recursive calls.

4.3 DpISCUSSION OF THE NUMERICAL RESULTS

The numerical results cbtained from the snalysis of the model are
best 1llustrated with a series of graphs. The objective 1s to do a ecm-
parative study of the behavior of the system under different loeds and
different structural sssumptions.

The jobs ecirculating in tﬁe cycle are ssgumed to be identieal pro-
gréms . We have tasken the WATFIV program and measured the fault rate
function fm under the LRU replacement rule. When m peges'are ailocatedl

to a job In the main memory, f determings the service rate of that job

- 173 -

at the CPU. Since the paging behavior of the WATFIV program is typicsl
of many programs we have messured, the numerical results should be rep-
resentetive for a large class of frequently used programs.

The size of the WATFIV program used here is 163 peges. The size of
the mein memory, M, is taken to be equal to this pumber. Therefore, only
one progrem cen be resident in the msin memory with sll its pages.

The service rate at the I0D is the same for all jobs. Unless speci-
fied, the IOD service disiributions are sssumed to be exponentisal.

The degree of muliiprogramming is denoted ty N. When N=2, the main
memory 1s divided into two perts. Each program hss o, i=1,2 peges and

ml+m2=M. The service rate &t the CPU for job i is equal to “i=fm i=,2.
i)

Referring to, say, Figure 4.4, the wemory allocsticn (ml,me) is specified
Ly a point on the x sxis which is ml(me) units from the right (left) ver-
tical exis.

In 8 similar way, when N=3, the memory Is divided into three parts;
namely, ml, m2 and m3 where m1+m2+m3=M. To represent a memory partition
(ml,ma,ma), We use baricentric ccordinstes. In this ccordinste system,
we have an equilateral triangle with'an altitude equal to M, the total
mein pemory size. Bach three wsy memory partitioning (ml,ma,ma) is
uniquely defined by a point inside this triangle. This point has vertical
distences zy, o, and m3 from the three sides {faces) of the triangle.

For a generail ¥ way ;emory partitioning, one needs 8 tetrshedron in
K-1 space to specifly & point.

The performance of the model can be affected by eny of the following
factors:

{8} memory allocation polictes

(b) degree of multiprogramming

- 17k -

(c) secheduling disciplines in IOD and CPJ
(a4} 1IoD (e.g., drum) speed
{e) assumption about progrem paging behsvior

(f) essumption atout IOD characteristics

I.3.1 Effect of Memory Allocation Policles on Deviee Utilizations

The way main memory is divided smong active jobs has a very suk-
stantial effect on CPU snd IOD utilization. Regardiess of the service
discipline, when memory is symmetrically divided into two parts (Figures
L.} and 4.5) or into three parts (Figure k.6), the CPU utilization is low.
Conversely, asymmetric memory allOcations_give rise to higher CPU utili-
zstion. In Table 4.2, the numericel values of device utilizatlons for a8
humter of different memory allocetion schemes are given. For instance,
for N=2, ml=81 and m2=82 (fairly symmetric allocation}, the CPU utilizetion
with Type I scheduling is 0.67. Under the ssme condition for the allo-
ecation ml=h0 and m2=123 {szymretric), the CPU utilization is 0.94. With
N=3, we get more interesting results by referring to Figufe 4.6a. In this
figure, which shows the CPU utilization with Type I scheduling, we ocbserve
that in the region in the middle of the trisngle, which corresponds to
memory partiticning of fairly equal sizes, the CHU utilization is much
lower then other regions.

In the ssme figure, consider s line parsllel to one of the sides of
the triasngle. The varistion of CPU utilization aslong this line corres-
ponds to the class of memory allocations where the space for one job is
fixed and the remsining space is divided between the other twe jobs in a
variable way, depending at which point along the line we stesnd. For in-

stence, consider » conceptusl line which is parailel to the base of a

- 175 -

triengle (Figure 4.6sm). Along this line, m, 1s fixed. When this line
lies on the top ¢f the tase line, m1=0, we get a CPU utilization graph
which is similar to Figure 4.4, As we move this line upward, i.e., im-

ereasing m,, we eventuelly reach & point where from then on the utili-

l)

zation remains fairly constant along the line, and hence, it is fairly

- independent of the way we allocate the remaining spece {ntt used by job

1) between jot 2 and 3 (ml > 102).

The bigh CPU utilization for asymmetric allocation is due to the
fact that in this scheme one job gets sufficient space at the expense of
leaving a little room for the other jobs. This jobt will execute for &
relatively long time without being interrupted by a page fsult. Con-
cersely, in a symmetric allocation, since all jobs ere running in & rel-
stively small area, the resulting frequent page faults csuse contention
in IOD, which in turn will lower the flow of the Jobs in the system.

The IO device {IOD) utilization with Type I schedﬁling has an in-
verse relationship with CPU utilization. The I0D utilizetion is the
highest when the maein memory is divided into equal parts. Short CPU
service times, due to symmetric sllocation of main memory, increases the
rate of the requests srriving at IOD and, therefore, keeps the device
busy most of the time. These are illustrated in Figures 4.4 and 4.5 for
N=2, and Figure 4.6e for N=3. Tetle 4.2 gives somwe of the numericsal

values .,

- 176 -

UTILIZATION

UTILIZATIEN

-
[=]

o
in

e
>

2
1Y

e
o

0.8

o8

0.4

0.2

CPJ AND IOD UTILI?PTIONS FOR 2 JOBS.

10D SPEED=1/4200

r - 7
o 1 TI,IT]
B —— —]
el NS R N VRS S -
Q S0 100 150
MEMBRY ALLRCATIGN: JO3 2 «k+ JE8 1
Fig. b.b
oPy AND TOD UTILIZATIONS FOR 2 JOBS. IOD SPFED=1/10000
ANNECE 5
-~ T,
;.. _. \"::I. I:II _:
N Ix g = .
: - B -"“_—_EP_U-'{.
C v... JODH
r . 1,11]
L b .]
| AT DR T -
] 50 100 150
MEMORY ALLBCATIEN: JOB 2 = J26 1
Flg. 4.5
- 177 -

ALTITUDE IS EQUAL T@ TBTAL MEMBRY SIZE'

ALTITUDE IS EGUAL T@ TOTAL MEMBRY SIZE

cPU UTILIZAT]EN FBR 3 JABS I BARICENTRIC CBERJ]NATES

7T

T

J

150 —

T

CPU: FCFS

79

-

100

o 3333333337

i P

Lil 3
" Ig;?é;’ 1 xlxlllll.‘:‘xlt‘
50 ’7 ¥33 11‘1‘1.‘1‘;‘1l
— 7 :;: LY
% 7 :13:33 lli"ll

. A Gt

% A,

O i owa89qye “0,7
JBR 1

TR0 UTILIZATIBN FBR 3 JUBS IN BARICENTRIC CRBRDINATES

1 1 T 1 I T T 1 1 T T T 1 4 T T =
150+ l: CPL: FCFS —_
i lll‘;f'}ia .

IP DEV. SFD.=1/4200

50—) 2 7

ol J@B 2 gf%%ﬁ?ﬁ \NJe8 3

% sac_angcn' y 1%
lll unoa" ﬂ 5
S AT R
Jeg 1

Fig. 4.6

- 178 -

(2)

()

h| Memory Alloacation CPU I0D
Utlz Utlz
ml m2 m3

2 Lo 123 - 0.94 0.10

2 . 60 103 - 0.76 0.10

i 2 81 82 - 0.67 0.66
- 103 60 - 0.76 0.4k
.2 123 Lo 0 0.94 0.10
| 3 30 32 101 0.62 0.68
b3 L1 4o 80 0.29 0.9k
3 53 54 56 0.07 0.99

3 32 5 56 0.28 0.95

3 20 81 56 0.38 d.8g

TABLE 4.2 Effect of Memory Allocstion Policies on CFU
and I0D Utiiizetion. Scheduling is Type I
and@ I0 Device Speed is 1/L4200.

L.3.2 Effect of Page Scheduling on Completion Rate

We next define the completion rate ss the number of jobs which csn
be pushed through the system in a unit of time. These jobs presumably
complete their execution and lesve the system. This definition is not
complete until we gpecify the resocurce requirements of the jobs entering
the system. In our next discuseion, we only take the total CPU aervice
requirement of each job into considerstion. A slight external modlfi-
cation must be given to our model to permit the conceptual entering and

- leaving of the jobs in and out of the system. This modivication 1s shown
in Figure 4.7. Here we sssume that, at each instance, the system can
accomncdate N jobs from N different classes. All jobs of class 1 have
the same sverage total CPU service requirement Ri’ 1=1,2,...N. On the

average, with each passage through the CPU, job i receives %— units of
i

- 179 -

e}

10D cru d

FIGURE 4.7 A Conceptual Modifivation of the Model to Permit the
Computation of Completicn Rates

- 180 -

service from this center where By is the CPU service rate. Each job cir-
culates in the cycle until its CPU service requirement is exhausted.
Then it will leave the system and it is imﬁediately repleced by 8 new
job from the same cimss. Thus, we aspume thet the system is heavily
loaded with 8ll classes of jobs. Let Ri be 8 rendom number which des-
cribes the total CPU service requirement of s job from eless 1. Let Ni
be the number of times job i must eyele through the system until it re-
celves all its CPU time. It can be shown {Appendix 4.5) that
B, =e[N]=ERI W =R oy -

Tet P; and ety qi+pi=l, i=1,2,..-N be the branch probabilities st
the departure point after the CPJ (Figure 4.7). With the probsbility Py
job i will return to the IOD queue via branch Ti and with probability q,
it will leave the system through path Egto be sutsequently replaced by an
identical job. We can see that the internsl structure of the model is
untoughed except with this scheme we sre not able to messure the rate jobs
fiow through psth ﬁ’which determine the rste the Jobs are leaving the
systewm .

We would like to estimate Py and gy for i=1,2,...N such that a job
from class 1 cycles ﬁi times on the average through path P before it
leaves the system through Eranch Q.

We note that random variable N, is geometrically distributed, i.e.,

i
k -
pr[N1=k] =Py -qy k0,1,2,...

Then:

2
E[Ni] pi.qi(l+2pi+3pi Feeaa) =

Py
a4

- 181 -

Using the method of moments, we reguire that:

2 1-q .
w3 e 2 -,
i 9
or
0. = 1
;= —
1—1711
or
q; = l-p; =
i i =
1+Riu1

Let Sy be the rate jobs from class 1 leave the system through branch
ﬁ’(Figure L.7). Define the completion rate of the system, denoted by C,

asi:

N
C= 5? c
Ji=1 i
whare
e, = wqy Z pls]

all states S
which job i is
under service in

CPU

In Figure 4.8, for N=2 and Type I scheduling, the completion rate C
for verious memory partitionings is shown. The total CPU service require-
ment of each job class is assumed to be exponentislly distributed with
means ﬁl and ﬁe, respectively. In this figure 1_?1=107 time units and from
top to bottom Ezsﬁl, ﬁ2=2ﬁ1 and §2=3ﬁl.

We can see thet for symmetric allocation, we get 8 lower completion
rate. This is mostly because of the low CPU utilization obtained from
symmetric partitioning. When §2 > ﬁl’ the completion rate curves do not
entirely follow the pattern of the CPU utilizetion curves. There are two

advantages if we let jor 1, with its shorter total execution time, get s

- 182 -

COMPLETICON RATE < FOR 2 JOB CLASSES
1 1 I

= 10" Wy

| SRR R

S0 100 130
MEMORY ALLOCATION JOB 2—>|<~JOB 1

Fig. 4.8

AVERAGE CPU QUEUEING TIME FOR 2 JOUBS

o 'Of;For Job 1
++2 0PV Gervice Time bl PR
,*7 For Job 2 ‘0.

i 1 1

CPFU Bervice Timd

k.

50 100 150
MEMORY ALLOCATION JOB 2 —>|<—JOB 1
Fig. 4,9

- 1B3 -

0D SPD.=1/L200
TYPE I SCHEDULING

a larger share of the main memory. First, we will have an ssymmetric
memory allocation which causes wore efficient use of CPU; second, the
jobs with shorter totsl execution times can finilsh faster and leave the
system without being delayed behind the jobs with longer CFU service
demand .

In all completion rate curves, we can see thet a minimum 1s obtained
in ssymmetriec memory partitioning m1=62 snd m2=10l. There are two reasons
for this. First, this pertitioning is close enough to a regicn where CHJ
utilizetion is low (see Figure 4.4). Becond, with this uneven parti-
tioning, class 2 jobs with their longer execution times receive most of
the CPU service and, hence, reduce the total completion rate.

In our formulstion of the completicn rate, 1f we let ﬁi approach
infinity for all i, then C will tend to zerc. In this cese, we can only
talk about the rate the jobs progress towerd their completion at infinity.
This brings up the notion of the progress rate which indicates the rate
jobs are receiving CPU service. This quantity, sveraged over all the

jobs present in the system, is equsal to the CPU utilizetion.

4.3.3 Effect of Page Scheduling cn Queueing Times

Efficiency measured as resource utilizstion is not the only concern
in the perrormanée of a ccmputer system. There are other equslly impor-
tant factors which should be taken into account. Going back te the
original model, we can study the waiting time of the jobs at each center.
The significance of this study arlses from the goal of most operating
systems to sllow sll programs to advance in the system at & reasonable
pace. We want to avoid the situations where the execution of one job Is

greatly delayed in favor of giving faster service to other programs.
- 184 -

We have two terms which are relsted to the waiting time of jobs at Memory Ave. queueing Ave CHU service|
’ 1locat'n CHRJ time of (wisw2)/2 time of
each center. When a job arrives at a center, its gueueing time in that Utlz. Job 1 job 2 ' Job T Job 2
. m, m,
1 2 Wl W2
center 1s measured as the time it spends in the queue before it starts -
ko 123 0.87 65807 1 3290k 118 Théat
to receive service. For all jobe in the cycle, the average of the mean b5 118 087 65608 2 32905 1h7 Thé26
queveing time at a center is defined to be the aversge queueing time st 50 113 0.81 28270 b 14137 194 | 50000
that center. 55 108 0.61 12522 9 6265 | 309 | 20161
6 103 0.51 6370 3k Jeo2 | 607 13793
For N=2 with Type I {end Type II), scheduling the sversge queueing 65 98 0.41 3645 165 1905 | 1371 B66S
time at the CPJ sre shown in Figure 4.9. In the same figure, the dotted o 93 0.ko 2737 486 1621 ehé2 7037
lines give the a rvice time values f h job under 4t 8 ©.38 1730 796 1263 | 32bT | sSe69
e e e average service e values for eac ot un b i
ge 5 er erent 80 83 0.37 1310 7k 1242] 4065 bhos
main memory Space. We can see that » symmetric memory allocation results 85 i:) 0.38 o84 1538 1261 | 4766 3786

in lower average queueing times. This is partly becasuse with this memory TABLE 4.3 Average Queueing Times at CPU. Scheduling is

configuration, CUP is not heavily used and, therefore, when a job arrives Type I and Drum Speed = 0.0001
there, it is mcre likely thet it finds an empty gueue. For Type I,

scheduling the queueing time curves follow the pattern of CPU utilization 5
Another quentity which is also relsted to relative waiting times is

curves, i.e., low values for symmeiric and nearly symmeteric sllocations :
is the dilation time of a job. It is the emount of time a job waits at

and high values for asymmetric pertitioning. In the next section, we)
) a center relative to its processing time in that center. Therefore, the

will see that by introducing a suitable priority scheduling discipline .
high job dilation time at a center indicates the situation where a job

we can meintain high CPU utilization end, meanwhile, keep the aversge s
is walting a long time to get a relatively short service from that center.

ueueing times low. Table 4.3 gives the queueing time of esch job and
q & 4 & sach This csn be undesirable if the goel is to keep down the waiting time of

the average gueueing time at the CPU for N=2 gnd T I scheduling.’
’ B q 8 ybe selieduiling the jobs with short service requirements. It can also be a deliberate
penalty which is imposed on a 3cb 1f the overhead of switching jobs is
nigh.

The harmonic average dilation time, Ds’ at each center s, reflects

the contribution from all jobs in that center and is equal %o

D = - . In Figuare 4.10a 2nd 4.10b, the reciprocel of Ds’

B ¥ i
1=1 /s,i

- 185 - - 186 -

ALTITUDE 1S EGUAL T8 TBTAL MEMORY SIZE

ALTITUDE 15 EQUAL TP TOTAL MEMBRY SIZE

CPU: RECIPRECAL BF HARM@MIC AVE DILATIBN TIMES

150

100

50

T

IEh FCFS

T g T T l T T
CFLE FCFE —{
5 =

5
S
R) ?f?;fgfa?fﬁi w3

I - :ssmlﬁs?’;’) : (a)

LLEE

5
B 7 7?7777777;;;7 -

- 7 sreps 7 a8]
T ‘%%ﬁ]’rn%un“:} 55:}5?]

:ﬁj}’
%{ ;{:_-“sf 12 DEV. €PO.-1719000
s

2,

X ! ?%;7”::?
i S, 77

7
L% AT AT A3 B A S551

A543 k]

150

100

50

JéB i

IBD: RECIPRBCAL BF HARMBNIC AVE DILATIBN TIMES

(b)

- 181 -

i.e., D;l = lst, which has real values between © and 1, for ¥=3 and Type
I scheduling, eand for s=CPU and IOD are shown. The high values of D;l
ig indicative of low dilstion times. We note that since we sre dealing
with the reciprocal of harmonic averages, the contribution from each
term is between O and 1/3 for N = 3.

For symmetric allocations (regions around the center of the tri-
angle in Figure l'¥.103), 8ll jobs spend very little extra time in CFU
over their execution time [D;l > 0.9]. With extremely asymmetric allo-
caticn, i.e., in the areas around the vertices.in the figure, the job
with the largest share of the memory causes & long delay in the execu-
tion of the other two jobs.

In the remsining areas, we cen see the pattern according to which
_D;l chenges for other slloecations. 4 descriptive picture of the relstion
between the dilation time and the utilization at CPU can bte obtalned by
comparing Figure 4.11la with Figure 4.10a.

In Figure 4.10b, the reciprocal of the harmonic everage dilstiom
times in IOD, D;.OD’ is shown for different wain memory configurations.
Since the service time at this center is the ssme for sll jobs, the
variation of DJ_:éD reflects the relative wai’-cing times under various
smounts of traffic which arrive at this center. Comparing Figures 4.10b
with 4.11b (I0D utilization plot), we can see the relationship between
the utilization and dilation times at IOD. The congested IO device
[UIOD > 0.9] gives rise to low D-l which Indicates high dilations times.

I0D

b3k Effect of Degree of Multiprogramming on the Performance of
the Nodel

In a general multiprogremming system, it has been observed that due

- 188 -

to the different I0 sctivity in the system the CPU utilizastion reaches

a maximum value for an optimal degree of multiprogramming. In our model,

however, the only IO activity is generated by the paging demands of the memory
sllocation TOD spd.=1/4200 { I0D spd.=1/10000
programs. Therefore, by changing the degree of multiprogramming, we are
N my m, m. CPU 10D chu 10D
going to investigate the effect of the number of active Jjobs whieh inter- 2 3 utlez. utlz. utlz. utlz.
vene with easch other's execution behavior by occupying a part of the 1 163 - - 1.0 0.0 1.0 0.0
COMMON MEMOTY . 2 102 6L - 0.73 0.hg 04T C.75
In Table 4.4, the CPU snd IOD utilization for N=1, 2 and 3 progrems 2 81 &2 - 0.67 0.66 0.37 0.89
are given. For each value of N grester than one, we have multiple allo- 3 56 53 5k : 0.07 ©.53 0.03 0.99
3 02 11 50 1 0.63 0.66 0.36 c.89
ilities. ha 1 . :
cetion poseibilities. When we have symmeiric allocation, the CPU utili 3 100 20 b1 0.63 0.66 0.36 0.89
zation with B=2 is equal to 0.67, and with ¥=3 is equal to 0.07. Corres- 3 102 29 32 0.63 Q.66 0.36 0.89
pondingly, the IOD utilization is 0.66 for Ne2 snd 0.99 with N=3. fhere- 3 p102 ko 20 0.63 0.66 0.36 0.89
' 3 1wz s0 11 0.63 0.66 0.36 0.89
fore, when N=3, we have very high paging sctivity apd we are faced with
a thrashing problem. TABIE b.4 CPJ and IOD Utilization for Different Degree
of Multiprogramming and IO Device Speed.
Another compariscn point is the case when we fix, say, o, and allo- Scheduling is Type I.

cate the remsining memory for one or two jobs. We notice that when o,
is large enough, the CFU utilizetion is less sensitive to the degree of
miltiprogramming. For instance, with ml=102 and N=2, the CPU utilization
is 0.73, and for the same value for m, but with N=3, the CPU utilization
is 0.63. Moreover, for the latter case the way we allocate the space for
the second and third job does not have a substantial effect on the CPU
utilizaticn.

The resuit we quoied here were from Type I scheduling. In the next

gection, we investigate the subject of job echeduling at CFU, which brings

up &4 number of interesting issues.

- 189 - - 190 -

L.3.5 Bffect of Device Scheduling on CPU and IOD Utilizetion

Another aspect of our study is related to the effect of various
scheduling disciplines on the performance of the model. At the CPU, we
consider FCFS, preemptive priority snd processor sharing scheduling.

In IOD, we also allcow a priority discipline tesides the ususl FCFS
policy.

In Figures 4.4 and 4.5, the CPU and IOD wtilization is plotted for
Type I [CPU: FCFS IOD: FCFS) and Type II [CPU: preemptive priority with
PRIO (job 2) » PRIO (job 1), IOD: FCFS] scheduling disciplines. With
the Type I policy, the CPU and IOD utilization curves sre symmetrie with
respect to the equal memory partition point (i.e., ml=m2dﬁ/2). When
Type II scheduling is in effect, the left half of the plots indicates the
region where the job with the higher fault rate (i.e., with shorter CHJ
execution bursts) has preemptive priority over the cther job at the CPU.
Convefsely, the right half of the ssme figures indicate the region where
the job with the lower fsult rate (i.e., with longer CPU execution bursts)
nas g higher preemptive priority over the other jok. In the former case,
the CPU utilizetion with Type II scheduling is lower (about 10% with the
slow I0D} than the CPU utilization of the corresponding memory parti-
tioning using Type I scheduling. The CPJ utilization of Type I and IT
scheduling are feirly equal in the right hand side of the plot.

I0D utilization with N=2 and Type I and IT scheduling are slso
shown in Figures 4.b and 4.5, with dotted lines. We get s very high IOD
utilization when the job with the highest fault rate has & higher CHJ
priority then the other jot. This is becasuse the higher priority jok
with its short CFJ service requests will reach the IOD without being
blocked by the other job. The frequent visits by this job to the IOD
will increase the utilization of this center.

- 190A -

The IOD utilization curve with Type II scheduling will lie on the
top of the I0D utilization curve with Type I scheduling when the job
with longer CPU execution bursts hes 8 higher CPU priority over the
other job (memory allocation reglons corresponding to the right half
of the plots).

With the degree of multiprogremming equal to 3, the CFU utilizations
are shown in Figures 4%.11a and 4.128 for Type I and Type IL scheduling,
respeciively.

In Figure 4.12a, ve cen dis£inguish‘three important regions.

- Region (1) arcund the upper vertex of the triangle where job 1
with the longest average CPU service time has the least pricrity
at the CHU.

- Region (2) around the right hend vertex where the job with the
largest sversge CPU service time, nemely, job 2, bas less pri-
ority than job 3 and higher priority than job 1.

- Region (3} around the left vertex where job 3 with the longest
CPU service time hes the highest CFU priority.

Among these three regions, the lowest CPU utilization is cbtained
in Reglen 1 &nd the highest is obtalned in Region 3. This implies that
with priority discipline at the CFJ, it is better, in terms of CPUJ utili-
zation, that the least priority be given to the jobs with short CPU
services, i.e., IO bound jobs. This seems to contradict the widely
accepted stetement thst the best way to schedule 3 CFU is to give higher
CPU priority to s jot which will compute for the shortest time before
issuing an IO request [12]. An explspetion for this is as follows: in
our model, when we uee priority scheduling et the CFU and a FCFS policy
at the IOD, the job flow of the system is mostly governed by the frequency

- 191 -

that the higher CPU pricrity jobs issue thelr IO requests. Therefore,
when higher CPU priority is given to the job which has the shortest CFU
execution intervels (IO bound ijoks} a contention of IO requests takes
place. This, in turn, increases the likelihoed that the CPU remsins
idle. Therefore, the only way to increase the CPU utilizstion in this
case is 1o prevent the I0OD contention by providing multiple I0 paths or
increasing the IO processing speed.

Referring to Figure 4.12a, we can see that for fairly belenced
memory @llocation the scheduling does not have significant effect on the
efficiency of CPU.

For N=3 in Figures 4.11s sné 4.12s, we csn compsre the effect of
priority scheduling and s FCFS policy on the utilization of the CPU. The
result of the comparison is basically the same as the earlier case with
N=2. Specificelly, when higher CPU priority i= given to the job with the
longest averasge CPU service time (Region 3 in Figure 4.12a), the utili-
zation is the sasme m% in the FCFS case (the region sround the lower left
vertex in Figure 4.11s). In the other regions, the priority scheme does
slightly worse.

The TOD utilization for N=3, Type I and Type II scheduling is shown
in Figures 4%.11b and 4.12b, respectively. In both cases the ICD serviece
policy 1s FCFS. 4s before, the utilization plot iz given for each point
corresponding to a8 memory partitioning. With Type II scheduling (Figure
4,12b), IOD is utilized heevily (more then 90F of the time)} im most reg-
ions, except when the highest priority is given to & job which issues the
lesst amount of IOQ requests.

From our easrlier discussion, we concluded that we get a better CPU
utilization if we give the highest priority to the jobs which are CPJ

- 192 -

tound. In sctusl systems this is not a desirsbtle priority sssigoment =nd
usually the jobs which reguire short CPU service are given s higher pri-
ority. Moreover, with optimel CFU priority assignment, IOD utilization
is very low which is an indication that jobs IO and processing demsnd are
not talanced. The Type L[II scheduling policy is used to balance the pro-
cessing and I0 load, ané increase the CPU utilizstion when the short jobs
have higher priority. In this scheme jobs in I0OD are serviced according
to a priority ordering which is the reverse of esch job's priority order-
ing st the CPU. Preemption is not sllowed st the 1I0D. Therefore, with
Type IIT scheduling, st the CPU we have PRIC{Job 1) < PRIO{job 2) < PRIO
{Jjob 3) end at the IOD we have PRIO{job 1} > PRIO(jot 2) > PRIO(job 3).

The CPU snd ICD utilizations with Type III scheduling are shown in
Figures 4.13s and U4.13t, respectively. We immedistely notice that in
almost all the sllecation regions We obtaein high IOD utilizetion. The
highest CPU utilization is observed in Region 1, Figure 4.13a, where the
job with least I0 activity has the lowest CPU priority. fThis is, of course,
in contract to Type II scheduling where in the ssme region we get the

lowest CPﬁ efficiency.

The iow CPU utilization eres (less then 10%) with Type III scheduling
{Figure 4.138) is lerger then the similar sres with Type I (Figure U4.lls),
end Type II (FJ.'.gure 4.128) scheduling. In Figure 4.13a, this region is
extended toward the lower left corner of the trisngle (Region 3). The
fluctusticn of the CPUJ utilization as we spproach the left vertex of the

trisngle is due to the mutual effect of the flat CPU service rate function

193

CPU UTILIZATION FBR 3 JOBS IN BARICENTRIC CEBRUINATES

CPY UTILIZATION FBR 3 JOBS IN BARICENTRIC CPOROINATES

T3

16 DEV. SPC.-L/10G00

1 P
w o T g
" Pl e g BN
i e]
an B e o i g P T i,
a m 11.!.1.!.1]-1.. e
L e e ety aiaancbe
P i T
o oD AT P
n m P in et Pl
nom" o e
"3 1_1- e Tt e
o D . T
Gl e) T M
n o, e T S e
w nl o e S
n o g e g
0 P g iy o g
n 0 (e -
H A

3ZIS AHOWIW TVIGL 21 TVND3 SI 30NLILTY

12 DEV. 5PD.=1/10000

3Z1IS AUPEWIW YL@l @L 1¥NO3 SI 3anLILTv

e g e 08
ot ot o
s o aln
falt gt it
b gl [
et gl
et b ' Nl“l " li”]”.....l..l“
G (] ey e T T T T e -
o b T AT »
oo - S i i i) P
e, [el m
n - el g el
N, = it) —J—G:: ﬁ
Ml T g i el
n rn i I e
- (] [t Ly
W Lt L
’m, an o™
a L) L Lank N
[4]] T, O L
o, I LG e
PN ol
- jos] roe™ e B
Gl
=2 i
L - r 3
]
!
- nnnﬂ
aZafal
[e e e
Po%aa
o Sa 2]
* G
1 i1 i j | i 1 1 1] L I 1
o a n
— 4

Jes 1

100 UTILIZATION FBR 3 JOBS IN BARICENTRIC CBBROINATES

180D UTILIZATION FBR 3 JZBS IN BARICENTRIC CEBROINATES

LCPil: PRE-EMPTIVE (D0l —]

1 ®

Utilization>0.95

321 AMGW3W TY1R1 @1 TvNo3 SI AoMLILTY

i a1

1]]

_
=]
=}
—

3715 ANOWIW W1BL BL No3 ST 300LILY

Jég 1

Jes 1

Fig. L.12

Fig. 4.11

-]_95_

-96{ -

£1f 914

- L6t -

1900

ALTIIUOE 15 EQUAL T@ TBTAL MEMERY SIZE

ALTITUOE 15 EGUAL TB TETAL HEMURY SIZE

ALTITUBE IS EGUAL T TATAL MEM@RY SIZE

T T 1] 13

(=)

o

(m]
I

1E)+2)~(D A LTH@IMd 03]

T L T T

[— IDe@IE) BAILAE-TUD N

CPY UTILIZATIEN FER 3 Juds IN BARICENTRIC COBRDINATES

7T

T l ™T
P FOFS

150

i 108 2 barerrrzararrarery
100 L é’_‘ﬁ’a’n AR
) k)

EAFERT)

”ij‘JJJJ‘J}}‘: :}J;' El:-‘!
kxrEEEECEEETF iy
3 ELILELL ;’ %é

RN

é’gf LA
g

% E
,!] 11 f

(4]
=]

T

(a}

CPU UTILIZATION FOR 3 JuBS IN BARICENTRIC CAOROINATES

150 — I CPAh PRE-EHSTIVE [Hei2=0) —
: 18 OV, SFOL=L4200
100 — B3
r BTN
o5 e]
L f |'l'l‘|llxl=ll ’,
o k] 1L
s0- AR
- t t ’.-%’ WY
i % Sl
"
ﬂ‘ "
Jea

Fig. b.1h

™

(v)

SILVNICHPED JMINIZIHYE NI SE2[£ ¥8d NRILVZINILN 0al

ALTITUOE IS EQUAL TO TETAL MEMERY STZE

ATITUDE 15 EQUAL T# TATAL MEMERY SIZE

T a@gr

ALTITUDE IS EQUAL T@ TBTAL HEMZRY SIZE

H I(l(!

L]
- N ~
“ o~
i~
m -~ -]
"m -
m o~
Fri 0™}
E_0
a9 ‘f;’z
] /}
w N
W g -
a3 B O£
s § oS 4
3 8
g% 3%
. 5 -
[
s 3]
J o -
2 F o8
8 g 5
E
11t | L
CPU UTILIZATION FOR 3 JPES IN BARICENTRIC COBRDINATES
e I AR B AL BALLE
150 — £roch U PRESTTVE (BBl

100

50

Cfu

150

100

S0

UTILIZATIEN FOR 3 J2BS IN BARICENTRIC CRURCINATES

™71 T T3

Omy PRRCESSEA DRI =

FYPFFIFIIITIINRY
ﬂl!lllllll!llll LA

0

CPJ ubilization with four types of scheduling
T0D speed=1/4200

(d)

SULVNIONBBD JIYINSIINYE NI S8BL £ ¥@d NRILVZITLN N&d

- 66T -

96-[

ALTITUDE 1S EGUAL T8 T@TAL MEMBRY SIZE

ALTITUOE IS EDUAL T@ THTAL HEMBRY SIZE

ALTITUOE [5 EQUAL TS T@TAL MEMORY SIZE

ALTTTUGE 15 EQUAL T8 TATAL NEMPRY SLZE

160 UTILIZATIAN FOR 3 J88S IN BARICEMTRIC COORDINATES

150 :_ I m FCrs
I ek FOFS]
: ™ oRv. $PE-VE0D
L % AAP203 033805 1
Wwop Jem2 %ﬁ%ﬁ% -

a
-

79,10838738805
SRR

1(a)

18U UTILIZATIBN FBR 3 JBIS IIi BARICENTRIC C2BHOINATES

150 [— wmmm' ettt —
w00 Jes2 |3 g
i 1 (®) g
i : 5
- o -t
s . 3
4 B
]
]
5 2
Fig. 4.15 I0D utilization with four
I0D speed=1/4200
CPU UTILIZATIBN FER 3 J2BS IN BAR[CENTI;IC CHIROINATES
150 !]
| 1]
e in
100] g
L] =
] (ad 2
! e
5 - el : 'I T 13 % - é‘
or- - @r - ‘»
D, S A]
; N U A\ g
. ”\&"’3} ’g}’ 1 4
o B,) | Th Phesssdndaly | |
Jug 1
CPU UTILIZATION FBR 3 Ju8s IN BARICENTRIC CRBROINATES
1 L) T 1 [T T T t T T T T T]
150 — CPur PRE-EHTIVE G-l —
r 00k FLES T]
4 4 ,’ 1R DEY. SPD.-LAG0M i @
AR 1 g
ok JE8 2 femwavivaiayJER 3
() 5
o
" :
]

Jea i

ALTITUOE IS EGUAL T8 TETAL MEMBRY SITE

150

100

150

100

G

UTILIZATIEN FBR 3 JBES IN BARICENTRIC CWZROINATES

,.IIIII'I‘IIIIIII

UTILIZATIEN FOR 3 J2OS IN BARICEMTRIC CRRRDINATES

""I'Il. Tr—r—T"7T T T ¥

- PR FRELERSER SLGDN)
W FOFE

oy, $P-LATE

L e 2 Jes3 —
! 4 @)

UTILIZATIIN - .08

= s B 4
2

-...'l.-.';[....l..;

Jen i

types of scheduling

CPU UTRIZATIBN FER 3 JOBS IN BARICENTRIC CRARDINATES

180 —

100 Jos 2

SO0

v T3

O PRE-EHPTIVE {Deid- Ul)

IO FRIBITY Uit

ITTPIIRFIFIIIIL.
sasassarnansmnay

A

LEREERTEREEEELLELRFIE)

1te)

et

s
IR L R e RN

S

CPU UTILIZATION FGR 3 JBS IN BARICEMTRIC CABROINATES

150

100

50

Fig. 4.16 CPU utilization with four types of

IO0D speed=1/10000

T T T T T T

scheduling -

14U UTILIZATION FOR T JOBS IN BARICENTRIC CBORDINATES

180 UTHLIZATION F2R 3)PES JN BARICENTRIC CRARDINATES

Joe 1

3715 AEWEM TWEOL AL TYNO3 ST FONLLUN

=
A B e P
.ZEE 4
re 3 1 o h
sRA N .
[t 8 & = I
‘!EH b
[¢]
S —
3 “ j
i s]
o :
L o
L -] <
|
A I S RV
g 8§ 8 °

SZIS AMBHIK TVLGL @4 W03 SI 30NLLLY

- 200 -

180 UTILIZATIEN F@R 3 JBBS IN BARICENTRIC CRGROINATES

100 UTILIZATIEN FIR 3 JOBS IN BARICENTRIC CRORDINATES

Ci PRECESEIN ShARINE

B FOFR
W Y. EPOLA0000
Jge 3

ILIZATIBN » 0.90

Jj@as 2

JZIS LM TYLEL B VRO €] ICNLLNW

CPAl PAE-EMPTTVE 1212y]

SRIS AHOHIW WLIBL 9L WNO3 ST 3ONLLLTY

Jeal

JBB i

1/10000

TOD utilization with four types of scheduling

.17
JOD speed

Fig.

of jot 3 for very large memory space m Bné the sharply and unevenly de-
creasing service rate of the other two jobs for very small jfslues of m.

Processor sharing is the laest type of scheduling which we shall con-
sider here. 1In this scheme, the CPU is shared among all jobs present in
the center. We, therefore, expect that the flow of the jobs in CPU should
become smoother so thet no job cen temporarily block the execution of any
other job.

In order to simplify the visual comparison of the effect of scheduling
on the device utilization in the model, we have srrsnged the CPU and IOD
utilization plots for all four types of scheduling in Figures 4.14 to k.17.
In Figures b4.16 snd %.17, a slower IO device is used.

When processor shering scheduling is used at the CPU, the IOD utili-
zation is high for all regions, as We cen see in Figures 4.15d snd 4.17d.
The CPU utilization psttern in this case is symmetric with respect to the
center of the triesngle (Figures 4.144d and %.16d). When compared to Type I
scheduling, we get about 10% to 20f less CPUJ utilizetion with Type IV

scheduling in the corresponding regions.

L.3.6 Effect of Device Scheduling on Queueing Times

Earlier we discussed the effect of memory alloecstion policies on the
gqueueing time of the Jt;bs at the CPU. In thet discussion, we used Type I
scheduling snd showed that the gqueueing time curves follow the pattern
of CFU utilizetion curves with respeect to different allocations, and we
used Figure 4.9 to demonstrate this point. In the same figure, we have
also shown the average Jot queueing time ot the CFU for two jobs snd Type
II scheduling {dotted curVe). The essence of the effect of priority

scheduling of the queueing times cen bte seen in this plot. We recail that

- 201 -

with Type II scheduling, job 2 hes higher preemptilve priority thaln Job 1
at the CPU. Referring to the figure we can see that as the CHUJ service
time of job 2 decreawes, the total average queuelng time at the CPU de-
creases accordingly. This curve goes even lower thsn the sinimum average
queueing time obtsined from Type I scheduling with symmetric allocation.

As the CTU service time of the higher priority job Incresses, the
right half of the figure, the aversge gueueing time under Type II schedu-
ling, approsches the curve of Type I scheduling.

Thus, When the total performance of the system js considered, we
have seen that when s higher pricrity is given to the short jobs the
average queueling times decrease significantly at the cost of moderate deg-
radetion of CPU efficiency. As We can see in Table 4.5, for N=2 jobs,
this degradation is fairly small compared with CPU utilizetion under Type
I scheduling.

In Figure 4.18, the réciprocal of the harmonic average dilation time
at the CPU and IOD for N=3, and Type II and III scheduling, 1s shown. As
before, the high values “or D;l, s=CPU or IOD, indicate the low dilation
times . We note thet when we go from Type II tec Type III scheduling, the

mejor change at the CPU is tasically the enlargement of the areas with
| lower dilation times.

When we use Type ITI scheduling, the interpretation of the waiting
times at the I0D kecomes rather interesting. For instance, when job 3,
which has the highest preemptive priority at the CPU, hes the longest
service time in thet certer, it becomes the only job which does not ex-

perience any queueing delay at the IOD, in spite of the fact that it hss

the least priority in this center (Figure 4.184, around lower left vertex).

This is because this job blocks the other Jjobs at the CPU end when it

- 202 -

CPu1 RECIPRECAL BF HARMANIC AVE DILAYIBN TIMES

CPuy RECIPRABCAL EF HARMBNIC AVE DILATIEN TIMES

SIS MEH3W VL9191 WNo3 8 JORLIL'W

—
[+
3
———— T
i {
a g
L]
r &
o « =~ 3
L Pog B3 s;‘\\
[& B T %".‘;‘
| ¥ E s %ﬁ'\“&%\
r B ;\\\\\l\
! M ;
L o e z
e ok =
L ™ Fe
L @ i
L e
L o
| ST R R,
= o a
5] S ® °

3Z[S \U3W3W TYiS1 01 O3 51 JONLILY

- 203 -

180: RECIPRBCAL @F HARMBNIC AVE DILATIDN TIMES

$215 AMBHIW 1L 4L WNo3 SE AUV

1001 RECIPREBCAL BF HARMUNIC AVE DILATIBN TIMES

588 1

3205 AMAWEH TVIEL FL T3 SEAGULIITV

Fig. 4.18 BReciprocel of average harmonic dilation times

in CPU and I0D with type II and III scheduling

lesves that center it will most probebtly find en empty IOD

In the following two sections, we shall investigate the effect of

the speed and the service mechsnism at the IOD on the performance of the

system.
CRU 10D Average CFU
utilization utilization queueing time
ml 1112 T
I I I II I II
113 50 | ©.75 0.65 0.1] 0.98 14136 384
112 51 0.71 0.61 0.46 0.98 11657 361
111 52 Q.67 0.57 0.51 0.98 9505 340
110 53 0.63 0.54 0.56 0.98 T710 318
109 sb 0.61 0.51 ¢.59 0.98 &7k2 316
108 55 0.58 0.50 0.61 0.98 6265 348
107 56 0.58 0.hg 0.62 0.98 5959 383
106 57 0.57 0.49 0.63 0.97 5690 118
105 58 0.54 0.46 0.67 0.97 L8k 4o
10h 59 0.5L 0.43 0.7 .97 Lo1a L34
103 60 0.b6 0.%0 0.75 Q.97 3202 Lol
102 61 0.46 0.ko 0.76 0.96 3013 524
101 62 ok 0.39 0.78 0.96 2679 587
100 63 0.41 0.37 0.81 0.95 2222 611
g9 6k 0.Lo 0.37 0.82 0.95 2075 676
98 65 0.39{ 0.37 0.83 0.94 1905 Thl
97 66 ©.39 0.37 0.84 0.9k 1784 832
96 67 0.39 0.37 0.85 0.93 1760 93k
95 68| 0.39 | 0.37 0.85 | 0.93 1672 997
ol &9 0.39 0.38 0.85 0.92 1654 1109
93 70 0.39 .38 0.86 0.91 1621 1203
TABIE 4.5 CPU, IOD Utilizstions and Average Queueing

Time, Type I and Type II Schedulings.

-~ 204 -

L. 37 Effect of I0 Deviee Speeé on the Performsnce of the Model

For the numerical evaluation, we have considered two different I0D
gpeeds. There is a slow IO device with the sverage speed of 1/10000 and
a relatively faster device with an average speed of l/hEOO. The service
times at the IOD sre, therefore, exponentislly distrituted with the rste
equal to the average speed of the IO unit used. The speed of the faster
device is taken to be almost equel to the fault rate of the WATFIV pro-
gram model st m=M/2. In Teble 4.6, the ICD end CPU utilization for N=2

end two different IO device speeds are shouwn (also Figures 4.4 and L.5).

Hemor-y allocation CPU utilization JOD utilization
m m, 1/kz00 t 1/10000] 1/k200 | 1/10000
30 133 .ok 0.87 0.10 0.23
35 128 .94 0.87 0.10 0.23
Lo 123 0.9h 0.87 0.10 0.23
45 118 0.94 0.87 0.10 0.23
50 113 0.92 0.81 0.15 0.32
55 108 0.81 Q.61 0.33 0.60
60 103 0.76 0.51 0.4k 0.71
&5 48 0.69 o.41 0.57 0.83
70 93 0.69 0.h0 0.6L 0.85
i) 88 0.67 0.38 0.66 0.88
80 83 0.67 0.38 0.66 0.88

TABLE 4.6 CPUJ and IOD Utilization for Two Different
I0 Device Speeds and Type I Scheduling.

Since both centers have FCFS service policy, the flow of IO regrests
arriving at the IOD is determined msinly by the job which has the longer

CPU service time. In this tatle, we cen see that as I0 requeats become

- 205 w

wmore frequent the speed of the paging device becomes more cruclsl in the
efficiency of the CPU. This point cen be seen by comparing the first
four ehtries of the table with the last three entries. The CPU utili-
zation improvement for the first four entries is only about ¥ using a
device which is 2.4 times faster. In the last three entries, this im-
provement is about 2G% .

As we reduce the speed of the I0 device, the requests stay longer in
this center and the utilization incresses correspondingly. For s low rate
of I0 requests, from the first four entries in Table 4.6 we get 13% in-
crease, and for the higher rate of IO requests we have 22% incresse from
the last three entries in the same table. Of course, ss we mentlioned be-

fore, the IC request traffic is related to the allocetion policy in CHU.

4.,3.8 Paging Drum Model

Sc far we hsve assumed that the service time of jobs at the IOD is
exponentially distributed. From our earlier discussion sbout the peglng
drum, ocne would question the validity of this assumption when a peging
drum is used. We will use & more reslistic drum model to see how sensi-

tive the results of our analysis sre to the detsziled behavior of the IO

device. .
In order to have a ressonable bassig for the comparison, we define
the rotational period so that the average service time at the psging drum
is equal to the ICD service time in the previous assumptions. The average
service time at the paging drum is equel tc the average rotatiomal latency
plus the transfer time cof one page. Therefore, if & is the number of sec-
tors and T is the rotstionel period, the average service time 1s equsl to
T/E + T/s- We can find T by equating this quantity to the speed of our,

say, slower disk.
- 206 -

w
ur
=
-
z
=1
[
s
]
]
g
o«
=
-4
ul
=1
=
<
]
Z
g
=
L)
3
]
w
2
<
~
=
=
=
=
=
<

CPU UTILIZATION FOR 3 JBBS-» SIMULATION RESULTS

]
SRR
-
o
’_—.!.E. =
%gﬁ hni-q»..
g L= hon
. B =3 oo
g ne R
ve o
wou Telt
-
&
— o
X a
=
- =
L
N |
Q Q =5
un o W
- L)
ZIS A43H TVLSL SL 1WNO3A S1 30NLILY
—
5 w
=
T T
. £
SN
2RR I
- s
BN B R
¢ +« 7
I v = b,
: & .

L X 2 I
WY A A AL
i PR

A

"” E S1JJ’, D’ "“, ’l" a

RIS AEZWIW TVLIOL B WNP3I SI I0NLLLW

150

100

18] Jan 1

- 207 -

1RO UTILIZATION FOR 3 JOBS N BARICENTRIC CRARDINATES

1RO UTILIZATION FAR 3 JBES <= SIMULATION RESULTS

=)
—
I AL SR AL M g
3
..ﬁg 4
FE 3))
— =
o —
IR '
H =
.EES J
L €
i i %]
. hy
P 4
A -]
K « 4
[}
- —~ B -
i 5 le
- -q.-'
— ']
o @
<]
- =
i VRO EPETEETE BT
o o (=] o
e 2 @
22IS AMIWIH TYLAL 9). TVAD3 §1 3oLV
i =
-
'I.,E‘.]v|ﬁ'|-r.|d
H - 1
gag
- & -
- m a
_Eu m 0
| £k] 47
zua L=
—'Eh 4
‘Ei
[;! N]
o s
A =1
[g 1=
— @
k] 2
. o - 3
|] w7
= .-.'
8 L
| we]
-3
A P W S { I
=] c o [=]
73] [=] (o]
= =

F245 JHZ4IM WLEL @1 1YND3I SI I0NLIEW

Comparison of the results from simulation with drum model
with the resutls of analysis with exponential IOD service

time asgumption.

Fig. 4.19

We use a simulation to find the device utilization of the model for
N=3 and Type III scheduling. When an I0C request arrives at the paging
drum, the rendom position of the Read/Write head and the sector number
of the requested page are found. Then the IOD service time is computed
ss the sum of the rotational lstency to tring the head io the beginning
of the sector and the trensfer time of one sector.

In Figure .19, we can see the results obtained from the simulation.
Figures 4.19s and 4.19% give the CPU and IOD utilizatioﬂ usiné a paging
drum. On the same psge, Figures %.19c and 4.19d give the ssme quentities
okbtained from the analysis of the model using the exponential service
time essumptione. Inspecting these figures, we notice the similerity of
the results obtained from the two spproaches. The CPJ end IOD utilization
are Lasicelly very close together in the corresponding areas.

In the next section, we validate the esrlier results by using z more

realistic program behavior model.

i.3.,9 Simulstion of the Mcdel Using Aectual Prograsm Troces

The service times of a job et the CPU is essentislly the time detween
two successlive I0 reguests (here, page faﬁlts). In cur snalysis, sco far,
we have sssumed that the interfault intervals are exponentially distributed
with a meen which is obtsined by messuring the sversge interfault periocds
in en actual program. ERarlier we saw that the sctuasl interfsult distri-
tution of the programs have generally s higher coefficient of variation
than one. To see how the analyticel results compsre with the reesulis ob-
tained when more reslistic program behavior 1s assumed, we perform s trace
driven simulation of the medel. The simulstion is driven by the sctual

page reference trace of the WATFIV progrsm. In this case, the ocecurrence

- 208 -

of a page fault is precisely determined by using & locazl LRU replacement
policy for esch sctive progrem. Since the LRU rule is used, it is more
convenient to work with the LRU distance trace of the progrems. The
assumption for service distribution at the IOD is still en exponentisl
distritution ss before.

The result of simulation for N=Z and Type I end I1 scheduliﬁg are
shown in Tebles 4.7a and 4.7t respectively. In the same tatles, the CFU
snd IOD utilizstions with exponential assumption on CPUJ service times are
shown. These points are plotted in Figures 4,20 and 4.21.

For toth types of scheduling, the results of simulation ere fairly
consistent with these predicted by the model. The maeximum discrepancy
occurs at symmetric sllocetion with Type I scheduling which is about o
for CPU utilization and lh% for I0D utilization.

In using the sctusl progrem traces in the simulation, one hard pro-
tlem was to use the identicasl copies of one program while keeping the be-
hevior of each program fairly independent from eech other. After some ex-
periments, 1t was decided to consider the trace of the program as & cyclic
string. One job was started executing from the begimning of the siring
and the other jot was started from some point far awsy. OSince the trace
of the program (WATFIV here) is very long, we could get feirly independent

tehavior from the jobs in the simulstion run.

- 209 -

UTILIZATIBN

UTILIZATION

0 CPYU AND IOD UTITIZATIONS FOR 2 JOBS
0 1 v T A .
L - 4
Y- -]
- @ ¢ Simulation e 1
[— Analysis et]
0.6 — __.-". - u"‘-..__ -_J
¢ a
- o o g i E
0.4 — . R]
X 8 3]
- N T0D ;]
o2 ® -
e k]
(WX} - S L 1 ‘] 1 2 |‘ i L 5 1 =
Q 50 100 1540

1o

0.8

0.4

Q.2

HEMBRY ALLOCATIEN: JBB 2 -~-- JEB 1

I0D SPD.=1/4%200

Fig. 4.20 Comparison of trace driven simulation with

analytical resulte.

Type I scheduling.

CFY AND TOD UTILIZATIONS FOR 2 JOBS

= T —r——r—7
- Y ']
L \c\\‘ h
L iom, - . 1
— o ™ -
: o]
| ® 0 Simulation N 1
P—— Analysis 3 -
L CPU s]
r i 3
r % 10D 9
— o —, —
[k 1 - o 1 Fi 1 H L | 1 e 1 i .‘—'l:
Q 50 100 150

MEMBRY ALLACATION: JAS 2 -+-- J@B 1

10D SPD.=1/10000

Fig. 4.21 Comparison of trace driven simulation with

analytical results. Type II scheduling.

- 210 -

CPU tilizaticn I0D Utilization
ml m2 program exp.- program exp.
(WATFIV) model | (WATFIV) | wmodel
123 4o 0.92 0.9b 0.09 0.10
113 50 0.89 0.94 0.1k 0.15
106 57 0.75 0.80 0.34 0.36
98 5 0.61 0.69 .50 Q.57
90 73 0.57 0.68 0.5% 0.64
82 81 0.58 0.67 Q.52 0.66
h <le] 0.59 0.68 .52 0.64
66 g7 0.61 0.68 0.50 0.59
63 100 0.64 0.71 0.46 0.52
58 105 0.7 0.80 0.33 0.37
51 12z 0.85 0.89 0.19 0.20
12z 0.92 0.94 0.09 0.10
TABIE L.Ta Disk Speed = 1/4200, Type I
Scheduling M
CHJ Utilizsticn TOD Utilization
my o, Program exp- program exp -
{WATFIV) model | (WATFIV) mode 1
122 b1 0.79 0.79 0.99 0.99
~1le 51 0.65 0.65 0.98 0.98
105 58 0.50 0.49 0.98 0.97
97 66 0.38 Q.37 0.9% -0.94
Bg T 0.38 0.37 0.87 0.91
81 82 0.39 0.37 0.80 0.88
T3 90 0.37 0.39 0.78 0.85
51 98 0.39 0.4p 0.73 0.79
57 106 0.54 0.59 0.55 0.61
50 113 0.77 0.81 0.29 0.32
ko 123 0.82 0.87 0.20 0.23
TABLE 4.7v Disk Speed = 1/10000.

Type II Scheduling [IOD: FCFS,
¢PU: (2) > (1}]

- 211 -

4 L CcONCLUSION

In this chapter, we studied a model for the interaction of a8 multi-
programmed CPUJ and its peging device. A closed cyclic queue was used to
investigate the effect of memory alloeation policies, scheduling disci-
plines, and the charscteristics of IC devices on the performance and the
flow of the jobs in the system. We have sllowed each Job to have its
owh independent service time at the CPU, which is détermined ty the size
of the common memory which is assigned to it. 'The peging behavior of
each program is obtzined by the measurements on the paging statistices of
en sctuasl progrsm. A trace driven simulation has been used to validate
the result of the snalysis when the exact paging behsvior of & program is
used,

Most of the results we have obtained in this cﬁapter, rather then
being strictly conclusive, demonstrate basically the fundsmental relstion-
ship between the decision policies and the performence measures, and the
tredeoffs involved. For instance, when short jobs are given higher CHFU
priority, the queueing time decreases significantly at the cost of slightly
lower CPU utilization compared with FCFS policy. The extent of many such
tradeoffe have been explored in this chapter by considering a large number
of possible memory allocation schemes and execution priority assignments.
In this regard, one of the m;jor problems is the presentstion of the re-
zults in 2 reedable formst. We were atle fo obtain fairly descriptive
1llustrations by using the btaricentric coordinates for the system with up
to three jobs.

Some of the mejor results which can be summarized are as follows.

We have seen that in this model when the page fault rate of the progrsms

are not the game, the CPU utilizstion lneresses. We obtsined the minimum

- 212 -

CPJ utilization with the symmetric allocation of the memory smong active
Jobs. BScheduling esn have significant effect on the rescurce utilizstion
and sverage waliting time at each center. When the jobs with shorter CPU
times are glven higher priority in that center, the contention at the 10
device can decresse CPU utilizstion and throughput. We can alleviate
this problem either by ineressing the availability of TO devices or re-
verse the pricrity of the jobs at the I0D. Processor sharing scheduling
gives siightly lower CPU utilization then FCFS policy. However, the 10
device is fully utilized with the latter scheduling st the CFJ. The sys-
tem completion rate increases if we allocate & larger share of the memory
to the jobs which have a shorter total CPU service requirement.

The simulation of the model showed that when we use fairly skewed
paging behavior the results are comparable to those predicted by the
queueing snalysis. Therefore, we expect that our results should be appli-

cable in more realistic environments.

- 213 -

4.5 APPENDIX (Generalized Wald's equation)

ith p.d.f. H(.) and sssum ER <m. Let
Let R be a random number w p.d.f. H(.) e E[R] b6 BIRLIOGRAPHY

U,, 1=1,2,... be i.i.d. random numbers which specify the time between

1)

. ‘ 1. BRaskett, F., Chandy, J.M., Muntz, R.R., "Open, closed and mixed
successive events in a renewal process. Assume the Ui's are exponentially

networks of queue with different classes of customers,”

distributed with the rate o. Let N{t) be a stochastic process which
JACM 22, 2 (April 1975}).

counts the number of renewals from time Q to t.

2. Chamberlin, D.D., Fuller, S.H., Liu, L.Y., "An snalysis of psge

Since the Ui‘a are exponentially distributed, N(t} 1s defined by a

allocation strategies for multiprogremming systems with vir-

Poisgon process, Wiere:

tusl memory," IBM J. of Res. Dev., {September 1973).

Pria(t) = n} = e % (&) .).

o Coffmsn, E.G., Ryan, T.A., "A study of storsge pertitioning using a

3 "n
We went to find the expected number of renewals during the random mathemetical model of locality,” CACM 15, 3 {March 1972).

time R 4. Denning, P.J., Spirn, J.R., "Dynsmic storage partitioning,” U4th
We have: Symposium on Opersting Systems Principle, ACM (1973).
foo) 5. Fuller, S.H., Baskett, F., "An analysis of drum storage units,"”
-at n
= = dH(t
Pr{N(R) = n} e .(.gf_)_ (t) JACM 22, 1 (January 1975).
o d
6. Gordon, W.J., Newell, G.F., "Closed queueing systems with exponential
Then
servers,” Oper. Res. 15 (1967}.
@ o -
_ ‘7. Koenigsberg, E., "Cyclie queues,” Oper. Res. Quart. 9,1 (1958).
E[N(R)]= Zn Pr{¥(R) = n} = ZnJA et _(gtl_)f aH{t) T ’ ’
n=0 n=0 o n. 8. MacEwen, G.H., "A preliminsry study of disk driven process scheduling,"
oo Tech. Rep. No. 33, Dept. of Computer and Information Science,
noo
E[MR))= e-ﬂ't aE(t) Z n (ortln = Queen's University, Kingston, Ontario, Canada.
nr=0 n. .
‘0 9. Oden, P.H., Shedler, G.S., "A model of memory contention in a paging
. 0‘3 machine,” CACM 15, B {August 1972).
n
a et GH(t) ot Z. '(%-PL 10. Sekino, A., "Throughput analysis of multiporgramming virtusl memory
J n=0 '
0 computer system," IBM Res. Reprt RC-4092 {October 1972).
o . . 11. Shedler, G.5., Tung, C., "Locality of page reference strings," SIAM
= et au(t) ot & = '
J. on Computing, 1,3 (September 1972).
L% o .
12. 8herman, Baskett, Broown
ot o]
ELR .
=a th(t)=m.E[R]—§E’UJ]' a - 215 -
L")
Q

- 214 -

13. Smith, A., "Performance snalysis of computer components,” Pn.D.
thesis, Computer Sclence Dept., Stanford University (sugust
197h7.

i%. Stonebraker, M., "Optimal memory allocstion in a multiprogrsammed,
paged enviromment,” Dept. of Electrical Engineering snd Cowm-
puter Science, University of Californis, Berkeley.

15. Strauss, J.C., "An enalytic model of the HASP execution task monitor,"”

CACM 17, 12 (December 157h}.

- 216 -

CHAPTER 5
SUMMARY AND FURTHER WORK

In this chapter, we summsrize the mejor results obtained in this
work and suggest some sreas for further study. For more detail discusaion,
we refer our remders %o the conclusion section of each foregoing chepter.

In Chapter 1, the objective was to get an insight into the dynamic
page reference behevior of computer programs. In this regeard, we con-
sidered the genersted working set size string and the IRU stack distsnce
string. We considered esch string as a reallzation of a stechastic
process snd used the tools from the snelysis of time series to Investi-
gate the properties of the underlying siructure. For instence, frem the
power spectrum of the observed LRU steck distances, we copcluded thet the
sequence mainly consists of random fluctuations. This approach could te
g baesis for the compariscn of the effect of system parsmeters om esch
string. We examined the effect of page gize snd window size variations
on the generated working set size seqguence. Time series analysis can also
be used to validate the models for different aspects of program behavior.
We demonstrated the problema with @ working set size model in capturing
the serisl correlation of the ssmpled working set sizes, by compering the
sutocorrelation coefficients of the sctual observations with those com-
puted from the model.

Time series analysis have shown to be valugble in studying the com-
puter performesnce problems. Becsuse of the multipllelty of pearameters
and complexity of modern computers, other techniques like multidimeneional
and cluster analyses seem to be alac sppropriate for the study of different
aspects related to the performance of these systems.

- 217 -

In Chepter 2, we considered the problem of the performance of paging
algorithms . We presented new results on the performance of seversl algo-
rithms. We established the result that inexpensive and practical algo-
rithms, like CLOCK znd Modified Working Set, give performences which are
elose to the performance of more elaborste algorithms, like IRU snd
Working Set, respectively. We found the expected fsult rate of WS for
the independent reference model. A barder problem is to find the ex-
pected Iault rate of CLOCK for the seme model, snd show thst it is close
to the fault rate of the LRU algorithm.

In Chapter 3, we proposed the Af Inversion Model end obtained the
major result that the independent reference model can be used effectively
to predict the actusl feult rate of programs under seversl algorithms snd
with different memory eizes. The technique is also very promising in the
evaluation of filing systems snd evaluation of memcry hierarchigs with
unequal Resd/Write operation costs.

In Chapter 4, we considered the problem of the intersction of page
echeduling and device scheduling Iin a multiprogramming system. We showed
that when the main memory is pertitioned smong active jobs, we obtein
better CPU utilization by allowing st leest one progrem to execute longer
in CPJ. For two identical programs, this amounts to dividing the mein
memory asymmetrically between them. We showed that by proper execution
priority assigoment in CPU snd 10D, we can tune the system to obtain high
device utilizeticn and low job waiting ¢imee. As an extension of the
model, we might consider multiple processing units with shared IO devieces.
We cen explore the performance of several possible memory allocation

policies snd scheduling discipiines in the system.

- 218 -

	Scan 38.PDF
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34

	Scan 39.PDF
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27

	Scan 40.PDF
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22

	Scan 41.PDF
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33

