
F
Ph.D . dissertation .

EMPIRICAL AND ANALYTICAL STUDIES OF

PROGRAM REFERENCE BERAVIOR*

ABBAS RAFII

STANFORD LINEAR ACCELERATOR C Prat

STANFORD UNIVERSITY

Stanford, California 94305

SLAC-197
UC-32

PREPARED FOR THE ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

UNDER CONTRACT NO. E(04-3)-515

July 1976

Printed in the United States of America . Available from National Technical
Information Service, U .S . Department of Commerce, 5285 Port Royal Roed,
Springfield, VA 22161 . Price: Printed Copy $8 .00; Microfiche $2 .25 .

ABSTRACT

Several aspects of program reference behavior, page reference behavior
modeling and evaluation of multiprogramming paging systems have been considered .

In the first chapter, an experimental treatment of the generated working

set size and LRU stack distance strings of actual programs is given . The effects

of page size and other parameters on the distribution, serial correlation and

frequency domain behavior are studied . A number of working set size models are

discussed and the ability to capture the observed degree of the serial depend-

ency in the working set size string is examined .

In the hierarchical design of memory systems, the effectiveness of paging

algorithms can be measured by their performance, the processing overhead and -

the implementation cost . In the second chapter, some new results on the per-

formance and cost of many practical paging systems are presented, and the re-

lated evaluation techniques are discussed . The independent reference model is

used to find some analytical results for the expected page fault rate of ame

algorithms . The potential of program behavior models in predicting performance

of different page replacement algorithms is demonstrated .

The development of a useful, simple and analytically tractable program

page reference model is pursued in the third chapter . A new technique to es-

timate the parameters of an independent reference model is proposed . It is

shown that by inverting the Ap optimal fault rate expressions and substituting

the observed MIN fault rates of an actual program for the optimal fault rates,

one can obtain a model with predictive capabilities . The AA inversion model is

capable of accurately predicting the LRU and FIFO page fault rate of programs

for different main memory sizes . The model is also successful in predicting

the average working set size and working set fault rates of programs for a wide

range of window sizes . A comparison of the LRU stack model with the AO inver-

sion model is included . The potential of expanding the model into the areas of

simple program restructuring techniques and evaluation of memory hierarchies

with unequal read/write cost is discussed .

In the last chapter, same basic relations between the interaction of device

scheduling and page scheduling in a multiprogramming virtual memory system are

investigated . Queueing analysis and trace driven simulations am used to show the

effect of memory allocation policies and various service disciplines on the re-

source utilization and job waiting times . Some interesting implications of par-

titioning memory among competing jobs are explored .

ACKNOWLEDGMENTS

I am deeply indebted to my dissertation advisor, Professor Forest

Baskett, for his understanding and constant encouragement during the

course of this work, and for his guidance and suggestions which have

contributed immeasurably in the development of this research .

I would like to thank my readers, Professor Vinton C . Cerf end

Professor Allen M . Peterson, for their comments and prompt attention .

I am also grateful to the staff of the SIAC Computation Research

Group who have created an excellent research and development environ-

ment . Special thanks go to Leonard Shustek for generating the program

address traces used in this work, Roger Chaffee and Robert Beach for

the graphics system, and Harriet Canfield for her excellent typing .

I would also like to thank my colleagues in the Digital Systems

laboratory end the Computer Science Department for the stimulating

discussions, and the staff of the SLAC Computer Center for providing

a fine computing facility .

Finally, I wish to express my appreciation to Dr . Aziz Rafii and

Mrs . Iran Rafii for their encouragement and constant support through-

out my studies .

iii

TABLE OF CONTENTS
Page

Introduction	 I

Bibliography	 4

CHAPTER 1 . Empirical Studies of Program Reference Behavior . 6

1 .1

	

Introduction	 6

1 .2

	

Simulation	 7

1 .3

	

Address Reference Related Sequences	11

1 .3 .1 Working Set Size Sequence	12
1 .3 .2 Working Set Size Models	 33
1 .3 .3 Predicting Working Set Sizes	41
1 .3 .4 Stack Distance String	 50

1 .4

	

Conclusion	 54

1.5

	

Bibliography	 56

CHAPTER 2 . Comparative Study of Practical Paging Algorithms . 57

2 .1

	

Introduction	 57

2 .2

	

The Virtual Memory Computer	 59

2 .3

	

Independent Reference Model	 62

2 .4

	

Demand Paging Algorithms	 62

2 .4 .1 RR (Random Replacement)	 63
2 .4 .2 FIFO (First In First Out)	64
2 .3 .4 LRU (least Recently Used)	64
2 .4.4 CLIMB	 66
2 .4 .5 CLOCK	 67
2 .4.6 MIN	 68
2 .4.7 WS (Working Set)	 69
2 .4 .8 WSVT (WS with Variable Window Size) . . . 72
2 .4.9 PFF (Page Fault Frequency)	73
2 .4 .10 MWS (Modified WS)	 74
2 .4.11 VMIN (Variable Memory Size MIN)	77

2 .5

	

Test Results	 78

2 .6

	

Conclusion	 81

2 .7 Appendix : Expected Page Fault Rate of RR 96

2 .8

	

Bibliography	 98

CHAPTER 3 . A0 Inversion Model	 100

3 .1

	

Introduction	 100

3 .2

	

Program Reference Models	 101

iv

TABLE OF CONTENTS (cost .)
Page

3 .2 .1 Locality Model	• • . . . • . 103
3 .2 .2 Denning and Schwartz Model	104
3 .2 .3 Markovian Models	 105
3 .2 .4 LRU Stack Model	 io6
3 .2 .5 Independent Reference Model	110

3 .3

	

AO Inversion Model	 112

3 .4

	

Test Results	 12 0
3 .4 .1 Fault Rate Prediction	 120
3 .4 .2 Average Working Set Size Prediction 121
3 .4 .3 Comparison with LRU Stack Model	126
3 .4 .4 Analytical Form for AQ Inversion Parameters 131

3 .5

	

Extensions and Other Applications of the Model . . . 133

3 .6

	

Problems and Limitations of AO Inversion Model . . . 141

3 .6 .1 Problems with Finding the Reference
Probabilities	 141

3 .6 .2 Problems with Tail Probabilities	142
3 .6 .3 Execution Characteristics of the Model . . . 143

Conclusion	 X45

Bibliography	 148
3 .7

3 .8

CHAPTER 4 . Queueing Analysis of the Interaction of Page
Scheduling and Device Scheduling	 150

4 .1

	

Introduction	 150

4 .2

	

Model	 151

4 .2 .1 Program Paging Behavior	 155
4 .2 .2 10 Device Model	 160
4 .2 .3 Scheduling of the CPU and IOD Requests . . . 161
4 .2 .4 Queueing Analysis of the Model	161
4 .2 .5 State Identification and General Solution

of the Model	 162
4 .2 .6 Definition of Performance Measures - . . 162
4 .2 .7 Case 1 : Two Jobs and Type I (FCFS-FCFS)

Scheduling	 164
4 .2 .8 Case 2: Two Jobs and Type II (independent

priority) Scheduling . .

	

. . . . 166
4 .2 .9 An Algorithm to Set Up and Solve the

Balance Equations

	

.

	

. . 168
4 .2 .10 Case 3 : Three Jobs and Type II (independent

priority) Scheduling	 169
4 .2 .11 Case 4 : Three Jobs and Type III (CHI

priority) Scheduling	 171
4 .2 .12 Case 5 : Type IV (processor sharing-FCFS)

Scheduling	 172

TABLE OF CONTENTS (cost)
Page

4 .3

	

Discussion of the Numerical Results	173

4 .3 .1 Effect of Memory Allocation Policies on
Device Utilization	 175

4 .3 .2 Effect of Page Scheduling on Completion
179

4 .3 .3 Effect of Page Scheduling on Queue ing Times . 184
4 .3 .4 Effect of Degree of Multiprogramming on the

Performance of the Model	 188
4 .3 .5 Effect of Device Scheduling an CPU and IOD

Utilization	 190
4 .3 .6 Effect of Device Scheduling on Queueing

Times	 201
4.3.7 Effect of 10 Device Speed on the

Performance of the Model	 205
4.3 .8 Paging Drum Model 206
4.3 .9 Simulation of the Model Using Actual

Program Traces	 20B

4 .4

	

Conclusion	 212

4 .5

	

A ndix	 214

4 .6

	

Bibliography	 215

CHAPTER 5 . Summary and Further Work	 217

LIST OF ILLUSk'EATIONS

Figure Page

1 .1 FFT1 program data reference pattern	 8

1.2 FFT2 program date reference pattern	 9

1.3 FFP1 and FF22 data reference patterns for
n=16 points	 10

1 .4 Working set size vs . time, WATFIV, W=8000,
P-512,lk,4k	 14

1 .5 Working set size vs . time, WATFIV, P--1k,.
W=8oo0, 24000	 15

1.6 Working set size vs . time, WATEX, W$000,
P=512,lk,4k	 15

1 .7 Working set size vs . time, WATER, P=1k,
W-8000,24000	

1.8 Working set size vs . time, APL, W=8000,
P=512,1k,4k	 16

1 .9 Working set size vs . time, AFL, P=1k,
W=A00,24000	 16

1.10 Data working set size vs . time, FFT1, FFT2	17

1.11 Histogram of working set sizes, WATFIV	18

1.12 Histogram of working set sizes, WATEX	 19

1 .13 Histogram of working set sizes, AFL	 20

1 .14 Autocorrelation coefficients of working set
sizes, WATFIV	 28

1 .15 Autocorrelation coefficients of working set
sizes, WATEX	 29

1 .16 Autocorrelation coefficients of working set
sizes, AFL	

1.17 Power Spectrum of working set sizes, fixed
window size, WATFIV	 30

1 .18 Power Spectrum of working set sizes, fixed
page size, WATFIV	 30

vii

15a

29

Figure

1.19 Power Spectrum of working set sizes, fixed
window size, APL	

1.20 Power Spectrum of working set sizes, fixed
page size, AFL	

1.21 Power Spectrum of working set sizes, FFT1, FFT2 . .

1.22 Power Spectrum of data working set sizes,
FFPl, FFT2	 32

1 .23 Autocorrelation coefficients of working set
size model, model WATFIV	

1.2k Power Spectrum of working set model, model
WATFIV	

LIST OF ILLUSTRATIONS(Contd .)

1 .25 Autocorrelation coefficients of working set
size model, model WATEX	 4o

1 .26 Power Spectrum of working set size model,
model WATER	 40

1 .27 Prediction error for working set sizes,
exponential smoothing	 46

1 .28 Prediction error for working set sizes,
N points moving average	

1.29 Histogram of LRU stack distances, WATFIV	

1.30 Histogram of LRU stack distances, WATEX	

1.31 Histogram of LRU stack distances, APL	

1.32 Autocorrelation coefficients of LRU stack
distances, WATFIV	

1.33 Autocorrelation coefficients of LHU stack
distances, APL	 52

1 .34 Power Spectrum of LRU stack distances, WATFIV,
WATEX	 53

2 .1 Performance of LRU, FIFO, MIN and W5 algorithms,
WATFIV	 83

2.2 Performance of LRU, FIFO, MIN and WS algorithms,
WATEX	

viii

page

31

31

32

39

39

46

51

51

51

52

83

LIST OF ILLUSTRATIONS(Contd .)

Figure

	

Page

2.3 performance of LRU, FIFO, MIN and WS algorithms,
APL	 84

2.4 Performance of LRU, FIFO, MIN and WS algorithms,
FFT1	 84

2.5 Performance of LRU, MIN, WS and VMIN algorithms,
WATFIV	

ix

85

2.6 Performance of LRU, MIN, W5 and VMIN algorithms,
APt	 85

2.7 Performance of LRU, CLOCK and CLIMB algorithms,
WATER	 86

2.8 Performance of LRU and CLIMB on independent
reference models	 86

2.9 Performance of WS, WSVT, PFF and VMIN algorithms,
WATFIV, WATEX	 87

2.10 Changes of mean memory capacity with PFF
algorithm, 1/P2000, WATFIV	 87

2.11 Performance of MWS, WS, and LRU algorithms,
WATFIV, API,	 88

2.12 Average memory size vs . window size for MWS and
WS algorithms, WATFIV, APL	 88

2 .13 Performance of MWS and WS on independent reference
models	 89

2 .14 Average memory size vs . window size for MWS and
WS on independent reference models	 89

3 .1 Histogram of LRU stack distances, WATFIV and
WATFIV model	 107

3 .2 Page fault rate of WATFIV and reference frequency
model under MIN and LRU algorithms	 116

3 .3 Page fault rate of WATFIV and 4 inversion model
under MIN and LRU algorithms	 116

3.4 Reference probabilities of reference frequecy and
4 inversion models	 118

3.5 Page fault rate of WATFIV and AP inversion models
under FIFO algorithm	 118

LIST OF ILLUSTRATIONS(Contd .)

3 .6 Page fault rates of WATEX and 0 inversion model
under MIN and LRU algorithms	 123

3 .7 Page fault rates of APL end Ap inversion model
under MIN end LRU algorithms	 123

3 .8 Page fault rates of FFT1 and Ap inversion model
under MIN end LRU algorithms	 123

3 .9 Page fault rates of WATFIV and At inversion model
under MIN and LRU algorithms with lk page size	124

3.10 Average working set sizes of WATFIV and 4 inversion
model, P=512,lk	 125

3 .11 Average working set sizes of APL and FF1'1, and
A9 inversion models	 125

3.12 Page fault rates of WATFIV and AP . inversion
model under WS algorithm, P=512,lk	 125

3.13 Page fault rates of APL and FFT1, and AA inversion
models under WS algorithm	 125

3 .14 Page fault rates of WATFIV and LRU stack model
under MIN and LRU algorithms	 128

3.15 Average working set sizes of WATFIV and LRU stack
model	 129

3.16 Page fault rates of WATFIV and LRU stack model
under WS algorithm	 129

3.17 Page fault rates of APL and LRU stack model
under MIN and LRU algorithms	 130

3 .18 Average working set sizes of APL and LRU stack
model	 130

Histogram of working set sizes, AA„ W=4000	1303.19

3.20 Page fault rates of All and LRU stack model under
WS algorithm	 130

3.21 Reference probabilities of Ap inversion models 132

3 .22 Reference probabilities of A~ inversion and
functional models	 132

x

LIST OF ILLUSTRATIONS(Contd .)

Figure

	

Page

3 .23 Page fault rates of restructured WATFIV and4 inversion model under MIN and LRU

3 .24 Page fault rates of restructured WATFIV and0 inversion model under MIN and LRU ; page
fault of the model multiplied by 2

3 .25 Page fault rates of restructured APL and0 inversion model under MIN and LRU	

3.26 Page fault rates of restructured ARL and
Ap inversion model under MIN and LRU ; page
fault rates of the model multiplied by 2

3 .27 Page fault rates of restructured WATFIV and
actual WATFIV with Lk page size

3 .28 Page fault rates of restructured ARL and
actual ARL with lk page size

3 .29 Fault and transfer rates of WATFIV and AP
inversion model under MIN and LRU

3 .30 Fault and transfer rates of WATND; and 0
inversion model under MIN end LRU

3 .31 Coefficient of variation of inter-fault periods,
WATFIV, 4 inversion and LRU stack models	

4.1 Two stage cyclic queue model with N customers . .

4 .2 Distribution of mean inter-fault periods,
WATFIV, AR	

4.3 Comparison of the observed distributions of inter-
fault periods with exponential model, M=40,50 . .

4 .4 CFU and TOD utilizations with differnt memory
allocations ; N=2; type I and II schedulings ;
IOD speed=1/4200	

4.5 CRJ and IOD utilizations ; N=2; type I and II
schedulings ; IOD speed=l/10000	

4 .6 CRJ and IOD utilizations ; N=3 ; type I scheduling .

4 .7 Conceptual modifications of the model to permit the
computation of completion rates

xi

LIST OF R.LUSTRATIONS(Contd .)

page

Completion rates for 2 job classes,
type I scheduling	 183

Average CRJ queueing time ; n=2 ; type I and
II schdeulings	 183

Reciprocal of average dilation times in CPU
and TOD ; N=3; type I scheduling	 187

CPU and IOD utilizations ; N=3 ; type I
scheduling	 194

CPU and IOD utilizations ; N=3; type IT
scheduling	 195

CIV and IOD utilizations ; N=3; type III
scheduling	 196

Comparison of CPU utilizations with
type I,11,III and IV schedulings ; N=3; TOD
speed=1/4200	 197

Compassion of IOD utilizations with
type I,II,III and IV schedulings ; N=3 ; TOD
speed=1/4200	 198

Comparison of CPU utilizations with
type I,11,III and IV schedulings ; N=3 ; IOD
speed=l/10000	 199

Comparison of TOD utilizations with
type I,11,III and IV schedulings; N=3 ; IOD
speed=1/10000	 200

Comparison of the reciprocal harmonic average
dilation times in CRJ and TOD with type II and
type III schdulings	 203

Comparison of the results from simulation with
drum model with the results of analysis with expo-
netial IOD service time assus:ptton	 207

Comparison of the trace driven simulation with the
analytical results ; type I scheduling	210

Comparison of the trace driven simulation with the
analytical results ; type II scheduling	210

xii

Figure

.

	

. 138 4.8

4 .9
.

	

. 138

4.10
.

	

. 138

4.11

.

	

. 138
4.12

.

	

. 139
4.13

.

	

. 139
4 .14

.

	

. 140

4 .15
.

	

. 140

.

	

. 144 4 .16

.

	

. 152

4 .17
.

	

. 158

.

	

. 158 4 .18

.

	

. 177 4 .19

.

	

. 177
4 .20

.

	

. 178

4 .21
.

	

. 180

INTRODUCTION

The development of automated memory management techniques [11,14]

has created interest in studying the factors which are important in the

performance of these systems [2,6,8,12,17,18] . In this paper, several

aspects of program reference behavior, page reference behavior modeling,

and evaluation of multiprogramming paging systems have been considered .

Insight into the reference behavior of programs is essential in the

architecture of new memory systems, computer modeling efforts [9], and

the design of effective and efficient algorithms for some fundamental as-

pects of an operating system, such as scheduling and resource allocation

policies . In order to study the address reference characteristics of the

actual programs, the execution of several programs have been monitored .

The first chapter is an experimental treatment of the page reference be-

havior of these programs . Statistical and time series analyses are per-

formed on the generated working set size [10] and LRU stack distance [9]

strings . The effects of page size and other parameters on the distribution,

serial correlation and frequency domain behavior are studied . A number of

working set size models ere discussed, and the ability to capture the ob-

served degree of the serial dependency in the working set size string is

examined . A discussion on the observed accuracy of a number of algorithms

to predict the working set size of a program, based on the past observations,

is included .

In the second chapter, we address the problem of memory management

policies in a paging system [11], and we specifically consider the per-

formance efficiency of the page replacement algorithms . In the literature,

many useful results in this area have been presented [1,4,7,12,15] How-

ever, the problems regarding the performance and complexity of the stra-

tegies have not received enough treatment . In this chapter, we consider

a number of practical algorithms which are easy to implement and which do

not require much processing time . We compare the performance of these

algorithms with more elaborate schemes and discuss the advantages of sim-

ple approaches . In studying the paging algorithms, we discuss several

useful evaluation techniques [5,17] .

The program reference behavior models [9] are valuable tools to study

and predict the operation of paging techniques . In Chapter 2, we use the

independent reference model to obtain analytical results for the expected

page fault [15] and the average memory usage of several algorithms .

The development of a useful, simple, and analytically tractable pro-

gram page reference model is pursued in the third chapter . We propose a

new technique to estimate the parameters of an independent reference model .

We show that by inverting the Am [1] optimal fault rate expressions and

substituting the observed MIN [4] fault rates of an actual program for the

optimal fault rates, one can obtain a model with predictive capabilities .

The AO inversion model is capable of accurately predicting the LRU [9] and

FIFD page fault rate of programs for different main memory sizes . The

model is also successful in predicting the average working set size and

working set fault rates of programs for a wide range of window sizes . We

also consider another program reference model, namely, the LRU stack

model [9] . We compare the behavior of the models under similar environ-

ments . Chapter 3 is concluded with a discussion of the limitation and the

possible applications of the Am inversion model in the areas of simple pro-

gram restructuring techniques [13], and evaluation of memory hierarchies

with unequal page read/write operation costs .

- 3 -

and virtual memory performance," IBM J . of Res . and Develop .

16, 1 (1972) .

BIBLIOGRAPHY

In Chapter k, the modeling effort is extended to include the CPU and
1 . Aho, A .M ., Denning, P .J ., Ullman, J .D., "Principles of optimal page

its paging device . We investigate some basic relations between the inter-

action of device scheduling and page scheduling in a multiprogramming 2 .

replacement," Journal of ACM, 18, 1 (1971) .

Bard, Y ., "Experimental evaluation of System performance," IBM Sys-

virtual memory system . Queueing analysis [3,16] is used to show the

effect of memory allocation policies and various service disciplines on 3 .

tems Journal, 12, 3 (1973) .

Baskett, F ., Chandy, J .M ., Muntz, R .R ., "Open, closed and mixed net-

the resource utilization and job waitingg times . Sone interesting impli-

cations of sharing memory among competing jobs are explored . Trace driven

works of queues with different classes of customers," Journal

of ACM, 22, 2 (1975) .
simulations are used to verify the results under alternative assumptions . 4 . Belady, L .A ., "A study of replacement algorithms for a virtual storage

5 .

computer," 1Hd Systems Journal, 5, 2 (1966) .

Belady, L .A ., Palmero, F .P ., "On line measurement of paging behavior

by multivalued MTh algorithm," IBM J . of Res . and Develop . 18, 1

(Jan . 1974) .

6 . Chamberlin, D .D ., Fuller, S .H ., Liu, L .Y ., "An analysis of page allo-

.7 .

cation strategies for multiprogramming systems with virtual

memory," Iii J . of Res . and Develop ., 17, 5 (Sept . 1973) .

Chu, W.W ., Opderbeck, H ., "The page fault frequency replacement algo-

8 .

rithm," AFIPS Conf . Proc ., Fall Joint Computer Conference (1972) .

Chiu, W ., Dupont, D ., Wood, R ., "Performance analysis of a multipro-

9 .

gramming computer system," IBM J . of Res . and Develop . (May 1975) .

Coffman, E .G . Denning, P . J ., "Operating system theory," Prentice Hall,

10,

Englewood Cliffs, New Jersey (1973) .

Denning, P .J ., "The working set model for program behavior," CACM

11, 5 (May 1968) .

11, Denning, P .J ., "Virtual memory," Computing Surveys, 2, 3 (1970) .

12, Hatfield, D .J ., "Experiments on page size, program access patterns,

13 . Hatfield, D .J ., Gerald, J ., "Program restructuring for virtual memory, °

IBM Systems Journal 10, 3 (1971) .

1k. Kilburn, T ., Edwards, D.B .G ., Lanigan, M.J ., and Summer, F .H ., "One

level storage system," IRE Trans, on Elec . Computers, EC-11,

No . 2 (1962) .

15 . King, W.F ., "Analysis of demand paging algorithms," Proc . IFIPS

Conf ., Ijubliana, Yugoslavia (1971) .

16 . Kleinrock, L ., "queueing systems," Vol . 1, II, John Wiley and Sons,

New York (1975, 1976) .

17 . Mattson, R.L ., Gecsei, D .R ., Slots, D.R . and Traiger, I .L ., "Eval-

uation techniques for storage hierarchies," IBM Systems Journal,

9, 2 (1970) .

18 . Rodriguez, Rosell J ., Dupuy, J-P ., "The evaluation of a time sharing

page demand system," AFIPS Conf . Proc ., Spring Joint Computer

Conference (1972) .

- 5 -

CHAPTER 1

EMPIRICAL STUDIES OF PROGRAM REFERENCE BEHAVIOR

1 .1 INTRODUCTION

The execution reference behavior of programs in general can be

studied with several different objectives . A hardware designer can

choose a cost effective instruction stack size by measuring the mean

number of instructions between successive jumps on programs written for

aome earlier models . In the design of new instruction sets, the statis-

tics of the successive occurrences of groups of codes on some typical

programs can be used to determine the scope and the function for the

instructions . In a similar way, the insight into the behavior of pro-

grams [k] is essential in the architecture of new memory systems, the com-

puter modeling efforts, and the design of effective and efficient algo-

rithms for same fundamental aspects of an operating system complex, such

as scheduling and resource allocation policies .

In this chapter, we are mostly concerned with studying the dynamic

(page) reference characteristics of programs, particularly those aspects

which are independent of the identity of pages . The traces of several

actual programs are used throughout the chapter . The pattern of gen-

erated references are investigated by considering the corresponding

working set size [k] end stack distance sequences [1] . Some tools from the

analysis of time series [8] are used to demonstrate the stochastic proper-

ties of each sequence and compare the effect of some parameters, such

as the page size, on the behavior of these sequences . The success of

some proposed models for the working set size sequence are examined in

terms of the ability of these models to capture the time and frequency

domain properties of the actual sequence . The algorithms to predict

- 6 -

the working set size, based on the past execution behavior of the pro-

grams, are compared .

1 .2 SIMULATION

In this paper, the address trace of five programs are used for

most of the experiments . A trace program monitors the execution of

each program and records the address references, except those generated

by the 360 privileged instructions, on a tape . Each entry of the ad-

dress trace consists of a 22 bit address field and 2 type bits . The

address field covers an address space of 4000K bytes, and the type bits

indicate if the referenced address is for an instruction fetch, data

read, or data write . A paging environment is simulated by putting a

page grid on the address space of each program . Thus, each address

reference is the page number in which the referenced location falls .

These programs are selected to cover a broad range of application

programs . However, we acknowledge the fact that we have omitted a dis-

tinctive category of programs, namely, list processing routines . These

kinds of programs usually probe a large address space by following

linked lists or tree structures which can easily go across many page

boundaries- The use of these routines are not very common in general

computing environments ; however, they may be the most important elements

for some particular centers for some dedicated applications . In the

following, a brief description of each monitored program is given .

WATFIV Compiler :

	

This program is en incore, one pass, load

and go processor to compile FORTRAN programs . It was monitored

while compiling a FORTRAN program named WATEX .

-7-

WATEX :

	

This program is written in FORTRAN and is supposed to

find a minimum of a multi-parameter function . Given a function,

execution proceeds until a convergence condition is satisfied

or an iteration count is exhausted . It requires little I/0 end

consists of many small loops and few cases of repeated sub-

routine cells .

Ml :

	

This program is a Fast Fourier Transform using the

Cooley-Tukey algorithm . It was monitored while computing the

finite Fourier Transform of n=2084 data points . In Figure 1 .1,

we show how the data points are referenced with this algorithm .

For n=32 data points, Figure 1 .3 shows the pattern of references .

There are log 2n basic iterations . In the first iteration, pairs

dl n/2=16words apart are referenced, namely, pairs (1,16), (9,25),

(2,18), • . , (16,32) . In the second iteration, pairs d2 2 =8
2

words apart are referenced, namely, (1,9), (5,13), (17,25), (21,29),

(2,10), . . . (24,32) . Similarly, in the third iteration, pairs

d3 =
-2

=

	

= 4 words apart are referenced . In the final step,
2

data points are referenced sequentially from 1 to n . The refer-

ence sequence is schematically shown in Figure 1 .1 .

FIGURE 1 .1

-8-

2 3

4 5 6 7

8 9 10 111 12 13 15

Notice the analogy between this and traversing a binary tree

breadth first .

FFT2 :

	

This is also a Fast Fourier Transform Program which

is based on the Cooley-Tukey algorithm and uses the method

proposed in [10] . The main difference between this program

and FFT1 is the pattern which the data points are referenced .

For n=32, Figure 1 .3 shows the pattern of references in this

program. In the first iteration, date pairs dl 16 words

apart are referenced, namely, pairs (16,32), 15,31), (14,30),

(13,29), . . . (1,17) . In the second iteration, Figure 1 .2,

data is divided into two parts, (2) and (9), each containing

216 points . The following references in each part, and sub-

sequent subdivisions, are carried out independently . In

region (2), data points 8 words apart are referenced . Part

(2) is divided into parts (3) and (4) . In part (3), points

distance d=4 apart are referenced . This procedure continues

until all data in part (2) have been referenced . Then refer-

ences are directed to data points in pert (9) and the same

reference pattern is repeated here .

FIGURE 1 .2

- 9 -

FFT2

ds 1

	

d4-2

	

d 3-4 d,=5

FIGURE 1 .3

- 10 -

d 1 =16

	

d

FFT1

d3 +

	

d4-2

	

d5=1

1

2 9

3 10 13

5 6 7 8 12 15

There is an analogy between the order of references to data

here, and traversing a binary tree depth first .

Programs FFT1 and FFP2 are written in ALGOL W language .

APL :

	

This is a trace of an interactive session with APL

processor . The session begins by giving some initial commands ;

then a computation is performed and finally an output (plot of

a graph) is obtained .

Table 1 .1 gives a summary statistics about each pro-

gram .

TABLE 1 .1 Size and reference type statistics of the
monitored programs

1.3 ADDRESS REFERENCE RELATED SEQUENCES

The page reference sequence r 1,r2' r3 , . .,rk . . .r is a string of page

addresses generated by the execution of a program . The page names are

from the set of n program pages [1,2,3,	n] which constitute the ad-

dress space of the program . Except with some varying degree of sequen-

tiality and repetitive patterns which are observed in page reference se-

quences, programs tend to generate page addresses in a fairly non-hono-

genous way . Some weak underlying stochastic structures may be recognized

in each program segment which are tightly related to the identity of the

pages . However, as we remove the page identity constraint, many distinct

features emerge from the sequences related to the page reference string .

Among such sequences, we consider the working set size [4] and stack

distance [1] strings .

The working set size sequence can describe the time dependent

locality properties (the tendency to reference in the vicinity of the

location addressed in the recent past) of the page references, end the

stack distance string gives a space characterization of the references .

1 .3 .1

	

Working Set Size Sequence

The working set size sequence on a page reference string is a se-

quence of working set sizes defined at each reference . The working set

[4] at time t . WS(t,T), is the set of pages addressed in the past T ref-

erences . The working set size at the same time, ws(t,T), is the number

of pages referenced at the same interval . T is the working set parameter ;

thus, the working set size sequence ws(t,T), t=T,T+1,T+2, . . . can be vis-

ualized as the number of distinct pages which are contained in a window

of size T, which slides over the page reference string (T and W are used

interchangeably to denote the working set parameter in the figures of

this chapter) .

One can also define the working sets over the date references ex-

clusively . Denote this set by data working set . Thus, the data working

set is the set of distinct data pages which are referenced in the last T

data references .

The working set size sequence of several programs are sampled and

plotted in Figures 1 .4 to 1 .10 . In each figure, the horizontal axis is

Program
Total
Ref's

Type (percent) Size in Pages

read write fetch 512 2K 4K

WATFIV 1048661 23 .4 15 .7 60.9 168 95 54 32

WATER 2748339 25 .0 7 .6 67 .3 70 1 23 14

FFP1 2954786 30.8 6 .2 63 .0 82 48 29 18

FFP2 2256197 29.0 6 .7 64 .3 84 9 29 18

APL 2670920 21.7 10 .0 66 .3 205 115 67

- 1 3 -

the reference count (time) where each unit is 1280 references and the

vertical axis is the working set size in number of pages of each size,

as indicated in the plots . From these graphs, we can see that the working

set size variations can be very significant during the execution of a

program . However, there is a high degree of serial dependence between

the neighboring points which can be revealed by further investigation .

The peaks correspond to the so-called locality changes, such as jumps

with large offset, subroutine calls, and similar changes in the concen-

tration points of the references . In such cases, the working sets include

the pages from both adjacent localities . Frequently, the working set size

drops sharply, which indicates that the references are heavily clustered

on a small segment of the program (e .g ., execution of a small loop) . The

peak points, as well as the sharp low points, can create difficulties for

a process which should conform itself with the working set size require-

ments of programs .

The page size and the window size parameters can have significant

effect on the shape of the sequence .' In Figures 1 .4, 1 .6 and 1.8, the

effect of page size on the working set size sequence of each program are

shown . As we expect, large page sizes have a damping effect on the ampli-

tude of variation of the sequence . The mean and coefficient of variation

of the sampled points are shown for different page sizes in Table 1 .2 .

We note that the variance decreases as we increase the page size . but

the coefficient of variation remains fairly uniform for the range of

selected page sizes .

WORKING SET SIZE VS. TIME [WATFIVI, W-8000 . P-512,IK,4K
80

WORKING SET SIZE VS . TIME [WATFIVI, P-1K, W-BK .24K

s0

60

20

200

	

400

	

600
EACH UNIT IS 1280 REFERENCES

Fig . 1.4

I I I

800

,	I	,	.	.	.	I	.	1
200

	

400

	

600
EACH UNIT IS 1280 REFERENCES

Fig. 1.5

800

50

40

30

20

10

0

WORKING SET SIZE VS. TIME, WATER. W-8000,P-512,IK,4K

512

WORKING SET SIZE VS. TIME I APL 1 . P-1K, W-4000 .24000
80

WORKING SET SIZE VS . TIME I APL I, W-8000, P-512,1K,4K
80

200

	

400

	

600
EACH UNIT IS 1280 REFERENCES

Fig. 1.8

- 16 -

1~ I rn
TrV -Lm TT-m n l l TT'l

	

rwJ
4k

Y Y I N
N

0

	

200

	

400

	

500

	

800

	

1000

	

U

TIME: EACH UNIT IS 1000 REFERENCES
W

a
m
N
W
IJ

a

Fig. 1 .6

Fig. 1.10

200

	

400

	

600

	

800
EACH UNIT IS 1280 INSTRUCTIONS

41STOGRAM OF WORKING SET SIZES - WATFIV
P-512. T-8000

	

-~ P4K. T-8000

J
200

ISO

100

50

0

Fig. 1 . 1 1

500

	

500

E 400

	

§
400

x 300

	

x 300-
w

	

m
200

	

~
200

100

	

100

0

	

0
0

	

10

	

20

	

30

	

40

	

50
WORKING SET SIZE

P-2K. T-8000

12

1

HISTOGRAM OF WORKING SET SIZES -WATER
P-512, T-8000

	

P-HG T-8000

600

40 400

3m- - x 300

200 - ~ 200

100,-

	

100

0

	

0
10

	

20

	

3G

WORKING SET SIZE

60

500

Fig. 1.72

- 19 -

10

	

20

	

30

WORKING SET SIZE

10

	

20

	

30

	

40

	

50
WORKING SET SIZE

P-4K. . T-8000

HISTOGRAM OF WORKING SET SIZES - API.

T-4000. P-IK

	

T-6000. P-1K
00

x

1111liml,
WORKING GET SIZE

Fig. 1.13

-20-

WORKING SET SIZE

TABLE 1 .2

- 21 -

The effect of the window size parameter is not as obvious as page

size. In Figures 1 .5 and 1 .9, for a given page size, the working set

size sequence is plotted under different window sizes . A large window

size can encompass several localities . On the other hand, a small window

size can come short of containing a single locality in most cases . There-

fore, the effect of window size on the working set size sequence is very

dependent on the characteristics of each program . For the APL program,

Figure 1 .9, many high frequency components in the waveform of the working

set size for small window sizes have been eliminated when a larger window

size is used . This effect is especially notable in the beginning of the

program . In Table 1 .2, we note that the variance of the sampled points

for a given page size does not always decrease as we increase the window

size .

In Figure 1 .10, the date working set size for FFT1 and FF22 programs

are shown . We note that FFT2 maintains a fairly uniform data working set

size compared with FFT1 . More localized data references in FFT2 may

partly account for this behavior .

The histogram of working set sizes for a number of programs are

plotted in Figures 1.11, 1 .12, and 1 .13, under different page and window

sizes . The distribution of the sampled points are generally clustered

around one or more points . For the APL program, we can see three peaks .

The peaks demonstrate the distinctive locality regions in this program .

The frequent locality transitions can also contribute to the creation of

peaks in the histogram and may give spurious large locality sizes .

The distribution of working set sizes around the respective peaks

can hardly be considered as being normal . In the programs considered

here, the test of normality for the points which are sampled far apart

Window
Size -a 4000 8000 6000 24000

Page
Size a Va . C

	

. Mean C .V . can C .V . Mean C .V .

512 31 .0 143 .7 0 37 39 .7 211 .8 0.37 8 7 353 9 0 38 57 2 79 . 0 .39

1k 22 5 74 .4 0.38 28 .0 97 .6 0.35 33 .1 1

	

. 0 36 37 .6 85 .9 0.36

a o 2k 16 .7 41 .3 0 .38 18 .8 43 .4 0.35 21 .7 60 .9 0 .36 24.5 77 .3 0 .36

11 .9 15 .5 0.33 13 .3 17.8 0 .31 14 .9 24 .2 0 .33 15 .6 29 .3 0.35

Window
Size -a 4000 8000 16000 24000

Page
S ze Mean a . C .V . Mean Va . C

	

. can V . C .V . can
u

? 512 9 .5 30.6 0 2B 23 .8 28 .3 0 .22 28 .6 33 1 0 20 30 .8 52 0 .23
m

1x 13 .0 0.7 0 25 15 .0 lo .6 0 .22 17 .4 16 .3 0 23 18 .5 24 .1 0 .23
Ch

8 .6 3 .9 0 23 9 .8 0 .22 7 .3 0 24 11 .9 10 .1 0 .27

4k 6 .2 2 .3 0 .24 6 .9 2.3 0 .22 7 5 3 .2 0.2 7 .8 0 .27

Window
Size -a 4000 8000 160oo 24000

Page
S ze Mean Va . C

	

. Mean C .V . Mean V . C .V . Mean a .

> 512 50 .1 136 . 0 .23 58 .0 112 .7 0 .18 65 .3 82 7 0 .1 69 .5 73 .2 0 .

- rx 1k 33 .2 50 0 .2 36 .7 38 .5 0 .17 40 .3 27 .8 0. 3 42 .5 27 1 0 .
rn
u\ 22 .5 19 .7 0 .20 24 .1 14 .7 0 .16 26 . 9 . 0 .12 27.2 7 .6 0 .

14 .8 . 0 .20 16 2 . 0 16 17 .3 3 .9 0. 1 17 .8 2 .7 0 .

(to get fairly independent samples) are strongly rejected .

The serial dependence of successive working set size samples and

the frequency domain features of this sequence can be evaluated by com-

puting the estimated eutocorrelation function and spectral density of

this sequence .

let x(t),t= . .,-1,0,1,2,3, . . . be the observations from - a stationary

process in the wide sense . The covariance function over this sequence

with lag h is defined as :

cov[x(t),x(t+h)] = Ex(t)x(t+h) - Ex(t) .Ex(t+h)

and [x(t),x(t+h)] = c(h) . An unbiased estimator for the covariance func-

tion is :

n-h

c(h) = c(-h) _ (N1h) X [x(t)-x] [x(t+h)-x]
t=1

h=0, 1,2,3, . . .,N-l

where N is the sample size and x is the sample mean . This function has

a local maximum at the periods of the frequencies present in the data .

The sample autocovariance function, c(h), is normalized by the

variance of the sequence to get the estimated autocorrelation function :

-I < R (h) = c(h) <_ 1
c(0)

The autocorrelation function R(h) is a measure of serial direct or

reverse dependence between the observations h units apart . In fact, under

certain conditions, the test for R(1) = 0 is the most powerful test for

the independence of a stationary time series [5] .

For two different sequences of observations x(t) and y(t),

t= . .-1,0,1,2,3 . ., a similar function can be defined . Denote the cross-

covariance function of x(t) and y(t) by :

- 23 -

N-h

(Nlh) Y [x(t)-x] [Y(t+h)-y]
t=1

h=0,1,2,3,N-1

where x and y are respective sample means for x(t) and y(t) . From this

function, the estimated cross correlation coefficients are obtained by :

cxy(h)

	

1l 5 Rxy(h) c.(0 .cyy(0)

The crosscorrelation coefficients are mess ures of serial dependence

between two different sets of observation . Some care should be taken

when interpreting the values of this estimator . A large and spurious

crosscovariance can be obtained if x(t) and y(t) are highly correlated

within themselves [7] .

The frequency domain formulation of a discrete time observation,

x(t), by its spectral density f(w), is obtained by taking the Fourier

transform of the covariance function :

00

f(w) _

	

cov[x(t),x(t+h)]e ihw
-an

An unstable estimator for f(w) is

N

	

~'

P(w) -

	

'-- c(h)e" = 2aN " [x(t)e
-itw]2

h=-N

	

t-1

where w=2nN . P(w) is called the raw periodgram . This is not a statisti-

cally consistent estimator and its variance around the true value does

not decrease as the sample size N increases . To stabilize the estimator,

one takes a local average over the frequencies surrounding the frequency

24 -

for which the power is desired . If a linear trend exists in data, it

causes high power in the lowest frequency range of the computed power

spectrum .

The estimate of autocorreletion coefficients and the spectral density

for the sample points are computed by the package described in [11] . For

estimating the spectral density, a cosine window of 10% taper is applied

on data, and an equally weighted moving average is applied in the fre-

quency domain .

Before we proceed to evaluate these functions on our sampled working

sets, we perform a test for trend in the data . A test for the existence

of trend in the sample points consists of comparing the centroid of ob-

served values with the mid-point of the sum of observations [3] . The

test statistics for the sampled working set sizes are ;

(n) E wi - 0 .5 W n
u ~

WFn
u 12n

i
where W i = E ws(t,T) and n is the number of observations .

t=l

When W i 'e are independent random variables, u has a normal distri-

bution with mean zero and variance one . In Table 1 .3 for the WATFIV and

APL programs, the u statistics for different number of samples of 100 dif-

ferences apart show that the data from WATFIV is fairly consistent with

the null hypothesis that there is no significant trend in this data, while

data from the APL program clearly shows the existence of trend .

- 25 -

TABLE 1 .3 u-statistics for the trend in the
string of working set sizes of

WATFIV and APL programs

The autocorreletion function of working set size samples for WATFIV,

WATER and APL programs in Figures 1 .14, 1 .15 end 1 .16 respectively, show

a high serial correlation in data with small lags . In each figure, a

unit lag is equal to 64 actual references . Thus, for instance, in the

WATFIV program working set size samples of up to 6400 references show

significant serial correlation .

The power spectrum of sampled working set sizes for three different

programs are computed, end the results are shown in Figures 1 .17 to 1 .20 .

The data is sampled at every NS points as indicated in each figure . The

horizontal axis is the frequency coordinate . The period, in terms of the

number of references at each point in this axis, can be found by evalu-

-26-

Program
No . of
Samples

T
Window

ws(T)
Mean WS

WATFIV 10005 1000 27 - 0 .327
4985 1000 27 1 .468

2463 1000 28 0 .592

WATFIV 10005 4ooo 49 - 2 .919

4985 4ooo 48 o .668

2463 4000 50 0 .671

APL 11084 1000 17 -23 .898

5513 1000 13 -16 .425

2697 1000 11 9 .429

APL 11084 4000 30 -22 .587

5513 4000 23 -10 .022

2697 4000 21 9 .300

sting NS*16384/N where N is read from the horizontal axis in each figure

(16384 samples have been considered in each case) .

We generally note that significant power lies in the low frequencies .

In the case of the APL program, the trend in the data might have also

contributed to the power in this region . The power drops sharply as we

move toward higher frequencies .

program many high frequency components are filtered out by increasing

the window size .

As we have mentioned earlier, FFf1 and FFf2 programs use different

arrangements for referring to their data . As we see in Figure 1 .21, the

power spectrum of sampled working set sizes, when all type of references

are considered, are uneffected by the dissimilarity in the way these data

are handled in each program . However, when we compute the power spectrum

of only data references, the difference is more significant (Figure 1 .22) .

The more localized date references in FF22 is reflected in its estimates

-27-

0

AUTOCORRELATION COEFF'S OF WS SIZES (WATFIV)

P-4K

200

	

400

	

600
LAS (1 UNIT - 60 REFERENCES]

Fig. 1.14

- 28 -

V - 8000

In Figures 1 .17 end 1 .19, the power spectrum of working set size
LO

samples under different page sizes are plotted . We note that the general

periodical patterns of the string are fairly invariant with respect to 0.8

changes in page sizes . However, as we increase the page size, the power

a'uzm
.6

0.4

at the corresponding frequencies decrease and the high frequencies are

smoothed out . Unlike the previous case, changing the window size results

in different periodical patterns, as we see in Figures 1 .18 and 1 .20 . z
a
m

S
0.2

We cannot make a strong statement on the effect of window size on these

patterns because most of the observed changes are very much related to

a
0.0

the characteristics of each program . In Figure 1 .20 for the AFL program,

we notice that the drop in

	

in the higher frequencies is much morepower 0)

increase the window size . This shows that in this

N
W

-0.2significant when we

AUTBCORRELATION FUNCTION OF WORKING SET SIZE (WATEXI

AUTOCORRELATIBN FUNCTION OF WORKING SET SIZE (APLI
1.0

N

w 0.8

0

'

	

	I .,	I
200 400 600

LAG 11 UNIT-64 REFERENCES)
Fig. 1.15

- 29 -

200

	

400

	

600
LAG 11 UNIT-64 REFERENCES]

Fig. 1.16

800

B00

PSO OF WORKING SET SIZE - FIYED WINOBY SIZE (WATFIV)

5

Kw
w0.
0 2

eJ

PS0 OF WORKING SET SIZE - FIXED PAGE SIZE (WATFIV3
5

4

w 3
3a
0 2

0

2k

∎=6000
512

	

SR=64

1

NS=15

I

iIdl1/l l
O 0

	

200 400 600 800 1000 1200
FREQUENCY

Fig . 1.18

200 400 600 800 1000 1200
FREQUENCY

Fig. 1.17

4000

P=1k
SR=64

	

_
NS=15

-30-

w
s
m

0a
PJ

5
FSD OF WORKING SET SIZES - FIXED WINDOW (AFL)

V.000

- 31 -

t-8000

SO
:64

NS-15

FSD OF WORKING SET SIZES - FIXED PAGE SIZE (APL)
5

	

1
10 -

P .M
v •u

200

	

400

	

600

	

1000

	

1200
FREQUENCY

Fig . 1.20

M
W
3
0.
00
L9
67J

DATA ORKING SET SIZES (FFT1 and

	

2)

I

	

I

	

I

	

I
P=512
V=8000
$R=64
NS=S

-32-

100

	

200

	

300

	

400

	

500

	

600
FREQUENCY
Fig. 1.22

power spectrum by obtaining lower power values compared with those of the

FFT1 program .

1 .3 .2

	

Working Set Size Models

In this section, we consider a number of models for the working set

size sequence and examine the capability of one model to capture the

stochastic properties of the actual string, end particularly its corre-

lation estimates .

A working set size, w t , at time t, can be expressed in terms of

wt-1 and another element a t , by the following relation :

w t-1

where 6 t can assume integer values -1, 0 and +1 . The boundary condition

is 1 <_ w t 5 min (T,n) where n is the program size in pages, end T is the

window size . Since T is usually greater then n, we can simply require

that 1 5 w t 5 n .

Now we can assume different probability structures on the value of

6 t . As the first step to simplify the model, we assume that the value

of b t only depends on 6t-l, and this holds for all values of t . In

Tables 1 .4 and 1 .5, using the actual program traces of the WATFIV and

WATEX programs, we have shown the frequency transition matrix of 6 using

the observed working set sizes . We note that 6 has three states, -1, 0

and +1, and each entry, jk in the matrices, is the frequency of being at

state j and going to state k . We can see that there is a great tendency

that 6 remains in or returns to state 0. We also note that we seldom see

the transition from state +1 directly to -1 and vice versa .

- 3 3 -

Next, we assume that the value of 6 t is independent of

	

end,

therefore, we have a fixed probability description for 6 as follows :

pr [6 = -1] = p

pr [6 = +1] = q

pr [6 = 0] = 1-p-q

The model of working set size sequence becomes a finite state Markov

chain with n states . In the boundaries, we can assume that pr[6=+1] = 0

and pr [6=0] = 1-p when w t = n and pr[6=-l] = 0 and pr[6=0] = l-q when

wt

	

1 .

By adding up the columns of the matrices in Tables 1.4 and 1.5 and

normalizing, we can get estimates for p and q from actual programs . In

doing so, we note that from both WATFIV and WATEX programs, p and q are

estimated very close together . Therefore, we can further simplify the

model by assuming

pr[6=-l] = 2
pr[6=+l] = 2
pr[6=0] = 1-p

The covariance coefficients of the Markov, chain can be found from

the transition probabilities . Let Yip be the probability of going from

state i to state j in exactly m steps . Assume that the chain starts from

state 1 and pij = pig . Then

cov(w t'wt+h) E wtwt+n - E w tEt+h

we have :

E
J j pt 31

-34-

and

Therefore :

E(wtw t+h) E[E(wtwt+hlwt)]

_ Y Jk Dhk
P (t)

Jk

= J] pr[wt J]

J Pr[wtJ]

cov(w t' wt+h) -

	

jk `,jk
t)

-

	

J PiJ)

- 35 -

Unfortunately, this model does not necessorily give an average working

set size which is equal or close to the average working set size of the

actual program from which the transition probabilities were obtained .

Another model which partially alleviates this problem is to parameterize

a Markov chain, which has some degree of central tendency, to a state

which is equal to the observed working set size w,[6] . One approach is

to formulate the transition probabilities such that the central attraction

linearly increases as the function of the distance of the chain from the

state [v] . A possible scheme is shown in the following sketch :

The probability transition at each state is, therefore, a function of

the state and can be found from the following expressions :

pr[6a+1] = p -

	

(w-w)

Pr[6=-l] = p + ~ (w-w)

pr[6=0] = 1-2p .

As before, we can estimate p from the actual observations (Tables 1 .4

and 1 .5) .

-36-

TABLE 1 .4 The one-step transition frequencies of
observed successive working set sizes
of the WATFIV program

- 37 - -38-

WATFN:

-1

T = 1000

0

w = 27

+1

WATEX :

1

T=1000

0

w = 18

+1

-1 241 4373 2-1 602 12499 130
0 12488 949293 12309

0 4374 1090491 4377

+1 2 4377 247
+1 142 12297 8o8

4617 1099241 4626
13232 974089 13247

T =4000 w = 19

T = 4000 w = 50
-1 0 +1

1 0 +1
-1 44 1348 0

-1 103 3180 14 0 1348 1102974 1362
0 3181 987591 3150 +1 1 1361 46

+1 14 3150 185

1393 1105683 14oB

3298 993921 3349

T = 8000 w 23

T = 8000 w = 57 -1 0 +1

-1 33 961 0
0 +1 0 961 1104527 990

+1 1 989 22-1 48 1301 2

0 1298 995142 1354

+1 6 1350 67 995 1106477 1012

0.0009 0 .9982 0 .0009 p = 0.0009

1352 997793 1423

0 .0013 0.9973 0.oo14 p=0 .0013 TABLE 1 .5

	

The one-step transition frequencies of
observed successive working set sizes of
the WATEX program

AUTOCORR. COEFFICIENTS OF WORKING SET SIZE MODEL

I I
200

	

400

	

WO

	

O00
LAS I I UNIT - 50 REFERENCES I

Fig. 1.23

POWER SPECTRUM OF WORKING SET SIZE MODEL

w

104

102

m2

6

101

100
100

	

200

	

400

	

100

	

200
FREQUENCY FRE0.ENCY
Fig. 1.24

	

Fig. 1.26

-39-

0
AUTOCORR . COEFFICIENTS OF WORKING SET SIZE MODEL

POWER SPECTRUM OF WORKING SET SIZE MODEL

-40-

300 400

In Figures 1 .23 and 1 .25, we compare the estimated correlation and

estimated power spectrum of the working set size string of the WATFIV

and WATER programs and their respective models, based on the central

tendency assumption . We note that the model is fairly successful in

capturing the amount of serial correlation and the general frequency do-

main behavior in the case of WATFIV programs . However, it overestimates

the correlation coefficients in the WATER program . Other tests suggest

that the behavior of the model is very sensitive to the choice of p .

Considering the small value of p as estimated by the actual programs,,

this sensitivity can be very undesirable . Therefore, the usefulness of

this model may be limited to the cases where the behavior of the model

can be validated by the actual observations for any chosen value of p .

1 .3 .3

In a multiprogramming system where programs compete for main memory

resources, a way of sharing memory among the processes is to allocate

memory apace according to each job's working set requirements . The moti-

vation behind this is that when the working set of a program is loaded

into the memory, the program can efficiently run in this environment

without putting heavy demands on the paging facility and other resources

of the computer . This approach to sharing memory is used by a working

set dispatcher and its variations . Successful implementations of these

dispatchers require a good estimation of the working set size demand of

the programs in the near future . This estimation is most possible by

observing the past behavior of the programs . In this subsection, we will

examine a number of approaches to estimating the working set size of a

single program, and will present the results of case studies concerning

the success of each method .
- 41 -

Earlier we have seen that the working set sequence of programs

generally exhibit a high serial correlation in short range intervals .

Therefore, in any estimation method which predicts the future working

set size of a program based on its past occurrences, we would like to

put the highest weight on the most recent observations .

A convenient point to stop the processing and estimate the next

working set size value is after the elapse of an interval which is equal

to the chosen window size parameter . These points are the inspection

points where a sample of the working set size sequence is taken . The

choice of a sample interval equal to the window size also facilitates

the implementation of a kind of WS dispatcher . In the next chapter, we

will see that a high performance modified WS dispatcher, which measures

the working set size at the same points, can be implemented with the

available facilities in many recent computers .

We have used three algorithms to predict the working set sizes for

the next execution interval . Let wi,i=1,2,3, . . . be a sequence of working

set sizes generated by a program, and which are sampled at the inspection

points which are T references apart . T is also equal to the window size

parameter . Denote by vi the predicted value of the true working set size

at point i . We went to estimate Gi+l
based on the past observations

wi, w i-1' wi-2	
wl' We are not assuming a particular model for the

working set sizes and, therefore, the following procedures are chosen

purely empirically .

-42-

This predictor places the highest weight on the most recent

observation and the weight given to the other observations de-

creases geometrically with age . When r is close to one, the

value
wi+l

is heavily influenced by w I . Therefore, in this

case, the prediction mechanism becomes very responsive to the

immediate changes in the sequence . As r approaches to zero,

the time required by the estimated value to respond to the

changes in the past observations, increases .

b) First order auto-regressive algorithm :

Let the working set size difference at time, I, be de-

fined by

dw I = wi - wi 1 .

For the actual programs, the observed average value of the

differences is close to zero . For instance, for WATEX and APL

programs with window size equal to 4000 references, the re-

spective average differences are 0 .032 and -0 .043 . Thus, we

can estimate wi+l
using the last difference value by :

"i+l = r w l + (r-1) w i + dw i

where again 0 < r < 1 .
43

The rate of response of the estimated value is controlled by

the choice of the parameter N . It also determines the amount

of past information that must be retained in order to estimate

the future working set size .

The predictive power of each algorithm is measured by the computed

mean square error, ME, and the relative error, E . Let k be the number

of observations . Define

MSE =

and
E = (MSE)

1/2

v

where w is the observed average working set size .

The performance of each algorithm tested on actual programs is shown

in Tables 1.6, 1 .7 and 1 .8, end also in Figures 1 .27 and 1 .28 .

Algorithm (a) is the most successful among the other algorithms in

predicting the working set sizes . The beat relative error for this al-

gorithm ranges between 17% to 28% in the experiments . The algorithm does

not seem to be very sensitive to the value of the parameter . However,_

in most cases r = 0 .5 is a good choice and gives en estimation error

-44-

a) Exponential smoothing algorithm :

Let r be the parameter of the algorithm . The working set
c) Moving average algorithm :

The estimate wi+1 is obtained by an equal weighted aver-
set size wi+l is estimated by :

N is the parameter of the al-age of the past N observations .

= r wi + (1-r) w 1

	

0 < r . 1 gorithm . Thus,

i-1 1
Y

(wiwi-N)

= r Y (1-r)k w i _k + (1-r
k=0

"i+l N k=i-N+l i N

comparable with the optimum performance of the algorithm in each case .

The inclusion of the difference quantity in algorithm (b) decreases

the accuracy of the prediction compared with the first algorithm . The

best result with algorithm (b) is obtained when the parameter of the al-

gorithm is kept small . The best relative error in our tests with this

algorithm ranges between l9"e to 42$.

The performance of algorithm (c) is very close to algorithm (a) .

The beat prediction relative error under this algorithm ranges between

18 to 27% . In our experiments, a good choice of N varies between 2 to

4 . The change in the relative error is fairly insignificant within this

range of the parameter .

Since the fluctuation of the working set size string usually reduces

as the window size increases, the relative prediction error improves for

large window sizes . However, wee can see instances in which this argument

does not hold . For example, in the case of APL programs, the relative

error with T = 8000 is higher than the relative error with T = 4000 under

all three algorithms . This indicates the inappropriate choice of a win-

dow size which frequently goes across the boundaries of the program

localities .

-45-

PREDICTION ERROR FOR VS SIZES - EXPONENTIAL SMOOTHING

200
. VDaV SITE 0000

2 4
N

Fig 1.28

3

-46-

110„- r vs. • 1YI VS,

AeL

YATEt

O 0

	

0,1

	

1'4

	

as

	

ae

	

1

PAMNETER I

Fig. 1.27

PREDICTION ERROR FOR VS SIZES - N POINT MOVING AVERAGE
200

100

D
D 5 5

Window size=4000

Window size=8000

TABLE 1.6

Average working set size=49

Average working set size=57

The prediction errors in working set size
estimation for WATFIV program

-47-

Min

Min

Window size=4000

Window size=8000

Average working set size=18

Average working set size=23

TABLE 1 .7 The prediction errors in working set
size estimation for WATER program

-48-

Min

in

exp . smoothing
(a)

auto-regressive
(b)

moving average
(c)

r ME E N MSE

0 .1 28 .9 0 .23 0 1 71 .0 0.37 1 47 .2 0 .30
0 .2 2 2 0 .21 0 .2 67 .5 0 36 2 25 .0 0 22
0 .3 24 .0 0 21 0 .3 70 .6 0 37 3 25 .2 0 .22
0 4 25 1 0 22 76 .3 0.38 4 23 .9 0 21
0 .5 27 0 0 .23 0 .5 83 .9 0 .40 5 22 .6 0 .20
o .6 29 .5 0 .24 o .6 93 .4 0 . 2

0 .7 32 .6 0 25 0 .7 105 .1 0 45
0 .8 36 .4 0 26 0 8 119 .1 0 7
0 .9 1 2 0 28 0 9 137 .4 0.51
1 .0 47.2 0 30 1 .0 159 .9 0 55

0 2 0 0 21 0 .2 67 .5 0 36 5 22 .6 0 20

exp . smoothing
(a)

auto-regressive
(b)

moving average
(c)

ME E r MSE E MSE

0 .1 io8 .4 0 .18 0 .1 118.8 0.19 1 105 .2 0 .18
0 2 102 .7 0 .18 0 .2 127.7 0 .19 2 101 .5 0 .18
0 .3 98 .6 0 .17 0 .3 138.2 0.21 3 110 .1 0 .18
0 .4 95 .9 0 .17 0 .4 149.9 0.21 111 .5 0 .19
0 .5 94 .4 0 .17 0 .5 163 .0 0 .22 118 .9 0 .19
o .6 94 .1 0 .17 0 .6 177 .9 0.23
0 .7 95 .0 0 .17 0 .7 195 .0 0 24
0 8 96 .9 0 .17 o.8 215 .1 0 .26
0.9 100 .2 0 18 0 .9 239 .1 0 .27
1.0 105 .2 0 .18 1 .0 268 .4 0 .29

o.6 94 .1 0 17 0 1 118.8 0 . 9 2 101 .5 0 .18

exp . smoothing
(a)

auto-regressive
(b)

moving average
(c)

r r ME MSE

0 .1 25 .6 0 28 0.1 57 .7 0 .42 1 43 .2 0 .36
0 .2 23 7 0 .27 0.2 58 .5 0 .42 2 29 .9 0 .30

0 3 24 4 0 .27 0 .3 62 .9 0 . 4 3 27.2 0 .29
0 .4 25 .7 0 .28 68 .8 0 . 6 4 23 .8 0 .27
0 .5 27.5 0 .29 0 .5 75 .9 0 . 8 5 24 .3 0 .27
0 6 29.7 0 .30 o.6 84 .4 0 .51
0 .7 32 2 0 .31 0.7 94 .4 0 .54
0 .8 35 3 0 .33 0.8 To6 .4 0 .57

0 .9 38 .9 0 .35 0 .9 120 .7 0 .6
43 .2 0 .36 1 .0 138 .4 o .65

0 .2 23 .7 0 .27 0 1 57 .7 0 .42 4 23 .8 0 .27

exp . smoothing
(a)

auto-regressive
(b)

moving average
(c)

ME MEEE ME

0 .1 122 .9 0 .23 0 1 154 .6 0 .25 1 139 .0 0 .24
0 .2 111 .6 0 .22 0 2 169 .2 0.26 2 116 .3 0 .22
0 .3 io6 .5 0 .21 0 .3 185 .8 0 .28 3 112 .2 0 .22
0 4 105 .2 0 .21 o .4 .204 .5 0 29 4 112 .2 0 .22
0 .5 106 .3 0 .21 0 .5 225 .8 0.31 5 114 .8 0 .22
o .6 109 .5 0 .2 0 .6 254 .0 0.33
0 .7 114 .2 0 .22 0 .7 277 .9 0.3
0 8 120 .6 0 .22 o .8 310.4 0.36
0 .9 128 .7 0 .23 0 .9 348 .6 0.38
1 .0 139 .0 0 .24 1 .0 394.5 0.40

o .4 105 .2 0 .21 0 .1 154 .6 0.25 3 112 .2 0 .22

Window size=4000 Average working set size=30

Window size=8000 Average working set size=38

TABLE 1 .8 The prediction errors of working set
size estimation for APL program

-49-

1.3 .4

	

Stack Distance String

Fore page reference string, rl,r2 ,r3 , . .,rt , . , the stack dis-

tance at time t, d t , is the number of distinct pages addressed since

the last reference to page r t . When r t is referenced for the first

time, then the distance can be set to some special value, say, infinity .

Then the stack distance string (or simply distance string) is the se-

quence dl,d2,d3	d t, . . associated with the string rl,r2'r3	rt , . .

The distance string provides most of the information in the refer-

ence string and the reference string, up to the identity of pages, can

be reconstructed from this sequence .

The distance string of actual programs tend to exhibit some common

properties which are readily verified . A majority of distances have

values close to one . We can see this point by examining the histogram

of stack distance string of a number of programs in Figures 1 .29, 1 .30

and 1 .31 . A large number of distances with values one and two indicate

that many successive reference addresses are in the same page, and there

are frequent occurrences of reference patterns like instruction-data-

instruction-data - where instruction and the respective data are in

different pages . Although the distribution of distances are heavily

biased toward very small values, the more interesting information in the

level of memory management problems lies in the region of relatively

higher distances .

The estimated autocorrelation function of distance string, Figures

1 .32 and 1 .33, show a sharp drop to values close to zero for lags greater

then zero . These estimates are computed by taking successive 16384 dis-

tances from different parts of the programs . This behavior suggests that

there is no correlation of practical significance in the successive stack

distances generated by these programs .

- 50 -

exp . smoothing
(a)

auto-regressive
(b)

moving average
(c)

MSE

0 1 203 .7 0 .37 0 .1 229 .5 0 . 0 129 .6 0 .30
0 .2 153 .3 0 .33 0 .2 206 .5 0 .38 127 .1 0.27
0 .3 13 .5 0 .30 0 .3 207 .6 0 .38 3 130 .4 0 .30
0 . 124 .6 0 .29 215 .9 0 39 4 0 .32
0 .5 119 . 0 29 0 5 228 .6 0 0 5 53 .9 0 .33
o .6 117 2 0 28 o .6 244 .9 0 . 1
0 .7 17 .5 0 .28 0 .7 264 .8 0 .43
0 .8 1 9 .7 0 .29 0 .8 288 .5 o .45

0 9 123 .7 0 .29 0 9 316 .6 o .47
1 .0 129 6 0 .30 1 .0 349 .7 0 .49

0 .6 117 .2 0 .28 0 .2 206 .5 0 .38 2 127 .1 0 .27

exp . smoothing
(a)

auto-regressive
(b)

moving average
(c)

r WE E MSE

0 .1 81 .6 0 .30 0 .1 71 .9 0 28 1 6 .5 0 .26
0 .2 66 .5 0 .27 0 .2 76 .0 0.29 2 59 .2 0 .26
0 .3 59 .9 0 .26 0 3 81 .9 0.30 3 63 6 0 .26
0 . 56 .6 0 25 0 .4 88 .6 0.31 4 64 .4 0 .27
0 .5 55 0 0 .25 0 .5 96 .8 0.33 5 66 .7 0 .27
o.6 54 .7 0 .25 0 6 105 .8 0.3

0 7 55 .2 0 .25 0 7 116 .3 0.36
0 8 56 .4 0 .25 0 .8 128 .4 0 .38
0 .9 58 .5 0 .25 0 9 142 .7 0 40
1.0 61 .5 0 .26 1 .0 160 .2 0 .42

o .6 54 .7 0 .25 0 .1 71 .9 0 28 2 59 2 0 .26

DISTANCES (7AFjy)
ARD

Fig . 1.29 distance

C
7v

NIS)OGRAM OF BACKURD
DISTANCES (7ATEA)

x

II

i S :I L	

Fig . 1.31

	

distance

Fig 1.30 distance

02

AUTOCOR. COEFS. OF STACK DISTANCE STRING - VATFIV

I
a ID

	

20

	

30
LAS DI WTS m PFFFA~rE4

Fig. 1.32

AUTBCOR. COEFS. BF STACK DISTANCE STRING - APL

- 52 -

Q

.. ;35}s- .:Lir
NJJ_J_i_7J_7~ija'_L_7_a_JJN_3 .7J • • ' •

	

•115JJ1YJ:'J .

0

CA
DISTAKC S (ArLj

CKJARO

0.1

7
U

4
CI
7av

0.D

-0.2

0

PSD OF STACK DISTANCES

.	.	.	'	I
1000

	

2000

	

3000
FREQUENCY
Fig . 1.34

- 53 -

4000

	

5000

When we plot the power spectrum of stack distances, Figure 1 .34,

we obtain a fairly flat spectrum which supports the previous observation

of the existence of a degree of randomness in the generated distances .

In a closer inspection of the estimated power spectrum, we can, however,

see that in both programs in the high frequency range, relatively sig-

nificant power lie on periods lees than ten instructions . Each period

determines the more frequently observed time it takes for the access

mechanism of each program to address the same page in two successive

references .

Because of its weak stochastic properties, the exact modeling of

this string does not seem to justify the effort . However, the observed

distribution of the stack distances can be a basis for strong program

models (Chapter 3) .

1 .4 CONCLUSION

In this chapter, we studied the properties of working set size and

stack distance strings of some actual programs .

We sew the working set size of the programs vary significantly

during the execution of a program . However, there are high correlation

in the neighboring samples and the extent of this serial dependence can

be measured by computing the estimated autocorrelation ecefficients .

It is inaccurate to assume that the distribution of the independent

working set size samples fit a normal distribution . The change of page

size parameter retains most of the periodical patterns of working set

size waveform, and as we increase the page size, we can see a gradual

reduction of the power in corresponding frequencies . The window size

parameter can drastically change the periodical characteristics of this

string . A notable effect, as we increase the window size, is the damping

of the high frequencies in the working set size string as it is observed

in some programs . The change in the data reference pattern in the high

level language formulation of an algorithm is reflected in the actual

machine references only after the other type of the references are fil-

tered out . In other words, the effect on the overall reference pattern

is very small .

The working set size models were considered and their ability to

capture the degree of the serial dependence of the string were examined .

The Markov model with reflecting barriers and central attraction can

come close to mimicing the working set sizes in this respect ; however,

the accuracy of the model is very sensitive to the choice of the values

for the parameters .

The algorithms for predicting the working set requirement of a

program in the near future, based on the past observations, were examined .

The exponential smoothing algorithm seems to give the best result . The

accuracy of the prediction when the window size changes, were discussed .

The analysis of the generated stack distances shows that the dis-

tribution of the distances is heavily biased toward small values . There

is no significant serial correlation between the successive distances .

A measure of the page locality transition periods were obtained by in-

specting the observed dominant high frequencies in the date .

- 55 -

1.5 BIBLIOGRAPHY

1 .

	

Coffman, E .G .Jr ., Denning, P .J ., "Operating system theory,'

Prentice-Hall, Inc ., New Jersey (1973) .

2 . Coffman, E .G. Jr ., Ryan, T .A . Jr., "A study of storage partitioning

using the mathematical model of locality " CACM 15, 3, (March

1972), pp 185-190 .

3 .

	

Cox, D.R ., Lewis, P .A .W ., "The statistical analysis of series of

events," Methuen and Co ., Ltd ., London (1966) .

4 .

	

Denning, P.J ., 'The working set model for program behavior,

CACM 11, 5, (May 1968) .

5 .

	

Feller, W ., "An introduction to probability theory and its appli-

cation" Vol . II, John Wiley and Sons, Inc ., N .Y . (1966) .

6 . Ghanem, M .Z ., and Kobayashi, H ., "A parametric representation of

program behavior in e virtual memory system," IBM Research

Report RC-4560 (October 1973) .

7 .

	

Jerkin, G .M . and Watts, D .G ., "Spectral analysis and its appli-

cations," Holden-Day, Inc ., San Francisco (1958) .

8 .

	

Kendall, M .G ., "Time Series", Griffin and Co ., Ltd ., London (1973) .

9 . Singleton, R .C ., "On computing the Fast Fourier Transform," CACM

10, 10 (October 1967), pp 647-654 .

10 . Singleton, R .C ., Algorithm 338, "Algol procedure for the Fast

Fourier Transform," CACM 11, 11 (November 1968) .

11 . Webb, C ., "Practical use of the Fast Fourier Transform (FFT) in

time series analysis," Applied Research Lab ., University of

Texas at Austin, ARL-TR-70-22 (June 1970) .

-56-

CHAPTER 2

COMPARATIVE STUDY OF PRACTICAL PAGING ALGORITHMS

2 .1 INTRODUCTION

The idea of virtual memory computers have received great acceptance

since the concept of a one-level memory store was introduced and effec-

tively implemented on the ICT Atlas Computer DD] . The architecture of

many computers has been changed accordingly, to provide a suitable host

for the implementation of the mechanisms and algorithms regarding the

address interpretation and management of the information in the storage

hierarchies (e .g ., IBM 360/85, Burroughs B6500, GE 645) . Because of this

development, the need for a careful study of the problems relating to the

efficiency of the operations in virtual memory computers soon emerged .

The study of paging algorithms has been one of the major concerns in de-

signing the policies for the dynamic organization of program pages [1, 3,

6, 13, 153 . The overhead involved in the paging operations, due to the

processing of the paging algorithm and the time to place and replace a page

in the memory hierarchy, necessitates the development of the efficient

paging algorithms which result in the speedy execution of the jobs and

the least amount of paging traffic .

In all levels of current and newly emerging memory technologies, we

can see the need for data management techniques similar to paging oper-

ations . One example is the control of data movement between very fast

(cache type) memories and the slower main memory devices . This technology

seems destined to stay around, especially if we look at the ever-increasing

speed of processors, while the speed of economical memories increases but

still legs behind . The exchange of data blocks between direct access de-

- 57 -

vices and mass storage facilities is another example which shows the need

for the scheduling of data between relatively slow memory devices .

Since the performance evaluation of the paging algorithms requires

processing of large amounts of data, valuable efforts have been directed

in developing efficient evaluation techniques [2, 12, 133 . In this chap-

ter, sane of the important techniques will be discussed .

The paging algorithms which we are going to consider in this paper

can be categorized into three different groups, based on their complexity

and the implementation costs . Some algorithms require large amounts of

processing and bookkeeping . Using these algorithms can be very costly

in terms of the space they need to keep the data, and in terms of the

execution overhead .

If we specify the performance of a paging algorithm with the number

of page faults it causes, then we can see that not all of the expensive

algorithms yield a performance level which can justify their costs . On

the other hand, we will show that some simple and efficient algorithms

give performances which are competitive with more elaborate algorithms .

We will consider three groups of algorithms . In the first group,

we put some well known algorithms such as LRO, WS, CLIMB and MIN . The

amount of storage required for bookkeeping and the processing cost of

these algorithms are set to be in the middle of our comparison scale .

The algorithms in the second group require the most amount of pro-

cessing compared to their counterparts in the first group . Members of

this group include PFF (counterpart of LRU), WS with variable window size

(counterpart of WS) . We will attempt to see whether the extra work in-

volved in the execution of these algorithms is justified in the final re-

sult .

- 58

The more practical algorithms fall into the third group . All the

algorithms in this group require the least amount of processing compared

to their counterparts in the other groups . They can use the hardware

facilities available in most virtual memory computers very effectively

to manage their bookkeeping requirements . The use of these algorithms

becomes more advantageous by keeping down the warhead when the central

processor is slow, or there is a need to have a small and efficient

memory manager as part of a supervisor . Within this group, we discuss

FIFO, CLOCK (two versions) and Modified WS (MiS) .

Inclusion of the program model into the study of the paging algor-

ithms is important because the use of the model can broaden the scope of

the study . We will use the independent reference model which is tractable

for analysis and simulation .

In this chapter, we will start by giving the description and proper-

ties of a number of paging algorithms . Whenever an important evaluation

technique is available, it will be presented . In sane cases, the analy-

tical results of the independent reference model will be given too . This

chapter concludes by giving the performance result of most of these algo-

rithms on actual program traces, and independent reference models con-

structed,based on actual programs .

2 .2 THE VIRTUAL MEMORY COMPUTER

Consider a two-level memory system where at each level the memory

is partitioned into equal sized consecutive words, generally called page

frames . The transfer of the information between the two levels is done

in a unit of a page . The address space of the program running in this

hierarchy is also partitioned into pages . Program pages are initially

mapped to the page frames in the secondary level . A program, with some

- 59 -

of its pages loaded into the first level memory, issues references to

its logical address space which, in turn, is interpreted and mapped to

actual addresses in the primary level . When the program addresses a

page which is not in the main memory, a page fault occurs . At this time,

the supervisor halts the execution of the program and starts loading in

the requested page from the secondary storage . If the allowable space

of the program (memory capacity or buffer capacity) in the first level

is exhausted, one of the pages of the program must be copied back (if it

bad been modified) to the secondary level to make room for the incoming

page . The decision to select a page to be pushed out of the memory is

taken by a paging or replacement algorithm . When the missing page is

brought into the main memory, the delayed program can resume its execution .

If the replacement selection is always done from the pages of the program

which has caused the page fault, the algorithm is said to organize the

program pages on a local basis . In a multiprogramming system where more

then one program may be active and they compete for main memory resources,

a paging algorithm is said to work on a global basis if it considers all

the pages of the active programs as a common pool and, at the time of a

page fault, it may replace a page from a program which has not necessarily

generated the fault .

The allocated space of a program in the main memory can either re-

main fixed during the entire execution of the program (fixed memory size)

or it can very according to the requirements of the program (variable

memory size) .

The objective of the paging algorithm is to organize the program

pages in such a way that the likelihood that a page is found in the main

memory (or first level memory) when it is referenced, is increased . The

-6o-

common criterion to compare the performance of paging algorithms is the

number of page faults that a program experiences during its execution

for a given memory capacity . Therefore, for a fixed memory size, m, and

under the replacement algorithm, A, define the page fault rate or miss

ratio, FA(m), as the ratio of the number of page faults over the total

number of references . Denote the success function by 1 - %(m)-

For the variable size memory algorithms, we substitute for m the

average memory size over the total execution time . The average memory

size is obtained by summing up the memory sizes at the time of each ref-

erence and dividing the total by the number of references . This criterion

is called virtual space-time product versus the page fault rate . Another

alternative criterion to compare paging algorithms is the real space-time

product versus the page fault rate . This criterion takes into account

the cost of page transfer time in terms of the main memory space occupied

and idle during the transfer . This can be summarized as the curve of

k

[I(1)mi+I'(1)-C*mi3/(k+F*C) versus page fault, where m i is the memory
i=1

size at the time of reference i. C is the time it takes to read a page

in terms of the number of references, k is the total number of references,

and I(i) and I'(i) are indicator functions such that

and

0

1

if reference i causes page fault

otherwise

if I(i) = 1

if I(1) = 0

(0

,J
1

1

Some authors use a virtual space-time product versus page fault rate

- 61 -

which is similar to the earlier one except the memory sizes are normalized

to the number of actual program references k .

We will use the first representation because it does not involve the

parameter, C, which can assume different values in different components .

2 .3 INDEPENDENT REFERENCE MODEL

For ame of the paging algorithms in this chapter, we will give some

analytical results for the performance, and the average amount of main

memory used by a program which generates reference sequences according to

the independent reference model . We will extensively study this model in

the next chapter . For our purpose here, it suffices to mention that this

model can be a very good predictor of the performance of actual programs

under many replacement algorithms [Ch . 33 .

In the independent reference model, the sequence of page references

rl, r2	rk are iid random numbers with probability density function

[p i, p2 , . . .,pn3 where,

Pr[rti3 = pi

with n being equal to the total number of model program pages . Without

loss of generality, we label the page names so that p1 ? p2 > .. ' Z Pn'

2 .4 DEMAND PAGING AIGORITIAI4

In the remaining part of this chapter, we will do a comparative

study of a variety of paging algorithms end measure their performances

and the relative amount of processing and bookkeeping which is involved

in each of them . The most important evaluation techniques will be men-

tioned in each case .

The following algorithms are considered :

RR (random replacement)

FIFO (first in first out)

-62-

LRU (least recently used)

CLIMB

CLOCK

MIN

WS (working set)

WSVT (working set with variable window size)

PFF (page fault frequency)

WS (modified working set)

WMIN (variable memory size MIN)

For the following discussion, we denote by n the total number of

program pages and by m the main memory size (m < n) . All algorithms are

demand paging ; i .e ., a page will be brought into the memory when it is

requested .

2 .4 .1

	

RR (Random Replacement)

At the time of a page fault, this algorithm will replace, at random,

one of the pages from the content of the main memory . Therefore, it is

not required to keep any information about the past paging activity of

the program . We can expect poor performance from this algorithm because

it replaces the pages indiscriminately and, therefore, it might remove a

page which is going to be referenced again in the near future, or else

it will retain an idle page for an unnecessarily long time .

For the independent reference model, the long run page fault rate

is equal to (see Appendix 2 .7 in this chapter) :

. I rip L pi
seQ jes i i}s

where

G = X ' I pi
sEQ ics

- 63 -

and Q is the set of all combination of m numbers out of n .

2.4 .2

	

FTFO (First Tn First flt)

The program pages are ordered based on the time of their first

arrival into the me in memory . At the time of a page fault, the page

which was first referenced is removed .

This algorithm has some unusual behavior . The function of page

fault rate with respect to increasing values of memory sizes is not al-

ways non-increasing . It is also known that the initial buffer content

(the set of pages which are initially loaded into the main memory prior

to the execution of the program) may have a significant affect on the

final number of faults .

For the independent reference model, the FIFO fault rate is equal

to the RR fault rate at equal memory sizes [5] .

It is interesting to see that even for the actual programs the per-

formance of FIFO is close to RR [1] .

2 .3 .4

	

LRU Least Recent Used

This is by far one of the most discussed replacement algorithms .

The algorithm maintains a stack of the main memory page names based on

the time of last reference . The most recently used page is on the top

of the stack and the least recently used page is at the bottom of the

stack. At each reference to a page in main memory, the stack is updated

by moving the page name to the top of the stack and pushing the rest of

the page names one position down . At the time of a page fault, the page

which has not referenced for the longest time (the page in the bottom

position in the stack) is removed and the new page is placed on the top

of the stack .
-64-

The LRU algorithm is an important member of a class of paging algo-

rithms called stack algorithms [13] . An algorithm is a stack algorithm

if the buffer content of size m is a subset of the buffer content of size

m+l at each reference time and for all values of m . In [13], an efficient

algorithm is presented which can be used to evaluate the performance of

stack algorithms for the entire range of memory capacities . For each

reference, this algorithm generates a number d, called the stack distance,

which has the property that if d > m for any memory capacity less than or

equal to m, this reference will cause a page fault . Therefore, for a

sequence of references to evaluate the number of page faults for all

memory capacities, one needs only to generate stack distances Then the

number of faults for a memory of size m is simply the total number of

stack distances greater than m .

The performance of LRU is generally superior to FIFO (Figures 2 .1,

2 .2, 2 .3, 2 .4) because it uses the recent past history of the references

to predict the future page requirements of the program . The implementation

of LRU in its ideal form requires maintaining stacks end the stack oper-

ation can be costly . We will see later that by using a much less complex

algorithm (CLOCK), we can approximate the operation of the LRU and get

performance which is very close to LRU .

A similar algorithm is used in I3 3850 Mass Storage Facility [4] to

schedule blocks of data between the direct access devices and mass storage

system .

The long run page fault rate of the independent reference model under

LRU is obtained in [11] and [5] and is equal to

m
P

i f
FLRU(m) _

	

D1 2(a) . 11 D s

	

(~)
ssQ

	

i=l
.T]

- 65 -

where

m-i+l

Di(s) = 1 - Y

and a = (J1, j2, . . .,J .) and Q is the set of all permutations of m out of

n . The size of the set Q is equal to m .(m) .

Another result obtained for LRU on the independent reference model

is given in [8] . Motivated by actual observations, they show the inde-

pendence of the LRU miss ratio from the page size by giving an upper

limit to the difference of approximate LRU fault rates with two different

page sizes .

2 .4 .4

	

C

This algorithm works as follows : A stack of all pages in the main

memory is maintained . At the time of a reference to a page inside the

memory, the position of that page is interchanged with the page immediately

above it (if any) in the stack . Therefore, if a page is frequently ref-

erenced, it will migrate to the top of the stack . At the time of a page

fault, the page on the bottom of the stack is removed and the new page

goes to the bottom of the stack . This algorithm was proposed in [16]

for self-organizing files . The idea is that the files (or pages, in our

case) that are frequently used will be likely to remain in the faster

memory . CLIMB, as a paging algorithm for actual programs, has the dis-

advantage of making the wrong decision on removing a page for traces

which have long runs of page reference sequences like . . .xyxyxyxy

(e .g ., x=instruction reference and y=date reference) . In such cases, the

algorithm replaces a page which is going to be referenced again immediately

-66-

after it is removed . The performance of CLIMB is compared with other

algorithms in Figures 2 .7 and 2 .8 .

For the independent reference model, CLIMB does generally better

than LRU (Figure 2 .8) . Among all the algorithms we have considered, this

is the only algorithm for which the independent reference model gives an

incorrect estimation of the relative performance of the actual programs

under two (CLIMB and LRU) algorithms .

2 .4 .5

	

CLOCK

This algorithm is most widely known as the one used in the Multics

operating systems . It is basically a very simple algorithm with a good

performance . Associated with each page in main memory is a reference

bit (or use bit) . A list of the names of the pages present in main mem-

ory is maintained . A pointer scans through the list in a circular path .

When a page is addressed, its reference bit is set to one . When a page

fault occurs, the pointer starts searching the list from its current

position . As the pointer moves, it turns off the use bit of all pages

on its way . The first page with the zero flag (reference bit) is removed

and is replaced by the new page . The reference bit of the new page is

set to one and the pointer stays there until the time of the next page

fault . This algorithm approximates the behavior of Laid in a very effi-

cient way . The implementation of CLOCK is generally very easy using the

capabilities of many small and large virtual memory computers . The over-

head of processing this algorithm is much less than LRU . The rate of

paging activity can be effectively monitored by measuring the average

speed of the pointer . Clearly a high pointer speed indicates heavy

paging activity . This information can be used by the memory allocator

- 67 -

to tune the memory requirement of active programs in a multiprogramming

system .

In Figure 2 .7, the performance of CLOCK is compared with LRU . We

notice that the performance of CLOCK is very close to LRU for most of the

memory sizes .

There are other variations to the CLOCK algorithm . In one scheme,

which we refer to as second change CLOCK, after a page is brought into

the memory the flag is set to one and the pointer moves one position for-

ward without turning the flag off . Therefore, as the results of upcoming

faults, the pointer has to pass over this page at least twice until it

can be removed by an incoming page . In our experiments, the measured

performance of this algorithm is just about the same as the usual CLOCK

algorithm .

2 .4 .6

	

MIN

The significance of this algorithm is that it gives the minimum num-

ber of page faults among all fixed memory size algorithms . In one of the

earliest papers about paging algorithms, Belady [1] describes this algo-

rithm . Later in [13], it is proved to be optimal .

At the time of a page fault, this algorithm removes a page which is

not going to be referenced for the longest time in the future . To process

this algorithm, we, therefore, need a complete knowledge of future ref-

erences and clearly it is not realizable in actual situations . However,

the P N algorithm is valuable when we want to see how well other algo-

rithms perform with respect to the optimal strategy .

The MIN algorithm is a stack algorithm. Therefore, for a reference

trace, we can efficiently measure the performance of this algorithm for

-68-

the entire range of memory sizes . In [13] an evaluation technique is

given which requires two passes over the reference string . In the first

pass, a sequence of forward distances (forward distance is the number of

distinct pages referenced until the next reference to the current page)

is generated . In the second pass, the reference string and forward dis-

tance string are scanned to generate the sequence of MTh stack distances .

The MIN stack distance (like the LRU stack distance for LRU) is the mini-

mum memory capacity associated with the referenced page, such that no

page fault occurs if the optimal strategy is used up to that point . In

[2], it was shown that the MIN stack distance at each reference time is

a function of past references and, hence, to generate the MIN stack dis-

tances no look-ahead is necessary . In other words, once the next refer-

ence is determined, it is possible, by using the past history of refer-

ences, to find the associated MIN stack distance . Based on the algorithm

presented in [2], Lewis and Nelson [12] give an algorithm which generates

the MIN stack distances and LRU stack distances in one pass over the ref-

erence string . In the evaluation of MIN and LRU algorithms, we have

mostly used their algorithms .

The fault rate of the MIN or OPT algorithm for the independent ref-

erence model is given by [5] :

n

FOpT(m) _ I Pi -
i

(IBM)

The remaining algorithms are variable space paging algorithms .

2 .4 .7

	

WS (working Set) [6,7]

This algorithm removes a page only if it hasn't been referenced in

- 69 -

the pest T references . The parameter T is called the window size . The

working set at time, t, WS(t,T), is the set of distinct pages which has

been referenced in the interval (t-T+l,t) . The working set size at time

t, ws(t,T), is the number of pages in the working set . The average

working set size is defined by :

k

we(T) _ (1/k)

	

[w(t,T)]
t-=1

A multiprogramming virtual memory system which uses a WS dispatcher,

only dispatches the program which has all its working set in the main

memory .

In the MANIAC II computer [14], the working set mechanism is actually

built into the hardware . Each page has a register associated to it . When

a page is referenced, the value T is loaded into the corresponding regis-

ter . At each general reference, all registers are decremented by one .

The first register to become zero will have its page removed from memory .

The working set dispatcher in its ideal form is not simple to imple-

ment . Nonetheless, it has very useful properties which make it desirable

as a paging algorithm . By using the WS strategy, the memory allotment of

the programs become responsive to the locality (loosely, the set of pages

which are heavily referenced in a time interval) changes of the program .

The performance of this algorithm is compared with other algorithms

in Figures 2 .1, 2.2, 2 .3, 2 .4 , 2 .5 and 2 .6 .

	

There is an efficient

technique [5,17] to evaluate the performance of WS for the entire range

of the parameter T . The inter-reference statistics can be used to find

the average memory size and the fault rate of the WS algorithm : the

inter-reference period, xt , at time t is the number of references since

the last reference to the page addressed at time t . If a page is ref-

-70-

erenced for the first time, we set the inter-reference at that time equal

to infinity . Let I(.) be an indicator function which assumes the value 1

if the expression inside the parenthesis is tore and 0 otherwise . For a

reference string r1 , r2	rk, define g(x) as

(k~

g(x) = (l/k) L

	

) •
t=l

A page fault can occur if

	

1 > T; therefore,

T

F,s[ws(T)] = 1 - L g(x) .
x=1

The average working set size is obtained from

T-1 t

ws(T) = T - ~ L g(x) .
t=1 x=l

For the independent reference model, the fault rate probability is

equal to the product of the probability that a page hasn't been referenced

in the pest T references and the probability that it will be addressed in

the next reference, summed over all pages, i .e .,

~n'

FWS[ws(T)] = i, (1-PI)Tpi

	

(IPM)
i 1

The average working set size is the probability that a page is in

main memory summed over all pages . A page is in memory if it has been

referenced et least once in the pat T units of time (or is equal to one

minus the probability that it has never been referenced) :

n

ws(T)

		

(1-pI)T]

	

(Ita'i)
1=1

71 -

2 .4 .8

	

WSVT (WS with Variable Window Size)

The choice of the working set parameter T for WS strategy has always

been a problem . In [6], Denning originally suggested that T should be

equal to twice the time required to load a page block . This choice of T,

of course, does not take into account the paging characteristics of the

program and, therefore, cannot be considered a right choice in all cases .

The tradeoff in choosing the size of T is between inefficient use of the

memory (for T too large) or suffering a high page fault rate (for T too

small) . Thus, if the overall paging behavior of the program is initially

unknown, the natural thing to do is to use the observed recent past paging

behavior of the program to determine dynamically the size of T for the

near future . In doing so, one can specify an acceptable range for the

paging activity of the program by setting lower and upper limits on the

page fault rate of the program . At the decision points, if the page

fault rate had been higher then the upper limit, one increases T, end if

it had been lower then the lower limit, one decreases T [7] . Part of the

problem with this approach is the extra processing time at the decision

points and the choice of the lower and upper page fault rates . The moat

significant problem, however, is that it is not usually known how sensi-

tive the paging activity is to changes in the window size and whether

observed high paging activity occurs because of a locality change (whe e

increasing T is the incorrect decision) or occurs because of an actual

increase in the locality size .

We tried a version of variable size WS to see how the performance

of this algorithm compares with fixed WS strategy (Figure 2 .9) . In our

algorithm, we start with a given T and follow a normal WS algorithm until

a page fault occurs. At this point, the page fault rate (obtained by

-72-

measuring the time between the last two faults) is compared with the

given lower end upper limits, and if the observed rate- falls outside the

acceptable range, we increase or decrease the window size accordingly

with the amount equal to some fraction of the window size .

In [16], a page partitioning algorithm is presented which assumes a

window size parameter for each page, Tpage- This is a generalization to

the idea of having two different window size parameters for data references

and instruction references . The parameter Tpage is the maximum permias-

able unreferenced interval for which a page can still be kept in the .

memory. Tpege is obtained by taking into account the cost of keeping a

page in main memory until its next reference and the cost of processing

a page fault .

2 .4 .9

	

PFF (Page Fault Frequency) [3]

The objective of this algorithm is, like WSVT, to respond to the

page demand of the programs dynamically . PFF adapts itself to the paging

characteristics of programs by using the measured page fault frequency to

change the memory capacity directly . Whenever a page fault occurs, if

the fault frequency lies above the given critical value P, then the mem-

ory capacity is increased, and if it lies below this value, the memory

capacity is decreased . The critical fault frequency P is the parameter

of this algorithm . When shrinking the memory, only those pages are re-

moved which have not been referenced since the last page fault time .

The performance of this algorithm is compared with WS in Figure 2 .9 .

We found this algorithm sometimes too responsive to the changes of the

program paging characteristics . In the same way, WSVT makes incorrect

decisions during the locality changes .

-73-

2 .4 .10

	

PWS (Modified WS)

One of the disadvantages of the WS algorithm in its idealized form

is the implementation complexity and the overhead involved in processing

the algorithm. 1S is intended to reduce the overhead to a great extent

while maintaining the positive points of the actual WS algorithm (like

capability to respond to the locality changes of the program) .

This algorithm uses the reference bit (use bit or flag) associated

with each page . This feature is commonly available in many small and

large virtual memory computers . Unlike the WS algorithm, *S does not

require the information about the last time a page was used . A window

size parameter, T, is defined in this algorithm similar to the same par-

ameter in the WS algorithm . As the program is running, only after the

elapse of T time units does the algorithm interrogate the reference bits

to determine which pages have been referenced in the past interval .

These pages are kept in the memory and constitute the working set for

the next interval . The steps of the algorithm are as follows :

- Initialize the reference bits to zero (off) .

- For an interval of length T, repeat 1 to -3

1) Next reference (page)

2) If it is a new page, increase memory capacity by one

3) Set reference bit to one (on)

- After T is elapsed, do 4 to 5
4) Remove all the pages which have not been referenced

(use bit = 0) in the last interval

5) Set the use bit of the remaining pages to zero (now the

main memory size is equal to the number of pages which

have been referenced in the last interval)-

- 74-

The performance of WS is compared with WS in Figure 2 .11 . We can

see that MWS does as well as WS for most memory sizes and is significantly

superior to LRU. We also notice that for a given window size T, the MWS

algorithm gives a larger average working set size compared to WS with the

same parameter .

For an independent reference model, assume that the page reference

string is divided into intervals of length T (see the sketch) . let the

first reference of an interval I be

Y I , I

	

I

	

I+1

rj

	

k

	

rj+k

T

	

T

	

T

rj . Denote the kth reference of this interval by rj+k . The probability

that a page i is present in the memory at time j+k is equal to the pro-

bability that it has been referenced at least once in the past T+k units

of time . This probability is equal to

I-1

1 - pr
1
f page i hasn't been referenced in the past
T+k references

C1 - (1-pi) T+k
I

Therefore, the expected number of pages present in the memory is the

above expression summed over all pages, i .e .,

n

[1 - (l_p i)T+kJ

1=1

The average number of pages in the memory at the end of each inter-

val is denoted by mws(T) and is equal to :

-75-

mws(T) = 1
T

T n

I Y Il - (1- pi) T+k1

k=1 i=1

•

	

T

Y 1 1 - (1- pi)T+kl

i=1 k=11

•

	

T

[T - (1- pi)
T Y (1_pk

l

l

1=1

	

k=1

•

	

1 - (1- p)T+1

1(=,1 [T - (1- pi)T (
1 - (1- pi)

	

-)]

1

	

(1- p
i)T

	

1 X
(1	pi) l .

T i=1 Pi

	

T i=1 pi

In the interval I,the first reference to page i causes a page fault

only if this page hasn't been referenced in the last interval I-1 . There-

fore, the number of page faults during interval I is the product of the

probability that a page has not been referenced in an interval of length

T by the probability that the same page is referenced, at least once, in

an interval of the same length, summed over all pages . Thus, the page

fault rate of the DWS algorithm is obtained by the following expression :

FWS [mws(T)J

	

Cl - (I- Pj)T) (I- Pi)T F
1=1

T 1i=1
(1-pl)T

	

L1(1-P1)
I

As we will show shortly, FWS and FWS, with the same average memory

usage, are very close together for the independent reference models which

are constructed, based on the paging behavior of an actual program .

-76-

[IE241

2 .4 .11 VMIN(Variable Memory Size MIN) [201

Like MIN for the class of fixed memory size algorithms, VMIN

gives the least fault rate among variable size memory algorithms in the

plane of average virtual space-time/page fault rate . This algorithm

removes a page which is not going to be referenced in the next T units

of time . By changing the T parameter the plot of average memory size

versus page fault rate is obtained . This algorithm is proved to be

optimal by the following argument . Let U be the cost associated with

keeping a page in memory per reference . Let R be the cost of processing

a page fault . After a reference to page i, a decision must be made by

comparing the cost of keeping this page in the memory until the time of

next reference to the same page, with the cost of immediately removing the

page from the memory and facing a page fault processing cost at the next

reference to this page . The cost associated with the former decision is

equal to C 1 = d .U, where d is the time until the next reference and the

cost associated with the letter decision is equal to C 2 =R. Let R/U= T,

then C1= d .U and C2 = U.T . Regardless of the value of U, the optimal

algorithm keeps page i if d? -T end removes it immediately after it is

referenced if d< T .

For a given T, the fault rate of the VMIN algorithm is equal to the

fault rate of the WS algorithm with the same window size . The average

memory usage of the VMIN algorithm can be obtained from the average

working set size for any window size if we note that, at the time of each

page fault using a WS algorithm, the VMIN algorithm, having been used in-

stead, would have kept one less page during the pest T references . This

is because VMIN removes a page immediately if it is not going to be

referenced again in the next T time units . Let we(T) and FWS be the

- 77 -

average working set size and the fault rate of the WS algorithm for window

size T, respectively . Denote vmin(T) the average space time product of

the VMIN algorithm, then

vmin(T) = ws(T) - T •

For the independent reference model the average memory size and

page fault rate are obtained by [19] :

n

FVMIN [vmin(T)]
= i
X
1 p

i (1- pi)T
-

(n'

vmin(T) = n-~(1-P1)T(1-TPi)m i=1

2 .5

	

TEST RESUI12S

The performance of the paging algorithms described in the previous

section was obtained using the trace of four computer programs . The

testing environment is a simulated virtual memory system with page sizes

equal to 512 bytes .

The programs used in the experiments are :

WATFIV : Trace of Watfiv compiler while it is compiling a Fortran

program called WATEX (1048662 references) .

WATER : Trace of a Fortran program to find a minimum of a multi-

parameter function (1108485 references) .

APL :

	

Trace of an interactive session with the AFL processor

(1108485 references) .

FFT1 :

	

The trace of Fast Fourier Transform using the Cooley-

Tukey algorithm (1108485 references) .

-78-

In the presentation of the results the initial page faults are

excluded .

In Tables 2 .1, 2 .3 and 2 .5 the page faults generated by WATFIV,

WATER, and AFL programs under a number of fixed memory size replacement

algorithms are shown (the results for WS are also shown for comparison .)

In Figures 2 .1, 2 .2, 2 .3, and 2 .4 the performances of LRU, FIFO, MIN,

and WS on four different traces are shown . We note that the relative

performances of these algorithms with respect to each other are roughly

the same . The FIFO algorithm gives the worst performance among them .

The performance curve of the WS lies between LRU and MIN in most cases .

However, in Figure 2 .4 we note that, on the average, for certain memory

sizes, the WS algorithm gives a smaller page fault rate for a given

average memory usage compared to the MIN algorithm .

In Figures 2 .5 and 2 .6 the performances of LRU (a fixed memory

size algorithm) and WE (a variable space algorithm) are compared with the

optimal algorithms corresponding to each class using the traces of the

WATFIV and AFL programs . VMIN, which is optimal among the variable space

algorithms, gives significantly better performance .

In Figure 2 .7, the performances of CLOCK and CLIMB algorithms are

compared with LRU, using the WATFIV and WATEX programs . It is interesting

to observe that the CLOCK algorithm, with its simple structure, gives a

performance which is very close to the more elaborate LRU algorithm .

CLIMB does not seem to be very suitable as a paging algorithm .

Its performance is comparable with FIFO, and it is usually worse than

LRU on actual traces .

In Figure 2 .8, the performances of LRU and CLIMB on two indepen-

dent reference models are shown. As it was expected for independent

- 79 -

reference models, CLIMB gives lower page faults than LRU .

The fault rate of variable space algorithms is shown in Tables

2 .2, 2 .4, and 2 .6 for WATFIV, WATEX, AFL, and FFT1 programs .

In Figure 2 .9, the performance of FFF and WSVT (working set with

variable window size) is compared with the WS algorithm on the traces of

the WATFIV and WATER programs . The PFF algorithm does slightly worse

than WS . In Figure 2 .10, the memory demand of PFF versus time is shown .

We can see that this algorithm constantly changes the main memory space

of the program. Each sharp drop in the memory size is followed by a high

demand for a larger memory size in the coming references .

The slight improvement which is obtained by using WSVT over the

WE algorithm does not justify the extra work which is required to change

the window size according to the paging characteristics of the program

(Figure 2 .9) .

In Figure 2 .11, the page fault rate of MWE (modified WS), LRU and

WS are plotted for the WATFIV and APL programs . We note that on the ave-

rage WE usually does better than LRU . The performance of MWS is only

slightly worse than WS . Considering the efficiency of MWS, the use of

this algorithm is definitely more advantageous than WS .

In Figure 2 .12, the average memory usage of the MWS and WS algo-

rithms with respect to the window size parameter T is shown . For a

given T, MWS gives a larger average memory size . If we let mws(T) and

ws(T) be the average memory size with window size T for MWS and WE algo-

rithms, respectively, then ws(T) <_ mws(T) < ws(2T) .

We basically get the same results when we compare the performance

of MWS and WS on two specially constructed independent reference models .

-80 -

IRM1 and IRM2 are two independent reference models which are parametrized,

based on the actual trace of the WATFIV and APL programs using the AO

inversion technique described in the next chapter . In Figures 2 .13 end

2 .14, the performance and average memory (buffer) size of these two

models under the WS and WS algorithms are shown . The compatibility of

these results with those we obtained using the actual traces shows that

there is a potential for using models instead of actual traces to pre-

dict the behavior of certain algorithms .

2 .6

	

CONCLUSION

In this chapter, we have presented some new results on the perfor-

mance of paging algorithms, and have reviewed many major findings in

this area .

Because of the ever-increasing demand for on-line direct accesi-

bility of very large data spaces and the current gap between the process-

ing speed and the speed of cost-effective memory components, the use of

paging algorithms in different echelons of memory hierarchies is inevitable .

We have examined two major categories of paging algorithms with

fixed or variable size buffers . Considering the uncertainty of the exact

pattern of future references, the algorithms which, in their page selec-

tion process and buffer adjustment decisions, use the least recently

referenced criterion, seem to be most effective . Among such algorithms,

however, the implementation of the exact LRU and WS schemes in a typical

processing environment is costly and involves provision of sizable hard-

ware and software machinery. In an alternative approach, one can signifi-

cantly bring down the overhead by using simpler and more practical algo-

rithms, like CLOCK and WS, and still achieve comparable performance .

One of the reasons which makes the variable size buffer algorithms

- 81 -

more effective then the fixed size memory algorithms is the capability

to respond rapidly to the changes in the program reference pattern .

But being too responsive can sometimes degrade the performance . Never-

theless, it is important to have this flexibility to a certain degree .

We have seen that if an algorithm has total freedom to change its buffer

size, it will do so very frequently . Since it is not conceivable that

this freedom can be provided in an actual, say, multiprogramming environ-

ment, we should expect the performance of such algorithms under more

realistic conditions to degrade accordingly . In this respect, the use of

algorithms like WS, particularly on smaller computers, seems more reason-

able . This algorithm, despite its simplicity, can respond sufficiently

to the dynamic buffer requirements of programs and meanwhile moderate the

demand on the service of the memory manager .

The results of the study of fixed size memory algorithms may be

applicable to the overall performance of systems which use a global re-

placement scheme . In such a system, the collection of active programs can

can be considered as a single larger program running in a fixed size buf-

fer . The dispatching of jobs is then analogous to the locality transiti-

ons in a single program .

We have presented some examples of the potential of program models

in predicting the realistic performance of some of the paging algorithms .

The development of this idea is pursued in the next chapter .

-82-

LRU . FIFE. KIM AND US PERFORMANCES (VATFIV PROGRANI

LRU . FIFO. MIN AND VS PERFORMANCES (VATEX PROGRAM)
)

	

I

a FIFE

- 83 -

30 -5
0

tNU, FIFO . MIN AND VS PERFORMANCES (An PROGRAM)

•

	

FIFE

100

	

150

	

200
MEM MY SI2E (PAGES)

Fig . 2 .3

LRU . FIFO . MIN AND VS PERFORMANCES (FFT1 PROSRAMI
1

F FIFE

a
a

a

t

20

	

40
MEN MY S72E (PAGES)

Fig . 2 .4

-84-

60

LRU. MIN : VS AND VMIN PERFORMANCES IVATFIV PROGRAM)

lo "I

20,4

LRU . MIN. VS AND WIN PERFORMANCES (APL PROGRAMI

20

	

10
IAVERAGEI MEN BRY SIZE (PAGES)

Fig . 2 .6

- 85 -

10 1

lo'l

wI

-10 3
5
4

10-3

10,4
0

LRU. CLBC AND CLIMB PERFORMANCES IVATFIV & VATEX)

20

0

	

20

	

40

	

GD
MEN BRV SIZE (PAGES)

Fig . 2 .7

PERFORMANCE OF LRU AND CLIMB ON INDEP . REF . MODELS

100

	

I

. alma

1
40

MEMORY SIZE (PAGES)
Fig . 2.8

-86-

00 80

00

60

40

0

VS, VSVT. PFF ANC VMIN PERFORMANCES

	n
20

	

40

	

60

(AVERAGE(MEN ORY SIZE (PAGES)

Fig . 2.9

CHANGE OF MAIN MEMORY CAPACITY IN PFF .I/P'2000IVATFIVI

208000 400000 608000 009060 100gg00

REFERENCES

Fig . 2 .10

_g7 _

00

I

,

rt,

IQ-4
0

MRS. VS A 1511 FAULT RATES FOR VATFIV AUG APL PROGRAMS

20

	

40

	

60

(AVERAGE) MEMORY SIZE

Fig. 2.11

VIKCOV SIZE T

Fig. 2.12

-88-

00

PERFORMANCES OF MVS AND VS ON INDEP . REF . MODELS

20

	

40

	

w
AVERAGE MEMORY SIZE (PAGES)

Fig . 2 .13

MUS AND VS AVR . MEMORY SIZES VS T ON INDEP .REF.MODELS

VINDaV SIZE T
Fig . 2 .14

89

80

TABLE 2 .1 Performance of Different Paging Algorithms on WATFIV
Program

- 9 o -

ws

FIFO LRU CLING CLOCK MIN
Window
S a

Fault
Rate

5 .121616 .102273 069809
10 .053024 .043416 .027715 100 .o43991
15 .031814 .017306

16 .o24703 .o16139 300 .024823

20 .022607 .o16972 .029459 .017815 .012690 500 .017220

23 .014686 .010765 700 .015488

24 .014272 .010210
25 .017710 .013829 .oo9678 800 .o14256
30 .ooi561 .011864 .016727 .012854 .007337 1200 .012235

33 .011030 .oo6246 14o0 .o114il

35 .ol4279 .oio452 .005594 16oo .oio465

0 .012360 .ooB463 .010332 .009433 .oo4237 2200 .007766
3 .007404 .003378 2600 .006191

45 .010588 .oo68o9 .002924 2900 .005228

50 .008447 .005160 .005306 .005379 .001891 41o0 .003070

5 .003545 .001236 5800 .001787

55 .005761 .003237 .001101 6300 .oo1603

56 .002787 .000979 6900 .oo1471
6o .003407 .ool645 .002208 .001173 .000590 9700 .o01066
61 .001341 .ooo5i8 1.0600 .000948

62 .001150 .000460 11500 .000878
65 .002037 .000729 .000317 14700 .ooo631
70 .oo1128 .0o04o6 .001063 .ooo459 .ooo186 21900 .ooo456

72 .000357 .ooo162 25300 .000387

75 .000824 .o00308 .oool34
80 .000611 .000246 .000643 .000252 .000099
9o .ooo443 .000166 .000353 .000199 .000052

100 .000247 .ooo096 .000023

110 .000148 .000038 1 .000009
120 .000092 .000013 .0
30 .000047 .000013

40 .o00041 ooooll
150 .oooo38 .000004
6o .000018 .000001

16 .0

TABLE 2 .2 Performance of Different Variable Space Paging Algorithms
on WATFIV Program

- 91 -

TABLE 2 .3 Performance of Different Paging Algorithms on WATER
Program

- 92 -

WS

FIFO LRU CLD1B CLOCK MB
inch+
S ze

Fault
Rate

1 .589950

2 .216472
.144052
.113409

5 095367 .080320
10 .009328 .007337 .010883 .007513 .005717

11 .006355 400 .004893

14 .oo4632 1300 .oo3964

5 .005706 .003707 .oo4651 .003454 14oo .002908

19 .001758 3700 .001251

20 .oo2286 .oo1566 .002936 .oo1677 4500 .001151

25 .001317 .ooo8o4 .001123 .Oo0885 9400 .000788

29 .000433 16700 .000272"

30 .ooo686 .000394 .000512 .000332 20000 .000223

32 .000226 .000127 30000 .000157

35 .000324 .000177
40 .000159 .000109 .000171 .000131

45 .000145 .000088
47 .000076
47 .000076
7 .000076

50 .000071 oooo6o .000060 .oooo65

55 .oooo45 .000033

57 .0

6o .000017
65 .000009

WS WS VMIR PFF

Window
Size

Fault
Rate

mdow
Si a

Fault
Rate

Windo
Size

Fault
Rate

1/P Pa-
rameter

Fault
Rate

5 100 .o43991

0 loo .o43991 4oo .019423
15 1100 .012644

16 300 .o24823 1300 .011833

20 500 .017220 1900 .009125

23 700 .015488 2200 .oo7698 150 .015487

500 .015068 2300 .007260

25 800 .ol4256 2400 .006888

30 1200 .012235 2900 .005228

33 1400 .011411 iooo .ollo45 3400 .004156 300 .oio661

35 1600 .o1o465 3700 .003595

40 2200 .007766 4700 .oo2498

43 2600 .0o6191 5500 .001902 500 .006320

5 2900 .005228 2000 .005553 6300 .oo16o3

50 4100 .003070 9900 .001037 1000 .003752

5 5800 .001787 4000 .002578 13500 .000734 1500 .002589

55 6300 .oo1603 14loo .ooo670

56 6900 .oo1471 14300 .000617 2000 .001894

60 9700 .oolo68 21900 .ooo456

61 10600 .ooo948 23500 .ooo422 3000 .001234

62 11500 .000878 8000 .001oo4 25000 .000393

65 14700 .000631 16000 .000591 29700 .000308 4000 .ooo960

70 21900 .ooo456

72 25300 .000387 6000 .ooo584

75 24000 .000349
80

9o
100
10

120
130

150
16o
16

TABLE 2.4 Performance of Different Variable Space Paging
Algorithms on WATER Program

- 9 3 -

TABLE 2 .5

	

Performance of Different Paging Algorithms
on APL

-94-

WS WS VMIN

indow
Size

Fault
Rate

Window
Size

aul
Re a

Window
Size

Fault
Bate

1/P Pa-
amete

Fault
Rate

2

3
4
5 100 .021189

10 400 .005717 1400 .003486

11 600 .004893 1800 .002643 150 .oo4720

14 1300 .003964 3000 .001336 300 .oo4223

15 1400 . 002908 5200 .001137 500 oo4ogi

19 3700 .001251 10800 .ooo645 1000 .001494

20 4500 .001151 11100 ooo 6

25 9400 .000788 17500 .000239

29 16700 .000272 1500 .oOO404

30 20000 .000223

32 30000 .000157

35

5
3000 .000130

7 4000 .000111

47 5000 .000111

50
55
57
60

65

M FIFO LRU MIN Size Rate

5 0 .068350 0 .043446

10 0.028335 0.021101 0 .021996 200 0.017631

11 0.017098 0 .011242 300 0.013939

5 0 .011442 0 .007508 600 0 .009887

20 0 .011886 0 .008771 0 .004746 1300 0 .005462

21 0 .008289 0 .004330 1500 0 .004968

25 o .oo6109 0 .003025 2400 0 .003719

27 0 .005120 o .oo2541 2900 0.003373

30 0 .006156 0 .003916 0 .0oi962 3800 0.002704

35 0 .002738 0 .001327 6000 0 .001745

40 0 .003272 0 .001919 0 .000923 9200 0 .001196

43 0 .001519 0 .000756 11500 0 .001003

45 0 .001318 0 .000664 13300 0 .000900

50 0 .001877 0 .001042 0 .000507 18300 0.000757

54 0 .000835 0.000421 22800 0.000661

55 0 .000779 o.ooo4oi 24000 0 .000638

6o 0 .001201 o .ooo645 0 .000315 30000 . 0 .000520

65 0 .000553 0 .000246

70 o .ooo816 0 .000367 0 .000199

80 0 .000570 0.000339 0 .000187

90 0 .000453 0.000231 0 .000089

100 0 .000346 0 .000187 0.000063

110 0.000231 0 .000139 0.000045

120 0 .000169 0 .000098 0 .000027

130 o .ooo16i o .oooo86 0 .000009

1 0 0 .000135 0 .000055 0 .

150 o .ooo114 0 .000050

160 0 .000077 o .oooo45

170 0 .000074 0 .000028

180 0.000067 0.000026

190 0 .000024
195 0 .0

TABLE 2 .6 Performance of different variable space algorithms on APL

- 95 -

2 .7 APPENDIX

In the following, we derive the long run page fault rate for the

independent reference model with parameters [p1,p2, . . .pn3 under the ran-

dom replacement (RR) algorithm for a buffer size m <_ n .

Define a buffer state s as the collection of m pages present in the
n

buffer at any reference time . There are a total of (m) distinguishable

states . The long run page fault rate is equal to the probability of being

in a state s by the probability of referencing a page outside the buffer

summed over all the states, i .e .,

F(m) = L Pr(s) L pi .
a

	

i s

Pr(s,s') =

for s=s'

for s'=s(-i,+j)

otherwise

(1)

Under our replacement algorithm, the buffer state transitions can

be modeled by a discrete finite state Markov chain with the state space

g = [si },

	

01) .

Define a neighbor of a state a by s(-1,+J) which is identical to s

except for one page, namely, iss, but i/s(-i,+J) and jks but jes(-i,+j) .

Let Pr(s,s') be the state transition probability of going from state

s to a' in one reference . With the random replacement of the pages in

the buffer, we have

One can find the steady buffer state probabilities by solving the

equilibrium equations of the Markov chain . Let n = (n s) be the vector of

steady state probabilities and P = [Pr(s,s')] be the state transition matrix .

96 -

WS MWS VMIN

M Window
Size

Fault
Rate

Window
Size

Fault

	

I
Rate

Window
Size

Fault
Rate

10 200 0 .017631 700 0 .008995

15 600 0 .009887

20 1300 0 .005462 4000 0 .002598'

21 1500 0 .004968 1000 0 .005277 44oo 0 .002378

25 2400 0 .003719 6300 0 .001659

27 2900 0 .003373 2000 0 .003484 7300 0 .001413

30 3800 0 .002704 10000 0 .001116

35 6ooo 0.001745 4000 0 .001983 15900

	

0.000800

40 9200 0 .001196 24600

	

0 .000629
43 11500 0 .001003 8000 0 .001192 29500

	

0 .000551

45 13300 0 .000900
50 18300 0.000757

54 22800 o.00066l i6000 0 .000833

6o 30000 0.000520

62 24000 0 .000673

We can verify that the normalized solution for the equilibrium

equations % = AP is given ty :

n s = G111 P .

	

(3)
jes

G = I I T pk .
sEQ kEs

where

For a state s, the equilibrium equation becomes :

c

	

r1'1

s jE Pi + jEs ijs
m ns(-j,+i)

Substituting for ns(-j,+i) from (3) above we get :
J
II

L ~ kes(-,j,+i)
p
k

•

	

/ mjEs iF6

	

G

1 L

	

Pip.i kIsPk
•

	

m jEs i s Pj G

•

	

1 . Is x pm

	

ifs

= n

	

y p . + L p .
s jEs J

	

i/s 1

We just showed that (3) is the solution for the normalized equilibrium

equations . We can now substitute for the state probabilities in (1) the

solution from (3) to get the page fault rate of the independent reference

model under random replacement algorithm :

~P .

	

r,

F (m) _

	

E'1G - ~ pi
5EQ

	

i~s

- 97 -

ation of OPT distance strings," IBM Watson Res . Center Report

R0758 (March 1974) .

-98-

2 .8 BIBLIOGRAPHY

1 . Belady, L .A ., "A study of replacement algorithms f or virtual-

2 .

storage computer," IBM Systems J . 5,2 (1966) .

Belady, L.A ., Palmero, F.P, "On line measurement of paging behavior

3 .

by multivalued MIN algorithm," IBM J . Res . Develop (Jan . 1974) .

Chu, W .W ., Opderbeck, H ., "The page fault frequency replacement

algorithm," AFITS Conf . Proc ., Fall Joint Computer Conf . (1972)

pp 597-609 .

4 . Clayton, J ., "IBM 3850 - Mass storage system," IFIPS National Com-

puter Conference (1975), pp 509-514 .

5 . Coffman, E .G ., Denning, P .J ., "Operating systems theory," Prentice-

6 .

Hall, Inc ., Englewood, N . J . (1973) .

be-Denning, P .J ., "The working set model for program

7 .

havior," CACM 11,5 (May 1968) .

Denning, P .J ., "On modeling program behavior," AFIPS Conf . Proc .,

8 .

Spring Joint Computer Conference (1972), pp 937-944 .

Fagin, F ., Easton, M .C ., "The independence of LRU miss ratio on page

9 .

size," IBM Res . Report RC5006 (August 1974) .

Franaszek, P .A ., "An algorithm for computing MIN fault statistics,"

10 .

IBM Res . Report RC5291 (February 1975) .

IRE Trans . Elec .Kilburn, T ., e t .a l ., "One level storage system,"

11 .

Computers, EC-11, No . 2 (1962) .

King, W.F ., "Analysis of demand paging algorithms," Proc . IFIPS Con-

12 .

ference, Ljublisna, Yugoslavia (1971) .

Lewis, C .H ., Nelson, R .A ., "Some one pass algorithms for the gener -

13 . Mattson, R .L ., Gecsei, D .R ., Traiger, I .L ., "Evaluation techniques

for storage hierarchies," IM Systems J . 9,2 (1970) .

14 . Morris, J .B ., "Demand paging through utilization of working sets on

MANIAC II," CACM 15, 10 (October 1972) .

15 . Oliver, N .A ., "Experimental data on page replacement algorithm,"

IFIFS National Computer Conf . (1974) .

16 . Rivest, R.L ., "On self-organizing sequential search heuristics,"

CACM 19,2 (February 1976) .

17 . Slutz, D .R ., Traiger, I .L ., "A note on the calculation of average

working set size," CACM 17,10 (October 1974) .

18 . Smith, A .J ., "Analysis of optimal, look ahead demand paging algo-

rithms," Computer Science Division, University of California,

Berkeley, (March 1975) .

19 . grieve, B.G ., Fairy, R .S ., "Evaluation of page partitioning replace-

ment algorithm," Computer Science Division, University of

California, Berkeley, (1975) .

20 . Prieve, B .G ., Fabry, R .S ., "VMIN - An optimal variable space re-

placement algorithm," Computer Science Division, University of

California, Berkeley, (May 1975) .

99

CHAPTER 3

Ab INVERSION MODEL

3 .1 INTRODUCTION

In every computing system, programs are the basic entities which

determine and control the dynamics of the system . The address reference

behavior of programs is one of the fundamental factors affecting the de-

sign of useful and efficient control algorithms throughout a computing

system .

In this chapter, some aspects of program page reference modeling

techniques are considered . We will be particularly interested in the

characterization of a compact process to generate a sequence of page

references which can effectively replace the page reference sequence of

the real programs . This effort has immediate application in the perfor-

mance evaluation of virtual memory [9, 10, 21] systems and can be extended

to the evaluation of high speed buffers (caches) [2, 8] for high speed

CPUs as well as slower automated filing systems [3] .

A new and effective technique will be introduced which takes the

optimal fault rate [5] characteristics of a program and projects them

back into an independent reference [7] model . The new model is referred

to as AV inversion model . This model maintains the simple probablistic

structure of the independent reference model, yet it has excellent pre-

dictive power : the AO inversion model can predict the paging performance

of actual programs under several well-known replacement algorithms [5],

and is capable of estimating the average working set sizes [11] of actual

programs for a wide range of window sizes .

We begin this chapter with a discussion of the uses of program ref-

erence models in the performance evaluation of different aspects of am-

- 100-

puting systems and we point out the goals and motivations for construct-

ing simple and yet powerful models . A description of a number of pro-

posed program reference models follows . The properties and features of

the notable models are mentioned . Next, we define the A$ inversion

model and demonstrate the technique for finding its parameters . The

capabilities of the model are validated by presenting some simulation re-

sults end comparing them with the observed behavior of real programs .

New experimental results with the LEO stack model are presented . The

performance of both models are compared . A possible functional form is

considered which can describe the parameters of the AA inversion model .

Other approaches that yield similar models, possible extensions, and

other applications are suggested . Following that, we discuss some of the

problems which may be encountered when we construct the # inversion model .

The execution characteristics of the model, which limits its use in cer-

tain applications, is discussed . Some concluding remarks will end this

chapter .

3 .2 PROGRAM REFERENCE MODELS

The sequence of page references (reference string) generated by a

running program generally exhibit periods of concentrated references

over a sub-space of the program address apace, repetitive reference pat-

terns, end some degree of random behavior . Our modeling efforts essen-

tially are based on constructing a stochastic process which can character-

ize the address reference behavior of a program or other sequences which

are extracted from the reference string . Examples are the modeling of

the sequence of page exceptions generated by a program [19], and the

modeling of the sequence of working set sizes [Chapter 1] .

The modeling of a page reference sequence itself is of more interest

for us because it provides a flexible tool for a more generalized set of

applications . A model of page reference sequences, for example, can be

used as an efficient tool in the evaluation and comparative study of

several paging algorithms for a wide range of memory and page sizes in a

virtual memory system .

Our motivation to study program reference models can be explained

by considering the areas in which these models can be applied, and a set

of qualifications which makes each model a convenient tool for the anal-

ysis of different aspects of a computer system .

The analysis of some of the algorithms which work on program address

reference sequences is only possible if we can find a manageable and

realistic formulation of the problem . The analytical approaches enable

us to get a better insight into the subjects ranging from finding the

performance bounds, the long run behavior, the relative efficiency of

different mechanisms, etc . In this regard, we prefer program models

which ere analytically tractable and, meanwhile, posses a good degree of

realism with respect to the real world .

The trace driven simulations are widely used computer performance

evaluation techniques . We may resort to simulation when the analytical

approaches are difficult to formulate or when the analytical expressions

which describe the behavior of the system is inappropriate for the nu-

merical evaluations . The trace driven simulation runs are usually

costly operations in terms of CPU and other resource utilizations . There-

fore, it is very desirable to have a simple program model which can be

used efficiently in simulation packages, and which could free us of the

need for the trace of real programs .

- 102-

The generality and the predictive power of a model are important

factors which enable us to get realistic results using the model . The

models which can minic certain behavior of the reel programs, but dras-

tically fail in other aspects, are of limited use in certain applications .

We say a model has predictive power if it can be used successfully under

new circumstances which are different from those that are directly built

into the model . For example, the LRU stack model [7] is constructed,

based on the LRU stack depth distribution of actual programs . It is no

surprise that it gives the same LRU fault rate as the original program .

However, if on the average it generates the same number of faults as the

actual program under another replacement algorithm, say MIN, we can claim

that it has a certain degree of predictive power .

In the literature, a number of program reference models have been

proposed . In each model, the program references are generated according

to some mechanism which is built into the model . Let r1,r2	rk be a

sequence of consecutive page references which are generated by a program .

At each instance t, rt is a page name from the set of n program pages

[1, 2, 3	n] . This set constitutes the virtual address space of the

program .

In the following,a number of proposed program page reference models

are discussed .

3 .2 .1

	

Locality Model [12]

Programs tend to cluster their references on a (slowly) varying sub-

set of pages during an execution sub-interval . Locality models are pro-

posed in an attempt to formalize this behavior . The locality sets L, L',

- 103 -

are defined where each is a subset of t program pages . In a

general locality model, P(L,L'), give the probabilities of inter-locality

transitions and each locality has a holding time distribution hL(x)

which determines the probability of staying in the locality L for x

units of time . In a simple locality model, a page inside the current

locality is referenced with the fixed probability (1-u), therefore,

[hL(x) = (1-u) x lu] . An interior page i is referenced with probability

a(i), which can be a function of past locality transitions . The proba-

bility of referencing a page outside the locality is uniform for all those

pages and is equal to -u . One of the restrictions imposed on this model

is that any interior page has a higher reference probability than any ex-

terior page, i .e ., (1-u)a(i) ? -S
for all i inside the current locality .

A restricted form of the LRU stack model can be considered a gen-

eralization of a simple locality model and we shall discuss this model

in more detail .

3 .2.2

	

Denning and Schwartz Model [7, 13]

In this model, it is assumed that the inter-reference intervals

(i .e ., the distance between two successive references to the same page)

of any page i is distributed, independent of the other pages, with the

probability density function fI (.) . The mean inter-reference interval

for each page is finite and Is equal to :

x? 1
x fi(x) .

A useful closed form solution for the average working set size with

window size T, ws(T), can be found for this model . Let Fi(x) be the

-104-

cumulative probability distribution function of the inter-reference in-

tervals of page i, i .e .,

x

Fi(x) = 2 fi(J)
J=l

and define the overall inter-reference distribution as

n

F(x) _ 21
i=l

Fi(x)

X
i

It can be shown that the mean working set size with parameter T is given

by :

T-1

ws(T) =

	

[1 - F(x)] .
x=0

Thus, when F(x) is known, this result can be used to find the aver-

age working set sizes and the average WS fault rate for all window sizes .

3 .2.3

	

Markovian Models [4, 15]

For this class of models, the consecutive address references are

generated by a Markov process . With first order Markov dependence, the

probability that page i is referenced at time t only depends on the page

name referenced et time t-1, i .e .,

Pr[rt - ilrl,r2, . . .,rt-1 - J] - Pr[rt = ilrt_1 = J] - qiJ

The qiJ 'a, 1 <_ i, j <_ n, are the state transition probabilities of

the model .

This model has a fairly simple probability structure . However,

when n is large, using this model becomes practically impossible . There

hasn't been much evidence supporting the capability of this model in

simulating actual program behavior .

- 105 -

3 .2 .4

	

LRU Stack Model[7,12]

The IRU stack model is based on the probability distribution of LRU

stack depths . The LRU stack is a stack in which the pages are ordered

according to their last references . The most recently referenced page

is on the top of the stack, the next most recently referenced page is

below that, and so on . In this way, the least recently referenced page

resides at the bottom of the stack .

The LRU stack depth or distance at each instance is the stack posi-

tion of the referenced page . After each reference, the stack is updated

by moving the page to the top of the stack . The distribution of the LRU

stack depths are constructed by counting the number of times a particular

LRU depth is accessed . These counts can be used to approximate a discrete

probability density function for an LRU stack model .

In the LRU stack model, the sequence of LRU distances are i .i .d .

random numbers with probability density function [d1,d2""'dn] where :

Pr[LRU distance at time t=i] = d i .

This model, therefore, generates a sequence of LRU stack distances

and, from this sequence, a unique sequence of page names can be recon-

structed by maintaining an ordinary LRU stack of all the referenced pages .

We note that if the distribution of stack distances are biased toward

the smaller distances, then a highly localized sequence of page names is

generated by this model . Scattered references are generated depending

on the spread of the probability weights over the stack positions .

In Figure 3 .1, the relative frequency count of the observed LRU

stack positions generated by a WATFIV compiler trace is shown . This

histogram can be used to construct an LRU stack model based on the same

program .

- io6 -

0

LRU STAC DISTANC HISTOGRAM 0 ATF PROGRAM AND MODEL

I

	

I

	

I

~~ I
I

	

,

	

I

	

J '1
roe

	

ise
STACK DEPTH PnSITInNS -r

Fig . 3.1

so

-107-

The LED stack model has a number of significant properties . Namely,

in a model with n pages, the probability that any page, independent of

its identity, is in any stack position is i/n . To show this, let

[di7, i=1,2, . . .,n be the probability density function of the LRU stack

positions . Define a Markov chain Xq(t) in which the states are the

positions of some page q in the LRU stack . Let M=(mi _) be the state

transition matrix of this chain where m ij is the probability that at the

time of a page reference page q goes from stack position i to position

,j . In this model, the position of page q is updated according to the

following probability transition matrix :

do-l

d
n

0 0

n

L d 0
i=3 I
~2'

L
L

1
di 1 0

do

n-1

L di

Let 7f = (iii), 1=1,2, . . .,n be the steady state probability of the

position of page q in the stack . When the chain is en irreducible

ergodic process, the solution to il .M=1i and the normalization term

n

iii = 1 give the steady state probabilities of the position of page
1=1

q in the stack . Since matrix m is doubly stochastic (i.e ., its rows and

columns am to one), the solution for the steady state probabilities is :

tt1 = R2 =	= Un _ 1n

This result holds for all pages and it implies that the relative refer-

ence frequency of all pages in a reference string generated by this

model (a realization of the model) is the same for all pages . This be-

havior, of course, is against our intuition about the reference patterns

in real program traces . This might be one of the reasons why the model

has not received enough empirical treatment in the literature .

If the stack position probability density function [d i], i=1,2, . . .,n

in an LRU .stack model is such that d I ? d2 ? d3 ? d dn , then the ex-

pected fault rate generated by this model under the IRS replacement rule

is optimal (minimal) among all fixed memory size algorithmss and for all

memory sizes . This can be seen by noting that with memory size m, (m <_ n),

at the time of a page fault the LRU algorithm replaces a page which is

least recently used (i .e ., the page in the bottom of the stack of the

main memory pages) and, in this model, among all pages in the memory,

this page is the one which is least likely to be referenced in the future .
n

The optimal fault rate probability is, therefore, F [LRU] _

	

d . .
M

	

1=m+1 r

- log -

Expressions like the distribution of working set sizes can be found

for this model ; however, the results soon become computationally un-

attractive .

This model has good predictive power and we shall return to it later

in this chapter .

3 .2 .5

	

Independent Reference Model

This model has a very simple probability structure, yet it is the

most interesting and versatile among the models discussed so for . A set

of page reference probabilities [p 1,p2,p3 n] is defined . The se-

quence of page references r1,r2,43	rk are drawn independently from

the set of reference probabilities, such that

Pr[rt 1} = p i

Among the fine properties of this model is its analytical tractability .

This model has been extensively used in the literature [chapter 2, 7, 13,

14, 18], especially for the performance evaluation of a number of replace-

ment algorithms . Since the sequence of actual program references do not

exhibit the strict serial independence as dictated by the model, the ana-

lytical results are assumed to be of limited significance when carried

over to actual situations . However, as we shall shortly see, the validity

of this argument to a great extent depends on the method by which the

parameters of this model are found .

The parameters of the independent reference model are its page ref-

erence probabilities . One can estimate a set of reference probabilities

by using the trace of a real program . The trivial approach is to count

the number of references to each page and assume that these references

were generated by an independent reference model . Using the page refer-

- 110 -

ence frequency (counts), we then approximate an independent reference

model which has the same relative reference probabilities . Let us call

this method of determining the parameters as the frequency method . Now

we ask ourselves how well this model can mimic the behavior of an actual

program with respect to the average fault rate performance under different

paging algorithms .

In Figure 3 .2, the fault rate curves of a WATFIV compiler under LRU

and MIN paging algorithms are shown with solid lines . In this figure,

the horizontal axis is the memory capacity and the vertical axis is the

fault rate, i .e ., (number of faults)/(total number of references) .

We use the trace of the WATFIV program to construct an independent

reference model by the frequency method . The long run fault rate of this

model, under the LRU and MIN algorithms, are shown by dotted line on the

same figure . We notice that the model generates far more faults for a

given memory size compared to the real program . These results lead us

to believe that other features of the model also will be grossly off the

observed values in the actual program . For example, this model signifi-

cantly overestimates the observed working set sizes in the actual program .

In the next section, we shall introduce a new and important method

which we use to find the parameters of an independent reference model .

We will see that even though keeping the model as simple as the inde-

pendent reference model, we can substantially improve its predictive

power .

	

This gives us more confidence in interpreting different types

of results which are based on this model .

3 .3 Ad TVERSION MODEL

The A6 inversion model (the choice of the name becomes clear shortly)

is basically a member of the class of independent reference models . Whet

distinguishes this model is the method by which the parameters are ob-

tained . Earlier we showed that the frequency method produces an inde-

pendent reference model which is a poor predictor of actual program be-

havior . Referring to Figure 3 .2, we note, however, that although by the

frequency method we obtain a model which grossly fails to estimate the

fault rate of the actual program, the model is fairly successful in cap-

turing the relative performance of LRU and MIN algorithms . This property

of the independent reference model is important because it suggests that

if we are able to come up with a model which can predict the fault rate

behavior of a program correctly under one replacement algorithm, then the

performance of the model under other algorithms might also be close to

the performance of the actual program under the some algorithms .

We observe that one way of binding the model to the characteristics

of a reel program is to require that the lower bound on the page fault

rate of both the model end the actual program under optimal replacement

algorithms be close together . We can then be sure that enough structure

is built into the model so that, at least in the long run, the model is

capable of predicting the behavior of the actual program under the optimal

paging algorithm .

For a given page reference sequence of an actual program, we know

that MIN algorithm gives the least amount of faults among all fixed memory

size algorithms . We can, in fact, measure the MIN fault rate of the pro-

gram, %. (m), for different memory sizes m (1 <_ m <_ n) . For the inde-

pendent reference model, the so-called Ad [4] algorithm gives the optimal

-112-

fault rate . At the time of a page fault, the AA algorithm pushes out a

page which is least likely to be referenced in the future .

Let [Pl,p2'p3, • • • ,Pn] and PI ? P2 > p3 ~ Pn be the set of ref-

erence probabilities for an independent reference model . The AO fault

rate produced by this model, FAs(m), for a memory size m is equal to [7] :

n

IFAO(m) _ I
i=m

Therefore, if the reference probabilities are known, (1) can give the

optimal fault rate for different values of m, 1 5 m 5 n . Conversely, if

a set of n fault rate values are given, we should be able to find a set

of reference probabilities which satisfy the relations in (1) .

We observe that if our independent reference model is to capture

the fault rate behavior of actual programs, then we expect that the fault

rate of the model under the Ad algorithm should be close to the fault rate

of the actual program under the MIN algorithm and for all memory sizes .

This gives us a procedure to find p i 's from the relations in (1) . In

other words, we now substitute for Fm's in (1) the observed MIN fault

rate values, and then we invert (1) to get a set of recurrence expressions

for finding pi

	

The independent reference model which is obtained by

this procedure is referred to henceforth as the AO inversion model .

m

1 <_ i 5 n

r •
We carry out this procedure by letting S m = Pi and Rm = Pi'i=m

	

i-1

then successively get :

(1)

We

m

Similarly :

n

2

	

2Fm+lSn+1 - Sm+1

	

i-m+l

Subtracting the above two expressions we get :

2

	

2

	

2
Fmsm - Fm+lSm+1 - Sm - Sm+l - pm

Fm (pm+Sm+1) - Fm+1Sm+1 = (Pm+Sm+l)2

S -m

I

i=m
n

Sm+l (Fm - Fm+l)
Fm

2 2
- Sm+l -Pm

Fmpm + FnSm+l - Fm+lSm+l = pm2+ Sm+l2+ 2pmSm+l - Sm+l
2-pm2

or

1 5 m <_ n

	

(2)

If pn is known, then (2) cann be used successively to find pn-1'

pn-2 and so on . However, we can arrange (2) so that first we can find

pi, and having pi , we can find p2 , and so on . Since pi's are probabilities,

we have

Replacing this in (2), we find :

(1-Rm-1pm) (FmFm+l)

	

(3)
pm - 2(1-Rm 1pm) - Fm

	

1 5 m < n

In (3), we assume that RO = 0 . Each p i , i=1,2,3	-1 can be succes-

sively computed from (3) by solving a quadratic equation . later in this

chapter, we return to this derivation for more comments .

We now examine the ability of the AO inversion model to predict the

fault rate behavior of real programs . We expect to get much improvement

over the previously mentioned frequency method . Indeed, by inspecting

Figure 3 .3, we can see the success of the model . In this figure, the

solid lines represent the fault rate curves of WATFIV programs under MIN

and LRU algorithms . Using the Ad inversion technique, we construct an

independent reference model based on the same program . The MIN and LRU

fault rate which are produced by the model are shown by dotted lines on

the same figure . As we expected, the MIN fault rate curve belonging to

the model closely follows the MIN fault rate curve of the actual program

for a wide range of memory sizes . It is interesting, however, that even

the LRU fault rate curves of both the model and the actual program are

fairly close together . The success of the model becomes more significant

if we compare Figure 3 .3 with Figure 3 .2 to see the amount of improvement

over the frequency method . This demonstrates the fact that by using an

appropriate method, we can build substantial predictive power into a

simple independent reference model .

Another way of looking at the fault rate behavior of the model, with

respect to the actual WATFIV program, is to compare the observed histogram

of LRU stack distances generated by each of them . In Figure 3 .1, both

histograms are shown .

10

1

D

I

m

]0
d
4 30r4

300

10-5

a

PAGE FAULT RATE OF VATFIV PROGRAM

I
100

MEMORY SIZE

Fig . 3.2

PAGE FAULT RATE OF VATFIV PROGRAM

150

It is interesting to inspect the set of reference probabilities

which are obtained by the AO inversion model. We can get a better in-

sight into the structure of this model by comparing these reference

probabilities with the reference probabilities which might have been

obtained if we had used the simple frequency method . In Figure 3 .4, the

two sets of reference probability densities based on the WATFIV compiler

are shown . The horizontal axis is the page number and the vertical axis

is the probability weight .

In the frequency method, the reference probabilities are found by

taking the global averages on the entire string . In the averaging pro-

cess, most of the information about the regional characteristics of the

string is lost . [Along the same lines, we have tried other approaches

to get a better representative set of probabilities . One method we used

was to divide the trace into intervals and find the relative reference

frequencies in each interval, and order each set and combine over all in-

tervals . The results, which are not reported here, showed only a slight '

improvement over the usual frequency method] .

In the AO inversion model, a completely different approach is taken

and the reference probabilities which are obtained in this case bear no

direct relation with the relative reference frequency of each page in the

actual program . In Figure 3 .4, we note that the A0 inversion model pro-

duces a reference probability mass distribution which has a distinctive

resemblance to the fault rate curve of the program upon which the model

is based . We can see that some important information, such as the memory

sizes where the actual fault rate changes curvature, is precisely carried

over to the corresponding page numbers in the reference probability curve .

100

10Z
rr

~10
5

10~

103

W-8

REFERENCE PROBABILITIES FOR TWO VATFIV MODEL PROGRAMS

100

0

FIFO PAGE FAULT RATE OF VATFIV PROGRAM

SO lm
IUWY SOLE PAGES)

Fig . 3 .5

ISO

Generally, the AO inversion model assigns large probability mass to

a few top pages (i .e ., pages with the lowest subscript) and the remaining

pages receive probability weights in sharply decreasing quantities . One

can interpret the top pages (e .g ., the first 20 pages in Figure 3 .4) as

the set of the current locality pages of the program . References to

these pages are mostly favored in the reference string generated by the

model. The pages which receive the least probability weights can be

imagined to produce the instances corresponding to locality transitions

in the actual program . The remaining pages which receive probability

weights between the above two extremes can be considered to contribute

to the small variation of the locality sizes in time .

We can support our claim about the predictive power of the A4 in-

version model by presenting more evidences about the success of the model .

For another replacement algorithm, we test the behavior of the model under

the FIFO paging algorithm . In Figure 3 .5, the solid line is the fault

rate of the actual WATFIV program versus memory sizes under FIFO algorithm .

In the some figure, the dotted line represents the fault rate curve of

the model under the same algorithm . We can see that the model is capable

of predicting the average fault behavior of the program on the lower range

of memory capacities . For very large memory sizes the dotted line slightly

drifts away from the solid line . The behavior of the model in this region

can be partially accounted for by anyone of the following, reasons . Since

we simulate the model, in this case the sampling error becomes signifi-

cant for large memory sizes . The other source of the error is the in-

accuracy in defining the tail (i .e ., the pages with the lowest subscripts)

page reference probabilities . We shall return to the problem of finding

the tail probabilities later in this chapter .

- 119 -

The performance of the model using some other programs and with

different page sizes, and the ability of the model to predict the actual

working set sizes are discussed in the next section .

3 .4 TEST RESUImS

In a series of experiments, we are going to present more data for

validation of the model. We have constructed an AO inversion model

based on the page reference trace of several real programs . These pro-

grams include a trace of a WATFIW compiler, a FORTRAN program called

WATE%, an APL program, and the trace of a program to calculate the Fast

Fourier Transform, called FFT, of a set of data points .

3 .4 .1

	

Fault Rate Prediction

In Figures 3 .6, 3 .7, 3 .8 and 3 .9, the fault rate curve of each model

under the MIN and LRU algorithms are compared with those of the corres-

ponding actual programs . In each figure, the solid lines belong to the

actual program and the dotted lines represent the data points from the

model . We note that in each case the model is able to predict the LRU

fault rate of the actual program in a satisfactory way . All these models

are especially successful in the range of lower memory sizes . It is sig-

nificant, for instance, to note that the Ad inversion model has been able

to capture the odd behavior of the FFT program as can be seen in Figure

3 .8 . We observe that the fault rate curves of the model breaks in exactly

the right point (memory sizes in this case . This is a rather promising

result which shows that the technique can be used successfully to model

highly structured program behaviors .

- 120 -

In the range of relatively large memory sizes, since the fault rate

values are very small, the behavior of the model in these regions matches

less well with the actual situation .

In Figure 3 .9, the same results are demonstrated for the case of the

WATFIV program with page sizes which are twice as large as the earlier

case (Figure 3 .3) . It is notable that the model is robust to changes in

page sizes .

3 .4 .2

	

Average Working Set Size Prediction

The degree of spread of the references over the program address

space is of interest in efforts to characterize a computer program . A

measure of the scattering of references can be obtained by observing the

size of and changes of program working sets . The working set [11], WS(t,T),

at time t, is the set of pages addressed in the past T references . The

size of this set is denoted by ws(t,T) . The window size T is the working

set parameter . The measured working set sizes can be averaged over the

entire program trace and lumped into one number, called the average work-

ing set size, ws(T) .

The average working set size can be defined for the references gen-

erated by the model . Since the probabilistic structure of the model is

known, the expected working set size can be readily obtained by a prob-

alistic argument . Let [p l,P2,p 3 , • ., Pn] be the parameters of the Ad

inversion independent reference model . The expected working set size

with parameter T is equal to the probability that a page is in the working

set summed over all pages . A page is in the working set if it has been

referenced at least once in the past T units of time ; therefore,

n

ws(T) _

	

[1

	

T]

	

(4)
1=1

We can now examine the capability of the model in predicing the

average working set sizes of actual programs . In a series of experiments,

we have measured the average working set sizes of a number of programs

with different window sizes . For each actual program, the average work-

ing set sizes of the corresponding AO inversion model is calculated from

(4) . The results are illustrated in Figures 3 .12 and 3 .13 for the WATFIV,

APL and PET programs . In each figure, the horizontal axis is the window

size in terms of address reference units and the vertical axis is the

average working set size . The solid lines are obtained from the measure-

ments on the actual programs and the dotted lines are computed from the

parameters of each model .

We can see that the predicted average working set size values de-

rived from the model are strikingly close to those of the actual programs .

This result demonstrates the capability of the A~ inversion model in cap-

turing an important feature of the address reference behavior of real

programs .

Once the average working set size is known, the fault rate values

under WS algorithm can be obtained . For the independent reference model,

the WS fault rate is equal to the probability that a page hasn't been

addressed in the past T references and that it will be addressed in the

next reference summed over all pages, i .e .,

FF, S[T] ° = (1-PI)TPI1=1

31W .Y1Yf
a

0 °s

	

s
a 31W 111W~

8

- 123 -

0

4
9

31W 171Y3~

4

F

1e

PAGE FAULT RATE OF WATFIV PROGRAM WITH 1K PAGE SIZE

- 124-

20

	

40

	

60

	

80

	

100
MEMORY SIZE (PAGES)

Fig . 3 .9

10

10
E

W 10
-3

I

8

10i

10 6
6

6

8

cn
a
w

t. . a

32M YYw3w

- 125 -

I

aim AWHI

In Figures 3 .12 end 3 .13, the WS fault rate of the WATFIV program

with two different page sizes, and the WS fault rate of APL and FIT pro-

grams are shown . In each figure, the WS fault rate probability of the

corresponding Am inversion model is shown by dotted lines . The horizontal

axis is the average working set size (or the average memory size used)

and the vertical axis is the fault rate . The fit of the points obtained

from the model to the points measured on the actual programs, basically

reflects the results illustrated in Figures 3 .10 and 3 .11 .

In Figure 3 .11, we notice that the model slightly overestimates the

working set size of the AFL program . An explanation for this behavior

will follow in the next part .

3 .4 .3

	

Comparison with LRU Stack Model

We have defined the LRU stack model for the sequence of page refer-

ences earlier in this chapter . This model is strongly bound to the ob-

served LRU stock depth distribution of the programs . The long run fault

rate of LRU stack model, under LRU algorithm, converges to the LRU fault

rate of the program upon which the model is based . This property is

built into the LRU stack model by netting the stack depth hit probabilities

[dill i=1,2, . . .,n of the model equal to the relative observed stack dis-

tances generated by an actual program . It is interesting to investigate

the behavior of LRU stack model under systems other than LRU .

Similar to our earlier set of experiments, the trace of several pro-

grams have been used to construct the empirical LRU stack distance dis-

tributions . In each case, an LRU stack distribution is used to construct

the corresponding LRU stack model . In order to compare the optimal fault

rate behavior of an actual program with the respective LRU stack model,

- 126-

the MIN algorithm is used for both of them . We note that since the ob-

served LRU stack distance densities are not monotone decreasing values,

we don't expect that LRU would be optimal for the model .

In Figures 3 .14 and 3 .17, the result of the experiments on the

WATFIV and APL programs using MIN and LRU algorithms are shown . The

solid lines belong to the actual programs and the dotted lines represent

data points from the corresponding LRU stack models . The LRU algorithm,

as well as the MIN algorithm, were applied by a simulation run for the

actual program and the model . Therefore, the discrepancy between the

LRU fault rate curve of the model and the corresponding program gives a

significant measure of the sampling error in the simulation of the model .

The more interesting information in these figures is, of course, the be-

havior of LRU stack model under the MIN algorithm . We note that in both

cases the models give a good prediction of the MIN fault rates of the

actual programs . Like the AO inversion model, the good fits are especially

notable for lower range of memory sizes .

In Figures 3 .15, 3 .16, 3 .18 and 3 .20, the average working set sizes

and the WS fault rate of WATFIV and APL programs are compared with the

same terms in the respective LRU stack models . If we inspect Figures

3 .11 and 3 .18, we notice that both the A$ inversion model and the LRU

stack model give up to about a 10% overestimation of the actual average

working set sizes of the APL program for most values of window sizes .

We can give an explanation for this by taking a closer look at the distri-

bution of working set size of the APL program . In Figure 3 .19, a histo-

gram of the observed working set sizes for window size T=4000 units for

this program is plotted . In this plot, we can distinguish three major

peaks . Although this is not a typical working set histogram, nevertheless,

- 127-

PAGE FAULT RATE OF VATFIV PROGRAM & LRU STACK MODEL
100

-128-

AVERAGE WORKING SET SIZE OfWATFIV PRGM.6STACK MODEL
w

GO

40

20

YATRTPRWA .VI
. . . WI STACX M9YEL/f

VS PAGE FAULT RATE OF VATFIV PROGRAM AND STACK M00EL
100

20

-
3-29

- - 1 3 0 -

IS39Vd 3119 13S 9WNW39VYaAV

0

0

programs sometimes do exhibit this behavior . Each peek can be associated

with a large period of time which the program predominately spends in a

locality which is different in size from other major localities . The

frequent locality changes may also contribute to the clusters of fairly

large working set sizes in the histogram .

Programs like APL which exhibit distinctive multiple locality

regions give the illusion for the mechanisms which build the models

(e .g ., AO inversion and LRU stack models) as being programs with fairly

scattered reference patterns . The overestimation of the average working

set sizes can be attributed to this mis-interpretation of the actual ref-

erence patterns .

3 .4 .4

	

Analytical Form for AO Inversion Parameters

In this section, we examine a possible analytical function which

fits the reference probabilities produced by the AO inversion model .

our motivation here is to give an approximate compact form to describe

the parameters of this model .

In Figure 3 .21, three different sets of AQ) inversion model reference

probabilities are plotted on a log-log scale . In this graphical repre-

sentation, we can see that large portions of each set of probabilities

can be approximated by straight lines in the log-log domain . There is

usually one major breakpoint in each curve . This breakpoint for the

WATFIV model is quite distinct at page number 54 . For the other program

models, the breakpoints are not as obvious as in the case of the WATFIV

model . For instance, for the WATFIV model we can roughly set this point

at page number six .

100 -

Id,

id'Z

I

1

Functional Model

5 10
P

	

ER
Fig 3 .21

MOOEL VATFIV AB INVERSION REFERENCE PROBABIUTIES

Ap Inversion
Model

0

	

lm

	

ISO
PAS1=rueER -
Fig . 3.22

- 132 -

100

AN INVERSION REFERENCE PROBABILITIES
1

100

10a

k
<10 3 VATRY ..m .
m

g 10A "T .

Using the page number at the breakpoint, we can try to fit two or

more power law functions for each segment . These functions and the page

number at the breakpoint can approximately describe the parameters of

themodel . For instance, the reference probabilities of the WATFIV Ai

inversion model can be approximated by the following function :

"a 7381k2 .135474

	

1 :5 k !5 53

1l6xlo6k 6'8832

	

54 <_ k :5 120

0.000001

	

121 < k < 168

In Figure 3 .22, the actual reference probabilities are compared with

those found by the above function .

3 .5 EXTENSIONS AND OTHER APPLICATIONS OF THE MODEL

In this section, we consider some possible extensions and appli-

cations of the AV inversion model . We would like to point out here that

inverting the AV fault rate expression is not the only way to find the

reference probabilities . For example, one might consider inverting the

average working set size expression (4) and substituting for the ws(T)

values the observed average working set sizes from an actual program .

One possible area for the extension of the AO inversion model is the

study of the management and organization of file systems in the storage

hierarchies . A file can be thought of a block of data which is handled

by I/0 communication facilities as one integral part . In the context of

earlier discussions, the file blocks can be considered as variable size

pages .

A possible application of the model is the areas of program and

date restructuring techniques . Restructuring can be used to increase

acme performance measure, such as access efficiency . Grouping of the

- 133 -

records which are referenced together is a common approach in restruc-

turing efforts . The pages of a program can also be combined into one

larger block, based on some frequency of reference criterion . For in-

stance, assume there are n pages and we would like to combine each k :s n

pages into one block . One way of doing this is to combine the first k

most referenced pages into the first block, the next k most referenced

pages into the next block, and so on . We call this simple restructuring .

In order to find out the behavior of the model in this application,

we have done some experiments on the trace of the WATFIV and APL programs .

The pages of these programs are sorted in the order of the frequency of

reference to each page . Then, eachsuccessive pair of pages in each list

are combined together to create a larger page size twice the size of the

original pages . For each program, before restructuring, we find the

At reference probabilities [pi, p2,p3 , . ., pn] . Next, we restructure each

model so that first and second pages are combined, third and fourth are

combined, and so on . (re recall that p I ? p2? p3~ . .pn .) In this manner,

we obtain new restructured models with 2 parameters

CpI + P2, P 3 + p4, . . ., P(n/2)-1 + Pn/21 (n even) .

We can now find the performance of the restructured programs under

MIN and LRU replacement algorithms . These are shown by solid lines in

Figures 3 .23 and 3 .25 . Next, we find the performance of the restructured

models under the same algorithms . We don't expect to get similar results

because the parameters of the AO inversion model are not directly related

to the reference probabilities in each actual program . The dotted lines

in Figures 3 .23 and 3 .25 demonstrate the performance of each model . We

note that the models underestimate the fault rate of the restructured

-134-

programs by some factor . It is interesting to note that the restructured

models underestimate the performance of restructured programs by a fixed

factor over all memory sizes . For both the WATFIV and AFL programs,

these factors are 0 .5 . This is shown in Figures 3 .24 and 3 .26 where we

multiply the fault rates of the restructured models by two, and plot the

new curves by dotted lines . We note that for both programs now, the

models follow the fault rate curves of restructured programs reasonably

well and for AFL we have a particularly good fit . The significance of

this result is that we can now work with the model and obtain numbers

which are off from the actual results by a fairly constant proportionality

factor over all memory sizes . Determining this factor probably needs

more experiments with different programs . It seems that its value should

not have great variation among fairly homogenous representative programs .

In Figures 3 .27 and 3 .28, we have compared the effect of simple pro-

gram restructuring on the fault rate behavior of WATFIV and AFL programs .

The solid lines show the performance of the restructured programs, as

described earlier, and the dotted lines give the performance of unaltered

programs with the natural doubling of the page size of each program . We

can see that simple restructuring can have significant effect on the

memory utilization in the case of the AFL program, and has mixed positive

and negative effect on the performance of the WATFIV program over dif-

ferent range of memory sizes .

Another feasible application area of this model is the study of

read/write characteristics of the programs and the paging algorithms

which take these operations into consideration . In the remaining part

of this section, we point out the significance of the problem and give

some suggestions for dealing with the problem .

- 135 -

In a paging system, an important task of the supervisor is to take

note of the modified pages (i .e ., write pages) . This information be-

cones important when a page needs to be pushed out of the memory to make

room for an incoming page . Clearly, if the content of the page has not

been modified since it was first brought into the main memory, it is

generally not necessary to copy it back on, say, the paging drum . This,

of course, can save the I/0 channel time and reduce the channel traffic .

In this respect, in the study of paging algorithms the number of trans-

fers produced under an algorithm can be considered a measure of perform-

ance . Thus, we can associate a cost or weight of one for a page which

is brought into the memory and is not modified by the time it has to

leave . Similarly, a cost of two is associated with a page which is

brought into the memory and is modified by the time it has to be copied

back to the backup memory . The performance of the algorithm is the total

cost (total number of transfers) associated with each memory capacity .

The significance of the subject can also be seen when we study the

operational specifications of some of the newly evolving memory technol-

ogies . At least in two of the promising technologies, namely, the bubble

domain memory [22] and the electron beam addressed memory (EBAM) [17]

systems, the write operation can be slower than read operation . For in-

stance, in one prototype of an EBAM system the write speed is ten times

slower then read . Both systems are aimed at providing reliable and large

storage media and direct block access capability . Therefore, the need

for date management similar to paging operation is feasible for a memory

hierarchy which include any of the devices .

We now proceed to give some data on the number of transfers caused

by some actual programs under two important replacement algorithms,

- 136-

namely, LRU and M . We are also interested in the relation between the

transfer rate (i .e ., number of transfers/number of references) and the

page fault rate et different memory sizes .

In Figures 3 .29 and 3 .30, the fault rate and transfer rate of the

WATFIV and WATEX programs under LRU and KIN algorithms are shown . The

fault rate curves are the same as those presented earlier . The transfer

rate curves (dotted lines) are obtained using an efficient stack algorithm .

For each memory size, when a page is brought into the memory, one trans-

fer is counted . When the same page has to be pushed out, the modify bit

of that page is examined to determine if that page has been modified .

If it is modified, another transfer is counted . The dotted lines in

the figures actually represent 0 .5 x Transfer Rate Curves .

On the upper corner of the plots, the ratio of 0 .5 x Transfer Rate

Page fault rate for both algorithms are shown . We note that in each

figure, these curves follow a fairly straight line for a major range of

lower memory sizes . This indicates that a constant relationship can be

approximated between the transfer rate and the fault rate for relatively

small memory sizes . As the memory size becomes large, the ratio moves

slightly upward in each figure, showing higher transfer rates relative

to the fault rates . This behavior is expected because when the size of

the main memory is large, the program pages tend to spend more time in

the memory and, thus, the likelihood that a page is modified during its

prolonged stay increases .

The A4 inversion model can be extended in this application in two

ways :

a) A single new parameter q is defined which indicates the

probability that a page reference is of modify (or write) type .

-137-

8

8

C au

	

a
4
3
0

R

rc

a

31va 1TWJ

	

'

-138-

..

	

a

	

a

	

9

	

. . B
31Ya LtV!

100

16-1

16, 2

<10 3
s
r
510" 4
4

t03

10 0

10,7

PERFORMANCE OF RE-STRUCTURED WATFIV PROGRAM

- 139 -

Fig . 3.29

Fig . 3.30

- 140-

Oar SIZE -

Therefore, the AO inversion model is characterized by a reference

probabilities and one modify probability, as :

[pl, P2 , P3 , • • , pn , q] .

This approach can capture the constant relationship between the

transfer rate and the fault rate in the region of smaller memory

sizes .

b) The MIN transfer rate function can be used in much the same

way as the MIN fault rate function was used, and we can obtain a

set of n new parameters

[q1, q2 , q 3 , . . , qn]

These parameters, when added to the reference probabilities

[pl'P2' .. .'pn]'
give a comprehensive model which can characterize

the reed/write and the fault rate behavior of the actual programs .

3 .6 PROBLEMS AND LIMITATIONS OF AV INVERSION MODEL

In this section, we return to the subject of finding the parameters

of AQ inversion model . Essentially, we may encounter two kinds of prob-

lems in finding the reference probabilities . The first problem deals

with solving the recurrence relations (3) and the second problem is re-

lated to the tail probabilities .

3 .6 .1

	

Problems with Finding the Reference Probabilities

We recall that the MIN fault rate of an n page program are substi-

tuted for Fi 's in the relations (3) and, subsequently, the equations are

solved for p i 's . It is theoretically quite possible that a set of Fi's,

1 <_ i < n and F i > Fj for i < j, be defined, for which there is no real

valued solution for p i 's . In fact, it is much harder to come up with

some empirical values for F i 's where we chn solve for p i 's .

The case where we can't solve the equations signifies the situation

where there is no independent reference model with its fault rate under

optimal algorithm exactly equal to those values that we have substituted

for F .'s .
r

Our experiments in using the actual program traces show that for

traces of reasonable length, we usually can find fairly accurate values

for p i 's . However, when the measured MIN fault rate values are such

that the equations (3) cannot be solved for all values of p i 's, we can

find approximate values for these parameters by using the relations :

pi = Fi - Fi+l

	

(5)

Once a p i is found in this way, we can try to use relations (3) to find

the successive parameters . For instance, in the FF11 program, p i was

found using (5) and the remaining probabilities were obtained by (3) .

The model seems to function properly even with approximate reference

probabilities obtained from the above procedure .

3 .6 .2

	

Problems with Tail Probabilities

Consider a program with n pages . Denote by Fm the fault rate of

the program with memory size m under the MIN algorithm . When m becomes

large, it is possible that for some memory size n' the observed

Fi, i=n', n'+l, . . .,n will become zero . Here we assume that initial

faults, due to the initial loading of the memory, are excluded from the

total fault counts . Since Fm is the minimum fault rate with memory size

m, then for any other fixed memory size paging algorithm the lower bound

on the maximum memory size, n", for which it produces non-zero fault rate,

- 142 -

is equal or greater than n' . For instance, for the WATFIV program,

n'=120 and n"=164 (under LRU) and for the WATEX program, n'=n"=57 under

MIN and LSO .

The point is that the AO inversion method, which uses the MIN fault

rate of the programs, can give us only n'-l non-zero reference probabil-

ities . Therefore, we get a model with n'-1 parameters and, clearly,

when we use the model as it is, the pages n' through n never get refer-

enced . For the lower range of memory sizes, the model with n'-1 param-

eter still gives satisfactory results . This is because in the practical

cases, the reference probabilities close to the tail of the model are

relatively very small . However, the behavior of the model can greatly

be degraded for large memory sizes if we don't extend the tail probabil-

ities to get a full size n parameter model .

Extending the tail probabilities to get n non-zero reference prob-

abilities is still an open question here . We have chosen an ad-hoc

method to get around the problem ; we have simply extended the last non-

zero reference probability so that pn'-l = 1'n' = pn' Then we

need to normalize to get a consistent set of probabilities . This solu-

tion has almost no effect on the performance of the model for am 11

memory sizes, but it has greatly improved its performance in the region

of large memory sizes .

3 .6 .3

	

Execution Characteristics of the Model

Thus far in this paper, we have demonstrated the capabilities of the

AA inversion model to capture most of the long run characteristics of

actual programs . However, we point out the fact that this model, and

in this matter none of the models which are mentioned in this report,

- 143 -

COEFFICIENT OF VARIATION OF INTER FAULT PERIODS (AFL Under LRU)

CV

8

1

I .

	

.

	

I

	

.
60

- 144 -

100

	

160

	

200
HEt V SIZE +

FIGURE 3 .31

are able to capture some of the complex non-stationary features of

actual programs .

In the applications where the variance of quantities, like the

inter-fault distances, are critical, the AV inversion model would be of

limited use . To illustrate this point, we compute the coefficient of

variation of actual inter-fault distances for the WATFIV program under

the LRU algorithm, and for different memory sizes (coefficient of var-

iation, C .V ., is equal to standard deviation/mean and is a scale of de-

parture from geometric or exponential distribution) . In Figure 3 .31,

the horizontal axis is the memory size and the vertical axis is the

C .V . of the actual LRU inter-fault values for the WATFIV program . We

can see that, in this case, C .V. is generally greater than one . The

fluctuation of the C .V. of inter-faults with different memory sizes is

notable . When the memory becomes very large, the computed values become

erratic because of insufficient samples .

The coefficient of variation of the inter-fault distances for the

Ad inversion model, as well as the LRU stack model, is equal to one .

This is because at each reference there is a fixed probability of a

fault independent of previous references . Thus, the inter-fault periods

are geometrically distributed for both models and the C .V . of this dis-

tribution is equal to one .

3 .7 CONCLUSION

Constructing program models can be a compact way of characterizing

the page reference behavior of actual computer programs . In this chapter,

we have presented the technique to build an Ad inversion independent

reference model, based on the actual MIN fault rate of a page reference

-145-

trace . We noted that the independent reference model preserves the

relative fault rate of actual program traces under MIN and LRU algorithms .

Thus, the Ad inversion model should be capable of predicting the true

LRU and FIFO fault rates of real programs for different main memory

sizes . We presented the results of experiments on several programs to

validate the model .

The AO inversion model is also successful at predicting the average

working set size and the WS fault rate of programs for a wide range of

window sizes .

We have seen that when an LRU stack model is constructed, based on

the actual LRU distribution of a reference string, it can reasonably

predict the MIN fault rate of the same program . The performance of the

LRU stack model and the AV inversion model have been compared by pre-

senting experimental data .

The analytical tractability and the simple probability structure of

the A0 inversion model make this model a convenient tool for the analysis

and evaluation of virtual memory systems and the performance of CPU's

with high speed buffers .

We have shown the potential of expanding the model into the areas

of simple program restructuring techniques and the evaluation of memory

hierarchies with unequal read/write costs .

When a program has several very distinctive locality regions, the

A0 inversion model, as well as the LRU stack model, overestimates the

average working set size by a small percentage . However, the prediction

accuracy of the average fault rate under fixed memory size algorithms

are virtually uneffected .

- 146 -

-147-

Comm . of ACM, 15, 3 (March 1972) .

- 148 -

The problem of finding the tail probabilities has been dealt with 3 .8 BIBLIOGRAPHY

here in an ad-hoc manner . More elaborate treatment of this subject 1 . "The Cray-l computer preliminary reference manual," CRAY Research,

should justify the desired accuracy of the model under very large memory

sizes, where the effect of these probabilities are most noticeable . 2 .

Inc .

"IBM System 360 Model 85 functional characteristics," Form A22-6916 .

The independent reference assumption on the successive references 3 . "Introduction to the IBM 3850 Mass Storage System (MSS)" Form

of a program is against our intuition and the actual observations . How- GA32-0028-1 .

ever, we have demonstrated that by putting enough structure into the 4 . Aho, A .V ., Denning, P .J ., Ullman, J .D ., "Principles of optimal page

model, we can obtain a powerful model which produces realistic results,

and can be used effectively in the analysis, simulation and evaluation 5 .

replacement, J . of ACM 18, 1 (January 1971), pp 80-93 .

Belady, L .A ., "A study of replacement algorithms for virtual stor-

of several problems in the area of memory management techniques .

6 .

age computer, 134 System J ., 5, 2 (1966), pp 79-101 .

Boyce, J .W ., "Execution characteristics of programs in a page-on-

7 .

demand system, Comm . ACM 17, 4 (April 1974) .

Coffman, E.G ., Denning, P .J ., "Operating system theor

	

Cs

8 .

Hall, Englewood Cliffs, New Jersey (1973) .

Conti, C .J ., "Concepts for buffer storage," Computer Group News

9 .

(March 1969) .

Denning, P.J ., "Thrashing : its causes and prevention," AFIPS Conf .

10 .

Proc ., Fall Joint Computer Conference, 33, (1968), PP 915-922 .

Denning, P .J ., "Virtual memory," Computing Surveys, 2, 3, (1970) .

11 . Denning, P .J ., "On modeling program behavior," AFIPS Conf . Proc .,

12 .

Spring Joint Computer Conference (1972), pp 937-944 .

Denning, P .J ., Savage, J.E ., Spirn, J .R ., "Models for locality in

13 .

program behavior," TR 107, Computer Science Laboratory, Dept .

of Electrical Engineering, Princeton University (1972) .

Denning, P .J ., Schwartz, S .C ., "Properties of the working set model,"

14 . Franaszek, P.A ., Wagner, T .J ., "Some distribution free aspects of

paging algorithm performance," J . of ACM, 21, 1, (Jan . 1974),

pp 31-39 .

15 . Franklin, M.A ., Gupta, R .K., "Computation of page fault probability

from program transition diagram," Comm . of ACM, 17, 4, (April

1974) .

16 . Ghanem, M.Z ., Kobayashi, H ., "A parametric representation of pro-

gram behavior in virtual memory systems," IHM Research Report

RC 4560 (October 1973) .

17 . Kelly, J ., "The development of an experimental electron beam-address

memory module," Computer IEEE 8, 2 (February 1975) .

18 . King, W .F ., "Analysis of paging algorithms," IBM Watson Research

Center, Report RC-3288 (March 1971) .

19 . Lewis, P .A .W ., Shedler, G .S . ., "Empirically derived micromodels for

sequence of page exceptions," IBM J . of Research and Develop-

ment (March 1973) .

20 .

	

Shedler, G .S ., Tung, C ., "Locality in page reference strings,"

SIAM J . on Computing 1, 3 (September 1972) .

21 . Watson, R.W ., "Time sharing system design concepts," McGraw-Hill,

N .Y . (1970)-

22 . Ypso, J .E ., "Bubble domain memory systems," AFIPS Conf . Proc .,

(1975), pp 523, 528 .

- X49 -

CHAPTER 4

QUEUEING ANALYSIS OF THE INTERACTION OF PAGE SCHEDULING
AND DEVICE SCHEDULING

4 .1

	

'RODUCTION

Multiprogramming on virtual memory computers has been with us for

more then a decade . It has become a common computing environment on many

large and, recently, on small computers . Programs running in such systems

compete with each other for resources, such as main memory, processing

time and 10 devices . The operating system has the complex task of man-

aging the affairs of the system . They include the initiation of jobs,

scheduling and assignment of resources, supervising the execution of the

jobs, etc . Performance has always been a critical issue here . The per-

formance goal is usually to have a balanced and efficient utilization of

the resources under the constraint that an acceptable service level be

provided for the diverse computing requirements of the community of users .

A wide range of techniques have been used to study and, therefore, to im-

prove the performance of these systems . They include direct measurements,

modeling, simulation and a wide range of analytical techniques . In this

regard, some questions have been answered and many others need to be ex-

plored further .

In this chapter, we are concerned with a part of the system which

consists of the central processor with its memory and the paging device .

These two fairly independent units interact strongly with each other to

meet the paging requirements of active programs .

The basic assumption is that the mein memory is partially leaded with

a subset of the pages of each active program . The number of active pro-

grams determine the degree of multiprogramming . The remaining pages of

- 150 -

each program reside in fast auxiliary storage, like a drum . A program

runs on part of its address space which is in the main memory . When a

reference is issued to a location outside this region, the execution of

the program will be delayed until the page which contains this address is

fetched into the main memory .

A two-stage cyclic queue will be used to model the structure of the

system . Using the actual and approximated paging behavior of programs,

we will study the performance of the model with different memory allo-

cation policies and scheduling disciplines . Quantities like utilization

(efficiency) of the devices, job completion rates and job waiting times

will be considered . The robustness of the results, with respect to dif-

ferent assumption, will be investigated .

4 .2 MODEL

A multiprogrammed CPU with its paging device (here, mostly celled 10

device or I0D) is modeled by a two-stage cyclic queue with fixed number

of customers . The number of customers is determined by the degree of multi-

programming (Figure 4 .1) .

Actual systems could be more complex than this scheme . For example,

we can have more than one 10 channel which is essentially a communication

link between the CPU and the auxiliary storage media . In this case, the

DO requests can be routed to different 10 devices . Nonetheless, the above

model captures the basic structure of the interaction of the CPU with its

paging device . Using this compact model, we are able to interpret the re-

sults without getting involved in details and questionable assumptions .

The goal of this study is to explore the underlying nature of the inter-

action of the pagee scheduling and device scheduling under fairly realistic

typical program behavior assumption .

- 151-

IOD

A

FIGURE 4 .1

	

Two Stage Cyclic Queue Model with N Customers

- 152 -

CPU

µ

Cyclic queueing models have been used by several other authors in

this area . In [11], a Markov model for the sequence of LRU stack dis-

tances is given . Then a two-stage cyclic queue model with two statis-

tically identical programs and equal memory partitioning is considered .

By changing the parameters of the Markov model, CPU execution intervals

with different variances are obtained . The numerical results suggest

that a lower CPU utilization is obtained when the variance of execution

intervals is increased . In [9], a single server queue with feedback and

N > 1 customers (programs) is used to model a paging machine with variable

partitioning memory . The customers are N statistically identical programs .

These programs are characterized by the distribution of their LRU distance

values . When a program experiences a page fault, one page is added to its

-main memory space at the expense of stealing one page from another program .

The long run average execution intervals end the distribution of the num-

ber of page frames allocated to a program are sought . In [4], the authors

consider a multiprogramming system with variable memory partitioning where

queueing delays are neglected . Carrying out an average value analysis

ever the time epochs during which the memory allocation is fixed, they

basically conclude that the mean processing efficiency is higher and the

mean page fault rate is lower compared to the case where a fixed parti-

tioning scheme is used . For N=2, the numerical results are presented .

In [2], the page frame allocation strategies among competing processes in

mtuliprograming systems ere investigated . The basic performance measure

is taken to be the cost of allocated page frames in main memory and the

contention on the paging device . The average waiting times of the requests

to the paging drum as a function of load on the drum and the number of

active jobs is found by simulating a two-stage cyclic queue . The execution

- 153 -

intervals of the jobs on the CPU is drawn from a common exponential dis-

tribution model . A rate of accrual value for the whole system under each

memory allocation scheme for N jobs is defined . This value gives a mea-

sure of how efficiently the available main memory is used taking into

account the average delays of the paging device, the progress rate of the

jobs, and page frame demand of each program present in the system . They

conclude that the optimal allocation policy for two identical programs,

when there is sufficient available space, is to divide the main memory

evenly between them . For non-identical programs, they suggest that the

main memory should be divided in such a way that the page fault rate of

the jobs become equal . In [5] and [13], the authors use a two-stage

cyclic queue to model the CPU and its 10 device in their work . In [5],

the average waiting time in a SLTF filing drum and the central processor

utilization versus the ratio of transmission time to the computing time

are illustrated . In [13], under the assumption that the mean execution

time between page faults is a linear function of the allocated main memory

size, the optimal memory partitioning, in terms of CPU utilization, is

found . A processor sharing scheduling policy is assumed for the CPU . In

[15], a two-level cyclic queue is used to study the effectiveness of the

HASP Execution Task Monitor (OS/360) which gives the tasks a preemptive

execution priority in the inverse order of their CPU usage history .

The model that we have considered here works as follows : There are

N customers (programs, jobs) in the system. When a job is ready to re-

ceive CPU service (ready to run on the CPU), it will run until it exper-

iences a page fault . The job with its request for the missing page will

join the I0D queue . When the service of the job in IOD completes (equiva-

lent of transferring the missing page from the drum to main memory), it will

- 154 -

join the CPU queue and is ready to resume its execution . CFO and IOD can

work independently . The overhead of switching the jobs in the CPU is

neglected . There is only one processor (server), the CBS . The main mem-

ory is divided into N fixed partitions m l, m2	mN, where mi is the
Nr

main memory space of job i and L miM. Each program runs in its fixed
i=1

allotment and no sharing of the pages is allowed (in one large computer

installation, the shared pages account for less than 15% of all pages) .

By changing the amount of main memory which is assigned to each job, we

can manipulate the mean CPU service time (between page faults) of that

job on that processor .

We can either simulate the model or solve it directly . For simu-

lation, we can use the reference traces of actual programs to drive the

simulation . In the latter case, an LRU replacement rule will be used to

manage the pages of the programs . For solving the model, we make some

simplifying assumptions about the program behavior .

The extent of getting useful results from the model depends on how

realistic we make the assumptions about the paging behavior of the programs,

scheduling disciplines, the distribution of page transfer time, etc .

4 .2.1

	

Program Paging Behavior

Program paging behavior has been extensively discussed in the previous

chapters . We will extend some of the relevant points here .

Assuming a fixed partitioning of the memory, the mean service time

for a job with memory allotment m is assumed to be equal to the mean inter-

fault times (i .e ., the time between two successive page faults) . For each

job, the mean interfault time is a function of the main memory space m and

- 155 -

the replacement rule which is in effect . We denote this function by gm,

and will assume a suitable replacement rule . For most replacement rules,

this function is non-decreasing for increasing values of m . In Figure

4 .2, gm functions are plotted for the WATFIV and APL programs under the

LRU algorithm . These curves are obtained by taking the reciprocal of

page fault rate functions, fm , for each case, i .e .,

gm fm1 ' m=1,2	M.

For our model, we need some mechanism to generate the interfault

periods for a given memory allotment, m . In simulating the model, we can

actually monitor real programs and measure the interfaults directly . This

approach can sometimes be very costly . For analysis and more efficient

simulation runs, we can use a model for program paging behavior . later

in this chapter, we will compare the results obtained from both methods .

Let gm(x) be the interfault density function for a given memory size

m, i .e .,

Pr[interfault = x] = gm(x)

For the independent reference model, and under any replacement rule

(e .g ., OPT, LRU, FIFO, RR) where the page fault rate converges to sone

value fm, the steady state interfault intervals have a geometric distri-

bution with parameter fm, i .e .,

Pr[interfault = x] = fm(1-fm)x-1

For the LRU stack model, under the LRU algorithm, gm(x) is geometri-

M

cally distributed with rate f =

	

d ,I'm
i=m+l i

where M is the program size and

di = Pr[LRU distance=l] .

- 1 56-

These two models have been shown to be good models for program

paging behavior [Ch . 2 and 3] . In both models, the distribution of gm(x)

has a simple form . If the paging behavior of the programs are assumed

to follow one of these models, then a natural assumption for the inter-

fault distribution in continuous time is exponential .

For the geometric (or exponential) distribution, the coefficient of

variation (0.V.) is equal to one . The C .V . of interfaults from measure-

ments on actual programs has generally values higher than one . In Table

4 .1, the coefficient of variation of interfaults for different memory

sizes for two programs are shown . In Figure 4 .3, the survivor functions

of the actual interfault distribution with two different main memory sizes

are shown . In the same figure, the survivor function of a fitted expon-

ential distribution for each of the actual observations are also plotted .

The results show that the coefficient of variation of the actual

interfault periods is generally higher than one, and the exponential fit

is not a perfect choice in this case . We shall take this fact into con-

sideration in simulation of the model when we use the actual trace of pro-

grams to run the simulation . Later in this chapter, we shall compare the

results of the analytical approach, where we assume exponential service

times, with the results of simulation wheree more realistic program be-

havior considerations are possible .

- 157 -
-158_

(b)

TABLE 4 .1 Mean and C .V . Of LRU Interfaults for
Different Memory Sizes . The standard
deviation is given for actual programs
and exponential distribution with equal
mean .

- 15 9 -

4 .2 .2

	

10 Device Model

The nature of the service time in IOD depends on the type of device

which is used to store the program pages . With today's technology, the

most common device is a paging drum . In a paging drum, each track is

divided into equal size secotrs and each sector contains one page block .

The service time of a request which arrives at this center is equal to

the rotational latency until the read/write heed reaches the beginning

of the requested sector and the time to transfer one sector . Therefore,

it seems that the distribution of the service time can be beet formulated

by a random component describing the rotational latency and a constant

time for transferring one page block (see [5] for more detail) . We

should, however, realize that each request for this center can experience

different rotational latency periods, depending on the utilization factor

of the device . For instance, if there is more then one request waiting

for service in this center, the completion of the transfer stage of the

first request with a high probability, can leave the head on the beginning

of the sector of the next request, and result in zero seek time for the

latter request .

For the newer technologies that might replace paging drums, there is

no reason to believe that each read/write request for the IOD needs a

preparation period like the latency time described for the paging drum .

To free ourselves from the internal organization of the DO devices, we

will use a simple single exponential service time for the analysis of the

model and, in order to find the effect of other device dependent service

times on the performance of the model, we shall use a more accurate paging

drum scheme for the simulation of the model .

- i6o -

Actual APL Program Exp . Model

Memory
Si e Mean _ C .V .

Standard
Deviation

Standard
Deviation .

10 38 4 .00 152 38

20 92 3 .19 293 92

30 188 2 .11 398 188

390 2 .15 841 390

50 741 2 .18 1620 741

6o 1161 2 .20 2564 1161

70 1815 1 .67 3040 1815

Bo 2623 1 .56 4107 2623

Actual WATFIV Program Exp . Model

Memory Standard Standard
S e Mean C .V . Deviation Deviation

10 23 3 .01 69 23

20 59 2 .52 149 59

30 84 3 .82 321 84

40 118 3 .47 41o 118

50 193 3 .29 635 193

6o 607 2 .94 1785 6o7

70 2462 1 .96 4846 2462

8o 4062 1 .20 4905 4062

4 .2 .3

	

Scheduling of the CPU and I0D Requests

The effects of the scheduling disciplines in both centers on the

performance of the model is an important concern in this chapter . The

decision to choose a request for service in each service station may be

based on one of the following criterions :

- Requests are served in the order of arrivals, namely, first

come first serve (FCFS) policy .

- Requests are divided into classes and each class has a service

priority . The server chooses the request with the highest

priority first . In this policy, the arrival of a higher

priority request may preempt the execution of a lower priority

job . In our case, the service priorities at a center ere based

on the service rate of the job at that center or on the service

rate of the job at the other service center .

The service discipline is processor sharing, i .e ., when there

are N jobs present in the center each job will receive service

at the rate of N
. Processor sharing is considered the limit

of round robin scheduling when the quantum size approaches zero .

It is a good approximation to the service policies in time shar-

ing systems with small quantum size (e .g ., 10 ms) .

We will see later that under certain conditions the service disci-

plines have a significant effect on the resource utilization and the

waiting times in the model .

4 .2 .4

	

Queueing Analysis of the Model

We assume that there are N jobs circulating in the queue where N is

the degree of multiprogramming . The IOD service times for all jobs are

- 161 -

the same, and are exponentially distributed with rate X . The CPU service

time of each job j is exponentially distributed with the rate p
J

. .

Each center may service the arrival requests based on its own service

policy . Four types of service modes have been considered here :

- Type I (FCFS-FCFS) : IOD and CPU both use FCFS policy .

- - Type II (Independent Priority) : IOD uses FCFS policy and CPU

uses a preemptive priority scheme based on the service rate of

each job at this center .

- Type III (CRJ Priority) : IOD and CPU both use priority disci-

pline based on the service time of the job in CPU . The higher

priority jobs in CPU preempt the lower priority jobs in this

center. The priority ordering of the jobs in CPU is the reverse

of the priority ordering of the jobs in IOD .

- Type IV (PS-FCFS) : IOD uses FCFS and CPU uses processor sharing

policy .

4 .2 .5

	

State Identification and General Solution of the Model

The states of the queue are elements of the set [S 1, 52	Sn]

where n is the total number of states . A state S is defined by a vector

S = (x l, x2)

where

xs = (xs1'xs2	xsn), s=1,2 (or s=IOD, Cm),
e

n a is the number of customers (jobs) in service center s and x sj is the

class of customer who is jth in the FCFS or priority order . The customer

undergoing service in center a is, therefore, identified by xsl"

With the assumptions we have made, the state transitions constitute

a positive recurrent Markov chain . let the infinitesimal transition rate

-162-

matrix of this chain be Q--(q i .), then the steady state probabilities are

the solution for the system n Q=O, where n=[P(SI),P(S2)	P(Sn)J is

the vector of steady state probabilities and n is the number of states .

n

The normalizing equation is = P(S
i

) = 1 .
1=1

The linear system of equations n .Q=O .can be set up by writing the

so-called global balance equations . These are obtained by equating the

rate the chain enters a state, to the rate it leaves that state .

This model becomes a special case of the general model analyzed in

[1] for Type I scheduling when all service rates at each center are the

same, and for Type IV scheduling . For other cases, one needs to write the

balance equations and solve the equilbrium probabilities for each case .

4 .2 .6

	

Definition of Performance Measures

These terms will be used in the following discussion :

- CPU or IOD UTILIZATION (UCpu,
Uiod) : The fraction of time the

CPU or IOD is busy . These terms are defined by the equilibrium

probability of each center being busy .

- DILATION TINE of job i at center s (D
e

	

a= IOD or CPU) : This
,

quantity indicates the amount of time a job waits in a center

W
relative to its service time, and is equal to R where Rs f

s,1

is the service time of job i at center s .

-163-

- COMPLETION RATE (denoted by C) : The average number of jobs which

terminate their execution and leave the system in a unit of time .

- PROGRESS RATE : The average rate jobs are processed . This quan-

tity is equal to the CPU utilization because the CPU service Is

the real processing requirement of the jobs .

We begin solving the model starting with two special cases with N=2

jobs, end type I and type II scheduling policies . The explicit solution

for the steady state probabilities, for these cases, is given . When the

number of jobs increases, it is more convenient to use an algorithm to

set up and solve the steady state equations with a computer program .

4 .2 .7

	

Case 1 : Two Jobs and Type I (FCFS-FCFS) Scheduling

Service discipline :

n 1 = number of jobs in center 1(IOD)

n2 = number of jobs in center 2 (CPU)

State identification :

n l

	

n2

The balancee equations ;

(1 + µ2) . P(S 1) = µ1.P(53) + A P(S6)

(I + µ1)

	

P(S2) = µ2.P(54) + A .P(55)

µl P(S3) = A . P(s2)

A

	

$(s5) = µ2 .P(SI)

-164-

- WAITING TIME of job i at centers (W=

	

a= I0D or CPU) : The 1 1 S1 = [(1),(2)J 3 2 = [(2),(1)]
, I ,

time period that job i spends at center s . This value consists 0 2 S
3 = [- ,(1,2)J S4 = [-,(2,l))

of the queueing time plus the service time of the job . 2 0 55 = [(1,2), -) S6 = [(2,1), -)

Then :

x . P(S6) = µl . P(S2)

µ2 .P(54) = A . P(S1)

The normalizing equation is :

n

P(SI) = 1 .
i=1

The solution to the balance equations will give the steady state

probabilities :

Let b 2µ1µ2(A+µ1)(A+µ2) +42µ1(A+µ1) +42µ2(A+µ2)

P(s 1) = Aµlµ2(A+µl)/D

P(52) =Aµlp2(A+, .2)/D

The steady state probabilities can be used to find the equilibrium

device utilization and job waiting times, as follows :

The device utilization is the probability that each device is busy,

Uiod = Pr[IOD busy] =1-Pr[IOD idle] = 1-P(S3)-P(S4)

Ucpu = Pr[CPU busy] =1-Pr[CPU idle] = 1-P(S5)-P(S6) .

The waiting time of each job at each center can be found using

Little's Theorm [Little, 1961] . We need to calculate the number and the

arrival rate of each job class at the center .

- 165 -

Let n

	

denote the number of jobs of class i at center a . Then :
s,i

	lOD,1 = P(S
I) + P(S5) + P(S6)

nIOD,2 = P(S2) + P(S 5) + P(S6)

nCPU,
1 = P(S2) + P(53) + P(54)

nCFU 2 = P(S1) + P(S 3) + P(54)

Since we have a cyclic queue, the arrival rate of a job at a center

is the product of the probability that this job is under service in the

other center by the service rate of the job in that center . Thus, the

waiting times of the jobs at each center are :

n

	

11
µl . P S2 +P S 3

D 2 =	nIODt 2
tµ2 .(P(S1)+P(S4))]

WCP1, I =

WCPU2 =

'CPU, 1
[A .(P(S1)+P(S5))J

nCPJ,2
lA .(P(52)+P(56))]

The average waiting times at each service center are :

__ (WIOD,1 +WI0D,2)
WIOD

	

2

(WCPU,1 +WCP1,2
WCRY =

	

2

4 .2 .8

	

Case 2 : Two Jobs and Type II (independent priority) Scheduling

CPI : preemptive priority :
pric(job 2) > prio(job 1)

IOD: FCFS

Service discipline

- 166-

P(53) = 42112(k +42)/D

P(S4) = 42µ1(A+µ1)/D

P(s5) = µ1µ2(A+µl)/D

P(56) = µ12µ2 (A +µ2)/D

The normalizing equation is :

n

P(S l) = 1 .
1=1

The solution to the balance equations will give the steady state

probabilities :

Let E = (A+µ1)(A+µ2)2 +
µIk22

Then :

P(Sl) = Ap lp2 /E

P(S2) =Aµ2(A+µ2)/E

P(S3) = A2(A+kl+µ2)/E

- 16 7 -

P(S4) = k 1 µ22 /E

P(s5) = µlk2(A+µ2)/E

As in the previous case, we can find terms like device utilizations

and waiting times . For instance, the DOD and CPU utilization for this

case is :

UIOD- 1 - P(S3)

UCPU = P(s l) + P(s2) + P(S 3)

4 .2 .9

	

An Algorithm to Set Up and Solve the Balance Equations

As the degree of the multiprogramming increases, the number of states

grows very fast . For example, for N=4 and Type I scheduling, the number

of states becomes 4'.(4+1)=120. In such cases, we can use a computer pro-

gram to solve the steady state equations . But first, we need a convenient

way to set up the infinitesimal transition matrix, Q .

Let the states be the elements in the set [S l ,
82	Sn] . Denote

by X=(x ij) the matrix such that xij is equal to the rate state S i goes to

S . . Thus, the balance equations become :
J

	

.'

	

-

~P(S1)

	

F(S1)
I

P(S2)

	

P(S
)

0

k=

0

-168-

P(Sn)

	

P(Sn)

nl = number of jobs in center 1 (IOD)

n2 = number of jobs in center 2 (CPU)

State identification :

n I

	

n2

1

	

1

0

	

2

2

	

0

Sl = [(l),(2)]

53 = [-,(2,1)]

S4 = [(1,2),-]

s2 = [(2),(l)]

S5 = [(2,1),-]

The balance equations :

(A + p2) .P(S1) = A .P(SS)

(A + p I) .P(S2) = '2 .P(S3) + A .P(S4)

µ2 P(S3) = A [P(SI)+P(S2)]

A

	

P(S4) = k2 P(S l)

A

	

P(s5) = µl P(S 2)

A . P(S5) = P1 P(S2)

Re-writing it, we get :

where Q--(q,,) = 1-xij if i=j

If we couple a normalization equation to the above system of linear

equations, we can solve for the steady state probabilities . Therefore,

we only need to find the X matrix in each case, which is much easier than

constructing the Q matrix, and let a computer program find the Q matrix

and solve the equations for the numeric solutions .

In the following sections, two more cases with N = 3 jobs are

treated .

4 .2 .10

		

Case 3 : Three Jobs and Type II (independent priority)
Scheduling

CPU : preemptive priority :
prio(job 3) > prio(job2) >

prio(job 1)

iOD : FCFS

Service discipline :

if 1=j

The states are :

ny

	

n2

0

	

3

	

sy = [-,(3,2,1)]

1

	

2

	

S2 = [(1),(3,2)],

2

	

1

	

ss = [(1,2),(3)],

sg = r(3,1),(2)1,

3

	

0

	

S11 = [(1,2,3),-],

s14 = [(2,3,1),-],

In this case, the X matrix is :

0 0
0 43 0 0 0

X 0 0 0 0 0 µ3
A 0 0 0 0 0 0

A 0 0 0 0 0 0

o 0 1 0 0 0 0

o A 0 0 0 0 0

X = 0 0 0 A 0 0 0

0 l 0 0 0 0 0

0 0 0 A 0 0 0

o 0 l 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

0 0 0 0 l 0 0

0 0 0 0 0 x o

$3 = [(2),(3,l)], S4 =

56 = [(2,l),(3)], s7 =

[(3),(2,1)]

[(l,3),(2)],

[(3,2),(l)]so = [(2,3),(l)], sl0 =

S12 = [(1,3,2),-] 513 = [(2,1,3),-],

S15 = [(3,1,2),-], S16 = [(3,2,1),-]

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 p 3 0 0 0 0 0 0 0

0 0 µ2 0 0 0 0 0 0
0 0

0 v3 0 0 0 0 0
0 0 0 0 0 µ3 0 0 0

0 0 0 0 42 0 0 0 0

0 0 0 0 0 0 0 µ2 0 r
0 0 0 0 0 0 µ1 0 0
0 0 0 0 0 0 0 0 µy
0 x 0 0 0 0 0 0 0

0 0 A 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

A

	

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

4 .2 .ll

	

Case 4 : Three jobs end Type III (CPU Priority) Scheduling

CPU: preemptive priority :

prio(job 3) > prio(job 2) >

prio(job 1)
Service discipline :

The states are :

IOD: priority :

prio(job 1) > prio(job 2) >

prio(job 3)

n 1

	

n2

4 .2 .12

	

Case 5, Tvpe IV (processor sharing-FCFS) Scheduling

A closed form solution for the steady state probabilities can be

found for this model when the scheduling policy at the CPU is processor

sharing . In this case, we use a derivation of a more general model dis-

cussed in [1] .

Service discipline is Type IV :

I CPU : Processor sharing

IOD : FCFS

0 3 Sl = [-,(3,2,1)]

[(2),(3,1)], s4 = [(l),(3,2)]
There are N job classes and each class has one job .

1 2
The states of

S2 = [(3),(2,1)], 53 =

2 1
the queue are denoted by

S5 = [(2,3),(1)], S6 = [(3,2),(l)], S7 = [(l,3),(2)],

Sg = [(3,1),(2)], S9 = [(1,2),(3)], Sl0 = [(2,1),(3)]
S = (xl, x2)

3 0
where xs = (nal , n52 ,	nSN), a = 1(IOD), 2(CPU) and n ar is the number

S11 = [(3,1,2),-], 512 = [2,1,3),-], S13 = [(1,2,3),-]

0 0

of customers of class r present in service center a (we note that the

state definition is different from earler cases and n sr = 0 or 1) . letAnd the X matrix for this case is :

0 0 0 10 p3 0 0 0 0 0 0 n

x 0 0 0 0 0 0 0 0 0 0 0 n , s=1,2 be the total number of jobs present in station a, we

A 0 0 0

p2
0 0 0 0 0 0 0 0

n=l sr

X 0 0 0

p3
0 0 0 b 0 0 0 0

then have ftl + n2 = N .

0 x 0 0 0 0

V 3

0 0 0 0 0 VI 0 form

The joint equilibrium state probability distribution has a product

solution as follows :

0 0 x 0 0 0 0 0 0 0 0 0

0 x 0 0 0 0 0 0 0 0

VI

0 0 A2 where

Pr[S = (x l,x2)] = K gl(xl) . g2(x2)
n~

0 0 0 A 0 0 0 0 0 0 0 0

0 0 x 0 0 0 0 0 0 0

V2

0 0 p3

gl(x l) = n11

	

(1:) = al~ (

	

)nl

and n2
0 0 0 x 0 0 0 0 0 0 0 p3 0

g2(x 2) = n2 : 11 (µ)n2r
0 0 0 0 0 0 0 0 A 0 0 0 0 Pr

0 0 0 0 0 0 x 0 0 0 0 0 0 The coefficient K is the normalization factor which makes the prob-

0 0 0 0 x 0 0 0 0 0 0 0 0 abilities sum to one, and can be obtained from :

- 171 - - 172-

K _ .L
= Y

	

gl(x1) .g 2(x2) _
for all
states S

1

	

1

	

1

	

N

n2 _n1 , (l)"l 'I (µ1)°2r
nl,l-0

	

nl N-10 nl R
0

	

r=1 r

The CPU and IOD utilization can be found from the expression for

the steady state probabilities :

U CPU = 1 - Pr[CPU is idle] = 1 - Pr[nz 0] _

N

1 -CK-I N : r 1]
r=l µr

U IOD = 1 - Pr[IOD is idle] = 1 - Pr[n 1=O] _

1 -CK I N'. (l) N)
The expressions for K and the device utilizations look awkward but,

in fact, for the numerical evaluations, they can be conveniently evaluated

with a program with recursive calls .

4 .3 DISCUSSION OF THE NUMERICAL RESUIIIS

The numerical results obtained from the analysis of the model are

best illustrated with a series of graphs . The objective is to do a com-

parative study of the behavior of the system under different loads and

different structural assumptions .

The jobs circulating in the cycle are assumed to be identical pro-

grams . We have taken the WATFIV program and measured the fault rate

function fm under the LRU replacement rule . When m pages are allocated

to a job in the main memory, f m determines the service rate of that job

- 173 -

at the CPU . Since the paging behavior of the WATFIV program is typical

of many programs we have measured, the numerical results should be rep-

resentative for a large class of frequently used programs .

The size of the WATFIV program used here is 163 pages . The size of

the me in memory, M, is taken to be equal to this number . Therefore, only

one program can be resident in the main memory with all its pages .

The service rate at the I0D is the same for all jobs . Unless speci-

fied, the IOD service distributions are assumed to be exponential .

The degree of multiprogramming is denoted by N . When N=2, the main

memory is divided into two parts . Each program has mil i=1,2 pages end

m1+m2 1'm2' . The service rate at the CPU for job i is equal to µ

	

,2 .

Referring to, say, Figure 4 .4, the memory allocation (m l , .2) is specified

by a point on the x axis which is m l(m2) units from the right (left) ver-

tical axis .

In a similar way, when N=3, the memory is divided into three parts ;

namely, m1, m2 and m3 where m1+m2+m3=M . To represent a memory partition

(m1,m2,m3), we use baricentric coordinates . In this coordinate system,

we have an equilateral triangle with an altitude equal to M, the total

main memory size . Each three way memory partitioning (m l ,m2,m3) is

uniquely defined by a point inside this triangle . This point has vertical

distances m1, m2 and m3 from the three sides (faces) of the triangle .

For a general N way memory partitioning, one needs a tetrahedron in

N-1 apace to specifiy a point .

The performance of the model can be affected by any of the following

factors :

(a) memory allocation policies

(b) degree of multiprogramming

-174-

zation .

(c) scheduling disciplines in IOD and CAI

(d) IOD (e .g ., drum) speed

(e) assumption about program paging behavior

(f) assumption about IUD characteristics

4 .3 .1

	

Effect of Memory Allocation Policies on Device Utilizations

The way main memory is divided among active jobs has a very sub-

stantial effect on CPU and IOD utilization . Regardless of the service

discipline, when memory is symmetrically divided into two parts (Figures

4 .4 and 4 .5) or into three parts (Figure 4 .6), the CPU utilization is low .

Conversely, asymmetric memory allocations give rise to higher CAI utili-

In Table 4 .2, the numerical values of device utilizations for a

number of different memory allocation schemes are given . For instance,

for N=2, ml 81 and m2 82 (fairly symmetric allocation), the CPU utilization

with Type I scheduling is 0 .67 . Under the same condition for the allo-

cation m 1=40 and mz 123 (asymmetric), the CAI utilization is 0 .94 . With

N=3, we get more interesting results by referring to Figure 4 .68 . In this

figure, which shows the CPU utilization with Type I scheduling, we observe

that in the region in the middle of the triangle, which corresponds to

memory partitioning of fairly equal sizes, the CAI utilization is much

lower than other regions .

In the same figure, consider a line parallel to one of the sides of

the triangle . The variation of CPU utilization along this line corres-

ponds to the class of memory allocations where the space for one job is

fixed and the remaining space is divided between the other two jobs in a

variable way, depending at which point along the line we stand . For in-

stance, consider a conceptual line which is parallel to the base of a

- 1 75 -

triangle (Figure 4 .6a) . Along this line, ml is fixed . When this line

lies on the top of the base line, ml 0, we get a CPU utilization graph

which is similar to Figure 4 .4 . As we move this line upward, i .e ., in-

creasing ml , we eventually reach a point where from then on the utili-

zation remains fairly constant along the line, and hence, it is fairly

independent of the way we allocate the remaining space (net used by job

1) between job 2 and 3 (m l > 102) .

The high CAI utilization for asymmetric allocation is due to the

fact that in this scheme one job gets sufficient space at the expense of

leaving a little room for the other jobs . This job will execute for a

relatively long time without being interrupted by a page fault . Con-

cersely, in a symmetric allocation, since all jobs are running in a rel-

atively small area, the resulting frequent page faults cause contentionn

in IOD, which in turn will lower the flow of the jobs in the system .

The DO device (IOD) utilization with Type I scheduling has an in-

verse relationship with CPU utilization . The IOD utilization is the

highest when the main memory is divided into equal parts . Short CPU

service times, due to symmetric allocation of main memory, increases the

rate of the requests arriving at IOD and, therefore, keeps the device

busy moat of the time . These are illustrated in Figures 4 .4 and 4 .5 for

N=2, and Figure 4 .6s for N=3 . Table 4 .2 gives some of the numerical

values .

- 176 -

rNe

LO

0 .9

B

PI

I
CPU
I0

CPU AND IOD UTILIZATIONS FOR 2 JOBS. IOD SPEED=14200

-_F -

	

IType II

50

	

100

	

150

MEMORY ALLOCATION : J03 2 »1- JOB 1

Fig . 4.4

i

AND TOT) UTfTZATIONS FOR 2 JOBS . TOD SPEED=1/10000

50

	

100

MEMORY ALLOCATION: JOB 2 1- JOB 1

Fig . 4.5

-177-

CPU UTILIZATION FOR 3 JOBS IN BARICENTRIC COORDINATES
I

	

I

100 UTILIZATION FOR 3 JOBS IN BARICENTRIC COORDINATES

150

100

50

0 JOB 1
Fig . 4.6

- 176 -

(a)

(b)

TABLE 4 .2 Effect of Memory Allocation Policies on CPU
and IOD Utilization . Scheduling is Type I
and IO Device Speed is 14200 .

4 .3 .2

	

Effect of Page Scheduling on Completion Rate

We next define the completion rate as the number of jobs which can

be pushed through the system in a unit of time . These jobs presumably

complete their execution and leave the system . This definition is not

complete until we specify the resource requirements of the jobs entering

the system . In our next discussion, we only take the total CPU service

requirement of each job into consideration . A slight external modifi-

cation must be given to our model to permit the conceptual entering and

-leaving of the jobs in and out of the system . This modivication is shown

in Figure 4 .7 . Here we assume that, at each instance, the system can

accommodate N jobs from N different classes . All jobs of class i have

the same average total CPU service requirement Ri, i=1,2, . . .N . On the

average, with each passage through the CPU, job i receives R units of

-179-

w

'- - - -

- 180 -

j

P

pj

--~ qj
i
i
i

a

FIGURE 4 .7

	

A Conceptual Modification of the Model to Permit the
Computation of Completion Rates

N Memory Allocation CPU
Utlz .

IOD
Utlz .

m

	

m2

	

m3

2 40

	

123 0 .94 0.10

2 6o

	

103

	

- 0 .76 0.10

2 81

	

82

	

- 0 .67 o.66

2 103

	

60

	

- 0 .76 o .44

2 123

	

40

	

0 0 .94 0.10
--

3 30

	

32

	

101 0 .62 0.68

3 41

	

42

	

80 0 .29 0.94

3 53

	

54

	

56 0 .07 0 .99

3 32

	

75

	

56 0 .28 0 .95
3 20

	

87

	

56 0 .38 0 .89

service from this center where pI is the CPU service rate . Each job cir-

culates in the cycle until its CPU service requirement is exhausted .

Then it will leave the system and it is immediately replacedby a new

job from the same class . Thus, we assume that the system is heavily

loaded with all classes of jobs . let Ri be a random number which des-

cribes the total CPU service requirement of a job from class i . Let Ni

be the number of times job i must cycle through the system until it re-

ceives all its CPU time . It can be shown (Appendix 4.5) that

f = E[N I] = E[R I] P.i = R

	

. .

Let pi and qi , q i+pi l, i=1,2, . . .N be the branch probabilities at

the departure point after the CAI (Figure 4 .7) . With the probability p i ,

job i will return to the IUD queue via branch 1, and with probability q i ,

it will leave the system through path Q to be subsequently replaced by an

identical job . We can see that the internal structure of the model is

untoughed except with this scheme we are not able to measure the rate jobs

flow through path q which determine the rate the jobs are leaving the

system .

We would like to estimate p i and q i for i=1,2N such that a job

from class i cycles N i times on the average through path P before it

leaves the system through branch Q .

We note that random variable N i is geometrically distributed, i .e .,

pr[N k] = pIk .gi, k=0,1,2, . . .

E[N i] = pi .g i (1+2pi+3Pi2+) _

or

as :

where

Using the method of moments, we require that :

or

P i

	

1-q
E[N1] =

	

=
T,

	

qi

1

qi

N

C = Y c i
i=1

c

1
1+Ripi

let c i be the rate jobs from class 1 leave the system through branch
y
Q (Figure 4 .7) . Define the completion rate of the system, denoted by C,

Z

	

P[S]
all states S

which job i is
under service in

CPU

In Figure 4 .8, for N=2 and Type I scheduling, the completion rate C

for various memory pertitionings is shown . The total CPU service require-

ment of each job class is assumed to be exponentially distributed with

means RI and R2 , respectively . In this figure RZ 10 7 time units and from

top to bottom R2=R1, R2=2R 1 and R2=3R1 .

We can see that for symmetric allocation, we get a lower completion

rate . This is mostly because of the low CPU utilization obtained from

symmetric partitioning . When R2 > R1 , the completion rate curves do not

entirely follow the pattern of the CPU utilization curves . There are two

advantages if we let job 1, with its shorter total execution time, get a

- 182-

16-7

U

109

- 183 -

I
IOD SPD.=14200

TYPE I SCHEDULING

a larger share of the main memory . First, we will have an asymmetric

memory allocation which causes more efficient use of CPU ; second, the

jobs with shorter total execution times can finish faster and leave the

system without being delayed behind the jobs with longer CPU service

demand .

In all completion rate curves, we can see that a minimum is obtained

in asymmetric memory partitioning ml 62 and m2=101 . There are two reasons

for this . First, this partitioning is close enough to a region where CPU

utilization is low (see Figure 4 .4) . Second, with this uneven parti-

tioning, class 2 jobs with their longer execution times receive most of

the CPU service and, hence, reduce the total completion rate .

In our formulation of the completion rate, if we let R i approach

infinity for all 1, then C will tend to zero . In this case, we can only

talk about the rate the jobs progress toward their completion at infinity .

This brings up the notion of the progress rate which indicates the rate

jobs are receiving CPU service . This quantity, averaged over all the

jobs present in the system, is equal to the CPU utilization .

4 .3 .3

	

Effect of Page Scheduling on Queueing Times

Efficiency measured as resource utilization is not the only concern

in the performance of a computer system . There are other equally impor-

tant factors which should be taken into account . Going back to the

original model, we can study the waiting time of the jobs at each center .

The significance of this study arises from the goal of most operating

systems to allow all programs to advance in the system at a reasonable

pace . We went to avoid the situations where the execution of one job is

greatly delayed in favor of giving faster service to other programs .

-184-

We have two terms which are related to the waiting time of jobs at

each center . When a job arrives at a center, its queueing time in that

center is measured as the time it spends in the queue before it starts

to receive service . For all jobs in the cycle, the average of the mean

queueing time at a center is defined to be the average queueing time at

that center .

For N=2 with Type I (end Type II), scheduling the average queueing

time at the CPU are shown in Figure 4 .9 . In the same figure, the dotted

lines give the average service time values for each job under different

main memory space . We can see that a symmetric memory allocation results

in lower average queueing times . This is partly because with this memory

configuration, CUP is not heavily used and, therefore, when a job arrives

there, it is more likely that it finds an empty queue . For Type I,

scheduling the queueing time curves follow the pattern of CPU utilization

curves, i .e ., low values for symmetric and nearly symmeteric allocations

and high values for asymmetric partitioning . In the next section, we

will see that by introducing a suitable priority scheduling discipline

we can maintain high CPI utilization and, meanwhile, keep the average

queueing times low . Table 4 .3 gives the queueing time of each job and

the average queueing time at the CPI for N=2 end Type I scheduling .

- X85 -

TABLE 4 .3 Average Queueing Times at CPI . Scheduling is
Type I and Drum Speed = 0 .0001

Another quantity which is also related to relative waiting times is

is the dilation time of a job . It is the amount of time a job waits at

a center relative to its processing time in that center . Therefore, the

high job dilation time at a center indicates the situation where a job

is waiting a long time to get a relatively short service from that center .

This can be undesirable if the goal is to keep down the waiting time of

the jobs with short service requirements . It can also be a deliberate

penalty which is imposed on a job if the overhead of switching jobs is

high .

The harmonic average dilation time, Da , at each center s, reflects

the contribution from all jobs in that center and is equal to

N

1/D
s, ii=1

In Figure 4 .10a and 4.10b, the reciprocal of Da ,

- 186 -

Memory
Allocat'n CPU

Utlz .

Ave . queueing
time of (Wl-W2)/2

Ave CPU service
time of

job 1
W1

job 2
W2IS 1

	

m2
job 1 job 2

40 123 0 .87 65807 1 32904 11 .8 74627

45 118 .087 65808 2 32905 147 7 626

50 113 0 .81 28270 4 14137 194 50000

55 108 o .61 12522 9 6265 309 20161

6o 103 0 .51 6370 3 3202 607 13793

65

	

98 o .41 3645 165 1905 1371 8665

70

	

93 0 .40 2757 86 1621 2462 7037

75

	

88 0 .38 1730 796 1263 3247 5269

8o

	

83 0.37 1310 117 1242 4065 4425

85

	

78 0.38 984 1538 1261 4766 3786

150

100

50

150

100

50

0

CPU: RECIPROCAL OF HARMONIC AVE DILATION TIMES

cac

Fig . 4.10

JOB i

I00: RECIPROCAL OF HARMONIC AVE DILATION TIMES

- 187 -

(a)

(b)

i.e ., Ds l = 1,Da , which has real values between 0 and 1, for N=3 and Type

I scheduling, and for s=CPU and TOD are shown . The high values of Da l

is indicative of low dilation times . We note that since we are dealing

with the reciprocal of harmonic averages, the contribution from each

term is between 0 and 1/3 for N = 3 .

For symmetric allocations (regions around the center of the tri-

angle in Figure 4 .10a), all jobs spend very little extra time in CAI

over their execution time [Da l > 0 .9] . With extremely asymmetric allo-

cation, i .e ., in the areas around the vertices in the figure, the job

with the largest share of the memory causes a long delay in the execu-

tion of the other two jobs .

In the remaining areas, we can see the pattern according to which

Dsl changes for other allocations . A descriptive picture of the relation

between the dilation time and the utilization at CAI can be obtained by

comparing Figure 4 .11a with Figure 4 .10a .

In Figure 4 .lOb, the reciprocal of the harmonic average dilation

times in IOD, DT_OD , is shown for different main memory configurations .

Since the service time at this center is the same for all jobs, the

variation of DIpD reflects the relative waiting times under various

amounts of traffic which arrive at this center . Comparing Figures 4 .10b

with 4 .llb (TOO utilization plot), we can see the relationship between

the utilization and dilation times at IOD . The congested 10 device

[0IoD > 0 .9] gives rise to low DIpD which indicates high dilations times .

4 .3 .4

	

Effect of Degree of Multiprogramming on the Performance of

the Model

In a general multiprogramming system, it has been observed that due

to the different 10 activity in the system the CHI utilization reaches

a maximum value for an optimal degree of multiprogramming . In our model,

however, the only IO activity is generated by the paging demands of the

programs . Therefore, by changing the degree of multiprogramming, we are

going to investigate the effect of the number of active jobs which inter-

vene with each other's execution behavior by occupying a part of the

common memory .

In Table 4.4, the CPU end IOU utilization for N=1, 2 and 3 programs

are given . For each value of N greater than one, we have multiple allo-

cation possibilities . When we have symmetric allocation, the CPU utili-

zation with N=2 is equal to 0 .67, and with N=3 is equal to 0 .07 . Corres-

pondingly, the IUD utilization is 0 .66 for N=2 and 0 .99 with N=3 . There-

fore, when N=3, we have very high paging activity and we are faced with

a thrashing problem .

Another comparison point is the case when we fix, say, m 1 and allo-

cate the remaining memory for one or two jobs . We notice that when m1

is large enough, the CPU utilization is less sensitive to the degree of

multiprogramming . For instance, with m1 102 and N=2, the CHI utilization

is 0 .73, and for the same value for ml but with N=3, the CHI utilization

is 0 .63 . Moreover, for the latter case the way we allocate the space for

the second and third job does not have a substantial effect on the CPU

utilization .

The result we quoted here were from Type I scheduling . In the next

section, we investigate the subject of job scheduling at CPU, which brings

up a number of interesting issues .

- X89 -

TABLE 4 .4 CHI and IOD Utilization for Different Degree
of Multiprogramming and 10 Device Speed .
Scheduling is Type I .

-190-

memory
allocation IOD spd .=14200 IOD spd .=110000

N CPU IOD CPU IUDm

	

m

	

m31

	

2
utlz . utlz . utlz . utlz .

1 163

	

- 1 .0 0 .0 1 .0 0 .0

2 102 61

	

- 1

	

0 .73 0 .49 0 .47 0 .75

2 81 82

	

- 0 .67 o .66 0 .37 0 .89

3 56 53

	

54 1

	

0.07 0 .99 0 .03 0 .99

3 102 11

	

50 0.63 o .66 0.36 0 .89

3 102 20

	

41o.63 0 .66 0 .36 0 .89

3 102 29

	

32 0 .63 o .66 0 .36 0 .89

3 102 41

	

20 0 .63 o .66 0 .36 0 .89

3 102 50

	

11 0 .63

I
o .66

	

0 .36 0 .89

4 .3 .5

	

Effect of Device Scheduling on CPU and IOD Utilization

Another aspect of our study is related to the effect of various

scheduling disciplines on the performance of the model . At the CPU, we

consider FCFS, preemptive priority and processor sharing scheduling .

In IOD, we also allow a priority discipline besides the usual FCFS

policy .

In Figures 4 .4 and 4 .5, the CPU and DOD utilization is plotted for

Type I [CFU : FCFS IOD: FCFS] and Type II [CPU : preemptive priority with

PRIO (job 2) > PRIO (job 1), IOD : FCFS] scheduling disciplines . With

the Type I policy, the CRI and IOD utilization curves are symmetric with

respect to the equal memory partition point (i .e ., ml m24]/2) . When

Type II scheduling is in effect, the left half of the plots indicates the

region where the job with the higher fault rate (i .e ., with shorter CPU

execution bursts) has preemptive priority over the other job at the CPU .

Conversely, the right half of the same figures indicate the region where

the job with the lower fault rate (i .e ., with longer CPU execution bursts)

has a higher preemptive priority over the other job . In the former case,

the CPU utilization with Type II scheduling is lower (about 1019 with the

slow IOD) than the CPU utilization of the corresponding memory parti-

tioning using Type I scheduling . The CPU utilization of Type I and II

scheduling are fairly equal in the right hand side of the plot .

IOD utilization with N=2 and Type I and II scheduling are also

shown in Figures 4 .4 and 4 .5, with dotted lines . We get a very high IOD

utilization when the job with the highest fault rate has a higher CPU

priority than the other job . This is because the higher priority job

with its short CPU service requests will reach the IOD without being

blocked by the other job . The frequent visits by this job to the IOD

will increase the utilization of this center .

- 190A-

The IOD utilization curve with Type II scheduling will lie on the

top of the IOU utilization curve with Type I scheduling when the job

with longer CPU execution bursts has a higher CPU priority over the

other job (memory allocation regions corresponding to the right half

of the plots) .

With the degree of multiprogramming equal to 3, the CPU utilization

are shown in Figures 4 .11a and 4 .12a for Type I and Type II scheduling,

respectively .

In Figure 4 .12s, we can distinguish three important regions .

- Region (1) around the upper vertex of the triangle where job 1

with the longest average CPU service time has the least priority

at the CPU .

- Region (2) around the right hand vertex where the job with the

largest average CPU service time, namely, job 2, has less pri-

ority than job 3 and higher priority than job 1 .

- Region (3) around the left vertex where job 3 with the longest

CPU service time has the highest CPU priority .

Among these three regions, the lowest CPU utilization is obtained

in Region 1 and the highest is obtained in Region 3 . This implies that

with priority discipline at the CR1, it is better, in terms of CPU utili-

zation, that the least priority be given to the jobs with short CPU

services, i .e ., 10 bound jobs . This seems to contradict the widely

accepted statement that the best way to schedule a CPU is to give higher

CPU priority to a job which will compute for the shortest time before

issuing an 10 request [12] . An explanation for this is as follows : in

our model, when we use priority scheduling at the CPU and a FCFS policy

at the DOD, the job flow of the system is mostly governed by the frequency

- 191 -

that the higher CPU priority jobs issue their 10 requests . Therefore,

when higher CPU priority is given to the job which has the shortest CPU

execution intervals (10 bound jobs) a contention of 10 requests takes

place . This, in turn, increases the likelihood that the CPU remains

idle . Therefore, the only way to increase the CPU utilization in this

case is to prevent the IOD contention by providing multiple 10 paths or

increasing the 10 processing speed .

Referring to Figure 4 .128, we can see that for fairly balanced

memory allocation the scheduling does not have significant effect on the

efficiency of CR1 .

For N=3 in Figures 4 .lla and 4 .12a, we can compere the effect of

priority scheduling and a FCFS policy on the utilization of the CPU . The

result of the comparison is basically the same as the earlier case with

N=2 . Specifically, when higher CPU priority is given to the job with the

longest average CPU service time (Region 3 in Figure 4 .12a), the utili-

zation is the same as in the FCFS case (the region around the lower left

vertex in Figure 4 .lla) . In the other regions, the priority scheme does

slightly worse .

The IOD utilization for N=3, Type I and Type II scheduling is shown

in Figures 4 .llb and 4 .12b, respectively . In both cases the IOD service

policy is FCFS . As before, the utilization plot is given for each point

corresponding to a memory partitioning . With Type II scheduling (Figure

4 .12b), IOD is utilized heavily (more than 90% of the time) im most reg-

ions, except when the highest priority is given to a job which issues the

least amount of 10 requests .

From our earlier discussion, we concluded that we get a better CPU

utilization if we give the highest priority to the jobs which are CPU

- 192 -

bound . In actual systems this is not a desirable priority assignment and

usually the jobs which require short CPU service are given a higher pri-

ority . Moreover, with optimal CPU priority assignment, IOD utilization

is very low which is an indication that jobs 10 and processing demand aree

not balanced . The Type III scheduling policy is used to balance the pro-

cessing and 10 load, and increase the CPU utilization when the short jobs

have higher priority . In this scheme jobs in IOD are serviced according

to a priority ordering which is the reverse of each job's priority order-

ing at the CPU . Preemption is not allowed at the IOD . Therefore, with

Type III scheduling, at the CPU we have PRIO(job 1) < PRIO(job 2) < FRIO

(job 3) and at the IOD we have PRIO(job 1) > PRIO(job 2) > PRIO(job 3) .

The CPU and IOD utilizations with Type III scheduling are shown in

Figures 4 .138 and 4 .13b, respectively . We immediately notice that in

almost 811 the allocation regions we obtain high IOD utilization . The

highest CPU utilization is observed in Region 1, Figure 4 .13a, where the

job with least 10 activity has the lowest CPU priority . This is, of course,

in contract to Type II scheduling where in the some region we get the

lowest CPU efficiency .

The low CPU utilization area (less then 10%) with Type III scheduling

(Figure 4 .135) is larger then the similar area with Type I (Figure 4 .119),

and Type II (Figure 4 .12s) scheduling . In Figure 4 .13x, this region is

extended toward the lower left corner of the triangle (Region 3) . The

fluctuation of the CPU utilization as we approach the left vertex of the

triangle is due to the mutual effect of the flat CPU service rate function

-193-

CPU UTILIZATION FOR 3 JOBS IN BARICENTRIC COORDINATES

CM FCFS

	

-150

100

50

100 UTILIZATION FOR 3 JOBS IN BARICENTRIC COORDINATES

um Fss I

IM FCFS

la OEV. SF7.IIW000

Fig . 4.11

CPU UTILIZATION FOR 3 JOBS IN BARICENTRIC COORDINATES

Fig . 4.12

JOB 1

JOB 1

-195-

IOD UTILIZATION FOR 3 JOBS IN BARICENTRIC COORDINATES

(b)

150
W
N
m

r
W
L 100(e)
rmr
mr

0
W 50y
w
0
r

r

0

150
WN
h
Y

W
L 100

(b) mr
mr
c
v

50

W

r

0

Y
W

O

ALTITUDE IS EQUAL TO TOTAL MEMORY SIZE

01
O

c

I -.
O
O

Fig . 4.14

LTI0
O

0

4
m

CPU UTILIZATION FOR 3 JOBS IN BARICENTRIC COOROI

	

5

CPU UTILIZATIN FOR 3 JOSS IN OARICENTRIC COORDINATES

ALTITUDE IS EQUAL TO TOTAL MEMORY SIZE

LTI
O

CPU utilization with four types of cheduling
10D speed=14200

m

O
O

0
O

(C)

(d)

C

150

d

100
(b s

7
50

9

Y
0

ION UTILI ION FOR J JOBS IN BARK RIC CROW A ES

ION UTILIZATION FOR 3 JOBS III BARICENTRIC COORDINATES

150

0

150

CPU UTRIZATI

	

OR 3 JOBS IN BARICENTRIC COORDINATES

CPU UTILIZATI FOR 3 JOBS IN OARICE RIC COBRDI

(a)

Fig . 4.15 10D utilization with four types of scheduling
IOD speed=14200

(b)

IW UIILIZATION FOR 3 JOBS IN BARICENTRIC COORDINATES

ION UTRIZATIBN FOR 3 JOBS IN BARICENTRIC COORDINATES

150

IY

C

0

	

0

	

Joe I

Fig. 4.16 CPU utilization with four types of scheduling -
I0D speed=110000

100

50

CPU UTILIZATION FOR 3 JOBS IN BARICENTRIC COORDINATES

(c)

(d)

(C)

(d)

150

I
I 100

(b)
e

50
m

I
0

V

HIS 1t0w311 1,191 01 WIm3 III 30hjLJM

3315 AU I3Y 1V101 01 Wi"03 SI3011111V

- 200 -

3315 1WN34 1Vi01 01 1V1m3 SI 311mw

3[IS A1013M 15101 01 15155 St "11L15

of job 3 for very large memory space m and the sharply and unevenly de-

creasing service rate of the other two jobs for very small values of m .

Processor sharing is the last type of scheduling which we shall con-

sider here . In this scheme, the CPU is shared among all jobs present in

the center . We, therefore, expect that the flow of the jobs in CPU should

become smoother so that no job can temporarily block the execution of any

other job .

In order to simplify the visual comparison of the effect of scheduling

on the device utilization in the model, we have arranged the CPU and IOD

utilization plots for all four types of scheduling in Figures 4 .14 to 4 .17 .

In Figures 4 .16 and 4 .17, a slower 10 device is used .

When processor sharing scheduling is used at the CPU, the DOD utili-

zation is high for all regions, as we can see in Figures 4 .15d and 4.17d .

The CPU utilization pattern in this case is symmetric with respect to the

center of the triangle (Figures 4 .14d and 4 .16d) . When compared to Type I

scheduling, we get about 10% to 20% less CPU utilization with Type IT

scheduling in the corresponding regions .

4 .3 .6

	

Effect of Device Scheduling on Queueing Times

m

	

Earlier we discussed the effect of memory allocation policies on the

queueing time of the jobs at the CPU . In that discussion, we used Type I

scheduling and showed that the queueing time curves follow the pattern

of CPU utilization curves with respect to different allocations, and we

used Figure 4 .9 to demonstrate this point . In the same figure, we have

also shown the average job queueing time at the CPU for two jobs and Type

SI scheduling (dotted curve) . The essence of the effect of priority

scheduling of the queueing times can be seen in this plot . We recall that

- 201 -

with Type II scheduling, job 2 has higher preemptive priority than job 1

at the CPU . Referring to the figure we can see that as the CPU service

time of job 2 decreawes, the total average queueing time at the CPU de-

creases accordingly . This curve goes even lower than the minimum average

queueing time obtained from Type I scheduling with symmetric allocation .

As the CRY service time of the higher priority job increases, the

right half o£ the figure, the average queueing time under Type II schedu-

ling, approaches the curve of Type I scheduling .

Thus, when the total performance of the system is considered, we

have seen that when a higher priority is given to the short jobs the

average queueing times decrease significantly at the cost of moderate deg-

radation of CPI efficiency . As we can see in Table 4 .5, for N=2 jobs,

this degradation is fairly small compared with CPU utilization under Type

I scheduling .

In Figure 4 .18, the reciprocal of the harmonic average dilation time

at the CPU and IOD for N=3, and Type II and III scheduling, is shown . As

before, the high values for Ds I, s=CPJ or IOD, indicate the low dilation

times . We note that when we go from Type II to Type III scheduling, the

major change at the CPU is basically the enlargement of the areas with

lower dilation times .

When we use Type III scheduling, the interpretation of the waiting

times at the IOD becomes rather interesting . For instance, when job 3,

which has the highest preemptive priority at the CPU, has the longest

service time in that center, it becomes the only job which does not ex-

perience any queueing delay at the IOD, in spite of the fact that it has

	

z

the least priority in this center (Figure 4 .18d, around lower left vertex) .

	

..

This is because this job blocks the other jobs at the CPU and when it

- 202 -

0

3aS 1Mw3N Will Ii)YtM3 a 3WUi1)V

Is

ISIS AMw3W Will Ol)VIM3 St 3W11I11Y

- 203 -

ro

3315 1MwOW Will O11Y(M3 a 3Wn11)V

leaves that center it will most probably find en empty IOD .

In the following two sections, we shall investigate the effect of

the speed and the service mechanism at the IOD on the performance of the

system .

TABLE 4 .5 cm, IOD Utilizations and Average Queueing
Time, Type I and Type II Schedulings .

- 204 -

4.37

	

Effect of 10 Device Speed on the Performance of the Model

For the numerical evaluation, we have considered two different IOD

speeds . There is a slow 10 device with the average speed of 1/10000 and

a relatively faster device with an average speed of 1/4200 . The service

times at the IOD are, therefore, exponentially distributed with the rate

equal to the average speed of the 10 unit used . The speed of the faster

device is taken to be almost equal to the fault rate of the WATFLV pro-

gram model at m=-M/2 . In Table 4 .6, the IOD and CPU utilization for N=2

and two different 10 device speeds are shown (also Figures 4 .4 and 4 .5) .

TABLE 4 .6 CPU and IOD Utilization for Two Different
10 Device Speeds and Type I Scheduling .

Since both centers have FCFS service policy, the flow of 10 requests

arriving at the IOD is determined mainly by the job which has the longer

cpu service time . In this table, we can see that as 10 requests become

i

205

Memory allocation CPU utilization IOD utilization

m I

	

m2 14200 1/10000 14200 110000 1
i

30

	

133 0.94 0 .87 0 .10 0 .23

35

	

128

40

	

123

0 .94
0.94

0 .87

0 .87

0 .10

0 .10

0 .23

0 .23

45

	

118 0 .94 0 .87 0 .10 0 .23

50

	

113 0 .92 0 .81 0 .15 0 .32

55

	

108 0 .81 0 .61 0 .33 o .60

60

	

103 0.76 0 .51 0.44 0 .71

65

	

98 0 .69 o .41 0 .57 0 .83

70

	

93 0 .69 0 .40 o.61 0 .85

75

	

88 0.67 0 .38 0 .66 o .88

80

	

83 0 .67 0 .38 0.66 o .BB

CPU
utilization

IOD
utilization

Average CPU
queueing time

m1 m2
1 Il 1 II 1 II

113 50 0 75 0 .65 0.41 0 .98 14136 384

112 51 0.71 o .61 o .46 0 .98 11657 361

Ill 52 0 .67 0 .57 0 .51 0 .98 9505 340

110 53 0 .63 0 .54 0 56 0 .98 7710 318

109 54 o.61 0 .51 0.59 0.98 6742 316

108 55 0 .58 0 .50 0 61 0 98 6265 348

107 56 0.58 0 .49 0 .62 0 .98 5959 383
106 57 0 .57 0 .49 0.63 0 .97 5690 418

105 58 0 .54 0 .46 0 67 0 .97 4784 425

104 59 0 .5 0 .43 0.71 0 .97 4011 436

103 6o 0 .46 0 .40 0.75 0 .97 3202 464

102 61 0.46 0 .40 o.76 0 .96 3013 524

lol 62 0 .44 0 .39 0.78 0 96 2679 587

100 63 0 .37 0 81 0 .95 2222 611

99 64 0 0 0 .37 0 82 0 .95 2075 676

98 65 0 .39 0 .37 0.83 0 .9 1905 744

97 66 0 .39 0 .37 o.84 0 .94 1784 832

96 67 0.39 0 .37 0.85 0 .93 1760 934

95 68 0 39 0.37 0.855 0 93 1672 997

94 69 0 .39 0 .38 0.85 0 .92 1654 1109

93 70 0.39 0.38 o .86 0 .91 1621 1203

more frequent the speed of the paging device becomes more crucial in the

efficiency of the CPU . This point can be seen by comparing the first

four entries of the table with the last three entries . The CAI utili-

zation improvement for the first four entries is only about 7`a using a

device which is 2 .4 times faster . In the lest three entries, this im-

provement is about 25$.

As we reduce the speed of the 10 device, the requests stay longer in

this center and the utilization increases correspondingly . For a low rate

of 10 requests, from the first four entries in Table 4 .6 we get 13$ in-

crease, and for the higher rate of 10 requests we have 22$ increase from

the lost three entries in the same table . Of course, as we mentioned be-

fore, the 10 request traffic is related to the allocation policy in CPU .

4 .3 .8

	

Paging Drum Model

So for we have assumed that the service time of jobs at the .IOD is

exponentially distributed . From our earlier discussion about the paging

drum, one would question the validity of this assumption when a paging

drum is used . We will use a more realistic drum model to see how sensi-

tive the results of our analysis are to the detailed behavior of the 10

device .

In order to have a reasonable basis for the comparison, we define

the rotational period so that the average service time at the paging drum

is equal to the IOD service time in the previous assumptions . The average

service time at the paging drum is equal to the average rotational latency

plus the transfer time of one page . Therefore, if s is the number of sec-

tors and T is the rotational period, the average service time is equal to

T/2 + T/s . We can find T by equating this quantity to the speed of our,

say, slower disk .
- 206 -

32/5 ASOI 11191 ft 1wa3 a1 3000w

3II5 umwsw Will 911 wng3 51 3mnlw

- P07 -

ails AIW3w wigs 61 1"3 SI 3n1UILw

We use a simulation to find the device utilization of the model for

N=3 and Type III scheduling . When an 10 request arrives at the paging

drum, the random position of the Read/Write head and the sector number

of the requested page are found . Then the I0D service time is computed

as the sum of the rotational latency to bring the head to the beginning

of the sector and the transfer time of one sector .

In Figure 4 .19, we can see the results obtained from the simulation .

Figures 4 .19a and 4 .19b give the CPU and IOD utilization using a paging

drum . On the same page, Figures 4 .19c and 4 .19d give the same quantities

obtained from the analysis of the model using the exponential service

time assumptions . Inspecting these figures, we notice the similarity of

the results obtained from the two approaches . The CPU and IOD utilization

are basically very close together in the corresponding areas .

In the next section, we validate the earlier results by using a more

realistic program behavior model .

4 .3 .9

	

Simulation of the Model Using Actual Pr ogram Traces

The service times of a job at the CPU is essentially the time between

two successive 10 requests (here,page faults) . In our analysis, so far,

we have assumed that the interfault intervals are exponentially distributed

with a mean which is obtained by measuring the average interfault periods

in an actual program . Earlier we saw that the actual interfault distri-

bution of the programs have generally a higher coefficient of variation

then one . To see how the analytical results compare with the results ob-

tained when more realistic program behavior is assumed, we perform a trace

driven simulation of the model . The simulation is driven by the actual

page reference trace of the WATFIV program . In this case, the occurrence

- 208 -

of a page fault is precisely determined by using a local LRU replacement

policy for each active program . Since the IRU rule is used, it is more

convenient to work with the LRU distance trace of the programs . The

assumption for service distribution at the I0D is still an exponential

distribution as before .

The result of simulation for N=2 and Type I and II scheduling are

shown in Tables 4 .7a and 4 .7b respectively . In the same tables, the CPU

and IOD utilizations with exponential assumption on CPU service times are

shown . These points are plotted in Figures 4 .20 and 4 .21 .

For both types of scheduling, the results of simulation are fairly

consistent with these predicted by the model . The maximum discrepancy

occurs at symmetric allocation with Type I scheduling which is about 91

for CPU utilization and 14% for IOD utilization .

In using the actual program traces in the simulation, one hard pro-

blem was to use the identical copies of one program while keeping the be-

havior of each program fairly independent from each other . After some ex-

periments, it was decided to consider the trace of the program as a cyclic

string . One job was started executing from the beginning of the string

and the other job was started from some point far away . Since the trace

of the program (WATFIV here) is very long, we could get fairly independent

behavior from the jobs in the simulation run .

- 209 -

0.2

L0

a_B

5 0 .4

0.2

0.0

CPU AND IOD UTILIZATIONS FOR 2 JOBS

50

	

100

MEMORY ALLOCATION: JOB 2 --I-- JOB 1

Fig . 4.20 Comparison of trace driven simulation with
analytical results . Type I scheduling .

CPU AND IOD UTILIZATIONS FOR 2 JOBS

a

	

50

	

I00

	

150

nenBRY ALLOCATION: JOB 2 -.I-- JOB I

Fig . 4 .21 Comparison of trace driven simulation with
analytical results . Type II scheduling .

- 210 -

150

IOD SFD .=1/4200

IOD SPD.=1/10000

TABLE 4 .78

TABLE k .7b

Disk Speed = 1/4200, Type I
Scheduling

Disk Speed = 1/10000 .
Type II Scheduling [IOD : FCFS,
CPU : (2) > (1)]

CPU Utilization IOD Utilization

m2 program
(WATFIV)

exp .
model

program
(WATFIV)

exp .
model

122

	

41 0 .79 0.79 0.99 0 .99

112

	

51 0 .65 o .65 0.98 0 .98

105

	

58 0 .50 0 .49 0.98 0 .97
97

	

66 0 .38 0 .37 o .9k 0 .94

89

	

74 0 .38 0 .37 0.87 0 .91

81

	

82 0 .39 0 .37 0 .80 o .88

73

	

90 0 .37 0 .39 0 .78 0 .8

65

	

98 0 .39 0 .42 0 .73 0 .79

57 lo6 o .5k 0.59 0.55 o .61

50 113 0 .77 0 .81 0 .29 0 .32

4o 123 0 .82 0 .87 0 .20 0 .23

CHI Utilization IOU Utilization

m 1

	

01
2

program
(WATFIV)

exp .
model

program
(WATFIV)

exp .
model

123

	

40 0 .92 0 .94 0.09 0 .10

113

	

50 0 .89 o .9k o.14 0 .15

lot

	

57 0 .75 0 .80 0 .34 0 .36

98

	

65 0 .61 0 .69 0.50 0 .57

90

	

73 0 .57 o .68 0.54 0 .64

82

	

81 0 .58 o .67 0.52 0 .66

74

	

89 0 .59 o .68 0.52 o .6k

66

	

97 o .61 0 .68 0 .50 0 .59

63 100 0 .6k 0 .71 o.46 0 .52

58 105 0 .75 0 .80 0 .33 0 .37
51 122 0 .85 0 .89 0 .19 0 .20

41 122 0 .92 0 .94 0.09 0 .10

4 .4 CONCLUSION

In this chapter, we studied a model for the interaction of a multi-

programmed CPU and its paging device . A closed cyclic queue was used to

investigate the effect of memory allocation policies, scheduling disci-

plines, and the characteristics of 10 devices on the performance and the

flow of the jobs in the system. We have allowed each job to have its

own independent service time at the CPU, which is determined by the size

of the common memory which is assigned to it . The paging behavior of

each program is obtained by the measurements on the paging statistics of

an actual program. A trace driven simulation has been used to validate

the result of the analysis when the exact paging behavior of a program is

used .

Most of the results we have obtained in this chapter, rather then

being strictly conclusive, demonstrate basically the fundamental relation-

ship between the decision policies and the performance measures, and the

tradeoffs involved . For instance, when short jobs are given higher CPU

priority, the queueing time decreases significantly at the cost of slightly

lower CPU utilization compared with FCFS policy . The extent of many such

tradeoffs have been explored in this chapter by considering a large number

of possible memory allocation schemes and execution priority assignments .

In this regard, one of the major problems is the presentation of the re-

sults in a readable format . We were able to obtain fairly descriptive

illustrations by using the baricentric coordinates for the system with up

to three jobs .

Some of the major results which can be summarized are as follows .

We have seen that in this model when the page fault rate of the programs

are not the same, the CAI utilization increases . We obtained the minimum

- 212 -

CPU utilization with the symmetric allocation of the memory among active

jobs . Scheduling can have significant effect on the resource utilization

and average waiting time at each center . When the jobs with shorter CPU

times are given higher priority in that center, the contention et the 10

device can decrease CPU utilization and throughput . We can alleviate

this problem either by increasing the availability of 10 devices or re-

verse the priority of the jobs at the IOD . Processor sharing scheduling

gives slightly lower CPU utilization than FCFS policy . However, the 10

device is fully utilized with the latter scheduling at the CPU . The sys-

tem completion rate increases if we allocate a larger share of the memory

to the jobs which have a shorter total CPU service requirement .

The simulation of the model showed that when we use fairly skewed

paging behavior the results are comparable to those predicted by the

queueing analysis . Therefore, we expect that our results should be appli-

cable in more realistic environments .

- 21 .3 -

- 214 -

4 .5 APPENDIX (Generalized Wald's equation)

Let R be a random number with p .d .f . H(.) and assume E[R] < m . Let
4 .6 BIBLIOGRAPHY

U1, 1=1,2, . . . be i .i .d . random numbers which specify the time between
1 . Baskett, F., Chandy, J .M ., Muntz, R.R ., "Open, closed and mixed

counts

successive

distributed

events

with

the number

in a renewal

the rate a .

of renewals

process . Assume the U , 's are exponentially

2 .

networks of queue with different classes of customers,"

JACM 22, 2 (April 1975)-

Chamberlin, D .D ., Fuller, S .H ., Liu, L.Y ., "An analysis of page

Let N(t) be a stochastic process which

from time 0 to t .

Poisson

Since the U1 's are exponentially distributed, N(t) is defined by a
allocation strategies for multiprogramming systems with vir-

process, where :

3 .

tual memory," IHd J . of Res . Dev ., (September 1973) .

Pr[N(t) = n] = e-ot (at)n Coffman, E .G ., Ryan, T.A ., "A study of storage partitioning using a
n'.

4 .
We went to find the expected number of renewals during the random mathematical model of locality," CACM 15, 3 (March 1972) .

Denning, P.J ., Spiro, J .R ., "Dynamic storage partitioning," 4th
time R .

We have :
5 .

Symposium on Operating Systems Principle, ACM (1973) .

Fuller, 5 .H ., Baskett, F ., "An analysis of drum storage units,"

Pr[N(R) =]a) _
fOm

dH(t)

6 .

JACM 22, 1 (January 1975) .n'
Gordon, W .J ., Newell, G .F ., "Closed queueing systems with exponential

Then

M 00

I 7 .

servers," Oper . Res . 15 (1967) .

Koenigsberg, E ., "Cyclic queues," Oper . Res . Quart . 9,1 (1958) .
E[N(R)]= L n Pr[N(R) = n) =

	

n sme-n't ~ dE(t)
n=0 n=0 0

	

n . 8 . MacBeen, G .H ., "A preliminary study of disk driven process scheduling,"

00 Tech . Rep . No . 33, Dept . of Computer and Information Science,

B[N(B))=

+m

a- at di(t) n (,,)n Queen's University, Kingston, Ontario, Canada .

n==0 n! 9 . Oden, P.H ., Shedler, G .S ., "A model of memory contention in a paging

m ^
machine," CACM 15, 8 (August 1972) .

n
f

m

e-ot dH(t) at n 10 . Sekino, A ., "Throughput analysis of multiporgramming virtual memory
n=00

rm 11 .

computer system," IBM Res . Reprt RC-4092 (October 1972) .

Shedler, G.S ., Tung, C ., "Locality of page reference strings," SIAM=

J
e-nt dH(t)

0

at eat J . on computing, 1,3 (September 1972) .

12 . Sherman, Baakett, Broown

=aJmtdH(t) = a . E[R] E U]

	

∎ - 215 -
0

13 . Smith, A., "Performance analysis of computer components," Ph .D .

thesis, Computer Science Dept ., Stanford University (August

1974) .

14 . Stonebraker, M ., "Optimal memory allocation in a multiprogrammed,

paged environment," Dept . of Electrical Engineering and Com-

puter Science, University of California, Berkeley .

15 . Strauss, J .C ., "An analytic model of the HASP execution task monitor,"

CACM 17, 12 (December 1974) .

- 216 -

CHAPTER 5

SUMMARY AND FURTHER WORK

In this chapter, we summarize the major results obtained in this

work and suggest some areas for further study . For more detail discussion,

we refer our readers to the conclusion section of each foregoing chapter .

In Chapter 1, the objective was to get an insight into the dynamic

page reference behavior of computer programs . In this regard, we con-

sidered the generated working set size string and the I.RU stack distance

string . We considered each string as a realization of a stochastic

process and used the tools from the analysis of time series to investi-

gate the properties of the underlying structure . For instance, from the

power spectrum of the observed LRU stack distances, we concluded that the

sequence mainly consists of random fluctuations . This approach could be

a basis for the comparison of the effect of system parameters on each

string . We examined the effect of page size and window size variations

on the generated working set size sequence . Time series analysis can also

be used to validate the models for different aspects of program behavior .

We demonstrated the problems with a working set size model in capturing

the serial correlation of the sampled working set sizes, by comparing the

autocorrelation coefficients of the actual observations with those com-

puted from the model .

Time series analysis have shown to be valuable in studying the com-

puter performance problems . Because of the multiplicity of parameters

and complexity of modern computers, other techniques like multidimensional

and cluster analyses seem to be also appropriate for the study of different

aspects related to the performance of these systems .

- 217 -

In Chapter 2, we considered the problem of the performance of paging

algorithms . We presented new results on the performance of several algo-

rithms . We established the result that inexpensive and practical algo-

rithms, like CLOCK and Modified Working Set, give performances which are

close to the performance of more elaborate algorithms, like LRU and
Working Set, respectively . We found the expected fault rate of } S for

the independent reference model . A harder problem is to find the ex-

pected fault rate of CLOCK for the same model, end show that it is close
to the fault rate of the LRU algorithm .

In chapter 3, we proposed the AP Inversion Model end obtained the

major result that the independent reference model can be used effectively
to predict the actual fault rate of programs under several algorithms and

with different memory sizes . The technique is also very promising in the

evaluation of filing systems end evaluation of memory hierarchies with

unequal Read/Write operation costs .

In Chapter 4, we considered the problem of the interaction of page

scheduling and device scheduling in a multiprogramming system . We showed

that when the main memory is partitioned among active jobs, we obtain
better CN utilization by allowing at least one program to execute longer

in CPU . For two identical programs, this amounts to dividing the main

memory asymmetrically between them. We showed that by proper execution

priority assignment in CPU and IOD, we can tune the system to obtain high
device utilization and low job waiting times . As an extension of the

model, we might consider multiple processing units with shared 10 devices .

We can explore the performance of several possible memory allocation

policies and scheduling disciplines in the system .

- 218 -

	Scan 38.PDF
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34

	Scan 39.PDF
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27

	Scan 40.PDF
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22

	Scan 41.PDF
	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33

