
CONTEMTS page
3. DUT2 13
4. Outpat options Available 13
4. 1 options Applying 13
to Both the IIneprinter andGraphic Device output
4.2 Options Applying 14Just to the Lineprinter
4.3 Options Applying 14
Iust to the Graphic Deviceoutput
4.4 Setting the Default Outpot 0init 14
5. Displaying a Projection of 2-D Data 14
6. Setting and Retrieving Manual 15
Scale Factors
16
7. Examples
16
7. 1 Lineprinter Example = Integer
17
7. 2 Lineprinter Brample - Scientific 17
Notation
7. 3 Lineprinter Example - Sinulated 18
scatterplot
7.4 Lineprinter Slice Example 19
7. 5 Graphic Device Output Ezample 21
7.6 Graphic Device ontput 22
Exaiple - Sliced 2-D Data
C. OPTPUT AMD OPTGET - THE OPTIOV SETTIMG 23
AND RETRIETIRG ROUTIMES 231. OPTPUT
2. OPFGET 28
D. USING DPAK WITE TEE HON-IHTERACTIVE 29
COMTEXESpAGEpAGE
E. OTHER TSEPUL ROUTINES 31

1. DCHAR 31
2. DSCALE 31
3. EQUAL 32
4. GGHEAD 32
5. MTEXT 32
6. SET 32
II. HPAK 33
A. USE OF HPAK 34
7. Defining the Length of /BCOH/ 34
8. Definition of Bistograms 34
9. 1-D Histogram Definition 34
2.2 2-D Histogram Definition 35
10. Accumulation 36
11. Outpat 37
4.1 Basic Bistogras output 37
12. 2 Projection of 2-D Histograns 38
4.3 Ianual scaling of Bistogran 39Ortpat = IMSC
4.4 Overplotting Eistograns 39
13. Exaiple 40
B. LOCATIMG HISTOGAABS IT /ECOM/ 43
C. ACCESSIHG BISTOGRAB COITEMTS 44
14. HFSLC and BERSLC 44
15. HGET 4
CONTENTS
16. hSPACE 46
17. KSOM and hSoms 46
18. HZ, HY, HYE, H2I, HZ, and HZE 48
19. IHI and IHY 48
D. EDITIMG hISTOGRARS 50
20. hact and hdeact 50
21. HCLR 50
22. HDEL 50
23. H HORM 51
24. HSET 1 51
25. HSET2 51
E. OVERERITIEG DEPAULT OPTIOMS - HOPTA 52
CONTENTSpage
appendices
I. SyTAX USED POR DESCRIBIEG SUBROUTIUE 11ARGEREMTS, ETC.
II. STBOCTURE OP /HCOH/12
IIT. COWHOR BLOCK DMODE 16
IV. ERROR COUDITIORS - PROBABLE CAUSES ARD 18POSSIBLE CURES
26. SUBROUTITE, EKTRY POINT, AID COBAOM BLOCK A9
haites osed tr dpak and hpak
VI. OVERPLOTTIHG OF OSER SUPPLIED PUECTIOMS OI 112SCATTERPLOTS ARD 2-D GISTOGRAH LIMERIMTE
OUTPUT
vir. DESCRIPTIOM OF \quad * 4 HODE OF STORAGE 114
VIIT. DESCEIPTIOM OF G*4 EODE OF STORIGE 115
IX. SUFHary of prak catls 116
X. SUnhary of hpar calls 18
XI. SUEEAEY OF TEE JCL 119
XII. BEDUCIMG CORE REQUIREREMTS 120
XIII. ACTUAL PROGRAB WHICB GEMERATED TBE EXAMPLES 421

FIGURES

1. T-D LIMEPRIMTER OUTPUT EXAGPLE 9
2. 1-D GRAPRIC DEFICE OUTPUT EXABPLE 11
3. 2-D EITEPRIGTER EYAHPLE - IMTEGER MOTATIOA 16

* 2-D LINEPRIETER GYAMPLE - SCIEVTIFIC WOTATIOK 17

5. ETREPRIGTER SLTCE EXARPLE 18
6. 2-D LIUEPRINTER EXABPLE - SIMOLATED SCATTBRPLOT 20
7. 2-D GRAPHIC DBVICE OOTPGT EXABPLE 21
8. GRAPGIC DEFICE OUTPGT BXABREE - SLICED 2-D DATA 22
9. 2-D GISTOGRA量 EIMRPRIMT: 41
10. SCATTEBPLOT BKABPLE 42

This docunent describes the features of a display and histogran package which requires a binial nubber of subroutine calls in order to generate graphic output in man flavours on a variety of devices. Default options are preset to values that are generally most vanted, but the defalt values may be readily changed to the user's meeds fe. 9 . size of plot, type of scales, scale factors, plot characters, super-imposing several plots, etc.l. The description falls aatarally into two parts, nanely the set of rootines (DPAK) for displarying data on sone device, and the set of routimes (HPAK) for generating histograms. EPAR provides a means of allocating memory for histograms. accumuiating data isto histograins and subseguestiy displaying the histograns wia calls to the DPh routimen. fistograms and displays of either one or tyo independone variables can be made.

The generation of displays by DPix occurs te seteral levels. ut the lowest level are the unified Grephics subrontiaes (refarence 2.) for generating vectorie and characters. It the next level are the plotting gubroutiaes
 in the form of functions for the l and I (or I , y and i) axes and generate graphs conplete ith scales error bar and titles onto the designated device. Fimaliv, a set of higher level interface routines (DISPi, DISPia, pori. DISP2. DISP2A, and DOT2) are provided to make the package easier for the casual user. a set of supporting routines fOPTPUT and OPTGET) are provided for changing and exanining the settings of the various options.

The histogran package vas written fith tho viev that it should be easy to add or delete histograns in a merns analysis progran. For instance. in an interactive environment a user may need to delate one mistogran to make roon in core for another yithout reloding the job. or in a batch environeent a user may vish to insert or delete batch environient a user may vish to insert or deiete
histogras fron one analysis pasis to another. In ipar. one histograns fron one analysis past to anothere In ipar, one
block of mesory serves as the data storege area for all histograms. \quad subroutine call is provided for aliocating menory space for a new histogran and anotier subrontine call is provided for releasing eenory space. subroutiaes are also provided for accunulating, clearing and outputting either individual histograms or all the histograms that have been defined.

The numerous options and capabilities available my be at first confusing to new user. we suggest that nev users begin by nsing the defauit setting of options, and mastering the following subroutine calls:

HSIZE for defining histogral storage block
HDEP1 for defining 1-D histogran properties (e.g. identifier, nulber of bins, bin (e.g. identifier,
vidth, title, etc.)

HCU: 1
HOUT

HCLR for clearing the contents of a histogral

HDEL
for releasing histogran storage space
By using the lineprinter for the outpat unit, and avoiding scatterplots, no special JCL statesents are meeded. These rontines alone are sufficient in may cases. If graphs (which are not related to histogranning) are desired, then the plotting routines DISP1 and DISPiA fagain with the output unit of "PRIRTER') can be used to plot Eunctions and arrays respectively.

The prograb consists of about 9000 lines of source code. The najority (approximately 60\%) of the code is in HORTRAH, a PORTRAE preprocessor (see reference 7). There are abont 200 lines of IBM 360 issembler language, and the renainder is in IBM FORFRAY H. The progran though an outgrovth of a progran to ran on a Xeror sigua 5 is designed to run on an IBA $360 / 370$ and akes fairly ertensive use of featares such as logichlol supplied in IB FORTRA: H.

The following sections give detailed descriptions of the individual rontines that $\begin{aligned} & \text { ay be called by the users. }\end{aligned}$ hap more subroutines, used internally are not described in detail. but are listed in appendix $v o$ that the user my avoid name conflicts.

DPAK is a collection of FORTAR callable subprograns which can be used to display graphs of data with one abscissa (henceforth referred to as 1-D datal and data vith two abscissae (henceforth referred to as 2-D data) on the Iineprinter and the various graphic devices available at stac. These subrontines evolved fron the graphics display subprograms originally vritten for the SREAR SIGin-5 computer at shac (see reference 5.). and have been in regular use at slac since 1973. The data can be provided to the routines in either array or fnnction forf. The output format can be modified and tailored to the user's needs by means of the siaple option setting routines which enable the user to override the default options.

Though primarily designed for display of graph type data, this package is very general in nature and has been sucessfully used for displaying pictures of charged particle tracks in magnetic detectors and ray tracing in optical systems.

The graphic devices currently available at sLAC are the calconp drum plotters referred to a chidsSH, and 'CALDRLG', the microfilm plotter freferred to as 'CAL16日U'), the CALFICH'), and the Tektronix 013 storage scope (referred to as "PDS4013"). A11 the graphic devices are progranmed via the SLAC Unified Graphics softyare, and are described in detail in reference 2 .
A. ONE ABSCISSA DISPLAY ROUTIYES

1. DISPI

DISP1 is the subroutine for plotting 1-D data which are functions. The calling sequence is:

Where: FI, FY, PRAR, Fis, FC, FD, FE, FF, FG, FG, FP, FQ are REAL*4 functions which can be called in the forv ITFX(I) for the Ith value
FX is the abscissa function PI is the ist ordinate fnnction FRER is the error fenction for FI FA, FB, FC, FD, FE, FF, FG, Fif, FE, and FQ are aditional optional functions to be ovarplotted
Is an tis value thich is the number of points to be plotted
TITIE is a string of mp to 80 characters terninating with an idi this string nay be broken ip into sab-labels (separated by gen-colong ($\left.{ }^{\circ} ;^{\prime \prime}\right)$) of up to 32 characters each form-colons $\left({ }^{\prime \prime}{ }^{\prime}\right)$ of up to 32 characters eaci

 tollored by a : ". the t -axis label followed by :" and then the y-azis label follofed by the ternimatime ${ }^{\circ}$
UMIT is astring indicating the ortput destiaation of plot cone of the folloving: "pritize.

 unit is nsed (note that supplifg a unit here does not change the defanit unit)

There is alwo another vay of calling DISP1.

where FI2. FI2, and FERR2 are dowbli indexed functions of the form FX2 (I, J) FY2 (I, J), and FisRR2 (I, J) and the rasges L and \quad f for I and J respectivelif are indicated by setting
 given by the points (FX2(I, 3), FI2(I, J)) for $I=1, L$ will be giver by.

2. DESP1A

DISP1A is the subroutine for plotting $1-\mathrm{D}$ data which are in arrays. The calling sequence is:

where: $X, Y, E R R, B, C, D, E, F, G, H, P$, and Q are REAL* 4 arrays of the fore $X I=X(I)$ for the Ith value
X is the abscissa array
I is the lst ordinate array
ERR is the error array associated vith the Y array
B. C, D, E. F, G, H, P, and Q are additional optional arrays to be overplotted
N. TITLE, and OHIT are the same as in the DISPI call.

3. DOTI

DUTi is a display utility subroutine with a slightly different calling sequence fron DISP1. The functions may define a single curve, or ther may define multiple curves that are to be overplotted.

The calling sequence is:
CALK DUT1 (FI,FY, FBRE, B, TITLE, SCALE)
where:
FI, PY, FBRR are DBEL*4 functions for the I-aris, the I-axis, and the error in I respactively; they may be either singly indezed (FX(I), FY(I), and FERR(I)) or donbly indezed (FI(I,J). FY (I,J) and FRBR(I,J)) as specified by

- is an integer specifing the nurber of data points to be plotted हith I ranging fron 1 to L ; it aly also specify the number of functions (i) to be plotted with idata points each, if lis the form:

$$
H=H \% 2 * 16+L
$$

if \quad > >0, then the donbly indered functions best be supplied, with J ranging fron 1 to and I ramging Erom 1 to L
TITLE is the same as the titie string for the call to DISP1
SCALE is a real array (4 vords) vinch supplies the manal scale factors in the order described in SCPOTI; note that these vill override any scale factors given by a call to sCPDT1.

The output destination for plots generated by calls to nuTI is the current defanit unit which may be aitered by the call:

CALL OPTPUT("DEVICE*, ONIT)
as described in section II. A.4.4.

4. Output For도픈_0ptiong Available

The options are described later in detail in the gection on OPTPOT and OPTGET. This is a sumary of those relevant to the different display media.
4.1 Options Appling to Both the Iineprinter and Graphic Device output

1)	'TZERO*	- force zero point on l-axis scale
2)	${ }^{\prime}$ ERROR'	error bars on 1st ordinate
3)	- CHER'	set character to be used in plot
4)	'mandaz*	- use manual scales fon the lineprinter manual scales are used only on the
5)	- YLOG ${ }^{\text {P }}$	- log scale t-axis
6)	'rogs'	- log scale both axes (on the lineprinter only the T-axis is log scaled)
7)	'HIST*	- display ist ordinate as a bar histogram
8)	-OMIT	onit ist and last points when scaling
$9)$	"Y\#an'	use manual scales for the T-axis

4.2 Options Applying Just to the Lineprinter

4. 3 Options Applying Just to the Graphic Device ontput

1) ERECALE" - recalculate the scale factors for next plot
2) 'XLOG' - log scale x-axis
3) PRABE - plot or do not plot the frame on the graph (used to stop the frame from repeatedr drayn

- overplot the output from subsequent calls as long as the ovek option is true
- use manual scales on the I -axis
- set size of plot
cotac plot
manbr of najor tics on x-axis
- the nuaber of ainor tic marks bet干een the ajor tic marks

101 LIBP' - draw a line between the points
11) "CFNTER' - bin alignaent on bar histograss
$121^{\prime} X Z E R O$ - force a zero on the X-azis
4. 4 Setting the Defanlt outpat Onit

The default output unit is set by:

CALL OPTPUT("DEVICE*, OFIT)

\#here 0 in is a character string indicating the device desired. output devices available are:

- PRIFTER' the currently assigned printer unit
- PDSH013' \quad TLBUR PDS
-CALDRSM' 10 Inch CALCOMP
-CALDRLG' 29 inch CALCORP
"CAI.16MD" the CALCOHP microfiln unit
'CALPICH' the CALCORP Dicroflche
'PDSPDEV' for the Unified Graphics PDSPDEV

5. Overplotting

The overplotting facilities in DPAK are quite versatils. There are two cases to consider: overplotting on the lineprinter and overplotting on graphic devices.

5.1 Overplotting on the Lineprinter

overplotting on the ineprinter is done by using the optional arguments in the DISPi and DISPin calls or the doubly indexed functions in DISPi and DuTi. all of the oprpor output options for the lineprinter still apply. hovever the "CHAR', "HIST", and "ERROR" options apply only to the first ordinate fanction or array. The functions and/or arrays that are overplotted are done so vith the character 'B" for the second one. "C' for the third one. 'D' for the fourth one. etc.

An exaple is given in section II.1.7.1.
5.2 Orerplotting on the Graphic Devices
overplotting on the graphic devices can be done in either of tyo vais. The first way is to simplinake a call as though one vas overplotting on the lineprinter, but specify a graphic device unit instead of pirarri. The
 do orerplotting by using the over option. do the following:

1) turn overplotting on via a call to: OPTPUT ("OTER'.. TRUE.)
2) set up other options as desired

31 make the appropriate call to DISPIM or DISPI
4) repent steps 2) and 3) natil Fon have plotted all 7on 토를
 Fote that these two methods of overplotting can also be intermized.

and.019114

Manul scales, if regaired, are setup for the Ineprinter and graphic device outpint via a call to scpuri. The celling sequence 1s:

where:
scate is a iz and array of length apecifying the scale factors as follons:
scams (1) $=$ the Einimus E-axis valce.if tho z-axis is to be plotted linearly (ifit is a log plot on the I-anis, then SCALz(1) is the ainimen power of 10 as a floatisg point nelber)
scane (2) the increment between the y-anis tic marks if the plot is linear on the X-aris (if it is a log anis, then scine(2) is the nunber of decades as a floating point namber)
 to be plotted lineariy fif it is a log axis, then scaIE (3) is the winimun pofer of 10 as a floating point nuaber)
SCMLE(4) $=$ the increfent betvenn I-axis tic marks if the plot is linear on the I-aris (if it is log, then SCAI. (4) is the number of decades as a floating point muber)

To obtain the scale factors of the last plot made by a call to msein, DISP1. or DUT1 use:

CALI SCGET1(SCALE [.IXTIC,ITITC])
were:
SCALE is a RELIF array of length and the scale factors are returned as described in SCPOT
 used on the I-aris vill be returned
ITFIC is an I\#FEGR * word and the number of tic marks used on the fraxis $\quad 111$ be returaed
Uote that IXYIC and IYYIC are optional, but that both tust be supplied if either is.

Following are two eramples which show some of the facilities available.
7.1 Lineprinter ontput Erample

EXTERNAL FY,FA,FB,FC,FERE
CALL OPTPUT ('LEMEXV' 70)
CALL OPTPUT("Chas****)
CALL OPTPUF("ERTOR". .TROE.)
CALL DISP1 (FX,PA,FRER,25.
1_{2}^{C}
3 MRRITS MYTG EIST MDD ERROR BARSA'.

- PRITYZ品。FB, FC)

It gives the folloving lineprinter plot:

7. 2 Graphic Device Output Example

GEAL SCALE(4), XA(25), G(25), ERR(25), A(25). YLOG(10)
EXTERNAL FX, FD,FERE
C TUPN OVERPLOTTIIG ON
CALL OPTPUT ('OVER', .TRDE.)
C HAKE A PLOT IN THE LOXER LEFT FABD COREER
CALL OPFPUP('GIST'. F PALSE.)
CALL OPFPUT("CHAR"."*)
CALL OPTPUT('TMAT'. .TRUE.)
CALL OPTPPT('XTIC',0)
CALL OPTPUT ('SIZE'. $5, .5$)
CALL OPTPUT('ITICS'.4)
SCALE(3) $=-3$.
SCALE (4) = 1 .
CALL SCPDT1(SCALE)
CALL DISP1A(XA,G,ERR,25.
1 TLORER LEFT PIGURE;X-AEIS:Y HAESCALESA'.
2
OYERPLOT A ITEE PLOE
CALL OPTPOT('FRAKE'..FALSE.)
CALL OPTPUT ('ERROR'..FALSE.)
CALL OPTPUT ('LITE', -TRUE.)
CALL OPTPDT('CARR'.' ')

C MAKE A PLOT IM THE LOMER RIGHT RABD OOADRAKT
CALL OPFPUT('TMAR'. P PALSE.
CALE OPTPUT ('PRAME"..TRUE.)
CALL OPTPUT('CAAR': "X')
CALI. OPTPDT('ITICS'.0)
CALL OPTPOT('OFF', $5,0.1$
CALL OPTPUT('RESCALE'. ${ }^{\text {PROE.) }}$
CALL OPTPUT('ILOG'..TRUE.)
CALL DISPIRIXA, TLOG,ERR, 10
1
ILOVRR RIGHT FIGURE:X-AXIS; log Y-axISa'.
2 .PDS4013'
C MAKE PLOT IV UPPEP RIGFT HAND OUADRABT
CALL OPTPOT ("RIST"..TRUE.)
CALL OPTPUT('LIEE'..FALSE.
CALL OPTPOT ('XTIC',0)
CALL OPTPU* ('OFF'..5..5)
CAKL DISP1A(XA, YKOG,ERR. 10
1
"BISTOGRAM;OPTIAAL I TICS: 1 LOG AXISA'

- PDS4013 ${ }^{\circ}$)
C MAKE PLOT IN OPPER LEFT HAND QUADRANT
CALL OPTPOT ('YTIC*,0)
CALL OPTPOTI'YLOG*. .FALSE.l
CALL OPTPUT ('OPF'.0...5)
CALL OPTPOT ("ERROR"..TRUE.I
CALL OPFPUT ('CRAR".' ')
CALL DISPIA(XA,A, ERP, 20. "HISTOGRAM MITH ERROR BARSA'. 1

C TURN OVERPLOTTIMG OFP
CALL OPTPUT ('OTER' . FALSE.)
C RESET SITE OF GRAPEIC PICTURE
CALL OPTPUT ('ST8E $, 1.0,1.0$)
CALL OPTEUT ('OFF*, $0.0,0.0$)

LOWER RIGHT FIGURE

Pigure 2
B. THO ABSCISSA DTSPLAY ROUTINES

The facilities available for displaying two abscissa data are discussed in this section. Note the presence of an argument for an error function (or array) in the calling sequence. In qeneral this may fust be a zero function or array. since for a 2-D display it is not used. It is provided in the arquaent list. because of the need for calculating the errors on the profection displays (though if no errors are requested on the profection, it may be a zero function or array).

1. DTSP?

DISP2 is the subroutine for plotting 2-D data vhich are functions. The calling sequence is:

> CALL DISP2 (PX, PY, FZ, PZER,NX, MY, TITLE [,ONIT])
where: $F X$ is the first abscissa function with a calling
sequence of the form $X I=P X(I)$ for $I=1$, w
FY is zhe second abscissa function with a calling
sequence of the form IJ=FI(J) for J=I, HI
YZ is the ordinate function with a calling sequence
of the foriz ZIJ=FZ(I,J) for $I=1, N X$, and $J=1, N Y$
PZER is the error function for function FZ and it
is used only if the user is doing a projection:
it has a calling sequence of the form
ERRIJ=FZER (I,J) for $I=1, H X_{\text {, and }} J=1, H Y$
AX is the number of points along the first abscissa
it is the number of points along the second
abscissa
TITLE is a string of characters terminating vith an
'百" sign
UETT is a string indicating the output destination
of the plot (as in DISP1)

2. DISP2A

DISp2A is the subroutine for plotting 2-D data which are arrays. The calling sequence is:

where: X is a REAL*4 array of the fore IInY(I) for $I=1$, NX
T is a REAL* 4 array of the form $\bar{X}=\bar{Y}(J)$ for $J=1, N Y$ 2 is a REAL* 4 array of the fort $Z I J=Z(I, J)$ for $\mathrm{I}=1, \mathrm{NX}$, and $\mathrm{J}=1, \mathrm{NY}$
ZER is a REAL* 4 array of the form ZBRIJ=ZER (I, I) for $I=1, N X$, and $J=1, N Y$
\#X, NY. TITLE, and UKIT are as described in the section on DISP2

3. DOT2

DU\#2 is another subroutine for plotting 2-D data which are functions. The calling sequence is:

CALX OTM 2 (PX, FI,FZ, FZER,NX, MY,TITLE,SCALE)
where: PX is the first abscissa function vith a calling

PY is the second abscissa function lith a calling sequence of the for: IJ=FY(J) for $J=1$, $\boldsymbol{H} \boldsymbol{y}$
PZ is the ordinate function vith a calling sequence of the form $Z I J=F Z(I, J)$ for $I=1, N X$, and $J=1, M Y$
FZER is the error function for function FZ and it is used only if the user is doing a projection; it has a calling sequence of the form
ERRIJ=PZRR (I, J) for $I=1, H I$, and $J=1$, II
$N X$ is the nueber of points along the first abscissa NY is the nubber of points along the second abscissa
TITIE is a string characters terminating vith an ' ${ }^{\prime \prime}$ sign
SCALE is an array of length 16 specifying the scale factors to be used when manul gcaling has been called for: the order of the scale factors is the saile as for the SCPणT2 call

The output destination of the plot generated by a pur2 call is the current defanlt unit which aly be altered by the call:

CALL OPTPOT('DEVICE', UMIT)
See section II. B.4.4.

4. Qutput options_Ayailable

The outpat options are discussed in detail in the section on OPTPUT and opTGET. The following is merely a sulmary of which are relevant here.
4. 1 Options Applying to Both the Lineprinter and Graphic Device output

1) "HABUAL" - use manal scale factors
2) 'OMIT' - osit first and last bins fron scaling
4. 2 Dptions Applying Just to the Lineprinter

11	'SYMBOL.	number of symbols
2)	"Zauto'	- automatic scaling of bin values
3)	'CCLUENS'	- number of coluans to be used for each bin value
$4)$	-tauro'	- scale axes sums
5)	${ }^{\prime} \mathrm{LEEGTH}$	- number of colunns to be used on the lineprinter page
6)	'XIAOTO'	- autonatically calculate the number of column positions
7)	'SCIENTIFIC*	- use scientific notation for bin values
8)	'PAGE'	- number of lines per page to use

4. 3 Options applying Just to Graphic Device Ontput

1) 'IZERO'	- force a zero on the T-axis
2) 'PRAME'	- drav a frate around the plot
3) 'SAVE'	- save the scale factors used
4) 'XDIR'	- drav lines parallel to the x-axis

4.4 Setting the Default ontput onit

The defanlt output unit is set by:

CALL OPTPUT ('DEVICE*. OHIT)

where unIT is a character string indicating the device units.

5. Displaying_a_Proiection_of 2-D_Data

By setting the appropriate options with calls to oprput the user aly indicate that succeeding calls to DISP2. DISP2A. or DUT2 shouid display a projection of the 2-D data, rather than the regilar 2~D data display. These four optput calls, and their purposes ares

1) CALI OPTPOT("SFLAG'..TROE.) - sets a flag to imdicate that for the succeeding calls to DISP2. DISP2A. or DUT2. the indicated projection is to be made;
the CALL OPTPUT ("SPLAG".. PALSE.) tarns the option off
2) CALL OPTPUT(PSDY'..FALSE.) - indicates the direction of the projection; FALSE causes a projection on the x-axis, while TBUE causes the projection to be on the Y-axis
3) CALL OPTPOT ('SBEGI\#', N) indicates that the suming for the projection shouid start with point $I(I)$ (or $I(M)$ if siice is in I direction)
4) CALL opTPUT('SmIDTH., H) - indicates the nueber of abscissa values to be sumeed over
6. Setting and Retriering Manal Scale Factors ffor prsp2 and DISSPAL

Manual scales, if required. are set op for the graphic device output by way of a call to SCPOT2. fhe caling sequence is:

CAEL SCPUT2(SCALE)
vhere: SCALE is a REAL*4 array of length 16 yith the acale

$$
\begin{aligned}
& \text { factors as follovs: } \\
& \text { SCALE(1) - Minimut X-axis value }
\end{aligned}
$$

SCALE(2) - incresent on the $X \rightarrow$ mis
SCALE (3) - minimu T-axis value
SCALE(4) - increnent on the T-axis
SCALE(5) - Dinieum Z-axis value
SCALE(6) - increnent on the z-tis
SCaIE(7) - isonetric rotation angle in degrees about the z-axis
SCALE (8) - isometric olevation angle in degrees about the horizontal line perpendictular to the lipe of sight
SCAEE (9)-SCMLE(12) - XHIM, DX, FHIM, and DI for slicing on the x -axis
SCBEE(13)-SCALE(16)- XiIM, DX, YIIM, and DY for slicing on the I-axis

Manual scales for 2-D Iineprinter output are indicated by setting the appropriate options vith calls to opTPUT.

The manual scales used for the last 2-D graphic device display made may be obtained by the following call:

CAKL SCGET2 (SCALE)
where 5 is as described above.

7. Exagㅛ로를

7. 1 Ineprinter Ezample - Integer Hotation
```
REAL XA(25), YY(25), ZZ (25, 6), ZZE \((25,25)\) CALL OPTPOT('LERGTE*,70)
CALL DISP2A (YA, IT(7), ZZ,ZZE, 25,6, "INTEGER MOFATIOZA* 'PRIETER')
``` 1

It gives the following ontput:

7. 2 Lineprinter Enaple Scientific uotation

REAL XA (25), YI(25), 2Z \((25,6), 2 Z E(25,25)\)
CALL OPTPGT ('LENGTB'.70)
CALL OPTPUT ('SCIENTIFIC'..TROB.)
CALL DISP2A (XA, YI(7), ZZ, ZZB, 25,3.
"SCIENTIFIC MOTATIOMZ". PRITसER")
It gives the folloving output:

```

7.3 Lineprinter SLice Ema⿱亠⿻⿰丨丨⿱一一⿱一土丷⿱㇒⿴囗⿱一一夊心
REAL XA(25), IF(25), 2% (25,25), %2E(25,25)
CALI OPTPUT('ERROR'. FALSE.)
CAII. OPTPUT ('HIST*.OTRUE.)
CALI OPTPGT('IENGTR",70)
CALL OPTPUT ('SFLAG*..TROE.)
CALL OPTPOT(*SWIDTH*,6)
CALL OPTPOT('SDT'..PALSE.)
CALL OPTPGT ('SBEGIS*.7)
CALI DISP2A(XA,FI,ZZ,ZZE,25,25.'SLICE TESTA'。
CALLDLSPRA(XA,II,ZZ
CALL OPTPUT('SFLAG'..FAISE.)

```
```

It gives the folloving output:

```


7． 4 Lineprinter Bxample－Simulated Scatterplot
REAL TF，TP，ZY，ZERR
EXTERKAL TF．XP，ZF，ZERR
CALL OPTPUT（＇COLUANS＇，1）
CALL OPTPOT（＇STHBOL＇，16）
CALL DISP2（XF，YF，ZF，ZBRR，20，25，＂SIMULATED SCATTERPLOTA 1

STOP
END
FUNCTION XPEI
\(\mathbf{X P}=\mathbf{I}\)
RETURM
ERD
PUNCTION IF（J）
\(\mathbf{Y}=\mathbf{J}\)
RETURN
ERD
FURCTION ZP（I，J）
ZP＝35．\(\# \operatorname{EXP}(-0.5 *(I-10) * * 2 / 9.0) * E X P(-0.5 *(J-13) * * 2 / 16.0)\) RETURF
ERD
POHCTION ZERR（I．J）
ZERR＝0．0
RETURR
END

\section*{It gives the following output:}

ID \(=\) STMULATED SCATTERPLOT
1234567891123456789212345J,J=1, 25

1111111111222222
E \(0 \quad 1234567890423456789012345 \mathrm{Y}(\mathrm{J})\).E 0

Figure 6

\subsection*{7.5 Graphic Device output Example}
```

        PEAL XA(25),YY(25),ZZ(25,25),ZZE(25,25)
        CALL OPmPUm('XDIR*..FALSE.)
        CALL DISP2A(XA,YI,ZZ,ZZE,25, 25, XDIR=PALSP EXAMPLEA'
                                    ,'PDS4013')
    ```
 1

Figare 7

7．6 Graphic Device Output Erample－Sliced 2－D Data
```

PEAL XA(25), YY(25), ZZ(25,25),ZZE(25,25)
CALL OPTPOT('ERROR'..FALSR.)
CALL OPTPUT('ERROR'.OFALSE
CALL OPRPUT ("LENGTH",70)
CALL OPTPOT ('SPLAG',.TRUE.)
CALL OPTPDT('SVIDTA',6)
CALL OPTPIUT('SDY'..FALSE.)
CALL OPTPUT ('SBEGIN*.7)
CALL OPTPOT ('CHAR'***)
CALL DISP2A(ZA,YY,ZZ,ZZE, 25,25,*SLICE TESTO'.
1
CALL OPTPBT("SFLAG*,.PALSE.)

```

SLICE TEST

C．DPTPUT AKD OPTGET－TFE OPTION SETTING AND PETRIEVIHG ROUTINES

OPTPUT and optGET are the routines provided for setting and retrieving the value of various options used by the DPAR rontines．

1． \(\mathfrak{P R T P I T}\)
The calling sequence is：
CALL OPTPUT（OPTION，VALUE1［，VALDE2］）
where：
OPTION is a character string identifing the option to be set
VALUEl is the value it is to be set to
VALUED is an optional argunent not required for most options．but used for setting the fey options requiring two ralues．
Onless otherwise indicated，options set by a call to OPTP日T reain set until changed by another call to opfPUT．

Following is a list of option strings，the type of value required for thes，their default values，and their function．
\begin{tabular}{|c|c|c|c|}
\hline IOPT & EEPAOLT & & YALOE NERA复工悬G \\
\hline \multirow[t]{2}{*}{STPING} & & PIPE \({ }^{\text {P }}\) & A厚 \\
\hline & & VALUE & FUBCTIDK \\
\hline \multirow[t]{3}{*}{＇EJECT＇} & \multirow[t]{3}{*}{PPOE} & \multirow[t]{3}{*}{1\％\({ }^{4}\)} & if true then a page is efected for each new \\
\hline & & & lineprinter plot：if false \\
\hline & & & than no page is ejected \\
\hline \multirow[t]{2}{*}{＇EONIT＊} & \multirow[t]{2}{*}{6} & \multirow[t]{2}{*}{I＊ 4} & lineprinter logical unit on \\
\hline & & & which any error essages are \\
\hline \multirow[t]{9}{*}{－Lengta＇} & \multirow[t]{9}{*}{133} & \multirow[t]{9}{*}{I＊ 4} & the number of coluans which are to be used on the \\
\hline & & & lineprinter page： \\
\hline & & & valid range：50＜value＜134； \\
\hline & & & if one wishes to fetch the \\
\hline & & & output and list it \\
\hline & & & annusbered on a TEKTROHIX \\
\hline & & & 4013 scope，then the naaber \\
\hline & & & of characters per line \\
\hline & & & should be 70 \\
\hline \multirow[t]{3}{*}{－OUNIT \({ }^{\text {O }}\)} & \multirow[t]{3}{*}{6} & \multirow[t]{3}{*}{I＊ 4} & logical unit for all \\
\hline & & & lineprinter output except \\
\hline & & & error vessages \\
\hline
\end{tabular}

\section*{Optione for the 2ep linepriater outpute}

 be broken into sections because the l-axis is too long for the page: a page oject is then made only if the rearining lines on the page are insufficient to inclade the next section: the number of lines per page for this parpose is specified by this option forces scientific notation in E10.4 forsat
value (0<valut<37) is the number of syebols to be utilized in plotting the 2-D data on the lineprinter: the default is 10 (the characters 0-9): e.g. if called vith valuE=16 then the bexadecinal character set ill be used \((0-9\) and 1-F)
if true, then scaled sums are output along the axes of 2-D lineprinter plots
antonatically calculate the optinal nuaber of coluan positions for displaying the bin values: this overrides the 'colums' option if true; if false, then the COLURES' value is ntilized controls autonatic scaling of the bin values on the 2-D lineprinter display so that the narinun value just overflows the characters available and prints an asterisk: if true then this does not

Options_for the i-D and_2-D_3neprinter and graphic_derice optput:
\begin{tabular}{|c|c|c|c|}
\hline IogT & DEPADIT & FARIABLE & HKOEMEEAKI眰G \\
\hline & & ITPE OP & 17D \\
\hline & & YAL \({ }^{\text {S }}\) & Yanction \\
\hline "MAMOAL" & FALSE & L-4 & if false, then the plots are \\
\hline & & & antomaticalir scaled on the \\
\hline & & & I and \(Y\) axes; if true then \\
\hline & & & the manal scale factors \\
\hline & & & fsupplied by the user \\
\hline & & & through the appropriate \\
\hline & & & scale setting routinel are \\
\hline & & & used \\
\hline *OMIT* & PALSE & L* 4 & if true, then the first and \\
\hline & & & last points are onitted when \\
\hline & & & the automatic scale factors \\
\hline & & & are calculated \\
\hline
\end{tabular}

Options_for_the 1~D_1inepripter apd graphic dexice ogtpit ang 2=D graphic device ontput:
\begin{tabular}{|c|c|c|}
\hline IOPT & DEPAOLT & 벼RTABL \\
\hline STEING & & TIPE-QP \\
\hline & & IfluE \\
\hline \({ }^{\prime} \mathrm{YZERO}\) & PALSE & L* 4 \\
\hline
\end{tabular}

PDICTIOH
if true then the ordinate scale is constructed so that a zero point occurs at the origin: if false then there is no constraint

Options_for the 1-D qraphic_device output:
\begin{tabular}{|c|c|c|c|}
\hline IOPT & DEFADLT & EARIABLE & VALUE MEAMIEG \\
\hline STRIEG & & TYPE OP & AID \\
\hline & & FALIE & POYCTIOM \\
\hline
\end{tabular}
if true then the points vill be plotted in the center of the bin: if false then the points will be plotted on the lover edge of the bins nuaber of shorter intervening tic rarks to be placed betveen ajor tic barks on a linear axis marks on a innear axis to connect the points of the 1-D data: if false, then no lines are dravn to connect the points: this option effects only the graphic device output

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{gathered}
\text { IOPT } \\
\text { STEIGG }
\end{gathered}
\]} & DEPA OLT & FARIABLE & \\
\hline & & IIPR OF & 1D \\
\hline & & YAL IE & FUHCTrox \\
\hline \multirow[t]{7}{*}{\({ }^{\prime}\) CHAR＇} & 240 & 1，4 & specify the plot character \\
\hline & & & to be nsed．finote thats \\
\hline & & & CALL OPTPUT（＇CEAR＂，＇） \\
\hline & & & will result in a point being \\
\hline & & & plotted on the graphic \\
\hline & & & device output and an i＊t on \\
\hline & & & lineprinter output） \\
\hline \multirow[t]{4}{*}{＊ERROR＊} & TRUE & L＊4 & if true then the 1－D data \\
\hline & & & points are displayed vith \\
\hline & & & error bars；if false，then \\
\hline & & & no error bars are plotted \\
\hline \multirow[t]{2}{*}{＇hIST＊} & FALSE & 1．＊4 & if trae then the 1－D data is \\
\hline & & & displayed as bar histogram \\
\hline \multirow[t]{2}{*}{－LOGS \({ }^{\text {P }}\)} & FALSE & L＊＊ & if true，then log scale both \\
\hline & & & axes \\
\hline \multirow[t]{2}{*}{＇Y1OG \({ }^{\text {P }}\)} & Faldse & 1． 64 & if true，then log scale \\
\hline & & & 7－axis \\
\hline \multirow[t]{2}{*}{＇Thas＇} & False & 204 & if true，then use manual \\
\hline & & & scales for F－axis \\
\hline
\end{tabular}

Options＿pertaining to 1－D apd 2－D Graphic deyice optpeti

Options＿for the 2－D＿GERhic＿device output：

Options for slicing the \(2-\mathrm{D}\) functions foutpgt to either the lingeprinter＿or＿a graphic＿devicel：
\begin{tabular}{|c|c|c|c|}
\hline IOPT & DEESULT & FABTABLE & YAfot MEARIEG \\
\hline STPI星 & & TYPE OP & ARD \\
\hline & & VAIGE & FURCTION \\
\hline ＇SEEGIN＇ & 0 & 工＊4 & starting point of slice \\
\hline ＇Sn¢＇ & FALSE & L＊ 4 & slice direction：if ralse \\
\hline & & & then slice in \(x\) direction， \\
\hline & & & otherwise slice in \(Y\) \\
\hline & & & direction \\
\hline －S日IDTA & 0 & I＊4 & nuaber of points in slice \\
\hline
\end{tabular}

\section*{Option for setting the defanlt optput destination＿unit：}
\begin{tabular}{|c|c|c|c|}
\hline InPm & DEFAULT & VARIABLE & VALDE＿日EAING \\
\hline STRTN & & TYPE OP & AND \\
\hline & & VAL \({ }^{\text {P }}\) & FUNCTION \\
\hline ＇DEVICE＇ & 19054043＇ & P＊8 & ault ontput device \\
\hline
\end{tabular}

\section*{2．OPTSET}
nPTGET provides the user with a means of getting the current value of an option．The calling sequence is：

CALL OPTGET（OPTION，VALUR 1 ［，VALUE2］）

\section*{where：}

OPTION is a character string identifying the option whose value is desired
VALUE1 is the variable to contain the value vhen it is returned
yalue2 is an optional argunent which only needs to be provided then the state of a two value option is sought

D．TSIMC DPAK 位TR THE NON－IRTERACTIVE GRAPRIC DEVICES AT SLAC

There are several interactive and non－interactive graphic dovices available at SLAC．DPAK has been used for waking displays on both，but since the general user of DPAK will onlv deal with the non－interactive ones，they are iiscussed here

The current non－interactive devices at available at SLAC are：
1．the 10 inch calconp dran plotter
2．the 29 inch calcomp drun plotter
3．the 16 min unsprocketed catcomp microfila plotter
4．the 105 m Calconp nicrofiche plotter
5．the rextronix 4013 storage scope display－displays for this device are uritten out as individual nenbers of a पYLBUR PDS；after his job has run．the user uses a nenbor of the PDS，and then using a list unmonBered cominad．displays the picture on the TEKTRONII 4013 scope（see reference for more on the \(\quad\) fYBDR \(\operatorname{PDS}\) ）
6．the disk pDS data set－this is not really a graphic device：it is cerely a way of saving the pictures in a disk data set for future processing；see reference 2. for more information on this＂device＂

In general，the only thing the user must do to utilize ne of these devices through DPAK is to incinde the appropriate DD statement uith his progran．If the default diname is utilized，then the DPAK routines will take care of opening the specified device．If the user vishes however．he may explicitiy open a device vith the following ca11：

CALL DEVPIC（DEVICE［．DDHAME］）
where：
DEVICE is the character string
－CALDESH：for the 10＂CALCOEP
＂CALDRLG＇for the 29＊CALCOnP
＇CALJ6MO＇for the 16me unsprocketed nicrofila
＇CALPICH＇for the 105in eicrofiche
＇PDS4013＇for the TERTBO日IX 4013 PDS displays
＇qDSPDEV＇for the disk PDS data set
DDNAFE is a an optional argueent：if supplied，it sust atch the diname on the DD statement for DEVICE．

The devices and their defanlt danams are：
DEVICE DDABME DEFAULT
\begin{tabular}{ll}
CALDRSM & CALDRSM \\
CALDRLG & CALDRLG \\
CAL16AU & CALFILF \\
CALFICH & CALPICH \\
PDS4013 & PDS4O13 \\
PDSPDEY & PDSPDEV
\end{tabular}

The default DD statements for the various devices are：
For the 10＂CALCOMP－＇CALDRSM
／／GO．CALDRSM DD DSN＝EEDISPT，DISP＝（FEW，PASS），YOL＝SER＝PLOT。 ／／UNIT＝T9－1600．LABEL＝（1，SL）．
／／ \(\mathrm{DCB}=(\mathrm{PECPM}=\mathrm{F}, \mathrm{LRECL}=480, \mathrm{BL} \mathrm{KSIZE}=480, \mathrm{DEN}=3)\)
For the 29＊CALCOMP－\({ }^{\circ}\) CALDRLG＂
／／GO．CALDRLG DD DSN＝EEDISP2，DISP＝（REW，PASS），VOL＝SER＝PLOT．
／／ONTT＝T9－1600．LABEL＝（1，SL）．
／／\(D C B=(P E C P M=F, L P E C L=480, B L K S I Z E=480, D E N=3)\)
For the 16 an ansprocketed wicrofiln－＂CAL16no＂
／／GO．CAL16MO DD SYSOOT＝X．
／／DCB＝（RECPM＝F，LRECL＝1480，BLKSIZE＝1480）
For the 105mmencrofiche－＂CALFICH＊
／／GO．CAIFICH DD SYSOUT＝Z．
／／ \(\mathrm{DCB}=\left(\mathrm{RECF}=\mathrm{F}_{\boldsymbol{\prime}}\right.\) LRECL \(=1480\) ． \(\mathrm{BLKSIZE}=14801\)
For the TEKTRONIX 4013 displayable pDS－PDS4013＇
／／GO．PDS4013 DD DSN＝TIL，GG．UOU．DABR，UNIT＝（SYSDA，2），
／／DISP＝（NE员，CATLG），DCB＝（RECPM＝FB，BLKSIZE＝1600，LRECL＝80）。 ／／S SPACE＝（TRK，（100，10．10），RLSE）
This JCL will create the PDS on a scratch disk and catalog it．If the user wishes a more permanent file，he should modify the DD statenent accordingly．

For a PDS－＇PDSPDEY＇

／JNIT＝（SYSDA，2），SPACE＝（TRK，（10，10，3），RLSE），
\(/ / D C B=(R E C F H=0, B L K S I Z E=4000)\)
Althouqh it is not always necessary，it is a good practice to close all the graphic devices before terminating a job．This is done by the call：

CALL DEVCLO（ONIT）
where URI＇is the string representing the device to be closed．If more than one device is open for as a general catch all），णVIT can be the string ALL＂．This vill resnlt in all open devices being being closed．

E．OTHER OSEFUI ROUTYRES

Following is a description of sone of the subprograns used by DPAR．They have been found to be aseful for other purposes on several occasions and so are described here．

1．DCGAR
DCHAR is a LOGICAL＊function vhich returas the plot character to be used for a given point．By providing mis own LoGICAL＊function the user ary plot a differeat character for each point．The calling sequence used by the plot prográ is

LOGICAL＊ 1 ICHR，DCHAR
ICHR＝DCHAR（I）
where \(I\) is the index of the point to be plotted．Thas the user．by supplying his own dCili，has control over character choice．

2．DSCALE
DSCALE is the scaling routine used by the display routines to do antomatic scaling．The algorithe nsed for the linear scaling is given in reference 6．The calling sequence is：

CALL DSCALE（F，IT，V，KINT，ITHTM，IDI，IPUR）
where：\(P\) is a REAL＊4 function of the for：\(F(I, J)\) or \(F(I)\) vhich gives the vaiues to be scaled；Fan be vhich gives the vaiues to be scaled：
either singly or doubly indexeds if \(i\) is doubly indexed，then it is aiways called with \(J=1\) ．
If is the point the scaling is to start from
1 is the number of points to be scaled；if is negative the a zero is forced into the scale
NINT is T ＊ 4 and the number of intervals to be
 DSCALE calculates the optimal nuaber of intervals （fron 2 to 15）and returas the value in MIFT：if NIRTz－1，then \(\log\) scale is calculated ithe minimun pover of 10 is returned in the variable IYMIN，and the number of decades is returned in the variable IDY）
IThIn is the integer for the first tic mark label
IDI is the integer incresent for the axis
IPMR is the poter of 10 necessary to get the integerized Irfin and IDF values to be the scale factors（not used for \(10 g\) scaling）

This is a logical function which compares the first characters of two character strings STRT and STR2. If the
 of . TRUE., othervise it returns .PALSE. The calling sequence is:

> LOGICAL RESULT, EQOAL
> LOGICAL事 S STR1(N).STR2(N)
> RESULT \(=\) EQUAL(STR1.STR2, N)
4. RGBEAD

This routine sets up the title which is plotted along the right hand side of the 1-D graphic device output. If the user wishes, he ay supply his ovn HGHEAD routine. The calling sequence necessary is:

CALL HGHFAD (TITLE, NCEAR)
where: TITLE is a string which the user fills in vith the title desired
HCAAR is the number of characters to be printed

\section*{5. NTEXT}

Given atring of text, this function returns the number of characters up to but not including a specified character. The calling sequence is:

LOGICALF1 STRIRG (MAX).CHAR
INTEGER MAX
NCHARS=NTEXT (STRING, VAX, CHAP)
```

where: CHAP is the character to be searched for
max is the saximu{ number of characters to be searched

```
6. SET

The calling sequence for this routine is:
CALL SET(STR1,STR2, HCHAR)
where: \(\quad\) STPI and STR2 are arraps of at least length mCHAR bytes
SET vill set the first MChAR bytes of STRI equal to the first HCHAR bytes of STR2.

GPAR (for histogran package) is a collection of POFTRAN callable subprograms which are called bI the mer"s progran to perforn convenient allocation, accumulation, and display of 1-D and 2-D histograns and 2-D scatterplots.

All the information concerning the histogram definitions, the storage for the histograns, and the storage for statistical analysis (leans and monents etc.) are utomatically pooled together into a siagle comson block /HCOn/ whose length is defined by the aser. This facilitates managenent of the histogran storage and allot: for provision of dynamic storage allocation whereby one any allocate, and if required later reallocate histogram storage without reconpilation. The user can optinize the use of the available space in/HCOM/ by specifying the number of bytes (1, 2 , or 4) to be osed per binin a given histogran.

Accumulation of \(1-D\) and \(2-D\) histograns is made by calls to subroutines which automatically incresent the appropriate bin of the selected histogran by a specified amonnt. In the case of scatterplots the accumalation call results in the coordinates being packed, buffered. and vritten out onto a scratch file.

The display of the histograns is done by calls to the DPAR routines. The form of the i-D output may be at the user's option, bar histograms, points, or points connected by a line, with or without error bars. The ordinate and/or abscissa may be in linear or log form. The ordinate andor abscissa may be in linear or log iore a tabular form that ailovs a variable number of characters per colunn entry. and replacement of absolute zero entries by blanks. so that the user may simulate scatterplots \(3 \pi\) the lineprinter. Output for \(2-D\) histograns to the graphic devices is made in isometric fori. True scatterplots are output only to graphic devices as a series of points of data at the prescribed coordinates.

\section*{1. Defining the feagth of CBCOR/}

The first thing the user must do is to define the length (in vords) of / \(\mathrm{HCOH} /\). This is done by including the folloving two statenents in his progran:

The default size of is 2000 , hovever this vill often not be enough, so the user should define it to be of sufficient length. a nev user of HPak can use 5000 words if he is initially uncertain of his storage requirement. A rale of thumb for estiatiog this length is qiven in Appendix II. The HSIZE call must be nade before any other frak rontine is called.

\begin{abstract}
The optional argunent indicates the size of the common block SCPBOF (declaration COHROM/SCPBUF/KBUP,BOF(100)) which is ased for the graphics. The default size for SCPBUP is NBUP=100. and this usually sufficient. Hovever for interactive uses, a larger SCPBUF common block is usually reqnired, and the length is set by calling HSIzE with two arguants. phen specifying a larqer SCPBUF and/or HCOB, the user ust be sure to include the conson block declaration for the larger
\end{abstract} common block (s).

\section*{2. Definition of ilistoqra:s}

To define (allocate) a 1-D or 2-D histogram, a call to HDEF1 or \(\operatorname{HDEF} 2\) respectively is made.

\subsection*{2.1 1-D Histograr definition}

CALL HDEPI(ID,HS,NB, XAIN, WIDTH, TITLE)
where:
\begin{tabular}{|c|c|c|}
\hline ID & 1*4 & the histogran identifier, which is either an integer number \((0<I D<10000\)) or a string of up to 4 characters finvalid ID's are ID=0 or any string starting with the 3 characters \(A L L\); e.g. 'ALLI'. "ALL". "ALLA' are invalid) \\
\hline \% & ANY & string of 3 characters to indicate the storage mode as follows: \\
\hline & 'L* \({ }^{\prime \prime}\) & one byte (integer) per bin \\
\hline & 'I*2' & tyo bytes (integer) per bin \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{4}{*}{\begin{tabular}{l}
" 1 * 4 " \\
 \\
- E*4.
\end{tabular}}} & \\
\hline & & four bytes (integer) per bin \\
\hline & & four bytes (real) per bin \\
\hline & & two real words (B bytes) for storage of a value \\
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{'田酸"}} & and an error per bin (described in FCosi) \\
\hline & & two real vords (8 bytes) for the storage of a \\
\hline \multicolumn{2}{|r|}{\multirow[b]{2}{*}{}} & value and an error (described in Appendix VIII) \\
\hline & & two real vords (\(\theta\) bytes) for the storage of a \\
\hline \multirow{6}{*}{H \({ }^{\text {r }}\)} & \multirow{6}{*}{I*4} & value and a weight (described in Appendix VII) \\
\hline & & number of binsp if NB is negative. the \\
\hline & & histograv definition is made, but space is not \\
\hline & & reserved for bin allocations; such a histogran \\
\hline & & is said to be deactivated (see HaCT \\
\hline & & RDEACT) \\
\hline XHIN & R* 4 & value of the lower edge of the first bin \\
\hline MIDTH & P* 4 & vidth of a bin \\
\hline \multirow[t]{12}{*}{TITLE} & A Y Y & string of op to 80 characters terninating Eith \\
\hline & & an 'ap. this string may be broken down into \\
\hline & & an a : this string may be broken dovi into \\
\hline & & sub labels of up to 32 characters each for the \\
\hline & & \(x\) and \(y\) axes (of a graphic device plot) by the \\
\hline & & use of seni-colon characters vithin the \\
\hline & & string, as for example: Hinf LABEL; X-AxIS \\
\hline & & LABEL; -AXIS LABELO the string contains the \\
\hline & & main label folloved by a seni-colon (':'), the \\
\hline & & main label folloved by a seni-colon (':'). the \\
\hline & & X-axis label followed by a semi-colon, and the \\
\hline & & I-axis label followed by the terminating ** \\
\hline
\end{tabular}

For example:

Will define the histograw vith the identifier 10 to have 50 bins, with the lovedge of the lowest bin havivg a value of 1.0. a bin width of 1 units, a title of mistogram NuBBER 10" and 2 bytes of storage for each bin.

\subsection*{2.2 2-D Histogra and scatterplot definitions}

CALL HDEP2 (ID, WS, NX, HY, XMIHX, XHINY, WIDX, WIDY, TITLE)
\begin{tabular}{|c|c|c|}
\hline ID & I*4 & the histogram identifier as described in HDEF1 \\
\hline \multirow[t]{11}{*}{HS} & ANY & string of 3 (or 4) characters to indicate the \\
\hline & & storage mode; modes available are the same as \\
\hline & & in the 1-D histogram definition case: if a \\
\hline & & scatterplot of the histogran is desired, \\
\hline & & simply add an 'S" onto the string supplied in \\
\hline & & mS: i.e. 'L*15', 'I*2S', 'I*4S', *R*4S!. \\
\hline & & \\
\hline & & always accumalated (unless it was defined in \\
\hline & & deactivated mode). but the scatterplot \\
\hline & & information is only saved if the mode of \\
\hline & & storage has an 's' on it \\
\hline
\end{tabular}

Examples:

will define the histogran identified by "CTS" to have 50 \(x\)-bins each 1 units vide, 25 I-bins each .5 units wide. and a title of "2-D HIST". It vill allow four bytes of storage for each accumalation bin.

\[
2-\mathrm{D} \text { HISTOGRAB; X-AXIS: I-AXIS ar }
\]
vill define 2-D histogran 102 to have 25 x-bins of width 1 vith a lover bin edge of \(0.0,25 \mathrm{Y}\) bing of width. 5 with a lover bin value of 1.0 , and a title of \(2-D\) EISTOGRanm. Since the nueber of \(x\) bins is negative, the histogran will
 specifies that a scatterplot is to be generated for a graphic device. The scatterplot will be labeled as in the 2-D histogran, but vith a label on the I-axis of wraxism

When doing scatterplots for a graphic device, the folloving JCL is necessary for the scratch file on which the points are saved as they are accusulated.

// DCB= (RECFH=TBS, LRECL=1805, BLKSIEE=3614)
//SPACE=(ERK, \((50,50)\), QLSE) , DIIT=(SISDA, 2)

\section*{3. Accgaplation}

To accumulate alue in a 1-D histogran:
CALK HCVE1(ID, X, W)

\section*{where:}

ID I* the histogran identifier
\(\times \quad\) R* 4 coordinate for accumulation bin numbers are detersined so that the first bin contains all \(x\) fron \(X=X M I N\) to. but not including X=XMIN4YIDTH: note also that underfious go last bin
R*4 Weight to be accunulated (i.e. the anount by which the bin is to be incremented, e.g. 1.0) If both a value and an error are to be accumulated (\(\mathrm{F}^{*} 4\) or M*4 option), then \(W(1)\) contains the value to be accumulated and \(Y(2)\) contains for \(E * 4\) and \(H * 4\) the square of the error. and for \(\quad\) \#* 4 the veight. \(E * 4\) histograms are accualated as the sum of the values \(+/ /-\operatorname{SQR}\) (sur of the errors squared). See Appendix VII and VIII for a description of \(\boldsymbol{m}^{*}\) and m respectively.

To accutalate a value in a 2-D histogran:
CALL HCUB2 (ID, X,Y, H)
where:
ID T* the histogran identifier

W \(\quad \begin{array}{ll}R \neq 4 & Y \text {-coordinate for accuanlation }\end{array}\)
p* 4 veight to be accumulated (i.e. the amount by vich the bin is to be increnented): both veights and errors can be accumulated, as described in HCOH
4. Output
4.1 Basic Histogram Ontput

To output a histogran or scatterplot:
CALL HOUT (ID [ONIT])

'CALDRSM' 10 inch CALCOHP
'CALDRLG' 29 inch CALCOHP
'CAL16月0' the CALCOHP microfiln unit
'CaIficf the calconp microfiche
'moUnIT no output is made to any unit
'PDSPDEV for the Unified Graphics PDSPDE
if the UNIT arquent is not supplied, then the output vill be routed to all devices specified in the JCL, plus the lineprinter
4.2 Profection of 2-D Histograns - KISLICE

This rontine allows the user to take a slice of a 2-D histogram, and then display in profection that slice as a 1-D histogram. The calling sequence is:

CALL HSLICE(ID,TORY[.M1[.NS[,ONIT[.TITLE]〕]]

4.3 Manual Scaling of Histogran Output - MMSC

Manual scales for histogran output are set by a call to the subroutine MMSC. This results in the scale factors being saved in the common block /HCCM/. The calling sequence is:

CALL HASC (ID,SCALE)
where: SCALE is a REAL*4 array of length 16 for 2-D histograms and of length 4 for \(1-D\) histograms: the order of the scale factors is the same as in the SCDUT2 and SCPUT 1 calls which are described in the DPRK section of this Eriteup
ID is the identifier of the histogran the scale factors are to be associated vith
4.4 Overplotting \(1-D\) Histogran outpat
overplotting of histogram output may be done on either the iineprinter or graphic devices. It is dane by doing things in the following sequence:
1) CALL OPTPUT ('OVER'. TRUE.)
2) set up other desired options via the appropriate OPTPUT calls
3) make the appropriate HOUT call
4) repeat the sequences 2) and 3) until you are through
5) CALL OPTPUT ('OVER'..FALSE.)

Up to 10 histograms may be overplotted on the
lineprinter, and any namber on the graphic devices.
5. Fratole

\section*{Consider the following:}

ITPEGER CLOCR1
COB AOM/HCOA/BCOH (7000)
CALL HSIEB(7000)

1
(SIHOLATED SCATTERPLOTA')
CAEL BAM1A(CLOCRT(2))
DO \(10 I=1.40\)
\(\mathrm{Y}=\mathrm{I}\)
DO \(11 \mathrm{~J}=1,25\)
\(\mathbf{Y}=\mathbf{J}\)
IZ \(=2\) F2 (I.J)
IP(IZ.EQ.0) GO YO 11
DO \(12 X=1, I Z\)
D*R111(0)+Y
\(Y \mathrm{D}=\mathrm{Ba}\) : \(1(\mathrm{O})+\mathrm{F}\)
CALL FCOM2('SCAT', ID,ID. 1.0\()\)
COHTITUE
COMTITUE
COETITEE
OUTPUT TO LIEEPRIMTER
CALI OPTPGT (COLUMAS' , 1)
CALL OPTPUT ('STMBOL', 16)
CALL HOUT ('SCAT' 'PRIMTER'
CALL BOUT ('SCAT', 'PDS\&013*)
BETURE
ED
FUACTION ZP2 (I, J)
ZF=IHI (35.*EXP(-. S* (T-19)**2/9.) *EXP \((-5 . *(J-13) * * 2 / 16.1)\)
CTURE
EWD

The HOOT("SCAT". 'PRIMTER') call gives the following:
ID=SCAT SIMULATED SCATTERPLOT
\(1234567891123456789212345 \mathrm{~J}, \mathrm{~J}=1.25\)

111111111122222
E 00123456789012345678901234 T (J) .E \({ }^{0}\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline 10.I & & I & 0.514 & & ANGE \\
\hline 11.1 & & I & \(0.1=\) & 1- & \\
\hline 12.I & 11122222111 & I & 16.2 \(2=\) & 2- & \\
\hline 13.I & 112234444432211 & I & 38,3 \(=\) & 3- & - 3 \\
\hline 14.1 & 11235678887653211 & I & \(74,4=\) & 4- & - 4 \\
\hline 15.I & 113468 ACDEDCA 864311 & I & 130,5 = & 5- & \\
\hline 16.1 & & I & 197.6 = & 6 & \\
\hline 17.1 & 12369C***** \({ }^{\text {c****C96321 }}\) & I & 270,7 = & 7- & \\
\hline 18.1 & & I & \(321.8=\) & \(8-\) & - \\
\hline 19.I & & I & 337.9 & 9 & - 9 \\
\hline 20.1 & 1247AP**********FA7421 & 1 & 321. \({ }^{\text {a }}\) = & 10- & 10 \\
\hline 21.1 & 12369 C 禹***\#\#\#\#\#C96321 & I & 270. \(\mathrm{B}=\) & 11 & 11 \\
\hline 22.I & 12469C*******C96421 & \(I\) & 197. C = & 12- & 12 \\
\hline 23.1 & 113468 ACDEDCA 864311 & I & 130, \(\mathrm{D}=\) & 13- & 13 \\
\hline 24.1 & 11235678887653211 & I. & \(74 . \mathrm{E}\) & 14- & - 14 \\
\hline 25.1 & 112234444432211 & I & 38,F \(=\) & 15- & 15 \\
\hline 26.I & 11122222111 & I & 16.**= & 16- & * \({ }^{\text {\% }}\) * \% \\
\hline 27.I & & I & 0 & & \\
\hline 28.I & & I & 0 & & \\
\hline 29.1 & & I & 0 & & \\
\hline
\end{tabular}

1257148245428417521
TOTALE \(00005461529825552892516450 \quad 2429\)

The HoUT("SCAT". "PDS4013') call gives the follaving:
SIMULATED SCATTERPLØT

B. LOCATIEG EISTOGRAMS IN /BCOM/ - MOSUCH
wosuch is a logical function for locating a particular histogran in /HCOB/. ECOM(3) points to the location in /HCOH/ of the histograi last accessed. If the nser wishes to access a histogran on his own, he best set up RCOH(3). To do this use a call like:

C N IS THE LENGTH OF /HCON/
COHEOR/HCOH/FCOU (N)
INTEGER HCOB
INTEGER RCOE
LOGICAL HOSUCR
LOGICAL EOSUCR
IF (MOSUCH(ID)) BETURE
...ID found - continue processing...
If Nosuct is returned with a value of TROE then no histogram with thet ID is currentiy dofined. If NOSUCH returns with a valne of FALSE, then the histogran exists and fCOM(3) points to its record. A detailed description of histogran record is contained in ippendix II.

\section*{1． RESLC ard HEPSLC}

These REAL＊functions allov the user access to contents of the sliced bins and their errors．To intialize these functions the folloving call ust be made inmediately before using them：

CALL HSLICE（ID，XORY，M1，NS，NOUEIT＂）
then one may use HPSLC（I）as a function to get the contents of sliced bins and HFRSLC（I）as its error．

\section*{2．HGET}

This routine allows the user to fetch the current specifications of histograms or print then on the currently defined lineprinter unit．The calling sequence is：

CALL HGETIID，TOPT［，ND，NB，MS，XMIN，WIDTH［．IH［．IE ［．TITLE］］］］

UIDTH \(p * 4\) the bin vidth；if \(N D=2\) then UIDTH 日ust be an array of length 2，and the \(x\) bin width is returned in UID（1）while the \(I\) bin vidth is returned in VID（2）
Note that when calling HGET with IOPT＝icET．the arguments ND．NB．MS，IHIM，and HID are mandatory．The following yill return additional information，but are not necessary if the information is not desired：
IH \(\quad\) \＆ 4 is an optional argument：if supplied，it vill contain the index value with 1 subtracted from it of the place in \(A C O=\) where the histogran array is stored：i．e． HCOM（IH＋1）will get the user the first bin value
IE I＊4 is an optional argusent：if supplied，and H＝＇E＊4＇then it will contain the index value with 1 subtracted fros it of the place in HCOM vhere the error array is stored；i．e． HCOF（IE＋1）will contain the square of the error on the first bin
TITLE ANY will contain the character string vhich vas passed as a title

Exaples of HGET calls：
a）CALL HGET（＇ALL＇，＇PRIMTER＇）
will print out specifications of all defined histogras．

vill return the number of dimensions，number of bins，node of storage，inimum bin value，and the width of the bins for the histogram identified by the integer 1．also if say日Sx＇LF1，and the histogran is a 1－D histogran，then we Bay obtain the histogran bin contents as follows：

COn BOM／HCOH／H（2000）
LOGICAL＊ 1 （i），H（MB）
EQUIVALEACE（L（1），in（1））
DO \(200 \quad I=1\) ． HB
\(\mathrm{H}(\mathrm{I})=\mathrm{L}(\mathrm{IH}+4+3+I)\)
COETI济UE
c）CALL HGET（1，＇GET＇，HD，DB，BS，IBIM，㫙DTH，IH，IE，TITLE）
vill return the number of dimensions，nuaber of bing，sode of storage， 1 ininn bin value，the width of the bins，the pointer to the histogran in ncon，the pointer to its errors （if AS＝＇E＊Hi），and its title．

argument reguiredif using the GEr option to return the statistics to the user
```

For slice of a 2-D histogram the call is:
LOGICAL EXIST,HSUAS
EXIST=HSOMS (ID.IOPT [.D]}
This call performs the same function for the sliced
histogram as HSUM does for the 1-D case. Note that this
call uust be preceeded by a call to HSLICE.
Emample:
If the user wishes to normalize a histogran by tae sun
f the veights, he might use:

```
 REAL*4 D(23)
 LOGICAL HSOM
 IF(. MOT.HSUH(ID, 'GET', D)) RETURM
 CALL HMORA (ID,D(2))

 These functions are provided to alloy the user access
to the individual histogran bins. a call to Nosucb
for the particular histogras the user wishes to access
ast be ade before any of these functions are called.
The functions and their values are as follows:

 HX(i) RXAL*4 returns the x-coordina
 HY (i) REAL* 4 returns the value of the ith bin in
 real form (1-D)
 real form (l-D) of the ith bit in
 real for: (1-D)
 returas the value of the jth bin (2-D)
 returns the value of the \((i, i) t h \quad 2-D\)
 histograin bin in real for:
 returns the error on the (\(i, j\)) th bin
 of the \(2-0\) histogran in real form
6. IRX and_IHY
```

            These integer functions return to the user the bin
    index of a value. A call to NOSUCH(ID) where ID is the
desired histogra| must preceed the IHX and IHY call. the
calling sequences are:
J=IHX(VALX) vhere vaLX is the X-coordinate vhose bin
number is desired f(nay be either a 1-D or
2-D histogram)
K=IGY(VALY) where valy is the I-coordinate of a 2-D
histogram yhose bin index is desired
If the coordinate lies outside the histogran range, then
the index of the first(underflov) or last(overfiov) bin is
returned.

```

An example of ho: these Eight be used is: Given a-D histograw (ID='TST') with \(\quad\)-axis range [0.0.10.0] and Y-axis range [100.0,200.0]. the user vishes a projection along the x-axis of the bins in the range of [125..150.]. The following set of calls would accomplish this:

\section*{LOGICAL HOSUCH \\ IF (MOSUCH ("TST')) RETUBU}

 (PDS4013')

\section*{D. EDITIAG HISTOGRABS}

\section*{In this section are outiined tbe calls which may be} used to modify a histogres definition or its contents.

\section*{1. HACT and_ BDEACT}

A11 histograms have two possible states. They may be either active or inactive. nn active histogran is one that is fully defined and has storage space with it for accumalations. an iametive histogran is one which has its definition stored in the conen block /HCOH/ but has no storage space for accumalations allocated to it (therefore accumulations are not done). To activate histogran:

CALL HACT (ID)
where ID is the histogram identifier. To deactivate a histograne, that is release its accurulation space:

\section*{CALL HDEACT (ID).}

If ID="ALL" then all the histograns are activated or deactivated.

\section*{2. ㅂC늘}

This subroatine allovs the user to clear a specific histogram. The calling sequence is:

\section*{CALL HCLR(ID)}
there:
ID I*4 the identifier of the histogran to be cleared or the string inLL": if ID='ALL". then all the histograns are cleared
This routine does not delete the histogran specifications. bat merely zeros all bin values and statistics.

\section*{3. HDEL}

This subroutine deletes a histogram. The space is then freed and may be reallocated if desired. The calling sequence is:

CALL HDEL (ID)

\section*{here}

ID I*4 the identifier of the bistogran to be deleted: if ID='ALL', then all histograss are deleted
4. HMORH

This subrontine enables the user to set a norealizing factor for a histogran fhe histogram contents are not changed. During display, the histogram contents are divided by this factor.

CALL GNORM (ID, FALOE)
```

Here: I*4 is the identifier of the histogram to be
ID I*4 is the identifier of the histogram to be
VALUE R** the normalizing factor for the bistogran

```
5. HSET1
 This subroutine allows the user to set a specific bin
of a \(1-\mathrm{D}\) histogram to a desired value. The calling
sequence is:
CALL HSEM1 (ID, X, VAL)

6. ㅂSTT

This subroutine allows the user to set a specific bin of a \(2-\mathrm{D}\) histograr. The calling sequence is:
```

CALE HSET2(ID,X,Y,VAL)

```
\begin{tabular}{|c|c|c|}
\hline ID & I* 4 & is the identfier of the histogram whose bin is to be set \\
\hline \(\mathbf{X}\) & R*4 & the X -coordinate of the bin to be set \\
\hline \(\mathbf{Y}\) & R*4 & the \(I\)-coordinate of the bin to be set \\
\hline VAL. & R*4 & the value to be stored in the bin; if in =e*4 \\
\hline
\end{tabular}

HOPTN allovs the user to dynamically override the default options that control the accumulation and output of the histograns. The call is:

CALL HOPTM (IOPT,VALUE [.ID])
vhere:
\begin{tabular}{|c|c|c|}
\hline IOPT & I*4 & is a string specifining the option to \\
\hline YALOE & FARIOUS & set value which the option being \\
\hline & & specified is expecting \\
\hline ID & I* 4 & optional argurent used for some calls \\
\hline
\end{tabular}

The folloving table gives IOPT values, valoz type expected. the meaning of the valus, and the defanlt.

Options for controling the accululation of \(1-D \quad A N D \quad 2-D\) his혀오보옹

if true, indicates that a call to HSIIM is to be made after the histograw has been output: the calling sequence is:
CALL HOPTN("HSUM', LVAL,ID)
where:
LVAL is an f * 4 value to indicate the state the option is to be set to
ID is the histogran
Identifier: if ID='ALL then the option is set for all histograms
'MTBIN' 0
the error on an eppty bin: this is an integer which is converted to a real if the bistogram binning is real; the valoz is either 0 or 1 (for 0.0 or 1.0 in the real casel
the real casel
when STAT is true the statistics necessary for the HSOM calculations are built up as the histogran is accumatate if STAT is PALSE they are not and therefore an \(H S O H\) call will ot produce any stattstics not produce any statistics: the calling sequence is:
CALL HOPTA ('STAT',LVAL,ID)
LVAL is an \(L * 4\) value indicating the state the option is to be set to
ID is the ifentifier of the histogran to be affected: if ID='ALL' then all histograms are so set

In general the standard FoRTPAR convention applies for determining the type of variables assigned to symbol nanes (i.e. I-N are integers and all others are reals).

Data types are described as:
\begin{tabular}{|c|c|c|}
\hline I* 1 & LOGICAL* 1 & logical variable fused as an integer) occupy one byte \\
\hline \(I * 2\) & INTEGER*2 & integer variable, occupy tvo bytes \\
\hline I*4 & INTEGER*4 & integer variable, occupy four bytes \\
\hline L*4 & LOGICAI.* 4 & logical variable, occupy four bytes \\
\hline \(\mathrm{R} * 4\) & REAL* 4 & real variable, occupy 4 bytes \\
\hline P* 8 & REAL* & real variable, occupy \(B\) bytes \\
\hline ANY & & means data type is irrelevant \\
\hline
\end{tabular}

Optional arguments to subroutine calls are enclosed in square brackets. for exanple: CALL DEVPIC(DEVICE [,DDNAWE])

The work area common block/HCon/ bust be defined by the user to be of sufficient length. In general. the letgth N should he:
\[
N=10+\operatorname{sun}_{\substack{M=1}}^{M}\left(52+\frac{N X(i) * \operatorname{Hax}(\mathbb{X}(i) \in 1) * B(i))}{4}\right.
\]
where:
\(H=\) nuwber of histograns
FX(i) = number of \(x\) bins in ith histograt
ry \(i\) i) \(=\) eumber of bins in ith histogran
BAX \(=\) PORTRAN aximum function
\(B(i)=\) number of bytes in the storage mode for the ith histogran
/HCOM/ is set up as a linked list with a wain header section which contains description of the minor records where the individual histogran specifications and accunulations are kept. The overall structure of /HCOM/ is as follows:
\begin{tabular}{|c|c|c|}
\hline \[
\mathrm{FCOH}_{1} \mathrm{RORD}
\] & \[
\begin{array}{r}
\text { TYPE } \\
\text { I* }
\end{array}
\] & \begin{tabular}{l}
CONTENTS \\
total number of curreatly booked histograns
\end{tabular} \\
\hline 2 & I*4 & ```
number of header vords in each record for
the individual 2-D histogran
specifications
``` \\
\hline 3 & I* 4 & pointer to the record of the histogran nost recently accessed \\
\hline 4 & I* 4 & maximus number of words in/HCOH/ \\
\hline 5 & I* 4 & pointer to the beginning of free space in /HCOM/ \\
\hline 6 & I*4 & pointer to the start of the first record: this is equal to \(n+1\) where \(n=n u n b e r\) of words in the beader section \\
\hline 7 & I*4 & total number of booked scatterplots \\
\hline 8 & I*4 & word containing the unit nunber for the scatterplotting scratch file in the left half \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline F+15 & R*4 & \multicolumn{3}{|l|}{normalization value} \\
\hline W+16 & & \multicolumn{3}{|l|}{not nsed} \\
\hline 5+17 & R* 4 & \multicolumn{3}{|l|}{nueber of calls} \\
\hline F+18 & R** & \multicolumn{3}{|l|}{sun of veights} \\
\hline 14+19 & R*4 & \multicolumn{3}{|l|}{lovest I value binned} \\
\hline \(14+20\) & R** & \multicolumn{3}{|l|}{highest I value binned} \\
\hline W+21 & R*8 & first mosent (if \(\mathrm{R}^{*} 8\) gCOH.. RCOM ( HCO (3) \(/ 2+11\) ) & address & \\
\hline W+23 & R \({ }^{\text {\% }} 8\) & \multicolumn{3}{|l|}{second monent (if \(\mathrm{R} * \mathrm{~B}\) RCOH.. address as RCOM (HCOB (3)/2+12))} \\
\hline \(N+25\) & R*8 & \multicolumn{3}{|l|}{third monent (if \(\mathrm{R} * 8 \mathrm{BCOH}\).. address as \(\mathrm{BCOH}(\mathrm{HCOH}(3) / 2+13)\) )} \\
\hline \(N+27\) & \& \(* 8\) & \multicolumn{3}{|l|}{sixth monent (if \(\mathrm{R} \% 8\) RCOM.. address as RCOM ( \(\mathrm{BCOM}(3) / 2+14\) ) )} \\
\hline \multicolumn{5}{|l|}{\(\mathrm{N}+\mathrm{HCOM}(2)-\mathrm{HCOM}(9)\) through \(\mathrm{ACO}(\mathrm{H})-1\) is the storage area for the scale factors, title, and the accunulation bins.} \\
\hline \multicolumn{5}{|l|}{If this histogram is a 2-D histogram, then the
ucture of the record is the folloving:} \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
HCOH DORD TYPE CONTEHTS \\
N through \(N+8\) are the same as in the 1-D casa
\end{tabular}} \\
\hline W+9 & R* 4 & \multicolumn{3}{|l|}{the lov bin value} \\
\hline \(\mathrm{N}+10\) & R* 4 & \multicolumn{3}{|l|}{the vidth of the \(Y\) bins} \\
\hline \multicolumn{5}{|l|}{\(N+11\) through \(N+15\) are the same as in the \(1-0\) case} \\
\hline F+16 & I* 4 & \multicolumn{3}{|l|}{the scatterplot nuaber: if no scatterplot is being created for this 2-D histogran. then this is 0} \\
\hline \multicolumn{5}{|l|}{\(N+17\) through \(\mathrm{H}+28\) are the same as in the 1-D case} \\
\hline \(\mathrm{N}+29\) & \$*4 & \multicolumn{3}{|l|}{lovest y value binned} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline ImODE (34) & FR & L* 1 & TRUE & frame \\
\hline LHODE (35) & AX & L* 1 & 0 & auto set \(X\) tics \\
\hline LMODE (36) & A 1 & L* 1 & 0 & auto set \(Y\) tics \\
\hline LEODE (37) & \(\boldsymbol{X}\) & L* 1 & 8 & nunber of \(x\) tic marks \\
\hline LMODE (39) & IT & L 1 & 8 & number of \(Y\) tic marks \\
\hline LMODE (39) & XZ & L* 1 & FALSE & force a zero on x-axis \\
\hline LHCDE (40) & FZ & L* 1 & FALSE & force a zero on Y-axis \\
\hline MODE (11) & DI & I* 4 & 2000 & default /HCOH/ size \\
\hline MODE (12) & BU & I* 4 & 100 & default /SCPBup/ size \\
\hline HODE (13) & SL & L* 4 & FALSE & optional slice title flag \\
\hline MODE (14) & 5 F & T*4 & PALSE & silce flag \\
\hline MODE (15) & & I* 4 & FALSE & slice flag \\
\hline MODE (16) & SD & I* 4 & 0 & \begin{tabular}{l}
slice direction 0 is I direction \\
1 is \(Y\) direction
\end{tabular} \\
\hline MODE (17) & ST & I* 4 & 0 & vidth of slice \\
\hline HODE (18) & SB & I* 4 & 0 & beginning of slice \\
\hline HODE (19) & ID & T*4 & 0 & ID \\
\hline HODE (20) & & I* 4 & 0 & not used \\
\hline MODE (21) & & I* 4 & 0 & not used \\
\hline HODE (22) & & I*4 & 0 & not used \\
\hline MODE (23) & 00 & T*4 & 6 & lineprinter output unit \\
\hline MODE (24) & CE & L*4 & TRUE & bin alignment flag \\
\hline LMODE (97) & G R & L \({ }^{\text {¢ }} 4\) & Patse & graticules on Lpuri plots \\
\hline LHODE (98) & & L* 1 & FALSE & not used \\
\hline LHODE (99) & IT & L* 1 & 0 & * of intervening tics (GROT1) \\
\hline LHODE (100) & EJ & L* 1 & troe & page eject \\
\hline MODE (26) & EU & I* 4 & 6 & logical unit for error nessages \\
\hline MODE (27) & SI & R* 4 & 1.0 & size of X-axis (GROTi) \\
\hline MODE (28) & SI & R** & 1.0 & size of l-axis (GROT1) \\
\hline HODE (29) & OF & R* 4 & 0.0 & I-axis offset \\
\hline MODE (30) & OF & R* 4 & 0.0 & T-axis offset \\
\hline MODE (31) & E \({ }^{\text {F }}\) & I*4 & 0 & graphic elesent number \\
\hline MODE(32) & D0 & 1*4 & -1 & buffer dump flag for scatterplots \\
\hline HODE (33) & HT & I* 4 & 0 & HTRAP counter \\
\hline HODE (34) & AI & I* 4 & 0 & ID as it is stored in HCOn \\
\hline HODE (35) & HT & I* 4 & 0 & ```
error value for a zero
bin
``` \\
\hline LMODE (141) & S & L* 1 & z0a & syabol range (LPUT2) \\
\hline LHODE (142) & 24 & L* 1 & 0 & zauto flag (Lput2) \\
\hline LHODE (143) & LE & L* 1 & Z 85 & length (LPuT2) \\
\hline LHODE (144) & XY & L* 1 & 0 & ZYauto flag (LPGT2) \\
\hline LHODE (145) & CO & L* 1 & 204 & * OP columns (LPUE2) \\
\hline LHODE (146) & \(\pm 1\) & L* 1 & Palse & TAUTO flag (LPUT2) \\
\hline LHODE (147) & SC & L* 1 & Palse & scientific notation (LPOT2) \\
\hline LHODE (148) & PR & L* 1 & 60 & lines per page (LPUT2) \\
\hline HODE (38) & -G & 1*4 & 0 & number of open graphic device \\
\hline HODE (39) & DE & I*4 & PDS4 & default output device \\
\hline HODE (40) & & I*4 & 013 & continuation of mode (39) \\
\hline
\end{tabular}
auto set \(X\) tics
neber of \(x\) tic aarks
unber of \(Y\) tic marks
force a zero on \(x\)-axis
force a zero on \(Y\)-axis
default /HCOH/ size
optional slice title flag
slice flag
slice direction
0 is I direction
1 is \(I\) direction
vidth of slice ID
not used
not used
lineprinter output unit bin alignment flag graticules on LPUT1 plots * of intervening tics (GROT page eject
logical unit for error messages
size of \(x\)-axis (GRUT1
size of Y-axis (GROT1)
x-axis offset
ofise
elesent
buffer dump flag for scatterplots
HTRAP counter
ID as it is stored in HCOn
aralue for a zero
syabol range (LPOT2)
length (LPuT2)
ziavto flag (LPOT2)
OP columns (LPUE2)
TAUTO flag (LPOT2)
(EPOT2)
auber of open graphi
device
continuation of mODE (39)

The folloving is a list of some of the problens DPAR and HPAK users have had. If the user"s progran should abend or not work correctiy, I suggest looking through this list.
1. OC6 ABEND - user has supplied a subroutine, entry point or common block with a name that is the same as one of the DPAK or HPAK subroutine, colmon block, or eatry point nates.
2. OC1 or 0c4 - the comson block/HCOA/ or /SCPBUF/ is not as long as the user specified it would be in his HSIzR call.
3. The tessage 'sCALING PROBLEM \#ITH THIS PLOq' - user has specified that manual scales are to be used, but failed to set thei up; note that annal scales for histogran
 output via a iSLICE or HoUT call are set up by calling
HMSC; DISP1A or DISPi scales are set up via a call to SCPDT1. and DISP2 and DISP2A scales are set up via a call to scputz.
4. Inconplete picture on graphic device - user has used the Vrong DGXERR Foutine. Check that the one you have used is from the \(H P A R\) library.
5. ABEMD code of 806 - user has failed to provide the go step library for the Unified Graphics routines.
6. Error message saying "nissifg DD Card" - user has failed to provide the JCL for the scatterplot scratch file.
7. Divide checks, overflows, or underflows in HCJH - check that values passed for accumulation are valid (REAEF4 values).

APPFNDIX \(V\) - SUBPOETINES ERTRY PGTNTS AMD COHHON BLOCK NAMES OSED IH DPAK AND GPAK

Often one of the problens that arises in using a large prograi is accidently using one of its CSECT names in the user's progran. In the following list are the conon block, subroutine, and entry point names used in dPAK and APAK.
\begin{tabular}{|c|c|c|}
\hline PROGRAM HAME & ALIASES & DESCRIPTION \\
\hline \multirow[t]{6}{*}{BUFRED DCGAR DEVPIC} & & reads back scatterplot information \\
\hline & & returns plot character \\
\hline & & opens graphic device \\
\hline & DEVCLO & closes graphic device \\
\hline & DEYNAM & returns name of graphic device \\
\hline & DEVFOR & returns identifier for graphic device \\
\hline DEVSET & & activates output destination \\
\hline DISPO & & functional interface for GRUT1 and LPUTi \\
\hline DISP1 & & function plotting routine \\
\hline DISP1A & & array plotting rontine \\
\hline DISP2 & & 2-D function plotting routine \\
\hline DISP2A & & 2-D array plotting routine \\
\hline DLAB & & partitions title \\
\hline DPPICT & & outputs graphic device picture \\
\hline DSCALE & & scaling routine \\
\hline DSETOK & & sets up labels for the scatterplot \\
\hline DTAB & & table formatting subprogram \\
\hline DUGPUT & & outputs graphic element \\
\hline DUSETS & & sets up slicing function \\
\hline & DUESLC & slice error function \\
\hline & DOFSLC & slice function \\
\hline & DUSLI\% & sets up slice limits \\
\hline & DOSTIT & sets up slice title \\
\hline & DUSTXT & returns slice title \\
\hline & HERSLC & GPAK alias for slice error function \\
\hline & HFSLC & HPAK alias for slice function \\
\hline & DUTITR & sets up title for slicing \\
\hline DOTXP & & calculates an exponent \\
\hline DOT 1 & & 1-D fanction plotting routine \\
\hline DUT 2 & & 2-D functions plotting routine \\
\hline PQUAL & & conpares two character strings \\
\hline Griso & & internal 2-D plot function \\
\hline GRDT0 & & part of 1-D graphics routine \\
\hline GPDT1 & & Eain 1-D graphics routine \\
\hline GPUT2 & & ain 2-D graphics routine \\
\hline GTMAIM & & routine which gets core \\
\hline HACT & & activates a histogram \\
\hline & RDEACT & deactivates a histogram \\
\hline HCBLTK HCLR & & clears blanks out of a character string clears a histograa \\
\hline
\end{tabular}

PROGRAF BLIASES DESCRTPTION

HCUY:

FDEF
HDEP2
HDEL
HEXALL
HGET
RGHEAD HGR1
\(\square\)

RHSC
RHORH
HOPTN
HOPOS
HOUT
HSET1
HSIZE
HSEICE
HSPACE
HSUH
HTODAY
HX

THI
IHT
I4TOR
JOBPRK
LCOHP
LPGEAD
fGGET
HGGET2
FGRET 1
HGRUT2
HGR2
HONIT
HGSET
HGSET2
HOPER
hSCALE

HSUKS

HLA
HLERR
HLE
HLO
HY
HIE
H2
H2E
H2I
HCEM 1
HCUH2
HDEP 1
hSCALE
HOPOSO
HSET2
US

LPTAIL
accumulates a histogran
accumblates a 1-D histograi
accumalates a 2-D histogram defines a histogram
defines a 2-D histogram defines a 1-D histogran defines a histogran ortputs all histograms get histogran definitions header for right side of graphic plot dunns for backward conpatibility
sets manual scales for histogran normalizes a histogran HPAK option setting routine overplots mitiple mistograls passes histogram id's to hopus outputs histograns
sets a bin in a 1-D histogran sets bin in a 2-D histogran sets histogran space size outputs a slice of a histograt telis how nuch space is used outputs histogram statistics outputs slice statistics returns date in printable format returns x value for bin bin function for lineprinter plot bin function for limeprinter plo bin error for linepriater plo \(x\) value for lineprinter plot ontry point for id's returns bin value
retarns error on bin falue
2-D bin value
2-D error value
2-D I Min Falue
returns bin nuiber for an \(x\) value returns bin nuaber for a value takes integer into character string returns job nase
compares two LOETCAL*1 values
header routine for LPOT1
trailer routine for LPOT1

LPUT1
LPOT2 LP10UT LP1SH0

LP17AR
HARGS
HOGRUT
NOLPDT
nOSCAT
HOSOCH
VTEXT
WIPAGE OPTGET

OPTPUT PLFOHi

PLOT2A PLSET 1

PLSET2

PEBOX
PXBUPI
PYCURT
PERSET
PXPLOT
PXSORT
PZDOT
PZELEM
PZLINE
PZREXT
PZTEXT
RDJPCB
ROUTD
RTOIE
SCBUF
SCGET 1
SCGET2
scout
SET
OGXERR
OPLOT VPRIET

1-D lineprinter output routine 2-D Iineprinter output routine outputs line of tert for LPOT zeros sum in LPUT1
smes I values for IPUT1
sets np variable forsat for LPUT 1
counts number of arguinents to a call
dunies out graphics calls
dutinies out iineprinter output rontine
dupnies out scatterplot routines
locates a histogran
counts characters in a string
puts ont page heading
gets output option
internal option identifier sets an option
function fixer-upper for LPOTY
entry point for eultiple functions 2-D Eunction plotting routine 1-D array to function routine \(x\) array to function I array to function error array to function 2-D array to function translator I array to function I array to function Z array to function error array to function scatterplot output routine scatterplot ontput routine scatterplot ontput rontine scatterplot output routine scatterplot ontput routine scatterplot ontput routine scatterplot output routine scatterplot output rontine scatterplot output routine scatterplot ontput routine scatterplot output routine routine to check for dicard presence scatterplot output routine real nuober to integer and exponent buffers scatterplot information dueps final scatterplot information returns last used 1-D scale factors sets up 1-D output scale factors returns 2-D output scale factors sets up 2-D output scale factors ontputs the scatterplots sets one character string to another error processing routine for U.G. duney for user overplot routine scatterplot output routine
 SCATTERPLOTS ABD 2-D GISTOGEAG LIEEPRIFPER
OUTPUT OUTPUT

Pacilities exist in \(\quad\) ipax for overplotting of a nser supplied function on scatterplots and 2-D lineprinter histogran output. The format of the fanction is:

BEAL PUBCTIOM UPLOTIX, I,ID
vhere:
\(X\) R*4 the \(X\) position the function is to be calculated
I R*4 for 1 position the function is to be calculated
for
I*4 the histogran identifier of the scatterplot/2-D histogran currently being plotted
The calling progran assumes the function UPLOT changes sign at those values of \(x\) and \(I\) that define the curve. Thas, if the carve can be defined by
\(f(x, y)=0\)
vhere \(f\) is a functional forn of \(X\) and \(I\), then the formany statenent

ORLOT \(=\mathrm{F}(\mathrm{X}, \mathrm{Y})\)
will serve to define the curve for the calling program. If the conditions which define the curve cannot be erpressed in a simple closed form, the user can set oplor \(=+1.0\) or -1.0. depending upon vhether the point (X,Y) is inside or outside the curve.

The calling progran calls uphot for each point. Thus. for those plots which are not to have a curve, the user should set \(\quad\) PLOr \(=1.0\) before returning.

If several curves are desired on a single scatter plot, then the user should set
set
UPLOT \(=\) product Pi \((X, Y)\). \(i=1\)
where NC different curves are to be superimposed on the scatter plot and \(F i(X, Y)=0\) defines the ith curve. Note that for graphic devices each curve must close back on itself, also the curve mist not intersect itself, thongh a curve may intersect other curves on the plot any number of times. If for a given scatterplot/2-D histogran there is no function to be overplotted simply set UPLOT=HNONE before returning where \(H\) NONE= NONE". The function is overplotted on both the lineprinter ontpat and the graphic output.
```

For example:
Suppose three 2-D histograms have been defined vith
ID's of 'PRO', 'DED', and 3 respectively, and the user
vishes to overplot a function on the 2-D bistogram
identified by 3. The following is an example of the
function for青t:
REAL FOMCTION UPLOT(X,Y,ID)
REAL FEAL H\&ORE/'NONE"/
IF (ID.HE. 3) GO TO 10
C CALCULATE FORCTION HERE AWD RETOR:
BETYRN
C MO OVERPLOT
C MO OVERPLOT
0PLOT=RHOWE
RETURE
EFD

```

\section*{APPREDIX VIT - DESCRIPTIOR OF 日*}

The r*4 tode is used for building histograns by accunalating the veighted qeans and errors per bin. using the same notation as for \(\quad w^{4}\), then a call to HCUH1 will appear as
\(\square(1)=\) value
\(\boldsymbol{M}(2)=\) (error in value) \(* * 2\)
CALL HCUMI(ID,RJ, B)
then
\(Y(0)=0, d \overline{(0)}=0\)
\(d v(i) * * 2=1 /(1 / 4(2)+1 / \mathrm{A}(i-1) * * 2)\)

It outpat time
(I) \(+/\) (-dy (N) is output
```

GLOTTIEG_CALLS:
1-0 plotting calls:
CALL DISPI(PX,PY,PERR,N,TMMLE E,UNITI[,FE[,FC [,FD [,FE

```

```

    [,G[,G[.P[,Q]]]]]]]]]]})
    CALL DOT\{PX,PY,FERR,N,EITLE,SCALE}
2-D plotting calls:
CALL DISP2(FX2,FYZ,FZ2,FERR2,MX,WY,TITLE [,UNIT]}
CALL. DISP2A(X,Y,Z,ZRRR,NX,MY,TITLE[,UNIT])
CALL DOT2(FX,FY,FZ,FZERR,NX,BY,TITLQ,SCALE)
SEMTYNG AND RETRIEYINGGABUAL SCALESS:
for the 2-D graphics case:
CALL SCPUT2(SCALE) and CALL SCGET2(SCALE)
OPTPOT ARD OPTGET CALLS (MITH DEPAOLTS):
set defanlt out put unit: CALL OPTPUT("DEVICE*,"PDS4013')
options for 1-D and 2-D lineprinter:
CALL OPTPUT('EJECT"..TROE.)
CALL OPTPUT('EONIT',6)
CALL OPTPPUT('OUNIT'.6)
options for the 2-D lineprinter output:
CALL OPTPUT ('COLUMNS',4)
CALL OPTPOT("LEFGTH',133)
CALL OPTPUT('PAGE',60)
CALL OPTPUT('SCIEBTIPIC*..PALSE.)
CALL OPTPUT('SY\#BOL', 10)
CALL OPTPUT('TMOTO: FALSE)
CALL OPTPUT ('TMUTO*:FALSE.)
CALL OPTPGT('XYAUTO'.EPLSE.)
options for both the 1-D and 2-D lineprinter and graphic
device output:

```

```

    CALL OPTPUT('ORIT"..FALSE.)
    options for 1-D limeprinter and graphic device output and
2-D graphic device output:
CMLL OPTPPUT('YZERO*.*FALSE.)

```
```

options for the 1-D lineprinter and graphic device output:
CALL OPTPUT('CHAR'.' ')
CALL ODMPUT('ERROR'..TROE.)
CALL OPMPOT('ERROR'..TROE.,
CALL OPTPOT('HIST'.."ALSE.)
CALL OPTPOT('lOGS',.PALSE.)
CALL OPTPUT('ILOG'..PALSE.
CALL OPTPUT('YKAN'..fALSE.)
options for the 1-D graphic device output:
call optput('cpmter'..true.)
CALL OPTPUT('ITICS'.0)
CALL OPTPPOT('OPP!,0.0,0.0)
CALL OPTPOT('OVER',.PALSE.)
CALL OPTPOT('RESCALE'.. PALSE.)
CALL OPTPUT('SIZE',1.0,1.0)
CALL OPTPUT('XLOG'..FALSE.
CALL OPTPOT('XHAN'..PALSE.)
CALL OPTPPOT ('XTIC',8)
CALL OPTPUT('XZERO%,.FALSE.)
CALL OPTPOT('XZERO',
options for the 1-D and 2-D graphic device output:
CALL OPTPOT('FRAME'..TRUE.)
options for the 2-D graphic device output:
CALL OPTPUT('IDIR',.PAl.SE.)
options for the slicing of 2-D functions:
CALL OPTPOT('SBEGIM',0)
CALL OPTPUT('SDT'..FALSE.)
CALL OPTPUT('SPLAG'..FALSE.)
CALL OPTPUT('SMIDTA',0)
APPENDIK x - SOHMARY OF mPAK CALLS
SETTTNG_STORAGE SPACE SIZE:
COMHON/HCOM/M (NWOPDS)
CALL HSIZE(2000)
SETTING UP HISTOGRAR SPECIPICATIORS:

```

```

2-D case: CELL HDEP2 (ID,MS,NBINSX,NBTNSY, XLOW,YLOW, XIID, 1 - YID.TITLE
ACCDMULATING GISTOGRAMS:
1-D case: CALL FCUGT(ID, XVALUE, INCREBENT)
2-D case: CALL HCOM2(ID, XVALUE,YVALUE,INCREMENT)
OUTPUTTEMG HISTKGRAMS:
PROJECTIOR O

```

```

SET MANUAL SCALES POR A HISTOGRAE:
CALI, RMSC(ID,SCALE)
OTHEE_BISTOGRAS RELATED_CALLS:
CALL HACT(ID)
CALL HCLBID
CALL RDEACT (ID)
CALL HDEL (ID)
CALL GGET(ID,OPT, NUMDIM, NBINS, MS, BINLON, BIN:ID,IPTR)
CAIL FHORH (ID.VALUE)
CALL RSET1(ID, XVALUE, VALUE)
CALL RSET2 (ID, XVALUE, TVALOE, VAIDE)
CALL HSOM (ID,OPT, D)

```

\section*{OPTIOR SETTIRG:}
```

CAEL HOPTM(TEYCLUDE'..FALSE.)
CALL HOPTR('RSUHS', FRLSE.)
CALL HOPTT ('IHTEG'..PALSE.)
CALE HOPTN("MTBIN',0)
CALL HOPTV('STAT'.ETRUE.)

```

\section*{}

IPPEIDIX XII－REDOCIHG CORE REQUIRBHEFTS

```

    #\,ZM.PUB. IPIRIE - Containg the DPME and GPAK nodules
    wIL.CG.RCE.UGFIMLIS - contains the Unified Graphics modules
    CQSTRP.MTH是是:
MFL.CG.RCB.णGIVHLIB contaims the run time nodules needed
for vnified Graphics

```


```

    //GO.CMEDRSH DD DSIEESDISP1,DISP= (EER, YASS), VOL=SER=PLOT,
    ///%0.CURIT=T9-1600, LMBEL=(1,SL)
    ```

```

    For the 29" CALCOHP - "CALDRIG"
    //GO.CALDPLG DD DSE=ESEDSP2,DISP=(ME#, PISS), VOL=SER=PLOT,
    // 01MTY="9-1600,LABEL=(1,Sh)。
    // DCB= (RECP星=F,LHECL=480,BLESIES=480,DEN=3)
    Yor the 16me ensprocketed microfila - 'CAL16mo'
    //GO.CML16%0 DD SYSOET=\.
    // DCB= (SBCFH=F,LPECL=1480, BLESIEE=1480)
    For the 105al microfiche - "ClLFICE"
    //GO.CALFICE DD SISOUT=Z.
    // DCB=(RECFH=F,IRECL=1480,BLKSIZE=1480)
For the TBKTRONIX \$013 displayable PDS - 'PDS4013*

```

```

    // DISP* (MS#,CATIG), DCB=(RECFM=FB,BLKSIKE=1600, LPECL=80).
    // SPACE=(TRR, (100,10,10), RLSE)
FOr a PDS - "PDSPDEV'

```

```

// UHIT=(SYSDA, 2),SPACE=(TRX, (10,10,3),RLSE) ,
// DCB=(RBCFEOO,BLKSIZB=4000)

```

\section*{BRA害 SCATTEPR10T SCRAGC日 FIIE：}
```

／／GO．FT19P00i DD DSM＝EKIOTA，DISP＝（BER，DELETE）。
／／SPACE＝（TRK，（50，50），RLSE），UMITx（SISDA，2）
／／DCB＝（RECFidxVBS，LRECL＝1805，BLKSIZE＝3614）

```

The entire DPAK and HPik requires a substantial anount of core．Hovever mech of it can be saved by dumaing up varions routines which are known not to be needed by job． The folloving dubies are provided in the load lodule Containing the DPAR and \＃pan subroutines．To make use of then，just place a call to the desired duney at the beginning of your main progran．

1．Hoypur
If no lineprinter output is desired，the call to MOLPUT will cause duavies to be loaded for the follofing routines：

LPOT1
LPOT2
This vill resalts in a savings of approximately 24000 decimal bytes．

2．MOSCAT
If no scatterplots are desired．the call to noscat vill dumey out the follouing routines：

SCBOF
SCOOT
This vill result in a savings of approximately 24000 decimal bytes．

3．MOGRUT
If no graphic device output is desired，the call to NOGROT will result in the folloving subroutines being dumeied out：

GROT 1
GROT 2
DEVPIC
DPPICT
PXPLOT
This vill result in a savings of approxiaately 54000 decimal bytes．

APPENDIX XIII－ACTUAL PROGRA合 HHICH GEVERATED THE EXABPLES

The following is the actual progran vhich generated the examples in the vriteup．The conents indicated with contained
／／JOB
／／／DELETE WIL．EA．CAL．TEST
／／EXEC FORTHCG．
／／GORGK＝300K，LKEDPRH＝＊SIZE＝300000先。

／／LKEDLB2＝＊TYL．CG．PCB．JGFTMLIB＇．
／／GOSLI＝＇販L．CG．BCB． \(\mathrm{BGRUNLIB}^{\circ}\)
／／FORT．SYSIN DD＊
InTEGER CLOCK 1
EXTERNAL ZF，KP，IP，ZERR，FX，FY，FERR，FA，FB，FC，FD
COHMON／HCOM／FCOR（7000）
REAL KA（25），ERR（25），A（25），C（25），E（25），SCALE（4）／4＊0．／
1 ．YLOG（10）／1．0．1．6E1．2．0E1，1．6E2．5．0E3，3．7E2，1．0E2
2 ．8．9B1，5．OE1．5．OE0／，G（25）

C
C ACCUMOLATE ARRAYS POR DPAK FIGURES
C
Do \(110 \begin{aligned} & I=1,25 \\ & X=I\end{aligned}\)
\(\mathrm{X}=\mathrm{I}\)
\(Y Y(I)=I\)
\(X A(I)=X\)
A \((I)=(I *\) ． 1\() * * 2-2\) ．
\(\operatorname{ERR}(I)=S Q R T(A B S(A(I)))\)
\(C(I)=A(I)-\ldots\)
\(E(I)=A(I)-.8\)
\(G(I)=A(I)-1.2\)
DO \(100 \mathrm{~J}=1.25\)
\(\mathbf{T}=\mathbf{J}\)
TEN＝100． \(\mathrm{EXP}(((\mathrm{I}-20) * * 2+3 . *(\mathrm{~J}-10) * * 2) / 60.1\)
IP（TEH GT． \(45.1 \mathrm{TEH}=90\)－TEM
\(\mathrm{ZZ}(I, J)=\mathrm{TRH}\)
IF \(\{J-6 . G T .0 . A N D . J-6 . L E .6) W\) W \((I, J-6)=T E H\)

\section*{CONTIMUE}

110 COMTIFUE
CALL FSET（XA，TY，ERR，A，C，E，G）
C
E EAMPLE JI．A． 6.1 －LIAEPRINTER OUTPOT EXABPLE
4 EXTPRNAL FX，PA，FB，PC，FERR
CALL OPTPUT（＇LENGTH：70）
CALL OPTPOT（＇CHAR＇，i＊i）

CALL OPTPET（＇FRROR＂，FTBE．）

C
C EXAEPE II．A．6．2－ERAPGIC DEVICE OUTPOT EXABPLE
C
C4 REAL SCALE（4），ZE（25），G（25），ERR（25），A（25），YLOG（10）
EXTEREAL FX，FD，FER
C
tukn overplotytig on

C HAKE A PLOT IE THR LOEER LEFT DADB CORyER
CALI OPTPET（＂HIST＂．．FALSE．）
CALL OPTPUT（＇CHER \({ }^{\circ}\) ，＊＊）
CALI OPTPUT（＊THAR＂，TREE．）
CALL OPTPUT（＂XTIC＊，0）
CRLL OPTPOT（＇SIZE：．5．．5）
CALL OPTPUT（＂ITICS＇，＊）
SCALE（3）\(=-3\) ．
SCAIE（4）\(=1\) 。
CALL SCPUT1（SCARE）
CALI．DISP1A（XA，G，PRE，25．
\(\begin{array}{ll}1 & \text { ILOER LRPT } \\ 2 & \text { PDS } 4013^{\circ} \text { ．A）}\end{array}\)
C OTERPLOT A IITE PLOT
CALL OPFPOT（＂FRAHE＂，FALSE．）
CALL OPTPUT（＇ERROR＇．．FALSE．）
CALI．OPTPQT（＇IINE＇－TRUE．
CALL OPTPUT（＂CAAB＇．＇）

c

CALL OPTPOT（＂TinAR＂，FFALSE．）
CALL OPTPUT（＇FRAME＇．．TROE．

CALL OPTPUT（＇ITICS＇．0）
CALL OPPPUT（＇OPF＇． 5.0. ）
CALL OPTPUT（＇RESCAIE＇．－TROE．）
CALL OPTPET（＇YLOG＇．TROE．）
CALL DISP1AIXA，FLOG，ERR．10．
LOUER RIGET FIGURE：I－AXIS：LOG T＝AXISA＊．
＇PDS4013＇）
```

C MARE PLOT IN UPPER RIGHT HAND QUADRANT
C
CALL OPTPOT('RIST'..TRUE.)
CALL OPTPUT("IINE'..PALSE.)
CALL OPTPOT("XTIC.,0)
CALL OPTPUT('OPP'..5,.5)
CALL DISP1A(XA,TLOG,ERR,10.
1
*HISTOGPAM;OPTIMAL X TICS:Y LOG AXISa'.
'PDS4013'1
c
C HAKE PLOT IN UPPER LEPT BAND OUADRANT
CALL OPTPUN('TTIC',0)
CALL OPTPOT('YLOG*,.PALSE.)
CALL OPTPGT('OFF',O...5)
CALL OPTPUT('REROR'..TROE.)
CALL OPTPOT('CEAR', ')
CALL DISPYA(XA,A,ERR,20."HISTOGFAM UITH EREOP BARSA'.
4
C
C TURE OVERPLOTTING OFF
C
CALL OPTPUT('OVER',.FALSE.)
C RESET SIZE OF GRAPHIC PICTURE
CALL, OPTPOT('SIZE', 1.0,1.0)
CALL OPTPOT('OFF',0.0.0.0)
C
C EXAHPLE II.B.6.1 - LIMEPRIHTEB EXABPLE - IETEGER MOTATIOM
C* BEAL XA(25),TY(25),ण\#(25,6),ZZE (25,25)
CALL OPTPUT(*LENGTH',70)
CALL DISP2A(XA,YY(7),MN,ZZE, 25,6."IMTEGER NOTATIONA'.
1
C
C EIABPLE II.B.6.2- LINEPBINTER EXABPLE SCIERTIFIC NOTATION
C+ REAL XA(25),TI(25),v\#(25,6), 2ZE(25, 25)
CALL OPTPUT('IEHGTH:,70)
CALL OPFPUT('SCIEFTIPIC'..TRUE.)
CALL DISP2A(XA,YY(7),WW, EZE,25,3
CALL DISP2A(XA,II(7),*W, 'SCIENIIPIC EOTATIONA', "PRINTER*)
CALL OPTPOT(*SCIENTIPIC*..FALSE.)

```
```

C
C EXABPLE II.B.6.3- LINRPRINTER SLICE EXAMPLE
C+ PEML XA(25),YY(25),ZZ(25,25),2ZE(25,25)
C* CALL OPTPUT('ERROR*..FALSE.)
C* CALL OPTPOT('HIST'..TPOE.)
C+ CALE OPTPGI('LPNGTR'.70)
CALL OPTPOM('SPLAG'.,TRUE.)
CALL OPTPOT('S\#IDTB'.6)
CALL OPTPUT("SDY'..PALSE.)
CALL OPTPUT('SBEGIN*,7)
CALL DISP2A{XA,TI,ZZ,ZZE, 25,25,* SLICE TEST%'.
'PRINTER*)
CALL OPTPOT('SFLAG'..FALSE.)
C
C EXAMPLE II.B.6.4 - IINEPRIETER EXABPLE - SIEULATED
SCATTERPLOT
C
C+ REAL XP,TF,ZF,ZERR
CALL OPTPUT('COLOERS', 1)
CALL OPTPUT('STHBOL',16)
CALL DISP2(XF,TP,ZF,ZERR,20,25,
CALL DISP2(XF,IF,ZF,ZERR,20,2S.
STOP
EFD
FUMCTION EP(I)
XP=I
RETURN
EWD
FOMCTION IP(J)
J=T
F=J
RETORN
EMD
PURCMION ZP(I,J)
ZF=35.*EXP(-0.5* (I-10)**2/9.0)*EXP(-0.5* (J-13)**2/16.0)
RETORR
END
FONCTION ZERR(I,J)
ZRRR=0.0
ZERR=0.
ETJRA
EWD
EXIBPLE II.B.6.5 - GRAPHIC DEVICE OOTPUT EYABPLE
C
C4 REAL YA(25),YY(25),ZZ(25,25),ZZE(25,25)
CALL OPTPUT('IDIR',.FALSE.)
CALI. DISP2A(XA,TY,ZZ,ZZE,25.25,*XDIR=PALSE EXABPLEO'.
1
(PDS4013')

```
```

C
C EXAMPLE II.B.6.6 - GRAPHIC DEVICE OOTPUT EXAAPLE - SLICED
C 2-D DATA
C+ FEAL XA(25),IM(25),ZZ(25,25),ZZE(25,25)
C4 CALL OP\#POT('SRROR'..FALSE.)
C* CALL OPTPUT("HIST*..TRU\&.)
CMLI OPTPUT('LENGTH",70)
CALI, OPTPOT''SFLAG',.TPR!.l
CALL OPTPUT('SWIDTH;,6)
CALL OPTPUT('SDI', %ALSE.)
CALL OPTPUT('SBEGIN",7)
CALL OPTPUT('CHAR',**')
CALL DISP2A(XA,YY,ZZ,ZZE,25,25,'SLICE TEST**.'PDS4013')
CALL OPTPUT('SFLAG',.FALSE.)
C
C EXAMPLE III.A.5 - HISTOGRAR EIAFPLE
C* IMTEGER CLOCK1
C* COMMON/HCOH/HCON (7000)
CALL FSIZE(7000)
CALL HDEP2('SCAT*,'I*4S',20.25,10.,0..1..1.
1
1 'SIHULATED SCATTERPLOTA')
CALL RAM1A(CLOCK1(2))
DO 10 I= 1.40
X=I
DO 11 J=1,25
I=J
IZ=ZF2(I.J)
IF(IZ.EQ.O\ GO TO 11
DO 12 K=1.IZ
CD=RAK1(0)+Y
MD=RA!1(0) +X
TD=RAN1(0)+T
CALE HCUE2('SCAT',XD,TD,1.0)
CONTIMOE
CONTIFOE
CONTINOE
C
C OOTPOT TO LIMEPEIWTER
CALL OPTPET(*COLUNBS**1)
CALL OPTPPUT('SIHBOL,.'16
CALL HOUT('SCAT"."PRIBTER')
CALL HOUT ('SCAT'.'PDS4013')
BETURI
C+ EHD
C+ REAL PONCTION ZP2(I,J)
C* 2F2=IMT(35.*EIP(-.5*(I-19)**2/9.)*EXP(-.5*(J-13)**2/16.)
C* RETURN
C4 END
C

```

\section*{RETURH}
```

END

```
```

C

```
C
C SUBROUTINE TO OTEBRIDE DEFAULT EGBEAD
C SUBROUTINE TO OTEBRIDE DEFAULT EGBEAD
 SUBROUTIVE GGHEAD (TITLE, 青)
 SUBROUTIVE GGHEAD (TITLE, 青)
 LOGICAL* 1 TITLE(1)
 LOGICAL* 1 TITLE(1)
 BEAL \(\% 8\) JOBRAB JORPR
 BEAL \(\% 8\) JOBRAB JORPR
 LOGICAL* 1 JOB (40)/40**
 LOGICAL* 1 JOB (40)/40**
 LOGICAL JOBL./'JOB='/
 LOGICAL JOBL./'JOB='/
 EQUIVALEMCE (JOB (5), JOBK) (JOB (9), JOBIAB)
 EQUIVALEMCE (JOB (5), JOBK) (JOB (9), JOBIAB)
 JOBAAh=JOBPRH (0)
 JOBAAh=JOBPRH (0)
 DO \(100 \quad I=1,32\)
 DO \(100 \quad I=1,32\)
 (ITLE (I) \(=\mathrm{JOB}(\mathrm{I}+4)\)
 (ITLE (I) \(=\mathrm{JOB}(\mathrm{I}+4)\)
100 COMTTETE
100 COMTTETE
 \(\mathrm{H}=12\)
 \(\mathrm{H}=12\)
RETUR
RETUR
EMD
EMD
C
C
C FUHCTIONS FOR FUNCTIOX PLOTTING EXABPLES
C FUHCTIONS FOR FUNCTIOX PLOTTING EXABPLES
REAL PUECTIOE FSET (X, T, BRR,A,B,C,D)
REAL PUECTIOE FSET (X, T, BRR,A,B,C,D)
REME X(1), I(1), ERR (1), A(1), B(1), C(1), D(1)
REME X(1), I(1), ERR (1), A(1), B(1), C(1), D(1)
REMZ
BETUR
REMZ
BETUR
EXTRY PX(I)
EXTRY PX(I)
FI=X (I)
FI=X (I)
HETURR
HETURR
EMTRY FY(I)
EMTRY FY(I)
\(\mathbf{F Y = I (I)}\)
\(\mathbf{F Y = I (I)}\)
RETUR
RETUR
EETEY FERR(I)
EETEY FERR(I)
FERR=ERR (I)
FERR=ERR (I)
FERR=ERR (I)
RETURY
FERR=ERR (I)
RETURY
RETURY
RETURY
ENTRY FA(I)
ENTRY FA(I)
FA=A(I)
FA=A(I)
RETURI
RETURI
EHTRY FE(I)
EHTRY FE(I)
\(\mathrm{FB}=\mathrm{B}\) (I)
\(\mathrm{FB}=\mathrm{B}\) (I)
FB=B(I)
FB=B(I)
昭T畀 FC(I)
昭T畀 FC(I)
\(\mathrm{FC=C}\) (I)
\(\mathrm{FC=C}\) (I)
RETUR
RETUR
ENTRY FD (I)
ENTRY FD (I)
\(P D \pm D\) (I)
```

$P D \pm D$ (I)

```


```

End

```
End
FUncrion XP(I)
FUncrion XP(I)
\(\mathbf{X F}=\mathbf{I}\)
\(\mathbf{X F}=\mathbf{I}\)
RETUAM
RETUAM
EDD
```

EDD

```

\section*{PUMCTIOR TF(J)}

YFIJ

\section*{RETURE}

E \({ }^{\text {B }}\) D
PUWCTION ZF (I, J)
\(\mathrm{ZF}=35\). \(\operatorname{EXP}(-0.5 *(\mathrm{I}-10) * * 2 / 9.0) * \operatorname{EXP}(-0.5 *(\mathrm{~J}-13) * * 2 / 16.0)\) RETURN
E1 D
POWCTIOR ZERR (I,J)
ZERR=0.0
RETUR
EVD
REAL FUNCTION ZP2 (I, J)
 RETORA
END
//GO. PDS4013 DD DSN=WYL, EA,CAL.TEST1, UYIT=DISK,
// \(V O L=S E R=S C F E V 4, S P A C E=(T R K,(10,1,10), R L S E)\),
\(/ / D C B=(R E C F H=F B, B L K S I Z E=1600, L R E C L=80), D I S P=(1 E M, C A T L G)\)
//GO. PT 19 F00 1 DD DSEFEKIOHA, DISP=(ME甘, DEKETE).
\(S P A C E=(T R K,(50,50), R L S E), O N I T X(S Y S D A, 2)\),
\(D C B=(R E C Y H=V B S, L E E C L=1805, B L K S I Z E=3614)\)

BEPEREMCES
1. UYLBUR/370. The Stanford Tinesharing Systen, Reference Manual, Third Edition, Noveaber 1975.
2. CGTM 10. 170 - TEV SLAC URIPIED GRAPEICS STSTEA VERSION II, by Robert \(C\). Beach, Compatation Group, SLAC.
3. CGTM Wo. 149 - GRAPHIC KIOMA, by Roger Chaffee, Computation Group. SLAC. The code for the HPAK scatterplot output is a slight nodification of the code used by Roger chaffee in his ganphic KIOMA.
4. Brandt, Siegmund; Statistical and Conputation Hethods in Data Analysis.
5. SPEAR Prograw SPGH-5, DISPLAY UTILITY PROGRAMS-DUT1 AND DUT2 et al.. A. Boyarski. Experimental Group C. SLAC.
6. The algorithn used by HSCALE vas given in the Jonranal of the ACM. Vol. II, No. 1 (January 1964) by fe Gianio in an artical entitied A Hathenatical method for Autonatic Scaling of a Function".
 Cook and i, J. Shustek, Computation Group, SLAC. and HPAK are partially coded in HORTEAM2.

IMDEX

\section*{A}
abend， 48
alias．19．110． 111
＇ALL＇， \(30,34,37,44,45,50,52,53\)
B
C
correlation， 47
CCALDRLG．3，4，7，29，30，38，A19
＇Caldrsu＇．3，4，7，29，30，38，419
＇CALPICH＇．3，4，7，29，30，38，119
＇CAL16日ण＇．3，4，7，29，30，38，A19
＇CEFTER＇．7，25，117
＇CHAR＇．6，7，9，10，22，27，116，121，122，123，125
－colvans＇，14，19，24，40，116，124， 125
D

DCRAR 31，A9
DEVCLO，30，A9
DEVPIC，29，A9， 20
DISP1，1，2，4，9，10，A9，A16， 122
DISP1A， \(1,2,5,10,19, A 16,122,123\)
DISP2．1，12，19，A9，A16，A24
DISP2A，1，12，16，17，18，21，22，A9，A16，123，A24，A25
DSCALE，31．49
drum plotter， 29
DUT1．1．5．19．116
DUT2，1，13，19．116
／DHODE／． 16
／DHODE／： 16
\(\underline{E}\)
ERTRY，A9
EQUAL，32．A9
ERROR，AB
＇RJECT： 23,116
－ERROR＇，6，9，10，18，22，27，A16，A22，A23，A24，A 25
＂EUNIT＇23，A16
EEXCLUDE！52．418
－E＊4＇． 35
I
PPRAME＇，6，10．14，27，A17，A22

G
GROT1．1．A9，A20
GROT2，1，19．120
GEET：44．45．46．47．48
－GRAT＇． 6
且

HACT． \(50,49,118\)
HCLR． \(2,50,19,118\)
／ \(\mathrm{BCO} / \mathrm{C}\) ． \(33,34,39,40,43,45,46,50, \mathrm{~A} 2,43,44,45, \mathrm{~A} 18, \mathrm{~A} 21, \mathrm{~A} 25\)
\＃COM1． \(2,35,36, \mathrm{~A} 10, \mathrm{~A} 14, \mathrm{~A} 15, \mathrm{~A} 18\)
HCOR2，37， \(110,118,125\)
HDEACT， \(35,50,19\), A 18
HDEP1． \(2,34,35, A 10, \mathrm{~A} 18\)
HDEF2．34，35，36，40，A10，A18，A 25
BDEL． \(2,50, \mathrm{~A} 10, \mathrm{~A} 18\)
HERSLC． 44,19
GFSLC， 44.19
HGET， \(44,45, A 10\), A 18
HGGEAD，32，A10，A26
HESC， \(39, A 8, A 10, A 18\)
HMORH， 48,51, A \(10, \mathrm{~A} 18\)
HOUT，2，37，40，4 1，42，A10，A18，A25
HOPTM，52．53．A10．A18
HSET1．51．A10．A18
HSET2，51，A10，A18
HSIZE，2， 34,40, A10，A18，A25
HSLICE， \(38,44,49, A 10, A 18\)
HSPACE，46， 110
HSOM，46，A10，A18
HSTMS．48，A10
＇HIST：6，7，10，18，22，27，A16，A22，A23，A24，A 25
＇HSOMS＇．53．A18

I
IHX，48． 110
IHY，48．49．410
＇IMTEG＇．52．A18
＇ITICS＇．6．10．25，A17，A22
－I＊2＇．34． 35

〕
JCL，30，36， 119

K
```

L
LPUT1, 1.819.820
LMPOT2, 1.817.R20
OLENGTHO, 6,9,14,16,17, 18,22,23,A16,A21,A23,A24, A25
,LTRE'. 7,10,25,A22,823
-LOGS', 6,27,116
*L1'. 34.45
G
mean, 33,A15
sean, 33,A15 3,7,29,30,38,119
microfiche, 3,7,29,30,38,119
, Hamoal\&,6,13, 25,A16
-HTBIM'. 53,A18
'H*4*. 35
M
NOGRUY, A11, \20
MOGRUT, A11,A20
normalize,48.51.A10
MOSCAT. A11,A20
EOSUCH, 43,48,49.111
WTEXT. 32.A11
TMPAGE, 111
-MOUMIF!. 38,44
O
offset, 6,26,47
OPTGET, 1,6,13,23,28,A6,A11,116
OPTPUT, 1,6,7,8,9,10,11,13,14,15,16,17,18,19,21,22,23,26,27.
39,40,16,111,116,117,A21,122,A23,124,125
overfiov. 37.47,52,A8
overflov: 37,47,52,48
overplot, 4,5,6,7,8,10,11,
MOFPY, 6,10,26,117,1
-00MIF'. 23.i16
OOVER', 6,7,8,10,11,26,39,117,122,123
卫
PDS, 29,30,37,119
MPAGE', 14,24,116
MPDS4013', 4,7,10,21,22,28,29,30,37,38,40,42,49,116,119,122,
'PRIHTEE', 2,4,124,125,17,18,19,37,40,41,44,45,122,123,124,125
9
I
resolution, 47
MRESCALE., 6.10.26.A17.A22
'R*4'. 35
S
SCALE, 5,A,10,13,15,A15,A17,A18,A 21.A22
scatterplot. 2,19,20,33,35,36,37,40,41,A2,A4,A7,48,A9,A11.
Ncatterplot. A12,i 19,A20,A24,A25
SCGET1, 8,A11.116
SCGET2, 15,A11,416
SCPBDP/, 34,78,18
/SCPBUP/. 34,87.A8
SCPUT1, 5,8,10,39,A8,A11,A16,A22
SCPOT2, 13, 15,39,A8,A11,816
SET. 32,119
skev.47
slice, 14, 18, 22,27,38,44,48, A7, 18, 49,110,418, 124, A25
standard deriation,47
stamdard deriation,
storage scope, 3,29
STMTAY, A1
'5'. 35
\#SAVEP. 14 14,18,22,27,417,A24,125
*SCIEMTIPIC'. 14,17,24,A15,A23
'SDY'. 14,18,22,27,117, 124,125
-SPLGG: 14,18,22,117,i24,125
SSPLAG:. 14,18,22,117,124,425
'SIZE'. 6,10,11,26.A17,122,A23
-STATT: 53,K18
*SWIDTH', 14,18,22,27,A17,A24,A25
*SYEBOL: 14,18,22,27,A17,A24,125
I
TITLE,4,5,12,13,32,34,35,36,38,44,45,46,416,418,426
TTUOTO:, 14,24,i16
|
underf1ow, 37,47,48,52,18
Onified Graphics, 1,3,7,38,18,A19
ONIT, 4,5,6,7,12,13,14,30,37,38, A16, A18
UPLOT, il1.\&12,A13
\
!
veight, 35,37,47,48,14,414,115
TYLBOR, 7,29.37
1日*46. 35.37.114.815

```
```

\
*'0. 10.39.49.422
*DIR*. 14,21,27,A17,A24
'XLOG'. 6,26,A17
'XNAN'. 6,26,A17
-XTIC', 6,10,26,A17,A22,A23
MXIAUTO', 14.24,A16
*XZERO. 7,26.A17
I
'Y', 38
'TLOG'.6.10.27,A16,A22,A23
'YHAN', 6,10,27,A16,A22
MINAR, 6,10,27,A16,A22
MTMIC: 6,10,26,A17,A2
Z
'ZAJTO'. 14,24.416
1-D. 2, 3,4,5,23,25,26,27,32,33,34,35,36,37,38,39,45,46,47,
4B,51,52,A3,A4,A9,A10,A11,A16,A17,A18
2-D, 3,12,13,14,15,22,23,24,25,27,33,34,35,36,37,38,39,46,
47,48,49,51,52,A2,A3,A4,A6,A9,A10,A11, A12,A13,A16,A17,
118.825

```
```

