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ABSTRACT

A graphic data organization was designed that allows for fast access to

an arbitrarily large data base . The graphic data is organized by clustering

into successively larger spheres . The derived tree structure provides for

multilevel descriptions of objects that allow for display of only the amount

of detail that can be resolved on the display, in addition to rapid deter-

mination of data in the field of view .

An algorithm was developed to search for the minimum volume sphere en-

closing a set of points in three dimensions . A heuristic was used to speed

the search for the minimum volume sphere gaining several orders of magnitude

improvement over a non-heuristic-search .

In support of the minimum volume sphere heuristic, an algorithm to cal-

culate the convex hull of a set of points in more than two dimensions was

constructed . For the three-dimensional data sets tested, an order of mag-

nitude improvement over an existing algorithm was found .

To facilitate display of a simulation of a user moving through space

containing a large number of objects, a fast hidden-line algorithm was

developed . It allows for display of linearly separable three-dimensional

convex solids, two-dimensional concave planes, and three-dimensional wire

frame objects . A complex picture consisting of 16 objects (192 edges) re-

quires only 130 milliseconds on a third generation large scale computer .

Extensive tests of the algorithms were made using a variety of data sets .

The results are summarized in a series of graphical presentations .
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CHAPTER I

A Brief Overview

This thesis is concerned with the interactive motion display of

three-dimensional objects on a two-dimensional screen . The system des-

cribed is one in which the user can "fly" smoothly through a three-

dimensional space filled with a large number of objects . The view pre-

sented to the user, on the display, is a perspective projection of the

data from the current position in space .

Perspective display of 3D data is, of course, not a new idea . The

governing mathematics have been understood for hundreds of years . With

a line drawing display such as the IDIIOM, (4) the display of the data

involves only simple calculations .

If the time required to generate a picture were not a consideration,

then our goal could be reached by using well-known techniques . For each

position along the user path for which a display is required, each of

the objects in the data base must be tested to determine if they are

either in or intersected by the pyramid of vision . This is the first

of the problem areas we encounter .

If the data base is very large, this initial testing becomes the

most time consuming calculation, particularly when the data set resides

partially on disk . It becomes clear that some structuring of the data

base is required to accelerate this process . The structuring becomes

important when the data "visible" to the user is only a fraction of the

data base . We need to minimize the number of tests made on data outside

the pyramid of vision . We shall refer to this process as the data re-

trieval problem and the required structuring as the data organization .
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A great deal of work has been done on "graphic data structures" . (11)

These data structures are designed to facilitate picture construction,

manipulation and recognition . We found no reported work dealing with a

data structure designed to facilitate graphic data retrieval . In

Chapter II, we report on a new type of structuring designed to solve

this problem . It encloses the objects into nested spheres . An algorithm

to generate the nested spheres is presented in Chapters IV and V .

Another problem area is in the choice of a hidden line algorithm .

The fastest reported times are not adequate for our needs . Chapter VI

presents a new algorithm that gives the fastest times for the type of

objects in our data base .



Date Organization

CHAPTER II

Y

FIGURE 2 .1

The objects in the data base are defined on a three-dimensional

Cartesian coordinate system with center (0,0,0) and no limit on X, Y, or

Z, as shown in Figure 2 .1 . There is no restriction on size or location

of the objects . Further, the user can position him(her)self at any

point in space and view in any direction . The only restriction is em-

bodied in the addressability of the display itself . Figure 2 .1 shows

the special case where the viewing position is on the Z-axis .

All digital displays have finite addressability that typically range

from 512 x 512 to 16384 x 16384 raster units . The IDIIOM display we use

has an addressability of 1024 x 1024 raster units . The actual resolution

is somewhat less in that a square drawn, connecting four adjacent

addressable positions, appears as a single bright point .
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It is because of this finite addressability that certain simplifi-

cations can be made . We recognize that objects far away from the view-

ing position (as well as small objects) will appear small in the plane

of projection . This is due to the fact that in perspective projection

the X and Y dimensions are inversely proportional to the distance from

the eye to the object . For example, if it can be determined that a com-

plex object in the field of view will occupy an area of one square ras-

ter unit, then it is a waste of time to both retrieve this object, as

well as perform the time consuming hidden line calculations .

A .

	

Design Goals

The data organization has two design goals . First, it must provide

a fast test that can give an upper bound on the projected size of the

object . Secondly, a fast test should be available to eliminate large

amounts of data outside the pyramid of vision without resorting to

examination of each object . The solution to the first problem requires

some information to be stored with each object which can be used as a

measure of its size . The second problem indicates that some sort of

partitioning of the space is required . At this point, we will discuss

several approaches used in two dimensions and show how they can be ex-

tended to a three-dimensional data base .

B .

	

Two-Dimensional Data Selection

The problems encountered in the display of two-dimensional data are

essentially the same as for the three-dimensional case . Rather than fly

through a three-dimensional world, we move our "window" (as opposed to

a pyramid of vision) across the two-dimensional field . By changing the

size of this window, we can, in effect, zoom closer for a more detailed

view or move back for a broader view . When we are close in, most
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of the date will be outside of the window . We need a scheme for parti-

tioning the space to quickly eliminate large portions of the data . Con-

versely, when our window is large, relative to the entire two-dimensional

field, much of the data will fall below resolvability and should not be

retrieved for display .

The first approach we consider is to divide the region into suc-

cessively smaller regions in a manner similar to that used by Warnock . (10)

The entire two-dimensional field is extended (if necessary) to form a

square . This square is divided into four equal squares . Each of the

squares containing any data can be subdivided further (see Figure 2 .2) .

The large squares are numbered as shown . The four smaller squares with-

in are numbered in a similar manner . For example, the square containing

Object B would be 3 .1 while the square containing Objects E would be

labeled 3 .3 .3 .1 .

Data is assigned to the smallest square(s) region(s) that contain

it . Thus, Object B belongs to 3 .1 while Object D belongs to 3 .1, 3 .2 .3,

3 .4, 3 .3 .2 . Regions are subdivided only when necessary .

FIGURE 2 .2
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This subdivision can be implemented as a tree with four-way branch-

ing at each node . A tree for the example in Figure 2 .2 is shown in

Figure 2 .3 .

FIGURE 2 .3

The letters of the nodes represent pointers to the actual object

data where 0 represents an empty region . At each level, the area of a

region is one-fourth the area of the region that contains it . The

length of an edge of a region at level n is 2-n times the length of the

edge of the region at level 0 . For example, let the window contain the

entire two-dimensional field . Let the addressability be 1024 raster

units . Then a square at level 10 would be one raster unit on a side,

and no further levels need be considered . This follows from the obser-

vation that an edge of region i is twice the length of an edge at level

i + 1 .

The display of data is accomplished by first determing the data

in the display window and then retrieving that data from the data base

and displaying it . For example, suppose the window were entirely within

level 3

level 4



region 1 . It would then not be necessary to examine the data in regions

2, 3, or 4 . This allows quick elimination of potentially large amounts

of data .

Small non-resolvable objects can be eliminated by determining the

size of the enclosing square relative to the size of the window . Given

a window size, it is easy to determine the smallest size square that

need be considered .

With all of its advantages, this scheme does have several drawbacks .

Consider Object D . With the particular subdivision shown, it belongs

to four regions at two different levels . This complicates the problem

of updating the data base . Suppose we move Object D so that it is now

contained entirely in region 3 .1 . The three remaining pointers from

the structure to the data will have to be deleted . To do this requires

either the use of back pointers from the data or a search through the

entire data base for all references to the object in question . Neither

of these approaches is desirable .

From Figure 2 .2 we notice that Object D is small enough to be con-

tained in a square the size of the one containing Object E . However,

since the D belongs to larger squares, it will be considered for display

even when the window size indicates it would be below resolvability .

The only solution would be to subdivide its enclosing regions which adds

unnecessary levels to the tree structure in the data base .

The second approach is to associate the regions directly with the

data . For this approach, a region is a rectangle that encloses an

object or group of objects .
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FIGURE 2 .4

Figure 2 .4 shows the same data only using enclosing rectangles .

Note the rectangle enclosing Objects B, C, D, F . By clustering groups

of objects together, we can form the necessary hierarchical structure .

Without this clustering of objects, a test must be performed for each

object to determine its position relative to the window . The clustering

serves the same function as the subdivision into successively smaller

squares .

For the simple example in Figure 2 .4, the derived tree takes on

the structure as shown in Figure 2 .5 .



FIGURE 2 .5

The choice of how to cluster the data is, of course, somewhat ar-

bitrary . In Figure 2 .5, a particularly simple choice was made . What

is important to note is that each branch is associated directly with

data and not with space . With the exception of a cleverly designed

pathological case, the tree structure used here will always be simpler

than the one used with the subdivided squares .

Only when the window intersects the rectangle associated with the

root of the tree, does the data retrieval take place . In a similar man-

ner, only when the window intersects the rectangle associated with objects

(B, C, D, F), does the system even "know" that these objects exist .

Clearly, the efficiency of the data retrieval is a direct function of

the nesting structure of the rectangles . Strategies for optimum struc-

tures for a given data base fall outside the scope of this research .

The clustering is performed by the user when the data base is set up .

The elimination of non-resolvable data works in the same manner as

described previously . In this case, the ratio of the rectangle to the

window is examined to determine if it is small enough to be considered

non-resolvable . Here we cannot establish a cutoff based upon the depth

of the tree, but must search each branch of the tree until the limit of
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resolvability for the rectangles encountered is reached . We examine

the ratio of the longest edge of the rectangle to an edge of the window .

This scheme has some advantages over the subdivided squares . We

first notice that the size of the rectangle more truly represents the

size of the enclosed data than does the square . This is important since

the subsequent examination of the data depends on the relative size of

the region that encloses it . A second advantage is that updating of the

data base is simplified . Data and its regions can be moved without

affecting the remaining structure . Also, the associated tree is gen-

erally smaller, but not as regular .

C . A Three-Dimensional Organization

In our examination of alternative organizations, extensions of the

two schemes described above were tried . They are described in the

following two sections .

D . Physical Partitioning of the Space

The successive subdivision of the square becomes the successive

subdivision of a cube . At each subdivision, eight new cubes are formed .

The tree that is formed will take the same shape as the one shown in

Figure 2 .3, except there are eight branches at each node . The principle

for retrieval and display of data are essentially the same with two com-

plications due to the three-dimensional data base .

With two-dimensional data, determination of resolvability of the

data within a region amounts to comparing the ratio of the edge of the

region in question to an edge of the viewing window . This gives a mea-

sure of the size of the region and, hence, an upper bound on the size

of the data contained within the region .

In three dimensions, the effective size of the region depends not

- 10 -



only on the actual size of the region, but on the distance from the

viewing position to the region . This is due to the perspective pro-

jection used . The apparent size of a region is inversely proportional

to the distance from the viewing position to the cube (see Figure 2 .6) .

Y

pyramid of
vision

	

MY Z)

= f xXp
f -z

FIGURE 2 .6 f •Xp = (f < 0)

The example in Figure 2 .6 shows the viewing position lined up along

the Z axis with the plane of projection in the X - Y plane .

The second complication is the determination of position of the

cube relative to the pyramid of vision . Since the user is not restricted

to position and orientation, the cube can likewise assume any orientation

relative to the planes bounding the pyramid of vision . This requires

that the intersection of the cube with the pyramid of vision on all four

bounding planes be computed . This requires that each of the eight ver-

tices of the cube be tested against each plane that form the pyramid of

vision to determine on what side of the plane each point lies .

- 11 -



Only when all eight points lie on the outside of any of the four planes,

can the objects contained inside the cube not be considered for display .

This amounts to 32 calculations of the form y = ex + by + cz + d . If

the projected cube covers an area large enough to be considered resolv-

able, then all data connected with that cube will be processed for dis-

play . Note that objects can be attached directly to a region that is to

be further subdivided . These directly attached objects are processed in

addition to subdivided regions (if any) . Since a region may intersect

with the pyramid of vision, each of the potential eight subregions must

be considered to determine their potential visibility . However, if a

region is found to be totally within the pyramid of vision, then so

will its subregions and, of course, they need not be tested for visi-

bility . These subregions must be checked for resolvability .

This scheme has essentially the same drawbacks as its two-dimen-

sional equivalent, only compounded by extra calculation due to the third

dimension .

E . Logical Partitioning of the Data

The extension of the similar two-dimensional data organization re-

quires that each object (or group of objects) be enclosed in a rectangu-

lar prism with sides equal to the maximum in x, y, z of the objects(s) .

The tree generated by the clustering does not become more complicated

due to the extension to three dimensions . This is because the branching

is based on the isolation of data in the space rather than on an isolation

of volumes of space containing data .

This scheme has a number of advantages over physical partitioning .

First, there are more likely to be fewer regions tta t need be tested

against the pyramid of vision for visibility . Secondly, since the
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region is more likely to give a better estimate of the size of the

object(s), a more accurate estimate of resolvability can be made . In

addition, updating of the tree is easier, as has been described for the

two-dimensional case .

However, there is still the problem of testing for the visibility

of a region . Each region still requires a test of eight vertices

against each of the bounding planes of the pyramid of vision . If the

number of regions is large, the cost of the tests may be prohibitive .

This is particularly frustrating when, for an "average" picture, most

of the data (and hence the regions) will be within the pyramid of vision .

The results of virtually all the tests will be that the object is en-

tirely in or outside of the pyramid of vision . It is a fairly unusual

picture where most of the objects intersect the pyramid of vision .

There is also the determination of the area of the display screen

occupied by the region . Both the cube and the rectangular prism have

eight points on a two-dimensional screen . Figure 2 .7 shows a typical

case . The area covered by the region is determined

Y

A

Figure 2 .7
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by first computing the minima and maxima of each of the eight projected

points . The square generated from these minima and maxima gives a mea-

sure of the projected size of the data contained in the region . This

calculation must be performed for every region in or intersecting the

pyramid of vision .

In the next section, we will describe a modification of the Logi-

cal Partitioning Scheme that addresses these problems .

F .

	

Partitioning with Spheres

Based upon our studies of the previously described data organi-

zations, we set ourselves a number of goals that this new organization

should attain . The first goal is that the testing of a region for

visibility should be very fast . A single test per region per plane is

desirable . The attaching of the region to the object(s) should be the

best solution to the problem of updating of the data base . In addition,

this gives a better estimate of object size to be used in the test for

resolvability . We feel that the binary decision of processing or not

processing of the data, depending upon the size of the region on the

projection plane, is too severe a test .

Consider the complex object in Figure 2 .8a . It is composed of 11

simple objects with a reasonable amount of detail . If the region con-

taining this complex object occupied a total area on the display of less

than two square raster units, then only a single point need be considered

for display since no detail could be shown . On the other hand, if this

complex object occupied 25% of the display, then the entire data should

be processed and displayed . It is clear that the more accurately we

know the size of the object, the more likely it will be that we will

not process an object that cannot be resolved anyway .

- 14 -



11 objects
136 edges
59 faces

(a)

1 object
9 faces

(b)

FIGURE 2 .8

There is a problem when the complex object occupies an area too

small for all the detail but too large for a single dot . This will

occur when the user is moving through a space containing these complex

objects . When the objects are far away, they appear as points . As the

user's position changes, the objects grow larger slowly . It seems

reasonable to add detail only as needed . The object in Figure 2 .8b

could be used as a representation of the complex object 2 .8a until the

detail in the complex object could be resolved . This would save a great

deal of display processing time .

Our goal for this requirement is multilevel descriptions of an

object corresponding to the amount of detail that can be resolved .

It should be possible to have an arbitrary number of descriptions of the

same object available for display . The proper one is to be selected

according to a user set threshold based on the area of the screen occu-

pied by the object .



G . ANewOrganization

The regions that enclose the data are spheres . A sphere has some

properties that move us close to the goals we have set . The test

	

for

visibility is very fast . We substitute the center of the sphere (X,Y,Z)

into each of the bounding planes of the pyramid of vision

(ax + by + cz + d) . The normal distance from (X, Y, Z,) to the plane is

ax1	+ by, + cz1 + d
D = ±

(a2 + b2 +
c2) 1/2

Let the sphere have radius R . We set up the parameters of the plane

equations so that D is positive for a point on the inside of the pyra-

mid while a negative distance is outside (see Figure 2 .9) . From this

FIGURE 2 .9

single test (as opposed to 8 for the rectangular prism), the following

three conditions can arise :
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1 . D + R < 0 for any plane . The sphere is outside of the

pyramid of vision and need not be considered for display .

2 . D - R2: 0 for all four planes . The sphere is completely

inside the pyramid . There are no edges from any of the

objects contained in the sphere that intersect the

3 .

pyramid of vision .

The sphere intersects the pyramid . This means that it

is possible that only a portion of an object may be

visible . If this is the case, then the object must be

clipped ; i .e ., the determination of intersection of edges

with the screen (see Figure 2 .10) .

clipped -~

edges ~ ,

FIGURE 2 .10

The clipping of the edges is time consuming and done only for those

spheres that fall into case 3 above . The clipping can be performed in

three-dimensions prior to projection, or after projection in two-

dimensions . Clipping in two dimensions involves less calculations than

when performed in three dimensions . There is only one case where clip-

ping must be perfcrmed in three dimensions . This case occurs when an

edge has one endpoint in front of the viewing position and one endpoint

behind (Figure 2 .11) .
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Z

IF
eye (0,0,-f)

edge to be
clipped

4(( .2 ,y2)z2 )

FIGURE 2 .11

In addition, care must be taken in the

projection of points with Z 2 near -f . This is because Xp and Yp (Figure

2 .6) are inversely proportional to Z-f .

If we know that the object is entirely in front of the eye position,

then two-dimensional clipping can be used. This can be determined by cal-

culating the distance from the center of each sphere to the eye position .

If this distance is greater than the radius of the sphere, then two-

dimensional clipping can be used .

The spheres also give us a fast measure of size . This measure is

used to decide when detail is to be added . These are the cases when

the sphere's projected size changes from a point through one or more

small sizes according to the detail present . The data structure must

contain user set thresholds that indicate at what projected size more

detail is to be added .



One advantage of using spherical regions is that their projection

is the same regardless of orientation . The projected area . i s directly

proportional to the radius and inversely proportional to the distance

from the center of the sphere to the viewing position .

From the equations in Figure 2 .6, we note that size of the pro-

jected radius R is Rp = f=z and the projected area is nR2 . Rather than

actually compute the projected area, we can set our thresholds in terms

of the projected radius instead . This clearly gives the same result .

Thus, the single calculation of Rp can be used as an indication of when

a new description of the object in question is required .

An alternate scheme is to use the distance to the sphere as an in-

dicator . This is an equivalent test since the size of the sphere is in-

versely proportional to Z . We can associate a critical distance with

each sphere . When this distance is reached, more (or less) detail is

added (deleted) .

To accomplish all of this detail addition, we propose a structure

we call the Choose One Consider All or COCA tree (Figure 2 .12) . This

differs from the other tree structures described earlier in that alter-

nate levels have different meanings .

The data definition nodes are located at a "consider all" level and

are held on linked lists . They contain pointers to real data or a pointer

to a data description node . Each of the nodes is considered independently

for display . For nodes that point directly to date, their enclosing

spheres are clipped to determine visibility conditions . If the data is

in the field of view, then it is retrieved and displayed .
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FIGURE 2 .12

Those nodes not pointing directly to real data, point to a data des-

cription node . These nodes lie on a "choose one" level, and also are

held on linked lists . Each list pointed to by a data definition node

contains different descriptions of the same object . These descriptions

are ordered with the least detailed description first and the most de-

tailed last . It is the size of the projected radius of the sphere con-
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taining the data that determines which of the data descriptions is used .

Let us consider the tree structure in Figure 2 .12 .

Node A is the top of the tree and by definition is the description

of the world . We have three possible descriptions . The first and least

detailed is a single object B . The second detailed description consists

of two objects C and D, both of which are to be displayed if the pre-set

threshold so indicates . The most detailed description consists of two

objects, E and F . If description three is chosen, then object F will be

tested for visibility and displayed . Since object E points to a data

description node, the sphere containing object E will be used to choose

either object 4 or 5 . Depending upon this test, either object G, or

objects H and I, will be displayed .

It is important to remember that these thresholds associated with

the data description nodes are set by the user . These values are deter-

mined by looking at the object on the display and deciding at what pro-

jected size more detail is necessary .

H . Summary

A new method of organizing data has been described . It has the ad-

vantage of allowing multiple descriptions of objects in order to retrieve

only resolvable data . -It provides for a fast test to determine both

visibility and level of detail required .

This organization also provides the ability to "fine tune" the dis-

play by adjustment of display thresholds . It provides, in a single

structure, a method for viewing a data base containing a large number

of objects (e .g ., a city from far away) as well as a detailed picture

of a single entity .
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CHAPTER III

OnCalculationofSpheres

In the previous chapter, we have seen the need for enclosing ob-

jects in spheres . The solution to this problem proved to be one of the

most interesting aspects of our research . The initial approach taken

was to find an approximate sphere by using the centroid of the vertices

of the data to be enclosed, and generating the sphere whose radius is

the distance from the centroid to the point farthest away . An argument

can be made for the case that the mininum sphere is not necessary, but

that an approximate sphere would suffice . This proved satisfactory only

when the points were uniformly distributed in S, Y, and Z, which is not

typical for the types of objects likely to be encountered . In fact,

most of the schemes we examined that attempted to use the points to find

a center and construct a sphere generated spheres too large for some

fairly typical data .

The most obvious approach is some sort of iterative scheme that

starts with a large enclosing sphere, eventually reaching the minimum

sphere . An algorithm was reported that claimed to have solved this

problem . (7' 3) It was stated that given n points, the minimum volume

sphere would be found prior to generating a maximum of
(4)

.
I2I

spheres .

In fact, it was claimed that far fewer spheres would be generated, but

offered only a single two-dimensional example to back up this assertion .

The algorithm was not implemented in three dimensions . (8) The al-

gorithm is quite complex (20 special cases) with no indication of speed

of convergence as a function of the input data . For these reasons, no

comparison will be made of this algorithm with the algorithm we develop .
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The algorithm described here is conceptually very simple . Take

the points 2, 3, and 4 at a time and construct spheres, testing each

one to see if it is the smallest one . For n points, this amounts to

(n) + (3) + (2) possible spheres which is not practical for even moder-

ate n .

It occurred to us that a possible method for determing what points

of the data set are most likely to be on the minimum volume sphere

would be to first find the convex hull of the data set . Faces are gen-

erated from three points, which gives only triangular faces . If more

than three points lie in a plane, then several faces will be generated

that lie in the same plane (see Figure 3 .1) .

MP
F1

FIGURE 3 .1

Only those points on the convex hull could possibly be on the. minimum

volume sphere . To reduce the number of spheres tested, the points are

sorted according to how "sharp a point" they are . As an approximation

to "sharpness", we choose to calculate the solid angle each point on

the convex hull subtends and sort the points on ascending solid angle .

These points are then examined in order by the minimum sphere algorithm .

These two algorithms will be described in the next two chapters .
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Convex Hull Algorithm

A search of the literature provides only a single algorithm on

calculation of a convex hull in more than two dimensions . (2) Since a

personal communication with one of the authors failed to provide any

information on performance of the algorithm (company private), a de-

tailed comparison of the timing of the two algorithms is not possible .

However, an analysis of the calculations required versus the size of

the data set will show that our new algorithm requires nearly an order

of magnitude less calculations than the Chand-Kapur algorithm . Both of

these algorithms will operate on n-dimensional data . The discussion

here will concern data in three dimensions only .

A . Chand-Kapur Convex Hull Algorithm

The basic principle of this procedure is that given one edge and

one of the faces containing that edge, a second face can be found by a

process which is equivalent to the rotation of a face about an edge . A

calculation is performed using the normal of the known face and each of

the points with each of the edges on the convex hull . This calculation

is of the form

a

	

b (a,b,c,d are vectors)
c . d

We will see that for large data sets, this calculation is the major .

computational effort in this algorithm .

For our purposes, we can say that this algorithm is initialized by

first finding one face on the convex hull . This gives rise to three

edges . For each edge and every point, an expression of the form A is

CHAPTER IV
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calculated which is a measure of the angle the plane forms with that

edge end each point makes with the known plane . The new plane, whose

angle is maximum with respect to the given plane, is also on the -convex

hull .

known plane

(a)

known plane

8

FIGURE 4.1

Figure 4 .1 shows that the plane formed with edge A,B and point D N

would be selected since a is a maximum for that plane . Edges ADN and

BD, are then stored for later testing .

exactly two planes, only those edges not previously stored will be

tested . This process is continued until no new edges are generated .
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Since each edge is contained in



For purposes of later comparison, we state that a dot product is

to be a single unit of calculation . This unit of calculation will be

referred to as DP . We will estimate the calculation effort of the al-

gorithm in units of DP .

let :

	

NPH = number of planes on the convex hull

NPTS = number of points in the data set

Each plane contains three edges . Since each edge is shared by exactly

two planes, then there are 2 * NPH edges to be tested with all of the

points in the data set . Each test of a point requires 2DP . This is

the calculation of X requiring two dot products and a divide . Thus, a

measure of the amount of calculation required to compute a convex hull is

NCH= 2NPH*NPi'S* 2 * DP=3*NPH* NPTS * DP

We will ignore the divide used in calculation of A at this time .

B . New Algorithm

This algorithm consists of an initialization phase and refinement

steps .

During initialization, a number of extreme points are isolated and

a tetrahedron is formed . The refinement phase takes the points outside

of the tetrahedron and forms convex caps, replacing some of the planes

but maintaining convexity . This continues until there are no more points

outside the convex polyhedron .

C .

	

Initialization

Step 1 : Find at least three non-colinear points that lie on the

convex hull .

Let {S} be a set of points in three dimensions . Let P be a plane

of the form ax + by + cz + d = 0 lying anywhere in this space .
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The normal distance from point (xl, yl,z l ) to this plane is

D - (ax1 + by1 + czl + d)/(e + b2 +
c2)1/2 . The distances to

all points on one side of the plane are positive, while the dis-

tances are negative on the opposite side (Figure 4 .2) . The choice

of sign is arbitrary . Let DS - ax1 + by1 + CZl
+ d be defined as

the signed distance from (xl, yl) z l ) to the plane F . DS is pro-

portional to the normal distance .

A

DS.+2

Plane ~--~	

DS=-3

B1

FIGURE 4.2

Using the signed distance, we see that the set of points {S 1)

whose signed distances are maximum and minimum with respect to any

plane, are on the convex hull . For this not to be true would imply

that the maximum (minimum) point lies inside some plane, Fm, on the

convex hull, and that implies that Fm contains a point at a distance

greater (less) than DS -

Since any plane can serve to find points on the convex hull,

we can minimize the amount of . calculation required by choosing

planes whose coefficients are simple . The signed distances we use

are as follows :



DS1 =X

DS2 =Y

Ds3 -z
DS4 =X+Y+ Z

DS5 =-X+Y+Z

Ds6 =X+Y- Z

DS7 =-X+Y- Z

The minima and maxima of the above 7 signed distances give rise

to up to 14 points on the convex hull . For example, consider the

two-dimensional set of points in Figure 4 .3 . Note that in two

dimensions, the planes becomes lines . The set of signed distances

for two dimensions are :

The points giving the maximum and minimum signed distances are :

Max . Min .

DSl A E

DS2 A D

DS3 A D

Ds4 F C



Y

N •

Wilow,
-X+Y=O

FIGURE 4 .3

X+Y=O

Of a possible eight points, only five different points on the

convex hull were found using the simple planes . Points B and G,

which are actually on the convex hull, were not found at this stage .

After this calculation, we have a list of points that are known to

be on the convex hull .

Returning to three dimensions, if at this point there do not

exist three non-colinear points, then the set (S) lies in the lower

dimensional space . The algorithm can then find a minimum volume

circle enclosing the set (S] . Assume that three points (A,B,C)

have been found to lie on the convex hull .

Step 2 : Form the triangle passing through the three points (A,B,C)

from Step 1 . Compute the equation of the plane containing the tri-

angle .
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Step3 : Find the point TP farthest from the plane (A,B,C) . From

Step 1 we see that TP is also on the convex hull . Construct a

tetrahedron with TP and (A,B,C) . This tetrahedron is a polyhedron

with all its vertices residing on the convex hull . Note that three

new triangles have been calculated .

TP

Face

5

Ds (TP)

FIGURE 4 .4

These triangles are all potential faces on the convex hull .

As these faces are found, the algorithm orients the points so that

the signed distance (DS) from a point outside the convex polyhedron

to its nearest face is always positive (see Figure 4 .5) .

FIGURE 4 .5

11



If the distance is positive to any face on the convex poly-

hedron, then Tp is outside the polyhedron . Conversely, if Ds (TP)

is negative for all faces, then TP is inside the convex polyhedron .

D . Refinement

At this point, we are ready for the refinement phase of the algo-

rithm . The purpose of refinement is to change the convex polyhedron to

the convex hull by incorporating those points that lie outside the con-

vex polyhedron . The input to refinement is a list (FL) of faces forming

a convex polyhedron, all of whose vertices are on the convex hull, and

a list of points on the convex bull not on the polyhedron (TL) . The

polyhedron is the tetrahedron formed in Step 3, and the list is formed

from those points calculated in Step 1 that were not used on the tetra-

hedron .

Step 4 . The following procedure is followed for each of the points

on TL .

Let the point under consideration be referred to as TP . Let

DS(a) be the signed distance from a plane to point a .

Step 4s : Find a face on FL for which DS(TP) is positive . Let this

face be denoted as PL .

Step 4b : Starting with PL, find the rest of the planes whose

signed distances to TP are also positive and move them from list

FL to a list of planes to be deleted (TBD) .

The notion of positive signed distance to TP to a face is

equivalent to stating that the face under consideration is "visible"

to a person situated at TP, looking at that face . Visibility can

also be defined by using the dot product of a vector from the face
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to TP and the normal to the face (see Figure 4 .6) . We will show

that this is identical to the signed distance .
r

Convex
Polyhedron

FIGURE 4 .6

Let ax + by + cz + d = 0 be the equation of plane P .

Let N = (a,b,c) be a normal to P . With no loss of generality,

assume this is an outward facing normal .

Let V = (XP - X, YP - Y, ZP - Z) be a vector from P to TP .

V •N = aXP + bYP + cZP - (aX + by + cZ) = IVI `I NI cos (9) where

8 is the angle between the vectors .

Note that the sign of V'N is positive for -900 < 8 < 900 . Thus,

the sign of V •N indicates if a face is visible or invisible from

any point . This is identical to testing the signed distance

DS(TP) = 8 XP + bYP + cZP + d
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from P we get

d = - (aX+bY+cZ)

DS (TP) = aXP + bYP + cZP - (aX + by + cZ) = V •N

Given a single visible face, the process of locating the remainder

of the visible faces does not involve testing all of the faces on

FL. The data structure in which the convex polyhedron is embedded

contains links which connect adjacent faces to one another . Only

the faces adjacent to visible faces will be tested . Remember that

a face on a convex polyhedron is either entirely visible or in-

visible .

Step4c : Construction of a convex cap . From Step 4b, we can find

the edges that are shared by visible and invisible faces . The ex-

treme edges are those edges shared by a visible and invisible face .

Again, if a person were situated at TP, then the extreme edges

appear as the outline of the convex polyhedron, as viewed from TP .

New faces (triangles) are now constructed using TP and each

of the extreme edges . The visible faces on TBD are now deleted and

the new faces added to the polyhedron . By construction, the poly-

hedron remains convex . Consider the example in Figure 4 .7 .



A

C

FIGURE 4 .7

FL - list of faces on convex polyhedron initially)

- ADC, ABD, ACB, BCD

TL - list of points on convex polyhedron not used in FL

- E - this is point TP

TBD- list of faces to be deleted

- ABD, BCD

FL - list of faces on convex polyhedron (final)

- ADC, ACB, AED, AED, CED, CEB

The polyhedron generated during Step 3 is the tetrahedron

ABCD .

	

It is defined by list FL . There is a single point (E) on

TL, the list of points on the convex hull to be added to the convex

polyhedron . Using E, two faces are found to be visible and are de-

leted, and four new faces added . The convex polyhedron now has six

faces . If no more points are found outside the convex polyhedron,

A

- 3 4 -



then it becomes the convex hull . If there are points remaining

outside, then the process is continued as described below .

As was stated earlier, Step 4 (e-c) is repeated for all the

points on TL . For the previous example, only one point (E) was on

that list . In most cases, many convex hull points would be on this

list .

Step5 : All of the points not on the convex hull are now tested

against all of the faces on FL, the current convex polyhedron .

These tests give the following data :

1) All points whose signed distance to all of the faces

on FL is negative are inside the polyhedron . These points

are deleted from the data set .

2) Those faces on FL for which no points have a positive

signed distance are on the convex hull and are not considered

in any further calculation .

3) If there are no points with a positive signed distance

to any face, then the convex polyhedron is the convex hull and

the algorithm terminates .

4) The points that have a maximum signed distance from each

of the remaining faces on FL are transferred to list TL . This

is the new set of points that are on the convex hull but not

yet incorporated into the convex polyhedron .

Step6 : Go to Step 4 .

This construction guarantees a unique relationship between the

number of planes and the number of points on the convex hull . At each

stage we add but a single point . A convex cap that replaces but a
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single plane adds three new planes for a net gain of two planes . For

every additional plane covered by the convex cap, two new planes are

generated since each and every adjacent pair of planes share a common

edge . The net gain of planes is zero since the plane sharing the common

edge is deleted . Thus, each new point added to the convex hull increases

the number of planes on the hull by exactly two . From the initial con-

dition that the number of planes on the hull (NPH=4) is equal to the

number of points on the hull (NPr`H=4), we get

NPH = 2'*NPPH-4 .

This algorithm generates only triangular faces . We could reduce

the number of planes without affecting the number of points on the hull

if we combined adjacent faces that lie in the same plane . This would be

highly undesirable during the construction because it would greatly com-

plicate the data structure, and hence, add computation time to the algo-

rithm . A test was made on the final convex hulls to determine if any

planes could be combined . For the data sets we used, the number of

planes that could be combined was found to be insignificant .

E . Computational Effort

From the description of the convex hull algorithm, it is clear

that the major effort is the calculation of the signed distance, D S •

It will be shown experimentally that the number of calculations of D S

is far greater than the number of faces that are calculated . We will

use this calculation as a means to compare this new algorithm with the

Chand-Kapur algorithm .

The calculation of the signed distance involves one more addition

than that of a dot product . We state, therefore, that a fair comparison
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is that calculation of two signed distances is equal to two dot pro-

ducts and a divide . That is to say, the calculation of two dot pro-

ducts and a divide for the Chand-Kapur algorithm equals calculation of

two signed distances . The measure we will use to compare will be cal-

culation of signed distances versus dot products . The details of the

performance of the algorithm are given in Chapter VII and Appendix II .



CHAPTER V

A . Minimum Volume Sphere

We should like to begin this chapter with a statement about why we

take the approach we do . We do this because in the countless dis-

cussions with our colleagues, the question was continually raised, "but

why not an iterative approach?" . Our answer follows .

In the first place, we set as a goal that we want

	

to calculate

the exact minimum volume sphere . An approximation is not accept-

able . We felt that any approximation would cause us to consider data

in the sphere sooner than is actually necessary .

Secondly, the only algorithm we found that claimed to have solved

this problem was incredibly complex and had not even been implemented :

There was no indication of speed of convergence . It was totally unclear

from the description how well it would work for all cases .

Thirdly, our algorithm works quite well . For some cases, the ex-

pected number of spheres created was four orders of magnitude greater

than the actual number created . In addition, we found the approach of

using a heuristic to speed the calculation most rewarding .

Finally, we could not derive an iterative scheme that worked as

well on the large data sets we tried .

B .

	

Definitions

A sphere is uniquely determined by four non-coplanar points . The

equation of the sphere is calculated by solving the following four equa-

tions for a,b,c,d .

{x2 + y2 + zi + axi + byi + czi + d = 0} i=l r 4
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As long as the four points are not co-planer, a unique sphere will

be generated . If we add constraints, other unique spheres can be gen-

erated .

4 Point Sphere : A sphere passing through four non-coplaner

points and is unique by construction

3 Point Sphere : A unique sphere passing through three non-

colinear points that lie on a plane passing

through the center of the sphere .

2 Point Sphere : A unique sphere passing through two distinct

points that lie on the opposite extremities

of a diameter .

These spheres are not necessarily the smallest spheres that contain the

points generating them . The sphere in Figure 5-la is a three-point

sphere but not the smallest sphere that contains those three points .

E---2-point sphere

-3-point __a
sphere

(e)

	

(b)

FIGURE 5 .1

Clearly, there is a smaller two-point sphere that contains the same

three points . The three-point sphere in Figure 5 .1b is the smallest

three-point sphere that contains these three points .

Minimum volume four-point
sphere :

	

A four-point sphere that is also the

smallest sphere containing those four

points
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Minimum volume three-point
sphere :

	

A three-point sphere that is also the

smallest sphere containing those three

points .

A two-point sphere, as defined above, is also the minimum volume

two-point sphere .

C . Conditions for the Minimum Volume Sphere

In this section, we shall show that the center of the minimum vol-

ume three (four) sphere must lie in or on the triangle (tetrahedron)

formed by the three (four) points . We shall do this by showing that if

the center does not lie in the triangle (tetrahedron), then a smaller

sphere can always be constructed that will contain those points .

Figure 5 .2a shows a circle of radius R passing through three points

whose center lies outside the triangle formed by those points . Let the

center of the circle be (0,0) .

Y

__

c
2 )

6%mbo \̀,(0,0)
FIGURE 5 .2

(b)



Rotate the coordinates about the center so that the x' axis

does not intersect the triangle . In this new coordinate system (Figure

5 .2b)
R2 6 x ,2 + y' 2

1

	

1

R2 = x' 2 + y' 22

	

2

R2 = x' 2 + y' 23

	

3

Note that all of the y' have the same sign . We assume with no loss of

generality that all the y' are positive .

	

Consider the point (0,e)

where e is an arbitrarily small but positive number . The distance from

(0,e) to each of the points is

R2

	

+ (yi ` e)2 < R2

R2 = x22 + ( y2 - e)2 < R2

R3=x32 + (y3` e)2 <R2

Thus, if we construct a circle of radius R with center (0,e) (in the

x', y' coordination system), all 3 points will lie inside the circle .

Hence, the circle of radius R is not the smallest circle that contains

the 3 points . Therefore, the smallest circle containing 3 points that

passes through those points has its center inside the triangle formed

by those 3 points . If the center lies on one of the triangle edges,

then we have a 2 point circle .



In three dimensions, the triangle becomes a tetrahedron and the

minimum volume sphere passes through four-points if the center lies in-

side that tetrahedron .

This condition that the minimum volume sphere must satisfy gives

us a method for determining if a particular sphere we have calculated

is the minimum volume one . Let [P} be a set of points in three dimen-

sions . Let S be a four-point sphere . S is the minimum volume sphere

containing (P) if

1) all points in (P) are either on or in S ;

2) the center of S is in or on the tetrahedron formed by

the four points that generated the sphere .

If S is a three-point sphere, the same conditions apply except that the

center must lie in or on the triangle formed by the three points that

generated the sphere .

For a two point sphere, the test is even simpler since the only

pair of points that need be considered for sphere generation are those

whose distance between them is a maximum .

D . Minimum Sphere Algorithm

Calculation of the minimum volume sphere consists of examining for

minimum volume all possible three and four-point spheres, along with the

two-point sphere generated from the two points farthest apart . This

amounts to (,) + ( 3) + 1 spheres why n is the number of points in {P} .

For n = 100, this amounts to a maximum of 4,082,924 spheres .

To speed the search for the minimum volume sphere, a heuristic has

been used . As was stated earlier, the first step of the calculation is

to calculate the convex hull of [P} . It is clear that only the points
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on the convex hull of (P) can be on the minimum volume sphere . The

search of even this reduced point set was computationally not feasible

since, for the data sets we examined, the number of points on the hull

ranged upwards to nearly 200 . We denote this reduced point set as

{Pch
} .

The minimum sphere is determined by a maximum of four points . In

the previous section, a condition was described that allowed us to test

any sphere for minimum volume . Our goal is to generate the spheres in

a particular order, such that the minimum volume sphere will be generated

early in the sequence . This amounts to sorting the points in {Pch} in

order of their likeliness to appear on the minimum volume sphere . We

feel that, given a convex hull, the points that "stick out" the farthest

are more likely to be on the minimum volume sphere . Our measure of the

degree to which a point sticks out is to calculate. the solid angle sub-

tended by the point . The smaller the angle, the "sharper" the point .

Note that the "sharpest" point is not necessarily on the minimum volume

sphere .

FIGARN 5 .3



Figure 5 .3 shows a two-dimensional case where the point on the,

convex hull with the smallest angle is the only one not on the minimum

circle .

Step la : Calculate the solid angle for each point Pi on the con-

vex hull . Consider a portion of the convex hull as shown in Figure

5 .4 .

FIGURE 5 .4

Let point Pi be the center of a sphere with a radius of unity .

Let the triangles APiB, APiC, BPi C, CPiD, DPiB be extended until

they intersect the sphere as shown in Figure 5 .5 .

Pi



The solid anglee is equal to the area of the portion of the sur-

face of a sphere of unit radius, center at P i , which is cut by

the polar triangles with vertex at Pi . For this example, let us

consider the single spherical triangle ABC . Let a denote the

length of side BC, b denote the length of AC, and c denote the

length of side AB . Since the radius of the sphere is unity, the

lengths of the sides of the spherical triangle are as follows :

a

	

LBP.C

b

	

LAPiC

c = LAPiB

The area of a spherical triangle with unit radius is

where E =

Area = nE170

1

	

S

	

S-a

	

S-b

	

S-C 1/2
4-TAN (tan(2 )'tan(2)'tan(2 ) tan(2 ))

S = (a+b+c)/2

0<a+b+c<3600

Step lb : Sort the points in {Pch} according to ascending solid

angle . This puts the "sharpest" points first .

Step 2a : Find the maximum square of the distance between each

pair of points in {Pch } . Generate a two-point sphere S 2 using

this maximum .

Step 2b : Test each of the points in {P ch } to determine if they

are inside S2 . If all of the points in (P ch ) are inside S2, then

S2 is the minimum volume sphere .

Step 3 : Generate all possible three and four-point spheres from

the sorted points in {Pch} . The method of generation is given by
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the incomplete PL/1-like program below . NPTS is the maximum num-

ber of points in (Pch ) .

DO L=4 TO NPTS

DO I=1 TO L-3

DO J = I+1 TO L-2

DO K = J+1 TO L-1

IF K = L-1 THEN

DO;

Call GENERATE-3-POINT-SPHERE (I,J,K) ;

IF CENTER-IS-IN-TRIANGLE (I, J, K) THEN

IF ALL-POINTS-ARE-IN-SPHERE (I, J, K) THEN

GO TO FOUND-3-POINT-SPHERE ;

END;

Call GENERATE-4-POINT-SPHERE (I,J,K,L) ;

IF CENTER-IS-IN-TETRAHEDRON (I,J,K,L) THEN

IF ALL-POINTS-ARE-IN-SPHERE (I,J,K,L) THEN

GO TO FOUND-4-POINT-SPHERE;

END ;

END ;

END;

END;

Note that the conditions for minimum volume are checked prior to testing

the points . We do this since it is a relatively short test compared to

testing if all of the points lie in a sphere . Remember that without

this condition, it is easy to generate very large spheres that can easily

contain all the points, and we want to minimize the number of tests we
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must make (see Figure 5 .6) .

sphere generated
by PA , PB, PC

Note : Center of circle is
not in the triangle
PAPBPC

.

FIGURE 5 .6

This procedure is continued until a minimum volume sphere is found .

E . Computational Effort

As was stated earlier, no existing algorithms were found to be com-

pared with the algorithm presented here . We will, instead, compare the

results with the algorithm without the use of heuristic to accelerate

the search . We do this as a means to show the effectiveness of the

heuristic .

If no heuristic is used, then any point is as likely as any other

to lie on the minimum volume sphere . Thus, we can compute the expected

number of spheres that would be created .

Expected Spheres

	

I(4) + (3) + 11 /2

If we do not first calculate the convex hull to reduce the point

set, then the expected number of spheres becomes astronomical . For ex-

ample, if n=400 points, then the expected number of spheres > 500,000,000 .
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The comparisons made using the expected spheres use {Pch I rather than

{P} . For this reason, we do not include the calculation of the convex

hull in our comparisons . It will be shown that the algorithm is highly

sensitive to the input data . The data sets used are described in

Chapter VII . A complete discussion of the results will be found in

Appendix II .



CHAFFER VI

A . HiddenLine Algorithm

When this research was initiated, a major goal was to be able to

display a simulation of one flying through a space containing a large

number of objects . In addition, it was felt essential that the view

presented not contain lines that should be hidden . Initially, we planned

to use an existing algorithm since several "fast" hidden line algorithms

had been published . (1,5,6)

To achieve some sense of motion, it was felt that a new picture

needed to be displayed at least five times a second . Whereas the pub-

lished algorithms would handle an arbitrary number of objects (none

stated that they could not), a close examination indicated that they were

in some sense optimized for one complex object . This was due to the in-

itialization required (details follow) . No examples were found containing

a large number of simple objects . Since the best example we found re-

ported a time of five seconds for a 240 edge object on a CDC 6600, (6) we

felt we needed to develop our own algorithm, optimized to fit our parti-

cular requirements . To facilitate design of a fast algorithm, the data

base was defined to contain only objects which fall into three categories :

1)

	

3D convex bodies

2)

	

3D "wire frame" bodies

3) 2D planes (convex or concave)

In addition, every pair of objects was required to be linearly separable

and non-intersecting . Non-convex objects can be constructed from con-

vex ones . Clearly, every pair of non-intersecting convex objects can
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be separated by a plane . Thus, these restrictions do not seriously

limit the type of pictures that can be constructed .

It occurred to us that in a simulation of a city, as viewed from an

airplane, most of the objects as presented on the two-dimensional screen

would not occlude one another . This fact was not taken into account in

other algorithms since they are concerned primarily with the hidden line

removal for a single (or a few) complex object(s) . As we will see, this

observation enabled us to design an algorithm that works very fast for

a data base such as we have described . It is difficult to make a fair

comparison of our algorithm to other algorithms since our algorithm is

designed to be highly sensitive to the relative positions of the objects

in the two-dimensional projection .

B .

	

Design Goals

The overriding concern was to be speed . All compromises that were

made had that point in mind . Fundamentally, the algorithm proceeds

by comparing every edge of every object to be displayed with each edge

of every plane that can potentially hide the edge to be displayed . With

n edges in the data picture, this gives a worst case of 6(n 2 ) operations to

be performed . The operation is a test for the intersection of two edges

in three space as viewed from some fixed point . All hidden line algor-

ithms have this in common .

This algorithm differs from its predecessors on one major point ;

the hidden line calculations are performed in the 2D projection plane

rather than in 3D . This is made possible by the preprocessing of the

depth information . The restriction of non-intersecting convex objects
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allows depth information to be calculated on an object basis rathern than

an edge or face basis, which amounts to a considerable saving in time .

Timing studies showed the depth calculation for our algorithm to be in-

significant .

C . Description of the Algorithm

The general philosophy was to use simple tests at the appropriate

places to . pare down the number of complex calculations . The tests must

be carefully chosen . For example, suppose 100 tests were performed and

80 of these tests indicated that a calculation was to proceed . Unless

the 100 tests involve less effort than the 20 calculations they save, it

is far more expedient to simply perform the 100 calculations and forget

the tests . We will show by experimental result that the tests we made

offer a significant saving in calculation effort .

As was stated earlier, the major calculation performed is the inter-

section of two lines in a plane . In the worst case, 3(n2) of these cal-

culations must be made where n is the number of edges . However, if the

data base contains a large number of objects, most of the intersection

calculations that we perform will not result in an intersection . They

contribute no information to the display process (save the fact that a

particular pair of lines does not intersect) . We will reduce the number

of intersection calculations that need be performed by a series of simple

tests . By experiment, we will show that for the data bases we used,

approximately 80% of the intersection calculations resulted in inter-

section .

D

	

Depth Calculation

Whereas the view of the objects continually changes, the relative

position of the objects remain fixed . It is this static information
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that we take advantage of to simplify the calculation of depth . The

separating planes are used to form an anti-symmetric square matrix .

Each of the n/2 unique elements of this matrix give the following infor-

mation about each pair of objects (A,B) :

1) A potentially hides B

2) B potentially hides A

3) A cannot hide B and B cannot hide A

The elements of this matrix are calculated once at the beginning of each

frame and their calculation will be described below .

E . Separating Planes

Basic to this hidden line algorithm is the calculation of the inter-

section of the projection of two edges belonging to a pair of faces . It

must then be determined which of the faces containing the edges are in

front so the visible segment of the partially hidden edge can be displayed .

The separating planes are used to provide this depth information .

This basic idea was used in the NASA raster display system built by

General Electric and described in a report by Schumacher . (9) We used a

modification of the separating plane technique to provide a fast calcu-

lation of depth . We felt that the restrictions imposed (linearly separ-

able objects) were worth the benefit to be derived in speed .

The data base contains, in addition to the objects, equations of

the planes that separate every pair of objects . In almost every case,

the faces of the objects can serve as separating planes . The 2D example

in Figure 6 .1 will be used throughout this section .



*eye

D

A

FIGURE 6 .i

We can think of the depth information, as computed from the viewing

position, as consisting of a static and a dynamic part . The static part

consists of the relative positions of the objects {1,2,3,4,5) with re-

spect to one another . The dynamic part is those relationships when ob-

served from a particular point in space .

Each pair of objects is separated in space by a plane (A,B,C,D) .

The equation of a plane is of the form

ax + by + cz + d = 0 .

The signed distance from any point (xl,yl)zl) in space to that plane is

D = ±
ax 1+byI+ czI+d

J a 2 + b 2 + a 2

The sign chosen is arbitrary and a matter of convention . Once the

"sign" of the plane is noted, then the determination of which side of a
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plane point (xl, yl,z l ) is situated on reduces to looking at sign (D1 )

where

D1 =ax1 + byI +czI +d

The separating plane matrix (SEPL) is a fixed part of the data base .

It is created along with the data structure for the objects . This matrix

and the equations of the separating plane coefficients are used to deter-

mine which objects can potentially hide one another .

ii

-4 A

SEPL - separating plane matrix

There are three possible entries to this matrix for object 1, plane

j .

object i is on + side of plane j

object i is on - side of plane j

object i and plane j intersect

From the eye position shown in Figure 6 .1, we determine on which

sides of the planes this position is situated, and can "mark" the SEPL

matrix accordingly .

1 +
I
+ -

2 - + - -

3 + + - -
4 - + - +
5 - - 0 -



SEPI.

The elements of column j (plane j) are marked 0 for minus and 1 for

plus if the viewing position is on the plus side of plane j . The ele-

ments of column j are marked 1 for minus and 0 for plus if the viewing

position is on the minus side of plane j . The rows can then be inter-

preted as follows :

1 .

	

1 object i is on the same side of plane j as the

viewing position

2 . 0 object i is on the opposite side of plane jfrom

the viewing position

3 . 0 object i and plane j intersect

We are now ready to compute the separating object matrix SO .

M

4

SO Matrix
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-1 - -1

1 1 -1 -1

1 I -1 -1 -1

4

1 ~ 0

A

	

B

	

C

	

D

1 0

2 1 0 0

3 0 0 0

1 0

5 0



The matrix is anti-symmetric (S0(t,m)=-SO(m,t)) . The entry SO(t,m)

is interpreted as follows :

The entry SO(t,m) is computed from the marked SEPL matrix by comparing

rows t and m of SEPL . If for column j of those rows, SEPL(m,j) = 1 and

SEPL(m,j) = 0, then object 4 and the viewing position are on the same

side of plane j and thus, potentially, hide object m . If SEPL(m,j) _

SEPL(m,j) or either of these entries = 0, then that plane contributes

no depth information for these objects . If there exist two planes for

which SEPL(m,j) = 1, SEPL(m,j) = 0 and SEPL(m,k) = 1, SEPL(m,k) = 0, then

a situation like Figure 6 .2 exists and the objects cannot hide one

another .

Viewing . Position

FIGURE 6 .2

For fast implementation purposes, SEPL is actually two single bit

matrices, SEPL1 and SEPL2, with each object occupying a row and one bit

allocated for each plane . SEPL1 is identical to SEPL except 0 = 0 ;

thus, only one bit per entry . SEPL2 is the same size as SEPL] with 1's

everywhere except a 0 where SEPL contained a 0 .
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1 . -1 object t is potentially hidden by object m

2 . 1 object t potentially hides object m

3 . 0 objects t and m cannot hide one another



For example compute S0(1,2)

R1 = 0000

R2 = 1010

S1 = 0111

S2 = 1111

M = 0111

S = (1010) n (0111)

	

0010

RR, = 0000

RR2 = 0010

RR2 > 0 => 50(2,1) = -50(1,2) = 1

This pairwise calculation is combinatorial,involving non-sequential

logic, and could be implemented easily in hardware .



A

SEPL 2

B C D

Let R, , = row t of SEPL1

Rm = row m of SEPL1

St = row -Z of SEPL2

Sm = row m of SEPL2

M k- st n Sm

S f-(R,~ XoR Rm ) n m

A

If (RRt > o) n (RRm > o) then sO(-t,m) = -so(m,-Z) = 0

SEPL1

B C

1 0 0 0 0

2 1 0 1 0

3 0 0 0

4 1 0 I

	

1

5 1

1 0 1 1 1

2 1 1

3 1 1 1 1

4 1 1 1 1

5 1 . 0 1

RR,t <- Rt n s

RR *-R nRm

	

m

If RRt > 0 then so(t,m) = -SO(m,^Z) = 1

If RRm > 0 then So(t,m) = -SO(m,t) = 1



F.Description of the Algorithm
Step 1 : Compute the SO matrix . This matrix provides the nec-

essery depth information to allow the hidden line calculations

to proceed in two dimensions . Its calculation was described in

Section E .

Step 2 : Classify the edges . A three-dimensional convex object

has the property that each face is either visible or invisible .

No part of the object can occlude itself . A face is said to be

visible if the dot product of a vector (V) from the face to the

eye position, and an outward facing normal from the plane is

positive (Figure 6 .3) .

Visible Face

v •N > 0

. eye

FIGURE 6 .3

A face is invisible if V •N <_ 0

A) BACK EDGE - a common edge between two invisible faces

B) FRONT EDGE - a common edge between two visible faces

C) EXTREME EDGE - a common edge between a visible and an

invisible face .
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Invisible Face

V •N <_0



Back edges of three-dimensional convex bodies do not enter into

the display processing in any way .

Step3 : Projection of edges . All of the front and extreme

edges are projected into two dimensions using perspective pro-

jection as described in Chapter II . From this point on, all

calculations are performed in two dimensions .

Step4 : Object windows . For each object, the maximum and mini-

mum in X and Y for the projected object is saved . These values

define a region on the screen occupied by the object . Let Wi

be the window for object 0 i .

Step5 :

	

Invisibility calculation . This step is performed once

for each object Oi to be displayed . Let Vi be any vertex on Oi .

The purpose is to calculate the number of objects that hide V, .
i

This quantity is called the invisibility I i of Vi . Object 0
.

hides Vi if, in the two-dimensional plane, V i lies inside the

projection of 0
.
. The two-dimensional projection of a convex

object is a closed convex polygon . Since we allowed concave

planes as objects, this calculation must allow for the general

case of covering a point by a closed concave figure . The

calculation is to first construct a semi-infinite ray from V i to

some point off screen . Then, if the number of intersections that

the semi-infinite ray makes with the extreme edges of O j are even,

0
1

does not hide Vi . If the number is odd, then 0
j
hides Vi (see

Figure 6 .4) .
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FiGuRE 6 .4

Several tests were made to speed up this calculation .

1 . Only objects that potentially hide O i are con-

sidered . We have this information from SO .

2 .

	

Only those objects whose window Wj covers V i are

considered .

3 . Finally, only those extreme edges that have at least

one vertex on or below the semi-infinite ray are

considered for an intersection calculation . This

reduces the number of intersection calculations that

must be made . In Figure 6 .4, only extreme edges
(a,b,c,d) are tested for intersection .

Once the invisibility of Vi is known, O i can be processed for

display .

Step6 : Hidden line processing . This step is performed for

each front and extreme edge for all objects to be displayed .

A) An edge Ei of 01, for which the invisibility of vertex

Vi is known, is selected for display . This edge is

then tested for intersection with all objects
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that can potentially hide it . In a manner similar to

the invisibility calculation, several tests are made

to pare down the number of intersection calculations

that must be made .

1 .

	

Only objects that potentially hide 0 i are con-

sidered . We have this information from SO .

2 . Only those objects O j whose window Wj intersects

E . are considered .1
3 . An intersection is computed for only those ex-

treme edges E i that lie in the rectangle Ri de-

fined by Ei .

FIGURE 6 .5

Consider the example in Figure 6 .5 . Assume 01 , 02, 03 , 04 poten-

tially hide E i . This is determined from SO . Only W2 and W3 intersect

Ei . Thus, W1 and W4 are not considered further . Of all the extreme

edges in 02 and 03, only edges Ea and Eb in 02, and edges Ec and Ed in

-62-



03 intersect Ri . Thus, only four intersection calculations are made out

of a possible 25 .

B) All intersections are placed on an intersection list

along with a flag to tell whether or not the segment

(from initial vertex .Vi to intersection) is going behind

or coming out from the object under test . After testing

against all candidate extreme edges, the intersection

list is sorted . Since the number of surfaces hiding the

initial vertex is known, each intersection can change

the invisibility by, at most, 1 . When the invisibility

becomes 0 (no planes hiding), then that segment is dis-

played .

FIGURE 6 .6

For example, assume the invisibility of Vi = 1 . The intersection

list would contain four intersections corresponding to a,b,c,d in Figure

6 .6 . The flag stored with each intersection is +1 if the segment from

Vi to the intersection is going behind a face, -1 if it is coming out
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from a face . In the example, a = -1, b,c = +1, d = -1 . After the inter-

section list is sorted, each segment is examined for display . At point

a, the invisibility is decreased by 1 to 0 so at that point the edge be-

comes visible . At the next intersection, b = 1, changing the invisibility

to 1, and the edge again becomes invisible . Continuing on, the invisi-

bility at c is increased to 2 . At d, it is decreased to 1 . Since there

are no more intersections, the invisibility of Vk is set to 1 . All

edges with vertex Vk can now be processed .

G . Computational Effort

The most time consuming calculation performed in the inner loop is

the intersection of two edges . We chose to do this using the parametric

equations of a line . Consider the edge E i with endpoints (x1,yl ) and

(x2 ,y2 ) . Then we have

x = x1 + (x2-x1 )t

y = y1 + (y2-y1 )t

For 0 <_ t <_ 1, x and y fall on the line segment (see Figure 6 .7) .

t > 0

FIGURE 6 .7



We conpute the intersection of two lines by solving for t1 and 1 2 for

each of the lines (see Figure 6 .8) .

4) Y4 )

consists

(x1,yl )

FIGURE 6 .8

x1 + (x2 - x1 )tI = x3 + (x4 - x3 )t2

yl + (Y2 - y1)t1 = Y3 + (y4 - Y3 )t2

(x3 - x1 ) ( y3 - y4) - (x3 - x4 ) ( y3 - y1 )
t1

	

(x2 - x1 ) ( y3 - y4) - (x3 - x4 ) (y2 - y1 )

(x2 - x1 ) (y3 - Y1 ) - ( x3 - x1 ) (y2 - y1 )

t2 = (x2 - x1 ) ( y3 - Y4 ) - (x3 - x4 ) (y2 - y1 )

The two lines intersect only if 0 < t 1 < 1 and 0 < t 2 < 1 . This calcu-

lation is easier than using equations of the form y = mx+b because

special cases of infinite slope do not have to be considered .

The test of intersection of an edge with a rectangular window

of a maximum of 8 comparisxn. The maximum is reached in the

case where the edge intersects the rectangular window . In any case, this

test is used to eliminate many potential intersection calculations .

H . Experimental Results

Our goal was to determine the speed of the algorithm as a function

of the complexity of the data . We have an upper bound in that the number
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of intersections to be computed is t`3(n2 ) where n is the number of edges

in the picture . Our attempt at increasing complexity was to generate a

series of pictures containing unit cubes spaced at intervals of two units .

Y

.r...~

PMAAF MMPF
The data sets contain 4,8,16,24,32 and 48 cubes . These cubes are

one unit on a side and centered on the grid as shown in Figure 6 .9 .

They are two units apart in each dimension . The location of the cubes

is as follows :

A)

	

4 cubes

	

(0,o,o), (3, 0, 0), (3,0,3), ( 0,0,3)

B) 8 cubes same as four cubes with additional set at y = 3

C) 16 cubes this is the configuration shown in Figure 6 .9

D) 24 cubes same as 16 cubes with 8 additional cubes at z = 6

E) 32 cubes same as 24 cubes with 8 additional cubes at z = 9

D) 48 cubes same as 24 cubes with an additional 24 cubes at

y = 6 .9 . This is an array of cubes, four on a

side .

In addition, two other data sets were tested . The first consisted of 16

rectangular prisms arranged in a "city-like" structure (see Figure 6 .10,

a-d) . .

	

This was used as a representation of a "typical" picture .

The second data set consisted of 32 non-intersecting cubes with random

positions relative to the lattice . The experimental results are dis-

cussed in Appendix III .
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FIGURE 6 .10, a-d

Four Views of a "City-like" Structure . Average calculation
and display time = 130 milliseconds
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CHArSSR VII

A . Convex Hull and Minimum Sphere Data

To facilitate a test of the algorithms, we chose eight types of

data on which to test the algorithms . The data consisted of random

numbers in uniform and normal distributions, as detailed below .

UNIFORM DISTRIBUTIONS - values generated from a uniform

random number generator

A) Ellipse

Uniform random numbers are generated three at a time for

x, y, and z . They are generated in the interval

-2 < x, y, z < 2

only those numbers satisfaying the following equation

are used

X 2 +Y2 +Z2 <1

B) Polyhedron

Uniform random numbers are generated on the interval

•

	

<x,y,z <2

Only those satisfying the following inequality are used

•

	

< Y < 2

•

	

< Y < 1

•

	

< Z < 1



NORMAL LL:>'1R1UU1'IONS - value for X,Y,Z generated from the

£ollowinR, :

Let R1 and R2 be two random numbers 0 < r < 1 from

a uniicrna random number generator . Two normally

distributed random numbers N1 and N2 are generated

from R1 and R2 as follows

Since each of the normal random numbers can range from

-oo to +eo, we accept only those within a limited range .

Accepting only those points that lie on the interval

-ncr < rN < no gives a set of points whose distribution

is normal with a standard deviation of no . Let XN' YN'

ZN be normal random numbers .

C) Normal Cube

-nor < XN < na

	

-no < XN < na

-ncr < YN < na

	

-na < YN < na

-ncr < ZN < na

	

-ncr < ZN < no

These data sets were generated for no = 1,2,4 . They

w1l be referred to as cube a = n (n=1,2,4) .

D) Normal Sphere

XN + YN + ZN <_ (na)2

These data were generated for no = 1,2,4 . They will

be referred to as sphere a = n (n=1,2,4) .
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Using these distributions, a number of sets of data were prepared .

500 cases were run for each of the data sets . The number of points in

each date set is given below .

Data sets were chosen to provide typical as well as worst case

tests for the calculation of the minimum sphere . The distributions

where na= 4 were felt to represent the points likely to be encountered

for arbitrary groupings of objects .

The spherically distributed data is a worst case test for the mini-

mum volume sphere algorithm because it tends to neutralize the benefit

of the heuristic . The solid angles subtended by the points on the con-

vex hull do not have the wide distribution enjoyed by the cubical or

elliptical data .

The worst case test for the convex hull consists of a set of points,

all of which lie on the convex hull . Since we can estimate the perform-

ance (9(n2 ) of the algorithm, no data sets were generated to test this

case . In addition, this case is unlikely for the types of data this

thesis is concerned with .
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CHAPTER VIII

Conclusions

We developed a graphic data structure that allows for fast access

to an arbitrarily large data base . The data is organized in two ways .

First, the objects can be clustered in successively larger groups to

facilitate fast retrieval or elimination from consideration . These

groupings represent the "natural" clustering of the objects rather than

an arbitrary partitioning of the space containing the objects . This

structure allows for easy modification of objects in the data base .

Embodied in the same structure is a facility for multiple description

of objects . This can be used as a means of retrieving only the correct

amount of detail that can be resolved on the display, assuring minimum

display processing . For example, if a distant view of a data base con-

taining a large number of objects would appear as a point, then only a

single point would be retrieved and displayed . The structure allows the

system to only "know" about objects that are both in the field of view .

and the proper amount of detail for each object .

To support this data organization, an algorithm was designed to con-

struct a minimum volume sphere around a set of points . Thespheres were

used to group and isolate objects . The algorithm proceeds by taking the

points three and four at a time and generating spheres until the smallest

is found . A heuristic is used to generate the minimum volume sphere

early in the search . The result is that the minimum volume sphere is

generated with up to seven orders of magnitude less calculations than

would be expected without the use of the heuristic .
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To implement the heuristic, an algorithm was designed to compute

the convex hull of a set of points . For the data sets we tested, this

algorithm requires about an order of magnitude less calculation than

the only other algorithm we found . For the worst case (all points in

the data set are on the convex hull), the algorithms are roughly equiva-

lent .

Finally, a new hidden line algorithm was developed . By restricting

the type of objects to linearly separable three-dimensional convex ob-

jects, two-dimensional concave planes and three-dimensional wire frame

objects, a very fast algorithm was produced . It was written in PL/l

(non-optimizing compiler) and run on a 360/91 to which an IDIIOM inter-

active display was attached . A complex picture consisting of 16 objects

(192 edges) took 130 milliseconds (see Figures 6 .10 a-d) .

Future Research

This research suggested a number of areas that should be investi-

gated further . The first is the development of a procedure to generate

groupings that are in some sense optimum . In concert with this pro-

cedure would be an algorithm to generate (without user specification)

the required multilevel descriptions .

The convex hull algorithm described in Chapter IV was actually im-

plemented in n-dimensions . Studies of the algorithmb behavior as a

function of the dimensionality of the space would be most useful .

The minimum volume sphere algorithm needs much refinement . A full

examination of an iterative approach would be valuable .

Finally and most important, a great deal of work needs to be done

on the problem of displaying simple relationships among variables . It
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is so easy to plot a graph that we quickly lose sight of the reason we

are plotting the data to begin with, namely, to convey information . We

spent an inordinate amount d time trying to develop a procedure that

would examine data and automatically choose the proper type of scaling

that would convey the greatest amount of information . Work toward this

goal would do a great deal to enhance the stature of computer graphics .
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APPENDIX I

Convex Hull Data

For the convex hull algorithm, the following quantities were re-

corded .

A . Number of original data points (NIPS) . All graphs are

plotted versus this quantity .

B . Number of points on the convex hull (NPTH) . For a given

number of points in the data set, this is the number of points

on the convex hull .

C . Number of Tests (NT) . A test is defined as the calculation

of the signed distance Dl = ax + by + cz + d . This is the major

calculation performed by the convex hull algorithm .

D . Number of Equivalent Tests (NEQ) . For the Chand-Kapur al-

gorithm we showed that the major calculation is equivalent to

two tests, as defined in C . From Chapter IV, we have that

NEQ = 3 •NPTS*NPH

where NPH = number of planes on the convex hull . NPH was not

plotted since it is proportional to NPTH . From the construction

of the convex hull, NPH = 2 .NIPH-4 .

The results are displayed in two groups . Group 1 contains cube

a = 1, cube a = 2, cube a = 4, and the polyhedron . Group 2 contains

sphere a = 1, sphere a = 2, sphere a = 4 and ellipse . The same data

is plotted for each group . The data from group 1 is plotted followed

by the data for group 2 .

Summary Graphs

Each graph contains a plot of the average value of the variable

versus the number of original data points for each of the four cases in
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the group . Each curve is uniquely labeled . An attempt to provide an

indication of how the data varied with the points in the data set is

given in the upper left corner of each graph . A straight line least

squares fit of the log10 of the last four points was made .

Let y' = mx' + b

where y' = logl0 ( y)

X' = logl0 (x)

then y = 10b xm

For example, consider the graph of NPTH for the group 1 data (cubes) .

The a = 1 cube data varies like (NETS) *29 while the a = 4 cube data

varies like (NP'TS)*2U . Note that this is the limiting trend because

the fit is made with the last four points on the curve .

Since the points in the data set are generated from a random num-

ber generator, the number of points on the convex hull is not constant

but normally distributed . It was decided that NT/NPTH and NEQ/NPPH

would provide a better measure of the amount of work performed by the

algorithm .

From these plots we note that on the data sets we tested, the new

algorithm varies like _~NPTS)' 75 while the Chand-Kapur algorithm varies

like (NPPS) . In addition, NT`NPTH is approximately an order of magnitude

smaller than NEQ/NPTH . This is true for both groups of data .

Following each of the summary sheets are histograms for the maximum

number of points for each of the cases . This plot shows the normally

distributed nature of the data as well as the range of each of the

variables .
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APPENDIX II

Minimum Volume Sphere Data

For the minimum volume sphere algorithm, the following quantities

were recorded .

A . Number of Original Data Points (NPTS) . All of the graphs

are plotted versus this quantity . Note that the algorithm

actually uses only the ordered subset of points on the convex

hull .

B .

	

Number of Tests (NT) . A test is defined as substitution

of a point (x1,y1 ,z1 ) into the equation of a sphere of radius R .

We calculate (x1 - xc ) 2 + (y1 - yd 2 + (z1 - z c ) 2 = R2 , where

(xc) yc ,zc ) is the center of the sphere .

2 < R2

	

(x1,y1,z1) inside sphere

R2 = R2

	

(x1) y1,z1) on the sphere

R2 > R2 (x1,y1,z1) outside the sphere

C . Number of Spheres Created (NSC) . This is the total number

of spheres created during the search for the minimum volume sphere .

D . Number of Spheres Tested (NST) . Only those spheres created,

whose center passes the tests defined in Chapter 5, Part C, are

tested to ascertain if all the points lie in or on the sphere .

E . Expected Spheres Created (using convex hull) (ESC) .

Using the number of points on the convex hull (NPTH), ESC =

I(NPPH + NPTTH +1 /2
.

`L 41

F . Selected Points (SP) . A tabulation was made of the position

in the ordered list of the points used to generate the minimum
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volume sphere . SP shows the distribution of the four points .

Remember that two points are always used . A third point is used

for three or four-point' spheres, while a fourth point is used

only for four-point spheres .

G . Type of Sphere Created (TSC) . A count was made of the

total number of 2,3, and 4-point spheres .

The results are displayed in two groups . Group 1 contains cube

a = 1, cube a = 2, cube a = 4, and Polyhedron . Group 2 contains sphere

a = 1, sphere a = 2, sphere a = 4, and Ellipse . The same data is

plotted for each group . The data from Group 1 is plotted, followed by

the data for Group 2 .

Summary Graphs

The results of the calculations over the 500 cases run for each

data set are, for the most part, not normally distributed . They have

an exponential type distribution . For this reason, the average value

is not very meaningful . We chose, instead, to sort the data and look

at four points for each distribution of values . They are as follows .

50%-maximum value for 50% of the data

60%-maximum value for 60% of the data

70%-maximum value for 70% of the data

80$-maximum value for 80% of the data

Each page contains four graphs, one for each of the four data sets

in the group . With a few exceptions, each graph contains four curves,

one each for 50%, 60%, 70%, and 80% . In the upper left corner of each

graph an indication of the trend of the data is given . A straight line

least squares fit of the log10 of the last four points was made .
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Let y' = mx' + b

where y' = log10( y )

X' = log 10(x)

then y = 10bxm

The value of m serves as an indication of how the data varies with NPTS .

The comparable graphs from the Group 1 and Group 2 data are plotted with

the same scales to make comparison easy .

The first four graphs in each group show how the number of tests

(NT) varies with NETS . For the cube data, note that NT/NPTH is practi-

cally a constant for all cases . As we predicted, a = 1 sphere is the

worst case . NT/NPI'H varies approximately linearly with NPTS . However,

a = 4 sphere and the ellipse are nearly constant . We note that a = 4

sphere and a = 4 cube give essentially the same result .

For the sphere a = 1 and a = 2 data, some data for NPTS = 800 is

missing . If the minimum volume sphere was not found by point number 26,

then the algorithm stopped and reported NO sphere . For example, con-

sider the graph NT for a = 1 sphere . NO sphere was found by point 26

for 40% of the cases tried .

The next five graphs in each group show how the number of spheres
4

created varies with NPTS . The most interesting comparison is ESC with

NSC . For example, ESC for ellipse 1600 points at 5 OdR is 107 while NSC

for the same graph is 1 . This means for these particular cases, the min-

imun volume sphere was found 10,000,000 faster when using the heuristic .

The next graphs show the distribution of the selected points at the

50% point . As expected, a = 1 and a = 2 sphere show the failure of the

heuristic . All other cases show that the selected points are relatively
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insensitive to NPTS . It is interesting to note that for a = 1 cube,

point 1 was on the minimum volume sphere for at least 50% of the cases

over a range of input data spanning almost three decades .

The . histograms show some typical distributions for a few selected

cases . In the main, they show the effectiveness of the heuristic .

There are two histograms for each of the selected cases . Most inter-

esting

	

is the set of histograms that show the distribution of the

four points . Without a heuristic, we would expect a uniform distri-

bution . The exponential nature of the histogram shows how effective is

the sorting on solid angle .
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APPENDIX III

Hidden LineData

For the hidden line algorithm, the following quantities were re-

corded .

A . Front Faces (FF). Total of number of faces that are potentially

visible .

B . Objects Considered (invisibility) (OC/I) . Total number of

objects that are potentially considered to compute invisibility .

C . Objects in window (invisibility) (OW/I) . Total number of

objects whose window covers the point under test .

D . Extreme Edges Considered (invisibility) (EEC/I) . Total num-

ber of extreme edges considered when determing if a face covers a

point for the invisibility calculation .

E .

	

Intersections Computed (invisibility) (ICI) . Number of

intersections computed using EEC/I .

F . Edges to be Displayed (ED) . Number of edges that are pro-

cessed for display .

Note : The remainder of the variables concern the hidden

line calculation .

G . Objects Considered (oC/HL) . Total number of objects that

can potentially hide each of the edges (ED) .

H . Objects in Window (OW/HL) . Total number of objects whose

window is intersected by the edges under test .

I . Extreme Edges Considered (EEC/HL) . Total number of edges in

the objects (OW/HL) .

J . Intersecttbrs Computed (IC/HL) . Total number of intersection,

calculations performed .

- l46 -



K . Actual Intersections (AI/HL) . Total number of intersection

calculations that resulted in an intersection .

L .

	

Time (milliseconds) .

The values of the above variables were collected for each of the

eight data sets as follows : the data set was first rotated about the

Y axis (Yaw) for 3600 with data collected at 10 intervals . Then the

data was rotated about the X axis for 360° ( Pitch) again with data

collected every degree . The viewing position was on the Z axis with

the entire data set in view .

Summary Graphs

The first 16 graphs (4 pages) contain a plot of the averages of

some of the variables for each of the data sets . The six "cube" data

sets are plotted as X's and are connected . The "city" type data is re-

ferred to as 16 rectangles, while the last data set is the 32 randomly

positioned cubes . These two points are not connected and displayed as

isolated X's .

The most interesting result is the graph of time . It shows that

for the data sets we examined, the computation time is roughly linear .

It is also noteworthy that the data set containing nearly 600 edges was

processed in less than 1/2 second .

The various ratios are also of interest . (AI/HL)/(IC/HL) is

approximately 75-80% for all cases . This means that 75-80% of the inter-

sections computed resulted in an intersection . This is the single most

important result as the intersection calculation represents the major

effort in all hidden line algorithms .
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Following the summary graphs are examples of the data collected

for several of the data sets . The most noteworthy item is the de-

pendency of the variables on the viewing position . This is not sur-

prising in an algorithm that is highly data sensitive .
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