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ABSTRACT

A graphic deta organizetion was designed that allows for fast access to
an arbitrarily large data base. The grephic data is organized by clustering
into successively larger spheres. The derived tree structure provides for
maltilevel descriptions of objects that allow for display of only the amount
of detail that can te resolved on the display, in addition to rapid deter-
mination of data in the field of view.

An élgorithm was developed to search for the minimum volume sphers en-
closing a set of points in three dimensions. A heuristic was used to speed
the search for the hinimum volume sphere gaining several orders of magnitude
improvement over a non-heuristic-zesrch.

In support of the minimum volume sphere heuristic, an algorithm to cal-
culate the convex hull of a set of points in more than two dimensions was
constructed. TFor the three-dimensional data sets tested, an order of mag-
nitude. improvement over an existing algorithm was found.

To facilitate display of a simulation of a user moving through space
containing a large number of objects, a fast hidden-line algorithm was
developed. It allows for display of linearly seperable three-dimensional
convex solids, two-dimensicnal concave planes, and three-dimensional wire
frame objects. A complex picture consisting of 16 objects (192 edges) re-

gquires only 130 milliseconds on a third generation large scale computer.

Extensive tests of the algorithms were madé using a vsriety of data sets.

The results are sumarized in a series of graphical presentations.
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CHAPTER I

A Brief Overview

This thesis is concerned with the intersctive motion display of
three-dimensional otjects on & two-dimensional screen. The system des-
eribed is one in which the user cen "fly" smoothly through s three-
dimensional space filled with a large number of objects. The view pre-
sented to the user, on the display, is & perspective projection of the
data from the current position in space.

Perspective display of 3D data is, of course, not a new idea. The
governing mathematics have been understood for hundreds of yesrs. With

a line dreswing display such as the IDIIOM,(h)

the displeay of the data
involves only simple calculations.

"If the time required to generate a picture were not a consideration,
then our goal could be reached by using well-known techniques. For each
position along the user path for which a display is required, each of
the objJects in the data base must be tested to determine if they are
either in or intersected by the pyramid of vision. This is the first
of the problem areas we encounter.

If the data base is very large, this initial testing becomes the
most time consuming calculation, particularly when the data set resides
partially on disk. It becomes clesr that some structuring of the data
base is required to accelerste this process. The structuring becomes
important when the data "visible" to the user is only a fraction of the
data base. We need to minimize the number of tests made on data outside

the pyresmid of vision. We shall refer to this process sz the data re-

trieval problem end the required structuring as the data organization.
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A great deal of work has been done on "graphic dsta structures".(ll)

These dafa structures are designed to facilitate picture construction,
manipulation and recognition. We found no reported work dealing with a
dats structure designed to facilitate graphle data retrieval. In
Chapter II, we report on a new type of structuring designed to solve
this problem. It encloses the objects into nested spheres. An algorithm .
to generate the nested spheres is presented in Chapters IV and V.
Another problem area is in the checice of a hidden line algorithm.
The fastest reported times are not adequate for our needs. Chapter VI

presents & new algorithm that gives the fastest times for the type of

objects in our data base.



CHAFTER II

Data Organizatidn Y

FIGURE 2.1

The objects in the daté tase are defined on a three-dimensiocnal
Cartesian coordinate system with center (0,0,0) and no limit on X, Y, or
Z, as shown in Figure 2.1. There is no restriction on size or location
of the objects. Further, the user csn position him(her)self at any
point in spsce and view in any direction. The only restriction is em-
bodied in the addregsability of the display itself. Figure_a.l shows
the special case where the viewing position is on the Z-axis.

All digitel displays bhave finite addressability that typically range
from 512 x 512 to 16384 x 16384 rester units. The IDIIOM display we use
has an addresssbility of 1024 x 1024 raster units. The actual resolution
is somewhat less in that s square drawn, connecting four adjacent

addregssatle positions, appears 8s & single bright point.
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It is because of this finite addressability thet certain simplifi-
cations can be made. We recognize that objects far away from the view-
ing position (as well as small objects) will sppear smell in the plane
of projéction. This is due to the fact that in perspective projecficn
the X snd Y dimensions are inversely proportionsl to the distance from
the eye to the object. For example, if it can be determined that a com-
plex oblect in the field of view will occupy an ares of one square ras-
ter unit, then it is a waste of time to both retrieve this object, as
well as perform the time consuming hidden line caleulastions.

A Design Goals

The dats orgenization has two design goals. First, it must provide
a fast test that can give an upper bound on the projected size of the
object. Secondly, a fast test should be available to eliminate large
amouﬁts of data outside the pyramid of vision without resorting to
examination of sach object. The solution to the first problem requires
some information to be stored with each object which can be used as a
measure of its size. The second problem indicates that some sort of
partitioning of the space 1s required. At this poilnt, we will discuss
several approaches used in two dimensions and show how they can be ex-
tended to a three-dimensional data base.

B. Two-Dimensional Dsta Selection

The prcblems encountered in the display of two-dimensional dete are
essentially the same as for the three-dimensional case. Rather then fly
through & three-dimensional world, we move our "window" {as opposed to
a8 pyramid of vision) across the two-dimensional field. By chenging the
gize of this window, we cen, in effect, zoom cloger for a more detailed

view or move tack for a broader view. When we are close in, most
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of the data will te outside of the window. We needra scheme for parti-
tioning the space to -quickly eliminate large portions of the data. Con-
versely, when ocur window is large, relative to the entire two-dimensional
field, much of the data will fall below resolvability end should not be
retrieved for display.

The first spprcoach we consider is to divide the region into sue-
cessively smaller regions In & manner similar to that used by Warnock.(lo)
The entire two-dimensional fileld is extended (if necessery) to form s
square. This square is divided Into four equal squares. Each of thg
squares containing any date can te subdivided further (see Figgre 2.2).
The large squeres are numtered as shown. The four smsller squares with-
in are numbered in a8 similar manner. For example, the squsre contsining
Cbject B woﬁld be 3.1 while the square containing Objects E would be
labeled 3.3.3.1.

Data is assigned to the smallest squere(s) region(s) that contain
it. Thus, Object B telongs to 3.1 while Okject D belongs to 3.1, 3.2.3,

3.&, 3.3.2. Regions sre subdivided only when necessary.
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This subdivision can te lmplemented as a tree with four-way branch-
ing at each node. A tree for the example in Figure 2.2 is shown in

Figure 2.3.

level O

level 1

level 2

level 3

level 4

FIGURE 2.3

-

The letters of the nodes represent pointers to the actual object
data where ¢ represents an empty region. At esch level, the area of 2
region 1s one-fourth the area of the region that contasins it. The
length of an edge of s region at level n is 2™ times the length of the
edge of the region st level O. For example, let the window contain the
entire two-dimensional field. Tet the addressability be 1024 raster
units. Then a square at level 10 would be one raster unit on a side,
and no further levels need be considered. This follows from the obser-
vation that an edge of region i is twice the length of an edge at level
i+ 1.

The display of data is accomplished by first determing the data
in the display window and then retrieving that data from the data btase

and displaying it. For exawmple, suppose the window were entirely within



region 1. It would then not be necessary to examine the data in regions
2, 3, or 4. This allows quick elimination of potentially large amounts
of data.

Small non-resolvable objects can be eliminated by determining the
size of the enclosing sguare relative to the size of the window. Given
a window size, it is easy to determine the smallest size square thst
need be considered.

With all of its advantages, this scheme does have several drawbacks.
Consider Object D. With the particular subdivision shown, it belongs
to four regions at two different levels. This complicates the problem
of updating the data base. Suppose we move Objiect D so that it is now
contained entirely in region 3.1. The three remasining peinters from
ﬁhe structure to the data will have to be deleted. To do this requires
either the use of back pointers from the data or & search through the
entire data base for all references to the object in question. Neither
of these apprcaches is desirable.

From Figure 2.2 we notice that Object D is small enough to be con-
tained in a square the size of the one containing Object E. However,
since the D belongs to larger squares, 1t will be considered for display
even when the window size indicates it would be below resolvabllity.

The only sclution would be to subdivide its enclbsing regions which sdds
unnecessary levels to the tree structure In the data base.

The second approach is to associate the regions directly with the
data. TFor this approasch, a region is a rectangle that encloses an

object or group of oblects.
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FIGURE 2.4

figure 2.4 shows the ééme data only using encloging rectengles.
Note the rectangle enclosing Objects B, C, D, F. By clustering groups
of okbjects together, we can foru the necessary nierarchicsl structure.
Without this clustering cf objects, a test must te performed for each
object to determine its position relative to the window. The clustering
serves the same function as the subdivision into successively smaller
squares. |

For the simple example in Figure 2.%, the derived tree takes on

the structure as shown in Figure 2.5.



FIGURE 2.5

The cholce of how to cluster the data is, of course, somewhat ar-
bitrary. In Figure 2.5, & particularly simple choice was made. What
is Important to note is that each branch is associated directly with
data and not with space. With the exception of a cleverly designed

pathological case, the tree structure used here will always be simpler
than the one used with the subdivided squares.

Only when the window intersects the rectasngle associated with the
root of the tree, does the data retrieval take place. In a similar man-
ner, only when the window intersects the rectangle associated with cobjects
(B, C, D, F), does the system even "know" that these objects exist.
Clearly, the efficiency of the dats retrieval is a direct function of
the nesting structure of the rectangles. Strategies for optimum struc-
tures for a glven data base fall ouiside the scope of this research.

The clustering is performed by the user when the data base is set up.

The elimination of non-resolvable data works in the same manner sas
described previously. In this casge, the ratioc of the rectangle to the
window is exsmined to determine if it is small enough to be considered
non-resolvable. Here we cannct establish a cutoff based upon the depth

of the tree, but must search each branch of the tree until the limit of
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resolvebility for the rectangles encountered is reached. We examine
the ratio of the longest edge of the rectangle to an edge of the window.
This scheme_has some advaniages over the subdivided squares. We
first notice that the size of the rectangle more truly represents the
size of the enclosed data than doeé the square. Thig is important since
.the subsequent examination of the data depends on the relative size of
the region that encloses it. A second advantage is that updating of the
data base is simplified. Data and ite regions cen be moved without
affecting the remalning structure. Alsc, the associated tree is gen-
erally smaller, but not as regular.

C. A Three-Dimensional Organization

In our exsmination of alternative organizations, extensions of the
two schemes described above were tried. They are described in the
following two sections.

D. Physical Partitioning of the Space

The successive subdivision of the sguare becomes the successive

" subdivision of a cube. At each subdivision, eight new cubes are formed.
The tree that is formed will take the same shape as the one shown in
Figure 2.3, except there are eight branches at each node. The principle
for retrieval and display of data are ezsentially the same with two com~
plications due to the three-dimensional data base.

With two-dimensional data, determination of resolvability of the
data within a region amounts to comparing the ratio of the edge of the
region in guestion to an edge of the viewing window. This gives & mea-
sure of the size of the region and, hence, an upper bound on the size
of the data contained within the region.

In three dimensions, the effective size of the region depends not

- 10 -



only on the actual size of the region, but on the diétance from the
viewing position to the region. This is due to the perspective pro-
Jection used. The apparent size of a region is inversely proportional

to the distance from the viewing position‘to thé cube (see Pigure 2.6).

Y

!

vision _ ,EELX’Z)

—

H(X5, Yp)

projection
Plane
(0,0,-2) X
=1 ' - Iy _
Xp = 5 FIGURE 2.6 Xp = 24 (£ <0)

The exemple in Figure 2.6 shows the viewing position lined up along
the Z axis with the plane of projection in the X - ¥ plane.

The second complication is the determination of position of the
cube relstive to the pyramid of vision. Since the user is not restricted
to positioﬁ and orisntation, the cube can likewise assume any orientation
relative to the plenes bounding the pyramid of vision. This reguirés
that the intersection of the cube with the pyramid of vision on all four
bounding planes be computed. This requires that esch of the elght ver-
tices of the cube be tested against each plsne that form the pyresmid of

vigsion to determine on what side of the plane each point lles.
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Only when all eight points lie oﬁ the ocutside of any of the four pianes,
can the objects contained inside the cube not be consldered for display.
This amounts to 32 calculations of the form y = ax + by + ¢z + 4. If
the pfojected cube covers an area large enough to be considered resolv-
able, then all data connected with that cube will be processed for dis-
play. Note that objects can be attached directly to a reglon that is to
be further subdivided. These directly attached objects are processed in
addition to subdivided regilons (if any). Since a regicn may intersect
with thé pyramid of vigsion, each of the potential eight subregions must
be considered to determine their potential visibility. However, if a
region is found to be totally within the pyramid of vision, then so
will its subregions and, of course, they need not be tested for visi-
bility. These subregions must be checked for resolvability. |

Thiz scheme has essentially the same drawbacks as its two-dimen-
sional equivalent, only compounded by extra calculation due to the third
dimension.

E. Logical Partitioning of the Data

The extension of the similar two-dimensional dete organizstion re-
quires that each object {or group of objects) be enclosed in a rectangu-
‘ler prism with sides equal to the maximum in x, y, z of the objects(s).
The tree generated by the clustering does not become more complicated
due to the extension to three dimensions. This is because the branching
is based on the isolation of data in thg gpace rather than on &n isolation
of volumes of space containing data.

This scheme has a number of advantages over physical partitioning.
First, there are more likely to be fewer regions tlet need be tested

against the pyrsmid of vision for visibility. Secondly, since the



region is more likely to gilve a better estimate of fhe gsize of the
object(s), a more accurate estimate of regolvability cen be made. In
addition, updating of the tree is easier, as has been described for the
two~dimensional case.

However, there is still the problem of testing for the visibility
of a region. Each region still requires az test of eight vertices
against esch of the bounding‘planes of the pyramid of vision. If the
number of regions is large, the cost of the tests may be prohibitive.
This is particularly frustrating when, for an "sverasge" picture, most
of the data (end hence the regions) will be within the pyramid of vision.
The results of virtually all the tests will be that the object is en-
tirely in or outside of the pyramid of vision. It is a fairly ﬁnusual
picture where most of the objects intersect the pyramid of vision.

There is also the determination of the area of the display screen
occupied bty the region. Both the cube snd the rectangulsr prism have
eight points on a two-dimensional screen. Figure 2.7 shows a typical

case. The area covered by the region 1s determined

Pigure 2.7

-13 -



by first computing the minims and maxima of esch of the eight projected
points. The square generated from these minima and maxima gives & mea-
sure of the projected size of the data cdntainéd in the region. This
calculation must be performed for every region in or intersecting the
pyramid of vision.

In the next section, we will deseribe a modificstion of the Logil-
cal Partitioning Scheme that addresses these problems.

F. Partitioning with Spheres

Based upon our studies of the previously described dsta organi-
zations, we set ourselves a number of goals that this new orgenization
should attain. The first goal is that the testing of a region for
visibility should be very fast. A single test per region per plane 1s
desirable. The attaching of the region to the object(s) should be the
best solution to the problem of updating of the data base. In addition,
this gives a better estimate of object size to be used in the test for
resolvaebility. We feel that the binary decision of processing or not
processing of the dats, depending upon the size of the region on the
projection plane, is too severe a test.

Consider the complex object in Figure 2.8a. It is composed of 11
simple objects with a reasonable amount of detail. If the regilon con-
taining this complex object occupied a total area on the display of less
than two square raster units, then only a single point need be considered
for display since no detail could be shown. On the other hand, if this
complex object occupled 25% of the display, then the entire data should
be processed and displayed. It is clear that the more acecurately we
know the size of the object, the more likely it will be that we will

not process an object that cannot be resolved anywey.
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1l objJects 1 object

136 edges _ 9 faces
59 faces
(a) (v}
FIGURE 2.8

There is a problem when the complex cbject oceupies an ares too
small for all the detail but too large for a single dot. This will
oceur when.the user is moving through a space containing these complex
objects. When the objects are far away, they appear as points. As the
user's position changes, the objects grow larger slowly. It seems
reasonable to add detsil only as needed. The object in Figure 2.8b
could be used as a representation of the complex object 2.8a until the
detail in the complex object could be resolved. This would save & grest
deal of display processing time.

Our goal for this requirement 1s multilevel deseriptions of an
object corresponding to the amount of detzil that can be resolved.

It should be possible to have an arbitrary number of descriptions of the
same object_available for display. The proper one is to be selected
sccording to a user set threshold based on the area of the screen occu-

pied by the object.
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. A New Organization

. The regions that enclose the data are sﬁheres. A sphere has some
properties thatmve us close to the goals we have set. Tﬁe test for
visibility is very fast. We substitute the center of the sphere (X,Y,Z)
into each of the bounding planeé of the pyramid of vision

(ax + by + ¢z + d). The normsl distance from (X, ¥, Z,} to the plane is

ax, + byl + cz, + d
(@12 2 DI

D=t

Let the sphere have radius R. We set up the parameters of the plane
equations so that D is positive for a point on the inside of the pyra-

mid while a negative distance is outside (see Figure 2.9). From this

point
T' inside plane A

>O‘

/ D<O

plane A l‘goint outside plane A

>

FIGURE 2.9

single test (as opposed to 8 for the rectangular prism), the following

three conditions can qrise:
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D + R <0 for any plane. The sphere is outside of the
pyramid of vislon snd need not be considered for displeay.

D-R2 0 for all four planes. The sphere is completely

. inside the pyramid. There are no edges from any of the

objects contained in the sphere that intersect the
pyramid of vision:

The sphere intersects the pyramid. This mesns that it

is possible that only & portion of an object may be
visible. If this is the case, then the object must be
clipped; 1.e., the determination of intersection of edges

with the screen (see Figure 2.10).

[11]

(=1
m
[0]
W
(ﬁl
1

FIGURE 2.10

The clipping of the edges is timé consuming and dome only for those
spheres that fall into case 3 above. The clipping can be performed in
three~dimensions prior to projection, or after projeétion in two- |
Bimensions.. Clipping in two dimensions involves less calculations than
when performed in three dimensions. There is only one case where clip-
ping must be perfermed in three dimensions. This case occurse when an
edge has one endpoint in front of the viewing position and one endpoint

behind (Figure 2.11).
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FIGURE 2.11

In addition, care must be tzken in the
projectlion of points with 22 near -f. This is hecause Xp and Yp {Figure
2.6) are inversely proportional to Z-f.

If we knoﬁ that the object is entirely in front of the eye position,
then two-dimensional clipping can be wed. This can bte deterauined Ly cal-
culating the distance from the center of each sphere to the eye positicn.
If this distance is greater than the radius of the sphere, then two-
dimensional clipping can be used.

The spheres also give us 2 fast measure of size. This measure is
used to decide when detail is to be added. These are the cases when
the sphere’s projected sizé changes from a point through one or more
small sizes according to the detail present. The data structure must
contain user set thresholds that indicate at what projec%ed size more

detail is to te added.
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One advantage of using spherical reglons is that their projection
is the same regardless of orientation. The projected area is directly
proportional to the radius and inversely proportional to the distance
from the center of the sphere to the viewing positiom.

From the equations in Figure 2.6, we note that size of the pro-

f.r
f-z

actually compute the projected area, we can set our thresgholds in terms

Jeéted radiué R is Rp é and the projected ares is uRi. Rather than
of the projected radius instead. This clearly gives the same result.
Thus, the single ceslculstion of Rp can be used as an indication of when
a new description of the object in question is required.

An alternate scheme 1s to use the distance to the sphere as an in-
dicator. This is an equivalent test since the size of the sphere is in-
vergely proportional to Z. We can assoeciste a critiesl distance with
each sphere. When this distance is reasched, more (or less) detail is
added (deleted).

To accomplish all of this deteill addition, we propose s structure
we call the Choose One Consider All or COCA tree (Figure 2.12). This
differs from the other tree structures described earlier in that slter-
nate levels have different meanings.

The data definition nodes are located at a "consider all" level and
are held on linked lists. They contain pointers to real deta or a pointer
to & datea description node. Esch of the nodes is considered independently
~for display. For nodes that point directly to deta, their enclosing
spheres are clipped to detefmine vigibility conditions. If the deta is

in the field of view, then it is retrieved and displayed.
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Data Definition Congider sll

WORLD

Choose one

Data Description

Consider all

Data
Definition

Choose one

Data Description I

Consider all

Data Definition

FIGURE 2.12

Those nodes not pointing directly to reai data, point to a data des-
cription node. These nodes lie on a "choose cne" level, and also are
held on linked lists. Each list pointed to by a data definition node
contains different descriptions of the same object. These descriptions
are ordered with the least detailed description first and the most de-

tailed last. It 1s the gize of the projected radius of the sphere con-
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taining the datea that determines which of the datz descriptions is used.
Iet us consider the tree structure in Figure 2.12.

Node A is the top of the tree and by definition is the description
of the world. We have three posslble degeriptions. The first and least
detailed is a single object B. The second detailed deseription consists
of two objects C and D, both of which are to be digplayed if the pre-set
threshold so indicates. The most detailed description consists of two
objects, E and F. If description three is chosen, then object F wiil be
tested for visibility and displayed. Since bbject E points to a data
description node, the sphere containing object E will be used fto choose
either object 4 or 5. Depending upon this test, either object G, or
objects H and I, will be displayed.

It is important to remember that these thresholds associsted with
the data description nodes are set by the user. These values are deter-
mined by looking at the object on the display and deciding a2t what pro-
Jected size more detail i1s necessary.

H. Summsry

A new method of Organiiing data has been described. It has the ad--
vantage of gllowing multiple descriptions of objects in order to retrieve
only resolvable data. - It provides for a fast test to determine both
visibility and level of detail required.

This organization also provides the ability to "fine tune” the dis-
play by adjustment of display thresholds. It provides, in 2 single
structure, a method for viewing a data base containing a large number .
of objects (e.g., a city from far awsy) as well as a detailed picture

of a single entity.
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CHAFTER III

On Caleulation of Spheres

In the previous chapter, We have seen the need for enclosing ob-
Jjects in spheres. The solution te this problem proved to be one of the
most Interesting aspects of our research. The initial approach taken
was to find an approximate sphere by using the centroid of the vertices
of the data to be enclosed, and generating the sphere whose radius is
the distance from the centrocid to the peint farthest away. An argument
can be made for the case that the mininum sphere is nct necessary, but
that an approximate sphere would suffice. This proved satisfactory only
when the points were uniformly distributed in S, ¥, and Z, which is not
typical for the types of objects likely to be encountered. In fact,
most of the schemes we examined that attempted to use the boints to find
a center and construct a sphere generated spheres too large for some
fairly typical data.

The most obvious approsch is some sort of iterative scheme that
starts with a large enclosing sphere, eventually reaching the minimum
sphere. An algorithm was reported that claimed to have scolved this

(7,3)

problem. Tt was stated that given n points, the minimum volume

sphere would be found prior to generating a maximum of (E) . (n) gpheres.

2
In fact, it was claimed that far fewer spheres would be generated, but
offered only a éingle two-dimensional example to back up this assertion.
The algorithm was not implemented in three dimensions.(a) The al-
gorithm is quite complex (20 special cases) with no indication of speed

of convergence as a function of the input dsta. For these reasons, no

comparison will be made of this algorithm with the algorithm we develop.
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The algorithm described here is conceptually very simple. Take
the points 2, 3, and 4 at a time and construct spheres, testing each
one to see if it is the smallest one. For n points, this smounts to

n n n
M ¥ 3) *(2

ate n.

possible spheres which is not practical for even moder-

"It occurred to us thet s possible method for determing what points
of the data set are most likely to be on the minimum volume sphere
would be to first find the convex hull of the data set. Faces are gen-
erated from three peints, which gives only trisngular faces. If more
then three points lie in e plane, then several faces will be generated

that lie in the same plane (see Figure 3.1).

FIGURE 3.1

- Only those points on the convex hull could possibly be on the minimum
volume sphere. To reduce the number of spheres tested, the points are
sorted aceording to how "sharp & point” they are. As an epproximastion
to "sherpness", we choose to calculaste the solid angle each point on
the‘convex hull subtends and sort the points on ascending solid angle.
These points are then examined in order by the minimum sphere algorithm.

These two slgorithms will be described in the next two chapters.
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CHAPTER 1V

Convex Hull Algorithm

A search of the literature provides only a single algorithm on

(2)

calculation of a convex hull in more than two dimensions. Since a
personal communicstion with one of the authors failed to provide any
information on performance of the algorithm (company private), & de-
tailed comparison of the timing of the two algorithms is not possible.
However, an analysis of the calculations required versus the size of
the data set will show that our new algorithm requires nearly asn order
of magnitude less calculations than the Chand-Kapur algorithm. Both of
these algorithms will operate on n-dimensionasl data. The discussion

here will concern data in three dimensions only.

A, Chand-Kapur Convex Hull Algorithm

The basic principle of this procedure is that given one edge and
one of the faces containing thet edge, a second face can be found by a
process which is equivalent to the rotation of a face about an edge. A
calculation is performed using the normal of the known face and each of
the points with each of the edges on the convex hull. This calculation
is of the form

- i
A o= 22— (a,b,ec,qd are vectors)

We will see that for large dats sets, this calculstion is the major
computational effort in this algorithm.

For our purposes, Wwe can say that this slgorithm is initialiéed by
first finding one face on the convex hull. This gives rise to three

edges. For each edge and every point, an expression of the form A is
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calculated vhich is a messure of the angle the plane forms with that
edge and each point makes with the known plane. The new plane, whose
engle is maximum with respect to the given plene, 1is also on the convex
hull.

known plane B

(2

known plane

Figure 4.1 shows that the rlane formed with edge A,B and point Dy
would be selected since 8 is & maximum for that plane. Edges ADN and
BDN are then stored for later testing. Since each edge is contained in
exactly two planes, only those edges not previously stored will be

tested. This process is continued until no new edges are generated.
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For purposes of later comparison, we state that a dot produect is
to be a single unit of calculation. This unit of calculation will be
referred to as DP. We will estimate the calculation effort of the al-
gorithm in units of DP.

let: NFH = number of plenes on the convex huli

NPIS = number of points in the data set
Each pleane contains three edges. Since each edge is shared by exactly
two planes, then there are % * NPH edges to be tested with all of the
points in the data set. EXach test of a point requires 2DP. This is
the caleculation of A requiring two dot products and a divide. Thus, a

measure of the amount of caleculation required to compute a convex hull is

NCH = % NPH * NPT3 * 2 ¥ DP = 3 * NPH * NPIS * DP

We will ignore the divide used in calculation of A at this time.

B. New Algorithm

This algorithm consists of sn initialization phase and refinement
.steps.

During initislization, a number of extreme points are isolated and
a tetrahedron is formed. The refinement phase takes the points outside
of the tetrahedron and forms convex caps, replacing some of the planes
but maintaining convexity. This continues until there are no more points
outside the convex polyhedron.

cC. Initialization

Step 1: Find at least three non-colinear points that 1lle on the
convex hull.
Iet {S} be a set of points in three dimensions. Iet P be a plane

of the form ax + by + cz + d = O lying anywhere in this space.
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The normal distance from point (xl,yl,zl) to this plane is

2 +,c2 1/2. The distances to

D= (axl + by, + ez, + d)/(a2 + Vb
all points on one side of the plane are positilve, whiie the dis-
tences are negative on the opposite side (Figure 4.2). The cholce
of sign is earbitrary. Let Db - 8x, + byl + Czl + @ be defined as
the signed distance from (xl,yl,zl) to the plane P. Dy is pro-

portional to the normel distance.

FIGURE 4.2

Using the signed distance, we see that the set of points [Sl}
whose signed distances are meximum and minimum with respect to any
plane, are on the convex hull. For this not to be true would imply
that the maximum (minimum) point lies inside some plane, Pm, on the
convex hull, and thet implies that Pm conteins é point at‘a distence
greater (less) than Dy

Since any plane can serve to find points on the convex huil,
we cen minimize the amount of calculation required by chobsing

planes whose coefficients are simple. The signed distances we use

are as follows:
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81
DS2 =Y
DSB =Z

Do = X +Y + Z
S5

DS6=X+‘Y"Z
DS7=-X.+Y-Z

The minima and mexima of the above T signed distances give rise

to up to 14 points on the convex hull.

For example, consider the

two-dimensional set of points in Figure %.3. Note that in two

dimensions, the planes becomes lines.

for two dimenslons are:

DSl =X
DSQ =Y
D53 =X+Y
DS“- =-X+ Y

The set of signed distances

The points glving the maximum and minimum signed distances are:

- 08 -

Max. Min.
DSl A E
DSE A D
‘DSB A D
Dsh F C



. s » :
=X+Y=0 \\

FIGURE 4,3

| Of a possible eight points, only five different points on the
convex hull were found using the simple planes. Points B and G,
which are sctually on the convex hull, were not found at this stage.
After this calculation, we have a list of points that are known to
be on the convex hull.

Returning to three dimenslons, if at this point there do not
exist three non-colinear points, then the set {S} lies in the lower
dimensional space. The algorithm can then find & mipnimum volume
circle enclosing the set {S}. Assume that three points (4,B,C) -
have been found to lie on the convex hull.

Step 2: Form the trisngle passing through the three points (4,B,C)
from Step 1. Compute the equation of the plane containing the tri-

angle.
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Step 3: Find the point TP farthest from the plane (4,B,C). From
Step 1 we see that TP is also on the convex hull. Construct s
tetrahedron with TP and (4,B,C). This tetrahedron is a polyhedron
Wwith all its vertices residing on the convex hull. Note that three

new triangles have been calculated.

TP

FIGURE 4.4

These trlangles are all potential faces on the convex hull.
As these faces are found, the algorithm orients the points so that

the signed distance (DS)~from a polnt outside the convex polyhedron

to its nearest face is always positive (see Figure k.5),

Face | DS(TP)
1 "
2 +
3 -
4 -
5 -




If the distance is positive to any face oﬁ the convex poly-
hedron, then Tp is outside the polyhedron. Conversely, if DS(TP)
is negetive for all faces, then TP is inside the convex polyhedron.
Refinement

At this point, we ere ready for the refinement phase of the algo-

rithm. The purpose of refinement is to change the convex polyhedron to

the convex hull by incorporsting those points that lie outside the con-

vex polyhedron. The input to refinement is a list (FL) of faces forming

a convex polyhedron, all of whose vertices are on the convex hull, and

& list of points on the convex hull not on the polyhedron (TL). The

polyhedron is the tetrshedron formed in Step 3, and the list is formed

from those points calculated in Step 1 that were not used on the tetra-

hedron.

Step k: The following procedure is followed for each of the points
on TL.
| Let the point under consideration be referred to as TP. ILet
Ds(a) be the signed distance from a plane to point a.
Step ka: Find a face on FL for which'Ds(TP) is positive. Let this
face be denoted as FL. |
Step Ub: Starting with PL, find the rest of the planes whose
signed distances to TP are also positive and move them from list
FL to a list of planes to be deleted (TED).

The notion of positive signed distance to TP to & face is
equivalent to stating that the face under comsiderstion is "visible"
to a person situated at TP, looking at that face. Visibility can

also be defined by using the dot product of a vector from the face
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to TP and the normal to the face (see Figure 4.6).

that this is identical to the signed distance.
']

TP

N2

Convex
Polyhedron

N3
FIGURE 4.6

We will show

Tet ax + by + ¢z + @ = O be the equation of plane P.

4

Let N = (a,b,c) be a normal to P. With no loss of generality,

assume this 1is an outward facing normal.

let V = (Xp - X, YP - Y, ZP - Z) be a vector from P
', V-N.= aXP + bYP + cZP - (&X + bY + cZ) = |V]'|N]

8 1s the angle between the vectors.

to TP.

cos (8) where

Note that the sign of VN is positive for -90°.< 9 < 90°, Thus,

the sign of V'N indicates if a face is visible or invisible from

any point. This is identical fo testing the signed

DS(TP) =38XP + bYP + ¢ZP + d
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from P we get
d = - (&X + bY + ¢Z)
Dy(TP) = aXP + bYP + cZP - (8X + bY + cZ) = V.N
Given a single visible face, the process of locating the remainder
of the visible faces does not involve testing all of the faces on
FL. The data structure in which the convex polyhédron 1s embedded
containg links which connect adjacent faceé to one another. Only
the faces adjacent to visitble faces will bte testéd. Remember that
e face on a convex polyhedron is either entirely visible or in-
visible.
Step bke: Construction of a convex cap. From Step 4b, we can find
the edges that are shared by visible and invisible faces. The ex-
treme edges sre those edges shared by a visible and invisible face.
Again, if a person were situated at TP, then the extreme edges
appear as the outline of the convex polyhedron, as viewed from TP.
New faces (triangles) are now constructed using TP and each
of the extreme edges. The visible faces on TBD are now deleted and
the new faces added to the polyhedron. By construction, the poly-

hedron remains convex. Consider the example in Figure 4.7.
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FIGURE 4.7

FL - list of faces on convex polyhedron {initially)

- ADC, ABD, ACB, BCD |
TL -~ list of points on convex polyhedron not used in FL

" - E - this is point TP

TBD- list of faces to ke deleted

- ABD, BCD
FL - list of faces on convex polyhedron (final)

- ADC, ACB, AED, AED, CED, CEB

The polyhedron genersted during Step 3 is the tetrahedron
ABCD. It is defined by list FL. There is a single point (E) on
TL, the list of points on the convex hull to be added to the convex
polyhedron. Using E, two faces zre found to be visible and ars de-~

leted, and four new faces added. The convex polyhedron now has six

faces. If no more points are found cutside the convex polyhedron,
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then it becomes the convex hull. If there are polnts remaining
outside, then the process 1s continued as described below.

As was stated esrlier, Step 4 (a-c) is repeated for all the
points on TL. For the previous exsmple, only one point (E) was on
that 1ist. In most cases, many convex hull points would be on this
list.

Step 5: All of the points not on the convex hull are now tested
against all of the faces on FL, the current convex polyhedron. .

These tests give the following data:

1) All points whose signed distance to all of the faces

on FL: is negative are inside the polyhedron. These points

are deleted from the data set.

2) Those faces on FL for which no points bave a positive

signed distance are on the convex hull and are not considered

in eny further calculation.

3) If there are no points with a positive signed distance

to any face, then the convex polyhedron is the convex hull and

the algorithm terminates.

4) The points that have a maximum signed distance from each

of the remaining feces on FL are transferred to list TL. This

ig the new set of points that are on the convex hull but not
yet incorporated into the convex polyhedron.
Step 6: Go to Step L.
This constructlon guarantees a.unique relstionship between the
number of planes and the number of points on the convex hull. At each

stage we add but a single point. A convex cap that replaces but a
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single plane adds three new planes for a net gain of two planes. TFor
every additional plane covered by the convex cap, two new planes are
generated since each and every adjacent pair of planes share a common
edge. The net gain of planes is zero since the plane sharing the common
edge iz deleted. Thus, each new pcint added to the convex hull increases
the number of planes on the hull by exactly two. From the initial con-
dition that the number of planes on the hull (WPH=4) 1s equal to the
number of points on the hull (NPTH=L), we get

NPH = 2*NPTH-k.

This algorithm generates only triangular faces. We could reduce
the number of planes without affecting the number of points on the hull
if ve combined adjacent faces that lie in the ssme plene. This would be
highly undesirable during the constiruction because it would greatly com-
plicate the data structure, and hence, add computation time to the algo-
rithm. A test was made on the final convex hulls to determine if any
planes could be combined. For the data sets we used, the number of
planes that could be combined was found to be insignificant.

B. Computetional Effort

From the description of the convex hull algorithm, it is clear
that the major effort is the caleculation of the signed distance, DS'
It will be shown experimentally that the number of calculations of DS
+ is far greater then the number of faces that are calculated. We will
use this calculation as a means to compare this new algorithm with the
Chand-Kapur algorithm.

The ecalculatlon of the signed distance involves one more addition

than that of & dot product. We state, therefore, that a fair comparison
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is that ecalculation of two signed distances is equal to two dot pro-
ducts and a divide. That is to say, the celculation of two dot pro-
ducts and a divide for the Chand-Kspur algorithm equals calculation of
two signed distances. The measure we will use to compare will be cal-
culation of signed distances versus dot products. The details of the

performance of the algorithm are given in Chapter VII and Appendix II.
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CHAPTER V

A. Minimum Veolume Sphere

We should like to begin this chapter with a statement atout why we
take the approach we.do. We do this because in the countless dis-
cussions with our colleagues, the question was continually raised, "but
why not an iterative approach?". Our answer follows.

In the first place, we set as a goel that we want to calculste
the exact minimum volume sphere. An approximation is not accept-
able. We felt thst any approximation would cause us to consider data
in the sphere sconer than is actually necessary.

Secondly, the only algorithm we found thet claimed to have solved
this problem was incredibly complex and had not even been implemented.
There was no indication of speed of convergence. It was totally unclear
from the description how well it would work for all cases.

Thirdly, cur algorithm works quite well. For some cases, the ex-
pected number of spheres crested was four orders of magnitude greater
then the actual number created. 1In addition, we found the approach of
using a heuristic to speed the calculation most rewarding.

Finally, we could not derive an iterative scheme that worked as
well on the large data sets we tried.

B, Definitions

A sphere is uniquely determined by four non-coplanar points. The

equation of the sphere is calculsted by solving the following four equa-

tions for a,b,c,d.

2 2 2
{x] + 3] + 2] +ax, + by, + ez, +d= O}i=1,l+
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Ag long as the four points are not co-planer, a unique sphere will
be generated. If we add constraints, other unique spheres can he gen-
erated.

L Point Sphere: A sphere passing through four non-coplaner

points and is unigque by construction

3 Point Sphere: A unique sphere passing through three non-
cclinear points that lie on s plane passing
through the center of the sphere.

2 Point Sphere: A unique sphere passing through two distinct
points that lie on the opposite extremities

of a diameter.
These spheres are not necessarily the smallest spheres thet contain the
points generating them. The sphere in Figure 5.la is a three-point

sphere but not the smellest sphere that contains those three pecints.

«— 2~point sphere

S 3-point ——7

sphere
(2) - o
FIGURRE 5.1
Clearly, there is & smaller two-point sphere that contains the same
three points. The three-point sphere in Figure 5.1b is the smallest
three-point sphere that contains these three points.

Minimum volume four-point
sphere: A& four-point sphere that is also the

smallest sphere containing those four
points
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Mipimum volume three-point
sphere: A three-point sphere that is also the

smallest sphere containing those three
points .

A two-polnt sphere, as defined sbove, is also the minimum volume
two-point sphere.

C. Conditions for the Minimum Volume Sphere

In this section, we shall show that the center of the minimum vol-
ume three (four) sphere must lie in or on the trisngle (tetrahgdron)
formed by the three (four) points. We shall do this by showing that if
the center does not lie in the trisngle (tetrahedron), then a smaller
sphere can always be constructed thst will contain those points.

Figure 5.2a shows a circle of radius R passsing through three points
whose center lies outside the triangle formed bty those points. Iet the

center of the circle be (0,0).

Y '
Y
(xl,yl) “"‘\‘\-(xa’yz) o
/ (x{,¥])
/
R
\ (0,0) (x31y3) 373
xl
(a) (b)
FIGURE 5.2
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Rotate the coordinates about the center so that the x' axis
does not intersect the triangle. In this new coordinate system {Figure

5.2b)

2 _ .2 .2
R xl + ¥,

2. 2, 2
o T Yo

=5
i3

‘ 2 2
R = T 1
3+ V3

Note that all of the y' have the same sign. We assume with no loss of
generality that all the y' are positive. Consider the point (O,e)
where € is an arbitrarily smll but positive number. The distance from

(0,e) to each of the points is

Ri = xia + (yi - 6)2 <R
2
R2 = xée + (yé - 6)2 < R2
2
Boexyl e (- o <®

Thus, if we construct a circle of radius R with center (0,e) (in the
x', y' coordinstion system), all 3 pqints will 1lie inside the circle.
Hence, the d¢ircle of radius R is not the smallest circle that contains
the 3 points. Therefore, the smallest circle containing 3 points that
passes through those points has its centgr inside the triangle formed
by those 3 points. If the center lies on one of the triangle edges,

then we hesve a 2 point circle.
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In three dimensions, the triangle becomes a tetrahedron and the
minimum volume sphere passes through four-points if the center liles in-
side that tetrehedron.

This condition that the minimum volume sphere must satlsfy gives
s a method for determining if a particular sphere we have calculated
is the winimum volume one. Let {P} be a set of points in three dimen-
sions. Let S be a four-point sphere. 5 is the minimum volume sphere
containing {P} if

1) ell points in {P} are either on or in S;

2)  the center of S is in or on the tetrshedron formed by
the four pcints that generasted the sphere.

If 3 is s three-point sphere, the ssme conditions spply except that the
center must lie in or on the triangle formed by the three points that
generated the sphere.

For a two peint sphere, the test is even simplef gince the only
pair of points that need be considered for sphere generation are those
whose distance between them is a maximum.

D. Minimum Sphere Algorithm

Calculation of the minimum volume sphere consists of examining for
minimum volume all possible three and four~point spheres, along with the
two-point sphere generated from the two points farthest apart. This
amounts to (E) + (g) + 1 spheres where n is the number of points in {P].
For n = 100, this amounts to a maximum of 4,082,924 spheres.

To speed the gearch for the minimum volume sphere, a heuristic has
been used. As was stated earlier, the first step of the calculstlon is

to calculate the convex hull of {P}. It is clear that only the points
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on the convex hull of {P} can be on the minimum volume sphere. The
search of even this reduced point set was computationally not feasible
since, for the data sets we examined, the number of points on the hull
ranged upwards to nearly 200. We denote this reduced point set as
{Pch]'

The minimum sphere is determined by a maximum of four points. In
the previous section, a condition was described that allowed us to test
any sphere for minimum volume. Our goal is to generate the spheres in
a particular order, such thet the minimum volume sphere will be generated
early in the sequence. This amounts to sorting the points in [Pch} in
order of their likeliness to appear on the minimum volume spﬁere. We
feel that, given a convex hull, the points that "stick out"” the.farthest
are more likely to be on the minimum volume sphere. Our measure of the
degree to which a point sticks out is to calculate the solid angle sub-
tended by the point. The smeller the angle, the "sharper" the point.
Note that the "sharpest" point is not necessarily on the minimum volume

sphere.

FIGURE 5.3
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Pigure 5.3 shows a two-dimensional case where the point on the,

convex. hull with the smallest angle is the only one not on the minimum

circle.
Step la: Calculate the solid angle for each point P, on the con-
vex hull. Consider a portion of the convex hull as shown in Figure
5.4,
A
D
FIGURE 5.4
Let point Pi be the center of a sphere with a radius of unity.
Iet the triasngles APiB, APiC, BPiC, CPiD, DPiB be extended until

they intersect the sphere as shown in Figure 5.5.

S

FIGURE 5.5
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The solid angle is equal to the area of the porticn of the sur-
face of a sphere of unit radius, center at Pi’ which is cut by
the polar triangles with vertex at Pi. For this example, let us
consider the single sphericasl triangle ABC. Iet a denote the
length of side BC, b denote the length of AC, and ¢ denote the
length of side AB. Since the radius of the sphere is unity, the

lengths of the sides of the spherical triangle are as follows:

a = [.BP.C
1

b = LAPic

c = LAPiB

The ares of a spherical triangle with unit radius is

#E

Area = m
1/2
where E = b-mant (tan(g)'tan(sna)-tan(snb)-tan(g:g))
e 2 2 2
S = (a+b+e)/2

O<a+b+ec < 360°
Step 1b: Sort the points in {Pch} according to ascending solid
angle. This puts the "sharpest" points first.
Step 2a: Find the maximum square of the distance between each

pair of points in {Pch}. Generate a two-point sphere S, using

2
this maximum.

Step 2b: Test each of the points in {Pch} to determine if they
are inside 82. If all of the points in {Pch} are inside S, then

82 is the minimum volume sphere.
Step 3: Generate all possible three and four-point spheres from

the sorted points in {Pch}. The method of generation is given by
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the incomplete PL/l-like program below. NPIS is the maximum num-

ber of points in [Pch}.
DO L=k TO WPTS
DO I =1T0 L-3

BO J = I+l TO L-2

DO K = J+1 TO L-1
IF K = L-1 THEN
DO;

Call GENERATE 3 POINT SPHERE (I,J,K);
IF CENTER IS IN TRIANGIE (I,J,K) THEN
IF ALL POINTS ARE IN SPHERE (I,J,K) THEN
GO TO FOUND 3 POINT SPHERE;
END;
Call GENERATE 4 POINT SPHERE (I,J,K,L);
IF CENTER IS IN TETRAHEDRON (I,J,K,L) THEN
TF AIL POINTS ARE IN SPHERE (I,J,K,L) THEN
GO TO FOUND 4 POINT SPHERE;
END;
END;
END;

END;

Note that the conditions for minimum volume are checked prior to testing
the points. We do this sinece it is a relatively short test compsred to
testing if all of the points lle in a sphere. Remember that without

this condition, it is easy to generate very large spheres that can easily

contain all the points, and we want to minimize the number of tests we
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must meke (see Figure 5.6).

P
Py B
eI C

.

.
. . \\\ gphere genersted
. B \ by B, Py, B,

Note: Center of circle is
not in the trisngle

?APBPb.

FIGURE 5.6

This procedure is continued until & minimum volume sphere is found.

E. Computational Effort

As was stated earlier, nc existing algorithms were found to be con-
pared with the algorithm presented here. We will, instead, compare the
results with the algorithm without the use of heuristic to accelerate
the search. We do this as & means to show the effectiveness of the
heuristic.

If no heuristic 1s used, then any point is as likely as any other
to lie on the minimum volume sphere. Thus, we can compute the expected

number of spheres that would be created.

N 1
Expected Spheres = (}h) + (3) + IJ /2
If we do not first caleulste the convex hull to reduce the point

set, then the expected number of spheres becomes astronomical. For ex-

smple, if n=400 points, then the expected number of spheres > 500 000,000.
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The comparisons made using the expected spheres use {Pch] rather than
{P}. For this reason, we do not include the calculation of the convex
hull in our comparisons. It will be shown that the algorithm is highly
sensitive to the input data. The data sets used are described in
Chapter VII. A complete discussion of the results will be found in

Appendix IT.

- 48 -



CHAFTER VI

A. Hidden line Algorithm

When this reseasrch was initisted, a major gosl was to be able to
display & simulation of ocne flying thrﬁugh a spece containing a large
number of objects. In sddition, it was felt essential that the view
presented not contain lines that should be hidden. Initially, we planned
to use sn existing algorithm since seversl "fast; hidden line slgorithms
had been published.(129:6)

To achieve some sense of motion, it was felt that a new picture
needed to be displayed at least five times a second. Whereas the pub-
lished algorithms would hendle an arbitrary number of objects (none
stated that they could not), 8 close examinetion indicsted that they were
in some sense optimized for omne complex object. This was due to the in-
itializetion required (details follow). No examples were found contéining
& large number of simple objects. Since the best example we fbund re~
ported a time of five seconds for a 240 edge object on a CDC'66OO,(6) we
felt we needed to develop our own slgorithm, optimized to fit our parti-
cular requirements. To facilitate design of a fast algorithm, the dats
base was defined to contain only objects which fall into three categories:

1) 3D convex bodies

2) 3D "wire frame" bodies

3} 2D plenes (convex or concave)
In addition, every psir of objects was required to be linearly separable
snd non-intersecting. NYon-convex objects can be constructedrfrom con-

vex ones. Clearly, every pasir of non-intersecting convex cbjects can
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be separated by a plane. Thus, these restrictions do not seriously
1imit the type of pictures that can be constructed.

| It occurred to us that in a simulation of a city, as viewed from an
airplene, most of the objects as presented on the two-dimensionsl secreen
would not occlude one another. This faet was not taken into asceount in
6ther algorithms gince they are concerned primarily with the hidden line
removal for a single {or a few) complex cbject(s). As we will see, this
observation enabled us to design an algoritim that works very fast for

a data base such as we have described. It is difficult to make s fair
comparison of our algorithm to other algorithms since our algorithm is
designed to be highly sensitive to the relative positions of the otjects

in the two-dimensional projection.

B. Design Goals

The overriding concern was to be speed. All compromises that were
made had that point in mind. Fundamentally, the algorithm proceeds
by comparing every edge of every object to be displayed with each edge
of every plane that can potentially hide the edgé to be displayed. With
n edges in the data picture, this gives a worst case of Eﬂr55 operatiocns to
be performed. The operation is 8 test <for the intersection of iwo edges
in three space as viewed from some fixed point. A1l hidden line algor-
ithms have this in common.

This algorithm diffgrs from its predecessors on one major point;
the hidden line calculations are performed in the 2D projection plane
rather than in 3D. This is made possitle by the preprocessing of the

depth informstion. The restriction of non-intersecting convex objects
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ellows depth information to be calculated on an object basis rathern than
an edge or face basis, which amounts to a considerable sav;ng in time.
Timing studlies showed the depth calculation for our algorlithm to be in-
slgnificant.

€. Description of the Algorithm

The general philosophy wés to use simple fests et the appropriate
places to pare down the number of couplex calculations. The tests must
be carefully chosen. For example, suppose 100 tests were performed and
BO of these tests indicatéd that a calculation was to proceed. Unless
the 100 tests invelve less effort than the 20 caleulations they save, it
is far more expedient to simply perform the 100 célcﬁlations and forget
the tests. We will show by experimentsl result that the tests we made
offer a significant seving in calculation effort.

As was stated earlier, the major calculation performed is the inter-
section of two lines in a plane. In the worst case,CV(na) of these cal-
culations.must be made where n is the number of edges. However, if the
data bese contsins s large number of objects, most of the intersection
calculations that we perform will not result in an intersection. They
contribute no informstion to the display process {save the fact that a
particulsr pair of lines does not intersect). We will reduce the numBer
of intersection ecalculstions thet need be performed by & series of simple
tests. By experiment, we will show that for the data bases we used,
approximately 80% of the intersection calculations resulted in iﬁter-
section.

D. Depth Calculation

Whereas the view of the objects continually changes, the relative

poeition of the objects remain fixed. It is this static information
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that we take advantage of to simplify the calculation of depth. The
separating pleanes are used to form an antiwsymmetric square matrix.
Bach of the n/2 unigue elements of this metrix give the followlng infor-
mation about each pair of objects (A,B):

1) A potentially hides B

2) B potentially hides A

3) A cannot hide B and B cennot hide A
The elements of this matrix are calculated once at the beginning of each
frame and their calculstion will be described below.

E. Separating Planes

Basic to this hidden line algorithm is the cslculation of the inter-~
section of the projlection of two edges belonging to a pair of faces. It
must then be determined which of the faces containing the edges are in
froht 80 the visible segment of the partially hidden edge can be displayed.

The separsting planes are used to provide this depth information.

This basic ldea was used in the NASA raster display system built by

(9)

General Electric and described in a report by Schumacher. We used a
modification of the separating plene technigue to provide a fast calcu-
lation of depth. We felt that the restrictions impoéed (linearly separ-
able objects) were worth the benefit to be derived in speed.

The dataz base contains, in addition to the objects, equations of
the planes that separate every pair of cbjects. 1In slmost every case,

the faces of the objects can serve as separating planes. The 2D example

in Figure 6.1 will be used throughout this section.
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FIGURE 6.1

We can think of the depth information,as computed from the viewing

position, as consisting of a static and a dynsmic part. The static part

consists of the relstive positions of the objects {1,2,3,%,5} with re-
spect to one another. The dynamic part is those relationships when ob-
served from g particular point in space.
Each pair of objects is separated in space bj s plane {4A,B,C,D}.
The eqﬁation of a plane is of the form |
ax + by +ecz +4 =0,

The signed distance from eny pcint (xl,yl,zl) in space to that plane is

ax, + byl + ¢z, + d

1 1

J a2 + b2 + c2

The sign chosen is arbltrary and a metter of convention. Once the

"sign" of the plene is noted, then the determination of which side of a
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plane point (xl,yl,zl) is situated on reduces to looking at sign (Dl)
where

Dl = axl + byl + czl + d

The separating plane wmatrix (SEPL) is a fixed part of the data base.
It is created along with the data structure for the objects. This matrix
and the equaticns of the separating plane coefficients are used to deter-

mine which objects can potentially hide one another.

3 A B C D
11|+ |+ -

t 2 - + - -
3 + + - -

L - + - +

5 1-1-19674-

SEPL - separating plane matrix

There are three possible entries to this matrix for object 1, plane

1. + . object i is on + side of plane j
2. - object 1 1s on - side of plane j

3. § object i and plane j intersect

From the eye position shown in Figure 6.1, we determine on which
sides of the plahes this position is situated, and cen "mark" the SEPL

matrix accordingly.
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SEFL
The elements of'Ealﬁﬁﬁ J (plene 3j) are marked O for minus end 1 for
plus 1f the viewing position is on the plus side of plane j. The ele-
ments of column j are marked 1 for minus and O for plus if the viewing
position is on the minus side of plane j. The rows can then be inter-
preted as follows:

1. 1  object i is on the same side of plane j as the
viewing position '

2. 0 object i 1is on the opposife side of plane jfrom
the viewing position

3. @ object 1 and plane J intersect

We are now ready to compute the sepsrating object matrix SO.

o
1L _2 3 4 5
£\L 1 alal-ala
2| 1 1| -1] -1
al1tl 2 S N 1
sl 1l g 0

stal al 1l o |




The matrix is anti-symmetric (SO{4,m)=-50(m,L)). The entry so(£,m)

is interpreted as follows:

1. -1 object 4 is potentially hidden by object m
2. 1 object 4 potentially hides object m
3. 0 objects 4 and w cannot hide one another

The entry so(4,m) is computed from the marked SEPL matrix by compering
rows £ and m of SEFL. If for column j of those rows, SEPL(Z,j) = 1 and
SEPL{m,j) = O, then object £ and the viewing position are on the same
side of plane j and thus, potentially, hide otject m. If SEPL{L,§) =
SEPL(m,)) or either of these entries = P, then that plane contributes

no depth information for these objects. If there exist two planes for
which SEPL(Z,3) = 1, SEPL(m,j) = O and SEPI{m,k) = 1, SEPL({,k) = 0, then
a situstion like Figure 6.2 exists and the objects cennct hide one

another.

1/

P

-~
. ’/,/’
@ll

Viéhiné:Poéition
FIGURE 6.2

For fast implementation purposes, SEFPL 1s actually two single bit
matrices, SEPLL and SEPL2, with each object occupying 2 row and one bit
allocated for each plane. SEPLl is identieal to SEPL except ¢ = 0O;
thus, only cne bit per entry. SEPL2 1s the same size as SEPL] with 1's
everywhere except a O where SEPL contained a §.
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For example compute SO{1,2)

R, = 0000

R, = 1010

s, = 0111

5, = 1111

M = 0111

s = (1010) n (0111) = 0010

RR, = 0000

RR, = 0010

RR, > 0 => 50(2,1) = -80(1,2) = 1

This pairwise calculation 1s combinatorial, involving non-sequential

legic, and could be implemented easily in hardware.
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SEFL2 ' SEPLL

A__B _C D A __ B
1} o] 1| 1] 1 1 o) o
2| 1] 1] 1} 1 2t 1] o
30 1) 1) 1] 1 31 0 o
bl o1 1| 1] 1 ] 1| o
5 1,1.0 1 s! 1] 1

Let Rp = row 1 of SEPL1

o)
n

row m of SEPL1l
8p = row £ of SEPL2
S = row m of SEPL2
Mespns,
s«-(R{ XoR Rm) nM
RR’&""R‘P/HS
R <R NS

If RRy > O then so(d,m) = -s0(m,L) =

-SO(m,’&) =

I

1
—

il

I
(=]

If RR > O then so(4,m)

If (RRp >0) n (RR_ > 0) then 50(£,m) = -s50(m,4) = 0
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Description of the Algorithm

Step 1: Compute the S0 matrix. This matrix provides the nec-
egsary depth informatioﬁ to allow the hidden line csleulations
to proceed in two dimensions. Its calculation was described in
Section E.

| Step 2: Clagsify the edges. A three~dlmensional convex object
has the property thet each face is either visible or invisible.
No part of the object can occlude itseélf., A face is said to be
visible if the dot product of & vector (V) from the fsce to the
eye poaition, and an cutward facing normal from the plane is

positive (Figure 6.3).

4 N
o) 2\
7 ) _
e eye \7
* eye

Visible Face . Invisible Face
V8> 0 7-f<o

FIGURE 6.3

A face is invisible if V.R <0
A) BACK EDGE - a common edge btetween two invigible faces
B) TFRONT EDGE ~ a common edge between two visitle faces

C}) EXTREME EDGE - a common edge between a visible and an
invisible face.
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Back edges of three-dimensional convex bodies do not enter into
the display processing in any way.

Step 3: Projection of edges. ALl of the front and extreme
edges are projected into two dimensions using perspective pro-
Jection as described in Chapter IX. From this point on, all
caleulations are performed in two dimensions.

Step 4 Object windows. For esch object, the meximum end mini-
mum in X and Y for the projected object is saved. These values
define & region on the screen occupied by the object. Let Wi

be the windew for oﬁject Oi'

Step 5: Invisibility caleculation. This step is performed once
for each object Oi to be displayed. Let_Vi be any vertex on Oi'
The purpose is to calculate the number of objects that hide Vi'
This quantity is called the invisibility Ii of Vi' Object Oj
hides Vi if, in the two-dimensional plane, Vi lies inside the
projection of Oj' The two-dimensional projection of & convex
object is a closed convex polygon. Since we allowed cohcave
planes as objects, this calculation must allow for the general
case of covering a point by a closed concave figufe. The
calculation is to first comstruct § semi-infinite rey from Vi to
éome point off screen. Then, 1f the number of intersections that

the semi-infinite ray makes with the extreme edges of O, are even,

J
Oj does not hide V,. If the number is odd, then Oj hides V, (see

Figure 6.4).
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semi~infinite ray d

FIGURE 6.4

Several tests were made to speed up this calculation.

1.

Once the invisibility of Vi is known, O

display.

Step 6:

Only obtjects that pctentially hide Oi are con-

sidered. We have this information from SO.

Only those objects whose window W, covers Vi are

J

considered.

Finally, only those extreme edges that have at least
one vertex on or bélow the semi-infinite ray are
considered for an intersection calculation. This
reduces the number of intersection calculations that
must be made. In Figure 6.%, only extreme edges
(a,b,c,d) are tested for intersection.

4 can be processed for

Hidden line processing. This step is performed for

each front and extreme edge for all objects to be displayed.

A)

An edge Ei ct Oi’ for which the invisibility of vertex
Vi is lmown, is selected for displsy. This edge is

then tested for intersection with all cbjects
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that can potentially hide it. In a manner similar to

the invisibility calculation,‘geveral tests are made

to pere down the number of intersection calculations

that must be made.

1. Only objects that potentially hide Oi are con-
gsidered. We have this informstion from SO.

2. Only those objects OJ whose window WJ intersects
Ei are considered.

3. An intersection is computed for only those ex-

treme edges Ej that lie in the rectangle Ri de -

fined ty Ei'

w2——»j

02
a

e

i™a

FIGURE 6.5
Consider the example in Figure 6.5. Assume 0y, 02,_03, 0, poten-

2

and Wh are not considered further. Of &ll the extreme

tially hide E,. This is determined from SO. Only W, and W3 intersect

Ei. Thus , Wl

edges in O, and 03, only edges Ea and Eb in 02, and edges Ec and Ed in

2
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03 intersect Ri' Thus, only four intersection calculations are made cut
of & possible 2;5.
B} All intersections sre placed on an intersection list

alceng with a.flag to tell whether or not the segment
(from initial vertex Vi to intersection) is going behind
or coming out from the object under test. After testing
against all candidate extreme edges; the intefsection
list is sorted. BSince the number of surfaces hiding the
initial vertex is known, each intersection can change
the invisibility by, at ﬁost, 1. When the invisibility
tecomes O (no planes hiding), then that segment is dis-

played.

FIGURE 6.6

For example, assutte the invisibility of V 1. The intersection

i =
liat would contain four intersections corresponding to a,b,ec,d in Figure
6.6. The flag stored with each intersection is +1 if the segment from

Vi to the intersection is going behind a face, -1 if it is coming out
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from a face. In the example a = -1, b,c = +1, d = -1. After fhe inter-
section list is sorted, each segment is exsmined for displey. At point

a, the invisibility is decreassed by 1 to O so at that point the edge be-
comes visible. At the next intersection, b = 1, changing the invisibility
to 1, and the edge sgain becomes invisible. Continuing on, the invisi-
bili{y at ¢ is increased to 2. At 4, it is decreased to 1. Since there
are no more intersections, the invisihility of Vk is set to 1. All

‘edges with vertex Vk can now be processed.

G. Computstional Effort

The most time consuming calculation performed in the inner loop is
the intersection of two edges. We chose to do this using the parsmetric
equations of a line. Consider the edge Ei with endpoints (xl,yl) and

(xe,ye). Then we have

X =%, + (xa-xl)t

1
¥y o=y + vyt
For 0<t <1, x and y fall on the line segment {see Figure 6.7).

. t3>0

*
-~

- (X2J y2)

xLy)o<t<1

FIGURE 6.7
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We conpute the intersection of two lines by solving for tl and 12 for

each of the lines (see Figure 6.8).

(x5,7,)

(XB:Y ) t t

(xj_l_J yh_)

(leYl)

FIGURE 6.8

X, + (x2 - xl}tl =%y + (xh - 3)t2

v+ (v - vty =g+ yy - vyt

(x5 - %) (y3 - 9) - (x5 - %) (v3 - ;)

L7z = %) (yg - wy) - (x5 - %) (v, - vp)

(xp - %) (75 - ¥7) = (x5 - x)) (7, - ¥)

2 7 Tx, - x) (5, - ) - (% - %) (3, - 9y

The two lines intersect only if O < t, < L and 0 < £, < 1. This calcu-

1 2
lation is easier than using equations of the form y = mx+b because
special cases of infinite slope do not have to be considered.

The test of intersection of an edge with a rectangular window
consists of a maximum of 8 comparisons. The maximum is reached in the
case where the edge intersects the rectangular window. 1In any case, this

test is used to eliminate many potential  intersection calculations.

H. Experimental Results

Our goal was to determine the speed of the algorithm as z funetion

of the complexity of the data. We have sn upper bound in that the number
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of intersections to be computed ist9(n2) where n is the number of edges
in the picture. Our attempt at increesing complexity was to generate a
series of pictures containing unit cubes aspaced at intervals of two units.

v Z

0: 3 6 9
FIGURE 6.9

The data sets contain 4,8,16,24 32 and 48 cubes. These cubes are
one unit on a side and centered on the grid as shown in Figure 6.9.
They are two units apart In each dimension. The location of the cubes

is as follows:

A) b cubes (O;O)O): (3)0)0)3 (3)0:3); (01013)

B) 8 cubes - same as four cubes with additional set st y = 3

C) 16 cubes - this is the configuration shown in Figure 6.9

(]
[0

D) 2% cubes - same as 16 cubes with 8 additional cubes at z

E) 32 cubes - same &s 24 cubes with 8 additional cubes at z

]
0

D) U8B cubes - same as 24 cubes with an additional 24 cubes at

y = 6.9. This is en array of cubes, four on a

side.
In addition, itwo other data sets were tested. The first consisted of 16
rectangular prisms arranged in a "city-like" structure (see Figure 6.10,
a-ad). This was used as a representation of a "typical” picture.
The second data set consisted of 32 non-intersecting cubes with random
positions relative to the lattice. The experimental results are dis-

cussed in Appendix TII.
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FIGURE 6.10, a-d

Four Views of a "City~like" Structure. Average calculation
and display time = 130 mililiseconds
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CHAPTER VII

A, Convex Hull snd Minimum Sphere Data

To facilitate & test of the algorithms, we chose eight types of
data on which to test the slgorithms. The data consisted of random

numbers in uniform and normal distributions, as detailed below.

UNIFORM DISTRIBUTIONS - values generated from a uniform
random number generstor
A) Ellipse
Uniform rendom numbers are generated three at a time for
X, ¥, and z. They are generated in the interval
=2 < x,y,z <2
only those numbers satisfaying the following equation

are used

2
%—+r2+2251

B) Polyhedron
Uniform random numbers are generated on the interval
0 <x,y,z <2
Only those satisfying the following inequality are used
0O<Y¥<2
o<yY<1

0<gz<1
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NORMAL LiIS)HIBUTIONS - value for X,Y,. generated from the
following:
Tt Rl and R2 be two random numbers O < r < 1 from

a uniiorm random number generator. Two normally

distributed random numbers Nl and N2 ere generated

from R1 and R2 as follows
7, = (-21n (32
T2 = 2n % Ré

N, = T, Sin (TE)

N, = T, Cos (Ta)

Since each of the normal random numbers can range from
-00 to +®, we accept only those within a limited range.
Accepting only those points that lie on the interval

~ng < r. < no gives a set of points whose distributiocn

N
is normal with a standerd deviation of no. Let Xy Yy

ZN be normal random numbers .

¢) Normal Cube

-ng < XN < no -ng < XN < ng
-ng < YN < no -noc < YN < ng
-ng < ZN < no -ng < ZN < ng

These data sets were generated for nog = 1,2,4. They
Wll be referred to as cube ¢ = n (n=1,2,4).

D) Normsl Sphere

2 2 e
X+ Y; + 4y s {no}

These data were generated for ng = 1,2,4. They will

be referred to as sphere ¢ = n (n=1,2,4).
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Using these distributions, a number of sets of data were prepared.
500 casea were run for each of the data sets. The number of points in

each data set 1s given below.

25 {1 S50[ 100f 200{ 400] 800 [ 1600 3200
Cube g = 1 X X x X X X X X
Cube g = 2 X X X x X X X X
Cube ¢ = 4 X ! x X X X X X X
Polyhedron x | x X X X X X
Sphere g = X x1 x{ x| x! «x |
'Sphere g=2 X ; X s X X X ;
Sphere g = 4 x} X x| x| x x I
Ellipse X X X X x: x| x |

Data sets were chosen to provide typical as well as worst case
tests fﬁr the calculation of the minimum sphere. The distributions
where ng= 4 were felt to represent the points likely to be encountered
for arbvitrary groupings of objects.

The spherically distributed data is a worst case test for the mini-
mum volume sphere algorithm bedause it tends.to neutralize the benefit
of the heuristic. The solld angles subtended by the points on the con-
vex hull do not have the wide distrlbution enjoyed by the cubleal or
elliptical data. |

The worst case test for the convex hull consists of a set of points,
all of which 1ie on the convex hull. Since We tan estimate the perform-
ance C?(ne) of the algorithm, no data sets were generated to test this
case. In addition, this case is unlikely for the types of data this

thesis is concerned with.

- 70 -



CHAPTER VIII

Conclusions

We developed a graphic data structure that allows for fast access
to an arbitrarilyllarge data base. The data is organized in two ways.
First, the objects can be clustered in sﬁccessively larger groups to
facilitate fast retrievel or elimination from consideration. These
groupings represent the "natural" clustering of the cbjects rather than
an arbitrary partitioning of the space containing the objects. This
structure sllows for easy modification of objects in the data base.

Embodied in the same structure is a facility for multiple description
of objects. This can be used as a means of retrieving only the correct
amount of detail that can be resolved on the display, assuring minimum
display processing. For example, if_a distant view of a data base con-
taining e large number of objects would appear as a point, then only e
single point would be retrieved and displayed. The structure allows the
system to only "know'" about objecfs that are both in the field of view
and the proper smount of detail for each 6bject.

To support this datg organization, an algorithm was designed to con-
struct a minimﬁm volume sphere around a set of points. The spheres vere
used to group and isolate objects. The algorithm proceeds by taking the
points three and four at a time and generating spheres until the smallest
is found. A heuristic is used tc generate the minimum volume sphere
early in the search. The result is that the minimum volume sphere is
generated witﬁ.up to seven orders of magnitude less calculations than

would be expected without the use of the heuristic.

-TL -



To implement the heuristic, an algorithm was designed to compute
the convex hull of a set of points. For the data sets we tested, this
algorithm requires about an order of magnitude less calculation thasn
the only other algorithm we found. For the worst case {all points in
the dats set are on the convex hull), the slgorithms are roughly egquiva-
lent.

Finally, a new hidden line algorithm was de§eioped. By restricting
the type of objects to linearly separable three-dimensional convex ob-
jects, two-dimensicnal concave planes and three-dimensional wire frame
objects, a very fast algorithm was prbduced. It was written in PL/l
(non-optimizing compiler) and run on a 360/91 to which an IDIIOM inter-
active display was attached. A complex picture consisting of 16 objects
(192 edges) took 130 milliseconds (see Figures 6.10 a-d).

Future Research

This research suggested a number of areas that should be investi-
gated further. The first is the development of a procedure to generate
groupings that are in some sense optimum. In concert with this pro-
cedure would be an algorithm to generate (without user specification)
the required multilevel descriptions.

The convex hull algoritbhm desceribed in Chapter IV was actually im-
plemented in n-dimensions. Studies of the algorithmb behavior as a
function of the.dimensionality of the space would be mést useful.

The minimum volume sphere algorithm needs muech refinement. A full
examination of an iterative apprcach would be valuable.

Finally and most important, a great deal of work needs to be done

on the problem of displaying simple relationships among variables. It
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is so easy to plot a graph that we quickly lose sight of the reason we
sre plotting the data to begin with, nemely, to convey information. We
spent an inordinate amount o time trying to develop a procedure that

would exsmine data and automatically choose the proper type of scaling
thet would convey the greatest amount of informetion. Work toward this

goal would do & great deal to enhance the stature of computer graphics.
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APPERDIX I

Convex Hull Data

For the convex hull algorithm, the foliowing quantities were re-
corded.

A. TNumber of original date points (NPIS). All graphs are

plotted versus this quantity.

B. Number of points on the convex pull (NPIH). For a given

number of points in the deta set, this is the number of points

on the convex hull.

C. Number of Tests (NT). A test is defined as the calculation

of the signed distance Dl = ax + by + ¢z + d. This 1s the major

caleulation performed by the convex hull algorithm.

D. Number of Equivalent Tests (NEQ). For the Chaend-Kapur al-

gorithm we showed that the major caleculation is equivalent to

two tests, as defined in C. From Chapter IV, we have that

NEQ = 3-NPTS*NPH

where NPH = number of planes on the convex hull. NFH was not

plotted since it is proportional to NFTH. From the construction

of the convex hull, NPH = 2.NPTH-4.

The results are displayed in two groups. Group 1 contains cube
g =1, cube ¢ = 2, cube ¢ = L and the polyhedron. Group 2 contains
sphere o = 1, sphere g = 2, sphere o = 4 and ellipse. The same data
is plotted for each group. The data from group 1 is plotted followed
by the data for group 2;

Summary Graphs

Each graph contains a plot of the average value of the variable

versus the number of original data points for each of the four cases in
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the group. Eech curve is uniguely labeled. An attempt to provide an
indication of how the datas varied with the points in the data set is
given in the upper left corner of each greph. A straight line least

squares fit of the loglo of the last four points was made.

Let y' = mx' + b

i

where y' loglo(y)

x' = log,,(x)
then y = 10b P

For example, consider the gresph of NPTH for the group 1 data (cubes).
The ¢ = 1 cube data varies like (NPTS)'29 while the ¢ = 4 cube data
varies like (NPTS)'EO. Note that this is the limiting trend because
the fit is made with the last four points on the curve.

Since the points in the data set are generated from a random num-
ber generator, the number of points on the convex hull is not constant
but normally distributed. It was decided that NT/NPI‘H and NEQ/NPTH
would provide a better measure of the amount of work performed by the
algorithm. |

From these plots we note that on the dats sets we tested, the new
algorithm varies like Q{NPTS)'75 while the Chand-Kapur algorithm varies
like (NPTS). In addition,_NT/NPTH.is approximately an order of magnitude
smaller than NEQ/NPTH. This is true for toth groups of data.

Following each of the summary sheets are histograms for the maximum
number of points for each of the cases. This plot shows the normally
digstributed nature of the data as well as the range of each of the

variables.
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APPENDIX II

Minimum Volume Sphere Data

For the minimum volume sphere algorithm, the following quantities
were recorded.

A. Number of Original Data Points (NPIS). ALl of the graphs

are plotted versus this quantity. Note that the slgorithm

actually uses only the ordered subset of points on the convex

hull.

B. Number of Tests (NT). A test is defined as substitution

of a point (x zl) into the eguation of a sphere of radius R.

lJ le
> 2 2 2
We calculate (xl - xc) + (yl - yc) + (Zl - Zc) = R”, where

(xc,yc,zc) is the center of the sphere.

2 .
Rl < R (xl,yl,zl) inside sphere
R = R ( z. ) th h
1= X,,¥,,%1) on the sphere
RS > R° ( ) outside the sph
1 X{,¥y,%;) ou e sphere

C. Number of Spheres Created (NSC). This is the total number
of spheres created during the search for the minimum volume sphere.
D. Tumber of Spheres Tested (NST). Cnly those spheres created,
whose center passes the tests defined in Chapter 5, Part C, are
tested to ascertain if all the points lie in or on the sphere.

E. Expected Spheres Created (using convex hull) (ESC).

qging the number of points on the convex hull (NPTH), ESC =
L(NPEH) + (N ‘3 ) +l] /2.

F. Selected Points (SP). A tabulation was made of the position

in the ordered list of the points used to generate the minimum
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volume sphere. SP shows the distribution of the four points.
Remember that two points are always used. A third point is used
for three or four-point spheres, while a fourth point is used
only for four-point spheres.

G. Type of Sphere (Created (TSC). A couni wes made of the
total number of 2,3, and L-point spheres.

The results are displayed in two groups. Group 1 contains cube

g=1, cube 0 = 2, cube g = 4, and Polyhedron. Group 2 contains sphere

o = 1, sphere 0 = 2, sphere ¢ = 4, and Ellipse. The same data is
plotted for each group. The data from Group 1 is plotied, followed by
the data for Group 2.

Summary Graphs

The results of the calculaticons over the 500 cases run for each
data set are, for the most part, not normally distributed. They have
an exponential type distribution. For this reason, the average value
1s not very meaningful. We chose, instead, to sort the data snd look
at four points for each distribution of values. They are as follows.

50%-meximum value for 50% of the data
60% -maximun valﬁe for 608 of the dats
TO%-maximum value for T0% of the data
780%-maximum value for 80% of the data

Each page contains four graphs, one for each of the four dats sets
in the g;oup. With a few exceptions, each graph contains four curves,
one each for 504, 604, 70%, and 80%. In the upper left corner of each
graph an indication of the trend of the data is given. A straight line

least squares fit of the 1og10 of the last four points was made.
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Iety = mx' + D

! =
where y loglo(y)
x' = loglo(x)
then y = lObxm

The value of m serves as an indication of how the data varies with NPIS.
The comparsble graphs from the Group 1 end Group 2 data are plotted with
the same scales to make comparison easy.

The first four graphs in each group show how the number of tests
(NT) varies with NPES. For the cube data, note that NT/NPTH is practi-
cally a constant for all cases. As we predicted, o = 1 sphere is the
worst case. NT/NPTH varies spproximately linearly with NFTS. However,

o = U sphere and the ellipse are nearly constant. We note that ¢ = L
sphere and ¢ = 4 cube give essentially the same result.

For the sphere ¢ = 1 8nd ¢ = 2 data, some data for NPTS = 800 is
missing. If the minimum volume sphere was not found by point number 26,
then the algorithm stopped and reported NO sphere. For example, con-
sider the graph NT for ¢ = 1 sphere. NO sphere was found by point 26
for 40% of the cases tried.

The next five graphs in each group show how the number of spheres
created varies with NPTS. The most interesting comparison is ESC with
NSC. For example, ESC for ellipse 1600 points at 50% is 10! while NSC
for the same graph is 1. This means for these particular cases, tﬁe min-
jmun volume sphere was found 10,000,000 faster when using the heuristie.

The next grephs show the distribution of the selected points at the
504 point. As expected, o =1 and ¢ = 2 sphere show the failure of the

heuristie. A1l other cases show that the selected points are felatively
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insensitive to NPIS. It is interesting to note that for o = 1 cube,
point 1 was on the minimum volume sphererfor at least 504 of the cases
over & range of input datas spanning almost three decades.

The histograms show some typiecal distributions for a few selected
cases. In the main, they show the effectivehess of the heuristie.
There are two histograms for each of the selected cases. Most inter-
esting is the set of histograms thet show the.distribution of the
four points. Without a heuristic, we would expect & uniform distri-
tution. The exponential nature of the histogram shows how effectlive is

the sorting on solid angle.
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APPERDIX IIX

Hidden Line Data

For the hidden line algorithm, the follcﬁing quantitieé were re-
corded.

A. Front Faces (FF). Total of number of faces that are potentially

visible.

B. Objects Considered (invisibility) (0C/I). Total number of

objects that are potentislly considered to compute invisibility.

C. Objects in window (invisibility) (OW/I). Total number of

objects whose window covers the point under test.

D. Extreme Edges Considered (invisibility) (EEC/I). Total num-

ber of extreme edges considered when determing 1f a face covers a

point for the invisibility caleculation.

E. Intersections Computed (invisibility) (IC/I). NHumber of

intersections computed using EEC/I.

F. Edges to be Displayed (ED). Number of edges that sre pro-

cessed for display.
Note: The remainder of the variables concern the hidden

line caleculatlon.
G. Objects Considered {OC/HL). Total number of objects that
can potentially hide each of the edges (ED).
H. Objects in Window (OW/HL). Total number of objects whose
window is intersected by the edges under test.
I. Extreme Edges Considered (EEC/HL). Total number of edges in
the objects (OW/HL).
J. IntersectorsComputed (IC/HL). Total number of intersection

caleulatlions performed.
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K. Actusl Intersections (AI/HL). Total number of intersection

calculations that resulted in an intersection.

L. Time (milliseconds).

The values of the sbove variasbles were collected for each of the
eight data sets as follows: the data set was first rotated about the
Y axis (Yaw) for 360° with data collected at 1° intervals. Then the
data was rotated about the X axis for 360° (Pitch) again with data
collected every degree. The viewing position was on the Z axis with
the entire data set in view.

Summary Graphs

The first 16 graphs (4 pages) contain a plot of the averages of
some of the variables for each of the data sets. The six "cube” data
sets are plotted as X's and are connected. The "city" type data is re-
ferred to as 16 rectangles, while the last deta set is the 32 randomly
positioned cubes. These two points are not connected and displayed as
isolated X's.

The most interesting result is the graph of time. It shows thet
for the data sets we examined, the computation time is roughly linear.
It is also noteworthy that the data set containing nearly 600 edges was
processed in less than 1/2 second.

The various ratios are also of interest. (AI/HL)/(IC/HL) is
approximately 75-80% for all cases. This means that 75-80% of the inter-
sections computed resulted in an intersectlon. This is the single most
important result as the intersection calculstion represents the major

effort in all hidden line algorithms.
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Following the summary graphs are examples of the data collected
for several of the data sets. The most noteworthy item i1s the de-
pendency of the variables on the viewing position.. This iz not sur-

prising in an algorithm that is highly date sensitive.
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