AN EXPERTMENIAL STUDY OF THE DECAY $K_{L}^{\circ} \rightarrow \pi^{+} \pi^{-} \pi^{\circ}{ }^{*}$

DAVID NEIL SLONE

STANFORD LINEAR ACCELERATOR CENTER
STAANFORD UNIVERSIITY

Stanford, California 94305

PREPARED FOR THE U.S. ATOMIC ENERGY COMMISSION UNDER CONIRACT NO. AT(04-3)-5.15

Manuscript Completed August 1974

[^0]
AN EXPERIMENTAL STUDY OF THE DECAY K-ZERO-LONG ---- PI-PLUS PI-MINUS PI-ZERO

A 2-meter streamer chamber was located in the neutral 5 degree beam at the Stanford Linear Accelerator Center (SLAC) and was triggered on K-zero-long decays. During 1158 hours of running between July and October of 1970, approximately $2,500,000$ events were photographed, 500,000 of which were k-zero-long decays. The principal charged decay modes of the K-zero-long are:
K-zero-long $--->$ pi-plus pi-minus pi-zero (Kjpi)

K-zero-long ----> pi-plus-minus mu-minus-plus neutrino (Kmu3)
K-zero-long ----> pi-plus-minus e-minus-plus neutrino (Ke3) This report presents an analysis of the purely hadronic k3pi mode based on 20% of the total sample ($100,000 \mathrm{~K}$-zero-long decays).

Many earlier experiments in the field suffered from systematic biases which necessitated large (and possibly poorly understood) corrections to the data. The resultant confusion pointed to the need for a reasonably high statistics experiment which was not dominated by systematic errors. This experiment was designed to be almost free of systematic biases so that the corrections to the data were at the 2% level. The main experimental features are described below.
a) An extremely favorable qeometric configuration resulted in a trigger efficiency which exceeded 9% over the entire ialitz plot. The scanning efficiency was estinated to be in excess of 99.5%.
h) The time-of-flight of the K-zero-long was determined with an averare error of ± 0.45 ns. This was incorporated with the track measurements on film into a one constraint (IC) kinemetic fit, resulting in a very clean separation of the decay modes.
c) Shower plates inside the chamber alloved a dartial identiflcation of the k-zero-lone decay products. This served as an inclepencient check on the kinematic fit.

The decay spectrum was found to depenci on the pi-zero center-of-mass kiretic energy (TJ) in a manner well descrihed ry a matrix element of the form

$$
M(+-0)=a(1+i(2(T 3)-13 \max) / T \tan a x)
$$

where the value of b was determinet to be -0.443 ± 0.014. A comparison with k-plus tecays shows a significant violation of the delta $1=1 / 2$ rule for hacionic weak decays.

ACKNOMLEDGEMENTS

I an pleased to thank all of the people who worked closely With we during the course of this experiment.

The experiment was a collaboration between SLAC and Brookhaven. One fifth of the data was analyzed at SLAC and is the subject of this report. The rest is curcently being analyzed at Brookhaven by Mark Sakitt, Glen Snape, and Allen Stevens. My involvement with the Brookhaven collaborators was mainly during the data acquisition in which Mark Sakitt. David Hill, Joshua Kopp, and Julia Thonpson participated. Mark and I have subsequently conferred on may occasions reqarding our respective progress in analyzing the data.

The streaner chamber and all the peripheral equipment (including the magnet, canera system, gas syster, etc.l was the responsibility of many people. Boris Bertolucci, Jobst Brandt, Vernon Lee, Earl Haninger, John ElCKee, Edward HcNerney, Janes Moss, Franz Plunder, Tom Pullian, Gerhardt Schultz, Leroy Schwarcz, and millian Madley were involved in various aspects of the planning and construction as vell as in the day-to-day running and maintenance of the equipment.

The bean was designed by Joseph Murray and Robert Vetterlein While the accelerator staff had the difficult job of delivering a "bean knockout" bean for many hours.

Plorence shuster and many members of cDa helped in the data analysis, and phyllis Jairl assisted in many uays.

The members of the SLAC Streamer Chamer Group mentioned below were involved in the experimental runaing, and working with them was a most enfoyable experience. The individual ceferences are not meant to define the scope of each person's involvement in the experiment except as it related to By work.

Professor Robert Mozley, my thesis advisor, has treated me with respect and has shown great interest in my problems and ideas. I appreciate this deeply.

Kirk Bunnell. Who supervised the construction of the streamer chamber, showed that it was possible to build a chamber that would last $2,500,000$ shots. This was crucial to the experiment. I had the pleasure of working yith Williaf Suanson and fook fah Liu supervising the scanning and measuring. Fook Fah Liu also helped me qreatly with the Monte Carlo studies. Francesco Villa and Allen odian always had valuable suggestions to make. I learned from them that nothing is negliqible a priori. Mary smalleffects that had been ianored were subsequently found to require attention.

The two people I vorked with most closely were Lichen Wang and Joseph park. Lichen and I wrote the geonetry and optical constants programs together, and the valuable lesson imparted was that many things are more easily done than said. Joseph and I worked on the kinematic fitting and timing constants determination. I got my first glimpse of truly eleqant proqramaing and began to learn the fine art of programming with an eye to the future.

Professor David Ritlin of the Stanford Physics Department acted as co-siqner for this thesis and I welcomed his useful comments and discussions. Special thanks are due Robert Messner of the University of Colorado who patientiy explained many of the intricacies of radiative corrections and provided the necessary Fortran code.
table of conterts
Introduction 1
I. Theoretical Considerations 3
A. Hadronic Meak Decays and the $\Delta I=1 / 2$ Rule 4
B. Isospin Analysis of 3 pi Decays 9
II. The Apparatus 16
A. Streaser Chanber 17
B. Coordinate System and Magnet 28
C. Beam 31
D. Electronics - Counter Logic 36
E. Electronics - Event Sequence 45
F. Optical System 54
III. Data Reduction 54
A. Kinematics of K_{L}^{0} Decays 55
B. Least Squares Fitting and χ^{2} Minimization 65
C. Monte Carlo Methods 72
D. Scanning 74
E. Optical Constants 81
F. Georetrical Reconstruction 86
G. Special Runs 95
IV. The 1C Kinewatic Fit 97
A. Timing Analysis 98
B. Bean Angle Deteraination 107
C. Event Selection 109
V. The $\mathrm{m}^{0} \mathrm{c} . \mathrm{B} . \operatorname{Kinetic}$ Energy Spectrum 119
A. Trigger Efficiency 121
B. Resolution Correction 124
C. Radiative Corrections 127
D. Contamination and Loss 130
E. Least Squares Fit to the Spectrav 137
F. Results 142
VI. Conclusions 146
A. Interpretation 147
B. Retrospective 154
C. References 156

1. Track Type Codes Used in scanning 78
2. Scannina Results and Efficiencies 79
3. Values of Some of the optical Constants used in the Event Reconstruction 85
4. Results of the Geometry Program 94
5. Typical Values of Counter Time rfs Deviations Resulting fron the Timing Fit 105
6, Extracted parameters for Linear Spectrum 139
6. Extracted Parameters for Linear Matrix Element 140
7. 5xtracted Parameters for Quadratic Spectrum 141
8. Marx generator schematic 24
9. Blumlein schematic and operation 25
10. Top view of streamer chamber and counters 26
11. Detail of streamer chamber wall 27
12. Beam layout 34
13. Radiofrequency structure of beam pulse 35
14. Triager loaic 43
15. Time and amplitud? ADC ates 44

- Data bus schomatic 50
 63

11. Missing mass squared distribution of events with (PO')2>-9.015 (GeV/C)2 64
12. (?O')2 distribution for event trpe cuts 80

A 2-meter streamer chamber was located in the neutral 5° beat at the Stanford Linear Accelerator Center (SLAC) and was triggered on K_{i} decays. During 1158 hours of runnina between July and october of 1970. approximately 2.500 .000 events were photographed, 500.000 of which were x_{L}^{0} decavs. The principal charged decay modes of the ko are:

$\mathrm{KLO}_{2} \longrightarrow-\longrightarrow \Pi^{+} \Pi^{-} \Pi^{0}$	(K3pi or 3 pi)
$\mathrm{K}_{\mathrm{L}}^{\mathrm{O}} \longrightarrow \longrightarrow$ - $\Pi^{*} \mu^{*} \nu$	(Kgu3)
$\mathrm{KO}_{\mathrm{O}} \rightarrow-\rightarrow \mathrm{T}^{ \pm} e^{\mp} \nu$	(Ke3)

This report presents an analysis of the purely hadronic decay mode $K_{L}^{0} \rightarrow \Pi^{0}-\Pi-\Pi^{0}$ based on 20% of the total sample (100.000 Ko decays).

Many earlier experiments in the field suffered from systematic biases which necessitated large dand possibly poorly understood corrections to the data. The resultant confusion pointed to the need for a reasonably high statistics experiment which was not dominated by systematic errors. This experiment was designed to be almost free of systematic biases so that the corrections to the data yere at the 2% level. The main experimental features are described below.
a) An extremely favorable geometric configuration resulted in a trigger efficiency which exceeded 98% over the entire Dalitz olot. The scanning efficiency was estimated to be in excess of 99.5%.
b) The time-of-flight of the K_{L} was determined with an average ercor of $\pm 0.45 \mathrm{~ns}$. This was incorporated with the track measurements on film into a one constraint (1c) kinomatic fit, resulting in a very clean separation of the decay modes.

```
c) Shower plates inside the chamber allowed a partial
identification of the ko decay products. This served as an
independent check on the kinematic fit.
```

The decay spectrum was found to depend on the Π^{0}
center-of-mass kinetic energy (3) in a manner vell
described by a matrix element of the form
$M\left(K_{1}^{0}-\infty \Pi^{+}+\pi-\Pi_{0}^{0} \sim 1+\sigma(2(T 3)-T 3 \max) / T 3 \max \right.$
where the value of σ was determined to be -0.443 ± 0.014.
A comparison with $K+$ decays shows a significant violation of
the $\Delta I=1 / 2$ rule.

CHAPTER I

THEORETICAL CONSIDERATIONS

The 3 pi decay of the K_{L}^{0} is interesting because a comparison with the 3 pi decays of the charged k's gives information about the isospin transitions in nonleptonic weak interactions. A general discussion of the $\Delta I=1 / 2$ rule is given below, followed by a detailed isospin analysis of $K \longrightarrow>3$ pi decays.

HADRONIC REAK DECAYS AND THE $\Delta I=1 / 2$ RULE

of the many known weak decays, the least understood is the class of strangeness-changing purely hadronic decays. In fact, the selection rules governing these decays are not known with certainty, much of the uncertainty revolving about the so-called $\Delta I=1 / 2$ rule. I is the total isotopic spin of the system, and the rule states that the wagnitude of the change of I is $1 / 2$.

The rule was postulated by Pais and Gell-Mann in 1955^{1} as part of the ongoing effort to systeatize the mounting body of observed weak decays. A less stringent form of the rule, namely $\left|\Delta I^{3}\right|=1 / 2$ where I^{3} is the third component of the total isospin I, was first put forth by Pais. This is equivalent to the relation $Q=I^{3}+(B+S) / 2$ coupled with the well-established conservation of charge and baryon number and the apparent non-existence of transitions with | $\Delta S \mid>1$. The more restrictive $\Delta I=1 / 2$ rule was offered by Gell-mann as a further speculation.

1. Evidence for the $\Delta I=1 / 2$ Rule - Tuo Pion Decays

The oft-cited evidence for the near validity of the $\Delta I=1 / 2$ rule is the suppression of the decay $K^{+}-\cdots \pi^{+} \Pi^{0}$ relative to the decaps $k_{5}^{0} \longrightarrow>\Pi^{+} \Pi$ - and $K_{s}^{0} \longrightarrow>\Pi_{0}^{0}$ (2). Treating the pions as identical bosons dictates a total
state which is symmetric with respect to interchange of the pions. Since the K and the Π are spinless, the pion pair must be in an S state (spatially sympetric), hence the isospin state must be symuetric as well. It is then easily seen that there is only one possible final state for the pions in each of the three decays. The states are:

```
\(\sqrt{1 / 2}(1+0\rangle+|0+\rangle)=|2,1\rangle\) for \(K+\longrightarrow \pi+\pi 0\).
\(\sqrt{1 / 2}(|+-\rangle+1-+\rangle)=\sqrt{1 / 3}|2,0\rangle+\sqrt{2 / 3}|0,0\rangle\)
    for \(k_{s}^{0} \rightarrow \Pi+\pi-\), and
\(|00\rangle=\sqrt{2 / 3}|2,0\rangle-\sqrt{1 / 3}|0.0\rangle\) for \(k_{s}^{0} \rightarrow \pi 0 \pi 0\).
```

where:
|ij> is the state where pions 1 and 2 have $I^{3}=i$ and i respectively (note that \pm means ± 1), and
|I, $\left.I^{3}\right\rangle$ is the two pion state in terms of the total isospin.

Since the K has isospin 1/2, it is evident that to end up in the pure $I=2$ state, $K^{+} \rightarrow->+\Pi^{0}$ wust occur. via $\Delta I=3 / 2$ or $\Delta I=5 / 2$. The fact that this decay goes some 500 times more slowly than the K_{5}^{0} decays indicates the suppression of $\Delta I>1 / 2$ transitions relative to $\Delta I=1 / 2$ transitions. The observed rate is actually too high to be due to electromagnetic breaking of a strict $\Delta I=1 / 2$ rule, as the suppression would then be by a factor of 104.

The "current-current" interaction has proved to be a useful form for expressing the effective Lagrangian of all weak processes.

$$
\begin{aligned}
& L \sim\left(J^{\mu}\right)+J_{\mu} \\
& J=J(\text { hadronic }+J(\text { leptonic }) \\
& J(\text { hadronic })=J(\Delta S=0)+J(\Delta S=1)
\end{aligned}
$$

where:
L is the effective Lagrangian.
J is the total weak current composed of a hadronic and a leptonic part, and
$J(\Delta S=0)$. $J(\Delta S=1)$ are the strangeness-conserving and the strangeness-changing parts of the hadronic current. Thus the lagrangian contains terms responsible for leptonic, senileptonic, and nonleptonic decays. The latter is the quantity of interest here and is given by:

$$
\text { L }(\text { nonleptonic }) \sim\left(J^{\mu}(\Delta S=0)\right)^{+J_{\mu}}(\Delta S=1)+h . c
$$

Since $J(\Delta S=0)$ is an isovector and $J(\Delta S=1)$ is an isospinor, L(nonleptonic) contains in general a $\Delta I=3 / 2$ part as well as a $\Delta I=1 / 2$ part. A strict $\Delta I=1 / 2$ Iule can be built into the theory by introducing neutral currents ${ }^{3}$. Since neutral strangeness-changing lepton currents do not appear to exist, the prospect of neutral strangeness-changing hadron currents is considered unpleasant by many as it destroys the analogy between the leptonic and hadronic realms.

Another approach is to assume conditions whereby the dynamics enhance the transitions with $\Delta I=1 / 2$ relative to those with $\Delta I>1 / 2$. Soft pion calculations make use of pCAC and current comeutation relations to make statements about atrix elements at unphysical points. For $x —>3 \pi$, it can be showns, that at the point where the pion 4 -monenta vanish, a rigorous $\Delta I=1 / 2$ rule holds. If the extrapolation back onto the mass shell is in sone sense smooth, an approximate $\Delta I=1 / 2$ rule can be expected to hold for the physical process. Callen and Treiman showeds that the watrix element for $x_{L}^{O} \rightarrow \Pi+\pi-\Pi 0$ vanishes in the limit of vanishing Π^{+}(or Π^{-}) 4-monentum.

Empirically it is known that the matrix element $M(+\infty)$ is approximately linear in the $\pi 0$ kinetic energy. We define Lorentz scalars so, s1. s2, and s3 by: $s i=(P 0-p i)^{2}$ for $i=1,2,3$, and
$3(50)=51+s 2+s 3=M 0^{2}+m 1^{2}+m 2^{2}+432$
where:
PO is the $K 4$-momentum.
p1, p2, p3 are the pion 4-momenta, and
H0, m1, 2 , 且3 are the masses of the K and the pions.
Calculating in the c.a. gives: $s i=(H 0-m i)^{2}-2(M 0)(T i)$ for $i=1,2,3$
where $T 1$ is the c.t. kineticenergy of pion \#i. If pion $\mathbf{W}^{\mathbf{W}}$ is the $\Pi 0, M(+-0) \sim 1+\sigma(53-s 0)$ where σ is the so-called
a value of $.24 / m\left(\Pi^{+}\right)^{2}$ which is within 25% of the experimental result.

The next section considers the detailed isospin structure of the matrix element for $K->3 \pi$ and indicates how the $\Delta I=1 / 2$ rule can be tested in these decays.

The early analysis by Dalitz ${ }^{7}$ wade the prediction that the ratio of the rates of $K^{+} \rightarrow->+\Pi^{+}+\pi-$ and $K^{+} \longrightarrow \Pi+\Pi 0 \Pi \circ$ was 4 after phase space corrections had been made. The result depended not on $\Delta I=1 / 2$, but rather on the final state's having $I=1$. Assuming a final state of isospin 1 , the relative rates of $\mathrm{K}_{\mathrm{O}} \longrightarrow 3 \mathrm{~T}$ and $K^{+}-\longrightarrow>3 \pi$ were shown to be sensitive to the a mount of $\Delta I=3 / 2$ admixture, while the relative rates of $\mathrm{K}_{\mathrm{L}}^{0}-\mathrm{m} \mathrm{H}^{0}$ and $K_{L}-\longrightarrow \Pi+\pi-\Pi^{0}$ vere insensitive. The ratio of the latter two rates corrected for phase space differences was predicted to be 1.5. None of the above considerations made any explicit reference to the energy dependence of the decay matrix element.

Heinberge then showed that a comparison of the energy spectra of the odd pion in the decays $K^{+} \rightarrow \Pi^{+} \Pi^{+} \Pi^{-}$and $K^{+} \rightarrow->+\Pi_{0} 0$ provided a test of the $\Delta I=1 / 2$ rule. Dalitz's result on the branching ratio of these two decay modes was also obtained.

The paper of Barton, Kacser, and Rosen' provided a rather complete isospin analysis of $K \longrightarrow 3 \Pi$. Since Dalitz's and Heinberg's results are included in their treatment, a detailed outline of the paper is given below.

The first step involves writing down the eigenstates of total isotopic spin for the three pions. Combining the isospins of the first two pions to get a total isospin of I12. and then combining this with the third pion's isospin gives a state denoted by $\left|I^{12}, I, I^{3}\right\rangle$ where I^{3} is the $3^{R D}$ component of I. I^{3} is 0 for K^{0} decays and ± 1 for K^{+}and K^{-}decays. In all there are seven such states for the ko decay, six for the $K+$ (no $I=0$ state since $I^{3}=1$.

The KO^{0} isospin states are:

$$
\begin{aligned}
|1,0,0\rangle= & \sqrt{1 / 6}(1+0-\rangle+10-+\rangle+1-+0\rangle \\
& -1-0+\rangle-10+-\rangle-1+-0\rangle) \\
10,1,0\rangle= & \sqrt{1 / 3}(1+-0\rangle+1-+0\rangle-1000\rangle) \\
11,1,0\rangle= & (1 / 2)(1+0-\rangle+1-0+\rangle-10+-\rangle-10-+\rangle) \\
|2.1 .0\rangle= & \sqrt{1 / 60}\{3(1+0-\rangle+1-0+\rangle+|0+-\rangle+|0-+\rangle) \\
& -2(1+-0\rangle+1-+0\rangle)-4|000\rangle\}
\end{aligned}
$$

$|1.2 .0\rangle=\sqrt{1 / 12}(1+0->+10-+\rangle+21+-0\rangle$
$-|-0+\rangle-|0+-\rangle-2|-+0\rangle)$
$|2,2,0\rangle=(1 / 2)(1+0-\rangle+10+-\rangle-|-0+\rangle-10-+\rangle)$
$|2,3.0\rangle=\sqrt{1 / 10}(1+0-\rangle+|-0+\rangle+|0+-\rangle+|0-+\rangle+1+-0\rangle+1-+0\rangle$
$+21000>1$

The K^{+}isospin states are:

$$
\begin{aligned}
& |0,1,1\rangle=\sqrt{1 / 3}(1+-+\rangle+1-++\rangle-100+\rangle) \\
& |1,1.1\rangle=(1 / 2)(1-++\rangle-1+-+\rangle+1+00\rangle-10+0\rangle) \\
& |2,1,1\rangle=\sqrt{1 / 60}[1+\cdots+\rangle+1-++\rangle+61++-> \\
& -3(1+00\rangle+|0+0\rangle)+2|00+\rangle\} \\
& |1,2,1\rangle=(1 / 2)(1+-+\rangle-1-++\rangle+1+00\rangle-|0+0\rangle) \\
& |2,2,1\rangle=\sqrt{1 / 12}(21++->-1+-4\rangle-1-++\rangle \\
& +1+00\rangle+|0+0\rangle-2|00+\rangle 1 \\
& |2,3,1\rangle=\sqrt{1 / 15}\{1++->+1+-+\rangle+1-++\rangle \\
& +2(1+00\rangle+|0+0\rangle+\mid 00+>)\}
\end{aligned}
$$

To introduce energy dependence into the final states we use the Lorentz scalars $s 0,51, s 2$, and $s 3$ defined in the previous section. since only two of the si are independent. one formulates the problem hereafter in teras of (s3-s0) and (s2-s1) which correspond closely to the Dalitz flot variables defined in a later chapter.

The requirement is now introduced that the final state of the three pions be totally symmetric with respect to interchange of isospin and energy variables of any two pions, and that the dependence on the variables (s3-s0) and (s2-s1) be at most linear. The result of straightforward alaebraic manipulation leads to four possible states:

$$
\begin{aligned}
& \left|1, I^{3}(S)\right\rangle=\sqrt{5 / 9}\left|0,1, I^{3}\right\rangle+\sqrt{4 / 9}\left|2,1, I^{3}\right\rangle \\
& \left|3, I^{3}(S)\right\rangle=\left|2,3, I^{3}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
\left|1, I^{3}(L)\right\rangle= & \left\{\sqrt{4 / 9}\left|0,1, I^{3}\right\rangle+\sqrt{5 / 9}\left|2,1, I^{3}\right\rangle\right\}(s 3-s 0) \\
& \left.+\sqrt{1 / 3} 11,1, I^{3}\right\rangle(52-511 \\
\left|2, I^{3}(L)\right\rangle= & \left\{2,2, I^{3}\right\rangle(s 3-s 0)+\sqrt{1 / 3}\left|1,2, I^{3}\right\rangle(s 2-s 1)
\end{aligned}
$$

|I, $I^{3}(X)>$ is the state of total isospin I and third

 component $I 3$ (0 or 1 for $k 0$ or $K+1$. X refers to the dependence on the energy variables - S for independent, I for linearly dependent.2. Transition Matrix Elements and Predictions

The final state for K^{+}decay can be written:

```
|f\rangle=a+(1,S){1,1(S)\rangle+a+{1,L) 11,1(L)>+a+(2,L)|2,1(L)\rangle
    a+(3,S) | 3,1(s)\rangle
```


Where:

$$
a+(I, X)=\langle I, 1(X)| H^{\prime}\left|K^{+}\right\rangle, \text {and }
$$

H' is the weak interaction Hamiltonian.
The transition matrix elements for the final states f $_{\text {t }}+\boldsymbol{+}$ and $100+>$ are obtained by using the explicit wave functions and evaluating <++-|f> and <00+|f>. If M(abc) is the matrix element in question, we have:

$$
\begin{aligned}
M(++-)= & (\sqrt{4 / 15} a+(1, S)+\sqrt{1 / 15} a+(3, S)) \\
& -\sqrt{1 / 3}(a+(1, L)-a+(2, L))(s 3-s 0)
\end{aligned}
$$

$$
\begin{aligned}
M(00+)= & (-\sqrt{1 / 15} a+(1,5)+\sqrt{4 / 15} a+(3,5)) \\
& -\sqrt{1 / 3}(a+(1, L)+a+(2, L))(53-50)
\end{aligned}
$$

$M(a b c)$ is seen to be of the form $E(a b c)(1+o(a b c)(s 3-s 0))$. Thus the observed rate divided by available phase space (called the reduced rate $R(a b c)$) is approximately given by |E(abc) $\left.\right|^{2 / n!}$ where n is the number of pions in the same charge state. If the final state is pure $I=1, a+(2, L)$ and $a+(3.5)$ are set to zero with the immediate consequences:

```
R(++-)=4R(00+) (Dalitz's result)
\sigma(00+)=-2\sigma(++-) (Weinberg's result)
```

Let us consider the K^{0} decays. While the K^{0} is the isospin eigenstate of interest, the state that decays into 3 pions is the cp-oda component K_{2}. The CP-even component Ko cannot decay to 3 pions, or equivalently $\langle 3 \Pi| R^{\prime}\left|K_{1}^{0}\right\rangle=0$. since $\left.\left|K^{0}\right\rangle=\sqrt{1 / 2}\left(1 K_{1}^{0}\right\rangle+\left|K_{2}^{0}\right\rangle\right)$ we have the result:

$$
\left\langle 3 \pi \|^{\prime} \mid K_{2}^{0}\right\rangle=\sqrt{2}\langle 3 \pi| H^{1}\left|K_{0}\right\rangle
$$

Although the K_{L} is not a CP-odd eigenstate, the acount of Cp-even admixture (E) is of order 2×10^{-3} and is negligible for this consideration. Thus the above watrix elements for K_{2}^{0} can be used for K_{2}^{0} as well. An inspection of the isospin states for $K 0$ shows that only the $I=1.3$ states are odd under CP. Thus with the obvious notation: $|f\rangle=a^{0}\{1, S\}|1,0(S)\rangle+a^{0}(1, L\}|1.0(\mathrm{~L})\rangle+a^{0}(3, S)\{3.0(S)\rangle$

Profecting out $1+-0\rangle$ and $|000\rangle$ in the final state gives:

```
\(M(+-0)=\left(\sqrt{1 / 15} a^{0}(1,5)+\sqrt{1 / 10} a^{0}(3,5)\right)\)
    \(+\sqrt{1 / 3} a^{0}(1, L)(s 3-s 0)\)
\(M(000)=-\sqrt{3 / 5} a^{0}(1,5)+\sqrt{2 / 5} a^{0}(3,5)\)
```

Immediately we see:
$\sigma(000)=0$.
If we require pure $I=1$ in the final state ge get:
$2 \mathrm{R}(000)=3 \mathrm{R}(+-0)$.

Since the possible transitions have $\Delta I=1 / 2,3 / 2,5 / 2$, or 7/2, the transition Hamiltonian can be written:

$$
\mathrm{H}^{\prime}=\mathrm{H}(1 / 2)+\mathrm{H}(3 / 2)+\mathrm{H}(5 / 2)+\mathrm{H}(7 / 2)
$$

where $H(n / 2)$ transforms like an $I=n / 2$ oblect under rotations in isospin space. The K^{+}and K^{0} matrix elements of H^{\prime} are related through isospin invariance (Higner-Eckart theorem see for example reference 10). Thus for an irreducible tensor ? (JM) we have:

where we are computing the matrix element between states of definite angular momentum (isospin). The reduced matrix element on the right side does not depend on the $3^{R} \underline{D}$ component of isospin in the initial or final states. C(jJj';mMm') is the Clebsch-Gordan coefficient to couple isospins j and J to \underline{d} et j^{\prime} with the indicated proiections m, M. and ${ }^{\prime \prime}$. Ve define reduced matrix elements:

```
\lambda(n)=\langle1(S)||(n/2)||/2\rangle for n=1.3.
\mu(n)=<1(L) ||H(n/2)|{1/2\rangle for }n=1.3
\nu(n)=\langle2(L)||(n/2)||1/2\rangle for }n=3,5,\mathrm{ and
\eta(n)=<3(S)|H(n/2)||1/2> for n=5.7.
in terms of which:
a+(1,S)=\lambda(1)-(1/2)\lambda(3)
a+(1,L)=\mu(1)-(1/2) \mu(3)
a+(2,L)=\sqrt{}{3/4}\nu(3)-\sqrt{}{1/3}\nu(5)
a+(3.5)}=\sqrt{}{2/3}\eta(5)-\sqrt{}{3/8}\eta(7
a0(1,S)=\lambda(1)+\lambda(3)
ao(1,L)=\mu(1)}+\mu(3
a0(3,5)=\eta(s)+\eta(7)
A Iigorous \(\Delta I=1 / 2\) rule requires \(\lambda(3)=\mu(3)=0\) with the predictions:
2R(00+) = R(+-0) and
\sigma(00+)=\sigma(+-0).
```


TRF APPARATUS

A K K_{L}^{0} beam was run into the SLAC 2-meter streamer chamber. A system of scintillation counters and fast electronics was used to trigger the chamber on K_{i} decays Information necessary for the deteraination of the x_{2} time-of-flight was recorded on magnetic tape for each event. The chamber was located in a vertical 16 kilogauss magnetic field and was photographed in three views from above. Detailed descriptions of the chamber, the magnet, the bean, the electronics, and the optical system are given in the following sections of this chapter.

The streamer chamber is a particle detection device which renders visible (and hence photographable) the ionization left by a charged particle passing through its sensitive volume. It combines the 4 Pi steradian solid angle acceptance of the bubble chanber vith many of the advantages of a counter experiment. The chamber is triggerable which leads to a small number of pictures per event. allowing high statistics; and the pictures are generally devoid of irrelevant tracks. Also, multiple scattering is minimal since the sensitive volume contains gas (neon-heliun mixture). The principles of streamer chamber operation have been reviewed in detail elsewhereir. but will be discussed here both for completeness and as a prelude to a description of the special features of the K_{L}^{0} chamber

1. Streamer Formation

If a high electric field is applied across a volune of gas containing a free electron, a discharge is initiated. This discharge spreads from the site of the electron along the direction of the electric field and will eventually go from electrode to electrode. However, if the voltage pulse is of very short duration, the spark is arrested and the result is a streamer. The streamer extends a few willimeters tovard each electrode from the position of the original electron.

If photographed parallel to the field, it appears as a dot
of light: looked at perpendicular to the field it is a streak. The exact details of the processes involved in the formation of a streamer are not at all well understood, but the basic explanation given below is thought to be essentially correct as far as it goes.

The growth of the streamer involves two phases. Initially the electron multiplies by ionizing gas molecules as it gains energy in the field. The resulting avalanche grows at a rate corresponding to the electron drift velocity in the gas. For 90% neon - 10\% helium at a pressure of 760 torr and a field of $20 \mathrm{ky} / \mathrm{cm}$ (which is about 10 times the field required for static breakdown the velocity is of the order of $10^{7} \mathrm{~cm} / \mathrm{sec}$. The ion drift velocity is lower by about two orders of magnitude and so does not enter into the consideration. At a certain point the space charge of the avalanche transforms it into a streamer. The dcminant process involved now is photorionization and the rate of longitudinal growth is at least ten times faster than the original avalanche growth. The photons form new avalanches, especially at the tips of the primary avalanche where the space charge intensifies the electric field. Thus the streamer grows longitudinally in both directions until the field is turned off. Although the streamer growth is synmetrical, the origin is displaced due to the fact that the space charge of the original avalanche drifts before the
avalanche is transformed into a streamer.

The electric field used for the formation of streapers is of the order of $15-20 \mathrm{kv} / \mathrm{cm}$. To obtain this field over a 40 cm gap for a duration of 20 ns requires the use of special high voltage devices.

2. Marx Generator

The schematic of the Marx generator used to produce the high voltage palse is shovn in figure 1. All the copponents in the figure were located in a large tank of transformer oil. 47 capacitor banks, each containing 242000 pf tariua titanate capacitors in parallel. were charged in parallel through carbon rod resistors to a voltage of abcut 22 kv . The output was obtained by discharging the capacitor banks in series through spark gaps so that their roltages added. A 23-gap manifold (switch tube) and a self-contained trigatron were used to accomplish this.

The 8^{\prime} spark gap manifold contained 23 electrode pairs along a $6^{\prime \prime}$ diameter lucite tube which was filled uith nitrogen gas at about 15 psi. A trigger disc sat midway between the electrodes of the first gap in the tube. The trigatron was triggered by a $-15 \mathrm{k} V$ pulse from a separate pulser outside the oil tank, and the resultant $-2 H V$ ($\pm H V$ were the power supply voltages) output pulse appeared on the trigger disc,
causing the first gap in the tube to break down. The series resistor A_{S} limited the current drawn through the trigatron. greatly prolonging its life.

Once the first gap of the tube had broken down, the rest of the gaps broke down sequentially by overvoltage. The design of the generator was such that the stray capacitances between the capacitor banks and ground. and frow one bank to the other were wuch larger than the capacitances across the gaps, thereby ensuring that the overvoltage did in fact occur.

The DC supplies vere modified to allow faster charging of the Marx generator. Rather than charging to 22 kv . the supplies vere set to charge to 30 kv but cut off when 22 kv was reached. They vere also modified so that there was a 5-10 ms delay after the Marx had fired before recharging began. This was to allow the switch tube to deionize so that it wouldn't break down again during the charging.

The problems of driving a large streamer chamber directiy from the Harx generator are discussed in reference 11. The conclusion drawn is that an intermediate pulse shaping network is the best way to get the small risetime pulse necessary while alloving certain freedow in the design of the Marx.
3. Blumlein

A five electrode Blumlein line was used to provide the fast pulse. Figure 2 and the explanatory caption qucted below are taken directly fron reference 11.
"The five-electrode Blumlein (a) is equivalent to two three-electrode Blumleins (b) each of which can be considered as a constant impedance line interrupted at the center by the load NZ. The first Blumlein pulse begins at time τ after the spark gap fires and continues until time 32 where r is the tine required for a wave to travel from the spark gap to the end of the charged electrode. When the impedances of the Blumlein and load are properly matched $(N=2)$, the amplitude of the first pulse is equal to the charging voltage, and all succeeding pulses are zero."

The spark gap was filled with sulphur mexafluoride gas at a pressure of $80-100$ psi. varying this pressure caused a variation in the breakdown voltage of the gap and hence in the voltage applied to the chamber. It is possible to design and build a Blulein whose output voltage is very nearly equal to the voltage at wich the spark gap breaks down:2. However the Blualein used in this experiment was only about 60% efficient with respect to voltage transmission due to a rather difficult and unfavorable geometrical configuration. Hence a Marx voltage in excess
of a Eegavolt was required to apply 800 kv to the charber. The pulse was mitored with a capacitive probe and had a width of 18 ns FWHE.

One point to note is that the chamber was subject to a rather long "prepulsew before the Blualein gap kroke down. The prepulse of opposite polarity to the main pulse was due to the charging of the Blumlein and caused the primary ionization to drift about 1 men. This was only partially compensated by the displacement which occurred after the gap had broken down but before streamer formation had begun.
4. Chamber Construction

The streaner chanber used in this axperifent was of the double gap design, thus providing twice the sensitive volume for a given voltage. This design also gives a symetric configuration with the center electrode carring the high voltage and the top and botton electrodes baing at ground potential. The gap size was 40 cs (for a total depth of 80 ci) as compared to 30 cin for the two previous chambers and the two later ones. This added size necessitated a higher Marx generator voltage for the same electric field, which was attained by using more capacitor banks and a higher voltage per stage.
length (along the bean) of 2 . The upstrean and downstrean widths were 1.8 and 1.1 respectively. The valls were constructed of cast polyurethane foam slabs which were epoxied together and painted with dark green epoxy paint to minimize reflections. To cut down the amount of material in the beam the part of the frant wall within the bean profile vas recessed to present a th thick $^{\prime \prime}$ windown. The electrodes were very fine stainless steel mesh (.002w wire with .020n spacing) glued in an aluminu frame. The top and botton of the chamber were . $0015^{\prime \prime}$ mlar. Figure 3 gives an overall viev of the streamer chamber and figure 4 shows the construction detail where the electrodes contacted the walls.

The trigger counters and particle identification plates vere located inside the chamber (in the region of high electric field). To prevent electrical breakdown, they were enclosed in foam-valled boxes through vhich nitrogen gas was floued. The aforementioned plates vere intended primarily to identify electrons and so had to be made of high-Z material (like lead) to provide many radiation lengths per nuclear interaction leagth, However, due to their location in the chamber, they could not be conducting. Lead oxide ($\mathrm{Pb}^{3} \mathrm{o}^{4}$) and epoxy were mixed and cast into slabs that were about 1.7 radiation lengths thick. The density was $4.5 \mathrm{gm} / \mathrm{Cm}^{3}$.

The overall shape of the chamber was trapezoidal with a

Figure 1 - Marx generator schematic.

Figure 4 - Detail of streamer chamber vall.

1. Coordinate System

The streamer chamber was located between the polefaces of a 400 ton electromagnet, and the cartesian coordinate systen used throughout the experiment was tied to this nagnet. Marks on the front and back defined the $x-a x i s$ and the beam was brought in within a few ailifadians of this line. The z-axis was taken as the axis of cylindrical sympetry of the coils (vertical - pointing up) and the y-axis so as to form a right-handed coordinate system. The origin was 1 w npstream and 50 cm above the center of the botton poleface.

The direction of a given vector was defined by the angles λ (latitude) and ϕ (azinuth). λ was the angle between the vector and the $x-y$ plane; ϕ was the angle betveen the vector which had been projected onto the $x-y$ plane and the x-anis. In terus of these angles, the cartesian cowponents of a unit vector (ux,uy,uz) are:
$u x=\cos \lambda \cos \phi$
$u y=\cos \lambda \sin \phi$
$u z=\sin \lambda$
2. Hagnetic Field Determination

The magnet was powered by a 5.8 megavatt power supply and
provided a field of about 16 kilogauss over a cylindrical region 2 in diapeter and 1 in height. The field was continuously monitored by three kall probes mounted on the botton poleface and a shunt reading of the magnet current. A nuclear magnetic resonance probe could be lowered from above into a region of uniform magnetic field to give an absolute calibration. The upper poleface was open to allow photography along the magnetic field direction. This resulted in field inhomogeneities of $15-20 \%$ in the z component and a non-negligible radial component (up to 5 kilogaussl, necessitating a precise field map.

The three cartesian components of the field were measured in eight horizontal planes. Measurements were taken on a grid the spacing of which was. 025 m in x and. 102 m in y . The planes were at a. 102 m separation in z. Three nutually orthogonal coils mounted on a carriade were moved from point to point (of the aforementioned grid) and the flux changes were recorded. Due to the large fringe field of the magnet and the limited length of the tracks on which the carriage ran, it was impossible to move the coils to a field-free region. Hence the flux changes were taken relative to a central point whose field vas measured by nuclear magnetic resonance.

In order to make these magnetic field measurements available to the analysis programs, it was necessary to express them

In analytic form. The cylindrical symetry of the magnet suggested the choice of variables, namely z and r where $r=\sqrt{(x-1)^{2}+y^{2}}$ (recall that the center of t he magnet was at $\mathrm{x}=1 \mathrm{~m}$). Three regions of r were considered out to 2 meters and the field was set to zero beyond that. The radial component was expressed as a polynosial and the vertical component as an inverse polynomial (to allow the rapid falloff observed in the measurements). There were 100 paraiseters in all, which were adjusted by a least squares fitting program to give the best agreement between the analytic form and the measurements. The agreement was typically good to about 30 gauss.

1. Physical Layout

The k_{L} beam was produced by hitting a 70 cn beryllium target with an electron bean whose energy varied between 14 and 16 Gev during the course of the experiment. The electron beam was deflected by $.8^{\circ}$ to the right before hitting the target, and the particles coming off at 5.80 to the left (50 fron the original undeflected bean) vere passed through a $12^{\text {n }}$ lead filter to remove ganina rays. There were four 10° steel collinators (hereafter referred to as 13C1. 13C2. 13C3. and 13C4). There were sweeping magnets after $13 C 1$ and 1303 to reqove charged particles. 13 C 3 and $13 C 4$ each had a horizontal septum to remove particles from the wedian plane so that they did not hit the central electrode of the streamer chavber. 13C4 was oversize and served only to remove background and halo. The bean was ran in air up to $13 C 2$ and in helium from there on to cut down nuclear scattering of the kois. As is seen in figure 5 the chamber was approminately 100 meters from the target.

2. Chopped Bean

In SLAC's noraal operation, bean is delivered in very short bursts (about. 01 ns) at $1 / 3 \mathrm{~ns}$ intervals for the duration of the beam pulse which lasts 1.6 ns. This natural
structure arises as follows. The sixth harmonic of a very accurate and stable 476 mc oscillator is used to modulate the klystrons. The electrons are injected into the machine over a narrow phase range (about 5°) of this 2856 ac at the proper time in the cycle to get acceleration (see figure 6). Thus the shortness of the spikes arises fron the narrowness of the phase (necessary for good energy resolution) and the $1 / 3 \mathrm{~ns}\left(\begin{array}{l}\text { more precisely } 1 / 2.856 \mathrm{~ns}) \text { comes frou the }\end{array}\right.$ frequency applied to the klystrons.

Por certain applications, the accelerator is run in the "chopped bean" wode, vhereby the time between spikes is increased from $1 / 3 \mathrm{~ns}$ to 50 ns or more (with the same 1.6 ps total pulse length). This is accomplished by applying an electronagnetic field transperse to the beam at a frequency which is an integral fraction of the basic 476 ac. The only spikes that are transmitted are the ones that occur at the zero crossing of the deflection field. By varying the frequency (or frequencies) applied to the deflection plates. one is able to get different spike intervals (called chops). A typical chop used in this experiment was 150 ns. Figure 6 shows the time structure of the beam in both the normal and chopped modes.

The reason for using the chopped bean mode was to allow precise timing so that the time-of-flight (and hence the momentum) of the K_{2} could be determined. Also cf
importance was the fact that the electronics could be kept
sensitive over a time interval that tended to erclude photon and slow neutron interactions from the trigger. Had the Chop been much shorter than 150 ns , slow neutron interactions from an earlier spike vould have occurred during the time slot that the electronics was sensitive; had it been much longer, the overall trigger rate would have been lower. Although parts of the film were taken at 100 ns and 200 ns chop, the bulk was taken with 150 ns .

The timing of all the electronics was based on a direct THIS PAGE LHFPT BLANK.

The end of a coaxial cable had its central conductor stripped bare and placed in the beam line right at the target. When the beam hit this detector, secondary electron erission caused a positive pulse which was sent to the experimental area. special "air dielectric" cable vas used to minimize the dispersion of the ertremely narrow pulse.

Figure 5 - Beam layout.

(a) Origin of Normal rf Structure
(b) Normal Beam Pulse
(c) Application of Deflection Field
(d) Chopped Beam Pulse

Fiqure 6 - Radiofrequency structure of beall pulse.

ELECTRONICS - COUNTER LOGIC

In order to trigaer the chamber on Ro's. a setup of $_{1}$ scintillation counters and fast logic was used. The counter electronics (discriminators, coincidence circuits, analog to digital converters (ADC's), etc.) were located in an RF-shielded room right next to the magnet so that the trigger logic could be done with a minimul of delay. The on-line computer and the other electronics which care into play when an event occurred were located in the control trailer 50° away. This represented a transit time of about 200 ns , since the cables went from the shielded roon to the trailer via patch panels.

1. The Counters

Figure 3 is a top view showing the location of the counters in and around the streamer chamber. Each counter in the तiagran actually represents two counters, one atove the plane of the streamer chamber center electrode and one below it. The phototube of each counter was enclosed in a large cylindrical steel magnetic shield. Inside the chamber were eight counters which were used in the trioger and provided timing information. These "A" and "B" counters were 4' long and 40 cm high. Immediately around the chamber vere four "C" and four "D" counters (each 6' long and 40 cm high). and four "chamber" anti counters. The C and D counters provided
additional timina information while the anti counters were used in the trigger. The numbering of the A, B, C, D, and anti counters was such that facing along the beam, was upper left. *2 was lower left, 3 was upper right, and $\|_{4}$ was lower right. Not shown in the diagram are ten anti counters (a right and left wall of five each) arout 20' upstream of the chamber.

The $A . B, C, D$, and chamber anti counters were made of $1 / 2^{\prime \prime}$ thick Pilot M scintillator plastic. The muon and wall anti counters mere made of $N E 110$ shich had a longer decay time (2 ns as opposed to 1.3 ns). Thus while the pilot Might output was no greater than that of the NE110, the output pulse vas better resolved in time and gave better photocathode statistics.

The phototubes of all the counters except the A's and B's were Amperex 56 AVP's. The RCA C31000D phototukes used on the A and B counters vere characterized by a somevhat higher photocathode efficiency (about twice that of the 56 AVp's) and a much higher qain at the first dynode. The effect of this higher gain (about 80 compared to about 21 was to reduce the statistical fluctuations in pulse height due to small numbers of electrons at early stages in the multiplication.

One of the outputs of each A, B. C. D. and muon counter
discriminator was fed into an EGEG DG102 gated latch. The thirty two DG102's thus provided a record of which counters fired in each event. The gate for the DG102's was provided by a master trigger which is described below. Both the ray phototube pulse and the discriminator output of the A, B, C. and D counters were sent to ADC's for the time cf fiight deteraination.
2. The Trigger

As can be seen from figure 7, the basic trigger consisted of an $A-B$ coincidence (thereby requiring the presence of a charged particle inside the chamberl in anticoincidence with the anti counters in front (to ensure that the trigoering particle originated inside the chamber). The details are outlined below.

The A and B phototube outputs were each put into a Lecroy 611 Dual Discriminator, and one of the outputs (there vere two pairs on each discriminator) was clipped to 8 ns. This was accomplished by attaching a 4 ns cable. shorted at the end, to the other output of the pair, thus providing a very stable pulse length. Each quadrant's and B were pat into coincidence and the output of each "and" was clipped to 8 ns . The logical "or" of the four $A-B$ coincidences formed no, the wain ingredient of the trigger.

The phototube outputs of the five anti counters in each of the upstream walls vere tied together at the phototubes thereby waking each wall effectively one large counter. The four chamber anti counters and the two wall anti outputs vere each connected to an EGEG TR204 discrininator. The TR204 had two features that were very important for its use in the veto. First of all it vas a $D C$ pass discriminator, Which meant that the output remained after the fixed pulse length that had been set (30 ns in this case) if the input from the phototube was still above threshold. Secondly the discriminator was deadtimeless. A discriminator without this feature would have been insensitive to a second inout pulse if there had still been output from a first pulse. The TR204 on the other hand, extended the output to last 30 ns (in this casel from the latest input, and nore if the DC pass feature came into play. The loaical "or" of the antis was thus on for at least 30 ns from the latest input. The compliment of this was put in coincidence with M to form M_{C}. which was clipped to 30 ns.

The timing pulse (described in the section on the beam) was inverted (being positive oriainally) and sent throự a discriminator. The output width was set to 2 ns . and this signal. called T, was put in coincidence $W i t h M_{*}$ to form MT, the master trigger. The relative cable lengths were set so that the earliest M_{*} ' finished fust after T ended when muons (nearly $v=c$) were run into the chamber. Thus. except
for the very slowest of particles, which were later eliminated from the sample, the timing of MT was determined by T. This mas important for the timing considerations hich follow.

3. Time and Amplitude $A D C \cdot s$

In order to measure the time of flight of the $K_{i}{ }^{0}$, it was necessary to have information regarding the timing of the A. B. C, and D counter pulses relative to the timing pulse. Since the discriminator output was used to estatlish the counter timing, a pulse which took a long time to rise to threshold due to a small amplitude would give a time which was too late. Hence it was also important to krow the amplitude of the pulse, to allow a timing correction to be made. The details of extracting an actual K_{L} momentum fron the $A D C$ information are described in another chapter. Below is a description of how the ADC information was obtained.

The ADC's which were used ave an output proportional to the time integral of the input as long as a gate pulse was present. There were two ADC's per counter (time and amplitude). There were also ADC's for the purpcse of monitoring the Marx and Blumlein voltages and the time and amplitude of T. (If T's time wasn't constant with respect to the trigaer, it meant that the timing of $M \underline{m}$ had not been set by T.)

Each time $A D C$ got a 38 ns gate from $n T$. Since the timing of MT was determined by T, this was in essence a T gate for timing considerations. The unclipped output of the counter discriminator was set to have a width of 35 ns and was put into the $A D C$. The later this pulse was (relative to MT). the smaller the overlap measured by the ADC. This is shown in figure .

Each amplitude $A D C$ got a 60 ns ate from $M T$ and the raw phototube pulse was fed into the $A D C$. The gate had to be long enough to contain the rather long pulse over the entire range of times. Since the $A D C$ measured the time integral of the pulse, the "amplitude" reading could be misleading. Several small amplitude pulses within the gate interval would simulate a large amplitude by giving a large reading.

Calibration of the time ADC's was done eleven times over the course of the experiment during periods when data vas not being taken. The purpose was to allow the conversion of the $A D C$ reading to nanoseconds. The output of a mercury suitch pulser was fanned out to the T discriminator and to the light diodes which were epoxied to the light pipes of the A. B. C, and D counters. The lenoth of the cable to the T discriminator was varied by inserting cables whose length in nanoseconds had been accurately measured. Typically, 1000 of these simulated events for each time setting were read into the computer at rates of the order of $10 / s e c o n d$.

Subsequent analysis of the computer tape allowed the extraction of calibration curves.

ADC GATE
FROM MT

ADC INPUT
FROM COUNTER discriminator

(a)
ADC GATE
FROM MT \square
ADC INPUT
FROM COUNTER
PHOTOTUBE
AREA MEASURED
BY AMPLITUOE ADC

Figure 8 - Time and amplitude ADC gates.

1. Machine Gate

A "imachine gate" pulse was sent from the accelerator control roon $2.5 \mu \mathrm{~m}$ before the start of the beam pulse. This pulse was used directly to reset the DG102's. It was also delayed for $2 \mu s$ and a $2.5 \mu s$ pulse was generated to activate the electronics, thus keeping them sensitive over an interval completely spanning the beam pulse. It is this delayed pulse which will be referred to hereafter as the machine gate. When an event occurred, it was necessary to kill the machine gate in order to prevent another trigger before the event had been completely processed. The tern "dead time" refers to the time during which the electronics were disabled for this purpose. In particular, a dead time of approximately 400 ms vas necessary to allow enouqh time for the Marx generator to charge up. Since the module generating the gate was in the control trailer (physically removed from the trigger logic), the electronics would have still been sensitive during the next beam spike. To avoid this. Mr was used to inhibit the T discriminator, thas making it impossible to get another trigger before the electronics had been disabled.

The occurrence of an event was signalled by an mT pulse as has been described in a previous section. This pulse was fanned out to several destinations to accomplish the followind:
a) suppress the wachine gate for 5 ps until the electronics in the control trailer could suppress it for a longer period (typically 400 ms .
b) triager the Marx generator,
c) reset the $A D C$ scalers and gate the $A D C C^{\prime}$.
d) gate the DG102's,
e) interrupt the computer in preparation for reading in the data, and
f) pulse "Guisseppe", a digital time sequence generator, to initiate the series of tasks described below.
3. Guisseppe

Guisseppeis was essentially ten gate generators built into a single unit. Each gate could be set to begin and end at any specified times (within design limits) of the initial pulse. The setting was done by inserting peas into holes in the pegboard-like front face. Both logic (-0.7 volts) and gate (+10 volts) levels were available.

Starting immediately from the initial pulse, pulses of vaIying widths were sent to do the following:
a) flash the fiducials,
b) flash the data boxes on the cameras,
c) kill the machine gate for about 400 ms , and
d) suppress the bean if we were in beam-sharing mode to let other experiments wake use of the beam pulses during our dead tine.

At later times in the seguence pulses vere sent to:
e) advance the cameras,
f) advance the frame number, and
q) have the digital voltweter (DVM) step through its sequence of reading one phototube voltage per event.
4. on-1ine Conputer

A PDP-9 computer manufactured by Digital Equipment Corporation was used to record the counter data for each event on magnetic tape. In addition to the DG102 and ADC information, the tape record included the roll, frame, date, phototube voltages, and the shunt and Hall probe readings for the streamer chamber magnet. As well as recording event data, the computer was used to monitor what was beina accumulated. Histograms of the $A D C$ readings were built up in core and displayed on a scope screen for observation. If certain quantities fohamer voltage, magnetic field. counter voltages) ever got outside specified ranges, warnings were
printed on the teletype so that the appropriate corrective action could be taken.

The data was sent to the computer in the form of 16 -bit yords on a 16-line data bus. The ADC's vere 8 tits each, so the time and amplitude $A D C$ for each counter vere linked to form one word. The thirty tyo DG102's forned two words, and each other device (DVM's. roll number, etc.) had four 4-bit $B C D$ digits and thus formed a single word. In all there were 28 words. which were put on the data bus in sequence. The method of getting the $A D C$ information onto the kus was different frow that for the other data.

Bach non-ADC device's 16 bits were fed into a multiplexer. One line on the multiplexer per device could be strobed to put that device's output onto the data bus. (The multiplexer had the function of a 16 polemultiple throw suitch.) The ADC's on the other hand. did not require an external multiplexer. In response to a read gate pulse a given $A D C$ would put its 8 bits on the line. (Thus each ADC in effect had its own 8 pole-single throw switch.)

The sequential reading of the data was controlled by three strobe generators (called "Arturo"). The Arturo's were set up serially so that in response to computer pulses, each word would be read into the computer. The strote for the ADC's vent to the appropriate $A D C$ read gates; the other
strobes went to the multiplexer. A schematic of this is shown in figure 9.

The reading was done on the data channel which was much faster than reading under program control through the computer's accumulator. The proaram would issue a command to read, and would be interrupted when all the data had been read into core.

Figure 9 - Data bus schematic.

OPTICAL SYSTEM

1. Fiducials

Three caneras located about 4 above the streamer chamber were used to photograph the events in 18° stereo. In order to relate the photographs to real space, it was necessary to include some reference marks (fiducials) in the pictures. Each fiducial was constructed from an electroluminescent panel which was masked to allow only a fine cross to shine through (2.5 malines). Twenty six fiducials were mounted on a marble plate which was attached rigidly to the magnet poleface below the chamber, and five were mounted on beans fust above the chamber. Five of the lower fiducials were larger than the rest and were used in the event measurements. All thirty one were used in the cptical constantsi deteraination.

2. Cameras and Film

Model 207 aerographic cameras manufactured by Giannini Scientific Corporation were used. They were extensively modified and upgraded to provide a high level of reliability and accuracy. The film transport system was ingroved by the introduction of vacuum loops so that the film was under a constant tension of 8 ounces. This allowed the use of 1200 rolls of filw, whereas previously 300^{\prime} had been an upper
limit for reliable operation. Vacnum platens whose surfaces had been optically lapped were substituted for the conventional pressure platens and all critical surfaces were remachined and polished. The cameras vere equipped with data boxes so that inportant information (roll. frame number, magnet shunt reading, etc.) appeared in the picture. The cameras were notable in being able to run in a random pulse mode at up to 15 shots per second, i.e. the film could be advanced within $1 / 15$ second of receiving an "advance" voltage pulse. There were no shutters as the streawer chamber was completely dark except when it was being pulsed.

The lenses vere Summilux 50 min $f / 1.4$ made by E. Leitz. The aperture used during most of the data taking was $f / 2.4$ which gave a reasonable compromise between good depth of field and adequate exposure. The distortion of off-axis rays was weasured on an optical bench and was found to be vell described by the formula:
$d=c \cdot \tan ^{5} \theta$
where:
d is the distortion on filt radially from the cptic axis.
c is the distortion parameter, and
θ is the angle between the image ray and the optic axis.
The actual distortion parameter used in all computations was c/fs where f was the focal distance of the lens.

A special film was developed for SLAC by Eastan Kodak for
use in photographina the streamer chamber. so 265 (Special order 265 - formerly so 340) is a very fast panchronatic film with an extended red sensitivity (Aerial Exposure Index of 250 which is roughly comparable to an ASA of 2000-3000). This high speed coupled with a resolving power cf 71 lines/am made the fila eminently suitable for afial photography as well. Kodak Tri-X Aerographic Pild 2403 is identical to so 265 except that it has a fast-dining base uhereas so 265 does noti4. The filp was typically processed to a gamma of 1.6.

CHAPTER IIT

DATA REDOCTION

The ultimate purpose of the data analysis was tc obtain an unbiased, pure sample of 3 pi decaps from which to extract physical quantities. Before this could be done, the film was scanned and measured, optical constants vere computed and the track measurements were fitted to obtain the particle monenta. A general description of the kinematics of ko decays and a sumary of certain methods of analysis used in the above data reduction are given below. The data reduction is then described in detail.

KINEHATICS OF KO DECAYS

In this section we consider the kinematic features of the data without the kinematic fitting. The procedures and results of the kinematic fit are discussed in a later chapter.

1. General Features

The three decay modes considered here are:

The unknowns in the problem are the three momentum components of the unmeasured neutral particle and the magnitude of the $\mathrm{K}_{\mathrm{L}}^{0}$ momentum. (The time-of-flight information is not considered in this part of the discussion). The four equations of energy and momentum conservation thus lead to the solution for the four missing quantities. It is clear that once the k momentum is known, the missing neutral's momenturis easily found, so let us consider the solution for the k momentuw. The solution is most easily obtained by writing the 4 -momentum equation:
$\mathrm{p} 0-(\mathrm{p} 1+\mathrm{p} 2)=\mathrm{p} 3$

where:

```
PO is the kO 4-momentum, and
p1. P2,p3 are the 4-momenta of the positive, negative and
        neutral decay particles respectively.
Forming the Lorentz square of both sides (thereby
eliminating the neutral particle's momentum) and computing
in the laboratory frame leads to:
```



```
where:
B=(MO2+M122-m32)/2
MO is the Ko mass,
#12 is the invariant mass of the two charged particles.
m3 is the mass of the neutral particle.
p1(par).p2(par) are the 3-momentum projections of the
            charged particles parallel to the ko momentum,
E1 and E2 are the energies of the charged particles, and
Pt is the total visible transverse momentum.
Writing the 4-momentum equation as
p0 - p3 = (p1+p2).
forming the Lorentz square of both sides, and evaluating the
left side in the c.m. where the ko 3-momentum vanishes
gives:
```

```
E3=(MO2 +m32-M122)/(2MO)
T3=r(M0-m3)2-M122]/(2m0) with the obvious maximum
T3max = I(m0-m3)2-(m1+m2)}\mp@subsup{}{2}{2}]/(2m0), and
q32=T3(T3+2m3)
```

where:
E3 is the c. . ${ }^{2}$. energy of the neutral particle,
T3 is the c.m. kinetic energy of the neutral particle, and
q3 is the magnitude of the neutral's c.m. 3-momentom.
The origin of the quadratic ambiguity in $\mid \overrightarrow{\mathrm{PO}} \boldsymbol{i}$ is more easily
seen now. The neutral's transverse momentum in the c. \boldsymbol{n}. is
known (being given by - Pt), and the square of the neutral's
3-momentum in the c.m. is known from the kinetic energy.
Hence the magnitude (but not the sign) of the neutral's c.m.
longitudinal 3 -momentum can be found, since
$\mathrm{q}^{3}(\mathrm{par})^{2}=\mathrm{q}^{22}-\mathrm{pt}{ }^{2}$.
Thus the quadratic ambiguity is merely the uncertainty as to
whether the neutral particle is going forward or backward in
the c. m .

Due to the quadratic nature of the solution, it is possible that an event will have an imaginary solution fer the k momentum, i.e. the event can be unphysical for the given decay hypothesis. This fact is exploited to allow a partial identification of the decay mode. Due to the masses of the particles involved, a true 3 pi decay will also have solutions for the semi-leptonic modes. The converse is not
so however. Most (about 95\%) of the true semi-leptonic decays do not give a solution if they are assumed to be 3 pi decays.

While the discriminant (assuming a 3 pi decay) contains the required kinematic information, it is customary to use a different quantity when talking about identification of the decay mode. ($\left.\mathrm{PO} 0^{\prime}\right)^{2}$ is defined as the square of the K_{L} momentum in the frame where the visible momentum is all transverse. It has the same sign as the discriminant for the 3 pi hypothesis, as can be seen from the first of the two equivalent expressions.

```
\(\left(P O^{\prime}\right)^{2}=\underline{\left(M O^{2}+M 122-m 3^{2}\right)^{2}-4 M O^{2}\left(M 12^{2}+P t^{2}\right)}\)
            \(4\left(M 12^{2}+P t^{2}\right)\)
\((\mathrm{PO})^{2}=\left(\mathrm{MO}^{2}+\mathrm{m}^{2}-\mathrm{M122}\right)^{2}-4 \mathrm{AO}^{2}\left(\mathrm{BH}^{2}+\mathrm{Pt} \mathrm{C}^{2}\right)\)
                                    \(4\left(M 122+P t^{2}\right)\)
```

where the quantities on the riaht now refer specifically to the 3 pi hypothesis (e.g. a 3 is the π^{0} mass). The (PO') ${ }^{2}$ distribution for the data (all three modes) is shown in figure 12.
2. Dalitz Plot and the Π^{0} Kinetic Energy

In studying the 3 pi decay of the x^{0} it is custcmary to plot the center-of-mass kinetic energies of the pions on a Dalitz plotis. An event is represented by a point inside
an equilateral triangle of altitude $Q(Q=M 0-m 1-m 2-m 3)$. The kinetic energies of the three pions are given by the distance of the point to the respective sides, thereby ensuring energy conservation. This is equivalent to plotting y vs where the Dalitz variables are given by: $x=(T 2-T 1) / \sqrt{3}$ $\mathbf{y}=\mathrm{T} 3-\mathrm{Q} / 3$

The phase space element is given by the area element on the plot ${ }^{16}$. and the points are constrained by 3-momentum conservation to lie inside a nearly circular boundary. Alternately, one plots the kinetic energy of the T^{+}(T1) against that of the $\pi^{-}(T 2)$. The phase space element is now simply the area element in $T 1-T 2$ space, and the contours of constant $T 3$ are straight lines at 450 to the axes

The phase space for decays at a fixed $T 3$ is given faside from normalization) by the separation of the twc points where the constant $T 3$ line intersects the Dalitz plot boundary.
phase space $=\sqrt{q^{22}\left(M 12^{2-4 n 12)} / M 12^{2}\right.}$
which depends on $T 3$ only, since $q 32=T 3(T 3+2 m 3)$ and $M 12^{2}=(M O-m 3) 2-2(M O)(T 3)$.
3. Measurement Errors and the moc" Fit

Since the solution for the K_{L} momentum involves a quadratic equation, it is possible that random measurement errors will
make some 3 pi decays unphysical (negative discriminant or equivalently, negative ($\left.\mathrm{PO}^{\prime}\right)^{2}$). This effect is particularly significant since the (POI)2 distribution of ideal events is strongly peaked at 0 (see figure 10).

The formal way that this difficulty is handled is to constrain the discriminant to vanish and do a fit. Events that fail this fit can be tentatively identified as being semileptonic decays or some other contamination. The fit is loosely (and strictly speaking incorrectly) referred to as a $O C$ (zero constraint) fit in the sense that the constraint is not introduced a priori fas energy-momentum conservation is).

4. Timing Information and the $1 C$ Fit

With the addition of the time-of-flight measurement, the problem becomes a true 1 C (one constraint) fit, since there are now 4 equations (energy-momentum conservaticn) and only 3 unknowns (the 3 -momentum of the neutral decay product). Basically the events that fail this fit fall into two classes. Either the momenta are such that the event is unphysical, or the timing information disagrees with the other kinematic results. The former would fail the $0 C$ fit: the latter would pass. This distinction is sometimes helpful with certain classes of contamination. Before discussing the detailed procedures and results cf the 1C

The time-of-flight measurement of the K_{i} momentun can be compared with the values calculated from the charged particle momenta, and the best solution picked. At this point it must be decided whether the mode identification has been made uniquely and whether the quadratic antiguity has been resolved. While such a procedure is capable of identifying some events, several problems remain which are difficult or impossible to resolve without resorting to a kinematic fit.

Due to random measurement errors, the solutions have errors associated with them. The timing information has its own error, so any comparison method must take into account all the errors and have some prescription for evaluating the uniqueness of the identification. Once an identification has been made, the timing information is normally not considered any more, so the data has clearly not beet exploited to the maximum extent. Furthermore, an attempt to incorporate the tiaing information into the $K_{L} 0$ momenturn value without doing a fit is alnost certain to lead to values of momenta that violate 4 -momentum conservation.
nother nethod which can be used to pick 3 pi events is to select on the basis of the mass squared of the missing neutral assuming both charged particles to be pions. The

```
MK2 = (P0-p1-p2)}\mp@subsup{}{2}{2
```

where:
PO is the x_{2} 4-momentum from timing.
p1 and p2 are the assumed pion 4-momenta from geometry, and MV is the missing wass.

The semileptonic modes give values of $\operatorname{Hm} \mathrm{m}^{2}$ over a broad range including negative values, while the 3 pi decays show a distribution sharply peaked at the π^{0} mass. See figure 11 for the observed distribution of Mrz. This is a useful way to display the data, but is generally unsuitable as the sole selection method. It is difficult to estimate the loss that occurs when a cut on the missing mass is made, and it is inpossible to identify semileptonic contamination. As in the previous method the measured values have not been adiusted to take all the information into account and to conserve 4-monentum. Moreover the quadratic ambiguity remains unresolved.

The $1 C$ kinenatic fitting procedure suffers from none of the above difficulties. Also, it allows a determination of how vell the data approximates the ideal statistical behavior assuned. A detailed discussion is deferred until a later chapter.

Figure $10-\underset{K}{(P O P i})^{2}$ distribution for fake

Figure 11 - Missing mass squared distribution of events with
$(\mathrm{PO})^{2}>-0.015(\mathrm{GeV} / \mathrm{c})^{2}$.

LEAST SQUARES FITTING AND χ^{2} MIHIMIZATION

The problem that arises at many stages of the analysis is the determination of the values of a set of n parameters $\left\{p_{a}\right\}$ in order to optimize the aqreement betreen N measurements and a theoretical prediction based on $\left\{p_{x}\right\}$. The most of ten used procedure in this experiment was the method of least squares fitting, an outline of which is given below

1. Minimization of χ^{2}

The quantity which describes the goodness of the fit is: $x^{2}=\sum_{i j} r_{i} H_{i j} r_{j}$
where:
r_{i} is the residue associated with the $i+\frac{T H}{}$ measurenent, and (Is the weight matrix associated with the residues.

In fitting a set of measured points (x_{2}, y_{i}) to an analytic function, the residues would be of the form $\left(y_{i}-f\left(x_{i}\right)\right)$ in the case of track reconstruction in space, the residues would be the distances from the measured filn and the space curve profected onto film. The weight matrix is the inverse of the variance matrix v of the residues. In many applications V, and hence \forall, is diagonal. in which case χ^{2} is the familiar sum of squares.

Assume that approximate values of the parameters $\left.\left\{p_{\alpha}^{\circ}\right\}_{\alpha}\right\}$
are known which give residues roth. If the residues are nearly linear in the parameters close to the χ^{2} minimus. the residues at the minimun can be written as

$$
r_{i}=r_{i}^{\text {old }}+\sum_{\alpha}\left(-q_{\alpha}^{i}\right)\left(p_{\alpha}-p_{\alpha}^{o l d}\right)
$$

where $-q_{\alpha}^{i}$ is the derivative of the $i T_{n}$ residue with respect to the α IH parameter evaluated at $\left[p_{\alpha}^{0 \quad d}\right]$. The minimua condition is that the derivatives of χ^{2} with respect to each parameter vanish.
i.e. $\quad \sum_{i j} Q_{i j} r_{i} \frac{\partial r_{j}}{\partial P_{x}}=0$ for all α.

Expressing r, as above and using the values of the derivatives at $\left[p_{x}^{o l d}\right\}$ leads to:
$P_{a}=p_{\alpha}^{o k L}+\sum_{\beta} G_{\alpha \beta}^{-2} v_{\beta}$
where:
G^{-1} is the inverse of the matrix G, were $G_{\alpha \beta}=\sum_{i j} q_{\alpha}^{i} q_{i j} q_{\beta}^{j}$, anc $v_{B}=\sum_{i j} r_{i}^{\alpha^{d}} \eta_{\cdot j} g_{\beta}^{j}$

The new values of $\left\{p_{\alpha}\right\}$ can now be used as starting values and the process repeated until the minimum is reached. This iteration is not necessary if the residues are truly linear in the parameters, as would be the case in a polynomial fit for example.
2. The Variance Matrix and the Error Ellipsoid

If $\left\{P_{\alpha}^{0}\right\}$ are the values of the parameters that inivize χ^{2}, near the minimus:

$$
x^{2}=x_{\min }^{2}+\sum_{\alpha \beta}\left(p_{\alpha}-p_{\alpha}^{0}\right) G_{a c \beta}\left(p_{\beta}-p_{\beta}^{0}\right)
$$

The hypersurface in parameter space defined by $\chi^{2}=\chi_{\text {min }}^{2}+1$
is called the error ellipsoid, and the error on p_{a} (denoted by δp_{α}) is given by the maximu value that ($p_{\alpha}-F_{\alpha}^{0}$) can take on the ellipsoid. Using the method of Lagrange 1 ultipliers requires that ye maximize the quantity

$$
\left(p_{\alpha x}-p_{\alpha x}^{0}\right)+\lambda_{\alpha \alpha}\left(\sum_{\beta \gamma}\left(p_{\beta}-p_{\beta}^{0}\right) G_{B \gamma}\left(p_{y}-p_{y}^{0}\right)-1\right)
$$

With respect to all the parameters which are now treated as if they are independent. Differentiating and using the constraint condition to eliminate λ_{α} gives the result:

$$
\left(p_{\alpha}-p_{\alpha}^{0}\right)\left(p_{\beta}-p_{\beta}^{0}\right)=G_{\alpha \beta}^{-1} \text { for }\left(p_{\alpha}-p_{\alpha}^{0}\right) \text { maximun. }
$$

$$
\text { i.e. } \quad\left(p_{\alpha}-p_{\alpha}^{0}\right)^{2}=G_{\alpha \alpha}^{-1} \text { or } \delta_{p_{\alpha}}=\sqrt{G_{\alpha-1}^{-1}}
$$

Thus the off-diagonal elements of G^{-1} tell how much the other parameters nust nove away from their values that minimize χ^{2} in order to make $\left(P_{\alpha}-P_{\alpha}^{o}\right)$ a maximum on the error ellipsoid. $G_{\times \beta}^{-1} /\left(\delta_{p_{a}} \delta_{p_{\beta}}\right)$ is the correlation between P_{α} and P_{β}.

The variance of quantity Q which depends on the paraneters \{ $\left.p_{x}\right\}$ is given by:
$\delta_{Q^{2}}=\sum_{\alpha \beta} \frac{\partial Q_{Q}}{\partial P_{\alpha}} \sigma_{\alpha}^{1} \frac{\partial Q}{\partial P_{\beta}}$
3. Convergence Criteria

The question of when to stop iterating the fit wust be investigated separately for each application, In some cases it way be enough to quit when the corrections are such that
the predicted change in χ^{2} falls below a certain value.
This predicted change is

$$
\Delta X^{2}=\sum_{\alpha \beta} \Delta p_{\alpha} G_{\alpha \beta} \Delta p_{\beta}
$$

where:
Δp_{α} is the prescribed correction to p_{α}.
In cases where the residues are rather nonlinear, it may be necessary to actually apply the correction and evaluate the new value of χ^{2} before stopping.
4. Goodness of Fit and Relative Meights

Before it is possible to decide whether the fit is good. attention \quad ust be given to the weights entering into X^{2}. If all the masurements have the same error, an incorrect error assignment only scales χ^{2} and the error matrix, but does not affect the convergence or the final values of the parameters (for the same number of iterations). In some cases, however, it may be necessary to give different measurements different veights for some systematic reasons or due to their being completely different t pes of measurements. The latter occurs in the kinematic fit where the K_{L} momentun, the K_{L} bean angles, and the charged particle monenta are determined differently.

For N measurements and n parameters x^{2} should have a

theoretical X^{2} distribution for $N-n$ degrees of freedon. The differential probability distribution is (reference17):

$$
P\left(X^{2}\right)=\frac{e^{-x^{2} / 2}\left(x^{2}\right)(m / 2)-1}{2 m / 2 I^{\prime}(m / 2)} \text { for } m=N-n \text {. }
$$

For larae m. the distribution is approximately Gassian ith $\left\langle x^{2}\right\rangle=m$ and $\sigma=\sqrt{2 m}$. The confidence level or probability for a given value of $x^{2}\left(s a y x_{2}^{2}\right)$ is thus:
prob $=\int_{x_{i}^{2}}^{\infty} P\left(x^{2}\right) d x^{2}$.
5. Constrained Fits

It sometimes happens that in addition to mininizing χ^{2}, the parameters must satisfy certain relations anong themselves. Each of these relations (called constraints) reduces the number of free parameters by 1, and hence increases the number of degrees of freedon by 1. In some cases it may be possible to reduce the set of parameters to a smaller set of independent ones and proceed vith an unconstrained fit. In many cases (such as kinematic fitting) the choice of certain parameters as "obviously dependent" is not obvicus. Furthermore the constraint equations way be be too complicated to solve for these "dependent" variables. The method of Lagrange maltipliers is used to solve the problem.

If the constraints are each expressible in the form
$P\left(\left\{P_{\alpha}\right\}\right)=0$, we minimize the quantity

$$
x^{2}+\sum_{i} \lambda_{i} F_{i}\left(\left\{p_{\alpha}\right\}\right)
$$

where λ_{L} is an undetermined parameter to be determined from the minimum condition and the constraint equaticns. There is one λ per constraint and the parameters are treated as independent.

The procedure is the same as for the unconstrained fit except that the constraint equations wust be linearized as well as the residues. Thus the success may depend critically on the particular formulation of the constraints.

6. Kinematic Fitting

The problem that occurs in this experiment is that of constraining measured track parameters (angles and momenta) to conserve 4-momentum. The parameters have been ngeasuredn by doing an unconstrained fit to winiaize the sum of squares of residues on filn. This set of parameters \{p (meas)\} has associated with it a correlated variance natrix G-1 which is not diagonal. The adjustment of $\left\{p_{a}\right.$ (meas)\} is carried out by minimizing

$$
x^{2}=\sum_{\alpha \beta}\left(p_{\alpha}-p_{\alpha}(\text { meas })\right) G_{x_{\beta}}\left(p_{\beta}-p_{\beta}(\text { neas })\right)
$$

with the appropriate constraints. The precise formulation of the constraints is described in reference 20 . Note that the residues here are particularly simple functions of the parameters.

Since the number of residues is the number of neasured
parameters.
$D F=N P-(E P+N M)+4=4-N M$
MONTE CARLO BETHODS
where:
DF is the number of degrees of freedon,
NP is the number of measured parameters,
NH is the number of unmeasured (nissing) paraneters, and
the 4 comes fron the conservation of 4 -momentuis.
This shows that the degrees of freedon is given by the number of effective constraints. Thus for the case of $K_{0} \longrightarrow \rightarrow \Pi^{-} \Pi^{0}$ we have 3 missing variables (the Π^{0}
 missing variable the K_{S} 3-momentum magnitude if ve don't include the timing information) we have a $3 C$ fit. once the fit is carried out, a neu set of paraneters $\left\{p_{\alpha}\right\}$ is obtained with a new variance watrix (G;)-1.

While the value of x^{2} tells whether the fit is good, it does not give any indication about systematic errors in the measurements. One must resort to a study of the so-called stretch plots. The stretch of a parameter p_{α} is defined by: stretch $=\left(P_{\alpha}-P_{\alpha}(\right.$ (eleas $\left.)\right) / \sqrt{G_{\alpha x \alpha}^{-1}-\left(G^{1}\right)_{\text {wio }}^{-1}}$

It is shown in reference 18 that the stretch shculd distribute spmetrically about zero with unit standard deviation. 1C fits are not highly enough constrained to provide useful stretch information, but the 3 C stretches can be useful for making fine adiustments to certain parameters.

Honte Carlo techniques were used at practically every stage of the experisent. Although the specific details are discussed in the appropriate chapters, a brief summary of the different applications is given below.

1. Applications

During the design stage of the experiment. the location of the counters was chosen to optimize the the trigger efficiency. In the latter stages of analysis, the precise geometrical efficiency was deternined.

Kinematic features of semileptonic decays and other contaninations were studied with fake events. Some of these properties were impossible to determine otherwise.

Fake measurements were used to test the geometry and later to study the effects of measurement errors on kinematic quantities.

Systenatic effects were studied by introducing known errors into the fake events and conparing the resultant distributions vith the undistorted ones.

The generation of fake events consisted of two parts. First a center-of-mass configuration was chosen, and then this was transformed to the laboratory. 3 pi decays were generated uniformly on the Dalitz plot and the events were weighted by the square of the supposed matrix element at later stages. Semileptonic decays were needed to study the effects of contamination. Hence a matrix element appropriate to the vector interaction with reasonable parameters was taken and events generated accordingly. All events were given a random orientation in space (in the c.m.). The decay vertex of the event was chosen randomly in the determined fiducial volume, and the K_{L}^{0} momentum was taken either fixed or according to a spectrum depending on the application. A Lorentz transformation was carried out and the event was rotated according to the appropriate bean angle.

Abstract

Approximately $2,500,000$ pictures (in three views for a total of 7.500 .000 were taken during the experiment, 20% of which vere analyzed at SLAC. The remaining 80% of the data are being analyzed at Brookhaven National Laboratory. Thus the data base considered here consists of approximately 50 rolls of film with 10,000 pictures on each. Every fifth roll was included in the sample so that changes in varions conditions over the course of the experinent could be studied.

1. Purpose and Procedure

The trigaer for the experiment was designed to be highly efficient for detecting K_{L}^{0} decays, with the not unexpected result that the event rate was about 20% of the trigger rate. Thus the main purpose of scanning the filw was to find the event candidates and record their presence for subsequent measurement. Each scan table had three projectors (one for each view of the chanber). The filn was projected upwards against two mirrors which reflected the light back down onto a horizontal white table. The magnification was about 20 for a total demagnification fron space of about 4. A frame was considered to have contained an event if the scanner saw a positive and a neqative particle track which originated fron a common decay vertex within the streamer chamber's sensitive volume. Due to
their topology, events were also referred to as vis. When an event was found, the pertinent information was coded onto a form and was later punched onto IEn cards. The data on the cards was then transferred to magnetic tape. Two independent scans were wade tbefore and after the first measurement pass).

2. Scan Record

The scanner entered the roll and frane number, the date, his ovn ID number, as well as a description of the event according to a set of instructions. The most important information from the scan vas the description of the particles' behavior on passing through the lead oxide plates. Each particle had a one digit code telling how many secondary particles emerged from the plate, ard a one digit code intended to allow a partial identification of the particle. These "track type" codes are explained in Table 1. Each event was given an "event type" code $2 i f$ Where i and f were the "track type" codes of the positive and negative tracks respectively.

Other information which was coded included the overall event quality (faintness of tracks, presence of flares, etc.l, and the possible existence of extra tracks in the picture which could affect the tise-of-flight determination. The former was not used however, since the ultimate decisicn on the
measurability of the event was left to the measurer when the event was on the measuring table.

3. Scanning Efficiency

The data sample consisted of 101.192 events which had shown up in at least one scan, had a good pDP-9 record, and had only one event in the frame. Since two independent scans were made, it is possible to estiaate the number of events lost due to their not having been scanned. Assuming only random losses, we have:
$N(L)=\{N(1) N(2)-N(12) N(F)) / N(12)$ and
eff $=N(F) N(12) / N(1) \mathbb{N}(2)$
where:
N(L) is the number of events lost.
$N(1)$. N(2) are the numbers of events found in scans 1 and 2 Iespectively,
$N(12)$ is the number of events found in both scans 1 and 2 . $N(F)=N(1)+N(2)-N(12)$ is the total number of events found in at least one scan, and
eff is the overall scanning efficiency.

These numbers are given in Table 2 for the complete sample as well as for some subsamples. In particular, the scanning loss for events subjected to the standard fiducial volume cut (described in a later chapter) is conpletely negligible
3. Event Type and (PO')2

While the event type from scanning and the value of (PO ') ${ }^{2}$ were not used directiy in the decay mode separation, they were used during early stages of the analysis. (P0') ${ }^{2}$ distributions for a few event type selections are shown in figure 12.
a) The plot for all events shows the separation between the 3 pi decays and the senileptonic modes.
b) Requiring type 211 eliminates virtually all the Ke3 decays, leaving k un and $k 3 p i$ in the approxinate ratio of 2:1.
c) Type 212, 213, 221, and 231 should give a rather pure Ke3 sanple.

Track Type Ccdes used in Scanning

0 - No secondaries.
1 - The particle goes thrcugh with no energy loss or scatter
2 - The particle loses eneray but does not scatter.
? - Electron shower. All secondaries of lower energy than the primarv, and no scatters.

4 - Pion interaction. At least one secondary is at some perceptible angle to the primary.

5 - Eneray loss, charqe reversal, no scatter.
6 - Particle fajis to reach plate. Usually due to its low momentum.

7 - Defies description in terms of cther codes. Includes decays in fliaht.

8 - Particle passes through the slot tetween the right and left olates.

9 - Behavior is obscured ty a flare behind the plate.

Table 2

Scanning kesults and Efficiencies

	$\begin{gathered} \text { all } \\ \text { events } \end{gathered}$	pass gecmetry	$\begin{aligned} & \text { fiducial } \\ & \text { volume cut } \end{aligned}$
N(1)	¢6653	90224	60564
$\cdots(2)$	96375	90069	60666
N(12)	91836	86704	59824
N(f)	1 C 1192	93588	61405
$N(12) / N(P) \quad$ (t)	90.196	92.644	97.425
$N(L)$	238.08	136.57	11.42
eff (${ }_{\text {(}}$ (99.765	99.954	99.981

Figure $12-\left(\mathcal{P O}^{\prime}\right)^{2}$ distribution for event type cuts.

1. Formulation of the Fit

The term "optical constants" refers to the camera positions, focal distances, optical distortions, camera tilts. etc. as vell as the positions of the fiducials in space. All these parameters were measured as well as possible - camera and fiducial positions were surveqed: lens parameters were measured on an optical bench; tilts were held tc design values which were known. In all there were 129 paraneters to consider.

The fiducial positions on film were measured in all three views for about forty adjacent frames on a given roll. The results were matched and averaged to provide one "best" set of measured fidncials. Then the parameters were adjusted to minimize the quantity:

$$
x^{2}=\sum_{i} w_{i}\left(v_{i}(\text { neas })-v_{i}(\text { proj })\right)^{2}+\sum_{\alpha} u_{\alpha}\left(p_{\alpha}(\text { weas })-p_{\alpha}(f i t)\right)^{2}
$$

where:
p_{α} (neas) is the measured value of the α IH optical constant, $P_{\alpha}(f i t)$ is the value of the α (Hical constant which is adjusted to minimize x^{2},
V_{i} (neas) is the ifd coordinate on filv of the fiducial (the index i refers to fiducial, view, and x or y direction in the film plane).
v_{i} (proj) is the coordinate calculated from the optical constants $\left\{p_{\alpha}(f i t)\right\}$, and
u_{∞} and w_{i} are appropriate weights.

The ter雍 in χ^{2} containing the measured values of the parameters had the effect of putting a partial constraint on them. This was desirable on two grounds. First. it was appealing to have all the measurements (parameters as well as film points) on a more or less equal footing as input to the program. More important hovever was the fact that serious numerical difficulties were avoided. If the parameters had been free to float without any constraint, X^{2} would have been invariant under rigid rotations and translations of the whole optical system, resulting in a sinqular matrix.

The measured values of the parameters were used as initial values, and corrections were obtained by the standard least squares minimization technique. The normal equations were built up and the resultant 129 by 129 matrix was inverted. The process took about four iterations to converge. The output also included a table of the film coordinates of the five large fiducials, which was used in the event reconstruction to register the fils. for this purpose the measured values (rotated and translated to the cptical coordinate system) vere used rather than the fitted values.
2. Comparison of Different Sets
Fiducial measurements were made on fill taken at various
times during the experiment, and optical constants vere
obtained. These sets vere compared for consistency in three
ways.
The most convincing approach involved processing actual
events with different sets of optical constants in the
geometry program and looking for differences. In
particular, optical constants determined from film taken at
the beginning and the end of the experiment were used to
process about 1000 events at each of these extremes.
Differences of various quantities computed on the same
events due to the two sets of optical constants were
histogramed. Both raw geometry output (momenta, angles,
vertex) and kinematic quantities derived from the geometry
output (K_{L} momentum, ($\left.P O^{\prime}\right)^{2}$, Π^{0} center of mass energy)
were checked. No significant effect was found - the
differences vere typically less than 10% of the errors on
the quantities.
The second method involved matching the different sets of
matched and averaged fiducials and seeing how well they
agreed. The rms deviation of the fiducial measurements on
adfacent frames was about 6μ (giving an error on the mean
of the order of 1μ. whereas the rms of the various sets
among themselves was typically 2μ. A more relevant scale for comparison was set by the fact that typical track points had an rms of 10μ, which was considerably greater than the possible 2μ systeratics due to choosing one set of optical constants over another.

The third method involved a mere visual inspection of the optical constants generated with the different sets of matched and averaged fiducials. It was noted that the various parameters agreed within their errors.
since all three considerations indicated that one set of optical constants adequately described the data, six sets of fiducial measurements unifornly spanning the data were averaqed and a single set of optical constants was obtained. Some of these values are shown in Table 3.

Values of Some of the Optical Constants used in the fuent Reccnctruction

x－coordinate	（11）	$0.5134 \pm .0014$	$0.5128 \pm .0014$	$1.9811 \pm .0018$
P－coordinate	（m）	$0.5151 \pm .0013$	－0．5420士．0013	$-0.0150 \pm .0009$
z－coordinate	（II）	$4.0386 \pm .0065$	$4.0398 \pm .0065$	4．0427t． 0065
focal length	（19⿴囗十介）	$52.197 \pm .076$	$52.315 \pm .077$	$52.324 \pm .076$
distortion parameter （C／Es）	$\left(m^{-4}\right)$	-73458 ± 1211	-65349 ± 1199	-71464 ± 1025

1．Measuring

In order to determine the track parameters in space （momenta，angles，vertex position）it vas first necessary to digitize the tracks on film and then to process the film points through a geometrical reconstruction program．In all three different types of measuring machines were used on the data．

The SPVB \｛SP5B\} was basically a converted scan table outfitted with an image plane digitizer having a least count corresponding to 2.6μ on film．The measured pcints vere vritten on magnetic tape by a Kennedy Incremental Tape Drive which was connected to the machine．

The NRI was a film plane digitizer with a least count of 1 ．It was on－line to a small computer（EMR 6020）whose function was to request the tracks and fiducials in the proper seguence，and to write the data on magnetic tape．

The Hummingbird III（HB3）was a CRT digitizer vhich was on－line to the IBM $360 / 91$ and operated in a semi－automatic node．The exposed parts of the film were displayed on a television screen，whereupon the measurer light－penned the tracks，enabling the softuare to accurately determine the
track positions on film. Portions of the track were fitted to arcs and pseudo-measured points were constructed.

The output frow the three machines was very similar. Aside from winor format differences, the Humbingbird data was distinquished from the rest by having 5 measured fiducials instead of 3 . An average of 7.5 points per track per view was typical for all the machines.
2. The Geometry Program

The output tapes from the measuring machines were processed through the computer proaram SYBIL. An earlier version of SYBIL has been documentedi9, but since the program has been conpletely reuritten, its main features will be outlined here.

The first step in the analysis involved registering the film. The measured fiducials were matched to the values obtained from the optical fitting prodram. The effects of lens distortions and any tilts of the fill plane relative to the optic axis were then removed by undistorting the track points, thereby allowing the use of ideal optics in subsequent computation.

The parameters initially used to describe a track were the cartesian coordinates of the beginning of the track first
measured point), the inverse morentum, and the azimuth and latitude of the track at the first point. Initial estimates of these quantities were made by doing a two view reconstruction in space. Measured points in one view were projected onto fitted circles in another view to obtain psendo-corresponding points. Due to the nature of this calculation, the two points the measured point and its pseudo-corresponding point) qave rise to rays which were guaranteed to intersect in space. Once this procedure had been carried out with all possible pairs of views, the generated space points were fitted to a helix.

In general there were two vertex candidates for an event corresponding to the two points of closest approach of the helices. The final fitting was such that a wrong initial estimate of the vertex tended to give an end result that was wronq. Experience showed that the two view helices were simply not accurate enough for the critical vertex deteraination. Hence a preliminary fit for the parameters was done on each track individually using the helix values as first estimates. The fitted single track parameters were then used to make the first estimate of the vertex location for the event. The parameter set from that point on consisted of the vertex coordinates for the event and the inverse momentum and angles for each track. The initial values were then adjusted to minimize the quantity: $x^{2}=\sum n(\text { res })^{2}$

where:

```
the sum is over all the measured points in all views,
w is the weiaht given by 1/(setting error)}\mp@subsup{}{}{2}\mathrm{ , and
res is the distance on film from the projected track to the
measured point.
The minimization was done in the film plane because the errors there were expected to be reasonably gaussian in nature, being due in large part to random measuring error.
```

The particle trajectory in the magnetic field was defined by the set of six differential equations with the independent paraneter $s, ~ t h e ~ a r c ~ l e n g t h ~ a l o n g ~ t h e ~ t r a c k: ~$

```
d\hat{u}/ds=(c/p)\hat{u}\times\vec{B}
d}\overline{\textrm{x}}/\textrm{d}s=\hat{\textrm{u}
```

where:
\hat{u} is the unit vector tangent to the trajectory.
\vec{x} is the position vector along the trajectory.
B is the magnetic field.
p is the momentun of the particle with the sign given by the charge of the particle, and
$c=.02997925$ for B in kilogauss, p in $G e V / c$ and s in weters.

These equations were nuserically integrated through the inhomogeneous magnetic field using a third order Runge-Kutta method. leading to the evaluation of the residues and their

derivatives with respect to the parameters. These were

fed into a fitting progran which prescribed corrections to the parameters. The corrections were applied and the whole inteqration and fitting procedure was repeated with the new values of the parameters. The process was terminated when the corrections lay within the error ellipsoid, i.e. when the corrections were sach that χ^{2} would change by less than 1 if they were applied.

In the process of fitting the parameters, the matrix representing the normal equations had to be inverted. The inverted watrix was just the full correlated variance matrix, and was written out on tape with the parameters themselves. The full variance natrix was necessary both for kinematic fitting and for calculating the variance of more complex kinematic quantities.

Since the intrinsic measuring accuracy varied from measurer to measurer, the variance matrix was scaled before the kinematic fit. The average standard deviation was corputed for each measurer, and the variance matrix for each of his (her) measured events was wultiplied by the square of this quantity. The values of average standard deviation ranged between 0.56 and 1.24 with an overall mean of 0.87 . Since the setting error used to process the measurements was $10 \mu_{\text {. }}$ this corresponded to a typical accuracy of 8.7μ on fila.

3. Geometry Failures

Of the 101,192 events that were to be measured frames with two V^{\prime} s had been excluded). 7604 failed to give good geometry record. The reasons for this are shovn in Table 4. The operator rejects due to flares and spirals, and the reconstruction failures were suspect as possible sources of bias, and required further consideration.

Events with a low momentum track which spiralled, making measurement impossible, vere viewed on the scan table and it was concluded that virtually all of then were $k \in 3$ decays. This was due to the low momentum of the spiralling track (10-100 Mev/c wich was kinematically forbidden in 3 pi decays) and the absence of observable energy loss by ionization which vould have been present for pions or mons.

Events whose measurement was rendered impossible by the presence of a flare in the picture were found tc present negligible bias for the 3 pi analysis. In apprcximately 80% of the cases, the flare was unrelated to the event configuration. The majority of these events had their vertex in the downstream half of the chamber and would have been removed by the standard fiducial volume cut described In a later section. In the case of the other 20%, it was possible that the flare was obscaring a very low momentum spiralling track, or that it was due to a very steep track.

Both of these configurations did not occur in 3 pi decays.

The number of events that SYBIL was unable to reconstruct (3495) was at the level expected had there been no remeasurements. This was due to a minor technical reason. since there were in fact two remeasurement passes. The remeasurements were done on the basis of what had failed an early version of SYBIL, and by the time the new version was written, it was not possible to remeasure the events that failed it. (After remeasurement, only about 700 events had failed reconstruction with the old SYBIL). The study of the reconstruction failures proceeded along two lines.

50,0003 pi and 20,000 semileptonic decays were generated with the observed K_{L} momentum spectrum as described in the previous section on Monte carlo methods. To improve the sensitivity of a later study of the 1 C kinematic fit, the semileptonic events were generated with (PO') 2 above $-0.020(\mathrm{GeV} / \mathrm{C})^{2}$. Fake film points were obtained by integrating the charged particle trajectories through the magnetic field and profecting points onto the film planes of the three cameras. After the appropriate optical distortions had been applied, these "ideal" film points were given qaussian erfors to simulate the real data. These "measurements" vere then run through SyBIL. Failures were at the 3\% level, and no biasind structure was found in them. The other approach involved running the failed weasurements
from the real data through a version of SYBIL where various convergence criteria, etc. had been relaxed. Virtually all the events could be forced to pass, and no apparent distinguishing features were found.

The 1075 fiducial failures were due to the fact that the old version of sYBIL allowed bad fiducial measurements in one view whereas the nev version did not. Hence the events with badiy measured fiducials were in general not remeasured.

Takle 4

Results of the Geometry progran

```
101192 - Total
93588 - Pass aeometry
    3495 - Fail reconstructicn
    1075 - Fiducial failure
    2866 - Not measured (operator reject)
        1389 - event obscured by flare
        683- no event in frame
        609 - low momentum track spirals making
            measurement inpossible
        125 - tracks too faint
        36 - two events in frame
        24-bad film
```

 168 - other

SPECIAL RUNS

Over the course of the data taking, certain calibration runs were made wherein particles other than ko's were run into the chanber.

1. Regenerated Ko.

The regenerator consisted of an $8^{\prime \prime}$ thick block cf the lead oxide and epory mixture used for the particle identification plates in the chanber. It was periodically moved into the beam fust outside the front wall of the chamber. The trigger was modified to require an $A-B$ coincidence on both sides of the chamber. only v's with vertices in the first third of the chamber were measured to further enhance the swall K_{s}^{0} signal. The $K_{s}^{\prime \prime s}$ were used to wake fine adjustments to the values of the bean andles.
2. Muons.

Muons were run into the chanber by turning off the sweeping magnets and taking the anti counters out of anticoincidence with Mo. Also M_{c} vas delayed by 5 ns to ensure reliable triggering on nearly $v=c$ particles (see section on counter logic). The muon events were ased to deteraine preliminary values of the timing constants.

3. Straight Muons.

Muons were r un into the chamber with the streamer chanber magnet off for beam angle studies. However the optical constants were different for the no-field condition, so the beam angles determined in this way were not used.

The separation of the various decay modes of the k_{L} to obtain a complete and uncontasinated sample of 3 pi decays was probably the most critical part of the analysis. The measurement errors had the effect of making some 3 pi events unphysical and the time-of-flight information was difficult to incorporate in a meaningful way. The kinenatic fitting progran FIT7320 was used to process the geometry output and extract the information present as completely as possible. Before the data could be run through the kinematic fitting progran, the bear angles had to be determined and the tine-of-flight formulated. Subsequent to the fitting, cuts on vertex location, K_{L}^{0} momentum, and fit probability were made. Events that had acceptable fit probabilities for the 3 pi and semileptonic hypotheses were given special consideration. Details of the above are given in this chapter.

The procedure of separating the decay modes using the 1 C fit depended critically on the time-of-flight determination of the k_{L}^{0} momentum. It was important to determine the time itself as accurately as possible, and in order to make the 1C meaningful, it was also necessary to understand the erfor on the time.

1. ADC Calibration Curves

The harduare and light diode calibration procedure is described in the section on counter electronics. The formulation of the data in a form suitable for computation is discussed below.

Cable lengths (delays) from 0-38 ns in increments of 3 or 5 ns gave ADC channel readings over the range $0-170$. For each tine in a given calibration run, the ADC channel reading for each counter was histogramed and averaged. Points more than 3 standard deviations from the mean were discarded and the mean and standard deviation were recomputed. A typical ris deviation was 2 channels, corresponding to an error on the wean of .07 channels for 1000 pulses.

The resulting "channels vs. nanoseconds" plots were smoothed
out by fitting a 4 TH order polynomial to the central region. The flat regions at the edges were left alone. The rms of this fit was typically less than 0.2 channels. a table of tires corresponding to ADC readings of $0,10 \ldots 170$ for each counter was prepared using a four point quadratic interpolation. The tables from five of the eleven calibration runs were required to properly give the ADC channel-to-time correlationn over the course of the experiment. The breaks corresponded to actual breaks in data taking (due to accelerator shutdown) and tc any changes in the counter or $A D C$ conditions.

The 5 tables were stored as part of a closed surroutine Which gave a time in nanoseconds for any $A D C$ channel value. A linear interpolation was used and the zero of time was arbitrarily set to correspond to a channel reading of 80 .
2. Timing Constants - Formulation

Consider a single counter. The reading of the time $A D C$ converted to nanoseconds does not directly give the ko time-of-fight. Recalling that a large $A D C$ reading signifies a small time-of-flight, we have the relation:

```
t' - t(ADC) = T + S/v + F (A, X)
```

where:

[^1]
Abstract

$t(A D C)$ is the ADC time. T is the ko time-of-flight to its decay vertex, s is the distance the charged decay particle travels from the decay vertex before hitting the counter, v is the speed of the charged particle as determined from its measured monentum and mass assignment, and $F(A, x)$ is a function of the amplitude $A D C$ reading and the x-coordinate of the particle hit on the counter as described below.

The tern $F(A, x)$ wist take two main features into account. The transit time of the light in the scintillator can be expressed as a term proportional to x, the arbitrariness of the origin beina absorbed into t'. The speed of liaht in the plastic is effectively reduced since internally reflected light as well as direct light goes into making a pulse above the threshold of the discriminator. Because this reduction is more pronounced for swall pulses, a term proportional to $A . x$ is also included. An amplitude correction due to the fact that small pulses take longer to rise to threshold is expressed as a quadratic in (A-Amax) where Amax is the readina at which the ADC saturates Thus: ```P(A,x)= n'x/C(cos0)+\mp@subsup{a}{}{\prime}(A-Amax) + (a'(A-Amax)2 + bAx```

where
n' is the effective index of refraction.
x is the hit position on the counter,
c is the speed of light in vacuum.
θ is the angle between the direction of liaht travel in the counter and the neqative $x-a x i s$.
a^{\prime} and a" are the amplitude correction coefficients, and b is the coefficient of the A. x term.

The quadratic in A-Amax was not a suitable correction for counter hits with a saturated amplitude $A D C$ reading since the exact amplitude was not known. A constant correction was calculated separately for such hits.

3. Tinina Constants - Preliminary Determination

The paratmeters reguired for each counter were the overall constant t^{\prime}. the index of refraction n. the A. x coefficient b. and the amplitude correction coefficients a' and a". The deteraination of these constants was a long iterative procedure, since the selection of the data to fit for the constants was itself dependent on the timing information. The C and D counter information was not considered until the final stage due to its more complicated nature.

Preliminary values for t ' were determined from the muon measurements assuming a value of 1.9 for n^{\prime} and no amplitude dependent terms. These values were then used to select a small number of 3 pi decays. Events with positive (PO') ${ }^{2}$ and straight through tracks on both plates (scan type 211) were written out if the timing from the four counters had an
ras deviation from the mean of less than 2.5 ns . A selection of about 300 events whose timing agreed well with only one of the 3 pi $O C$ solutions was made by hand. They were run through a least squares fit and new constants computed. While these constants were an improvement, they suffered from certain biases. The sauple of events was selected on the basis of good agreement to begin with, and there was no provision to include more events in the fit at later stages. In particular, the amplitude correction parameters came out consistent with zero since the events already agreed well with the $O C$ solutions before the fit. Furthermore the method was not suitable for large numbers of events. Nevertheless the constants were good enough for starting values in the subsequent step.

In order to make the input of the timing fit as independent of the starting values as possible, the mode identification was made without the timing at all. Ke3 decays were selected by requiring an electron shower or energy loss on one plate, a straight through track on the other fscan type 212. 213. 221. and 231), and a value of less than $-0.015(\mathrm{GeV} / \mathrm{C})^{2}$ for $(\mathrm{PO})^{2}$.

Events included in the fit were required to have at least three of the four counter times within 3 ns of their mean. The $O C$ solution nearer the average counter time was chosen and the times of the counters hit by the pion track were
transmitted to the fitting program if the agreement was better than 5 ns . The only amplitude dependence included vas a term linear in (A-Amax).

The fit was linear and iteration would not have been necessary if all the selected Ke3 events had been included. This was not the case, however, and the confidence in the procedure came from the observation that more events met the inclusion criteria on each successive iteration. The ras of 1.7 ins per counter included the geometry errors and corresponded to an intrinsic rms per counter of about 1.2 ns . The constants obtained from this fit were used in the first pass of the 1 C kinematic fit. The sample of unique 3 pi events was then used for the final timing fit with the full amplitude correlations.

4. Timing Constants - Final Determination

The unique 3 pi events were divided into five groups (corresponding to the five ADC calibration ranges), and a separate fit was done for each. The residue for a given counter in an event was of the form:
$t(f r o m 1 C f i t)-t\left(f r o w n d C^{\prime} s\right)$
and was transmitted to the fitting program if the amplitude ADC was below saturation. After the fit, the center of the distribution of the untransmitted residues was determined and taken as the constant amplitude correction for counter
times with a saturated amplitude ADC. As well as the five parameters (t.. $n^{\prime \prime}, b, a^{\prime}$. and $a^{\prime \prime}$) for each of the sixteen counters, the flight path from the target was fitted, for a total of 81 parameters.

The final values for the parameters, the rms deviations for each counter with and without a saturated amplitude ADC, and the constant amplitude corrections were stored as part of the 1C fitting package. Typical ros values for the counters are shown in Table 5. The generally inferior quality of the C and D timing as compared to the A and B timing is attributable to the inaccuracies in the extrapolation of the tracks after the plates, and to the large number of extra tracks hitting the C and D counters.

A weighted average vas used as input to the 1 C . and the input error was given by:
$\sigma=1 / \sqrt{\sum_{i} u_{i}}$
where $w_{\text {: }}$ is the weight (1/riss) of the i TH counter in the event. The distribution of o for good 3 pi events is shoun in figure 13. A high monentum K_{h} had fewer counter hits on the average, and hence tended to have a higher timing error.

Table 5
Typical Values of Counter Time rms Deviations Resulting from the Timing Fit

counter	rms without saturated amplitude ADC (nanoseconds)	rus with saturated amplitude ADC (nanosecends)
A 1	1.04	0.96
A 2	0.94	1.05
A 3	0.99	0.98
A 4	1.09	1.02
B1	1.12	1.23
B2	1.14	1.13
B3	1.16	1.24
B4	1.09	1.20
C1	1.20	3.19
c2	1.55	3.71
C3	1. 35	2. 25
C4	1.21	1.68
D1	1.28	3.75
D2	1.37	2.35
D 3	1.41	2.59
D4	1.17	1.94

BEAM ANGLE DETERMINATION

```
Since the beam particles vent through a lead filter before
the first collimator (13C1), they were treated as if they
originated from 13C1 rather than from the target. The angle
at the chamber subtended by 13C1 was . 45 mr vertically and
.86 mr horizontally (1.5" x 2.875" at 85 m).
Once a central beam direction had been established, the beall
angles for a diven event were corrected for the position of
the decay vertex in the chamber. The angles \lambda (latitude)
and (azimuth) were given by:
    \lambda=\lambda0+2/(x-x0)
    \phi=\varnothing0+y/(x-x0)
```

where:
x, y, and z are the vertex coordinates,
x^{0} is the x-coordinate of $13 \mathrm{c} 1(-85 \mathrm{~m})$, and
λ° and $\phi 0$ are the central values of the beam angles. the
determination of which is described below.
Since the beam at the chamber was 14 cm wide and 19 cm high.
the corrections vere of the order of 1 mr or less.
Preliminary values of λ^{0} and $\emptyset 0$ were obtained from the
distributions of $\left(\lambda-z /\left(x-x^{0}\right)\right)$ and $\left(\phi-y /\left(x-x^{0}\right)\right)$ for the
vector sum of the charged particle momenta in the regular
K_{i} data. The distributions were wide (FHHM of 50 mr) but
very symmetric about their symmetric values. The median was

EVENT SELECTION.

1. Fiducial Volnge Cuts

The final sample of events was subject to the fcllowing vertex cuts:

```
0.1<x<1.1
-0.07< < < 0.07
-0.065<z<0.005 or 0.055<z<0.125
```

Where the coordinates are in meters. This reduced the number of events from 93588 to 61405. The vertex distributions before and after the cut are shown in figures 14 and 15.

The rejection of events on the basis of vertex coordinates was dictated by several factors. The size of the collimators and the septa defined the beam profile in the y-z plane. kois whose vertices fell outside the edges of the main profile could be expected to have undergone nuclear scattering before entering the chamber. It was also necessary to remove events whose vertices had x-coordinates at both extremes of the chamber. The scan efficiency was lower at the beginning of the chamber due to the difficulty of deciding whether an event was fust inside or just outside the inner surface of the wall. The trigger efficiency was
found by Monte Carlo studies (described in another chapter) to fall quite sharply for events with vertices above 1.1 m in x in a manner consistent with the observed x distribution. also, due to their shorter track lengths. events above 1.1 tended to have momenta that were not as ell measured. Another very iwportant effect of the fiducial volume cut was to remove certain classes of contamination as described in a later chapter.
2. Probability Cuts

While the K_{i} angles and the charged particles inverse momenta and angles could be expected to have reasonably gaussian errors, the ko inverse momentun could not. This was because the time-of-flight had normal errors, and the momentum was a rapidly varying non-linear function of the time-of-flight in the relevant range. To avoid the systematic shift (to lower K_{L} momentum) that would have resulted from fitting in inverse K_{2} momentum, the fitting prograw (FIT73) did the fit in terms of time directiy.

The geowetry output, the $\mathrm{K}_{\mathrm{i}}^{0}$ angles, and the tining information, each with the appropriate errors, were fed into fIT73, and a probability (confidence level) for each of the five 3-body decay hypotheses was obtained. An examination of the probability distributions showed a lov probability spike below 8\% (see fiqure 17). This included Dalitz pairs.
nuclear interactions, gana conversions, and K_{i} decays with spurious timing, as well as the 8% of the good events which fust happened to have probability under 8\%. Since there was no way to distinguish on an event-by-event basis, a probability cut was dictated. The events that were rejected in this way represented an unbiased sample.

3. Momentum Cuts

The observed K_{i}^{0} monentum spectrum is shown in figure 16. Approximately $1 / 3$ of the data sample was removed by a k_{L} momentum cut. The small number of events below $1.4 \mathrm{GeV} / \mathrm{c}$ was rejected to eliminate cases were the timing of the master trigger (MT) was not determined by the timing pulse (T). Events above $4 \mathrm{GeV} / \mathrm{c}$ were removed from the data sample for two main reasons. The trigger loss was startinq to become non-negligible above $4 \mathrm{GeV} / \mathrm{C}$ (see figure 20). and keeping these events would have required corrections to the data that were larger than desired. More important however, was the fact that the confusion in separating the decay modes became larqe above $4 \mathrm{GeV} / \mathrm{C}$. This was due to the quadratic dependence of the k_{i}^{0} momentum error on the ko morentum.
4. Determination of Selection Criteria

Once the fiducial volume, 3 pi fit probability, and K_{L}
momentum cuts had been applied, the sample consisted of 5432 events. 91 events (1.7\%) had a semileptonic probability that was higher than the 3 pi probability and a total of 221 events (4.1\%) had an acceptable semileptonic probability (above 8\%). Virtually all of these potentially ambiguous events had 3 pi fit probabilities below 25% and K_{L} monenta above $3.5 \mathrm{GeV} / \mathrm{c}$.

This problem of ambiquous events was studied with the monte Carlo events described in the previous section on qeoletry failures. The error on the time-of-flight was obtained by studying the timing errors of the real data for different trigqer configurations and vertex positions. This was then. incorporated with the geometry (SYBIL) output of the fake events and run through FIT73.

The 3 pi events all fit the 3 pi hypothesis and their probability distribution showed no low probability spike. Approximately 0.7% of the 3 pi events with a good 3 pi fit (above 8%) had a semileptonic fit probability wich was also above 8%. In 0.3% of the 3 pi events the semileptonic probability was higher than the 3 pi probability, When the semileptonic event samples vere normalized for the (PO') ${ }^{2}$ cut involved in their qeneration, 0.02% of the ke3 and 0.08% of the Kmu3 events had a 3 pi fit with a probability above 8\%. In about 65\% of these cases the 3 pi fit probability was hiqher than the fit probability for the correct
semileptonic hypothesis. As in the case of the real data. the ambiquous events had low probabilities (below 25\%) and high K_{L} momenta (above $3.5 \mathrm{GeV} / \mathrm{C}$).

This lack of correspondence between the real data and the Monte Carlo events was not surprising since the real data had certain non-qaussian characteristics that were impossible to simulate in the Monte Carlo study. The most logical selection method was to choose events whose 3 pi probability was higher than the semileptonic prcbability. Hovever the other two possibilities levents with a good 3 pi fit without regard to the semileptonic fit, and events with a good 3 pi fit and no good semileptonic fitl were also reasonable, albeit less appealing.

Thus the samples chosen by all three criteria were retained for the final analysis, and differences in the extracted parameters were used to estimate systematic errcrs due to fit loss and semileptonic contamination. Figure 18 shows the (PO') ${ }^{2}$ distribution of the events whose 3 pi prcbability was higher than the semileptonic probability. Also shown is the (PO') 2 distribution for events with a semileptonic fit probability above 8% and a 3 pi fit probability below 8%.
 along bean.

Figure 15 - Distribution of vertex coordinates transverse to bean.

Figure 16 - K_{L} momentum spectrum.

Figure 17 - Kinematic fit probability for the K3pi hypothesis.

Figure 18 - (POT)2 distribution of selected k3pi events and non-K3pi events

CHAPTER V

the $\mathrm{TIO}_{0} \mathrm{C} . \mathrm{B}$. KINETIC ENERGY SPECTROL

Figure 19 shows the spectrum of $\pi^{\circ} \mathrm{c} . \mathrm{m}^{\circ}$. kinetic energy (hereafter called $T\left(\pi^{0}\right)$ for the selected 3 pifits. The object of the latter stages of analysis was to extract the $T\left(\Pi^{0}\right)$ dependence of the square of the decay matrix element from this spectrun. The steps in this procedure were:
a) Each event was veighted for trigger inefficiencies.
b) The effects of finite resolution in moving events from one bin to another were taken into account. The effect of 4-body radiative decays was also consiđ̉ered.
c) The number of events in each bin was corrected for virtual electromagnetic effects.
d) A least squares fit to the corrected spectrun was done to extract the $T\left(\pi^{0}\right)$ dependence.

Each step is fully desribed in the following sections. a). b) , and c) vere small corrections, but b) and c) depended slightly on the final answer, necessitating iteration. The formulation of step d) was non-linear, so it toc was iterative, regardless of the effect of corrections.

TRIGGER CORRECTIOA

```
1. Trigger Efficiency
The geouetrical efficiency was studied by generating fake
(Monte Carlo) events uniformly on the Dalitz plct. The
observed beam angles vere used, and the charged particle
trajectories were integrated through the magnetic field to
the trigger counter planes, where it was determined whether
the event would have triggered. The events were
subsequently weighted in accordance the observed T( 片0)
spectrum.
10000 events at each of several fixed ko momenta were
generated with a vertex m-coordinate between 0.1 w and
1.1 m. Figure 20 shovs the trigger inefficiency as a
function of the ko momentum between'1 Gev/c and 5 Gev/c.
50000 events were generated with the observed ko spectrum
cut off above 6 GeV/C. For ko momentum between 1.4 Gev/c
and 4 GeV/c and vertex x-coordinate between 0.1 and 1.1 m
the trigger loss was 1.0%.
2. Trigger пeight
Tha selected 3 pi events were each given a weight to correct
for the trigger inefficiency. The calculation cf this
```


[^2]
RESOLUTION CORRECTION

A study of the resolution of the $T\left(\pi^{\circ}\right)$ easurenent was necessary to choose the appropriate bin width for the spectrun and to formulate the correction to the spectrum due to the notion of events fron one bin to another.

1. Experimental Resolution

The Monte Carlo events vere useful for finding the effects of measurement and reconstruction errors, since the true (generated) value of $T\left(\Pi^{\circ}\right)$ was known. The distribution of the difference between the generated and fitted values of I(To) had a standard deviation of 2.1 Mev and a mean value of $\mathbf{- 0 . 0 7}$ Hev. This was compared with the error that was calculated fron the fitted variance matrix. The distribution of fitted $T\left(\Pi^{\circ}\right)$ errors gave a typical value of 1. 1 ± 0.6 Mev for the Monte Carlo events and $1.4 \pm 0.8 \mathrm{MeV}$ for the 3 pi events selected from the real data.

This was all consistent with a typical resoluticn of 2 MeV for the determination of $T\left(\pi^{\circ}\right)$. In absence of a resolntion correction to the spectrum, a bin width of 5 Mev or even larger yould have been dictated, but since a resolution correction was being made, 3 MeV was chosen.

The Monte Carlo events were used to construct a matrix that would transform the fitted spectrum (with the bin contents as the elements of a colum vector) into the generated spectrum. This matrix would then be applied to the spectrum of the real data.

$$
G_{i}=\sum_{j} R_{i j} F_{j}
$$

where:

G_{i} is the number of events in the i TH bin of the generated spectrun,
Fj is the number of events in the j tH bin of the fitted spectran, and
$R_{i j}$ is the $i f$ IN element of the resolution matrix R.
$R_{i j}$ was given by the fraction of events in the $j^{T H}$ fitted bin that had been generated in the i IH bin. It should be noted that the resolution watrix depended on the form of the decay spectrum used to veight the events. This was not an important consideration since the resolution correction had a small effect on the slope parameter. Also, since events in a given fitted bin tended to have been generated within one or two bin widths of their final bin. the effect of the decay matrix element was small. In any case, the resolution matrix determination was iterated and the convergence of the procedure was immediate.

Another form of the resolution atrix was tried, namely the inverse of the matrix whose $i j^{T H}$ element was the fraction of events generated in the $j \underline{T H}$ bin that ended op in the i IA bi: after fitting. This inverse matrix had the advantage of being independent of the parameters of the $T\left(\Pi^{0}\right)$ spectrum. but it contained rather large negative elements (being the inverse of an all positive matrix). It relied cn a delicate cancellation to transform the fitted Monte Carlo spectrum into the generated one, and when it was applied to the real spectrum it amplified the statistical fluctuations to the point of making further analysis hopeless.

radiative corrections

1. Multiplicative Correction

Radiative corrections to order e^{2} were necessary due to the processes represented by the Feynaan diagrans in figure 21. The infrared divergence in the amplitude for diagrans (b) and (c) is exactly canceled by the low photon energy contribution of diagram (d). The treatiment of the 4 -body final state was broken into two parts which were quite different.

The rate for very low energy photons (up to 0.05 Mev which was much less than the experimental resolntion) was lumped together with the virtual processes (b) and (c). This resulted in a net correction which conld be applied on a bin-by-bin or on event-by-event basiszz. This correction ranged from about 2% for $T\left(\Pi^{\circ}\right)=0$ to about 10% for $T\left(\pi^{0}\right)=53 \mathrm{MeV}$ The correction diverged for $T\left(\pi^{0}\right)=53.86$ MeV. the kinematic maximum, since this corresponded to zero relative velocity between the two charged pions. The bulk of the variation was due to the coulowb (inner bremsstrahlung) terw.
2. 4-body Radiative Decays

Approximately $30000 \mathrm{~K}_{\mathrm{L}} \longrightarrow>\Pi^{+} \Pi^{-} \Pi^{0} \gamma$ decays were generated
in 4-body phase space according to the matriz element of reference 23. They were then run through the geowetry and kinesatic fitting prograns. The 3 pi fit probability showed a lov probability spike with 10 N of the events below 1% probability and 21% below 8%. The 79% of the 4 -body decays vith an acceptable 3 pi fit were exanined in detail and used for the correction described belov.

The fitted value of $T\left(\Pi^{\circ}\right)$ was on the average 1.3 ± 3.3 hev higher than the generated value. This was expected since the value of $T\left(\pi^{\circ}\right)$ calculated from the invariant mass of the $\pi+$ and π - gave in fact the total missing neutral energy, namely $T\left(\Pi^{0}\right)+E(\gamma)$. The average photon energy was 2.2 MeV and the effect of the tining information in the 1C fit was to "take backn about $40 \times$ of the extra kinetic energy that had been wrongly attributed to the Π°.

Although radiative decays with a photon energy above 0.05 HeV vere at the 1% level, their effect was correctable. This was accomplished by adding the radiative event sample In with the 3 pi Nonte carlo events (weighted to reflect the relative branching ratio) before calculating the resolution natrix described in a previous section. The resolution matrix without the radiative decays was retained for comparison.
(a) No Correction

(b) Self-energy

(c) Coulomb

(d)

+ additional contribution from gauge invariance

2443A23

Figure 21 - Peynan diagrams showing radiative corrections to order e^{2}.

1. Other Modes

We consider here the problem of "events" that were not 3-body charged decays of a K_{L}. Branching ratios cited are from reference 2.

$$
\mathrm{K}_{5}^{0} \rightarrow \pi^{+} \pi^{-}
$$

$K_{9}^{0 \cdot s}$ originated from regeneration and nuclear interactions mainly in the front wall of the chamber. Their decays were easily distinguishable kinematically, since putting m12=m0 in the formula for ($\left.\mathrm{P} \mathrm{O}^{\prime}\right)^{2}$ gives:

$$
\begin{aligned}
\left(P O^{\prime}\right)^{2} & =\frac{-0.98 \mathrm{~m}^{2}\left(1+1.02 \mathrm{Pt} \mathrm{z}^{2} / \mathrm{m}^{2}\right)}{\left(1+\mathrm{Pt}^{2} / \mathrm{M} 0^{2}\right)} \\
& <-0.98 \mathrm{~m}^{2} \quad\left(=-0.018 \quad(\mathrm{GeV} / \mathrm{C})^{2}\right)
\end{aligned}
$$

These "events" would normally fail the $0 C$ fit (and hence the 1C) but in actual practice were removed by a very gentle (PO')2 cut.

$$
x_{L} \longrightarrow \pi^{+} \pi^{-}
$$

The rate of this Cp-violating decay is about 0.2% of the rate for all charged decays of the K_{l}. They vere removed along with the $\mathrm{K}_{\mathrm{s}}{ }^{\prime \prime} \mathrm{s}$ by the aforementioned (PO')${ }^{2}$ cut.

Electron Pairs
\#o's resulted from the decay $K_{i} \longrightarrow 3 \Pi^{0}$ which occurs
almost twice as frequently as $k_{L}^{0} \longrightarrow \longrightarrow \Pi^{0}+\Pi^{0}$. 1.17% of the $\pi^{\prime \prime}$ is decay to $\mathrm{De}^{+} \mathrm{e}^{-}$with the rest going to two gammas. Gammas converting in the front window of the chamber or in the central electrode mesh were removed by the standard fiducial volume cut (see figure 22), but electron pairs from conversion in the gas or from the internal conversion (Dalitz pairs) remained. Since the pairs tended to be of low momentum (having on the average $1 / 6$ the K_{i}^{0} momentum), they had low total transverse monentum. The invariant mass assuming both to be pions was also low. While many of the pairs thus simulated physical 3 pi decays, the 1 C fit eliminated virtually all of them. This was confirmed by an examination of the scanning information.

$$
\Lambda^{0}-\ldots p \Pi^{-}
$$

No's oriqinating fron nuclear interactions in the front window of the chamber were partially removed by the fiducial volume cut. since their $c \tau$ is only 7.73 cm . A noticeable sianal persisted however (see figure 23) until the gentle (PO') ${ }^{2}$ cut was made. at which point the signal vanished. That this should be so was best seen from the Monte Carlo studies which showed that only $2-3 \%$ of the Nois survive the (PO') 2 cut. The few survivors could be expected to fail the 1C fit.

Nuclear Interactions

Nuclear interactions in the oas of the chanber's sensitive
volume were characterized by a large invariant mass and were removed by the (PO') 2 cut. In any case they would have failed the 1 C fit.

2. Accidental Triggers

An estimate of the rate of accidental triggers can be made using the fact that there were approximately 50 machine pulses per trigger and approximately 4.5 triggers per V. for a rate of $1 V$ per 225 pulses. Thus there was a $1 / 225$ chance of an accidental V^{\prime} s occurring in a given triggering pulse. For the v to have shown up in the picture, it must have occurred within 0.8 ps of the trigger the time delay for the chamber to firel. Averaging the available time over the $1.6 \mu s$ pulse length aives a probability of $1.6 / 1.61 / 225$ or $1 / 600$ for the accidental V to have shown up in the picture. From this it can be seen that about (3.5/600) or 0.6% of the observed events vere in fact accidental V's with a non-v triager, and that $(1 / 600)$ or 0.2% of the observed events had two V's in the frame. The actual number of double V's observed was about 1 of the total number of V 's, which can be oxplained by the known neutron fluxil and the cross sections for associated production in the anti counters and front wall of the chamber.

To study the effect of the accidental contamination, a tape was generated where the timing $A D C$ record for each event was
taken from the next non-v trigger in the data. The events werd run through the kinewatic fit with this spurious timing. and about 3.5% were found to give an acceptable 3 pi fit. Normalizing for the 3 pi branching ratio gave a net . 1\% contamination of the 3 pi sample due to accidental V's. As well as being a numerically stall source of contamination, accidentals were found to be relatively bias-free. The slope parameter extracted from the "accidental" ョvents with a good 3 pi fit was consistent with that obtained from the regular 3 pi sample. The reason for this is that the $1 C$ fit with spurious timing had the effect of reiecting about 80% of all events, and crudely selecting 3 pi decays from the remaining 20% by a oc.fit. The fitted value of $T\left(\Pi^{\circ}\right)$ was left more or less intact, since it depended mainlv on the measured invariant mass of the charged particles.
3. Backward Gammas

The concern here is that gama rays from the To could go backward in the lab, convert in the chamber front wall or anti counters, and veto the event. A Monte Carlo study of 3 pi decays showed that approximately 0. . \% of the events had a backward gamma ray that could hit the anti counters.
Allowina a 2% conversion probability gives a loss of 0.02% bv this mechanism. The bias due to this loss is cowpletely negligible, since the events with a backward gamma ray had
the same $T\left(\pi^{\circ}\right)$ spectrum as the rest of the generated sample.
4. Counter Inefficiency

Events in which both particles hit the trigger counters vere used to study the counter efficiencies. The A counters were found to be virtually 100% efficient, but an overall 2% loss was found in the B counters. This was expected since the B counters were behind the lead oxide plates. In fact the losses were confined to track types 0 (nothing comes out) and 4 (large angle scatter). Since 15% of the events had only one particle hitting the trigger counters, the counter inefficiency resulted in a net loss of 0.3\%. A Monte Carlo study showed that the slope parameter extracted frow these events was about 7% higher than that of the entire sample.

Figure 23 - Invariant mass spectrum assuming $p \pi$.

The least squares fit described below was done to the uncorrected $T\left(\pi^{0}\right)$ spectrun, to the spectrum with the corrections applied individually, and to the fully corrected spectrum. The event samples chosen by all three of the selection criteria discussed in the chapter on event selection were analyzed. The errors on the bin contents were evaluated at the expected values, so the χ^{2} to be minimized was given by:

$$
\begin{aligned}
& x^{2}=\sum_{i}\left(n(i)-\left.\int_{\Delta_{i}}|M|^{2} d \phi\left|2 / \int_{\Delta_{i}}\right| m\right|^{2} d \phi\right. \\
& \text { where: }
\end{aligned}
$$

$n(i)$ is the content of the i IH bin,
M is the matrix element expressed as a function of $T\left(\Pi^{0}\right)$ and the parameters to be extracted,
d ϕ is the phase space element, and
the integral is over the phase space available for the ith bin in $T\left(\pi^{\circ}\right)$

Three forms for $\|\left.^{2}\right|^{2}$ were tried:

$\\|M\\|^{2}=a(1+b t)$	(1inear spectrum)
$\\|\left. M\right\|^{2}=a^{\prime}\left(1+b^{\prime} t\right)^{2}$	(1inear matrix elesent)
$\mid H^{2}=a^{\prime \prime}\left(1+b^{\prime \prime} t+c^{\prime \prime} t^{2}\right)$	(quadratic spectrum)

where:

```
a, b, a'. b', a", b", and c'* are the parameters to be
            extracted.
    t = (2T(TT0)-T3max)/T3max, and
    T3max = 53.86 MeV is the maximum allowed value of T(TT0).
```

2. Results of the Fit

An examination of the results of the fit to the uncorrected spectrum showed that the linear matrix element was preferred. The corrections were then formulated using the values of a^{\prime} and b^{\prime} obtained, the parameters for the corrected spectruw were extracted, and the corrections reformulated in terms of the new parateters. The newly corrected spectrum was then fitted, and since the parameters did not change perceptibly, the process was stopped. Tables 6. 7. and 8 show the results of the final fit for the three parametrizations of the spectrum. Since the values of $a_{\text {. }}$ $a^{\prime \prime}$. and a^{n} merely reflect the overall normalization, they are not shoun. The errors quoted in the tables are statistical only.

Table 6
Extracted Parameters for Linear Spectrum
$|M|^{2}=a(1+b t)$

3 pi fit	allgood	good 3 pi
the best	3 pifits	fit only

	$\begin{gathered} -0.767 \pm 0.021 \\ 0.8 \% \end{gathered}$	$\begin{gathered} -0.767 \pm 0.021 \\ 1.0 \% \end{gathered}$	$\begin{gathered} -0.771 \pm 0.021 \\ 0.3 \% \end{gathered}$
trigaer correction b probability	$\begin{gathered} -0.772 \pm 0.021 \\ 0.5 \% \end{gathered}$	$\begin{gathered} -0.772 \pm 0.021 \\ 0.7 \% \end{gathered}$	$\begin{gathered} -0.775 \pm 0.021 \\ 0.2 \% \end{gathered}$
```resolution correction b probability```	$\begin{gathered} -0.768 \pm 0.021 \\ 6.7 \% \end{gathered}$	$\begin{gathered} -0.768 \pm 0.021 \\ 7.8 \% \end{gathered}$	$\begin{gathered} -0.772 \pm 0.021 \\ 2.9 x \end{gathered}$
```resolution & radiative corrections b probability```	$\begin{gathered} -0.787 \pm 0.021 \\ 10.2 \% \end{gathered}$	$\begin{gathered} -0.787 \pm 0.021 \\ 11.88 \end{gathered}$	$\begin{gathered} -0.791 \pm 0.021 \\ 4.8 \% \end{gathered}$
all corrections b probability	$\begin{gathered} -0.792 \pm 0.021 \\ 7.4 \% \end{gathered}$	$\begin{gathered} -0.792 \pm 0.021 \\ 8.8 \% \end{gathered}$	$\begin{gathered} -0.795 \pm 0.021 \\ 3.3 \pi \end{gathered}$

Extracted	Parameters for Linear Matrix Element$\|M\|^{2}=a^{\prime}\left(1+b^{\prime} t\right)^{2}$		
	3 pi fit the best	all good 3 pi fits	good 3 pi fit only
```uncorrected b" probability```	$\begin{gathered} -0.425 \pm 0.014 \\ 6.8 \% \end{gathered}$	$\begin{gathered} -0.424 \pm 0.014 \\ 5.18 \end{gathered}$	$\begin{gathered} -0.428 \pm 0.014 \\ 4.4 \% \end{gathered}$
```trigaer correction b probability```	$\begin{gathered} -0.428 \pm 0.014 \\ 6.5 \% \end{gathered}$	$\begin{gathered} -0.428 \pm 0.014 \\ 4.8 \% \end{gathered}$	$\begin{gathered} -0.432 \pm 0.014 \\ 4.08 \end{gathered}$
```resolution correction b probability```	$\begin{gathered} -0.425 \pm 0.014 \\ 44.68 \end{gathered}$	$\begin{gathered} -0.425 \pm 0.014 \\ 36.2 \% \end{gathered}$	$\begin{gathered} -0.429 \pm 0.014 \\ 35.3 x \end{gathered}$
```resolution & radiative corrections b' probability```	$\begin{gathered} -0.439 \pm 0.014 \\ 56.1 \% \end{gathered}$	$\begin{gathered} -0.438 \pm 0.014 \\ 46.8 \pi \end{gathered}$	$\begin{gathered} -0.442 \pm 0.014 \\ 47.0 \% \end{gathered}$
```a11 corrections b probability```	$\begin{gathered} -0.443 \pm 0.014 \\ 54.2 \% \end{gathered}$	$\begin{gathered} -0.442 \pm 0.014 \\ 45.2 \% \end{gathered}$	$\begin{gathered} -0.446 \pm 0.014 \\ 44.48 \end{gathered}$

Extracted Parameters for Linear Matrix Element $|M|^{2}=a^{\prime}\left(1+b^{\prime} t\right)^{2}$

Table 8
Extracted Parameters for Quadratic Spectrum $1 M^{2}=a^{\prime \prime}\left(1+b^{\prime \prime} t+c^{\prime \prime} t^{2}\right)$

3 pi fit	all good	good 3 pi
the best	3 pi fits	fit only

uncorrected
$b^{\prime \prime}$
$c^{\prime \prime}$
probability
$-0.832 \pm 0.033$
$0.134 \pm 0.052$
$5.6 \%$

$-0.826 \pm 0.032$	$-0.844 \pm 0.033$
$0.119 \pm 0.052$	$0.148 \pm 0.054$
$4.7 \%$	$3.3 \%$

trigger
correction $b^{\prime \prime}$
$c^{\prime \prime}$
probability
resolution correction $b^{\prime \prime}$
$c^{\prime \prime}$
probability
resolution $E$ radiative corrections
$b^{\prime \prime}$
$c^{\prime \prime}$
probability

## al1

corrections
c"
probability
$-0.871 \pm 0.033$
$0.158 \pm 0.053$ 49.8\%

$-0.835 \pm 0.03$
$0.126 \pm 0.05$
$4.3 \%$
$-0.833 \pm 0.033$
$0.133 \pm 0.052$
$33.8 \%$
$-0.856 \pm 0.03$
$0.137 \pm 0.05$
$46.2 \%$
$-0.865 \pm 0.033$
$0.145 \pm 0.052$
$43.8 \%$
$-0.852 \pm 0.033$ $0.155 \pm 0.053$ 2.9\%
$-0.851 \pm 0.033$
$0.162 \pm 0.054$
29.65
$-0.873 \pm 0.034$
$0.166 \pm 0.055$
$41.4 \%$
$-0.881 \pm 0.034$
. $172 \pm 0.054$ 38.5\%

As is shown in Tables 6,7 , and 8 , the differences in the extracted parameters due to different event selection criteria were well within the statistical errors. The exclusion of the 91 events with a better semileptonic fit was indicated by the fact that this small sample had a significant fraction of tracks with electron-like scan codes. No such effect was.found in the other 130 events with a good semileptonic fit, so there was no logical reason to exclude them.

Since the fit to a quadratic spectrum was slightly vorse than that to a linear matrix element, only the linear spectrum and linear matrix element will be considered.

1. Systematic Errors

Possible contamination or loss due to the $1 C$ fit was at the $2 \%$ level (an upper linit of 91 events lost or 130 events contaminating). The maximum effect on the slope parameter was 14. Other sources of contamination and loss were a few tenths of a percent at most and were found to have negligible effect on the slope parameter. The corrections applied to the spectrum resulted in $3-4 \%$ increase in the slope parameter. An error in the corrections of $25 \%$, which is a pessimistic estimate, would have resulted in a $1 \%$ error
in the slope parameter.

Thus a net $2 \%$ was felt to be a very conservative upper limit of the possible systematic error on the slope paraneter The correct way to combine the statistical and systematic errors was unclear, so they were not combined. The errors quoted below are statistical only. The quoted error on the linear spectrum slope parameter has not been scaled by 1.3 to reflect $\sqrt{x^{2} / D P}$ for that fit. The factor for the linear matrix element would be 1.0 .

## 2. Linear Spectrun

This is the most comm way of parametrizing the data, but our results show that it is not as good as a linear matrix element, The reason for its persistence is that early experiments got a smaller (in absolute value) slope and the difference was not of 1mportance. Our result in terms of $b$ is:

$$
b=-0.792 \pm 0.021
$$

Common practice expresses the slope in terms of $g$ or $\sigma_{0}$ where:

```
|M| ~ N + G(s3-s0)/m(#+)2
MMI2~1+2\mp@subsup{\sigma}{0}{}M(\mp@subsup{K}{L}{0})(2T(\mp@subsup{T}{0}{0})-T3max})/m(\mp@subsup{\Pi}{}{+}\mp@subsup{)}{}{2
```

In terns of these oarameters our results are:

```
\sigma=0.630 \pm 0.017
\sigma}=-0.287\pm0.00
3. Linear Matrix Element
Our result in terms of b' is:
b'=-0.443\pm0.014
If g' and \sigmao
```



```
|M|~1 + O
we have:
g' = 0.714 \pm0.023
\sigma
Figure 24 shows the corrected \(T\left(\Pi^{0}\right)\) spectrum divided by phase space. The curve represents the best fit for the linear matrix element squared.
```



Figure 24 - Decay matrix elenent squared
extracted from the corrected spectrus as a function of $T\left(\Pi^{\circ}\right)$

## INTERPRETATION

```
1. Comparison with Others' Results
```

The $T\left(\pi^{0}\right)$ spectrum has been studied in many experiments and the latest conpilation 2 gives a world average value of $0.610 \pm 0.021$ for the slope parameter $q$. Unfortunately. a comparison of this number with our result can be very misleading for two wain reasons.

The compilation consists of seventeen values. af the eight wost recent measureaents 24-31, four24-27 did the fit in terms of a linear spectrum only, and three othersza-30 allowed quadratic dependence in the spectrum but found it consistent with zero. This qualitative feature is in disagreement with our findings. Since our data clearly indicates the presence of a quadratic term in the spectrum. our value of $g$ is not terribly relevant. our value of $q^{\prime}$ (0.714 $\pm 0.023$ ) is the slope parameter of importance. and it is significantly higher than the vorld average of $g$. It may be noted that a recent high statistics experimentiz not included in the compilation has also found substantial deviation from a linear spectrum.

Because of the small of the 3 pi decay. it is natural to try to expand the matrix element in a power series of the kinematic variables. Since the final state interactions are
presumably smalli3, the matrix element is expected to be nearly real. The simplest non-constant matrix element would be linear in $T\left(\Pi^{\circ}\right)$, and our result is consistent with this. our analysis in terms of a quadratic spectrum indicates that the inaginary part of the slope parameter is consistent with zero (assuming a complex linear matrix element). and the fit assuming a real linear matrix element actually has a slightly higher probability. a linear spectrun would have been somevhat of a surprise since it would have demanded a very specific relation between the linear and quadratic coefficients in the matrix elenent.

Also of importance in discounting the siqnificance of a comparison of our results with the world average is the fact that the agreement among the seventeen values of $g$ is extremely poor. The large $\chi^{2}(69.1$ for 16 degrees of freedom) indicates that it is not really meaningful to averaqe the results. It seens clear that at least some of the experiments suffered frow significant systematic errors. Without singling any of the individual experiments out, it is neyertheless helpful to consider sone of the probleas that could be responsible for the contradictory results.

Many experiments have had a geometrical efficiency which was low and non-uniform over the Dalitz plot. It goes vithout saying that the large corrections necessary to yield a spectrum froa which the matrix element can be extracted

```
would not have to be very much in error to give erroneous
final results. As has been mentioned earlier, the
separation of the decay modes is critical. Virtually all
of the experiments to date have not had a constrained
kinematic fit. The lack of such a constraint makes the
separation more difficult. Many experiments have not taken
into account the effects of resolution on the T(T0)
spectrum. In cases where the resolution is poor, the
resultant deformation of the spectrum could severely affect
the slope parameter determination. Also of importance is
the fact that the data from some experiments have not been
corrected for electromagnetic effects. As can be seen from
Tables 6-8, radiative corrections are not negligible.
2. The }\DeltaI=1/2 Rule
As vas previously described, a comparison of the matrix
element slope parameters for the 3 pi decays of the ko and
K+ leads to certain conclusions regarding the isospin
transitions involved in the decays.
The world averages of the slope parameters for K+ decays
arez:
g(t+-)=-0.214\pm0.004
g(00+)=0.522 }=0.02
```

The experimental situation for the the $K^{+}$slopes is a little better than that for the $K_{L}$ since the compiled values of $q(++-)$ and $g(00+)$ are in better agreement with each other. This is partly due to the saller number of individual experiments, and in the case of $g(004)$. to the relatively large errors. The experiments measuring $q(00+)$ have all hai fairly low statistics. There are experimental difficulties in detecting the qamas frov the mo decays. and the existence of some high values in the compilation may be taken as an indication that the final word regarding this mode has yet to be said.

The parametrization in terms of spectrum slope is unfortunate since the matrix element slope is what is really wanted. The distinction is not large for $g(++-)$ since its magnitude is small, but the quoted value of $g(00+)$ is presumably somewhat lower than the desired atrix element slope. While the computations done below are very sensitive to the values of the slopes and should use matrix element slopes, $G(++-)$ and $G(00+)$ vill be used unchanqed (there is no choice). As for the $k_{L}$ slope, both $g(t-0)$ and $g^{\prime}(+-0)$ Will be considered, as well as the world average of $g(+-0)$.

The notation in the discussion that follows is the same as that used in Chapter 1. The slope parameters $\sigma(++-)$. etc. differ from $g(++-)$, etc by a constant factor 2 m $\left(\pi^{+}\right)^{2}$, but the factor cancels out in the computation.

A study of the reduced rates (see reference 2, $p$. 193) shous no real evidence for $I=3$ in the final state, so $a^{+}(3,5)$ and $a^{\circ}(3, S)$ will be set to zero. Expressing the slope parameters in terms of the irreducible matrix elements gives:
$\frac{g(+-0)+g(++-)-g(00+) / 2}{g(+-0)}=\frac{3(\delta-\epsilon)}{2(1-\varepsilon / 2)(1+\delta)}$

## where:

$$
\begin{aligned}
\epsilon=\lambda(3) / \lambda(1) \quad & \text { is the ratio of the } \Delta I=3 / 2 \text { to } \Delta I=1 / 2 \\
& \text { contribution to the } I=1 \text { symmetric final } \\
& \text { state, and } \\
\delta=\mu(3) / \mu(1) \quad & \text { is the analogous quantity for the } I=1 \\
& \text { non-symmetric state. }
\end{aligned}
$$

Thus $\in$ is a measure of the violation of the $\Delta I=1 / 2$ rule for the symetric waves; $\delta$ for the non-symmetric. $\boldsymbol{E}$ can be deterained from the reduced rates ${ }^{33}$ and has been found to have the value $-0.064 \pm 0.008$. Depending on the value of $g(+-0)$ used this leads to the following values for $\delta$ :
$\delta=0.105 \pm 0.031$ for $g(+-0)=0.610 \quad$ (vorld average)
$\delta=0.126 \pm 0.026$ for $g(+-0)=0.630 \quad$ (our value for $g$ )
$\delta=0.216 \pm 0.026$ for $g(+-0)=0.714 \quad$ (our value for $\left.q^{\prime}\right)$

Since the value of $g(00+)$ can be considered suspect. it is of interest to calculate $\delta$ without using it directly. This can be done as curcent algebra makes the prediction ${ }^{34}$ : $g(+-0)=q(00+)$
Calculating as above:
$\delta=0.043 \pm 0.015$ for $g(+-0)=0.610 \quad$ (world average)
$\delta=0.052 \pm 0.013$ for $g(t-0)=0.630 \quad$ (our value for 9$)$
$\delta=0.086 \pm 0.013$ for $g(4-0)=0.714 \quad$ (our value for $g^{\prime}$ )
3. Conclusions

It seems clear that the $\Delta I=1 / 2$ rule is violated at the level of several percent. The admixture of $\Delta I=3 / 2$ for the non-symaetric final state ( $\delta$ ) is quite sensitive to the particular values of the slopes used, but is in the $5 \%-20 \%$ range and has the opposite sign to the $\Delta I=3 / 2$ admixture for the symmetric state (€).

The precise value of $\delta$ should not be taken too seriously until the slope parameter $g(00+1$ is better determined. $g(004)$ is also of interest as check of current algebra as mentioned above, and one would hope that a definitive measurement wight be forthcoming in the near future.

There are also theoretical difficulties. The general attitude inplicit in the whole discussion has been that the
the obsorved structure is an intrinsic property of the weak interaction. Quite the opposite vieupoint, namely that final state interactions of the pions are entirely responsible for the observed deviations from phase space, has been taken by several authors3s-3a with some degree of success. It is beyond the scope of this paper to address such questions in detail. except perhaps to note that the relative success of current algebra predictions tends to Gavor the viewpoint that the weak interaction itself is mainly responsible for the observed slopes.

We have performed a reliable measurement of the matrix element slope parameter. On this basis certain conclusions have been draun regarding the $\Delta I=1 / 2$ rule. Clearly such an interpretation suffers from present theoretical ambiguities which are in need of work.

No matter how well designed and executed an experiment is, there are always certain things that one would do differently if one were performing the experiment again. The purpose of this short section is to outline some of the features that might be changed were the experjment to be redone.

The resolution on the beam angles might have been inproved had a shorter, more point-like target been used. Helium or vacuum along the entire flight path would have cut down the scattering of the ko's. The flux of low energy ko's aight have been increased had a higher energy electron beam been used with a radiation length of copper before the target.

The quality of the timing information would have been slightly better had the $A$ and $B$ counters been on the decay vertex side of the lead oxide plates and the $C$ and $D$ counters directly behind the plates. The chamber could then have been rectangular which would have allowed tetter track measurement behind the plates (important in analyzing the semileptonic modes). This was not done because of the difficulty in getting the counter light pipes out of the chasber in such a geometrical configuration, but whether it was truly impossible is not known.

Tilted optic axes woald certainly have bedn used to redace vignetting in the downstream view and optical distortions in all three vievs. In fact this has been done on all subsequent streaner chanber experiments.

The effectiveness of the scanning information ight have been increased had the scan codes been formulated differently. This again is likely to be more important in the semileptonic analysis. Measuring all five fiducials rather than three probably would have made a slight improvement in the overall quality of the track easurements.

## heperences

1. A. Pais, (f. Gell-Mann), Proceedings of the Fifth Annual Rochester Conference (1955).
2. Particle Data Group. Physics Letters 50B, no. 1 (1974).
3. J. Bernstein, "Blementary Particles and Their Currents". p. 286. . H. Preeman and Co. (1968).
4. A. Sirlin, "Lectures on Heak Interactions", p. 180. 1969 Sumer School Centro de Investigacion $Y$ de Estudios Avanzados del I. P. R.
5. R. E. Marshak, Riazuddin, and C. P. Ryan, "Theory of Weak Interactions in Particle Physics", p. 605 . Wiley-Interscience (1969).
6. C. G. Callen and S. B. Treiman, Phys. Rev. Letters 16. 153 (1966).
7. R. H. Dalitz, Physical Society of London proceedings. A69. 527 (1956).
R. H. Dalitz, Rev. Hoa. Phys. 31. 823 (1959)
8. S. Meinberg. Phys. Rev. Letters 4. 87 (1960).
9. G. Barton, C. Kacser, and S. P. Rosen. Phys. Rev. 130. 783 (1963).
10. M. E. Rose, "Elementary Theory of Anqular momentum". p. 85, John Wiley \& Sons. Inc.
11. F. Bulos. A. odian, F. Villa and D. Yount, "Streamer Chamber Developwent", SLAC Report 74 (1967).
12. A. Ddian. private communcation.
13. B. Rertolucci, "A Digital Time Sequence Generator". SLAC-TN-70-10.
14. MKodak Data for Aerial Photoqraphy" (Second Edition). p. 13. Eastman Kodak Co.. Rochester. NY.
15. R. H. Dalitz, Phys. Rev. 94. 1046 (1954).
16. W. R. Frazer, "Elefentary Particles", p. 71, Prentice-Hall. Inc.
17. F. T. Soluitz, Ann. Rev. Nucl. Sci. 14. 375 (1964).
18. J. P. Berge. P. T. Solmitz, and H. D. Taft. Rev. Sci. Instr. 32, 538 (1961).
19. D. E. C. Fries, "Filmplane Reconstruction of rajectories in $z$ Nonuniform Maqnetic Field: the Computer proqram sybil". SLAC Report 103 (1969).
20. J. C. H. Park, "PIT73 - K Kinematic fitting Routine". to he published.

A predecessor of PIT73 was FIT70, which is described in J. C. H. Park. "PTM 70 - A Kinematic Fitting Routine". SLAC Report 150 (1972).
21. G. W. Brandenburg. A. D. Brody. W. B. Johnson.
J. S. Loos. G. J. Luste, J. A. J. Matthews, K. Morivasu,
B. C. Shen. W. M. Smart. F. C. Winkelman, and
. J. Yamartino, Phys. Rev. 7D, 708 (1973).
22. The Fortran coie was supplied by R. L. Messner (Univ. of Coloradol and was based on the unpublished calculations of Jack Suith (SUNY Stony Brook). The result aqreed with that of Neveu and Scherk in the limit of very low photon energy, but handled the higher energies more correctly,
A. Neveu and J. Scherk, Phys. Letters 27B. 384 (1968).
23. R. Ferrari and M. Rosa-Clot, Nuovo Cimento 56\%. 582 (1968).
24. P. James, L. Montanet. R. paul. P. Saetre,
D. H. Sendall. P. Bertranet, G. Burgun, B. Lesquoy, A. Muller, E. Pauli. S. Zylberajch, and O. Skjeggestad. Nucl. Phys. B49. 1 (1972).
25. W. Krenz, H. . K. K. Hopkins, G. R. Evans, J. Euir, and K. J. Peach, Nuovo Cimento Letters 4. 213 (1972).
26. M. Hetcalf, G. Neuhofer, F. Niebergall, M. Regler, f. Stier, K. Minter, J. J. Aubert. $X$. de Bouard, V. Lepeltier, L. Hassonet. H. Pessard, M. Vivargent, T. R. Willitts. M. Yvert. W. Bartl, and H. Steuer. Physics Letters 40B, 703 (1972).
27. G. Alexander, 0. Benary, I. Borowitz, K. Lande,
Y. Oren. I. Stumer, B. Burkhardt, H. Filthuth,
A. Putzer, and I. Bar-Nir. Nucl. Phys. B65. 301 (1973).
28. M. G. Albrow, D. Aston, D. P. Barber, L. Bird,
R. J. Ellison, C. Halliwell, R. E. H. Jones,
A. D. Kanaris, F. K. Loebinger, P. G. Jurphy,
M. Strong, J. Malters, A. J. Wyroe, D. D. Yovanovic. and R. F. Templeman, Physics Letters 33B, 516 (1970).
29. C. D. Buchanan. D. J. Drickey. F. D. Rudnick,
P. F. Shepard, D. R. Stork, R. K. Ticho, C. -Y. Chien, B. Cor, L. Ettlinger, L. Resvanis, R. A. Zdanis,
E. Dally, E. Seppi, and p. Innocenti, Physics Letters 33B, 623 (1970).
30. G. W. Brandenburg, W. B. Johnson, D. W. G. S. Leith, J. S. Loos, J. A. J. Matthevs, F. C. Winkelman, and R. J. Iamartino, "n weasurenent of the Ruu 3/Ke3 Branching Ratio, and the R3pi Decay Parameters", SLAC Report 1212 (1973).
31. R. C. Soith, L. Mang. M. C. Mhatley, G. T. Zorn, and J. Hornbostel, Physics Letters 32B, 133 (1970).
32. 8. L. Wessner. Univ. of Colorado Ph. D. thesis. to be published.
33. M. K. Gaillard, "Some Open Questions in k Decay". Preprint CERN-TH-1693. Talk Presented at the Triangle Meeting on Weak Interactions (1973).
34. C. Bouchiat and Ph. Meyer, Physics Letters 25B, 282 (1967).
35. N. N. Khuri and S. B. Treiman, Phys. Rev. 119, 1115 (1960).
36. G. Barton and C. Kascer. Phys. Rev. Letters B, 226 (1962).

## 37. R. N. Chauduri, Phys. Rev. 175, 2065 (1968).

38. D. Greenhera, Phys. Rev. 178, 2190 (1968).

[^0]:    *Ph.D. dissertation.

[^1]:    t' is an overall additive constant which includes all the cable lengths, electronics delays, etc.

[^2]:    

