1. PHOTON TRANSITION AMPLITUDES PREDICIED BY THE TRANSFORMATION BEIWEEN CURRENI AND CONSTITUENI QUARKS
2. SATURATION OF THE DRELL-HEARN-GERASIMOV SUM RULE

INGA KARLINER

STANFORD LINEAR ACCETFRATOR CENTER
STANFORD UNIVERSITY
Stanford, California 94305

PREPARED FOR THE U.S. ATOMIC ENERGY COMMISSION UNDER CONTRACT NO. AT(04-3)-515

Manuscript Completed September 1974

The work presented here has been done in close colaboration with my advisor Professor Frederick J. Gilman, to whom I am grateful for suggested ideas, encouragement and constant help.

It is a pleasure to thank all the people who make the atmosphere at SLAC both educationally rich and personally enjoyabie. Among many who contribute to that, 1 want to thank espectaliy Professor Sidney D. Drell.

I would like to express here my gratitude to the entire family of Professor Robert Hofstadter, who have been most hospitable and helpful throughout my stay at Stanford and who together with Professor Leonard I. Schiff made it possible for me to begin studies at this University.

[^0]
PREFACE

The $\operatorname{sU}(6)_{w}$ - group structure appears in both current algebra and in the spectroscopy of hadrons. Recentiy, constderable progress has taken place in relating these two $\operatorname{SU}(6)_{W}$ structures. We investlgate the consequences of the proposed correspondence, as it applies to real photon transitions, In Part 1 of this work. We show the general structure of such transitions and present a set of resulting selection rules for the multipole character of the photon amplitudes. Many specific amplitudes for both mesons and baryons are worked out and their signs and magnitudes are compared with avallable experimental data.

In Part 2 we investigate the saturation of the Drell-Hearn-Gerasimov sum rule for the forward spin-filp amplltude of nucleon Compton scattering. We study the sum rules' saturation using recent analyses of single pion photoproduction in the region up to photon laboratory energies of 1.2 GeV . The original sum rule is decomposed into separate sum rules originating from different isospin components of the electromagnetic current. The isovector-isovector sum rule, whose contributions are known best, is found to be nearly saturated, lending support to the assumptions underlying the sum rules. The fallure of the isovector-isoscalar sum rule to be saturated is then presumably to be blamed on Inadequate data for inelastic contributions.

TABLE OF CONTENTS

Part 1.

Photon Amplitudes Predicted by the Transformation between
Current and Constituent Quarks 1
section I. Introduction 2
Section ll. Current and Constltuent Algebra 9
Section 111. Phenomenological Approach to the Transformation
Properties of Hadrons under Current Algebra... 18
Section IV. Photon Transitions of Hadrons 26
Section V. Photon Transitions of Mesons. 37
Section VI. Photon Transitions between Baryons. 40
Section VII. Experlmental Tests of Baryon Amplitudes 44
Section Vill. Summary and Conclusions 51
Appendix 58
References to Part 1 62
Tables to Part 68
Part 2.
Saturation of the Drell-Hearn-Gerasimov Sum Rule. 84
Section I. Introduction 85
Section 11. Analysis of Contributions 87
A. The Isovector-isovector Sum Rule 91
B. The Isoscalar-lsoscalar Sum Rule, 92
C. The interference Sum Rule 93
Section Ill. Discussion and Conclusions. 94
References to Part 2 98
Tables to Part 2 100
Figures to Part 2 103

LIST OF TABLES

Part 1.

Table	V.A :	Matrix Elements for Photon Transitions among 35 and 1 L=0 Meson States.............................. 68
Table	V.B :	Predicted and Experimental Widths for Radiative
		Transitions among $\underline{35}$ and 1 L=0 Mesons.......... 69
Table	V.C :	Photon Transition Amplitudes from Non-strange
		Mesons with $L^{\prime}=1$ to $L=0$ Mesons.................. 70
Table	VI.A :	Photon Amplitudes for Transitions from $56 L^{\prime}=0$
		to $56 \mathrm{~L}=0$ Baryon States.......................... 72
Table	VI.B :	Photon Amplitudes for Transitions from $70 L^{\prime}=1$
		States to Nucleon and Delta States in the 56
Table	VI.C :	Photon Amplitudes for Transltions from $56 L^{\prime}=2$
		States to Nucleon States in the $56 \mathrm{~L}=076$
Table	V1.0:	Photon Amplitudes for Transitions from $56 L^{\prime}=2$
		States to Delta States in the $56 \mathrm{~L}=0 . \ldots78$
Table	VII. A:	Comparison of Matrix Elements of $\mathrm{D}_{+}^{\text {m }}$ for 70
		$L^{\prime}=1 \rightarrow 56 \mathrm{~L}=0$ Photon Transitions with Expe-
		riment. 80
Table	VII. B:	Comparison of Matrix Elements of $\mathrm{D}_{+}^{\text {+m }}$ for 56
		$L^{\prime}=2 \rightarrow 56 \mathrm{~L}=0$ Photon Transitions with Expe-
		riment. 82
Table	VII.C:	Comparison of Matrix Elements of $D^{m m}$ for Photon
		Transitions form Radially Excited $5 \underline{6} L^{\prime}=0$ to

LIST OF TABLES (cont'd)
Part 2.

Table $1:$	The Isovector-isovector Contributions to the
	Drell-Hearn-Gerasimov Sum Rule................. 100

Table Il: The Isoscalar-Isoscalar Contributions to the Drell-Hearn-Gerasimov Sum Rule................ . . 101

Table 111 : The Isovector-lsoscalar Contributions to the Dreli-Hearn-GerasImov Sum Rule.

LIST OF FIGURES

Figure 1 . Single pion photoproduction contribution to the difference between the photon-nucleon cross sections in the net helicity states $3 / 2$ and $1 / 2$ for isovector photons................................. 104

Figure 2. Single pion photoproduction contribution to the difference between the photon-nucleon ross sections in the net helicity states $3 / 2$ and $1 / 2$ for isoscalar photons................................. 105

Part 1.
 PHOTON TRANSITION AMPLITUDES PREDICTED BY THE transformation between current and constituent QUARKS

I. Introduction

At present, symmetries observed in the interactions of hadrons play a somewhat different role than in those areas of physics where we belleve the dynamics of interactions is understood. In the theory of gravitation or of electromagnetism symmetries simply reflect invariance of known interactions. When results of some processes are related by a symmetry in these theorles, we can alvays obtain these results through explicit calculations, but we may directly use the symmetry properties of the theory, which often turns out to be a much simpler method. We do not need the details of the dynamics in such cases, but instead make use of the fact that the interaction belongs to a class of interactions invariant under some type of transformation. For example, the cross section for electron scattering by an unpolarized charge is independent of the polarization of the incident electron. We can obtaln this result directly with some effort, calculating the cross sections for hoth polarizations of the electron, or or we can simply use the Invariance of electromagnetic interactions under parity to arrive at the same result.

In the case of strong interactions and the structure of hadrons, we do not have an adequate dynamical theory at the present time. Observed symmetries of strong interactions have become therefore one of the most powerful tools for re-
lating various processes and making predictions. ${ }^{1}$ They also provide important information by narrowlng down the class of possible dynamical theories of strong interactlons to those which are conslstent with the experimentally observed symmetries and conservation laws.

Historically, one of the first symmetries discovered in this area was the "charge Independence" of nuclear forces. ${ }^{2}$ Strong interactions of the proton and neutron, as well as thelr masses (to order α), were found to be identical. The two particles were postulated to be members of a two dimenslonal irreducible representation (I.R.) of a symmetry group of strong interactions: the $S U(2)$ of isospin. ${ }^{3}$ This group has three generators I_{1}, I_{2} and I_{3}. Their commutation relations are the same as those of the rotation group generators. The third generator, l_{3}, is linearly related to the electromagnetic charge. ${ }^{3}$ Ireducible representations of this group are characterized by the value of the $1 \operatorname{sospin}, l$, just as the representations of the $O(3)$ group are characterlzed by the value of the angular momentum, J. The 1.R. contalning proton and neutron has $1=1 / 2$, with proton and neutron having $1_{3}=1 / 2$ and $-1 / 2$, respectively. Isospin invariance of strong Interactions was further confirmed as other hadrons were tiscovered. They were founit to form isospin multiplets of definite spin, mass and parlty : three pions with $l=1, J=0$, three ρ mesons of $I=1, J=1$; four $N^{*}(1235)$ states with $1=3 / 2$ and $J=3 / 2$; etc. The isospin properties of the photon have also veen deter-
nined. The photon has $I_{3}=0$ and consists of $I=1$ and $I=0$ components.

Discovery of strangeness and its conservation in strong interactions, together with the discovery of baryon and meson resonances, led to a postulate that strong interactions are invarlant under a still higher symmetry group, the "unltary symmetry" Su(3), suggested by Gell-Mann in 1.351 . This symmetry, although not exact, again results in approximately degenerate multiplets of hadrons, corresponding to the Irreducible representatlons of $S U(3)$. The group has 8 generators, conventionally labelled $\lambda^{2}, i=1, \ldots 8$, of which the first three coincide with the lsospin generators, so that the isospln $S U(2)$ is a subgroup of the larger symmetry. Within a given multiplet (I.R.) the varlous members are characterized by their isospin, the third component of the isospin, and the hypercharge Y, defined as a sum of the baryon number and strangeness, $Y=B+S$. The l. R. itself is characterized by two quantities, the dimension of the representation and the highest value of the hypercharge, for example. Mesons of a given J^{P} seem to appear as singlets, or to form octets approximately degenerate in mass: the plon belongs to the $J^{P}=0^{-}$octet of pseudoscalar mesons, the ρ-meson is a part of the $J^{P}=1^{-}$octet of vector mesons, etc. Baryons appear in singlets, octets and decuplets. For example, the nucleon belongs to a $J^{P}=1 / 2^{+}$octet, while the $N^{*}(1236)$ (the 3-3 resonance), three Y^{*}, two Ξ^{*}, s and the Ω^{*} form the $J^{P}=3 / 2^{+}$
decuplet.
The lowest non-trivial representation of the $\operatorname{su}(3)$ group is three dimensional

$$
\begin{aligned}
& \left(Y, 1, I_{3}\right)_{1}=(1 / 3,1 / 2,1 / 2) \\
& \left(Y, 1, I_{3}\right)_{2}=(1 / 3,1 / 2,-1 / 2) \\
& \left(Y, 1, I_{3}\right)_{3}=(-2 / 3,0,0)
\end{aligned}
$$

The question of whether quarks, as the members of this multiplet have been christened by Gell-Mann, exist as physical states has been studied extensively since their introduction into hadron physics in 19645^{5} They have not been found, but a very suggestive picture results, when we express baryons as three quarks and mesons as a quark and an antiquark. The multiplet structure for both baryons and mesons is then identical with the one discussed above. The Su(3) representation corresponding to qqa reduces to a decuplet, two octets and a singlet; the one corresponding to $q \bar{व}$ reduces to an octet and a singlet. This, in addition to the results of experiments designed to probe the structure of hadrons, seems to indlcate that hadrons behave as if they have "constituents", and that quarks are very strong candidates for these constituents.

This success of the constituent quark picture for the multiplet structure of hadrons makes it important to study In detail those consequences of the quark model whlch we can
compare with the avallable experlinental data. This thesls is Hevoted to detailed study of these consequences in the case of electromagnetic transltions.

Electronagnetic and weak interactions can be described in terms of "currents", in analogy with the classical eiectric current interactions. The Lorentz, isospin and SU(3) transformation propertles of these currents have been proposed so as to agree with experimental observations; e.g. the electromagnetic current is a Lorentz vector, has isospin components 0 and 1 , and transforms as a sum of the 3 and 8 members of an octet under su(3). Conventionally, these properties are represented by $V_{\mu}^{3}\left(\dot{x}_{1} t\right)+\frac{1}{\sqrt{3}} V_{\mu}^{8}(\vec{x}, t)$. Weak currents Involve both currents with the properties of a Lorentz vector and axial-vector, $A_{\mu}(\vec{x}, t)$. ive present the $\operatorname{Su}(3)$ commutation relations proposed for the axial-vector currents and for space integrals of their time components, the axial charges, in Section 11 of this paper. The commutation relations of weak and electromagnetic currents and charges lead to numerous sum rules when both sides of such commutation relations are sandwlahed between hadron states. Evaluation of these sum rules poses the next question: how are the transformation properties of currents related to the transformation properties of hadrons and to the symmetries of strong interactions? There are many attempts to answer this important question. A formalism, proposed by Gell-Mann ${ }^{5}$ and based on "current quarks", expresses currents as $\vec{q}(\vec{x}, t) F q(\vec{x}, t)$, where $q(\vec{x}, t)$ is the
"current quark" field and F is an operator of appropriate algebraic (SU(3)) and Lorentz transformation properties.

A complete knowledge of the transformation from constituent to current quark states, together with the identiflcation of the observed hadrons with simple (constituent) quark model states, would permit one to calculate all current Induced transitlons between hadrons. A major step in this direction has been achleved by Melosh, who was able to formulate and explicitly calculate such a transformation in the free quark model. Whlle the details of such a transformation certalnly depend on strong interactions dynamics, it is possible that certaln algebralc propertles of the transformation abstracted from the free quark model may hold in general.

We shall assume that such a transformation does indeed exist and that some of its algebralc properties can be abstracted from the free quark model. For the case of the axial-vector charge, the many consequences of this assumption have already been extensively worked out and compared with experiment using the Partlally Conserved Axlal-Vector Current hypothesis. 8,9 Here we study the consequences of the same assumption for real $\left(q^{2}=0\right)$ photon transltions.

In the next section we review the origin and the basic properties of the theory along with some of its lmmediate consequences for the classification of baryons under an algebra generated by currents. This subject is further dis-
cussed in Section III, where we attempt to expand the wave functions of hadrons in terms of current algebra representations by fitting experimentally known matrix elements. The general algebralc structure of photon amplitudes is discussed in Section IV, as well as the method of calculating specific matrix elements. We derive a set of selection rules which include, and generalize, the old su(6) result that the transition from the nucleon to $3-3$ resonance should be magnetic dipole in character. This general discussion of the theory is completed by a comparison with other theories with a related algebralc structure.

In section V the photon transltions between mesons are detailed, along with a comparlson of the predictions with the available experlmental data. A detailed exposition of baryon electromagnetic transitions is contained in section VI, and in Section VII we compare both the sign and magnitude of the predicted amplitudes with experiment. The signs are testable through a multipole analysis of pion photoproduction $X N \rightarrow N^{*} \rightarrow \pi N$, where the signs of the previously calculated pion decay ${ }^{8,3}$ amplltudes also come into play. Experiment and theory are found to be consistent, including the relative signs of pion decay amplitudes obtained from anallzing $\pi N \rightarrow N^{*} \rightarrow \pi \Delta$. A summary and some conclusions are found in section VIIl. The general out look is very good, encouraging further study of the unterlying dynamics and the extension to the $q^{2} \neq 0$ region.

11. CIIRRENT AND CONSTITUENT ALGEBRA

Let us begin with a review of developements in current algebra which led to the introduction of the $\operatorname{SU}(6)_{W}$ algebra of currents. The vector and axial-vector currents, $V_{\mu}^{i}(\vec{x}, t)$ and $A_{\mu}^{i}(\vec{x}, t)$, have been postulated to obey simple equal time commutation relations, which are to be exact as far as strong Interactions are concerned. 4 The right hand side of these commutation relations generally consists of a term involving a delta function and terms involving gradients of delta functions. The gradient terms do not contribute to the three dimensional space integrals of the commutation relations, so that the 16 vector and axlal-vector charges

$$
\begin{align*}
& Q^{i}(t)=\int d^{3} \times V_{0}^{i}(\vec{x}, t) \\
& Q^{i}(t)=\int d^{3} \times A_{0}^{i}(\vec{x}, t)
\end{align*}
$$

where $i=1,8$ is an $\operatorname{SU}(3)$ index, commute to form the algebra abstracted by Gell-Mann ${ }^{4}$

$$
\begin{align*}
& {\left[Q^{i}(t), Q^{j}(t)\right]=i f^{i j k} Q^{k}(t)} \\
& {\left[Q^{i}(t), Q_{5}^{j}(t)\right]=i f^{i j k} Q_{5}^{k}(t)} \tag{11-2b}
\end{align*}
$$

$$
\left[Q_{5}^{i}(t), Q_{5}^{j}(t)\right]=i f^{i j k} Q^{k}(t)
$$

$f^{i j k}=s t r u c t u r e ~ c o n s t a n t s ~ o f ~ s u(3) ~$
The Q^{i} 's generate ordinary $\operatorname{su}(3)$. It is easy to show that Eqs. (11-2) define the algebra of chiral su(3) SU(3), since they are equivalent to the statement that $Q^{i} \pm Q_{5}^{i}$ each form an su(3) algebra and that the right-handed charges, $Q^{i}+Q_{5}^{i}$, commute with the left-handed charges, $Q^{i}-Q_{5}^{i}$. The last of the Eqs.(1I-2) sandwiched between nucleon states moving with infinlte momentum in the z-direction ylelds the Ader-Weisberger sum rule. ${ }^{11}$

When a world scalar fensity is adjoined to the vector and axial-vector current components and commutation of space integrals of such operators continued until a closed algebra is formed, the result is a $U(12)$ of 144 generators. ${ }^{12}$ The elenents of thls algehra are space integrals of current densitles of the general form $\stackrel{q}{q}(\bar{x}, t) \Gamma_{+} \lambda^{i} q(\vec{x}, t)$, when expressed In terms of the current quark fields.

An sU(6) ${ }_{W}$ subalgebra of this $U(12)$, which conslsts of positive parity, "good", i.e. those with finite matrix elements between states with $p_{\vec{z}} \rightarrow \infty$ operators, which commute z-hoosts, proves to be of particular interest. ${ }^{12}$ The "W" stands for the H-spln: $W_{x}=\frac{1}{2} \beta \sigma_{x}, W_{y}=\frac{1}{2} \beta \sigma_{y}, N_{z}=\frac{1}{2} \sigma_{z}$, which acting on quarks are the same as S_{x}, S_{y} and S_{z}, but for antiquarks, since $\beta=-1$, are equal $-s_{x},-S_{y}$ and s_{z}. The genera-
tors of the $\operatorname{SU}(6)_{w}$ algebra are space integrals of the time component of the vector currents, z-component of the axialvector currents and space integrals of antlsymmetric tensors $F_{\mu \nu}$, where $\mu, \nu=2,3$ or 3,1 . Explicit current quark model expressions for the 35 generators of the $\operatorname{su}(6)$ of currents are

$$
\begin{align*}
& F^{i}=\int d^{3} x q^{+}(\vec{x}, t) \frac{\lambda^{i}}{2} q(\vec{x}, t) \tag{11-3a}\\
& F_{1}^{i}=\frac{1}{2} \int d^{3} \times q^{+}(\vec{x}, t) \beta \sigma_{x} \frac{\lambda^{i}}{2} q(\vec{x}, t) \\
& F_{2}^{i}=\frac{1}{2} \int d^{3} x q^{+}(\vec{x}, t) \beta \sigma_{y} \frac{\lambda^{i}}{2} q(\bar{x}, t) \tag{11-3b}\\
& F_{3}^{i}=\frac{1}{2} \int d^{3} x q^{+}(\vec{x}, t) \sigma_{z} \frac{\lambda^{i}}{2} q(\vec{x}, t) \tag{11-3c}
\end{align*}
$$

$$
1=0,1, \quad, 8
$$

where λ^{i} is an SU(3) generator $\left(\lambda^{0}=\sqrt{\frac{2}{3}} 1\right)$ and $q(\vec{x}, t)$ is a current quark field.

To classify operators and to describe the transformation properties of irreduclble representations (l.R.'s) we will use here two equivalent methods of labelling. The first one directly defines the properties of a given object under $\operatorname{SU}(6)_{w}$, e.g. in

$$
\begin{array}{r}
\left.\underline{M} \underline{N}^{2 w+1}\right\} \\
-11-
\end{array}
$$

M is the dimension of the $1 . R$. under the full SU(6), N the dimension under the ordinary $\operatorname{SU}(3)$ (generated by $Q^{i}{ }^{i}$) subalgebra, ant H is the value of the $w-s p i n$. A second method, which we will use predominantly throughout this paper, fefines the transformation properties of considered states and operators unter the full $S U(6)_{W}$ and its chiral $\operatorname{su(3)\times 5U(3)}$ subalgebra. Under the chiral algebra,

$$
(A, B)_{S_{z}}
$$

transforms as an A-dimenslonal representation under $Q^{i}+Q_{s}^{i}$, as a B-dimensional representation under $Q^{i}-Q_{5}^{i}$, and S_{Z} is the elgenvalue of Q_{5}^{0}, the singlet axial-vector charge. ${ }^{13}$ When we use the second notation, the $S U(6)_{w}$ transformation properties of a discussed object will either follow from the context, or will be given explicitly. The "ordinary" su(3) content (under Q^{i}) of (A, B) is just that of $A \times B$. We will also use L_{z} defined as $L_{z}=J_{z}-S_{z}$, to complete the description of the transformation properties of states and operators, so in effect we work within an $\operatorname{SU}(6) \times O(2)$ framework.

According to the classiflcation described above, the axial-vector charge

$$
Q_{s}^{i}=\frac{1}{2}\left(Q^{i}+Q_{s}^{i}\right)-\frac{1}{2}\left(Q^{i}-Q_{s}^{i}\right)
$$

transforms as $\left\{(8,1)_{0}-(1,8)_{0}, L_{z}=0\right\}$, or equi valentiy as $\left\{\underline{3 g}, 8^{3}, L_{z}=0\right\}$. In this work we will be concerned prima-
rily with photon transitions induced by the dipole operator, $D_{ \pm}^{e m}$, the first moment of the electromasnetic vector current:

$$
D_{ \pm}^{e m}=-i \int \frac{x \pm i y}{\sqrt{2}}\left[V_{0}^{3}(\vec{x}, t)+\frac{1}{\sqrt{3}} V_{0}^{8}(\vec{x}, t)\right] d^{3} x
$$

$$
(11-4)
$$

When $D_{ \pm}^{e m}$ is sandwiched between two hadron states at infinite momentum, $\left\langle H^{\prime}\right| D_{ \pm}^{\mathrm{em}}|\|\rangle>$ is directly proportional to the amplitute for the photon transition $H^{\prime} \rightarrow \gamma+H$. For $H^{\prime}=\Delta, H=N$ this matrix element is proportional to the strength of the electromagnetic coupling of the nucleon and the delta. For $H^{\prime}=H=N$ this matrix element gives $\frac{1}{\sqrt{2}}$ times the anomalous magnetic moment of the nucleon. $D_{ \pm}^{e m}$ transforms as $\left\{(8,1)_{0}+(1,8)_{0}, L_{Z}= \pm 1\right\}$, slnce under Q^{i} and Q_{5}^{i}

$$
\begin{aligned}
& {\left[Q^{i}, V_{0}^{j}(\vec{x})\right]_{t}=i f^{i j k} V_{0}^{k}(\vec{x})} \\
& {\left[Q_{5}^{i}, V_{0}^{j}(\vec{x})\right]_{t}=i f^{i j k} A_{0}^{k}(\vec{x})}
\end{aligned}
$$

All representations of the chiral $\operatorname{SU}(3) \times \operatorname{SU}(3)$ of curents can be built up from $(3,1)_{\frac{1}{2}},(1,3)_{\frac{1}{2}},(1, \overline{3})_{\frac{1}{2}}$ and $(\overline{3}, 1)_{\frac{1}{2}}$, which we define to be the current quark and antlquark states with spln projection $\pm 1 / 2$ in the z-direction. The quarks form a \underline{G} and the antiquarks a $\overline{6}$ of the full $\operatorname{su(6)}$ of currents.

At the same time as when the $\operatorname{SU}(6)_{w}$ of currents was in-
troduced. Llpkin and Meshkov postulated another $\operatorname{SU}(6)_{w}$ as an approximate symmetry of strong interactions, deriving this result from $\operatorname{su}(3)$ and spln symmetry of the amplitudes for collnear processes. Ordinary SU(6) , involving SU(3) and S-spin, however, forblds such observed strong couplings as $\rho \pi \vec{\pi}$ and $\Delta i \operatorname{N}$. The W-spin generators, which were first introduced in this framework using intrinsic parity $P_{i n t}$:

$$
\begin{aligned}
& W_{x}=\frac{1}{2} P_{\text {int }} \sigma_{x} \\
& W_{y}=\frac{1}{2} P_{\text {int }} \sigma_{y} \\
& W_{z}=\frac{1}{2} \sigma_{z}
\end{aligned}
$$

or, relativistically,

$$
\begin{align*}
& W_{x}=\frac{1}{2} \beta \sigma_{x} \\
& W_{y}=\frac{1}{2} \beta \sigma_{y} \tag{11-5b}\\
& W_{z}=\frac{1}{2} \sigma_{z}
\end{align*}
$$

commute with z-boosts and are "good" operators. It was the W-spin that led to an $S U(6)_{w}$ as an appropriate group corresponding to the approximate symmetry of strong interactions. This $\operatorname{SU}(6)_{W}$ known as the $\operatorname{SU}(6)_{W}$ of constituents classifles hadrons Into its Irreducible representations (see Appendix). Generators of this algebra have the same equal time commutation relations, charge conjugation and parity as the generators of the $\operatorname{SU}(5)_{w}$ of currents. However, it was shown soon
after their introduction that the two algebras could not be Identifled with each other. Even in the free quark model most of the operators in the $\operatorname{SU}(6)_{w}$ of currents do not commute with the kinetic energy term in the Hamlitonlan, if $p_{\perp} \neq 0$, so that they are not conserved. ${ }^{7}$ Additionally, such an Identification gives wrong prefictions for g_{A} / g_{V} and for magnetic moments. To summarize, current and charge operators σ^{α} have well defined transformation properties under the $\operatorname{SU}(6)_{w}$ of currents, and hadron states may be classified into irreducible representations of the $S U(6)_{W}$ of constituents. A relation between the two $S U(6)_{W}$'s is necessary to define within one algebra the algebraic properties of both hadrons and operators θ^{α} occurling in matrix elements < hadron' $\left|\theta^{\alpha}\right|$ hadron >.

Conslderable progress resulted from the assumption that constltuent and current quark states can be related by a unitary transformation V, so that
| I.R. constituents $\rangle=V \mid I . R$. currents $>$.

Using this assumption, Melosh ${ }^{7}$ further defined a set of operators W

$$
\begin{equation*}
W^{i}=V^{-1} F^{i} V \tag{11-7a}
\end{equation*}
$$

$$
\begin{equation*}
\left[H_{\text {strong }}, W^{i}\right] \simeq 0 \tag{11-7b}
\end{equation*}
$$

From these assumption it follows that the W^{i} s generate an SU(5) ${ }_{W}$ under which hadrons transform as those irreducible representations which correspond to the simple constituent quark model. The approximate symmetry of strong interactions may then be identified with the $S U(G)_{W}$ generated by the W^{i} 's. A matrix element of a current or charge operator θ^{α} between two hadronic states can now be rewritten
< hadron' $\left|\theta^{\alpha}\right|$ hadron $\rangle=$
$=\langle I . R$. constituents $| \theta^{\alpha} \mid$ I.R.constituents \rangle
$=\langle I . R .1$ currents $| V^{-1} \theta^{\alpha} V \mid I . R$.currents \rangle
with all quantlties in the last line of the equation labeled by current algebra.

The transformation V must satisfy a number of conditions discussed in detail in Refs. 7 and 16. We neef only to recall here that V takes "good" operators into "good" operators, and that V conserves the "ordinary" su(3) (renerated by $\left.Q^{i}, s\right)$. In consequence, the ordinary $S U(3)$ content of $V \mid(A, B)$ currents \rangle is the same as that of $\|(A, B)$ currents , although the transformed state may span many representations of the full $S U(6)_{W}$ or its chlral $\operatorname{SU}(3) \times j U(3)$ subalgebra. We
lllustrate this in Section lll, where we make a phenomenolozical attempt to expand physlcal states in terms of the represpntations of current algebra.

In this context, if the vacuum of currents is definet in analogy with Eq. (II-6) as:
|vaccum currents $\rangle=Y^{-1} \mid$ vacuun constituents \rangle
(11-9)
($\mid \underline{1}^{1}$ currents $\rangle=V \mid 1^{1}$ constituents $)$
where the state |vacuum currents is annihilated by currents and IVacuum constituents> is the "physical" vacuum, the matrix element
<physical plon Q_{5}^{i} i physical vacuum > can be rewrltten, assuming that the pion and physical vacuum can be identified with the corresponding constituent states, as:

$$
\begin{align*}
& \left.\langle\pi, \text { constituents }| Q_{5}^{i} \mid \text { vacuum constltuents }\right\rangle \\
= & \left.\langle\pi, \text { currents }| V^{-1} Q_{5}^{i} V \mid \text { vacuum currents }\right\rangle \tag{11-10}\\
= & \left.\left\langle\pi, 35,8^{3} \text { currents }\right| v^{-1} Q_{5}^{i} v \mid 1^{2} \text { currents }\right\rangle .
\end{align*}
$$

This matrix element need not vanish, since $V^{-1} Q_{5}^{i} V$ is not a generator of the $S U(6)_{w}$ of currents.

We will discuss in detall algebralc properties of the
matrix elements of transition induclng operators and apply these properties to real transitions in section IV of this paper. Before that, we will complete the presentation of the relation between the two $S U(6)_{w}$ algebras with a phenomenological approach to the mixing occuring in the hadron states under current alpebra.

III. PHENOMENOLOGICAL APPROACH TO THE TRANSFORMATION

 PROPERTIES OF HADRONS UNDER CURRENT ALGERRAWe now turn to the classification of hadrons under the $\operatorname{SU}(6)_{w}$ algebra of currents and under its chiral subalgebra, $S U(3) \times S U(3)$. Much effort was tevoted to this subject after the introduction of current algebra and the Adler -Weisberger sum rule ${ }^{11}($ see Eq. (II-2c)). To illustrate again the neet for mixing, let us consider the following examples.

If the nucleon and delta (1238), the lowest mass baryons, behaved as three current quark states with totally symmetric wave functions and internal quark angular momentum $L=0$, then using chiral $\operatorname{SU}(3) \times S U(3)$ to classify states and operators, we find that in the helicity $\lambda=1 / 2$ state they must transform as a pure $\left\{\underline{56},(6,3)_{\frac{1}{2}}, 0\right\rangle$, while in the hellcity $\lambda=-1 / 2$ state as a pure $\left|56,(3,6)_{-\frac{1}{2}}, 0\right\rangle$.
G_{A} and G^{*} are conventionally defined so that the Adler
-Welsberger sum rule reads:

$$
\begin{aligned}
\left.\left.2\langle p| Q^{3}\right|_{p}\right\rangle & \left.=\left.\langle p|\left[Q_{5}^{+}, Q_{s}^{-}\right]\right|_{p}\right\rangle \\
& \left.=\left|\left\langle_{p}\right| Q_{5}^{+}\right| n\right\rangle\left.\right|^{2} \\
& \left.\left.-\left.\left[\left|\left\langle_{p}\right| Q_{5}^{-}\right| \Delta^{++}\right\rangle\right|^{2}-\left|\left\langle_{p}\right| Q_{5}^{-}\right| \Delta^{0}\right\rangle\left.\right|^{2}\right]+. .
\end{aligned}
$$

$$
=G_{A}^{2}-G^{* 2}+\ldots
$$

where $Q_{5}^{ \pm}=Q_{5}^{1} \pm i Q_{5}^{2}$ and the normalization is such that $\langle p \mid p\rangle=1$ The operators Q_{5}^{α}, as $\operatorname{SU}(6)_{W}$ (and $\operatorname{SU}(3) \times S U(3)$) generators, can only connect the $\left.1 . R .156,(6,3) / \frac{1}{2} 0\right\rangle$ to itself. Without representation mixing in nucleon states the Adler-Welsberger sum rule ${ }^{11}$ must be saturated by the contributions from the neutron and $\Delta(1236)$ alone. Without mixing, $G_{A}=5 / 3$ and $G^{*}=4 / 3$, whereas $2\langle p| Q^{3}|p\rangle=1$. Evaluation of this sum rule shows that there must be contributions from many higher mass $\mathrm{N}^{* /}$ s.

The anomalous magnetic moment of the nucleon is given by the matrix element of the dipole operator D_{+}^{em} of Eq. (11-4) between the nucleon states at infinite momentum,

$$
\sqrt{2} \mu_{\beta}(N)=\left\langle N, \lambda=\frac{1}{2}\right| D_{+}^{e_{n}+m}\left|N, \lambda=-\frac{1}{2}\right\rangle_{P_{z} \rightarrow \infty}
$$

(111-2)
Without representation mixing this matrix element vanishes, since the initial and final nucleon wave functions have
$L_{z}=L=0$ only, while $D_{ \pm}^{e m}$ changes L_{z} by ± 1 (see Eq. (It-4)).
These and simflar arguments show that some representation mixing must be present in the classification of hadrons under the algebra of currents. ${ }^{17}$ In this section we discuss how the mixing parameters can be sought phenomenologically. He limit our presentation to the nucleon and $\Delta(1236)$, but a similar method applies to mesons and higher mass baryon resonances. We conslder mixing of chiral $S U(3) \times S U(3)$ representations; mixing under the full $S U(6)_{w}$ of currents can be studled in the same manner.

A three quark, heliclty $\lambda=1 / 2, J=1 / 2$, nucleon state may transform most generally as a linear combination of $s i x$ I.R.'s of the chiral $S U(3) \times S U(3)$ current algebra. We there-

$$
\begin{aligned}
& \text { fore may parametrize: } \\
& \begin{aligned}
\left|N, \lambda=\frac{1}{2}\right\rangle= & \cos \theta\left(\cos \eta\left|(6,3)_{\frac{1}{2}}, 0\right\rangle+\sin \eta\left|(3,6)_{-\frac{1}{2}},+1\right\rangle\right) \\
+ & \sin \theta
\end{aligned} \\
& {\left[\cos \varphi\left(\cos \psi\left|(3, \overline{3})_{-\frac{1}{2}},+1\right\rangle+\sin \psi\left|(8,1)_{\frac{3 / 2}{2}},-1\right\rangle\right)\right.} \\
& \\
& \left.+\sin \varphi\left(\cos \nu\left|(\overline{3}, 3)_{\frac{1}{2}}, 0\right\rangle+\sin \nu\left|(1,8)_{-\frac{3}{2}},+2\right\rangle\right)\right]
\end{aligned}
$$

(111-3)
Similarly, for a three quark $\lambda=1 / 2, J=3 / 2$ delta state we may choose a parametrization

$$
\begin{aligned}
&\left|\Delta, \lambda=\frac{1}{2}\right\rangle=\cos \alpha\left(\cos \beta\left|(6,3)_{\frac{1}{2}}, 0\right\rangle+\sin \beta\left|(3,6)_{-\frac{1}{2}}, 1\right\rangle\right) \\
&+\sin \alpha\left(\cos \gamma\left|(10,1)_{\frac{3}{2}},-1\right\rangle+\sin \gamma\left|(1,10)_{-\frac{3}{2}},+2\right\rangle\right) \\
&(111-4)
\end{aligned}
$$

To determine the mixing paraneters we shall fit G_{A}, G^{*}, the anomalous magnetic moments of the proton and neutron and the strength of the electromagnetic $\gamma N \Delta$ coupling using the assumed form of the wave functions (EqS(III-3,4)).

$$
\begin{align*}
& \text { We obtaln for } G_{A} \text { and } G^{*}: \\
& G_{A}=\frac{5}{3} \cos ^{2} \theta \cos 2 \eta+\sin ^{2} \theta \cos 2 \varphi \\
& G^{*}=\frac{4}{3} \cos \theta \cos \alpha \cos (\eta-\beta) \tag{111-5}
\end{align*}
$$

We already have predictions that $G^{*}<4 / 3$, which agrees with the experimental limits on $G^{*}(.8$ to 1.05$)$. Note also that for $G_{A} \simeq 1.25$ we obtain bounds on the angles θ and η :

$$
\begin{align*}
& \theta \leqslant 52^{\circ} \\
& \eta \leqslant 26.5^{\circ} \tag{111-6}
\end{align*}
$$

The strength of the $\gamma N \Delta$ coupling, μ^{*}, is proportional to the matrix element of the $D_{ \pm}^{e m}$ between the nucleon and delta states at infinite momentum

$$
\begin{equation*}
\mu^{*}=\sqrt{2}\left\langle\Delta, \lambda=\frac{1}{2}\right| D_{+}^{e m}\left|N, \lambda=-\frac{1}{2}\right\rangle_{P_{z} \rightarrow \infty} \tag{111-7}
\end{equation*}
$$

Moments given by the assumed haryon wave functions and the algebralc properties of $D_{+}^{e m},\left\{(8,1)_{0}+(1,8)_{0}, 1\right\}$, allow five independent reduced matrix elements in the expressions
for μ^{*} and the anomalous magnetic moments:

$$
\begin{align*}
& M_{1}=\left\langle(6,3)_{\frac{1}{2}}, O\left\|\left\{(8,1)_{0}+(1,8)_{0}, 1\right\}\right\|(6,3)_{\frac{1}{2}},-1\right\rangle \\
& M_{2}=\left\langle(6,3)_{\frac{1}{2}}, O\left\|\left\{(8,1)_{0}+(1,8)_{0}, 1\right\}\right\|(\overline{3}, 3)_{\frac{1}{2}},-1\right\rangle \\
& M_{3}=\left\langle(\overline{3}, 3)_{\frac{1}{2}}, O\left\|\left\{(8,1)_{0}+(1,8)_{0}, 1\right\}\right\|(3,3)_{\frac{1}{2}},-1\right\rangle \\
& M_{4}=\left\langle(8,1)_{\frac{3}{2}},-1\left\|\left\{(8,1)_{0}+(1,8)_{0}, 1\right\}\right\|(8,1)_{\frac{3}{2},},-2\right\rangle \\
& M_{5}=\left\langle(10,1)_{\frac{3}{2}},-1\left\|\left\{(8,1)_{0}+(1,8)_{0}, 1\right\}\right\|(8,1)_{3,2},-2\right\rangle \tag{111-8}
\end{align*}
$$

The terms multiplying M_{4} involve also another parameter, since 8×8 reduces to 8_{A} and 8_{S}. This parameter, the f / d ratio, would be given if we used the full $\operatorname{SU(6)_{W}}$.

In terms of the mixing angles and the reduced matrix elements, the anomalous magnetic moments and μ^{*} are then: $\mu^{*}=\frac{2}{\sqrt{3}} \cos \alpha \sin \theta[\cos \beta \cos \varphi \cos \psi+\sin \beta \sin \varphi \cos \nu] M_{2}$ (111-9a)
$+\sqrt{\frac{2}{3}} \sin \alpha \sin \theta[\cos \gamma \sin \varphi \sin \nu+\sin \gamma \cos \varphi \sin \psi] M_{5}$

$$
\begin{aligned}
\sqrt{2} \mu_{A}^{v}= & -\cos ^{2} \theta \sin 2 \eta M_{1} \\
& +\frac{2}{\sqrt{3}} \sin 2 \theta[\cos \eta \cos \varphi \cos \psi-\sin \eta \sin \varphi \cos \nu] M_{2} \\
& +\sin ^{2} \theta \sin 2 \varphi \cos \nu \cos \psi M_{3} \\
& +\sin ^{2} \theta \sin 2 \varphi \sin \nu \sin \psi M_{4}\left(\sqrt{\frac{3}{5}}-f / d \sqrt{\frac{1}{3}}\right)
\end{aligned}
$$

$$
(1 \mid 1-9 b)
$$

$$
\begin{align*}
\sqrt{2} \mu_{A}^{s}= & -\cos ^{2} \theta \sin 2 \eta M_{1} \\
& +\sin ^{2} \theta \sin 2 \varphi \cos \nu \cos \psi M_{3} \\
& +\sin ^{2} \theta \sin 2 \varphi \sin \nu \sin \psi M_{4}\left(-\sqrt{\frac{1}{15}}-f / d \sqrt{\frac{1}{3}}\right) \tag{1l|-9c}
\end{align*}
$$

where

$$
\begin{align*}
& \mu_{A}^{V}=\mu_{A}(p)-\mu_{A}(n) \\
& \mu_{A}^{S}=\mu_{A}(p)+\mu_{A}(n) \tag{111-10}
\end{align*}
$$

are the isovector and isoscalar anomalous moments.
Eqs. (111-5) and (111-9) can be satisfied in many ways, since the number of free parameters is greater than the nomben of experimental quantities we want to fit. We can however conclude that since $G_{A}>1, \cos ^{2} \theta \neq 0$ and $\cos 2 \eta \neq 0 \quad\left(\theta \neq \frac{\pi}{2}\right.$ and $\eta \neq \frac{\pi}{4}$), le., the nucleon's wave function must contain the $\left|(6,3)_{\frac{1}{2}}, 0\right\rangle$ and/or $\left|(3,6)_{-\frac{1}{2}}, 1\right\rangle$ terms, and the ratio between the mixing parameters multiplying these two terms must be different from 1.

One of possible solutions, related to that proposed by Harar, ${ }^{18}$ can be obtained under the assumption that the internat quark angular momentum in both the nucleon and delta is not greater than one. This eliminates the mixing angles $v=\gamma=0$ (see Eqs.(11-3,4)). We then additionally assume that $\alpha=\theta$ and $\beta=\eta$, ie.

$$
\begin{align*}
\left|\Delta, \lambda=\frac{1}{2}\right\rangle & =\cos \theta\left(\cos \eta\left|(6,3)_{\frac{1}{2}}, 0\right\rangle+\sin \eta\left|(3,6)_{-\frac{1}{2}}+1\right\rangle\right) \\
& +\sin \theta\left|(10,1)_{\frac{3}{2}},-1\right\rangle \tag{1:1-11a}
\end{align*}
$$

$$
\begin{aligned}
\left|N, \lambda=\frac{1}{2}\right\rangle= & \cos \theta\left(\cos \eta\left|(6,3)_{\frac{1}{2}}, 0\right\rangle+\sin \eta\left|(3,6)_{-\frac{1}{2}},+1\right\rangle\right) \\
+ & \sin \theta\left[\cos \varphi\left(\cos \psi\left|(3, \overline{3})_{-\frac{1}{2}},+1\right\rangle+\sin \psi\left|(8,1)_{\frac{3}{2}},-1\right\rangle\right)\right. \\
& \left.+\sin \varphi\left|(\overline{3}, 3)_{\frac{1}{2}}, 0\right\rangle\right]
\end{aligned}
$$

Wth these assumptions we obtain, for $G^{*} \cong 1$,

$$
\begin{align*}
& \sin ^{2} \alpha=\sin ^{2} \theta \simeq \frac{1}{4} ; \quad \alpha=\theta \cong 30^{\circ} \\
& \sin 2 \beta=\sin 2 \eta \simeq \frac{4}{5} ; \quad \beta=\eta \cong 18.4^{\circ}
\end{align*}
$$

Since the isoscalar anomalous magnetic moment $\mu_{A}^{S} \ll \mu_{A}^{V}$ and $\mu_{A}^{s}\left\langle\mu^{*}\right.$, we further assume $\mu_{A}^{s} \simeq 0$. Using this and the experimental value of the ratio μ^{*} / μ_{A}^{\vee} to determine the remaining, mixing angles we are led to:

$$
\begin{aligned}
\sqrt{2} \mu_{A}^{s} & =-\frac{9}{20} m_{1}+\frac{1}{2} \sin 2 \varphi \cos \psi M_{3} \simeq 0 \\
\sqrt{2}\left(\mu^{*} / \mu_{A}^{v}\right) & =\frac{\cos \eta \cos \varphi \cos \psi+\sin \eta \sin \varphi}{\cos \eta \cos \varphi \cos \psi-\sin \eta \sin \varphi} \\
& =1
\end{aligned}
$$

which we may satisfy choosing $M_{1}=0, \varphi=0$. The wave func-
tlons resulting from this particular solution are given by

$$
\begin{align*}
\left|N, \lambda=\frac{1}{2}\right\rangle= & \cos 30^{\circ}\left[\cos 18.4^{\circ}\left|(6,3)_{\frac{1}{2}}, 0\right\rangle+\sin 18.4^{\circ}\left|(3,6)_{-\frac{1}{2}}+1\right\rangle\right] \\
& +\sin 30^{\circ}\left[\cos \psi\left|(3, \overline{3})_{-\frac{1}{2}},+1\right\rangle+\sin \psi\left|(8,1)_{\frac{3}{2}},-1\right\rangle\right] \tag{111-14a}
\end{align*}
$$

and

$$
\begin{aligned}
\left|\Delta, \lambda=\frac{1}{2}\right\rangle & =\cos 30^{\circ}\left[\cos 18.4^{\circ}\left|(6,3)_{\frac{1}{2}}, 0\right\rangle+\sin 18.4^{\circ}\left|(3,6)_{-\frac{1}{2}},+1\right\rangle\right] \\
& +\sin 30^{\circ}\left|(10,1)_{\frac{3}{2}},-1\right\rangle
\end{aligned}
$$

Even this simplified mixing scheme with $L \leqslant 1$ has no unique solution, as $\cos \psi$ is still left as a free parameter, except for the condition that $\cos \psi \neq 0$, because that would give $\mu_{A}^{\nu}=\mu^{*}=0$ here.

The analogous situation of no unique solution for the current algebra representation mixing in the wave functions is encountered in the expansion of higher mass resonances, each of which must be treated separately. The phenomenological approach then is not very helpful in a systematic evaluation of the current and charge matrix elements between hadron states. It indicates the complexity of hadrons' wave functions under current algebra. The approach based on a unltary transformation relating current and constituent quarks also predicts complicater algebralc properties for

V| l.R.currents), which correspond to the propertles of hadrons under current algebra. ${ }^{7}$ But a systematic evaluation of the matrix elements < hadron'I 0^{α} |hadron > in Eq. (II-8) can
be carried out In spite of the complexity of the wave functions. We will describe the alternate systematlc method of calculating such matrix elements and its applications in the following sections.

IV. PHOTON TRANSITIONS OF HADRONS

Evaluation of the matrix element 〈hadron'1 $\sigma^{\alpha} \mid$ hadron> in Eq. (11-8) can be carried out in spite of the complexity of the state V I I.R. currents>, provided that the "effective" operator. $V^{-1} 0^{\alpha} V$ has definite and slmple transformation propertles under current algebra.

In the free quark model Melosh has been able to construct an explicit form of V. Effective operators $v^{-1} \sigma^{\alpha} V$ for $\theta^{\alpha}=Q_{5}^{i}$ and $D_{ \pm}^{e m}$, turn out to have simple transformation properties when this V is used. They must connect only single quark states to single quark states, and both have a general form

$$
\int d^{3} \times q^{+}(\vec{x}, t) \mathcal{F}\left(\partial_{i}, \gamma_{i}\right) q(\vec{x}, t) .
$$

Here F_{f} is some fuction of the derivatives $\left(\partial_{i}\right)$ and the gamma matrices $\left(\gamma_{i}\right)$.

An explicit form of the function \mathcal{F} was originally deter-
mined by Melosh, ${ }^{7}$ while Elchten et al. ${ }^{16}$ argued that a large class of such functions exists. Without a detalled dynamlcal theory we are unable to make use of an explicit form, even if it were given to us. The property which we abstract from the free quark model and assume to hold in general is that the effective operators $V^{-1} Q_{5}^{i} V$ and $V^{-1} D_{ \pm}^{e m} v$ have the transformation properties of the most general linear conbination of single quark operators consistent with SU(3) and Lorentz Invariance.

In the explicit quark model calculations the operator $V^{-1} Q_{5}^{i} V$ with $J_{z}=0$ contains two terms which transform as $\left\{(8,1)_{0}-(1,8)_{0}, L_{z}=0\right\}$ and $\left\{(3, \overline{3})_{1},-1\right\}-\{(\overline{3}, 3), 1\}$ components of two $35^{\prime} s$ of the full $\operatorname{SU}(6)_{w}$ of currents. To apply this to observed hadron transitions, as few axlal-vector decays are measured, the Partially Conserved Axlal-Vector Current hypothesis ${ }^{19}$ (PCAC) can be used to relate the matrix elements of Q_{5}^{i} between states at infinite momentum to matrix elements of the pion fleld. Such an approach results in a theory of the algebraic structure of pion amplitudes. 20

As the matrix elements of $D_{ \pm}^{e m}(E . q .(1:-4))$ are directly proportional to photon amplitudes, no additional assumption like PCAC is necessary. Furthermore, matrix elenents of D_{+} are equal, up to a sign, to those of $D_{-}^{e m}$ (with reversed helicities of the external states) via parity conservation, so that we need only consider the properties of $\mathrm{D}_{+}^{\mathrm{Cm}}$. The operator $V^{-1} D_{+}^{e m} V$, with $J_{z}=1$, has sllghtly more complicated tran-
sformation propertles than $V^{-1} \eta_{5}^{i} V$. In reneral, as pointed out by Hey and Weyers, ${ }^{21}$ there are four possible terins: $\left\{(8,1)_{0}+(1,8)_{0}, 1\right\},\left\{(3, \overline{3})_{1}, 0\right\},\left\{(\overline{3}, 3)_{1}, 2\right\}$ and $\left\{(8,1)_{0}-(1,8)_{0}, 1\right\}$, all components of four $\frac{35 ' s}{}$. It appears that all four occur in the onerator $V^{-1} D_{+}^{e m} V$ in the free quark model. However, the last term, which corresponis to qq in a net quark spin $S=0$, unnatural spin-parity state, has no analogue with any natural spin-parity (in particular vector mesnn) state of the quark model? Moreover, under a generallzef parity transformation, $P e^{-i n J_{y}}$, which takes

$$
\left\{(A, B)_{S_{z}}, L_{z}\right\} \rightarrow\left\{(B, A)_{-S_{z}},-L_{z}\right\}
$$

the first three terms do not change sign while the last one toes. For the longitudinal $\left(v_{z}=0\right)$ component of the current this would eliminate the possibillty of such a term. While we will carry all four terms in calculating photon transltion amplitudes here, we will indlcate experimental limits on the size of the $\left\{(8,1)_{0}-(1,8)_{0}, 1\right\}$ term's contributions and indicate what sltuation ensues if it is totally absent.

Assuming that the transformation properties of the effective operators $V^{-1} \theta^{\alpha} v$ for $\theta^{\alpha}=Q_{S}^{i}$ or $D_{ \pm}^{e m}$ can be abstracted from the free quark model, we are almost in a position to apply the theory to actual decays. To make contact with experiment we make one physlcal assumption, namely, we assume that we can identify the observed (non-exotlc) hadrons
with constituent guark states. In other words we assume that a part of the physlcal Hilhert space is well approximatel by the single particle states of the constituent quark model. For haryons an: mesons we have candidates which fit very well into the $S \|(6)_{w} \times 0(3)$ representations $56 L=0 ; 70 L=1 ; 56 L=2$ and $35 \mathrm{~L}=0 ; 1 \mathrm{~L}=0$ and $35 \mathrm{~L}=1$, respectively (see Appendix). As we assume that states with different values of quark spin as well as L_{z} are related according to the constituent quark model, we can relate different helicity states to each other.

Uf Ih this physical assumption we know the algebraic properties of all terms in the matrix element in Eq. (11-8) under current algebra. Therefore we may use the WignerEckart theorem and tables of Clebsch-Gordan coefficients ${ }^{22,23}$ to carry out the calculation from this point onward. Note that $\operatorname{SU}(6)_{w}$ invariance of the effective operators $v^{-1} \theta^{\alpha} V$ is not assumed either under the algebra of currents or that of strong interactions - only the transformation properties of the various terms of the effectlve operators are needed in the calculations.

We will now turn to a detalled discussion of photon decays. Photon transition amplitudes are proportional to the matrix elements of the dlpole operator, $\mathrm{D}_{ \pm} \mathrm{m}$, between hadron
states. In the narrow resonance approximation,

$$
\begin{aligned}
& \Gamma(\text { Hadron' } \rightarrow \text { Hadvon + photon) } \\
& \left.\left.\left.=\frac{e^{2} P^{3}}{\left.\pi(2]^{\prime}+1\right)} \sum_{\lambda} \right\rvert\,\langle\text { Hadron', } \lambda| D_{+}^{e m} \right\rvert\, \text { Hadron, } \lambda-1\right\rangle\left.\right|^{2}
\end{aligned}
$$

(IV-1)
Here e is the hadron charge, P_{γ} the photon momentum and the sum extends over all possible helicities λ. Matrix elements of $D_{-}^{e m}$ have been eliminated from Eq. (IV-I) via parity. This equation may also be obtained from consideration of the narrow resonance approximation of the Hadron' contrlbution to the Cablbbo-Radicati sum rule ${ }^{24}$ on Hadron states. We have no arbitrary phase space factors.

We shall use the narrow resonance approximation, Eq.(IV-1), for photon decay widths to compare the theory with experiment. For broad resonances or for decays of resonances where the physically available phase space is small, such an approximation introduces non-negligible errors. However, we consider the present comparison to be sufficiently valld as a first test of the theory, partlcularly in view of the experimental errors for photon (as well as pion) decay widths. When the sltuation eventually warrants it, the values of $\mid\langle H a d r o n '| D_{ \pm}^{e m} \mid$ Hadron> $\left.\right|^{2}$ should be determined irrespectlve of any approximation in terms of contributions to the Cabibbo-Radicati sum rule. ${ }^{24}$

The assumptlons on the transformation properties of $0_{ \pm}^{e m}$ matrix elements between hadrons under current algebra allow one to express every photon amplitude as a linear combination of four terms, which appear in the effective operator $V^{-1} D_{ \pm}^{e m} V$. More explicitly, for a given matrix element, we first decompose the total J of the initlal and final hadron (with $J_{z}=\lambda-1$ and λ, respectively), into definite S_{z} and L_{z} quark states. After transformation to the $\operatorname{SU}(6)_{w}$ of currents basis, the matrix element of any particular term in $V^{-1} D_{ \pm}^{e m} y$ can be wrltten, using the Wigner-Eckart theorem, as a reduced matrix element times the product of quark angular momentum, $\operatorname{SU}(6)_{w}, S U(3)$ and W-spin Clebsch-Gordan coefficients ${ }^{22,23}$ For example, the matrlx element of the $\left\{(\overline{3}, 3)_{-1}, 2\right\}$ term in $V^{-1} D_{+}^{e m} v$ hetween initial and final states with heilicity $\lambda-1$ and λ, total angular momentum J and $J '$, internal quark angular monentum L and L^{\prime}, quark spin S and S^{\prime}, SU(3) representation A and A^{\prime} and $S U(6)_{w}$ representation R and R^{\prime}, respectively, is calculated in the following way:

$$
\begin{aligned}
& \left.\langle R ; A ; L ; S ; J ; \lambda, \text { currents }|\left\{(\overline{3}, 3)_{-} 2\right\} \mid R, A, L, S, J, \lambda-1 \text {, currents }\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \text { Clebsch-oordan cofficients coefflcient } \\
& \underbrace{\left\langle A^{\prime}\left(Y: 1,1 l_{3}^{\prime}\right)\right| 8\left((010)+\frac{1}{\sqrt{3}}(000)\left|A\left(Y, 1,1_{3}\right)\right\rangle\right.}_{\text {SU(3) Clebsch-Gordan coefficient }} \\
& \underbrace{\left\langle W^{\prime} W^{\prime} \mid 1 N-1 W_{z}\right\rangle} \quad\left\langle R^{\prime} L^{\prime}\left\|(\overline{3}, 3)_{-1}, 2\right\| R L\right\rangle \\
& \text { W-spin Clebsch-Gordan refucet matrlx element } \\
& \text { coefficient }
\end{aligned}
$$

The signs whlch result from the conversion from quark spin to elements.

The reduction of the other terms in $V^{-1} D_{+}^{2 m} v$ proceeds just as above ant we neer only recall that $(8,1)_{0}+(1,8)$; $(8,1)_{0}-(1,8)_{0}$ and $(3, \vec{F})_{1}$ transform as $W=W_{z}=0 ; W=1, W_{z}=0$ and $L_{1}=1, W_{z}=1$ objects, respectively. Note that since total J_{z} is conserved ant the net value of $W_{z}=S_{z}$ must also be conserved by the W-spin Clebsch-Gordan coeffictent in Eq. (IV-2) and its analogues, it follows that $L_{z}=J_{z}=S_{z}$ must also be consprved between the initial and final state (including the photon operator). We then observe that the reduced matrix elements depend on the $\operatorname{SU}(6)_{w}$ multiplet, the L_{z}^{\prime} and L_{z} values of the external states components, and the particular term in $v^{-1} D^{e m}+V$.

If L is zero, as is the case in essentially all cases of physical interest at the present time, then of course $L_{z}=0$ and the L_{z}^{\prime} dependence of the $\operatorname{sif}(6)_{w}$ reduced matrix element becomes trivial due to conservation of L_{z}. In such a case $\left(L=0\right.$; all photon decays from one $S U(6)_{w}$ multiplet to another are related to the same four reduced matrix elements (Aropping the trivial l_{z} labels):

```
\langleR' L'| | (8,1)% + (1,8) | R L=0 >
<R' L'|(3,\overline{3}\mp@subsup{)}{1}{|}|R L=0 >
\langleR' L'| |( ), 3) || R L=0 >
and <R' L'|(8,1)。-(1,8) || R L=0 >
```

some of which may be zero or may have zern coefficients due tn selection rules in particular decays.

This algehraic structure of photon matrix elements
does in fact lead to interesting and powerful selection rules. Consider the $\left\{(8,1)_{0}+(1,8)_{0}, 1\right\}$ term in $V^{-1} D_{+m}^{e m} V$, which has \mathfrak{l}-spin zero. The W-spin Clebsch-Gordan coefficient In the analogue of Eq. $(1 V-2)$ Implies

$$
\begin{equation*}
\overrightarrow{N 1}=\overrightarrow{1} \tag{1v-3}
\end{equation*}
$$

which is the same as

$$
\begin{equation*}
\vec{S}^{\prime}=\vec{S} \tag{1v-4}
\end{equation*}
$$

Now, for Hadron' and Hadron states we have

$$
\vec{J}=\vec{L} \vec{L}^{\prime}+\overrightarrow{S^{\prime}}
$$

(iv-5)
ant

$$
\begin{equation*}
\vec{J}=\overrightarrow{\mathrm{L}}+\overrightarrow{\mathrm{S}} \tag{1V-6}
\end{equation*}
$$

while angular momentum conservation for the total decay demands

$$
\begin{equation*}
\vec{j}^{\prime}=\vec{J}+\vec{j}_{x} \tag{1V-7}
\end{equation*}
$$

where jy is the net angular momentum carried by the photon and determines the multipole character of the decay. Combining Fas. $(\mid v-4)$ to $(\mid V-7)$ we obtain

$$
\begin{equation*}
\left|L-L^{\prime}\right| \leqslant j_{\gamma} \leqslant 1 L+L^{\prime} \mid \tag{1v-8}
\end{equation*}
$$

and in the case $L=0$

$$
j_{\gamma}=L^{\prime} \quad(\mid V-9)
$$

Thus decays through the $\left\{(8,1)_{0}+(1,8)_{0}, 1\right\}$ term in $V^{-1} D_{+}^{e m} v$ to $L=0$ baryons and mesons always have $j_{\gamma}=L^{\prime}$ of the decaying
hadron. As the parity change is $(-1)^{L^{L}-L}=(-1)^{L^{\prime}}=(-1)^{i \gamma}$, this always corresponds to an electric 2L'-pole transliton in the usual multipole notation.

$$
\text { For the }\left\{(3, \tilde{3})_{1}, 0\right\},\left\{(\overline{3}, 3)_{-1}, 2\right\} \text { and }\left\{(8,1)_{0}-(1,8)_{0}, 1\right\}
$$

terms in $V^{-1} D_{+}^{e m} V$, all of which have $\|-s p i n$ one, Eq. (IV-4s is modified to ${ }^{26}$

$$
\vec{s}^{\prime}=\vec{s}+\overrightarrow{1} \quad(1 v-10)
$$

and as a result one finds in place of Eq. (1v-9) that

$$
\begin{equation*}
\left|\left|L^{\prime}-L\right|-1\right| \leqslant j_{\gamma} \leqslant\left|L^{\prime}+L\right|+1 \mid \tag{|v-11}
\end{equation*}
$$

so that

$$
j_{\gamma}=L^{\prime}-1, L^{\prime}, L^{\prime}+1 . \quad(1 V-12)
$$

As the narity change is again (-1) these correspont to magnetic 2(L'-1)-pole, electric 2L'-pole and magnetic $2\left(L^{\prime}+1\right)$ -nole, respectively.

The actual correspondence between reduced matrix elepents and a set of multipole amplitudes can also be proven using ?acah coefficlents to rewrite Eq. (IV-2) and its analoques. For example, baryon transitions from R, $L=0$ to $?^{\prime}, L^{\prime}$ can be describet in terms of multipole amplitudes
$M\left(j_{\gamma}=L^{\prime}\right)=\left\langle R^{\prime} L^{\prime}\left\|(8,1)_{0}+(1,3)_{0}\right\| R L=0\right\rangle$
(IV-14a)

$$
\begin{aligned}
M\left(j_{\gamma}=L^{\prime}-\right. & \left.-1, L^{\prime}, L^{\prime}+1\right) \\
& =\left(1, L^{\prime}, 1,01 j_{\gamma}, 1\right)\left\langle R^{\prime} L^{\prime}\left\|(3, \overline{3})_{1}\right\| R L=0\right\rangle \\
& +\left(1, L^{\prime}, 0,1 \mid j_{\gamma}, 1\right)\left\langle R^{\prime} L^{\prime}\left\|(8,1)_{0}-(1,8)\right\| R L=0\right\rangle \\
& +\left(1, L^{\prime},-1,2 \mid j_{\gamma}, 1\right)\left\langle R^{\prime} L^{\prime}\left\|(\overline{3}, 3)_{-1}\right\| R L=0\right\rangle .
\end{aligned}
$$

(IV-14b)
Note, of course, that one only has $j_{\gamma} \geqslant 1$. Thus for $L^{\prime}=0 \rightarrow L=0$ only $j_{\gamma}=1$ is allowed. This is just the old result that the nucleon to $3-3$ resonance transition is magnetic dipole in character.

Note that for values $L^{\prime} \geqslant 3$, not only does the theory limit values of j_{γ} to $j_{\gamma} \leqslant L^{\prime}+1$, but also non-trivially forbids values of j_{γ} less than $L^{\prime}-1,{ }^{27}$ which are otherwise kinematically allowed, and even fayored by angular momentum barrier arguments. The transition of a $J^{P}=3 / 2^{-}$baryon resonance in a $70 L^{\prime}=3$ multiplet into a nucleon plus a photon with $j_{y}=1$ is forbidden, for example, even though this is the lowest allowed multipole on spin-parity grounds.

The alpebraic structure of the theory of photon transitions oresented above is closely related to various quark motel calculations, both non-relativistic ${ }^{28}$ and relativistic, ${ }^{29}$ Tone in the past. They may be put into one to one correspontence if the $\left\{(8,1)_{0}+(1,8)_{0}, 1\right\}$ ters in $V^{-1} D_{+}^{e m} v$ is identifles with the photon interacting with the quark convection current, and the $\left\{(3, \overline{3})_{1}, 0\right\}$ term ifentified with the photon interactins with the nuar! nagnetic moment. The $\left\{(\overline{3}, 3)_{-1}, 2\right\}$ and $\left\{(8,1)_{0}-(1,8)_{0}, 1\right\}$ terms are absent in
these quark models. 28,29 However, the assumption nf a "potential" and the resultinf wave function for the bound states in the quark model calculations yield definlte prejictions for the reducer matrix elements thenselves, as they depend on masses and other parameters of the models. This is something we to not obtain, since we consiler only the algebraic structure.

Closely related to the quark model results are those following from various versions of $S U(6)_{w}$ (of strong lnteractions) invariance. The assimption of $S U(S)_{w}$ conservation plus vector fominance for photon transitions is equivalent to keening only the $\left\{(3, \overline{3})_{1}, 0\right\}$ term in $V^{-1} D_{+}^{e m} V$.

As we wlll soon see, this is totally contradictef by the data. As a result, various broken $\operatorname{SU}(6)_{w}$ schemes were developed. ${ }^{30}$ Some of these are very similar to the present theory in algebralc structure, partlcularly for decays to $L=0$ hadrons. For vector meson decays, and via vector dominance for photon decays, one such scheme corresponds in algebraic structure to the one presented here if the reduced matrix elements of $\left\{(\overline{3}, 3)_{-1}, 2\right\}$ vanlsh and those of $\left\{(8,1)_{0}+(1,8)_{0}, 1\right\}$ and $\left\{(8,1)_{0}-(1,8)_{0}, 1\right\}$ terms are equal.

Mow that the basic properties of the theory anis the manner of its application to actual hadrons have been spelled out, we befin the discussion of detailed predictions with radiative decays of mesons. We limit our listing of amplitudes to those corresponding to non-strange mesons; the extension to transitions involving stranse mesons is easily accomplished using SU(3).

Let us berin with the photon transitions from $L^{\prime}=0$ to $t=0$ mesons, l.e., among the members of the $S U(6), 35$ and 1 , whose non-strange members are $\rho, \omega, \phi, \pi, \eta$ and (presumahly) x°. As $L_{z}^{\prime}=L_{z}=0$ for the external states since $L^{\prime}=L=0$, only the term with $L_{z}=0$ and transforming as $\left\{(3, \overline{3})_{1}, 0\right\}$ in $V^{-1} D_{+}^{e m} y$ can contribute. The selection rule in Eq. (IV-12) innefintely gives the result that $j_{\gamma}=1$ only. This is already non-trivial, as $j_{\gamma}=2$ transitions are possible from $\rho^{ \pm}$to $\rho^{ \pm}$in general, and the theory then predicts zero electric quadrupole moment for the g-meson.

Since W-spin zero octets and singlets belong to the 35 and 1 representations of $S U(6)_{w}$, respectively, decays involving meson states which are mixtures of $W=0$ SU(3) octets and sinplets may be used to fix the ratio of the $\left\langle\underline{1} L^{\prime}=0\left\|(3, \overline{3})_{1}\right\| \underline{35} L=0\right\rangle$ and $\left\langle\underline{35} L^{\prime}=0\left\|(3, \overline{3})_{1}\right\| \underline{35} L=0\right\rangle$. in particular, for this purpose we use Zweig's rule ${ }^{32}$ to forbid the tecay $\phi \rightarrow \gamma \vec{\pi}$, where the ϕ is assumed to be the usual
ideal mixture of singlet and octet so as to be composed of purely strange quarks. All amplitudes are then multiples of a single magnetic dipole amplitude, or alternatively, are proportional to the single reduced matrlx element

$$
\left\langle 35 \quad L^{\prime}=0 \quad\left\|(3, \overline{3})_{1}\right\| \underline{35} L=0\right\rangle
$$

One observed transition then fixes all other decays. ${ }^{33}$ The result of the computation of transition matrix elements are given in Table V.A, where the η and x° are assumed to be SU(3) octet and singlet, respectively, whlle the ω and ϕ are idealmixtures of octet and singlet:

$$
\begin{align*}
& \omega=\cos \theta \omega^{(1)}+\sin \theta \omega^{(8)} \\
& \phi=-\sin \theta \omega^{(1)}+\cos \theta \omega^{(8)} \tag{V-1}
\end{align*}
$$

where

$$
\sin \theta=\frac{1}{\sqrt{3}}
$$

Table V.B contains the corresponding predictions for all the $L^{\prime}=0 \rightarrow L=0$ radiative decay widths using $\Gamma(\omega \rightarrow \gamma \ddot{1})$ $=890 \mathrm{Kev}$ as an input. ${ }^{34}$ The sparse experimental data ${ }^{34,35}$ are also given. Note that the prefictions in the first column are for unmixed pseudoscalar mesons. Taking a mixing angle ${ }^{36}$ $\theta_{p}=-10.5^{\circ}$, as suggested by a quadratlc mass formula, gives the second column. The predicted width for $\phi \rightarrow \gamma \eta$ is refuced to 179 KeV , agreeing with experiment within errors. ${ }^{37}$ The coresponding prediction in thls case for $r\left(x^{\circ} \rightarrow \gamma_{\rho}\right)$ is 120 KeV . Assuming that $X^{0} \rightarrow \gamma_{i l}^{+} \bar{H}^{*}$ is dominated by $x^{\circ} \rightarrow \gamma \rho$, and taking the
branching ratio ${ }^{34}$ for this mode to be 26%, we fint a total x° width of 460 KeV . This is also consistent with the x^{0} with obtainet from the branching ratio ${ }^{34}$ for $X^{\circ} \rightarrow \gamma \gamma$ plus $\operatorname{su(3)}$ and the new value ${ }^{38}$ of $r(\eta \rightarrow \gamma \gamma)$. The overall situation for $L^{\prime}=0 \rightarrow L=0$ decays is thus quite satisfactory, although many pieces of Information are absent In comparing theory and experiment.

When we go to $L^{\prime}=1 \rightarrow L=0$ decays, there is no experimental information avallable, although there are both many allowed transltion amplitudes and predictions. of the four terms generally present in $V^{-1} D_{+}^{e m} V$, only $\left\{(\overline{3}, 3)_{1}, 2\right\}$ cannot contribute here, since it changes L_{z} by two units. The selection rules of section $I V$ show that the $\left\{(8,1)_{0}+(1,8)_{0}, 1\right\}$ term in $V^{-1} D_{+}^{e m} V$ leads to purely electric dipole $\left(j_{\gamma}=1\right)$ transltions, and only $j_{\gamma}=1$ and 2 can arise from the $\{(3, \overline{3}), 0\}$ and $\left\{(8,1)_{0}-(1,8)_{0}, 1\right\}$ terms. In fact it is possible to express 11 near combinations of their reduced matrix elements as electric dipole and magnetic quadrupole anlitudes, multipies of which occur in all decays from $L^{\prime}=1$ to $L=0$ mesons.

All posible radiative decay amplitutes for non-strange $L^{\prime}=1 \rightarrow L=0$ mesons are given In Table V.C in terins of the refucer matrix elements

$$
\begin{aligned}
& \left\langle 35 L^{\prime}=1\left\|(8,1)_{0}+(1,8)_{0}\right\| 35 L=0\right\rangle, \\
& \left\langle 35 L^{\prime}=1\left\|(3, \overline{3})_{1} \quad\right\| 35 L=0\right\rangle,
\end{aligned}
$$

and

Matrlx elements of su(6) winglet states are relatel to those of $\underline{35}^{\prime}$ s using Zwe ír's rule, ${ }^{32}$ as was done above for $I^{\prime}=0 \rightarrow$ $\mathrm{L}=0$ tecays. The η and H are assumed to be purely octet memhers, while f, D, σ, and ω are all taken to be ideal mixtures of singlets and octets, so as to be composed of only nonstrange quarks. Note that in the fecay $2^{+} \rightarrow \gamma I^{-}$, e.g., in $A_{2} \rightarrow \gamma \rho$, an electric octunole could be present in principle, as well as electrlc dimole and magnetic quatrupole amplitutes. However, the selection rule limiting j_{γ} to 1 or 2 elininates the octunole amplitude and results in the linear relation

$$
\begin{equation*}
A_{\lambda=2}\left(A_{2} \rightarrow \gamma \rho\right)=2 \sqrt{2} A_{\lambda=1}\left(A_{2} \rightarrow \gamma \rho\right)-\sqrt{6} A_{\lambda=0}\left(A_{2} \rightarrow \gamma \rho\right) . \tag{V-2}
\end{equation*}
$$

among the three helicity amplitudes for $2^{+} \rightarrow \gamma 1^{\circ}$. N1most any experimental information on these decays would be helpful in sorting out the relative importance of the various (three) possible amplitutes, and testing the theory.

VI. PHOTON TRANSITIONS BFTIJEN GARYONS

The electromagnetlc transitions of baryons provide a second and very rich area of predictions for the theory. As before, we restrict our attention to non-strange baryons decaying into $L=0$ states, this being by far the main area for experimental comparisnn. In thls section we will enumerate
the possible tecay amplitutes, Jeferring an experimental comparison to the next section.

The case of transitions from $L^{\prime}=0$ to $L=0$, l.e., within the $L=$ h haryon multiplet, is particularly simple. As for mesons, nnly marnetic lipole transitions are allowed by the theory and all amplitudes are proportional to a sinGle refuced matrix element, that of the tern transforming as $\left\{(3, \overline{3})_{1}, \dot{0}\right\}$ in $V^{-1} D_{+}^{e m} v$. The results are presented in Table Vi.A for the three possible transltions, $N \rightarrow N, N \rightarrow \Delta$, and $\Delta \rightarrow \Delta$. It san be explicitly checked that all transitions are magnetic dipole in character, as lemanded by the selection rule (Eq. (IV-12)), including those for $\Delta \rightarrow \Delta$, where both electric quadrupole and marnetic octupole transitions are allowed by spin and parity.

For decays from the next identifled baryon multiplet, the $70 L^{\prime}=1$ to the ground state $55 \mathrm{~L}=0$ we have the three possible reduced matrix elements:
$\left\langle 70 \mathrm{~L}^{\prime}=1\left\|(3,1)_{0}+(1,8)_{0}\right\| \underline{5 E} \mathrm{~L}=0\right\rangle$
$\left\langle 70 L^{\prime}=1\left\|(3, \overline{3})_{1}\right\| \underline{5 G} L=0\right\rangle$
and

$$
\left\langle 70 L^{\prime}=1\left\|(8,1)_{0}-(1,3)_{0} \quad\right\| \quad 56 \quad L=0\right\rangle .
$$

The matrix elements of $D_{+}^{e m}$ for lecays into both γN and $\gamma \Delta$ are enumerated ${ }^{40}$ in Table VI.B in terms of these retuced matrix elements.

By the selection rules of Section $1 V$, the $(8,1)_{o}+(1,8)_{0}$ term $\ln V^{-1} D_{+}^{e m} V$ acts as an electric dipole transition opera-
tor, while the two remaining terms act as a combination of electric tipole $\left(j_{\gamma}=1\right)$ and magnetic quatrupole $\left(j_{\gamma}=2\right)$. According to the discussion around Eq. (IV-14) in section iV we can in fact write amplituites,

```
E1' = < 70 L'= 1 | (8,1) + (1,8) | 56 L=0\rangle
E1 = \sqrt{}{1/2}\langle70 L'=1| | (3,\overline{3}\mp@subsup{)}{1}{|}|{\mp@code{L=0}\rangle
    - \sqrt{}{1/2}<70 L'= 1|(8,1)。-(1,8)| 56 L=0>
M2 = \sqrt{}{1/2}\langle70}\mp@subsup{L}{}{\prime}=1|(3,\overline{3}\mp@subsup{)}{1}{|}|6 L=0
    + \sqrt{}{1/2 <70 L'= 1| (8,1)0-(1,8)| 56 L=0 >,}
```

which are electric dipole and magnetic quadrupole amplitudes in terms of which all the helicity amplltutes given in Tabie V.B may be alternately expressed. Note that $N^{*}\left(J^{p}=5 / 2^{-}\right)$ $\rightarrow \gamma N$, for example, coulf in peneral go via $j_{\gamma}=2$ or 3 , but only $j_{\gamma}=2$ (magnetic quatrupole) is allowed by the thenry. Similarly, $N^{*}\left(5 / 2^{-}\right) \rightarrow \gamma \Delta$ could proceed with $j_{\gamma}=1,2,3$ or 4 in general, but only $j_{\gamma}=1$ and 2 are allowed by the selection rules. Note also that the Moorhouse quark motel selection rule ${ }^{41}$ forbidding $\gamma_{D} \rightarrow N^{*}$, where N^{*} has quark $\operatorname{spin} S=3 / 2$, is reflected in Table VI.3.

For $56 L^{\prime}=2$ decays to $56 \mathrm{~L}=0$ we have reached a high enough value of L^{\prime} that all four terms in $V^{-1} D^{e m} V$ can contribute to decay amplltudes. In this case the $(8,1)_{0}+(1,8)_{0}$ term is electric quadrupole in character, whlle linear conbinations of the other three terms act as $j_{\gamma}=1,2$ and 3 transi-
tions:

$$
\begin{aligned}
E 2^{\prime} & =\left\langle\underline{56} L^{\prime}=2\left\|(8,1)_{0}+(1,8)_{0}\right\| \underline{56} L=0\right\rangle \\
M 1 & =\sqrt{1 / 10}\left\langle\underline{56} L^{\prime}=2\left\|(3, \overline{3})_{1}\right\| \underline{56} L=0\right\rangle \\
& -\sqrt{3 / 10}\left\langle\underline{56} L^{\prime}=2\left\|(8,1)_{0}-(1,3)_{0}\right\| \underline{56} L=0\right\rangle \\
& +\sqrt{3 / 5}\left\langle\underline{56} L^{\prime}=2\left\|(\overline{3}, 3)_{-1}\right\| \underline{56} L=0\right\rangle \\
E 2 & =\sqrt{1 / 2}\left\langle\underline{56} L^{\prime}=2 \|(3, \overline{3})_{1} \mid \underline{56} L=0\right\rangle \\
& -\sqrt{1 / 6}\left\langle\underline{56} L^{\prime}=2\left\|(8,1)_{0}-(1,8)_{0}\right\| \underline{56} L=0\right\rangle \\
& -\sqrt{1 / 3}\left\langle\underline{56} L^{\prime}=2\left\|(\overline{3}, 3)_{-1}\right\| \underline{56} L=0\right\rangle \\
M 3 & =\sqrt{6 / 15}\left\langle 56 L^{\prime}=2 \|(3, \overline{3})_{1} \mid \underline{56} L=0\right\rangle \\
& +\sqrt{8 / 15}\left\langle\underline{56} L^{\prime}=2\left\|(8,1)_{0}-(1,8)\right\| \underline{56} L=0\right\rangle \\
& +\sqrt{1 / 15}\left\langle 56 L^{\prime}=2\left\|(\overline{3}, 3)_{1}\right\| \underline{56} L=0\right\rangle
\end{aligned}
$$

The varlous amnlitures for resonances in the $56 \quad L^{\prime}=2$ to fecay into γN are $1 i s t e d^{40}$ in Table Vi.C. The $\gamma \Delta$ amplitutes presented in Table VI.D are not experimentally testable as yet. Agaln, the selection rules derived in section iv have clear and direct consequences: $\Delta^{*}\left(7 / 2^{+}\right) \rightarrow \gamma N$, for example, which could go via $j_{\gamma}=3$ or 4 is restricted to be purely magnetic octupole ($\mathrm{j}_{\gamma}=3$).

Decays from higtier L' multiplets are easily computable, but little in the way of experimental tests is avallable at present. For $56 L^{\prime}=0,70 L^{\prime}=1$ and $56 L^{\prime}=2$ photon transition amplitules, which we have enumeratel, hnvever, photo-
production data permit many direct experimental comparisons. To these we now turn.

VII. EXPFDIMENTAL TESTS OF BARYON AUPLITUOES

The predictions for transitions within $56 \mathrm{~L}=0$ multiplet are alreary testable using the nagnetic moments of the neutron and proton, for a direct evaluation of $D_{+}^{e m}$ between nuclenn states at infinite momentum gives

$$
\mu_{A}(N)=\sqrt{\frac{1}{2}}\left\langle N, \lambda=\frac{1}{2}\right| D_{+}^{e m}\left|N, \lambda=-\frac{1}{2}\right\rangle
$$

where $\mu_{A}(N)$ is the anomalous magnetic moment of the nucleon. However, a careful evaluation of $y^{-1} D_{+}^{e m} V$ between one nucleon states at infinite momentum gives a result which has the transfomation properties of the four terms discussed in section 1 vminus a term which is exactly the Dirac moment. Adding the Dirac moment to the anomalous moment, we see that the four terms $\ln V^{-1} D_{+}^{e m} V$ discussed before shoully be interpreted as belng proportional to the total moment when taken between the same initial and final state. Thus, the matrix elements in Table VI.A are to be interpreted as predicting

$$
\begin{equation*}
\mu_{r}(n) / \mu_{r}(p)=-\frac{2}{3} \tag{VII-2}
\end{equation*}
$$

the sil(5) result t^{42} which is within 5% of the experimental value of $(-1.91 / 2.73)=-0.7 \eta$.

For the transitions from Δ to N the ratio of $\sqrt{3}$ between the $\lambda=3 / 2$ ant $\lambda=1 / 2$ matrix elements corresponds to a mure magnetic dipole transition, as we already know must occur due to the selection rules discussed in the last section. All photoproduction analyses ${ }^{43}$ agree that the electric quadrupole amplitude is at most a few percent of the magnetic Hipole amplitude for the excitation of the 3-3 resonance. Using the conventional tefinition of μ^{*}, Eq. (11-7), we obtain from the results in Table VI. A that

$$
\mu^{*} / \mu_{\mathrm{r}}(p)=\frac{2 \sqrt{2}}{3}
$$

An olter phenomenological analysis of the fata for pion photoproduction gave a result for $\mu^{*} / \mu_{r}(p)$ which is 1.28 ± 0.03 times the right hand side of Eq. (Vil-3) by finding a residue at the Δ-pole in $\gamma N \rightarrow \pi M$. By considering the contribution ${ }^{45}$ of the Δ to the Cabibbo-Radicatl sum rule we find a value of $\mu^{*} / \mu_{r}(p)$ which is 0.9 ± 0.1 times the right hand side of Eq. (VII-3), In quite satisfactory agrement with the theory. While the stgn of $\mu^{*} / \mu_{r}(\rho)$ cannot he measured, the product of the γN and πN couplings of the nucleon can be compared with that of the 3-3 resonance in pion photoproduction. As the theory also predicts the relative sign of $\boldsymbol{i N}$ couplings, 8 it makes an unamblguous predlction of the sign of the reso-
nance excltation ampliturle relative to the nucleon Born terms. This sign is correctly given by the theory. ${ }^{46}$

For the transitions from Δ to Δ, which is also purely magnetic dipole in character, we should again interpret the results in Table VI.A as being for the total moment. The relation between matrix elements of $D_{+}^{C_{m}}$ and the conventional anomalous magnetic moment of the Δ, μ_{A}^{*}, is

$$
\mu_{\mathrm{f}}^{* *}=-\sqrt{\frac{3}{2}}\left\langle\Delta, \lambda=\frac{3}{2}\right| D_{+}^{e m}\left|\Delta, \lambda=\frac{1}{2}\right\rangle_{p_{z} \rightarrow \infty}(v 1-4)
$$

From this we see that we have from Table VI.A

$$
\begin{align*}
& \mu_{T}^{* *}\left(\Delta^{++}\right) / \mu_{T}(p)=2 \\
& \mu_{T}^{* *}\left(\Delta^{+}\right) / \mu_{T}(p)=1 \\
& \mu_{T}^{* *}\left(\Delta^{0}\right) / \mu_{T}(p)=0 \tag{vil-5}\\
& \mu_{T}^{* *}\left(\Delta^{-}\right) / \mu_{T}(p)=-1
\end{align*}
$$

As with Eas. (VII-2) and (VII-3), all these are standard SU(6) results, as is to be expected since the $\left\{(3, \overline{3})_{1}, 0\right\}$ term in $V^{-1} D_{+}^{e m} V$ has the same transformation properties as the magnetic moment used in SU(6).

The transitions from the $70 L^{\prime}=1$ to the ground state $56 L=0$ provide a much richer set of amplltudes for comparison of the theory and experiment. Rather than carry out a statistical "best fit" to all data, in Table VIl. A we have fixed the possible reduced matrix elements allowed by the
theory in terms of some relatively well feterminef amplitudes for the process $\gamma N \rightarrow D_{13}(1520) \rightarrow \pi N$.

The quantities in the table are the inatix elements of $0_{+}^{e m}$ taken between Identified resonant states ${ }^{47}$ in the 70 with $J_{z}=\lambda$ and nucleon states with $J_{z}=\lambda-1$. The signs are those fount in the specific processes $\gamma p \rightarrow N^{*+} \rightarrow \pi_{1}^{+} n$ and $\gamma n \rightarrow N^{* 0} \rightarrow \pi^{\circ} p$. To make a theoretical prediction of these signs we need a theory of both the $\gamma \Delta N^{*}$ and $\bar{K} N N^{*}$ vertices. The YNN * couplings are taken from Table VI. S whlle for ㅡ́ $L^{\prime}=1 \rightarrow 55 L=0$ pion transitlons we may express the reduced matrix elements as linear combinations of amplitudes S and D, corresponding to $\ell=0$ and $2: 48$

$$
\begin{array}{r}
\left\langle 70 L^{\prime}=1 \quad \|(8,1)_{0}-(1,8)_{0} \mid \underline{56} \mathrm{~L}=0\right\rangle=(\mathrm{S}+2 \mathrm{D}) / 3 \\
\left\langle 70 \mathrm{~L}^{\prime}=1 \quad \|(3, \overline{3})_{1}-(\overline{3}, 3)_{1} \mid \underline{56} \mathrm{~L}=0\right\rangle=(\mathrm{S}-0) / 3 \\
(\mathrm{~V} \mid 1-6)
\end{array}
$$

$S=+D$ if only the $(8,1)_{0}-(1,8)_{0}$ term $\ln V^{-1}{ }_{+}^{e m} V$ is present, while $S=20$ if only $(3, \overline{3})_{1}-(\overline{3}, 3)_{-1}$ is present. while an earlier phase shift solution ${ }^{49}$ to the $\pi N \rightarrow \pi \Delta$ data disapreed with the signs predictet for pion transitions, a new solution agrees completely ${ }^{50}$ and shows that the signs of S and D are opposite, i.e., it appears that the $(3, \overline{3})_{1}-(\overline{3}, 3)_{-1}$ retucer matrix element is dominant for $70 L^{\prime}=1 \rightarrow 56 L=0$ pion fecays. In constructing Table VII. A we have taken the $\Pi \mathrm{IN}^{*}$ couplings from Table V of Ref.9, and have assumed opposite signs for S and D in calculating the $\bar{W} \mathbb{N}^{*}$ vertex. Mi-
xing hetween the two S_{11} or two D_{13} states in the 70 has been neglected in computing the preficted amplitutes.

The "data" is taken from a recent analysis of electronagnetic couplings of N^{*} resonances fron single pion photoproduction data. 51 In terms of amplltures \hat{A}_{λ} for $\gamma N \rightarrow H^{*}$ of that analysis, ${ }^{51}$ matrix elements of $D_{+}^{e m}$ are
$\left\langle N^{*}, \lambda\right| D_{+}^{e m}\left|N_{1} \lambda-1\right\rangle=\left(\frac{M_{N}}{2 \pi \alpha M_{N^{*}} P_{r}}\right)^{\frac{1}{2}} A_{\lambda}$
(V:I-7)
Where p_{γ} is the photon momentum in the N^{*} rest frame, and λ can take the values $1 / ?$ and 3/2. The results of Ref. 51 generally agree well with those of another recent analysis, 52 although the "errors" on the amplltules quoted in the latter are :nuch larger. Judging from the differences between succesive or independent analyses, we would opt for larger "errors" than those in Ref. 51 , whlch are reproduced in Table VII.A.

As a first comparison, we set the refuced matrix element $\left\langle\underline{70} L^{\prime}=1\left\|(8,1)_{0}-(1,8)_{0}\right\| \underline{56} L=0\right\rangle$ equal to zero, so that we are left with only two terms in $V^{-1} D_{+}^{e m} V$, which are those present in quark model calculations. 28,29 The well determinet amplitude for $\gamma_{p} \rightarrow D_{13}(1520)$ with $\lambda=3 / 2$ then determines the reduced matrix element $\left\langle 70 L^{\prime}=1 \mid(8,1)_{0}+(1,8)_{0} \| 56 L=0\right\rangle$ directly and fixes an overall free sign. The $\lambda=1 / 2$ transition to the same resonance then tetermines the other reduced
matrix element, $\left\langle 7 n L^{\prime}=1\|(3, \overline{3})\| 55 L=0\right\rangle$. In fact, the smallness of the $\lambda=1 /$? ampliture neans that

$$
\begin{aligned}
&\left\langle 70 L^{\prime}=1\left\|(8,1)_{0}+(1,8)_{0}\right\| \underline{56} L=0\right\rangle \\
& \simeq 2\langle 70 L^{\prime}=1\left\|(3, \overrightarrow{3})_{1}\right\| \underbrace{56} L=0\rangle \quad(V \|-8)
\end{aligned}
$$

All the well tetermined signs of the resultinp amplitudes apree with experlment (9 , In atdition to input). However, the magnitudes of a number of the predicted amplitudes are not in such great agreement with experiment. The $\lambda=3 / 2$ ampiltude for $\gamma n \rightarrow D_{i 3}^{0}(1520)$ is too large. Mixing, at least with the small mixing angles otherwise suggested, will not cure this, although it could well help to lmprove the sitaation with regard to the poorly known $\theta_{13}(1700)$ amplitules.

For the two S_{11} states, a falrly large mixing angle is known to be necessary from other considerations, and such an angle would give $S_{11}(1700)$ amplitudes which agree with experiment in sign. The predicted $S_{11}(1535)$ amplitudes would stlll be much too large, however. The amplitudes predicted for S_{31} and D_{33} also are too larpe, and no mixing (within the 70 l. $=1$) is possible in these cases. A fit to all the data would of course scale down the reducer matrlx elements, making the agreement better for the magnltuies of S_{31}, D_{33} and S_{11} amplitudes, at some cost to those of $D_{13}(1520)$.

A second comparison of the theory with experiment is also found in Table VII. A where all three possible reducei matrix elements are allowei to be non-zero, and fixed by the transitions $\gamma_{p} \rightarrow D_{13}^{+}(1520)$ with $\lambda=1 / 2$ and $3 / 2$, and by
$\gamma n \rightarrow 0_{13}^{0}(1520)$ with $\lambda=3 / 2$. Again, all the well determined slgns agree with experiment, although the preficted (and poorly determined experimentally) signs for $D_{13}(1700)$ and $S_{11}(1700)$ are opposite to those discussed above.

There still is trouble in this case with the marnitudes of varlous amplitudes. The $\lambda=1 / 2, \gamma n \rightarrow D_{13}^{\circ}(1520)$ ampIt tude is ton small, as is the amplitude for $\gamma p \rightarrow S_{11}^{+}(1535)$. Mixing only hurts here, as the γp transition to the other S_{11} is forbidden, resulting in an even smaller prediction for $\gamma p \rightarrow S_{11}^{+}(1535)$ and too small a result as well for $\gamma_{p \rightarrow} \rightarrow S_{11}^{+}(1700)$. Although the D_{33} amplitude predictlons now agree well with experiment, that for S_{31} is still much too large.

It is interesting to note that for this second fit we have

$$
\begin{aligned}
& \left\langle 70 L^{\prime}=1 \|(3,1)_{0}+(1,8)_{0} \underline{56} \mathrm{~L}=0\right\rangle \\
& \simeq\left\langle 70 \quad \mathrm{~L}^{\prime}=1\left\|(8,1)_{0}-(1,8)_{0}\right\| \underline{56} \mathrm{~L}=0\right\rangle \quad(V \mid \|-9) \\
& \left\langle 70 \quad L^{\prime}=1\left\|(3, \overline{3})_{1}\right\| \underline{56} \mathrm{~L}=0\right\rangle \simeq 0 .
\end{aligned}
$$

Equallty of the first two refuced matrix elements is exactly what is forced by vector dominance plus the schene of Petersen and Rosner ${ }^{31}$ for vector meson decays. The reason why $\left\langle 70 L^{\prime}=1\left\|(3, \overline{3})_{1}\right\| \underline{56} L=0\right\rangle$ should be small, which in the fit is forced by the smallness of the amplitude $\gamma_{p} \rightarrow \eta_{3}^{+}(1520)$ with $\lambda=1 / 2$, is possibly an interesting theoretical problem.

At the present time, given the uncertainties we feel exist in the electromannetic couplings of the N^{*} s, either set of predictions should he regardet as in falr arreement with experiment as far as magnlturies are concerned. The signs in either case are a triumph of the theory for both pion and photon transitions and verify that S and D amplitudes have opposite signs.

For transitions from the $56 L^{\prime}=2$ to the ground state $55 \mathrm{~L}=0$ we also have in princlple a large set of alloved ampIltudes for comparison with experiment. In practice the amplitudes are less well known, as shown in Table Vil. B. The quantlites in the Table, as in the previous one, arematrix elements of $D_{+}^{e m}$ with signs appropriate for $\gamma p \rightarrow N^{N^{+}} \rightarrow \bar{u}^{+} n^{+}$ and $\gamma n \rightarrow N^{*^{0}} \rightarrow \bar{i} \eta$. For the $\pi N N^{*}$ vertex ve express the two retucef matrix elements for $\underline{56} L^{\prime}=2 \rightarrow \underline{56} L=0$ pion tecays as 48

$$
\begin{align*}
& \left\langle 55 L^{\prime}=2 \|(8,1)_{0}-(1,8)_{0} \mid \underline{56} L=0\right\rangle=(2 P+3 F) / 5 \\
& \left\langle 56 L^{\prime}=2\left\|(3, \overline{3})_{1}-(\overline{3}, 3)_{-1}\right\| \underline{56} L=0\right\rangle=\sqrt{3}(P-F) / 5,
\end{align*}
$$

where the amplltudes p and F correspond to $l=1$ or 3 pion ansular momenta, respectlvely. The relative signs of P and F are the same (opposite), if the $(8,1)_{0}-(1,8)_{0}\left((3, \overline{3})_{1}-(\overline{3}, 3)_{-1}\right)$ matrix element dominates. The reaction ${ }^{49,50} \pi N \rightarrow \pi \Delta$ indicates that P and F have the same sign, ant we use this together with Table $V 1$ of Ref. 9 in constructing Table VII.B. The "data" is agaln from Pef. 51.

To compare theory and experiment, we simplify the situation for the photon vertex by setting
$\left\langle 56 \quad L^{\prime}=2\|(\overline{3}, 3)\| \underline{-1} \mid \underline{56} \quad L=0\right\rangle=0$
and
$\left\langle\underline{56} L^{\prime}=2\left\|(8,1)_{0}-(1,8)_{0}\right\| \underline{55} L=0\right\rangle=0$,

This leaves only the $\left\langle 56 L^{\prime}=2\left\|(8,1)_{0}+(1,8)_{0}\right\| \underline{56} L=0\right\rangle$ and $\left\langle 55 L^{\prime}=2\left\|(3, \overline{3})_{1}\right\| 56 L=0\right\rangle$ reduced matrix elements, as would 28,29 be the case in most quark morel calculations. Rather than making a fit to all the amplitudes, we use the vell measured $\gamma p \rightarrow F_{15}^{+}$amplitudes to $f l x$ the two reducel matrix elements, and then calculate the remainlng amplitudes.

All the experimentally well determined signs, with the possible exception of the F_{35} amplitude with $\lambda=3 / 2$, apree well with the theory. In a previous analysis, both the F_{35} amplitudes also agreed. The signs of the $P_{33}(2000)$ amplltudes among the p-wave πN resonances, provide some (marsinal) support for the P and F amplltudes at the pion vertex to have the same sign, as the $\pi N \rightarrow \pi \Delta$ analysis shows much more definttely. ${ }^{43,50}$

The magnitudes of the predicted amplitudes are in fair apreement with what is observed. There is no need to allow $\left\langle 56 L^{\prime}=2\left\|(8,1)_{0}-(1,8)_{0}\right\| 56 L=0\right\rangle$ and $\left\langle 56 L^{\prime}=2\|(\overline{3}, 3)\| \underline{-1} L=0\right\rangle$ to be non-zero. In fact, fitting all four refuced matrix
nements to $\gamma_{p} \rightarrow F_{15}^{+}$with $\lambda=1 / 2$ and $3 / 2, \gamma n \rightarrow F_{i 5}^{\circ}$ with $\lambda=3 / \lambda$, ant $\gamma_{0} \rightarrow P_{33}^{+}$with $\lambda=1 / 2$ res.lits in essentially the same prellictions; the two additional reduced matrix elenents have values more than an orter of magnltude smaller than either $\left\langle 55 L^{\prime}=2\left\|(3, \overline{3})_{1}\right\| 56 \quad L=0\right\rangle$ or $\left\langle\underline{56} L^{\prime}=2\left\|(8,1)_{0}+(1,8)\right\| 56 L=0\right\rangle$ 。 The smallness of the $\lambda=3 / 2$ amplitude for $\gamma n \rightarrow r_{i s}^{\circ}$ by itself assures the strong constraint on the tro additional reduced matrix elements,

$$
\begin{aligned}
&-\frac{4}{45}\left\langle 56 L^{\prime}=2\right.\left.\left|(\overline{3}, 3)_{-1}\right| \underline{56} L=0\right\rangle \\
& \simeq+\frac{4 \sqrt{2}}{45}\left\langle\underline{50} L^{\prime}=2\left\|(8,1)_{0}-(1,8)_{0}\right\| \underline{56} L=0\right\rangle . \\
& \quad(V \mid 1-11)
\end{aligned}
$$

There is thus fairly good evidence in this case that only the two reduced matrix elements fount in the quark model are present at a significant strength, and, in particular, that equality of $\left\langle 5 \kappa L^{\prime}=2\left\|(8,1)_{0}+(1,8)_{0}\right\| 55 L=0\right\rangle$ ant $\left\langle 56 L^{\prime}=2\left\|(8,1)_{0}-(1,8)_{0}\right\| 56 \quad L=0\right\rangle$ is ruled out.

Finally we examine the transitions from a "rafially excited" $56 L^{\prime \prime}=0$ back to the ground state $56 \mathrm{~L}=0$. The 56 $L^{\prime}=0$ inclutes the Roper resonance $P_{11}(1470)$ and $P_{33}(1718)$. We fit the one possible reduced matrix element,
$\left\langle 56 L^{\prime}=0\left\|(3, \overrightarrow{3})_{1}\right\| 56 L=0\right\rangle$ to the amplitude for $\gamma \Gamma \rightarrow p_{11}(1470)$ and predict the other amplitudes in Table VIl.C using the 56 $L^{\prime}=0 \rightarrow$ 56 $L=0$ matrix elements from Table VI.A. Again the signs are those $\ln \gamma p \rightarrow \pi_{n}^{+} n$ and $\gamma n \rightarrow \Pi_{n}^{-} p$. The experimental results of both the Berkeley ${ }^{51}$ and Lancaster ${ }^{52}$ analyses are shown,
there being some discrepancy between the two.

VIII. SUMMARY AND CONCLIUSIOMS

The operator V, which by definition takes us from a current to constituent quark basis, contains in principle all the information about matrix elements of the weak and electromagnetic currents when taken between hadron states, assuming that the hadrons can be treated as if constructed out of (constituent) quarks. Knowing V, we would know the exact transformation properties of hadrons under current algebra. We have shown in Section lll that these propertles are complicated, and that a phenomenological atterpt to determine them by fitting experimentally known transi tions does not lead to a unlque solution, as the number of parameters involved is greater than the number of avallable experimental quantities. Lacking a complete knowledge of V, we have abstracted oniy certain of its algebraic properties from the free quarl model and assumed that they hold in the real world. In particular, we have at,stracted here properties of the operators $V^{-1} D_{ \pm}^{m} V$, which correspond to those which induce real photon transitions between hadrons.

In our case, abstraction from the free quark model leads to $V^{-1} D_{+}^{e m} V$ belng assumed to be the sum of rour terms which trans forms as: $\left\{(8,1)_{0}+(1,3)_{0}, 1\right\},\left\{(3, \overline{3})_{1}, 0\right\}$, $\left\{(8,1)_{0}-(1,8)_{0}, 1\right\}$ and $\left\{(\overrightarrow{3}, 3)_{-1}, 2\right\}$, all of which belong to 35^{\prime} s of the full $\operatorname{su(5)}$, of currents. In section iv we have shown how matrix elements of $D_{ \pm}^{e m}$ are related to real photon amplitudes and how they may he expressed as as sum of Clebsch-fortan coefficients times at most four independent reducei matrix elements, ance initial and final SU(6$)_{W}$ multiplets are specifled. 'fe have shown that the theory leads to multipole selection rules, a particular example of which is the oll SU(6) result that the transition from the nuclenn to $3-3$ resonance is magnetic dipole in character. ${ }^{10}$ In fact, we may generally express the four reduced matrix elements for transitions between $L=0$ and any other multiplet in terms of four multipole amplitudes, two electric (of the same j_{X}) and two magnetic. These selection rules yleld very interesting predictions, which may be subject to a qualitative experimental test in that low values of j_{r} (and ℓ for pions) are forbidden for $L^{\prime} \geqslant 3 \rightarrow L=0$ transitlons, even though they are otherwise allowet by spin-parity considerations and even favored by angular momentum harrier arguments.

When applied to mesons there are many amplitudes which are related, but little to compare with experiment besides transitions between vector ant pseudoscalar mesons, both
of which lie $\ln 35$ and 1 with $L=0$. The available data are consistent with the theory, but little else can be sail at the moment.

For baryons on the other hand, we have years of experimental effort that has been devoted to pion photoproduction in the resonance region, fron which baryon electromagnetlc couplings may be extracted by phase shift analysis. For the $70 L^{\prime}=1$ baryon states, not only to we find agreement of all the experimentally well determinel signs with the theory, but also the photopion matrix elements, which contain information on both $\gamma N N^{*}$ and $\pi N N^{*}$ vertices, indicate that the S and D wave amplitudes at the pion vertex have opposite sign. This ls in agreement with the results ${ }^{49,5}$ from the reaction $\overline{W N} \rightarrow \pi \Delta$. For the $56 L^{\prime}=2$ baryon resonances, again all signs apree with the theory, except for possibly one of the $\gamma p \rightarrow F_{35}^{+}$amplitudes. There is also an indication from $\gamma N \rightarrow \pi N$ that the P and F ampliturtes at the IINN ${ }^{*}$ vertex have the same sign, in agreement with the results ${ }^{49,50}$ from $\pi N \rightarrow \pi \Delta$. While the signs check very well, the magnltudes, particularly for the $70 L^{\prime}=1 \rightarrow 56 L=0$ transitions, leave something to be desired. Given the uncertalnties in the experimental analyses, however, we feel that the present situation is fairly satisfactory.

The general outlook is then quite good. Between the phase shift analyses of $\Pi N \rightarrow \Pi \Delta$ and $\gamma N \rightarrow \pi N$, more than 25 signs predicted by the theory agree with experiment. For
the first time we have some good evidence that not only is the multiplet structure of the quark model fnund in Nature, but further that the wave functions of the states resemble those of the consituent quark model in that the relative signs (and more routhly, magnitudes) are correctly predicted with such an assumption. However, neither the results for the $X N N^{*}$ or the $\pi N N^{*}$ vertex correspond to the hypothesis of $S!(5)_{w}$ conservation; the most direct and powerful evidence beinf the signs and magnitudes of amplitudes for $70 L^{\prime}=1$ baryon resonances to decay into $\pi N, \pi \Delta$ and子\%. The predictions resulting from the quark model, ${ }^{28,29}$ where the reduced matrix elements are explicitly calculable, are wrong in places also - in particular in the signs of pion transition amplitudes for $\underline{56} L^{\prime}=2 \rightarrow 56 L=0$ baryons.

With the success of the theory, it may now be used as a tool to help classifying new resonances into multiplets by using information on their signs in $\pi N \rightarrow \pi \Delta$ and $\gamma N \rightarrow \vec{\pi} N$. What is still needed is a dynamics, or possibly an even higher symmetry, which will correctly glve the magnltude and sign of the reluced matrix elements. This, anil the extension to $q^{2} \neq 0$, remaln as important problems for the future.

APPENDIX

Baryons

Listed are non-strange members of the baryon multi -

 plets. The names of the resonances conventionally used in phase shift analysis are also riven. for baryons, since they are composed of quarks only, $W=S$. No mixing is assumed| SU(6) ${ }_{w}$ | L | $\operatorname{su}(3)^{2 W+1}$ | J^{p} | $N^{*}\left(\Delta^{*}\right) \underset{2 I, 2 \gamma}{(\text { mass }, M e V)}$ |
| :---: | :---: | :---: | :---: | :---: |
| 56 | 0 | 8^{2} | $1 / 2^{+}$ | $P_{11}(940)$ |
| | | 10^{4} | $3 / 2{ }^{+}$ | $\mathrm{P}_{33}(1236)$ |
| 56 | 0 | 8^{2} | 1/2 ${ }^{+}$ | $P_{11}(1470)$ |
| | | 10^{4} | 3/2+ | $\mathrm{P}_{33}(1718)$ |
| 70 | 1 | 8^{2} | 1/2 ${ }^{-}$ | $S_{12}(1535)$ |
| | | | 3/2- | $\mathrm{D}_{13}(1520)$ |
| | | 8^{4} | 1/2" | $\mathrm{S}_{11}(1700)$ |
| | | | $3 / 2^{-}$ | $D_{13}(1700)$ |
| | | | 5/2 ${ }^{-}$ | $\mathrm{D}_{15}(1700)$ |
| | | 10^{2} | 1/2* | $S_{31}(1650)$ |
| | | | $3 / 2^{-}$ | $\mathrm{D}_{33}(1670)$ |

Baryons (cont'd)

8^{2}	$3 / 2^{+}$	$P_{13}(1770)$
	$5 / 2^{+}$	$F_{51}(1688)$
10^{4}	$1 / 2^{+}$	$P_{31}(1860)$
	$3 / 2^{+}$	$P_{33}(2000)$
	$5 / 2^{+}$	$F_{35}(1860)$
	$7 / 2^{+}$	$F_{37}(1920)$

Mesons

Mesons are composed of a quark and an antiquark, and since $W_{\perp}=\frac{1}{2} \beta \sigma_{\perp}$, in calculating the $\operatorname{SU}(6)_{W}$ matrix elements (speciflcally, the W-spln Clebsch-Gordan coefficients), we must remember the $\mathbb{N}-S$ correspondence:

$$
\begin{aligned}
& \left|W, W_{z}\right\rangle=|1,1\rangle \sim\left|S, S_{z}\right\rangle=|1,1\rangle \\
& \left|N, H_{z}\right\rangle=|1,0\rangle \sim\left|S, S_{z}\right\rangle=-|0,0\rangle \\
& \left|1 H, H_{z}\right\rangle=|1,-1\rangle \sim\left|S, s_{z}\right\rangle=-|1,-1\rangle \\
& \left|H, W_{z}\right\rangle=|0,0\rangle \sim\left|S, S_{z}\right\rangle=-|1,0\rangle \text {. }
\end{aligned}
$$

A simple way to obtain these relation is to look at the action $n f W_{ \pm}$and $S_{ \pm}$on the states, e.g.

$$
\begin{aligned}
& 4_{+}|7,1 / 2,-1 / 2\rangle=S_{+}|q, 1 / 2,1 / 2\rangle=|7,1 / 2,1 / 2\rangle \\
& W_{+}|\bar{q}, 1 / 2,-1 / 2\rangle=-S_{+}|\bar{q}, 1 / 2,1 / 2\rangle=-|\bar{q}, 1 / 2,1 / 2\rangle
\end{aligned}
$$

Bullding states from qq:

$$
\begin{aligned}
& \qquad \begin{aligned}
&\left|S, S_{z}\right\rangle=|1,0\rangle=\frac{1}{\sqrt{2}}|1 / 2,1 / 2\rangle|1 / 2,-1 / 2\rangle \\
&+\frac{1}{\sqrt{2}}|1 / 2,-1 / 2\rangle|1 / 2,1 / 2\rangle, \\
& \text { Acting on this state, } S \text { g } \mid \text { ves } \\
& \frac{1}{\sqrt{2}}|1 / 2,1 / 2\rangle|1 / 2,1 / 2\rangle+\frac{1}{\sqrt{2}}|1 / 2,1 / 2\rangle|1 / 2,1 / 2\rangle,
\end{aligned}
\end{aligned}
$$

which is the same as $\sqrt{2}$ times $\left|S, S_{z}\right\rangle=|1,1\rangle$. The + operator, however, when actinf on the $\left|S, S_{z}\right\rangle=|1,0\rangle$ state, gives $-\sqrt{\frac{1}{2}}|1 / 2,1 / 2\rangle|1 / 2,1 / 2\rangle+\sqrt{\frac{1}{2}}|1 / 2,1 / 2\rangle|1 / 2,1 / 2\rangle=0$, 50 that the $\left|S, S_{z}\right\rangle=|1,0\rangle$ state corresponds to the $!!=0$ state.

For $L=0$ (oround state) mesons ve list both the s-spin and 4 -spin assignment. For $L=1$ the $4-5 p i n$ assignment becomes too involved, as many mesons have components with both $W=1$ and $W=0$; so for $L=1$ mesons we list the s-spin only.

Given are the $1=1$ and $I=0$ members of meson multiplets. 47 The $I=0$ physical states are mixtures of $S U(3)$ singlets and octets (see Section V).

	L	$\operatorname{su}(3)^{2 W+1}$	J^{p}	$1=0,1=1$ state
	0	$1{ }^{1}$	$1{ }^{-}$	longltudinal $\omega^{(1)}$
	0	8^{3}	0^{-}	$\eta^{(8)}$, $\bar{\pi}$
3.5			$1{ }^{-}$	transverse $\omega^{(8)}$, ρ
		81	$1{ }^{-}$	longitudinal $\omega^{(8)}, \rho$
		1^{3}	0^{-}	$\eta^{(1)}$
SU(6).	L	$\operatorname{sul}(3)^{25+1}$	$J^{P C}$	$1=0 . \quad 1=1$ state
1	0	11	0^{-}	$\eta^{(1)}$
35	0	8^{1}	0^{-}	$\eta^{(8)} \pi$
		$[8+1]^{3}$		$\omega_{0}^{(l)} \omega^{(1)}, \rho$

Mosons (cont'1)
35
1

1

$[8+1]^{3}$	2^{++}	$f, f 1, A_{2}$
	1^{++}	$?, ?, A_{1}$
	0^{++}	$S ?, \sigma, \delta$
8^{1}	1^{+-}	$\because ?, B$
I^{1}	1^{++}	$?$

References

1. See, for example F.J. Dyson, Symmetry Groups in Nuclear and Particle Physics (W.A. Bejanin, Inc., New York, 1966).
2. Numerous reviews on this subject are found in many books on nuclear physics. See, for example J.M. Blatt and V.F. Welsskopf," Theoretical Nuclear Physics" (Wiley, New York, 1952).
3. See, for example, M.G. Mayer and J.H. Jensen, Elementary Theory of Nuclear Structure (Wiley, New York 1955), and Ref. 2.
4. M.Gell-Mann, Phys. Rev. 125, 1067 (1962)
5. M.Gell-Mann, Phys. Letters 8, 214 (1964)
6. S.L. Adler and R.F. Dashen "Current Algebra and Applications to Particle Physics" (W.A. Benjainin,Inc., New York, 1968): S. B. Trelman, R. Jackiw and D.J. Gross, Lectures on Current Algebra and Its Applications (Princeton University Press, Princeton, 1972)
7. H.J. Melosh IV, Caltech thesis (1973) (unpublished); revised version in Phys. Rev. D9, 1095(1974).
8. F.J. Gliman, M. Kugler and S. Meshkov, Phys. Letters 45B, 481 (1973).
9. F.J. Gilman, M. Kugler and S. Meshkov, Phys. Rev. D9, 715 (1974).
10. C. Becchi and G. Horpugo, Phys. Letters 17. 352 (1965).
11. S. Adler, Phys. Rev. Letters 14, 1051 (1965); W.1. Weisberger, Phys. Rev, Letters 14, 1407 (1965).
12. R. Dashen and M. Gell-Mann, Phys. Letters 17, 142 (1965).
13. We always consider the transformation properties of operators and states in infinite momentum frame, or what is equivalent here, we classify states at rest under lightlike charges. Recali that the z and t components of the axial-vector current have equal matrix elements between states at infinite momentum, so that σ_{z} acts like Q_{s}^{0} between such states.
14. H.J. Lipkin and S. Meshkov, Phys. Rev. Letters 14, 670 (1965), and Phys. Rev. 143. 1269 (1966); K.J. Barnes, P. Carruthers and F. von Hippel, Phys. Rev. Letters 14, 82 (1965).
15. In the IIghtcone formulation it has been shown by Elchten et al. (Ref.16) that the $S U(6)_{w}$ currents commute with the kinetic energy term in the Hamiltonian, so they may be conserved in the free quark model. The phenomenological arguments against identifying the $S U(6)_{w}$ of currents and SU(6) ${ }_{w}$ of constituents still hold, however.
16. E. Elchten, F. Feinberg and J. Willensen, Phys. Rev, D8, 1204 (1973). See also S.P. de Alwis and J. Stern, CERN preprint TH.1679 (1973) (unpublished).
17. For a review, see H. Harari in "Spectroscopic and Group Theoretical Methods in Physics" (North Holland, Amsterdan, 1968), p. 363; and references therein.
18. H. Harari in Racah Memorial Volume, "Spectroscopic and

Group Theoretical Methods In Physics; F. Bloch, S.G. Cohen,
A. De-shalit, S. Sambursky and I. Talml, eds. (wiley, New York, 1968).
19. M. Gell-Mann and 14. Levy, Nuovo Cimento 16, 705 (1960).
20. See. Refs. 8 and 9, and F.J. Gilman, Lectures presented at the 14 th Scottish Universities Summer School in Physics, Stanford Linear Accelerator Center Report No. SLAC -PUB-1320, 1973(unpublished), and references therein.
21. A.J.G. Hey and J. Weyers, Nucl. Phys. B61, 205 (1973).
22. J.C. Carter, J.J. Coyne, and S. Meshkov, Phys. Rev. Letters 14, 523 (1965), and S. Meshkov, private communication; C.L. Cook and G. Murtaza, Nuovo Cimento 33, 531 (1965). We use the Condon-Shortly phase convention with the relevant plece of $V^{-1} D_{+}^{e m} V$ taken first.
23. P. McNamee and F. Chilton, Rev. Mod. Phys. 36, 1005 (1964).
24. N. Cabibbo and L.A. Radicati, Phys. Letters 19, 697 (1966).
25. The correspondence between the S and W-spln is detailed in the Appendix.
26. While Eq. ($\mid V-10$) is strictly true only for baryons where $W=S$, the resulting selection rules in Eqs. (IV-9) and (IV-13) hold also for mesons.
27. This result was first pointed out by S. Meskov.
28. D. Faiman and A.W. Hendry, Phys. Rev. 180, 1572 (1969); L.A. Copley, G. Karl and E. Obryk, Phys. Letters 29B, 117, (1968).
29. R.P. Feynman, M. Kislinger and F. Ravndal, Phys. Rev. D3

2706 (1971).
3n. J. Carter and M.E.A. Head, Phys. Rev. 176, 1808 (1968); D. Horn and Y. Ne'eman, Phys. Rev. D1, 2710 (1970);
R. Carlitz and M. Kislinger, Phys. Rev. D2, 336 (1970). Specific broken $\operatorname{su(6)_{W}}$ schemes with the same algebraic structure as the theory studied here have been developed by L. Micu, Nucl. Phys. B10. 521 (1963): E.W. Coglazier and J.L. Rosner, Nucl. Phys. B27, 349 (1971); W.P. Petersen and J.L. Rosner, Phys. Rev. D6, 820 (1972).
31. W.P Petersen and J.L. Rosner, Phys. Rev. D7, 747 (1973).
32. G. Zweig, CERN Reports TH. 401 and TH.412, 1964 (unpublished)
33. The results of the present theory are identical in this case, as far as the relations between transition amplitudes are concerned, with the quark model results. See, for example, R.H. Dalitz in High Energy Physics, lectures at the 1965 Les Houches Summer School, C.DeWitt and M. Jacob, editors (Gordon and Breach, New York, 1965), p. 251.
34. T.A. Lasinski et al., Rev. Mod. Phys. 45, Part 11, 51 (1973).
35. We use the recent upper limit for $r\left(\rho \rightarrow \gamma_{\eta}\right)$ of M.E. Nordberg et al., Cornell University report CLNS-239, 1973 (unpublished).
36. Our mixing angle is defined so that $\eta=\cos \theta_{p} \eta^{(8)}+\sin \theta_{p} \eta^{(1)}$
37. The results In Table V.B agree with those of another recent analysis by A. Bramon and M. Greco, Frascati preprint LNF -73/60, 1973 (unpublished).
38. A. Browman et al., Cornell preprint CLNS-242, 1973 (unpubllshed).
39. We take A_{2}, A_{1}, δ, and B to be the $!=1$ mesons with internal quark angular momentum $L=1$ and $J^{\mathbb{P C}}$ quantum numbers $2^{+4}, 1^{++}, 0^{++}$and 1^{+-}. Their isoscalar partners are the f, D, σ, and H, respectively.
40. The γN results are also enumerated in Ref. 21. Some partial results, using only $\operatorname{SU}(3) \times S U(3)$ subalgebra of $\operatorname{SU}(6)_{W}$ have been obtained by A. Love and D. V. Nanopoulos, Phys. Letters 45B, 507 (1973).
41. R.G. Moorhouse, Phys. Rev. Letters 15, 772 (1965).
42. M.A.B. Beg, B.W. Lee and A. Pals, Phys. Rev. Letters 13, 514 (1964).
43. See, for example, R.L. Walker, Phys. Rev. 182, 1729 (1969).
44. R.H. Dalltz and D.G. Sutherland, Phys. Rev. 146, 1180 (1966).
45. We use the results of F.J. Gilinan and H.J. Schnitzer, Phys. Rev. 150, 1362 (1966) and S.L. Adler and F.J. Gilman, Phys. Rev. 156, 1568 (1967), updated by recent photoproduction amplitude analysis, to calculate $\boldsymbol{\mu}^{\boldsymbol{*}}$.
46. See, for example, R.G. Moorhouse and H. Oberlack, Phys. Letters 43B, 44 (1976). These authors use the quark model to calculate the 3-3 amplitudes, but the algebraic structure and signs are the same as here.
47. For a review of the classification of hadron states accor-
ding to quark model, see F.J. Gilman, Ref. 20 and the lectures of R.H. Nalitz in Proceedings of the Second Hawail Topical Conference in Partlcle Physics, S. Pakvasa and S.F. Tuan, eds. (university of Hawail Press, Honolulu, Hawail, 1968); p. 325.
48. See Refs. 8 and 9 for a detalled derivation of this correspondence. Closely related amplitudes were originally defined in the ℓ-broken $S U(6)_{w}$ scheme by W. Petersen and J. Rosner, Phys. Rev. D6, 820 (1972).
49. D. Herndon et al., LBL preprint LBL-1065 (1972) (unpubilished).
50. R. J. Cashmore, Lectures presented at the Scottish Universities Summer School in Physics, Stanford Linear Accelerator Center Report No. SLAC-PUB-1316, 1973 (unpublished), and private communication.
51. G. Knies, R.G. Moorhouse and H. Oberlack, LBL preprint LBL-2410, 1973 (unpublished).
52. R.C.E. Devenish, W.A. Rankin and D.H. Lyth, University of Lancaster preprint (unpublished).
53. D. Faiman and D. Plane, Nucl. Phys. B50, 379 (1972). Note that mixing with states outside of the 70 $L^{\prime}=1$ and $56 L^{\prime}=2$ may also occur. See in this connection D. Faiman, J.L. Rosner and J. Weyers, Nucl. Phys. B57, 45 (1973).
54. See R.G. Moorhouse and H. Oberlack, Ref.46.

TABLE V.A

Matrix elements for photon transitions among 35 and $1 \mathrm{~L}=0$ states.
The ω and ϕ are assumed to be ideally mixed, while the η and X^{0} are taken as the $\operatorname{SU}(3)$ octet and singlet pseudosealar mesons (see text).

TABLE V,B

Predicted and experimental widths for radiative transitions among 35 and $1 \mathrm{~L}=0$ mesons.

TABLE V C

Photon transition amplitudes from non-strange mesons ${ }^{39}$ with $L^{\prime}=1$ and $J_{z}=\lambda$ to those with $L=0$ and $J_{z}=\lambda-1$. The ω, f, D, and σ are assumed to be ideal mixtures of singlets and octets, so as to be composed purely of nonstrange quarks; the η and $I f$ are purely octet, and the X^{0} a pure singlet. Zweig's rule ${ }^{32}$ is used to relate $\operatorname{SU}\left({ }^{6}\right)_{W} \underline{35}$ and $\underline{1}$ reduced matrix elements (see text), and forbids decays like $\mathrm{A}_{2}, \mathrm{~A}_{1}, \delta, \mathrm{f}, \mathrm{D}, \sigma \rightarrow \gamma \phi$ and $\mathrm{f}^{\prime} \rightarrow \gamma \rho$ or $\gamma \omega$.

TABLE V.C (cont'd)
$\mathrm{A}_{\lambda}\left[\mathrm{A}_{2} \rightarrow \gamma \omega\right]=3 \mathrm{~A}_{\lambda}\left[\mathrm{A}_{2} \rightarrow \gamma \rho\right]$
$A_{\lambda}[f \rightarrow \gamma \rho]=3 A_{\lambda}\left[A_{2} \rightarrow \gamma \rho\right]$
$A_{\lambda}[f \rightarrow \gamma \omega]=A_{\lambda}\left[A_{2} \rightarrow \gamma \rho\right]$
$A_{\lambda}\left[\mathrm{f}^{\prime} \rightarrow \gamma \phi\right]=-2 \mathrm{~A}_{\lambda}\left[\mathrm{A}_{2} \rightarrow \gamma \rho\right]$
$A_{\lambda}\left[A_{1} \rightarrow \gamma \omega\right]=3 A_{\lambda}\left[A_{1} \rightarrow \gamma \rho\right]$
$A_{\lambda}[D \rightarrow \gamma \rho]=3 A_{\lambda}\left[A_{1} \rightarrow \gamma \rho\right]$
$\left.A_{\lambda} i D \rightarrow \gamma \omega\right]=A_{\lambda}\left[A_{1} \rightarrow \gamma \rho\right]$
$A_{\lambda}[\delta \rightarrow \gamma \omega]=3 A_{\lambda}[\delta \rightarrow \gamma \rho]$
$A_{\lambda}[\sigma \rightarrow \gamma \rho]=3 A_{\lambda}[\delta \rightarrow \gamma \rho]$
$A_{\lambda}[\gamma \rightarrow \gamma \omega]=A_{\lambda}[\delta \rightarrow \gamma \rho]$
(a). Transition
(b). Coefficient of $\left\langle\underline{35} \mathrm{~L}^{\mathrm{r}}=1 \|(3,1)_{0}+(1,8)_{0} \underline{35} \mathrm{~L}=0\right\rangle$
(c). Cocfficient of $\left\langle\underline{35} \mathrm{~L}^{\prime}=1 \|(3, \overline{3}) 1^{\|} \underline{35} \mathrm{~L}=0>\right.$
(d). Cocfficient of $\left\langle\underline{35} \mathrm{~L}^{\prime}=1 \|(8,1)_{0}-(1,8)_{0} \underline{35} \mathrm{~L}=0\right\rangle$

TABLE VI. A

Photon amplitudes for transitions from $\underline{56} L^{\prime}=0$ states with $J_{z}=\lambda$ to $\underline{56} \mathrm{~L}=0$ states with $J_{z}=\lambda-1$.

Coefficient of
Transition
$\left\langle\underline{56} \mathrm{~L}^{\prime}=0\left\|(3, \overline{3})_{1}\right\| 56 \mathrm{~L}=0\right\rangle$

$\mathrm{N}^{+}\left(1 / 2^{+}\right)-\gamma \mathrm{N}^{+}, \quad \lambda=1 / 2$	$(-2 / 15) \sqrt{5}$
$\mathrm{N}^{\mathrm{O}}\left(1 / 2^{+}\right) \rightarrow \gamma \mathrm{N}^{0}, \quad \lambda=1 / 2$	$(4 / 45) \sqrt{5}$
$\Delta^{+}\left(3 / 2^{+}\right) \rightarrow \gamma \mathrm{N}^{+}$,	$(-2 \ddot{/ 45}) \sqrt{10}$
	$(-2 / 45) \sqrt{30}$
$A_{\lambda}\left[\Delta^{+} \rightarrow \gamma N^{+}\right]=A_{\lambda}\left[\Delta^{0} \rightarrow \gamma N^{0}\right]$	
$\Delta^{++}\left(3 / 2^{+}\right) \rightarrow \gamma \Delta^{++}$,	$(-4 / 45) \sqrt{15}$
	$(-8 / 45) \cdot \sqrt{5}$
	$(-4 / 45) \sqrt{15}$
$A_{\lambda}\left[\Delta^{+} \rightarrow \gamma \Delta^{+}\right]=(1 / 2) A_{\lambda}\left[\Delta^{++} \rightarrow \gamma \Delta^{++}\right]$	
$A_{\lambda}\left[\Delta^{0} \rightarrow \gamma \Delta^{0}\right]_{\cdots}=0$	
$\left.\mathrm{A}_{\lambda}\left[\Delta^{-} \rightarrow \gamma \Delta^{-}\right]=-(1 / 2) \mathrm{A}_{\lambda} \mid \Delta^{++} \rightarrow \gamma \Delta^{++}\right]$	

TABLE VI. B

Photon amplitudes for transitions from $70 \mathrm{~L}^{\prime}=1$ states with $J_{z}=\lambda$ to nucleon and delta states in the $\underline{56} \mathrm{~L}=0$. States are labelled by J ${ }^{P}$ and $[S U(3) \text { multiplet }]^{2 S+1}$ where S is the quark spin.

a		b	c	d
$\mathrm{N}^{*}\left(3 / 2^{-}\right) \rightarrow \gamma \mathrm{N}^{+}$,	$\lambda=1 / 2$	$-\sqrt{2} / 12$	$\sqrt{2} / 6$	$\sqrt{2} / 12$
$[8]^{2}$	$\lambda=3 / 2$	$-\sqrt{6 / 12}$	0	$-\sqrt{6 / 12}$
$\rightarrow \gamma \mathrm{N}^{\circ}$,	$\lambda=1 / 2$	$\sqrt{2 / 12}$	$-\sqrt{2} / 18$	$-\sqrt{2} / 36$
	$\lambda=3 / 2$	$\sqrt{6 / 12}$	0	$\sqrt{6 / 36}$
$\rightarrow \gamma \Delta^{+}$,	$\lambda=-1 / 2$	0	$\sqrt{3 / 9}$	0
	$\lambda=1 / 2$	0	1/9	$-1 / 9$
	$\lambda=3 / 2$	0	0	$-\sqrt{3} / 9$
$\mathrm{N}^{*}\left(1 / 2{ }^{-}\right) \rightarrow \gamma \mathrm{N}^{+}$,	$\lambda=1 / 2$	$-1 / 6$	-1/6	+1/6
$[8]^{2}-\gamma \mathrm{N}^{0}$,	$\lambda=1 / 2$	1/6	+1/18	-1/18
$\rightarrow \gamma \Delta^{+}$,	$\lambda=-1 / 2$	0	$\sqrt{6 / 18}$	0
	$\lambda=1 / 2$	0	$-\sqrt{2 / 18}$	$-\sqrt{2} / 9$
$\Delta^{*}\left(1 / 2^{-}\right) \rightarrow \gamma N^{+}$,	$\lambda=1 / 2$	-1/6	+1/13	$-1 / 18$
$\{10]^{2} \rightarrow \gamma \leq^{+}$,	$\lambda=-1 / 2$	0	$-\sqrt{6} / 18$	0
	$\lambda=1 / 2$	0	$\sqrt{2} / 18$	$\sqrt{2 / 9}$

TABLE VI. B (cont'd)

a		b	c	d
$\begin{gathered} \Delta^{*}\left(3 / 2^{-}\right) \rightarrow \gamma \mathrm{N}^{+}, \\ {[10]^{2} \rightarrow} \end{gathered}$	$\lambda=1 / 2$	$-\sqrt{2} / 12$	$-\sqrt{2} / 18$	$-\sqrt{2} / 36$
	$\lambda=3 / 2$	$-\sqrt{6} / 12$	0	$\sqrt{6 / 36}$
$\rightarrow \gamma \Delta^{+}$,	$\lambda=-1 / 2$	0	$-\sqrt{3} / 9$	0
	$\lambda=1 / 2$	0	-1/9	1/9
	$\lambda=3 / 2$	0	0	$\sqrt{3} / 9$
$\begin{aligned} & \mathrm{N}^{*}(5 / 2-) \rightarrow \gamma \mathrm{N}^{+}, \\ & {[8]^{4}} \end{aligned}$	$\lambda=1 / 2$	0	0	0
	$\lambda=3 / 2$	0	0	0
$\rightarrow \gamma \mathrm{N}^{\circ}$,	$\lambda=1 / 2$	0	$\sqrt{5} / 30$	$\sqrt{5 / 30}$
	$\lambda=3 / 2$	0	$\sqrt{10} / 30$	$\sqrt{10} / 30$
$\rightarrow \gamma \Delta^{+}$,	$\lambda=-1 / 2$	$-\sqrt{30} / 60$	$\sqrt{30} / 30$	$\sqrt{30} / 60$
	$\lambda=1 / 2$	$-\sqrt{10} / 20$	$\sqrt{10 / 15}$	$\sqrt{10} / 60$
	$\lambda=3 / 2$	$-\sqrt{5} / 10$	$\sqrt{5} / 15$	$-\sqrt{5} / 30$
	$\lambda=5 / 2$	$-\sqrt{3 / 6}$	0	$-\sqrt{3} / 6$
$\begin{aligned} & \mathbb{N}^{*}(3 / 2-) \rightarrow \gamma N^{+}, \\ & {[8]^{4}} \end{aligned}$	$\lambda=1 / 2$	0	0	0
	$\lambda=3 / 2$	0	0	0
$\rightarrow \gamma \mathrm{N}^{0}$	$\lambda=1 / 2$	0	$-\sqrt{5 / 90}$	$2 \sqrt{5} / 45$
	$\lambda=3 / 2$	0	$-\sqrt{15} / 30$	$+\sqrt{15} / 45$
$\rightarrow \gamma \Delta^{+}$	$\lambda=-1 / 2$	$-\sqrt{30 / 30}$	$\sqrt{30} / 90$	$\sqrt{30} / 30$
	$\lambda=1 / 2$	$-\sqrt{10} / 15$	$-\sqrt{10} / 45$	$\sqrt{10} / 45$
	$\lambda=3 / 2$	$-\sqrt{30} / 30$	$-\sqrt{30} / 30$	$-\sqrt{30} / 90$

Photon amplitudes for transitions from $56 \mathrm{~L}^{\prime}=2$ states with $J_{Z}=\lambda$ to nucleon states in the $56 \mathrm{~L}=0$ with $\mathrm{J}_{\mathrm{z}}=\lambda-1$. States in the $56 \mathrm{~L}^{\prime}=2$ are labelled by J^{P} and $[S U(3) \text { multiplet }]^{2 S+1}$ where S is the quark spin.

a		b	c	d	e
$\mathrm{N}^{*}\left(5 / 2^{+}\right) \rightarrow \gamma \mathrm{N}^{+}$,	$\lambda=1 / 2$	$\frac{2}{15}$	$-\frac{2}{15} \sqrt{3}$	0	$-\frac{2}{15}$
$[8]^{2}$	$\lambda=3 / 2$	$\frac{2}{15} \sqrt{2}$	0	$\frac{2}{15}$	$\frac{2}{15} \sqrt{2}$
$\rightarrow \gamma N^{\circ}$	$\lambda=1 / 2$	0	$\frac{4}{45} \sqrt{3}$	0	$\frac{4}{45}$
	$\lambda=3 / 2$	0	0	$-\frac{4}{45}$	$-\frac{4 \sqrt{2}}{45}$
$\mathrm{N}^{*}\left(3 / 2^{+}\right) \rightarrow \gamma \mathrm{N}^{+}$,	$\lambda=1 / 2$	$\frac{1}{15} \sqrt{6}$	$\frac{2}{15} \sqrt{2}$	0	$-\frac{\sqrt{6}}{15}$
$[8]^{2}$	$\lambda=3 / 2$	$-\frac{1}{15} \sqrt{2}$	0	$\frac{4}{15}$	$-\frac{\sqrt{2}}{15}$
$\rightarrow \gamma \mathrm{N}^{\mathrm{o}}$,	$\lambda=1 / 2$	0	$-\frac{4}{45} \sqrt{2}$	0	$\frac{2 \sqrt{6}}{45}$
	$\lambda=3 / 2$	0	0	$-\frac{8}{45}$	$\frac{2 \sqrt{2}}{45}$
$\Delta^{*}\left(7 / 2^{+}\right) \rightarrow \gamma \mathrm{N}^{+}$,	$\lambda=1 / 2$	0	$-\frac{4 \sqrt{7}}{105}$	$-\frac{2 \sqrt{42}}{315}$	$-\frac{8 \sqrt{21}}{315}$
$[10]^{4}$	$\lambda=3 / 2$	0	$-\frac{4 \sqrt{105}}{315}$	$-\frac{2 \sqrt{70}}{315}$	$-\frac{3 \sqrt{35}}{315}$
$\Delta^{*}\left(5 / 2^{+}\right) \rightarrow \gamma N^{+}$,	$\lambda=1 / 2$	0	$\frac{2 \sqrt{42}}{315}$	$-\frac{4 \sqrt{7}}{105}$	$-\frac{2 \sqrt{14}}{63}$
$[10]^{4}$	$\lambda=3 / 2$	0	$\frac{4 \sqrt{21}}{105}$	$-\frac{8 \sqrt{14}}{315}$	$-\frac{4 \sqrt{7}}{315}$
$\Delta^{*}\left(3 / 2^{+}\right) \rightarrow \gamma \mathrm{N}^{+}$,	$\lambda=1 / 2$	0	$\frac{2 \sqrt{2}}{45}$	$-\frac{4 \sqrt{3}}{45}$	0
$[10]^{4}$	$\lambda=3 / 2$	0	$-\frac{2 \sqrt{6}}{45}$	$-\frac{4}{45}$	$\frac{4 \sqrt{2}}{45}$

TABIE VI. C (cont d)

$\frac{a}{\Delta^{*}\left(1 / 2^{+}\right) \rightarrow \gamma N^{+},} \quad \lambda=1 / 2$	0	c	d	e

$[10]^{4}$
$\mathrm{A}_{\lambda}\left[{\Delta \Delta^{+}}^{+} \rightarrow \gamma \mathrm{N}^{+}\right]=\mathrm{A}_{\left.\lambda^{[} \Delta^{*} \rightarrow \gamma \mathrm{~N}^{0}\right]}$
a - Transition
b - Coefficient of < $\underline{56} \mathrm{~L}^{\prime}=2\left\|(3,1)_{0}+(1,8)\right\| \underline{56} \mathrm{~L}=0$ >
c - Coefficient of $\langle\underline{56} \mathrm{~L}=2 \boldsymbol{\pi}(3, \overline{3}), 156 \mathrm{~L}=0>$
d - Coefficient of $\left\langle\underline{56} \mathrm{~L}^{\prime}=2 \|(\overline{3}, 3)-1 \underline{56} \mathrm{~L}=0>\right.$
e-Coefficient of $\left\langle\underline{56} \mathrm{~L}^{\prime}=2\left\|(8,1)_{0}-(1,8){ }_{0}\right\| 5 \underline{L} \mathrm{~L}=0>\right.$

TABLE VI. D

Photon amplitudes for transitions from $56 L^{\prime}=2$ states with $J_{z}=\lambda$ to delta states in $56 \mathrm{~L}=0$ with $\mathrm{J}_{\mathrm{z}}=\lambda-1$. States in the $56 \mathrm{~L}^{\prime}=2$ are labelled by J^{P} and $[\mathrm{SU}(3) \text { multiplet }]^{2 \mathrm{~S}+1}$ where S is the quark spin.

		b	c	d	e
$\begin{aligned} & \mathrm{N}^{*}\left(5 / 2^{+}\right) \rightarrow \gamma \Delta^{+} \\ & {[8]^{2}} \end{aligned}$	$\lambda=-1 / 2$	0	$-\frac{4}{30} \sqrt{2}$	0	0
	$\lambda=1 / 2$	0	$-\frac{4}{90} \sqrt{6}$	0	$\frac{4}{45} \sqrt{2}$
	$\lambda=3 / 2$	0	0	$-\frac{2}{45} \sqrt{2}$	$\frac{8}{45}$
	$\lambda=5 / 2$	0	0	$-\frac{2}{45} \sqrt{30}$	0
$\begin{aligned} & \mathrm{N}^{*}\left(3 / 2^{+}\right) \rightarrow \gamma \Delta^{+} \\ & {[8]^{2}} \end{aligned}$	$\lambda=-1 / 2$	0	$-\frac{4}{45} \sqrt{3}$	0	0
	$\lambda=1 / 2$	0	$\frac{4}{45}$	0	$\frac{4}{45} \sqrt{3}$
	$\lambda=3 / 2$	0	0	$-\frac{4}{45} \sqrt{6}$	$-\frac{4}{45}$
$\begin{gathered} \Delta^{*}\left(7 / 2^{+}\right) \rightarrow \gamma \Delta^{+} \\ {[10]^{4}} \end{gathered}$	$\lambda=-1 / 2$	$-\frac{2 \sqrt{14}}{105}$	$-\frac{2 \sqrt{42}}{105}$	0	$-\frac{2 \sqrt{14}}{105}$
	$\lambda=1 / 2$	$-\frac{2 \sqrt{42}}{105}$	$-\frac{4 \sqrt{14}}{105}$	$\frac{2 \sqrt{21}}{315}$	$-\frac{2, ~}{42}$ 105
	$\lambda=3 / 2$	$-\frac{2 \sqrt{70}}{105}$	$-\frac{2 \sqrt{210}}{315}$	$\frac{4 \sqrt{35}}{315}$	$\frac{2 \sqrt{70}}{315}$
	$\lambda=5 / 2$	$-\frac{2 \sqrt{70}}{105}$	0	$\frac{2 \sqrt{70}}{105}$	$\underline{2 \sqrt{70}} 105$

TABLE VI.D (cont' d)

$\Delta^{*}\left(1 / 2^{+}\right) \rightarrow \gamma \Delta^{+} \quad \lambda=-1 / 2 \quad-\frac{1}{15} \quad \frac{2}{45} \sqrt{3} \quad 0 \quad-\frac{1}{15}$

$$
\lambda=1 / 2 \quad \frac{\sqrt{3}}{15}-\frac{4}{45} \quad \frac{2}{45} \sqrt{6} \quad \frac{3}{45}
$$

$$
\mathrm{A}_{\lambda}\left(\mathrm{N}^{+} \rightarrow \gamma \Delta^{+}\right)=\mathrm{A}_{\lambda}\left(\mathrm{N}^{*}{ }^{\mathrm{O}} \rightarrow \gamma \Delta^{\mathrm{O}}\right)
$$

$$
\mathrm{A}_{\lambda}\left(\Delta^{*^{++}} \rightarrow \gamma \Delta^{++}\right)=2 \mathrm{~A}_{\lambda}\left(\Delta^{*^{+}} \rightarrow \gamma \Delta^{+}\right)
$$

$$
\mathrm{A}_{\lambda}\left(\Delta^{*}{ }^{\mathrm{O}} \rightarrow \gamma \Delta^{\mathrm{o}}\right)=0
$$

$$
\mathrm{A}_{\lambda}\left(\Delta^{*^{-}} \rightarrow \gamma \Delta^{-}\right)=-\mathrm{A}_{\lambda}\left(\Delta^{*^{+}} \rightarrow \gamma \Delta^{+}\right)
$$

a- - Transition
b - Coefficient of $\left\langle\underline{56} L^{\prime}=: 2\left\|(8,1)_{0}+(1,8)_{0}\right\| \quad \underline{56} \mathrm{~L}=0>\right.$
d - Coefficient of $\left\langle\underline{56} \mathrm{~L}^{\mathrm{y}}=2 \| \quad(3,3)-1 \underline{1} \underline{\mathrm{~L}}=0>\right.$
e - Cocfficient of $<\underline{56} \mathrm{~L}^{+}=2\left\|(8,1)_{0}-(1,8)_{0}\right\| \underline{56} \mathrm{~L}=0$

TABLE VII. A

Comparison of matrix elements of $D_{+}^{3}+(1 / \sqrt{3}) D_{+}^{8}$ for $70 L^{\prime}=1 \rightarrow \underline{56} \mathrm{~L}=0$ photon transitions with experiment. ${ }^{51}$ Nucleon resonances are identified as in Ref. 18 with the quark model states, which are labelled by their quantum numbers J^{P} and [$S U(3)$ multiplet] ${ }^{2 S+1}$, where S is the quark spin. The signs of amplitudes are those in $\gamma \mathrm{p} \rightarrow \pi^{+} \mathrm{n}$ and $\gamma \mathrm{n} \rightarrow \pi^{-} \mathrm{p}$, with the S and D amplitudes at the $\pi \mathrm{NN}^{*}$ vertex taken to have opposite sign (see text).

Transition		$\begin{gathered} \left\langle\mathrm{N}^{*}, \lambda\right\| \mathrm{D}_{+}\|\mathrm{N}, \lambda-1\rangle \\ \text { Experiment } 51 \\ (1 / \mathrm{GeV}) \\ \hline \end{gathered}$	$\begin{gathered} \left\langle N^{*}, \lambda\right\| D_{+}\|N, \lambda-1\rangle \\ \text { Predicted with } \\ \left\langle\underline{70} \\|(8,1)_{0}-(1,8)_{0}^{\\|} 56>=0\right. \end{gathered}$	$\begin{gathered} \left\langle\mathrm{N}^{*}, \lambda\right\| D_{+} \mid \mathrm{N}, \lambda-1> \\ \text { Predicted with } \\ \left\langle\underline{70\left\\|(8,1)_{0}-(1,8)_{0}\right\\| \underline{56}>\neq 0} \mathbf{C}\right. \end{gathered}$
$\mathrm{D}_{13}(1520) \rightarrow \gamma \mathrm{p}$,	$\lambda=1 / 2$	$-.10 \pm .04$	-. 10 (input)	-. 10 (input)
$\begin{aligned} 3 / 2^{-},[8]^{2} & \\ & \rightarrow \gamma \mathrm{n},\end{aligned}$	$\lambda=3 / 2$	+.91 ${ }^{\text {a }} .06$	+. 91 (input)	+. 91 (input)
	$\lambda=1 / 2$	$+.41 \pm .03$	+. 32	+. 23
	$\lambda=3 / 2$	$+.64 \pm .05$	+. 91	+. 64 (input)
$\mathrm{S}_{11}(1535) \rightarrow \gamma \mathrm{p}$,	$\lambda=1 / 2$	$+.30 \pm .10$	+1.18	+. 07
$1 / 2^{-},[8]^{2} \rightarrow \gamma \mathrm{n}$,	$\lambda=1 / 2$	$+.27 \pm .03$	+0.89	+. 30
$\mathrm{S}_{31}(1650) \rightarrow \gamma p$,	$\lambda=1 / 2$	$+.16 \pm .07$	+. 59	+. 53
$1 / 2^{-},[10]^{2}$				
$\mathrm{D}_{33}(1670) \rightarrow \gamma \mathrm{p}$,	$\lambda=1 / 2$	+. $36 \pm .04$	$+.73$	+. 36
$3 / 2^{-},[10]^{2}$	$\lambda=3 / 2$	$+.32 \pm .04$	+. 91	+. 38

TABLE VII. A (cont'd)

Transition		$\begin{gathered} \left\langle N^{*}, \lambda\right\| D_{+}\|N, \lambda-1\rangle \\ \text { Experiment } 51 \\ (1 / \mathrm{GeV}) \end{gathered}$	$\begin{gathered} \left\langle\mathrm{N}^{*}, \lambda\right\| \mathrm{D}_{+}\|\mathrm{N}, \lambda-1\rangle \\ \text { Predicted with } \\ \left\langle\underline{70}\left\\|(8,1)_{0}-(1,8)_{0}\right\\| \underline{56}\right\rangle=0 \end{gathered}$	$\begin{gathered} \left\langle\mathrm{N}^{*}, \lambda\right\| \mathrm{D}_{+}\|\mathrm{N}, \lambda-1\rangle \\ \text { Predicted with } \\ \left\langle\underline{70}\left\\|(8,1)_{0}-(1,8)_{0}\right\\| \underline{56}>\neq 0\right. \end{gathered}$
$\mathrm{D}_{15}(1670) \sim \gamma \mathrm{p}$,	$\lambda=1 / 2$	$+.06 \pm .07$	0	0
$5 / 2^{-},[8]^{4}$	$\lambda=3 / 2$	+. $07 \pm .04$	0	0
$\rightarrow \gamma \mathrm{n}$,	$\lambda=1 / 2$	$+.20 \pm .03$	+. 20	+. 13
	$\lambda=3 / 2$	$+.33 \pm .14$	+. 28	+. 19
$\mathrm{D}_{13}(1700)-\gamma \mathrm{p}$,	$\lambda=1 / 2$	$-.07 \pm .18$	0	0
$3 / 2^{-},[8]^{4}$	$\lambda=3 / 2$	+. $14 \pm .18$	0	0
$\rightarrow \gamma \mathrm{n}$,	$\lambda=1 / 2$	$+.16 \pm .18$	+. 07	-. 19
	$\lambda=3 / 2$	$-11 \pm .11$	+. 34	-. 19
$\mathrm{S}_{11}(1700) \rightarrow \gamma \mathrm{p}$,	$\lambda=1 / 2$	$+.26 \pm .08$	0	0
$1 / 2^{-},[8]^{4} \rightarrow \gamma \mathrm{n}$,	$\lambda=1 / 2$	$+.07 \pm .16$	-. 15	+. 12

TABLE VII. B

Comparison of matrix elements of $D_{+}^{3}+(1 / \sqrt{3}) D_{+}^{8}$ for $\underline{56} L^{\prime}=2 \rightarrow \underline{56} L=0$ photon transitions with experiment. ${ }^{54}$ Nucleon resonances are identified as in Ref. 47 with the quark model states, which are labelled by their quantum numbers ${ }_{J}{ }^{\mathrm{P}}$ and [SU(3) multiplet] ${ }^{2 \mathrm{~S}+1}$, where S is the quark spin. The signs of amplitudes are those in $\gamma \mathrm{p} \rightarrow \pi^{+} \mathrm{n}$ and $\gamma \mathrm{n} \rightarrow \pi^{-} \mathrm{p}$, with the P and F amplitudes at the $\pi \mathrm{NN}^{*}$ vertex taken to have the same sign (see text),

Transition		$\left\langle N^{*}, \lambda\right\| D_{+}\|N, \lambda-1\rangle$ Experiment 51 ($1 / \mathrm{GeV}$)	$\begin{aligned} & \left\langle N^{*}, \lambda\right\| D_{+}\|N, \lambda-1\rangle \\ & \quad \text { Predicted with } \\ & \left\langle\underline{56}(\overline{3}, 3)_{-1} \\| \underline{56}\right\rangle \text { and } \\ & \left\langle\underline{56}\left\\|(8,1)_{0}-(1,8)_{0}\right\\| \underline{56}\right\rangle=0 \end{aligned}$
$\mathrm{F}_{15}(1688) \rightarrow \gamma \mathrm{p}$,	$\lambda=1 / 2$	$-.07 \pm .06$	-. 07 (input)
$5 / 2^{+},[8]^{2}$	$\lambda=3 / 2$	+. $44 \pm .03$	+. 44 (input)
$-\gamma \mathrm{n}$,	$\lambda=1 / 2$	-. $11 \pm .02$	-. 26
	$\lambda=3 / 2$	$0 \pm .08$	0
$\mathrm{P}_{13}(1770) \rightarrow \gamma \mathrm{p}$,	$\lambda=1 / 2$	$\cdots .02 \pm .14$	-. 70
$\begin{aligned} 3 / 2^{+},[8]^{2} & \\ & \rightarrow \gamma \mathrm{n},\end{aligned}$	$\lambda=3 / 2$	$-.03 \pm .13$	+. 22
	$\lambda=1 / 2$	-. $06 \pm .06$	-. 21
	$\lambda=3 / 2$	$+.03 \pm .11$	0
$\mathrm{F}_{37}(1020) \rightarrow \gamma \mathrm{p}$,	$\lambda=1 / 2$	$-.27 \pm .05$	-. 17
$7 / 2^{+},[10]^{4}$	$\lambda=3 / 2$	$-.30 \pm .04$	-. 22
$\mathrm{F}_{35}(1860) \rightarrow \gamma \mathrm{p}$,	$\lambda=1 / 2$	+. $17 \pm .06$	-. 07
$5 / 2^{+},[10]^{4}$	$\lambda=3 / 2$	$-.09 \pm .08$	-. 30
$\mathrm{P}_{33}(2000) \rightarrow \gamma \mathrm{p}$,	$\lambda=1 / 2$	$-.12 \pm .07$	-. 11
$3 / 2^{+},[10]^{4}$	$\lambda=3 / 2$	$+.05 \pm .03$	+. 18
$\begin{aligned} & P_{31}(1860) \rightarrow \gamma p, \\ & 1 / 2^{+},[10]^{4} \end{aligned}$	$\lambda={ }^{\prime} 1 / 2$	$+.04 \pm .05$	-. 11

TABLE VII. C

Comparison with experiment of matrix elements of $D_{+}^{3}+(1 / \sqrt{3}) D_{+}^{8}$ for photon transitions from resonances in a radially excited $56 \mathrm{~L}^{\prime}=0$ multiplet to the nucleon in $56 \mathrm{~L}=0$. Amplitude signs are those in $\gamma \mathrm{p} \rightarrow \pi^{+} \mathrm{n}$ and $\gamma \mathrm{n} \rightarrow \pi^{-} \mathrm{p}$.

Transition		Predicted Matrix Element	Experimental Matrix Element Ref. 51	Ref. 52
$\mathrm{P}_{11}(1470) \rightarrow \gamma \mathrm{p}$,	$\lambda=1 / 2$	-0.37 (input)	-0.37 ± 0.04	-0.55 ± 0.13
$\rightarrow \gamma \mathrm{n}$,	$\lambda=1 / 2$	-0.25	0 ± 0.07	-0.51 ± 0.32
$\mathrm{P}_{33}(1718) \rightarrow \gamma \mathrm{p}$,	$\lambda=1 / 2$	-0.18	$+0.01 \pm 0.07$.	$+0.07 \pm 0.25$
	$\lambda=3 / 2$	-0.31	-0.15 ± 0.10	$+0.33 \pm 0.29$

I. IATRODUCTION

Part 2.
SATURATION OF THE DRELL-HEARN-GERASIMOV SUA RULE

The Drell-hearn-Gerasimov sum rule for the spin-filip amplitude in forward Compton scattering rests on two very wasic and simple assumptions. These are the low energy theorem for the spin-flip amplitude and the validity of an unsubracted dispersion relation for this amplitude in compton scattering.

Since these are very basic and well accepted assumptions, it is of interest to look into the validity of the Drell-Hearn-Gerasimov sum rule in the light of presently available experimental data, which have much improved in the last few years.

An unsubtracted dispersion relation for the forward spin-filp nucleon Compton amplitude f_{2},

$$
\begin{equation*}
\text { Re } f_{2}(v)=\frac{2 v}{\pi} \int_{v_{0}}^{\infty} \frac{d v^{\prime}}{v^{12}-v^{2}} \operatorname{Im} f_{2}\left(v^{\prime}\right) \tag{1}
\end{equation*}
$$

gives the Drell-Hearn-Gerasimov sum rule

$$
\begin{equation*}
\frac{2 \pi^{2} \alpha}{M^{2}} \mu_{A}^{2}=\int_{v_{0}}^{\infty}\left[\sigma_{3 / 2}\left(v^{\prime}\right)-\sigma_{1 / 2}\left(v^{\prime}\right)\right] \frac{d v^{\prime}}{v^{\prime}} \tag{2}
\end{equation*}
$$

when the low energy theorem is applied to $f_{2}(v)$. Here μ_{A} is the nucleon's anomalous magnetic moment, M the nucleon's mass, γ_{0} the threshold energy for a single pion photoproduc-
tion, which in the laboratory is

$$
\begin{equation*}
v_{0}=\frac{m_{\vec{u}}^{2}}{2 M}+m_{\vec{u}} \simeq 150 \mathrm{MeV} \tag{3}
\end{equation*}
$$

and $\sigma_{3 / 2}\left(\sigma_{1 / 2}\right) 1 s$ the total cross section for the process: photon + nucleon \rightarrow hadrons in the net helicity state $3 / 2$ (1/2. These cross section enter the sum rule when we use the optical theorem (to order \propto) to relate the imaginary part of the forward scattering amplitude to the total cross section into the intermediate states.

In their original paper, Drell and Hearn ${ }^{1}$ did attempt to Investigate the vallitity of the sum rule for a proton target by using an isobar model of single pion photoproduction. Their results were generally encouraging but some Important contribution fron high energy (greater than 1 GeV) seemed to be likely. Somewhat later, chan et al. ${ }^{3}$ extenfef the.examination of the proton sum rule using an analysis of single pion photoproduction through the second resonance region. They found good agreement without any high energy contribution. Finally, in the course of an analys of many sum rules, Fox and Freedman ${ }^{4}$ have considered the Drell-Hearn Gerasimov sum rule, using Valker's partlal wave analysis ${ }^{5}$ of plon photoproduction. They found the somewhat suprising
result that while the sum rule involving only the isovector part of the electromagnetic current appeared well satisfied, the sum rule involving one isovector and one isoscalar current, equivalent to the difference of proton and neutron sum rules, was badly violated.

Since that time, there has been a considerable improvement in both the pion photoproduction data and their analysis. In particular, relatively good neutron data are becoming available and have been incorporated in the recent results of Pfeil and Schwela, ${ }^{6}$ and Moorhouse and Oberlack. ${ }^{7}$

Given this changed situation, we reexamine in this work the Drell-Hearn-Gerasimov sum rule for both proton and neutron targets, with particular attention to their difference. In the next section we give the relevant definitions and the contributions to the sum rule using several recent analyses of pion photoproduction. The third section contalns some conclusions.
11. ANALYSIS OF CONTRIBUTIONS

The sum rule in Eq.(2) can be decomposed into three sum rules of different isospin character. We will show that the three sum rules provide more detailed and sensitive tests than the proton (neutron) sum rule alone.

The isovector and isoscalar magnetic moments of the
nucleon are defined as

$$
\begin{aligned}
& \mu_{A}^{V}=\mu_{A}(p)-\mu_{A}(n) \\
& \mu_{A}^{S}=\mu_{A}(p)+\mu_{A}(n)
\end{aligned}
$$

where $\mu_{A}(f)\left(\mu_{A}(n)\right)$ is the proton (neutron) anomalous magnetic moment. The Drell-hearn-\{ierasimov sum rule may then be separated into three distinct sum rules,
the isovector-isovector sum rule:
$I_{v v} \equiv \int_{v_{0}}^{\infty}\left[\sigma_{3 / 2}^{v v}\left(v^{\prime}\right)-\sigma_{1 / 2}^{v v}\left(v^{\prime}\right)\right] \frac{d v^{\prime}}{v^{\prime}}=\left(\frac{\mu_{n}^{v}}{2}\right)^{2} \frac{2 \pi^{2} \alpha}{M^{2}}=218.5 \mu b(5 \mathrm{a})$
the isoscalar-isoscalar sum rule:
$I_{s s} \equiv \int_{\nu_{0}}^{\infty}\left[\sigma_{3 / 2}^{s s}\left(v^{\prime}\right)-\sigma_{1 / 2}^{s s}\left(v^{\prime}\right)\right] \frac{d v^{\prime}}{v^{\prime}}=\left(\frac{\mu_{R}^{s}}{2}\right)^{2} \frac{2 \pi^{2} \alpha}{M^{2}}=0.3 \mu b_{(5 b)}$
and the "interference" sum rule:
$I_{v s} \equiv \int_{v_{0}}^{\infty}\left[\sigma_{3 / 2}^{v s}\left(v^{\prime}\right)-\sigma_{v s}^{v s}\left(v^{\prime}\right)\right] \frac{d v^{\prime}}{v^{\prime}}=\mu_{A}^{v} \frac{\mu_{A}^{s}}{2} \frac{2 \pi^{2} \alpha}{M^{2}}=-14.7 \mu b$

Here $\sigma^{v v}\left(\sigma^{s s}\right)$ corresponds to the interaction of the isovector (isoscalar) component of the photon with the nucleon, and $\sigma^{v s}$ corresponds to the difference between photon-proton and photon-neutron interactions.

Presently, the data limit direct study of the saturation of these sum rules to the contribution (to the total cross sections $\sigma_{\frac{1}{2}}$ and $\sigma_{3 / 2}$) of the nucleon and one pion final hadronic state. Resonance dominance then allows one to estimate also a part of the inelastic contributions. Still, one may well hope that the largest contributions come from not too far above threshold (particularly since possible higher energy contributions to the $\sigma_{3 / 2}-\sigma_{1 / 2}$ difference are multiplied by a $1 / v$ factor), so that the nucleon plus one pion state will at least provide an indication of these sum rules saturation.

Consider then the contribution of the nucleon plus one pion state. Single pion photoproduction amplitudes have a simple isospin decomposition: ${ }^{5}$

$$
M_{\gamma p \rightarrow \pi i}^{+}=\sqrt{\frac{1}{3}}\left[M^{(3)}-\sqrt{2}\left(M^{(1)}-M^{(0)}\right)\right]
$$

$$
\begin{equation*}
M_{\gamma \rho \rightarrow \pi^{\circ} \rho}^{0}=\sqrt{\frac{2}{3}}\left[M^{(3)}+\sqrt{\frac{1}{2}}\left(M^{(1)}-M^{(0)}\right)\right] \tag{6b}
\end{equation*}
$$

$M_{\gamma_{n} \rightarrow \pi_{p}^{-}}^{-}=\sqrt{\frac{1}{3}}\left[M^{(3)}-\sqrt{2}\left(M^{(1)}+M^{(0)}\right)\right]$
$M^{(3)}$ corresponds to the isospin $3 / 2$ and $M^{(1)}$ to the isospin 1/2 s-channel amplitudes of the isovector component of the photon current; $M^{(0)}$ describes the interaction of the nucleon with the isoscalar component of this current.

The one pion photoproduction cross sections of definite isospin character are then proportional to the following combinations of amplitudes:

$$
\begin{align*}
& \sigma^{v x} \propto\left|M^{(3)}\right|^{2}+\left|M^{(1)}\right|^{2} \\
& \sigma^{s s} \propto\left|M^{(0)}\right|^{2} \tag{7}
\end{align*}
$$

$\sigma^{\vee s} \propto-M^{(0)^{*}} M^{(1)}-M^{(0)} M^{(1)^{*}}$
Additionally, we will make use of the decomposition of definite helicity cross sections for this process in terms of amplitudes of definite angular momentum and parity: ${ }^{7,8}$

$$
\sigma_{1 / 2}=\frac{8 \pi q}{k} \sum(n+1)\left(\left|A_{n+}\right|^{2}+\left|A_{(n+1)}-\right|^{2}\right)
$$

$$
\sigma_{3 / 2}=\frac{8 \pi q}{k} \sum \frac{n(n+1)(n+2)}{4}\left(\left|B_{n+}\right|^{2}+\left|B_{(n+1)}\right|^{2}\right)
$$

$A_{n} \pm$ and $B_{n \pm}$ correspond to a state with final pion orbital angular momentum n, definite parity $P=(-1)^{n-1}$ and the total angular momentum $j=n \pm 1 / 2$.

The above relations (Eqs.(5), (6), (7) and (8)), allow us
to consider the isovector-isovector, isoscalar-isoscalar, and interference sum rules separately, to insert the single pion plus nucleon intermediate state cross sections into the integrais, and to separate the contributions of each partial wave. For example, the single pion plus nucleon part of the isovec-tor-isovector cross section in the net helicity state $\boldsymbol{\lambda}=3 / 2$ is

$$
\begin{equation*}
\sigma_{3 / 2}^{v v}=\frac{8 \pi q}{k} \sum \frac{n(n+1)(n+2)}{4}\left(\left|B_{n+1}^{(3)}\right|^{2}+\left|B_{(n+1)^{-}}^{(3)}\right|^{2}+\left|B_{n+}^{(1)}\right|^{2}+\left|B_{(n+1)^{-}}\right|^{2}\right) \tag{9}
\end{equation*}
$$

Since we can extract the contributions of definite isospin and of definite total and orbital angular momentum, we explicitly have the contribution due to each resonance and using the known inelasticity we are subsequently able to evaluate the corresponding part of the inelastic contribution to the integrals.
A. The isovector-lsovector sum rule.

Table 1 presents the results of the analysis for the iso-vector-isovector, ' ${ }_{v v}$, sum rule. We have assumed for those partial waves which receive contributions from resonances that the resonant contributions are dominant, and on this basis we evaluated the corresponding inelastic contributions to the sum rule. The analysis extends in photon laboratory energy, $V_{\text {LAB }}$,
from just above the threshold to 1.2 GeV . We have evaluated the contributions for $\nu_{L A B} \leqslant 0.45 \mathrm{GeV}$ and $\nu_{L A B} \geqslant 0.45 \mathrm{Gev}$ separately, since the prominent $3-3$ resonance is below this energy and higher resonances above, so available analyses ${ }^{6}$ make this a natural division in $V_{L A B}$.

For $\mathcal{V}_{\text {LAB }}$ below 0.45 GeV we find good agreement between the results obtained with the analyses of Refs, 6, 7 and 8 . Since the Pfeil-Schwela fit extends to the lowest energy, we have chosen to $l i s t$ the contributions obtained with their analysis in this region, where possible. ${ }^{10}$ for $\nu_{L A B}$ above 0.45 GeV the values resulting from Refs. 6 and 8 also agree well and we list only the contributions obtained with the recent Moorhouse -Oberlack fit.

The inelastic part is evaluated as a sum of inelastic contributions of $N^{*}(1520), H^{*}(1670)$ and $N^{*}(1688)\left(D_{13}, D_{15}\right.$ and F_{15}, respectively).

Fig. 1 shows the behaviour of one pion plus nucleon contribution to $\sigma_{3 / 2}^{v v}-\sigma_{\gamma / 2}^{v}$ as a function of energy. One can easily recognize in this graph the dominant features of a big negative non-resonant s-wave contribution and a large positive contribum tion from $P_{33}(1236)$ and two other resonances.
B. The Isoscalar-Isoscalar Sum Rule.

Table $\| l$ presents the results for the isoscalar-isoscalar Drell-Hearn-Gerasimov sum rule. There are serlous discrepan-
cies between the results obtalned with different fits, witich extend even to a disagreement on the signs of various contributions. This difficulty has been previously noted by fox and Freedman. 4 The isoscalar-isoscalar amplitudes cannot be extracted directly from the data. Instead, as can be seen from Eqs. (6) and (7), they must be obtained indirectiy from the sum and difference of the proton and neutron data. This results in relatively large errors, as the isoscalar-isoscalar amplitudes are small compared to those of the proton or neutron.

The behaviour of the one pion plus nucleon contribution to $\sigma_{3 / 2}^{s s}-\sigma_{1 / 2}^{s s}$ in Fig. 2 combines the Pfeil-Schwela and the lloor-house-oberlack ${ }^{7}$ results. To observe some sysytenatic trend and to be able to conclusively evaluate the isoscalar-isoscalar sum rule, we must wait for more accurate and higher energy data.
C. The Interference Sum Rule

Table 111 shows the present state of the isovector-isoscalar sum rule. The combination of amplitudes involved here corresponds to $l=1$ exchanze in the t-channel, or in other words corresponds to the difference between the proton and neutron Drell-Hearn-Gerasimov sum rules. We expect a negative value for the integral $l_{v s}$, since it is proportional to

$$
\left(\mu_{A}(p)\right)^{2}-\left(\mu_{A}(x)\right)^{2}
$$

We find agreement between the results obtained with diffe-
rent analyses where they overlap. The Pfeil-Schwela fit ${ }^{6}$ was used to calculate contributions to $l_{v s}$ for $\nu_{L A B} \leqslant 0.45$ Gev, and the Moorhousewoberlack fit ${ }^{7}$ for $V_{L A B} \geqslant 0.45 \mathrm{GeV}$. Each of these fits results in a big, non-resonant, s-wave contribution with a positive sign. This contribution is canceled almost entirely by the non-resonant $(1=1 / 2)$ part of the 1^{+}partial wave in the Moorhouse-Oberlack analysis. ${ }^{7}$ The second and third resonance cause the total result for this sum rule to have the wrong, positive sign. Figure 3 shows this behaviour in terms of the one pion plus nucleon contributions to $\sigma_{3 / 2}^{v s}-\sigma_{1 / 2}^{v s}$.

111. DISCUSSION AND CONCLUSIONS

To discuss the results we have obtained let us recall that the studied sum rules rest on two assumptions: The low energy theorem for nucleon Compton scattering ${ }^{2}$ and the validity of an unsubtracted dispersion relation for the f_{2} (spin-filp) forward compton amplitude. The first is quite general and has a very solid theoretical basis. Therefore, the validity of the sum rules is presumably dependent on the second assumption, which is equivalent to the absence of a fixed J-plane singularity $\left(J^{P}=1^{+}\right)$in the f_{2} amplitude. ${ }^{13}$

This hypothesis receives strong support from the evaluation of the contributions to the isovector-isovector sum rule, as shown in Table l. This sum rule, which has laree and well
determined contributions, seems to be rather well saturated using results obtalned from the single pion plus nucleon data, complemented by some estimate of the inelastic contributions to $V_{L A B}=1.2 \mathrm{GeV}$. Even more pleasing is that the saturation occurs in a non-trivial way, tle observe strong cancellations, mainly between the large negative non-resonant s-wave contributios and the positive $P_{33}(1236)$ contributions (see Fig. 1). The large non-resonant s-wave contribution is of interest in itself, however, as it violates local two-component duality. The imaginary part of a non-diffractive amplitude, like $f_{2}(v)$, should contain only s-channel resonances. Tilis contribution may be cancelled by higher energy non-resonant contributions to the isovector-isovector sum rule, so as to satisfy global duallty.

Our total numerlcal result for the isovector-isovector sum rule is in general agreement with previous analyses. 4,5 While contributions from still higher values of $y_{\text {was }}$ need not be small, we expect the contributions listed in Table 1 to be the largest individual ones, particularly since the sum rule Integrand involves the $1 / v$ factor.

The isoscalar-isoscalar sum rule present some problems. Because of the sensitivity of the isoscalar amplitude to relatively small differences between the neutron and proton photoproduction data, it is very difficult to achieve reliable values for the isoscalar-isoscalar contributions. Furthermore, as can be seen from the results for this sum rule collected in

Table II, Individual non-resonant partial waves make (canceling) contributions. In such a situation, small shifts in the data or the inelastic contributions may easily remove the present disagreement between the total value predicted for iss in Eq. (5b) and the total value shown in Table II.

In this light, the behaviour of the interference sum rule is puzziling. Since the isovector-isovector sum rule is alnost saturated, we have every reason to expect the validity of the assumptions underlying the derivation of the sum rules. The total value for l^{\prime} obtalned from the same energy region which almost saturates the isovector-isovector sum rule, is of the wrong, positive, sign. This general difficulty has been previously noted by Fox and Freedman ${ }^{4}$ using an earlier analysis of pion photoproduction. More detailed analysis of the contributions presented in Table $1 \| I$ shows that there are large nonresonant contributions in the 0^{+}and I^{+}partial waves, which tend to cancel. The second and third resonances contribute to the sum rule with wrong sign. This again is of interest in Itself as it violates local two-component duality. Global duaIlty would seem to be satisfied for this part of $f_{2}(v)$, since varlous non-resonant partial waves are canceling in the full amplitude. This leads one to belleve that if the sum rule is to work it may well be the contributions of poorly known quite Inelastic resonances, many in low partial waves, that saturate the sum rule. Unfortunately, the determination of these contributions is very difficult.

To summarize, we find no reason to doubt the validity of the Drell-ifearn-Gerasimov sum rule, and therefore the validity of the unsubtracted dispersion relation for the $f_{2}(\nu)$. The near saturation of the isovector-isovector sum rule, which has the largest and best determined contributions, even furnishes direct evidence of support. There seems little reason to be alarmed at the non-saturation of the isoscalar-isoscalar and interference sum rules at the present stage of photoproduction analysis, as presently poorly determined contributions could well give good agreement. What is needed is the more direct experimental determination of $\sigma_{3 / 2}(v)$ and $\sigma_{y / 2}(v)$, using a polarized beam and target, something which is now becoming a real possibillty.

References

1. S.D. Drell and A.C. Hearn, Phys. Rev. Letters 16. 908 (1966): S.B. Gerasimov, Sov. J. Nucl. Phys. 2, 430 (1966).
2. M. Gell-Mann and M.L. Goldberger, Phys. Rev. 96, 1423 (1954): F.E. Low, Phys. Rev. 96, 1428 (1954).
3. Y.C. Chau, N. Dombey and R.G. Moorhouse, Phys. Rev. 163, 1632 (1967).
4. G.C. Fox and D.Z. Freedman, Phys. Rev. 182. 1628 (1969).
5. R.L. Walker, Phys. Rev. 182, 1729 (1969).
6. W. Pfeil and D. Schwela, Nucl. Phys. 845, 379 (1972).
7. R.G. Moorhouse and H. Oberlack, Contribution to the $16 t h$ International Conference on High Energy Physics, Chicago, Illinois, September 6-13, 1972, and private communication.
8. See also, for example, F.J. Gilman, "Photoproduction and Electroproduction," Physics Reports 4C, 95 (1972).
9. $1_{v v}$ for $V_{L A B} \leqslant 0.45$ Gev due to $P_{33}(1236)$ has the following values resulting from different analyses: $260 \mu \mathrm{~b}$ with Walker's fit, $210 \mu b$ with the Moorhouse-Oberlack fit, and $237 \mu \mathrm{~b}$ with the Pfell-Schwela fit (Refs.5, 7, and 6, respectively).
10. The Pfeil-Schwela analysis is limited to the first resonance region and to $0^{+}, 1^{+}$and 1^{-}partial waves.
11. H.D.I. Abarbanel and M.L. Goldberger, Phys. Rev. 165, 1594 (1968).

Table 1

The Isovector-Isovector Contributions to the Drell-Hearn-Gerasimov Sum Rule ${ }^{12}$

Partial Wave	$.18 \mathrm{GeV} \leqslant \nu_{(\mathrm{lab}}^{(\mu \mathrm{b})} \leqslant .45 \mathrm{GeV}$	$.45 \mathrm{GeV} \leqslant \underset{(\mu \mathrm{~b})}{v_{\mathrm{lab}} \leqslant 1.2 \mathrm{GeV}}$	Total (μb)
0^{+}	$-115^{\text {a }}$	$-51{ }^{\text {b }}$	-166
1	$-2^{\text {a }}$	$-9^{\text {b }}$	-11
$1^{+}\left\{\begin{array}{c} \mathrm{I}=3 / 2 ; \text { includes } \\ \mathrm{P}_{33}(1236) \end{array}\right.$	$+237^{\text {a }}$	$+2^{\text {b }}$	+239
$\mathrm{I}=1 / 2$	$+12^{\text {a }}$	$+17^{\text {b }}$	+29
I $\mathrm{I}=3 / 2$	$+7^{\text {b }}$	$+5^{\text {b }}$	+12
$2^{-}\left\{\begin{array}{c} 1=1 / 2 ; \text { includes } \\ D_{13}(1520) \end{array}\right.$	$+13^{\text {b }}$	$+41{ }^{\text {b }}$	+54
I $\mathrm{I}=3 / 2$	$+1^{\text {b }}$	$-2^{\text {b }}$	-1
$2^{+}\left\{\begin{array}{c} I=1 / 2 ; \text { includes } \\ D_{15}^{(1670)} \end{array}\right.$	$+2^{\text {b }}$	$+1^{\text {b }}$	+3
$3^{-}\left\{\begin{array}{l} \mathrm{I}=3 / 2 \\ \mathrm{I}=1 / 2 ; \text { includes } \\ \mathrm{F}_{15}(1688) \end{array}\right.$	$+1^{\text {b }}$ $+2^{\text {b }}$	$\begin{aligned} & +1^{b} \\ & +7^{b} \end{aligned}$	+2 +9
			+9
Inelastic	+12	$+37^{\text {b }}$	+49
Total	+170	$+49^{\text {b }}$	+219

a - Pfeil and Schwela, Ref. 3.
b - Moorhouse and Oberlack, Ref. 7.
-100-

Table II
The Isoscalar-Isoscalar Contributions
to the Drell-Hearn-Gerasimov Sum Rule 12

Partial Wave	$.18 \mathrm{GeV} \leqslant \nu_{(\mu \mathrm{b})} \leqslant .45 \mathrm{GeV}$	$.45 \mathrm{GeV} \leqslant \underset{(\mu \mathrm{~b})}{\nu_{1 \mathrm{ab}} \leqslant 1.2 \mathrm{GeV}}$	Total ($\mu \mathrm{b}$)
0^{+}	$-1.07^{\text {a }}$		
	$-.80^{\text {c }}$	$-.50{ }^{\text {c }}$	$-1.30{ }^{\text {c }}$
	$-1.93{ }^{\text {b }}$	$-1.06{ }^{\text {b }}$	$-2.99{ }^{\text {b }}$
1^{-}	$-.33^{\text {a }}$		
	$-.29{ }^{\text {c }}$	$-.34{ }^{\text {c }}$	$-.63{ }^{\text {c }}$
	$-.26{ }^{\text {b }}$	$-1.61{ }^{\text {b }}$	$-1.87{ }^{\text {b }}$
1^{+}	$+.30{ }^{\text {a }}$		
	$-.28{ }^{\text {c }}$	$-.60{ }^{\text {c }}$	$-.88{ }^{\text {c }}$
	$+1.77{ }^{\text {b }}$	$+2.62{ }^{\text {b }}$	$+4.39{ }^{\text {b }}$
2^{-}	$+.30^{\text {c }}$	$-.21{ }^{\text {c }}$	$+.09^{\text {c }}$
(includes $\mathrm{D}_{13}(1520)$)	$+1.30^{6}$	$-1.75{ }^{\text {b }}$	$-.45{ }^{\text {b }}$
$2{ }^{+}$	$+.01^{\text {c }}$	$+.04{ }^{\text {c }}$	$+.05{ }^{\text {c }}$
(includes $\mathrm{D}_{15}(1670)$)	$-.10^{\text {b }}$	$+.25{ }^{\text {b }}$	$+.15{ }^{\text {b }}$
3^{-}	$+.25{ }^{\text {c }}$	$+1.38{ }^{\text {c }}$	$+1.63{ }^{\text {c }}$
(includes $\mathrm{F}_{15}{ }^{(1688)}$)	$+.01{ }^{\text {b }}$	+2.49 ${ }^{\text {b }}$	$+2.50{ }^{\text {b }}$
Inelastic	$+.41{ }^{\text {c }}$	$+.62{ }^{\text {c }}$	$+1.03{ }^{\text {c }}$
	$+.95{ }^{\text {b }}$	$+.24{ }^{\text {b }}$	$+1.19{ }^{\text {b }}$
Total	$-.40^{\text {c }}$	$+.39{ }^{\text {c }}$	-. $01{ }^{\text {c }}$
	$+1.74{ }^{\text {b }}$	$+1.18{ }^{\text {b }}$	$+2.92{ }^{\text {b }}$

[^1]Table III
The Isovector-Isoscalar Contributions to the Drell-Hearn-Gerasimov Sum Rule ${ }^{12}$

Partial Wave	$.18 \mathrm{GeV} \leqslant \nu_{\mathrm{lab}} \leqslant .45 \mathrm{GeV}$ ($\mu \mathrm{b}$)	$.45 \mathrm{GeV} \leqslant \underset{(\mu \mathrm{~b})}{\nu_{\mathrm{lab}} \leqslant 1.2 \mathrm{GeV}}$	Total $(\mu \mathrm{b})$
0^{+}	$+17^{\text {a }}$	$+5^{\text {b }}$	+22
1^{-}	$+1^{\text {a }}$	$+2^{\text {b }}$	+3
1^{+}	$-6^{\text {a }}$	$-17^{\text {b }}$	-23
$\begin{aligned} & 2^{-} \\ & \text {(includes } D_{13} \\ & (1520)) \end{aligned}$	$-3{ }^{\text {b }}$	$+16^{\text {b }}$	+13
$\begin{aligned} & \stackrel{\mathbf{2}^{+}}{\text {(includes } \mathrm{D}_{15}} \\ & (1670) \text {) } \end{aligned}$	0	$+1^{\text {b }}$	+1
3 $^{-}{ }_{\text {(includes }} \mathrm{F}_{15}$ (1688))	0	$+8^{\text {b }}$	+8
Inelastic	-2	+17	+15
Total	+7	+32	+39

Figure 1. Single pion photoproduction contribution to the difference between the photon-nucleon cross sections in the net heliclty states $3 / 2$ and $1 / 2$ $\left(\sigma_{3 / 2}-\sigma_{1 / 2}\right)$ for the isovector photons.
Figure 2. As in fig. 1 but for isoscalar photons.
Figure 3. As in Fig. 1 but for the interference term between the isoscalar and isovector photons.
a - Pfeil-Schwela analysis, Ref. s
b-Moorhouse-Oberlack analysis, fief. 7.

FIG. 1
-104-

FIG. 2

FIG. 3

[^0]: *Ph.D. dissertation.

[^1]: a - Pfeil-Schwela analysis, Ref. 亏.
 b-Moorhouse-Oberlack analysis, Ref. :
 c - Walker analysis, Ref. 5.

