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PREFACE

The SU(B{ﬂ- group structure appears in both current

algebra and in the spectroscopy of hadrons. Recently, consi-

derable progress has taken place In relating these two SU(S%V

structures. We investigate the consequences of the propo-
sed correspondence, as It appiles.to real photon traﬁsltlons,
In Part 1 of thls work. We show the general structure of
sitch transitions and present a set of resulting selection
rules for the multipole character of the photon ampllitudes,
Many speclfic amplitudes for both mesons and baryons are
worked out and thefr slgns and magnitudes are compared with

avallable experimental data.

In Part 2 we investigate the saturation of the Drell-

Hearn-Gerasimov sum rule for the forward spin-flip amplitude
of nucleon Compton scattering. We study the sum rules’ sa-
turation using recent analyses of single pion photoproduc-
tion in the reglon up to photon laboratory energles

of 1.2 GeV. The original sum rule is decomposed into sepa-
rate sum rules originating from different isospin components
of the electromagnetlc current, The Isovector-isovector sum
rule, whose contributions are known best, is found to be
neariy saturated, lending support to the assumptlions under-
1ving the sum rules, The fallure of the lIsovector-isoscalar
sum rule to be saturated is then presumably to be blamed on

inadequate data for inelastic contributions.
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I, INTRODUCTION

At present, symmetries observed In the Tnteractions
of hadrons play a somewhat different role than in those areas
of physics where we belleve the dynamics of Interactions Is
understood. !n the theory of gravitation or of electromagne-
tism symmetries simply reflect invariance of known Tnterac-
tions. When results of some processes are related by a sy~
mmetry In these theorles, we can always obtain these results
through explicit calculations, but we may directly use the
symmetry properties of the theory, which often turns out to
be a much simpler method, We do not need the details of the
dynamlcs in such cases, but Tnstead make use of the fact that
the interaction helongs to a class of interactlions invariant
under some type of transformation. For example, the cross
section for electron scattering by an unpolarized charge is
Indepandent of the polarization of the incident electron. YWe
can obtaln thls result directly with some effort, calculating
the cross sections for hoth polarizations of the electron, or
or we can simply use the invariance of electromagnetic inter-
actions under parlty to arrive at the same result.

In the case of strong Interactlons and the structure
of hadrons, we do not have an adeguate dynamical theory at
the present time, Ohserved symmetries of strong Interactions

have hecome therefore one of the most powerful tools for re-

lating varlous processes and makling predictions.‘ They also
provide important information by narrowlng down the class of
possible dynamical theories of strong interactions to those
which are conslistent with the experimentally observed symme-
tries and conservation laws.

Histortcally, one of the first symmetries discoveredl
in this area was the "charge lIndependence" of nuclear force§%
Strong Interactions of the proton and neutron, as well as
thelr masses (to order o€ ), were found to be identical. The
two particles were postulated to be members of a two dimen-
slonal lrreducible representation {(I.R.) of a symmetry group
of strong interactlons: the SU(2) of isospin.3 This group has
three generators 11,11 and I3 . Thelr commutation relations
are the same as those of the rotation group generators. The
third generator, Is, is linearly related to the electromag-
netic charge} Irreducible representations of this group are
characterized by the value of the Isospin,l, just as the repre-
santations of the 0(3)} group are characterized by the value
of the angular momentum, J. The 1.R. contalning proton and
neutron has 1=1/2, with proton and neutron having 13=1/2 and
-1/7, respectively. Isospin invariance of strong lnteractions
was further confirmed as other hadrons were -dlscovered. They
were found to form isospin multipiets of definite spin, mass
and parlity : three pions with I=1, J = 0 , three g ~Tesons
of 1=1,J =1;four N*(1235) states with 1=3/2 and J =3/2;, etc.

The !sospin properties of the photon have alsc been deter-



mined. The photon has I3=0 and consists of 1=1 and I=0
components.

Discovery of strangeness and its conservation in
strong interactions, together with the dlscovery of baryon
and meson resonances, led to a postulate that strong Inter-
actlons are invarlant under a stil1l higher symmetry group,
the "unitary symmetry” SU(3), suggested by Gell-Mann In 1961?
This symmetry, although not exact, again results in approxi-
mately degenerate multiplets of hadrons, corresponding to the
Irreducible representations of SU(3). The group has 8 gene-
rators, conventionally labelled A ,i=1,..8, of which the
flrst three coincide with the isospin generators, so that the
Isospin SU(2) is a subgroup of the larger symmetry. Within
a given muitiplet (1.R.) the varlous members are characte-
rized by thelr isospin, the thlrd component of the Isospin,
and the hypercharge Y, defined as a sum of the baryon num-
ber and strangeness, Y=B+5. The I.R., itself is characterized
by two quantities, the dimenslion of the representation and
the highest value of the hypercharge, for exampie. Mesons
of a given dP seem to appear as slnglets, or to form octets
approximately degenerate In mass: the plon belongs to the
JP=0- octet of pseudoscalar mesons, the §-meson is a part of
the o¥=1" octet of vector mesons, etc. Baryons appear In
singlets, octets and decuplets. For example, the nucleon
belongs to a JP=1/2+ octet, while the N*(1235) (the 3-3 reso-

” -
nance), three Y*'s, two T 's and the fL form the JP=3/2+

decuplet.
The lowest non-trivial representation of the SU{3)
group 1s three dimenslional

(y,t,13), = (1/3,1/2,1/2)

L
o, 1,13, = (1/3,1/2,-1/2)

(Y,1,13)= (-2/3,0,0)

The question of whether quarks, as the members of this multi-
plet have been christened by Gell-Mann, exlist as physical sta-
tes has been studled extensively slnce their introduction Into
hadron physics in 195u§ They have not been found, but a very
surgestive picture results, when we express baryons as three
quarks and mesons as a quark and an antiquark. The multiplet
structure for both baryons and mesons is then identlical with
the one discussed above., The SU(3) répresentatlon correspon-
4ing to qgqq reduces to a decuplet, two octets and a singlet;
the one corresponding to ad reduces to an octet and a singlet.
This, in additlon to the results of experiments deéigned to
probe the structure of hadrons, seems to indlicate that ha-
drons behave as if they have "constituents", and that guarks
are very strong candidates for these constituents.

This success of the constituent quark picture for the
multiplet structure of hadrons makes it Important to study

in detal) those consequences of the quark model which we can
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compare with the avallable experlmental data.. This theslis is
devoted to a detalled study of these consequences In the case
of electromagnetic transitions.

Electromagnetic and weak interactlons can he described
in terms of "currents",ain analogy with the classical elec-
trie current interactions. The Lorentz, isospin and SU(3)
transformation properties of these currents have been propo-
sed so as to agree with experlmental ohservations; e.g. the
electromagnetic current Is a Lorentz vectoer, has Tsospin com-
ponents 0 and 1, and transforms as a sum of the 3 and 8
members of an octet under $H{3). Conventionally, these pro-
pertles are represented by Vs(il}h- 1 Vs(i,t) . Weak currents

R E
tnvolve both currents with the properties of a Lorentz vector
and axIa]-vector,ﬂﬁtﬁt). We present the SU(3) commutation re-
1ations proposed for the axlal-vector currents and for space
integrals of thelr tlme components, the axial charges, in
gectlon 11 of this paper. The commutation relations of weak
and electromagnetic currents and charges tead to numerous sum
rules when both sides of such commutatien relatlons are san-
dwlched between hadron states. Evaluatlion of these sum rules
poses the next question: how are the transformation proper-
ties of currents related to the transformation properties of
hadrons and to the symmetries of strong interactions? There
are many attempts tn answer this important question. A for-
mallsm, proposed by Ge]l-Mannsand based on "current quarks',

expresses currents as g{%,t) F aq(X,t), where qg(%,t} is the

-l

“"eyrrant quark" fleld and F Is an operator of appropriate
algebralc (SU(3)) and Lorentz transformation properties.

A complete knowledge of the transformatlon from con-
stltuent to current quark states, together with the Identl-
fication of the observed hadrons with simple {constituent)
guark model states, would permit one to calculate all current
!nduced transitlons between hadrons. A major step in this
direction has been achleved by Me1osh? who was able to for-
mulate and explicitly calculate such a transformation in the
free quark model, Whlle the detalls of such a transforma-
tion certalnly depend on strong Interactions dynamics, [t is
possihle that certaln algebralc propertles of the transfor-
matlon abstracted from the free quark model may hold In
zeneral,

We shall assume that such a transformation does
indeed exist and that some of its algebralc properties can
be abstracted from the free quark model. For the case of the
axlal-vector charge, the many consequences of this assumptlon
have already been extensively worked ocut and compared with
experiment using the Partially Conserved Axlal-Vector Current
hyrml:hes;ls.s‘g Here we study the consequences of the same assum-
ption for real (qz=0) photon transltions.

In the next section we review the origin and the baslc
properties of the theory along with some of lts immedlate
consequences for the classificatlon of baryons under an al-

gebra generated by currents. Thls subject is further dis-



cussed in Section 111, where we attempt to expand the wave
functions of hadrons in terms of current algebra represen-
tatlons by fltting experimentally known matrix elements.

The general aigehralc structure nf photon ampllitudes is dis-
cussed In Section 1V, as well as the method of calculating
specific matrix elements. We derfve a set of selection
rules which include, and generallze, the old SU(E) result
that the transition from the nucleen to 3-3 resonance should
be magnetic dipole In character."o This general discussion
of the theory is completed by a comparison with other theo-
ries with a related algebralc structure.

In Section ¥ the photon transitions between mesons
are detalled, along with a comparlison of the predictions
with the available experlimental data. A detailed exposltion
of barvon electromagnetic transltions Is contained In Sec-
tion VI, and fn Sectlon VI! we compare both the sign and
magnltude of the predicted amplltudes with exper iment., The
signs are testable through a multipole analysis of pion pho-
toproduction xN-ohr-»HN , where the signs of the previously
calculated pion decay&gamplltudes also come Into play.
Experiment and theory are found to be consistent, including
the relative signs of plon decay amplitudes obtained from
anallzing TM - N* = TA. A surmary and some conclusions
are found In Sectlon VI1l. The general outlook Is very good,
encouraging further study of the underlyling dynamics and the

extenslon to the quo region.

11. CURREMT AMD CONSTITUENT ALGEZRA

Let us begln with a review of developements in current
alzebra which led to the Introduction of the SU(S)\N algebra
of currents. The vector and axial-vector currents, %;(i,t)
and A;(?,t), have been postulated to obey simpie egual time
commutation relatlons, which are to be exact as far as strong
Tnteractlons are concernedﬁ' The right hand side of these co-
mmutatlien relatlons generally consists of a term Involving a
delta function and terms Involving gradients of delta fun-
ctlons. The gradient terms do not contribute to the three
dimenslonal space integrals of the commutation relatlons, so

that the 16 vector and axtal-vector charges

Q')

(a3 vz, 0
(H1-1)
Q“ ey

3

Sdsx AL (R, 1)

where i=1, ,8 Is an SU(3) index, commute to form the algebra

abstracted by GeTl-Mannk

i b vik
[nfco,0rco] =uf” a“ct) (11-2a)

v } R TLI
[Q (t),qgct>] =ifla U (11-2b)



: i . ik
[escorade] =ifa*o (11-2¢)

qu sstructure constants of SU(3)
The Q;'s generate ordlnary SU(3) . [t is easy to show that
Eqs.(l11-2) define the algebra of chiral SU(3) SU(3), since
they are equlivaltent to the statement that (ftQ;.each form
an SU(3) algebra and that the right-handed charges, Qi+ Q;,
commute with the teft-handed charges, Q;- Q;. The last of
the Eqs.(11-2) sandwiched between nucleon states moving with
infinlte momentum in the z-direction ylelds the Adler-Weis-

11
berger sum rule.

When a world scalar density is adjoined to the vector
and axial-vector current components and commutation of space
interrals of such operators contlinued until a closed algebra
1s formed, the result is a U(12) of Iki generators.'2 The ele-
sents of thls algehra are space Integrals of current densi-
tlaes of the general form é?i,t)!- Rh(i,t), when expressed
th terms of the current quark fields.

An SU(G)w subalgebra of this U(12), which conslsts
of positive parity, "good", l.e. those with finite matrix
elements between states with pyise operatorsjswhich commute
z-hoosts, proves to be of particular !nterest}z The "W"
stands for the W-spin: H‘=i§6; R Ny=%qu ” N§= %o} , which
actling on quarks are the same as S*, Sy and S!, but for anti-

quarks, since P =-1, are equal -5, --Sy and S*. The genera-

-10=-

tors of the SU(G)w algebra are space integrals of the time
component of the vector currents, z-component of the axial-
vector currents and space integrals of antlsymmetric tensors
FFV ., where /u,y =2,3 or 3,1. Explicit current quark model
expresslons for the 35 generators of the $U(&) of currents

are

F'os (d gt () 3 q(x)

{l11-3a)

=1, ,8
F:_ -+ fdk 9 & Box E;q_(z,t) (11-3b)
o= b (dk kY By E; q G,t) (11-3¢)
F; =3 Sd’x cl*(z,t) T 35_‘ qG.t) (11=34)

T=n,1, .8

. o 7 -
where A” Is an SU(3) generator (A=v3 1) and q(X,t) 1s a
current quark flield.

To classify operators and to describe the transfor-
mation propertles of lrreduclble representations (}.R.'s)
we will use here two equivalent methods of labellng., The
first one dlrectly defines the properties of a given object

under SU(G)W, e.g. in

2witl
{ 2]

-11-



M is the dimension of the |.R. under the full SU(S% , N the
dimension under the ordinary 3U(3} (generated by Q"s) suh-
algebra, ant W Is the value of the W-spin. A second method,
which we will use predominantly throughout this paper, Ade-
fines the transformation properties of considered states ani
operators under the full SU(B%M and tts chiral SU(3)xSU{3)

subalgebra. Under the chiral algebra,

(A,B)SE
transforms as an A-dimenslonal representation under Q;+ Qé,
as a B-dimensional representation under Qi- Q? , and SE is
the elgenvalue of Q;, the singlet axlal-vector charge.l3 When
we use the second notation, the SU(Gld transformation pro-
perties of a dliscussed object will either follow from the
context, or will be given explicltly., The "ordlnary" SU(3)
content {(under QL) of (A,B) 1s just that of AxB. We will

also use L, defined as Lz=Jz°s

.+ O complete the descrip-

tion of the transformation properties of states and opera-
tors, so in effect we work within an SU(B!;O(Z) framework.
According to the classiflication described above,

the axlal-vector charge

; ) i . v
Q, =1 (@+Q) - 31(a-Qy)
transforms as {(8,1% - (1,8% ., LE=0} , or equivalently as

{2}, 83, L2=0} . In this work we will be concerned prima=-

-]Z=-

rily with photon transitions Induced by the dipole operator,

Dem

+ v the flrst moment of the electromagnetic vector current:

DT =-d E—"—\(%i [V G0+ V.2 &, 4)] d
(11-4)

YWhen oi? is sandwiched between two hadron states at infinite

momentum, < H' | D?“

| 1t > Is directly proportlonal to the am-
plitude for the photon transitlon H'—» ¥+ H, For H'=A ,H=M
this matrix element ls propnrtional to the strength of the
elactromagnetic coupling of the nucleon and the delta, For
H'= 1 =M this matrix element gzives g% times the anomalous
magnetic moment of the nucleon. Df? transforms as

{.(8,1)°+ (1,8% , L =11} , since under QL and Q}

i
(o vimd, =i, ()
LS @)

1

it

(ot v,

A1l representatlons of the chiral SU{3)xSU(3} of cu-
rents can be bullt up from (S'I)i' (1,325, (l,i)i and (g,lzé,
which we define to be the current quark and antlquark states
wlith spin projection % 1/2 in the z-dlirection. The quarks
form a § and the antiquarks a 5 of the full SU(B%V of cu-

rrents.
At the same time as when the SU(S)W of currents was in-

-13%=



troduced, Llpkin and Meshkov postuiated another SU(B)Wr as an
approximate symmetry of strong Interactlons!“derfvlng this re-
sult from SU{3) and spin symmetry of the amplitudes for coll-
near processes, Ordinary SU(B) ,involving SU(3) and S-spln,
however, forblds such observed strong couplings as (-3 and
A v N. The W-spln generators , which were flrst introduced

in this framework using Intrinsic parlity Rh+:

[
\V& = i Phﬁ G}
= P;
w3 2 int Oy {(11-53)
-
We = 3

or, relativistically,

VJK * i p0}
|
Wy = 3 Boy (11-5b)
= L
W 1 %
commute with z-boosts and are "“good" operators. |t was the

W-spin that led to an SU{S)w as an appropriate group corre-
sponding to the approximate symmetry of strong Interactlions.
Thils SU(S%H known as the SU(B), of constituents classifles
hadrons Into its lrreducible representatlions {see Appendix).
Generators of thls algebra have the same equal tlme commuta-
tlon relations, charge conjugatlon and parity as the genera-

tors of the SU(E)w of currents. However, it was shown soon

-1h=

after their Introduction that the two algebras could not be
ldentifled with each other. Even in the free quark model most
of the operators in the SU(6) of currents do not commute
with tha kinetlc energy term In the Ham!litonlan, if QL# 0, so
that they are not conserved..7 Additionally, such an ldentifli-
cation glves wrong predictions for g,/g, and for magnetlc
moments. To summarlize, current and charge operators Ud have
well deflned transformatlon properties under the SU(Slvof
currents, and hadron states may be classified Into irredu-
cible representations of the SU(S)wr of constituents. A rela-
tion between the two SU(B)w's is necessary to define within
one algebra the algebraic properties of both hadrons and ope-
rators o* occuring in matrix elements < hadron' | B#i hadron >.
Conslderable progress resulted from the assumption
that constltuent and current quark states can be related by

a unttary transformation V, so that
{ 1.R. constituents> = V¥ | |.R. currents > . {(11-6)

7
Using this assumption, Melosh further defined a set of ope-

rators W

WARS V_l'FLV (11-7a)

=15~



and imposed a condition that
v
[HSf"Dﬂﬂjy W' 1l=0 (11-7h)

From these assumptlon It follows that the N;'s generate an
Sll(ﬁ)w under whlch hadrons transform as those I[rreducible re-
presentatlons which correspond to the simple constituent quark
model. The approximate symnmetry of strong Interactions may
then be identified with the SU(G) generated by the T

' A matrix eltement of a current or charge operator o

between two hadronic states can now be rewrlitten

o
¢ hadron' | @ { hadron > =

ol
¢i.R.'constituents | & | l.R.constituents>

- ol
< 1.R.' currents |V & vl L.R.currents>

it

(Li-g)
with all quantities In the last 1lne of the equation labe-
led by current algebra.

The transformation V must satisfy a number of condi-
tions discussed in detail In Refs. 7 and 16. We need only
to recall here that V takes '‘good" operators into Ygood"
operators, and that V conserves the "ordlnary" SU(3) {ze-
nerated by QL'S). In consequence, the ordinary SU(3) content
of VI(A,B) currents> Is the same as that of [(A,B) currents?,
although the transformed state may span many representations

of the full SU(B%I or Tts chiral SU(3)}x;U{3) subalgebra. We

-16-

illustrate this in Section 11}, where we make a phenomenologi-

cal attempt to expand physlcal states in terms of the repre-
sentations of current algebra.
in this context, 1f the vacuum of currents is defined In

analogy with Egq.{ll-6) as:

-4 A
¥ jvacuun constituents>

| vaccum currents>
(11-9)

i
V1 1 constituents> 1}

1
1 1 currents >

where the state |vacuum currents> is annihllated by currents
and }vacuum constituents> is the "physical' vacuum, the matrix

elemant

v
¢ physical plonli QS 1 physical vacyum >
can be rewrltten, assuming that the plon and physical vacuum
can be ldentified with the corresponding constituent states,

as:

(W, constituents]| Q; I vacuum constltuents’
={ ¥, currents]| V"Q; ¥V | vacuum currents > (11=-190)

-1 1
¢ i ,§§,83currentsl 4 Q;_V | 1" currents > .
This matrix element need not vanish, since v‘1Q;V is not a
generator of the SU(E)w of currents.

We will discuss in detall algebralc propertlies of the
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matrix elements of transitfon induclng operators and apply
these properties to real transitions in Section 1V of this
paper. Before that, we will complete the presentation of the
relation between the two SU(B%M algebras with a phenomenolo-
gical approach to the mixing occuring In the hadron states

under current algebra.

I11,PHENOMENOLOGICAL APPROACH T0O THE TRANSFORMATION
PROPERTIES OF HADRONS UNDER CURRENT ALGERRA

We now turn to the classiflcation of hadrons under
the SU(B), alzebra of currents and under its chiral sub-
algebra, SU(3)xSU(3). Much effort was devoted to this sub-
ject after the introduction of current algebra and the Adler
-Weisberger sum ruléi(see Eq.{I1-2¢c)). To illustrate again
the need for mixing, let us consider the following examples.

|f the nucleon and delta (1235), the lowest mass bar-
yons, behaved as three current quark states with totally sym-
metric wave functions and Internal quark angular momentum L=0,
then using chiral SU(3)x%SU(3) to classify states and opera-
tors, we flnd that In the heliclity A =1/2 state they must tran-
sform as a pure i§§,(6,3)%,0>, while in the hellcity A =-1/2

state as a pure IEp,(B,Sl L0,

3
Gn and G* are conventionally defined so that the Adler

-18—

-Welsberger sum rule reads:

24p1@%pY = {plfQs, a1l
= [plag Inpl®
“[Kptq; 18I - ICp! Q1A T+
R (11=-1)
= q'nl" G’* +
where Qi = Q;: ng and the normallzatlon is such that <{pip>=1

The operators Q;, as SU(G%N (and SU(3)=SU(3) )} generators can
only connect the 1{.R. [56, (6'3)§0> to itself., Wlthout
representation mixing Tn nucleon states the Adler-Welsberger
sum ru1eumust be saturated by the contributlons from the neu-
tron and A(1236) alone. Wlithout mixing, GR=5/3 and G“=h/3,
whereas 2<{pl| Q3I p> = 1. Evaiuatlonubf this sum rule shows
that there must be contributlions from many higher mass N*rs,

The anomalous magnetic moment of the nucleon is given
by the matrix element of the dipole operator Dim of Eq.(11-4)
between the nucleon states at Infinlte momentum,

\lz-lf\'ﬂ (N) = <N1A=il D:""I Nl}=-%>Pi-+ao
(e-2)

Without representation mlxing this matrix element vanishes,

since the inftial and final nucleon wave functions have
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L£=L =0 only, while D;" changes Lz by £1 (see Eq.(l1-U4}}.

These and similar arguments show that some represen-
tation mixing must be present In the classiflcation of ha-
drons under the algebra of currentsf’ In this sectlon we dis-
cuss how the mixlng parameters can be sought phenomenclogi-~
catly. UWe 1imlt our presentation to the nucleon and D (1238,
but a simitar method appllies to mesons and higher mass baryon
resonances. We conslder mixlng of chiral SU(3)*SU(3) repre-
sentations; mixing under the full SU(G)V of currents can be
studied in the same manner.

A three qguark, he!fcity Aa=1/2, J =1/2, nucleon state
may transform most generally as a llnear combination of six
1.R.'s of the chiral SU{3)xSU(3) current algebra. We there-
fore may parametrize:

N, 2D = cos8 (cosp 1063y, 00 + sinp 1(3.6), ,71)

L)
2

r 5in® [cosp (cosy 1 (33).4 71 + siny 1(81);,D)

+ sing (cosv | B2),, 0>+ sinv 1(1,8).472))

| (H11=3)
Simitarty, for a three quark A=1/2, J=3/2 delta state we

may choose a parametrlization

[AJ A= 3 = coseC (cos? 1(6,3),;_,0) + Sin§1(3,6)_i'+1>)
¢ sinol (cos ¥ 1(10,1),717 +sin¥ | (1,10).5,%2))

(E11-4)

-20-
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To determine the mixing paraneters we shall fit G“, G
the anomalous magnetlic moments of the proton and neutron and
the strength of the electromagnetic ¥NA coupling using
the assumed form of the wave functions (Eqs{111-3,4)}.

tle obtaln for Gp and G

G'ﬁ = % cos 8 C0520? + sin'@ COSZCP

*

G

(E11=5)

i

[T

cos B cosol cos (? - P)

%*
We already have predictions that G < 4/3, which agrees with
the experimental limits on G *(.8 to 1.05). Note also that

for ng 1.25 we obtalin bounds on the angles 8 and 7 :

6 ¢ s2°

o

n { 26.5 (111-6)
The strength of the ¥NA coupling, /4*, is proportio-

nalt to the matrix element of the D} between the nucleon and

delta states at infinite momentum

POND A= DTN, AT
P>

(rr=7
Moments glven by the assumed haryon wave functions and the
algebraic properties of wa, {(8,1%,+ (1,8% .1 } , altlow

five Independent reduced matrlx elements In the expressions
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for }f’" and the anomalous magnetlic moments:

M, = €(6,3) , 0U {8, (1,8, L} n(e,, 1>
Ma= C(63), 0181 + (1,80, 1} (3,9 ,-1)
My= CGB3)y, 0L 0+ (1,86, LTI (53),-1>
My = (81, ,-LR{(8,1),+ (1,8),, 13U (832>
Ms = (g, -11{(8Not (1,8)0, LT (81)y,-2)>

(111=-8)
The terms multiplyling My involve also another parameter, since
8x8 reduces to 8ﬂ and 85' . Thls parameter, the f/d ratio,
would be glven If we used the full SU(B)W .
In terms of the mixlng angles and the reduced matrix
elements , the anomalous magnetic moments and /u*are then:
* 3_’ . . .
/... =V_3 cosotsme[‘cospcoscfcos? +smpsmcp cow] M2
{(111-9a)
+V§ sind sin8 [CosK:»'ncfs(mv + s‘.ngws? simlp] Ms

VE,;.:: —cos‘GsinZ? M, (111-9b)

2 _. . ,
+ @_smzefa:os?cos'fcos? sm7smr cosv] M,
+ sin0 sin 2¢ cosvcosy My

+ $int8 sin ng sinv simli Mq. (V% = 1c/d, v—g)

_722.—

Vf/“': ="<‘.os7'95ih2?|‘4.
+5&h!e 5“12?;35\;c05w r43
+sintl 5ih2qsihv sfh\!, Mq_ (-vg_-f/d'vg) (111-9¢)

where
f‘-av= Mo (p) - Vol (»)
[ fall (r) s (m)

are the ]sovector and Isoscalar anomalous moments.

(tir-10}

Eqs.{111=5) and (I111-9) can be satisfled in many ways,
since the number of free parameters Is greater than the num-
ber of experimental quantities we want to fit. We can how-
ever conclude that since Gn> 1, cos B4 0 and cos?.? £0 (91:11I
and rz#% 3, t.e., the nucleon's wave function must contatn
the |(E,3)yl,0> and/or 1(3,6)_,}‘,}.) terms, and the ratio between
the mixing parameters multiplying these two terms must be di-
fferent from 1.

Orne of possible soltutlons, related to that propased by
Harari,‘scan be obtained under the assumption that the inter-
nal quark angular momentum In both the nucleon and delta is
not greater than one. Thls eliminates the mixing angles
v=f=0 (see Eqs.{11-3,4)). We then additlonally assume

that « =8 and F=?, l.e.

1A, A 4 = 028 (cosy 1(6:3)y,07 +siny 1(3,6)- 1))

% sin O l (iO,[)_@"-‘l)
2
{ttl1-11a)
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N, A=) = cos8 (cosy 1(6,3)y,00 + sing L3 6.y, 1))

+ sin 9[coscr (cosy \(3,3)_5;1 >+ Siny l(&l);.;i))

+5\'ngr ‘ (3} 3)_'2’ O>]

{(1ti=11b)
*M
With these assumptions we obtain, for G % 1,
1 tg v g ’ ot = @ '5300
sin o = sin O¥L )
] Lk _ > o (rri-12)
sinZP'-“-sz!z—g ) {5 = '2 (8.4

v
Since the Tsoscalar anomalous maghetic moment ﬂ:<(f% and
s ¥ L _
ﬁa<€M" we further assume Ma 0. :slng this and the expe
*f ¥
rimental value of the ratio fLAL” to determine the re-

malning mixing angles we are led to:

s .. 9

Tl - B+ 4 sim 2gcosy My =0

oSy COSY COSY + sin /i Sing

cos 7 CQ.s(_F cos?-sin? ancf

7} (/&’Zu?{)

-1

(1H1-13)

which we may satisfy choosling M1= 0, ?= 0. The wave func-

24~

ttons resulting from thls particular solution are given by

lN")ﬁl,_ = cos30° [CO.S 18.4° |(6,3)i10> + sin 184° ](3,6)_él*1>_]
+sin30°[ca5qxlf3.§)-iz,*i> + siny | (8,1)3 "D]
2 3

(111-1%a)

and

AYPE iy = cos30°[cos 13.4°5(6,3)5_,07+5ih 18.4°| (3,6)_5'%.}:,

. [ 1 1 _ 1
+ sin 30 !( 0, )% , ) C11-18b)
Even thls simpliifted mixtng scheme with L & 1 has no unique

solution, as cosy Is stlll left as a free parameter, except

for the condltlon that cosy # 0, because that would glve
*

v
/LH = )L 0 here.

The analogous situation of no unique solution for the
current algebra representation mixing In the wave functlions
ls encountered in the expansion bf higher mass resonances,
each of which must be treated separately. The phenomenofn-
glcal approach then 1s not very helpful In a systematlc eva-
lTuation of the current and charge matrix elements between
hadron states., |t Indicates the complexity of hadrons' wave
functlons under current algebra. The approach based on a
unitary transformation relating current and constltuent quarks
also predlcts complicated algebralc properties for
V! 1.R.currents>, which correspond to the propertles of ha-
drons under current algebra.7 But a systematic evaluation of

ot
the matrix elements ¢ hadron'| & lhadroen > in Eq.(11-8) can
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be carried out In splte of the complexity of the wave func-
tlons. We will describe the alternate systematlc method of
calculating such matrix elements and fts applicatlons In the

following sections.

1Y, PHOTON TRANSITIONS 0OF HADRONS

Evaluation of the matrix element <hadron'| Sdl hadron>
In Eq.(11-8) can he carried out In spite of the complexity of
the state V | I.R. currents>, provided that the "effect]ve"
operator.Vdoﬁv has definite and simple transformation pro-
pertles under current algebra,

In the free quark model Melosh has been able to con-
struct an explicit form of V. Effective operators V']Udv
for 8#- Q} and D;m , turn out to have simple transfor-
matlon properties when this V is used. They must connect
only single quark states to slnglé quarl states, and both

have a general form

(di " (&,4) T3, %) qx,1).

o
Here ¥ Is some fuctlon of the derivatives ( 9;) and the

gamma matrices ¢ 31).

An expllcit form of the function %: was originally deter-
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mined by MeIOSh,TwhiIe Elchten et al}s argued that a large
ctass of such functlons exists. Without a detalled dynaml-
cal theory we are unable to make use of an explicit form,
even If it were glven to us. The property which we abstract
from the free quark model and assume to hold In general Is

-’ . -1
that the effective operators ViQ;V and V D™V have the

transformatien properties of the most general linear combi-

nation of single quark operators consistent wlth SU(3) and

Lorentz fnvariance.

Iln the expllclit quark model calculations the operator
V1Q§_V with Jz= i contalns two terms which transform as
{(3,1)0- (L&), ,L,=0 } and {¢3,3) ,-1) - {(3,333 1} con-
ponents of two 35's of the full SU(EL{ of currents. To apply
this to observed hadron transitions, as few axlal-vector de-
cays are measured, the Partially Conserved Axlal-Vector Cur-
rent hyootheslslstPCAC) can be used to relate the matrix ele-
ments of Q; between states at infinlte momentum to matrix ele-
ments of the plon fileld. Such an approach results In a theory
of the algebraic structure of plon amplitudes.zo

As the matrix elements of Diﬁ(Eq.(ll-h)) are directly
proportional to photon amplitudes, no additional assumption
1ike PCAC 1s necessary. Furthermore, matrix elements of Dfm
are equal, up to a sign, to those nf Dfm (with reversed he-
licities of the external states) via parity conservation, so
that we need only consider the properties of D;ﬁ . The ope-

-1
rator V Df”v, with J_= 1, has sllightly more conplicated tran-

2
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1

sformation properties than V Q; V. In =eneral, as pointed

out by Hey and waersfl there are four possible terns:

{ea 1, oy, h {o5 0}, {.5) .2} anc
{(8,1)0- (1,3% ,1} , all components of four 35's . It
appears that all four occur in the operator V“nﬂfv in the
free quark model. Hawever, the last term, which corresponis
to aq in a net guark spin $=0, unnatural spin-paritf state,
has no analogue with any natural spin-parity (in particular
vector meson) state of the quark mode]?lsMoreover, under a

Jy

generallzed parity trar.sﬂ'n'mation,Pé”l , which takes
{ (A,8)s,, L] — { (8,A).q, ,-Ls}

the first three terms do not change sign while the last one
does. For the tongitudinal (JE= 0) component of the current
this would etiminate the possibllity of such a term. Whlle
we wlll carry all four terms In calculating photon tran-
sttion amplitudes here, we will Indicate experlimental 1imlts
on the size of the {(8,1)0- (1,8L ,1} term's contributions
and Indlicate what sltuation ensues If it is totally absent.
Assuming that the transformatlon properties of the
effective operators &*a“v for e‘= Q} or Dgn\can he abstra-
cted from the free quark model, we are almost In a position
to apply the theory to actual decays. To make contact with

experiment we make one physical assumptlion, namely, we

assume that we can ldentify the ohserved (non-exotlc) hadrons

-28-

with constituent quark states. In other words we assune that

a part of the physical Hilhert space is well approximate:d by
the single particle states of the constltuent quark madel.
For baryons and mesons we have candidates which fit very well
Tnto the SU(E) x 0(3) renresentatlions 56 t=0; 70 L=1; 56 L=2
and 35 L=0; 1 L=0 and 35 L=1, respectively {see Appendix).

As we assume that states with different values of quark spin
as well as Ly are related according to the constituent quarlk

nodel, we can relate different hellicity states to each other.

Uith thls physical assumption we %&now the algebraic
praoperties of all terms Tn the matrix element in Eq.{11-8)

under current algebra. Therefore we may use the Wigner-
z3

Z,

Eckart theorem and tables of Clebsch-Cordan coefficlients

to carry out the calculation from this polnt onward. Note
that SU(E)w Invariance of the effective operators iiﬁ*v is
not assumed either under the algebra of currents or that of
strong Interactlons - only the transformation propertles of
the varlous terms of the effectlve operators are needed in

the calculatlions.
e will now turn to a detailed dlscussion of photon

decays. Photon transltlon amplitudes are proportional to the

matrix elements of the dipole operator, Den, between hadron
.o
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states. In the narrow resonance approximatlon,

r'(Hadvon‘—» Hadvon + Fho+oh)

3
= ——L—ez z > [<Hadvon\, A | Dim I Hadvon‘ 2’|>'Z
\
7 (27+1) 2
(1v-1)

Here e Is the hadron charge, px.the photon momentum and the
sum extends over all possible helicities A. Matrix ele-
ments of Dim have been eliminated from Eq.{I1V=1) via parity.
This equation may aiso be obtained from consideratlon of the
narrow resonance approximation of the Hadron' contribution
to the Cablbbo-Radicat! sum ru1e14on Hadron states. We have
rno arbitrary phase space factors.

We shall use the narrow resonance approxlmation,
Eq.(1V=-1), for photon decay widths to compare the theory
with experiment. For broad resonances or for decays of re-
sonances where the physically available phase space is small,
such an approximation introduces non-negligible errors.

However, we conslder the present comparison to be sufficien-

tly valld as a flrst test of the theorwv, particularly in view

of the experimental errors for photon (as well as plion) de-
cay widths. When the situation eventually wafrants Tt, the
values of 1<Hadron'| D?“I Hadron)ll should be determined

ITrrespective of any approximation In terms of contributlons

to the Cabibbo-Radicatl sum rule.er
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The assumptlions on the transformation properties of

D;m matrix elements between hadrons under current algebra
allow one tn express every photon amplltude as a 1inear com-
binatlion of four terms, which appear In the effectlive opera-
tor VﬂDiMV. More expllcitly, for a given matrix element,
we first decompnse the total 4 of the initlal and firal had-
ron (with J,= -1 and A, respectively), into definlfte S,
and L, quark states. After transformation to the SU(B%N of
currents basis, the matrix element of any particular term in
fidzﬁv can be wrltten, using the Wligner~Eckart theorem, as
a reduced matrix element times the product of quark anguiar
momentum, SU(S)w , SU(3) and W-spin Clebsch-Gordan coeffl-
cient:}'stor exarmple, the matrix element of the -{(3,3%_,2}
term in V102MV hetween initial and flinal states with heli-
city 2-1 and A, total! angular momentum J and J', internal
quark angular mormentum L and L', auark spin S and 5', SU(3)
representation A and A' and SU(B%V representation R and R',
respectively, is calculated in the Tollowing way:

RIAILIS)S! A,currentsl{(3,3112}1R,A,L,S,J,A-l,currents>

= GMLIS'TLUISIL S LS] A-D) et ar™ 35,8 | p, A
-’

b T I b = .
quark angular momentum sU{6) Clebsch=Gordan

Clebsch-Gordan cofficlients coefflcient
GRANIRY 8((010)+v-%‘(000) LA CY,1,150)

SU(3) Clebsch-Cordan coefficlient

WYY | IN-1W > L'y (%,3),,2 >
A I Jl‘ & )-1. IRt

YW-gpin Cleﬁgch—Gordan reduced matrix element

coefficlent
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The signs which result from the conversion from quark spin

15 . s
tao Y-spin in the operators are included In the reduced matrix
elements.

The reductinn of the nther terms In yip%™

V' procee:ds
just as above and we need only recall that (8,1%'* (1,8):
¢8,1),~ (1,8), and (3,7) transform as W=\, =0; W=1,¥,=0 and
w=1,wi=1 objects, respectively., Mote that since tntal qzis
conserved and the net value of W,=5; must also be conserved
by the W-spin Clebsch=-Gordan coefficlent in Eq.{1V=-2) and
its analogues, it follows that L,= Jgz~ 5; must also be con-
served between the Initial and final state {including the
photon operator). We then observe that the reduced matrix
elements depend on the SU(G%" multiplet, the L; and L, values
of the external states components, and the particular term in
vioh v,

1f L is zero, as !s the case in essentially all ca-
ses nof physical Interest at the present time, then of course
Lz=0 and the L; dependence of the SU(6), reduced matrix ele-
ment hecomes trivial due to conservation of L,. In such a
case {L=0 , al)l photon decays from one SU(BL, multiplet to

another are related to the same four reduced matrix elements

{dropping the trivial LE labels):

CR' L' If (8,10 + (1,8) 01 R L=0 >
RT L' N (3,3), 1 R L=0>
R LY (3,30, I R L=0 >
and ¢r' L' | €8,1) - (1,8), 11 A L=0 >

-32_

some of which may be zero or may have zero coefficients due
to selection rules in particular decays.

This algehraic structure of photon ~atrix elements
does in fact lead to interesting and powerful selection ru-
les. Consider the {(8,1% + (1,8) ,1} term in vﬂuﬁ:v ,
which has W=spin zaro. The W=spin Clehsch-Gordan coefflecient
tn the ana2logue of Eq.(lY=2) Imnlles

Wm0 (1v-3)

which is the same as

-

s' =5 (1v-4)
Mow, for Hadron' and Hadron statés we have

NP (1V~5)
an-

J=1+5 (1V=5)

while angular momentum conservation for the total decay de-

mands

=T e 0, (tv-7)

where jy Ts the net angular momentum carried by the photon
and determines the multipale character of the decay. Comhi-
ninz Fgs.(t¥=-4) to (1V-7) we obtain
b L= L' g jx 1T Lo+ L' (1vy-8)
and In the case L=0
Jg= L' (1v-9)
Thus decays through the {(8,1% + (1,81,,1} term in Vinﬂ"v

to L=0 baryons and mesons always have jx=L' of the decaying

-33_



hadron. As the parity change Is 1 1 ==Y this al-
ways corresponds to an electric 2t'-pole transition in the
usual multipole nntation.

For the {(3,3,0}. {(5.3y.2) and {t8,13, -(1,2), 1]
terms In anﬂ“v, all of which have W-spin cone, Eq.{IV¥-l Is
modifled to2®

& -
S' =5 +1 (1v-10)

and as a result one finds in place of Eg.(1V-3) that

TR S B A (AR SR F R N R
(iv-11)
so that
Jy=L'- 1, LY, L'+ 1. (tv-12)
As the parity change Is agaln (-1)9 these correspond teo ma-
enetic 2{L'-1)-pnle, electric 2L'-pole and magnetic 2(L'+1)
-pole, respectively.
The actual corresponience between reduced matrix ele-
+ants and a set of multipole amplitudes can also be proven
usinz Racah coeffleclents to rewrlte £q.(1¥-2) and Tts analo-

ruyes. For example, haryon transitions from R, L=0 to n',L°

can be described in terms of multipole amplitudes

M (jx=L') = CRTLM (8,1),+ (1,3) R L=0> (1vV-1hal

-3[‘_

Mo(Gy=L'-1,00, L *1)

1]

(1,L,1,00), , 1KR'LT Y (3,3) IR L=0>

+

(1,L',0,1!jK,1)<R'L'H (8,1), -(1,8) IR L=0>

+

(1,1',-1,21,, 1 R'LV 1 (3,3) IR L=0>,

(1v-11b)
“ate ,of course, that one nnly has jr» 1. Thus for L'=0-L=0
only jy=1 Is allowed. This is just the ald result that the
nucleon to 3-3 resonance transitlon is magnetic dipnle in
character.

Mote that for values L'>» 3, not only does the theory
limit values of j, to Jy £ L' + 1, but also non-trivially
forhids values of jK jess than L'—1f7which are otherwise kine-
matically allowed , and even favored by angular momentum bar-
rier arsuments. The transitlon of a JP =3/2 baryon reso-
nance in a 70 L'=3% multiplet into a nucleon plus a photon with
jg=1 is forblidden, for example, even though this is the lo-
west allowed multipole on spin-parity srounds.

The algebraic structure of the theory of photon tran-
sitions presented above Is closely reltated to various quark
model calculations, hoth non-reIativisticzs and relatlvistic,"s
4nne in the past. Thery may be put into one to one correspon-
lence 1F the {(8,1)°+ (1,8) ,1} term in Vdﬂiﬂv is Tdenti-
flad with the phnton interacting with the quark convection
current, and the {(3,3%.,0} term identified with the pho-

interacting with the auyarl: magnetic moment, The

ton
{53y, 2} ana {wa10,- (e, ,1} terns are absent in
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these quark modeI:?AiMWever, the assumption »nf a "potential"
and the resultling wave Function for the bound states in the
quark mode) calculatlions vyield definlte predictions for the
reduced matrix elements themselves, as they dernen: on masses
and other parameters of the molels. This is something we

1o not obtain, since we consider only the algebraic structure.

Closety related to the quark model results are those fo-

ltowlng from various versions of SU(G%V {of strong lnterac-

tTons) Invariance. The assumption of SU(S;H conservation plus

vector dominance for photon transitions Is equivalent to
keaening only the {(3,3 )1,0} term in \TID':'V.

As we will soon see, this Is totally contradicted by
the data. As a result, various broken SU(S{V schemes were
developed?o Sorme of these are very similar to the present the-
ory in algebralc structure, partlcutarly for decays to L=0
hadrons. For vector meson decays, and via vector dominance
for photon decays, one such schmngicorresponds in algehralc
structure to the one presented here 1f the reduced matrix
elements of {(3,3[1,2} vanish and those of

{(8,1)°+ (1,8)0,1} and {(8,1%“ (1,8)0,1} terms are equal,
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Y. PHOTON TRANSITIONS OF MFSAMS

Mow that the hasic propertlies of the thecry and the
manner of its application to actual hadrons have been spelled
mut, we begin the discusslion of detailed predictions with ra-
diative decays of mesnons. Ye limit our listing of amplitudes
to those corresponding to non-strange mesons; the extension
to transitions Involving stranze mesons is easily accompli-
shel using SU(3).

Let us besin with the photon transitions from L'=0 to
L.=0 mesons, l.e., among the nembers of the SU(G%H 35 and 1,
whose non-strange members are o, o, ¢, ﬁ,v? and ( presuma-
hly) x°. As Ly =L1=0 for the external states slipnce L'=L=0,
only the term with L,=9 and transforming as {(3,?5 ,0} in
V1Di7v can contrlhute. The selection rule in Eq.(1V-12) I=-
mediately gives the result that j,=1 only. This Is already
non-trivial, as jy= 2 transitions are possible from ?1 to
gt in general, and the theory then preidicts zefo electric
quadrupole moment for the g-neson.

Since W-spln zero octets and singlets helong to the
35 and 1 representations of SU(BKH, respectively, decays in-
volying meson states which are mixtures of W=0 SU(3) octets
and singlets may be used to fix the ratlo of the
<1 L'=0 1t (3,3)1u1§ 1=0> and <35 L'=0 1 (3,?)1:1;_5 L=0> in
particular, for this purpose we use Zweig's rule32to forhid
the decay ¢ =YW, where the ¢ is assumed to be the usuai
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Tdeal mixture of singlet and octet so as to be composed of
purely strange quarks. All amplitudes are then multiples of
a single magnetic dipole amplltude, or alternatively, are
proportional to the single reduced matrix element

<35 L'=0 It (3,3) I 35 L=0>.
One observed transitlon then fixes all other decays.s3 The re-
sult of the computation of transition matrix elements are
ziven in Table V.A, where the 7 and X° are assumed to be SU(3)
octet and singlet, respectively, while the w and ¢ are ideal-

mixtures of octet and singlet:

W) £:9]

W = tos & w + sin w

(V-1
¢ =-sinB w4 058 ®

where
) 1
sSin = =
&= %

Table V.B contains the corresponding predictions for
all the L'=0 —»L=0 radiative decay widths using [(w —=> ¥ii)

3
=890 Kev as an lnput.k The sparse axperimental datgq'mra

re
also given. Note that the predictions In the first column
are Tor unmixed pseudoscalar mesons. Taking a mixing angle36
9P=~10.5°, as suggested by a quadratlc mass formula, gives
the second column. The predicted width for ¢->¥7 is reduced
tn 179 KeV, agreeing with gxperiment withln errors.37 The co-

rresponding predictlon In this case for F(x°—>xg) Is 120 Kev.

Assuming that X°—» i1 Is dominated by X’>¥g, and taking the
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¥ for this mode to be 26%, we find a total X°

branching ratio
width of 460 KeV. This Is also consistent with the X° width
obtained from the branching ratigﬁ for X° —»¥¥ plus SU(3) and
the new value33 of T'(7—9¥X). The overall situation for
L'=0 —»L=0 decays Is thus quite satisfactory, although many
pieces of Informatlon are absent In comparing theory and ex-
neriment.

Yhen we go to L'=1 —> L=0 :decays, there Is no experl-
mental Information avallahle, although there are both many
allowed translition amplitudes and predictions. Of the four
terms generally present in VJD?\/, only {(3,321,2} cannot
contribute here, since It changes Lz by two units. The se-
lectlon rules of Sectlion [V show that the {(8,1)°+ (1,8% ,;}
term in le?“V leads to purely electric dipole (jx=1) tran-
slitions, and only Jy= 1 and 2 can arise from the {FS,%{,D}
and {(8,1)0- (1,83, ,1} terms., In fact it Is possible to
express 1lnear comblnatlons of their redfuced matrix elements
as electric dipole and magnetic quadrupole amiitudes, rulti-
ples of which occur Tn al) decays from L'=1 to L=0 mesoans.

All posible radiative decay amplitules for non-strange
L*=1~> L=0 mesons are glven In Table V.C In terms of the re-
luced matrix elements

<35 L'=1 || (8,1)+ (1,8), |l 35 L=0>,
€35 L'=1 )l (3,3) I 35 L=0>,
and <35 L'=1 |l (8,13, = (1,8), il 35 L=0> .
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Matrix elements of SU(B)W sinrclet states are relatel to those
32

nf 35's usinz Zweisg's rule, as wasg dnne abaove for L'=0 —>
L=0 decays. The N and H are assumed to be purely octet mem=
hers, while f, D, o, and w are all taken to be ideal mlxtu-
res of singlets and octets, so as to be composed of only non-
strange quarks. Note that In the decay 2+-—>X1: e.g., In

A, — 39, an electric octupnle could be present in principle,
as wall as electric dipnle anl magnetic quadrupole amplitu-
ies. However, the selection rule iimiting Jy to 1or 2 eli-

ninates the octupole amplitude and results In the linear re-

latlfon

A (A, ¥g) = 2V2 A (A Ep) - Ve AAm(Az—-be).

(v=-2)
armong the three heliclty amplitudes for 2'—>¥17 Almost any
experimental informatlion on these decays would he helpful in
sorting out the relatlve importance of the varlious {three)

possible amptltudes, and testing the theory.

VI. PHOTOM TRANSITIOMS SFTHEEN SARYOMS

The electromagnetic transitions of baryons provide
a second and very rich area of predictions for the theory. As
hefore, we restrict our attention to non-strange baryons de-
cayineg into L=0 states, this heing by far the main area for

expertmental comparison. In thls sectlon we will enumerate

- 0=

the possible decay amplitudes, deferring an experimental comn-
parison to the next section.
The case of transitions from L'=9 to L=0, !.e.,

within the 1=9 baryon muitiplet, is particularly slmple.
A5 for mesons, nnly magnetic !Tpnle transitions are allowed
by the theory and all amplitudes arerpronortional to a sin-
zle reduced matrix element, that of the term transforming as
{(3,3)1,6} in ?1Dfnv. The results are presented in Table V1.A
for the three possible transitions, M—, N=>A, and A4,
1t can be explicitly checked that all transitions.are mag-
netic dipole In character, as lemanded by the selection
rule (Eq.(1V-12)), including those for A-»A, uhere both
electric quadrupcle and magnetic octupole transitlions are
allowed by splin and parr;y.

For decays from the next identifled baryon multiplet,
the 70 L'= 1 to the ground state 56 1=0 we have the three

prssihle reduced matrix elements:

€70 L'= 1 0 (8,1)+ (1,8), I 5€ L=0 >
<70 L'= 1 | (3,3), I 55 L=0 >
and <70 L'= 1 1 (8,1}~ (1,8), I 56 L=D >.
The matrix elemants of Diﬁ for decays into hoth ¥YM apd ¥A
are enumeratedholn Table V1.8 in terms of these reduced ma-
trix elements,
%y the selection rules of Sectlon !V, the (8,1),+ (1,8%

term In ﬁﬂDf"V acts as an electric dipnle transition opera-
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tor, while the two remalning terms act as a combination of
electric dipole (j‘= 1) and magnetic Aquadrupole (jx= 2.
According to the discussion around Eq.(1V=14) Tn Section IV

we can in fact write amptitudes,

E1' = ¢ 70 L'=1 1l (8,1%‘* (1,3) i{ 56 L=0>
El = VIj2 <70 L'=1 1 (3,3) I 56 L=0>

- V72 <70 L'= 1)l (8,1),- (1,8) ¥ 55 L=D >
M2 = VI72 <70 U'= 111 (3,3) 1 56 L=0 >

s VI72 <70 L'= 1 (8,1), - (1,8) 1l 56 t=0 >,

which are electric dipole and magnetic quadrupole amplitudes
in terms of which all the he1i¢ity amplitules given in Ta-
e V.8 may be alternately expressed. HNote that N*tdp=5/2_)
—» YN, for example, could in genaral go via jxsz or 3%, hut
only jx=2 (magnetlic quadrupole) 1Is allowed by the theory.
similarly, N¥(5/27) —=¥4 could proceed with jy=1,2,3 or b In

waneral, but only j_ =1 and 2 are allowed by the selection ru-

¥
tes. Mote alsn that the Moorhouse quark model selection rule
forbldding ¥p— N*} where N* has quark spin $=3/2, Is refle-
cted In Table Y1.8.

For 56 L'=2 decays to 56 L=0 we have reached a high
enough value of L' that all four terms in ViDﬂ“V can contri-
bute to decay amplltudes. In this case the (8,1% + (1,8%

tarm ls electrlc quadrupole In character, whlle linear conbi-

nations of the other three terms act as jx= 1,2 and 3 transi-

_fl_z-

4

tions:

£2'= <56 L'= 2 || (8,1) + (1,8) I 56 L=0 >

Ml = V1710 <56 L'=2 |l (3,3 | 56 L=0>
- V3710 <56 L'=2 | (8,13~ (1,8) Ii 56 L=0>
+ V375 ¢56 L'=2 |1 (3,3} 56 L=0)

g2 = V177 <56 L'=2 41 (3,3) | 36 L=0>
- VIR <56 L'=2 | (8,1) - (1,81 56 L=0>
- Vis3 <56 L'=2 11 (3,3) 1} 36 L=0O

m3 = V6/15 <36 L'=2 1 (3,3) [ 56 L=0>

+

V8715 <56 L'=2 | (8,1) - (1,8) f 56 L=0>

1715 <56 L'=2 ¥ (3,3), i 36 L=0>

+

The vartous amnlltudes for resonances in the 536 Lt=2
to decay Into YN are listed“o!n Table ¥1.C. The Y& amplltu-
{es presented in Table VI,D are not experimentall& testable
as vet. Agaln, the selectlon rules derived in Sectlon 1V
have clear and direct conséquences: [fk7/2*)—?3N, far exam-
ple, which could go vla jra3 or 4 is restricted to be phrely
magnetic octupole (j3=3).

Decays frort higher L' multiplets are easily computa-
ble, but little in the way of experimental tests s avalla-
hls at present. For 56 L'=0, 70 L'=1 ani 5f L'=2 photon tran-

sition amplitudes, which we have enumerated, hmwever, photo-
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production data permit many Jdlrect experimental comparlsons.

To these we now turn.

V11. EXPEMIMENTAL TESTS OF 3ARYDH AMPLITUGES

The predictions for transitions within 56 L=0 multf-
plet are already testable using the magnetic moments of the
neutron and proton, far a direct evaluation of Di” between

nucleon states at iInfinlite momentum glves

pali) =5 (=g 1D N, == 5D

(Vvii-1)

where f&éN) s the anomalous mawnetlc moment of the nucleon,
However, a careful evaluation of vy D V between one nucleon
states at Infinite momentum glves a result which has the

transfomatlon praoperties of the four terms discussed In Sec-

tlon 1V minus a term which is exactly the Dirac moment. Ad-

dng the'Dirac moment to the anomalous moment, we see that the

four terms In Vldi'v discussed before should be interpreted
as belng proportional to the total moment when taken between
the same initlal and final state. Thus, the matrix elements

in Table VI.A are to be Interpreted as predicting

/‘m(’“’)//‘,r(],) =" % (Vi1-2)

“hh-

the SIH(R) result?l which 1s within 5% of the experimental
value of (-1.91/2.73) = -0.70.

For the transitions from A to N the ratio of Vg'het-
ween the A =3/2 and A=1/2 matrix elements corresponds to a
pure magnetic dlﬁole transition, as we already know must
nccur due to the selection rules discussed in the last sec-
tion. All photoproduction ana]yseg3 agree that the electrlc
quadrupole amplitude is at most a few percent of the magne-
tie dipole amplitude for the exclitation of the 3-3 resonénce.
U!sing the conventional definltion of f:i Eqg.(11-7), we ob-

tain from the results in Table VI.A that

* 2 V7'
Pl = T3 wii-)

An older phenomenctogical anaiysigb of the data for plon pho-
tnproduction gave a result for /‘fé;mﬁg which is 1.28 % 0,03
times the right hand side of Eq.{(VII=3) by finding a residue
at the A-pole in YN —> UM, By considering the contributior?;
of the /A to the Cabibbo-Radlcat! sum rule we find a value
of F¥JL¢&) which fs 0.9% 0,1 times the right hand side of
Eq.{VI{-3), In quite satisfactory agreement with the theory.
While the sign Of,#tékr&ﬂ cannot he measured, the product

of the ¥N and 3N couplings of the nucleon can be compared
with that of the 3-3 resonance In plon photoproduction. As
the theory alsc predlicts the relative sign of TN coupllngs,s’g

[t makes an unamhlguous predlction of the sign of the reso-
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nance excltation amplitude relative to the nucleon Born
terms. This sign is correctly given by the theory.“c
For the translitlons from A to A, which is also ou-
rely magnetic dipole In character, we should again lInterpret
the results in Table Vi.A as heing for the total moment. The
relation between matrix elements of D" and the conventional

* %

anomalouys magnetlc moment of the A, Moa is

/4-.9**="@<A,2=%| DA, A= D (Vi1-4)

Pa2°

From this we see that we have from Tabie VI.A
pr (D) s () 2
pr (D) (= 1
/*T**(A")//w p = 0 (vit=3)
po (8] pn (9)

As with £qgs.{VI1-2) and (VI1=-3), all these zre standard SU{G)

H

1]

-1

results?z as Is to be expected since the {(3,3%_,0} term in
Vﬂnfrv has the same transformation properties as the magnetlic
moment used In SU{R),.

The transitions from the 70 L'=1 to the ground state
56 L=0 provide a much richer set of amptitudes for comparl-
son of the theory and experiment. Rather than carry out a

statistical "best fit" to all data, in Table Vil.A we have

fixed the possihle reduced matrix elements allowed by the

-L6-

theory in terms of some relatively well determined amplltu-
des for the process YHN-— %3(1520)—3ﬁb.

The quantities in the table are the matrix elenents
of Dim taken between ldentified resonant state;7 in the 70
with J;=24 and nucleon states with J,= A-1. The signs are
those found in the specific processes ¥p —» N*:;ﬁ+n and
¥n —vﬂ*:oﬁb. To make a theoretlcal prediction of these
signs we need a theory of hoth the XMM* and TN vertices.
The YMN™ couplings are taken from Table VI.8% while for
70 L'=1 - 56 L=0 pion transitlons we may express the reduced
matrix elements as linear comblinatleons of ampiitudes S and D,

48

corresponding to £=0 and 2:

<70 L'=1 | (8,1),- (1,8),] 56 L=0> = (S + 2D)/3
<70 L'=1 01 (3,%), - (3,3) | 56 L=0> = (S - D}/3
(VI1-6)
S=+D 1f only the (8,1)0- {1,8), term In Gdhfrv is present,
while S=-2D if only (3,311- (3,31155 present. While an

l'gtn the TH-*7/A data disa-

earller phase shift solution
greed with the signs predicted for plon transitions, a new
solution azrees Cmﬂp]eteIfnand shows that the signs of‘S
and D are opposlite, i.e., It appears that the (3,3%_- (3,311
reluced matrix element Is dominant for 70 L'=1-—>56 L=0 pion
decays, 1In constructing Table ViI.A we have taken the wan™

couplings from Table V of Ref.9 and have assumed oppo-

!

site signs for S and D In caleulating the T NN vertex. Mi-
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xing hetween the two %110r two D 3 states in the 70 has heen

1
_neglected in computing the predicted amplitules.
The "data' is taken from a recent analysis of elec-
* .
tromagnetic couplings of M resonances from single plon

R 54 *
photoproduction data. |In terms of ampllitudes Aafor ¥yt — M

, 1 em
af that analysis, matrix elements of D are

CNT A I DN A1) =

(vi1-7)
where py s the photon momentum in the n¥ rest frame, and A
can take the values 1/7 an<? 3/2. The results of Ref.51 ge-
nerally agree well with those of another recent analysis,sz
atthough the "errors" on the amplitudes quoted In the latter
are much larger. Judging from the differences hetween suc-
cesive or Independent analyses, we would opt for larger
"errors™ than those in Ref.51 , which are reproduced in Ta-
hle VII.A,

As a first comparison, we set the reluced matrix ele-
ment <70 L'=1 H (8,1) - (1,8), Il 56 L=0> equal to zero, so that
we are lteft with only two terms In Vidﬂnv, which are those
present In gquark model calculatlons%azaThe well determined
amplitude for ¥p— qz(lsgn) with A=3/2 then determines the
reduced matrix element <70 L'=1 | (8,1%-* (1,83, 4 36 L=0> di-
rectly and fixes an overall free sign. The A=1/2 transi-

tlon to the same resonance then determines the other reduced

-} 8=

matrix element, <70 L'=1 § (3,?% i 55 L=0>. In fact, the
smaliness of the A =1/? amplitude means that
<70 L'=1 N (8,1),+ (1,8) I 56 L=0>
%2 <70 17=1 0 (3,3) 1 56 L=D> (V11-8}
Ell the well determined signs of the resulting amplli-
tudes agree with experimenf (9, In addltion to input). How=-
sver, the magnitudes of a number of the predicted amplitudes
are not In such great agreement with experiment. The A= 3/2
ampiltude for ¥n —902(1520) is too large. Mixing, at least
with the small mixing angles otherwise suggested,s3 wlll not
cure this, although it could well help to Improve the situa-
tion with regard to the poorly known %3(1700) amplitudes,
For the two S11 states, a falrly large mixing angle
is known to be necessary from other conslderationsf3 and
such an angle would give Sn(1700) amplltudes which agree with
experiment n sign. The predicted %4(1535) amplitudes would
still he much too large, however. The amplitudes predicted
for S3I and Day also are too larpe, and no mixing (within the
70 1=1) is possible In these cases. A fit to all the data
woull of course scale down the reduced matrix elements, ma-
king the agreement better for the magnltudes of Sz + Daj and
311 amplitudes, at some cost to those of QB(1520).
A second comparison of the thenry wlth experiment Is
also found In Table VII.A where all three possible reduced

matrix elements are allowed to be non-zero, and fixed by the

trans!tions yp—»n;;us.'w) with 2=1/2 and 3/2, and by

- -



Kn-*»D;(ISZD) with A=3/2. Agalfn, all the well determined
slzns agzree with experiment, although the predicted {and
poorly determined experimentally) signs for R3(1700) and
Siél?ﬂﬂ) are opposite to those discussed above,

There still Is trouble Tn this case with the magnitu-
des of varlous amplitudes. The A=l/2, ¥n - %;(1520) amp-~
11tude Is ton small, as Is the amplitude for ¥p —» %:(1535).
~Mixing only hurts here, as the {p transition to the other S,
s forhldden, resultins In an even smaller prediction for
¥p->51(1535) and too small a result as well for Yp—?%i(l?ﬁﬂ).
Although the Dj, amplitude predictions now agree well with
experiment, that for 531 Is stil1l much too large.

It ts interesting to note that for this second fit we

have

<70 L'=1 |i (8,1),+ (1,8), % 36 L=0>
¥ <70 L'=1 I (8,1) - (1,8) H56 L=0> (V11-9)
<70 L'=1 4§ (3,3) Il 56 L=0>* 0.

Equallty of the first two reduced natrix elements is exac-
tly what is forced hy vector dominance plus the schene of
Petersen and Rosnerbifor vector meson decays. The reason
why <70 L'=1 f (3,3) Il 56 L=0> should be small, which Tn the
fit Is forced by the smallness of the anplitude Yp— 22(1520)

with A =172, is possibly an interesting theoretical prohlenm.

=5 =

At the present time, glven the uncertainties we feel
exist in the electromagnetlec couplings of the N*'s, elther
set of predictions should e regarded as In falr agreement
with experiment as far as maegnl tudes are concerned, The
stgns In elther case are a triumph of the theory for both
plon and photon transitions and verify that S and D ampll-
tudes have opposite slgns,

For transitions from the 568 L'=2 to the ground state
56 L=0 we also have In principle a large set of allowed amp-
tltudes for comparlson with experiment. In practice the
amplitudes are less well known, as shown In Table V!I1.B.

The quantlties In the Table, as In the previous one, are ma-
trix elements of Dim with slgns appronriate for Yp-?N*taﬁ+n

%0 - *
and ¥Yn =N — @ip. Far the THMMN® vertex we express the two

ratuced matrix elements for 56 L'=2-—>56 L=0 pion decays as48

<56 L'=2 || (8,13, - (1,83 | 56 L=0> = (2P + 3F}/5
(56 L'=2 Il (3,3) - (3,3) N 56 L=0> = V3(P - F)/5,
{vi1-10)

where the amplltudes P and F correspond to £=1 or 3 pion an-
sular momenta, respectlvely. The relative signs of P and F
are the same {opposlite), if the (3,1)0- (1,8% ((3,3%_- (3,311)
matrix element domlnates. The reactlogisoiTN—aﬁtﬁ indica-
tes that P and F have the same sign, and we use this toge-
ther with Table ¥1 of Ref.3 1In constructing Table VII.B.

The "data' is agaln from Pef.51.
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To compare theory and experiment, we simplify the si-

tuation for the photon vertex by setting

<56 L'=2 N (3,3} Il 56 L=0> = 0
and

<56 L'=2 fl (8,1) - (1,8) Il 56 L=0> = 0,

This leaves only the ¢56 L'=2 [t (8,1), + (1,8) || 56 L=0> and
<56 L'=2 | (3,3)1H 56 L=0> reduced matrix elements, as would
be the case In most quark rodel calcu]atlonia.'23 Rather than
making a fit to all the amplitudes, we use the well measured
Yo —bﬁ; amplitudes to fix the two reducei matrix elements,

and then calculate the remaining anplitudes.

A1l the experimentally well determined signs, with
the possible exception of the F,o amplitude with A =372,
Sk

arree well wlith the theory. In a previous analysis, hoth
the Fug amplitudes also agreed. The signs of the %3(2000)
amptltudes among the p-wave WN resonances, provide some (mar-
rinal) support for the P and F amplitudes at the pion vertex
to have the same slgn, as the TN—=>TA analysls shows much
more definlte]#ﬁso
The magnitudes of the predicted amplitudes are in fair
azreement with what Is observed. There is no need to allow

<55 L'=21l (8,1),- (1,8), 1156 L=0> and <36 L'=2{ (3,3) {156 L=0>

to be non-zero. In fact, fitting all four reduced matrix

..52-

alements to Xp'*ﬁ; with A=1/? and 3/2, Kn—aﬁ: with A=3/2, anAd
¥o -7 E; with A=1/2 results In essentially the same pretlic-
tTons; the twn additlonal reduced matrix elenents have var
lues more than an order of magn!tulde smaller than either

¢55 L'=201 €3,3) 56 L=0> or <56 L'=21 (8,1);+ (1,8), 1150 L=0>.
The smallness of the A=3/2 awplitude for ¥n —1§: by itself
assures the strong constraint on the two additional reducel
matrix elements,

% (56 1022 | (3,301 56 L=%>
4y — LY7
T o+ =% (56 L'=2 H (8,1)0- (1,8) 11 56 L=0>.
by e =
(Vil-11)

There Is thus falrly good evidence In this case that
only the two reduced matrix elements found in the quark mo-
del are present at a significant strength, and, in particu-
lar, that equality of <5R L'=2 1 (8,1) + (1,8) 1 55 L=0> and
<56 L'=2 1 (8,1) - (1,8) 1l 56 £=0>1s ruled out.
Finally we examine the transitlons from a “radially

excited" 56 L'=0 back to the ground state 56 L=0. The 38

t'=0 includes the Roper resonance %4(1h70) and %3(1718). bl

“fit the one possible reduced matrix element,

<56 L'=0 1l (3,3) It 56 L=0> to the amplitude for ¥p-—> 7, (1470)
and predlct the other amplitudes In Table VII.C using the

56 L'=0 —» 56 L=0 matrix elements from Table VI.A. Azaln the
signs are those In Yp—%ﬁ? and ¥n — T p. The experimental

51 52
results of both the Berkeley and Lancaster analyses are shown,
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there being some dlscrepancy between the two. fn our case, abstractlon from the free quark model
-l
leads to V D{?V belng assumel to he the sum of four terms
Which transforms as: {(3,10,+ (1,8),,1} , {t5.3),,0 ],
{ea,10,- ¢1,8),,1} and {(5,3),2}, all of which belong

V111. SUMMARY AND CONCLUSIOMS ' to 35's of the full SU(B)Wr of currents. In Section IV we
have shown how matrfx elements of Dzm are related to real

The operator ¥, which by definition takes us fron a photon amplitudes and how they may he expressed as as sum
current to constltuent quark basls, contains In principle of Clebsch-Bordan coefficients times at most four indepen-
all the information ahout matrix elements of the weak and dent reduced matrix elements, once Inftial and final SU(B),
electromagnetlc currents when taken between hadron states, multiplets are specified. ‘'le have shown that the theory
assuming that the hadrons can be treated as if constructed leads to nmultipole selection rules, a partfcular example of
out of (constituent) quarks. Knowing V, we would know the which !s the ol SU(6) result that the transition from the
exact transformation properties of hadrons under current nuclenn to 3-3 resonance is magnetic dipole in character.io
algebra. We have shown In Sectlon 111 that these proper=- In fact, we may generally express the four reduced matrix
tles are compllcated, and that a phenomencloglcal attempt elements for transitlons between L=0 and any other multi-
to determine them by fitting experimentally known transi - plet In terms of four muttipole amplitudes, two electric
tlons does not lead to a unlaue solutlon, as the number of (of the same jy) and two magnetlc¢. These selection rules
parameters Involved Is greater than the number of avalla- yleld very interesting predictiaons, which may be subject to
ble experimental quantities. Lacklng a complete knowledge a qualitative experimental test in that low values of Jy
of V, we have ahstracted onlv certain of its algebraic pro- (and £ for plons) are forhidden for L' ) 3 —>L=0 transi-
perties from the free quark model and assumed that they ttons, even though they are otherwise allowed by spin-parity
hold In the real world., 1in particular, we have ahstracted considerations and even favored by angular momentim barrier
here properties of the operators v'ln"‘;v, which correspond ' argum;‘—ntS-
to those which induce real! photon transitions between hadrons. tlhen applled to mesons there are many amplitudes which

are retated, but little to compare with experiment bestdes
transitlons hetween vector and pseudoscalar mesons, hoth
-5“-
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of which lie in 35 and 1 with L=9, The available data are
conslistent with the theory, bhut 1ittle else can he said at
the moment.

For baryons on the other hand, we have years of expe-
rimental effort that has been devoted to pion phntoproduc-
tion In the resonance region, from vthich barvon electro-
magnetlc eouplings may be extracted by phase shift analysis,
For the 70 L'= 1 baryon states, not only do we find agree-
aent of all the experlmentally well determined slgns with
the theory, but also the photoplon matrix elements, which
contain information on both XNN* and WNN* vertices, indi-
cate that the § and D wave amplitudes at the pion vertex
have opposite sign. This Is In agreement with the resultﬁLSD
from the reactlon #N— TWA. For the 56 L'=2 baryen reso-
nances, again all signs arree with the theory, except for
possibly one of the ¥p-—» g; amplitudes. There Is also an
tndication from ¥N—=> T M that the P and F amplitudes at the
ﬁNN*vertex have the same sign, In agreement with the re-
sults,.’s’sofrom N = T A. While the signs check very well,
the magn!tudes, particularly for the 70 L'=1 — 56 L=0 tran-
sitions, leave something to be desired. Glven the uncer-
talnties !n the experimental analyses, however, we feel that
the present situation is fairly satlsfactory.

The general outlook is then quite good., Between the
phase shift analyses of TN->TA and YN TN, more than 25

signs predicted by the theory agree wlth experiment. For

56—~

the flrst time we have some =ood evidence that not only is
the multiplet structure of the quark mndel found In Nature,
but further that the wave functions of the states resemble
those of the consituent quark model in that the relative
stgns (and more roughly, maznitudes) are correctly predic-
ted with such an assumption. However, neither the results
for the XNN¥'nr the TNN* vertex correspond to the hypo-
thesis »f SU(8),, conservation; the meost direct and power-
ful evidence belns the signs and magnitudes of ampll tudes

for 70 L'=1 baryon resonances to decay into TN, WA and

28,29
~yM. The predictlons resulting from the quark model,” where

the reduced matrix elements are explicitly éalcuiable, are
wrong in places also - In particular in the signs of plon
transition amplltudes for 56 L'=2 —»56 L=0 baryons.

With the success of the theory, 1t may now be used as
a tool to help classifying new resonances Into rultiplets by
using information on thelr signs In iN->TA and YN 2UN,
what is still needed Is a dynamics, or possibly an even
Wigher symmetry, which will correctiy zlve the magnltude and
sign of the reduced matrix elements. This, and the exten-

sfon tn qlfﬂ, remaln as Important protlems for the future.
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Listed are

APPEHDI X

Baryons

nen-strange members of the baryon multi -

ptets, The names of the resonances conventionally used in

phase shift analysis are also given?7

they are composed of quarks only, W=S.

SUCE),, L
56 0
56 0
70 1

Wel

2
SU(3) P
gt 1/72%
10% 3/2*
g2 172"
104 379+
gt 1/2°
3/2°

g4 172"
372

5/2"

10 /2"
372"

_58_

For haryons, since

No mixing 1s assumed.

x ¥
N (A ) (mass,MeV)
21,23
ﬂl(ghﬂ)

%3(1236)

ﬂélh?&)
%JITIS)

Sn;1535)
%3(1520)
Su( 1700)
%3(1700)
QSCITOU)
53.1( 1650)

D
h(lﬁ?ﬂ)

Raryons (cont'd)

56 2 8 3/2° P4{1770)
5/2% Fs(1688)

4 +
10 1/2 gn(1350>

+
3/ Py,(2000)

+
5/2 Fs(1860)

+
7/2 57(1920)

Mesans

Mesons are composed of a quark and an antiquark, and

=1 ] ; .

since NL-iPcl, In calculating the SU(B)‘Nr matrix elements {spe
cifically, the W-spin Clehsch~Gordan coefficients), we must

remember the W-5 correspondence:

W W > = 1,1 ~ |5'52> 11,1>

1H,H3) = [1,0> -~ [S,Sz> -10,0>
W,uy> = 12,-1> ~ (5,5, = =11,-1>
IH,N%> = |9,0> ~ 15,52> = =11,0>.
A simple way to obtain these relatlon !s to look at the ac-

tton of Wy and S, on the states, e.g.

dola, 1/2,-1725 Sela, /2, /2> = 1a,1/2, 1/2>

W, 13, 1/2,-1/2>

-s.la, v2, /2> =-19,1/2, U2

Bullding states from aq:

1
[5,5,> = 11,0> = = 1172, 0/2311/2,-1/2>
z “5 i
+ = 11/2,-1/2511/2,1/2>,
Yo' -

Acting on thls state, § glves

1 i
~11/2,1/2>11/2,1/2> + =11/2,1/2>11/2,1/2>,
7 V2 :



whlch is the same as VE times IS,52> = }1,1>. The ", ape- Masans (cont'1)

rator, however, when acting on the 15,5,>=11,0> state, gives

'VE—|1/2,1/2>|1/2,1/2> + Vg 11/2,1/2>»11/2,1/2> = O , s 35 1 [3 + 1]3 vt FLfY A,
that the IS,52> = {1,025 state corresponds to the !!=0 state. 1t 7,7, Ay
Eor L=f (eround state) mesons we list both the S-spln ptr s?, 0,6
ani Y-spin asslgnment. For L=1 the \l~spin assignment be- gt 1tT u 7, B
comes too involved, as many mesons hiave components with both 1 1 11 1t ?

W=1 and W=0; so for L=1 mesons we 1ist the S-spin only,
47
Given are the !=1 and 1=0 members of meson multiplets.
The 1=0 physical states are mixtures of SU(3) singlets and

octets (see Section V).

FAVESR P
SUCE),, L SU(3) J t=0, =1 state
1 0 1t 1" longltudinal w®
25 0 g3 0" q(g)) 0
i (8)
1 transverse w , f
8’L 1” tongl tudinal uf”,g
25+
SUC6), L suesy St GPC .g, 1=1 state
1 0 1! 0" L
35 0 gt 0" ,z“’) T
3 - @ (1)
{g+1] 1 w, W,
-50..
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Matrix elements for photon transitions among 35 and 1 L = 0 states.

The w and ¢ are assumed to be ideally mixed, while the n and X° are

TABLE V. A

taken as the SU(3) octet and singlet pseudoscalar mesons (sec text).

Trangition
WY
p T
¢ —*yr
g —rn
Ly & /]
¢ —~n

o
X-~vp
X°—~-yw

¢ —rX°

_68—

Coefficient of
<35 L' = Oi[(3,3)1|]§§_L =0 >

J3/6
J3718
0
1/6
1/18
-Jz/9
J2/6
J2/18

1/9

TABLE V.B

Predicted and experimeatal widths for radiative transitions among

35 and 1 L = 0 mesons,

Predicted Width (KeVy

Prodicted Width (KeV)y

Fxperimental

Deecay {ro mixing) {9 p= -10.59% width (I\'eV)”'“
W o= YT 320 (input) 590 {input} 390 = 90

p — 7w 94 94 < 730

¢ — ¥F 0 0 < 14

o — YN 37 57 < 160

w -y 5 7 < 49

¢ — v7 230 170 126 + 48
X0~ vp 160 120 0.26 T(X%~ all)
X0~ qw 15 11

o -~ vx° 0.5 0.6

=G0~



TABLE V C

9
Photon transition amplitudes from non-strange mestms3 with L'= 1 and

Jz = X to thoge with L = 0 and Jz =x -1, Thew, f, D, and ¢ are assumed to

be Ideal mixtures of singlets and octets, so as to be composed purely of non-

strange quarks; the 7 and [1 are purely octet, and the x°a pure singlet.

Zweig's rule32

is used to relate SU(B),,, 35 and 1 reduced matrix elements (see

text), and forbids decays like Az, Al, 5, £, D, ¢ = y¢and ' —yp or yw.

a b C d

A; -~ yr, A=1 0 EYE J6/12

AL yT, A=1 0 -J3/8 J6/12
B — ymr, A=1 J6/24 0 0
B — vyn, A=1 J2/8 0 0
B — vx° a=1 1/4 0 0
H — ym, A=1 J2/8 0 0
H — yg, A=1 -J6/24 0 0
H — vx", A= J3/12 0 |

Ay — yp, A=0 1/24 -1/12 -J2/36
A= J /24 -J3/24 0

A=2 J6/24 0 J3/18

Ay = yp A=0 J3/24 0 -J6/38
A=l J3/24 J3/24 0

5§ - yp, A=0 J’z‘/24 2724 -1/18
B ~ vp, A=0 0 -J6/24 0

A=1 0 0 J3/6

_70-.

TABLE V.C (cont'd)

Ay LAy — yw] = 3A,{A,)— 7p]
Ay [F —ypl = 3A,1A, == vpl
Ay IE —yw] = Ay lA, — vl
Ay [ —ypl = -24, 1A, — 7ol
AA [Al - yw} = HAAEAl - yp}
Ay [D = yp] = 3414, ~ ¥el
Ay iD —yw] = AjlA, - ypl

Ay B — ywl = 3A,16 —vpl

Ay o — yel = 3A16 — vl

A

lv —yw]

Transition

= A6~ el

Cocfficient of <35 L' =1 H{S,l}o + (1,8}0511_3_:’>_L3 0>

Cocfficient of <35 L' =

Cocfficient of <35 L'

10(2,3);I35 L=0>

18,1 - (L,8)I35 L=0>
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TABLE VILA

Photon amplitudes for transitions from 56 L' = 0 states with J_ = A

to 66 L = 0 states with Jz =A-1.

Caoelficient of

Transition <56 L1:0|1(3,§)ll|§_§L:0>

/ey —yNY, a=1/2 (-2/15)J5

No1/2hy —yN°,  A=1/2 (4/45)45 |

af@aszhy — N, a=1/2 (-2/45) V10

A=3/2 (-2/45) 30

+ o o _, o
Ala"— yN'] = AAlA YN ]

a2 =y At a=-1/2 (-4/45) J 15
A=1/2 {-8/45).[5
A=3/2 (-4/45)J 15

AA[A+—- YAl = (1/2) AA[AH—‘ ya™]
Al A% ya®l= 0

A AT AT = - (/) A LA = AT

_72_

TABLE VI.B

Photon amplitudes for transitions from 70 L' = 1 states with

J, = A to nucleon and delta states in the 56 L. = 0,

labelled by JP and [SU(3) muitiplet] A+l where 8 is the

¢quark spin.

States are

a b ¢ d
NH3/2T) -y N, A =1/2 -J2/12 J2/6 J2/12
1s)% A=3/2 _J6/12 0 - J5/12
—yN°,  A=1/2 J2/12 -J2/18 - J%/38
A=3/2 Je/12 0 J6/36
—ya", A=-1/2 0 J3/9 0
A=1/2 0 1/9 -1/9
A=3/2 0 0 -J379
N*(1/27) —yNT,  A=1/2 -1/6 -1/6 +1/6
1812 —yN°, A =1/2 6 +1/18 _1/18
—yah, A=-1/2 0 J6/18 0
A=1/2 0 -J2/is o -2/
AN1/2T) —yNT,  A=1/2 -1/6 +1/18 -1/18
ilﬁl2 —y ", =-1/2 0 -J8/18 0
A=1/2 0 J2/18 NEY: R
-7%-



TABLE VI. B {(cont'd)

a b c d
A¥3/27) —yNT,  A=1/2 -J2/12 -J2/18 -J2/36
102 — A=3/2 -J6/12 0 J6/36
—~yA", = -1/2 0 -J3/9 0
A=1/2 0 -1/9 1/9
A=3/2 0 0 J3/9
N*(5/27) — 7N+; A=1/2 0 0 0
81 A=3/2 0 0 0
-~ yN°, A= 1/2 0 J5/30 J5/30
A=3/2 0 J16/30 J10/30
—yat, a=-1/2 -J30/60 J30/30 J30/60
A=1/2 -J10/20 J10/15 J10/60
A=3/2 - ’“_5/10 J5/15 -J5/30
A=5/2 -J3/6 0 -J3/6
MH3/27) — YN, A=1/2 0 0 0
(81 A=3/2 0 0 0
—~yN° A=1/2 0 -J5/90 2.J/5/45
A=3/2 0 -J15/30 +J15/45
~yaA' = -1/2 _J30/30 J30/90 J30/30
A=1/2 -J10/15 -J10/45 J10/45
A =3/2 ~J30/30 -J30/30 -J30/90

..7“-

TABLE VI.B (cont’'d)

a b c d

NKL/2) - yN,  A=1/2 0 0 0
317 YN, A=1/2 0 -1/18 +1/18
~yat, A= -1/2 -J6/12 -J6/18 J6/12
A=1/2 -J2/12 -J2/9 J2/38

A=y Ny = AA(A*O —y N9
e N R R 2%
A= AT = 24 A"~ yah
EN PN A% = 0

ALS T yaT) = - AA{A*J’“ vah

(a)  Transition

() Coelficient of <70 L = 118, 1), + (1,9), 156 L=0>
{c} Coefficient of <70 L' = 11 (3,'37)11!@ L=0>

{d) Coefficient of <76 L'= 111(8,1)0 - (l,S)OfIE_G_L =05

~1
v
L]



TABLE VI.C

Photon amplitudes for transitions from 56 I.' = 2 states with Jz =xto

nucleon states in the 56 L = 0 with Jz =X -1, States Inthe 56 L' =2

are labelled by JP and [SU(3) multiplef:]zsJr

1

where 5 is the cluark spin.

a h c d e
N2 -y, a=12 & N 0 2
51 15 15
2 - 2 2 2 73
81 A=3/2 15.]”2 0 = ISJE
~y N, A=1/2 0 A3 0 A
v N7, i5 15
B 4 1432
A=3/2 0 0 -5 5
- o + _ 1 2 J6
N3/2) -yN, A=1/2 15J‘e‘ ISJ'E 0 =
2 1 4 [5
(8] A=3/2 Ts?"'-z 0 = *15
0 - 4 2/ 6
—yN,  A=1/2 0 -2 0 E
_ 8 2J2
A =3/2 0 0 5 T
b _ 4T 2./ 42 821
AXT/2) =y N, A=1/2 0 105 ESE 313
4 - 4105 270 835
(10] A =3/2 0 315 - 7318 315
P, - + _ 2\/—'1—2 4\,’-"? Zm
A"(:}/Z } ¥yN , A=1/2 0 315 - 105 a3
4 - 421 84 14 W7
[10] A =3/2 0 105 BT 318
o + B 22 INE]
AF3/2) ¥ N, A=1/2 0 15 -5 0
4 - 2/6 4 42
{10] A=3/2 0 -5 - e
~76-

TABLE V1. € (coot'd)

a b d e
+ + 4J—3 2\/—6'
AX(1/2 y— YN, 0 e 15

(og*

A aT— N

a — Transition

b — Coelficient of <56 L' = 2(3, by + (1,8)0155_0_ L=0>
¢ — Coellicientof <56 L =2 ﬂ(3,§)1I15_§L=0>
d — Coelficient of <56 L' = 21(3, y_156L=0>

e — Coefficient of <56 L' = 2[1(5,1)6 - (1,8),56 L =0>

Al A*%— yNO)
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TABLE VLD

Photon amplitudes for transitions from 56 L' = 2 states with J,= A
to delta states in 56 L =0 with Jz= A= 1., States inthe 56 L' = 2

. 2 "_
are labelled by J 1-)and [SU(3) multlplet} S+1where S is the guark spin.

. a b c d e
N*/2 ) — ya" A =-1/2 0 -%T,Jé 0 0
[8]2 A= 1/2 0 —%Jé 0 févrz
A=3/2 0 0 I
A =5/2 0 0 —ﬁq’éo 0

+

N*@/2" ) ~ y"  a=-1/2 0 B 0 0
2
(s]
= 4 4
A=1/2 0 = 0 45~/3
= As A
A=3/2 0 0 TR
+ + 214 212 2.J14
A —yp" A=-1 oL L. LSS
(7/2 4) ¥ /2 15 105 0 105
f10] _
A=z -xe2 _adis 2Vn 2a
108 105 315 105
A=3/z .20 zfei0 435 2470
105 315 315 315
A=s/2 - 210 2,70 2J70

-
=)
(4]
et
(=
&

5 105
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TABLE VL. D (cont' d)

a__ b c_ d e
. oAt _ _f21 _2qr7 _J-21
A%(5/27) — yA A=-1/2 A 55 0 TS
4
{10}
-1z 7 421 2is 7
A= “21 315 105 " 63
4 2./42 16417
x=3/2 J Ja ST J14
105 105 315 315
- J210 4J105 _J210
A=5/2 105 0 315 105
+ + . 2 2 6
A*E/2) = yA A=-1/2 -5 E\;rs 0 -
[r0]*
4 2
A=1/2 0 T ZE‘I—G 0
- 2 2 4m 2
A=3/2 - 15 1 B> T 15
* + 1 2 1
AT/ —ya A=-1/2 - 75 agl 0 15
4
- 15 45 45 45

AT =y = A (0 — y®)

o+ + +
A)\(A*Hﬂ ya )= 2A A~ 48T
AA(A*O» va% =0

- - + +
T = - L

A, la vAT) AL yA-}

a~ - ‘Transition

b - Coefflcientof <« 56

c
d

e

Coclficient of <
Coecflicient of <«

Ceeflicient of <

56

56

56

L' =2 (3,1)0+ (1,3)0" a6 L=0>
vt =2y (3,3)1||_§§_ L=02>

L' =20 (3,3), 156 L=02>

L =21 (8,1)0- (1,8)0 I 56 L=¢
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TABLE VII. A

8
Comparison of matrix elements of Df_ + (1/43) b, for 70 I' =1 — 56 L = 0 photon transitions with
experimcmt.51 Nucleon resonances are identified as in Ref. 18 with the é;uark model states, which

are labelled by their gquantum numbers J P and [SU(3) nrxultiplet]zsr*1

, where S is the quark spin. The
signs of amplitudes are those in yp — T n and yn - 7 p, with the Sand D amplitudes at the TNN*

vertex taken to have opposite sign (see text).

<N*,MD+IN, A-1> <N*,7\1D+EN, A-1> <N*,MD+I N, A-1>
Transition _ Experiment 51 Predicted with Predicted with
(1/GeV) <708, 1y - (1,8 I 56> =0 <T00(8,1), - (1,8) 156> # 0
D13(1520} —vyp, A=1/2 ~.10 = .04 ~. 10 (input) -.10 (input)
3/27, [8]2 A=3/2 +.91 .06 +.91 (input) +.91 (input)
—yn, A=1/2 +.41 £+ ,03 +.32 +.23
A=3/2 +,64 % ,05 +.91 +.64 (input)
811(1535) —~yp, A=1/2 +.30 £.10 +1,18 +.07
1/2°, [8]2 —7yn, A=1/2 +,27 % ,03 +0.89 +.30
831(1650) ~yp, A=1/2 +.16 £ .07 +.59 +.53
/27, 1017
D,5(1670) —~vyp, A= 1/2 +.36+ ,04 +.73 +.36
3/27, (10 ]2 A=3/2 +.32 = .04 +.91 +.38

_80-



TABLE VII. A (cont'd)

_ <N".‘,MD+IN, A-1> <N*,MD+1N, A-1> <N*,?\|D+[N, A-1>
Transition Experiment 51 Predicted with Predicted with
(1/GeV) <7008, 1)y - (1,8),l156> =0 <0N(8,1) - (1,8),156> #0
D, 5(1670) "~ yp, A= 1/2 +.06 £ .07 ' 0 0
5/27, [81* A=3/2 +,07 = .04 0 0
—yn, A=1/2 ' +.20 £ .03 +.20 +.13
A=3/2 +.33 £ .14 +.28 +.19
D,4(1700) — vp, A= 1/2 -.07 % .18 0 0
s/2”, 181* A=3/2 F.14% .18 0 0
—~yn, A=1/2 +,16 % .18 . +,07 -.19
A= 3/2 -.11%.11 +.34 -.19
$,,(1700) — yp, A= 1/2 +,26 * .08 0 0
/2, (s1* — ¥n, A=1/2 +,07 .16 -.15 +,12
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TABLE VII.B

Comparison of matrix elements of DE + (13 Df_ for56 L'=2—+56L=0

pholon transitions with experiment.s" Nucleon resonances are identified as in

Ref. 47 with the quark model states, which are labelled by their quantum numbers

JP and [ SU(3) multipiet]28+1, where S is the quark spin, The sipns of amplitudes

are those in yp — 7'n and yn — 7 p, with the P and F amplitzdes at the sNN* TABLE VII. C

vertex taken to have the same sign (see text), Comparison with experiment of matrix elements of Df + (1) DE for

<N*, MD+!N, A1 photon transitions from resonances in a radially excited 56 L’ = 0 multiplet to

* -
<N =“D+ IN, 7;11 > Predicted with the nucleon in 56 L = 0. Amplitude signs are thoge in yp — 7 and Yn—7w p.
Transition Experiment <586H(3, 3)_'1ﬂ5_§_> and
(1/GeV) <561(8, 1) - (1,8)4158 > = 0
Predicted Experimental Matrix £lement
F_(1638) —yp, A=1/2 -.07 £ .06 -.07 {input) Transition Matrix
15 ' . . . P Element . Ref. 51 Ref. 52
s/2t, (812 A=3/2 r.4d + 03 +.44 (input)
P.,(1470) — yp, A=1/2 -0.37 (input) -0,37+0.04 -0.55+0.13
—=yn, A=1/2 -.11+ .02 -.26
— yn, A=1/2 -0,25 0+0.,07 -6.5120,32
A= 3/2 0+ .08 0
P13(177°) —yp, A=1/2 02,14 -.70 Poo(1718) — yp, A=1/2 ~0.18 +0,01+0.07 . +0.07 *0.25 -
. , A=3/2 ~0,31 ~0.15+ 0,10 40,33 0,20
3/2, [8] A=3/2 -.03£,13 +, 22
—yn, h=1/2 -.06 £ ,08 -.21
A =3/2 +.03 2,11 0
F37(1920) -—yp, A=1/2 - 27 % ,05 - 17
+ 4 -
7/27,[10] A=23/2 -.30 £ ,04 -.22
P (1860) —vp, A= /2 + 17+ ,06 -, 07
+ 4 _
5/2, [10] A=3/2 -.09 = ,08 -.30
p33(2000) —yp, A=1/2 - 12,07 - 11
+ 4 -
3/2°,[101 A=3/2 +.05 +,03 +.18
Py,(1860) — ¥p, A="1/2 +.04 % .05 - 11

/2%, ot
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I. INTRODUCTIEON

1
The Drell=ilearn=-Gerasimov sum rule for the spin-flip
amplitude in forward Compton scattering rests on two very

basic and simple assumptions. These are the low energy the-

2
Part 2. orem for the spin-flip anplitude and the valicity of an
SATURATION OF THE DRELL-HEARN=GERASIMOV unsubracted dispersion relation for this amplitude in Com-

SUM  RULE ' pton scattering,
' Since these are very basic¢c and well accepted assump-
tions, it is of interest to look into the validity of the
Drelli-Hearn=-Gerasimov sum rule in the light of presently
available experimental data, which have much improved in
the last few years,
An unsubtracted dispersion relation for the forward

spin-f1ip nucleon Compton amplitude fz'

o

Re £, 00 = 2§ =2 T £()

=]

(1)

1
Zives the Drell-Hearn-Gerasimov sum rule

2tk 2 _ 4 . _— (2)
""ﬁ";"—/"ﬂ = %0[6"%(?) - 6".4(1))] -;\

when the low energy theorem s applied to ﬁ{v). Here/unis
the nucleon's anomalous magnetic moment, M the nucleon's

mass, Y, the threshold energy for a single pion photoproduc-

-8h- -§5-



tion, which in the laboratory ls

Vo = rd + my; = 150 MeV
M

(3}

and °31‘°71 y Is the total cross section for the process:
photon + nucleon —s hadrons in the net hellicity state 3/2
{1/> . These cross section enter the sum rule when we use
the optical theorem (to order o& ) to relate the imaginary
part of the forward scattering amplitude to the total cross
section Into the intermediate states.

In thelr original paper, Drell and Hearnidid attempt
to Investlgate the valldity of the sum rule for a proton
target by using an lIsobar model of single pion photoproduc-
tion. Their results were generally encourazing but some
Important contributlon from high energy {(greater than 1 GeV)
seemed to he l1lkely. Somewhat later, Chan et al? extended
the.examlnation of the proton sum rule using an apalysis of
single pion photoproduction through the second resonance
reglon. They found good agreement without any high energy
contribution. Finally, in the course of an analysts of many
sum rutes, Fox and Freedman4 have considered the Drell-Hearn
Geraslimov sum rule, using YWalker's partial wave ana]ysiss

of plon photoproduction. They found the somewhat suprising

-26=

result that while the sum rule involving only the i{sovector

part of the electromagnetic current appeared well satisfied,
the sum rule involving one isovector and one isoscalar cur-

rent, equlivalent to the difference of proton and neutron sum
rules, was badly violated.

Since that time, there has been a considerable Tmpro-
vement in both the pion photoproduction data and their ana-
lysis., In particuilar, relatively good neutron data are be-
coming available and have been incorporated in the recent
results of Pfell and Schwela,sand Moorhouse and Uberlack.7

Given this changed situation, we reexamine in this work
the Drell-Hearn-Gerasimov sum rule for both proton and neu-
tron targets, with particular attention to their difference.
In the next section we give the relevant definitions and the
contributions to the sum rule using several recent analyses
of pion photoproduction. The third section contalns some

conclusions.,

11. ANALYSIS OF CONTRIBUTIONS

The sun rule in Eg.(2) can be decomposed into three
sum rules of different 1sospin character, We will show that
the three sum rules provide more detailed and sensitive tests
than the proton (neutron) sum rule alone.

The isovector and Isoscalar magnetlc moments of the
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nucleon are defined as

fa.; = /‘«n ([3) "/M-n(‘“)

(b3

) (p) + 1a (#)

where {ua(p](/uﬂ(n)) is the proton {(neutron) anomalous magne-

. 1
tic moment. The Drell-hHearn-Gerasimov sum rule may then be
separated into three distinct sum rules,

the isovector-isovector sum rule:
g clv 2
YATIPEN vv - ]
§ Loy 00 o 0] (2) L2 8.5 (5,
o

the lsuscalar-isoscalar sum rule:

A Do s ‘ 5 . dvl 5 zzﬂ-loc_
ISS z % [0'32 v) - 6"5,/2 (\;)] 5= (/,‘:_?_ﬁ) _I‘_’l—{ = 03/1.\.};
° (5b)

and the “interference" sum rule:

— e i -{ﬁ; 25’2:-[ 4
LVS = \S}D [G-yz (VJ - (V ] | 9 "F‘!'_{ = - 1- - ZM(L; )
c

AP . . .
Here o (o) corresponds to the interaction of the isovec-
tor (isoscalar) component of the photon with the nucleon,
and Gvscorresponds to the difference between photon=-proton

and photon-neutron Interactions.

-88-

Presently, the data 1imit direct study of the satura-
tion of these sum rules to the contribution (to the total
cross sections Uh and G;E) of the nucleon and one plion final
hadronic state, Resonance dominance then allows one to es-
timate alsc a part of the inetastic contributions., Still,
one may well hope that the largest contributions come from
not too far above threshold (particularly since possible higher
energy contributions to the 0;{ Sy difference are nultiplied
by a 1/vy factor), so that the nucleon plus one pion state will
at least provide an indlication of these sum rules saturation.
Consider then the contribution of the nucleon plus one
pion state, Single pion photoprodﬁctlon amplitudes have a

. . 5
simple isospin decomposition:

‘{-Dlh V—[M V-Z_(Mmﬂ M(O))] (6a)
Mo ~0 =V;?;[M(3) + v:'; (M(ﬂ_ M@l)] {6b)

M— L= vg {M(s) -~ VE (Mm + MLO))] (6c)

-39_



MG” corresponds to the isospin 3/2 and Ma)

to the isospin
1/2 s-channel amplitudes of the isovector component of the
photon current; M@j describes the interaction of the nucleon
with the isoscalar component of this current.

The one pion photoproduction cross sections of definite

isospin character are then preoportional to the following com-

binations of amplitudes:

VY e !M@)[I + IM(“[?'
¢S o | MO (7)

VS o = MOM@ - MO M@

Additionally, we will make use of the decomposition of
definite helicity cross sections for this process in terms of

. 7, 8
amplitudes of definlte angular momentum and parity: '

Ty * ifj S (met) (I8pel® + 1A ,-17)

8 m [ nt,
53, :—1;3'2 (4:__'_1)( 2 (IBM+[2+ IB@aH)']Z)

A_, and Bm* correspond to a state with final pion orbital angu-
T -

lar momentum n, definite parity P = (~-1) and the total! angu-

lar momentum j = n*1/2,

The above relations (Egs.{(5), (&), (7) and (8)), allow us

-go-

to consider the isovector-isovector, isoscalar-isoscalar, and
interference sum rules separately, to insert the single pion

plus nucleon intermediate state cross sections into the inte-
grals, and to separate the contributions of each partial wave,
For example, the single pion plus nucleon part of the isovec-
tor-isovector cross section in the net hellcity state A= 3/2

is

W 8me (n 2 "
O—é/z - _ILL Z ;l)(%ﬂ](lgm “fgnc::)} lB( l?rvll) )

(9)

Since we can extract the contributions of deflnite isospin
and of definite total and orbital angular momentum, we expli=-
citly have the contribution due to each resonance and using
the known inelasticlty we are subsequently able to evaluate
the corresponding part of the inelastic contribution to the

integrals,
A. The lsovector-Ilsovector sum rule.

Table | presents the.results of the analysis for the iso-
vector-isovector, ivv, sum rule. We have assumed for those
partial waves which receive contributions from resonances that
the resonant contributions are dominant, and on this basis we
evaluated the corresponding inelastic contributions to the sum

rule. The analysis extends in photon laboratory energy, ﬂ$3,



from just above the threshold to 1.2 GeV., We have evaluated
the contributions for v a. ieV Lt ! , a-
Laé 45 GeV and %Ae) 0.45 Gev separa
tely, since the prominent 3-3 resonance is below this energy
and higher resonances above, so available ana]yses6 make this
a natural division in .
VLHR

For %ﬁ below 0.45 GeV we find good agreement between

8
the results obtained with the analyses of Refs, 6, 7 and §.
Since the Pfeil-Schwela fit extends to the lowest energy, we
have chosen to list the contributions obtained with their ana-
lysis in this region, where possible.lOFor %JB above 0.45 GeV
the values resulting from Refs, 6 and 8 also agree well and we
list only the contributions cbtained with the recent Moorhouse
~0Oberlack fit.

The inelastic part is evaluated as a sum of inelastic con-

tributions of N'(1520), N'(1670) and N'(1688) (D, D

15 and F

157
respectively).

Fig.l shows the behaviour of one pion plus nucleon contri-
bution to Gg;-ﬂﬁz as a function of energy. One can easily re-
cognize in this graph the dominant features of a big negative
non-resonant s-wave contribution and a large positive contribu=~

tion from F§§1236) and two other resonances.
B. The Isoscalar-Isoscalar Sum Rule,

Table |l presents the results for the isoscalar-isoscalar

Drell-Hearn-Gerasimov sum rule, There are serlious discrepan-

_92_

cies between the results obtalned with different fits, which
extend even to a disagreement on the signs of various contribu=
tions. This difficulty has been previocusly noted by Fox and
Freedman}'The isuscalar~isoscalar amplitudes cannot be extrac-
ted directly from the data. Instead, as can be seen from
Eqs.{t) and (7), they must be obtained indirectly from the sum
and difference of the proton and neutron data. This results In
relatively large errors, as the isoscalar-isoscalar amplitudes
are small compared to those of the proton or neutron.

The behaviour of the one pion plus nucleon contribution
to ng—disin Fig.2 combines the Pfeil—SchwelaGand the Moor-
house-Oberlack? results. To observe some sysytematic trend
and to be able to conclusively evaluate the isoscalar-isosca-

lar sum rule, we must wait for more accurate and higher energy

data.
C. The Interference Sum Rule

Table 111 shows the present state of the isovector-iso-
scalar sum rule. The combination of amplitudes involved here
corresponds to =1 exchange in the t-channel, or in other
words corresponds to the difference between the proton and
neutron Drell-Hearn-Gerasimov sum rules. Ve expect a negative

value for the integral | since it is proportional to

Vs’

(pa ®) - (~ a(w)

We find agreement between the results obtained with diffe-
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rent analyses where they overiap. The Pfeil-Schwela fite was

used to calculate contributions to | forﬂaé 0,45 Gev, and

v
the Moorhouse~Oberlack flt7 for V. » 0.k5 GeV. Each of these
fits results in a big, non-resonant, s-wave contribution with

a positive sign. This contribution is cancelted almost entirely
by the non-resonant (1=1/2} part of the 1% partial wave in the
Moorhouse-0Oberlack analysis.T The second and third resonance
cause the total result for this sum rule to have the wrong, po-
sitive sign. Figure 3 shows this behaviour in terms of the one

. Vi Vs
pion plus nucleon contributions to G;— Gy .
2 2

111, DISCUSSION AND CONCLUSIONS

To discuss the results we have obtained let us recall
that the studied sum rules rest on two assumptions: The low
energy theorem for nuclieon Compton scatterlng1 and the validity
of an unsubtracted dispersion relation for the fz {(spin=flip)
forward Compton amplitude. The first is quite general and has
a very solid theoretical basis. Therefore, the vatidity of the
sum rules is presumably dependent on the second assumption,
which is equivalent to the absence of a fixed J-plane singu-
tarity (o'= 17} in the f, amplitude.’

This hypothesis receives strong support from the evalua-
tion of the contributions to the isovector-isovector sum rule,

as shown in Table |, This sum rule, which has large and well

=QL =

determined contributions, seems to be rather well saturated
using results obtalned from the single pion plus nucleon data,
complemented by some estimate of the inelastic contributions
to ¥, ,a° 1.2 GeV. Even more pleasing is that the saturation
occurs in a non-trivial way. e observe strong cancellations,
mainty between the large negative non-resochant s-wave contri-
butlios and the positive %3(1236) contributions (see Fig.l).
The large non-resonant s-wave contribution is of interest in
itself, however, as it Qiolates local two-component duality.
The lmaginary part of a non-diffractive amplitude, like fz(v ),
should contain only s-channel resonances. This contributlion
may be cancelled by higher energy non-resconant contributions
to the isovector-lsovector sum rule, so as to satlsfy global
duatity.

Our total numerlcal result for the isovector-isovector
sum rule is in general agreement with previous analyses.qﬁs
While contributions from still higher values of ﬂaanEEd not
be small, we expect the contributions listed In Table 1 to be
the largest individual ones, particularly since the sum rule
Integrand involves the 1/v factor.

The lsoscalar-lsoscalar sum rule present some problems.
Because of the sensitivity of the Isoscalar amplitude to rela-
tively small differences between the neutron and proton photo-
production data, it ls very difficult to achieve reliable va-
lues for the isoscalar-isoscalar contributions.Furthermore, as

can be seen from the results for this sum rule collected in
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Table |1, Individual non-resonant partial waves make (cance-
ling) contributions. In such a situation, small shifts in the
data or the inelastic contributions may easily remove the pre-
sent disagreement between the total value predicted for i, in
Eq.(5b) and the total value shown in Table II.

In this 1lght, the behaviour of the interference sum rule
Is puzzling. Since the lsovectnr-isovector sum rule Is almost
saturated, we have every reason to expect the validity of the
assumptions underlyling the derivation of the sum rules. The
total value for iv,obtained from the same energy region which
almost saturates the isovector-lsovector sum rule, is of the
wrong, positive, sign. This general difficulty has been pre-
viously noted by Fox and Freedmank using an earlier analysis
of pion photoproduction. More detailed analysis of the contri-
butions presented In Table 111 shows that there are large non-
resonant contributions in the 0% and 1% partial waves, which
tend to cancel. The second and third resonances contribute to
the sum rule with wrong sign, This again is of Interest in
itself as It violates local two-component duallty. Global dua-
11ty would seem to be satlsfied for this part of fz(V ), since
var lous non-resonant partlial waves are cancelling in the full
amplitude. This leads one to believe that 1f the sum rule is
to work it may well be the contributions of poorly known quite
inelastic resonances, many in low partial waves, that saturate
the sum rule. Unfortunately, the determination of these contri-

butions is very difficult.

-96-

To sunmarize, we find no reason to doubt the validity of
the Dreil-ilearn-Gerasimov sum rule} and therefore the validity
of the unsubtracted dispersion relation for the fz( v )., The
near saturation of the [sovector=isovector sum rule, which has
the largest and best determined contributions, even furnishes
direct evidence of support. There seems little reason to be
alarmed at the non-saturation of the isoscalar-isoscalar and
interference sum rules at the present stage of photoproduction
anatysis, as presently poorly determined contributions could
well give gouod agreement. What is needed is the more direct
experimental determination of q%}v) and q%(v), using a pola-
rized beam and target, something which is now becoming a reatl

possibility.
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Table I

The Isovector-Ispvector Contributions

to the Drell-Hearn-Gerasimov Sum Hulel2

.18Gestlabs ,45GeV .45Gestlab$1.2GeV
Partial Wave (ub) (ub) Total
a - )
ot RITLIN -51P -166
1 _9? g0 -11
_ . a b
1=3/2; includes +237 +2 +239
o+ P, ,(1236)
1=1/2 +122 +17° +29
I1=23/2 ' +7b +5b +12
2~ 11=1/2; includes +13P +417 +54
D, (1520)
1=3/2 1P Pl 1
+
2 {1=1/2;includes +2b +1b +3
D, (1670)
i b b
1=3/2 +1ID +1 +2
37 {I=1/2;includes +2 +7P +9
F (1688)
Inelastic +12 +37b +49
Total +170 +a9° +219

a - Pfeil and Schwela, Ref. 3.
b - Mcorhouse and Oberlack, Ref. 7.

-100-

Table IT

The Isoscalar-Isoscalar Contributiong

to the Drell-Hearn-Gerasimov Sum Rulel2

¢ - Walker analysis, Ref. 5.
-101-

Partial Wave .1BGeV £ Y1ab .45GeV .45 GeV SV p T 1.2GeV  Total
(ub) {nb) (ub)
-1.07%
o* -.80° ~.50¢ -1.30°
_1.93P -1.06° ~2.99"
-.33%

1 -.29° -.34° -.83°
-.26" -1.61P -1.87°
+.30%

1t -.28° -.60° -.88°

41,270 +2.620 +4,397

27 +,30° -.21° +.09°

(inchudes D, 5(1520)) +1.30° -1.75° - 45?
2t +.01¢ +.04° +.05°
(includes D, (1670)) -.10° +. 250 +.15°
3" +,25° +1.38° +1.63°
(includes F,(1688)) +01? +2,4900 +2.50°
[+] C (+]

Inelastic +-41b + 62b +1. 03b
+,85 +. 24 +1.19

Total - 40° +.39° -.01°

+1,74P +1.18° +2.92°
a - Pfeil-Schwela analysis, Ref. 3.
b - Moorhouse-Oberiack analysis, Ref.



‘Table III

The Isovector-Isoscalar Contributions

to the Drell-Hearn-Gerasimov Sum Rulel2

.18GeV v, . <.45 GeV  .45GeV sy . €1.2GeV
Partial Wave lab lab Total
{Lb) (#b) {(kb)
+
0 +17% +5° +22
1 +1* +2P +3
+
1 6% -17° 23
_ 2" 3P +16° +13
(includes D13
(1520))
. 2" : 0 +1b +1
{includes 015
{(1670%)
. 37 0 +8° +3
{includes F15
{1688))
Inelastic -2 +17 +15
Total +7 +32 +39

a - Pfeil-Schwela analysis, Ref. 3

b - Moorhouse-Oberlack analysis, HRef. 7.
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Figure 1.

Figure 2.

Figure 3,

Flgure captlons

Single pion photoproduction contribution to the
difference between-the photon-nucleon cross sec-
tions in the net helliclity states 3/2 and 1/2
(d"y: - d‘,,'_ } for the isovector photons.
As In Fig.1l but for isoscalar photons.

As in Fig.1l but for the interference term hetween

the Isoscalar and isovector photons.
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