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PREFACE

In Part 1 of this work . Ile show the general structure of

such transitions and present a set of resulting selection

rules for the multipole character of the photon amplitudes .

Many specific amplitudes for both mesons and baryons are

worked out and their signs and magnitudes are compared with

available experimental data .

In

	

Part 2 we investigate the saturation of the Drell-

Hearn-Gerasimov sum rule for the forward spin-flip amplitude

of nucleon Compton scattering .

	

We study the sum rules' sa-

turation using recent analyses of single pion photoproduc-

tion in the region up to photon laboratory energies

of 1 .2 GeV . The original sum rule is decomposed into sepa-

rate sum rules originating from different Isospin components

of the electromagnetic current . The Isovector-Isovector sum

rule, whose contributions are known best, is found to be

nearly saturated, lending support to the assumptions under-

lying the sum rules . The failure of the Isovector-Isoscalar

sum rule to be saturated is then presumably to be blamed an

inadequate data for inelastic contributions .
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The SU(6 w- group structure appears in both current

algebra and in the spectroscopy of hadrons . Recently, consi-

Photon Amplitudes Predicted by the Transformation between

Current and Constituent Quarks	 1

derable progress has taken place in relating these two SU(6)w

structures . We Investigate the consequences of the propo-

sed correspondence, as it applies to real photon transitions,

Section I .

Section It .

Introduction	 2
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I . INTRODUCTION

At present, symmetries observed In the interactions

of hadrons play a somewhat different role than in those areas

of physics where we believe the dynamics of interactions is

understood . In the theory of gravitation or of electromagne-

tism symmetries simply reflect invariance of known interac-

tions . When results of some processes are related by a sy-

mmetry in these theories, we can always obtain these results

through explicit calculations, but we may directly use the

symmetry properties of the theory, which often turns out to

be a much simpler method . We do not need the details of the

dynamics in such cases, but instead make use of the fact that

the interaction belongs to a class of interactions invariant

under some type of transformation . For example, the cross

section for electron scattering by an unpolarized charge is

independent of the polarization of the Incident electron . We

can obtain this result directly with some effort, calculating

the cross sections for both polarizations of the electron, or

or we can simply use the Invariance of electromagnetic inter-

actions under parity to arrive at the same result .

In the case of strong Interactions and the structure

of hadrons, we do not have an adequate dynamical theory at

the present time . Observed symmetries of strong Interactions

have become therefore one of the most powerful tools for re-

-2 -

lating various processes and making predictions 1 They also

provide Important information by narrowing down the class of

possible dynamical theories of strong interactions to those

which are consistent with the experimentally observed symme-

tries and conservation laws .

Historically, one of the first symmetries discovered
2

in this area was the "charge Independence" of nuclear forces .

Strong interactions of the proton and neutron, as well as

their masses (to order oC ), were found to be identical . The

two particles were postulated to be members of a two dimen-

sional Irreducible representation (I .R .) of a symmetry group

of strong interactions : the SU(2) of isospin 3 This group has

three generators 1 .,,12.
and 1 3 . Their commutation relations

are the same as those of the rotation group generators . The

third generator, 1 3 , Is linearly related to the electromag-

netic charge .

	

Irreducible representations of this group are

characterized by the value of the Isospin,I, just as the repre-

sentations of the 0(3) group are characterized by the value

of the angular momentum, J . The I .R. containing proton and

neutron has 1=1/2, with proton and neutron having 1 3 .1/2 and

-1/2, respectively .

	

Isospin invariance of strong Interactions

was further confirmed as other hadrons were discovered . They

were found to form isospin multiplets of definite spin, mass

and parity

	

three

	

plons with 1=1, J - 0 , three Q -mesons
z

of 1=1,J =l ;four N (1236) states with 1=3/2 and J =3/2 ; etc .

The isospin properties of the photon have also been Ieter-

-3-



mined . The photon has 13-0 and consists of 1=1 and 1=0

components .

Discovery of strangeness and its conservation in

strong interactions, together with the discovery of baryon

and meson resonances, led to a postulate that strong Inter-

actions are Invariant under a still higher symmetry group,

the "unitary symmetry" SU(3), suggested by Gell-Mann in 19614

This symmetry, although not exact, again results in approxi-

mately degenerate multlplets of hadrons, corresponding to the

Irreducible representations of SU(3) . The group has 8 gene-

rators, conventionally labelled Jl` ,1=1, . .8, of which the

first three coincide with the isospin generators, so that the

isospin SUM Is a subgroup of the larger symmetry . Within

a given multiplet (I .R .) the various members are characte-

rized by their Isospin, the third component of the isospin,

and the hypercharge Y, defined as a sum of the baryon num-

ber and strangeness, Y=B+S . The I .R . itself is characterized

by two quantities, the dimension of the representation and

the highest value of the hypercharge, for example . Mesons

of a given J P seem to appear as singlets, or to form octets

approximately degenerate In mass : the pion belongs to the

J P =0 octet of pseudoscalar mesons, the 4-meson is a part of

the J P =1 octet of vector mesons, etc . Baryons appear in

singlets, octets and decuplets . For example; the nucleon

belongs to a J P=1/2+ octet, while the N %(1236) (the 3-3 reso-

nance), three Y*'s, two ,"-J 's and the .n: form the J P=3/2 +

-4-

decuplet .

The lowest non-trivial representation of the SUM

group Is three dimensional

The question of whether quarks, as the members of this multi-

plet have been christened by Cell-Mann, exist as physical sta-

tes has been studied extensively since their introduction Into

hadron physics in 1064 5 They have not been found, but a very

suggestive picture results, when we express baryons as three

quarks and mesons as a quark and an antiquark . The multiplet

structure for both baryons and mesons is then identical with

the one discussed above . The SU(3) representation correspon-

ding to qqq reduces to a decuplet, two octets and a singlet ;

the one corresponding to qii reduces to an octet and a singlet .

This, in addition to the results of experiments designed to

probe the structure of hadrons, seems to indicate that ha-

drons behave as if they have "constituents", and that quarks

are very strong candidates for these constituents .

This success of the constituent quark picture for the

multiplet structure of hadrons makes it Important to study

In detail those consequences of the quark model which we can

-5-

(Y,1,1 3 )t = (1/3,1/2,1/2)

(Y,I,1 3 )2 = (1/3,1/2,-1/2)

(Y,1,1 3 )3 = (-2/3,0,0)

	

.



compare with the available experimental data . This thesis is

devoted to a detailed study of these consequences In the case

of electromagnetic transitions .

Electromagnetic and weak interactions can he described
6

in terms of "currents", in analogy with the classical elec-

tric current Interactions . The Lorentz, isospin and SUM

transformation properties of these currents have been propo-

sed so as to agree with experimental observations ; e.g . the

electromagnetic current is a Lorentz vector, has Isospin com-

ponents 0 and 1, and transforms as a sum of the 3

	

and 8

members of an octet under SUB) . Conventionally, these pro-
m

	

I

	

8
perties are represented by

	

V(t,}) +~Vr@,t) . Weak currents

Involve both currents with the properties of a Lorentz vector

and axial-vector, Ar(xt) . We present the Stl(3) commutation re-

lations proposed for the axial-vector currents and for space

integrals of their time components, the axial charges, in

Section II of this paper . The commutation relations of weak

and electromagnetic currents and charges lead to numerous sum

rules when both sides of such commutation relations are san-

dwiched between hadron states . Evaluation of these sum rules

poses the next question :

	

how are the transformation proper-

ties of currents related to the transformation properties of

hadrons and to the symmetries of strong interactions? There

are many attempts to answer this important question . A for-

mallsm, proposed by Gell-Mann
5
and based on "current quarks",

expresses currents as q('x,t) F q('x,t), where q(n,t) is the

- 6 -

"current quark" field and F is an operator of appropriate

algebraic (Stl(3)) and Lorentz transformation properties .

A complete knowledge of the transformation from con-

stituent to current quark states, together with the Identi-

fication of the observed hadrons with simple (constituent)

quark model states, would permit one to calculate all current

Induced transitions between hadrons . A major step in this

direction has been achieved by Melosh7 who was able to for-

mulate and explicitly calculate such a transformation in the

free quark model . While the details of such a transforma-

tion certainly depend on strong Interactions dynamics, it is

possible that certain algebraic properties of the transfor-

mation abstracted from the free quark model may hold In

general .

We shall assume that such a transformation does

Indeed exist and that some of its algebraic properties can

he abstracted from the free quark model . For the case of the

axial-vector charge, the many consequences of this assumption

have already been extensively worked out and compared with

experiment using the Partially Conserved Axial-Vector Current

hypothesis .' 9 Here we study the consequences of the same assum-

ption for real (q
2 =0) photon transitions .

In the next section we review the origin and the basic

properties of the theory along with some of its Immediate

consequences for the classification of baryons under an al-

gebra generated by currents . This subject is further dis-

-7-



cussed in Section 111, where we attempt to expand the wave

functions of hadrons in terms of current algebra represen-

tations by fitting experimentally known matrix elements .

The general algebraic structure of photon amplitudes is dis-

cussed in Section IV, as well as the method of calculating

specific matrix elements .

	

We derive a set of selection

rules which Include, and generalize, the old SUM result

that the transition from the nucleon to 3-3 resonance should

be magnetic dipole In character .to This general discussion

of the theory is completed by a comparison with other theo-

ries with a related algebraic structure .

In Section V the photon transitions between mesons

are detailed, along with a comparison of the predictions

with the available experimental data . A detailed exposition

of baryon electromagnetic transitions Is contained In Sec-

tion VI, and In Section VII we compare both the sign and

magnitude of the predicted amplitudes with experiment . The

signs are testable through a multlpole analysis of pion pho-

toproduction yN-+N*-sII N , where the signs of the previously

calculated pion decay8' 9amplitudes also come Into play .

Experiment and theory are found to be consistent, including

the relative signs of pion decay amplitudes obtained from

analizing AN -s N* -iliA .

	

A summary and some conclusions

are found In Section Vill . The general outlook is very good,

encouraging further study of the underlying dynamics and the

extension to the gz tO region .

-8-

11 . CUFRENT AND CONSTITUENT ALGEBRA

Let us begin with a review of developements in current

algebra which led to the introduction of the SU(6)W algebra

of currents . The vector and axial-vector currents, V_ (z,t)

and A'(t,t), have been postulated to obey simple equal time

commutation relations, which are to be exact as far as strong

Interactions are concerned . The right hand side of these co-

mmutation relations generally consists of a term involving a

delta function and terms Involving gradients of delta fun-

ctions . The gradient terms do not contribute to the three

dimensional space integrals of the commutation relations, so

that. the 16 vector and axial-vector charges

Q (t) = Sd3 x Vo('x,t)

Q`(t) = Sd 3x A'(z,t)

where i=1, ,8 Is an SUM index, commute to form the algebra

abstracted by Gell-Mann 4

[Q`(U,Ql(t)~

	

Lf~lk Qk(t)

	

(II-2a)

[Q (t),QS(U~ _ Z f`)k Qs(t)

	

(II-2b)

-9-



[QS(t),QS(t)~

	

i,f
jk

Q k (U

	

(II-2c)

ijk
f

	

=structure constants of Sll(3)

The Q''s generate ordinary SUM . It is easy to show that

ilents of this algebra are space Integrals of current densi-

ties of the general form q(X,t) r A q(z,t), when expressed

In terms of the current quark fields .

An SU(6)w subalgebra of this U(12), which consists

of positive parity, "good", i .e . those with finite matrix

elements between states with pano operators, which commute

z-hoosts, proves to be of particular interest1 ' The "W"

stands for the H-spin : Wx =z~Cc , wy= O 6, , iv lo-e , which

acting on quarks are the same as S x , S y and S~, but for anti-

quarks, since

	

=-1, are equal -Sx , -SY and Sq, . The genera-

tors of the SUMw algebra are space integrals of the time

component of the vector currents, z-component of the axial-

vector currents and space integrals of antisymmetric tensors

Fµv , where l..,v =2,3 or 3,1 . Explicit current quark model

1=0,1,

	

,8

where X` is an SUM)M generator (A
0
=31) and q('x,U Is a

current quark field .

To classify operators and to describe the transfor-

mation properties of Irreducible representations (I .R .'s)

we will use here two equivalent methods of labeling . The

first one directly defines the properties of a given object

under SU(6)
w ,

e .g . in

Egs . .(11-2) define the algebra of chiral SI1(3) SUM, since
i
_they are equivalent to the statement that Q Q

i
s each form

expressions for the 35 generators of the SLIM

are

of currents

an S(1(3) algebra and that the right-handed charges, Q'+ QS'
commute with the left-handed charges, Q'- QS . The last of

the Egs .(II-2) sandwiched between nucleon states moving with

S d3x
IL
+ (A,t)

2`
R (rc,t)

(II-3a)

1=1,

	

,8

infinite momentum in the z-directlon yields the Adler-Weis-
u

berger sum rule .

When a world scalar density is adjoined to the vector

and axial-vector current components and commutation of space

integrals of such operators continued until a closed algebra

~i

Fi

F3

= 2 S d'x

i SdIx

- 2 S d ;x

L+ (z,t) Pa-.

(<,t)~ay 2` R(X,t)

(I I-3b)

(II-3c)

(II-3d)

Is formed, the result is a (1(12) of 144 generators . 2 The ele-



M is the dimension of the I .R . under the full SU(6) , N the

dimension under the ordinary SUM (generated by Q '' s) sub-
algebra, and 14 is the value of the W-spin . A second method,

which we will use predominantly throughout this paper, de-

fines the transformation properties of considered states and

operators under the full SUMW and Its chiral SU(3)xSIJ(3)

subalgebra . Under the chiral algebra,

(A,B)S
Z

transforms as an A-dimensional representation under Q'+ Qs ,

as a B-dimensional representation under Q`- QS , and S is

the eigenvalue of Qs, the singlet axial-vector charge ."' When

we use the second notation, the SU(6)W transformation pro-

perties of a discussed object will either follow from the

context, or will be given explicitly . The "ordinary" SUM

content (under Q`) of (A,B) is just that of A x B . We will

also use L; defined as LZ =Jz -Sa , to complete the descrip-

tion of the transformation properties of states and opera-

tors, so In effect we work within an SU(6)%0(2) framework .

According to the classification described above,

the axial-vector charge

Q S

	

z (4 L + QbS~

	

2 (4 - Qs)

transforms as {(8,1), - (1,8), , L,=0}. , or equivalently as

1
35, 8 3 , L,=or .

	

In this work ive will be concerned prima-

-12-

rily with photon transitions induced by the dipole operator,

Dem, the first moment of the electromagnetic vector current :

S x

	

[ Vol Oz, {) + 1 VS

	

d z

When Dis sandwiched between two hadron states at infinite

momentum, < H' I Dt"'I II > is directly proportional to the am-

plitude for the photon transition H'-, $ + H . For H'= A H=M

this matrix element is proportional to the strength of the

electromagnetic coupling of the nucleon and the delta . For
!

H'= 11 =N this matrix element gives ~Z:

	

times the anomalous

magnetic moment of the nucleon . Derv' transforms as

(8,n.+ (1,8)0 , L1.=±1t , since under Q` and QS

[ Q`) Vol (X) ) t = > { Jk Vo k (x)

[ Qg

	

~V"

	

{jk rto ~x)

All representations of the chiral SU(3)xSU(3) of cu-

rents can be built up from (3,1)1, (1,3) 1 , (1,3) 1 and
z

	

z

	

L

	

-2
which we define to he the current quark and antiquark states

with spin projection +_ 1/2 in the z-direction . The quarks

form a 6 and the antiquarks a 6 of the full SU(6) of cu-

rrents .

At the same time as when the SU(6)W of currents was in-

-13-



troduced, Lipkin and )deshkov postulated another SUMw as an
Ia

approximate symmetry of strong Interactions, deriving this re-

sult from SUM and spin symmetry of the amplitudes for coll-

near processes . Ordinary SUM Involving SUM and S-spin,

however, forbids such observed strong couplings as pnn and

Q it N . The W-spin generators , which were first Introduced

in this framework using Intrinsic parity pof :

or, relativistically,

W

Wy = a 6y

Wt

	

2 C2

commute with z-boosts and are "good" operators .

W-spin that led to an SU(6)W as an appropriate group corre-

sponding to the approximate symmetry of strong Interactions .

This SO(6)W known as the SU(6)W of constituents classifies

hadrons into its Irreducible representations (see Appendix) .

Generators of this algebra have the same equal time commuta-

tion relations, charge conjugation and parity as the genera-

tors of the SUMW of currents . However, It was shown soon

(I1-5a)

(II-5b)

It was the

- 14 -

after their introduction that the two algebras could not be

identified with each other . Even in the free quark model most

of the operators in the SU(6)W of currents do not commute

with the kinetic energy term in the Hamiltonian, if p1 # 0, so

that they are not conserved! Additionally, such an Identifi-

cation gives wrong predictions for gp/g v and for magnetic

moments . To summarize, current and charge operators 9'a have

well defined transformation properties under the SUMw of

currents, and hadron states may be classified Into irredu-

cible representations of the SUMW of constituents . A rela-

tion between the two SU(6)W 's is necessary to define within

one algebra the algebraic properties of both hadrons and ope-

rators 6'd occuring, In matrix elements < hadron' I ei hadron > .

Considerable progress resulted from the assumption

that constituent and current quark states can he related by

a unitary transformation V, so that

i I .R . constituents> = V I I .R . currents > .

	

(II-6)

Using this assumption, Melosh 7 further defined a set of ope-

rators W

-15-



and imposed a condition that

C N S#„0,„9 , W )

	

0

From these assumption It follows that the W"s generate an

SII(,)W under which hadrons transform as those irreducible re-

presentations which correspond to the simple constituent quark

model . The approximate symmetry of strong interactions may

then he identified with the SU()Mw generated by the 11"s .

A matrix element of a current or charge operator 9' °<

between two hadronic states can now he rewritten

< hadron' I g ( hadron > =
d

= CI .R .'constituents I 5'I I .R .constituents>
-1 a

= C I .R .' currents IV 6• VI I . R .currents>

(II-8)

with all quantities in the last line of the equation labe-

led by current algebra .

The transformation V must satisfy a number of condi-

tions discussed in detail in Refs . 7 and 16 . We peel only

to recall here that V takes "good" operators Into "good"

operators, and that V conserves the "ordinary" SU(3) (ge-

nerated by Q " s) . In consequence, the ordinary SUM content

of VI(A,B) currents> is the same as that of I(A,B) currents>,

although the transformed state may span many representations

of the full SUMW or Its chiral SU(3)x ;U(3) subalgebra . We

-16-

(II-7b)

Illustrate this in Section I11, where we make a phenomenologi-

Cal attempt to expand physical states in terms of the repre-

sentations of current algebra .

In this context, if the vacuum of currents Is defined in

analogy with Eq .(II-6) as :

-1
Ivaccum Currents> = V (vacuum constituents>

( I

	

1 1 currents > = V I

	

1 1 consti tuents> )

where the state (vacuum currents> is annihilated by currents

and ivacuum constituents> is the "physical" vacuum, the matrix

element

< physical ploni Q .,. I physical vacuum >

can be rewritten, assuming that the pion and physical vacuum

can be Identified with the corresponding constituent states,

as :

< TI, constituents) Q y- I vacuum constituents)

=< W,currentsl V`Q, V I vacuum currents >

	

(II-10)

_< d 35,8 currents) V
1
R S V I 11 currents > .

This matrix element need not vanish, since V- `V is not a

generator of the SU(6) h, of currents .

We will discuss In detail algebraic properties of the

-17-



matrix elements of transition inducing operators and apply

these properties to real transitions in Section IV of this

paper . Before that, we will complete the presentation of the

relation between the two SU(6)W algebras with a phenomenolo-

gical approach to the mixing occuring in the hadron states

under current algebra .

III .PHENOMENOLOGICAL APPROACH TO THE TRANSFORMATION

PROPERTIES OF HADRONS UNDER CURRENT ALGERRA

We now turn to the classification of hadrons under

the SU(6)w algebra of currents and under its chiral sub-

algebra, SU(3)xSU(3) . Much effort was devoted to this sub-

ject after the introduction of current algebra and the - Adler

-Weisberger sum rule t (see Eq .(II-2c)) .

	

To illustrate again

the need for mixing, let us consider the following examples .

If the nucleon and delta (1236), the lowest mass bar-

yons, behaved as three current quark states with totally sym-

metric wave functions and internal quark angular momentum L=O,

then using chiral SU(3)xSU(3) to classify states and opera-

tors, we find that In the helicity X-1/2 state they must tran-

sform as a pure 156,(6,3)O>, while in the helicity ) =-1/2

state as a pure 156,(3,6), ,O> .

G
A

and G * are conventionally defined so that the Adler

-18-

-Weisberger sum rule reads :

2 <P IQ 3 I F ) = <P 11054, Q 5 I I F)

= I(e IQs Io"

-LI<FIQ;[&*>1t -I<PIQsI~~N 2 JF. . .

= 4 a z - G"
2

where QS = QS tiQ z and the normalization is such that <plp>=1

The operators Q5, as SU(6)W (and SU(3)sSU(3) ) generators can

only connect the I .R . 156, (6,3) 0> to itself . Without

representation mixing In nucleon states the Adler-Weisberger

sum rule tmust be saturated by the contributions from the neu-

trontron and A(1236) alone . Without mixing, G q =S/3 and G =4/3,
whereas 2<pl Q3 1 p> = 1 . Evaluatio

11 f this sum rule shows

that there must be contributions from many higher mass P' s .
The anomalous magnetic moment of the nucleon is given

by the matrix element of the dipole operator D em of Eq .(II-4)

between the nucleon states at infinite momentum,

r

	

(N)

	

xmi I D e ' IN A= _1

(111-2)

Without representation mixing this matrix element vanishes,

since the Initial and final nucleon wave functions have

-19-



L
8
=L =0 only, while 0em changes L by ± 1 (see Eq .(11-4)) .

These and similar arguments show that some represen-

tation mixing must be present In the classification of ha-

drons under the algebra of currents 17 In this section we dis-

cuss how the mixing parameters can be sought phenomenologi-

cally . isle limit our presentation to the nucleon and 0 (1236),

but a similar method applies to mesons and higher mass baryon

resonances . We consider mixing of chiral SU(3)xSU(3) repre-

sentations ; mixing under the full SU(6)W of currents can he

studied in the same manner .

A three quark, helicity 7=1/2, J =1/2, nucleon state

may transform most generally as a linear combination of six

I .R .'s of the chiral SU(3)xSU(3) current algebra . We there-

fore may parametrize :

~IN ,A=i)= cos9 ( cos7

	

+ sin? 1(3,6) z ,+1>)

+ sin 9 1Cos?p (cost t (3,3) .. ±1) + sin

	

10)

+ si-ncO (cosy I (3,3) 1 , 0)+ sill (1,8)_a+2~J

(111-3)

Similarly, for a three quark A=1/2, J=3/2 delta state we

may choose a parametrization

JA A z> = cos cc(cos~ (6,3)x ) 0) +sin~j(3,6)-z ; 1))

+ sino( (cosh' I(lot 1), -1>+sina't(1,10)-Z,+2))

- 2 0 -

To determine the mixing parameters we shall fit G

the anomalous magnetic moments of the proton and neutron and

the strength of the electromagnetic X N A coupling using

the assumed form of the wave functions (Egs(I11-3,4)) .

We obtain for GN and Gam :

G.p = 3 Code cos27 + sin 1e cos2Cq

G" - 3
cos a cosoC cos (7-~)

We already have predictions that G ( 4/3, which agrees with

the experimental limits on G * ( .8 to 1 .05) . Note also that

for G
A
y 1 .25 we obtain bounds on the angles 9 and 7 .

e < 52 0

rt C u-5 0

The strength of the '$'N4 coupling, ).*, is proportio-

nal to the matrix element of the De' between the nucleon and

delta states at infinite momentum

(it1-5)

(111-7)

Moments given by the assumed haryon wave functions and the

algebraic properties of D?, {(8,1)0 + ( 1,80 ,1}

	

allow

five independent reduced matrix elements In the expressions
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for µ. and the anomalous magnetic moments :

M, - K(C,3),,Ou{(8,Q 0 t (1,8)01 lilt (6,3)y2,-4>
L

Mz = ( (6,3)1 , 0U{(8,1)0 + ( 1,8) 0 , 1 } II (3,3)2,-1>
L

M 3 = K(3,3) 1 ,011{(8,1) 0 t(1 1 8),,1}II (3,3)2,-10
M 4 = <(8,1)j ,-111 {(8,1) 0 +(1,8) 0 , 1}11 (8,1) ~2>

Ms = ((10,1),,-1 11{(8,1) 0 + ( 1, 8),, 1 } 11

	

-2>
L

(III-8)

The terms multiplying Mk involve also another parameter, since

8x8 reduces to 8p and 8s . This parameter, the f/d ratio,

would be given If we used the full SU(6)w .

In terms of the mixing angles and the reduced matrix

elements , the anomalous magnetic moments and t are then :

:Co$dsin0(ccS~COSCfCOSif+sin~sin,cosy]M Z1

	

l

	

( III-9a)

+.F sincl sine lcos~{sin(gsinV + SIH~ros(DSii ] MS

F2 t4A=
-Coe Osin2? M 1

	

(I11-9b)

+ 1.
sin 2e (COS 7 cos(foo5T - $in~7 SitiI cos V] M2

4 sjr,ze sin 2T cosvcoss+ M 3

+ sin L e sln2 .~ SinV Sin lY M 4

-22-

VY'~LpS =-c0s'0s412v M,

+sih'6 Sih2?r-05VCOST M3

+S,n L O Sih2C45,hv SIP% My

	

~(''
(- Cs (/d.Y3)

where

Y µ

	

K)µ, p
_ I p (P) - p..P

4A
S
= A (P) +~,.p

are the Isovector and isoscalar anomalous moments .

Egs .(III-5) and (III-9) can be satisfied in many ways,

since the number of free parameters is greater than the num-

ber of experimental quantities we want to fit . We can how-

ever conclude that since Gp > 1, cost6 ¢ 0 and cos27 k 0 (0 + Z

and
7

#

	

), I .e ., the nucleon's wave function must contain

the I(6,3)yz,O> and/or I(3,6),,1> terms, and the ratio betweeni

the mixing parameters multiplying these two terms must be di-

fferent from 1 .

One of possible solutions, related to that proposed by

Harari . 8 can be obtained under the assumption that the inter-

nal quark angular momentum In both the nucleon and delta is

not greater than one . This eliminates the mixing angles

v - Y = 0 (see Egs .(II-3,4)) . We then additionally assume

that cC = 0 and (3=~J, I .e .

IA, A 1z = Cos. 0 (c

C

os7 I(6,3) Z ,O>+sih7

tSin9 I(10,1)q -1>
z

(III-11a)

(III-9c)

(III-10)
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INCos9(COS? 1(6,3)2,0) + Siw7 1(3,6)-Z,+1))

+sin9[COS T (cosy 1(3,3)- i,+1)+5inp1(8,1) 3 . 1))
-z

+sine (3 1 3)1 1 0)]

w
With these assumptions we obtain, for G = 1,

i
sin 1cC = stn z 0 - 4 ,

sin 2~ = sin 2 7 =
5

i

	

P
=

7
= 18.4 °

-24-

a=9=30°

(III-11b)

(111-12)

Since the isoscalar anomalous magnetic moment /45, (( ,A v and

~p((~.~, 3 , we further assume ,L4 0 . Using this and the expe-
x v 4S

rimental value of the ratio," /r p

	

to determine the re-

maining mixing angles we are led to :

'il'A5 =- z0 m1 + Z sin2c~Cos~ M 3 =0

if (,/ AV ) = cos 7Coscecost+Sirj75ioC(

Cos 7CO5T COS T - S,n7 S,hcf

(111-13)

which we may satisfy choosing M 1 = 0, - 0 . The wave func-

tions resulting from this particular solution are given by

IN ) A=1) = cos30° [COS 18.4 ° 1(6,3)2,0) + sii 18 .4 ° 1(3,6)- 2 ,+1)J

+sir,30°[COS(F

	

1) + sin 'v 1 (8,1) 3 , - 1)J

(III-14a)

and

Cos3 0° [Cos18.4° 1(6,3) z,0~+siv,18 .4 ° 1(3,(;)_2,+1)]

+ sin 30° l (10,1), ,-1)
2

Even this simplified mixing scheme with L ~< 1 has no unique

solution, as cosy is still left as a free parameter, except

for the condition that cosy >l 0, because that would give

vA =
1

	

= 0 here .
I
)L'

	

The analogous situation of no unique solution for the

current algebra representation mixing in the wave functions

Is encountered in the expansion of higher mass resonances,

each of which must be treated separately . The phenomenolo-

gical approach then is not very helpful in a systematic eva-

luation of the current and charge matrix elements between

hadron states .

	

It Indicates the complexity of hadrons' wave

functions under current algebra . The approach based on a

unitary transformation relating current and constituent quarks

also predicts complicated algebraic properties for

VI I .R .currents>, which correspond to the properties of ha-

drons under current algebra .7 But a systematic evaluation of
0&

the matrix elements < hadron'I 6Ihadron > in Eq .(II-B) can

-25-
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be carried out In spite of the complexity of the wave func-

tions . We will describe the alternate systematic method of

calculating such matrix elements and Its applications in the

following sections .

IV . PHOTON TRANSITIONS OF HADRONS

a
Evaluation of the matrix element <hadron'I O I hadron>

in Eq .(II-8) can he carried nut In spite of the complexity of

the state V I I . R . currents>, provided that the "effective"

operator.V
4
eV has definite and simple transformation pro-

perties under current algebra .

In the free quark model Melosh has been able to con-

struct an explicit form of V . Effective operators
V-Imd

V

for e - Q ỳ, and

	

D,e.' , turn out to have simple transfor-

mation properties when this V is used . They must connect

only single quark states to single quark states, and both

have a general form

Sd 3x ft (Xit) C(a.,Y~) c(X,t) .

Here f is some fuction of the derivatives ('1 L ) and the

gamma matrices ( 1~) .
An explicit form of the function f was originally deter-

- 2 6 -

mined by Melosh 7 while Eichten et al . 6 argued that a large

class of such functions exists . Without a detailed dynami-

cal theory we are unable to make use of an explicit form,

even If it were given to us . The property which we abstract

from the free quark model and assume to hold In general is

that the effective operators V 1QSV and V'Dr V have the

transformation properties of the most general linear combi-

nation of single quark operators consistent with SUM and

Lorentz Invariance .

In the explicit quark model calculations the operator

VtQ s V with J2
= 0 contains two terms which transform as

{(8,1)0 - ( 1,8)o,L,=O} and {(3,31,-1} - {(3,3)) , 11 com-

ponents of two 35's of the full SUMW of currents . To apply

this to observed hadron transitions, as few axial-vector de-

cays are measured, the Partially Conserved Axial-Vector Cur-

rent hypothesis 13 (PCAC) can be used to relate the matrix ele-

ments of Qs between states at infinite momentum to natrix ele-

ments of the pion field . Such an approach results in a theory

of the algebraic structure of pion amplitudes
. 20

As the matrix elements of D (Eq .(II-4)) are directly

proportional to photon amplitudes, no additional assumption

like PCAC Is necessary . Furthermore, matrix elements of D+ "'

are equal, up to a sign, to those of Du" (with reversed he-

licitles of the external states) via parity conservation, so

that we need only consider the properties of D}`" . The ope-

rator V 1 D. V, with J 2 = 1, has slightly more complicated tran-
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sformation properties than V 1n s V .

	

In ennral, as pointed

out by Hey and Weyers 21 there are four possible terns :

{(S,1)0 + ( 1,8)0 ,1 }, {(3, ;)1,0},

	

{(3,3)1 ,2} and

{(8,1)0 - ( 1,80,1}, all components of four 35's .

	

It

appears that all four occur in the operator V 10+ V in the

free quark model .

	

However, the last term, which corresponds

to qq in a net quark spin S=O, unnatural spin-parity state,

has no analogue with any natural spin-parity (in particular
7 16

vector meson) state of the quark model! Moreover, under a

generalized parity transformation, P ei°Jy, which takes

{ (A, B) Sz., L,} -

	

t
(B, A)_s,

	

L ? I

the first three terms do not change sign while the last one

does . For the longitudinal (J 0) component of the current

this would eliminate the possibility of such a term . While

we will carry all four terms In calculating photon tran-

sition amplitudes here, we will Indicate experimental limits

on the size of the {(R,1)0 - ( 1,8)0 ,11 term's contributions

and Indicate what situation ensues if it is totally absent .

Assuming that the transformation properties of the

effective operators
\1&'V for 6'= Qs or DeM can he abstra-

cted from the free quark model, we are almost In a position

to apply the theory to actual decays . To make contact with

experiment we make one physical assumption, namely, we

assume that we can Identify the observed (non-exotic) harrons

-28-

with constituent quark states . In other words we assume that

a part of the physical Hilhert space is well approximated by

the single particle states of the constituent quark model .

For haryons an'! mesons we have candidates which fit very well

into the SU($ )x 0(3) representations 56 L=O ; 70 L=1 ; 56 L=2

and 35 L=O ; 1 L=0 and 35 L=1, respectively (see Appendix) .

As we assume that states with different values of quark spin

as well as L, are related according to the constituent quart:

model, wecan relate different helicity states to each other .

'iith this physical assumption we know the algebraic

properties of all terms in the matrix element In Eq .(11-8)

under current algehra . Therefore vie may use the Wigner-
zz, z 3

Eckart theorem and tables of Clehsch-Gordan coefficients

to carry out the calculation from this point onward . Note

that SU(6)w Invariance of the effective operators V lffV is
not assumed either under the algebra of currents or that of

strong Interactions - only the transformation properties of

the various terms of the effective operators are needed in

the calculations .

We will now turn to a detailed discussion of photon

decays . Photon transition amplitudes are proportional to the

matrix elements of the dipole operator, Do"', between hadron

-29-



states . In the narrow resonance approximation,

r (Hadvon -> Hadvovi + Pho+ov,

x 3E Px 	
G ICWadwH, I D+n' Hadvo„~

	

Z

ii (23'+1) a

(IV-1)

Here e Is the hadron charge, p . the photon momentum and the

sum extends over all possible helicities A . Matrix ele-

ments of Der" have been eliminated from Eq .(IV-1) via parity .

This equation may also be obtained from consideration of the

narrow resonance approximation of the Hadron' contribution

to the Cabibbo-Radicati sum rule4 on Hadron states . We have

no arbitrary phase space factors .

We shall use the narrow resonance approximation,

Eq .(IV-1), for photon decay widths to compare the theory

with experiment . For broad resonances or for,decays of re-

sonances where the physically available phase space is small,

such an approximation introduces non-negligible errors .

However, we consider the present comparison to be sufficien-

tly valid as a first test of the theory, particularly in view

of the experimental errors for photon (as well as pion) de-

cay widths . When the situation eventually warrants it, the

values of I<Hadron'I Dtn'I Hadron>I Z should be determined

irrespective of any approximation in terms of contributions

to the Cabibbo-Radicati sum rule . 4

-30-

The assumptions on the transformation properties of

Dt" matrix elements between hadrons under current algebra

allow one to express every photon amplitude as a linear com-

bination of four terms, which appear In the effective opera-

tor V to$ V. More explicitly, for a given matrix element,

we first decompose the total J of the Initial and final had-

ron (with J} = A-1 and A , respectively), into definite S .

and L t quark states . After transformation to the SU(6)w of

currents basis, the matrix element of any particular term in

V-20 , V can be written, using the Wigner-Eckart theorem, as

a reduced matrix element times the product of quark angular

momentum, SUM, , SU(3) and W-spin Clebsch-Gordan coeffi-

cients2'
13 For example, the matrix element of the ;(3,3) ,2 .

term in V"D" v between initial and final states with hell-

city a-1 and A, total angular momentum J and J', internal

quark angular momentum L and L', quark spin S and S', SUM

representation A and A' and SU(6)w representation R and R',

respectively,, is calculated in the following way :

<R'A,'L ;S,'J,' A,currentsl{(3,3)Y 2}iR,A,L,S,J,A-1,currents>

(J'AIL's'LyS1')(L S L , SiJ A-1) <R',A' 2Wi1135,8 I R
A2Wai>

- V

	

I
quark angular momentum

	

SUM Clehsch-Gordan

Clebsch-Gordan cofficients

	

coefficient

<A'(Y,'1-,I3 )1 8((010)+1(000) I A (Y,I,1 3 ))

SUM Clehsch-Gordan coefficient

`<W'W' 1114-1W }>I

	

<R'L' II (3,3)) ,2 1R L >

W-spin Clebsch-Gordan

	

reduced matrix element

coefficient
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The signs which result from the conversion from quark spin

25'to li-spin in the operators are included In the reduced matrix

elements .

The reduction of the other terms In V

	

proceeds

just as above and we need only recall that (8,1)0 + (1,8),)

(1,8)o and (3,')1 transform as W=WiL =0 ; W=1,W2,=0 and

~ •! =l, h) { =1 objects, respectively .

	

Note that since total 14 is

conserved ani the net value of W2 =Sa must also he conserved

by the W-spin Clebsch-Gordan coefficient in Eq .(IV-2) and

its analogues, it follows that L ,,= J2 - St must also he con-

served between the Initial and final state (Including the

photon operator) . We then observe that the reduced matrix

elements depend on the S(1(6)w multiplet, the Lt and L 2 values

of the external states components, and the particular term in

V~o'; V .

If L Is zero, as Is the case in essentially all ca-

ses of physical Interest at the present time, then of course

L .=O and the L ; dependence of the SII(6)w reduced matrix ele-

ment becomes trivial due to conservation of L . . In such a

case (L& ; all photon decays from one SU(6) multiplet to

another are related to the same four reduced matrix elements

(dropping the trivial L} labels) :

CR' L' II (8,1),+ (1,13). 11 R L=0 >

CR' L' II (3,3)i a R L=0 >

CR' L' II (3, 3 )~ II R L=0 >

and

	

CR' L' II (8,1), - (1,8)0 11 R L=0 >

-32-

some of which may he zero or may have zero coefficients due

to selection rules in particular decays .

This algebraic structure of photon matrix elements

does in fact lead to Interesting and powerful selection ru-

les .

	

Consider the {(8,1),+ (1, .80,1} term in V~0`*V ,

which has 14-spin zero . The 14-spin r.lebsch-Gordan coefficient

In the analogue of Eq .(I"-2) Implies

ia~ _ ~;i

	

(IV-3)

which is the same as

S' = S

	

(IV-4)

Now, for Hadron' and Hadron states we have

J'= L' + S'

	

(IV-5)

ant

J = L + S

	

(IV-6)

while angular momentum conservation for the total decay de-

mands
J J

J' =J+ j y

where 1 . Is the net angular momentum carried by the photon

and determines the multiplee character of the decay . Combi-

ning Fgs .(IV-4) to (IV-7) vie obtain

I L - L'I .

	

j ' ,< I L + L'I

	

(IV-8)

and in the case L=0

	

-

jt= 1'

	

(IV-9)

Thus decays through the {(8,1), + (1,8)„ 1} tern in Vi0+ V

to L=0 baryons and mesons always have j .-L' of the decaying

-33-
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L-L

	

l

	

%
hadron . As the parity change is (-1) =(-1)

	

l-(-1)

	

this al-

ways corresponds to an electric 21'-pole transition in the

usual multipole notation .

For the {(3,3)1 ,0, {(3,3)_1,2} and f(8,1)0 1)

terms In V'0`* V, all of which have I •I-spin one, Eq .(IV-4 is

modified to ZG

$' = S + 1

	

(IV-10)

and as a result one finds in place of Eq .(IV-9) that

IIL'- LI -1

	

~<

	

1 Y

	

IL' + LI + 1 I

(IV-11)

so that
L', L'+ 1 .

	

(IV-12)

As the narity change Is again (-1)t these correspond to ma-

gnetic 2(L'-1)-pole, electric 2L'-pole and magnetic 2(L'+1) 1

-pole, respectively .

The actual correspondence between reduced matrix ele-

ments and a set of multipole amplitudes can also be proven

usinT Racah coefficients to rewrite Eq .(IV-2) and its analo-

gues . For example, haryon transitions from R, L=0 to R',L'

can he describes in terms of multipole amplitudes

M (j t =L') _ <R'L'II (8,1)0 + (1,3)) II R L=O >

	

(IV-14a)

- 3 4 -

1,OIj Y ,1)<R'L'II (3,3)1 IR L=0)

+ (1,L',0,11j y ,1)<P'L'II (8,1),-(1,81 IR L=O>

+ (1,L',-1,2Ij Y ,1)<R'L'II (3,3) IR L-O> .

(IV-14b)

Mote of course, that one only has

	

1 . Thus for L'=O -' L=0

only j a =1 Is allowed . This is just the old result that the

nucleon to 3-3 resonance transition is magnetic dipole in

character .

Note that for values L'>r 3, not only does the theory

limit values of j~ to j r ,< L' + 1, but also non-trivially
z7

forbids values of j t less than L'-1, which are otherwise kine-

:natically allowed , and even favored by angular momentum bar-

rier ar0,uments . The transition of a J P =3/2 haryon reso-

nance In a 70 L'=3 multipoet into a nucleon plus a photon with

j r =1 is forbidden, for example, even though this is the lo-

west allowed multipole on spin-parity ;rounds .

The algebraic structure of the theory of photon tran-

sitions Presented above Is closely related to various quark

model calculations, both non-relativistic L8 and relativistic, Z9

lone in the past . They may he put into one to one correspnn-

fence if the {(8,1)0 + ( 1,R)0 ,1} term In V 10eỳ "V is identi-

fied with the photon interacting with the quark convection

current, and the {(3,3)1 ,0}

	

term identified

	

with the pho-

ton interactin with the nuarl : magnetic moment . The

{(3,3)1 , 2} and

	

} terms are absent in
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28 29
these quark models .' However, the assumption of a "potential"

and the resulting, wave function for the bound states in the

quark model calculations yield definite predictions for the

reduced matrix elements themselves, as they depend on masses

and other parameters of the motels . This is something we

do not obtain, since we consider only the algebraic structure .

Closely related to the quark model results are those fo-

llowing from various versions of SU(6)w (of strong Interac-

tions) Invariance . The assumption of SU(6)w conservation plus

vector dominance for photon transitions is equivalent to

keening only the {(3,3)1 ,0} term in V1D`+V .

As we will soon see, this is totally contradicted by

the data . As a result, various broken SU(6)w schemes were

developed . 0 Some of these are very similar to the present the-

cry in algebraic structure, particularly for decays to L=0

hadrons . For vector meson decays, and via vector dominance
31

for photon decays, one such scheme corresponds in algebraic

structure to the one presented here If the reduced matrix

elements of {(3,3) 1 ,2} vanish and those of

j (8,1)0 *

	

and {(8,1)0 - ( 1,8)0 ,1 terms are equal .

-36-

V . PHOTON TRANSITION,, OF wrSnNs

Now that the basic properties of the theory an :: the

manner of its application to actual hadrons have been spelled

out, we begin the discussion of detailed predictions with ra-

diative decays of mesons . We limit our listing of amplitudes

to those corresponding to non-strange mesons ; the extension

to transitions Involving strange mesons Is easily accompli-

shes using SUM .

Let us begin with the photon transitions from L'=O to

L-0 mesons, i .e ., among the members of the SU(6)W 35 and 1,

whose non-strange members are 4, 0, 0, T1, 7 and ( presuma-

bly) X 0 . As Lj =L 2=0 for the external states since L'=L=O,

only the term with L,=O and transforming as {(3,3) ,0 } in

V 1D* V can contribute . The selection rule in Eq .(IV-12) Im-

nediately gives the result that j3=1 only . This is already

non-trivial, as jy= 2 transitions are possible from S
t to

4
t in general, and the theory then predicts zero electric

quadrupole moment for the ?-meson .

Since W-spin zero octets and slnglets belong to the

35 and 1 representations of SU(6)W , respectively, decays in -

volving meson states which are mixtures of W=0 SUM octets

and singlets may he used to fix the ratio of the

<1 L'=0 II (3,3)1 1135 L=O> and

	

<35 L'=O U (3,3)1 .. U35 L-O> .

	

in

particular, for this purpose we use Zweig's rule. 32 to forbid

the decay

	

where the 0 Is assumed to he the usual
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Ideal mixture of singlet and octet so as to be composed of

purely strange quarks . All amplitudes are then multiples of

a single magnetic dipole amplitude, or alternatively, are

proportional to the single reduced matrix element

<35 L'=0 II (3,3)1 II 35 L=O> .

One observed transition then fixes all other decays .
33

The re-

sult of the computation of transition matrix elements are

given in Table V .A, where the 7 and X ° are assumed to be SUM

octet and singlet, respectively, while the w and 0 are ;deal-

mixtures of octet and singlet :

Co = t.05 6

W(1) P sin 6

Co (8)

(V_1 )

0 =-sip) $ W (1) + Cos0 W
(9)

where

sin 8 = 3

Table V .8 contains the corresponding predictions for

all the L'=0 -'L=O radiative Jecay widths using r(w-'), iii, )

=890 Kev as an input? 4 The sparse experimental data 4'3s are

also given . Note that the predictions in the first column

are for unmixed nseudoscalar mesons . Taking a mixing angle 36

ep =-7.9 .5 ° , as suggested by a quadratic mass formula, gives

the second column . The predicted width for 0-* Y7 Is reduced

to 179 KeV, agreeing with experiment within errors . 37 The co-

rresponding prediction in this case for r(X °-a q) is 120 KeV .
o

	

+_-Assuming that X -~ ~u a is dominated by X0-319F, and taking the
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branching rati 34 for this mode to be 26^„ we find a total X °

width of 460 KeV . This Is also consistent with the X ° width
34

	

°
obtained from the branching ratio for X -s XX plus SU(3) and

the new value 38 of 1(7-a XX) . The overall situation for

L'=0 -'+L=O decays Is thus quite satisfactory, although many

pieces of Information are absent in comparing theory and ex-

periment .

When we go to L'=1 --' L=0 decays, there is no experi-

mental information available, although there are both many

allowed transition amplitudes and predictions . Of the four

terms generally present in V 1D)e* V , only {(3,3) 1 ,2} cannot

contribute here, since It changes L .: by two units . The se-

lection rules of Section IV show that the {(8,1)° + (1,8)° ,1}

term in V 1Dt"V leads to purely electric dipole (j w.=1) tran-

sitions, and only j K = 1 and 2 can arise from the 3j),0

and (1,8)° ,1} terms . In fact it is possible to

express linear combinations of their reduced matrix elements

as electric dipole and magnetic quadrupole amlitudes, multi-

ples of which occur in all decays from L'=1 to L=0 mesons .

All posible radiative decay amplitudes for non-strange

L'=1--i L=0 mesons are given In Table V .C in terms of the re-

duced matrix elements

<35 L'=1 II (8,1)° + (1,8)° 11 35

<35 L'=1 II (3,3)1 II 35 L=0>,

and

	

<35 L'=1. 11 (8,1)° - (1,8) ° II 35 L=O> .

_3~_

L=0>,



Matrix elements of SI1(6)w singlet states are relate] to those

of 35's using Zwelg's rule, 2 as was done above for L'=0 --i-

L=0 decays . The 7
and H are assumed to be purely octet mem-

hers, while f, 0, c, and 4) are all taken to be ideal mixtu-

res of singlets and octets, so as to be composed of only non-

strange quarks .

	

Note that in the decay 2 1. -Ii'1, e .g ., in

Al- e?, an electric octupole could he present in principle,

as well as electric dipole anJ magnetic quadrupole amplitu-

les . However, the selection rule limiting j .. to 1 or 2 eli-

minates the octupole amplitude and results in the linear re-

lation

Aa_i(As > Xe) = 2Y Aa_1(A1

	

>iy) - V6 A, (A,,- p) .

(V-2)

among the three helicity amplitudes for 2~-ilfl . Almost any

exoerimental information on these decays would he helpful In

sorting out the relative importance of the various (three)

possible amplitudes, and testing the theory .

VI . PHOTON TRANSITIO^!S 9FTIIEEN 9ARYONS

The electromagnetic transitions of baryons provide

a second and very rich area of predictions for the theory . As

before, we restrict our attention to non-strange baryons de-

caying into L=0 states, this being by far the main area for

experimental comparison . In this section we will enumerate

- 4 0-

the possible lecay amplitw'es, deferring an experimental com-

parison to the next section .

The case of transitions from L'=0 to L=O, i .e .,

within the L=0 haryon multiplet, is particularly simple .

Qs for mesons, only magnetic .']pole transitions are allowed

by the theory and all amplitudes are proportional to a sin-

gle reduced matrix element, that of the term transforming as

{(3,3)1 ,0} in V_' I)'+' V . The results are presented In Table VI .A

for the three possible transitions, N--.'l, N-sp, and .A -a8 .

It can be explicitly checked that all transitions are mag-

netic dipole in character, as lemanded by the selection

rule (Eq .(IV-12)), including those for 0--e 6, where both

electric quadrupole and magnetic octupole transitions are

allowed by spin and parity .

For decays from the next i .ientified baryon multiplet,

the 70 L'= 1 to the ground state 56 L=0 we have the three

possible reduced matrix elements :

<70 L'= 1 11 (8,1)0 • (1,8), II 56 L=0 >

<70 L'= 1 II (3,3)1 II 56 L=O >

and

	

<70 L'= 1 II

	

(1,8), II 56 L=0 > .

The matrix elements of 0r for lecays into both YN and k A

are enumerated in Table V1 .3 In terms of these reduced ma-

trix elements .

ly the selection rules of Section IV, the (8,1)0 * (1,8)0

term In VhD
em V acts as an electric dipole transition opera-
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-, N, for example, could in general go via j,,-2 or 3, but

only j8 =2 (magnetic quadrupole) is allowed by the theory .

Similarly, N* (5/2 )could proceed with j r -1,2,3 or 1; in

general, but only j,=1 and 2 are allowed by the selection ru-

les . Note also that the Moorhouse quark model selection rule
41

forbidding )fp - N'+, where N* has quark spin S=3/2, is refle-

cted in Table V1 .3 .

For 56 L'=2 decays to 56 L=0 we have reached a high
-1 em

enough value of L' that all four terns in V D V can contri-

bute to decay amplitudes .

	

In this case the (8,1)0 + ( 1,8)0

term is electric quadrupole in character, while linear combi-

nations of the other three terms act as j.= 1,2 and 3 transi-

- 4 2 -

The various amplitudes for resonances In the 56 L'=2

to decay Into a'N are listed 40 in Table VI . C . The Y& amplitu-

ies presented In Table VI .D are not experimentally testable

as yet . Again, the selection rules derived in Section IV
x

have clear and direct consequences :

	

-9 ~N, for exam-

ple, which could go via 3V -3 or 4 is restricted to be purely

magnetic octupole (j 8 =3) .

Decays fron higher L' multiplets are easily computa-

ble, but little in the way of experimental tests Is availa-

ble at present .

	

For 56 L'=0, 70 L'=1 and 56 L'=2 photon tran-

sition amplitudes, which we have enumerated, however, photo-
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tor, while the two remaining terms act as a combination of

	

tions :

E2'= (1,8)0 II 56 L=0 >
electric dipole (jr = 1) and magnetic quadrupole (j y = 2) . <56 L'= 2 II (8,1)0 +

According to the discussion around Eq .(IV-14) in Section IV

we can In fact write amplitudes, t'.1 = 1/10 <56 L'=2 II (3,3)1 U 56 L=0>

V31-10 <56 L'=2 II (8,1)0 - (1,8)0 II 56 L=0>

E1' = < 70 L'= 1 II (8,1)0 + ( 1,8)0 11 56 L=0> + V-3/_5 <56 L'=2 II (3,3) 1 11 56 L=0>

El = V_1_/_2 <70 L'=1 II (3,3)1 11 56 L=0>

1/2 <7) L'= 1 II (8,1)0 - (1,8o U 56 L=0 > E2 ir_112 <56 L'=2 11 (3,3)1 I 56 L=0 >

h12 'l/2 <70 L'= 111 (3,3)1 II 56 L-0 > - 1/6 <56 L'=2 II (8,10- (1,8)0 11 56 L=0 >

+ VI/2 <70 L'= 1 II (8,1)0 - (1,80 11 56 L=0 > , <56 L'=2 II (3,3) 1 11 56 L=0>

which are electric dipole and magnetic quadrupole amplitudes M3 = 6/15 <56 L'=2 II (3,3),l 56 L=0>

In terms of which all the helicity amplitudes given in Ta- + 8/15 <56 L'=2 11 (8,1)0 - (1,8)o II 56 L=0>

ble V .B may be alternately expressed . Note that N*(Jp =5/2 ) + 1/15 <56 L'=2 11 (3,3) 1 11 56 L=0>



production data permit many direct experimental comparisons .

To these we now turn .

Vii . EXPE t̂ IMENT .A L TESTS OF 3ARYON AMPLITUDES

The predictions for transitions within 55 L=0 multi-

plet are already testable using the magnetic moments of the

neutron and proton, for a direct evaluation of De" between

nucleon states at infinite momentum gives

/~p(N) = j ~N,a=Z I ~eM

	

N,A=-i>

(ill-1)

where
/
k p(N) is the anomalous magnetic moment of the nucleon .

I em
However, a careful evaluation of V D + V between one nucleon

states at Infinite momentum gives a result which has the

transfomation properties of the four terms discussed In Sec-

tion IV'minus a term which is exactly the Dirac,moment . Ad-

ding the Dirac moment to the anomalous moment, we see that the

four terms In V I D+ V discussed before should he interpreted

as being proportional to the total moment when taken between

the same initial and final state . Thus, the matrix elements

in Table VI .A are to be Interpreted as predicting

-4 4 -

(VII-2)

the SII(6) result4~ which Is within 5$ of the experimental

value of (-1 .91/2 .73) = -0 .70 .

For the transitions from C1 to N the ratio of l3 bet-

ween the A =3/2 and A=1/2 matrix elements corresponds to a

Pure magnetic dipole transition, as we already know must

occur due to the selection rules discussed in the last sec-

tion . All photoproduction analyse s3 agree that the electric

quadrupole amplitude Is at most a few percent of the magne-

tic. dipole amplitude for the excitation of the 3-3 resonance .

Using the conventional definition of *
/" I

	

Eq.(II-7), we ob-

tain from the results in Table VI .A that

(Vii-3)

44
An older Phenomenological analysis of the data for pion pho-

toproductiontoproduction gave a result for r(p) which is 1 .28 ± 0 .03

times the right hand side of Eq .(VII-3) by finding a residue
4S

at the p-pole in WN ~L^I . By considering the contribution

of the 0 to the Cabibbo-Radicati sum rule we find a value

of 14*//u .T(f) which is 0 .9 _± 0 .1 times the right hand side of

Eq .(VII-3), In quite satisfactory agreement with the theory .

While the sign of/' //u.T (F) cannot be measured, the product

of the ~N and TIN couplings of the nucleon can be compared

with that of the 3-3 resonance in pion photoproduction . As

the theory also predicts the relative sign of 4 N coupllngs,, ' 9

it makes an unambiguous prediction of the sign of the reso-
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nance excitation amplitude relative to the nucleon Born

terms . This sign is correctly riven by the theory . 4 . r

For the transitions from A to A , which Is also pu-

rely magnetic dipole In character, we should again Interpret

the results in Table VI .A as being for the total moment . The

relation between matrix elements of 0em and the conventional

anomalous magnetic moment of the A , ~ n

	

is

From this we see that we have from Table VI .A

fAT
"(Ae+)//"T v) _

Z

fl'T" (A+ )//UT (p) = 1

T *0 ao)I,-r (P) - 0

~T<x(L1)//Ur(v) = - 1

As with Egs .(VII-2) and (VII-3), all these are standard SV(6)

resuIts42 as Is to be expected since the {(3,3)1 ,0} term in

V 1D+ V has the same transformation properties as the magnetic

moment used in StJ(6) .

The transitions from the 70 L'=1 to the ground state

56 L=0 provide a much richer set of amplitudes for compari-

son of the theory and experiment . Rather than carry out a

statistical "best fit" to all data, in Table VII .A we have

fixed the possible reduced matrix elements allowed by the

-46 -

(VI1-4)

(VII-5)

theory in terms of some relatively well determined amplitu-

des for the process )jN-
13

( 1520) -i r, M .

The quantities In the table are the matrix elements

of D+" taken between Identified resonant states? in the 70

with J .- A and nucleon states with J 1= A-1 . The signs are

those found in the specific processes Xp--,N"~iin and
o _

~n -+~I"-a11ip . To make a theoretical prediction of these

signs we need a theory of both the i;'NN * and TNM * vertices .

The 1'NN * couplings are taken from Table VI . .B while for

70 L'=1--.55 L=0 pion transitions we .nay express the reduced

matrix elements as linear combinations of amplitudes S and D,

corresponding to Z =O and 2 : 48

<70 L'=1 It (8,1)0 - ( 1,8)0 1 56 L=0> _ (S + 2D)/3

<70 L'=1 II (3,3)1 - (3,3) L I 56 L=0> _ (S - D)/3

(VII-5)

S=+D If only the (8,1)0 - ( 1,8)0 term In V 1Dey"V is present,

while 5=-2D if only (3,3)1 - (3,3) 1 is present .

	

While an

earlier phase shift solution49 to the iii-+iiA data disa-

greed with the signs predicted for pion transitions, a new

solution agrees completely so and shows that the signs of S

and D are opposite, i .e ., it appears that the

	

(3,3) 1

reduced matrix element is dominant for 70 L'=1 -+56 L=0 pion

decays . In constructing Table VII .A we have taken the h NN*

couplings from Table V of Ref .9,

	

and have assumed oppo-

site signs for S and D in calculating the a NN* vertex . Mi-
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xing between the two S 11or two Dt3 states in the 70 has Seen

neglected in computing the. predicted anplItu .les .

The "data" is taken from a recent analysis of elec-

tromagnetic couplings of N resonances from single pion
si

photoproduction data .

	

In terms of amplitudes A for ell
3

S1
of that analysis, matrix elements of D+~ are

<N ~j I D+" IN ) A-0 _
MN	

- 4 8 -

2 ii oC MN „ P ,

1

(VI 1-7)

where p. Is the photon momentum in the rest frame, and A

can take the values 1/2 and 3/2 . The results of Ref .51 ge-

nerally agree well with those of another recent analysis, 5Z

although the "errors" on the amplitudes quoted In the latter

are much larger .

	

Judging from the differences between suc-

cesive or Independent analyses, we would opt for larger

"errors" than those in Ref .51 , which are reproduced in Ta-

ble VII .A .

As a first comparison, we set the reduced matrix ele-

ment <70 L'=1 It (8,1)0 - ( 1,8)0 II 56 L=0> equal to zero, so that

we are left with only two terms in V 1D`t V, which are those
28,29

present in quark model calculations .The well determined

amplitude for i'p - D 3 (1520) with X-3/2 then determines the

reduced matrix element <70 L'=1 I (8,1)0 + ( 1,8)0 II 56 L=0> di-

rectly and fixes an overall free sign . The X=1/2 transi-

tion to the same resonance then determines the other reduced

matrix element, <7n L'=1 II (3,3
i

II 55 L=0> .

	

In fact, the

smallness of the T =1/2 amplitude deans that

<70 L'=1 II (8,1)0 + ( 1,8)0 II 5F L=0>

'= 2 <70 L'=1 II (3,3)1 11 56 L=0>

	

(VII-8)

All the well determined signs of the resulting ampli-

tudes agree with experiment (9, In addition to input) . How-

ever, the magnitudes of a number of the predicted amplitudes

are not In such great agreement with experiment . The A = 3/2

amplitude for

	

a'n -, D1°3 (1520) is too large . Mixing, at least

with the small mixing angles otherwise suggested5 3 will not

cure this, although it could well help to Improve the situa-

tion with regard to the poorly known 33(1700) amplitudes .

For the two

	

Sit
states, a fairly large mixing angle

Is known to be necessary from other considerations 53 and

such an angle would give S1t(1700) amplitudes which agree with

experiment In sign . The predicted S11(1535) amplitudes would

still be much too large, however . The amplitudes predicted

for S31 and 033 also are too large, and no mixing (within the

70 1=1) is possible in these cases . A fit to all the data

would of course scale down the reduced matrix elements, ma-

king the agreement better for the magnitudes of S31, D33 and

Sit amplitudes, at some cost to those of 0(1520) .

A second comparison of the theory with experiment is

also found In Table VII .A where all three possible reduced

matrix elements are allowei to he non-zero, and fixed by the

transitions )(p- D (1520) with A=1/2 and 3/2, and by
13
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Kn -* 00 0520) with A-3/2 . Again, all the well determined
13

signs agree with experiment, although the predicted (and

poorly determined experimentally) signs for D 13(1700) and

S11(1700) are opposite to those discussed above .

There still is trou5le in this case with the magnitu-

des of various amplitudes .

lltude is too small, as is

Mixing only hurts here, as

Is forbidden, resulting in

Xp-aS71(1535) and too small

Although the D 33 amplitude

experiment, that for S 31 Is

It is interesting to

have

The A-1/2, Yn-i
v
(1520) amp-

the amplitude for Yp - S+ (1535) .
11

the if'p transition to the other S1i

an even smaller prediction for

a result as well for Yp a 11(1700) .

predictions now agree well with

still much too large .

note that for thissecond fit we

<70 L'=1 II (8,1)0 + ( 1,8)) A 56 L=O>

<70 L'=1 11 (8,1)0 - (1,8), 1156 L=0>

	

(VI 1-9)

<70 0=1 p (3,3)1 II 56 L=0> = 0 .

Equality of the first two reduced matrix elements is exac-

tly what Is forced by vector dominance plus the scheme of

Petersen and Rosner
31 for vector meson decays . The reason

why <70 L'=1 II (3,3)1 II 56 L=0> should be small, which in the

fit Is forced by the smallness of the amplitude 1p -) 3(1520)

with A =1/2, is possibly an interesting theoretical problem .
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At the present time, given the uncertainties we feel

exist in the electromagnetic couplings of the N P 's, either

set of predictions should tie regarded as In fair agreement

with experiment as far as magnitudes are concerned . The

signs In either case are a triumph of the theory for both

pion and photon transitions and verify that S and D ampli-

tudes have opposite signs .

For transitions from the 56 L'=2 to the ground state

56 L=0 we also have in principle a largeset of alloweei amp-

litudes for comparison with experiment .

	

In practice the

amplitudes are less well known, as shown In Table VII .B .

The quantities In the Table, as in the previous one, are ma-
e.

	

+
trix elements of Dwith signs appropriate for Yp-+N" >u n

v
and In -+ N* .- lip. For the IT NN * vertex we express the two

reduced matrix elements for 56 L'=2 _ 55 L=0 pion decays as 48

<55 L'=2 II (8,1),- (1,8)a I 56 L=0> _ (2P + 3F)/5

<56 L'=2 II (3,3)1 - ( 3,3) 1 11 56 L=0> _ V_ (P - F)/5 ,

(VII-10)

' •there the amplitudes P and F correspond to e=1 or 3 pion an-

gular momenta, respectively . The relative signs of P and F

are the same (opposite), if the (8,1)0 - ( 1,8)0 ((3,3)1 - ( 3,3)_1 )

matrix element dominates . The reactio49,5O iN- i,~

	

indica-

tes that P and F have the sane sign, and we use this toge-

ther with Table VI of Ref .9 in constructing Table VII .B .

The "data" is again from Pef .51 .



To compare theory and experiment, we simplify the si-

tuation for the photon vertex by setting

<56 L'=2 II (3,3) 1 It 56 L=0> = 0

and

<56 L'=2 II (8,1)0 - (1,8)0 II 56 L .0> = 0,

This leaves only the <56 L'=2 II (8,1)0 + ( 1,8).11 56 L=0> and

<56 L'=2 11 (3,3)1 11 56 L=0> reduced matrix elements, as would
28,23

he the case In most quark model calculations .

	

Rather than

making a fit to all the amplitudes, we use the well measured

p - F15 amplitudes to fix the two reduced matrix elements,

and then calculate the re-wining amplitudes .

All the experimentally well determined signs, with

the possible exception of the F3S amplitude with A =3/2,

agree well with the theory .

	

In a previous analysis, both

the F35 amplitudes also agreed . The signs of the P33(2000)

amplitudes among the p-wave 11N resonances, provide some (mar-

ginal) support for the P and F amplitudes at the pion vertex

to have the same sign, as the itN - G a analysis shows much

more definitely .

The magnitudes of the predicted amplitudes are in fair

agreement with what Is observed . There is no need to allow

<56 L'=211 (8,1)0 - ( 1,8)0 115G L=0> and <56 L'=211 (3,3)1 1156 L=0>

to be non-zero .

	

In fact, fitting all four reduced matrix
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+

	

0
elements to ) P ~ Fis with d=1/2 and 3/2, xn~ F, T with A=3/2, and

'do -> P31 with A=1/2 results In essentially the sane predic-

tions ; the two additional reduced matrix elements have va-

lues more than an order of magnitude smaller than either

<56 L'=211 (3,3)1 1156 L=0> or <56 L'=2p (8,1)0 + ( 1,8),11 56 L=0> .

The smallness of the A=3/2 amplitude for b'n - s by itself

assures the strong constraint on the two additional reduced

matrix elements,

-45 <56 L'=2 I (3,3)_1 1 56 L=0>

+4f~ <56 L'=2 It (8,1)0 - ( 1,8)0 II 56 L=0> .
4S

(VII-11)

There is thus fairly good evidence In this case that

only the two reduced matrix elements found in the quark mo-

del are present at a significant strength, and, in particu-

lar, that equality of <56 L'=2 II (8,1)0 + ( 1,8)0 11 55 L=0> and

<56 L'=2 11 (8,1)0 - ( 1,8)o II 56 L=0> is ruled out .

Finally we examine the transitions from a "raiially

excited" 56 L'=0 hack to the ground state 56 L=O . The 56

L'=0 Includes the Roper resonance Pi1(1470) and 3 3(1718) . We

fit the one possible reduced matrix element,

<56 L'=O 11 (3,3)1 11 56 L=0> to the amplitude for D'p-tP (1470)

and predict the other amplitudes in Table VII .C using the

56 L'=O -+ 56 L=0 matrix elements from Table VI .A . Again the

signs are those In Yip-jiTn and 'n--+itp . The experimental

results of both the Berkeley tand Lancaster2 analyses are shown,
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there being some discrepancy between the two .

VIII . SUMMARY AND CONCLUSIONS

The operator V, which by definition takes us from a

current to constituent quark basis, contains In principle

all the information about matrix elements of the weak and

electromagnetic currents when taken between hadron states,

assuming that the hadrons can be treated as if constructed

out of (constituent) quarks . Knowing V, we would know the

exact transformation properties of hadrons under current

algebra . We have shown In Section III that these proper-

ties are complicated, and that a phenomenological attempt

to determine them by fitting experimentally known trans! -

tions does not lead to a unique solution, as the number of

parameters Involved is greater than the number of availa-

ble experimental quantities . Lacking a complete knowledge

of V, we have abstracted only certain of its algebraic pro-

perties from the free quark model and assumed that they

hold in the real world .

	

In particular, we have abstracted
1 ¢m

here properties of the operators V D, V, which correspond

to those which induce real photon transitions between hadrons .

-54-

In our case, abstraction from the free quark model

leads to 17 Det V being assumed to he the sum of four terms
which transforms as : {(8,1)0 + ( 1,8) ,1} , {(3,3)1 ,0 },

{(8,1)0 - ( 1,8)0 ,1} and {(3,3)1,2}, all of which belong

to 35's of the full SUMW of Currents . In Section IV we

have shown how matrix elements of Dt are related to real

photon amplitudes and how they may be expressed as as sum

of Clebsch-Gordan coefficients times at most four indepen-

dent reduced matrix elements, once initial and final Sum.
multipIets are specified . '!e have shown that the theory

leads to nultipole selection rules, a particular example of

which Is the old SUM result that the transition from the
to

nucleon to 3-3 resonance is magnetic dipole in character .

In fact, we may generally express the four reduced matrix

elements for transitions between L=O and any other multi-

plet In terms of four nultipole amplitudes, two electric

(of the sane j x ) and two magnetic . These selection rules

yield very Interesting predictions, which may be subject to

a qualitative experimental test in that low values of j y

(and t for pions) are forbidden for L' >, 3 -) L=O transi-

tions, even though they are otherwise allowed by spin-parity

considerations and even favored by angular momentum barrier

arguments .

When applied to mesons there are many amplItudes which

are related, but little to compare with experiment besides

transitions between vector and pseudoscalar mesons, both
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of which lie in 35 and 1 with L=O . The available data are

consistent with the theory, but little else can be said at

the moment .

For baryons on the other hand, we have years of expe-

rimental effort that has been devoted to pion photoproduc-

tion in the resonance region, from which baryon electro-

magnetic couplings may be extracted by phase shift analysis .

For the 70 L'- 1 baryon states, not only do we find agree-

taent of all the experimentally well determined signs with

the theory, but also the photopion matrix elements, which

contain Information on both 'NN* and IrNN* vertices, indi-

cate that the S and P wave amplitudes at the pion vertex
49,50

have opposite sign . This is in agreement with the results

from the reaction

	

GN - r 0 . For the 56 L'=2 baryon reso-

nances, again all signs agree with the theory, except for

possibly one of the gyp- FZS amplitudes . There is also an

indication from XN'+ 1N that the P and F amplitudes at the

,T NM vertex have the same sign, in agreement with the re-

sults9 ' SO fron IiN -i LA . While the signs check very well,

the magnitudes, particularly for the 70 L'=1 -'56 L=O tran-

sitions, leave something to be desired . Given the uncer-

tainties in the experimental analyses, however, we feel that

the present situation Is fairly satisfactory .

The general outlook is then quite good . Between the

phase shift analyses of TFN iA and d'N > 1 N, more than 25

signs predicted by the theory agree with experiment . For

- 56 -

the first time we have some good evidence that not only Is

the multiplet structure of the quark model found In Nature,

but further that the wave functions of the states resemble

those of the consituent quark model in that the relative

signs (and more roughly, magnitudes) are correctly predic-

ted with such an assumption . However, neither the results

for the W NN * or the F 11N * vertex correspond to the hypo-

thesis of SII(6) w conservation ; the nest direct and power-

ful evidence being the signs and magnitudes of amplitudes

for 70 L'=1 baryon resonances to decay into TiN, TrQ and
28,29

l. The predictions resulting from the quark model, where

the reduced matrix elements are explicitly calculable, are

wrong in places also - In particular in the signs of pion

transition amplitudes for 56 L'=2 --•5 6 L=O baryons .

it may now be used as

a tool to help classifying new resonances Into multiplets by

using information on their signs in T&N- TtA and 3i -iiiN .

What is still needed Is a dynamics, or possibly an even

higher symmetry, which will correctly .give the magnitude and

sign of the reduced matrix elements .

	

This, an ,-1 the exten-

sion to q2 ¢0, remain as important problems for the future .
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With the success of the theory,



Acting on this state, S gives

11.,11/2,1/2>I1/2,1/2> + 1 I1/?,1/2>11/2,1/2>,
VZ

	

V-2
-58-
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APPENDIX Baryons (cont'd)

56

	

2

	

8 1

	

3/2'

	

P13( 1770 )
Baryons

5/2 1

	

F1s(1688)

104

	

1/2t

	

P31(1860)
Listed are non-strange members of'the baryon multi -

3/2 1

	

P33(2000)
plets . The names of the resonances conventionally used in

5/2 t

	

F35(1360)
phase shift analysis are also given47 For baryons, since

7/2 1

	

F37(1920)
they are composed of quarks only, W=S . No mixing is assumed .

N om( A ) (mass, MeV)
2i, 22.

Mesons
SU(6)~, L SU(3)ZW-1 J P

Mesons are composed of a quark and an antiquark, and

56 0 8 z 1/2 t P71(940)
since W3 =z ,, In calculating the SU(6)W matrix elements (spe-

10 4 3/2' i33(1236)
cifically, the W-spln Clehsch-Gordan coefficients), we must

remember the W-S correspondence :

IW,IJ0 - 11,1>

	

IS,S2 > = 11,1>
56 0 8 Z 1/2 1 P11(1470)

IW,W t > - 11,0>

	

iS,5 2 > = - 10,0>
10 4 3/2* P31(1718)

III,W } > - I1,-1>

	

IS,S a> _ -11,-1>

Iw,19t> = 10,0>

	

I

	

IS,S t> = -11,0> .
70 1 8 1 1/2 - S (1535)

3/2 -
1i

D13(1520)
A simple way to obtain these relation Is to look at the ac-

8 4 1/2 -
tion of W,+ and S t on the states, e .g .

Sit(1700 )
It in, 1/2,-1/2> = S 1 Iq, 1/2, 1/2> = Iq,1/2, 1/2>

3/2 013(1700)
W + Iq, 1/2,-1/2> _ - St 14, 1/2, 1/2> =-19,1/2, 1/2>

5/2- Dty(1700)
10 1 1/2 S31(1650)

Building

	

fromstates

	

qq :

IS,s2 > = 11,0> _ ~ 11/2,1/2)11/2,-1/2>
3/2 - 03j(1670)



which is the sane as j times IS,S?. > = 11,1> . The "+ ope-

rator, however, when actin,, on the IS,S Z>=11,0> state, gives

-V11./2,1/2>11/2,1/2> + V2 11/2,1/2>11/2,1/2> = 0 , so

that the lS,S;> = 11,0> state corresponds to the t'=0 state .

For L=0 (ground state) mesons we list both the S-spin

ani U-spin assignment . For L=1 the 1.I-spin assignment be-

comes too involved, as many mesons `save components with both

W=1 and U=0 ; so for L=1 mesons we list the S-spin only .
47

Given are the 1=1 and 1=0 members of meson multiplets .

The 1=0 physical states are mixtures of SUM singlets and

octets (see

	

Section V) .

SU() W

	

L

	

SUM

	

(3) (3)
IW+ 1

	

J P

	

I=0, 1=1 state

0

	

]. 1

	

1

	

longitudinal w (f)

35

	

0

	

a 3

	

a-

	

7 M _
(9)

, it

1 -

	

transverse to , f

8 1

	

1 -

	

longitudinal 0(el, S
1 3

	

0

	

(
[i)

SUM.

	

L

	

Sit( 3)25+1

	

J PC

	

1=Q, 1 .=1 state

1

	

0

	

1 1

	

0 -

35

	

0

	

8 1

	

0 -

[8+1] 3

	

1 -

-so-

1 s

I4nsnns (cent's)

35

	

1

	

[8 + 1] 3

	

2 ++

	

f,f',A,

	

A1

0'r

	

5?, o,6

R 1

	

B

1

	

11

	

i +-

-G1-
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TABLE V.A
TABLE V.B

The

taken

Matrix elements for photon transitions among 35 and 1 L = 0 states .

w and $ are assumed to be ideally

as the SU(3) octet and sin .-let pseudoscalar

mixed, while the n and X° are

mesons (see text) .

Predicted and experimental widths for radiative transitions among

35 and 1 L = 0 mesons .

Transition

	

<
Coefficient of Decay

Predicted Width (KeV)
(no mixing)

Predicted Width (NeV)

	

Experinmental
(0 P = -10.5°)

	

Width (KCV)34,3s35 L' = 0 ;1(3, 3) 111 35 L = 0 >

W -yr /6 w

	

yir 390 (input) 890 (input)

	

390 ± 90

p -yr 43/18 p

	

y r 94 94

	

< 730

(P + yr 0 ¢

	

yr 0 0

	

< 14

p -'Y 77 1/6 p

	

Y 77 37 57

	

< 160

1/18w - 'Y 77 w

	

y0 5 7

	

< 49

- 7 77 V

	

yn 230 170

	

126 t 46

'YP 12/6 X° -- y p 160 120

	

0.26 P(X°- all)

X° -yw [-2/18 X° - yw 15 11

¢ - 7X° 0.5 0.6
0 -y X° 1/9



TABLE V C

Photon transition amplitudes from non-strange mesons 33 with L' = 1 and

Jz = A to those with L = 0 and JZ = A - 1 . The w, f , D, and v are assumed to

be ideal mixtures of singlets and octets, so as to be composed purely of non-

strange quarks ; the n and 11 are purely octet, and the X ° a pure smglet .

Zweig's role3Z is used to relate SU(6) 1`, 3_ and 1 reduced matrix elements (see

text), mid forbids decays like A 2, A 1 , 6, f, D, a - y U and f' -yp or yw .

-70-

TABLE V. C (cont'd)

AA IA 2 - Yw] = 3ATIA2 _ YPl

AA If -ypl = 3AA[A2 -- YP1

AA If -yw] = AAIA2 - YPI

AA If' -vp] = -2AA(A2 -YPI

AA [A 1 -- Yw] = 3AAIA1 -'YPI

-71-

a b c d AA ID - YP] - 3AAIA1- YP1

A=1 0 3/8 G/ 12 AA ID -Ywl = ARIA,-- YP]

'ya+ , A=1 0 - ;3/8 F-6/12

B - y u, A= 1 f-6/24 0 0
AA [6 - yw] = 3A X[6 - YP1

B

	

Y'0, A=1 r-2/8 0 0 AA Iv -. yp] = 3AX 16 -- YP]

B- Y X°, A= 1 1/4 0 0 AA Iv -Ywl = AA16 - YP1

11 - y R, A= 1 ~_2/8 0 0

11 -- y0, A=1 r-6/24 0 0 (a) . Transition

H - yX° , A=1 x/12 0 0 (b) • Coefficient of <35L'=111(3,1) 0 +(1,S)0 035L =0 >

1/24 -1/12 -~~/36 (c) . Coefficient of < 35 L'

	

10 (3, 3) 1 11 35 L = 0 >
A2 -- yp, A=0

A = 1 r-3/24 - .3/24 0 (d) . Coefficient of < 35 L' = 111(8, 1) 0 - (1, S) 0 11 35 L = 0 >

A = 2 /1/24 0 T-3/18

A1 - yp, A=0 f-3/24 0 -x/36

A = 1 f-3/24 r-3/24 0

6 -- yp, A=0 ]/24 F-2/24 -1/18

B

	

YP, A = 0 0 -q6/24 0

A=1 0 0 T-3-/6



TABLE VI . A
TABLE VI .B

Photon amplitudes for transitions from 56 L' = 0 states with Jz = A Photon amplitudes for transitions from 70 L' = 1 states with

to 56 L = 0 states with J = A-1 .
J = A to nucleon and delta states in the 56 L = 0 . States arez

	

-z

Transition
Coefficient of

< 56 L' = 0 11(3, 3) 1 1156 L = 0 >
labelled by JP and [SU(3) multiplet] 25 .+1 where S is the

quark spin .

N+(1/2+) -' Y N+ , A = 1/2 ( -2/15) 11-5 a b c d

N°(1/2+) -• y N° ,

	

A = 1/2 (4/45) N'r(3/2 ) --YN+ , A = 1/2 -,i2/12 .,' 2/6 2/12

[31 2 A=3/2 -x/12 0 -[-6/12

4+(3/2+) - y N+ , A = 1/2 (-2/45) J 10 A = 1/2 2/12 -~2/18 - ~-2/36

A = 3/2 (-2/45) 30 A = 3/2 -6/T 12 0 'rTv36

- TA', 21 = -1/2 0 'T-3/9 0
AA[A

+
y YN

+ 1
= AA[ Ao-' YNo 1

A = 1/2 0 1/9 -1/9

A++(3/2+)-- Q++,
A = - 1/2Y (-4/45) A = 3/2 0 0 -./9

A = 1/2 (-S/45) •r

N"(1/2 ) - yN A = 1/2 -1/6 -1/6 +1/6A = 3/2 (-4/45),T-1-5 ,

181 2 -yN°, A=1/2 1/6 +1/18 -1/la

AA[o'- yo'] = (1/2) A A [i ye
, l

-TA+, A=-1/2 0 .s/1s 0

AA[ A0 - yo° 1= 0 A = 1/2 0 -v2/1s - r-2/9

AA [A -' yA 1 = -( 1/2) AALO++,
y0++

] M(1/2 ) - y N+ , A = 1/2 -1/6 +1/1s -1/18

(1012 _ y
\+,

A = -1/2 0 - ~/1s 0

A = 1/2 0 5/18 r2-/9



TABLE VI. B (cont'd)
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a b c d TABLE VI .B (cont'd)
a

	

b

	

c

	

d

A*(3/2-) - A = 1/2 --2/12 --2/18 -F2/36
N*(1/2)-yN+,

	

a=1/2

	

0

	

0 0

2 A=3/2 -~-6/12 0 -Gr /36
[10 ] (314 -- • yN° ,

	

A = 1/2

	

0

	

-1/18 +1/13
p+, A = -1/2 0 -3-/9 0Y

yp+,

	

X=-1/2

	

-x/12

	

- T-6-1 I s x/12

A = 1/2 0 -1/9 1/9
X = 1/2

	

-4-2/12

	

-r-2/9 r?,/36

A = 3/2 0 o r-3/9

N*(5/2) -- y N+, 1= 1/2 0 0
A$

	

yN+) = AT(A*°-•y N)

[8 14 A = 3/2 0 0 0 Ax (N*+ yp
+) = A.,(N *O " yAo)

- y N° , A = 1/2

A = 3/2

0

0

1/30

,1_10/30

r5-/30

10/30

Al(p*i1-_ yA++) = 2AT ( F- Yp+ )

X = - 1/2 - .T-3-0160 3-0/30 30/60
AA(A"°- yA°) = 0

X = 1/2 - 30/20 10/15 10/60
Ax(A* - yA ) _ - AA(A*+-• Yp+ )

A = 3/2 -11/10 ~5/15 - x/30 (a)

	

Transition

N*(3/2) -• y N+ ,

A = 5/2

T = 1/2

- F3-16

0

0

0

4-3/6

0

(b)

	

Coefficient of<70L'=111(8,1) o +(1,8) 0 1156L=0>

(c)

	

Coefficient of<70L'=lil(3,3) 1 1156L=0>

1814

--y N°

A = 3/2

a=1/2

0 0

f-5/90

0

2 ~-5/45

(d)

	

Coefficient of<70L'--10(8,1) 0 - (1,3) 0 11 .56L=0>

A=3/2 0 15/30 + 15/45

y p+ A = -1/2 - 30/30 30/90 30/30

X = 1/2 -,(-10/15 10/45 10/45

A = 3/2 - 30/30 -T-3-0130 - 30/90



TABLE VI. C

Photon amplitudes for transitions from 56 IJ = 2 states with J z = A to
TABLE Vt . C (cuot'd)

a

	

b

	

e d

	

enucleon states in the 56 L = 0 with J, = A - 1 . States in the 56 L' = 2

are labelled by JP and [ SU(3) multiplet] 25+1 where S is the quark spin . ' 2J 4C3 22A. (1/2 +)

	

-y N,

	

A = 1/2

	

0 45 45

	

45

b e d e [10]4

N*(5/2+) - Y N+, A = 1/2 1 .5 15
F3 0 2

15 AA[A*+-yN+] = AT[A*°-yN°]

[8 ]2 A = 3/2 -L 1_2 01 15 15

- y N° , A = 1/2 0 45 ,1-3 0 4
45

a - Transition

4 4J b -Coefficient of<56L'=211(3,1) 0 +t1,8)0 1156L=0>
A=3/2 0 0 45 45

-FG

c - Coefficient of < 56 C = 2 11(3, 3) 1 1156 L = 0 >

N*(3/2+)
- YN+ , A= 1/2 15 -r 15~-2 0 15

d - Coefficient of <56 L' = 2 ;1(3, 3) 1 11 56 L = 0 >

4 vf2- e - Coefficient of < 56 L' = 211(9, 1) - (1, 8) 0 1156 L = 0 >
[81 2 A=3/2 -15.r2 0 15 15

0

0 2,f-6
-yN A=1/2 0 45

0 	45
8 2tif-2A = 3/2 0 0 45 45

4,7 2. 42 8 21
A*(7/2+) -'yN+, A=1/2 0 _ _

105 315 315

[10] 4 A=3/2 _0 4,f 15 2,F7-0 8 Ts
31J 315 315

2472 4~ 2 14
Ak(5/2+ ) -yN+, A = 1/2 315 10 .5 63

4 4F-21. 8 14 _ 4,1_7
[10] A = 3/2 0

_
105 315 315

2,[-2 4,[-3
A*(3/2+) A = 1/2 0 0

45 45
2F 4 4,f-2

[10] 4 X = 3/2 0 45 4545

-76- _77_



TABLE VI . D

- 7 8 -

TABLE VI. D (coot' d)

_79_

Photon amplitudes for transitions from 56 L' = 2 states with JZ 2 a b

	

c d e

to delta states in 56 2 - 1 . States in the 56 L' = 2L = 0 with Jz=
A*(5/2+) -

	

T=-1/2yA+ _,L21

	

2,17

	

0 -121
are labelled by J Pand [SUM multiplet]

2S+lwhere S is the quark spin . 35

	

105 35
[10] 4

	a	b ----c	d e-- 7

	

4,'-21

	

2+ f7
a=1/2 Ti-

	

315

	

105 63
N*(5/2+ ) - yA+ A =-1/2 0 4,12 0 0 114

	

2,142

	

16,7 ,114X = 3/2 105

	

105

	

315 315
[8]2

,210

	

0

	

4,1105A = 1/2 0 00 6 0 5 a=5/2 x210
105

	

315 105
8A = 3/2 0 0 45 ,12 45

6
A*(3/2+) -

	

a=_ 1/2 15

	

4513 0
T=5/2 0 0 45,x0 0 45

[10]4
4a=1/2 0 045 451s4N*(3/2+ ) - A =- 1/2 0 45 0 0 2 4 2

[8]2
A=-3/2 15 ,,-5,13 45 r2 45

a = 1/2 0 -4- 0 4 F
45 45

4T=3/2 0 0 1, 45 A*(1/2+) --

	

A = -1/2 5 4 3 0 _
15

[10] 4
A = 1/2 '

	

_ 4 .2yf6 3
15 45 45 45

*(7/2 ) - y A=- 1/ 2 - 2 ,114 2,142 0 2 114
105 105 105

[10] 4
A~(N*+- YA+)

	

A0- YA0)

2,1_42 4,44 2,121 2,42 A3(A*++- yA++) = 2A21(A*+- YA+)
A = 1/2 105 105 315 105 AT(A*o - YA0) = 0

A =3/2 2,f76 2,1210 4,135 2,J70
AT(A* - yA ) _ -A2(A

	

A )

------------------------------105 315 315 315

2=5/2 2,f-70 0 2,170 2,170
a- - Transition

(8, 1) + (1,8)0110 56 L = 0 >b - Coefficient of < 56 L' 2 I1
105 105 105

(3,3) 1 11 56 L = 0 >c - Coefficient of < 56 L' = 2 11
d - Coefficient of < 56 L' -= 2 II (3,3)-1 1156 L -- 0 >
e - Coefficient of < 56 L' = 211 (8,1)o- (1, 8) 0 II 56 L = 0



TABLE VII.A

Comparison of matrix elements of D+ + (1/fl) D8 for 70 L' = 1 -- 56 L = 0 photon transitions with

experiment . S1 Nucleon resonances are identified as in Ref . 18 with the quark model states, which

are labelled by their quantum numbers J P and [ SU(3) multiplet] 2S}1 , where S is the quark spin . The

signs of amplitudes are those in yp - 7r+n and yn - ,r p, with the S and D amplitudes at the 7rNN*

vertex taken to have opposite sign (see text) .
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Transition

< N*,AID+ IN, A-1 >

Experiment S1

< N*,AID+ I N, X-1>

Predicted with

< N*,AID+ I N, A-1 >

Predicted with

(1/GeV) <7011(8,1) 0 -(1,8) 0 1156> =0 <7011(8,1) 0 -(1,8) 0 1156>#0

D13(1520) --yp, A = 1/2 -.10 t .04 - .10 (input) - .10 (input)

3/2- , [81 2 A = 3/2 +.91 f .06 + .91 (input) + .91 (input)

-yn, A = 1/2 + .41 t .03 +.32 +.23

A = 3/2 + .64 t .05 +.91 + .64 (input)

S11(1535) -- y p, A = 1/2 + .30 ± .10 +1.18 + .07

1/2 - , [ 8] 2 -- y n, A = 1/2 + . 27 t .03 +0.89 + .30

531(1650) --yp, A = 1/2 + . 16 t .07 +.59 + .53

1/2 -, [10 ]2

1333(1670) --yp, A = 1/2 + .36 ± .04 + .73 + .36

3/2-, [10 ]2 A = 3/2 + .32 * .04 + .91 + .38



TABLE 'Al . A (cont'd)

Transition

<N*,AID+ IN, A-1>
Experiment Si

(1/GeV)

<N*,AID+ IN, A-1>

	

<N*,AID+ IN, A-1>
Predicted with

	

Predicted with
< 7011(8, 1) 0 - (1, 8) 01156 > = 0

	

< 7011(8, 1) 0 - (1,8) 0 1156 > ~ 0

D 15(1670) yp, A = 1/2 + .06 t .07 0 0

5/2 -, [8] 4 A = 3/2 + .07 t .04 0 0

yn, A = 1/2 +.20 t .03 + .20 + .13

A = 3/2 +.33 t . 14 +.28 +.19

D13(1700) - yp, A = 1/2 -.07 t .18 0 0

3/2- , [8] 4 A=3/2 +.141 .18 0 0

-- -y n, A = 1/2 + .16 t .18 +.07 -.19

A = 3/2 -. 11 t . 11 +.34 -.19

S11(1700) -. . -y p, A = 1/2 +.26 t .08 0 0

1/2 -, [ 8] 4 _ yn, A = 1/2 +. 07 t .16 - .15 +.12





TABLE VN.B

Comparison of matrix elements of D+ + (1/f3) D8 for 56 L' = 2 -- 56 L = 0

photon transitions with experiment . St Nucleon resonances are identified as in

Ref. 47 with the quark model states, which are labelled by their quantum numbers

JP and (SU(3) multiplet] 25+1 , where S is the quark spin . The signs of amplitudes

are those in y p - a+n and y n - it p, with the P and F amplitudes at the nNN*

vertex taken to have the same sign (see text) .

TABLE VII. C

Comparison with experiment of matrix elements of D 3 + (1/13) D8 for

photon transitions from resonances in a radially excited 56 V = 0 multiplet to

the nucleon in 56 L = 0 . Amplitude signs are those in yp - i+n and yn-i p .

Transition

Predicted
Matrix
Element

Experimental Matrix Element

Ref. 51 Ref. 52

P 11(1470) - yp, A = 1/2 -0.37 (input) -0.37 1 0 .04 -0.55 ± 0 . 13

-- Y n . A = 1/2 -0.25 0 a 0.07 -0.51 + 0.32

P33(1718) -'Yp, A = 1/2 -0.18 +0.01 1 0 .07 . +0.07 1 0.25

A = 3/2 -0.31 -0. 15 1 0 . 10 +0.33 1 0 .29
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Transition

<N*,AID IN, A-1>+
Experiment 51

(1/GeV)

<N*, AID+ IN, A-1>

Predicted with
< 5611F3,3)_ 1 1156 > and

< 569 (8, 1) 0 - (1,8)O1156 > = 0

F 1G(1688) -.yp, A = 1/2 - .071 .06 - .07 (input)

5/2+ , [8] 2 A = 3/2 + .441 .03 + .44 (input)

-yn, A = 1/2 - . 11 1 .02 - .26

A = 3/2 0 1 .08 0

P13(1770) -yp, A=1/2 - .021 .14 -.70

3/2+ , [8] 2 7, = 3/2 - .03 * .13 + .22

-yn, A=1/2 - .061 .06 -.21

A = 3/2 + .03 1 .11 0

F37(1020) -yp, A=1/2 -.271 .05 -.17

7/2+,[1014 A = 3/2 - .30 f .04 -.22

FS5(1860) -Yp, A= 1/2 +. 17 * .06 -.07

5/2+ , [10] 4 A = 3/2 -.09 * .08 - .30

P33(2000) --yp, A = 1/2 - . 12 1 .07 - .11

3/2 b,[ 10] 4 A = 3/2 +.05 * .03 + .18

P31(1860) -yp, A='1/2 +.041 .05 -.11

1/2+ , [10] 4
_82-



Part 2 .

SATURATION OF THE DRELL-HEARN-GERASIMOV

SUM RULE

_84-

I . INTRODUCTION

I
The Drell-learn-Gerasimov suns rule for the spin-flip

amplitude in forward Compton scattering rests on two very

basic and simple assumptions . These are the low energy the-

orem for the spin-flip amplitude and the validity of an

unsubracted dispersion relation for this amplitude in Com-

pton scattering .

Since these are very basic and well accepted assump-

tions, it is of interest to look Into the validity of the

Drell-Hearn-Gerasimov sum rule in the light of presently

available experimental data, which have much Improved in

the last few years .

An unsubtracted dispersion relation for the forward

spin-flip nucleon Compton amplitude f 1 ,

Re fz ( Yf = sV

	

y'4v

	

Im f2 cy')

	

(1)yo

gives the Drell-Hearn-Gerasimov t sum rule

x
z r,

1~

	

V , ) J o1V, 1R

	

V
0

(2)

when the low energy theorem is applied to 2(v) . here," I s

the nucleon's anomalous magnetic moment, M the nucleon's

mass, V, the threshold energy for a single pion photoproduc-
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tion, which in the laboratory is

ve- ~u + iy)li O0 150 Mev
2M

(3)

and c 11 (a"i1 ) Is the total cross section for the process :

photon + nucleon -a hadrons in the net helicity state 3/2

(1/2 . These cross section enter the sum rule when we use

the optical theorem (to order oC ) to relate the imaginary

part of the forward scattering amplitude to the total cross

section Into the Intermediate states .
1

In their original paper, Drell and Hearn did attempt

to Investigate the validity of the sum rule for a proton

target by using an Isobar model of single pion photoproduc-

tion . Their results were generally encouraging but some

Important contribution from high energy (greater than 1 GeV)

seemed to he likely . Somewhat later, Chan et al . extended

the .examination of the proton sum rule using an analysis of

single pion photoproduction through the second resonance

region . They found good agreement without any high energy

contribution . Finally, In the course of an analysis of many

sum rules, Fox and Freedman 4 have considered the Drell-Hearn

Gerasimov sum rule, using Walker's partial wave analysis's

of pion photoproduction . They found the somewhat suprising

- 8 6 -

result that while the sum rule involving only the isovector

part of the electromagnetic current appeared well satisfied,

the sum rule Involving one isovector and one isoscalar cur-

rent, equivalent to the difference of proton and neutron sum

rules, was badly violated .

Since that time, there has been a considerable impro-

vement in both the pion photoproduction data and their ana-

lysis . In particular, relatively good neutron data are be-

coming available and have been incorporated in the recent

results of Pfeil and Schwela band Moorhouse and Oberlack .
7

Given this changed situation, we reexamine in this work

the Drell-Hearn-Gerasimov sum rule for both proton and neu-

tron targets, with particular attention to their difference .

In the next section we give the relevant definitions and the

contributions to the sum rule using several recent analyses

of pion photoproduction . The third section contains some

conclusions .

II . ANALYSIS OF CONTRIBUTIONS

The sum rule in Eq .(2) can be decomposed into three

sum rules of different isospin character . We will show that

the three sum rules provide more detailed and sensitive tests

than the proton (neutron) sum rule alone .

The isovector and isoscalar magnetic moments of the
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nucleon are defined as

(4 )

µ S
I p ~ H

(P ) + ~'` R

where ppi .)(r-p(n))

	

is the proton (neutron) anomalous magne-

tic moment . The Drell-hearn-Gerasimov sum rule may then he

separated into three distinct sum rules,

the isovector-isovector sum rule :

1

I v v = S 0',~Z w~ - 6yy ( Y )~ v

	

2

	

M,
~ 21 B . /"' (5 a )

a

the isoscalar-isoscalar sum rule :

dv'

	

t 21 'T

	

0.3 6
I 55 = S C6,;2 (y'? - ~;1 (19 v = ( Z""~ M2 =

	

f

V~

	

(Sb)

and the "interference" sum rule :

„3/12(Y,)"`
y , dvz; =-14.77,bi~5 = So C ~Z()

	

Y? ( )J

	

2

	

M
(5c)

Here ow (os s ) corresponds to the interaction of the isovec-

tor (isoscalar) component of the photon with the nucleon,

and 6
v1 corresponds to the difference between photon-proton

and photon-neutron interactions .

_88-

Presently, the data limit direct study of the satura-

tion of these sum rules to the contribution (to the total

cross sections 6yi and c ) of the nucleon and one pion final

hadronic state . Resonance dominance then allows one to es-

timate also a part of the inelastic contributions . Still,

one may well hope that the largest contributions come from

not too far above threshold (particularly since possible higher

energy contributions to the o- C difference are multiplied

by a 1/v factor), so that the nucleon plus one pion state will

at least provide an indication of these sum rules saturation .

Consider then the contribution of the nucleon plus one

pion state . Single pion photoproduction amplitudes have a

simple isospin decomposition : s

M Z P~_h V3[MV2 (M~)- M`a))J

	

(6a)

M0Pa- =Ir (MN + ~ (MCI) - M °̀))]

M

	

=v ~M(3 ~ - Vf

(M(1) .j M (°) )]

-89-

(6b)

(6c)



MP) corresponds to the isospin 3/2 and M (1) to the isospin

1/2 s-channel amplitudes of the isovector component of the

photon current ; M (O) describes the interaction of the nucleon

with the isoscalar component of this current .

The one pion photoproduction cross sections of definite

isospin character are then proportional to the following com-

binations of amplitudes :

6-w cc I M(3)1 1 + I M (° 1 2

(F'
SS

-C

	

M 101 1 1

TVS " - M (0)* M(1) - M(') MO.)*

Additionally, we will make use of the decomposition of

definite helicity cross sections for this process in terms of

amplitudes of definite angular momentum and parity : -/' 8

yr =
8k

	

2 (m+1) (I A n+ 12 +

	

2~

(7)

6--~, _ STL~m(a+I)(m+2)
IBM

+I 2 t I (~

	

I z )z k

	

4 - (

-go-

(8)

A , and Bm+ correspond to a state with final pion orbital angu-
m-

	

-
m- I

lar momentum n, definite parity P = (-1)

	

and the total angu-

lar momentum j = n'- 1/2 .

The above relations (Eqs .(5), (6), (7) and (8)), allow us

to consider the isovector-isovector, isoscalar-isoscalar, and

interference sum rules separately, to Insert the single pion

plus nucleon intermediate state cross sections into the inte-

grals, and to separate the contributions of each partial wave .

For example, the single pion plus nucleon part of the isovec-

tor-isovector cross section in the net helicity state ;k= 3/2

is

Zv _ k
2

	

m.(„ 1~(m+2)lIB(3) h t I RC1) I z + I
g

+ii' :+ I

	

I21
l TL

	

(„+I)

	

h

	

MI

	

/)
(9)

Since we can extract the contributions of definite isospin

and of definite total and orbital angular momentum, we expli-

citly have the contribution due to each resonance and using

the known inelasticity we are subsequently able to evaluate

the corresponding part of the inelastic contribution to the

integrals .

A . The Isovector-Isovector sum rule .

Table I presents the results of the analysis for the iso-

vector-isovector, I vv , sum rule . We have assumed for those

partial waves which receive contributions from resonances that

the resonant contributions are dominant, and on this hasis we

evaluated the corresponding inelastic contributions to the sum

rule . The analysis extends in photon laboratory energy, "LAB ,
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from just above the threshold to 1 .2 GeV . We have evaluated

the contributions for 1peQ 0 .45 GeV and Lpe >, 0 .45 Gcv separa-

tely, since the prominent 3-3 resonance is below this energy

and higher resonances above, so available analyses G make this

a natural division In ~/Lp8 .

For 'LAO below 0 .45 GeV we find good agreement between

the results obtained with the analyses of Refs . 6, 7 and 8 .

Since the Pfeil-Schwela fit extends to the lowest energy, we

have chosen to list the contributions obtained with their ana-

lysis in this region, where possible .
10

For "LAS above 0 .45 Ge'J

the values resulting from Refs . 6 and 8 also agree well and we

list only the contributions obtained with the recent Moorhouse

-Oberlack fit .

The inelastic part is evaluated as a sum of inelastic con-

tributions of N*(1520), N*(1670) and 9(1688) (D13 , D1S and Fis ,

respectively) .

Fig .1 shows the behaviour of one pion plus nucleon contri-

bution

	

vv
bution to m4,2-ts y2 as a function of energy . One can easily re-

cognize in this graph the dominant features of a big negative

non-resonant s-wave contribution and a large positive contribu-

tion from P33(1236) and two other resonances .

B . The Isoscalar-Isoscalar Sum Rule .

Table II presents the results for the isoscalar-isoscalar

Drell-Hearn-Gerasimov sum rule . There are serious discrepan-

-9Y-

cies between the results obtained with different fits, which

extend even to a disagreement on the signs of various contribu-

tions . This difficulty has been previously noted by Fox and

Freedman 'The isoscalar-Isoscalar amplitudes cannot he extrac-

ted directly from the data . Instead, as can be seen from

Eqs .(b) and (7), they must be obtained indirectly from the sum

and difference of the proton and neutron data . This results in

relatively large errors, as the isoscalar-isoscalar amplitudes

are small compared to those of the proton or neutron .

The behaviour of the one pion plus nucleon contribution
ss ss

	

6
to a- -0-, in Fig .2 combines the Pfeil-Schwela and the Hoor-

house-Oberlack7 results . To observe some sysytematic trend

and to be able to conclusively evaluate the isoscalar-isosca-

lar sum rule, we must wait for more accurate and higher energy

data .

C . The Interference Sum Rule

Table III shows the present state of the isovector-iso -

scalar sum rule . The combination of amplitudes involved here

corresponds to 1=1 exchange in the t-channel, or in other

words corresponds to the difference between the proton and

neutron Drell-Hearn-Gerasimov sum rules . lie expect a negative

value for the integral I vs , since it is proportional to

(hR (p)) t - (,~ A (M)) i

We find agreement between the results obtained with diffe-
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rent analyses where they overlap . The Pfeil-Schwela fit s was

used to calculate contributions to I vs for vad 0 .45 Gev, and

the Moorhouse-Oberlack fit
?

for VLps >, 0 .45 GeV . Each of these

fits results in a big, non-resonant, s-wave contribution with

a positive sign . This contribution is canceled almost entirely

by the non-resonant (1=1/2) part of the 1 + partial wave in the

Moorhouse-Oberlack analysis . The second and third resonance

cause the total result for this sum rule to have the wrong, po-

sitive sign . Figure 3 shows this behaviour In terms of the one
vs

	

vs
pion plus nucleon contributions to C,- a-YZ

III . DISCUSSION AND CONCLUSIONS

To discuss the results we have obtained let us recall

that the studied sum rules rest on two assumptions : The low

energy theorem for nucleon Compton scattering
2

and the validity

of an unsubtracted dispersion relation for the f Z (spin-flip)

forward Conmpton amplitude . The first is quite general and has

a very solid theoretical basis . Therefore, the validity of the

sum rules is presumably dependent on the second assumption,

which is equivalent to the absence of a fixed J-plane singu-

larity (J P - 1 + ) in the fl amplitude . 13

This hypothesis receives strong support from the evalua-

tion of the contributions to the isovector-isovector sum rule,

as shown in Table I . This sum rule, which has large and well

-9 4 -

determined contributions, seems to be rather well saturated

using results obtained fromm the single pion plus nucleon data,

complemented by some estimate of the inelastic contributions

to V.

	

- 1 .2 GeV . Even more pleasing is that the saturation

occurs in a non-trivial way . `We observe strong cancellations,

mainly between the large negative non-resonant s-wave contri-

butios and the positive 33(1236) contributions (see Fig .1) .

The large non-resonant s-wave contribution Is of interest in

Itself, however, as it violates local two-component duality .

The imaginary part of a non-diffractive amplitude, like f 2.(V ),

should contain only s-channel resonances . This contribution

may be cancelled by higher energy non-resonant contributions

to the isovector-isovector sum rule, so as to satisfy l	

duality .

Our total numerical result for the isovector-isovector

sum rule is in general agreement with previous analyses . 4'

While contributions from still higher values of )i
LAS

need not

be small, we expect the contributions listed in Table I to he

the largest individual ones, particularly since the sum rule

integrand involves the 1/V factor .

The isoscalar-isoscalar sun rule present some problems .

Because of the sensitivity of the isoscalar amplitude to rela-

tively small differences between the neutron and proton photo-

production data, it Is very difficult to achieve reliable va-

lues for the isoscalar-isoscalar contributions .Furthermore, as

can be seen from the results for this sum rule collected in
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Table 11, Individual non-resonant partial waves make (cance-

ling) contributions . In such a situation, small shifts in the

data or the inelastic contributions may easily remove the pre-

sent disagreement between the total value predicted for I .,in

Eq .(5b) and the total value shown in Table 11 .

In this light, the behaviour of the interference sum rule

Is puzzling . Since the isovector-isovector sum rule is almost

saturated, we have every reason to expect the validity of the

assumptions underlying the derivation of the sum rules . The

total value for I vs obtained from the same energy region which

almost saturates the isovector-Isovector sum rule, is of the

wrong, positive, sign . This general difficulty has been pre-

viously noted by Fox and Freedman using an earlier analysis

of pion photoproduction . More detailed analysis of the contri-

butions presented in Table III shows that there are large non-

resonant contributions in the 0` and 1 + partial waves, which

tend to cancel . The second and third resonances contribute to

the sum rule with wrong sign . This again is of Interest in

Itself as It violates local two-component duality . Global dua-

lity would seem to be satisfied for this part of fz (V ), since

various non-resonant partial waves are canceling In the full

amplitude . This leads one to believe that if the sum rule is

to work it may well be the contributions of poorly known quite

Inelastic resonances, many in low partial waves, that saturate

the sum rule . Unfortunately, the determination of these contri-

butions Is very difficult .

- 9 6-

To summarize, we find no reason to doubt the validity of

the Drell-hearn-Gerasirov sum rule, and therefore the validity

of the unsubtracted dispersion relation for the fz (v ) . The

near saturation of the isovector-isovector sum rule, which has

the largest and best determined contributions, even furnishes

direct evidence of support . There seems little reason to be

alarmed at the non-saturation of the isoscalar-isoscalar and

interference sum rules at the present stage of photoproduction

analysis, as presently poorly determined contributions could

well give good agreement . What is needed'is the more direct

experimental determination off q, (v) and ay(V), using a pola-

rized beam and target, something which is now becoming a real

possibility .
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Table I

1+

2
II

2+

3-

Ine l

To

a - Pfeil and Schwela, Ref . 3 .

b - Moorhouse and Oberlack, Ref . 7 .

-100-

Table II

a - Pfeil-Schwela analysis, Ref . .
b - Moorhouse-Oberlack analysis, Ref .
c - Walker analysis, Ref. 5 .

The Isovector-Isovector Contributions The Isoscalar-Isoscalar Contributions

to the Drell-Hearn-Gerasimov Sum Rulel 2to the Drell-Hearn-Gerasimov Sum Rule 12

Partial Wave
.18GeV ; vlab s .45GeV

(µb)

.45GeV s vlab' 1 .2GeV

(µb) Total
(fib)

Partial Wave .18GeV c vlab5 .45GeV

(µb)

.45GeV svlab E 1.2GeV

(µb)

Total

(µb)

0+ -115a -516 -166 -1.07a
0+ - . 80c -.50c -1 .30 c

1 -2a 9b -11
-1.936 -1.066 -2 .99b

I= 3/2 ;includes +237a +2b +239 - .33 a
P33(1236)

1 -.29° -.34° -.63°
I = 1/2 +12a +176 +29 - .266 -1.616 -1 .876

I = 3/2 +7b +5b +12 + .30a

I=1/2;includes +13b +416 +54 1+ - .28 ° -.60c - .88c

III
D 13(1520) +1 .77 6 +2.626 #.396

= 3/2 +lb 2b -1 2 +.30° -.21° +.09°

I II =1/2;includes +2b +lb +3 (includes D13(1520)) +1 .306 -1 .756 -.456

D15(1670)
2+ +.ole +.04c +.05°

(includes D 15(1670)) -.10b +.256 +.15b
(1 = 3/2 +1b +l b +2

j1=1/2 ; includes +2b +7b +9 3 +,25° +1.38° +1.63°
F15(1688) (includes F15(1688)) +.016 +2.496 +2.506

+ .41c +.62° +1.03°
astic +12 +376 +49 Inelastic

6+.95 +.24b +1.196
al +170 +496 +219

-.400 +.39c -.01°Total
+1 .74b +1.186 +2 .92b



Table III

a - Pfeil-Schwela analysis, Ref . 8

b - Moorhouse-Oberlack analysis, Ref . 7 .

-1u2-

Figure captions

-1 0 3 -

The Isovector-Iso scalar Contributions

Total
(A b)

Figure 1 . Single pion photoproduction contribution to the

difference between- the photon-nucleon cross sec-

tions in the net helicity states 3/2 and 1/2

( cr. ,i - (r-yL ) for the i sovector photons .

to the Drell-Hearn-Gerasimov Sum Rulel2

Partial Wave
.18GeV svlab `' .45 GeV

(µb)

.45GeV 5vlab s 1.2GeV

(µb)

0+ +17a +5b +22
Figure 2 . As In Fig.1 but for isoscalar photons .

1

1+

+la

_6a

+2b

_17b

+3

-23

Figure 3 . As in Fig .1 but for the interference term between

the isoscalar and Isovector photons .

2- _3b +16b +13
(includes D13
(1520))

2+ +lb +1
(includes D15
(1670))

3 0 +8b +8
(includes F15
(1688))

Inelastic -2 +17 +15

Total +7 +32 +39
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