SLAC-175

78 =3
/36 SLAC-175

MAC74, A General Purpose Macro Processor

Joseph C. H. Park

Under Contract with the U. S. Atomic Energy Commission

Contract AT(04-3)-515

SLAC-175
UC-32
(EA)

MACT74, A GENERAL PURPOSE MACRO PROCESSOR

JOSEPH C. H. PARK
STANFORD LINEAR ACCELERATOR CENTER
STANFORD UNIVERSITY
Stanford, California 94305

PREPARED FOR THE U. S. ATOMIC ENERGY
COMMISSION UNDER CONTRACT NO. AT(04-3)-515

September 1974

Printed in the United States of America. Available from National Technical
Information Service, U. S. Department of Commerce, 5285 Port Royal Road,
Springfield, Virginia 22151.

Price: Printed Copy $5.45; Microfiche $1.45.

Abstract

We describe a general purpose macro processor, which is easy to use,
has many versatile features and is designed to be macro~processed for easy
modifications and extensions. _

Part I shows how the processor is used for various purposes in actual
examples of programming. PartIl is a user's guide and reference containing

a detailed description of the processor in this aspect.

- i -

Acknowledgement

This processor grew because of needs. Whenever such occasion arose,
features were implemented or modified in 2 way that was the easiest and
shortest that I could think of without belaboring on how others do. Books and
papers were consulted whenever basic principles were concerned. They will be

acknowledged in a subsequent report, describing the processor in such aspects.

I owe the concept of REMOTE to the RMT pseudo-op of the assembler,
SCATRE, for the IBM 7090-7094 at the University of lllinois, Urbana, Iiinois,
in the early 1960's. Ilearned the idea of using macros to "talk in a concise and
invariant way" with programs that are beyond users' control and
subject to change, from the IBM 0S for 360 series relating to their Supervisor
and Data Management Macros.

The early form of the processor is due to Mr. John Ahernin 1968, whenhe was
also associated with Experimental Group D at SLAC. 1 would like to thank him
for his inspiring and farsighted way of programming. There are other pro-
grams that he wrote "for us”, all of which consistently met such a standard.

I had numerous occasions to talk with Dr. John Ehrman of the Stanford
Center for Information Processing, Stanford University, during many years,
dating back to the linois days. Iwould particularly like to thank him for
making available his "huge collection" of papers dealing with macro processing.

1 am grateful to Professor Robert F. Mozley of Experimental Group D at
SLAC for his support in many ways throughout these years.

- iii -

A ———— L T LB

II.

Tabl2 of Contenis.

Introdnction-...'...‘.l.Il'..‘.i"."'.‘“..I...‘-......

What does tha processor dO Zeeceevsscsrrrscassrscacaccse

1.

2.

3.

What is macro processing ?....ciseecssancvsccccccce
Otlr PrOCF’-SSOC---.‘.---.o..‘-----u-o-..o-.--oooco--o-

T11uStTatiONS.eeessesossosssesscsssasssssassenvssns

HOW t0 1S2 the ProCeSSOC..sccescessssccsroscraasncnsss

1-

2.

i0.
11,
12,
13.
14.
15.
16.
7.
18,

19.

Ch’lracterscoooctIQQI-19'ISDIIOIGODOIIIQOOUOooo-o--.-

Identifiets.‘.l'.........'..'.l...l.......".‘.....

Integerslﬂl.ll...‘.l..ll......-......'.......'I....

Character string and fixed point constant...ces0000
Processor sStatementS..sscesrssssscsncnarractesacces

RSSignﬂent Statementoco.o?o...-o-..cl.c.-c-do.-.l..

GOTO statementcoo.--.00.-0'Dcl....l.n.........ql.‘.

IF' THEN' ELSB stateEEntS.'l..l.'..o...oo.c.c..‘l..

.HACRO Statemeﬁt';..-o.o-..l‘lc..‘0..‘-.‘.l-.o.'.c‘o‘..-;tor

MEND statement........-....-...--...............-..

CALL SEALERENEsssensasresnesanssaasosssanenssssases
FREE statement.........;....;....;..;.;.;}..;..;Q;.
SET statemeﬂt,........Q....................{...Q...
rRyilt-in functions..........;.........;.....;;..;..
Expressions...............;........................
Replacement.....................................;..
Keywords in the PARM field of the EXEC éard.....;..
Diaanostic messages and severity codes...;........;

A JCL example and @ TUR..cceverarcccsrcasscccovoces

25

26

28
28
29
29
30

31

32

34

35
35

37

39

42
50
52
55
56
60

Tntroduction.

This report describes a general purpose macro processor,
which is easy to use, has many versatile features, and is designed
so that it is easily modified and extended by a user; fﬁe
processor at various stages of devélopment haé been sucéessfully
used.as a general purpose progranniné £061 {mainly ﬁtivatélyl

for many years at SLAC.

The first version dating back to early 1968 was wvritten by
J. Ahern at SLAC. As documented elsevhere!? the pfoceséor iﬁ
this early form had the basic faéiiity of nécfo definitioﬂ and
expansion as well as replacement features (vwhich aré'aftef all
macros in disguise}. The processbr even in this stéfe ﬁas

extremely useful such as in prepariné dataAcards fof'sunx. vhich

in fact was one of the original motivating needs to bé neé;

Later more higher-level—languageolike features, expressions
(for macro-time evaluation), built-in functioné, 1f;tﬁen-else
statements, branching directives, statement labels and the like

wvere implemented by the present author in aféer to safisfy-a vider

‘yaritety of probramming needs.

Soon the processor began to take onm a shape of a full fledged
language and modifying existin§ features or adding pew ones‘ .
became progressively more culbersone'and erfor pfbhe. Eventually
it dawned on the author that the "lechahicalﬂ part 6f suéi
programaing should be "macro processed™. At this time the processor
was reworked in its entirety so that the parts liieiy to‘be subject

- 1 -

to fFurthar axtension are all tougther "generated®™ by macro

processing.

Another parallel direction pursued was developing an operator
INVOKE for a truly "do-anything"™ purpose and additional features
+to aid in debuaging existing parts of or trying out new ideas for

the processor itself€.

By this time the processor was in such a constantly changing
state that it was almost impossible to continue without a
doucment on a working version. On the other hand the preéent
state of th2 processor is such that for the sake of further
vork as well as thorough testing it is desifable to subject it
to use under more diverse circumstances by more peoﬁle.‘It is

chiefly for these reasons that tﬂis report was ?repared.

part I contains introductory remarks about a macro processing
in general. The main purpose of this part is to illustraté
vhat our macro processor does by simple exaamples, most of which

are based on actual applications.

part IT is chiefly a (passive} users's guide and reference
for our processor. More elaborate exanples are also given in
this part. B |

In the above two parts we dealt chiefly with describing the
processor in a user's point of viev; In a subsequent répdrt ve
intend to continue the descriptioﬂ in another aspect, namely
+hat of a programmer. This forthcoming report uill-consist of

the following parts.

part III describes basic design principles employed in 2
macro processor and the inner workings of our program., The aim
here is to help an active user in prusuing a further modification

and extension of this processor.

part IV shows how we have, by means of our macro processing,
*gpechanized", to an extent, thé‘aci of-nodifying éhﬁ eiteﬁding
the processor itself. The extent.here is oﬁviouély djnénic
(constantly expanding) in that through this frocess Qe-generaté
a more powerful processor with ihich to furﬁhér mechanize this
process. This part also serves to illustrafe non-trivial macro

processing in the language of our pProcessor.

In Part V the reader may find actual listings of the processor

and the prodessor-processor (both of which may alfeidy be obsolete).

pAs® T, What Does the Processor Do ?

our intzn*ion her2 is to give an introductory description of
our macro processor, Therefore we should beain by answering

what is meant by "macro processing%.

(1) Wwhat is macro processing ?

The idea of a macro procassing in its primitive form probably
originated in an assembly language programming, in which the
macro feature allows a programmer +o define a group of instructions
to be a macro "instruction® and use it as if it were a single
machine instruction. The macro facility thus enables a prograamer
to invent mdre powerful "instructions" of his own design out

of basic machine operations as well as to avoid the boredom

of repzating a block of codes,

A macro processor in this conventional sense is deemed to be
an extension of the basic assembler and na} be added to it aé a
preprocessor. The principal task of such a preprocessor is to
copy the input text to an output file replacing ("expanding"™)
each macro instruction by its ﬁefinition. The output from this
pass, consisting entirely of instructiomns known to the basic
assembler, is then fed to i+, In practice such macro processing
is implemented directly into the initial pass of an assembler
elinminating the overhead of an jintermediate file and combining
vith other initial functions of the assemlby. A macro
processor in this form is such an inteyral part of the assembler
that it is very likely impossible to isolaﬁe it for the purpose

-t -

of using it elsewhere.

As the art of macro processing developed further by abstracting
(deneralizing) basic ideas and by acquiring zore features, it
soon became to be recoanized as a language in its own right,
divorced from the assembler and designed to process any language
jncluding high level compiler 1anguages. A mnacro processor‘in this

sense is better named a general language preprocessor..

In addition to the basic facility of macro (vith argusents,
to broaden its usefulness) defihition and expansion the érocessbr
mrust be able to evaluate'aritﬁnetic or logical expressions and
execute branching, conditional or otherwise. In shdrt it iust be
powerful and versatile enough so that a user can easilf and
compactly express in this language how to process a given fext

{in a base languayge).

(2) Our processor.

our processor is a general purpose (that is, base landguage
independent) macro processor. It has the advantage over other

existing macro processors? in the following major aspects.
a. It is easy to learn.

Rules used are whenever possible the same as those of PL/I

or FORTEAN. Statements that look familiar do in fact the "expected"®.

Quite often the outside appearance camn be made exactly alike by

renaming (turoush a processotr command) such as SUBROUTINE for

MACRO, END for ¥°ND, etc.
b, It is versatile,

In addition to basic features to be expected for a macro processor
it has a versatility naturally inherited from PL/T (in which the
vulk of the procassor is written) and the IBN 0 (perating) S(ystem)
support, such as built-in functions based on PL/I functions

identically named.
c. It is easy to modify and extend.

Having written the basic components, such as the lexical scanner,
symbol table manager, stacking routine for expressions. etc., -
in PL/I, which may have longer life-expectancy, othér areaé
of the processor, which are 1ikeiy to be subject to nodificatioh
and expansion, such as the part dealing ﬁith processor conuahds,
built-in functions, etc., are geﬁerated by tﬁe macro processing.
T*hat is, through the processor 1anquage‘ve tell a uéer in a precise
and mechanical manner how these features are implemented. This o
perhaps is the chief advantage of our prbcessor {for who can urité

a macro processor to everybody's satisfaction ?)

(3) Illustrations.

We continue with onur explanation of what the processor does
by illustrating how it is used to meet various needs, Most of

these examples come from actual applications, some of which served

- =

in fact to motivate new features in our processar.

The examples to follow in this part are deliberately chosen
to he simple and easy to understand. Also the explanatioﬁ 6f the
processor commands used in these examples are kept to be brief.
A full description of features in our procéssor and their rules
is given in Part II. HNore comblicatéd use (in that they are
almost full fledged programs in the language) of odr nacro-

processor may be found in Part IV.

a. COMMON declarations in PORTRAN.

In PORTRAN the scope of a variable is ordinarily limited to omne
SUBROUTINE. "Global" variables to be shared among sever&l SUBROUTINES

are to be declared under COMMON with each SUBROUTIﬁE iﬁvolved having

an exact copy of the shared COMMON.

The following example, which is taken from the kinemtic fitting

routine, FIT733, shows how the macro processiag solves this probles.

We first define a macro named DCLFIT which has all the COMNON'

declarations to be shared in one place.

COMMON DECLARATIONS POR FIT AND BLOCKS. IF EITHER A1 OR A2
IS °*T', THEN THE UNLABELLED CONNON FOR TEMPORARY SAPCE IS
DELETED. SIMILARLY *'G* FOR THE STATEMENT FUNCTION DEALING
WITH THE ERROR MATIRX. :

et et it mat gt ot
29 4k S8 S0 S8 &}

MACRO DCLFIT(AT,A2)
INPLICIT REAL*EL (A-H,0-2) ‘
COMMON /$BLK1/ HHD,HOTH,NCALL,NP.SN(ZI,THASS,RHISS(&IPI),
1 XMEAS(ENVX) ,GINA (ENV2) ,
2 /$BLK2/ NV, HISSN.HP.HV,!HISS(“),HHISSP(“),LCR(GKPI).
3 1(ENVY), XOLD(GK?X].DX(GHVK).P(u.GHPI],PSQ(GKPI)
4 /$RLK3/ LC,NMQ, ALFA(Q),F(ﬂ).B(“),HI!(16),FLI(6IV“),

-7 -

FIL(SNVEY (ELI(BNVY) ,V(ENVE) ,C(4,4), ur{l, 3,04}
/$BLKUS /KT {4} ,CT (6) ,NRJCT,NSTEPS,H0DE, IPUSH, {YASCT,IARECT,ICHEAT,
TSYEAK,MARK,NROOT,LIGHT,TL,IM,HML, CHIOLn CHINEW,DCHI,DFOLD,DELTAE,
DEL, AD, RQ,CO,EL, €M, PL,UL(3),PIL,DISQ,RO0OT
/8BLKS/ STR(ENVX) ,GINB(ENV2)
) IF TIMTNG THSN CALL TAUC ; COMMON /$TAU/ IF NEEDED
) T® A{1='7' | A2='T' THEN GOTO IG : SKIP TEHNP
COMMON TEMP,TMPI(4) ,TMPJI(ENVX)
Yy IG : IF A1='G' | A2='G' THEN GOTO MEXIT : SKIP 1G
IG(I,J) =NVE{J~1) +I

S« 2o s BRI Re R0

MEYIT MEND

(1]

Subsequently in 2ach SUBROUTINE, where these COMMONs are needed,

we insert a proc2ssor statement calling for the macro DCLFIT.

BLOCKDATA
) CALL DCLFIT{'T','G")

s s 8 m e 48 s

END
SUBROUTINE BLOCK1 (%)
) CALL DCLFIT

a® &9 se 4o

T e aeseese

¥ND
SUBROUTINE BLOCK2 (*,*)
) CALL DCLFPIT

-8 % 8 80 e

etc,

Because the user's FORTRAN (base language) statements and the
processor languaze statements that look alike are intermixed, ve
require as a distinguishing feature that each processor stateament

must have a marksr "} " {or anything else the user wishes) in the

.first column,

Note +hat several dimensioned variables in DCLPIT are daclared
with processor variable names like &5NPX, ENVX, etc., which are
to be substituted by the processor with values assigned by the
user. In this particular example the user need only to specify

- 8 =

one parameter, viz, the maximum number of particles to be fitted

at a vertex, sav 11,

NPX=11 . MAXIMUM NUMBER OF OUTGOINT PARTICLES
INCLUDING NEUTRAL AND INCIDENT IF ANY
NOTE THAT ALL OTHER DIMENSIONS (VARIABLE WRT

}
)
)
) NO OF PARTICLES) ARE DERIVED FROM THIS.

. 4 49

All the remaining varaibles are then derived by the processor as

below.

NUMBER OP VARIABLES
SIZE OF FLI AND SO ON
SIZE OF ERROR MATRICES

) NVX=3%NPX
) NVG=4*NVX
) NV2=NVE*NVX

as o

Assignment statements as above automatically declare the
receiver variables to be eligible for replicelent anyihere,
both inside and outside a macro. Variab1e§ to be reélaced, if
used in a base language statelenf, are pféfixed by an “escape"
character "&" (or any other charaétér oftnhlli fbidiétiﬁguish
them from those in the base landuage. The “&" in this context

is another form of macro CALL,
b, "Pirm" storage allocation in FORTRAN,

Example}é. also indicates how through the macro .processing
array sizes are easily and consistently ch&nqeﬁ throughoﬁt a
program, Remember that a size pafaneter may arise in different
cortext than the declar#tion anywkére in tﬁe text. The effect is
somewhere between the completely fixed method (the only one) in

FORTRAN and the automatic one in PL/I (vwith the most OS overhead).

On a 360 or 370 series of computers, if a length of a CONNOX
is too large, then the perfdrnance of the brogral itself may be

- g -

sdversely affectad (because of the additional base register loading
neaded) so that for a production program like that 6f kinematic
fitting the "size" needs to ke readjusted fregquently. In our case it
ranaed from NPX=11 for a photoproduction experiment to WPX=3 for

a K decay experiment, which is a significant reduction im

COMMON area.

c. Better readability.

The following is a segment of a FORTRAN program, (vhich wve
happen to coma across) purporting to calculate the sguare of '

the matrix element in the decay.,

K -> PT MU NU GAMMA

ccCc TAKE A DEEP BREATH 1!t?
ATT 1= -(AP/DOT(!**2+AH/DOT(2)**2*2.*DOT(7)/(DOT(1)*DOT(2))]
1 *(H.*AFP**2*(2.*DOT(10)*DOT(S)+AK*DOT(6)}-lF2**2*lH*DOT(6)
2 +§, *AM*AFP*AF2%DOT (5)) . , i
ATT2 = -5, *AFP**2%DOT (5) * ((DOT (7) / (DOT (2) ¥DOT (1))
3 +ANM/DOT (2) **2) *DOT (3) -DOT (8) /DOT (1) +DOT (10) /DOT (2}) .
ATT 3= o
4 -(4.*AK*AFP**2—AH*AF2**2)*((DOT(7)/(DOT(2)*DOT(1})*AH/DOT(2)**2)
5 *DOT (4) ~DOT (9) /DOT (1) +DOT (6) /DOT (2)) A _ _
ATTY = -2.%{((DOT (7} /DOT (2) /DOT (1))
+AP/DOT (1) *#2) *DOT (3) -DOT {10) /DOT (2) +DOT (8} /DOT (D} -
% (8. *AFP*ALAUD* (2.%DOT (10) ¥DOT (5) +AK¥DOT (6)) .
—2.*AH*AF2*DF2DT*DOT(6)+u.*kn*(AFP*DF2DT+AF2*AL!HP)*DOT(S))
ATTS = G.*AFD**2% ((DOT(3) /DOT (2)) * (AK ¢ 2.*DOT(10) +
5 2.%DOT(8) + 2.%DOT(3)) + AK*(1, + DOT(1)/DOT(2)))
ATT6 = AM#AF2%%2% (DOT(3)/DOT(2) - DOT(N/DOT(2) - 1.)
ANT = ATT1 ¢ ATT2 + ATT3 + ATT# + ATTS + ATTS

BN e

[5.4]

where DOT (1) 4...,D0T(10) are Lorentz products of two four-vectors

in various combinations of this decay.

For improved readability +he author aight have macro processed

- 10 -

this part as follows

) SET BSCAPE '! 3y Line 1

ATT1=-(AP/PIGAH**Z*AH/HUGAH**Z+2.*HUPI/(PIGBH*HUGLH})
1 * (L, ®AFP*E2%x (2, *KHU*KNU+AK*MOND) - —AT24*% 2% AN*NUNU
2 +4, *AMXAFP*AF2%KNU) .
ATT2=-8. *AFP**Z*KHU*((HUPI/(HUGRH*PIG!H)
3 +AN/MIGAN**2) *KGAN-KPI/PIGAM+KNU/NUGAN)
ATT3=
- (4, *AK*AFD¥**2~ AH*!FZ**Z}*((HUPI/(HUGLH*PIGAH)*AH/HUGAH**Z\
*§UGAMN-NUPI/PIGAM+MUNU/MUGAN) : :
ATTH#=-2.%(((MUPI/MUGAM/PIGAN)
b +AP/PIGAM**2) *KGAN- -KMU/MUGAM+KPI/PIGAN)
7 * (8, %AFP*ALAMD* (2, *KMU*KNO + AK*MUNU)
8 -2, % AM*AF2*DP2DT*NUNU YU, *Aﬂ*(AFP*DF2DT+AF2*ALRHP)*KRU)
ATTS=4. *AFP**Z*((KGAH/HUG!H)*(IK*Z *KND+ S .
2 2.%KPT+2.*KGAN) +AK* (1, +PIGAN/NUGAN))
ATTG=AM*AF2*%2% (KGAM/HMUGAM- -PIGAM/MUGAN-1.)

[S2 00)

) SET ESCAPE & s Line 2

The escape names used such as PIGAM for DOT (1), MUGAN for
DOT (2), etc., might have also been' generated using a general

purpose macro called NAME as balovw.

)} + ABGUMENTS BECOME ESCAPE KAMES WITH VALOES ASSIGKED BY
): RHS WITH R RONNING INDEX I .
) MACRO NAME(A1,A2, A3, AL,.AD, LG,AT A8,A9, 510)

) T=I+1 ; INCREMENT INDEX USED IN RHS)

] &A1=RHS s Line 3

} *TF A2='"'" THEN GOTO MEXIT : Line 4§

) CALL NAME(A2,A3,A4, AS.A6,A7, AB,A9 l10)

) MEXIT: HEND

This macro in our example might have been used as

RHAS='DOT (&I} : Value is a character string

I=0 : Initialize index . .

CALL NAHE('PIGAH','HUGAH'.‘KGRH','NUGAH'.'KHU','HUHU')

CALL NAHE('HUPI'.'KPI','NUPI'.'KHU') + continuation of above
How about having some Greek in EBCDIC ? .

vl wa st

-

mhe effect of the command in Line 1. is to declare every

- 11 -

tokan {word, lexical uait) in the text to be eligible for
replacement. A token is replaced only if a value has been
previously assigned to it. To minimize subsequent processing

time the command in Line 2. restores the prefix & for escape

names.

The macro NAME shows one way of using "recursion". Each time
NAME CALLs i ¢t s el f (L.e. at each new 1evei of recursiénl the
next argument in the original argument list plays the roie of the
ofirst" arqument 5A1. This loop is terminated by the test in

Line 4. when the arqument list is exhausted.

Since arugaents are names for processor variables being made,
Line 3. specifies &A1 on the left had side rather than A1 and

NAME is CALLed with arguments, each of wvhich is a character string

enclosed by quotes.

d. Lexical scannina,

The replacement feature of the macro processing appears so
simple that one may ask (in fact, 4id), can one achieve the

same result using a text editor like WYLBUR ?

The answer is with difficulty, because a general purpose
{interactive) text editor like WYLBUR functions by unconditionaily
raplacing one character string with another regardless of whether
the target string is a word or a subpart of another word, ihat

is, without a lexical analysis of recodgnizing unbreakable atoms.

The following is a series of WYLBUR commands in an EXEC FILE

- 12 -

to be executed in sequence by WYLBUR assuaing the text in which

these changes are to be made is in the ACTIVE FILE.

CHANGE 'EABS! TO *EVBFN(1)' NOLIST
CHANGE 'ECONCAT' TO 'EVBFN(2)' NOLIST
CHANGE '&INDEX? TO *EVBFN(3)* NOLIST
CHANGE °'SLENGTH' TO 'EVBFN(4)°® NOLIST

CHANGE 'EMAX® TO 'EVBFN({S5)' NOLIST
CHANGE 'GMIN' TO *EVBFN(6)* KOLIST
CHANGE 'EMOD* TO TEVBFN(T)* NOLIST

CHANGE *'&SUBSTR' TO 'EVBFN(8)' HNOLIST

CHANGE 'ETRANSL' TO 'EVBFN({9)*' NOLIST

CHANGE 'SUNSPEC' TC 'EVBFN(10)*' ROLIST

CHANGE 'SVESRIFY' TO 'EVBFN(11)' NOLIST

CHANGE 'E&MAXLSTR' TO ‘'80° . NOLIST

This example might have worked, were it not for the fact that

one escape name is a part of another'escape name and therefore
the result is sensitive to the order of repiaéenent. If the
warning prefix "&" vere not used, the situation would have

been unpredictably worse. Clearly macro prbcessing wiih its

lexical analysis is better suited for such ?nrpoéé..-b

e. Program tailoring.

LI

Quite often a general purpose prograa needs to be tailored for
a particular task. It would be inelegant, to say the leaét. to
make a nev copy and introduce permanent cﬁanges in it for every
such occasion. We would instead like'to nderive® a pérticulaf
version from the original one 50 that only one version has to be
maintained at all times. W®ith macro processihg'ue can solve this
problem by collecting particular nodifications into macros and

conditionally invoking them in the text dependiné on a key word.

- 13 -

e TR T T e e

It has been described elsewhere3 how the macro processing is
used to tailor FIT73, a general purpose kinematic fittiang routine,
to treat the tima-of-flight measurement for K in the K-decay
experiment., The conditional CALL to TAUC in DCLFIT of-Example

a. belongs to this modification,

We include here another more straightforvard case, A problenm

arose in generating by Monte Carlo nethod events of the kind,
K -> PI+ PI- PIO GAMHA

Because the enerqgy spectrum of emitted photon is approximately

1/k, the gzneral method (to be shown below) is abéurdly inéfficient.
%e need to modify the program to do an "imﬁorf&ncé sampliﬁg"'in

the variable k. A part of this.prdgran shown béibu illuétfatés
trivially how this modification waé intrbduﬁed into ihe general

purpose routine without destroyingrit.

The followving is a front half of the SUBROUTINE GENEYV

of version dated March 74 bj J. Park whick is due to

a version dated Junre 69 by é. b. Chandlér whiéh ig due fo
a version dated april 68 by G.-Ascoli vhich is based‘on

a procram of the same name by 6. Lynch once upon 2a time.

C
COMPUTE KINETIC ENERGY AVAILABLE
EKIN=TECK-SNF
W=-GONE
I¥ (EKIN .LE. £ZERO) GO TO 999
C
CONSTRUCT ENM(1...¥)=M1,812,...,TECH
11 ENM (1) =ENF (1)
EnM (NPF) =TECH

I,

-

IF(NPF-2) 999,50,15

MACRO GENERAL

-
- P Y R R NI I B

[Banfingiiaed

CHOOSE N-2 RANDOM NUMBERS IN (0,EONE)
15 po 20 I=3,NPF
20 RA(I-2) =RANUN(R)
C
¢ tPOLD*THEM SO THEY ARE IN ASCENDING ORDER
po 40 I=3,NPF .
RMIN=ETWO
po 30 J=3,NPF
IF (RA(J-2)-RMIN) 25,30,30
25 RMIN=RA (J-2)
IT=J
30 CONTINGE
X (I-2) =RHIN
40 RA(IT-2)=§TWO

C . ‘ : .
C NOW HAVE X(1),.-..X(N'2) CHOSEN AT RANDOM FRONM THE UNIFORMLY
C POPULATED' TRTANGLE' . . . e .
C 0 < X(M ... X X(N-2) < GEONE
C COMPUTE [, EMM (2) =EKIN* X(1)*EHF(1)*EHF(2) . AND SO ON.
C
S=EMM (1)
DO 45 I=3,NPF
S=S+ENF (I-1)
45 EHH(I‘1]=EKIN*X(I-2)*S
Y} T L X R LN] o
) MACRO X21 : SAMPLING IR K -> PI 1 WU GAMMA
,: ..cool-t.looooooono - .- . -
15 3Hﬂ(3}=SQRT(EH(1)*(EH(1)‘GTQO*KKHIU*EXP(ILPKB*RRFUH(R})))
EHH(Z,=RAHUH(R)*(EHH(3)-EE?(1)‘Eﬂ?(Z)“EﬂF(3])+EHP(1L*EHF42)
Y3 ase ss assdssas s et . . . e e m e e .
) MEND
) IF X21 THEN CALL X21
) FI'SE CALL GENERAL
): -....‘.........‘...
C . .
Cc GET MAGNITUDE OF MOMENTA FOR SEQUEKTIAL DECAYS,STARTING FROXN LAS
Cc PD {1) =MOMENTUN FOR (1+2) TO 1 AND 2. . . 142 FRAME
C PD (2) =MOMENTUN FOR (1+2+3) TO (1+2) AND 3 . 1+2+3 FRAME ,ETC.
C COMPOTE W=PD(1)...*PD(N“1‘*EKIN**{N-Z)/TECH . -
C .) .
50 #=50NE/EKIN/TECH
DO 60 I=2,NPF
) CALL QCH('PD(I‘1}','EHH(I)','EHH{I-1)','EHF(I)')
60 §=W*PD (I-1) *EKIN .
C

GO TO 999

Incidentally with this modification the run time im CPU was

- 15 -

tedncad by a factor of 100. The reduction in similar cases with

luptons would ba even more spectacular becaase of higher Q values,

f. Generating data cards in SUMX.

SURX® 1sed to b2 (at SLAC and is elsevhere) extensively used as
a tool for 2xamiig a massive collection of data. This is a package
of versatile programs, to which user commands are communicated
as "Data Cards"® satisfving strict rules. For example a histogqram
requires at least three cards like
INVARIANT ¥ASS OF P PI+ (RHO IN)

100 0.08 1.08 21
722 10

Years ago it vas not unusual to read in a trayful of such cards
for one SUMY run and watch the job abort’hecause of one nissin§
card somewhere. The card might have been inadvertantly left out
in hand-editing the dack to make a change, saf, in the bin'size
of each histogras. We owe one of the original uofivation for

the present macro processor to such frustrations.

With macro processing one might proceed as follows, First
define a macro for making a histogranm including rapidlj changing

parameters as arguments and the rest as gqlobal escape names.

} MACRO HIST (HZ,LOC,TITLE)

ETITLE
&E6NH &EDY EEHZ &ENPT EGFAC &&L0G
EE&LOC EENT GENT GE&ESGM
) MEND

- 16 -

values to alobal variables are assigned onrce for all by invoking

a macro like:

MACRO DEFAULT
NPT=21 : PRINCIPAL TEST NUMBER (RHO TEST)

)

} :

} FAC=*! ; FACTOR TO SCALE

) LOoG=** ; 'LOG* OR ANYTHING TO GET L0G HISTOGRAH

y WT=10 + LOCATION OF EVENT WEIGHT

) NT='°¢ . TEST ASSOCIATED WITH MULTIPLICITY ELEHENT
} SGM=*' ; LOCATION OF ERROR FOR IDEQGRAM

) NH=100 ; NUMBER OF BINS IN A HISTOGRAN

) DH=0.04 ; HISTOGRAM BIN WIDTH (MEV)

) MEND

Furthermore the user's event data can also be symbolically
addressed by using a macro like; 7

) MACRO FORMAT
) : NOUMBERS IN RHAS REFER TO LOCATIONS IN BOUT

e 4 s e s

) M35=722 : INVARIANT MASS OF PARTICLE 3 AND 5

) MEND

" Not only are names more convenient to use and less prone to
mistake than numbers, but also the use of macro like FORMAT
nakes the processing deck insensitive to the format change.

The set'of three cards for a histogram mentioned above can
now be generated by a single line coamand like

} CALL HIST(1.08,M35,'INVARIANT MASS OF P PI+ (RHO IN)*")

The scheme requires some preliminary vork such as defining
general purpose macros, defaults for qlobal symbols, etc., (which
js equivalent to the SUMX manual as viewved by the processor}. But
once done, they mav be collected into the MACLIB and adtonﬁtically
invoked whenever needed. A more elaborate scheme has been

- 1'}—

described elsawheres, althongh the procassotr 1cscrited there is

nov ohsolete.

g. Using KTOWA,

Being designed for a similar purpose, KTOWAS® is superior to
SUMX in several hidden aspects as.well as obvious,.one of which
ijs the flexibility in using it, becanuse a full fledged lanquage,
namely FORTRAN, is used to drive it (rather than "barren® data

"cards as in SUMX).

In this scheme a histogram, for example, requires two separate
operations, definina each histograﬁ through COMMON arrays, HZ for
lower limit, DH for bin width, NH'fof number of bins, IH fbr'plot
type and TLAB, HLAB for title on the-one hand and invoking i
SUBROUTINE, CALL HIST(I.A,VWT). fof each entry'into an I-th histogram

with quantity A and entry weight Wf on the othér.

‘since it would be vasteful to write executable codes for the
defining operations, which need be done only once in the béginninq,
the only alternative in FORTRAN is to collect these definitions
under a BLOCKDATA routin= in a place renoté fron where-- .
updating CALLs to the corresponding histograms are pade. How can

we keep for each histogram these two parts together ?

In order to make this possible a processing feature REMOTE
vas introduced snch that a text following a command of thé form
) SET REMOTE BEGIN |
and upto another command like

- 18 -

) SET REMOTE END
is temporarily collected by the processor to be put at the end

of the main text, when the processing of the main text terminates,

The following macro illustrates how this feature may be used
to cause a single CALL to it emit the defining part remotely and

generate the updating CALL to HIST locally.

HIST DEFINES A HISTOGRAM, IF NEW, REMOTELY IK A BLOCK DATA,
AND GNERATES THE HISTOGRAM UPDATING CALL. NOTE THE PARAMETERS
TEST, IH, AND WT ARE TO BE DEFINED EXTERNALLY RATHER THAN

THRU THE PARM LIST, SINCE THEY ARE VARYING LESS FREQUENTLY
THAN THE ONES IN THE PARM LIST.

dd ab S5 &3 23 44 W¥

IN ADDITION NCAL AND NHISTO HUST BE SET. NCAL = 1(0) FOR
TRUE (FALSE). IF TRUE, ONLY THE HISTOGRAM DEFINING PART

OF THIS MACRO WILL BE EXPANDED, NHISTO IS AN INTGER WHICH
GETS ADDED TO THE SPECIFIED SEQUENCE RO TO OBTAIN THE ACTUAL
HISTOGRAM SEQUENCE,

4 40 a5 49 o &4

MACRO HIST(I,A,HZ,DH,NH,TITLE)
I=I+NHISTO ADD IN THE ORIGIN
TP T < NHIST+1 , GOTO MAKE ; THIS HIST HAS BEEN DEFINED EARLIER
NEIST=NHIST+1 OTHERWISE, DEPINE A NEW ONE
SET REMOTE SEGIN EMIT DEFINITION REMOTELY

DATA HZ (ENHIST)/6HZ/,DH(ENHIST) /EDH/, NH (ENBIST) /ENH/,

1 IH (SNHIST) /EIH/,HLAB (1,ERHIST) /*6TITLE/ :
) SET REMOTE END : COME BACK.
) MAKE: TF NCAL ., GOTO MEXIT ; SKIP CALL IF NO_CALL TRUE
ETEST CALL HIST(6I,EA,EWT)

) MEXIT: MEND

-t st i wnt vt wat t wmyt Rt el mplt gt il gl

44 aa Sy 42

h., A FORTRAN programming style.

The following program is selected because it is short enough
to be included here in its entirety to illustrate a style of

FORTRAN programming with macro processing.
The prosram is self-contained apart from (1) a general purpose

- 19 -

iteurator, NSiINT for double prwcision and SINT otherwise, and
a 1ass table, MASS, with the same prefix convention, both of which
are on user's "SYSLIB" and (2) general purpose macros, PROLOGUE

and RETUIN¥ for statad purposes, which are on user's MACLIB.

WE WANT TO INTEGRATE (PER BIN IN THE T-HISTOGRAN} A
FUNCTION, THY INVARIANT PHASE SPACE IN THE DECAY,

K -> 3 PI, MILTIPLTED BY A FORM FACTOR, WHICH IS
ASSUMED TO BE VARIOUS POWERS OF THE KIRETIC ENERGY T
OF PI0 IN THE K REST FRAME, WE WANT TO DO THIS FOR
STMAX CASES STARPING FROM T**), TO T** (IMAX-1}.

JULY 29, 1974 J. PARK

a8 o8 & 42 S5 43 A& 2p I

CALL PROLOGUE(8) ; DEFINE FUNCTION PREFIX &D,
CONSTANT SOFFIX &S,
PRECISTON LENGTH £L AND CONSTANTS. THE ARGUMENT SHOULD BE
4(8) FOR SINGLE(DOUBLE) PRECESIOF. PROLOGUE ALSO INITIALIZES
CREATED SYMBOLS FOR GENERATED LABELS ETC. Lo .

a4 Bs @4 &8 as

BIN WIDTH 1 MEV
MAX TPIO. MAY NOT BE EXACT
% ERROR IN IKTEGRATICON

DELTA=*1.6S, 0"
THAX='54.65.0"
TEST='*1.65-4"

s Bb 2b &

Nt it el Ut W et Wl el s el s P gl = el et At il

LI#=12 SEE WRITE-UP OF SINT
IMAX=5
IMPLICIT REAL*E6L (A-H,0-Z)
c - |
DIMENSION SIGMA (EIMAX)
C INITIALTZE INTEGRAKDS
CALL INIT(S) _
Cc LOWER LIMIT
T1=£ZERO
c UPPIR LINMIT
10 T2=T1+5DELTA
)3
) MACRO DO
) 1=1
) FORM='? : SUCCESSIVE POWERS OF T
) MORE =
)3 DECLARE PUNCTION TO BE INTEGRATED

EXTERNAL PPSQET
SIGMA(5T) =6D.SINT(T1,T2,ETEST, GLIH NOI,.R, PFSQEI)
} SET REMOTE BEGIN ; GENERATE TEXT FOR INTE&HAHD
ENTRY PPSQEI(T) . ‘-
SPIO=MPIO+T
M12SQ=MKSQ+¥PI0SQO~ STHO*HK*EPIO
PFSQ=T#* (EPI0+4P10) * (FONE- GFOUR*HPIHSQIH1ZSQ]
IF (PPSQ .LT. &ZERO) PFSQ &ZERO

- 20 -

PFSQSI=GD.SQRT(PFSQ)GFORH
RETURN
SET REMOTE END ; COME BACK
IF I=1 THEN FORM=**Tt ; NEXT FORY FACTOR
ELSE FORM=t*T&%x§T!"
I=T+1
IF T <€ IMAX+1 THEN GOTO HORE
SET REMOTE BEGIN
END
SET REMOTE END
MEND

ol gt vt el et

.4

CALL DO

nn-’-“-’.‘

ANSWERS, SIGMA, ARE TO BE USED IN
FORTRAN DATA STATEMENTS. .
WYRITE(6,11) SIGMA

) I CAN NEVER GET THFE PARENTHESIS IN FORMAT TO WORK RIGHT
} LJE14,6,%", 07
11 FORHAT{GK EE EF &E &E}

T1=T1+EDELTA

IF (T .LT. &TMAX) GOTO 10

CALL RETURN

-t

FUNCTION INIT{(DUMMY)
IMPLICIT REAL*EL (A-Z)

-

MACRO MASSES (A1,A2,A3,a4,A5,A6,17,A8)

SA1=ED, MASS (EA 2, M}

EA1.SQ=EA1%EA1

IP (A3=t*)=0 THEN CALL MASSES (A3, au.as A6,AT, as)
MEND

- et

CALL MASSES ("MK*,11,'MPIO',8,°'NPIN',T)
RETURN
T0 BE CONTINUED WITH THE TEXT REHOTELY lSS“HBLED

i. Miscellaneous.

We describe yat another example of hov a macro processing
facilitates the use of a program which is 1nherentiy complicated
and cumbersome to use otherwise. The casé dealé with uéing aﬂ
170 routine with entry names, JOPEN, JCLOSE, JREAD and JHRiTE.
and identified under.a CSECT name of JHPBPAM, which supports
a P(artitioned) D(ata) S(et) in FORTRAN. |

- 21 -

tte basic function of JHPBPAM is to let a user invoke in
FORTRAN various 0S data management macros having to do with the
B{asic) P(artitioned) A(ccess) M(ethod). The user is asked to
supply a work area for each member and for different operationms
be it read or write, in which JHPBPAM will store and use all
things pertaining to his I/0. In this way the user has access
to "inside" information ordinarily unavailable in FORTRAN such

as NCB and furthermotre JHPBPAM becomes reentrant.
“ho neeads it ?

This routine was originally written as a basic tool in
setting up a "generalized" job, that is the JCL leaves undefined
to some extent what data the user vants to read orrvrite as
vell as what program he really wvants to rum, all of which are
to be determined when the job goes into executionm. This schese
wvas successfully used to "beat" the Jbb Queue delay. ¥e also used
JHPBPAM to "simultaneously" (multi-tasking) rumn severai KIOWA jobs
accessing different data within the nelapsed time" it would have

taken to run one such job.

In order to make life easy a series of macros were written
as shown below. They form a part of our MACLIB so that we

never have to remember details again.

for instance, having once CALLed DCLWORK and jnitialized
generated labels, SYSLBL1,....,35YSLBL3, one may do
) CALL OPEN (*READ"} and/or ("WRITE')

for read and/or write once. And subsequently

- 22 -

} CALL READ('member name?,...)

to read a record of the specified PDS member, or
) CALL WRITE ('meaber name',...)

to write such a tecord. Finally
} CALL CLOSE{'READ!') or ('WRITE")

closes the data set.

THIS MACRO SUPPLIES READ/WRITE WORK AREAS FOR USE WITH.
JHPBPAM. - IT ALSO GENERATES ESCAPE NAMES ADDRESSING
ELEMENTS OF THESE AREAS. USE OF THESE NAMES WILL MAKE
THE PROGRAM INSENSITIVE TO CHANGES IN WORK AREAS,

Bt S4 4F 45 0% B9

MACRO DCLWORK {MORE)} : LAST EDITED 08 5/28/74
COMMON/$S¥ORK/ IRW({70), INW (66) EMORE
INTEGER*2 IRHH(1HO),IHHH(132)
EQUIVALENCE (IRWH (1),IRN(1)) ., (INWH(1),IWW (1))
DEFINITION OF WORK AREA FOR WRITING
CALL DCLW1(*W',2,3,4,9,10,12,7,13,35)
DEFINITION OF WORK AREA FOR READING
CALL DCLW1!('R',4,5,6,17,18,20,11,17,39)
MACRO DCLW1{(A1,A2,A3,A4,A5,A6,A7,48,A9,110) .
EA1. NAMB1='TIEAT. W (EA2) "' FIRST HALF OF MEMBER NAME
EA1.NAME2="I6&A1.W (EA3)? SECOKD HALF
EA1.TTR =TIEAl1.W(EA4}" TTR .
EAT.CNT ='TEA1.WH{EAD)® TOTAL NO OF I/0 ACCESS
EAVT.ERR ='IGA1.WH(EAG)' TOTAL.NO OF ERRORS
SEA1,SYN2 =*IGAT.WRH(EAT) SYNCHROROUS EREROR FLAG .
EA1.TOTAL='IGA1.W(EAB) "' TOTAL NO OF BYTES READ OR WRITTEN
&A1.DCB ='IEA1.W{EA9}* DCB 22 FULL WORDS .
EAT.SYNMSB='"I6AT.W{EA10)" MESSAGE BUOFFER 32 FULL WORDS
MEND :

-

4% 48 ab 4 4% 45 A0 44 W

H
; OPEN('R') OR ('W') OPENS A DATA SET UNDER THE DD NAME OF
IN OR 0UT RESPECTIVELY SPECIFYING A PDS. .

a8

-8

MACRO OPEN(R,LABEL) .

R=SUBSTR(R,1.1) s+ USE FIRST CHAR ORNLY
ELABEL J=JOPEN (*&R*,IER. W)

CALL TESTJ{('OPEN")

MEND

SIMILARLY FOR CLOSE('R') OR ('W').

ar 98 40

)
)
)
)
)
)
)
}
)
}
)
)
)
)
)
}
)
)
)
)
)
&
)
)
)
;
) MACRO CLOSE(R,LABEL)
) R=SUBSTR(R, 1, 1 ; OSE FIRST CHAR ONLY
EELABEL J=JCLOSE('&R',IER.W)

- 23 -

CALL TIZISTJ('CLOSE")

IF HO0T GIVEN, GENERATED LABEL SYSLBL1 IS USED

MEND
i MEMBER : HMNOLDS 8-CHAR, MEMBER NAXKE (PADDED WITH BLANKS)
: LSENGTH : LENGTH IN BYTES OF DATA TRANSMITTED TO
;s RECORD : TARGET AREA
:+ LABRBL :

¥ACRO READ(MEMBEFR,LENGTH,RECORD,LABEL)

IP (LABEL='")=0 , GOTO GIVEN .
SYSLBLI1=SYSLBL1+1 ; OTHERWISE SOPPLY A LABEL
LABEL=SYSLBL?

GIVEN :
£ LABEL J=JREAD (6MEMBER,%LENGTH,ERECORD, IRH)
CALL TESTJ('READ', LABEL)
NEND

.MACRO WRITE (MEMBER,LENGTH,RECORD,LABEL}
ELABEL J=JWRITE (6MEMBER, §LENGTH,E§ RECORD ,IWW)

CALL TESTJ(*WRITE')

MEND

THIS MACRO EXAMINS THE COMPLETION CODE RETURNED BY JHPBPANM
MOST OF WHICH ARE COMPLETION CODES "AS IS™ FROM THE RELEVANT
DM MACROS. ALLOY¥S 20 FATAL READ ERRORS AND O WRITE ERRORS
BEFORE ABENDING. USES GENERATED LABELS SYSLBL!,...,SYSLBL3.
REFERS TO ESYSPRINT FOR ERROR MESSAGES.

ot a8 S0 =5 s S0 42

MACRO TESTJ (VHO,AGAIN)
CALL SYSLBLS : GENERATE LABEL
IF(J .LE. 0) GOTO ESYSLBL3 .
WRITE (6SYSPRINT,ESYSLBLY) J
£€SYSLBL1 FORMAT("- UNSUCCESSFPUL RETURN WITH CODE',I5,°FRON JEWHO')
SYN2=WSYN2 ~t GET READY FOR SYNAD MESSAGE
ERRCNT=WERR . : .
MSB=*TWW (34+K) *
IF WHO=*WRITE* THEN GOTO MESSAGE
SYN2=RSYN2
ERRCNT=RERR
¥SB=!IRW (38+4K) *
IP WHO='READ' THEN GOTO MESSAGE
CALL ABD1 _
) GOTO MEXIT
) MESSAGE :
IF (J .KE. 20) CALL ABD1
WRITE (6SYSPRINT,6SYSLBL2) GERRCNT,ESYN2, (EMSB,K=1,32)
§6SYSLBL2 FORNAT (' SYNCHRONOUS ERROR COUNT & CODE =',IS, z12/1x,323u1
IF (SERRCNT .GT. 20) CALL ABD1
) IF AGAIN='' THEN GOTO MEXIT
GOTO EAGAIN _
) MEXIT :
£ESYSLBLI CONTINUE
) MEND

-‘-ﬂwﬂ.’v-’-‘-’-ﬂ_mvv-‘-ﬁm-d-dv'—‘wv-—'vwwv-p-—r

e gl et gl gt

- 24 -

PART II. How to Use +he Processor.

This part is intended as a user's guide and reference and
contains a detailed description of our macro processor in this

aspect.

As discussed elsewheré the processor itself is in a form to be
processed by the processor. In particularx the proéessor cbhtains
in "unbound fora" parameters such ﬁs SHAXIDfR for the maxiaunm
allowed length of an identifier. Parﬁicular vélueé éré'aséiqned
to these parameters by means of A runniﬁ§ pfocéséor, wﬁén.the

'
processor needs to be recompiled and made 1nt6 a néﬁ load module

(to be saved into a load module library).

Accordingly +his part is written using such escape names.
Consequently the reader is asked td.uildiy "lécro procesé“ fhe
text on encountering such names. For. this puréosé we'ithQGé
here a short table of definitiéns of-paialétéfé épﬁeafing in
the text including their current valﬁeé. | |

Processor parameters and their values used in Part IT text.

) VERSIONID='HACT4CO6AUGTS' 3

) ESCAPECH='E' ; PREFIX FOR ESCAPE NANES

| MAXFATALERR=20 ; MAXINON NUNBER OF ON ERROR CONDITIONS ALLOWED.
) MAXIDTL=16 ; MAXINUM LENGTH POR IDENTIFTERS. VARIABLE & LABEL
)3 KANES. LEFTSIDE, SYMBOL.NAME, TARGET GLOBALLY

): AND SNANE, INAME IN LOOKUP, I

_25-

) 4aXTsTR:RO ; MAX'MTY LENGTH FOR VARYING CHAR STRINGS, TOKEN
Vs (3LORAL) ., SVALUE,SARG1,SARG2,SARG (EMAXNARG) (IN EVAL)
) MAKAACARG=10 : MAXIMUM ¥O OF ARGUMENTS ALLOWED IN MACROS

): THE PRACTICAL LTMTT FOR MAXNARG AND NAXMACARG IS SET BY THE

) : REQUIREMENT THAT A PP STATEMENT CAN ONLY BF ONE "CARD"™ LONG

WHICH CAN BE EXTENDED ON IMPLEMENTING CONTINUATION FEATURE FOR

—r
an

y; PP STATEMENTS AS IN HORKSTR,

) MAXNARG=10 ; MAXIMUM NO OF ARGUMENTS ALLOWED IN BUILT-IN FUNCTIONS

)} MAXNESTIF =20 : MAXINUM NUWBER OF LF-CONDITIONS CONCURRENT.

) MAXNESTLEVEL=20 : MAKIMUM LEVEL OF NESTING IN MACRO CALLS

) MAXREPLCOUNT=S0 ; MAXIAOM NO OF REPLACEMENT ,/ YLINE®

) PPBRKCH=')® : AARKER FOR PP STATEMENTS

) PPSEC=80 ; TND COLUMN FOR PP STATEMENTS. MAY BE 72 TO EXCLUDE
) CARD SEQUENCE NUMBER. ‘

) STIZEP=MAXMACARG*MAYNESTLEVEL ; SIZE OF PUSH DOWN STACK, PUSHIP,
)3 TO HOLD PREVIOUS FORMAL PARANETER VALUES IN CALL.

) NCONT=10 : NO OF FORTRAN CONTINUATIONS. BECAUSE OF PACKING

'

} WNORKSTRLNG=72+NCONT*66 ; PRACTICAL LIMIT IS HIGHER THAN SPECIFIED
)i
In particular examples in the text are written assuming the

values given above are effective.

{N Characters.

e N L Y

User's text {in whataver base language}, character string

- 26 -

data, and comments in processor statements may consist of any
characters but a subset of EBCDIC character set is used for the

processor statements (commands) and identifiers.
This subset consists of

(a) Letters: A through 2, $, 2, ¥, and _,
(by Digits: O through 9, and

{c) Breaks: the following special characte#s.

Blank
Egqual or assignment
addition (infix) or plus (prefix).
subtraction (infix) or minus (prefix)
multiplication . -
pivision
Left parenthesis
Right parenthesis
Comma
period
Semicolon
Colon
Quote
Not (prefix)
And (infix}
or {infix)
Greater than
* Less than

-ar oan b o8 = N ¥ o+

ANV -)

LN

In decomposing a statement (lexical analysis) into tokens
(lexical units) the special characters, bl&nks in partiéular,
serve as delimiters, That is, a tékeﬁ,rsuch.aé idéﬁtifief;d
command keyword, data comstant, etcC., hﬁét.be delinifed b}ua
special character. special characters thensélves do not require

delimiters. They may or may not have intervening blanks.
A1l other characters not listed above, such as %, are treated

- 27 -

as soecial characters and thus have delimiting power.

obviously special characters including blanks cannot be
embedded in a token unless it is a character string constant.
The character _, which is declared to be a part of letters, may

be used for better readability ih a conpouud name.,

Otharwise, blanks may be freely used in a processor statement.

Anvy number of blanks may appear whereever one is allowed.

(2) Tdentifiers.

variable names, labels and macro names must be 1 to
SMAXIDTR characters in length. Such an identifier aust sfart
with a letter followed by letters and digits in any ;ix. but

must not contain special characters. . - e

(3) Integers.

Integers consist only of digits. An integer is treated ijust
like ary other character string;'éiéepi uh;n itlbéfiiéipﬁt;é |
in macro time arithmetic; Duriné the eialﬁation éiagé an iﬁteger
may get converted on demand to alsigned 31-bit Qaéﬁifudé Eiied_
binary number, The user should insure ihat-nbréoﬁééréion"étfot
may result. See the remarks under pata Conversion and Errot |

Randling in the subsequent section named Expression.

In logical context an integer 1 (0) is interpreted as true

(false) and conversly.

{4) Character String and Fixed Point Constant.

——— v e i o o - . T =R, Al ok R L L, S i ekl L =

A character string may consist of 0 to SMAXLSTR characters
enclosed in quotes and may contain any character beyond those
specified as processor characters. A quote within a string is

reoresented by two consecutive quotes,

A string of digits containing a decimal point, period, is

automatically recognized as a string vithout emclosing quotes.

{5) Processor Statements

A processor statement is marked by the warhing marker,
SPPBRKCH in the first column. The remaining field in columns
2 to EPPSEC is used for a statemeni,hwhich.lay opfionally
start with a label followed by a colon then connands and ﬁay

'terminate with a semicolon followed by conlénts, if any.

A label defined inside a macro ié known only to that macro.
That 1s, the scope of definition of a lacro label is lilited
to one macro. For example, both called and calllnq laCIOS

may have identically named labels.

The kevywords representing processor commands, such as MACRO,
CALL, IF, etc., are "reserved"™ words. They should not be
used for any other purpose unless, of course, renamed

through SET conmands.

A null statement consisting of the marker in coluan 1 and null
or blanks terminated, if desired, by a semicolon, is treated as

- 29 -

no operation.

A processor statment as well as that in the base language
{user's text) is subject to replacement via escape naﬁes;
Furthermore, a processor statement-may aiso be geﬁeratéd by'a
replacement yielding the marker in the firét éolumn.‘OPerators

may also be agenarated in a processor statement with the following

exceptions.

1. During macro defining (editing) stage the replacement nmust
be temporarilyv suspended so that operators 1ike MEND and :, which

must be recoanizad at this time, cannot be generated by replaceients.

Consider an example,

} COLON="':"*

) MACRO ABC

} LABEL &COLON

L L J

) GOTO LABEL
} MEND

Backward GOTO as in this example will not work, but forward

branch under similar situation.vill éork.r

(6) Assignment Statement.

i

<label> : <receiver> = <source expression>

label

jdentifies a statement. The colon is used to declare
the identidier to its left as a label. It is to be deleted, if

_”30 -

no labal is present.

recaiver
a variable name, or an escape name vhich ultimately

becones a variable name.

source expression
a primary which is a variable name, an escape nhaae, an
integer, or a string. | S -
arithmetic or logical eipreésiohé using prilaries;-

operators, and functions,

The terminator ; is optional but recommended because it improves

performance by removing superflﬁous scén féé tréiling bléﬁks.

Examples

I=*-29' : quotes are required because of the -inus sign
I=29* ; quotes could have been left out. .. .
PSEUDO_VECTOREI='I AN THE. YALUE OF 6I.-TH ELEHEHT'
YES=T=2.5 : YES=1(0), if I=2.5 is.true. (false}

gt et

(7) GOTO Statement

<label> : GOTO <target label>
label
£SAME_AS_BEFORE

target label

#hen ased outside a macro definition, the target ‘label

- 31 -

(%

must exist in the input snubseguent to this GOTO coamand.
That is, only forward referénCe is allowed outside a mééro.
This command will skip all subsequént étatéﬁenﬁs upto‘the
statement containg the target label, fromlihich the
subsaquent input will resuhe. | N

Ko such restriction exists inside a mébro. In particular,

This command may be used to loop back to an earlier point.

IF, THEN, ELSE Statments

<label> : IF{<gqualifier>) <condition> THEN((qualifier)) <{true part>

label

ELSE (<qualifier>) <false part>

&SAME_AS_BEFORE

condition

is a loagical expression having the value either true or

false.

true part

specifies a command to be performed, if the condition is

true.

false part

similarly for false.

qualifier

is optional (defaulting to the value 1) and specifies
vhich if condition the qualified opérafor ié‘refefring

- 32 -

to, in cases where more than one {and up to ENAYNESTIF)
if condi*ions are concurrently active.
Qualifier may be a digit, a variable, an escape name, or

an expression,

Consider the following statement,

IF <condition 1> THEN IF <condition 2> THEN <true part)
ELSE <false part> . .
The meaning of ZLSE in this example is not unique, because the
condition it refers to chanaes dépending oh'vheiher ihé'first
condition is true or not. This statement can be made more
unambigquous through qualifiers as below,
IF <condition 1> THEN IF(Z) <condlt10n 2> THEN(Z) <true part)
ELSE.1 <false part>
Qualifiers may also be used to "expand" the true or false part
into many lines as below,
IF <condition 1>
IF <condition 2>

THEN. THEN (2)
THEN THEN(2) | i

s ess0 avossss ' l l

THEN THEN(2) | i

THEN ELSE(2)
THEN ELSE(2) | |

2 48 00 b s l B l

THER ELSE({2) |

ELSE THEN {2)
ELSE THEN(2) | 1

& 4 8t ot oswaeaen ’ C l

ELSE THEN(2)

ELSE ELSE(2)

- 33 -

BELSE ELSE(2) | i
4« & 8 8 8 & 9 F e i D '
ELSE BLSE(2) |

where A B C and D are blocks of commands to be performed under

four different {(mutually exclusive) condiiins that iay afise.

(9) MACRO Statement

o o L S P b e g Y A At S e

<label> : MACRO <macrto name> (<formal parameter list>)
label

§SAME_AS_BEFORE

Racro nawe
is an identifier, or an'escape naie having identifier
value. It is used to'na&e-the n#érénbeing ééfinéa; which
consists of a body of statenenté in'baée.iangﬁage.ﬁnd/of
processor commands And-is fefnihaigd“by tﬁe‘héﬁn'cénnaﬁd.'
formal parameter list
is an optional list consisting of up to EXAXMACARG
parameters separated bf c;ﬁﬁa. Hithiﬁ ihé iacf$-ﬁody
the parameters in thig list aré treafed aé-eséébe-ﬂiles
whose scope is local (i;é. linitéd) to the prééent macro.
The macro body may contaiﬁ other éscaée'nﬁnes nbt prasent
in the parameter list, Thé latter are treated as ﬂavinq
global scope of definition. o . ‘
This list is called formal to distinqﬁish it from the

actual parametar list to be given in the CALL statements.

- 34 -

(Ll o o e T T

{10} MEND Statement.

<label> : MEND

label

ESAME_AS_BEFORE

This statement terminates a macro definition.
Tn the current version (SVERSidﬂIb) no nested maéro definition
is allowed so that if the probeésbr runs inio anofﬁéf ﬁiCRO
command during the stage of editiﬁg the u;cro Body of aﬁ
earlier macro, then a MEND statement is géﬁeréféﬁ fo“tefiinate

the ongoing defining process before starting a newv one.

{11} CALL Statement.

<label> : CALL <macro name> (<actual paraneter 1listd)
label

&SANE_AS_BEFORE

macro name
is an identifier or an éscape name ﬁaving an jdentifer
as value, The macro so named -uét'haféupre;iohsiy‘béen"
defined in the input streéi‘or.iusé-éiisi-oh a file
named MACLIB, Macros in éﬁié ﬁacro lihrarf baecone
available all at once when the ﬁaéiih'is accessed for
the first (and last) time; vhich'is trigqéredrﬁy a call

- 35 -

to a heretofore undefined macro. Failure in opening MACLIB
{nost likely bacause of its absence) or ultiuéteiy undefined

macro will ba flaaged as error by the processor.

actual parameter list
consists of parameters separated by comnma. each of which

may he a variable, an escape name, Or an expression.

On encountering a CALL statement the processor goes through

the following actions:

1. If necessary, anvy values currently assigned to the formal

parameters are saved on a pushdown stack,

5. The values of the actual parameters supplied in the CALL
statement are then assigned to'the coéreépénding f&rnél péfaneters
in the given order. An omitted paraneéer-is ireated as qiving
null string value to the correéponding foriél paraneter; ficess

actual parameters are ianored.

3. The ‘processor then begins fetching input from the macro

body.

4, The input remains switched to the macro body until the MEND
statement is reached, at which time the formal parameters are
restored to their earlier values froz the pushdown stack. The

input is switched back to the state prior to the CALL statment.

The macro calls may bz nested. That is, a call to a macro may

further invlove call to another macro before the original call

- 36 -

sxpires. The depth of this nesting may not exceed EMAXNESTLEVEL.
Recursive calls are also allowed. That is, a call to a macro may
further involve call to the same macro. The same restriction as

to the depth applies here alsd.

Below is an example of a recursive call in a macro vwith

variable number of arquments.

) MACRO ABC(A1.A2....,A10) ‘
_Note at each level of recursion

1 text using, say, &al | the next argument in the
.original list plays the role

1
of the first argn-ent, cat.
} IF (A2=''}=0 THEW CALL ABC(!Z,AB....,!10) .

) MKEND

L 1] .l LX) .l

(12) FREE Statement.

<label> : FREE <identifier list>

label

§SANE_AS_BEFORE

jdentifier list

consists of variable names or escape names separated by

a comnma.

This statement "removes"™ the specified names from the table
of definitions so that in the subseqneﬁt use“they abbear_to be
undefined. The primary function of FREE 1s to cause “deliyed

binding® by declaring a variéblé to be ineliéible-for repiacenent.

consider the following illustration,

- 37'-

i) T T T T B L T

} I=*INITTAL!
A global symbol I has bean declared for the purpose of abbreviation.

At some later point the user proceeds to define a macro as below,

} MACRO CASE(MAXCASE) : line 1
H VALUE=*CASE(EI} ! ; line 2
) I=1

Yy MORE : CASEEI=VALUE

} I=IT+1

) IF I < MAXCASE+1 THEN GOTO MORE

) MEND

the purpose of which seems to be to generate escape names,

CASE1, CASE2, ... having values CASE(1), CASE(2}, ... respectively.

Now it is obvious from its use within the macro that I was
intended to be a temporary variable and ought ﬁo be iocai to
this macro. {(This is a big assunption and the processor éhdulﬂ'
not do this ander all circumstances).-But the processor, when
it reaches line 2, cannot tell the 410ca1" I fron-the "global"

I and therefore line 2 becomes (during invoking sfagé,“of course)
) VALUE='CASE{INITIAL)"

and the subsequent loop assigns this value to CASE1l, CASE2,...
Worse, at the end the "global" I has acquired a new junky value

losing its originally intended meaning.

A key to the solution of this problem is to delay binding

for I at line 2 by insertinag

}Y ISAVE=I < save value
Y FREE T + make it undefined

- 38 -

and fust prior to MEND
y I=ISAVE : restore

User mavy rake this solution fool-proof by making ISAVE a
wdammy" aruément of the macro (so that.the value is saved
automatically at entry to this macro and restored'af exit);
or by inventing SAVE and RESTORE macros with pﬁshdovn stacké

+to hold the value of any local variable during a macro expansion.

{13) SET Statement.

<label> : SET <key> <value>

label

§SAME_AS_BEFORE

key
1. may be any kevyword of the processing commands including
SET itself, in which case the given value, tcuncated to

5 “haraters, if necessary, becoaes the new keyword for

the same function. The effect of this comnand; unlike the

others below, is to rename a command keyword so that the

old name for it is lost.

2. may be ESCAPE or MARKER, in wvhich case the value
truncated to a sinagle character becomes the new escape

name prefix or the processor warning marker respectively.

- 39 -

3. may b2 BEMCTE, in which caée the value must be either
BEGIN, or PND. One command is used to switch the output
file 5YSOUT from "local” (undef the DD name of SYSOUT} to
“remote" (under the DD name of SYSUT) so that'whaféver
follows this command getsrcolleéted at the end. The other

command switches "remote" state back to "“local".

4. may be any keyword for the "options"® that can be
specified through the PARN fieid of JCL EXEC card. This
command is used to dynamically (i.é. duriﬁg run fiie]
reset "ootions™, For example in pfocessing FORTBiﬁ
text the option, FORT=1, should be ir effect to take
care of continuations, but a user insisting on writing
Hollerith FORMAT stateﬁenés may want to sﬁspend this

option temporarily.

5. may bé TITLE, in which case the value is a character
string of length less than 80 (ﬁoﬁ else ?) enclosed by
quotes. This command sets the page heading and ejedts

to a newv page. The command itself does not appear in the

SYSPRINT listing.

6. may be PAR%, in which case the command syntax is

<label> : SET PARM <name> <valued>

name

is any one of the built-in functions.

value

- 40 -

is an integer not greater than ZMAXNARG.

This command rossts the expected number of arguments.

The key, excepot in case 4, may be abbreviated to the first

three characters.

The primarv purpose of SET command is to weaken the
constraint that processor keyvords are "reserved" words and
hence cannot bhe (strictly speakinag, at user's risk) used for

any other purpose.

Example.

) SET MAR § Because $ is not a special char. col 2
$ nust hence be blank in a pp stat.
$MEND MEND not recognized,

$ SET FREE DEACTIVAT
$ DEACT A,B,C

: Truncated to DERCT.
because a kvwyword must be 5 char or less.
$ SET SET @ SET is renamed @. -
$ @& FORT O Turn off FORT continuation feature
112 FORMAT{130H A title consisting .0f 130 characters
+ including blanks } - . ..

at 40 48 [T 08 4o ey

$ @ FORT 1% ¢ Turmn it back on.
$ @ ESC ' ¢ :+ Subject every token with leading blank
$:+ to replacement.

$ @ ESC **' Every token is e11gib1e for replancelent.
Incidently reader might wonder why the key words are limited
to being S5 character or less. This is so that. if variable'
names are 6 or more character long, then assignment and label
statements are recoanized without the overheéd of having to

check against the table of operations.

A reader might perhaps vwonder how come the built-in function

names are not allowed to be SET ? This is because the table-

- 41 -

look-up relies on the table being in EBCDIC collating sequence
so that SET, if implem2nted, must reorder in this case. (This

is dzemed o be a case of diminishing return}.

(14) Built-in Functions.

The built—-in functions of our macro processor may be divided
into three classes: (1) the class of fuﬁcticns'uhich are based on
the PL/T built-in functiomns of the same name, such as
SUBSTR and TRANSLATE, {(2) that of functijons feculiat to our
processor such as (token-) TYPE, énd (3 thé'function IﬂVOKE
for "dynampic" invocation of user-definéd functions dr any

procedures including those of, say, Pt/I library.

Since the processor itself is writterm in PL/I, it has in
principle easy access to all the built-in functions of PL/I
(including future ones). Becnése fhe "basi&" dafa tyfe of our
nrocessor is character string, we have éelecfed aé useful those
dealing with character strings and integers (whiéh are self-

defining charactar strinas for our purpose).

From this class we further excluded those functions which
require a "constant® argument. Remenberrfhat the‘prﬁééééér is
executing user commands interpreiively. In particular the constant
arugment is to be spacified by the user during run-time and is
anknown during the compile-time of the processor. bne bruté force
method of implementing such a functionm would be to (1) limit the

- 42 -

choice to a few constants, (2) repeat essentially the same
coding for each of these values, and (3) branch to one case
according to the given value. We chose not to do this deferring

this class of functions until a better scheme turms up.

An expected argument must be always given., That is, thete
is no "optional"™ argument as in the cese of ihe fhird argeenent
of SUBSTR in PL/I. A wmissing argument in our case is treateﬁ as
having null value. This is consistent with the rule used in

treating argquments of a macro call.

The value of our built-in function is always a
character string. If the corresponding PL/I function returns an
integer value, then it is converted to a character string with

leading blanks suppressed.

Note that the function names are not reserved vwords. An
jdentifier is first looked up in the table AE use£~defined:
variable names. Only when it is not present in this table, the

table of built in function names 15 interrogated. If it is still

missing, then it is treated as an undefined variable.

Consider the following exanple- Suppose a user inadvertently

used a variable named SUBSTR as in
) SUBSTR=*THIS IS AN EXANMPLE'

Does he then lose SUBSTR built-in function for good ? The answver
is no, because all he has to do is to remove the i&entifiet. SUBSTR
from the appropriate table before he invokes SUBSTR funciien by

- 43 -

issuing the following command,

}y FREE SUBSTR ; (better save the value if needed again ?

whenever applicable the PL/I function of the corresponding
name is invoked so that the usér ﬁay éonsult é PL/TY nanuél for
preciss definitions of their use. We include here a hrief-description
for convenience and also note special rules whenefer they are |

different from the relevant PL/X specifications.
(a) String Handling PL/I like functions.

The notations i, j, k are used to refer to integers and s, .

t for strings.
1. i=INDEX (5,T)

The value i is an integer giving either (1) location in string s at
which string r has been founé (scahning fronileft tb righti ot

(2 0 for no occurance Or if either s or r is a null string.

An example of INDEX in a macro to get rid of blanks.

MACRO SQUEEZE(A) ; S WILL HAVE BLANKS SQUEEZED OUT
L=LENGTH (M) . ;
I=INDEX(A,' ")

IFf L=0 THEN S='!

BLSE IF I=0 THEN GOTO MEXIT

ELSE S=CORCAT(SUBSTR(R.1,I-1),SUBSTR(A.I+1.L-I})

ELSE CALL SQUEEZE(S) : - - Ce e
MEXIT: N¥END

P R el R

2. i=LENGTH(sY

-~ 4 -

Obvious,
3. r=SUBSTR{(s.i.¥®

r is a substring of s starting at i-th character with the

resulting length of j. Let k be the length 6f s'then it”iﬁét be

that - - ‘
0sjsk, 1$isk, irj-1<k

Otherwise r is unpredictable according to the current PL/I manual

If j is 0, then r is null.

Another form is r=SUBSTR({(s,i) where the remaining langth
is implied. A user insisting on using this forl .nust)
SET PARM SUBSTR 2 beforehand naking sure the exnected argulent

number is set back to 3 afterward.

4. t=TRANSLATE(s,r,p)

s is a source string to be translated, r is replacement string and

p is position string, both of which defiheé the ffanslaiibﬁ table

character~-by-character, The function ﬁaﬁe lﬁy be #bbfévi#&éﬁ to

the first six characters.

For example TRANSLATE('COS(C)*,'SIN','COS*') is *'SIN(S)'.

5. s=UNSPEC (x)

- 45 =

r=turns internal coded rapresentation of x. See PL/I manual.

for example UNSPEC('A') is a Eharacter striné '110ﬁ6001i |
represanting a hexadecimal digit C1 as EBCDIC éodé'for 'A%, This
string may be converted to a décimai digit fo‘be used in aﬁ

arithmetic expression.
6. 1=VERIFY (s,1)

i is 0, if string s is contaired in r. Othervise, position of
the first character (from the left) in string s which is not

in string r.

An example of VERIFY in a macro to get rid of leading

blanks.

MACRO NOLBL(A) : S WILL LOSE LEADING BLANKS
I=VERIFY(A,' ") . .

IF I=0 THEN S=*'*

BLSE S=SUBSTR(A,I,LENGTH(A)-I+1}

MEND . :

P wat st et

We give another illustration ir using these functions.

LET S 8% A STRING OF TOKENS SEPARATED BY COMMA WITH NO
ALANKS. GET_TOKEN BREAKS S INTO TOKENS, FOR EACH OF WHICH
COUNTESR, ¥ANY, WILL BE TINCREMENTED. THE TOKEN. ITSELF IS
SAVED INTO A PSEUDO-VECTOR TOKENEI (I=1,MANY).

sb 48 24 40 44 #2

MACRO GET_TOKEF (B,S)
MANY=B : STARTING VALUE - 1
MORE: L=LENGTH(S)
IP L=0 THEN GOTO MEXIT
MANY=MANY+1
P=INDEX({S5.'.")
IF P=0 THEN TOKENSMANY=S
ELSE TOKENEMANY=SUBSTR({S,1,P-1)
ELSE $=SUBSTKR(S,P+1,L-P)
BELSE GOTO MORE
MEXIT: MEND

TEXT HAS BEEN INTENTIONALLY
PUSHED LEFT, SQUEEZING OUT
SUPERFLUOUS BLANKS. SO THAT
THE WASTE IN. PROCESSING .

NO INFORMATION IS MININIZED.

“d 4

el gt W gt gt el mat Wt el vt w et ol il

-
.
-
*

FIND EXAMINS PRESENCE OF TOKENS IN A STRING AND INSERTS

- 46 -

. SURROONDING BLANKS FOR EACH TOKEN PRESENT.

. 4

)
)
) MACRO FIND (1)
} S=A
) =1
) MORE: P=INDEX (S,TOKENEI)
) IF P=0 THEN GOTO CONTINUE
} A=CONCAT (SUBSTR(S,1,P-1),' ¥TOKENEI ")
) SET PARM SUBSTR 2 e
) S=COHCAT{A,SUBSTR(S,P+LEHGTH(TOKENSI)))
) SET PARM SUBSTR 3 . . . R
) GOTO MORE : UNTIL NO MORE OF THE SAME KIND,
} CONTINUE: I=T+1 e . .
) IF I < MANY+1 THEN GOTO MORE -
) SET PARM TRANSL 3 ; THIS VERSION HAD 2 BY MISTAKE
) ABOVE OBSOLETE AS OF AUG/6/74
To a casual reader PIND may perhaps appear to .contain
needles gyrations. To see their need, consider a .situation. .
in which one token is contained in another, as in *A* and

'*RATHERY. We show the string S prior to TRANSLATE, .

ES . .
} S=TRANSL(S,'6','#') ; CHANGE # TC &
} S='£S? o
) MEND
L]

70 see how these MACROS work, define some tokens,

)y CALL GET_TOKEN(O.'BL&HKS,RATRER,STBIHG,THIS.A')

And apply to a string,

} CALL FIND(;THISISARATHERLOHGSTRING“ITHOUTBLRNKS')

[}

String's is now ES.

(b) Arithmetic PL/I like functions,
1. i=aBS ()

2. i=MAX(3,k) Note only two arguments allowed

- 47 -

3, i=MIN(j.k} Same

4. i=mop(j.k) remainder of i/k

(c) Miscellaneous.

1. s=CONCAT (r,t)

s is the concatenation of two strings, r and t. This has the same
effect as the PL/I operator |1, which. iﬁcideﬁtaliinis ;hiihfix
operator requiring a vary différenf.netﬁod of par#ing aé.iﬁ‘evaluating
arithmetic expressions in infii ﬁotatibﬁs; ié‘ﬁadénﬁp éhe cbucni
function so that the alternéte'ié{ﬂbd.éf rééﬁ;sivé‘fuhcﬁidﬂ call

can be uéed for this operator. (Héw.abbdi;ls='sr8t'. vhen |

r and t are character string constants ? }.

(D) INVOKE

whis operator was originally invented for the purpose of dynamically
invoking (i.e. by bringing a user desireé pfogran infb naih storage
and executing it during the ruﬁ time) ahy ﬁrogran in-fhé (fbst load
module library under the DD ﬁaqe of SYSLIB. fhrougﬂ conéat;ﬂation

of 0S libraries and user libraries in whidh dger ﬁritteﬂ‘prograns
are collected, this feature nakes availéble to the processor 2

potentially huge set of programs,existing procedures; user compiled

- 48 -

"macros®.,

Soon i+ became apparent that there is some advantage of YNVOKiag
even PL/I built-in functions, if the latter are used less frequently
than the ones described earlier, because of the saving iﬁ table
look-up overhesad. With dormant INQOKE the table of built;in functions
looks like a lin2ar, ordered 1ist;-Becaﬂse IR#OKB is a =ueaber of

+his list the table becomes tree-like, when TNVOKE is active.

This form of INVOKE is used as a function,
value=INVOKE {name,argl,ard2,...)

Actually function is a misnomer for INVORE, because the INVOKed
procedure may have the primary purpose‘of aenératiné mofé lines
(user text) in SYSOUT, processing subsequenf lineé in SYSIN (to
the macro processor itself thé efféct is as“if thésé lines have
been skipped) ., and what not. | |

The argument list must, of course, be a variable one., In order
to prevent accidant ani to supply some syntax check it
is required that the nser tell heforzhand what the number of

arguments is,
) SET PARM INVOKE <valued>

vhere value is the number of arguments to be passed to the procedure

INVOKed. Does this regquirement prevent using INVOKE recursively ?

- 49 -

The answer is NO, because dummy arquments may be supplied, as inm

the following example.

Suppose we want to invoke a procedure named NAME1 with 3
araquments, the szacond of which is a value of another procedure,
NAME2, which in turn requires 2 arugnents.

SET PARM INVOKE 3 ; maximum

value=INVOKE (NAMET, arg11l, INVOKE[NAHE2,arg21,argzz,argz3],arg131
arg23 is a dummy 3 . .

—

.

1. DATE and TIME

The PL/I built-in functioms, DATE and TINE, belong to the category
of less frequently used function under nornal s1tuatxons. Therefore

thev are implemented throuqh INVOKE.

INVOKE {*DATE"') gives a character string of length 6 in the.
form YYMMDD, and INVOKE('TIME'), a character string of lemgth 9
jn the form HHMMSSTTT, where TTT is in msec. assuning, of conrse.

the number of arguments has been set to 0 beforehand.

{15) Expression.

Using the customary rules as in PL/I or FORTRAR, any expression
containing constants, variabhles, escape naaes, functions,

parentheses, and the following infix operators, is alloved.

operators priority operation
*® / highest integer arithmetic
+ = | " o

- 50 -

> g l ” L)
| string comparison
v . logical and
lowest logical or

-_m i

An expression may be used in an assignument statement, as an
argument of a macro or function call, or as a qualifier of IF,

THEN, and ELSE.
1. Data conversion.

Phe internal form (type and attribute) of a data, be it a
constant, value of a variahle,mor of a fnnctibh. is aiuﬁys”a
varying length character string (CHARACTER (SMAXLSTR) VARYING).
An arithmetic operation is cérfiédmoﬁf-ﬁiA;bﬁveriiﬁg-'6péf;nds
to signed 31-bit magnitude fixed binary nuabers (PIXED BINARY (31))
The result is converted back io é-cﬁaf;étef“stiiné ﬁitﬁ l‘éii‘d
ing blanks s ap p.r e‘s s é-&.. A loéiéailopération
is peiforned vith intermediate coﬁ;érsléﬁs io-dnﬁ‘éfdi-a-ﬁiﬁ -
string of length oné (BIT(1) ALIGNED). T

Also function calls involve conversion of argusents to required
types, when applicable. The value of an inieéer function is also

converted to a character string vith ledding-bianksnreloved;f

2. Error handling.

Apart from fatal (in the sense that the subsequent performance
of the processor itself might be affecfed)lerrdrs iiké-st&Ek
overflows, no atteampt is made to detect befoféhand §-po£ential

error condition. An expression is calculated with implicit

- 57 =

conversion without any prior check.

an error condition, when detected by the operating system,
is trapped back to the proceésor so that the proééssinq uay‘
continue, This approach is slightlf iﬁconvenient for useré; because
by the time an error condtition‘is noted the prilafy causeﬁis often
difficult to pinpoint (specialiy wﬁén a éf&felent Eont&iﬁé-lanj
complex expressions). on the 6thef-hand fhis'apﬁfoacﬁ-haé an

advantage of not pemnalizing a careful user with checking overhead.
some frequent errors are;j

a. overflow in conversion of an integer string to binary form
(in an arithmetic operation}.)) -
i b. conversion of a string with chafacter other tﬁan 0 or 1 to
a bit string (in a logical'eipfeséibnf. - - -
c. unmatched parenthesis. S - |
d. successive infix operators likela*-éAféhould have beeh

a" -2', .

(16) Replacement.

A *line" of text, be it a statement in the base lanauage, oOr
a processor command, is scanned for the presence of the escape

character, GESCAPECH, vhich sigmnals a potential replacesent.

If

1. the escape character is followed by an jdentifier or by

- 52 -

another ascape character followed by an identifier,
and
2. the identifier is eligible for reolacement by having been

assigned a value including nall,

then the escape name, the escape(s) and the identifier, is

substituted by the correspondihgrgalué.A Bécaﬁse fﬁé ienéiﬂs
of the two strings, name and value, do no£ iﬁ Qenérai matéi.
we allow two different modes of réblacenenf;‘p A émk.e‘d aﬁﬂ

non-packed, as described later,

Scanning for an escape name proceeds from left to right. The
field scanned is the antire "logical lime" which

1. if FORT=1, consists of a FORTRAN statement and possible

continuation lines,

2. otherwise, columns frosm BEGC to ENDC of the user' text,
(BEGC and ENDC are PARM f1e1d options defanlting to 1 and
80 respectively).

3. or, 1f commands, columns from 2 to SPPSEC, extendinq beyond

the terminator : ({so that even connents are subject to

replacements).

When an escape name has successfully been replaced by its
value, the scan is restarted froa tﬁe begihniﬁg coiuln.“ﬂeécanniné
continues until no more escapeé Eémain, or oniy itfeplaéaﬁle
escape names remain (vhich are ieff‘"as is",.sucﬁ-as £123 in
FORTRAN, a label being passed tova'subroﬁtihe as aﬁ aréuieit}.

The rescanning mechanism allovws qenerating escape‘ﬁanes by“

- 53 -

replacemant. The maximum nunber of replacements allowed per

line is SMAXREPLCOUNT.

The followina is an example which otherwise would lead to

an infinite replacement loop.

)y FREE X : MAKE SURE X IN INELIGIBLE FOR REPLACEMENT
) X='£X' ; YOW MAKE IT ELIGIBLE BY GIVING IT A VALUE. ?
&X . ;

There are two different modes of replacement:
1. pPacked Replacement and period for Concatenation.

This is indicated by the escape name having a single escape.
If the delimiter of the escape nﬁle is a péribd, then-tﬁe_period
ig removed allowing concatenatioﬁ of the repiacenent v&luéluith
the part to the right of the period. Replacemeﬁt-ié déﬁé ﬁi
removing the escape name and iﬁsefting in its plaée thé'assdciatéd
value. The remainder of the statement to the fighéhof ihe”escape
name is shifted right or left as needed to acéowodate the vﬁlue.
BRlanks are added at the end of the iine; ifAfhéfe iﬁ an 6§éra11
jeft movement, or truncation, if right. The létterAis 3etééted

as ap error condition.

2. Non-packed Replacement.

This is signalled by a double escape preceding am jdentifier.
A period deliaiter isn o t reéoqnized aé concatenatién. The
replacement of the escape name is doﬁe.viéhéut anf.shiftiﬁé of
the part to the right of the name. If the value is shortef.than

- 54 -

+the name, hlanks are added., Tf the value is longer, then the

blank field, if any, to the right of the name is borrowed to

hold the trailing non-blank characters of the value, If theré

is still no room, even after using the biank field and discounting
trailing blanks of the value, thén the procéésor will flag the

truncation of the value as an error.

the latter mode of replacement is useful in processing
column sensitive data cards. Or in making subsitatuions in

the label field of column sensitive language like FORTﬁAN.

(17) Keywords in the PARH field of the EXEC card.

Some parameters of the processor that are deered likely
to stay unchanged during a run, are passed as woptions® to
the processor through the JCL PARN field necﬁanisnhof the EXEC
card. The format of this field is a list of'ifené.separﬁted
by a comma, each item consisting of a kéywofd folloved by an
equal'sign and an integer. Thése optioﬁs and fheif“ﬁeféulg

values are listed below. Remembet that ali except SIZS can

be changed during processing time by means of SET commands.

Key Default ‘Meaning

BEGC 1 Begin column for replacement scanning
of base lanquage statements. FORT=1 option
will override this. ‘ .

ENDC 80 End coluan likewise.
MACO 1 If 0, no output is written on SYSOUT
PGEN 2 If 0, no output listing is produced on SYSPRINT.

If 1, top level statements are listed . .

- §5 =

If 2, base language statements from macro
expansions, in addition.

FORT 0 Tf 1, FORTRAN statement conventions become
effective. See .below.

PRBS 0 If 1, the text before resolving escape names
is printed.. . : .

SIZs 10000 Kumber of bytes allocated to store variables
names and values. If necessary, may be expanded
to 32767, . , .

The FORTRAN statement convention mentioned above is to be
understood as follows. The coiuﬁns 1 thfough 72 of thé firéf
card and coluans 7 through 72 of-any coﬂtinuationqcardé are
treated as a single base language staténent‘in cafrying 6ﬁt
the replacement operation. Trailing-blénks at-the end of éach
line are removed unless, of ﬁoﬁrée, they occur as a patf‘éf a
character string. If each line is full then GNCONT éontinuation

lines are allowed, More, othervise.

(18) Diagnostic Messages and Severity Codes.

An error condition detected by the processor is flagged by
an error message giving a self-expianaﬁory diagnosis together
vith other helpful information such as the statement‘nunber in
question. A severity value is also-éséigﬁed. fhe ﬂighest of

which is propagated as a JCL Condition Code £6 the next job

step, when the processing terminates,

Other errors, such as

a. arithmetic overflow and conversion errors in expression,

- 56 =

b, missing SYSUT, when REMOTE is used,

c. too many print lines,

cause Operating System interrupts, at wvhich time the 0S5 diagnostic
messages (like PL/Y obiect—tiﬁe"messaqeé'headea by IHEnnni) will
appear followed by the calling traée listihg all procedﬁres

active at the time of interrupt. The severity codé ﬂ'is assigned
to such error conditions. The proéessof ;111 regaiﬁ coﬁtrol in

an attemnt to continue, but will aﬁort tﬁe éféceséing éfter

EMAXFATALERR number of such occurances.

A1l processor diagnostic messages and their severity vaiues
are collected balow. The format is a chéraéier string beiné
assigned to a variable whose néné-ideﬁtifiééhihe éroceddre
involved. The collection is a.rééroduétioﬁ of‘a péﬁi ofniﬁé
processor-processor to be deéériﬁéd eiséwhére;.The 0s ﬁeésages
can be found in the 0S raference ménuéi sucﬁ as tﬁé PL/i(?{

Programnmer's Guide.

Messages and Severities. Version of EVERSIONID

s a0

)
)
}

Y]

) TOKENERR1= *'fSTRING TOO LONG,TRUNCATED TO SMAXLSTR CHAR'®,8'
. TOKENERR2= ''IDENTIPIER TOO LONG,TRUNC TO SMAXIDTL CHAR'',8'
) MACLIBERR1= '¢'ONABLE 70 OPEN PILE NACLIB'®, 16"

)3 The DD card for a user macro.library. HACLIB; is
IR probably missing. - ‘ .

y EVALERR1= tY L JNASSIGNED VAR'',8?

) EVALERR2= '''MISSING (IN BUILT-IN FUNCTION'®,8'

) FREE A1 | | ' -

- §7 =

)

)
}

-t

»a

-
L]

&t

EVALERR3= '*'EVALUATE STACK EVEAN FOUOLL'‘, 16?
EVSTK is a primary sfack §1zed SEVSTKSIZE. EVOUT is
a secondary stack sized szvdursxin. The expréssion
probablvy contains too laﬁf nested parentheses.
Break the expression into‘severél lines; T
EVALERR4= ' YERROR IN EXPRESSIbﬁ'},S' V
CLASSTIFYERR1= *!''MISSING KEYWORD IN PﬁOC STHT'',8!
CLASSIFYERR2= **'UNDEFINED PPSTHT'*,8"; h 7
DOSETERRI= **'ILLEGAL KEY IN‘SET STHT",B‘
DOSETERR2= '''NO VALUE IN SET S"I'H'J'."",B‘l
DOSETERR3= ''*ILLEGAL VALUE IN SET PARH",B'
DOSETERRU= "' *PUNCTION ﬂISHAﬁEB IN SET PARH",B'
MCALLERR1= *'*MISSING MACRO ﬁAHE",é' _
NCALLERR2= ''*UNDEF MACRO NAME'*,8°
WCALLERR3= *!'MACRO DEPTH EXCEEDS SMAXNESTLEVEL'',16%
WCALLERRG= *¢TNVAL DELIN'',8' I
See comments under ﬁEDITERR#.
MCALLERRS= *f'PUSHDOWN STACK OffﬁFidﬂ Ik'HKCﬁO C!LL",16'
PUSHIP size SIZEP is too-suall; .
KEDITERR1= *''HISSING NACRC NANME'?,12°
WEDITERR2= *''INVALID FORMAL PARN®',12?
Parameter name must be an 1deﬁtifier.
MEDITERR3= '''DUP FORNAL PARN'',12! '
MEDITERRU= '**'INVALID DELIB".12;
A parameter must be deliiited by either , or).

MEDITERRS= '''MORE THAN EMAXMACARG FORNAL PARAMETERS IN MACDEF'*,12'

) MEDITERR6= '''DUP MAC DEFINTTION'*,12?

- sg -

) MPDTTERR7= *f'DUP LABEL DEFINITION",12’.

) EXPANDERR1= **''TROUNC WILL OCCUB' IN NOﬁ-PACK REPLACEMENT'*, 8"

) EXPANDERR2= *1''SIG PART OF STHT/REPL YALUE LOST IN PACKED REPL'',8°
) EXPANDERR3= ''T'HORE THAN suaxREchouuT REPLACEMENTS'', 12¢

} MAINERR1= *'T'STRING SPACE EXHAUSTED, ABOBTING STUT'", 16' |

Y3 Area for value-strings STRINGAREA sized SIZS.

) MAINERR2= '''MACRO DEF SPACE EXHAUSTED, NEW ALLOC MAY FAIL'',16°
Yy Area for names and méérb body'QﬁiEflnEA si#e&“SIZEQ.
) MAINERR3= 1% *INVALID DARK NAHE'®,8) “ I

Y3 see descriptions of Spfiohs in JCL parm fiéld;

) MAINERRG= '''SINTAX ERR IN PARN PYELD'', 47 ' o

)3 The syntax is <key uord$l= <in£éger$.followed-by

Y3 a comma if more. o o N -

Yy MAINERRS= ts 1 BEGC, ENDC SPEC INY!LID";Q'

) e Error detected durin§ pﬁriwfiéid pfocéssing. Reset
Y3 to their default values. — o S

) MAINERR6= ''"INSUFPFICIENT JORK SPACE--WILL ATTEMPT TO CONTINUE'',16%

V3 The available spacéAdeterniﬁed.gj issuihg a é&nﬁitional
) s . GETHAIN to the 05 (and printed im SYSPRINT under |
Y SIZ¥) is not sufficient to alioééte a push down stack
): (PUSHIP with size y*STZEP in gjtéé). éiﬁbntrolied

)s réa for value strings (STRINGAREA,SIZS), a based

\ area for names and aacro definitions (QUIETABEA SIZEQ)
V3 and control hytes for each. ns a renedy increase

) the step REGION size in JCL. o -

y MAINERRT= '''TOO MANY CHAR IN FORT STHT'',87

-

) Too many continuation lines in FORTRAN. That is,

- §9 -

Y the size ESWORKSTRLNG for a work area HORKSTR is
Y not big enouah.

)} MAINERR8= f'YMEIND NOT IN MACRO'!',8'

) MAINFRRO= ***MORE THAN EMAXNESTIF iF-CONDITIONS",12'

)y Too many concurrently active if-conditioas.

) MAINERR10= '+ILLEGAL ADDRESS IN GO TO'',12'

) A label must be an identifier.

) MAINERR11= Tt UNDEFINED ADDRESS IN GOTd";12'

): Refarence to an undefined lébéi in a-macro.

) WAINEZRR12= ¢''EOF DURING LABEL SEARCH'®, 16

Y3 Fforward reference to a hén-éxiéfént i;bel outside
}: MACLOS., |

) MAINERR13= **'BAD QUALIFIER Iﬁ PLSE OR THEN'',8!

)3 The qualifier refers io ﬁn.nﬁdéfiﬁed’xr cqndiiion.

) MAINERR14= **t+**+ TLLEGAL USE OF REMOTE. SEVERITY=16%1¢

¥ 3 REMOT® is used pairwise, (BEGIN,END).
)3

R o e
3 End of Messages and Severities

(19 A JCL Example and a Run.

The followving is a typical JCL for a macro processing

step.

Va4 JOB card .
//MAC EXEC PGM=MACT4C,REGION=300K, PARM="PRBS=1"*
//STEPLIB DD DSN=WYL.ED.PUB.PARK,DISP=SHR

- 60 -

//MACLIB DD (User's macro library, if any)

//SYSLIB DD {(User's program library, if any)

//SYSPRINT DD SYSOUT=A . .

//7SY¥S0OUT DD DSN=£MACOUT,DISP= (MOD,PASS) ,UNIT=SYSDA,

7’7 SPACE=(TRK,(20,2],RLSE),DCB=(RECFH:PB,LRECL=80,BLKSIZE=1680}
//5Y¥SUT DD DSN=ETEMP,DISP=(MOD, PASS) ,UNIT=SYSDA, . -

Yy SPACE=(TRK,(20.2).RLSE}.DCB=(RECFH:FB.LRECL=80,BLKSIZE=1680)
//SYSGDUMP DD SYSOUT=A.DCB=(BECFH=VBA,LRBCL=137,BLKSIZE=16QQ)
//7SYSIN DD * : . .- .. . -

I__~——---‘ o |
{ Text to be processed.|
{

| e i L 8 R Y o o et 8 T Tl Mt ey et e S G, el

The EXEC statement specifies the prégran to be nxecuted; the
main storage requirement (for thié step) an&-optidns in.the
processor. This is followed by'foliowiﬂg b(gfa)‘D{efinition)
statenents. o ‘ | | A

STEPLIB identifying a (PDS) 1oad module library containing

the processor. o - - |

MACLIB optional macro library, which is a séquentiil data

set with a similar ﬁCB as-fhﬁt‘of'SISOUf. ni&:&é in
this library need not bé‘in aiphibétic“ordef;-‘

SYSLIB optional program (1oéd lodulef librarj”uhich is a
partitioned data set cdntaiﬁihé'grograis as'neibe:s
‘to be INVOKed. - -
SYSPRINT output from the processor to be printed.

SYSOUT processed output to be paséed onto a subséquent step
(vhich may not be imnédiately foliowings. Need not be
given, if the optioh ﬁlco is cgo;éﬁ fé be 0.)

SYSOT a teaporary output from the pté&eééornﬁhich-ié genefated
when REMOTE is used. ﬁot needéd 6£herwise. |

SYSUDUMP to get the 0S dump if thé step teflinates abhorlally.

- 61 -

Not needed otherwise.

SYSIN input text to be processed.

The next two pages contain a reproduction of the SYSPRINT output
from a run in which we have collecfed Various.exénéleé used in Part
1I. The character ¥ under LE#EL méans-thaéitie cdfrespondihg state~
ment is being processed by the proceduré handlin@ gacrb-définitions.
Level 0 means us2r's text, othérﬁiée it is the nesting levél of‘
macro calls generating the line concerned. REPLC cdunts tﬁé total
number of replacements in a lihe. In this faftichiaf fun fﬁer
option PRBS=1 was taken in order to print éach line containing

escape names before replacement. Such lines are matked BR.

T ¥IS8NS wWiyvd 135
Lo TINSNOLN ¢* [1-d" T*SIUISANS ILYOND Dn¥
3ONIANDD DLOY N3IHL D=d dI
fISNINOL S IX30NT=d & 3YIN
1s1
¥e3
(YIONTd DWW

* NI S3¥d NINOL HO¥3 WD SUNVIE ONONADUYYS
SIYISME ONY ONJULS ¥ NI SNINDL JO 2ONISTYd SNIWVXI ONIs

- o o oo

B . N e e e

aNad 111N

J¥0N 0L09 3573

(4= T+d*5)dis8S=5 35713
IT-g*T*SIUISONS=ANYAINDNDL 3§13
S=ANYWININDL NIHL J=d dl

TOITIWININ S1 NOILYWHO4NI ON & Fe? e 'SIXIAN =g
ONISSIOVNE NI 3USYm 3INL ¢ T+ANYile ANYA
A¥YHL 05 SHNYIR SROMAWI4NS ¢ LIX3W QLOS NIHL 0= 4]

AN0 DNLZIINOS 41437 0ISNY ¢ (SYHLONAT=T & JdIN
ATIVNOIANIINI NIJE SYM LX31 ¢ 1 = INIVA ONTLUYLS T GudNYN
' 1S*QININDLTL39 OuIYW

TUANYN*In1) #NINOL ¥I1D3A-00N3Sd ¥ DINT Q3AYS

$1 473841 NINOL FHL "OIANIWIVINT 38 TTIN *ANYW *VILNNDD
HOIHM 30 HO¥3 ¥02 *SNIYDL JUN] S SX¥3Iyd NIXILTL3ID *SANYW
ON HALM YWNDD AR JZIVYYJIAS SYINIL 4D ONIWLS ¥ 39 3 13

e v e e ok

ASINYA SHNYIE ONIQY3IT HOLYM %ON SI § 9Nl uls
3 NON SI § ONIULS

(HSINYA SANYIO ONIGYEY HILYA 1) TIEI0N IYD
ON3IN

LT+ I=-{VIHLONII* T* VIULSONS=3 35713

. 4155 W3HL O=1 41

v 2*ViAdludAs]

SHNY B ONIQYIT 350V 1IN S P [VITVION OUdYM

- rn gy g

SHNYIITIVLSITIAYHITINT MON $3 § ONIWLS
§3 MON 1 § ONIWLS

(e 53NYIE VY 1507 3AYH 1IN 1, 03733005 1Y) 1
*$3¥YI% L1 AOH 335 OL

ON3W 3LIXIN
151 3733N35 11¥) 33713
TUI=YT414Y I H1SONS* {1~1*T*VIUISENSILVONDOD=S 3573
1ix3s DLDD NIHL O0=1 d41 33713
ve=S NIHL D=7 g1
te «*YIXBONI=]
(YIHLONIT=
LN0 G3Z3IANOS SHNYIE JAVH VII% S 3 (V)IZ3I3NOS DWIVNW

e

SLONVIO X LIWH AN3AILYLS 3UN0S
39vd 1x31 Kl 5374mM¥X3 40 {T=Se¥d HLIM} NDY AVNLOY

11

000 OgwmoO
©
WHUNLEWSO000O000O00 WULWWOOODOO0O00UO00 WiuWiHwiwikivao oo Wwwwww
[
-

2743¢ NWAIT LWLS

- 63 -

0 =ALI¥ZAIS LSIHOIMPSINIT €82 QIS5 3V¥d I¥L IVH -~

1] 1] |11
SUNVIR LNOMLIA ONIYLS 9NIT WAHIVY ¥ SI SIHL MON S1 S ONIWLS 9 0 52
*$3 MON SI S oNlws 1) o t114
0 9 162
TNINOLH LNOHLLN ENIMDLY ONOTY V3NDLS SNINDLR ST :.mxo»“ 1 “ w2
3 He ey
SILYISNYYL OL HDIUd § ONIWAS 3HL MOHS 3R *¢ WIHLYW [3 L¥?
ONY o¥+ NI SY “Y3HIONY NI Q3INIVINDD ST N3WOL 3NO WDk NI 0 1 (174
NOTLYALIS ¥ WIQISNDD *033N YIFHL 335 0L “SNDILYNAD SEVW0IIN Q 1 {174 '
NIVENGD Ol ¥YZddY SdvHuId Ave ONId %30YRY IWSYD ¥ OL 4] “ 3“
. 0 £y =
£ oSANYIR LAOHLIMORIGLSOND TWIKLYHYS IS EHLa 1ONTE WD 4] no“ D
) 0 o FT]
SONTULS ¥ 0L Aldey ONY 0 0 181 ¢
Y| o 031
AV STHLIONTIHIS HIHAYES SHNYIQ S OINDIOLTLID TV I 0 LEY
o . o0 13
*SNINOL AWOS INIJIQ *WYOM SOUIVH 3SIHL MOW 335 OL o o 131
. 5t 0 ¥l
ONIN]] (131
S04 F IONYHI & (st a3 *SHISNVEE=F | 3 ..-o.n..“
53 3 £
S3LYISNYYL OL WOT¥d § ONINLS JHL AROHS 3N *, e3HLYY. 4 (114§
ONY ¥4 NI SY *u341DONY NI O3NIVINDD SI N3¥OL 3NO HIIHY NI F] 621
NOILYNLIS v ¥3OISNDD *033N WiaHi 335 0l *SNOLLY¥AD $31033N # w21
NIVINOD 04 ¥¥3dd? Sdvei¥dd AYW ONIJ ¥3IOV3H IVASYI ¥ OL ¥ L2
. 3 9z1
YL/9/90Y 40 $Y 313710580 3ADOY Y 3 T3]
3AYLSIM A3 2 UVH NOLISHIA SIHL b € VSNYUL wWuvd L35 14 i ¥21
UM D109 NIHL T+ANWN > § 41 3 €21
T+I=1 2INNIINDD | 3 E24]
*ONIY IWYS 3FHL JO IYOW DN TLINA 2 JHOW 0J09 | 3 1Z1
€ ¥isens wivd L3F 3 021
{UCTININOLIHIONT T+a*SIUASANS+W)ILYINO =S | 3 611
PLONVIO WL IVN _ AN3W3LVLS 32800 2143V WAIT LWLS

30v4d X34 NI $37dw¥X3 40 (TeSA¥d HAIN)} NNV TYALDY

References.

J. Ahern, MACROS-Statement Oriented Macro Processor,SLAC
Computation Group User Note 2§‘(1969). -

There is an abundance of literaéureé dealing wiﬁh macro
processing in various torms fanging from.stfiﬁé brocessdrs
as indeéedent systams to definiiional facilities in several
different phases of compiling process for higher 1évei
languages, We include a.shoft list of refefeéces for-macro
processors of the former kind that we have come acroséwfrOl
time to time. Further refefences.may.be found in-thosellisted
here. | 7 -

C. Strachey, A General Purpose Macrogenerator, Computer
Journal 8, 225 (1965). . o - ’

P. J. Brown, The ML/I Macro Ptbcessor. CACHM 10, 618 (1§67).
5. A. Robinson, NACRO-FORTRAN, A Facility for Programmer-
defined Macro-Instructions in FbRTRAﬁ Prograis, iHL-736§,
Applied Math. Division, Argonne ﬁaiional iaborﬁtory (1967).
S. H. Cain and E. K. Gordon,"TTu: A aicio Language-for.Batch
Proces;ing. Willis H. Booth Conéutingvcéﬁtéf Progrdﬁiing |
Report No. 8, California xnstitute-of Technolody (i96§};

A. D. Hall, The M6 MACRO Proée;sor, Conﬂufing Séiehce

Technical Report #2, Bell Labor&toﬁies, ﬁurtaf ﬁill,ynev
Jersey (1972). I
J. C. H. Park, PIT73-A Kinematic Fitting Routine, to be
published as a SLAC Report. |
The discussion deals uith.the CERN'vérsion of'snux as

- 65 -

described by J. Zoll, CERN, Track Chamher Program Library

sanual (1970). |

J. C. H, Park, On the Use of a Hacro‘Processor vyith SUMX,

SLAC Report No. 151 (1972). | |

J. Friedman and R. Chaffe, SLAC KIOWA, General bescription

SLAC Computation Group, CGTH Ho. 146 (197 .

- 66 -

ABS
Aupersand
AND operator
Escape character
Arithmetic operators
Break characters
Built-in functions
Character strings
Colon
‘Comments
CONCAT
Data conversion
DATE
DD-names
SACLIB
SYSLIB
SYSOuT
SYSPRINT
sysor
Digits
Dummy argument
Equal
Assignment operator
Comparison operator
ESCAPE
Escape character

Expressions

Index

47

51
52
50
27
42
29,57
29,30
29
48
51

50

35,61
48,61
61
61
40,61
27
39

30
51
39
52
50

Fixed point constants
Fortran statement rule
Identifiers
INDEX
Integers
INVOKE
Keywords, reserved
CALL
ELSE
FREE
GOTO
ir
MACRO
MEND
SET
THEN
Labels
Definition
Forvard reference
packwvard reference
LENGTH
Letters
Logical operators
lLogical true, false
MARKER
MAX

KIN

- 67 -

29
56,59
28,57

a4

28

48

35
32
37
31
32
34
35
39

32

29,30
32
32
4y
27
50
28
39
47

Index {cont.)

MOD 48
Names
Escape names 53
Variable names 28
Macro names 28, 34, 35
Nested macro calls 36,58
Nested macro definition 35,58
Options, pare field
BEGC 53,55
ENDC 53,55
FORT 53,56
MACO 55,61
PGEN 55
PRBX 56
SIZS 56
PARYM 40
Parameters, macro
Formal list 34
Actual list 36
oaitted parameters 36.
Excess parameters 36
Parameters, processor 25
Processor statements
Defined - 29
Generated 30
Null ‘ 29

gualifier

For if, then and else 32,60

Recursive call 12,37
REMOTE 19,20,40,60
Replacement 52

Concatenation Su

Packed 54

Non-packed 54
Semi-colon 29

Couments 29

Statesent terminator 31
Severity codes 56
SUBSTR us
TINE 50
TITLE 40
TRANSLATE 45
UNSPEC 45
VERIPY 46
Warning marker 29,39

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73

