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Baryon Number Violation at High Energy 
in the Standard Model: Fact or Fiction?* 
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Abstract 
In the standard model, baryon and lepton number are not s,trictly con- 

served, due to anomalies. It has long been known that at 10~ energies, the 

resulting baryon number violating amplitudes are extraordinarily small. A num- 

ber of authors have suggested that at high temperatures or energies, baryon 

number violating effects should be enhanced. We give simple! arguments that 

while baryon number violation is indeed large at high temperatures, there is no 

such enhpncement at high energies. 
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We are all well aware that baryon number is conserved in nature to an 

extraordinary degree of accuracy. On the other hand, grand unifed theories 

and string theory predict that there should be some small violation of baryon 

number in the microscopic equations of motion, and the existence of an asym- 

metry between antimatter and matter strongly suggests that such a violation 

exists.’ Even in the standard model, baryon number is not strictly conserved. 

At very low energies, the violations of baryon (and lepton) number predicted 

by the model were computed by ‘t Hooft. ’ Fortunately, they are unobservably 

small. This is because baryon number violation in the standard model is associ- 

ated with tunneling through a large barrier. This tunneling can be described by 

familiar semiclassical methods and leads to exponentially small amplitudes. At 

sufficiently high energies and temperatures, however, one might wonder whether 

these effects could be enhanced, since enough energy would be available to pass 

over the barrier without tunneling. Perhaps the first concrete suggestion along 

these lines was due to Klinkhammer and Manton. These authors found the 

configuration corresponding to the top of the potential barrier (a static field 

configuration know as the “sphaleron”) and computed the barrier height. They 

speculated (as we will see correctly) that at high temperature, it would be rel- 

atively easy to pass over the barrier, but that at high energies it would be 

extremely difficult. 

Subsequently, Kuzmin, Rubakov and Shaposnikov (KRS) elevated the spec- 

ulations concerning high temperature baryon number violation to a set of serious 

ca1culations.4 Further works verified and fleshed out this picture.5s KRS also 

speculated that there might be an enhancement of the cross section for high 

energy scattering, and/or for decay of heavy particles. The idea of high energy 

enhancement has received support recently from a set of instanton calculations 

by Ringwald7 and Espin0sa.s These authors discovered that, at least for some 

range of energy, the total cross section grows exponentially with energy from its 

infinitesmal low energy value. McLerran, Vainshtein, and Voloshing have argued 

that this exponential growth persists until the cross section saturates the unitar- 

ity bound, at energies possibly as small as 10 TeV! In these high energy activated 

tunneling processes, a pair of quarks, for example, would scatter producing three 

leptons and another 7 quarks, with a net violation of lepton number by -3 units 

and baryon number by 3 units. Perhaps even more striking, however, would 

be the production of a huge number [of order &, where ~2 is the SU(2) gauge 

coupling] of Iv’s, Z’s and Biggs bosons. 

In this lecture, we will perform a very simplecalculation, directly in Minkowski 

space, which reproduces the results of Ringwald and Espinosa.” We will see that 

their answer can indeed be understood as resulting, in part, from a reduction 

with energy in the penalty one pays for tunneling over the barrier. However, we 

will also see that there is a suppression, coming from the difficulty in coupling 

to the mode which describes motion over the barrier. At energies low compared 

to the barrier height, the enhancement of the tunneling factor “wins,” and the 

cross section grows exponentially rapidly, in precisely the fashion given by the in- 

Stanton calculations. However, this cannot persist indefinitely; the cross section 

remains exponentially small at all energies. 

In order to understand the issues involved, it will be helpful to review the 

question of baryon number violation at low energies in the standard model. At 

the classical level, the lagrangian of the theory preseves baryon number and the 

separate lepton numbers. Indeed, one of the elegant features of the standard 

model is that there is no dimension four (renormalizable) operator one may add 

to it which violates these quantum numbers. At the quantum level, however, 

these symmetries are violated. This breakdown of symmetry is associated with 

the phenomenon of Uanomalies,n familiar from rr” -+ 2-y decay. Before consider- 

ing the full standard model, consider first a simpler theory: SU(2) gauge theory 

with a single ncassless Dirac doublet. The Lagrangian density is 

1: = -iF$ + i&fL$,ll, . 

This theory possesses, at the classical level, two global U(1) symmetries, 

1c, -+ e’“l/, II, -+ t?p 

with corresponding currents 

j: = NV 

(1) 

(2) 

(3) 
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Figure 1. ‘lkangle diagram gives rise to anomaly in axial current. Solid linea 
denote fermions, wavy lines are gauge bceons; X  denotes insertion of current. 

Quantum field theories are rather singular objects, and at the quantum 

level, it is not possible to enforce conservation of both the vector and axial 

currents. The triangle diagram of fig. 1, with an insertion of the axial current, 

j!, at one vertex, and gauge bosons at the other two vertices, is badly behaved 

in the ultraviolet, and care is required in its definition. One usually defines the 

theory so that the vector current is strictly conserved (in general, for consistency, 

one must define the theory so that any gauged currents are conserved), but the 

axial current is anomalous. The divergence of the axial current is given by 

apjP5 = 92  32r2 e,, ,paFPVFPo 

= &F,,jpv . 

One might think that having uncovered this anomaly, the axial charge, 

QA = Jd3rjo5 
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would simply not be conserved. However, the situation is more subtle, for an- 

other conserved current exists. By straightforward algebra, one can show that 

Fp is a total divergence, 

FF  = L&lip (5) 

where 

Ii’ = c rvpaTr(Aut=IpAo + ;AvAoA,l . 

Thus one can define a conserved current, 311 = jr ’ - &lip, which obeys 

I$,?“ = 0. On the other hand, 3“ is not gauge invariant. In particular, it 

is not always true that the potentials fall fast enough at infinity to allow one 

to neglect surface terms (field strengths and similar gauge-invariant objects do 

always fall rapidly to zero at infinity). The problem, which will be discussed in 

more detail below, is most easily phrased in the language of the Feynman path 

integral. There one sums over all possible histories of the gauge (and other) 

fields, weighted by 8. In other words, one sums over all possible classical field 

configurations (not necessari ly solutions to the classical equations of motion). It 

turns out that there are important classical configurations, known as instantons, 

for which 

9” - JAFF=~ 
16~2 

so that AQs = n. ‘t Hooft showed that in this theory, these instanton configu- 

rations lead to an effective interaction for the massless fermions, 

(6) 

Here c is a numerical constant. This interaction explicitly viblates the axial 

symmetry. However, the coefficient is exponentially small for small coupling. 

The generalization of all of this to the standard model is straightforward. 

Denote the left-handed quark and Iepton doublets by Qi and L,, respectively, 

where the subscript is a generation index. Written as four component spinors, 

these particles couple to It’ bosons with the usual f(1 - ys) coupling. The 



right handed singlets can be described in terms of their left handed antiparticle 

counterparts, ut, d: and e!. These fields do not couple to the SU(2) gauge 

fields. Classically, baryon number conservation arises due to the symmetry of ’ 

the lagrangian under the phase rotations 

Correspondingly, the baryon number current is 

(7) 

Now, consider the triangle diagram involving the current, ji, and two SU(2) 

gauge bosons. Only the Q fields appear in this diagram, since only they couple 

to the gauge bosons. As a result of the 75’s appearing here, the diagram is 

anomalous. Similar remarks apply to lepton number. However, it is easy to see 

that B - L is conserved. In the case of the standard model, ‘t Hooft calculated 

the leading baryon number violating term in the low energy effective lagrangian 

for the fermions due to instantons. For three generations (making, for simplicity 

the drastic approximation of neglecting the top quark mass), this term takes the 

form: 
14 

e-zQ;Q;Q; . . .&;&$&jr;, LzL3 . 

Here the subscripts on the quark and lepton fields represent generation in- 

dices; the superscripts represent color indices, and we have suppressed SU(2) 

indices.All of these indices must be contracted in a suitable way, but the details 

will not be important to us. 

While interesting, this result, as it stands, is only a theoretical curiosity. 

The exponential factor is a number of order lo-“, so the corresponding cross 

section for such processes is extraordinarily small. On the other hand, this 

effective action is relevant only at energies small compared to the W, 2, and 

Higgs boson masses. At these low energies, the effective action is obtained by 

first solving for the dynamics of the heavy fields in terms of the light fields; this 

-4 -2 0 2 4 
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Figure 2. Schematic drawing of vacuum structure of a non-abelian gauge theory. 

is known as 5ntegrating out” the heavy fields. At higher energy scales or at 

very high temperatures, we must study the dynamics of the complete system. 

In particular, it is not a priori obvious that at extremely high energies, baryon 

violating processes will be so drastically suppressed. 

In order to address this question, it is necessary to understand why the 

amplitudes at low energies are so small. Consider first a pure gauge theory 

(i.e., a theory with no fermions, or with only massive fermions with vector-like 

couplings). An Abelian gauge theory, like QED, has a very simple structure. 

Once one has made a suitable gauge choice, the ground state wave function is 

simply a Gaussian centered about the classical zero energy configuration, A,, = 0. 

This is not the case in a non-Abelian theory. Here, the classical condition for 

vanishing energy, f$ = 0, has, loosely speaking, an infinite set of solutions 

even in a fixed gauge. Correspondingly, there is a large set of degenerate vacua, 

indicated schematically in fig.2. These vacua are labeled by an integer, Ncs, 

referred to as the Chern-Simons number, and are separated from one another 
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by a barrier.* In a suitable gauge, the Chern-Simons number is related to the 

current, I(’ we encountered above through 

The figure is schematic, since we are really dealing with a system with an infinite 

number of degrees of freedom (for a free field, the infinite number of harmonic 

oscillators). 

In weak coupling, tra.nsitions between these states will occur through tun- 

neling. To estimate the tunneling amplitude, we first consider the case where 

the Higgs mass is of order the gauge boson mass (i.e., where the Higgs quartic 

coupling, X, satisfies X - s2). In this case, we can rescale the various bosonic 

fields: 

Then $ sits out front of the bosonic part of the lagrangian, i.e., 

1 
Lbase = 7 (-;F;v + Pd12 - V(O; $1) . 

(11) 

(12) 

As a result, the classical equations don’t involve 9. We can obtain the tunneling 

amplitude by analogy to ordinary single particle quantum mechanics.” There, 

to compute the barrier penetration factor, one solves the equations of motion for 

the system with imaginary (“Euclidean”) time, with boundary conditions such 

that in the far past the system is in one ground state, and in the far future it is in 

the other. In field theory, the corresponding solution is known as an “instanton”; 

for gauge theories, solutions of this type were first written down long ago.r2 We 

will denot,e such solutions generically by &(Z,T), where 4 denotes a generic 

bosonic field (i.e., it may refer to a scalar or to a gauge boson). Noting the 

* This drscription is really olTiy appropriate for weakly coupled theories. It is useful for 
discussing a theory like the electroweak theory, hut it is not approprate for analyses 
of QCD. III addition, in order to form states with suitable clustering properties, it is 
nrcrssary t,o srlperpose these so-catted “n-vacua” to form Btoch waves, the “8.vacua.” Att 
of the discussion of these tertmes is easily rephrased in these t,wms. 

o- 
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Figure 3. Schematic of potential in theory with fermions 

form of the action in eqn. (12), the action of the instanton, Scr, is necessarily 

proportional to -$. As in ordinary quantum mechanics, the amplitude goes as 
e-sd 

By similar scaling arguments, we can determine the energy of ‘the field 

configuration at the top of the barrier, the so-called “sphaleron.” Th’is is a static, 

unstable solution of the field equations, with a single negative mode. Again, since 

the coupling constant does not appear in the lagrangian, while the Hamiltonian 

is proportional to 5, its energy is necessarily of order 5 - 10 ?eV. 

In theories with massless fermions, the situation is more complicated, due 

to the anomaly. Again, there are, at the classical level, an infinity of zero energy 

configurations, separated by a barrier, and labeled by an integer. Ii owever now, 

as a consequence of the anomaly, these different states carry different values of 

the non-conserved charge (baryon number). To see this, recall that the conserved 

charge is given by 

0 = Qs+ Ncs . 

-407- 



a 
Y 

Figure 4. Particle in a periodic potential. Vo is the potential barrier; w is the 
curvature near the minima. 

Thus bosonic field configurations which differ in their value of Ncs (those con- 

nected by the instanton solutions) differ also in their value of the charge Qs, since 

they must have the same value of Q. There is no reason that states with differ- 

ent baryon number need be degenerate at the quantum level. Indeed, because 

of the exclusion principle, states with more baryons have higher energy. This is 

indicated in fig.3. The system can still tunnel between the various states. How- 

ever, from the figure it is clear that this tunneling is accompanied by a change in 

the baryon number. This is the origin of the baryon-number violating effective 

interaction found by ‘t Hooft. This picture also makes clear the reason that the 

effect is so extremely small: the barrier penetration factor is proportional to the 

exponential of (minus) the instanton action, which is proportional to $. 

Since baryon number violation in the standard model is a problem of barrier 

penetration, the question naturally arises: while the effect is exponentially small 

at low energies and temperatures, might it be enhanced at energies or tempera- 

tures comparable to or greater than the barrier height? Clearly if one can kick 

the system in a suitable way, passage over the barrier will be a classically allowed 

process, and there will be no significant suppression. The question is: hat con- 

stitutes a suitable kick? To get some insight into this problem, consider a one 

dimensional quantum mechanical system, with a periodic potential (fig. 4 ). At 

zero temperature, the system can pass from one well to another by tunneling. 

Suppose, now, that the system is placed in thermal equilibrium with a heat bath 

at a temperature T >> ws. This is the regime of classical statistical mechanics, 

so one can use the Boltzmann distribution. The probability to find the system 

near the top of the barrier is simply e -ph. Thus the rate for passage over the 

barrier quickly becomes much larger than the tunneling amplitude for the low 

lying states. At temperatures greater than or of order the barrier height, the 

rate simply becomes of order one. 

KRS suggested that this is a correct analogy for field theory.4 In particular, 

once the temperature of the system is large compared to the typical masses, the 

barrier penetration rate, they argued, can be estimated using classical reasoning, 

and is proportional to e-pE8p. There has been much discomfort with this rea- 

soning. In particular, it has been suggested that the simple quantum mechanics 

analogy is not relevant to field theories with their infinite number of degrees 

of freedom. However, in the last few years, the correctness of this picture has 

become firmly established.‘s6 

Can one similarly enhance the rate by scattering particles with very high 

energies? In particular, can scattering of two high energy particles lead to pas- 

sage over the barrier and to baryon number violation? Before attempting to 

attack this question in field theory, let us again try to construct a quantum me- 

chanical analog. A  suitable model for this problem requires at least two degrees 

of freedom, one of high frequency and one of low frequency. Such a model has 

been developed and analyzed by Singleton, Susskind and Thorlacius.‘3 We will 

consider a simpler model here: couple the original quantum mech 
B  

nical variable, 

Q, to a high frequency oscillator, with coupling 

HI(q)cosd 

with w >> ws. Assuming the coupling is weak, we can evaluate the cross section 

for transitions across the barrier using Fermi’s golden rule. For this, we need the 
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written as a I:cyruxm path integral, 

/ 
[d4le- 

a!I 
h 4(x1). #J(G) . 

Here the integral is written over all possible histories of the field, $(z, 1), where, 

because we are in Euclidean space, there is no factor of i in the exponential. 

In the classical limit (h + 0), the path integral is dominated by the stationary 

points of the exponential, i.e., the field configurations, &,, for which &$ = 0; 

these are just the classical solutions of the Euclidean equations of motion, i.e., 

the “instantons.” (More precisely, the instantons are the classical solutions of 

finite action.) Near these points in field space, we expand 4 = bC, + 64. The 

integral over &#J is approximately gaussian. 

The leading semiclassical approximation consists of keeping terms up to 

quadratic order in 64. Any finite action solution is necessarily localized in space 

and time, so instanton solutions are not translationally invariant. Translational 

invariance is reflected by the fact that if &I is a solution, so is C&(X - IO). To 

obtain translationally invariant results for physical quantities, it is necessary to 

integrate over 10. Thus in the leading semiclassical approximation, the Green’s 

function appearing in the LSZ formula is given by 

< l#l(Zl) . . (b(2”) >= 0-s 
J 

dzobcr(zl - ~0). . . dd”n - ~0) . (19) 

The constant c represents the result of performing the Gaussian integrals over 

the fluctuations 64. Actually, we need the Fourier transform, 

ce -so 
/ 

dzl . dz,,dxo&,(zl - IO). . &(z,, - z~)e’p”2’~~~‘pn’zn . (30) 

Shifting zi -t zi + 50, the amplitude factorizes, giving simply 

Because of this factorization, the amplitude is only a function of the various pf, 

and is completely independent of the invariants p, . pj for i # j! As a result, 

the analytic continuation back to the mass shell, pt = m2, is almo trivial. 

It is not hard to show that the Green’s function has the correct pbles. At 

large distances, the solution &t must behave like the free Green’s function, i.e., 

dCl(?- 200) + nG’(& 50). The fourier transform thus has poles at p2 = m2. On 

the other hand, the amplitudes are independent of the center of mass energy, 

and all other interesting invariants! To obtain the cross section, one just needs 

to know how the amplitude for the emission of n particles depends on n, and 

the form of the n particle phase space. For the total cross section, one obtains9 

(22) 

This grows rapidly with energy. If we take the result literally up to energies of 

order f, the second factor can become comparable to the suppression, e -‘O and 

the cross section will become large. In fact, the authors of ref. 9 have argued 

that this formula is not valid at such high energies, but simple improvements in 

the analysis give a result which grows even faster with energy! (A particularly 

compelling critique of this calculation is given in ref. 14.) 

The analysis above did not include the fermions. In the standard model, aa 

described earlier, the instanton represents a tunneling between nearly degenerate 

states of different baryon number. As a result, when fermions are inc!uded, the 

instanton amplitudes are non-vanishing only for Green’s functions (S-matrix 

elements) which violate baryon number by a suitable amount. Moreover, the 

largest contribution to the total cross section in eqn. (22) comes from states 

with a large number (C?(k)) g au g e or Higgs bosons. Thus the instanton analysis 

predicts a large rate for baryon number violating events with huge numbers of 

IIiggs or W ’s and &‘s in the final state. We have also ignored a number of other 

complications up to now. The fermions and gauge bosons give some modification 

of the energy dependence of the result, as do the various “collective coordinates” 

which we have suppressed (apart from the translational ones). When one takes 

these effects into account the basic picture remains the same. 

The Euclidean calculation is in some ways rather unnerving. The contin- 

uation to Minkowski space is completely mysterious. For example, we have no 
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sense what are the relevant configurations in real time. Moreover, it is not at 

all clear over what range of energies the analysis is valid.15 Fortunately, we can 

give an alternative derivation of this result, directly in Minkowski space. This 

derivation makes clear why the instanton calculation gives a growing cross sec- 

tion. Just as in the simple quantum mechanical example, there is a competition 

between the growth of a barrier penetration factor, and suppression due to the 

cost of coupling to a low frequency (momentum) mode. This calculation also 

makes clear that the rate is exponentially small at all energies. 

The idea is to take the full field theory, with its infinite number of degrees 

of freedom, and truncate it to a single degree of freedom, i.e., to an ordinary 

quantum mechanics problem. For notational reasons only, we will idealize the 

problem by considering a theory with only scalars, and we will ignore most of 

the collective coordinates. Consider, then, a classical solution, d,r(z’, 7). This 

solution interpolates between two dilferent vacua of the srandard model. At 

T = -00, 4 tends to one vacuum configuration; at 7 = +w, 4 tends to the next. 

We can think of T as parameterizing a set of field configurations which smoothly 

interpolate between one vacuum and the next. Introduce a coordinate, q, by 

letting r = r(q), with r(0) = - 00 and s(l) = 00. The potential energy as a 

function of q looks as in fig. 2. Now we truncate the field theory by keeping 

only those field configurations parameterizcd by q. We treat q as an ordinary 

coordinate, i.e., we let q = q(t). Tl ie a ran 1 g g ian is then a function of q and the 

velocity, 4, given by 

g?C(q, i) = J d3d(~,,dcr(6 q), Ads, 9)) . 

Provided that the dependence of r on q is chosen appropriately, the lagrangian 

takes the form 

$L(q,{) = k$ - ~m2q2 - O(q4) . (24) 

To work out the connection between r and q, recall that for lrl -+ 00, the 

classical solution behaves like the free propagat.or, i.e., 

dd - e -mm (25) 

Thus 

so 

qweemr . (27) 

This truncation of the field theory may seem very drastic, but we have not 

really lost anything. The t,runcated model contains all of the physics of the 

original instanton computations. The q system possesses an instanton solution 

in Euclidean time which describes the tunneling from one well to another. If we 

denote this solution by q,,(i), then r(qcl(r)) = r. As a result, first replacing the 

field t,heory Green’s functions appearing in the LSZ formula, 

by 

and then replacing q by qcl, we obtain precisely the same quantity as in the 

leading semiclassical approximation in the field theory. Thus the scattering 

amplitudes computed in the leading semiclassical approximation to the truncated 

system are precisely the same as those calculated in the leading semiclassical 

approximation to the full field theory. In particular, they are independent of 

energy, and yield total cross sections which grow exponentially with energy. 

On the other hand, since we are now dealing with a quantnm mechanical 

system with only a single degree of freedom, it is easy to treat the problem 

directly in Minkowski space, and to understand the behavior found in the in- 

Stanton computations. The two particle initial state of the scat,tering problem 

is 
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Making our truncation, this becomes 

Ii >= Tlim, dz,dz~~c~(~l,q(T))~c~(~a,q(T))~O > eip1~z’+r*‘z2 
- J 

with a similar expression for the final state. These expressions are written in 

the Heisenberg picture. Switch to the Schrodinger picture, and take the overlap 

with the state of the q system of energy E. Because of the factor eitwl+wzlT, 

only the state with E = wr +w gives a non-zero amplitude as T ---) 00. Thus 

we need to compute the overlap 

Even before attempting to evaluate this matrix element, it is clear that it is 

small for large IpI. &(Z,q) is a smooth function of 5, with some characteristic 

scale, p(q). Thus its fourier transform behaves as 

the ground state of the q system and the state of energy E. Since in his regime 

the potential is approximately harmonic, the state of energy E is just the n’th 

harmonic oscillator level, with n = g. Noting the form of the lagrangian in eqn. 

(24), we see that 

< O(q”(n >- &zJ” - (g%)~ . (30) 

This evaluation agrees with the intuition that the coupling to the initial state is 

suppressed because the sphaleron contains a large number of quanta. A similar 

factor arises for the final state. In addition to these overlap factors, however, it 

is also necessary to compute the barrier penetration factor. The WKB approxi- 

mation gives 

The leading behavior of the integral is obtained by approximating V by $n2q2, 

while cutting off the q integration at small q by E, and at large q by $. Then 

7 = e-so(s2E)-: . 

p has a minimum as a function of q; in the standard model, roughly speaking, 

this is m$. As a result, it is difficult, at any energy, to couple high momentum 

modes to q. 

How can we reconcile this with the instanton result? In fact, for energies 

m < E < $m, the truncated model yields precisely the instanton result. Recall 

that for small q (large 7)’ 

&J(q) = $z2q2 . 

Thus requiring that V N E gives q2 N 9. This means r N m-‘In(g). On 

the other hand, for such r, the classical solution has the form e-“‘Jz?+-;?‘. Its 

fourier transform is thus of order eeEr N (g2E)k. This can also be seen by 

noting that emEr w qe. We need the matrix element of this operator between 

I It is not hard to show that the maan which appears below is precisely the meson mass. 
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Thus the scattering amplitude is indeed constant! This arises because the growth 

of the WKB factor initially precisely compensates for the difficulty of pumping 

energy into the q mode. 

It is also very easy to reproduce the instanton result for’the total cross 

section in the truncated model. From the point of view of the q system, the final 

state is simply the excited state of energy E. The field theoretic calculation of 

the amplitude to obtain a particular final state is obtained from this by taking a 

suitable overlap. Thus the total cross section is just the square of the amplitude 

that the original two particle state produces a final state of the’ q system in the 

other well. This amplitude is the product of the factor 7, andl the factor from 

the overlap of the initial two-particle state with the state of energy E, i.e., 

N e-2Soef 
(32) 



This agrees precisely with the instanton result! From this viewpoint, it is clear, 

however, that the answer is never large. The full amplitude is always the product 

of the barrier penetration factor, which is bounded by unity, and the small 

coupling to the q mode. The amplitude at all energies is bounded by e-b, 

where c is some numerical constant. This may be much larger than the low 

energy result, but it is clear that the truncated system leads, at all energies to 

cross sections far too small to be seen in accelerator experiments. 

One can object that the truncated model cannot be trusted at energies 

comparable to the barrier height. Indeed, there are a variety of ways in which the 

approximations involved can break down. For example, at very high energies, 

other trajectories, far from the original instanton path through configuration 

space, may be important, and give larger values for the cross section. On the 

other hand, the truncated model includes all of the physics which went into the 

original predictions of large cross seetions. Thus, since this model in fact predicts 

only small cross sections, it is fair to say that no argument has been advanced 

that the cross section should be large at high energies! Moreover, the analysis 

of this system makes clear that no other trajectories in field space are likely to 

lead to large amplitudes either. The basic problem can be stated in a variety 

of ways. First, the barrier height associated with a particular configuration of 

scale p goes as $. To have any hope of enhancing the tunneling rate, the energy 

(and momenta) of the scattered particles must be at least this large. On the 

other hand, the coupling of a mode of scale p to a particle of momentum p goes 

its e--PP N e-i for such energies. Indeed, Susskind” has argued that at high 

energies the truncated model necessarily drastically overestimates the rate, once 

interference effects are taken into account. 

Unfortunately, then, we must conclude that baryon number violation is not 

something one will see in accelerator experiments. Before closing, we should 

mention that another process which has been mentioned frequently’ is similarly 

suppressed.6 This is the decay of a very heavy fundamental particle by passage 

t Agreement also holds when care is taken with subleading terms. Similar agreement is 
found when greater care is taken with the handling of the collective coordinates of the 
st,andard model problem, particularly the instanton scale size. 

over the barrier with accompanying violation of baryon and leptdn number. 

Consider, again, the truncated system. Now one has an initial state containing 

the heavy particle, with the q system in its ground state. The final state of 

interest involves a highly excited state of the q system in another well. As is 

clear from our simple quantum mechanics example, the overlap of the initial 

and final states appearing in this scattering amplitude will be exponentially 
--hi- 

small, i.e., the rate will go as e mu, where M is the mass of the heavy particle. 

However, in strongly coupled theories where the heavy particle is composite, 

the decay may be rapid, as discussed in ref. 17. In particular, in technicolor 

theories, in the large N limit, one can show that technibaryon decay through the 

anomaly is unsuppressed. However, in the limit considered by these authors, the 

technibaryon is large (with size m&,! ” ) and the q degree of freedom is highly 

excited. Indeed, the production of this particle in, say, quark quark scattering 

is exponentially small due to the small form factor of this particle at momenta 

of order its mass-again it is hard to make excited states of the q system. 

The lesson from all of this is that baryon number violation in the standard 

model is interesting, but its prime relevance is to the early universe. There, 

the fact that baryon violating interactions are in equilibrium until relatively 

late (temperatures of order 100’s of GeV or so) means that any baryon and 

lepton number assymmetry created at very early times (e.g., in a grand unified 

theory or string theory) will be drastically altered from its initial value. This 

by itself is not terribly dramatic. If the underlying theory preserves B - L, 

then initially B - L = 0, and any baryon or lepton number :created at this 

early epoch will be wiped out. However, most grand unified theories do not 

preserve B - L; even the simplest Su(5) model only does so approximately, in 

the limit that non-renormalizable terms are not included. Thus one obtains an 
I . additional constraint on the parameter space of unified models. More Interesting 

is the possibility that the baryon number violation of the standard model is 

itself responsible for the observed asymmetry between matter and antimatter. 

Various interesting suggestions along these lines have been made, but I do not 

believe this subject has been exhausted.4J8-2’ It is almost certainly necessary 

to modify the standard model so as to include more CP violation, but this can 
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probably be accomodated. Recent calculations also suggest that the transition 

rate depends in a drastic way on the Higgs mass. ‘2Thus baryon number violation 

in the standard model represents an area of standard or near standard model 

physics which may still yield surprising new physics. 
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