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WEAK MATRIX ELEMENTS AND THE DETERMINATION OF THE 
WEAK MIXING ANGLES* 

Mark B. WISE 
Charles C. Lauritsen Laboratory of High Energy Physics, California Institute of 
Technology, Pasadena, CA 91125 

In the limit of QCD where heavy quark masses go to infinity new symmetries 
appear which enable-one to predict the hadronic form factors that occur in the 
semileptonic decays B + DM~,, B -+ D’efi, and A* -+ A,e&. These results may 
eventually improve our ability to extract the weak mixing angles from experimen- 
tal data on B and A, decay. 

1. INTRODUCTION 

The main goal of this talk is to review a new method’ for predicting, from 
QCD, the weak matrix elements that are needed to describe the semileptonic 
decays; B -+ DePe,,B + D’ec, and Ab + A,eti,. The method also relates 

B + pe& semileptonic decay to D + pZuc semileptonic decay. Since these 

are exclusive decays involving hadronic states nonperturbative strong interaction 

physics plays a role. The basic idea is to examine QCD in the limit where the 
heavy charm and bottom quark masses to go infinity. In this limit, QCD has new 
symmetries that allow us to get a handle on the nonperturbative strong interaction 

physics that occurs in the semileptonic decays of hadrons containing a single heavy 

quark. 

I will discuss briefly how the results on semileptonic decay matrix elements 
impact the determination of the weak Cabibbo-Kobayashi-Maskawa mixing an- 

gles. These angles parametrize the coupling of the W-bosonsl to the quarks. In 
the standard six-quark model 

d 

L: = -=(r%E,oy,(l - y5)V 
2Jz 0 s W ’ + h.c 

b 

In eq. (1) WJ’ is the W-boson field and 92 is the weak SU(2) gauge coupling. The 

quantity V is a 3 x 3 unitary matrix that arises from diagonalizing the charge 2/3 
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and charge -l/3 quark mass matrices. It can be written in terms of four angles 
&,02,0s and 6. A standard parametrization for V is* 

. 

Cl -SIC3 -S133 

v = SIC* cIc2c3 - s2s@ clC2S3 + S2C& 

Sl32 ClSZC3 + C2Sfe i6 ClS2S3 - QCje i6 
(2) 

where c, E cos.0, and si E sine, for i = 1,2,3. Without loss of generality the 

angles f&,82 and 0s can be chosen to lie on the first quadrant where their sines 
and cosines are positive. Then the quadrant of 6 has physical significance and 
cannot be fixed by convention. In the minimal standard model it is the angle 

6 which occurs in the phase that is responsible for the CP violation observed in 
kaon decays. Experimental information on &meson decays, hyperon and kaon 

decays and nuclear /3 decay imply that the angles 6’i,82 and 0s are small. From 
eqs. (1) and (2) it is evident that 6’1 is essentially the Cabibbo angle, the linear 

combination (93 + s2e’6) determines the strength of the b + c coupling and the 
product srss determines the strength of the b ---) u weak coupling. 

In the minimal standard model the quarks get mass through Yukawa couplings 

to a Higgs doublet. The Yukawa coupling constants and hence the values of the 
quark masses and mixing angles are fundamental quantities whose values must 
be determined by experiment. While there is a feeling in the particle physics 
community that one should be able to predict the quark mixing angles and masses, 

this lies beyond the scope of the minimal standard model. 

2. EFFECTIVE THEORY FOR HEAVY QUARKS 

We are interested in the interaction of a heavy quark & with light degrees 

of freedom (quarks and gluons) when the light degrees of freedom carry a four- 

momentum much less than mu. For such a situation it is appropriate to take 

the limit of QCD where rnQ + o ,with the four-velocity of the heavy quark 
uc 4 p’ /mQ fixed. The four-momentum of the light degrees of freedom are ne- Q 
glected compared with mQ. In this limit creation of heavy quark-antiquark pairs 

is suppressed. The heavy quark simply travels in a straight worldline undeflected 
by its interactions with gluons. 

It is easy to derive the Feynman rules for this effective theory by taking the 
limit of the usual Feynman rules for QCD. In QCD the propagator for the heavy 

quark is 

i(#Q + mQ) 
p$-rni (3) 

For the heavy quark four-momentum we write 

Pq=mQv+k (4) 

where k is a residual four-momentum that we shall neglect compared with mQ. 

Putting eq. (4) into eq. (3) and using u2 = 1 the propagator becomes 

iv + 1) 
2~. k (5) 

where terms of order (k/mQ) have been neglected. Eventually the f will stand 
next to the heavy quark field Q. S ince #Q = Q the propagator (5) finally becomes 

i 
-. 
v.k (6) 

In QCD the vertex for a gluon with four-momentum k interacting with a heavy 
quark is 

ig T” yr (7) 

with g is the strong coupling constant and T” a color SU(3) generator. Since 
the heavy quark remains approximately on-shell as it propagates the -rr in eq. 
(7) is essentially sandwiched between on-shell spinors. Applying the Gordon 

decomposition and neglecting terms of order k/mQ the gluon vertex becomes 

ig T” v,, (8) 

These Feynman rules are a consequence of the Lagrangian density3z4 

L = i& v’D,Q 

where D, is a covariant derivative and Q is the field for a heavy quark with four- 
velocity u. In eq. (9) the heavy quark field has been resealed by the factor e‘m”.r 
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so that the derivative produces a factor of the residual momentum. In the effective 
theory, the coupling of the heavy quark to gluons is independent of its mass and 
spin. It does, however, depend on the heavy quark’s four-velocity. Note that the 
effective theory is not a nonrelativistic description of the interactions of the heavy 
quark.,The four-velocity u can have spatial components of order unity. 

This effective theory has symmetr ies not manifest in QCD’. Since the in- 
teractions of heavy quarks are independent of their masses if there are N heavy 
flavors Q; j = l,... N then the theory has a SU(N) flavor symmetry (actually 
SU(N)xU(l)). At this point it is worth reviewing the flavor symmetr ies that 
occur in nature. The six-quarks u,d,s, c, b,t naturally break into two groups of 

three. The light u,d and s quarks have masses that are less than the QCD scale 

(m. u 0.005 GeV, md  2: 0.01 GeV, m., N 0.15 GeV). This gives rise to an approx- 
imate SU(3) flavor symmetry of QCD. The flavor symmetry arises not because 
the light quark mssses are almost equal, but rather because the quark masses 

are small compared with the QCD scale, AQCD. It is important to understand 
the origin of this symmetry. For example, even though the pion and kaon are 
in the same multiplet of this symmetry group it is a mistake to use it to deduce 

that the pion and kaon masses are almost equal (recall m, N 0.14 GeV, rnK N 
0.49 GeV). The pion and kaon are pseudoGoldstone bosons; their masses go to 
zero as the light quark masses go to zero. One should apply the SU(3) (light 

quark) flavor symmetry to quantities which go to a constant as the light quark 

masses go to zero. For example, a legitimate application would be to deduce 

that the proton and cascade are almost degenerate. The remaining three quarks 
c, b,t have masses large compared with the QCD scale (m, N 1.8 GeV, mb  u 5.2 

GeV, mt 2 90 GeV). W e  have just seen that this implies a second SU(3) flavor 
symmetry of nature. The heavy quark flavor symmetry arises not because the 
heavy quarks are almost degenerate but rather because their masses are all large 

compared with the QCD scale. Again, it is important to understand the physical 

origin of the symmetry. For example, it would be a mistake to use the heavy 
flavor SU(3) symmetry to deduce that the k? and D mesons should have the same 

mass (experimentally rnB N 5.3 GeV, mg  ‘v 1.9 GeV). These are quantities which 
go to infinity as the heavy quark masses go to infinity. The heavy quark flavor 
symmetry should be applied to relate quantities which go to a constant as the 

heavy quark masses go to infinity. 

Since the strange quark mass is not very small compared with AQCD there 
are sizable corrections (typically N 30 %) to the predictions of light quark flavor 
symmetry. Similarly, the charm quark mass is not extremely large compared with 
the QCD scale so we can expect sizable corrections to the predictions of heavy 
quark flavor symmetry. 

The effective theory for the interaction of a heavy quark Q  with light quarks 
and gluons has an SU(2) symmetry generated by the spin SQ of the heavy quark .l 

This spin symmetry has important experimental consequences. Consider the low- 
lying mesons with Q,Q flavor quantum numbers (Q) is a heavy quark of flavor j.) 
Both the spin of the heavy quark ,!?Q, and the spin of the light degrees of freedom 
.fl = s’ - SQ, are good quantum numbers. States of total spin S are made from 

combining SQ, = l/2 with St. Since the dynamics are completely independent of 
SQ, the spectrum will consist of degenerate multiplets related by the spin of the 

heavy quark. The lowest lying mesons with Q;Q flavor quantum numbers have 
St = l/2 (this is a dynamical assumption about QCD that is consistent with the 

observed spectrum) and so we get degenerate S = 0 and S = 1 states denoted by 
Pj and P,‘. The Pj and P,’ states (at rest with S3 = 0) are 

IPI) = 5  {Itl) - Ilt)} 

I<) = 5  {Ito + Ilt)l 

in a notation where the first arrow refers to S& and the secpnd arrow refers to 
Sj. The spin of the heavy quark relates these mesons 

s& 14) = ; lp,‘> . 

Experimentally rng. - mg  210.14 GeV. The fact that this mass splitting (which 
arises from a I/m, correction to the Lagrangian density in eq. (9)‘) is small 
compared with the QCD scale lends support to the point of view that the charm 
quark mass is large enough to apply the heavy quark spin and flavor symmetr ies 
discussed above. 
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The heavy quark spin and flavor symmetries of the effective theory endow us 
with considerable predictive power. Consider, for example, the matrix element 

(P~(v”)l41rpQ,lP,(~‘)) /Jm = j+(u + v’)p + i-(v - u’)p (14 

In kq. (12) we have used the conventional normalization of meson states which 

contains a factor of the mass of the state. Because of this normalization it is the 

matrix element divided by ,/m (as appears on the 1.h.s. of eq. (12)) that is 
independent of the heavy quark masses. We have chosen to label the meson states 
by their velocity rather than by their momentum. This is convenient because the 

heavy quark flavor symmetry relates states of the same velocity but different mass 
and hence different momentum. On the right- hand side of eq. (12) i+ and i- 

are Lorentz invariant form factors which are functions of u. 0’. We have put a 

tilde over them since eq. (12) is not the usual definition for the form factors. 

Conventionally, one writes (pp = mp,u,,pL = mp,$) 

(W’)l’%rrQtIJW) = f+(p + p’),, + f-(p - p’)r (13) 

Comparing eqs. (12) and (13) g’ Ives the following relationship between f* and f+ 

In a transition where Q, with four-velocity o is changed by the action of the 
current into Q, with four-velocity U’ the heavy quark fields satisfy 

$Q, =Q, ; Q,$ = 0,. (15) 

This implies that 

j-=0. (16~) 

When v = Y’ the operator QlrsQ, is related to a generator of the heavy quark 
flavor symmetry. Since the action of the generators on the states is fixed its matrix 

element is known. This yields 

j+(l) = 1 (166) 

Note that eqs. (16a) and (16b) are not the same as what would be obtained from 
an “ordinary” manifest flavor symmetry which predicts6 f- = 0 and j+(l) = 1 

(eqs. (16) do reduce to this when mQ, N mQ]). 

It is appropriate to use the effective theory to calculate the matrix element 
(12). Initially, the light antiquark and gluons carry a four-momentum of order 

AQCDU and finally they carry a four-momentum of order AQCDV'. So even though 

the total momentum transfer squared 

f = (p’ - p)2 = rn$, + rn& - 2mp,mp,v. v’ (17) 

is large the momentum transfer squared felt by the light degrees of freedom is 

only of order 

A&D tJ.21'. (18) 

The heavy quark spin symmetry can be used to determine other matrix elements 

which involve P, -+ P,* transitions. Consider 

(P;(v”,c)lQ,rrc~5Q,IP,(~)) I,/- = it; + h+(c* v)(v + u’)r 
+ ii-(6’ u)(u - U’)# ) (19) 

(PJ(C’, ~)l~,r,QtlE(~)) l,/XGGf = i&op ~*Y~~o~6 . (20) 

The Lorentz invariant form factors j,Z+,i- and i are functions of v Y’. These 

form factors can be related to f+ using the spin symmetry. For example, 

(P~(~)lQ~r3QtlPi(3) $ 

= 2 (S~,P~(B,0)14,73Q,lP,(i;)) , 

= 2 (p;(~,o)l[S~,,~~~3Q,lIP,(u3) > 
(21) 

Other relations of this type, eq. (21), eqe. (15) and eqs. (16) allow us to express 
all the form factors j*,&, i,i in terms of a single function E(u . u’) normalized 
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at threshold (u = u’) to unity. Explicitly’ 

. 

j+=C(u.u’) , j-=0 Pa) 
f = [l + u . u’]t(u. II)) (22b) 
j = ((u . u’) PC) 

(ci++L)=O , (Ii+ - a-) =  -((u. u’) . (22d) 

(See refs. 7 and 8 for a simpler method of deriving these relations.) In the 

case Q, = b Qr = c these are the form factors relevant for the semileptonic decays 
B -+ De& and B + D’efi,. W e  have seen that in the effective theory all the form 

factors for these decays are determined at threshold (where in the rest frame of the 

decaying B meson the final D or L?’ meson is also at rest). Away from threshold 
their shape is determined in terms of a single function t(u. u’). However, these 

results are true in the effective theory; what precisely is the relationship between 
the full theory of QCD and the effective theory? 

3. RELATIONSHIP BETWEEN QCD AND THE EFFECTIVE THEORY 

Consider the vector current Qry,,Q,. In QCD this operator does not require 
renormalization since it is a partially conserved current. However, at one loop 
its matrix elements (e.g., those considered in the previous section) do involve 
logarithms of the heavy quark masses (divided by a typical momentum of the 

light degrees of freedom). In the effective theory these finite logarithms become 
ultraviolet divergences, since the heavy quark masses are taken to infinity. In 
the effective theory the vector current g,y,Q, requires renormalization and it 

has dependence on the subtraction point p. The relationship between the vector 
current in QCD and the vector current in the effective theory is (no sum on i and 

j) 

&j~pQt = qJ21YeQr + ... (23) 

where the ellipsis denotes other possible Lorentz structures (e.g., &,Q,u, and 
Q,Q,uL) and higher dimension operators. Their effects are suppressed hy the 

QCD fine structure constant evaluated at a heavy quark mass scale or by powers 

of hqcD/mq, and AQcD/mQ,. The coefficient C,i has been determined, in the 

leading logarithmic approximation. For mQ, 2 mQ, >> ps*’ 

C,&) = [2$-y [*IaL (24) 

Here 

where Nf is the number of quark flavors which contribute to the beta function in 

the momentum interval between mQ, and mQ,, and 

UL = 
8(u. u’r(u u’) - l] 

33 - 2N; (26) 

with N; is the number of quark flavors appropriate to the momentum interval 

between mQ, and p. In eq. (26) 

p(“.u’) = +d+~~) (27) 

At ‘v = u’ the operator Q,y,,Q, is related to a generator of heavy quark flavor 

symmetry and it should not be renormalized. Indeed, we see from eqs. (24), 
(26) and (27) that, since r(l) = l,C,,(p) is independent of p for t, = u’. The 

relationship between the axial current in QCD and in the effective theory has the 
same form (this is ensured by the spin symmetries) 

f&wsQs = C&,y,ysQ, + 

with C,,‘the same as occurs in eq. (23). Therefore in QCD the form factors 
f*, iL&, f and G, are given by making the replacement 

(29) 

in eqs. (22). 
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Note that, because the currents require renormalization in the effective theory, 
the function < depends on the subtraction point p. This dependence cancels that 

of Cli so that the form factors (which are physical quantities) are subtraction 
point independent. For /I of order the QCD scale t contains no large logarithms 
and it is expected to have a slope at threshold of order unity. On the other hand, 

for ;ery large heavy quark masses the dependence of C,, on u u’ is rapid. It 

follows that for very large heavy quark masses, in the region near threshold, the 
dependence of < on u .u’ can be neglected (i.e., [ can be set to unity) and it is C,, 

that determines the shape of the form factors. In the physical case Q, = b, Qj = c 
(relevant for semileptonic B decay) this is not likely to be a good approximation. 

For i? -+ De6, decay over the whole available phase space, u’u’ = 1 to U.D’ = 1.6, 
the function Cj, decreases by only about 10% (for CY~(/I) = 1). 

4. WEAK MIXING ANGLES 

There are several approaches available to determine the magnitude of the 

Cabibbo-Kobayashi-Makawa matrix elements Vb, and Vb,. Since the &quark 
is heavy compared to the QCD scale inclusive semileptonic B meson decay can 
be approximated by &quark decay. Corrections to this picture are presumably 

suppressed by factors of AQCD/mb. The &quark decay either proceeds through 
the b + c or b + u W-boson couplings. So 

(30) 

where 

r( b + ccc,) = ‘“~~~m’g(m,/mg) , (31a) 

r(b -8 uei;,) = ‘“;$‘zmi . @lb) 

In eq. (31) 9 is a function that takes into account the effects of the charm quark 
mass; it is about equal to one-half. Experimentally the b -+ c transition dominates 
the rate. From the measured B-meson lifetime TB N lo-r2 set and semileptonic 

branching ratio (- 10%) eq. (31a) implies (for rnb = 5.2 GeV) 

p&1* N 0.2 x 10-z . (32) 

Because eq. (31a) is proportional to rni it is very sensitive to the value of the 
b-quark mass. If we had used m) = 4.7 GeV then value of IV&j2 would increase 

by 60% over what is given in eq. (32). 

Another approach to determining mixing angles is to use predictions for par- 
ticular final states. Experimentally, the rate for semileptonic B decay is dominated 
by two processes; B -+ De+, and B + D’efi,. The rates for these processes are 
determined by the magnitude of Vk and by the matrix elements 

(33Q) 

Wb) 

(33c) 

The matrix elements of eqs. (33) involve nonperturbative strong interaction 
physics. Despite this, we have seen in the previous two sections that the form fac- 

tors that characterize these matrix elements are determined at threshold (where 
u = u’) and that they have a shape determined by a single function of u . u’. 
(In principle the shape can be measured.) These predictions are enough to ex- 
tract the magnitude of Vcb from data on the exclusive B semileptonic decays. (At 

present the data is not good enough for this method to be superior to that based 
on the inclusive decay rate.) The weakest feature of this approach is treating the 

charm quark as very heavy. Perturbative corrections of order o,(m,)/s have been 
computedss10 and they are not large. Recently the AQcD/m, corrections have 

been characterized.” These involve the matrix elements of new operators that 
are not computable without relying on numerical lattice Monte Carlo methods. 
However, at threshold there are no hQcD/mc corrections to the form factor f. 

This should eventually allow a very accurate determination of lvcbl from experi- 

mental data on B --t D*e&. 

In Z” decays at LEP many Ab baryons will be produced. This state has 
St = 0. The form factors for the semileptonic decay Ab --t A,efi, can be predicted 
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using the heavy quark spin and flavor symmetries. Writing 

(h,(v”,s’)‘cy,b’Ab(v’,s)) = U(G’,s’) F,-yp + F2up + F3t$ ~(6,s) 1 (34) 

and. 

(A,(v”,s’)‘~y,rsb’Ab(v’,,)) = -( 11  c’, ~‘1 [ Gr,i~s + GZU,-YS + GU;YS I u(C s) (35) 

the heavy quark spin and flavor symmetr ies imply that the six Lorentz invariant 

form factors G1, Gz, Gs, 4, F2 and F3 can be expressed in terms of a single func- 
tion q(u.u’) normalized to unity at threshold (i.e., ~(1) = 1). Explicitly’* (baryon 

. states are normalized to Eg/mg) 

F, =G1 = [$$I” [+]“q(u-u’) 

Fz  = F3 = Gz = GB = 0 . Wb)  

The hQcD/rn, corrections to these form factors have also been characterized.” 
Amazingly these introduce no new functions of u. u’ but only add pieces to (36) 
proportional to i/m,, where i = rnhb - mb  = rnh, - m,. This decay may 
eventually also play a role in determining I&,[. 

Although the b + u coupling is responsible for only a small fraction of the 
semileptonic B decays, it is possible to isolate this contribution (without recon- 

structing hadronic final states) by examining the electron spectrum 

(37) 

Kinematically, the production of final hadronic states X with mass rnx is forbid- 
den for electron energies greater than 

The lowest mass particle containing a charm quark is the D meson with a  mass 

of 1.9 GeV. So by examining the endpoint region E, > 2.3 GeV one is sure to be  
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focussing on the b --+ u contribution. What is needed is a method for normalizing 
the electron spectrum in this region. Unfortunately, one cannot justify the use 
of the free quark decay picture for the production of low mass hadronic final 

states” (e.g., p and r). The heavy flavor symmetr ies allow another approach to 
determining I&,1. The heavy flavor symmetry plus ordinary isospin symmetry 

implies, for example, that’v13 

(~(6 ~)Iwti(l- r5)blWJ ) = (z)“’ [ # ] -6’25 (3g) 

Eq. (39) is valid (in the rest frame of the i? and D) for light four-momenta k small 
compared with the heavy quark masses. Since in Cabibbo suppressed semileptonic 
decay D -+ p?v, the weak mixing angles are known the right hand side of eq. (39) 
can be determined experimentally. With this information experimental data on 

i!# -+ pefi, will allow a determination of I&l. If one uses light quark SU(3) 
flavor symmetry, instead of isospin symmetry, then the decay D -+ K*hc can be 
used for the r.h.s of eq. (39). The form factors for this decay have already been 
measured.14 Again, the weakest feature of this program is the neglect of AQcD/m, 
corrections. Considerable theoretical and experimental effort will be required to 
assess the accuracy of this method. 
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