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1. The Challenges of a B-Factory 

In the past few years a good deal of enthusiasm has arisen in the US, Europe 

and Asia for U-Factories. In these machines electrons and positrons are collided 

with center-of-mass energies at or near the T(4s) resonance, with unpreccdrnt- 

edly high luminosities, to produce copious fluxcv of ~-mesons. The object is 

to make high-precision studies of the CP non-conserving B decays. Various 

colliding-beam configurations have been suggested including both linear collid- 

ers and storage rings, but one scheme has emerged as generally preferable to the 

others. It is the asymmetric storage ring system--asymmetric in the sense that 

the two beam energies are markedly different and the center of mass is moving 

in the direction of the higher energy beam. With this arrangement the decaying 

B-mesons fly off from the interaction region in the same direction, and the time- 

order of their decays can be deduced from the locations of their decay vertices. 

These B-Factories present the accelerator builder with two main challenges: 

to achieve luminosity far beyond that attained in existing storage rings anh to 

do it in the unexplored arena of unequal beam energies. The highest lurninos- 

ity reached up to now in electron-positron storage rings has been a little over 

I@? cm-2 s-1 attained in Cornell’s CESR. Although several machines have been 

designed to deliver luminosities of 103” cmm2 s-l, that goal has proven very dif- 

ficult to reach in practice. A R-Factory requires luminosities thirty to one hun- 

dred times higher than that figure to support the CP-violation experiments. And 

on top of that difficulty, we must deal with colliding beams of unequal energies. 

That may turn out to introduce no punitive limitations, but it surely represents 

an uncertainty that aggravates the problems of attaining high luminosity. On 

the whole, we can fairly conclude that all of our knowledge and ingenuity will 

have to be brought to bear in designing these machines and building them. 

Fort.unatcly the means of meeting these challenges appear to be 1 1 .i hand on 

the basis of our present undcrslanding of the accelerator physics o/ colliding- 

beam storage rings. The problems have been studied in several laboratories in 

Europe, Japan, the US and the USSR, and the solutions devised in those studies 

have converged in their general features. A B-Factory will consist of two separate 

storage rings with a common collision region; each ring will carry what is, by 

today’s standards, high circulating beam currents, and as a consequence, the 

vacuum chambers will be very well-cooled and strongly vacuum-pumped; and 

each beam will be comprised of many bunches. It appears that the optical and 

mechanical designs of the interaction regions will be quite complicated, but also 

quite feasible. 

2. An Existing B-Factory: CESR 

There are in fact two storage rings running now as B-Factories: CESR at 

Cornell and DORIS at DESY. While they are not capable of the fluxes of B- 

mesons necessary for precision studies of CP violation, they are the sources for a 

lot of the B physics done to date. As I have mentioned before, CESR holds the 

luminosity record for electron-positron storage rings, and a despription of the 

machine will be useful to illuminate the difficulties in reaching high luminosities. 

CESR is a single storage ring with a circumference of 768 m. Some of its 

primary parameters are given in Table 1. The beams of course have equal ener- 

gies which are tuned to half the energy of the T(4s) resonance. The luminosity 

has been referred to before. ‘I-he maximum tune shift is a figur,e of merit that 

WC shall discuss in some detail later. The 77 mA stored in ?a& beam radiate 

80 kW as synchrotron radiation, but since the source is distributed around an 

appreciable fraction of the circumference (radiation is emitted in the bending 

magnets), the power density is not prohibitive. 
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Figure I: A schematic depiction of the “pretzel orbits” in the CESR stomge 
ring. The circle represents the central orbit; the other solid line is the positron 
orbit; and the dashed line is the electron orbit. The electron and positron bunches 
avoid each other, because they are deflected onto different orbits by the electric 
fields situated on either side oJ the interaction region. 

Each beam has seven bunches and, therein lies the secret of CESR’s high 

luminosity. Originally built as an 8-GeV machine with one bunch in each beam 

and a small beam aperture, its performance was stringently curtailed by the tune- 

shift limit. More on this later. The Cornell accelerator physicists overcame this 

obstacle by creating “pretzel orbits” that prevent the counter rotating bunches 

from colliding with one another except at the interaction regions. High-voltage 

electric plates make strong electric fields in the vacuum chamber transverse to 

the beam axis and deflect the electron and positron beams oppositely onto their 

separate pretzel orbits. The technique is shown schematically in Figure 1. 

Returning to Table 1, we should note for later reference that the bunch 

frequency, the frequency at which the bunches of either beam pass the interaction 

point (or any other fixed point on the circumference, for that matt&) is 2.7 MHz. 

The vertical beta-function at the interaction region is 1.5 cm. We shall discuss 

the significance of the beta-function later; suffice it to say that the smaller it is, 

the better. CESR is a Rat-beam storage ring, so the transverse aspect ratio of 

the beam at the IR (interaction region) is small. The longitudinal impedance is 

a parameter we shall discuss at some length later; again the smaller, the better. 

To push CESR to still higher luminosity more bunches would have to be 

added with a corresponding increase in circulating currents and radiated power 

and, possibly, a reduction in longitudinal impedance. A reduction in the IR beta- 

function would help too, but there is not much to be hoped for there. These 

measures are very difficult in a single ring. 

3. Constraints Imposed by Beam Dynamics 

Why can’t we get all the luminosity we want? We know that there are what 

we might think of as engineering problems, e.g., handling high heat fluxes and 

pumping large gas loads. Nevertheless, if we are willing to spend ‘the necessary 

effort and money, shouldn’t we be able to overcome the problems? In fact, 

the answer is, “Not necessarily.” Some of the problems are beyond the power 

of engineering solutions. Those problems are the subject ofithis chapter. The 

physics of particle beams imposes strict limitations on what we can accomplish. 

The phenomena that harass us at every turn in our pursuit of high luminosity 

are beam instabilities. Either the individual particles go intJ unstable motion 

or whole bunches do. In either case the beams become useless for producing 

luminosity. These instabilities can be classified in several ways; for our purposes 

we shall classify them into two categories: beam-beam instabilities and single- 

beam instabilities. 
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W’c shall see that. siuglr- beam instabilities will prevent us from increasing 

buuch populations much beyond present practice, while the demand for high 

luminosity will force us to higher total beam currents. As a result we shall be, 

for& to choose a double-ring system with many bunches in each ring. Then 

we shall find that the circumferences of the two rings must stand in the ratio of 

sinall integers, optimally l/l, to avoid coherent beam-beam instabilities. 

Ilappily in the end, we shall find a set of design choices that can deliver the 

luminosity we need for a B-Factory. 

3.1. Beam-Beam hstabilities 

Storage rings are designed so that the motion of a typical stored particle is 

comfortably stable. A particle in orbit by itself would stay in the ring forever if 

it experienced no other forces than the magnetic guide forces. In actuality any 

particle emits quanta of synchrotron radiation and interacts with the occasional 

residual gas molecule, so after a time, typically hours, its life in the storage ring 

comes to an end. But those influences do not vitiate its usefulness to us. We 

can use particles that stay iu the ring for hours. 

The forces that cause the main trouble when we try to increase the beam 

current (which we must do to raise the luminosity) are the electromagnetic forces 

between the stored particles. The particles of a bunch together create a collective 

field that moves along with the bunch. The metallic vacuum chamber establishes 

boundary conditions and thereby shapes the field of the bunch, an effect we can 

tlescribc in terms of image charges that also move along with the bunch. This 

is the collective field, and it acts on each iudividual particle in the bunch that 

creates it. It also acts (impulsively) on each particle of each bunch that collides 

with the bunch that creates it. For these particles, the forces of the collective 

field add to the guide-held forces aud can change the particle’s motion from 

811xi 
Bunch 
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Figure 2: A particle entering a counter-moving bunch at transverse coordinates 
I and y. The bunch is idealized as a cylinder of charge. 

stable to unstable. In this section we shall discuss the particular effects of these 

collective fields between colliding bunches 

Consider a particle of one beam as it passes though a counter-moving bunch. 

It is acted on by both theelectric and magnetic collective fields of that bunch; the 

two forces are almost equal, they add and their dependencies on the transverse 

coordinates of the particle are identical. More importantly, that dependence is 

very non-linear in both coordinates. If the particle penetrates the center of the 

bunch, there is no force. As the tine of penetration moves out from the center, 

the force first increases and then decreases. These are the properties of the 

electromagnetic field of a thin tube of space charge current. 

As the particle passes through the opposing bunch, it accumulates a trans- 

verse impulse that creates a corresponding transverse deflection. The beam 

particle coordinates are measured transverse to the central closed orbit of the 

storage ring and are customarily called I (horizontal) and y (vertical). See Fig- 

ure 2. The slopes are therefore I’ and y’, where primes denote differentiation 
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BEAM-BEAM IMPULSE 
(Rounded Beam) 

12pD i erwr, 

Figure 3: The transverse deflection, Ax’, of a particle due to the collective 
field of the oncoming bunch, plotted against the coordinates at which the particle 
passes through the bunch. In this example the bunch is distributed as a round 
Gaussian, and the units of I and y  am the radial standard deviation. 

with respect to the longitudinal (along-the-orbit) coordinate s. The effect of a 

transverse impulse is to change Z’ and y’. Figure 3 is a three-dimensional plot 

showing a typical relationship between the horizontal impulse AZ’, plotted along 

the vert.ical axis, and the particle’s coordinates, plotted along the other two. The 

warping of the surface implies a high degree of non-linearity. This particular ex- 

ample is of a round beam, but the non-linearity is typical of all beams. The 

round beam of Figure 3 has a Gaussian radial density distribution. The units of 

I and y  are the radial standard deviation of the distribut,ion, the characteristic 

transverse scale length (size). The feature that the impulse peaks and reverses 

slope at a distance of the order of the transverse size is also typical of all beams. 

3.1.1. The Incoherent Beam-Beam Limit 

Why is this non-linearity such a bad thing? To answer that question, we 

need to delve a bit into beam dynamics. In particular, we need to discuss 

betatron resonances-henceforth, just resonances. 

Betatron Oscillation 
(v = 5.3) 

Figure 4: A betatron oscillation. 

As a first step in the design of a storage ring, the guidk field is laid out 

with linear magnetic-optical elements (quadrupoles, bending magnets &d drift 

spaces) only. At the next stage of design, non-linear elements such as sextupoles 

are introduced, but these elemenrs are weak in the sense that the motions of 

particles in the guide field arc determined almost entirely by the linear elements 
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TYPICAL RESONANCE DIAGRAM 
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Figure 5: A typical resonance diagram showing some strong resonance lines. 
The lines are of the form mv, + nq, = p. The small island in the lower left-hand 
corner represents a beam distribution. It must fit between the lines! 

and almost negligibly by the non-linear ones. Thus the beam dynamics of the 

storage ring are almost the beam dynamics of the linear lattice (the sequence 

of optical elements). Providentially the beam dynamics of the linear lattice are 

remarkably benign. If the ring were linear and perfectly constructed, all particle 

motions in it would be stable. That is a property of well-designed linear lattices. 

In general, the particles oscillate about the central orbit, executing the same 

number of oscillations each time they make a complete circuit. See Figure 4. The 

number of oscillations is called the betatron frequency or tune and is customarily 

denoted v (in the (IS). There is one betatron frequency for r-motion (v~) and 

another, generally different, for the y-motion (vi,). The motion is stable for any 

values of the V’S, 

1 Real storage rings are not perfectly constructed; they have field i ,homoge- 

nieties (non-linearities), misalignments, stray fields, etc. Indeed, in terms of 

linear beam dynamics, the sextupoles mentioned above constitute a deliberate 

introduction of such imperfections. The general effect of introducing these im- 

perfections is to impose narrow bands in the Y,vr,-plane in which the particle 

motions are no longer stable. W e  call these regions resonances, because the un- 

stable motion is caused by a resonant process. At values of the tunes lying in 

these bands, the phase shift of the (unperturbed) oscillation is such that the 

deleterious effects of the non-linear fields keep reinforcing each other from turn 

to turn. Figure 5 shows a portion of the v,vs-plane criss-crossed by a typical 

set of strong resonance lines. In a real storage ring the tunes must be kept away 

from these forbidden lines, or the beam particles will literally be lost; in other 

words, the tunes must lie securely in between the resonance lines. 

Now we turn to the effect of the beam-beam interaction. W e  may think of 

it as equivalent to a highly non-linear lens acting on the particles. It shifts the 

frequencies of the oscillations, but more importantly it shifts them by amounts 

that depend strongly on their amplitudes. Thus different particles with different 

amplitudes acquire different frequencies, and a scatter plot of the frequencies 

of the particles in a bunch would show them to be smeared out on an island 

in the u,ur-plane. An example is shown in the lower left portion of Figure 5. 

Obviously the stronger the beam-beam interaction, the bigger the island, and if 

the island is big enough to lap over any of the resonance lines, particles will be 

lost. Therefore the size of the island is limited. The size of the islav is measured 

by the two tune spreads, that in uz and that in uz. According to the resonance 

picture, they are both stringently bounded. 

On the other hand, in all storage rings built to date, the beams at the IR’s 

have been flat (as iu CESR, for example), and in the case of a flat beam, we 
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are concerned primarily with the vertical tune spread. While the horizontal tune 

shift is presumably limited, it proves comparatively easy to avoid any deleterious 

consequences of that fact by adjusting the details of the optical design. All of the, 

current B-Factory designs call for flat beams too, so we shall not be far wrong 

to deal only with the vertical tune-shift limit, and that is what we shall do. 

How do we estimate the tune spread ? Let us consider first a particle un- 

dergoing a very large amplitude y oscillation, large that is, compared to the 

vertical si7, scale of the counter-moving beam. On the average (and speaking 

anthropomorphically), the particle scarcely feels the non-linear force due to the 

counter-moving beam, so its vertical tune is almost unshifted. In other words, 

it oscillates at its normal frequency. Now let us consider a small-amplitude os- 

cillation, one in which the y-coordinate stays well within the size of the counter- 

moving beam. In that region of y, the beam-beam force is very nearly linear; it 

causes a tune shift that is independent of amplitude and one that is the largest 

of tune shifts for any amplitude. All other amplitudes give rise to tune shifts 

that lie between these two extremes, so the small-amplitude tune shift, which 

we shall call CY, is a good estimate of the tune spread: 

where 
# = IR beta functions (vertical) 

N+ = positron bunch population 

N- = electron bunch population 

P = beam aspect ration at IR 

re = classical radius of electron 

u t,y = transverse r.m.s. bunch dimensions. 

(1) 

This, then, is the parameter that is limited by the beam-beaq limit, and 

we shall refer to it as a tune-shift limit, although it is really a tune-spread limit. 

From the picture we have drawn of the limiting process, we would expect that 

the value & can reach in a particular storage ring should be extremely sensitive 

to the location of the working point in the v,vy-plane, and indeed it. is. We would 

further expect that if measures were taken to weaken or eliminate resonance lines 

in the vicinity of the working point, the allowed tune shift. would increase, and 

indeed it does. In all existing and past storage rings-and they all have had flat 

beams--the maximum allowable tune shift, after all ameliorating measures had 

been taken, has been 

0.01 < & 5 0.06 

The maximum allowable tune-shift is called the incoherent beam-beam limit. Cer- 

tain machines are characterized by the lower values of this limit, while others are 

characterized by the higher values. In other words, the limit is, to a large extent, 

characteristic of a ring. On the other hand, we cannot claim to understand very 

well the reasons for these variations from machine to machine. Therefore, to 

base a new storage-ring design on a value of &, as high as 0.06 \(rould appear to 

be optimistic, while to base it on a value of 0.03 might be regarded as prudent. 

The physical interpretation of Equation (1) is clear. The combination, 

N/uzuy, measures the peak current density of the bunch. The deflection will 

be proportional to that and inversely proportional to the particlk’s y. The opti- 

cal function, pY, appears in the numerator, telling us that the bigger &, is, the 

bigger, i.e., the worse, is the tune shift. In other words, ljY is a sensitivity param- 

eter. The reason for that lies in the role of the beta-function in describing the 

betatron oscillations: its square root is the “envelope function” that describes 

the variations of the size of the beam along the central orbit. Where 13, is large, 
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the: beani is large vertically, and where & is small, the beam is small. Since the 

c~xt.cnt of the: beam in phase space is preserved (Liouville’s Theorem), where t.he 

bran1 is small its angular divergence is large and vice ~ersa. Where the angular 

divergence is large, an unwanted dellection such as the bearn-beam interaction 

is less troublesome than it is where the divergence is small, so a small /3x at the 

II1 is good. 

Now let us proceed to the question, how does the beam-beam limit alfect 

the achievable luminosity? The luminosity is given by the expression, 

L = N+N-fn 
4?ra,a, 

where fs is the bunch frequency defined earlier in the section on CESR. In 

writing this expression for the luminosity, we have restricted ourselves to the 

case in which the dimensions of the two colliding beams at the IR are matched: 

o+ = c- 
Z.Y Z,Y 

It is not hard to see that this is the optimal case, and there is nothing to be 

gained by departing from it. If we solve Equation (1) for the bunch populations, 

NT= 2*-r*cr,ay( 1 + r,c; 
f f-e& 

1 

we can substitute them into Equation (2) and express the luminosity directly in 

terms of the tune shift. 

L = 4r*cy(fnwY)(l + ‘I2 
reP$ 

(4) 

A storage ring system can have only one luminosity, so we are assuming 

that we have done the right thing: that we have somehow contrived to make the 
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Figure 6: The longitudinal bunch distribution overlayed on a graph of the beta- 
function in the vicinity oj the IR. In the case depicted, many particles lie in the 
wings of the beam waist. 

two expressions on the right-hand side of this equation (represented by the two 

choices of the superscript sign) equal. In single-ring systems, this is accomplished 

more or less automatically. 

Our task is to find ways of getting the highest luminosity we can. Aside 

from the constant x, the first factor in the numerator of Equation (4) involves the 

tune shifts and the energies; the tune shifts are bounded and the y’s are fixed by 

experimental requirements. The next factor is the combination (fsa,a,,), and 

we shall return to that later. The final factor in the numerator is (1 + r)’ which 

suggests that making the beam round at the IR (r = 1) could gain us something 

in luminosity. Unfortunately, the correctness of Equation (l), arid therefore of 

Equation (4), in the case of r = 1, has not been tested, and there is plenty of 

room for doubt. More importantly, the problems of suppressing b 
t 

ckground in 

the detector have forced the designers away from a round beam and toward a 

flat beam. We therefore take r < 1. 

The denominator of Equation (4) urges us to make /ly as small as possible. 

That is, anyway, common storage ring design practice for single rings as well 
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as double rings. How small is possible? We cannot make &, smaller than the 

bunchlength; indeed for safety, it should be several times the bunchlength. The 

reason lies in the tune-shift formula, Equation (1). The interaction region is a 

place where the beam is tightly focused to a waist. That means that the p- 

function is parabolic there, and the functional form is simply 

2 

&(s) = PO 1 + ; 
[ ()I 

1 

where s is measured from the center of the IR. The longitudinal distribution of a 

bunch is Gaussian, and what I have called the bunchlength is just the standard 

deviation, bs. Consider a particle riding one standard deviation behind the 

center of its bunch. See Figure 6. That particle passes the center of the counter- 

moving bunch a distance, &/2 beyond the center of the IR. At that point, py is 

substantially higher than it is at the center of the IR. The question is this: what 

value of /3, should we use in the tune-shift formula for that particle, or rather 

for the average particle? Obviously it is a bigger value than po unless we restrict 

PO as follows, 

and so we do. The effect of this restriction, taken together with the realities of 

radio frequency system design, is to limit the usable values of & at the interaction 

region to a minimum of about 1 cm. In practice, given the optical complexities 

of the interaction region for a double-ring system, even that small a value may 

prove hard to achieve. 

Let us return to the multiplicative factor, (foozoy), in the luminosity for- 

mula, Equat.ion (4). That factor is the product of the beam cross sectional area 

at t,he IR and the hunch frequency, a sort of area per unit. time. Suppose WC 

choose to increase the cross sectional area greatly. In that case, Equation (3) 

tells us that we would also have to increase the bunch populations proportion- 

ally. In the next chapter, we shall learn that increasing the bunch population is 

a bad thing. That leaves us with fo as our last remaining handle for increasing 

the luminosity. 

Since the bunches move at the speed of light, increasing fo is exactly equiv- 

alent to decreasing the distance between bunches in each beam. We saw in the 

example of CESR that the possibilities for doing that in a single ring are woe- 

fully limited. The fact is that if we want to use a lot of bunches, we must use two 

separate rings for the two beams. Even with two rings there are practical difi- 

culties that prevent us from putting the bunches too close together, difficult,irs 

associated with separating the beams as they leave the interaction region after 

colliding. So in the end, the B-Factory designer is forced to put the bunches 

as close together as he can, given the IR design, and thus raise the bunch fre- 

quency as high as he practically can; and he is still hard pressed to achieve t,he 

luminosity required of a B-Factory. 

We shall conclude our discussion of incoherent beam-beam constraints on 

the performance of B-Factories with a comment on their implications for the 

radiofrequency accelerating system. Replacing only one of the N’s in Equa- 

tion (2) with Equation (3), and noting that the dc beam currrnt of one beam is 

I = eNfe, we get 

whcrc the current, the tune shift, the energy, etc. refer consistently to one beam 

or the other. Once WC have chosen the luminosity, thrrr is very little latitude 

in the beam current, none in fact after WC have minimized py. This formula 

appl~cs to the higll-energy beam in pa.rtirular, and that is t,hr bram that, suffrrs 
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the larger radiation loss, call it Us. We see immediately that the radiated power 

from the high-energy beam, 

P rad = 

will be proportional to the luminosity. We shall also see when we take a look at 

some R-Factory designs that Prad is measured in megawatts. 

3.1.2. Beam-Beam Coherent Instabilities 

In the last section we dwelt on the effects of different particles moving 

differently-with different frequencies, for example-but how about the effects 

of different particles moving similarly? If we consider a cluster of particles close 

together in phase space as they approach the oncoming field of the opposing 

bunch, we shall see that despite the non-linearity of the field, they will respond 

more or less together; they will exhibit coherent motion. 

We can think profitably about this kind of motion by simplifying our picture 

of the transverse inter-bunch force to a linear approximation. We can get away 

with that stratagem, because most of the particles in the bunch are concentrated 

near its axis, and we are concerned only with the motions of the center of mass 

(charge). In that approximation we have a lot of coupled oscillators, each bunch 

oscillating transversely in the guide-field restoring force and interacting with 

one or more opposing bunches at the interaction region. Such a system has the 

following properties: 

1. There are as many modes as there are bunches. 

2. The coupling is proportional to the bunch populations, and almost any 

mode will go unstable at sufficiently high coupling. 

3. The most benign arrangement is to have equal numbers of bunches in 

the two rings, and in that case, these instabilities can be avoided at the 

required bunch populations by judicious choices of the tunes. 

We can see how these instabilities arise by considering the simpl case of 

equal-size rings. Each bunch of one ring interacts with only one bunch of the 

other ring. The normal modes of the bunch pair are the so-called II- and O- 

modes. In the tatter there is no inter-bunch restoring force, but in the H-mode 

there is, so in the II-mode we can think of the interaction as a gradient error, 

like a quadrupole magnet stuck into the lattice where it does not belong. If it 

is strong enough, a gradient error will drive a lattice into a nearby “stopband,” 

which is beam-dynamical argot for instability. 

We can make a more homely, but also more perspicuous, analogy to a pair 

of simple classical oscillators-masses on springs-coupled together by a third 

spring which has a negative spring constant. Negative springs are rare, but there 

is no difficulty in dealing with them mathematically, and the reader is invited to 

set up the equations of motion for the system. That system has the same two 

modes, KI and 0. The coupling spring plays no role in the O-mode, because the 

separation of the masses remains constant, but it shifts the II-mode frequency 

downward. If the coupling spring is strengthened more and more, eventually the 

restoring force supplied by the supporting springs is overcome, and there is no 

longer a restoring force. The response of the system to a n-mode disturbance is 

an exponential flight from equilibrium. 

The forces at play in these instabilities are very large, and feedback systems 

are of little avail against them. Therefore it is fortunate that we Can avoid these 

instabilities by wise choices of tunes. 

Returning to point 3 above, if we delved into the details of the coherent 

beam-beam instabilities, we would learn that rings of unequal hircumference 

can be used without narrowing the allowable choices of tunes catastrophically 

provided their circumferences stand in the ratio of small integers (l/2 or l/3, 

for example). Equal circumferences for the two rings is not a hard rule, just a 
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conservative choice. So it comes down to a cost-benefit trade-off, and at this 

point we enter the treacherous area of tunnel economics. Despite some bitter 

experience in this field, I shall not utter any generalities on the subject, except’ 

to say that every case is different, depending on the economic health of the 

building industry, the weather and other unpredictables. Suffice it to say that a 

laboratory that already owns a suitable tunnel ought to take a different view of 

the matter than one that does not. 

3.2. Single-Beam Instabilities 

We turn now to beam instabilities of a different sort: instabilities which 

arise from the effects of the collective field of a bunch on the particles of the same 

bunch or of the same beam. The fields are the same ones we dealt with in the 

last section, but we must be more careful about the exact values of the electric 

and magnetic fields. The reason is that white the electric and magnetic forces on 

a counter-moving particle add, those on a co-moving particle nearly cancel, and 

the difference between them is very sensitive to the exact values of the fields. 

As an example of this near cancellation, consider a highly relativistic bunch 

of particles travetling through space. The magnitudes of the magnetic and etec- 

tric fields stand in the ratio, u/c, where u is the speed of the particles. The cor- 

responding forces on a co-moving particle stand in the ratio, (v/c)~, and since 

they oppose one another, the net force is proportional to [I - (u/c)~] = ym2. In 

a storage ring, the presence of the metal vacuum chamber, and particularly of 

steps and pillboxes in its contotirs, upsets the delicate cancellation. As a result, 

the force on a co-moving particle is stronger than in the free-space example, and 

it is not proportional to Tm2. 

The dominant process for establishing these fields in storage rings is the 

excitation of local electromagnetic fields in the vicinity of abrupt changes in 

the vacuum envelope. A good example is a pittbox such as that fprmed by a 

radiofrequency accelerating cavity. It is a resonator, and the passage of a bunch 

along its axis naturally excites many of its normal modes. The fields are like the 

wake of a ship: they carry a disturbance long after the bunch has passed. Indeed 

we often call them wakefields. Each of the modes extracts some energy from the 

bunch and stores it as oscillating electromagnetic field energy. As the modal 

field rings, it dissipates its energy in the resonator walls, but it also acts on any 

particle that happens to pass. The lowest-frequency modes have periods that 

are tong compared to the temporal bunchlength and decay times that are many 

periods long; they affect not only the particles in the exciting bunch but those 

in the following bunches. At the opposite extreme, the highest-frequency modes 

that are significantly excited have periods that are shorter than the temporal 

bunchlength and decay times that are comparable to it, so they affect only 

particles of the exciting bunch. If we are concerned with multibunch motions, 

we shalt be interested in the lower frequencies, and if we are concerned with intra- 

bunch motions, we shalt be interested in the higher frequencies. Impedance was 

invented to deal with cases like these. 

In electrical circuits the impedance relates the voltage beiween a pair of 

terminals to the current flowing through it. It is a function of frequency and it 

applies to steady-state sinusoidal excitations. The apparatus pf Fourier trans- 

formation enables us to combine these excitations to deal with complicated and 

even non-periodic currents. We shall take the same approach ih our beam dy- 

namical problems, although we shall not be hidebound about Ithe dimensions 

of our impedances, and we shalt make definitions that are appropriate to the 

problems. 

Before tackling the single-beam instabilities, we had better get an idea of 

what range of frequencies we shall be dealing with: What does a typical bunch 
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Figure 7: The spectrum of a Gaussian pulse. The ordinate is the angular fm 
qvency in units of the standard deviation (in time) of the pulse. 

current spectrum look like? The bunch is a needle-like object. Typically its 

transverse dimensions, although they vary as the bunch moves along its orbit, are 

measured in fractions of a millimeter. Its length, which does not vary, is about 

1 cm. The shape and size of the bunch then are much like that of a particularly 

long printer’s dash, in fact just like this one: -. Well, not the shape really, 

because the distribution of charge in each dimension is very nearly Gaussian, 

but the ratio of length to width is well represented. Since its spatial length is 

about 1 cm, its temporal length is about 30 ps. Viewed at a fixed location on 

the circumference of the ring, it is a Gaussian pulse of current. As Figure 7 

reminds us, the spectrum of a Gaussian pulse contains no significant frequency 

components above the reciprocal of the r.m.s. pulselength, so the spectrum of 

the bunch reaches up to about 30 GHz. The lowest frequency present is ft, if all 

the bunches have the same populations, but that frequency is usually far below 

the lowest modal frequency of any vacuum-chamber discontinuity. 

Now we know the spectrum of the driving current, but at what frequencies 

do we expect to find the resonances in the vacuum chamber? A good rule 
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of thumb is that for the lowest-frequency resonance, the free-space yravelength 

(c/f) corresponding to the resonant frequency is approximately equal to a typical 

dimension of the cavity. For example, a rectangular box 30 cm on a side has its 

lowest resonance at 1.4 GHz which corresponds to a wavelength of 21 cm; and 

a pillbox with a diameter of 30 cm has its lowest resonance at 0.77 GHz which 

corresponds to a wavelength of 39 cm. In addition to these lowest modes there are 

many higher modes, infinite numbers of them in fact. Fortunately they are not 

all pernicious. Some do not couple to the beam; they don’t have a longitudinal 

electric field on the orbit, for example. Others are damped by some mechanism 

that quickly dissipates or conducts away the stored energy. Nonetheless, many 

modes remain, and their effects add together to make the impedance function. 

3.21. Longitudinal Microwave Instability 

As our first example of single-beam instabilities, we treat the longitudi- 

nal microwave instability, a process driven by the highest frequencies present in 

the wakefietds, frequencies that correspond to free-space wavelengths that are 

shorter than the bunch, i.e., millimeter waves. The bunch spectrum is weak in 

that region of frequencies, as we have seen; nevertheless these cohponents can- 

not be ignored. The electromagnetic modes in question have longitudinal elec- 

tric fields on the central orbit through which the bunch excitq the modes and 

through which the modes act back on the particles of the bunch. Different por- 

tions of the bunch are accelerated and decelerated. The subsequhnt longitudinal 

motion of the particles within the bunch redistributes the curreht in the bunch 

and therefore its high-frequency spectrum which, in turn, changes the amplitude 

of the mode-feedback. There are also influences present, such as non-linearities 

in the motion, that damp the modes, so there is a threshold current for the lon- 

gitudinal microwave instability. If the peak current exceeds the threshold, many 



modes typically go unstable, and the resulting longitudinal motion is turbulent, 

lengthening the bunch and increasing the energy spread among the particles in 

the bunch. 

We cannot tolerate bunch lengthening in B-Factories for reasons we have 

discussed in Chapter 3. According to Equation (5), we cannot make /3r at 

the IR smaller than the bunchlength, but according to Equation (4), we must 

make it as small as we can. Therefore, we adjust & carefully just larger than 

the bunchlength. If then the bunch lengthens, our efforts are vitiated and the 

luminosity drops. We cannot accept extra energy spread either, because the 

T resonance is narrow. The conclusion is that we must avoid the longitudinal 

microwave instability. 

The impedance we use to describe this kind of beam-chamber interaction 

is called the longitudinal impedance, 211(w). It is the ratio of the longitudinal 

electric field on the axis (multiplied by the circumference of the orbit to create 

a voltage) to the current driving it (assumed sinusoidal). It is just the sum of 

all the local impedances around the orbit. If & is the sum of the electric fields, 

Z,,(w) = 7 . 

The threshold current for the longitudinal microwave instability, Ill, is 

2u( E/e)cwi 
4 = IZ,,(nwo)/nl ’ 

where Q is the momentum compaction factor of the ring, 06 is the fractional 

energy spread in the beam and ws is the angular orbital frequency. The number, 

R, is called the mode number; it counts the number of wavelengths of the field 

contained on the circumference, L, and according to what we have said it is a 

very high number indeed for the microwave instability. The bunch isiunstable if 

the peak bunch current exceeds Ill, i.e., if 

$y > 111 unstable 

where c8 is the r.m.s. bunchlength. The left-hand member is just an estimate of 

the peak bunch current. 

An interesting and important fact is that the quantity, Zll(~s)/n, is nearly 

independent of n for the n’s of interest in the vacuum chambers of storage rings 

like CESR. It is a constant, although one that differs somewhat from machine to 

machine, depending on the care with which the vacuum chamber was designed. 

How can we combat this instability? After we have lowered the impedance as 

far as it is feasible to do in a practical vacuum chamber, can we do anything else- 

feedback for instance? Unfortunately the very high frequencies of the modes are 

beyond the reach of current broad-band feedback practice. 

Fortunately, we have a way to build B-Factories without confronting this 

instability: we can increase the number of bunches without increasing the bunch 

current. We have been building storage rings for a couple of decades, and we 

have learned how low we can keep the impedance in a practical vacuum chamber 

and therefore how high a peak current we can hope to store. If we do not ask 

for higher bunch currents than those in today’s rings, we shall be on sound 

ground, and that is the reason referred to in the preceding chapter for choosing 

to increase the total beam current by adding many bunches rather than trying 

to increase the populations of the individual bunches. 

3.22. Transverse Mode-Coupling Instability 

The transverse mode-coupling instability is, as its name suggests, a trans- 

verse instability. The unstable motion is betatron motion as opposed to the 

-251- 



longitudinal motion of the microwave instability, but the cause of instability is 

the same. The bunch, once set into motion by noise, excites wakefields which 

in turn act back on the particles in the bunch and amplify the motion-another 

feedback mechanism. This instability is sometimes called the “fast head-tail” 

instability, because the wakefield of the head of the bunch drives the tail of the 

bunch and the resulting growth is very fast as instability growth rates go. Longi- 

tudinal motion, even though it is not driven unstable, plays a crucial role in the 

transverse mode-coupling instability. Since wakes can only follow their sources, 

not lead them, the head always drives the tail and the tail neuer drives the head. 

Therefore if the particles in the head at a particular time remained there forever, 

and if the same were true of the particles in the tail, there would be no feedback, 

but they don’t. The particles of the bunch constantly circulate longitudinally 

from head to tail and back. Thus head particles influence the motion of tail par- 

ticles which then become head particles and influence the original head particles 

which have become tail particles. What? 

The characteristic wavelengths of the electromagnetic field modes that drive 

the transverse mode-coupling instability range from a few bunchlengths, i.e., a 

few centimeters, to the longest modal wavelengths that exist in the chamber. 

The modes have transverse magnetic fields that are roughly constant over the 

transverse dimensions of the bunch and longitudinal electric fields that are zero 

on the axis and vary linearly with transverse position. Such a mode is shown 

in Figure 8. The mode is excited in proportion to the deviation of the center of 

charge of the head, and the tail particles are deviated by the magnetic field. 

The most useful impedance-like function for such modes is a spatial deriva- 

tive of an impedance. For the mode shown in Figure 8, the appropriate defini- 

tion is 

1) $0  
Lmu Transverse Impedance derwabve 

Fzgure 8: Fields of a mode that drives the transverse mode-coupling instability. 
Near the azis, the magnetic field is transverse and nearly constant and the electric 
field is longitudinal and linearly dependent on a transverse coordinate. 

We define a threshold current for the transverse mode-coupling instability. 

II = 4u(Ele) us (uJR) 
(8 Im kLff] ’ 

where V~ is the longitudinal oscillation frequency in units of the orbital frequency 

and (8) denotes the average value of the appropriate beta-function, horizontal 

or vertical, around the whole ring. The “radius,” R, is just the circumference 

of the ring divided by two pi. The impedance in the denominator, 2; e,,, is an 

average over the impedance function from the lowest mode up to those whose 

wavelengths correspond to the bunchlength. To avoid this instability the bunch 

current should not exceed Il. Again the condition for stability is 

stable 
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Like the microwave instability, the mode-coupling instability admonishes us 

to avoid increasing the bunch population. It is also beyond the reach of today’s 

feedback technology. 

3.2.3. Coupled-Bunch Instabilities 

The microwave instability is mediated by millimeter-wavelength fields. The 

transverse mode-coupling instability is driven by the whole spectrum of fields 

from long wavelengths to centimeter wavelengths. Because they can propagate in 

the vacuum chamber, millimeter- and centimeter-wavelength modes die out very 

rapidly. They are dead before the next bunch arrives. But what of the longer- 

wavelength, lower-frequency modes. 7 Such modes will exist in the rf cavities, 

for example, and since they cannot propagate in the vacuum chamber, they 

are trapped. Consequently they can have high Q-values and ring for a long 

time. We know that they act within the bunch, contributing to the mode- 

coupling instability, but they must also act from one bunch to the next and 

couple the coherent motions of the diferent bunches. The strengths of these 

modes determine the low-frequency values of the impedance functions, and if 

those values are too high, coupled-bunch instabilities will destroy the beam. 

These modes have not troubled today’s single rings, because the bunches in 

those machines are so far apart in time that even the these high-Q modes decay 

away between bunches, but they are extremely dangerous to B-Factories. 

Just as the intra-bunch instabilities occur in two varieties, longitudinal and 

transverse, so do the inter-bunch instabilities. Furthermore they are driven by 

electromagnetic modes that have the same characters as those that drive the 

intra-bunch instabilities in every respect save frequency. The difference in fre- 

quency, however, is of paramount importance. It opens the door to feedback 

systems to control these instabilities. 

Electnc-field 
panern at 352.11 MHz 

Figure 9: One quadrant of an rf cavity with only two trapped modes. The mode 
at 352 MHz is the accelerating mode. The mode at 963 MHz propagates down the 
pipe. Only the mode at 726 MHz remains to create unwanted parasitic impedance. 

Another feature of these modes is that they can exist only in fairly large 

boxes-remember the relationship between dimensions and loGlying modes- 

and the mode spectrum is not very dense. In other words, we know where to 

look for the offending parts of the chamber (mainly the rf cavities) and we know 

that only a few modes will plague us. Consequently, we c+n hope to “swamp” 

these modes, to damp them selectively. Research and development on highly 

damped cavities that display only one beam-interactive mohe is in progress in 

several centers. I 

110~ do we do this? Rf cavities, after all, are designed to present a high 

impedance to the rf generator, e.g., the klystron, so that a limited amount of 

rf power can produce the highest possible voltage. A cavity’s fundamental (ac- 

celerating) mode must, be a low-loss mode. But its higher modes are obnoxious; 
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they drive beam instabilities. Thus we need to learn to build cavities that, prac- 

tically speaking, have only one high-Q mode. That seems a tall order, but we are 

learning to do it by devising cavity shapes in which only the accelerating mode 

is “trapped.” The higher modes can propagate out through the beam pipes and 

consequently do not store field energy locally. Figure 9 shows one quadrant of a 

spheroid cavity with only a single parasitic energy-trapping mode. 

In spite of all the impedance-suppressing measures we can take, multibunch 

instabilities will still arise, and we must combat them with wide-band beam feed- 

back systems. These systems work by sensing beam motion and deflecting the 

individual bunches to damp the motion. Such feedback systems are in common 

use in accelerators and storage rings, but B-Factories will require particularly 

powerful ones. The bandwidth called for is half the bunch frequency, f~/2, and 

the power is measured in kilowatts. In the SLAC/LBL design, the figures are 

90 MHz and 2.6 kW. 

Between the two countermeasures, feedback and mode damping, it appears 

quite feasible to keep coupled-bunch instabilities under control in E-Factories. 

3.2.4. Ion-Beam Instability 

While a positron beam does not collect ions, an electron beam does, and if 

the ions produced by beam-gas collisions are allowed to collect in the beam, their 

fields will drive the beam unstable. We can see how this phenomenon works in 

a qualitative way by observing that a swarm of nearly stationary ions sitting in 

the volume of the electron beam acts like a continuous focusing lens-focusing 

because the ions attract the electrons. As the ions collect and their density builds 

up, the betatron tune of the beam shifts higher and higher until it approaches 

a strong resonance. As it approaches the resonance, the electron beam develops 

scallops that grow larger and larger, and it becomes useless for colliding beams. 

LEB Exit 

12-m 6787&!0 LEB Enlry 

Figure 10: Horizontal S-bend interaction region design. The two beams enter 
and exit along separate lines; they follow a common line through the collision 
point at the center where they collide head-on. 

Mercifully a bunched beam can be made to drive out ions rather than col- 

lect them, at least in linear-approximation theory. We have s&me experience 

with this process in storage rings devoted to producing synchrotron radiation, 

but we cannot claim at this time to understand everything we have observed. 

Understanding these phenomena is one of our challenges. 

4. The Interaction Region 

In single-ring colliding-beam storage rings, head-on collisions are automatic 

if no transverse electric fields are introduced in the vacuum chamber. Further- 

more the optics for the two beams are the same. These things are not true for 

beams in two separate rings. When the beams are stored in &Eerent rings, a 

special transport system must be devised to carry the two beams from their re- 

spective rings to the collision point and to deliver them back into their respective 
I 

rings and to trim their optics so that the beams are properly matched at the col- 

lision point. In cases where the two beam energies are the same, we have to use 

electric fields to combine and separate the beams, but in a B-Factory the beams 

have different energies and that circumstance actually helps us. Since particles 
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of different energies follow different orbits in magnets, the combination and sep- 

aration can, in principle, be accomplished with magnets alone. Several schemes 

have been developed, and one of them is shown in Figure 10 in which horizontal 

bending exclusively is used to bring the beams together and separate them. 

All schemes in which the paths of the two beams are colineat at the inter- 

action point share a common disadvantage. The paths cannot begin to diverge 

until they enter the first bending magnet, a feature that acts to the detriment of 

using lots of bunches. The point is related to the “distant collisions” of counter- 

moving bunches at other points than the interaction point, encounters in which 

the centers of charge are well separated laterally so that each bunch feels the 

“l/r” field of the other. Even a “l/r” field is non-linear, so while we want 

them to collide at the IP, we do not want the bunches to feel each other’s fields 

anywhere else, because any other encounters, would be disruptive and would 

probably lower the attainable luminosity. 

To understand this matter more clearly, let us follow a bunch out from 

the IP after the main, luminosity-producing collision. The bunches in both 

rings are separated by some common bunch separation, let’s call it Sg, equal to 

the circumference divided by the bunch number. After our sample bunch has 

progressed by Ss/2, it passes the next incoming bunch; when it reaches Se, it 

passes the following incoming bunch; and so on. Ideally we would like to shield 

the bunches from each other in these encounters by having them in separate 

metal pipes, but we cannot do it until the two orbits have separated enough to 

insert a metal wall between them. In this way schemes in which the paths of the 

two beams are colinear at the interaction point are disadvantageous. 

From this point of view, a scheme in which the two orbits cross at an angle 

would be preferable. In that case, the orbits begin separating immediately as 

they leave the IP. Unfortunately, there is a catch. Since the needle-like bunches 

WHAT’S WRONG WITH A CROSSING ANGLE? 

If use >> oy 

Luminosity/ unit current is reduced ,,.,,,. 

Figure 11: Collisions with a crossing angle. Think of one bunch as the target 
for the other one. The projected area of the target bunch is increased by the 
crossing angle, so the target density is reduced. 

Uncrabbing InE;;cFn 
Cavitv 

Figure 12: A diagmm of cmb crossing which shows how, by tilting the bunches 
(by half the crossing angle), crossing is made to appear “head-&. ” To the parti- 
cles of one bunch, the other bunch seems to have the same target density it would 
have in a head-on collision, and no luminosity is sacrificed. After being tilted on 
one side of the IR, the bunches need to be un-tilted on the other side. Powerful 
rf cavities are needed to do that. 

are aligned along the orbits, and the orbits cross each other at an angle, the 

bunches plough through each other at an angle, and the luminosity is degraded. 

Figure 11 shows how it happens. 
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A remedy for this defect has been proposed: it is called cmb crossing. In 

the crab-crossing scheme, illustrated schematically in Figure 12, the orbits cross 

at an angle, but the bunches are tilted relative to the their orbits on one side of 

the IR and un-tilted on the other side, so that, in effect, they collide head-on, 

and no luminosity is lost. If one observes the collision from a frame of reference 

moving upward through the IP, the collision is head-on. 

The crab-crossing scheme has the merit that it eases the problems of sepa- 

rating the bunches of the opposing beams, but it carries with it some drawbacks 

too. The chief drawback is that powerful rf cavities must be installed on either 

side of the interaction region to accomplish the bunch-tilting; these cavities bring 

with them additional impedances to aggravate instabilities. 

5. Selected B-Factory Designs 

As an epilogue, we offer a sampler of current B-Factory designs. The art 

of designing B-Factories is comparatively young-less than five years old-and 

naturally it is developing and becoming more sophisticated. Therefore, we can 

expect that the B-Factory designs of the future will differ in some ways from 

those of today. Still the B-Factory designs we have in hand today are remarkably 

alike in many respects, which connotes a certain degree of maturity. Table 2, 

Table 3, and Table 4 present some salient characteristics of three current designs: 

the SLAC/LBL design, the Cornell design for a future asymmetric system and 

a design carried out cooperatively by CERN and PSI, Darmstadt. 

Table 1. 

Beam energy, E (GeV) 

Max. luminosity, L: (cmT2 s-‘) 

Max. tune shift. I, 

Radiated power/beam (MW) 0.08 

Beam current, I (A) 0.077 

Number of bunches, k~ 7 

Bunch frequency, f~ (MHz) 2.7 

I.R. beta-function, & (cm) 1.5 

Beam aspect ratio, r <<I 

Circumference (m) 768 

Long. impedance, IZll(nws)/nl (Ohms) 1 

Table 1: Parameters of Cornell’s CESR storage ring in service as a B-Factory. 

Table 2. 

Beam energy, E (GeV) 9.0/3.1 

Max. luminosity, L: (cmd2 s-l) 3 x 1633 

Max. tune shift, &, ,0.03 

Radiated power/beam (MW) 5.512.7 

Beam current, I (A) 1.48/2.14 

Number of bunches, k~ 1746/1746 

Bunch frequency, fB (MHz) ,238 

I.R. beta-function, pr, (cm) 31.0/1.5 

Beam aspect ratio, r <l 

Circumference (m) 2200 

Long. impedance, lZll(nws)/nl (Ohms) 1.5 

Table 2: The SLAC/LBL (PEP-based) B-Factory design. 
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Table 3. 

Beam energy, E (GeV) 8.013.5 

Max. luminosity, L (cmv2 s-l) 3 x 1033 

Max. tune shift, &, 0.03 

Radiated power/beam (MW) 3.210.3 

Beam current, I (A) 0.6/1.4 

Number of bunches, kg 210/210 

Bunch frequency, fB (MHz) 82 

I.R. beta-function, &, (cm) l.O/l.O 

Beam aspect ratio, r <<I 

Circumference (m) 768 

Long. impedance, IZlf(nwo)/nl (Ohms) 1.8/0.14 

Table 3: The Cornell Asymmetric B-Factory design of May 1990. 

Table 4. 

I Beam energy, E (GeV) I 8.0/3.5 

Max. luminosity, L: (cm-’ s-r) I 1 x 1033 

Max. tune shift, &, 

Radiated power/beam (MW) 

0.03 

3.1/0.4 

I ~~~ Beam current, I (A) I 0.6/1.3 

Number of bunches, kB I 80/80 

I Bunch frequency, fB (MHz) I 25 

I.R. beta-function, & (cm) I 3.0/3.0 

I Beam aspect ratio, r I <l 

Circumference (m) 963 

Long. impedance, IZff(nws)/nl (Ohms) 0.3 

Table 4: The CERN/PSI B-Factory of March 1990. 
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