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1. Introduction; the CKM Triangle 

The bottom quark should need no introduction. Other than the undiscovered 

top quark, it is by far the most fashionable of the six. There is good reason for 

this. It is bottom-quark behavior which holds out the most hope of measuring 

and understanding some of the most fundamental and delicate parameters of the 

standard model --those having to do with the origin of electroweak mixing-and 

thereby in all probability also the origin of quark mass. Also interwoven into this is 

the subject of CP violation, and its proposed interpretation in terms of electroweak 

mixing. 

In this section we shall review the basics of electroweak mixing and how it 

is impacted by the study of &quark properties. There are by now many lecture 

series and workshop proceedings devoted to this topic,tex .refs ’ so 1 will not try 

to be comprehensive, but only hit some highlights. 

The parameters of electroweak mixing are defined by the amplitudes for W  

decay into quark-antiquark final states. 2 There is no selection rule operative other 

than charge conservation and the V-A structure of the weak interaction Hamilto- 

nian. Therefore, we essentially have 

MU+‘+ + QQ) 
M(W+ + e+v,) (1.1) 

The nine quantities VQ, form a 3 x 3 matrix with complex entries, and it is a 

principal task of experiment to determine them. IIowever from the point of view 

of standard-model theory, there is an additional restriction required for consistency 

of the electroweak gauge theory, namely that the matrix V be unitary. The reason 

for this will he elaborated upon later, but here we only note that the unitarity 

restriction reduces the eighteen real parameters in V down to nine. There are five 

further reductions having to do with the fact that the choice of phase given to the 

quark fields or wave functions are arbitrary. This looks like elimination of six more 

parameters, but the number is only five, because a common phase rotation of all 

six quark fields leaves V unaffected. 

The bottom line is that in the standard model there are four independent real 

parameters in the matrix V to determine. It is natural to use as those parameters 

objects already accurately measured or with potential to be accurately measured 

in the future. A  very natural phase choice for the elements of 1/ is to choose 

the diagonal elements as real positive. This is because each is close in magnitude 

to unity (at least if we assume the unitarity constraint!), and in the limit of no 

mixing it is almost obligatory to let V approach the unit matrix. This leaves 

two other phase choices to make. The next-to-diagonal elements in the upper 

right are important ones experimentally, and we choose them to be real positive as 

welt. Vu, is the sine of the Cabbibo angle; welt-measured and quite overdetermined 

through the many studies of strange particle weak decays. Vcb governs the dominant 

semileptonic decays of the B  into charm final states. The lifetipe and branching 

ratio measurements already determine its magnitude to about 20% and prospects 

for future improvements are good, as we will elaborate upon later in these Iecctures. 

With the phase choices out of the way, we see that Vub, \n general corn- 

plex, together with the magnitudes of V., and Vcb, provide a convenient set of 

four independent parameters to describe the purportedly unitary matrix V (called 

the Kohayashi--Maskawa K M  matrix, or better the CKM matrix in recognition 

of Cabihbo’s earlier contributions to the dcvclopmcnt of the ideas of elcctroweak 
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mixing). Then the determination of the remaining parameters of the matrix using 

unitarity is straightforward. First get v,,j (which is real) by demanding the norm 

of the first row of the matrix be unity. Then get Vcd (which is complex) by de- 

manding orthogonality of the first and second rows. (This is two real equations.) 

This must be done together with determination of V,, via the norm condition on 

the second row. While in general this could entail ugly algebra, in practice things 

are completely straightforward because of the smallness of the off diagonal ele- 

ments and the fact they decrease rapidly as one departs further from the diagonal. 

The same situation holds for the elements of the third row. Orthogonality with 

the second row determines V& to rather good accuracy. The norm condition on 

the third row essentially determines vr) to be very near unity, and the remaining 

conditions, orthogonality of first and third rows, provide the most delicate and 

interesting relation: 

v,,v,; + v,,v,; + v&y; = 0 . 

To good approximation this is 

v,,, + v,; = VusVcb 

where we use 

(1.4 

This is conveniently depicted as a triangle relation in the complex plane (Fig. 1). 

It appears ever more frequently in the literature, and perhaps in a decade or two 

Figure 1. The unitarity triangle. 

it may penetrate the hallowed pages of the Particle Data Group compilations. In 

any case for practical purposes we can regard the matrix (assuming its unitarity!!) 

to he reasonably we11 determined with the exception of the V,b elemeni+specially 

its phase-and hence also the vrd element as well. Thus a good representation for 

the matrix is 

(1.3) 

(1.4) 

0.97 0.22 Kb 
-0.22 - 0.044 VJb 0.97 0.044 

Vfd -0.043 - 0.22 Vib l.Od 

where we have availed ourselves of some recent experimental numbers. The status 

of the unitarity triangle will he discussed later. 

However, before getting into the details of that phenomenology, it is appro- 

priate to recall where this matrix is supposed to originate. It is in the depths of 

the Iiiggs sector of the electroweak theory, in particular the piece of the action re- 
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with G diagonal. But one must check whether the rest of the electroweak La- 

grangian commutes with this diagonalization procedure. One place where it does 

not is in the quark-W coupling, which depends on weak isospin: 

Lw = gqpr lu& 

* !JifL-i’v;~ w,vLqL 

(1.14) 

We see that the matrix V,, which depends upon r3, will not commute with T+ or 

r-, which are the couplings of the charged W to the quarks. It is advised to write 

the coupling of the quarks to 6he W+ explicitly in 6 x 6 matrix form to see how 

this works. The relevant matrix turns out to be 

VLLgL = ( V UP 

0 
(1.15) 

where Vu, and Vdown are 3 x 3 unitary submatrices. Then 

and 

v = vCj,‘,&, = v?,vdown 

v 0 UP 

0 kwn ) 
(1.16) 

(1.17) 

In contemplating the origin of V, it is clear from this point of view one must 

contemplate the origin of G’, or equivalently the mass matrix 

M’ = (cb) G’ = G’v . (1.18) 

This is not so easy, because the mass matrix (which need not be hermitian) is 

diagonalized not only by VL but also VR, a matrix about which we have no exper- 

imental information. And only the CKM combination VupVdbm of VL appears in 

the data as well. Nevertheless things can be done; most of this will however be 

left for the reader to work out. Some extra assumptions are typically needed to 

do this. A popular ansatz is that the mass matrix have “Fritz& texture,” i.e., it 

takes the form3 

(1.19) 

My own preferred attack is a little different. Because the off diagonal elements of V 

are small, one is tempted to assume the same for M’. Then low order perturbation 

theory can be used to determine the elements of M’ from those of V. One writes 

to first order 

VL=l+iKL 

VR = 1 + iKR 

M’=M+m 

(1.20) 
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with m having only off-diagonal elements. Then, because VL diagonahzes tbe 

hermitian matrix M’M”, 

, 2N i [I~L,M ] = Mm+ +mM 

or 

i IcL = (m&f1 + mJ,Md 
11 (M,2-Mf) 

From this one gets three useful relations: 

(1.21) 

(1.22) 

qp!E) 

(1.23) 

v”*Y(p!$) 

v&r (z-2) 

To go further requires more assumptions. My own favorite guess is that all impor- 

tant off-diagonal terms of M’ reside in the down-quark matrix. This leaves their 

numerical values all in the 10s to 100s of MeV. (If this is true for the up-quark 

off-diagonal mass-matrix elements, they indeed are not very important contribu- 

tions to the CKM mixing.) Provided the mass matrix is anywhere near hermitian, 

one gets to good approximation 

(1.24) 

Notice that in any case the only information on the mass matrix is on the elements 

above the diagonal; the remaining elements are sensitive to VR. 

There is an amusing corollary which follows from this plus a couple more 

assumptions. Suppose that the mass matrix is hermitian and that all off diagonal 

elements are pure imaginary. (This is an old suggestion of Stech.4 ) Then it turns 

out (the demonstration is left to the reader) that the unitarity triangle is to very 

good approximation a right triangle, with -y = 90’. (To get this result, one must 

go beyond first-order perturbation theory in the size of the off-diagonal elements.) 

This result does not deserve to be taken very seriously. But what is vital is to 

get a better handle on the origin of the peculiar properties of the mass matrix. It 

deserves everyone’s best efforts. 

Also, one must not forget that the assumed unitarity of the CKM matrix 

is just that-an assumption. It is easy to find models where that is not true. 

Perhaps the most natural way of doing that is to introduce e?tra down quarks 

which are electroweak singlets [this happens naturally in GUT theories such as 

E(6)] but which mix with the usual quarks.5 Nir and Silverman’ have given a very 

nice analysis of the simplest situation, where only one extra down quark mixes 

significantly with the other three. Evidently there will be a 4 x 4 mixing matrix 
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which is unitary, although the 3 x 3 submatrix will not be. The unitarity condition 

becomes 

V”,V,; + v,,v,: + v,,v,; + V”,v,t, = 0 (1.25) 

which leads to a unitarity quadrangle (Fig. 2) 

Figure 3. Mechanism of B -B mixing. 

The extra segment is constrained in a variety of ways. And one might a prioti not 

expect it to be especially large. But the effects on CP violation measurements in 

the B system can nevertheless be big. It is a little premature to discuss them here, 

but this point must be kept in mind as we go along. 

Figure 2. A unitarity quadrangle. 

The sides and angles of the unitarity triangle have a direct experimental mean- 

ing. It is best to normalize the base to V,,, by dividing all sides by V&. Then the 

othrr two sides are more closely related to experimental observations. Evidently 

Vub/Vcb is measured by the ratio of charmless to charmed semileptonic decays.’ 

The other side ideally is measured via comparison of Bd - Bd mixing with that of 

the B,. This is clear from the diagrams shown in Fig. 3, assuming they are the 

dominant contributors to the mixing. The formula for the mixing probability goes 

like 

(AWB~ _ hd -- - 
(AWB. I I 

’ [QcD matrix elementId Vtd 
2 

&, [QCD matrix element], 
x- 

I I v,, 
(1.27) 

and so the ratio of the mixing probabilities leads to a lot of cancellation of theo- 

retically uncertain factors. At present, one relies on best estimates af the separate 

factors to get at the value. The result is shown in Fig. 4 for an assumed top quark 

mass of 160 GeV. There is much ado about the best fits which I do not choose here 

to discuss.s My own view is that there is plenty of uncertainty in how the triangle 

will look, most of it theoretical. 

Direct observation of the angles of the triangle requires CP-vidlation experi- 

ments to be performed.g The angle beta, for example, is what is measured in the 

premier CP violation experiment Bd + ti+ h’,. One compares the time-dependent 

decay of a tagged Ed with that of a tagged Bd. Standard mixing theory (ignoring 

quite justifiably lo lifetime mixing) gives for the state which at initial time is pure 
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Figure 4. Allowed region for vertex of unitarity triangle for ml = 160 GeV. From 

Ref. 8. 

Ed 

(1.28) 

where X is of modulus unity, with its phase being the phase of the mass mixing 

term, 

Note that with our phase convention this has the phase of the square of V&j, The 

Ed decay amplitude into the $-KS CP eigenstate is then 

I M(& -+ $‘I%*) = MO (1.30) 

where we have taken out the CKM element from the decay amplitude. Thus doing 

the same thing for the antiparticle gives 

= No [l f sin dsin Amt] eerf 

(1.31) 

= Fo [1 41 sin $sin Amt] e-rt . 

Only Vtd has significant phase content in our convention, so that the effect depends 

upon 

#=2Argv,d=2P. (1.32) 

In a very similar way it can be seen that the angle a at the to;, of the unitarity 

triangle is measured by the decay Bd + r + A. Here the factor Vcb in the decay 

amplitude is replaced by V&, and its additional phase changes the observable phase 

to twice (I, 

Sin 4 = sin(2Arg Vt,j - 2Arg V,,b) = sin(2p + 27) = -sin 2a (1.33) 

The phase -y is the hardest to get at. The decay l3, -+ pf~‘, is a candidate; here 

the only relevant phase is contained in the factor VUb in the decay amplitude. 

-171- 



In all these examples, we have used B -B mixing, together with decay into ‘a 

CP eigenstate, as the technique for seeing the CP violation. There are other possi- 

ble attacks as well, in particular particleantiparticle branching-ratio differences, 

(1.34) 

These typically utilize the existence of “Penguin” diagrams. Unfortunately there 

will be no time in these lectures to discuss Penguin processes. 

2. Semileptonic Decays 

As we indicated in the previous section, the quest for observation of CP vi- 

olation in b-decay processes is the central reason for the great experimental-and 

theoretical-interest in the subject nowadays. But there is a long way to go be- 

fore getting there, and much should be measured and understood on the way. CP 

violation studies in the b-system, if possible at all, should turn out t.o be an ex- 

perimental program and not just an isolated discovery experiment. There are a 

variety of modes competitive in sensitivity which probe different features of the 

unitarity triangle (or quadrilateral). It therefore is especially important to have as 

good a grip on the overall phenomenology of &decays as possible. A large, well 

understood data base is essential in optimizing the yield of information possible 

to obtain on CP-violating processes. And already we see importa.nt parameters of 

the CKM matrix limif.ed by theoretical systematic errors. So there will he some 

emphasis in these lectures on the underlying phenomenology. The natural st.arting 

point is semileptonic decays. 

Scmilcptonic &decay processes are expected to hr especially clean throrct,i- 

rally. The rrason is the same as for kaon decays or charm particle decays, all bough 

there is some basis for hope that the heavy &quark mass may allow certain non- 

lcptonic decays to be comparable in cleanliness to semileptonic decays. The theory 

of semileptonic-decay phenomena is especially active nowadays, thanks to the con- 

tributions of Isgur and Wise (Wisgur). I1 They have shown that in the formal limit 

of infinite 6- and c-quark mass, the phenomenology is greatly simplified. To me 

this holds out the promise of a relatively model-independent approach to these 

processes. While the predictions of the limiting case may not be highly accurate, 

there is most likely a well-defined set of first-rder corrections; the model depen- 

dence is then hopefully relegated to these corrections. 

So I will base the discussion here on the Wisgur limiting case; it at least has 

the advantage of clarity and simplicity. The basic ideas are very simple: what is 

surprising is that they lead to such strong consequences. They are 

1. As the &quark mass becomes very large, a B-meson becomes a cannonball. 

It is very hard to change its velocity; a very large momentum transfer is 

needed and only perturbative mechanisms (hard gluons or electroweak tran- 

sitions) can do that. 

2. QCD exists in the limit; nothing terrible seems to occur. It is like setting 

the mass of a nucleus to infinity in QED atomic physics.” 

3. The spin degree of freedom of the &quark decouples from,the dynamics in 

the limit because the color hyperfine interaction scales iyly with the 

hca.vy quark mass. 

4. Therefore there are new symmetries in the spectrum of states of the hadrons 

containing a &quark; all members of a hyperfine multiplet have the same 

mass in the limit. In particular the pseudoscalar f? becomes degenerate with 

(.hc v&or I1’ in the limit (actually t.hey are believed to be split by 50 MeV). 
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5. In the limit, the flavor label of the heavy quark, e.g., b vs. c, becomes 

irrelevant; hence a new flavor symmetry emerges as well. 

The simplifications to the phenomenology occur for two reasons. The first is 

that in the limit the semileptonic matrix elements can depend only on the velocities 

of B and D (or D’), not separately on momenta and mass. The second simplifica- 

tion comes from the Wisgur hyperfine symmetry. Spin rotation of the &quark is a 

symmetry operation; using it one can relate matrix elements of B to D’ to those 

of B to D. 

Let us begin with the B -+ D + e + v decay. It is just like Ke3 decay as far as 

kinematics is concerned. Normal conventions put the matrix element of the weak 

current (pure vector; no axial contribution) in the following general form: 

(DIV,IB) = d& [F+(m% + PD), + F-(q2h] . (2.1) 

There are two form factors as shown, but only F” contributes because 

Qr JILXI = (PB - W,J,‘i,,o, = o (2.2) 

We now compare this with the expression resulting from the infinite-mass limit 

requirement: 

only on the Lorentz 7 of the heavy meson, as appropriate for the limit. A more vi- 

tal change is the appearance of only one form factor. This occurs for a combination 

of two reasons. The first is that only the combination P,,/M = v,,, the invariant 

velocity, can appear in the matrix element. The other is that matrix element of 

the vector current between B and D at a given velocity transfer has to equal the 

matrix element of the vector current 

(2.4) 

between B’ and B for the same velocity transfer. This happens because the spec- 

tator system of light valence quark and its accompanying cloud of gluons and qTj 

pairs cannot distinguish between a & and c-quark source; the flavor label carries no’ 

dynamical information in the infinite mass limit. But the elastic B matrix element 

is characterized by only one form factor. 

Notice the remarkable feature that a form factor for a process involving a 

timelike momentum transfer is related to one with spacelike momentum transfer. 

The synthesis occurs because what matters is velocity transfer. The invariant 

velocity transfer is 

1 
i‘= p(“‘-“)2 cc= t(g-!-)’ t 

I 
and for the weak transition of interest this is related to q2 as follows: 

V, =zy,b . 

There are two changes. One is rather superficial; the traditional l/&i? normal- 

ization factors for the wave functions are replaced by m. This form depends 

(2.5) 

T=~~-(MB-MD)~ 

‘#hf~hf~ 

When i‘vanishes, the (timelike) momentum transfer to the dilepton is maximized; 

the mass of the dilepton is just the B-D mass difference. In this limit, the D or D* 
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remains at rest (in the B rest frame) and there is no recoil motion of the spectator 

system. 

This procedure does not reduce the number of independent vector and axial 

B + D' matrix elements, of which there are four. However these all get related 

to the above form factor using the Wisgur symmetry. The direct way of getting 

this result is to relate B-to-D’ matrix elements to B-to-D matrix elements by 

applying a spin rotation to the D' in its rest frame. The easy way is to use 

s, = 
/ 

d32c’(~)0*c(z) (2.7) 

which is a symmetry operator, i.e., commutes with the Hamiltonian, in the infinite 

mass limit. One easily finds (up to annoying phase conventions) 

Sz ID) = f Pfhong Sz ID’hons = f ID) . 

Thus 

and the commutator can be evaluated explicitly for any choice of current, yielding 

a matrix element of some other current operator between B and D. Upon doing 

this repeatedly, one finds that all the form factors indeed can be determined in 

terms of the single (normalized) form factor introduced above. 

We shall not go through that line of argument in any detail, but instead write 

down the answer in a compact form which allows further generalization,‘3 

(D or D' lJ,,l B) = 
J 

$$$TrB.7PBp. (2.10) 

In this formula, each of the factors is a 4 x 4 Dirac matrix. The matrix B is the 

wave function of the initial B: 

Were the initial state a B', ys would be replaced by y . t, with epsilon the polar- 

ization vector of the B'. The matrix B is defined similarly 

v = -flJV’~cl . (2.12) 

The matrix for the current is r,, for vector, etc. The remaining matrix p represents 

the physics of the spectator system, namely the amplitude that the light-quark 

spectator system for the B is carried away by the D or D' without additional 

hadron emission. It is dependent upon the B and D, D' four-velocities (and 7 ma- 

trices), and some routine Dirac algebra shows that it can be reduced to a multiple 

of the unit matrix and factored out of the trace. It is just the form factor, depen- 

dent upon the invariant velocity transfer, introduced above. The reader is urged to 

work out the results for the B -+ D, D* matrix elements from the trace formula to 

see how easy it is-and to verify the B -+ D example we already derived in detail. 

More general matrix elements can likewise be written down immediately using 

the trace formalism: 

(D or D*;kl...k,I.l,,lB)= (2.13) 

Only the object p changes; it in general depends on all the variables defining the 

extra particles in the final state; it is the spectator system which is responsible for 

their emission, because the heavy quark dynamics-in the infinite mass limit we 
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use here-is trivial. In the general case p will be a nontrivial 4 x  4 matrix, and 

carries with it the nature of the correlation of the D, D’ final state variables with 

the remaining ones. 

The formalism for charmless final states is  s imilar. For the general process, 

one s imply writes 

An important application, noted by W ise, r’ is  that the same formula applies for 

the processes 

and 

A s imple example of a charmless final state is  nothing at all, namely the pure 

leptonic decays. Here one writes 

(2.17) 

where 4 is  again proportional to the unit Dirac matrix, in fact just a number. The 

usual way of writing these decay amplitudes is  in terms of the decay constant 

B+{h...k,)+e+u (2.15) 
The relation between them is  

D-t {k l...k,}+k!+v. (2.16) 

Therefore the measurement of semileptonic (Cabibbo-forbidden) D decays into 

charmless, nonstrange final states gives one information, in this limit, on semilep- 

tonic B decays into the same final state. The information is  only partial, because 

the invariant mass of the final hadron system must in the former case be small (in 

practice not much more than a GeV) while in the latter case it can be quite a bit 

larger. 

(OIJ’IB) = &FBP;. 

(2.19) 

so that the scaling-law is  (mass)-  ‘i2. This is  a well-known piece of folklore for the 

lattice QCD community, amongst others. r5 There is  some skepticism on whether 

this asymptotic behavior is  “precocious”; lattice calculations (not to mention ex- 

periments) are the best hope for an answer. I 

Another important application may eventually be to the b + s  flavor changing 

neutral current (“Penguin”) processes, where the matrix elements can be related 

to the dominant semileptonic D-decay amplitudes. I6 Yet another application is  for 

baryonic semileptonic decays. I7 For the principal Ab + A, matrix elements, the 
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forrnditim is very simple, because these states have no hyperfine partners to mir 

with. Therefore the mattix elements are simply 

Pi ..,k,,A,&,(Ab)” -ra)u(P)F(u’,v;kl...k,). (2.20) 

The apectatar aylem haa the quantum numbers of a apinless diquark, so there is 

no cotrelation between it and the heavy quark system other than the dependence 

on initial and final velocities. The spin correlation properties of the Ab and AC 

should be just like the structureless heavy quarks within them, independent of the 

remaining light-hadron final state accompanying it! 

For the elastic transition when no additional particles are emitted, the form 

factor depends again ohly on the invariant velocity transfer introduced before, and 

at ?= 0 the form factor must be normalized to unity, because the spectator diquark 

is unaffected by the transition. 

In all these case8, the consequenctrr of the Wiagur limit can be written down 

for the most general matrix elements. Therefore it is also possible to consider the 

consequences for inclusive quahtitiea, i.e., aquared matrix elements summed over 

a set of final states. As an example here we consider the baryonic semileptonic 

decays, because they are simplest, and also because to my knowledge the results for 

this tase hare not yet been written down elsewhere. We saw above that the matrix 

element3 factorize ihto a kinematic piece involving apinor products, multiplied by 

a form factor depending upoh the apinlesrr spectators ant1 the emitted pions, dc. 

‘The decay width then has the structure 

dr(Ab~hr+ki...k.)=dl‘o’/F(ff,v’;kl...k,)12iZ~ 
,=, %P) 

(2.21) 

where 

dro = q(%b12. $ ja(p’)r,(l -75)4p)hc(1 - 75)4’ 

(2.22) 

d3tT d3v d3p’M’ - -6’(p’-p-e-v-Eki). 
’ !i$ 2uo 2E’(2~7)~ 

Now sum over all hadronic final states of given final maas W and over all dilepton 

states of fixed mass Q 

W = p’ + Cki 

q=e+v (2.23) 

In the infinite mass limit, the ki within the momentum conserving delta-function 

can be safely neglected, and a straightforward calculation then gives the differential 

width as 

dl- dr -=2w-= drab, 9) 
dq2dc 

- w(e,q 
dq2dW2 dq2 (2.24) 

where dT,-, is the expression for 114~. differential width in the free quark limit (it 

eventually goes as Mi), and where the structure function w(c c)‘is defined as 

For a fixed velocity transfer F we must expect that the important values of W will 

involve only a finite amount of excitation, i.e., a finite value of e. The physics 
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is that the spectator diquark, originally at rest, must respond to its heavy-quark 

“nucleus,” suddenly moving away at a finite (possibly relativistic, but still finite) 

velocity or 7. The response will include emission of hadrons, but few if any with 

gamma larger than that of the receding heavy quark. A qualitative estimate of the 

energy of the extra emitted hadrons in the Ab rest frame (or for that matter in the 

A, rest frame) is 

c N (mdiquuk) ‘7 = (mdiquark) tJ ’ v’ = (mdiquark) (I - 2T) . (2.26) 

Notice that the physics of this structure function is different from the usual deep- 

inelastic structure-function physics. It is the response of the entire spectator to 

the acceleration of its heavy-quark source, not its response to the acceleration of 

one of its constituents. 

The formula above has the structure of the spectator model of heavy flavor 

decays. And the spectator model would be recovered were there a sum rule for the 

structure function W, 

J dew(C,e) 1 1. (2.27) 

Then the decay width, differential in i; i.e., differential in the final-state dilepton 

mass q, would be identical to that calculated in the free quark model. This has 

always been regarded as an inevitable consequence of the heavy-quark limit. If no 

constraints are put on the final state, the physics of the decay is controlled solely 

by what happens at the quark level. 

The sum rule can be shown to be true. This will not be done in detail here. 

A way of getting it is to start with an equal-time current commutation relation 

known to be true 

lJ,1W), Jo(O)] = i(.o)s3(q 

with 

and putting it between Ab states. Contributions of so-called z-graphs need to 

be included, but when the dust settles the sum rule written down above indeed 

emerges. Extraction of the elastic contribution gives the result 

cm 
1 = IF( t J dcw(c,t). (2.30) 

0 
inelastic 
channels 

At zero velocity transfer this reduces to 1 = 1, because we already know (or should 

know) that the elastic Ab to AC form factor is normalized to unity there. The first 

derivative of the sum rule evidently relates the slope of the form factor to the sum 

of inelastic contributions to the width. This is analogous to the Cabibbo-Ftadicati 

sum rule for ordinary current-algebra sum rules.‘* 

Similar results exist for the mesonic transitions. I3 The factorization structure 

only emerges after summation over D and D’ in the final statet (but no average 

over B and B’ in the initial state is necessary). The contribution of the elastic 

channels to the sum is a little different and reads 

1 = (1 -i))F(i))2 + J dew(c,?). (2.31) 

inelastic 

-180- 



Again there is a Cabibbo-Radicati sum rule: y=l-27 

F’(i)J&o = ; 
[ 

1 + 
i”e,urtic i5 w(cvF) . J 1 (2.32) 

It evidently demands that the radius of the form factor exceed l/2. (From the 

analyticity of F, we expect a radius of order unity.) 

It is perhaps useful here to record the separate contributions to the differential 

width from the D, longitudinal D’, and transverse D’, since experiments can 

eventually sort these out via angular correlation measurements. Use of the trace 

formula yields the results 

B-D: 

B --) 0;; 

B-+D;: 

B + Dlotd : 

(r2 - 1) 
4 IF( a(e) 

wL = (1+ 712 
y- IF( a(e) 

7(r+l) 
-j--- IF( 6(c) 

w,+2wT. 

(2.33) 

Here we have used the Lorentz boost 7 instead of Tin the formulae. The relevant 

relations are 

(2.34) 

= value of 7 at endpoint of spectrum 

(9’ = 0; zero dilepton mass). 

Most of these contributions have endpoint zeroes; the exception is that for the 

longitudinal D*. Normalizing the others to it and plotting the results gives a simple 

pattern. Comparison with model calculations (Fig. 5) yields good agreement, with 

the most important discrepancy occurring in the ratio of D to longitudinal D’ at 

the maximum velocity transfer, i.e., when q2 = 0. 

As yet there is not enough data on this kind of thing in the B system to provide 

constraints on the theory. But there are analyses for D + K, K’fv transitions, 

some quite recent.‘g~20 It is of interest to see whether these ideas apply at all, 

despite having to assume that the strange quark is heavy. (Maybe heavier is good 

enough.) Here there seems to be trouble in the comparison with those model 

calculations which go along lines parallel to the infinite-mass limit approach. 

The Fermilab photoproduction experiment E691 has recently completed an 

analysis of the angular correlation structure in this process.20 They express the 

weak matrix element as follows 
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Figure 5. Predicted ratios of semileptonic partial widths. The solid line is from 

Wisgur; BSW and GISW are Refs. 21 and 22, respectively. 

and find for the three form factors the values 

(2.35) 

Al(O) = 0.46 f 0.06 f0.03 

AZ(O) = 0.0 f0.2 f 0.1 (2.36) 

V(0) = 0.9 f 0.3 f 0.1 

The infinite-mass limit results are easily worked out and give for these the expres- 

sions 

(K' IJ,,I D) = Tr ,L (s) 75F(0 

(2.37) 

In addition, the B + D semileptonic transition form factor F+ also has been 

measured by the same group, with the result*s 

F+(O) = 0.8 3~0.05 f0.06 . 

This is not too far from the expectation in the infinite-mass limit:, 

F+(q;&,,,) = (mh’ + mD) = 1 2 
2dm -* 

(2.38) 

(2.39) 

In any case we see trouble. The ratio of AZ to V, expected to be unity in the 

Wisgur limit, is apparently considerably smaller. This also seems to be the case 
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for the other axial form factor Al, whose ratio to F+ also seems to be considerably 

too small. In Table 1, as presented by the E691 collaboration, one sees that the 

explicit model calculations also suffer from the same disease as the infinite-mass 

limit approach. 

Table I E691 

A,(O) -+ Al(t,,, 0.46 -+ 0.54 

AdO) -+ Adkax 1 0.0 

V(0) ---) V(&,,) 0.9 -+ 1.2 

T 

IS 

0.8 4 1.0 

0.8 + 1.0 

1.1 -+ 1.4 

Isgur23 
Scora 

Models 

BW GS KS 

1.0 -+ 1.2 

1.0 --t 1.2 

1.0 ---) 1.3 

Koerner*’ 
Schuler 

It is a little hard to assess the robustness of the E691 result, since it depends 

upon a difficult likelihood analysis involving a function of several variables. But 

there does appear to be a serious problem here, and I cannot see an easy fix. 

Will the infinite-mass, Wisgur limit turn out to be of use? I find it a very 

promising development. If the corrections can be systematized, then the model 

dependence of the predictions is relegated to that of the correction terms. The value 

of the method will end up being dependent on the size of those corrections and 

how well they can be kept in theoretical control. There is probably a considerable 

amount of work to be done before the value of the Wisgur method can really be 

assessed. 

the chromomagnetic interactions. Another class of corrections are associated with 

hard gluon emission, real or virtual, from the heavy quark system. These must be 

velocity-changing, so the running coupling associated with these processes will be 

evaluated at a heavy quark mass scale; hence be small. Some of these corrections 

have been worked out, in particular ratios of renormalization factors of B and D 

states, which differ because of the different masses. 2* This gives rise to the endemic 

factors 

(2.40) 

where the exponent is of order l/4. 

Finally there may be important effects associated with anomalous thresholds.2g 

The elastic form factor of a D', in the Wisgur limit, should be identical to the elas- 

tic form factor of a D. But the D* can be viewed as a loosely bound system of 

pion and D with a very large radius, proportional to the square root of the binding 

energy. In the infinite-mass limit the mass difference must be small compared to 

a pion mass, which isn’t at all the case. While the correction may be big, one may 

hope that it can be accurately taken into account, because the anomalous thresh- 

old contribution can be precisely defined and calculated. But the work has to be 

done. A good place to start may be for the D + K' problem. 

What are the nature of the corrections. 7 One class is basically kinematic; 

reduced mass corrections and kinematic l/M corrections, e.g., coming from small 

components of Dirac wave functions. 27 Other l/M corrections are associated wit.11 
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3. Nonleptonic Decays 

The theory of nonleptonic decays of kaons and even charmed mesons has been 

fraught with uncertainty. This does not create much cause for encouragement that 

things will be manageable for bottom decays. However I am guardedly optimistic 

that under certain circumstances some nonleptonic l3 decays may be comparable in 

cleanliness to semileptonic decays. This statement is subject to plenty of criticism. 

But in this lecture I will try to explain what I mean. 

The starting point for describing nonleptonic B-decays is the naive, unadorned 

current-current Lagrangian 

(3.1) 

In the following we concentrate on only the first, dominant term. There are two 

immediate issues to address. One is how to take matrix elements of this interaction 

between hadron final states. The other is how the virtual hard gluons of QCD 

influence the form of this interaction. With respect to the first issue, one hypothesis 

is that of “factorization,” namely the most important contribution comes from final 

state configurations such that the system on one side of the exchanged W  does not 

talk to that on the other (Fig. 6). This hypothesis in general looks quite arbitrary. 

But there may be circumstances where it is justified. For example in the decay 

B, ---* D,+D, (3.2) 

there may be enough relative momentum of the subsystems and small enough 

interquark interactions to make the final-state effects small. 

a/ 
Figure 6. Factorized decay amplitude. 

Figure 7. Factorized decay amplitude for low mass emitted meson. 

Another class of processes I especially like is shown in Fig. 7. The d sys- 

tem emitted from the virtual W  is presumed to be of low mass,, which eventually 

materializes into a pion or rho. It begins its life as a pointlike color singlet; fur- 

thermore it moves off with a quite large Lorentz -y, of order 5 or so. Therefore its 

evolution from a small, perturbative color dipole is time-dilated! By the time it 

grows into a large, strongly interacting hadron-like entity, it is probably several 

fermis away from its point of origin-and from the spectator system of the parent 

b quark. Therefore it is too late for the final state interaction to occur. I am told 
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F igu re  8.  Factor ized decay  amp l i t ude  for “neu t ra l  current” cont r ibu t ion  

by  exper ts  that this is a  we l l -known p iece  of folklore. Bu t  I d o n ’t know  anywhere  

whe re  the a rgumen t  is la id  out  in  detai l  a n d  m a d e  respectab le .30 

If the a rgumen t  is right, it s e e m s  that it a lso  shou ld  work  for low m a s s  neu -  

tral pairs.  For  example ,  in  charmless  decays  (Fig. 8 )  o n e  cou ld  pa i r  u p  the u? i  

system. Th is  requ i res  rewr i t ing the or ig ina l  weak  Lag rang ian  in  charge-re tent ion  

fo rm by  m a k i n g  a  F ierz  t ransformat ion.  For  the record  the ru les  for these Fierz  

rea r rangemen ts  a re  as  fol lows: 

=  +y , , d~ )  (i i~-,‘c~) +  2  k ( 6 1 , f A d d  (W”tAcL)  

A = 1  

(3 .3 )  

(Here  the tA  a re  one-ha l f  the G e l l - M a n n  3  x 3  co lor  matr ices X A .) O n e  wou ld  b e  

tempted,  therefore,  to d rop  the co lor  octet p iece  (at least  wi th regard  to calculat ing 

the decay  of interest).  T h e  strength of the rema inde r  p iece  is d i lu ted in  ampl i tude  

by  a  factor three because  of this color-s inglet  project ion.  

If factor izat ion works,  the p r o b l e m  of non lep ton ic  decays  is ‘reduced” to that 

of the semi lep ton ic  decays.  I wou ld  not  necessar i ly  expect  it to work  for genera l ,  

gener ic ,  mul t ibody  f inal states. Bu t  m a n y  of the most  interest ing channe ls  a re  

the low mult ipl ic i ty states for wh ich  the above  a rgumen t  appl ies.  1  think it is 

ex t remely  impor tant  that a  carefu l  exper imenta l  p r o g r a m  b e  devo ted  to a  cri t ical 

s tudy of h o w  wel l  factor izat ion works.  W e  wi l l  re turn to this q u  L  st ion later, after 

the compl ica t ions  of ha rd -g luon  radiat ive correct ions a re  inc luded.  

T h e  d iscuss ions of per tu rba t ive-QCD correct ions to non lep ton ic  decays  g o  

back  to the p ioneer ing  work  of Ga i l l a rd  a n d  ( B e n )  Lee:]  a n d  of Al tarel l i  a n d  

Ma ian i3’ m o r e  than fif teen years  ago.  T h e  context  was  non lep ton ic  h ’ decays,  a n d  
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the calculation was a leading-logarithm, renormalization-group analysis. This has 

served as the basic framework for the discussion of the b-decay corrections as well. 

But because the &mass scale is fairly large, not much is lost by looking at only 

tlw lowest order corrections. This is what will be done here, with a guide at the 

end as to how the first order analysis relates to what one finds in the books. 

t 
0.. 

(4 

R + . . . 
(b) 

Figure Y. QCD Radiative Corrections to nonleptonic B decay. 

One starts from the assertion that the effective interaction at the scale of the 

W mass suffers no large ultraviolet renormalization effects. To see how reasonable 

this is, consider the Feyrrman diagrams in Fig. 9. If this is to be regarded as a 

partorl-model process, say resonant quark-antiquark scattering at the W mass, the 

assertion is not at all true. (This is not what Gaillard and Lee assume; they put the 

external quarks all highly virtual, with spacelike mass of order the W mass.) But 

no matter what, there is no ultraviolet divergence in the “factorizable” diagrams 

of l’ig. !)(a), because self-energy and vertex divergences cancel just as in QED. 

The remaining diagrams of Fig. 9(b) converge and have no large logarithms. But 

logarithms will be generated as the energy scale for the process goes down, because 

the W propagator effectively contracts to a point and the remaining amplitude is 

a vertex part cut off at the W mass. 

What about the factorizable pieces in Fig. 9(a)? If the external lines are 

treated as partons, i.e., more or less on-mass-shell, their QCD radiative corrections 

will be much like those in electron-positron annihilation. The total decay width 

into hadron states with ua quantum numbers will suffer only a minor radiative 

correction 

r( W+ -+ u;i + gluons, etc.) 
r(W+ -+ e+vc) 

=]v,d~*(l+~+...) . (3.4) 

But if the final state is restricted to only collinear u and 1 jets and no extra 

gluon jets there will be a big form factor effect. Thus, experience with e+e- 

radiative effects, along with the fact that the presence of factorizable radiative 

corrections does not affect the factorization hypothesis, encourages us to omit 

from further consideration the factorizable pieces and only look at the remainder. 

It is clear that in the remaining terms of Fig. 9(b) the exchange must include a 

unit of charge and an octet of color. Since fermion masses afe neglected, helicity 

is conserved. Up to an overall coefficient this determines the basic form of the 

correction to be 

44 M = g Vcb . f $ Pn F . r&~,,( 1 - y5)tAC] [zYir’( 1 ‘- r5)tAq (3.5) 

where p is the low mass scale of interest. The Feynman diagram calculation gives 

the value of the coefficient to be 

(3.6) 
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(There is still a question, not to be considered further here, of how this piece 

behaves for “parton-model” external lines, and whether infrared effects occur, such 

as for the factorizable piece.) 

We conclude that for the original W-exchange channel, there is no first-order 

correction to the factorization approximation to consider. But of course, Fierz 

rearrangement of this correction will give a color-singlet neutral-exchange contri- 

bution to add to what one gets from the Fierz rearrangement of the leading term: 

UM~~n =~VC~[,-,,,(l-Ys)d] [?ir’(l-rs)c] &ff.:d$ 
> 

(3.7) 

Note that the radiative correction leads to a significant suppression of the leading 

order contribution [cf. Eq. (3.3)]. 

It is now time to make contact with the formalism found in the literature.33 In 

order to sum the leading logarithms, a different combination of interaction terms 

is introduced. Before radiative corrections one writes for the leading term alone 

t = 3 vcb 
r 

f h,,(l --~5)c~~‘(l --ys)d+hp(l --~s)d.W(l -75)c] 

++ h,(l --~5)c~W‘(l -rdd-h4 -rs)d.W”(l -75)c] . 

(3.3) 

This is done because these are the combinations that get multiplicatively renor- 

malized when the higher order effects (which for the b-physics applications are not 

very big) are included. As already mentioned, the solution of renormalization- 

group equations under these circumstances always gives a factor 

Therefore the first line of the equation above gets multiplied by c+, while t.hc 

second line gets multiplied by c-. 

Writing for the running coupling constant 

1 1 b 4v 
44) 

r - + - e. - 
%(P2) * CL2 

with 

b = 33 - 2nf ~ x2.1 
12 

and expanding the renormalization factors out to first order gives 

(3.10) 

(3.11) 

b 4 
I 

-di 
1 t 17a~(~W-- P2 

(3.12) 

In our case the fact that the first order correction is pure color and charge exchange, 

along with the Fierz identities above, allows the radiative correction to be written 

solely in terms of color-singlet-exchange operators: 

= +,(&p(l -75)c.is7’(1 

- 

- 

(3.13) 
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and hence 

(3.14) 

Use of the definitions of the anomalous dimensions in Eq. (3.9) allows t.he 

determinations 

bd- = +y = -1. (3.15) 

The choice of renormalization scale p is naturally taken at the mass of the b quark. 

Thus one gets for the numerical value of the expansion parameter 

2 en - 25 0.3 . 4 
7r m: 

The effective Lagrangian is conventionally quoted as follows 

13,fi = :Fv#y~(l -rs)c.isy’(l -%)d 
lb 

(3.16) 

(3.17) 

By our estimates 

+c&yr(l -75)d.V”(l -%b). 

CI z 1.07 c2 x -0.23 (3.18) 

The more official numbers are 

c, = 1.13 c2 = -0.29 (3.19) 

Once the effective lagrangian has been written down, either in first order or 

with the higher orders included, there still is a question of double counting as 

whether the F&z-rearranged pieces should be taken into account phcnomenolog 

ically. Bauer, Stech and Wirbe1,34 in perhaps the most comprehensive study of 

nonleptouic decays done so far, include a parameter C in their analyses 

Ul = Cl + icz a2 = c2 + cc1 . (3.20) 

A vanishing ( corresponds to omitting the Fierz rearrangement and a C of l/3 

corresponds to keeping it all. In their analyses of charm decays a vanishing < seems 

to bc preferred, although it seems to me the value l/3 has more logical consistency. 

Hut thr case for factorization made above is very weak for the charm decays. 

A compendium of iIS\V predictions and data is given in the accompanying 

tablrs. The data has been provided by the Argus35 and CLE036 collaborations 

this year. In general their calculations (which do depend upon their model of 

semilcptonic decays!) work quite well. In particular the Argus group fits their 

branching ratios to the model predictions and obtains as best values’ (assuming 02 

is ntagative) 

(‘1 = 1.03 f 0.09 ai = -0.20 f 0.03 (x’” = 6.5/10) (3.21) 

While again a small < sums to be preferred, the success of this’ fit is grounds for 

encouragement that factorization works. l&It this is not a substi&tc for the direct, 

model independent expc*rimental tests of factorization. 37 Within the prcscnt data 

sc+, there are already so~ne fairly direct tests. We can classify the da(.a as belonging 

to three categories. ‘I’he first is D or D’ plus pions, the second is IJI plus IS’ plus 

possible pions, and t11c third is D or D’ plus D,. 
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II- Decay MO&S 

I B Drcay Signal Events Bmnrhing Rat.io 

1r + DOa- 12f5 (0.20 f 0.08 + O.OS)% 

n- + DOp- 19f6 (1.3 f 0.4 f 0.4)% 

n- - D’Oa- 9*3 (0.40 f 0.14 f 0.12)% 

n- + D’Op- 7f4 (1.0 f 0.6 f 0.4)% 

B- --+ D*+r-rr- 11 f6 (0.26 f 0.14 f 0.07)% 

n- 4 n(*)OJp- 6f3 SPP text 

n- - D’+T-*-rr” 2ff IO (1.8 f 0.7 f O.S)% 

II- -+ d*)l:rr- 5 f 3 SPC t.rxt 

I 

n- - D*+,-lr-,-,+ <9 < 1.0% at no?4 c.1,. 
n- - J/$1<- 6 (0.07 f 0.03 f 0.01 )%I 

Decay Modes 

B Decay 
-” 
B - D-n- 

Signal Events Branching Ratio 

22 f 5 (0.4R~0.11*0.11)% 

I 
B Branching Ratios (%) 

Mode CI,EO CLE ARGUS Bauer et al. 
1987 0 1985 MCldel2 

n- + DOa- 0.44fO.07fO.07 0.54fO.17fO.11 0.2OzkO.08fO.06 0.48 x 
(“1 + 0.75a2) 

[I- - D*+n-n- < 0.4 0.23fO.15fO.07 0.26fO.14fO.07 

n- i +ri- 0.08fO.02fO.02 O.lOfO.07fO.2 0.07f0.03fO.01 1.01 II; 

n- --* lbrr-*- 0.13*0.09*0.03 0.16fO.ll-fO.03 4.33 a; 

3- + $I<-n+r- 0.12fO.06f0.03 < 0.16 

m- - l//Ii- < 0.05 0.18fO.08fO.04 0.28 a; 

n- + &Ii’- < 0.35 < 0.49 1.91 II; 

1.8f0.8f0.8 0.73 a: 

0.25fO.06fO.04 0.51fO.27fO.14 0.48fO.11~0.11 0.48n: 
-” 
I3 -II *+,- 0.36fO.O9*0.07 0.27f0.13fO.08 0.28fO.09fO.06 0.37a: 

0.7*0.3*0.3 

0.1 lfO.05fO.03 0.35fO.16*0.03 O.llztO.05fO.02 

and neutral B production on the T(4S). 

Table 3: CLEO data36 on E decays. 
I 
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Ikcay hlode Theory 

-is” ---t I)+*- 0.48 a: 

3 ---t 1Pp- 1.25 UT 

7? 4 I~+*- 0.37 0’4 

P -4 D+p- 1.18 ll: 

7i” -i D+D; 0.67 a: 

79 + D+D; 0.73 a: 

7? + D+D; 0.30 a; 

I? -+ D+D, 2.03 a: 

3 --i u+u- 0.17 u;Iv”b/v,,I* 

2 + r+p- 0.46 a$‘,~/Vc# 
I? --t p+*- 0.11 a~lv”b/vJ 

3 + p+p- 0.37 a;(V”b/Vcblz 

3 --t *+L); 0.28 a:lv”*/vcb12 

3 -+ x+ D, 0.40 a:IVub/Vcb12 
2 --t p+D, 0.13 a~lVub/Vcb12 
3 + p+D; 0.82 a~IV,,b/Vcb~2 

7? + *‘Do 0.13 a; 

B” + uODO 0.19 e; 

I? --t p”Do 0.07 a; 

7? -+ p”Do 0.38 a; 

?? -+ i?J/$ 1.02 a; 

B” ---t ?J/ll, 4.36 a; 

7i” -+ D+D- 4.10-2 (I* 1 

B” + D+D- 4.10-2 a* 1 

B” --t DoI\ -3 2.10-Z a* 2 

P + D+O?? 2.10-2 (112 2 

Decay Mode Theory 

B- 4 DOT- 0.48 (al + 0.75~~)” 

B- ---) D’p- 1.25 (01 + 0.34 a2)2 

B- + D%- 0.37 (q + 1.04 a*)* 

B- --, @p- 1.18 (a, + 0.79 es)? 

B- -i DOD- s 
B- --t DOD”; 
B- --t D”0D.i 
B- --, PO”,- 

0.67 a; 

0.73 ai 

0.30 a; ) 

2.02 (1: 

B- --t T’U- 0.08 (al + 1.00 a2)2~~,,b/~cb~2 
B- + rap- 0.23 (al + 0.50 a2)2~Vu,/vcbl~ 
B- + par- 0.06 (al + 2.01 a2)*~Vub/Vcb~* 
B- + POP- 0.19 (al + 1.00 a2)2jV.b/Vc,12 

B- -+ roD; 
B- + n”W,- 
B- + p”D; 
B- ---( p”q 

0.13 a:Ivub/l/,b12 

0.19 afIvub/%bi2 

0.07 a:lvub/v,b12 

0.41 afI~b/&bl* 

B- + K-J/$ 1.01 0; 

B- -+ K-J/11, 4.33 a; 

Table 4: Branching ratios (given in %) for two-particle decay modes of B. 
Iv&l = .05 has been used for the theoretical predictions. From Wirbel.38 

Figure 10. Factorized amplitudes in B and r Decay. 

Observation of the tables invites several checks. The p/u/al ratios are without 

uncertainty because the coupling of charged weak current to those states are de- 

termined in tau-lepton decays (cf. Fig. 10). The Argus group quotes, for example 

I’(%? 4 D+p-) 
I’@ -+ D+?r-) 

= 3.2 f 1.2 

to be compared with the BSW estimate of Eq. (2.6). Also 

T(B + D’p) 
r(B ---t D’r) 

= 2.5 f 1.2 

(3.22) 

(3.23) 

in fine agreement with the BSW expectation of 3.0. The Cornell measurement 

r@ --+ D*+p-) 
r(B” --t D*+r) 

= 5.3 f 2.6 f 2.9 (3.24) 
I 

-19% 

also is in reasonable agreement with the prediction. 

The above predictions evidently depend upon the models of semileptonic form 

factors used. IIowcver, if one puts together the infinite-mass-limit Wisgur pre 

dictions together with the factorization hypothesis, there are no free parameters. 



In addition the final states obtained by replacement of n by D', or vice versa, are 

related. For example, 

r(B -+ D’r+) = cc ITr/(pD + MD)&1 - ~.s)(PB + MB)Y~I* = 1 
I-(B -+ Dx+) ITr-rdf'D + MDM(~ - Y~)(PR + hfB)r512 

(3,25) 

This agrees well both with the BSW estimate of 0.8 and the data. 

Figure 11. Mechanisms for the decay B -+ @n- 

An interesting channel is D'+r-, because the neutral-current piece interferes 

with the charged current piece (Fig. 11). Th e ratio (which has considerable model 

dependence in it) 

r(B- + Do*-) 
r(Bo+ D+r-) 

= (*+0.75$ -(O.EV (3.26) 

tests its presence, but as yet the data is inconclusive. 

Note that upon assuming factorization and the Wisgur limit, the process 

is related to 

B+D,D'+X+x. 

(3.27) 

(3.28) 

This is the endpoint region of the semilrptonic decays whercx r is Iargcst, and form 

factors matter the most. The elastic D and D* channels will bc supprcsscd h> 

at least a factor two by form factor effects. But the total yield, according t.o thr 

sum rule, does not decrease. Th erc ore higher states such as D' + H and/or I>” .f 

should be considerably more prominent than they appear in the overall semilcptonir 

branching ratios. This is clearly evidenced by the data,35 where the branching ratio 

for D*+T-x- is just as large as others. Argus in particular has seen fairly good 

evidence for D" resonances in these higher mass final states as well, 

Figure 12. Mechanism for B decay to 6 final states 

A second class of decays involve psi final states. For this clais of processes, 

neutral current factorization seems to me to be eminently reasonable, namely that 

the c - 1 onium system does not have significant final state interactions with the 
I 

remainder of the system (Fig. 12). Because these processes sense only a2, they are 

an excellent testing ground for the correctness of factorization and the prrsencr of 

the big, destructively interfering QCD radiative correction 

r( B + $K') 
T(B-+GIi) S2*1’ 

(3.29) 
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A good test is in @‘-to& ratios; the expectation is 

r(fj + +‘f;*) 
r( B 4 liJf<') 

= 0.7 UB + li,‘W = o.28 
r( B 4 +Ii) 

(3.30) 

although I don’t see the reason for BSW getting such a big difference in the ratios 

for Ii’ and K’ respectively. In any case, the data is only barely emergent: 

UB + @‘Ii’) ~ 1.3 *o,* r( B --) li,'fi) 
I‘(B -+ $1;‘) r( B --) $11~) 

< 0.6 (3.31) 

Finally the channels D/D' plus D, again provide a combined check of factorization 

and Wisgur. I have not worked this one out. There are new theoretical contribu- 

tions on the subject. 3g I would he surprised if the answer differs a lot from BSW, 

who give 

I'@-+ D'D;) 
r(B+D+D;) 

C-G 0.45 

The data are 

r(B-+D*+D;) 
I-(B-,D+D;) 

- 2.0 f 1.2 

(3.32) 

(3.33) 

I conclude from all this that the BSW approach looks pretty good, but that 

the really quantitative, modelLindependent tests are still in the future. This is a 

very important issue, because the predictions for the very rare decay amplitudes 

proportional to Vub are done the same way, as are those for “Penguin” processes. 

Both classes of decays are vital in a large variety of CP-violation measurements. 

So far there are many calculations and a large number of experimental limits, some 

of which are close to the predictions. But these will not be discussed here. 

4. Exa~~~plc of a CT-Violating Process: Bd -+ ~T+T-T~ 

We conclude with a prototype of the kind of studies of CFviolating effects in 

the U system which is being pursued so actively nowadays by both experimentalists 

and theorists. The process I have chosen has some of the richness of complicated 

casts under study and the simplicity of the by now classic channels discussed in 

the first lecture. 

The decay 

+ f$,-+* K- 110 (.4.1) 

can be described by specifying the amplitudes for producing the pions at a given 

point of the Dalitz plot (Fig. 13).40 

Figure 13 Dalitr plot for tjd - 371 

We see from the figure that there are probably three regions of importance 

corresponding to collinear final state configurations with any one of the three pions 
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being the isolated one. The interior of the Dalitz triangle is very likely to be quite 

sparsely populated, although it is not at all out of the question that events will 

in fact be found there. The angular momentum of the low mass dipion, if formed 

from a Q -ij pair created in the weak transition, must be unity; hence a p. If this is 

not the case, and the dipion includes the absorption of the spectator system, then 

its angular momentum can be anything. Spins 0, 1, and 2, for both charged and 

neutral pion pairs, are all interesting. 

According to the diagrams in Fig. 14 we see that the horizontal and vertical 

edges of the Dalitz plot will be fed by both B and B via charged-current factoriza- 

tion amplitudes. The diagonal edge is neutral-current, again fed by B and B, but 

no doubt relatively small. And on the horizontal and vertical edges of the triangle, 

the “background” of non-p-wave dipions comes only from B or B, not both. But 

a background can in general be expected. 

Let us now generalize the analysis of the time-dependent interference effects 

expected when a Bd is produced in association with a B whose identity is known 

with certainty. [There are complications when the process occurs at the T(4S) and 

the associated particle is a neutral B itself (undergoing mixing). The quantum 

mechanics is beautiful but does not change the essence of the CP-violation physics 

we are discussing here.] 41 We need four different decay amplitudes, namely 
Figure 14. Decay mechanisms for Bd -+ 3n 
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A=6-a (4.6) 

is the strong-interaction phase difference of the two amplitudes into F and F. 

Right away, we see that averaging over the identity of the initial B/B removes all 

oscillatory contributions to the decay into the final state F (or F). Thus the basic 

asymmetry to consider is 

AF(~) = 
n(&(t) -+ F) -@d(t) -+ F) 
“(&(t) ---) F) + @d(t) --* F) 

(4.7) 

= (~)cosAml+(~~sin(2a-A)sinArnt. 

This asymmetry averaged over F and F gives 

- 
f (AF + A+) = - (s) (cos2a)(sin A) sin Amt (4.8) 

and vanishes in the absence of relative final-state phases 6. On the other hand, 

the double asymmetry survives even in the absence of final-state effects associated 

with 6: 

cos Aml  

(4.9) 

+(&) (sin2a)(cos A) sin Amt . 

We see that, not surprisingly, a necessary condition to see CP violation via inter- 

ference of mixing and decay is that the amplitudes M and %i be not too different 

in magnitude, although even a ratio of a factor three in amplitudes only gives a 

factor 0.6 dilution in possible interference effects. 

Only if backgrounds are present underneath the expected dominant px chan- 

nels will 6 be nonvanishing. If this is the case, the analysis is clearly more compli- 

cated. But there are also more interference effects and therefore more handles on 

determining the CKM phase of interest (which clearly is twice a, the same as in 

the simpler H -A channel). For example, were a = u/2, and were enough informa- 

tion on the strong amplitudes known, the CP violation might still be observable. 

Bow well one does depends upon how well all the contributions are understood. 

This in turn must come from understanding the overall Dalitz distribution. In- 

formation on this in turn comes from three-pion final states in charged B  decays. 

If factorization is trusted (and the measurement is feasible) even the semileptonic 

decay into pion-pair plus dilepton contributes information. 

But the main message I want to leave here is that angular correlation mea- 

surements in CP violating processes promise to be powerful handles-and perhaps 

interference between different well-understood strong amplitudes will provide even 

more handles.42 What turns out to be useful will be greatly shaped by the nature 

of the data itself. 

5. Concluding Remarks : 

What comes next? Of course the next round of data will as always be very 

welcome. But meanwhile there are a lot of theoretical issues to deal with: 

1. Corrections to the Wisgur limit need classification and estimation. Especially 

important to understand is the apparent large suppression of axial-current 

matrix elements in D decays and whether anything like that is seen in the n 

system. 
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2. There is more to do on the Wisgur limit itself. Important to me is the 

question of sum rules for B decays into charmless final states. Work on that 

is underway. 43 And QCD radiative corrections to all of the sum rules need to 

be understood. There probably is more to be done with Penguin processes 

and matrix elements of the neutral current operators. 

3. Critical studies of factorization, both for neutral and charged channels, are 

needed. They should be as model-independent as possible. 

4. On the experimental side it will be nice to see more on the nature of the Zs 

final states. The Wisgur developments impact on them in an interesting way. 

5. In the Wisgur limit, we saw that in some cases the decay properties of heavy 

baryons are simpler than those of the heavy mesons. This may stimulate 

more attention on this important sector, both experimental and theoretical. 

In these lectures much has been left out. But I hope that at the least the 

reader shares this author’s view that B-physics is of vital importance and will 

be around for a long time. But to do it justice will require the building up of a 

large data base. Already a principal limitation to the extraction of useful results 

lies in the inadequacies of the theory. But there is a lot of progress, along with 

possible obstacles. It is clear that there is great opportunity for fruitful interplay 

between theory and experiment, and that there may be emerging relatively model- 

independent ways of dealing with semileptonic processes. And if factorization can 

be trusted-at least in a set of limited but well-defined cases-the progress in the 

semileptonic-decay theory will spill over to nonleptonic decays as well. The exam- 

ple of the preceding section shows full well how interconnected all these questions 

are. There may be a lot of apparently tedious work ahead between now and that 

hopeful, wonderful world of CP-violation measurements. But having done it may 

ultimately pay off in a big way. 
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