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Abstract 

&dame&al aspects of 2 decays are reviewed. The effects of radia- 
tive corrections, both from ordinary QED and from the electroweak in- 
teractions are considered from an elementary point of view, but in some 
detail. The possibility of mixing with an extra Z boson and the ef%ct 
that technicolor might have are discussed. Additional information that 
will be obtained from measurements of the W in collider experimepts is 
considered. 
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1 Introduction term in the Lagrangian that is quadratic in the vector fields: 
I 

The successful operations of the SLC and LEP have provided us direct, clear 
access to the evidence for electroweak unification. Their earliest results gave a 
precise determination of the mass and width of the 2 and showed that there 
are only three light neutrinos, and by implication that there are only three 
generations of quarks and leptons. The data available by June, 1996 dramati- 
cally confirmed the basic predictions of the standard model for the width and 
branching ratios.[l, 21 This success is too much of a good thing. To make further 
progress we need to find new particles or effects that are not predicted in the 
simplest version of the standard model. Such effects have not yet been found.[3] 

How then can we hope to 1- something new from LEP or SLC? We 
must look to high statistics experiments, with either polarized or unpolarized 
beams. It seems unlikely that there will be direct evidence for production of new 
particles, although the search for the Higgs boson continues, but there could 
be signs of higher-energy phenomena that would appear in 2 decays through 
radiative corrections or through mixing. 

These lectures explore these themes. However, they can be considered no 
more than an introduction to a subject that has been investigated in great 
detail. Among the myriad important references, the CEFtN publications Physics 
at LEP,[4], Polarization at LEP,[5], and 2 Physics at LEP 1,[6] are worthy of 
special note for their exhaustive treatment of many of the topics considered here. 
My  lectures inevitably overlap the excellent presentation of Michael Peskin at 
last year’s Summer School.[7] Some of the material may be found in my  Beijing 
lectures of 1988.[8] 

2 Standard Model Basics 

The familiar litany of the standard model is that electroweak interactions arise 
from a Yang-Mills theory based on the group N(2) x U( 1). Each factor has its 
own coupling constant, g for SU(2) and g’ for U(1). In its simplest version the 
symmetry is broken spontaneously when a complex doublet of scalars takes on 
a vacuum expectation value, o/d, in its neutral component. This generates a 

g [g’(W: + W;, + (SW, - g’B)‘] 

This is then recognized as the mass term for the W  and 2. The properly 
normalised 2 field is 

z= gW-dB 
xhFTi7’ 

(2.2) 

and the implied masses are 
2 g2v2 

mw- 4 ’ (2.3) 

m; _ (g2 + 9”)v2. 
4 

The combination of neutral fields orthogonal to the 2 is the massless photon: 

(2.5) 

The mixing angle between the W3 and B is called Bw and 

tan 6w z g’/g, (2.6) 

so 

A = sin& W3+cm&B, (2.7) 

2 = cos& Ws-sin&B. (2.8) 

The couplings of the theory are determined by the covarisnt derivative, 
which when written in terms of the physical fields is 

D, = a,, + s(T+W; + T-W;) + zo, -(T3 - Q  sin’&)& + ieQA,, (2.9) 

where the coupling e is defmed by 

1 L+L. 
3=g2 y2 

The value of u is determined by comparing the amplitude for the decay 
p- -+ e-u,,re calculated from the effective Lagrangian derived from Eq. (2.9) 
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with the result obtained from the usual V - A theory. This yields 

GF V’ z=-i-=&. (2.12) 

All of these relations are calculated in lowest order perturbation theory, * 
at the Born level. There are three fundamental parameters: g, g’, and u, but 
four relations among them, Eqs. (2.3), (2.4), (2.10), and (2.12). Radiative 
corrections will modify the results by finite amounts. We are free to maintain 
three of the four relations, as described more fully below, and the fourth then 
will be changed in a way dictated by the theory. We anticipate the results of 
the following sections by writing 

$ = &(l+Ar) 

= %(l + Ar). (2.13) 

The quantity Ar reflects effects from known and possibly from unknown sources. 
We shall later calculate many of the contributions, but for now let us note that 
Ar cz 0.06. Using Eqs. (2.3), (2.4), (2.10), and (2.13) we find the relation 

1 
m2, = 2 

Often the relation between rn,r and rnw is written in terms of sin’ 0~. There 
is nothing wrong with this, but it can cause confusion because there are various 
definitions of sin’ 0~ that agree at the lowest level (tree level) of perturbation 
theory but which differ once radiative corrections are included. We shall use the 
definition advocated by Sirlin [9]: 

sin* ew = 1 - ml,/m2,, (2.15) 

from which it follows that 

l- (2.16) 

The partial widths for 2 decay may be calculated from the cou lings 

where gf is determined by referring to the coupling dictated by the covariant 
derivative. Of course a real calculation must involve radiative corrections, but 
heuristically we can write a form that contains most of the radiative correction 
by replacing 

9 ’ -+ 8m&GF/ 4 (2.18) 

in the lowest order expression for the partial width. In this way the general 
form, 

rtz + MR) = 
92 
24s ’ 

(2.19) 

gives us the specific predictions 

r(z + V‘fiR) = d%?& - = 165.7 MeV, 
24~ 

r(z + f‘fR) = v(T3 - Qsin’Bw)‘, 

r(z + fRfL) = v(Q sin’&)‘, 

ryw + e&e) = d%m& 
12n 

= 224MeV. 

(2.W 

(2.21) 

WJQ) 

(2.23) 

We summarize this in Table 2.1. 

These predictions may be compared to recent results from LEP in Tables 
2.2 and 2.3: It is apparent that the agreement between theory and experiment 
is remarkably good. 

With mz = 91.17 GeV,Ar = 0.060 we find rnw = 79.99 GeV and sin20w = 

0.230. 
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3 Decays to the Higgs Boson 

Table 2.1: Partial widths in MeV for 2 decays predicted by the simple formulas in Eqs. 
(2.19) - (2.23) with sin’ &=0.230, rn~ = 91.17 GeV. The total width is predicted 
to be 2488.5 MeV and the hadronic width 1741.5 MeV. The hadronic widths have a 
correction factor of 1 + a,(m$) %  1.04. The final column shows the partial width 
summed over generations. 

Mz (GeV) rz (GeV) akyk(nb) N” 
ALEPH 91.194 f 0.016 2.498 f 0.031 41.86 f 0.66 2.96 f 0.12 

DELPHI 91.182 f 0.021 2.495 f 0.040 41.7 f 1.2 2.93 f 0.21 
I I 

J-3 191.148 f 0.017 ( 2.502 f 0.033 1 41.24 f 0.76 13.04 f 0.14 

OPAL 1 91.163 f 0.017 1 2.497 f 0.034 1 41.6 f 0.8 1 3.09 f 0.19 

Table 2.2: Results from LEP experiments for the Z mass, Z width, peak cross section, 
and number of light neutrino species as reported by Femandez.[l] 

rrepton (MeV) rhodra WV) rinGtiMe (MeV) R  = had/&, 

ALEPH 84.4 f 1.3 1753 zt 27 492 f 25 20.77 f 0.39 

DELPHI 83.2 f 2.0 1731 f 52 514 rk 46 20.8 f 0.6 

L3 84.3 f 1.3 1733 f 44 516 f 42 20.57 f 0.60 

OPAL 83.1 l 1.9 1804f44 474 f 43 21.72 2i.g; 

Table 2.3: Results from LEP experiments for partial decay widths of the Z as reported 
by Fernandez.[l] 

If we are to 6nd new physics at the Z it might well come from rare decays. Of 
such possibilities the one pursued most vigorously is the search for the decay 
Z + Z’H, where H is the Higgs boson and Z’ is a virtual Z that decays into 
some “observable” state. The most obvious choice for this state is a charged 
lepton pair, but in fact it has been possible to look effectively for the &cay into 
neutrino pairs. Prom Table 2.1 we see that the sum of the neutrino channels has 
a branching ratio six times a big as any single charged Iepton channel. 

This manner of searching for the Higgs boson was first proposed by Ioffe 
and Khoze [lo] and the decay distribution was calculated by Bjorken. [ll] In 
terms of I = 2EH/mz, where EH is the energy of the Higgs boson, 

E =m$+m&-m& 
H 2mz ’ (3.1) 

We have for Z + Z’H + (p+p’-)H 

1 dr a 
r(z-+pp) Z = 47rsin2Bwcos2Bw [ 

2’ 2m& 
1-2+12+3G I 

x (zL#2(z-~)-2. (3.2) 

The branching ratio for Z + Z’H --) (all) + H is obtained by integrating 
over 2: 

BR= Q 
47r sin’ 0~ cos2 0~ 

F(Y) 

Lower bounds on the mass of the Higgs boson, assuming the simple one- 
doublet model, have been obtained by the various LEP experiments. The best 
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limit so far comes from the ALEPH Collaboration.[lP] Data from their exper- 
iment are shown in Fig. 3.1. The histogram shows the visible mass. The first 
plot, (a), shows a large sample of events dominated by ordinary hadronic decays 
of the 2. The shaded histogram shows the expected distribution from hadronic 
Z decays alone while the points indicate the data. After a series of cuts is ap- 
plied that should greatly exclude most normal events, while leaving the true 
Z + HUT events, the remaining distribution is as shown in (b). The shaded 
distribution in (c) shows the expectation for actual Z ---* HVF events from a 40 
GeV Higgs boson. When the Z’ + tie- channels are added the ALEPH limit 
is MH > 41.6 GeV at 95% C.L. When the Z’ + 4tP channels are added to 
Z -+ Hvi7 the ALEPH limit is MH > 41.6 GeV at 95% C.L. 

An alternative decay of interest is Z + Hr. This decay does not occur at 
lowest order because the photon couples to charge and the Higgs boson and the 
Z are neutral. There are contributions, however, from one-loop diagrams.[l3] 
Results of such calculations are shown in Fig. 3.2. 
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Figure 3.1: Data from the ALEPH Collaborationexcluding a conventional Higgs boson 
of about 40 GeV by looking for the decay 2 -* tlvi7.[12] 
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Figure 3.2: The branching ratios for Z -+ Z'H and Z - H-y as a function of the 
mass of the Higgs boson. 

4 Other Rare Decays 

The topic of rare decays of the Z has been summarized by Glover sr/d van der 
Bij.[l4] Among the possibilities are 

Z + HHfT. This is essentially excluded given the present limits on the mass 

of the Higgs boson. 

Z + qijt+P-. The rate is not too small since the partial width summed over 
leptons is about 1 MeV, but neither is the process very interesting since 
the lighter of the quark pair and lepton pair is simply produced by a virtual 
photon emitted by the other pair. 

Z + WJT. This is interesting in principle, but the rate is extraordinarily small 
because all diagrams have at least one very virtual particle. Glover and 
van der Bij conclude that more than 108 events are needed to see this 
mode. 

Z -+ ggg. The decay proceeds through quark loops, but with a rate that is not 
observable (BRx 2. lo-‘) given the qqg background. 

Z + ygg. The rate is even smaller than for ggg, and the qij-y background is 
formidable. 

2 + 777. Ridiculously small in the standard model, BR< 10Tg. 

Z + 7$. The rate to decay into a photon and a heavy quark-antiquark bound 
state can be calculated. The largest is to 7$, but its branching ratio is 
less than lo-‘. 

Z -I &. In the standard model this and other flavor-changing neutral current 
decays are very small, typically lo-’ and therefore out of !range. 

Z 4 yrrrc, mc. Here ?rrc is a neutral technipion and mc is a technieta. This 
decay was considered as early as 1981. [15] The most recent calculation 
[16] for a one family model of technifermions evaluated for the vc with 
N technicolors gives a partial decay rate of 0.7 keV (N/4)2, which is only 
observable for a large value of N, say 7 or more. 



: .3  

Z 4  WT.  A n  interest ing, ca lcu lab le  (171,  a n d  unobservab le  decay  with a  part ia l  

width of less than 4  . 10- r’ G e V . 

Z  +  rrr’. Despi te  a rgumen ts  to the contrary [18], this a lso  has  a  very  t iny 
part ia l  width[ l’l], about  10- r’ G e V . 

5  Init ial S tate Rad ia t i on  

T h e  most  impor tant  rad ia t ion correct ion in  e + e -  --)  Z  +  X  is ini t ial  state 
radiat ion,  a  pr imar i ly  c1assica l  p h e n o m e n o n  lead ing  to emiss ion  of rea l  pho tons  
a long  the d i rect ions of the inc ident  beams.  Wh i l e  there a re  n u m e r o u s  extensive 
calculat ions a n d  Mon te  Car lo  rout ines to eva luate  init ial  state radiat ion,  for 
m a n y  pract ical  pu rposes  it sufkes to use  s o m e  s imp le  analyt ic  formulas.[ l9]  

W e r e  it not  for radiat ive correct ions,  the e + e -  annih i la t ion cross sect ion 
nea r  the Z  wou ld  b e  g iven,  to a  very  g o o d  approx imat ion ,  by  the s tandard  
Bre i t -Wigner  fo rmula  

He re  E  =  W /2 is the b e a m  energy  a n d  us  represents  the cross 
if 

t ion be fore  
radiat ive correct ions.  In t roducing z =  2k/I’ a n d  A  =  2 ( W  -  M)/  , w e  have  

zs ( l +~ ) t (~ )~~zE’rdrr’-‘[ l+(r-X)~]- l .  (5.4)  

S ince  E  > >  I’, the uppe r  l imit  m a y  b e  set equa l  to in6nity.  If w e  n o w  def ine 

Q ( X )  E t / o m  dz  I+ ‘[1 +  (z -  A ) ‘]-’ 

w e  can  wri te the radiat ively corrected cross sect ion as  

d !$  ( 1 + $ )  ( & # q A ,. 
In par t icular  w e  see  that 

(5.5)  

C T =  
[ 

41r  (2.7 +  l )B(Z  +  e+e - )  
I? ( 2 S 1  +  1 ) (2Sz  +  1 )  1  

a n d  thus at the o ld  peak  ( X  =  0 )  there is a  reduct ion  of the cross sect ion 

(5.6)  

whe re  k =  A /2 is the c m  m o m e n t u m  in  the init ial  state, .I =  1  is the sp in  of the 
p roduced  resonance,  2 S r  +  1  =  2 S z  +  1  =  2  is the sp in  mult ipl ic i ty of the init ial  
part icles, B ( Z  +  e+e - )  =  0 .033  is the b ranch ing  rat io in  the inc ident  channel ,  
W  =  fi is the c m  energy,  a n d  F  is the total width. Wi th  m z  =  91 .17  G e V  
the peak  cross sect ion is 5 8  nb.  T h e  radiat ive correct ions necessar i ly  invo lve 
Q  =  l /137 but  they a re  not  smal l  because  they a re  a c c o m p a n i e d  by  a  la rge  
logar i thm, expl ici t ly in  the combina t ion  

z 0.108.  

T h e  effect of the radiat ive correct ions is ob ta ined  as  a  convolut ion,  us ing  
the resul ts of K u r a e v  a n d  Fad in  (201:  

a ( w ) =  ( 1 + ~ ) f 6 ~ ~ ( ~ ) ~ ~ o ~ W - k ) .  

o ( w )  a,, =  ( l+ ; ) ($>‘* 

=  1 .081  x 0 .678  x 1 .005  

=  0.737,  (5.8)  

that is, a  2 6 %  reduct ion.  In Fig. 5.1 the effect of the init ial  state radiat ive 
correct ion is shown.  

These  resul ts can  b e  ex tended  to inc lude  in ter ference of the Z  with the 
vir tual  pho ton  in termedia te  state a n d  to inc lude  a n  energy  dependen t  width for 
the Z.[19] Wi th  a  full know ledge  of the init ial  state rad ia t ion the l ine shape  for 
the Z  is de te rmined  a n d  it is poss ib le  to show  conv inc ing ly  that’there is n o  r o o m  
for a  fourth spec ies  of l ight neutr ino.  Th is  is seen  in  the data  f rom A L E P H  [21] 
in  Fig. 5.2. 
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Figure 5.1: A comparison of the uncorrected Breit-Wigner shape for the 2 resonance 
(dot-dash) with the fully corrected form of Eq. (5.6) (solid) and the result using 
just first order corrections (dashed). The cross section shown is for all final states, 
including neutrinos. 
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Figure 5.2: Data from ALEPH (211 for hadronic decays of the Z showing fits with 2, 
3, and 4 neutrino species. 
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6 Review of Radiative Corrections Now suppose we calculate a physical quantity like the mass of the W  I In lowest 

Because we believe the Standard Model contains important truths, it is of great 
importance to test it in as great detail as possible, not so much to verify it as to 
find its limitations. The Standard Model is really a theory in that it is completely 
calculable: it is renormalizable. This means we can go beyond leading order 
in calculating the physical observables. Just as quantum electrodynamics was 
established by the agreement between the measured and predicted values of 
g - 2 and the Lamb shift, so we would like to look for measurable electroweak 
radiative corrections. 

The essence of renormalizability is that all physical quantities, like cross 
sections and decay rates, can be expressed in terms of a finite number of initial 
physical parameters, like the masses and coupling constants of the particles in 
the theory. In the Standard Model, as outlined in Section 2, the basic parameters 
that appear in the theory are g, g’, and o. To fix these we need three physical 
quantities. One possible choice is a,, rnz, and mw. Since rnw is not well 
measured, it is better to choose aan, rnz, and GF. Before rnz was well measured, 
it was convenient to use a,, G,=, and some quantity measured in neutral-current 
neutrino scattering. Of course there are other physical quantities that must be 
specified - the quark masses, Kobayashi-Maskawa mixing angles, and the mass 
of the Higgs boson. These are incorporated in a straightforward fashion. 

The weak mixing angle is not to be regarded as a fundamental parameter. 
It may be convenient to introduce sin’ 0~ for the purpose of doing calculations. 
When this is done, it is essential to provide a precise definition. In some a basic 
sense sin’Ow is irrelevant. We can always express any physical prediction as 
Observable = f(a, G~,mz, rnH, mt, . .) without the appearance of sin’&. 

We shall sketch the evaluation of radiative corrections following the proce- 
dure of Sirlin.[S] The basic idea is to say that the parameters that appear in the 
Lagrangian, which we called g, g’, and v *, should be indicated instead by go, g&, 
and u& and regarded as bare parameters. We write them as 

90 = g--&7, (‘3.1) 
g; = g’- 6g’, (6.2) 

V ,’ = v* - &J*. (6.3) 

order we will find 
mZ, = giv,2/4. (6.4) 

In the next order we will find a correction of order g,’ relative to this one. Suppose 
we insist that the actual relation be the one we first obtained in Section 2: 

m2, = g*v*/4. (6.5) 

To do this we can adjust 6g and 6d so that they just cancel the higher order 
correction. Then, to the next order in perturbation theory, EZq. (6.5) is restored. 
Now we only have three 6s to adjust, so we can restore only three of the four 
basic relations we started with in Section 2: 

mZ, = ftg* + d?v*, VW 

m*, = fgv, (6.7) 

GF -=- 

fi 8& (6.8) 

1 1 
gs= -= 

4na 
-$+-$ (6.9) 

We choose to maintain Eqs. (6.6), (6.7), and (6.9). This is the most convenient 
choice although, ultimately, we will specify the physical input in terms of a, GF, 
and mz. 

Now let us write in the mass term of the Lagrangian in terms of the bare 

parameters (c.f. &. (2.1) ): 

L = $ $w;w-p + f (goW+ - gg$J* 
[ 1 , (6.10) 

and then substitute the expressions for the bare parameters in terms of the 
renormalized parameters, g, g’, and v* and the 6s. If we keep only terms first 
order in 6, we have 

4 L: = 2Z,Z” +rn~W~W-’ 

- (yZpZu + 6rnf,,W~Wep - 6miAZpAp 
> 

, (6.11) 
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with 

2 mw = a (g*V*) , 

rns = a (g* + 8) v*> 

6rnL = $5 (g2v2) = ; (v26g2 + g26v2) , 

6m$ = ;6 [(g* + go) v’] , 

where 6g2 means 2969, etc. We have made the definitions 

tan ew = d/g1 
c = cos8w, s = sin&, 

(6.12) 

(6.13) , 

(6.14) 

(6.15) 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

so that always 
m2,fmi = cos*B~. (6.20) 

Now our next step is to calculate the one loop corrections to m&,, rns, and 
e* so that we can adjust the three 6s so as to restore our fundamental relations, 
Eqs. (6.6), (6.7), and (6.9). When we are done, we will find that there are finite 
corrections to (6.8). 

In order to calculate the one-loop effects, we must reconsider the interac- 
tions of the gauge bosons with the particles that might go around the loop. 
The interactions are governed by the covarknt derivative, which enters the La- 
grangian as 3,; p* so we examine 

and substitute again for the bare parameters. The result is 

’ = -4 [a (T+ W+ + T- J+‘-) + E (ear, - Qs”) p + eQ A] II, 

+d [$ (T+ yV+ + T- Y’-) + (6@+) (Tsr. - Qb2) C 

+e (: - 7) (CL - 9s') /I] $. (6.22) 

Here, of course, we mean by 6e 

We recognize the electromagnetic and weak neutral currents: 

J,” = &‘Q$, 

J; = $7” (T3L-~2Q)yi 

In terms of these the Lagrangian is 

(6.24) 

L = -gq(T+ fl’++T- )y-)$-fJ;Z,,-eJ;A, 
Jz 

+$G(T+ r/++T- )y-)$+ A,JJ6e+ Z,J~6Js’ssR 

+J~Z~li~*~(~-~)+J;A,e(~-~). (6.25) 

Now let us return to the question of the mass of the Z. Ordinarily we would 
write the Z propagator as 

& (guy - w7hi) (6.26) 

Here we have chosen the unitary gauge. In another gauge the piece proportional 
to qrqv would be different, but the piece proportional to gPy would be the same. 
It suffices for our purposes to consider just the g,,” part. Now consider the effect 
of the extra interaction implied by Eq. (6.11) as shown in Fig. 6.i. 

There are also contributions from the one loop diagrams as shown in the 
same Figure. The value of the g,,” piece of this contribution, inzz(q’), depends 
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q2-mi 

& (-i6ms) --IL q2-ms 

& (+ikdq2)) -i q=-m; 

Figure 6.1: Diagrams contributing to the 2 mass. The first contribution comes from 
the renormalized mass term. The second comes from the insertion of &n’$. The third 
is the one loop contribution. 

on the invariant mass squared, q2, carried by the incoming line. Th e are addi- 
t tional diagrams that contain repetitions of these basic (one-particle .‘rreducible) 

pieces. If we add the repetitions, we see we get just a geometric series (the 
tensor factor, Q,,” just reproduces itself). The full sum is 

-i 1 -i 
42 - mb I+ 6m$-nzz(G+ = q2 - mi + &im$. - flzz(q2)’ 

3-m: 
(6.27) 

Now if we want the mass of the Z to be rnz we must have 6rns cancel the real 
part offIzz exactly at q2 = mZ,: 

(6.28) 

The imaginary part of Fizz determines the width of the Z. Similarly we must 
chose v= 

am’, = 6 Tg2 = ReIIww(m2w). [ 1 (6.29) 

Of course these cancellations occur only at the specified points, so ffzz and 
fIww will give rise to important corrections when evaluated for other values of 

q2. 
Finally we must arrange it so that the charge of the electron is actually --e. 

To do this, we calculate Coulomb scattering at some low momentum transfer. 
As shown in Fig. 6.2, there are two contributions. One comes from exchange of 
a single photon and the other from a photon interrupted by a vacuum polariza- 
tion bubble. There are other diagrams we can draw, but these do not contribute 
in the limit q2 + 0. For example, a simple Z exchange is unimportant because 
instead of varying as l/q’, it goes to l/m;. The diagram with a bubble con- 
necting one photon and one Z is unimportant because as q2 -+ 0, K,z(q’) + 0. 
As a result we have just the sum 

To get the required form we must demand that 

- 2e6e + e2y Iqz=o = 0. 

(6.30) 

(6.31) 

-ll- 



Figure 6.2: Diagrams contributing to Coulomb scattering at low q2. 

Now we have determined all three of the 6s: 

6 ;v=g= [ 1 = ReIIww(m2w), 
6e2 - 
e2 

= n&(o). 

We can solve explicitly for 6g and 6s’: 

e2 Re IIzz(m~) 
6g = $n&(O) - 2s3 

[ 

Renww(m&) 
ms - 

4 

e R.eIlzz(m~) 
69’ = &JO) + z 

I 

Fk Ih44m’,) - 
4 4 l- 

We are now in a position to calculate physical processes. 

7 Muon Decay 

(6.32) 

(6.33) 

(6.34) 

(6.35) 

(6.36) 

There are three diagrams to be considered for the decay p -+ evZ7, as shown in 
Fig. 7.1. Each is proportional to the result, M, that would have been obtained 
in lowest order. Summing the contributions shown in the Figure we obtain 

Rehw(m&) - nww(O) 
4 > 

_ M(1 + Ar) ., (7.1) 

This is the result promised in Section 2 and defines Ar. Using our expression 

for Ws 

2 RGzz(m&) - nz.240) 
Ar = -n&,(O)+ sz 

( 4 > 

s2 - C? 
+- 

RefIww(m$) - &w(O) 
S= 4 > 

+“’ n,,(o) 
( 

nww(o) 
s= ----T-- 4 mw > 

I 
(7.2) 

It is a little easier to understand this result if we cast it in a slightly different 
way. Instead of locking at the currents that couple to Z, W, and the photon, 
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The introduction of “newn physics - a heavy t-quark, technicolor, a heavy Higgs 
boson - will change the values of the vacuum polarization bubbles and thus 
change Ar. This induces a change in the value of mw since mz, GF and a are 
fixed. From Eq. (2.14), 

we find 

mZw = 5 ’ (1, J=)rnb, 

6m&/mzw = - ;SZ_~A~. 

(7.12) 

(7.13) 

8 Dispersion Relations 

How are we to evaluate the various vacuum polarization functions, II( The 
standard way is to write down the corresponding Feynman diagram. Here we 
explore an alternative: dispersion relations. The functions II turn out to be 
analytic functions of their argument. Moreover, they have the special property 
that they are mu1 analytic functions. An analytic function f(z) is said to be real 
analytic if there is some interval on the real axis on which f(z) is real. In this 
region f(z) has a power series expansion with real coefficients. It is not hard to 
prove and easy to believe that for a real analytic function f(P) = Y(Z). 

Consider a real analytic function with a branch point at z = a and a branch 
cut running from D to 00. An example might be f(z) = (a - r)” with (I real and 
f defined to be real for z real and z < a. Now Cauchy’s theorem tells us we can 
always write 

where the contour encircles (counterclock-wise) the point z. Now suppose we 
take a contour as shown in Fig. 8.1. Now on crossing from one side of the cut to 
the other the real part of / is unchanged and the imaginary part changes sign 
(because /‘(z) = f(P)). On the other hand, dz’ goes one way below the cut and 
the other way above the cut. As a result, only the imaginary part contributes 

Figure 8.1: A contour useful for evaluating Cauchy’s formula for a real analytic func- 
tion. 
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where Imi(z’) means the imaginary part above the real axis. If f is small enough 
for large (t( we will be able to drop the contribution from the large circle. Thus 
if f is cut from e to co 

f(2) = i Jbn -+&Im/(S). (8.3) 

If the point z is on the real axis and z < a the integral is purely real, as it must 
be. If the point z approaches the cut from above the left hand side will have to 
have an imaginary part that is just Imf(z). The real part will be given by the 
principal part of the integral. 

Now what is the nature of ImI’I(s)? There is an imaginary part to IIzz(s), 
say, only if there is an actual physical state with cm energy squared s into which 
a virtual Z can decay. Thus, technically, IIzz(s) has a cut beginning at (two 
times the mass of the lightest neutrino) 2 x 0, while the cut for IIww(s) begins 
at ma. Let us indicate the threshold generally by sth. Then, if we ignore the 
contribution on the periphery, 

VSO) = i I, &ImWs). (8.4) 

Now we know that ImII is related to real physical processes, but how? We have 
already seen that propagators look like 

i 
s - m2 - II(s)’ (8.5) 

On the other hand, we are used to the form 

i 
s-m2+irm’ (8.6) 

that appears in the Breit-Wigner formula. This suggests the identification 

ImII(s) = -&T(s). (8.7) 

We must write fi instead of m because the bubble doesn’t know the mass 
of the real particle, it knows only about the value of q2 = s. Moreover, we 
must remember that the width of the virtual particle in question depends on 
s. Thus T(s) is to be thought of as the widt,h a Z would have if it had a 
mass squared s. This could be measured, in principle, in neutrino antineutrino 

annihilation! More practically it could be studied in e+e- 
it would interfere with the electromagnetic annihilation. 

annihil$on, where 

For the case of the virtual photon we can prove that 

s2a(e+e-) 
ImC-ds) = - 4xa 

The optical theorem relates the forward scattering amplitude to the total cross 
section: 

ImM(P,,j%Pl,Pz) = -2~Pc&.oc (8.9) 

z --soti (8.10) 

where M is evaluated for the same initial and final spins. If we write M for the 
diagram that includes a vacuum polarization bubble (without it, M is real) we 
have 

- iM = ~(p~)ier,u(p,)~iII,(q2)i?(~)ie~“u(p~)~. (8.11) 

Averaging over the spins, remembering that initial and final spins are the same, 
and dropping the electron mass, 

M = -$TrZlr,d2Y$K4q2) (8.12) 

= FI&Jq=). (8.13) 

Inserting this into the optical theorem gives the stated relation. Analogous 
relations exist for IIww and IIzz. 

If we wish to use the relation between I? and ImfI, we need to calculate the 
width a vector meson would have as a function of its mass. The amplitude for 
the decay of a vector into a fermion - antifermion pair is 

M = +)Yg(gv + gA%)+‘)~r, (8.14) 

where t is the polarization of the vector meson. In terms of these 

r(s) = -& (9; [S - (m - m’)= - 4p2/3] 

+ gi [s - (m + m’)’ - 4p2/3]}. (8.15) 
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9 Heavy t quark 

Using the results of the earlier sections we can now determine the contribution 
a heavy t quark to Ap and thus to the W  - Z  mass splitting. The value of Ap 
depends on II,,(O) - II,(O). We consider contributions from loops involving t 
and b quarks, beginning with ffas. From &. (8.16), with gv = -gA = gT3/2, 
the decay width of a W, of mass squared s into a quark-antiquark pair with 
quark mass m  is 

I-3 = g (1 - n&s/s) , (9.1) 
where the cm momentum, p, is given by 

p’ = (3 - 4m2)/4. (9.2) 

Thus, formally (and remembering to drop the g2 in accordance with our defini- 
tion of II,) 

A  cutoff, A, must be introduced since the integral diverges. This is not a real 
problem since Ap will turn out to be finite. It is simply more convenient to 
calculate IIs and II,, separately. A  tedious but elementary calculation shows 
that for large A. - 

H&O) = -& 
( 

A’-3m21n$ 
> 

Adding the t and b contributions, 

H,(O) = ---& 
( 

A2 - irnf In $ - irn,2 In $ 
> 

(9.4) 

For II,, we consider the decay of a virtual charged W  into t&. For the width 
we have 

r, = g (s - rn: - rnz - 4p2/3) , 

where the cm momentum is given by 

(9.6) 

p’ = s2 - 2s(m: + rnz) + (mf - rnt)’ 
4s (9.7) 

In this way we !ind I 

n,,(o) = -& iI+mr,. $4~~ - 24n-4 + mi) + (m? - 4)’ 

( 
mf+m,2 

x l-p- 
(m: - rnz)’ 

2s > 29 . 

Another tedious, elementary integration gives 

H,,(O) = -& 
[ 
A2 - i(rn: +m:)In--& 

l- 
Combining these results we find [23,24] 

Ap = &  [U,,(O) - U&O)] 

(9.8) 

(9.9) 

3g2 
= 64n2mir 

mf+mz- (9.10) 

The factor of 3 comes from summing over the quark colors. 

For rnr >> mb we have 

This gives a contribution to Ar of 

A r = -?3GFm: _ 
s2 84Jz 

- -0.0105(mt/100 GeV)‘. , 

The corresponding shift in the W  - Z  mass splitting is 

A  
s2 

-%Ar = -180 MeV(mt/ lOO GeW)‘. mw=-l-2s2 2 (9.13) 

The additional terms in the expression for Ar are of the form ff$,(ms), 
fI;,(mk), etc. Their formal expressions separately diverge logarithmically, though 
their sum is finite. However, taking the limit rnz -+ 0 or rnw + 6 in each piece 
introduces no extra singularities. Thus T&(rn~) contains terms like ln(A’/m:) 
and rns/rn:, but not rn:/rni. It follows that the contribution of all these terms, 
which is finite, can be at most logarithmic in m:. 
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10 The Effective Lagrangian 

It is straightforward to calculate fermion-fermion scattering including the one- 
loop corrections to the various vector propagators. Of course, this is not a 
complete calculation of all effects at this order since it ignores vertex corrections 
and box diagrams. Nonetheless, it does contain most of the physics. Moreover, 
the results can be written in an especially clear fashion, namely they are just like 
the lowest level results except that some of the parameters are shifted slightly. 
This approach has been developed and advocated by Lynn and by Peskin and 
their co-workers.[25, 26, 7, 331 

Our approach is similar, but not identical, to that of the originators. We 
shall simply calculate fermion-fermion neutral current scattering. We need not 
specify whether the exchange is in the t channel or s channel. When we are 
done we shall see that the result can be written [7] 

M NC 
d/ = -elQ$Q’ 

-& (T3 - 4Q) -$-+ (T’s - s:Q’) (10.1) 
.  l .  

where the third components of the isospin of the external fermions are T3 and Tj 
and their charges are Q and Q’. At Born level the same formula would hold, with 
ez = e2, s: = sin’&, 2 = cos26’w, rnz = m$, and Z. = 1. It is appropriate to 
recall at this time that we have always 

d4 cos2&/ = - = g2 
4 92’ 

(10.2) 

1 
sin’& = - 

2 
(10.3) 

The vertices we need for the calculation follow from Eqs. (6.11)(6.17) and 
(6.25) and are shown in Fig. 10.1. 

The diagram with a single Z exchange contributes 

M = _ CT3 - s’Q)K - s’Q’) 
q2-rn$ [g2 + 8 - 6(g2 + SRI] 

+ QK - s2Q’) + QV3 - s’&) ,2 

q2-mi 

-i [(e - 6e)J; + e (6g/g - 6g’/g’) Js] 

-ibm$ +i6m~A 

+irlzz +inZA 

w 

+in, 

Figure 10.1: Factors associated with vertices and insertions needed for the radiative 
corrections to fermion-fermion scattering. 

(10.4) 
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The diagram with a single photon exchange gives Now we combine this with the first term in Eq. (10.7) to obtain 

M = -~[e2-6e2] 

$&Vi - s’&‘) + Q’V3 - s2Q),2 
Q2 

(10.5) 

The remaining diagrams have either a 6m type insertion or a vacuum po- 
larization bubble. The diagrams with Z leading in and out of the insertion or 
bubble give 

M = 33-~zQ)(Tj-s2Q’) 
(9’ - mZd2 

(9’ + gR) [bdq2) - ~&dm~)] J10.6) 

Combining this with the single Z exchange gives 

M = _ (T3 - s’Q)(T; - s2Q’) b2 + 8 - 6(g2 + PII 
q2-mS -[nzz(q') -K~z(ml)l 

+&CT: - s’&‘) + Q’V3 - s’Q)~~ 
q2-ms (10.7) 

Similarly, combining the single photon exchange with the diagram with the 
photon vacuum polarization gives 

M = - 

+Q(Tj - s2Q’) + Q’Vi - s”Q) e2 

QZ 
(10.8) 

There remain only the diagrams that mix the photon and the Z. These 
give 

M  = _ Q(T’ - s2Q’) + Q’(T3 - s2Q) e2 
q2(q2 - mZz) 

z nZA(q’) - s,; 

(10.9) 

If we combine the terms with the coefficient Q(Tj - s2Q’) + Q’(T3 - 3’Q) 
from Eqs. (10.7) - (10.9) we find their sum is 

(Q(T; - s’Q’) t Q’(T3 - S’Q)] & [2 (: - y) - $&Ah’)] 

(10.10) 

M = 

x (Ts-s2Q)+ scI-I)2A(q2)-2s2c2(~-~)]Q} 
[ 

(Tj - s2Q’) + scll;,(q2) - 2s’~’ ($s)]Q’}. 

Using the relation 

(10.11) 

(~-~)=-~[Ren~(mZ)_Renw_~m2w’], 

which follows from Eqs. (6.35) and (6.36), we see that 

(10.12) 

sf = s2 - Scrl;A(qZ) - c2 Re nzz(m$) ReIIww(mk,) 
4 4 I. (10.13) 

From F.q. (6.34) 6e2 = e’II&(O). Combining this with Fq. (10.5) we see 
that 

ez = e2 [l + II&(q’) - II&(O)] , (10.14) 

in agreement with the discussion surrounding Eq. (7.9). 

We stiIl have to identify Z. and mf. As it stands there is ambiguity because 
effects can be transferred between Z. and mt. To resolve the ambiguity we insist 
[7] not only that 

mt(m2,) = rni, (10.15) 

but also that 

(10.16) 

This can be done by defining ml through 

(q2 - ml) E (q2 - rni) 
[ 

1 - Uzzcq~! 1 U$zz(m’) + $nzz(q2jlm3, , 1 . (10.17) 

Now Z. is determined by 

&z* = (g2+gR) l- 6(g2+gR) d 
g2 +gR -I- dgz~zz(Q2%n; . 1 (10.18) 

. . 
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Substituting in the values of ef, st, and 2 and using 

s2 - 2 y2+$y = IIL(O) + gz 
I 

Re IIzz(mi) Re nww(m&) 
m% 4 1 , (10.19) 

we find 

2.=1+ 
s2 - 2 
,,%4(q’) + $n2z(42)l m$ - q&?‘). 

AU of the starred quantities of the effective Lagrangian are now defined, so 
we can read off the consequences for a physical quantity like ALR. The formula 
for ALR at the peak of the 2 is obtained just by replacing s* by sz. In this sense 
the effective Lagrangian is just a convenient way of summarizing the one-loop 
corrections to the single vector-exchange graphs. But there is another advantage 
to the formulation: it isolates the large, trivial radiative correction, Ao. 

To see this, consider the formula for sz, Pq. (10.13). The corrections to 
be subtracted from s2 are evaluated at q2 or at rns and if q2 is of the order 
of rn$ these cannot lead to a large logarithm of the sort occurring in Ao = 
II&, -II&,(O). There is a large logarithm that does occur in s2. We see this 
in Eq. (10.3) where Ar appears. Now Ar = Ao plus some other pieces (see Eq. 
(7.11)). Since we understand the contributions to Ao from the known quarks 
and leptons, it makes sense to isolate these. If there is new physics it will make 
its appearance in the remaining parts of the expression. To this end, following 
the lead of Lynn and Peskin [25, 71, we define 

2 1 
s-m=- 

2 (10.21) 

where by aa we mean the value of a(ms) based on the known quarks and 
leptons. This could differ slightly from the actual value if there are additional 
contributions. If we calculate the difference between sf and So,- there will 
be no Ao contribution except from new physics. Indeed, explicitly 

2 s, = 

e2 
+C%2 [ 

II&m;) - 2s2f13Q(m;) - II,,(O) 

mZZ 1 - eziIj,(q2) 

+e2s2 [n&(d) - n&(mi)] . (10.22) 

This is similar to Sq. (5.36) of Hef. [7], but apparently not iden ical to it. 
1 

If we assume that the old physics makes an insignificant contribution then all 
the II can be regarded as coming from new physics. If the same assumption is 
made in Peskin’s formula, then the two agree. In any event, we can rewrite the 
expression make its finiteness manifest: 

2= 2 S. .s,~- + & (Aa- - API 

Se2 [n&d+) - G&‘)] - -&-$,,2(d+ (10.23) 

The finiteness is now easy to demonstrate. The contribution of a single quark 
to II= behaves as aA + bm2 ln(A’/m’) as seen in Eq. (9.4). Taking a derivative 

makes II& more convergent and reduces its dimension by two, so its behavior 
is II& cc ln(h2/m2). Taking still another derivative makes II!& convergent and 
it must behave like l/m’. The term involving II& in Q. (10.23) is effectively 
(rns - q’)lT& and is thus convergent since I&Q and II= have similar behavior. 
The final term, which involves IIj,v,2 receives opposing contributions from the 
T3 = l/2 and T3 = -l/2 quarks. These cancel the ln A2 and leave a convergent 
result. 

11 Technicolor 

The orthodox version of the Standard Model with a single, elementary Higgs 
doublet is by no means the only possibility. Indeed it is both ad hoc and the 
oretically suspect. In principle, it would be much more desirable to have a 
model in which the spontaneous symmetry breaking was the result of dynamics 
- socalled dynamical symmetry breaking.[27, 28, 291 The basic idea of techni- 
color is to introduce a new set of fermions - technifermions - with very strong 
(technicolor) interactions between them. Just as in QCD where the theory of 
(almost) massless quarks develops a vacuum expectation value for izu + ;id, the 
corresponding combination of techniquarks, i?U + BD, will develop a vacuum 
expectation value. This breaks various symmetries. 

We saw that mass terms like ?iiu break SU(2) x U(1) be&se they are 
actually the sum of two terms with T = l/2: 

iiiu = iiLUR + ii@& (11.1) 
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Thus, just like the conventional < 6 >, the technicolor condensate breaks the 
gauge symmetry. 

In QCD with n flavors of massless quarks, there is a large symmetry, 
SU(n) x SCJ(n), that arises because there is a separate flavor symmetry for, 
the left-handed and right-handed quarks. These are separate because the gauge 
interactions preserve the handedness. A mass term couples left-handed to right- 
handed and destroys the (chiral) SU(n) x S/Y(n) symmetry. If all the quarks 
were given an identical mass, there would still be a flavor SCl(n) symmetry, 
analogous to &spin. This would be a vector (as opposed to axial) symmetry. 
The condensate, like a mass term, breaks the chiral symmetry. 

Now the Goldstone theorem tells us that spontaneously broken global sym- 
metries produce massless particles, so we know that the technicolor theory will 
generate massless particles. For example, suppose there are just two technifla- 
vors, U and D. Then there is initially an SU(2) x SU(2) symmetry, which is 
broken to the vector SU(2). The axial SU(2) is lost and its three generators 
must give three massless scalars. But these are just what we need for the l&’ 
and Z to become massive. In this way we can obtain all the good features of 
the standard model without introducing elementary scalars. 

How can we describe all this? Well, it is actually completely analogous to 
QCD and so we can rely on techniques developed long ago. If we were dealing 
with a theory with two massless quarks, U and D, we would have two separate 
isospins that acted on the left-handed and right-handed quarks. We know that 
ultimately we will get three massless technipions so we want to write a theory 
in terms of them, but still displaying the chiral SU(2) x ScT(2) symmet.ry. The 
best way to do this is with a chiral Lagrangian. Let so, a = 1,2,3, be the three 
(techni)pion fields and indicate the 2 x 2 generators of SCJ(2) by 

so that 

T” = TO/~, (11.2) 

Tr T”Tb = $.d, (11.3) 

Now define 
C = exp(i2x . T/f,,) (11.4) 

where fn is a constant, which for QCD is actually the pion-decay constant and 
which for our technicolor model will be determined below. A gcncral element of 

SU(2) x SCJ(2) is specified by a left-handed rotation, L = exp(-i L. T) and a 
right-handed rotation, R = exp(-ion . T). These are the matrices that would 
act on the left-handed and right-handed quarks. How shall we have them act 
on the pions? The solution is [30] 

Cd LCR’=exp(-iar,.T)Cexp(+ian.T). (11.5) 

What is nice about this is that if we have a rotation that is just an ordinary 
SCJ(2) transformation, that is, an isospin rotation, then L = R and C transforms 
in a sensible way, 

c --+ mu-‘, (11.6) 

where U = L = R. We see that C does carry the full SU(2) x SU(2) symmetry 
in that, if we perform two successive transformations we get the same result as 
we would have if we found the product transformation and applied it directly 
to c. 

Let us write a Lagrangian that incorporates the chiral symmetry. The Cs 
are matrices, so we will need to take traces of combinations of Es. Consider, 
for example, Tr CC. Under a chiral transformation this becomes Tr LCR’LCR’, 
which is not the same. On the other hand Tr CC’ transforms properly, Tr CC’ + 
Tr(LCRt)(LCRt)t = Tr(LCR’RC’L’) = Tr CCt. Unfortunately this is useless 
since CC’ = I. It does point the way, however. We take 

(11.7) 

If we expand in powers of the K field we find 

a,,C = i2a,,a. T/f, + . . 

and thus the quadratic part of our Lagrangian is 

(11.8) 

(11.9) 

which is exactly correct for a scalar field theory. On the other hand there is no 
mass term. This is just what we expected: Goldstone bosons. ‘There are inter- 
actions, but every interaction contains some derivatives. Now this Lagrangian 
contains terms with many powers of the rr field. It is not renormalizable. We 
use it only at the Born level. 
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So far we have a theory only of the massless pseudoscalars. We must couple 
it to the gauge theory to learn something interesting. Of the SIi(2) x SU(2) 
currents, only some of them are gauged. In particular, the gauge theory uses 
aI1 the S/Y(2),,, but not all the sum. If we wanted to find the covariant 
derivative acting on left-handed quarks we would write 

D, = 8, + igW, T + ig’B,(Y/2), (11.10) 

where Y/2 would be a 2 x 2 matrix equal to (l/6)1. On right-handed quarks 
we would have T = 0 and the weak hypercharge would be arranged so that it 
accounted for the entirety of the electric charge Q. In terms of the matrices that 
act on the left-handed quarks, we would have on the right-handed quarks, 

D, = a,, + ig’(T, $ Y/2)B,,. (11.11) 

This tells us how to make the covariant derivative that acts on C. Remembering 
that it is R’ that occurs in the transformation law, we take 

D,C = 8,.C + iL,C - XR,, (11.12) 

with 

L, = gN; . T + g’B,,Y/2, 

4 = g’&(T, + Y/2). 

(11.13) 

(11.14) 

Now we can write a Lagrangian with gauge interactions: 

L = <TrD,~(~ux)+. (11.15) 

This isn’t actually invariant under SU(2) x SU(2). The reason is that in R, 
we have TX. This singles out a particular direction. Of course if g’ were zero, 
the symmetry would be restored. What does Eq. (11.15) actually contain 
physically? To find out we must expand through quadratic order in the fields. 
Writing ?r = rr T 

Tr D,C(D”C)’ --( Tr (+2G,%/f, - 2@Z/f,’ - 2Z$,l?/f,” 

+iL, - 2Lr?rlfn - 2iL,%ii/f,2 

-iR, + 2irR,,/f, + 2i??iR,/fi) 

X (-2iP%/f, - 2Pirii/f,2 - 2iiP%/f2 1 

-iLU - 2irLp/fn + 2iiriiLp/f,2 

+iR’ i- 2Rpir/fn - 2iR“ir%/fz). 

(11.16) 

Keeping terms through ir2 and restoring the f,2/4 to obtain the Lagrangian, 

L = Tr ~$“li + $(L,, - R,)(L“ - R’) + f&ir(LM - R’) 
{ 

-ifz[R,,,L”]? - i8,,li[LP+ R”,ii] - (R,,,li](L“,7i]}. (11.17) 

The first term of Eq. (11.17) is just the kinetic energy of the technipions. 
The second term gives mass to the vectors as we see from 

L - R, = gW, . T + g’B,Y/2 - g’B,,(Y/2 + T3) 

= s(T+W,+ + T-W;) + (gW+ - g’B)T,, (11.18) 

and 

z$$ Tr(T+W+ + T-W-)’ = F Tr 2T+T-W+W- 1 

=f,‘s2 4 w+w- - f,‘g’ 8 w:+Y2,. 

(11.19) 

Comparing with Eq. (2.1) we see that for our technicolor model with just one 
technifermion doublet to give the correct maas for the W we need f,, = v. 
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Moreover, the calculation of the 2 mass 

5 Tr(gWs - g’B)“Ti = $(gw3 - g’B)2 

(11.20) 

yields the standard relation: n$/m$ = g’/(g’ + gR) = cos’ 0~. 

The term with &ir(L” -R’) d’ pl y h IS a s ow the W and 2 eat the appropriate 
Goldstone bosons. From Eq. (I 1.18) we see that the charged Ws eat the charged 

technipions and the 2 eats the neutral one. The term involving 8,,ii(L“ + R“, fr] 
would seem to give the couplings of the W, Z, and photon to technipion pairs. 
The only problem is that in our simple model there are only three technipions 
and all of them are eaten. This coupling then is simply part of the trilinear 
gauge boson coupling after the spontaneous symmetry breaking. If we want a 
model with real technipions, we need to start with more technifcrmions. 

A logical choice is to take a full generation of technifermions.[31] We have a 
U and D, each in three ordinary colors, and an E and N, each lacking ordinary 
color. In addition, all couple to the superstrong technicolor interactions. The 
original SU(8) x SU(S) global symmetry is broken by the technicolor c0ndensat.e 
to the vector SU(S). 

Each of the 63 generators of the broken SU(8) presents us with a Goldstone 
boson. Three of these are eaten by the W and Z. We can enumerate the 
Goldstone bosons as follows. There are technipions, which are &triplets, e.g., 
tin, EfJ. Since there are three colors, there are nine QQ technipions, of which 
one is colorless and eight are color-octet. There are t.hree colored Qx triplet,s and 
three colored &L triplets. In addition there is one Lz triplet. Altogether there 
are 16 &triplets, of which one must be eaten. Similarly, there are 16 isosinglet.s, 
except that the combination that is an SU(8) singlet is not a Goldst.one boson. 
In sum there are 16 x 3 + 15 = 63 Goldstone bosons, of which 3 are eaten. 

If we return to our formulas for the W and Z masses, Eqs. (11.19) and 
(11.20), we see that the trace extends over four isodoublets, the three colored 
techniquarks (U,D) and the colorless technileptons, (NJ). As a result, fw needs 
to be only half as large, v/2. 

Our goal is to calculate the tcchnicolor contribution to At- and thus to the 

W - Z mass splitting. Our general expression for Ar, from Eq. ( i .2), is 

s2 - 2 
Ar = -Hk(O) + $f;,(m;) + ---+;y&&) 

+“’ nzz(o) nw;(o) . s2 ( m2Z > (11.21) 
mW 

At this point we have to confess to a swindle. We have contended we can 
calculate the Hs just with dispersion relations. However, this cannot be com- 
pletely true since, for example we must have H,(O) = 0 because of conser- 
vation of the electromagnetic current. Similarly H&O) = 0. These relations 
do not follow from our dispersion relations, which are of course positive defi- 
nit.e and divergent for H,(O) and H&O). If we enforce these conditions, then 
Hzz(O) = (g/c)‘H&O). The final term in Eq. (11.21) is then proportional to 
H,(O) - H,,(O), that is, proportional to Ap. In our model with degenerate 
technimult.iplets this vanishes. Thus, writing z = sin’ Bw, we are left with 

l-z1 
+ 

Im nww(s) -_ 
. 

(11.22) 
z 7T s(s - m;) - s(s -m&) 1 

To evaluate this expression we need the partial widths of the virtual photon, 
!V, and Z into technipions. Let us begin by calculating the couplings of the 
gauge bosons to the technipions from the term 

Trd,,??[L“ + R“,?i] = Tr(L“ + R’)[ir,&%] ; (11.23) 

First we calculate 

L, + R, = gW,, . T -+- g’B,(Ta -I- Y) 

= $T+W; + T-W;) + :(Ta - 2sQ)Z, + 2eQA,.(11.24) 

’ For simplicity, look at just the coupling of the photon. 

-2ieA,TrQ[ir,Pli] = -2ieA,Tra“%[Q,ii]’ . (11.25) 

Now commuting with Q just multiplies each component of the field by its charge. 
For some particular technipion, T, and its antiparticle K, taking into account 
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the normalization Tr T”T* = 6,, we get 

- ieQ,A,(a,cY‘?i; - ~c?‘n,) (11.26) 

where Q2 is the charge of X, in units of e. This is exactly what we expect from 
ordinary electrodynamics. Thus we infer that the coupling is just one-half of 
what we read from EJq. (11.24), so Z couples as 

(11.27) 

andW+as 

andyas 

2-p 
2Jz 

eQ. 

‘(11.28) 

(11.29) 

.4 coupling to a vector of the form 

~l/,(~~Plr~ - ajP?ri) 

gives a decay matrix element 

(11.30) 

M = a~. (p - p’) (11.31) 

where L is the polarization vector of the decaying particle. The angular average 
of the square of the matrix element is 

(11.32) 

and thus 
ll’p” 

lY(V + mr’) = 2 
6ns 

where the mass squared of the decaying vector particle is s and 

(11.33) 

pk = (s - 4m2)/4. (11.34) 

We assume that all the technipions in a single multiplet are degenerate, with 
mass m. Combining the above results we can find the partial widths for photon, 
Z, and W decay. Following [32] we consider technipion multiplets of isospin t and 
identify each member by its third component of isospin, ts and the multiplet’s 
hypercharge y. lhen forZ decay we have, writing sin’ 0~ = 2 

I 
r(z --( n(t,t,,Y),Ti(t,-t3,-Y)) = 

I 
&g [(l/2 - CT)13 - zy/2]2 . 

(11.35) 

Similarly 

l-tw+ + n(t,t3,Y),n(t,--t3+ 1,-Y)) = $$=[t(t + 1) - t3(t3+ l)] (11.36) 

and 

q-y + n(t,t,,y),~i(t,-t3,-y)) =g2& p3 +y/212. (11.37) 

If we sum these expressions over the elements of an isomultiplet, recognizing 
that the mean value of t$ is clearly one-third of T2 = t(l + l), we see that 

(11.38) 

r(w+ + WY),@, 4) = 

r(7 + ~,YUW-Y)) = 

g’&2f+1)[~+$]. 

(11.39) 

(11.40) 

These expressions are to be inserted into EIq. (11.22). Each integral extends from 
the threshold for the production of a pair of technipions, Sag = 4m2. For the 
upper limit we write A , ’ indicating a value above which our description in terms 
of technipions ought to be replaced by a description in terms bf techniquarks. 
This is entirely analogous to QCD where at very low energies e+e- annihilation 
must be viewed in terms of the few-pion final states, while at high energies it 
is viewed in terms of the underlying quarks. For the moment, let us ignore m’$ 
and m&. Then Eq. (11.22) yields the formula of Golden and Adall: 

Ar = gt(t + 1)(2t + 1) *’ ds 3 t.h 
6a2 3 I qmz 2P-T 
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g2 
= 96n2 

t(t + 1)(2t + 1) *n z 
3 4ms 

We shall return to an examination of the limitations of this expression, but 
for the presentlet’sjustestimate its value in the one-generation model described 
above. We follow Ref. [32] by letting A = 47ru, m = mu. Note that Fq. 
(11.41) assumes that the multiplets are not self-conjugate and must be divided 
by two for our 161=15 multiplets. With g2/8 = Gr&,/& = 0.0528 we find 
Ar = 0.0378 and from Eq. (7.13) 

6mw = -644 MeV. (11.42) 

This result [32] is in agreement with the value given by Lynn, Peskin, and Stuart. 
[34] Of course there is arbitrariness in the choice of the values for A and m, 
but nevertheless the shift is quite large and not supported by the existing data. 

12 More on Technicolor 

How can we make the technicolor result more precise? First notice that the 
shift in Ar (or mw) is intrinsically finite, despite the logarithm in Eq. (11.41). 
At high energies the theory is one of techniquarks and since we have a full 
generation of them, the theory is finite. In reality, then, the dispersion relations 
for the various Hs in the combinations we need would actually converge. We 
have simply used a model of non-interacting technipions whose couplings to the 
gauge particles are dictated by the underlying symmetry. How can we make a 
more reliable model? 

The approach of Peskin and Takeuchi [33] is to rely on data from &CD, 
that is low-energy meson physics, and scale it to simulate technicolor. Since 
the technicolor interactions conserve parity and isospin just like &CD, it is 
convenient to express the various currents in terms of vector and axial currents. 
We have the correspondence 

J+ = &W-A+), 

9 1 Jz = ; 5(V”-A+zVQ , [ I 

(12.1) 

(12.2) 

where V+ is the vector isospin raising current, VQ is the electroma etic current, 
and so on. If we use these expressions and again treat mz and m$ as small we 
can rewrite Fq. (11.22) as 

Ar = -g / $ [ImHvv(s) - ImIl,a(s)] 

where II”” = IIvJv,, etc. In obtaining Fq. (12.4) we assumed the technimulti- 
plets were each degenerate so that the average value of TsY vanishes. Restoring 
mz and mZw would induce some small corrections. 

In the model of the previous section only the decays of the vectors into a 
pair of technipions were considered. Since the V -+ PP decay goes only through 
the vector, as opposed to axial, coupling, we treated II, as being zero. Inserting 
the partial width for V + XK from Fq. (11.33), 

r = g’dJ3 
6ns 

(12.5) 

into Eq. (12.4) recovers Fq. (11.41) since summing over all possible technipion 
intermediate states introduces a factor CT: = t(t + 1)(2t + 1)/3. 

More generally we expect decays of the vector particles into multitechnip- 
ion states, analogous to the decays of vector mesons into multipion states. The 
implications of chiral symmetry for such decays was investigated in the classic 
work of Weinberg.[35] The situation here is closely related.[33] We can evalu- 
ate the contribution of vector (technirho) and axial (techni-Ai) states to Eq. 
(12.4) in a simple fashion. The amplitude for a gauge-vector V to decay into a 
technipion pair through a technirho is just 

M= w 
s - m; + ir,m, Spnd . (P - P’) 

w = 
s - rnz + iF,m, 

M 
vn 

where gv gives the direct p - V coupling. Thus 

2 I 
TV(S) = rP (S - rn$:+ r;m; 

= $6(s - ms) 

(12.6) 

(12.7) J-, = evQ (12.3) 

-25- 



. ._ : 

so for Im II”” the technirho contribution is 

ImlI vv = -*g,26(s - mZ,) . 

A similar formula applies to the axial-vector Al: 

(12.8) 

ImII.4.4 = -ngi,h(s - mX,) . 

Substituting in Eq. (12.4) we get a contribution to Ar of 

(12.10) 

This leaves us with the problem of determining the masses and couplings 
of the technirho and techni-Al. Such considerations would take us too far 
afield. An attractive approach [33] uses the Weinberg sum rules and the KSFR 
relation[36], both of which were developed for ordinary pion physics in the 1960s. 

13 Observables at 2 

After this long interlude on technicolor, let us return to the world of experimen- 
tal measurement. Experiments at LEP and SLC should give us data on Ftot, 
P,,/F~d, ALR, AFB, P(T), etc. Each is sensitive to mt,rnH, and new physics. It 
is worthwhile understanding how well we might measure some of these quantities 
and to what extent such measurements would actually test the standard model. 

Let us consider in particular the left-right asymmetry: 

A -C'L-bR 
LR- - 

aL+uR' 
(13.1) 

The left-right asymmetry is not a parity-violating effect. It receives con- 
tributions from the twophoton intermediate state. Setting that aside, we are 
interested in the amplitude from the 2 and from Z-photon interference. It 
is easiest to analyze the process by considering one helicity at a time. For 
eieft + ~~~~ the amplitude is proportional to 

Q?=QiJ QZeQt’ i 
S s-ms+irmz’ 

(13.2) 

where in the obvious notation Qp gives the coupling of the left-handed lectron 

to the Z, etc. In every instance we specify the helicity of the fermion inot the 
antifermion). The relative importance of the 2 relative to the photon is given 

(= l-ti-i?) 
( 

-1 
S 

(13.3) 

In terms of this variable we can calculate simply the cross sections for the four 
relevant processes. Like and opposite helicity combinations have characteristic 
angular dependences that reflect conservation of angular momentum: 

lM(eief --* f~ik)l~ a IQZ’QZ’ + EQ?Q?I’ 

x(1 + cos0)2, (13.4) 

IM(eteZ --t ~RJL)I' a IQFQT! + tQf?Q~‘12 
x(1 -co?@, (13.5) 

IM(eiet 4 ILJR)I~ 0: lQ’KQtJ + CQ~QfJ12 
x(1 - cos8)2, (13.6) 

IM(eiet + JR~L)~' = IQFQ’,I + tYQ~Q~‘l’ 

x(1 +cos8)2. (13.7) 

From these we can determine both the forward-backward and left-right 
asymmetries. In particular, near the Z peak, where the photon’s contribution 
can be ignored, we have 

3 
AFB = -’ 

Qfc’ _ Q?’ Qf” - Q;” 
4 &fez +&A” Q;” +Q;"' 

ALR = 
QF= _ Qg= 

QECl + Qf?= 

(13.8) 

(13.9) 

A careful evaluation of radiative corrections shows that we s 41 ould use an 
effective I = 0.235, which gives ALR = 0.12, AFB = 0.011. 

How well can these be measured? Measurement of the left-right asymme- 
try requires counting the number of observed events with left-handed electrons 
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N = 104 10s lo6 

6P/P = 0.05 0.023 0.009 0.006 
6P/P = 0.03 1 0.023 1 0.008 1 0.004 
6PIP = 0.01 I 0.022 I 0.007 I 0.003 I ’ I 

Table 13.1: Uncertainty in ALR from statistics and limitations in the accuracy of the 
determination of the polarization, P. The value of N is the number of observed 2s. 

Table 13.2: The uncertainty in sin’& obtained from the measurement of ALR using 
the results of Table 13.1. 

incident versus the number with right-handed electrons incident, assuming the 
integrated luminosity was the same for the two. Then if the degree of polariza- 
tion is P 

(13.10) 

Uncertainties are introduced in particular by statistical fluctuations and 
errors in the measurement of the polarization. These introduce an uncertainty 

in ALR 

(13.11) 

Taking as nominal values 

P2 2: 0.20; ALR = 0.12, (13.12) 

statistical error *o.d02 

systematic error due to uncertainty in mz f0.0015 
systematic error due to uncertainty in QED correction f0.002 
systematic error due to apparatus effects f0.001 

total f0.0035 

Table 13.3: Anticipated errors in measurement of the forward-backward asymmetry 
in the muon tinal state at LEP.[37] 

From Eqs. (13.8) and (13.9) we see that for a measurement of the forward- 
backward asymmetry with uncertainty AAFB to be equivalent to a measurement 
of the left-right asymmetry, we must have 

AAFB = @LRAALR 

= O.l8A&n, (13.13) 

so the anticipated LEP result would have the value of a left-right asymmetry 
measurement with AALR = 0.019, a result that could be achieved at SLC with 
somewhat more than 10,000 observed Zs. LEP itself might be able to obtain 
polarized beams and measure ALR with both high statistics and high preci- 
sion determination of the polarization, as discussed by Treille at this summer 
school.[38] 

we obtain the results shown in Tables 13.1 and 13.2. 

As a point of comparison, consider the capability of LEP in measuring the 
forward-backward asymmetry.[37] 
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14 Mixing with a New 2 

We have discussed the possible signatures for new physics through radiative 
corrections to the standard model, but a more direct manifestation would be 
the mixing of the Z of the regular with a massive one. It is not simply idle 
speculation to talk of extra Zs since the SU(3) x SU(2) x U( 1) model surely 
appears incomplete. Models with SO(10) or I?s as symmetries have additional 
neutral gauge bceons, which could mix with the ordinary Z. Of course, the 
most direct evidence for such a Z’ would be its direct observation. The Fermilab 
Tevatron is the best place to look right now and CDF would probably have found 
a Z’ with a mass less than about 400 GeV or so, the actual limit depending on 
the couplings of the new Z to the fermions. 

In analyzing the effect of a new Z at the Z peak it is important to keep in 
mind how the data are actually used. Typically the mass of the Z is interpreted 
by inferring a value for sin’&, but the relation used to do this is true only 
in the standard model with a single Z. As we shall see, this incorrect value of 
sin’&, as well as the mixing itself, both contribute to the shift of observables 
from the values predicted by the standard model. 

Let us define quite generally a mixing angle X  between the Zra from the 
standard model and the new Z, that gives the physical states: 

Zl =cosX Zl0 +sinX Z,, (14.1) 

Z2 = -sinX 2,s +cosX Z,. (14.2) 

The new Zs couple with new charges that are linear combinations of the 
charges to which the unmixed 2s coupled: 

Q{ =cosXQ{, -sinXQ&,, (14.3) 

Q{ =sinXQ{,, +cosXQ&. (14.4) 

Here Q{a is the standard neutral current charge: 

Q{. = sin ew:os ew (TiL - sin2 ~wQ-) . 

Because of the mixing, there is a mass shift, 

M; - Mf, x -X2(M& - Mf,), 

(14.5) 

(14.6) 

z -X2(M,2 - Mf). (14.7) 

Now having measured the physical Z mass we would deduce the wr-eng value 
of sin’& = 5~: 

ir=;(l-J7c$gy). (14.8) 

The correct value could only be deduced from the unmixed mass: 

xw=;(l-pfy;~~;~). (14.9) 

Thus there is an error in the deduced value of zw 

6 xw = xw-iw (14.10) 

x -x2. xw(l - xw) M; -M: 
I-2xw --g-' 

It is conventional to take as the parameters of mixing the mass of the heav- 
ier Z and the mixing angle X. I find that this is really not the most convenient 
approach. Taking 61~ and X  as the two parameters for the mixing has some 
advantages over the standard choice of M,2 and X. The deviations in the observ- 
able quantities in e+e- annihilation at the Z are linear in 6xw and X, so each 
measurement yields a linear band as an allowed region in the 61~ - X  plane. In 
addition, the allowed range will turn out to be a finite portion of the plane. The 
curves of fixed hfi are parabolas and it is not hard to read the value of Mz from 
the plot. 

As an example of a model with extra Zs let us consider Es., [39, 40, 411 
One possible scheme involves a twostage breaking, 

E6 -+ SO(10) x U(l)+, 

SO( 10) --+ 9J(5) x U(l),, (14.12) 

that provides two potential Zs, Z+ and Z,, one for each U(1) factor. String 
theory suggests that a particular linear combination, Z, is the lighter of the two 
new physical Zs. The couplings of Z,, are related to those of Zx a&d Z, by 

Q, = -@QG + @Qx. (14.13) 
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The U(l)s that are associated with the new Zs both commute with SU(5) 
so the new charges of all the fermions in a single representation of SU(5) are 
identical. Explicitly 

Qdei,et,auL,..) = J5_/72 x (e/cosO~~), (14.14) 

QX(u~,&.e~,%,) = --J1/24 x (e/cos&), (14.15) 

Qx(e~,vL,&,) = 3&x (e/cosOw), (14.16) 

Qv(uL,&,ei,%,) = -(I/3) x (e/-=x&), (14.17) 

Q,dei,w.,&) = (l/6) x (e/m&). (14.18) 

If we restrict ourselves to measurements at the peak of the Z and ignore 
the purely photonic background (the interference term vanishes at the peak of 
the Z since the Z amplitude is purely imaginary while the photonic amplitude 
is purely real) all observables can be expressed in terms of partial widths to final 
states with fermions of specified helicities. Let us then determine the effect of 
Z mixing on each of these partial widths. 

The real partial width is given by 

(14.19) 

while the width inferred from the measured Z mass and the standard model is 

(14.20) 

with Q{c evaluated using 5~. in place of .rw. To first order in 6x~ and A, 

6rJ -= 
rJ 

rJ - FJ = x aIn&{ 

rJ 
- + 62w!g$, 

ax 
(14.21) 

E -2XqJ + 6X1(iTJ, (14.22) 

where 

(14.23) 

Table 14.1: Values of the weak neutral charge Q{c,, branching ratios in the standard 
model, and the coefficients rf for the various fermions, f. 

is the ratio of the new Z charge to the old Z charge, and 

rJ = -1+ 2xw ‘JQ!n, 
~(1 - xw) - T,:, - xwQim ’ 

(14.24) 

This latter quantity gives the importance of the shift in the apparent sin’ 0~ 
and does not depend on the couplings of the new Z. Its values fcr the various 
fermions are given in Table 14.1. The effects of the new Z coupling; are reflected 
in the coefficients qJ, shown in Table 14.2. 

The total width is given by 

r = 3(r,- + r,+ + ry + rd + r,) + 2(r, + rt). (14.25) 

It is simple to see that the deviation in the total width, that is, the difference 
between the standard model expectation based on the measured value of the Z 
mass, and the correct value is given by 

sr r-F -=- = 
r r 

-2A [3(q=F + q’+Be++ q”B” + q%IfP + qW) 

+2(q”B” + qw’)] 

+6x,y [3(r=B’- + r-c+ Be+ + rYBY + rdBd + r W) 
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q{ q; s,’ 
e- -1.12 -0.48 -0.30 
e+ 0.42 -0.54 0.69 I ! I 
" 1 0.59 1 0.26 1 0.16 

u I -0.29 I 0.37 I -0.47 

I 
ij 1 -3.8 1 -1.63 1 -1.03 

Table 14.2: Values of the ratio qJ = Q&/Q{, of the neutral weak charges for Z,, Z*, 
and 2, for the various fermions, f. 

+2(r"B" +m’)] . 
(14.26) 

From Tables 14.1 and 14.2 we find for the three cases of Z,, Z.+, and Z, respec- 
tively, 

E = -2x 
r (14.27) 

From the data reviewed in Section 2 we see that the total width is known 
to about 1%. Supposing that we have perfect accord with theory, there is a 
constraint on X  and 6xw: 

I 1 - 3.976xw < 0.01. (14.28) It follows that the deviation of the asymmetry is given by : 

In Figures 14.1, 14.2, and 14.3 wm e show the constraints from the total width 

measurement on the Z,, Z+, and Z,. 

As discussed in Section 12, the left-right asymmetry is given by 

OL-CR ALR = -. 
ffL-+‘JR 

(14.29) 

0.01 - 

I 

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 
-6X, 

Figure 14.1: The 6zw - X  plane showing the region that would be allowed by a 
measurement of R, to 1% (between the dotted lines), by a measurement of ALR to 
*0.025 (between the dashed lines) or to 0.003 (between the inner dashed lines), and 
a measurement of the total width to 1% (to the left of the dot-dash line) for the 2,. 
From outside to inside, the parabolas indicate Mz= 200 GeV, 400 GeV, and 600 GeV. 

This asymmetry depends only on the couplings of the 2 to the electron and 
clearly is given by 

A _ r,- - r,+ 
LR - re- + r.+ ’ 

__ = ALR-ALR ~ALR 
ALR ALR 

= -2++(~+-) 

(14.30) 
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Figure 14.2: The 6rw - X plane showing the region that would be allowed by a Figure 14.3: The 6rw - X plane showing the region that would be allowed by a 
measurement of R, to 1% (between the dotted lines), by a measurement of ALR to measurement of R, to 1% (to the left of the dotted line), by a measurement of ALR to 
*to.025 (to the left of the right dashed line) or to 0.003 (to the left of the left dashed f0.025 (below the upper dashed line) or to 0.003 (between the indicated 
lines), and a measurement of the total width to 1% (to the left of the dot-dash line) dashed lines), and a measurement of the total width to 1% (to the left of the dot-dash 
for the 2,. From outside to inside, the parabolas indicate L’s= 200 GeV, 400 GeV, line) for the 2,. From outside to inside, the parabolas indicate ML!= 200 GeV, 400 
and 600 GeV. GeV. and 600 GeV. 

= -2Bef;:;c+* [-2X(qe+ - qc-) + Sm(re+ - F)] (14.31) 

Using Tables 14.1 and 14.2 for Z,, Z,, and Z,, 

z=-4.122[-2A{ -O~~~)+&w(l6.l)] . (14.32) 

-0.02 
0.0000 0.0005 0.0010 0.00 15 0.0020 0.0025 0.0030 

The constraint from measurement of ALR to ~ALR = 0.025 gives 

The measurement of R, = r,/ r,,,,d = k?,,/Bbd provides an independent 
test of the standard model. The deviation in R, is 
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I (14.34) 

Here I’” represents the partial width for Z + uL&. The coefficients 2 and 3 
arise from the number of generations that contribute. Using the values in Tables 
14.1 and 14.2, 

6R, = -2x 
-0.39 

R, i i 
-0.43 + 6xw(-5.74). 

0.10 
(14.35) 

Constraining this by a 1% measurement gives the band 

IfA ( ‘;;;; ) + 6rn-i-5.74)1 < 0.01. (14.36) 

All of these results are displayed in Figures 14.1, 14.2, and 14.3. 

In models where there are extra Zs but no extra Ws the W mass is inde- 
pendent of the Z mixing angle. Since the Z mass is always constrained to be 
its measured value, the Z mixing then has the effect of shifting the mass of the 
W. Since the W mass is inversely proportional to xw for fixed G,P 

6xw 26mw -=-- 
xw mw 

(14.37) 

Recent results from CDF and UA2 were reviewed by Froidevaux who cited 

1421 

mw CDF 
= 0.8775 f 0.0047 zt 0.0021, 

mz 
rnWU.42 - = 0.8831 zt 0.0048 f 0.0026, 
mz 

from which he concluded, perhaps a bit optimistically, 

mw = 80.07 f 0.22 GeV. 

(14.38) 

(14.39) 

(14.40) 

This provides a constraint -6s < 0.0013. In addition CDF wi 1 set an 
explicit constraint of approximately I 

m.p < 400 GeV, (14.41) 

though careful analysis would set different limit for each type of Z’. 

Referring to Figures 14.1, 14.2, and 14.3 we see that these are powerful 
constraints indeed. For example, consider Z,,. Here the measurements of R, 
and ILor provide no new limitations after the results from the hadron colliders 
are imposed. On the other hand, a high precision measurement of ALR with 
6&n would significantly restrict the region in the X - 62~ plane. 
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15 Summary 

High statistics, high precision measurements at the Z are a primary means of 
searching for deviations from the standard electroweak model. To date no such 
deviations have been found, nor have any signs of the the much-awaited Higgs 
boson been seen. Improved data will lead to more and more restrictions on 
hypothetical models such as technicolor and multiple Zs. Of particular interest 
is the measurement of the left-right asymmetry using polarized electron beams. 
Complementary information from hadron colliders can provide lower limits for 
extra Zs and measure accurately the msss difference between the W  and the Z. 

The analysis of these data call for careful work on radiative corrections. 
The initial state radiative corrections can be understood quite easily and sim- 
ple analytic expressions exist that are rather accurate. The true electroweak 
corrections are more complex, but they are dominated by corrections to the 
propagators of the gauge bosons. These can be pictured easily by considering 
the imaginary parts, which correspond to physical decays of the gauge bosons 
(albeit of variable mass), and then obtaining the real parts using dispersion re- 
lations. This not only provides a convenient conceptual framework, but allows 
the consideration of strong interactions, like those of technicolor. 

To test the standard model it is necessary to pose an alternative. A  partic- 
ularly interesting alternative is furnished by adding an extra Z that mixes with 
the Z of the standard model. Aside from the couplings of the new Z, there are 
two parameters to consider, a mixing angle X  and the mass of the heavier Z. 
The mixing leads to a shift in the mass of the lighter Z and a consequent shift 
in the value of sin’&. It is easier to analyze data using as the parameters X  
and this shift, 62~. Each experiment at the Z yields an allowed linear band in 
the X  - 62~ plane. Already the data severly restrict this class of models for Zs 
that arise from I& theories. 
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