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Abstract

The BABAR experiment at SLAC provides an opportunity for measurement
of CP violation in B decays. A measurement of time-dependent CP violat-
ing asymmetries using exclusive B meson decays where the b quark decays
to cc̄d (including B0 → D∗+D∗− and B0 → D∗±D∓ decays) is presented
here. This is the first measurement of CP violation in a mode sensitive to
the Unitarity Triangle parameter sin2β outside of decays containing charmo-
nium. It provides a comparison to measurements of sin2β using b → cc̄s,
and permits an observation into potential new physics sources of CP vio-
lation, such as supersymmetry, via differences between these measurements
and those of B0 → J/ψK0

S
as statistics of reconstructed neutral B decays to

D(∗)+D(∗)− increase. The measured value of the time-dependent CP violating
asymmetries are:

S = 0.38± 0.88(stat)± 0.12(syst)

C = −0.30± 0.50(stat)± 0.13(syst)

for B0 → D∗−D+,

S = −0.43± 1.41(stat)± 0.23(syst)

C = 0.53± 0.74(stat)± 0.15(syst)

for B0 → D∗+D−, and

S = −0.05± 0.45(stat)± 0.05(syst)

C = 0.12± 0.30(stat)± 0.05(syst)

for B0 → D∗+D∗−, where S corresponds to CP violation in the interference
of mixing and decay and C corresponds to CP violation in decay.





“thy fearful Symmetry”

— Blake

“All you can write is what you see.”

— W. Guthrie
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Introduction

The history of CP violation is one of experimental discovery overturning
untested assumption. Observation of the θ − τ puzzle in the early 1950s
marks the inception of the discovery of the symmetry-violating properties of
the weak interaction. Two spin-zero particles of the same mass and lifetime
(now known to be charged kaons) were found to decay into different final
states of opposite parity, one to two pions and the other to three, seemingly
violating parity conservation. In 1956, Lee and Yang showed that parity con-
servation, while well-tested in strong and electromagnetic interactions, was
not experimentally constrained for weak interactions, and proposed a list of
experimental tests [1]. Shortly thereafter, C.S. Wu and collaborators per-
formed one of these experiments, and showed that parity was not conserved
in nuclear β decay, conclusively demonstrating the uniqueness of the weak
interaction among the forces [2].1 However, the combined CP transformation
was still widely assumed to be a symmetry of nature due to the difficulty of
explaining the weak interaction without it. The discovery eight years later of
CP violation in neutral K mesons by Christenson, Cronin, Fitch and Turlay
provided the basis for both far-reaching insight (the Kobayashi-Maskawa pre-
diction of a third family of quarks and leptons, a year before even the charm
quark was discovered, and 4 years before the b) as well as uncertainty about
the nature of this asymmetry that last to this day [3, 4].

Before 1964, no one realistically expected CP symmetry to be violated.
Accomodating CP violating involves a significant increase in the complexity
of weak interaction theory that was just not motivated at the time, as only
the first 3 quarks had been discovered at that point. Fitch later remarked
that “not many of our colleagues would have given credit for studying CP
violation, but we did so anyway” [5]. The beam that was used contained pure

1Note however that parity conservation is still poorly experimentally constrained in
gravity.
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Figure 1: Plan view of the Fitch-
Cronin experimental setup.

K0
2 (= K0

L
) mesons. A two-arm spec-

trometer was used in order to detect
the decay products. After two months
of data taking, a significant peak was
indeed observed for a π+π− decay of
the K0

2 . If mass eigenstates and CP
eigenstates were equivalent, K0

2 would
be the purely CP -odd (and slightly
heavier) counterpart to the CP -even
K0

1 (= K0
S
). But the π+π− final state

is CP -even, thus the (presumably) CP -
odd K0

2 should not be able to decay
into it unless CP were violated.

Fitch and Cronin observed a significant peak for a π+π−-hypothesis decay
at the K0

2 mass, consisting of 45± 9 two-pion events out of a total of 22,700
K0

2 decays. Although the experiment did result in a slowly increasing accep-
tance in the physics community that CP was violated, immediately following
the measurement strong disbelief did exist. Alternative explanations were
proposed, including regeneration of K0

1 , a non-bosonic version of the pion as
the actual decay product, and violation of exponential decay laws. These al-
ternatives were at least as unpleasant for theory as the violation of CP itself,
and successive experiments refuted their possibility, eventually eliminating
all but the Kobayashi-Maskawa quark mixing picture as the description of
Cronin and Fitch’s results.

Thirty-seven years of experimental study of the kaon sector after CP vio-
lation was discovered has yielded only recently the observation of direct CP
violation, and has merely helped to confirm the counterintuitive picture of
a small complex coefficient in a 3 x 3 unitary matrix as the source of the
CP asymmetry. The smallness of CP violating effects in the kaon system is
an impediment to progress in that sector, although the potential remains for
measurements of the decays K+ → π+νν̄ and K0

L
→ π0νν̄, which directly

probe the imaginary part of the coefficient. The present and future lie in
B decays, which, as shown last year by BABAR and Belle, exhibit signifi-
cant CP asymmetries, as is predicted by the Standard Model. However, the
predictions of the Standard Model regarding CP have yet to be fully exam-
ined experimentally, and, as seen above, one cannot take untested ideas for
granted. Many well-motivated theoretical extensions of the Standard Model
produce strikingly different predictions for CP violation; and the manifest
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baryon asymmetry of the universe poses great difficulty for reconciliation
with the small amount of CP violation predicted by the Standard Model.
Such tests are the primary purpose of the BABAR experiment — the goal is
to either confirm or refute the Standard Model picture of CP violation.

Chapter 1 attempts to elucidate the Standard Model predictions for CP
violation, and the ways, and reasons to expect, that such predictions may
be disproven. Chapter 2 explains the details of the BABAR experiment, and,
along with an overview of each of the detector subsystems, details contribu-
tions to the drift chamber (DCH) and to tracking software which were done
by me (although I do not enjoy the necessity of defining personal contribu-
tions, the reality of the large collaboration forces one to detail what is one’s
own personal work as well as explaining the combined work of a very large
group of physicists), which include determining the precise time sychroniza-
tion of events, to drift chamber final assembly and contributions to detector
commissioning. Chapter 3 contains the analysis of branching fractions for
B0 → D∗+D∗−, B0 → D∗±D∓, and B± → D∗±D∗0, the latter two modes of
which, as well as the initial discovery at BABAR of the first, are my analysis
work. Chapter 4 contains the measurement of the time-dependent asymme-
tries in B0 → D∗+D∗− and B0 → D∗±D∓, of which B0 → D∗±D∓ is my
measurement. And Appendix C contains documentation on a kink-finder for
BABAR which was a software contribution of my own.

The experimental study of CP violation within the framework of the
Kobayashi-Maskawa quark mixing picture has proceeded for the past four
decades. This thesis investigates the possibility of CP violation beyond those
predictions. It inaugurates a new measurement sensitive to CP violation at
mass scales higher than we can currently probe directly; and thus begins a
new chapter in the quest for why the universe is made of matter.

3



Chapter 1

CP Violation in the B Meson
System

1.1 Overview of CP Violation

1.1.1 Discrete Symmetries

The set of operators on the Hilbert space of state functions on the quantum
field contains both discrete and continuous transformations that preserve
the Minkowski interval t2 − x2. The set of continuous transformations that
preserve this interval are the familiar Lorentz transformations, comprised
of the product space of rotations, translations, and Lorentz boosts. The
three independent discrete transformations that also preserve t2 − x2 are
the charge conjugation operator (C), the parity operator (P ), and the time-
reversal operator (T ). These form a complete set of discrete Minkowski
interval-preserving transformations of the Hilbert space. Although other
discrete interval-preserving transformations exist in the Standard Model, all
can be formed from C, P , T , and the group of continuous Lorentz and
gauge rotations.1 The action of the three discrete transformations on, as an
example, the special case of a spin 1/2 (Dirac) field, is discussed below.

1For example, consider the set of discrete transformations Mn̂, which take the mir-
ror image of space with respect to a plane defined by a unit vector n̂. This is simply
parity combined with a rotation of π about n̂. Minimal supersymmetry adds a single in-
dependent Lorentz-invariant transformation (R-parity), of which the symmetry is broken
at observable energy levels, producing mass differences.

4



Parity

The parity operator P reverses the signs of the 3 spatial elements of a four-
vector: (t,x) → (t,−x) and (E,p) → (E,−p). One can easily visualize
parity as a mirror-image plus an 180-degree rotation normal to the plane of
the mirror (which works for any mirror angle) — this reverses the momentum
of a particle but leaves its spin unchanged:

180-degree

rotation

mirror

Consider the action of parity on the particle and antiparticle annihilation
operators of the Dirac field asp and bsp. Parity should transform the states
asp|0〉 and bsp|0〉 to as−p|0〉 and bs−p|0〉 as shown in the picture above. This

implies

PaspP−1 = ηaa
s−p and PaspP−1 = ηbb

s−p (1.1)

where ηa and ηb are phases. Since P2 = 1 ⇒ ηa, ηb must equal ±1
(the parity group, as with the other two discrete operators, is idempotent,
ie. P−1 = P, so the equation above could just as easily have been written
PaspP, etc.) ηa, ηb must equal ±1. To find the matrix representation of P
and the phases ηa and ηb, consider the action of P on φ(x). Decomposing φ
into eigenstates of spin and momentum gives:

Pφ(x)P−1 =
1√
2Ep

∫
d3p

(2π)3
∑
s

(
ηaa

s−pu
s(p)e−ipx + η∗b b

s†
−pv

s(p)eipx
)

(1.2)

The key is to change variables to (not surprisingly) p′ = (p0,−p) ⇒
p ·x = p′ · (t,−x) and p′ ·σ (where σ is the four-vector of 2x2 Pauli matrices)
= p · σ†γ0 (where γ0 is the 0-th Dirac matrix2) = p · σ̄, where

σ̄ ≡ σ†γ0 (1.3)

5



Thus the four-spinors u(p) and v(p) can be written as:

u(p) =

( √
p · σς√
p · σ̄ς

)
=

( √
p′ · σ̄ς√
p′ · σς

)
= γ0u(p′)

v(p) =

( √
p · σς

−√
p · σ̄ς

)
=

( √
p′ · σ̄ς

−
√
p′ · σς

)
= −γ0v(p′) (1.4)

where ς is a generic two-component spinor. Thus (1.2) can be written as:

Pφ(x)P−1 =
1√
2Ep′

∫
d3p′

(2π)3
∑
s

(
ηaa

s

p′γ0us(p′)e−ip
′·(t,−x)

− η∗b b
s†
p′γ0vs(p′)eip

′·(t,−x)

)
(1.5)

But,

φ(t,−x) =
1√
2Ep′

∫
d3p′

(2π)3
∑
s

(
as
p′us(p′)e−ip

′·(t,−x)

+ bs†
p′vs(p′)eip

′·(t,−x)

)
(1.6)

⇒ ηa = 1, ηb = −1, and

Pφ(t,x)P−1 = γ0φ(t,−x) (1.7)

Now all that remains to be done is to see how the field bilinears (scalar,
vector, tensor, pseudo-vector, pseudo-scalar) transform under parity.

Scalar The scalar bilinear, which can be represented as φ̄φ, transforms as:

Pφ̄φP−1 = Pφ̄P−1PφP−1 = (Pφ†P−1)γ0γ0(φ(t,−x)) =

(PφP−1)†(φ(t,−x)) = φ(t,−x)†γ0φ(t,−x) =

+φ̄(t,−x)φ(t,−x) (1.8)

thus, scalar quantities have “positive parity.”
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Pseudoscalar Pseudoscalars may be represened as iφ̄γ5φ, and transform
as:

Piφ̄γ5φP−1 = iPφ̄P−1γ5PφP−1 = i(Pφ†P−1)γ0γ5γ0(φ(t,−x)) =

−i(PφP−1)†γ5(φ(t,−x)) = −iφ̄(t,−x)γ5φ(t,−x) (1.9)

Pseudoscalars pick up an extra minus sign when undergoing parity trans-
formation and thus have “negative parity.”

Vector Vectors, which can be represented as φ̄γµφ, transform as:

Pφ̄γµφP−1 = Pφ̄P−1γµPφP−1 =

(Pφ†P−1)γ0γµγ0(φ(t,−x)) = φ̄(t,−x)γµφ(t,−x) (1.10)

Vectors thus have their spatial components sign-flipped, in the same man-
ner as the spacetime four-vector itself.

Pseudovector Pseudovectors (axial vectors), which can be represented as
φ̄γµγ5φ, transform as:

Pφ̄γµγ5φP−1 = Pφ̄P−1γµγ5PφP−1 =

(Pφ†P−1)γ0γµγ5γ0(φ(t,−x)) = −φ̄(t,−x)γµγ
5φ(t,−x) (1.11)

Pseudovectors have their time component sign-flipped, with the spatial
components unchanged. Like pseudoscalars, they pick up an extra minus
sign relative to their non-pseudo counterparts.

Tensor Tensors can be represented as φ̄[γµ, γν ]φ and transform as:

Pφ̄γµγνφP−1 − Pφ̄γνγµφP−1 =

(Pφ†P−1)γ0γµγνγ0(φ(t,−x))− (Pφ†P−1)γ0γνγµγ0(φ(t,−x))

Since γ0 anticommutes with all γ matrices except itself, the matrix of
sign-changes can be summarized as
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


1 −1 −1 −1
−1 1 1 1
−1 1 1 1
−1 1 1 1


 (1.12)

and thus

Pφ̄[γµ, γν ]φP−1 = φ̄(t,−x)[γµ, γν ]φ(t,−x) (1.13)

Derivative Operator It is also useful to note how the derivative op-
erator ∂µ transforms under parity — as spatial coordinates change sign,
(∂/∂t, ∂/∂x, ∂/∂y, ∂/∂z) → (∂/∂t,−∂/∂x,−∂/∂y,−∂/∂z) ⇒

P∂µ = ∂µP (1.14)

Time Reversal

The time reversal operator reverses momentum and spin and also flips the
sign of the time component of a state. Therefore we want the transformation
of the Dirac particle and antiparticle annihilation operators to be:

T aspT −1 = η′aa
−s−p and T bspT −1 = η′bb

−s−p (1.15)

We can start to compute the transformation of the fermion field φ:

T φ(t,x)T −1 =
1√
2Ep

∫
d3p

(2π)3
∑
s

T
(
aspu

s(p)e−ipx + bs†pv
s(p)eipx

)
T −1

(1.16)

T

8



However, if T were to only act on the operators a and b, the situation
would be the same as with parity and the spatial coordinates would flip sign
instead of time (also the operators would reverse spin but not the spinors,
which would be an unphysical nonlinearity). T therefore must act on more
than just the operators.

The solution is to let T act on complex numbers in addition to operators.
Let

T z = z∗T ∀zεC (1.17)

Thus (1.16) becomes

1√
2Ep

∫
d3p

(2π)3
∑
s

(
η′∗a a

−s−p(u
s(p))∗eipx + η′∗b b

−s†
−p(v

s(p))∗e−ipx
)

(1.18)

We need to find a constant matrix M such that Mu−s(p′) = (us(p))∗

(and similarly for vs(p)) — then we can change variables to p′ and (−t,x) so
that we can obtain an answer for the action of the transformation in terms
of φ(−t,x).

We can see that:

(us(p))∗ =

( √
p · σ∗ςs∗√
p · σ̄∗ςs∗

)
=

(
σ2 0
0 σ2

)(
σ2 0
0 σ2

)( √
p · σ∗ςs∗√
p · σ̄∗ςs∗

)
=

−γ1γ3
(

−iσ2
√
p · σ∗ςs∗

−iσ2
√
p · σ̄∗ςs∗

)
(1.19)

and can then use the identity

σ2
√
p · σ∗ =

√
p′ · σ σ2 (1.20)

and the fact that

−iσ2ςs∗ =

(
0 1
−1 0

)(
ς1∗

ς2∗

)
=

(
ς2∗

−ς1∗

)
= ς−s (1.21)

to obtain for (1.19):
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−γ1γ3
( √

p′ · σ(−iσ2ςs∗)√
p′ · σ̄(−iσ2ςs∗)

)
= −γ1γ3

( √
p′ · σς−s√
p′ · σ̄ς−s

)
= −γ1γ3u−s(p′)

(1.22)
and similarly for (vs(p))∗. Thus (1.18) becomes

−γ1γ3
1√
2Ep′

∫
d3p′

(2π)3
∑
s

(
η′∗a a

−s
p′us(p′)e−ip

′·(−t,x)

+ η′∗b b
−s†
p′ vs(p′)eip

′·(−t,x)

)
⇒

T φ(t,x)T −1 = −γ1γ3φ(−t,x) (1.23)

Scalar The scalar bilinear φ̄φ transforms as:

T φ̄φT −1 = T φ†T −1γ0T φT −1 = −(T φT −1)†γ0γ1γ3(φ(−t,x)) =

−φ†(−t,x)γ1γ3γ0γ1γ3(φ(−t,x)) = −φ̄(−t,x)γ1γ3γ1γ3φ(−t,x) =

+φ̄(−t,x)φ(−t,x) (1.24)

Pseudoscalar The pseudoscalar transforms as:

T iφ̄γ5φT −1 = −iT φ†T −1γ0γ5T φT −1 = iφ̄(−t,x)γ1γ3γ5γ1γ3φ(−t,x) =

iφ̄(−t,x)γ5γ1γ3γ1γ3φ(−t,x) = −iφ̄(−t,x)φ(−t,x) (1.25)

Vector The vector transforms as:

T φ̄γµφT −1 = T φ†T −1γ0γµ∗T φT −1 = −φ̄(−t,x)γ1γ3γµ∗γ1γ3φ(−t,x) =

−φ̄(−t,x)γµγ
1γ3γ1γ3φ(−t,x) = φ̄(−t,x)γµφ(−t,x) (1.26)

Pseudovector The pseudovector transforms as:

T φ̄γµγ5φT −1 = T φ†T −1γ0γµ∗γ5T φT −1 = −φ̄(−t,x)γ1γ3γµ∗γ5γ1γ3φ(−t,x) =

−φ̄(−t,x)γµγ
5γ1γ3γ1γ3φ(−t,x) = φ̄(−t,x)γµγ

5φ(−t,x) (1.27)
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Tensor Tensors transform as:

T iφ̄[γµ, γν ]φT −1 = −φ̄(−t,x)γ1γ3(γµγν − γνγµ)∗γ1γ3φ(−t,x) =

φ̄(−t,x)[γµ, γν ]γ
1γ3γ1γ3φ(−t,x) = −φ̄(−t,x)[γµ, γν]φ(−t,x) (1.28)

Derivative Operator Time reversal negates the time component, so:

T ∂µT −1 = −∂µ (1.29)

Charge Conjugation

The charge conjugation operator is defined to be the transformation of a
particle into its antiparticle without changing momentum or spin. Thus,

CaspC−1 = η′′ab
s
p and CbspC−1 = η′′b a

s
p (1.30)

so the transformation of the Dirac field is

Cφ(x)C−1 =
1√
2Ep

∫ d3p

(2π)3
∑
s

(
bspu

s(p)e−ipx + as†pv
s(p)eipx

)
(1.31)

We want to find what this is in terms of φ̄ = φ†γ0, so we need a relation
between us(p) and vs∗(p), and between vs(p) and us∗(p):

us∗(p) =

( √
p · σ∗ςs∗√
p · σ̄∗ςs∗

)
=

( √
p · σ∗ςs∗√
p · σ̄∗ςs∗

)
=

(
i
√
p · σ∗σ2ς−s

i
√
p · σ̄∗σ2ς−s

)
(1.32)

However, from the identity (1.20) we can see that:

√
p · σ∗σ2 = σ2

√
p · σ̄ and

√
p · σ̄∗σ2 = σ2

√
p · σ (1.33)

Thus,

us∗(p) =

(
iσ2

√
p · σ̄ς−s

iσ2
√
p · σς−s

)
=

(
0 −iσ2

iσ2 0

)( √
p · σς−s

−√
p · σ̄ς−s

)
= −iγ2vs(p).

(1.34)
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Similarly, vs∗(p) = −iγ2us(p), so (1.31) becomes:

Cφ(x)C−1 =
1√
2Ep

∫
d3p

(2π)3
∑
s

(
iγ2bspv

s∗(p)e−ipx + iγ2as†pu
s∗(p)eipx

)

= iγ2φ∗(x) = i(φ̄γ0γ2)T (1.35)

Scalar
Cφ̄(x)C−1 = (Cφ(x)C−1)†γ0 = −i(γ0γ2φ(x))T (1.36)

Therefore,

Cφ̄(x)φ(x)C−1 = (φ̄γ0γ2γ0γ2φ)T

= −(φ̄γ2γ0γ0γ2φ)T = +(φ̄(x)φ(x))T

= +φ̄(x)φ(x) (1.37)

Pseudoscalar

iCφ̄(x)γ5φ(x)C−1 = i(φ̄γ0γ2γ5γ0γ2φ)T

= i(φ̄γ5γ0γ2γ0γ2φ)T = i(φ̄γ5φ)T

= +iφ̄(x)γ5φ(x) (1.38)

Vector

Cφ̄(x)γµφ(x)C−1 = (φ̄γ0γ2γµγ0γ2φ)T

=

{
(φ̄γµφ)T for µ = 1 or 3
−(φ̄γµφ)T for µ = 0 or 2

(1.39)

= −φ̄γµφ (since γ1 and γ3 are antisymmetric)

Pseudovector

Cφ̄(x)γµγ5φ(x)C−1 = (φ̄γ0γ2γµγ5γ0γ2φ)T

=

{
(φ̄γµγ5φ)T for µ = 1 or 3
−(φ̄γµγ5φ)T for µ = 0 or 2

(1.40)

= +φ̄γµγ5φ (since γ0γ5 and γ2γ5 are antisymmetric)
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Tensor

iCφ̄[γµ, γν ]φC−1 = i(φ̄γ0γ2[γµ, γν ]γ0γ2φ)T

=

{
i(φ̄[γµ, γν ]φ)T for µ+ ν = 2n
−i(φ̄[γµ, γν]φ)T for µ+ ν = 2n+ 1

(1.41)

= −iφ̄[γµ, γν ]φ ([γµ, γν ], where µ+ ν = 2n, is antisymmetric)

Derivative Operator The derivative operator is clearly unaffected by
charge conjugation

C∂µC−1 = ∂µ (1.42)

CPT

The combination CPT operator has a rather special property: it is guaran-
teed to be a fundamental symmetry of nature, with only the basic assump-
tions of Lorentz invariance, locality, and the spin-statistics relation.2 A proof
for the restricted case of the Dirac field follows.

As shown in the previous pages, and summarized in the table below,
scalars, pseudoscalars, vectors, pseudovectors, and tensors are affected by
the discrete symmetries as follows:

The Lagrangian L is a Lorentz scalar, and as we can see above, any
contraction of indices to form a Lorentz scalar must result in an eigenstate
with a +1 CPT eigenvalue.

1.1.2 CP

The CP transformation properties of the fermion field bilinears are listed
in the column next to CPT . As we can see, if we restrict our attention
to scalars, pseudoscalars, vectors, and the derivative operator, a Lagrangian
formed from only such quantities must remain CP -invariant. Thus a massless
spin 1/2 field with real coupling constants cannot violate CP . This is in fact
true for quantum fields of any spin. Charge conjugation ensures that the
fields themselves transform to their Hermitian conjugates (we have seen this
above for the special case of spin 1/2). However, particle masses and coupling

2Note that the spin-statistics relation itself is implied from Lorentz invariance, positive
energies, positive norms, and causality.
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C P T CP CPT
Scalar +1 +1 +1 +1 +1

Pseudoscalar +1 -1 -1 -1 +1

Vector −1




+1
−1
−1
−1







+1
−1
−1
−1







−1
+1
+1
+1


 −1

Pseudovector +1




−1
+1
+1
+1







+1
−1
−1
−1







−1
+1
+1
+1


 −1

Tensor −1




+1−1−1−1
−1+1+1+1
−1+1+1+1
−1+1+1+1







−1+1+1+1
+1−1−1−1
+1−1−1−1
+1−1−1−1







−1+1+1+1
+1−1−1−1
+1−1−1−1
+1−1−1−1


 +1

Derivative
Operator

+1




+1
−1
−1
−1







−1
+1
+1
+1







+1
−1
−1
−1


 −1

constants do not transform under CP (as complex numbers such as these are
only transformed by, of the discrete operators, T , as seen previously). If any
of these quantities is not purely real, it will suffer a phase shift relative to
the quantities that are transformed by CP , thus potentially violating CP
symmetry.

Such phase differences must be robust against gauge modifications in
order to manifest themselves as CP violation. If simple redefinitions of the
phases of any of the fields can remove overall phases in each field coupling, the
theory remains CP -conserving. As will be shown in Section 1.4, if only two
fermion generations are present, such a redefinition always exists, hence the
Kobayashi-Maskawa prediction of a third generation. The effect of irreducible
CP -violating phases will be elucidated in the following sections.

14



1.2 Mixing and Time Evolution of Neutral

Mesons

The four pairs of conjugate neutral mesons that decay weakly, K0, D0, B0,
and Bs, can each mix with their respective antiparticle via a pair of box
diagrams:

D0 : b, s, d
others : t, c, u

W+ W−

D0 : b̄, s̄, d̄
others : t̄, c̄, ū

q2

q̄1

q1

q̄2

W+

D0 : b, s, d
others : t, c, u

W−

D0 : b̄, s̄, d̄
others : t̄, c̄, ū

q2

q̄1

q1

q̄2

Figure 1.1: The two main mixing diagrams

The ability to mix implies that the flavor eigenstates may not be equiva-
lent to the mass eigenstates; the observed presence of mixing (into conjugate
flavor-specific decays) implies that the mass and flavor eigenstates are in fact
different.

Lack of CP symmetry implies a third set of eigenstates, CP eigenstates,
which can differ from the mass and flavor eigenstates, as will be seen below.

1.2.1 Mixing of a “Generic” Neutral Meson

Consider a weakly-decaying neutral meson X0 (which could be any of K0,
D0, B0, or Bs). An arbitrary linear combination of the flavor eigenstates

α|X0〉+ β|X̄0〉 (1.43)

mixes according to the time-dependent Schrödinger equation

i
∂

∂t

(
α
β

)
= H

(
α
β

)
≡
(

m11 − 1
2
iγ11 m12 − 1

2
iγ12

m21 − 1
2
iγ21 m22 − 1

2
iγ22

)(
α
β

)
(1.44)

The m and γ parts represent the mixing and decay parts, respectively, of
the time dependence. Each of the off-diagonal elements can be complex: the
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angle in the complex plane of m12 represents the phase of the mixing, and
γ12 represents the (complex) coupling to common decay modes of X

0 and X̄0

(for example, B0/B̄0 → J/ψK0
S or π+π−). We can see that CPT invariance

guarantees that m11 = m22 and γ11 = γ22, and that m21 = m∗
12 and γ21 = γ∗

12

— the CPT -conjugate pairs of equations are:

i
∂α

∂t
= (m11 −

1

2
iγ11)α + (m12 −

1

2
iγ12)β

i
∂β

∂t
= (m21 −

1

2
iγ21)α + (m22 −

1

2
iγ22)β and (1.45)

i
∂β

∂t
= (m11 −

1

2
iγ11)β + (m∗

12 −
1

2
iγ∗

12)α

i
∂α

∂t
= (m∗

21 −
1

2
iγ∗

21)β + (m22 −
1

2
iγ22)α (1.46)

which must be equivalent. Thus, setting m11 and m22 to m and γ11 and
γ22 to γ, we have:

i
∂

∂t

(
α
β

)
=

(
m− 1

2
iγ m12 − 1

2
iγ12

m∗
12 − 1

2
iγ∗

12 m− 1
2
iγ

)(
α
β

)
(1.47)

The mass eigenstates are the eigenvectors of the Hamiltonian:

|XL〉 = p|X0〉+ q|X̄0〉
|XH〉 = p|X0〉 − q|X̄0〉 (1.48)

where |XL〉 and |XH〉 are the lighter and heavier mass eigenstates,

q =

√√√√m∗
12 − 1

2
iγ∗

12

m12 − 1
2
iγ12

p (1.49)

and |p|2 + |q|2 = 1. (1.50)

The difference in the magnitude of q/p from 1 is reponsible for CP -
violation that is purely due to mixing — this will be discussed in section
1.3.2. The mass difference ∆m = mH − mL and decay width difference
∆Γ = ΓH − ΓL can also be obtained by diagonalizing the “mixing matrix”
shown in Eqn. 1.44. Let
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α = |m12|2 −
1

4
|γ12|2, β = Re(m12γ

∗
12) (1.51)

Then,

∆m =
√
2α− 2

√
α2 − β2 and (1.52)

∆Γ = 4β/∆m (1.53)

An initially pure |X0〉 state will, therefore, time evolve as a superposition
of the mass eigenstates |XL〉 and |XH〉. Equation 1.49 may thus also be
expressed as

q =

(
∆m− i

2
∆Γ

2(m12 − 1
2
iγ12)

)
p (1.54)

1.2.2 The Neutral K System

Mixing between the two neutral K weak eigenstates K0 and K̄0 was first
predicted in 1955 by Gell-Mann and Pais [7]. The two physical states, |K1〉 =
1√
2
(K0 + K̄0) and |K2〉 = 1√

2
(K0 + K̄0), would thus be CP eigenstates with

eigenvalues +1 and −1. The dominant decay of neutral K mesons is π+π−,
due to helicity constraints and the fact the 3-body phase space is strongly
suppressed at these mass scales (due to the well-known (∆m)5 scaling rule).
However, π+π− is itself a CP eigenstate with eigenvalue +1. Thus, if CP
were exactly conserved, only the |K1〉 physical state could decay into it.

The limited phase space to decays other than π+π− forces the lifetime of
the eigenstate with opposite CP , K2, to be far larger (3 orders of magnitude)
than the lifetime of the K1, thus the nomenclature K0

S and K0
L (for short

and long lifetimes) is used. The lifetime difference is very convenient since it
allows for simple experimental separation of the two physical states.

In 1964, Fitch and Cronin made their discovery that K0
L can in fact de-

cay into π+π− with a branching fraction of 2× 10−3 (see the Introduction).
Since CP is thus not strictly conserved, the general formalism detailed in the
previous subsection must be used. Thus we have

|KS〉 = p|K0〉+ q|K̄0〉
|KL〉 = p|K0〉 − q|K̄0〉 (1.55)
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where p and q are commonly parametrized as:

p =
1 + ε√

2(1 + |ε|2)
; q =

1− ε√
2(1 + |ε|2)

(1.56)

The real part of ε is a measure of CP violation purely in mixing whereas
the imaginary part is a measure of CP violation in the interference between
mixing and decay (see the following section). The former is simplest to
measure experimentally and was the effect seen in the orginal 1964 discovery.
Since, in the K system, ∆Γ is of the same order as ∆m, these effects are of
similar magnitude, quite unlike the neutral B system, where the latter is far
more prevalent.

1.2.3 The Neutral B System

In the case of neutral B mesons, in contrast with the neutral K system, the
lifetime difference ∆Γ between the two mass eigenstates is small compared
with the mixing frequency due to the difference in masses ∆m. This differ-
ence in behavior of the K and B is due to the larger mass of the B meson
and thus far greater phase space for flavor-specific decays in the B system,
which dominate the partial width (in contrast to the K system) and give
equivalent contributions (by CPT symmetry) to the width of both neutral
B eigenstates. The resulting lack of decay suppression of either eigenstate
implies nearly equivalent lifetimes.

Due to this simplification in formalism, the time evolution of neutral B
mesons which are initially created (at time t = 0) as pure flavor eigenstates
can be written as:

|B0
phys(t)〉 = f+(t)|B0〉+ (q/p)f−(t)|B0〉 (1.57)

|B0
phys(t)〉 = f+(t)|B0〉+ (q/p)f−(t)|B0〉 (1.58)

where
f+(t) = e−imte−Γt/2 cos(∆mt/2) (1.59)

f−(t) = e−imte−Γt/2i sin(∆mt/2) (1.60)

This approximation holds up to the condition that

∆Γ � ∆m (1.61)

18



Since ∆Γ = O(10−3)∆m in the B system (∆ΓBd
is as yet unmeasured, but

this is generally considered to be a safe and model-independent assumption[6]),
corrections to it are not considered in CP asymmetry measurements with the
current statistics (furthermore, BABAR will have the capability of measuring
∆Γ as statistics of reconstructed B decays increase).

1.3 Three Types of CP Violation

Three types of CP violation can potentially be observed at B physics exper-
iments:3 1) CP violation in decay (often referred to as direct CP violation):
this occurs when multiple amplitudes with different weak phases as well as
different strong phases contribute to a given final state, the result is visible
as differing magnitude of the amplitude to a decay versus its CP conjugate;
2) CP violation purely in mixing: this occurs when the mass eigenstates of a
neutral meson are different from the CP eigenstates; 3) CP violation in the
interference between decays of mixed and unmixed mesons: this occurs for
decays which are common to a neutral meson and its antiparticle.

1.3.1 CP Violation in Decay (Direct CP Violation)

Direct CP violation manifests itself as a difference in the magnitude of the
amplitude to a given decay as compared with its CP conjugate, thus resulting
in differing rates to the two elements of the CP conjugate pair. It can occur
for both neutral and charged decays.4 Amplitudes from B0 and B0 to a final
state and its CP conjugate may be written as

Af =
∑
i

Aie
i(φi+δi) and Āf̄ = ηf

∑
i

Aie
i(−φi+δi) (1.62)

where ηf is the CP eigenvalue (multiplied by a convention-dependent phase)
if f is a CP eigenstate, φ are the weak phases, and δ are the strong phases.
CP violation can only occur when the different weak phase contributions
also have different strong phases (or else a simple rotation can remove the
strong phase and thus the ratio would clearly have unit magnitude). It can
also only occur when weak phases are nontrivial, i.e. when there exists a

3There can be other manifestations of CP violation, e.g. CP violation in interaction,
however observable CP violation at B-factories can all be classified into the 3 categories.

4For charged decays, it is the only potential manifestation of CP violation.
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relative phase between them (that is therefore irreducibe by a rotation of
the Lagrangian). Only when both different weak phases and different strong
phases are present can one have the condition:

|Āf̄/Af | �= 1 (1.63)

This is CP violation in decay. CP violation in decay has been observed in the
kaon system (via ε′K/εK measurements) but not yet in the B system. Since
the strong phases that enter into measurements of CP violation in decay
involve hadronic uncertainties, the relation of such measurements to CKM
factors (see next section) cannot be calculated from first principles, but the
strong phases may themselves be measured if the CKM factors are known
from other measurements. These strong phase measurements can then be
used as inputs to other measurements which have equivalent strong phases
(thus allowing the extraction of other parameters), and thus measurements of
CP violation in decay can (indirectly) provide a useful handle on fundamental
quantities.

1.3.2 CP Violation Purely in Mixing

From section 1.2.1, recall that the mass eigenstates of the neutral meson
system are the eigenvectors of the Hamiltonian

|XL〉 = p|X0〉+ q|X̄0〉
|XH〉 = p|X0〉 − q|X̄0〉 (1.64)

where

q =

√√√√m∗
12 − 1

2
iγ∗

12

m12 − 1
2
iγ12

p (1.65)

If q and p have different magnitudes, the CP conjugates of the mass eigen-
states clearly will differ from the mass eigenstates themselves by more than
a trivial phase. Thus the mass eigenstates will not be CP eigenstates and
CP violation will be manifest. CP violation from

|q/p| �= 1 (1.66)

is purely an effect of mixing and is independent of decay mode. Thus it may
be referred to as CP violation purely in mixing.
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In neutral B decays, as discussed in section 1.2.2, this effect is expected
to be very small. Since

∆m = O(103)∆Γ (1.67)

this implies that
|m12| � |γ12| (1.68)

and thus the factor in equation 1.54 simplifies to a near-phase. CP violation
purely in mixing should thus only enter the neutralB system at the 10−3 level.
An asymmetry in the measurements of the overall rate to flavor tagged B0

vs. B0 would be a signature of CP violation purely in mixing. With greater
statistics, evidence for this may be seen; at present, experimental limits exist.
It has been clearly observed, however, in the neutral kaon system (where it
is the prevalent effect); the discovery of CP violation in 1964 was a detection
of CP violation purely in mixing (see Section 1.2.2).

1.3.3 CP Violation in Interference Between Decays of
Mixed and Unmixed Mesons

Final states which may be reached from either B0 or B0 decays can exhibit
a third type of CP violation, which results from the interference between the
decays of mixed and of unmixed neutral B mesons which both decay to the
final state. Consider the CP -violating asymmetry in rates between B0 and
B0 as a function of time:

aCP (t) =
Γ(B0

phys(t) → f)− Γ(B̄0
phys(t) → f)

Γ(B0
phys(t) → f) + Γ(B̄0

phys(t) → f)
(1.69)

To calculate each of the time-dependent rates Γ(t), one can form the inner
product of equations 1.55 and 1.56 with the final state f and then take the
magnitude squared of the resulting amplitudes:

Γ(B0(t) → f) ∝

|〈f |H|B0(t)〉|2 = e−Γt
{
cos2

(
∆mt

2

)
|〈f |H|B0〉|2

+sin2
(
∆mt

2

) ∣∣∣∣∣qp
∣∣∣∣∣
2

|〈f |H|B0〉|2 (1.70a)
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− i

2

∣∣∣∣∣qp
∣∣∣∣∣ e−2iφM sin(∆mt)〈f |H|B0〉〈f |H|B0〉∗

+
i

2

∣∣∣∣∣qp
∣∣∣∣∣ e2iφM sin(∆mt)〈f |H|B0〉∗〈f |H|B0〉

}

Γ(B0(t) → f) ∝

|〈f |H|B0(t)〉|2 = e−Γt
{
cos2

(
∆mt

2

)
|〈f |H|B0〉|2

+sin2
(
∆mt

2

) ∣∣∣∣∣pq
∣∣∣∣∣
2

|〈f |H|B0〉|2 (1.70b)

+
i

2

∣∣∣∣∣pq
∣∣∣∣∣ e−2iφM sin(∆mt)〈f |H|B0〉〈f |H|B0〉∗

− i

2

∣∣∣∣∣pq
∣∣∣∣∣ e2iφM sin(∆mt)〈f |H|B0〉∗〈f |H|B0〉

}

where 2φM is the phase of q/p. Since, as shown above, for the B system
|q/p| ≈ 1, we can thus write

〈f |H|B0(t)〉 = ηe−2iφD |λ|〈f |H|B0(t)〉 (71)

where φD is the phase of the decay, η is the CP eigenvalue of f , and

λ =
q

p

〈f |H|B0〉
〈f |H|B0〉 = |λ|e−2i(φM+φD), (72)

the expressions simplify greatly:

|〈f |H|B0(t)〉|2 = A2e−Γt{1−C cos(∆mt)− S sin(∆mt)} and (73)

|〈f |H|B0(t)〉|2 = A2e−Γt{1 +C cos(∆mt) + S sin(∆mt)} (74)

where A2 = |〈f |H|B0〉|2 and

C =
1− |λ|2
1 + |λ|2 and S = η

−2 sin(2(φM + φD))

1 + |λ|2 (75)

Thus the time-dependent asymmetry
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aCP (t) =
Γ(B0

phys(t) → f)− Γ(B̄0
phys(t) → f)

Γ(B0
phys(t) → f) + Γ(B̄0

phys(t) → f)
= C cos(∆mt) + S sin(∆mt)

(76)

In the absence of CP violation, S and C must both go to zero, since they
occur only when weak phases do not cancel. C is only nonzero when the ratio
of the amplitude norms differs from unity, which is the signature of direct CP
violation (detailed in section 1.3.1). S, however, represents a distinct type
of CP violation that can occur even in the absence of CP violation purely in
decay or in mixing. It results from the interference of the decays of mixed
mesons with those of unmixed mesons; if the mixing contains a phase that is
not cancelled by the decay itself, this observable time-dependent asymmetry
above will result. Unlike CP violation in decay, no nontrivial strong phases
are required.

As will be seen in the next section, CP violation in interference between
decays of mixed and unmixed mesons is a large effect in the Standard Model
picture of the neutral B system. Since this is a measurement of an asymmetry
rather than an absolute rate, many experimental and model-dependent un-
certainties (such as reconstruction efficiency) that would otherwise contribute
to experimental error, instead cancel out in the ratio. Thus it provides an ex-
cellent mechanism for precision measurements of CP violation and the study
of the Standard Model picture of CPV.

1.4 CP Violation in the Standard Model

CP violation within the context of the Standard Model SU(2) × U(1) elec-
troweak symmetry was introduced by Kobayashi and Maskawa in 1973 via
the postulation of a third family of quarks. This occurred a year prior to the
discovery of charm; only 3 quarks existed at the time, so the prediction was
quite prescient. The b-quark was then first observed in 1977. The prediction
of additional quarks did not occur entirely without precedent, however. The-
oretical interpretation of quark mixing via the weak interaction has closely
followed experimental result, and the development of the 3 x 3 CKM matrix
and its CP violating phase was a steady and piecewise process.
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1.4.1 Weak Interactions and the CKM Matrix

The observed suppression of flavor-changing neutral current decays indicates
that the quark sector is separated into families, similar to the lepton sector.
However, lepton flavor is conserved,5 whereas quark generation is manifestly
violated (e.g. in weak decays of kaons). However, strangeness-changing de-
cays have an additional suppression compared with strangeness-conserving
weak decays. This “Cabbibo factor” may be accounted for by considering
that, similar to neutral mesons, the quark mass eigenstates differ from the
weak eigenstates. Thus a mixing matrix describing transitions between quark
generations is necessary.

Such a matrix must be unitary since quark number is manifestly con-
served.6 With 2 generations, a unitary matrix can be described by a single
parameter Θc: (

dmass

smass

)
=

(
cosΘc sinΘc

− sinΘc cosΘc

)(
d
s

)
(77)

where dmass and smass are the mass eigenstates nearest to the flavor eigen-
states d and s respectively.

The same matrix (experimentally) holds for the (u, c) quark pair (al-
though the c quark was of course discovered afterwards in 1974, four years
after its prediction via the GIM mechanism that required charm to explain
the absence of weak flavor-changing neutral currents[10]). The Cabbibo angle
Θc is thus a full description of 2-generation mixing.

More generally, we can write the charged-current coupling jcc with 2 gen-
erations as

jµcc =
(
ū c̄

)
γµ(1− γ5)

(
dmass

smass

)
=
(
ū c̄

)
γµ(1− γ5)Vij

(
d
s

)
(78)

where Vij is the 2 x 2 Cabbibo matrix parametrized by Θc above. With
an arbitrary number of generations, the charged current (W±) Lagrangian
becomes:

LW =
g√
2

{
ūLi γ

µW+
µ Vijd

L
j + d̄Li γ

µW−
µ V ∗

iju
L
j

}
(79)

5Discounting, for the purposes of this document, recently discovered neutrino oscilla-
tions and thus lepton mixing.

6in contrast with the number of neutral mesons
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with uLi representing the vector of up-type quarks and dLi representing the
down-type quarks. Applying the CP operation to the Lagrangian, one ob-
tains:

LW =
g√
2

{
d̄Li γ

µW−
µ Viju

L
j + ūLi γ

µW+
µ V ∗

ijd
L
j

}
(80)

which is exactly the same except for the complex conjugation of V . Thus, if
we can find a basis for which V (as well as the quark masses) are real, then
CP is a symmetry.

Unitary matrices of dimension N form a group, the Lie group SO(N).
Elements of SO(N) may be specified by N2− 2N +1 real parameters. With
2 quark generations, V is defined by a single real parameter, the Cabbibo
angle Θc. However, with 3 quark generations, 4 parameters are required.
The real rotations may be taken to be the 3 Euler angles, but this leaves an
extra parameter. The extra parameter is an irreducible complex phase. If
this phase is nonzero, one can no longer find a basis for which V is real. Thus
CP would cease to be a symmetry, and indeed that is the case in nature.

1.4.2 Unitarity Conditions and the Unitarity Triangle

Unitarity of the CKM matrix V requires that

V †V = VV † = 1 ⇒
∑
j

V ∗
jiVjk =

∑
j

VijV
∗
kj = δik (81)

With a 3-generation CKM matrix

V =


 Vud Vus Vub

Vcd Vcs Vcb
Vtd Vts Vtb


 (82)

this results in 9 independent equations, 3 of which (for the diagonal of the
product unit matrix) equal one and 6 of which equal zero. The equations
for the off-diagnonal elements, each containing a sum of 3 complex numbers
which equals 0, will each describe a triangle in the complex plane:

VcdV
∗
ud + VcsV

∗
us + VcbV

∗
ub = 0 (1.83a)

VcdV
∗
td + VcsV

∗
ts + VcbV

∗
tb = 0 (1.83b)

VudV
∗
td + VusV

∗
ts + VubV

∗
tb = 0 (1.83c)
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V ∗
usVud + V ∗

csVcd + V ∗
tsVtd = 0 (1.83d)

V ∗
ubVus + V ∗

cbVcs + V ∗
tbVts = 0 (1.83e)

V ∗
ubVud + V ∗

cbVcd + V ∗
tbVtd = 0 (1.83f)

The differences between these 6 triangles are purely empirical. There is no
theoretical motivation at present for the fact that 4 of them are nearly de-
generate and only 2 describe triangles that have each of their sides being
the same order of magnitude in length — the 4 parameters that describe
the CKM matrix are not predicted by the Standard Model and can only
be determined experimentally. It is emprically the case that only equations
1.83c and 1.83f above describe triangles which are not nearly degenerate. Of
these, the last equation, 1.83f, is the one that is typically used to pictorially
represent the irreducible CP violating phase and is referred to as the Unitar-
ity Triangle.

The empirical fact that 4 of the triangles are nearly degenerate allows for
a convenient parametrization of the CKM matrix via an expansion around
the order parameter λ ≡ Θc(= 0.2205± 0.0018).7 This approximate param-
eterization, first proposed by Wolfenstein, is

V =




1− λ2

2
λ Aλ3(ρ− iη)

−λ 1− λ2

2
Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


+O(λ4) (84)

with (λ,A, ρ, η) as the 4 real parameters describing the CKM matrix, the
latter 3 being of order 1. ρ and η then describe the x and y position of the
upper vertex of the Unitarity Triangle, as shown in Figure 1.2.

1.4.3 Measurement of CKM Parameters Using the B

System

The time-dependent asymmetry parameter

λ =
q

p

Āf

Af
= |λ|e−2i(φM+φD) (85)

7Note that this Cabbibo parameter λ ≡ Θc differs from the time-dependent asymmetry
parameter λ detailed in Section 1.3.3.
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Figure 1.2: The Unitarity Triangle: In the B system, angles are measureable
via time-dependent asymmetries in the modes listed, sides are measureable
via semileptonic branching fractions and mixing frequency (with some theo-
retical error in the CKM extraction).

(see also Section 1.3.3 [eqn. 72]) is of course dependent on the CKM matrix
elements involved in the decay. In the case of B0 → J/ψK0

S
, the quark

subprocess is b → cc̄s, which is dominated by a color-suppressed tree diagram
(see Figure 1.3). B0 decays to J/ψ K0 whereas B0 decays to J/ψ K0. Before
the effects of K − K̄ mixing, one has

ĀB0→J/ψK0

AB0→J/ψK0

=
VcbV

∗
cs

V ∗
cbVcs

. (86)

K−K̄ mixing is necessary for interference to occur between B0 and B0, since
otherwise B0 → K0 and B0 → K̄0 and there would be no shared final state.
Thus this neutral kaon mixing adds another phase factor:
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Figure 1.3: The B0 → J/ψK0
S

decay diagram.

W

d̄

b

d̄

c

c̄

d

Vcb

V ∗
cd

Figure 1.4: The tree diagram
for B0 → D(∗)+D(∗)−.

(
p

q

)
K

=
VcsV

∗
cd

V ∗
csVcd

(87)

and the q
p
factor from B − B̄ mixing is also needed:

(
q

p

)
B

=
V ∗
tbVtd

VtbV ∗
td

(88)

so that

λ(B0 → J/ψK0
S) = −

(
V ∗
tbVtd

VtbV ∗
td

)(
VcbV

∗
cs

V ∗
cbVcs

)(
VcsV

∗
cd

V ∗
csVcd

)

⇒ Im(λJ/ψK0
S
) = sin2β (89)

where β is the angle of the Unitarity Triangle. The minus sign is due to -1
CP eigenvalue of the J/ψ K0

S
final state.

Decays with quark subprocess b → cc̄d proceed similarly (see Figure 1.4),
although here there is a penguin contribution to the final state with a different
weak phase which cannot be completely neglected. The tree contribution
gives

λ(B0 → D(∗)+D(∗)−)tree =

(
V ∗
tbVtd

VtbV ∗
td

)(
V ∗
cdVcb

VcdV ∗
cb

)

⇒ Im(λD(∗)+D(∗)−)tree = − sin2β (90)
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Figure 1.5: Experimental contraints on the Unitarity Triangle from measure-
ments other than CP violating asymmetries in the B system. Ranges cor-
respond to bounds from theoretical models; the errors for these constraints
are dominated by theory.

since the CP eigenvalue of D+ D− is +1. Penguin contributions to the time-
dependent asymmetry in B0 → D(∗)+D(∗)−, as well as the angular analysis
which is necessary for the vector-vector final stateD∗+ D∗−, will be discussed
in Chapter 4. Other decays probe other angles of the Unitarity Triangle; for
example the time-dependent asymmetry in the tree contribution to B0 →
π+π− measures sin2α.

A priori predicted values of time dependent CP violating asymmetries in
modes such as B0 → J/ψK0

S , B
0 → D(∗)+D(∗)−, and B0 → π+π− can only

be known via measurements sensitive to ρ and η (see Figure 1.5), which are
very poorly constrained without such time dependent measurements from B
decays. Hadronic uncertainties dominate the errors for other measurements
of CP -violating CKM parameters such as Vub and Vtd. However, within the
context of theoretical models of the strong interaction, constraints can be
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made on the (ρ, η) plane to bound an expected region where the asymmetries
should lie. Figure 1.5 shows the constraints from semileptonic branching
fraction ratios (|Vub/Vcb|), CP asymmetries in the K system (εK), B

0
d mixing

(χd), and limits on B0
s mixing (χs). The bounds of this region, however, are

large and are dominated by theoretical model uncertainties rather than on
the experimental precision of the measurements.

1.5 Potential Beyond-Standard-Model Effects

on CP Violation

The observed baryon asymmetry of the universe poses great difficulty for rec-
oncilation with a purely Standard Model picture of CP violation. Although
cosmological model-dependence does play a role in calculations of asymmet-
ric baryogenesis, recent calculations show that the amount of CP violation
predicted by Unitarity Triangle constraints is approximately 12 orders of
magnitude below what is required to achieve the observed baryon asymme-
try. Although there is a distinct possibility that the CP violation necessary
to achieve consistency with observation lies at energies above what can be
probed at BABAR, several well-motivated models, such as supersymmetry,
predict extra CP violating phases that can potentially be examined indi-
rectly through virtual loop-mediated processes. Alternative models which
have other favorable features, such as explanations for the mass hierarchy
of the quark and lepton sectors, can also predict observable differences from
the Standard Model in the nature of CP violation. Thus it is important to
test and constrain the Standard Model predictions for CP violation via tests
that are sensitive to predictions from alternative models.

1.5.1 CP Violation and Cosmology

Sakharov showed in 1967 that 3 conditions are necessary for baryon asym-
metry to devlop from an initially symmetric state [11]:

1. Baryon number must not be conserved.

2. There must be a departure from thermal equilibrium, i.e. the char-
acteristic rate of cooling must be greater than the rate of the baryon
number-violating process.
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3. There must be CP violation (and C violation).

As shown in 1985 by Kuzmin, Rubakov, and Shaposhnikov, the first two
conditions can be satisfied through the electroweak phase transition [12].
To satisfy condition 2, departure from thermal equilibrium may be effected
by a first-order phase transition shockwave at the surface walls of expand-
ing bubbles of low-temperature broken electroweak SU(2) gauge symmetry
as the universe cools below the phase transition. To satisfy condition 1,
baryon number may be violated at temperatures above the phase transition
by spontaneous production of baryon-lepton pairs via the (very counterin-
tuitive) Adler-Bell-Jackiw anomaly in the axial vector vertex coupling, as
shown by t’Hooft in 1976 [13, 14, 15].8 The interior of the expanding bub-
bles then freezes in this asymmetry via exponential suppression of the baryon
number-violating A-B-J current anomaly.

However, that whole very interesting process still requires a handedness to
break the symmetry between particle and antiparticle behavior. CP violation
provides this handedness and thus a favorable direction for the baryon num-
ber asymmetry to develop. CP violation is also accessible purely within the
Standard Model and thus (qualitatively, at least) no new physics beyond the
Standard Model is required to satisfy all 3 of the Sakharov conditions. Things
are, however, not quite so simple as that: there is not enough CP violation
within the Standard Model, according to the above mechanism, to generate
the observed baryon number / entropy ratio in the universe. Observable CP
violation due to a complex phase in the CKM matrix is moderated by the
λ3 Cabbibo suppression, which reduces the maximal amount of CP violation
in weak decays by λ6 ≈ 10−4. On top of that there is the suppression of the
weak interaction itself, which contributes a factor of G2

F ≈ 10−10. After all is
considered, the CKM picture of CP violation is too inefficient by a factor of
∼ 1012 to produce observed baryon asymmetries. Furthermore, Gavela et al.
have shown that the mechanism of any possible CP violating extension to
the Standard Model must operate above the electroweak phase transition in
order to avoid a thermally-stabilizing loss of quantum coherence within the
expanding phase transition bubble wall [16].

Thus we need an extension to the Standard Model to provide us with
more CP violation in order to agree with observed baryon asymmetry. Two

8Note that this high-temperature baryon number violation is entirely within the context
of the Standard Model—no beyond standard model physics is required.
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such candidates9 are supersymmetry and multiple Higgs-doublet models.

1.5.2 Supersymmetry andMultiple Higgs-Doublet Mod-
els

Supersymmetry can contribute additional CP violation via the addition of
additional phases φAi

(where i runs over families) and φB to complement
the Standard Model phases δKM (= γ in the Unitarity Triangle) and ΘQCD

(≈ 0).10 Tight constraints on φAi
and φB occur from measurements of the

electric dipole moment of the neutron as well as from measurement of εK .
The small values of dN and εK constrain the values of these supersymmetric
phases.

Although these two constraints on supersymmetric CP violation are re-
ferred to as the “supersymmetric CP problem” and the “supersymmetric εK
problem,” it is well-known that many classes of supersymmetric models ac-
count for the smallness of these phases at experimental energies in relatively
natural ways. For example, if ΛS, the scale at which the soft supersymmetry-
breaking terms are generated (≈ the mass of the lightest supersymmetric par-
ticle) is much less than ΛF , the scale at which flavor dynamics takes place
(≈ the masses of the gluinos), then both supersymmetric CP problems are
solved. If ΛS ≈ ΛF , one can still accommodate the smallness of the φ phases
in models which contain horizontal symmetries (a horizontal symmetry is
a symmetry which commutes with the Standard Model symmetries) if, for
example, CP is a symmetry of the Lagrangian that is spontanously broken
by the gauge field coupling that breaks the horizontal symmetry. Such mod-
els will, fortunately, potentially have observable consequences for physics at
BABAR.

The supersymmetric contribution to flavor-changing neutral current am-
plitudes and phases can be large in such models. This will tend to intro-
duce significant differences in the CP asymmetries which are prodicted to be
nearly equal, such as, for example, in B0 → J/ψK0

S and in B0 → D(∗)+D(∗)−.
Comparison of the CP asymmetries in these decays presents a significant
constraint on the parameters (and sensibility) of such models. Although de-
viations from Standard Model predictions for rates of FCNC processes have
so far not been found, phases remain a completely open question, and the

9which are not mutually exclusive
10the fact that ΘQCD is zero or close to zero is the well-known “strong CP problem”
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comparison of CP violating asymmetries in these decays provides significant
information.

In Multi-Higgs-Doublet Models (MHDM) with nHiggs doublets, there are
2(n − 1) charged and 2n − 1 neutral scalars that remain after spontaneous
symmetry breaking. These form an extended Higgs sector and can affect the
couplings to weak vector bosons. The dominant effects would be in penguin
decays (due to the fact that the Yukawa couplings of the scalars to tree-
level decays are negligible)and could potentially affect both rates and CP
asymmetries in b → sγ, B0 → φK0

S
, and B0 → D(∗)+D(∗)−. The rates are

constrained, but the phases in these modes are completely unmeasured.
In summary, there is ample evidence from cosmology that CP -violating

processes that the Standard Model cannot accommodate are needed, and
natural extensions to the SM that can potentially accomodate it have been
proposed. The CP asymmetries in B0 → D(∗)+D(∗)− provide a sensitive
test of these models, especially when compared with CP asymmetries in
B0 → J/ψK0

S , which should be nearly equivalent in the SM, but can differ
in SUSY and MHDM models.
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Chapter 2

The BABAR Detector

2.1 Overview — B-Factories

Exploring CP violation in the B system and its potential impact on the
Standard Model, baryogenesis, and cosmology, requires copious production
of B mesons, accurate measurement of the B flight time and flavor, and
reasonably low background for reconstruction. There are several potential
options for experiments which can fulfill these criteria:

1. Hadron colliders (
(−)
pp ): The cross section for BB production at TeV

hadron colliders is very high compared with e+e− B factories, approx-
imately 100 µb vs. 1.2 nb. This large advantage does compete with
several disadvantages, however. Hadronic collisions have far more back-
ground, making reconstruction of final states which do not contain a
J/ψ very challenging. Purely hadronic final states with non-negligible
background in e+e− colliders at the Υ (4S), such as D(∗)+D(∗)− or π0π0,
may be extremely difficult at a hadronic collider and it is not clear
that it will be possible to reconstruct such decays. Nevertheless, these
experiments do have a statistical advantage and also have the potential
for observing CP violation in the Bs system, which is beyond the reach
of Υ (4S) experiments. Two are currently under construction, BTeV at
Fermilab and LHC-b at CERN.

2. Fixed target proton beam experiments: Fixed-target experiments also
offer the potential of a higher rate of B production, but have even
greater levels of backgrounds, superimposed interactions, and boost
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which compresses all tracks in a small solid angle. A significant ef-
fort was undertaken at DESY to build such an experiment, HERA-B,
which, after years of construction, ended in what may be described as
unmitigated failure. The high backgrounds prevented reconstruction
of even a statistically significant J/ψ K0

S
signal.

3. e+e− colliders at the Z-pole: The Z-pole presents a relatively clean en-
vironment for B-physics with a relatively large cross section (∼ 6 nb).
However, the luminosities achieved at this energy are low, the only
two colliders in the world which can reach it, LEP and SLD, are both
dismantled, and the cost of building new experiments at this energy
prevents this from being a viable option.

4. Symmetric and asymmetric e+e− B-factories: The Υ (4S) resonance pro-
vides a very clean environment for B reconstruction. Asymmetric e+

and e− beams provide a boost to the B meson pair that is produced,
allowing for reconstruction of B flavor as a function of flight time
through the separation of the B vertices in the lab frame, ∆z. Sta-
tistical limitations, of which luminosity is the critical factor, are the
dominant source of error for time-dependent CP asymmetries. Two
asymmetric B-factories have been built and are currently producing
physics: PEP-II/BABAR and KEK-B/Belle. Previously, the symmetric
B-factory CLEO (at the CESR ring at Cornell) was able to produce
precision B physics results, however the symmetric design precluded
measurement of time-dependent CP -violating asymmetries.

Figures 2.1 and 2.3 show the BABAR and Belle detectors. The experiments
are very similar, with the following important differences: the KEK B factory
has a nonzero beam crossing angle (4.2 mr) at the interaction point (IP),
whereas the PEP-II/BABAR B factory has a more traditional collinear IP.
The KEK design potentially allows a greater number of beam bunches to
be stored in the ring, due to absence of parasitic crossings at ± 1m, as are
present in the PEP-II design. However KEK-B is a highly non-traditional
design; concerns over higher-order mode resonances at the IP led the PEP-II
B factory to use a collinear crossing. So far, both KEK-B and PEP-II have
performed well. At the time of writing, PEP-II has integrated 81.4 fb−1

and KEK-B has integrated 63.6 fb−1 (with KEK-B currently getting higher
average luminosity). The particle identification method also differs between
BABAR and Belle: as will be described in Section 2.6, BABAR uses quartz
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Figure 2.1: BABAR detector longitudinal section.



Figure 2.2: BABAR detector cutout diagram.

Figure 2.3: Belle detector cutout diagram.
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Figure 2.4: Diagrams of: (top) the HERA-B detector (at DESY, first beam
in 2000), (middle) the BTeV detector (at Fermilab, to be completed in 2004),
and (bottom) the LHC-b detector (CERN, to be completed in 2007).
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Figure 2.5: The PEP-II asymmetric storage ring and the SLAC linear ac-
celerator. The SLAC linac is the injector for PEP-II. The single interaction
point of PEP-II is at Interaction Region 2, where BABAR is situated.

bars to internally reflect Cerenkov light to a backward-mounted detector
(the DIRC), whereas Belle uses an aerogel Cerenkov detector. In addition,
BABAR has a 5-layer silicon vertex detector (SVT, see section 2.3) that can do
standalone tracking (important for D(∗)+D(∗)−), whereas Belle uses a 3-layer
silicon vertex detector.

Figure 2.4 shows the design of the HERA-B, BTeV, and LHC-b experi-
ments. Each of these experiments uses hadron beams, with, in the case of
HERA-B, a fixed (tungsten wire) target in the beam halo, and, for BTeV
and LHC-b, colliding proton beams. HERA-B was not a successful experi-
ment. The future looks more promising for BTeV and LHC-b, since colliding
beams give a higher signal to background ratio; however, hadrons do present
a challenging (but potentially very rewarding) environment for B physics.

2.2 The PEP-II Asymmetric Collider

The design of PEP-II is shown in figure 2.5. 9 GeV electrons and 3.1 GeV
positrons are injected from the SLAC linac via bypass lines in the linac
gallery. The beam parameters are listed in Table 1. PEP-II has surpassed
design goals both in instantaneous and in average integrated luminosity.
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Figure 2.6: PEP-II -BABAR integrated luminosity since startup.

Parameters Design Typical
Energy HER/LER (GeV) 9.0/3.1 9.0/3.1
Current HER/LER (A) 0.75/2.15 1.0/1.8
# of bunches 1658 800-850
Bunch spacing (ns) 4.2 4.2-8.4
σLx (µm) 110 110
σLy (µm) 3.3 4.1
σLz (mm) 9 9
Luminosity (1033 cm−2s−1) 3 4.0
Luminosity ( pb−1/d) 135 270

Table 2.1: PEP-II beam parameters. Values are given for the design and for
colliding beam operation at time of writing. HER and LER refer to the high
energy e− and low energy e+ ring, respectively. σLx, σLy, and σLz refer to
the R.M.S. horizontal, vertical, and longitudinal bunch size at the IP.
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Most of the data is taken at the Υ (4S) resonance (10.58 GeV), however
approximately 12% are taken at 40 MeV below the resonance to allow studies
of non-resonant background in data. A plot of PEP-II integrated luminosity
as a function of time is in figure 2.6.

2.3 Overview of Experimental Technique at

the Υ (4S)

z∆

0
tagB

+e-e
( )4Sϒ

K −

0
recB

B-Flavor Tagging
cβγz/∆t∆ ><≈

Fully 
Reconstructed B

(Flavor 
eigenstates or 

CP modes such 
as J/ψψψψKs, J/ψψψψKL, 
ππππ+ππππ-, D(*)D(*),…)−π

+π
coherentcoherent B0-B0

production D0

D0 K+

π -
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-
�

(9 GeV) (3.1 GeV)

Figure 2.7: Experimental reconstruction technique used for measuring time-
dependent CP -violating asymmetries at an Υ (4S) asymmetric collider. A
coherent B0B0 pair is produced from the Υ (4S) decay, which allows determi-
nation of reconstructed neutral B flavor as a function of decay time.

In order to measure time-dependent CP -violating asymmetries at the Υ (4S),
one must (of course) first reconstruct a neutral B decay mode that can exhibit
CP violation, such as B0 → D(∗)+D(∗)− or B0 → J/ψK0

S
. However, that is

merely the first step. After signal event reconstruction, the additional tracks
in the event (which correspond to the decay products of the other B [the “tag
side B”]) must be used to determine whether the other B in the event was
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Figure 2.8: Technique used for tagging the flavor of the opposite-side B.
Lepton and kaon charge is correlated with the flavor of the B. For events
with no obvious lepton or kaon, a neural net is used to attempt to extract
the flavor.

a B0 or B0, due to the fact that the CP asymmetry is opposite for B0 and
B0 (see equations 1.73 and 1.74). After both the event reconstruction and
the flavor tagging are completed, the difference in vertex z-position1 between
the reconstructed B vertex and the tag side B vertex must be determined.
This difference, ∆z, is (very nearly) proportional to the decay time difference
∆t between the two B decays. ∆t is the time measurement over which the
CP -violating asymmetry can occur, and is input (as t) in equations 1.73 and
1.74. Figure 2.7 gives an overview of this reconstruction method.

Figure 2.8 briefly describes the technique used for flavor tagging. The
sign of charged leptons and kaons in the event (which are not part of the
reconstructed B) is correlated with the flavor of the tag side B. A cut-based
selector using BABAR’s electron, muon, and kaon identification capabilities is
used to select signal events with a lepton or kaon on the tag side, and from
this determine the flavor of the tag side B. For events which are not cleanly
tagged by the cut-based selector, a neural net algorithm is used to extract
the flavor of the tag side B. The neural net uses information including slow

1The z-axis in BABAR is along the direction of the beam line, with electrons (and the
center-of-mass boost) pointing toward +z in the lab frame.
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Figure 2.9: ∆t measurement and resolution function. The difference in re-
constructed z-position of the tag and reconstructed B decay vertices is used
to determine the time difference ∆t.

pion charge, jettiness of the tag side tracks, and recovery of leptons and kaons
which are not cleanly identified in order to reconstruct the tag side flavor.
The overall efficiency of tagging is 67.5% and the fraction of tagged events
which are given an incorrect tag is 19.5%. The error on time-dependent
asymmetries is proportional to Q = ε(1− 2w)2 where ε is the efficiency and
w is the wrong-tag fraction. This quality factor Q is 25.1% for BABAR’s
tagging algorithm.

Figure 2.9 briefly describes the ∆t measurement and resolution function.
A clustering algorithm is used to determine the vertex position for the tag side
B decay; the error on this position dominates the resolution. CP violation
evinces itself as a difference in ∆t distribution depending on whether the
flavor tag is B0 or B0, but this decay time distribution is convoluted by the
error of ∆t. Fully reconstructed B events which have definite flavor (such
as B0 → D∗+π− or D∗+ρ−) are used to determine both the mistag fractions
and the parameters of the resolution function (which is modelled as a triple
gaussian) in data.

43



Figure 2.10: Fully assembled SVT.
The silicon sensors of the outer layer
are visible, as is the carbon-fiber space
frame (black structure) that surrounds
the silicon.

Beam Pipe 27.8mm radius

Layer 5a

Layer 5b

Layer 4b

Layer 4a

Layer 3

Layer 2

Layer 1

Figure 2.11: Transverse section of the
SVT.

2.4 The Silicon Vertex Tracker (SVT)

The SVT contains 5 layers of silicon, double sided with conductive strip
sensors. Strips on the opposite sides of each layer are orthogonal: φ strips run
parallel to the beam axis and z strips run transverse to the beam direction.

580 mm

350 mrad520 mrad

ee +-

Beam Pipe

Space Frame 

Fwd. support
        cone

Bkwd.
support
cone

Front end 
electronics

Figure 2.12: Longitudinal section of the SVT.
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Together, the SVT and the central tracking drift chamber (DCH) form
the charged particle tracking system (see also the following 2 sections). Pre-
cise and efficient measurement of track 4-momentum is necessary for full
reconstruction of B meson decays, which tend to have multiple charged de-
cay products. In addition, good vertex (and ∆z) resolution and accurate
extrapolation to the outer subdetectors is essential for reconstruction and
background subtraction. Thus, accurate charged particle tracking and ver-
texing is required.

The 5 layers and relatively long radial separation between SVT detec-
tor layers provide both standalone track pattern recognition and refinement
of drift chamber tracks via addition of SVT hits. The necessity of precise
measurements close to the interaction point for ∆z measurement and for
background rejection using vertex quality, and for efficient reconstruction
of low momentum tracks (such as slow pions from D∗ decays), drive the
requirements for the SVT.

The SVT silicon is composed of n-type substrate with p+ and n+ strips
on opposite sides. The bias voltage ranges from 25-35 V. The layers of the
SVT are divided radially into modules, shown as line segments in Figure 2.11.
The modules in the inner 3 layers are straight along the z-axis, while those
in layers 4 and 5 are arch-shaped, as shown in Figure 2.12. The arch design
was selected to minimize the amount of silicon as well as increase the angle of
incidence of tracks originating at the IP which cross the arch “lampshades”
near the edges of acceptance. The total active silicon area is 0.96 m2.

The strip pitch (width) varies from 50 to 210 µm depending on the layer
(inner layers are more closely bonded). The strips are AC-coupled to the
electronic readout. Only approximately half the strips are read out; most
have an unconnected “floating strip” between each pair of active strips (to
reduce cost of readout electronics without adversely impacting performance).
Digitization is performed by an ATOM (“A Time-Over-Threshold Machine”)
chip at the end of each set of 128 strips, which amplifies, digitizes, and
buffers the signal from each channel. The ATOM chip compares the charge
accumulated on each strip with an (adjustible) threshold of 0.95 fC, and
records the time in clock intervals (30 MHz for the SVT) for which each strip
is over threshold. This information is then delivered to a computer farm for
further processing upon an accept signal from the Level 1 Trigger (see section
2.9).

A variety of monitoring checks and calibrations must be performed on
the SVT to maintain data quality. Perhaps the most important of these
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from an avoidance-of-equipment-damage perspective is radiation protection.
Twelve silicon PIN diodes surround the support cones and monitor both
instantaneous radiation and accumulated dose. The beam is automatically
aborted if radiation levels are above 1 Rad/ms threshold. So far, the SVT
is well below the operational limit of 4 MRad integrated dose. The modules
in the beam plane suffer the highest doses, and will be replaced in 2004-5.
The others are expected to last for the duration of the experiment. For data
quality calibration, channel gains and noise must be individually calibrated,
and these are done online via an integrated pulse generator and calibration
electronics. The offline reconstruction has the responsibility for calibration
of the alignment of each SVT module. Alignment is critical for accuracy of
vertexing and of tracking reconstruction, and is done in two steps. The local
SVT alignment uses dimuon and cosmic ray events to calibrate the relative
position of each of the 340 wafers. The global alignment then determines the
overall position and rotation of the SVT with respect to the DCH.

The SVT has performed according to design essentially since its inception.
A combined hardware and software hit-finding efficiency of 97% is observed,
excluding the 9 (out of 208) readout sections which are defective. Single
hit resolution for tracks originating from the IP averages 20 µm in both z
and φ for hits on the inner 3 layers and 40 µm in z and 20 in φ for hits in
the outer 2 layers. The 9 out of 208 modules which are defective (due to a
variety of causes including installation problems and defective connectors) do
not significantly impact performance due to the redundancy which 5 layers
provides (only four are needed for track reconstruction).

2.5 The Drift Chamber (DCH)

The DCH contains 40 layers of gold-coated tungsten-rhenium sense wires
and gold-coated aluminum field wires in a mixture of 80% helium and 20%
isobutane gas. There are a total of 7,104 sense wires and 21,664 field wires,
with one wire per electronics channel. Wires are each tensioned (30 grams
for sense wires, 155 grams for field wires) and pass through the aluminum
endplates via feedthroughs made from Celenex insulating plastic around a
copper wire jacket. The layers are grouped by four into 10 superlayers, with
the wires in each superlayer oriented as either axial (directly parallel to the
z-axis) or “stereo” (at a small angle in φ with respect to the z-axis, in order to
obtain longitudinal position information). 6 of the 10 superlayers are stereo,
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Figure 2.13: DCH wire stringing at TRIUMF (September 1997).

Figure 2.14: DCH installation (August 1998).
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and the other 4 are axial.a The DCH is
asymmetric in z about the interaction
point, as shown in Figure 2.15, to
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Figure 2.17: DCH cell drift isochrones
for cells in layers 3 and 4 (axial).
Isochrones are at 100 ns intervals.

aThe arrangement is, from inner to outer,
AUVAUVAUVA (A = axial, U = u stereo
(+φ), V = v stereo (−φ)).
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Figure 2.18: Partial view of drift chamber front-end electronics.

accommodate the forward boost of the center of mass of physics events. The
endplates are 24mm thick aluminum, except for the outer 33.1 cm of the
forward endplate, which is reduced to 12 cm to minimize the amount of
material in front of the forward calorimeter endcap. The inner cylinder is
fabricated from beryllium (to minimize the multiple scattering for the section
of inner cylinder within the tracking fiducial volume) and aluminum (for the
rest). The outer cylinder is 1.6 mm carbon fiber on 6 mm thick honeycomb
Nomex core. The total thickness of the DCH is 1.08% X0.

The cells are arranged in a hexagonal pattern, each with a sense wire at
the center and field wires at the corners, as shown in figure 2.16. Cells on
a superlayer boundary have a slightly different arrangement, with two guard
wires taking the place of a single field wire. The nominal operating volt-
age is 1930 V. Isochrones and drift paths, calculated using the GARFIELD
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simulation, are shown in figure 2.17.
The DCH electronics are designed to provide accurate measurements of

signal time and integrated charge (as well as providing information to the
Level 1 Trigger, see Section 2.9). Service boards plug directly onto the wire
feedthroughs on the rear endplate. These boards distribute the high voltages
as well as pass signal and ground to the front-end electronics assemblies. The
front-end assemblies (FEAs) plug into the service boards and amplify, digi-
tize, and buffer (for 12.9 µs) the signals. A view of the front-end electronics
including (enclosed) front-end assemblies and service boards below can be
seen in figure 2.18. The digital data is sent, upon receipt of a level 1 trigger
accept signal, via 59.5 MHz serial link to a data I/O module which trans-
mits the signal to the external electronics via fiber-optic cable. Extraction of
hit time and integrated charge from the digital waveform takes place in the
readout modules (ROMs) in external electronics.

Online calibrations of channel gain and threshold are performed daily
via internal pulse generation. The data are monitored online to check for
FEA or other electronics failure or for miscalibrated output. Monitoring and
control of high voltage, radiation protection (using silicon PIN diodes similar
to the SVT, as well as RadFETs for integrated dose measurement), the gas
system, and temperature are performed, similar to other subsystems, via a
slow control system based on EPICS.

Offline calibrations of the time-to-distance relation within cells, as well
as of the deposited charge used for particle identification via dE/dx mea-
surement, are performed. The time-to-distance relation is determined from
two-prong events (Bhabha scattering events and dimuons) and is fit to a
sixth-order Chebyshev polynomial for each cell layer, with separate fits to
right and left sides of wires (to account for E × B asymmetries). A correc-
tion for time-to-distance variations as a function of track entrance angle to
the cell is detemined via simulation (not calibration) and added to the cali-
brated entrance-angle-averaged relation. The energy loss per unit length of
tracks, dE/dx, contains particle type information due to the dependence of
dE/dx on particle velocity (Bethe-Bloch relation, see Figure 2.20), and is de-
rived from measurements of integrated charge deposited in each cell along the
track path. An overall multiplicative correction to the charge measurements
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due to gas pressure and temperature
variations is performed once per run;
additional calibrations due to varia-
tions with track entrance angle in φ
and in θ are performed only when
high-voltage settings are changed.

The design goal for the aver-
age drift distance resolution was 140
µm. An average resolution of 110 µm
is achieved. The drift distance reso-
lution as a function of drift distance
can be seen from the offline monitor-
ing plot shown in figure 2.19. Particle
identification using the drift chamber
provides significant information up to
high momenta, as can be seen in fig-
ure 2.20.

Figure 2.21: DCH channel efficiency.
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Cell-by-cell channel efficiency is also monitored; typical efficiency is 90-95%,
as may be seen in figure 2.21 (including a small region damaged from a high-
voltage accident early in the commissioning phase, this can be seen towards
the lower right of the figure as a higher concentration of points).

2.6 Track Reconstruction

Complete reconstruction of B decays (in addition to other major BABAR anal-
ysis techniques, such as tagging) requires precise and efficient charged particle
tracking. As an example, B0 → D∗+D∗− decays to reconstructible submodes
have 7.85 charged tracks on average, thus single-track reconstruction ineffi-
ciency is effectively magnified by that power for reconstruction efficiency of
B0 → D∗+D∗−. As will be seen in Chapters 3 and 4, separation of decays
in these modes from combinatoric background requires precise determination
of mass and energy, which in turn requires precision measurement of track
momentum. The majority of other modes are just as dependent on charged
particle tracking. Data from the DCH and SVT is combined to satisfy the
stringent charged particle tracking requirements of BABAR.

Charged tracks are parametrized by the 5 variables d0, φ0, ω, z0, tanλ and
their error matrix. The parameters are defined as: d0 is the distance of
the track to the z-axis at the track’s point of closest approach to the z-
axis, z0 is the distance along the z-axis of that point to the origin, φ0 is the
azimuthal angle of the track at that point, λ is the dip angle with respect to
the transverse plane, and ω is the curvature of the track and is proportional
to 1/pt. After tracks are recognized by the pattern recognition alorithms,
these 5 variables are fitted, and error matrices are extracted.

Offline track reconstruction begins with tracking and event time informa-
tion from the Level 3 Trigger (see also section 2.9). Level 3 provides both
tracks and an estimate of the time at which the interaction occured (with a
resolution of approximately 5 ns), referred to as the T0.2 Reconstruction con-
tinues by building track segments of 4 hits on four layers within a superlayer
and using a linear fit to estimate and improve the level 3 T0 to a precision
of about 3 ns. Next, the level 3 DCH tracks are refitted using the more pre-
cise offline time-to-distance calibration and placed on the list of reconstructed
tracks. The T0 value is refined further (to 3 ns resolution) by finding the best
T0 fit to the tracks themselves. Following that, two additional DCH track

2The e+e− interaction time is referred to as the “bunch T 0,” often shortened to “T 0.”
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Figure 2.22: Fitted bunch T0 - PEP-II fiducial signal, modulo 42 ns (= 10
RF bucket intervals). Filled buckets contribute to peaks; the data is fit to
a sum of gaussians and the resolution of the bunch T0 corresponds to the
fitted width of the gaussians (= 1.9 ns in the above plot from a randomly
chosen run). The spikes preceding the peaks correspond to events for which
a T0 cannot be fit, such as events with no charged tracks.

pattern recognition algorithms are run which select tracks with hits not used
in L3 tracks. The T0 is improved again (to < 2 ns resolution) using these
extra tracks. The DCH tracks are then fit using a Kalman filter algorithm.
DCH tracks are then extrapolated into the SVT via a hit-adding algorithm,
and then two standalone SVT track pattern recognition algorithms add any
remaining SVT tracks. Finally, SVT tracks are extrapolated into the DCH
to pick up any remaining DCH hits. This sequence will be discussed in detail
in the following subsections.
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2.6.1 T0 Reconstruction

Reconstruction of the event interaction time, or T0, is necessary for both
fitting DCH tracks (since the DCH time-to-distance relation is necessary for
position information of a track within a given cell, a time must be provided
as input) and for rejecting out-of-time hits within the SVT to reduce back-
ground. T0 reconstruction takes place in several steps, iterated with track
pattern recogition since the two are interdependent, during offline reconstruc-
tion.

The initial measurement of the event time is provided by the Level 1
Trigger in hardware electronics (see also section 2.9). The level 1 trigger
looks for track segments in the DCH and clusters in the EMC, and sends an
accept that includes all data in each subsystem’s latency buffer to be read
out. The trigger timing is tuned such that this buffer typically starts about
450 ns before the event, with a resolution of about 50 ns. That estimate, with
an error of approximately 50 ns, forms the first event T0 estimate. The Level
3 Trigger uses the level 1 DCH segments and a fast, rudimentary time-to-
distance function to fit tracks. The fit produces an event time measurement
that is accurate to approximately 5 ns. This estimate is then given to offline
reconstruction as input.

Offline T0 reconstruction begins with the DCH segment-based T0 finder.
Four consecutive hits on adjacent layers within a superlayer form a DCH
segment. A T0 value is fit for each segment such that the corresponding
isochrone on each cell is tangent to a line segment passing through the su-
perlayer. This requires a 3x3 matrix inversion corresponding to the two
parameters of the line segment in addition to the T0. The event T0 esti-
mate must then be obtained by combining these fitted segment T0s. There
are several different segment cell patterns corresponding to different angles
of the track through the superlayer, and segments are weighted according
to type (highly-angled segments give lower-quality information than radial
ones, since they tend to be from lower-momentum tracks). The segment T0’s
are sorted according to time and the weighted average is taken of the middle
third of this list. Using only the middle third provides robustness against
out-of-time background segments. The weighted average segment T0 is used
as input to the Level 3 track converter, which then outputs a list of tracks
to the event.

The tracks are then used to provide a more precise estimate of the T0
using the DCH track-based T0 finder. The DCH track-based T0 finder takes
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Figure 2.23: Fitted bunch T0 - Level 1 Trigger Accept time. The L1Accept
averages approximately 450 ns prior to the T0, with a resolution of approxi-
mately 50 ns. The spike at 500 ns is for events for which a T0 cannot be fit,
such as events with no charged tracks.

a list of tracks as input and finds the best fit T0 from the list of tracks. For
each track, an average of the time residuals from each hit, weighted by the
error on the residual taken from the time-to-distance resolution function, is
calculated. This average is then added to the prior T0 estimate in order
to obtain the best-fit T0 from that track, along with its associated error.
The weighted average of these track T0s is then taken, with the track T0
with the largest χ2 from the initial average dropped from the final average
(for robustness against the occasional background track). This forms the
track-based event T0.

The track-based T0 is calculated once after both the offline L3 track
converter and the first DCH pattern recognition algorithm, the DchRadTrk-
Finder, have run, and again after the two additional DCH pattern recognition
algorithms, the DcxTrackFinder and DcxSparseFinder, have run. The final
DCH T0 is used for all final track fits and is provided to the DRC for back-
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ground rejection, after which the DRC is able to refine the T0 further.

2.6.2 Track Pattern Recognition

There are a total of 9 track pattern recognition algorithms run: 4 DCH track
finders, 2 standalone SVT track finders, and 3 track hit-adders (one DCH-
specific, one DCH→ SVT, and one SVT→ DCH). DCH track reconstruction
occurs first, due to the use of an offline background filter that requires DCH
tracks. The following paragraphs give some detail on each of the track pattern
recognition algorithms.

The first track finder in the reconstruction sequence is the DchL3TrkConverter,
which converts Level 3 Trigger tracks to offline reconstruction tracks. This
is not a pattern recognition algorithm per se, since level 3 has already done
the pattern recognition (with the use of Level 1 Trigger DCH segments),
however it takes the level 3 tracks and refits them to a helix using the full of-
fline time-to-distance calibration. Using the level 3 information is a dramatic
speed advantage for track reconstruction, reducing the time spent by nearly
1/3. The next track finder in the sequence is the DchRadTrkFinder, which
finds tracks which have small impact parameter from the origin and have not
already been found by level 3. Like the level 3 algorithm, the DchRadTrk-
Finder is segment-based, taking the list of DCH segments and combining
them to form tracks. This restricts the algorithm to tracks which are not too
curved away from radial — only the outgoing parts of looper tracks (tracks
under 200 MeV which curl inside the tracking volume) will be found by the
DchRadTrkFinder.

To add hits onto the radial tracks found by level 3 and the DchRadTrk-
Finder, for example hits in the apsidal and incoming parts of looper tracks,
a DCH-specific track hit-adding algorithm, the DcxHitAdder, is run. This
used a road-based algorithm to find and add hits, that are not necessar-
ily part of segments, onto the ends of pre-existing tracks. Following the
DcxHitAdder is a third DCH track pattern recognition algorithm, the Dcx-
TrackFinder. Similar to the first two DCH track finders, the DcxTrackFinder
is also segment-based, but it additionally searches for tracks with a larger
impact parameter from the origin than the previous finders, which is nec-
essary for the critical task of efficient K0

S
recontruction (as well as for Λ’s,

etc.). However, a significant fraction of such tracks cannot be found by a
segment-based algorithm at all (due to less than 100% efficiency, there is
often a hit missing on a given layer within a superlayer, preventing segment
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formation). Thus, a fourth DCH pat-
tern recognition algorithm is run, the
DcxSparseFinder. This is an arc-
based algorithm that searches for hits
along arcs of circles in the x-y plane.

Following the DCH-specific track
finders, SVT tracking is performed.
First the TrkSvtHitAdder is run,
which adds SVT hits onto DCH tracks.
This uses a Kalman-based algorithm
to propagate tracks through SVT hits
creating a “tree” of possible extensions
to the track. Branches of the tree
are pruned, leaving only the most fa-
vorable SVT extension as part of the
track. The two standalone SVT track
finders run after SVT hit-adding. The
first of these, SvtTrackFinder, forms
“space-points” from combinations of
φ and z-hits from opposite sides of
a wafer. At least three space-points
are needed to form a helix. Since 9
of the 208 half-modules are defective,
this can introduce an inefficiency since
information from the working side of
the module is not used if the other side
is defective. To ameliorate this, and to
find additional tracks, an orthogonal
SVT standalone algorithm for track
finding, SvtRPhiPR-SvtCircle2Helix,
is used. This algorithm (SvtRPhiPR)
uses φ-hits to search for circles in the
x-y plane. Once a circle is found, z-
hits are then added (SvtCircle2Helix)
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Figure 2.24: DCH tracking efficiency
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to form a helix. Finally, a hit-adding algorithm very similar to TrkSvtHi-
tAdder, TrkDchHitAdder, is used to add DCH hits onto standalone SVT
tracks.

2.6.3 Track Fitting and the Kalman Algorithm

BABAR tracks would be exact helices if not for 3 effects: multiple scattering,
energy loss in material, and inhomogeneities in the magnetic field. Although
these effects are fairly small in BABAR due to the small amount of material
in the tracking volume and the < 5% inhomogeneities in the field, they nev-
ertheless are important for the level of precision needed for accurate ∆z and
vertex fit quality. Thus a Kalman filter is used to propagate tracks account-
ing for each of those three effects and create a piecewise helix trajectory.
For initial fits (and for input to the Kalman algorithm), a simple helix fit
will suffice. Track fitting is done using both helix fits (for initial fitting)
and a piecewise-helix Kalman fit algorithm (for the final fit). The DCH and
SVT standalone track fitters (and DCH-specific hit-adder) use a helix fit
for the initial fit which is replaced by a Kalman fit later in reconstruction,
whereas the DCH → SVT and SVT → DCH hit-adders are integrated with
the Kalman fitter to perform a piecewise helix fit as the hits are added.

The helix fit algorithm performs a least-squares fit to a list of hits. It
assumes the weight matrix is diagonal, i.e. that the hits are uncorrelated.
The fit iterates and removes the hit with largest “pull” (residual divided by
error) on each iteration if it lies more than 3 sigma from the fit. Removed hits
which return to within 3 sigma after an iteration are added back. Conver-
gence occurs either when the change in total χ2 is less than 0.01 or if the fit
reaches 12 iterations. If the latter occurs before the former, it is considered
a failed fit.

The Kalman fit takes into account the effects of material and inhomo-
geneous magnetic field to create a piecewise helix fit. The parameters of a
track can be transformed into “weight space” where:

γ ≡ C−1, β ≡ γP (1)

where P is the vector of 5 track parameters (taken as input from a preliminary
helix fit) and C is the corresponding covariance matrix. The effect of adding
a hit on these parameters is:
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Figure 2.25: Transverse momentum (pt) resolution as a function of transverse
momentum, using cosmic ray muons.

γH ≡ LTw2L, βH ≡ LTw(LR− r) (2)

where r is the residual of the hit, R is the hit’s position, and L ≡ δr
δP
|R.

These act as additive corrections to the weights:

γnew = γold + γH, βnew = βold + βH (3)

These are the Kalman filter equations.
Performing the fit in weight space also allows for simple equations desrib-

ing magnetic field inhomogenaities, energy loss, and multiple scattering. The
materials and magnetic field map are kept in the BABAR conditions database
(the database used for storage of detector calibration constants) allowing for
their use directly in the fit. Both an inwards and an outwards fit are done,
with the final weights β and γ being the sum of the inner anout outer fits (this
is referred to as “smoothing”). A plot showing the results of BABAR track
fitting on momentum measurement may be seen in figure 2.25. A resolution
of σ(pt)/pt = 0.13%× pt + 0.45% is obtained.
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Figure 2.26: View of DIRC mechan-
ical stucture.
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Figure 2.27: DIRC schematic show-
ing the principle behind PID mea-
surements. The Cerenkov angle is
preserved through specular internal
reflection.

2.7 The DIRC

BABAR has stringent requirments for π−K separation over a large momentum
range. At the lower end of the range, primarily at momenta < 1 GeV, flavor
tagging using kaons from cascade decays is an efficient way of determining
B flavor. At the high end of the range, reconstructing B0 → π+π− and
B0 → K±π∓ requires separation at momenta up to 4.2 GeV in the lab
frame. At intermediate energies, reducing background in charm decays such
as D0 → Kπ is necessary for B0 → D(∗)+D(∗)− reconstruction. The particle
identification device must exhibit sufficient π − K separation throughout
this wide range of momentum with a minimum of material in order to avoid
adversely impacting calorimeter resolution.

The DIRC (Detector of Internally Reflected Cerenkov light) principle uses
internal reflection within quartz bars to propagate Cerenkov light to readout
phototubes while preserving the Cerenkov angle. This requires extremely flat
surfaces in order to avoid dispersing the reflected angles. Fused, synthetic
silica quartz is used due to the excellent optical surface it allows through pol-
ishing, as well as other favorable properties such as long attenuation length,
low chromatic dispersion, small radiation length, and radiation hardness. As
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Figure 2.28: Longitudinal section of the DIRC. Length units are mm.

shown in figure 2.27, the light is internally reflected down to a wedge to reflect
photons into a water-filled “standoff box.” The standoff box is enclosed by
an array of 10752 photomultiplier tubes, which are each 29 mm. in diameter.
The Cerenkov light from a particle passing through the DIRC forms a ring
(essentially a conic section) imaged on the phototubes. The opening angle
of this conic section contains information on particle type via the typical
relation cos θc = 1/nβ, with β being the particle velocity normalized to the
speed of light, and n being the mean index of refraction (= 1.473 for fused
silica).

Both efficiency and the timing of the electronics are critical for DIRC
performance. Timing is critical for two reasons: one, for background hit
rejection, resolving ambiguities, and separation of hits from differing tracks
within an event; and two, timing gives information on the photon propaga-
tion angles, allowing an independent measurement of the Cerenkov angle.
The intrinsic timing resolution of the PMTs is limited to 1.5 ns by transit
time spread. Data from the phototubes is read out to front-end electronics,
which performs the amplification, digitization, and buffering. Reduction of
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Figure 2.29: Display of an e+e− → µ+µ− event reconstructed in BABAR with
two different time cuts. On the left, all DIRC PMTs with signals within
the ±300 ns trigger window are shown. On the right, only those PMTs
with signals within 8 ns of the expected Cherenkov photon arrival time are
displayed.

data from out-of-time or noisy PMTs is performed in in the external elec-
tronics and reduces the data volume by 50% using rough timing cuts. Online
calibration of PMT efficiency, timing response, and electronics delays uses
a light pulser system which generates precise 1 ns flashes from blue LEDs
inside the SOB.

The DIRC has performed well throughout BABAR’s operational lifetime:
99.7% of PMTs are operating with design performance. The measured time
resolution is 1.7 ns, very close to the intrinsic resolution of the PMTs. The
Cerenkov angle resolution for dimuon events is 2.5 mrad, close to the design
goal of 2.2 mrad. This results in π−K separation at 3 GeV of 4.2σ. The mean
kaon selection efficiency and pion misidentification for a “loose” selection are
96.2% and 2.1% respectively, as can be seen in figure 2.30. This results in
dramatic background rejection with little signal loss for charm reconstruction,
as may be seen in figure 2.31.
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2.8 The Electromagnetic Calorimeter (EMC)

The design parameters for the BABAR EMC are driven by the requirements of
precisely measuring energies over a spectrum from 20 MeV to 9 GeV in a 1.5
T magnetic field and a high radiation environment. At the high end of the
spectrum, measurements of QED processes such as Bhabha and two-photon
scattering, as well as (at slightly lower energies) photons from the critical
physics processes B0 → π0π0 and B0 → K∗γ decays, present the motivating
incentive. The need for efficient detection of photons from high multiplicity B
decays containing π0’s (such as B → D(∗)D(∗)), as well as slow photons from
D∗+
s decays, determines the requirement for the low end of the spectrum.

BABAR uses a thallium-doped cesium iodide (CsI(Tl)) crystal calorimeter in
order to achieve the necessary energy and angular resolution to meet these
physics requirements.

The EMC contains a cylindrical barrel and a conical endcap containing
a total of 6,580 CsI(Tl) crystals. The crystals have nearly square front and
rear faces with a trapezoidal longitudinal cross-section. They range in length
from 29.6 to 32.4 cm with a typical front face dimension of 4.7 x 4.7 cm. A
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diagram can be seen in figure 2.32. The crystals are mounted in thin (300 µm)
carbon-fiber composite housings which are mounted on an aluminum strong-
back (see figure 2.33). Although light incident on the crystal boundary is
internally reflected, the small part that is emitted is reflected back with a
coating of white reflective TYVEK on the outer surface. Surrounding that
are thin layers of aluminum and mylar to act as RF shielding and electrical
insulation respectively. On the rear face of the crystal, two 1 cm2 silicon
PIN diodes with quantum efficiency of 85% for CsI(Tl) scintillation light are
mounted via transparent polystyrene substrate.

Each diode is connected to a low-noise preamplifier which shapes and am-
plifies the signal by a factor between 1 and 32. The signal is then transmitted
to mini-crates at the end of the barrel (see figure 2.33) where a digitization
CARE (“custom auto-range encoding”) chip provides an additional variable
amplification factor. Unlike other subsystems (except for the IFR), the EMC
does not buffer the data on front-end electronics; rather it outputs the full
digital datastream to the read-out modules in external electronics, which
perform, on receipt of a level 1 accept signal, a parabolic fit to the digitally
filtered datastream to derive energy and time measurements.

A variety of online calibrations and checks is performed, including a neu-
tron source which produces a monoenergetic 6.13 MeV calibration signal and
a xenon flash light pulser system. Offline energy calibrations are necessary
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Figure 2.33: The EMC barrel support structure, modules, and mini-crates.

for higher energy corrections. The relation between polar angle and energy
of Bhabha and radiative Bhabha scattering events is used to calibrate the
0.8-9 GeV range. The middle range is covered by π0 calibration, which con-
strains the mass of a sample of π0’s to the known value, extracting correction
coefficients.

The clustering pattern recognition uses a seed crystal algorithm to es-
tablish energy clusters. Local energy maxima within a cluster are used (if
there are more than 1) to separate the cluster into bumps. Charged particle
tracks are associated with bumps using a χ2 consistency cut. In an average
hadronic event, 15.8 clusters are detected, of which 10.2 are not associated
to a track.

Energy resolution is determined using χc1 → J/ψ γ and Bhabha scattering
events to be

σE
E

=
(2.32± 0.30)%

4
√
E(GeV)

⊕ (1.85± 0.12)% (4)
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and angular resolution is determined
using π0 and η decays to be


3.87± 0.07√

E(GeV)
+ 0.00± 0.04


mrad.

(5)
As can be seen in figure 2.34, the
reconstructed π0 average width is
6.9 MeV. The separation of electrons
from charged hadrons using the ratio
of shower energy to track momentum
(E/p) and other variables may be
seen in figure 2.35.
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momentum, and (b) polar angle.
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Figure 2.36: The instrumented flux return modules, structure, and RPCs.

2.9 The Instrumented Flux Return (IFR)

Detection of neutral hadrons (primarily K0
L’s) and muons is necessary for

several BABAR analyses and analysis techniques. Muons provide a very clean
B flavor tag, extremely useful for increased efficiency in tagging the opposite-
side B for time-dependent CP violation measurements. Muons are also nec-
essary for reconstructing J/ψ → µ+µ−, as well as for measuring semileptonic
branching fractions, required for extracting magnitudes of CKM elements.
K0

L
reconstruction is critical for the B0 → J/ψK0

L
channel. BABAR uses an In-

strumented Flux Return (IFR) composed of layers of resistive plate chambers
(RPCs) and steel plates in order to provide enough material to separate pions
and kaons from muons and to efficiently detect the presence and position of
both µ and K0

L over a large solid angle.
As shown in figure 2.36, the IFR consists of layers of planar RPCs in a
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barrel and endcap (red lines) as well as 2 layers of cylindrical RPCs (green
lines) between the EMC and the magnet. Between the RPC layers are steel
plates of thickness varying between 2 cm. (inner plates) to 10 cm (outer
plates). The total mass of the IFR is 870 metric tons. Planar RPCs contain
a 2 mm Bakelite gap with ∼ 8 kV across it. Ionizing particles which cross
the gap create streamers of ions and electrons in the gas mixture (which
is typically 56.7% Argon, 38.8% Freon, and 4.5% isobutane) which in turn
creates signals via capacitive coupling on the “x-strips” and “y-strips” on
opposite sides of the RPC. Strip width varies between 16 mm and 38.5 mm.
The 2 mm gap is kept constant using polycarbonate spacers spread at 10 cm
intervals and glued to the Bakelite. The Bakelite surface is smoothed with an
application of linseed oil. Cylindrical RPCs are composed of a special thin
and flexible plastic, rather than Bakelite, and have no linseed oil or other
surface treatment. They are laminated to cylindrical fiberglass boards.

The strips are connected to front-end cards (FECs) containing the ampli-
fication and digitization electronics, which are primarily sandwiched between
the iron plates. FECs shape the signal and perform a comparison with an
adjustible threshold. Similar to the EMC, the IFR does not buffer its data
on the detector, so the full digital datastream is output to front-end crates
(located beside the detector) which contain TDC timing as well as buffering
and calibration electronics. Data is read out to the ROMs on receipt of a
level 1 accept signal. Online calibration is performed using test pulse gener-
ators integrated in the front-end crates. Offline efficiency calibration is also
necessary for muon ID (in order to determine the expected hits for the muon
hypothesis), and this is done using cosmic rays.

Reconstruction of clusters proceeds via two methods: a standalone method
where groups of hits along 1 dimension within a module are joined to form
one-dimensional clusters, which are then combined with opposite-side hits
to form two-dimensional clusters, and then with other modules to form 3D
clusters; and a “swimmer” method, where charged tracks are propagated to
the IFR — 1D clusters within 12 cm. of the expected path are combined to
form 2D or 3D clusters. Clusters which are not matched to a charged track
are considered as neutral clusters. Muon identification uses variables such
as number of expected vs. actual interaction lengths tranversed and the χ2

match to the charged track. Muon identification performance may be seen
in figure 2.38. K0

L
efficiency roughly increases linearly with momentum and

varies between 20% and 40% between 1 and 4 GeV.
The IFR has been having serious losses in efficiency since the start of
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operation. Although this is still a
topic of study, it seems that, for
a significant number of RPCs, the
linseed oil failed to cure properly and
has caused a nonuniformity in the
spacing between the plates, amongst
other problems. A plot of efficiency
as a function of time may be seen
in figure 2.37. Replacement RPCs
are currently undergoing fabrication
and testing, as well as possible design
modifications to the structure (adding
more material to suppress hadron
punch-through).
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Figure 2.37: Average efficiencies for 12
months (beginning June 1999) for 3
types of RPCs: (a) efficient and stable,
(b) continuous slow decrease in effi-
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beginning near December 1999.

Momentum  (GeV/c)

E
ffi

ci
en

cy
E

ffi
ci

en
cy

0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

3-2001
8583A44

a)

b)

Polar Angle  (degrees) 

0.0

0.2

0.4

0.6

0.8

1.0

0 40 80 120 160

Figure 2.38: Muon efficiency and
misidentification (for a “loose” selec-
tion) as a function of (a) momentum,
and (b) polar angle.

69



Figure 2.39: Simplified schematic diagram for the Level 1 Trigger.

2.10 The Trigger

The BABAR trigger needs to provide high efficiency that is well-understood
and stable for physics events. Since the events which pass the trigger must
be fully reconstructed in the offline event reconstruction, the output rate
must be no higher than 120 Hz to satisfy computing limitations of the offline
processing farm. Since events with either a DCH track or a > 100 MeV
EMC cluster occur at 20 kHz, the trigger is responsible for scaling this rate
down by a factor of > 150 while accepting over 99% of B events, over 95% of
hadronic continuum, and over 90% of τ+τ− events. It also must be flexible
enough to deal with changing background conditions, as this can happen at
any given time at BABAR, without impact on physics or increase in online
dead time (which must be < 1%). The BABAR trigger is implemented in two
levels, a level 1 hardware trigger (L1), and a level 3 software trigger (L3).
Although development of an additional level 2 hardware trigger would have
been possible, it is not necessary under current background and luminosity
conditions; the level 1 and level 3 triggers together suffice.

The level 1 trigger, as can be seen above in figure 2.39, is divided into sub-
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system compontents: the L1 drift chamber trigger (L1DCT), L1 calorimeter
trigger (L1EMT), an IFR trigger used for calibration (L1IFT), and global
electronics for producing the final L1 accept signal (L1GLT). The L1DCT is
further subdivided azimuthally into track segment finders (TSF), a binary
link tracker for producing tracks from the segments (BLT), and a pt discrim-
inator (PTD). The 24 TSF modules sample each DCH cell in axial layers for
signals every 269 ns (64 clock ticks of the PEP-II-BABAR 4.2 ns clock interval).

Track

6 2
4

5 1
7 3 0

Pivot cell layerSuper
layer

8 Cell Template

Figure 2.40: Level 1 drift chamber
TSF pivot group (grey and black
cells). The four grey cells, one per
layer, are hit by the track, forming a
segment.

The axial DCH cells are arranged into
1776 “pivot groups” (see figure 2.40)
and segments are constructed from
hits within a pivot group. Only ax-
ial layers are used to avoid the com-
plication of accounting for stereo layer
within hardware electronics.3 Each
cell contributes a 2 bit quantity (con-
taining very rough information on the
time, as well as the presence, of a hit
on that cell) per sample, thus each
pivot group outputs 16 bits. The
TSF look-up table then determines if a
given 16-bit quantity corresponds to a
valid segment or not. The binary link
tracker (BLT) receives this information and detemines whether segments lie
in a road defined by “supercells,” which are sectors of a superlayer covering to
1/32 of the DCH in φ. Patterns of segment-containing supercells that appear
to correspond to tracks (according to the BLT look-up table) are output to
the L1 global trigger. In parallel with the BLT, the pt discriminator (PTD)
checks TSF segments in axial superlayers to see if they are consistent with a
track having a greater pt than a configurable miniumum cutoff value. This
information is also output to the GLT.

The level 1 calorimeter trigger (EMT) divides the EMC into 280 “towers”
of 24 crystals each (22 for the endcap). All crystal energies within a tower
which are above a 20 MeV threshold are summed and supplied to the EMT
trigger processor boards (TPBs). The TPBs digitally filter the energy de-
position (to smooth the output waveform of noise) and compare neigboring

3However, stereo information will be incorporated in the level 1 “ZPD” upgrade (see
the last paragraph in this subsection).
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Figure 2.41: A level 3 trigger event display for a multihadron event.

towers to look for clusters which span more than one tower. Trigger line
“primitives” (bytes corresponding to trigger type and information) are out-
put to the GLT corresponding to the energy and placement of found clusters.

The global level 1 trigger (GLT) receives the trigger line primitives from
the EMT and DCT, along with information from an IFR trigger (IFT) which
is used for cosmic ray and dimuon calibration purposes, and performs tim-
ing alignment to reduce jitter. The GLT does some rudimentary matching
between DCT tracks and EMT clusters, and performs a logical AND of the
input trigger primitives, which defines the output trigger line. The combined
L1 trigger efficiency is > 99.9% for generic BB events, 99% for continuum,

72



and 94.5% for τ+τ− events.
The level 3 trigger combines DCT tracks and EMT clusters with the

full DCH and EMC information. Level 3 runs on a farm of 64 Sun CPUs
(which will shortly be upgraded to faster Pentium CPUs running Linux).
The level 3 DCH algorithm fits L1 tracks to helices and is able to determine
the z0 of tracks, which is important information for rejecting background.
The dominant source of events accepted by level 1 is beam-gas or beam-wall
interaction background, as well as cosmic rays, which can be separated from
physics events using the point of closest approach of tracks to the interaction
point(IP). As can be seen in figure 2.42, avoiding tracks outside of the IP peak
can result in significant rejection of background. In addition, based on infor-
mation from the level 3 DCH algorithm and the level 3 EMC algorithm, the
Bhabha event rate may be prescaled from ∼130 Hz to 30 Hz, and γγ events
down to 10 Hz. Configurable filters for special calibration modes which might
otherwise be rejected run as part of L3. The total L3 output rate is 120 Hz.

L3 Track z0 (cm)

N
o.

 o
f 

T
ra

ck
s

0

2000

4000

6000

8000

-80 -40 0 40 80

Figure 2.42: Track z0 for L1 tracks,
reconstructed by L3.

The BABAR trigger system has per-
formed well since commissioning. It
allows for significant flexibility while
efficiently rejecting background. Fu-
ture luminosity upgrades will signifi-
cantly impact the trigger system, as
level 1 is near output threshold rate.
An upgrade to the L1DCT, the ZPD
(Z-Pt-Discriminator) will move some
of the functions currently in L3 (z0 re-
jection) to L1 to reduce the higher L1
accept rate expected at higher lumi-
nosity. This will, however, not become
necessary until 2003, and will be added
at that time.
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Chapter 3

Measurement of B → D(∗)D(∗)

Branching Fractions

3.1 Introduction

This chapter contains measurements of branching fractions for the decays B0 →
D∗+D∗−, B0 → D∗±D∓, and B± → D∗±D∗0. The primary motivation for analysis
of B0 → D(∗)+D(∗)− modes, such as the first two decays, is that they are sensitive
to the Unitarity Triangle parameter sin2β, providing a complementary measure-
ment to that derived from charmonium decays such as B0 → J/ψK0

S . Analysis of
time-dependent CP -violating asymmetries in B0 → D(∗)+D(∗)− will be detailed
and performed in the following chapter. Although only the B0 → D(∗)+D(∗)−

modes can be used for sin2β measurement, B± → D(∗)±D(∗)0 modes, such as
B± → D∗±D∗0, can be used for measuring direct CP violating charge asymme-
tries, as well as for calibration and checks on resolutions and fits in the sin2β
analysis. B± → D(∗)±D(∗)0 modes are also interesting due to the fact that they
have not been previously observed, nor are there any previous limits on their
branching fractions. This chapter contains a summary of the measurement. For
details of the techniques used, Appendix A of this dissertation may be consulted.

The rate for the Cabibbo-suppressed decays B → D(∗)D(∗)(0) (see figures 3.1
and 3.2) can be estimated from the measured rate of the Cabibbo-favored decays

B → D
(∗)
S D(∗)(0):

B(B → D(∗)D(∗)(0)) ≈

fD(∗)

f
D

(∗)
S


 tan2 θCB(B → D

(∗)
S D(∗)(0)) (1)
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Figure 3.1: The main
B0 → D(∗)+D(∗)− (B+ →
D(∗)+D(∗)0) decay diagram.
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Figure 3.2: The color-
suppressed penguin
B0 → D(∗)+D(∗)− (B+ →
D(∗)+D(∗)0) diagram.

From this it follows that the B → D(∗)D(∗)(0) branching fractions are of the order
of 0.1%.

Previous measurements of branching fractions and upper limits on these modes
are summarized in Table 3.1.

Table 3.1: Summary of previous branching fraction and upper limit measure-
ments [20]. Upper limits are quoted at the 90% confidence level.

Decay∗ Branching Fraction (×10−4)
B0 → D∗+D∗− 9.9+4.2−3.3(stat)± 1.2(syst)
B0 → D∗±D∓ < 6.3
B0 → D+D− < 9.4

Of these modes, B0 → D∗+D∗− contains the least background, due to the
background rejection gained from the two slow charged pions. Although it cannot
be described as a “golden mode” like B0 → J/ψK0

S
, background is typically

suppressed by nearly an order of magnitude compared with signal. B0 → D∗±D∓

∗Note that B± → D(∗)±D(∗)0 modes have neither previous branching fraction measurements
nor limits.
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and B± → D∗±D∗0 have more background, due to having only a single slow π±;
signal:background ratios for these modes are ≈ 1:1.

3.1.1 Data Sample

The data sample used represents an integrated luminosity of 22.9 fb−1 , with
20.7 fb−1 collected on the Υ (4S) resonance. The total number of BB pairs
produced in this sample was NBB = (22.515± 0.360)× 106.

3.2 Measurement of the B0 → D∗+D∗− Branch-

ing Fraction

B0 mesons are exclusively reconstructed by combining two charged D∗ candidates
reconstructed in a number of D∗ and D decay modes. Events are pre-selected
by requiring that there be three or more charged tracks and that the normalized
second Fox-Wolfram moment [21] of the event be less than 0.6. We also require
that the cosine of the angle between the reconstructed B direction and the thrust
axis of the rest of the event be less than 0.9.

Charged kaon candidates are required to be inconsistent with the pion hy-
pothesis, as inferred from the Cherenkov angle measured by the DIRC and the
specific ionization measured by the SVT and DCH. No particle identification
requirements are made for the kaon from the decay D0 → K−π+.

K0
S → π+π− candidates are required to have an invariant mass within 25MeV/c2

of the nominal K0
S
mass [24]. The opening angle between the flight direction and

the momentum vector of the K0
S
candidate is required to be less than 200mrad,

and the transverse flight distance from the primary event vertex must be greater
than 2mm.

Neutral pion candidates are formed from pairs of photons in the EMC with
energy above 30MeV, an invariant mass within 20MeV/c2 of the nominal π0 mass,
and a summed energy greater than 200MeV. A mass-constraint fit is then applied
to these π0 candidates. The π0 from D∗+ → D+π0 decays (“soft” π0), however, is
required to have an invariant mass within 35MeV/c2 of the nominal π0 mass and
momentum in the Υ (4S) frame of 70 < p∗ < 450MeV/c, with no requirement on
the summed photon energies.

The decay modes of the D0 and D+ used in this analysis were selected by an
optimization of S2/(S+B) (where S is the expected number of signal events andB
is the expected number of background events) based on Monte Carlo simulations.
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The D0 and D+ modes used and their branching fractions are summarized in
Table 3.2. D0 (D+) meson candidates are required to have an invariant mass
within 20MeV/c2 of the nominal D0 (D+) mass.

Table 3.2: D0 and D+ decay modes and branching fractions [24]. The branching
fraction for K0

S → π+π− is included for modes containing a K0
S .

Decay Mode Branching Fraction (%)

D0 → K−π+ 3.83± 0.09
D0 → K−π+π0 13.9± 0.9
D0 → K−π+π+π− 7.49± 0.31
D0 → K0

Sπ
+π− 1.85± 0.14

Total D0 Branching Fraction 27.1

Decay Mode Branching Fraction (%)

D+ → K−π+π+ 9.0± 0.6
D+ → K0

S
π+ 0.99± 0.09

D+ → K−K+π+ 0.87± 0.07
Total D+ Branching Fraction 10.9

The D∗+ mesons are reconstructed in their decays D∗+ → D0π+ and D∗+ →
D+π0. We include for this analysis the decay combinations D∗+D∗−decaying
to (D0π+, D0π−) or (D0π+, D−π0), but not (D+π0,D−π0) due to the smaller
branching fraction and larger expected backgrounds. The branching fractions for
these modes are summarized in Table 3.3. D0 and D+ candidates are subjected
to a mass-constraint fit and then combined with soft pion candidates. A vertex fit
is performed that includes the position of the beam spot to improve the angular
resolution of the soft pion.

To select B0 candidates with well reconstructed D∗ and D mesons, we con-
struct a χ2 that includes all measured D∗ and D masses:

χ2Mass =

(
mD −mDPDG

σmD

)2
+

(
mD −mDPDG

σm
D

)2

+

(
∆mD∗ −∆mD∗

PDG

σ∆mD∗

)2
+

(
∆mD

∗ −∆mD∗
PDG

σ∆mD∗

)2
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Table 3.3: D∗ and D∗0 decay modes and branching fractions [24]. D∗0 is used for
the B± → D∗±D∗0 analysis described in Section 3.3.

Particle Decay Mode Branching Fraction (%)

D∗+ D∗+ → D0π+ 67.7± 0.5
D∗+ → D+π0 30.7± 0.5

Total Visible D∗+ Branching Fraction 98.4

D∗0 D∗0 → D0π0 61.9± 2.9
D∗0 → D0γ 38.1± 2.9

Total D∗0 Branching Fraction 100.0

where the subscript PDG refers to the nominal value, and ∆mD∗ is the D∗ −D
mass difference. For σmD

we use values computed for each D candidate, while for
σ∆mD∗ we use fixed values of 0.83MeV/c2 for D∗+ → D0π+ and 1.18MeV/c2 for
D∗+ → D+π0. A requirement that χ2Mass < 20 is applied to all B0 candidates.
In events with more than one B0 candidate, we choose the candidate with the
lowest value of χ2Mass.

A B meson candidate is characterized by two kinematic variables. We use the
energy-substituted mass, mES, defined as

mES ≡
√
E∗2
Beam − p∗B

2

and the difference of the B candidate’s energy from the beam energy, ∆E ,

∆E ≡ E∗
B −E∗

Beam

where E∗
B (p∗B) are the energy (momentum) of the B candidate in the center-of-

mass frame and E∗
Beam is one-half of the center-of-mass energy. The signal region

in the ∆E vs. mES plane is defined to be |∆E| < 25MeV and 5.273 < mES <
5.285GeV/c2. The width of this region corresponds to approximately ±2.5σ in
both ∆E and mES.

These values on χ2Mass, mES, and ∆E were chosen based on an optimization
of S2/(S +B), where (again) S is the expected number of signal events and B is
the expected number of background events. The optimization process was done
entirely with samples of signal and generic BB and cc Monte Carlo where the
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background distribution is taken from a sideband region, defined as

|∆E| < 200 MeV

5.200 GeV/c2 < mES < 5.26 GeV/c2

and
50 MeV < |∆E| < 200 MeV

5.26 < mES < 5.290 GeV/c2

These values were chosen based on a maximization of S2/(S+B) with a tendency
towards looser cut values to reduce any possible systematic error incurred due to
the differences in the reconstructed mass resolutions between data and Monte
Carlo.

To determine the number of signal events in the signal region, we must es-
timate the expected contribution from background. This is done by scaling the
number of events seen in the data sideband (defined above) with a scaling factor
which gives a measure of the relative areas of the signal region to the sideband
region. We parameterize the shape of the background in the ∆E vs. mES plane
as the product of an ARGUS function [22] in mES and a first-order polynomial in
∆E . Based on this parameterization we estimate that the ratio of the number
of background events in the signal region to the number in the sideband region
is (1.72 ± 0.10) × 10−2. The uncertainty is derived from the observed variation
of this ratio under alternative assumptions for the background shape in mES and
∆E .

Figure 3.3 shows the events in the ∆E vs. mES plane after all selection criteria
have been applied. The small box in the figure indicates the signal region defined
above, and the sideband is the entire plane excluding the region bounded by the
larger box outside the signal region. There are a total of 38 events located in the
signal region, with 363 events in the sideband region. The latter, together with
the effective ratio of areas of the signal region to the sideband region, implies an
expected number of background events in the signal region of 6.24± 0.33(stat)±
0.36(syst). The quoted systematic uncertainty comes from the background shape
variation discussed previously. Figure 3.4 shows a projection of the data on the
mES axis after requiring |∆E| < 25MeV.

A detailed Monte Carlo simulation of the BABAR detector is used to determine
the efficiency for reconstructing the signal. This, together with the total number
of BB pairs produced during data collection, allows for the determination of a
branching fraction for B0 → D∗+D∗−:
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Figure 3.3: Distribution of B0 → D∗+D∗− events in the ∆E vs. mES plane.
The small box indicates the signal region, while the sideband region is everything
outside the larger box.

B(B0 → D∗+D∗−) = (8.0± 1.6(stat)± 1.2(syst))× 10−4

The dominant systematic uncertainty in this measurement comes from our
level of understanding of the charged particle tracking efficiency (9.4%). The
high charged particle multiplicity in this decay mode makes this measurement
particularly sensitive to tracking efficiency. Systematic errors were assigned on
a per track basis for π, K and slow π, and were added linearly due to large
correlations. The imprecisely known partial-wave content of the B0 → D∗+D∗−

final state is another potential source of systematic biases. Monte Carlo events in
each of the two extremes of transversity amplitudes (A//,

√
2A0, A⊥) = (1., 0., 0.)

and (0., 1., 0.) were generated and reconstructed [23]. Although both mixtures
correspond to Rt = 0, the resulting pt distributions of the slow pion represent the
two extreme cases of possible pt distributions. The change in the reconstruction
efficiency of these final angular states is quoted as systematic error (6.6%). Other
significant systematic biases arise due to the uncertainties on the D∗+, D0 and
D+ branching fractions (5.6%) and the differences in mass resolutions between
Monte Carlo and data (4.1%). Possible contributions from peaking backgrounds
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Figure 3.4: Distribution of B0 → D∗+D∗− events in mES plane with a cut of
|∆E| < 25 MeV applied. The curve represents a fit to the distribution of the
sum of a Gaussian to model the signal and an ARGUS function [22] to model the
background shape.

was found to be negligable.The total systematic uncertainty from all sources is
14.5%.

3.3 Measurement of the Branching Fractions of

B0 → D∗±D∓ and B± → D∗±D∗0

The decays B0 → D∗±D∓ and B± → D∗±D∗0 are studied following a method
largely similar to that described in Sec. 3.2. Here, only those aspects of the
analyses that differ significantly from that of the B0 → D∗+D∗− analysis are
discussed in some detail.

For B0 → D∗+D−, B0 mesons are exclusively reconstructed by combining a
D∗± and a D∓ candidate that are reconstructed in a number of D∗± and D∓

decay modes. For B± → D∗±D∗0 the exclusive reconstruction combines a D∗±

and a D∗0. The kaon flavor of the D∗0 is checked to make sure that a D∗+ is
paired only with a D∗0 and a D∗− is only paired with a D∗0. The selection of
D± and D∗± candidates, and the K0

S and π0 candidates that are used to compose
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them, is identical to that described for the B0 → D∗+D∗− analysis.
The decay modes of the D and D∗ used in these analyses are selected by an

optimization of S2/(S + B) based on Monte Carlo simulations. D∗± mesons are
reconstructed in their decays D∗+ → D0π+ and D∗+ → D+π0, and D∗0 mesons
are reconstructed in their decays D∗0 → D0π0 and D∗0 → D0γ. Modes used
and their branching fractions are summarized in Tables A.3 and A.2. As in the
B0 → D∗+D∗− analysis, we construct χ2Mass variables that include all measured
D∗±, D∗0, and D masses. For B± → D∗±D∗0, χ2Mass contains 4 terms:

χ2Mass =
(
mD−mDPDG

σmD

)2
+
(
m

D
−m

DPDG

σm
D

)2

+
(
∆mD∗−∆mD∗

PDG

σ∆mD∗

)2
+
(
∆mD∗0−∆mD∗0

PDG

σ∆m
D∗0

)2

For B0 → D∗+D−, χ2Mass contains 3 terms:

χ2Mass =

(
mD −mDPDG

σmD

)2
+


mDD∗ −mDPDG

σmDD∗



2

+

(
∆mD∗ −∆mD∗

PDG

σ∆mD∗

)2

The major difference between these analyses and the B0 → D∗+D∗− analysis is
that the χ2Mass cut values for these analyses are set individually for each submode
instead of having a global χ2Mass value for all submodes, to better take into account
the fact that the amount of background is quite different for each of the different
submodes in these analyses. The procedure used to optimize the χ2Mass value
chooses the individual values of χ2Mass that together maximize the global S

2/(S+
B). Submodes which have an optimal value of less than 2 times the number
of degrees of freedom of the χ2Mass (8 for B± → D∗±D∗0, 6 for B0 → D∗+D−)
are rejected on the grounds that the resulting sensitivity is poor, and that the
tightness of the χ2Mass value makes such modes more susceptible to systematic
errors in measured yield.

These values were tuned with samples of signal and generic BB and cc Monte
Carlo where the background distribution is taken from a sideband region. For
B± → D∗±D∗0, the sideband region is the same as that for B0 → D∗+D∗−. For
B0 → D∗+D−, the region where decays (such as B0 → D∗+D∗−) can feed down
into the ∆E -mES plane must be eliminated from the sideband. As B0 → D∗+D∗−

contains a reconstructed D∗± and D, it is only separated from B0 → D∗+D−

events due to the missing energy of the slow pion from the second D∗±. This
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missing energy manifests itelf as a negative shift in ∆E . These events accumulate
in the area below the B0 → D∗+D− signal region, and in order to remove them,
the region defined by:

∆E < −50MeV

mES > 5.26GeV/c2

is removed. The mES and ∆E distributions for events reconstructed in the
channels B0 → D∗+D− and B± → D∗±D∗0 are shown in Fig. 3.5 and in Fig. 3.6.

For the B0 → D∗+D− channel we reconstruct a total of 31 events, of which
10.5± 1.7(stat) are background (see Figure 3.5) The probability that the visible
signal is a statistical fluctuation of the background is 9.7 × 10−7 (> 4.3σ). For
B± → D∗±D∗0 we reconstruct a total of 39 events, of which 20.3± 0.5(stat) are
background (see Figure 3.6). The probability that the visible signal is a statistical
fluctuation of the background is 2.9× 10−6 (> 4.1σ).

Detailed Monte Carlo simulation of the BABAR detector is used to determine
the efficiency for reconstructing B0 → D∗±D∓ and B± → D∗±D∗0. This, together
with the total number of BB pairs produced during data collection, allows for
the determination of branching fractions for B0 → D∗±D∓ and B± → D∗±D∗0:

B(B0 → D∗±D∓) = (6.7+2.0−1.7(stat)± 1.1(syst))× 10−4

B(B± → D∗±D∗0) = (10.5+3.3−2.8(stat)± 2.0(syst))× 10−4

As with B0 → D∗+D∗−, a significant systematic uncertainty in these mea-
surements comes from our level of understanding of the charged particle tracking
efficiency (9.4% for B0 → D∗±D∓ and 8.9% for B± → D∗±D∗0). The imprecisely
known partial-wave content of the B± → D∗±D∗0 final state is another source of
potential systematic biases. The systematic for this (6.6%) was taken to be the
same as for B0 → D∗+D∗− due to the fact that the two decays should have the
same partial wave content if final state interactions are neglected. Other signif-
icant systematic biases arise due to the uncertainties on the D∗+, D∗0, D0, and
D+ branching fractions (7.4% for B0 → D∗±D∓ and 9.1% for B± → D∗±D∗0)
and the differences in mass resolutions between Monte Carlo and data (4.1% for
both B0 → D∗±D∓ and B± → D∗±D∗0). The total systematic uncertainty from
all sources is 17.1% for B0 → D∗±D∓ and 18.7% for B± → D∗±D∗0.
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Figure 3.5: Top Left: mES projection of the B0 → D∗+D− event population, in the ∆E signal band
(−0.025 < ∆E < 0.025GeV). The crosses are the data. The dashed line represents the extrap-
olation, to the ∆E signal band, of a two-dimensional background fit in the ∆E -mES sidebands.
The solid line is the sum of this background extrapolation and of a fitted, Gaussian-shaped signal
centered on the B mass. Top Right: ∆E projection of the B0 → D∗+D− event population, in
the mES signal band (5.273 < mES < 5.285GeV/c2). The crosses are the data. The dashed line
represents the extrapolation, to the mES signal band, of the above-mentioned background fit. The
solid line is the sum of this background extrapolation, and of a gaussian-shaped signal centered on
∆E = 0. In the case of both the upper plots, the points in the feed-down region (∆E < −0.05GeV)
are excluded from the fits. Bottom: Two-dimensional distribution of the B0 → D∗+D− events in
the ∆E vs. mES plane. The small ellipse indicates the signal region, while the sideband region is
everything that is outside the box that surrounds the signal region and also outside the (feed-down)
box below the signal region.
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Figure 3.6: Top Left: mES projection of the B± → D∗±D∗0 event population, in the ∆E signal
band (−0.025 < ∆E < 0.025GeV). The crosses are the data. The dashed line represents the ex-
trapolation, to the ∆E signal band, of a two-dimensional background fit in the ∆E -mES sidebands.
The solid line is the sum of this background extrapolation and of a fitted, Gaussian-shaped signal
centered on the B mass. Top Right: ∆E projection of the B± → D∗±D∗0 event population, in
the mES signal band (5.273 < mES < 5.285GeV/c2). The crosses are the data. The dashed line
represents the extrapolation, to the mES signal band, of the above-mentioned background fit. The
solid line is the sum of this background extrapolation, and of a Gaussian-shaped signal centered on
∆E = 0. Bottom: Two-dimensional distribution of the B± → D∗±D∗0 events in the ∆E vs. mES

plane. The small ellipse indicates the signal region, while the sideband region is everything that is
outside the box that surrounds the signal region.
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Chapter 4

Measurement of sin2β in
Exclusive b → cc̄d Channels

4.1 B0 → D∗+D∗−: Fit Method

4.1.1 B0 → D∗+D∗−: Measurement of CP asymmetry

The D∗+ D∗− final state is a vector-vector mode, with different partial waves
contributing different CP parities. Therefore, time-dependent CP asymmetry
measurements are diluted, unless a combined time and angular analysis is
performed in order to separate the CP -even and CP -odd components.

Moreover, although factorization models predict a rather small penguin
contamination of the weak phase #(λf) = − sin 2β, a sizeable penguin dia-

gram contribution cannot a priori be excluded, leading to different λf =
q
p

¯A(f)
A(f)

values for the three transversity amplitudes, because of different penguin to
tree ratios.

In the following two subsections the time-dependent angular distributions
in the transversity basis are first recalled, for the limiting case of negligible
penguin contribution; a parametrization of the penguin effect is then given
for the time-dependent transversity distribution, that is used to fit the CP
asymmetry in our D∗+ D∗− sample.

Time dependent angular distributions

From the angular distribution in the transversity basis [38], with implicitely
time-dependent transversity amplitudes A0, A‖, A⊥, we can write the time
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dependent angular distribution as:

1

Γ

d3Γ

d cos θ1d cos θtrdφtr
=

9

32π

1

|A0|2 + |A‖|2 + |A⊥|2

{4|A0|2 cos2 θ1 sin2 θtr cos2 φtr
+2|A‖|2 sin2 θ1 sin2 θtr sin2 φtr
+2|A⊥|2 sin2 θ1 cos2 θtr
+
√
2$(A∗

‖A0) sin 2θ1 sin
2 θtr sin 2φtr

−
√
2#(A∗

0A⊥) sin 2θ1 sin 2θtr cosφtr

−2#(A∗
‖A⊥) sin2 θ1 sin 2θtr sinφtr} . (1)

Integration over d cos θ1 and dφtr [38] yields:

1

Γ

dΓ(
(−)
B0→ D∗+D∗−)
d cos θtr

=
9

32π
{(|

(−)
A‖ |2+ |

(−)
A0 |2)G+(θtr)+ |

(−)
A⊥ |2G−(θtr)} (2)

where the CP even and CP odd angular terms are:

G+(θtr) =
8π

3
sin2 θtr

G−(θtr) =
16π

3
cos2 θtr. (3)

Inserting the explicit time dependence of amplitudes:

A0,‖(t) = A0
0,‖e

−imt e−Γt/2
(
cos

∆mt

2
+ iλ sin

∆mt

2

)

A⊥(t) = A0
⊥e

−imt e−Γt/2
(
cos

∆mt

2
− iλ sin

∆mt

2

)
(4)

and:

Ā0,‖(t) = Ā0
0,‖e

−imt e−Γt/2
(
cos

∆mt

2
+

i

λ
sin

∆mt

2

)

Ā⊥(t) = −Ā⊥
0
e−imt e−Γt/2

(
cos

∆mt

2
− i

λ
sin

∆mt

2

)
(5)
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under the assumption of equal λ = q
p
Ā
A
, that is assuming negligible penguin

contributions, and | q
p
| = 1, so that |Ā0|2 = |λ|2|A0|2, the decay rate can be

written in a form convenient for comparisons with the general case, discussed
in the following subsection:

1

Γ

dΓ(
(−)
B0→ D∗+D∗−)
d cos θtr

=
9

32π
e−Γt{

[(|A0
‖|2 + |A0

0|2)G+(θtr) + |A0
⊥|2G−(θtr)]

(−)
+ (1−|λ|2)

(1+|λ|2) [(|A0
‖|2 + |A0

0|2)G+(θtr) + |A0
⊥|2G−(θtr)] cos∆mt

(+)

− 2
(λ)
(1+|λ|2) [(|A0

‖|2 + |A0
0|2)G+(θtr)− |A0

⊥|2G−(θtr)] sin∆mt}
(6)

where terms are grouped by CP parity content and time dependence, and
ηCP = +1 for A0, A‖. The amplitudes are normalized so that:

|A0
0|2 + |A0

‖|2 + |A0
⊥|2 = 1 (7)

The usual CP dilution factor K is defined as:

K =
|A0

0|2 + |A0
‖|2 − |A0

⊥|2

|A0
0|2 + |A0

‖|2 + |A0
⊥|2

|A0
0|2 + |A0

‖|2 =
1

2
(1 +K)

|A0
⊥|2 =

1

2
(1−K). (8)

Parametrization of penguin contributions

If the possibility of penguin contributions, leading to different λ0, λ‖, λ⊥, is
taken into account, then the time-dependent decay amplitudes (eq. 4) can
be rewritten as:

A0,‖(t) =
A0
0,‖√

(1 + |λ0,‖|2)
e−imt e−Γt/2

(
cos

∆mt

2
+ iλ0,‖ sin

∆mt

2

)

A⊥(t) =
A0

⊥√
(1 + |λ⊥|2)

e−imt e−Γt/2
(
cos

∆mt

2
− iλ⊥ sin

∆mt

2

)
. (9)
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As a result, the time- and transversity-dependent decay rate (6) can be
rewritten in a similar form, where however a common value of |λ| or #(λ)
can no longer be factorized:

1

Γ

dΓ(
(−)
B0→ D∗+D∗−)
d cos θtr

=
9

32π
e−Γt{

[O+G+(θtr) +O−G−(θtr)]
(−)
+ [C+G+(θtr) + C−G−(θtr)] cos∆mt
(+)

− [S+G+(θtr)− S−G−(θtr)] sin∆mt} (10)

where the angular dependence of G+(θtr) and G−(θtr) was defined in eqn. 3,
and the six coefficients O+, O−, C+, C−, S+ and S− are given by:

O+ = |A0
‖|2 + |A0

0|2

O− = |A0
⊥|2

C+ =
(1− |λ‖|2)
(1 + |λ‖|2)

|A0
‖|2 +

(1− |λ0|2)
(1 + |λ0|2)

|A0
0|2

C− =
(1− |λ⊥|2)
(1 + |λ⊥|2)

|A0
⊥|2

S+ =
2#(λ‖)

(1 + |λ‖|2)
|A0

‖|2 +
2#(λ0|)

(1 + |λ0|2)
|A0

0|2

S− =
2#(λ⊥)

(1 + |λ⊥|2)
|A0

⊥|2. (11)

For the initial measurement of CP asymmetry in B0 → D∗+D∗− dif-
ferent fitting strategies are possible and will be discussed in more detail in
subsection 4.1.2. In particular, one can perform:

1) a two-parameter fit of the coefficients in front of cos∆mt and sin∆mt
terms in eq. 10, after integration over cos(θtr);

2) a five-parameter fit of the Oi, Ci, Si, (i = +,−) terms in eq 10. The
normalization of amplitudes (eq. 7) reduce the number of independent
parameters to 5 in this case.

Neither of these two strategies requires any assumption on the presence
or magnitude of penguin contibutions.
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In the first approach a smaller number of free parameters is fitted, but,
due to the fact that the angular information is not used, the sin∆mt coef-
ficient is diluted by the mixture of CP even and CP odd contributions. It
should be noted that the direct CP asymmetry (cos∆mt) term is not diluted.
In this note this first approach is studied in detail.

In the second strategy angular information is used, to fit five free param-
eters. If we define for the CP even amplitudes “average values”

〈(1− |λ+|2)
(1 + |λ+|2)

〉 and 〈 #(λ+)
(1 + |λ+|2)

〉

as:

〈(1− |λ+|2)
(1 + |λ+|2)

〉 =

(1−|λ‖|2)
(1+|λ‖|2) |A

0
‖|2 +

(1−|λ0|2)
(1+|λ0|2) |A

0
0|2

|A0
‖|2 + |A0

0|2

〈 #(λ+)
(1 + |λ+|2)

〉 =


(λ‖)
(1+|λ‖|2) |A

0
‖|2 +


(λ0)
(1+|λ0|2) |A

0
0|2

|A0
‖|2 + |A0

0|2
, (12)

equation (10) can be rewritten in terms of the five relevant physical quantities
|λ+|, #(λ+), |λ⊥|, #(λ⊥) and K, as:

1

Γ

dΓ(
(−)
B0→ D∗+D∗−)
d cos θtr

=
9

32π
e−Γt{

[
1

2
(1 +K)G+(θtr) +

1

2
(1−K)G−(θtr)]

(−)
+ [

1

2
(1 +K)〈(1− |λ+|2)

(1 + |λ+|2)
〉G+(θtr)

+
1

2
(1−K)

(1− |λ⊥|2)
(1 + |λ⊥|2)

G−(θtr)] cos∆mt

(+)

− [
1

2
(1 +K)〈 2#(λ+)

(1 + |λ+|2)
〉G+(θtr)

−1

2
(1−K)

2#(λ⊥)
(1 + |λ+|2)

G−(θtr)] sin∆mt.}

(13)

In the limit of negligible penguin contributions, and taking into account the
definition (8) of the dilution factor K, one recovers eq.(6).
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4.1.2 B0 → D∗+D∗−: likelihood fit method

The CP asymmetry measurement is based on a maximum likelihood fit. The
probability density function (PDF) is given by the angle and time dependent
distribution (eqn. 13) discussed in the previous subsections, combined with
a description of incorrect B flavor tags, of the experimental time resolution,
and of the relevant background properties that are discussed in the following
subsections.

Mistag modelling, time resolution and background

The strategy used to model the mistag and time resolution and to describe
the background is the same as in the sin 2β measurement with J/ ψKs [41].

In this section a summary of the relevant equations is given in the case
of the fit of the coefficients of the sin∆m∆t and cos∆m∆t terms.

The same model is adopted for the formally more complicated case of a
five-parameter fit that uses also the angular information. For the present
analysis the angular resolution effects are considered as negligible, and the
corresponding resolution function is not included in the pdf.

The decay distributions for a Btag tagged as a B0 (+ sign) or a B̄0 (−
sign) can be written as :

f±(∆ttrue) =
Γ

2
e−Γ|∆ttrue|

{
(1− 1

2
∆D)

∓ 〈D〉 [S sin (∆md∆ttrue) + C cos (∆md∆ttrue)]} (14)

where the C and S coefficients have the physical meaning:

C = (|A0
‖|2 + |A0

0|2)〈
(1− |λ+|2)
(1 + |λ+|2)

〉+ |A0
⊥|2

(1− |λ⊥|2)
(1 + |λ⊥|2)

S = (|A0
‖|2 + |A0

0|2)〈
2#(λ+)

(1 + |λ+|2)
〉 − |A0

⊥|2
2#(λ⊥)

(1 + |λ+|2)
. (15)

For the dilution factor due to incorrect B flavor tags D = 1− 2w, where
w is the mistag rate, the formalism that takes into account any possible
mistag differences ∆D between B0 and B0 is used. Due to the fact that the
probabilities of mistagging a B0 or B0 may differ slightly, separate mistag
dilutions D = 1− 2w and D̄ = 1− 2w̄ are fitted for B0 and B0, in the same
manner as the charmonium sin2β fit [41].
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To account for the finite resolution of the detector, the time-dependent
distributions f± for B0 and B0 tagged events are convoluted with a time
resolution function

R(δt = ∆t−∆ttrue; â)

to yield the experimentally measured decay time PDF

F±(∆t; Γ,∆md,D, C, S, â) = f±(∆t; Γ,∆md,D, C, S)⊗R(δt; â), (16)

where â represents the set of parameters (fcore,tail, σcore,tail, δcore,tail, foutlier, σoutlier)
that describe the resolution function:

R(δt; â) =
2∑

k=1

fcore,tail

σcore,tail
√
2π

exp

(
−(δt − δcore,tail)

2

2σcore,tail

)
+

foutlier

σoutlier
√
2π

exp

(
− δ2t
2σoutlier2

)
. (17)

The default resolution function is a triple Gaussian model, where two
Gaussians (core and tail) have a width proportional to the event by event
error and the third (outlier) has a width fixed to 8 ps. The bias of the outlier
Gaussian is fixed to 0, while the core and tail biases scale with the event by
event error.

Events are separated into four different tagging categories (see Section
2.3), each of which has a different mean mistag fraction, wi, determined
individually for each category [39]. The value of the free parameters C and
S are extracted using the tagged B0 → D∗+D∗− sample by maximizing the
likelihood function

lnLCP =
tagging∑

i


 ∑
B0tag

lnF+(∆t; Γ,∆md, â,D, C, S)

+
∑
B0tag

lnF−(∆t; Γ,∆md, â,D, C, S)


 , (18)

where the outer summation is over tagging categories i. The fit for C and
S will be performed on the combined flavor-eigenstate and B0 → D∗+D∗−

samples, in order to determine the parameters, the mistag fractions for each
tagging category, and the vertex resolution parameters âi. Additional terms
are included in the likelihood to account for backgrounds and their time
dependence.
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Background modelling

The background parametrizations can be allowed to differ for each tagging
category. Each event belongs to a particular tagging category, i. In addition,
the event is classified by whether Btag was a B0 (+) or a B0 (−). The
distribution, specified for each possibility (+/−, i) can be written as:

F±,i = fCPi,sigF±(∆t; Γ,∆md, wi, C, S, âi)

+ fCPi,peakBCP
±,i,peak(∆t; âi)

+
∑

β=bkgd

fCPi,β BCP
±,i,β(∆t; b̂i). (19)

where the fi,β are the fractions of background events for each source and
tagging category as a function of mES. The peaking and combinatorial back-
ground PDFs, B±,i,peak and B±,i,β, provide an empirical description the ∆t
distribution of the background events in the sample, including resolution
functions (see the previous subsection) parametrized by âi and b̂i respec-
tively. The probability that a B0 candidate is a signal or a background event
is determined from a separate fit to the observed mES distributions, describe
as the sum of a single Gaussian distribution for the signal plus an ARGUS
parametrization for the background.

Based on this fit, we find that the event-by-event signal and background
probabilities appear as the relative weights for the various signal and back-
ground terms in eq. (19).

Backgrounds arise from many different sources. Rather than attempting
to determine the various physics contributions, we make for an empirical
description in the likelihood fit, allowing for background components with
various time dependences.

The possible background contributions considered are

BCP
±,i,1 = (1/2)δ(∆t) ⊗R(δt; b̂i),

BCP
±,i,2 = (Γi,2/4)(1 ±DCP

i,2 sin∆md∆t) e−Γ
CP
i,2 |∆t| ⊗R(δt; b̂i),

BCP
±,i,peak = (Γi,peak/4)(1 ±DCP

i,peak sin∆md∆t) e−Γ
CP
peak

|∆t| ⊗R(δt; âi), (20)

corresponding to prompt and CP background components as well as a peak-
ing contribution. The background resolution function parameters b̂i are com-
mon with the background resolution function of the Bflav sample. The like-
lihood fit includes as free parameters the fraction of each time component,
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as well as apparent lifetimes, resolutions and dilutions that best describe the
events with high weights for being background [39].

The actual use of these options in the present analysis is described in the
sections (4.4, 4.5, 4.6) devoted to results and systematics.

Angular acceptance

A study of the angular acceptance effects, mainly due to the efficiency thresh-
old in the detection of slow pions, was performed at generator level [38] for
the measurement of the odd CP fraction Rt =

1
2
(1 −K) (where K was de-

fined in eqn. 13). For the present CP asymmetry analysis, a toy Monte Carlo
study showed that a simultaneous fit of the angular and time dependence is
able to resolve the effective content of the even and odd CP components in
the selected sample, reproducing the input #(λ) value, independently of the
angular acceptance, that only affects the “effective” fitted Rt value.

4.2 B0 → D∗±D∓: Fit Method

4.2.1 B0 → D∗±D∓: Measurement of CP asymmetry

D∗D is not (a priori) a CP eigenstate. The two B0 → D∗±D∓ final states,
D∗+D− and D∗−D+, are linear combinations of the CP eigenstates

|D∗+D− +D∗−D+〉 and |D∗+D− −D∗−D+〉.

The CP -violating parts of the PDFs for B0 → D∗+D− and B0 → D∗−D+

are thus linearly coupled and may be solved simultaneously.

There are 4 pairs of Feynman diagrams for
(−)
B0→ D∗±D∓, as may be seen

in Figure 4.1. The CP parameters λ for such non-CP -eigenstates are as
follows [42]:

λD∗+D− =
q

p

A(B̄0 → D∗+D−)
A(B0 → D∗+D−)

= e−2iφ
|ĀD∗+D−|
|AD∗+D−| = e−i(2φ+δ)|λD∗+D−| (21)

and

λD∗−D+ =
q

p

A(B̄0 → D∗−D+)

A(B0 → D∗−D+)
= e−2iφ

|ĀD∗−D+ |
|AD∗−D+ | = e−i(2φ−δ)|λD∗−D+ | (22)
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≈

Figure 4.1: The four pairs of Feynman diagrams for B0 → D∗±D∓. The upper
diagrams represent the tree amplitude to the D∗D final state. Unlike CP -eigenstates,
the final states (D∗+D− andD∗−D+) are not self-conjugate; the final states are instead
conjugate with each other in the manner shown. A strong phase difference δ may
separate B0 and B0 amplitudes to each final state; this phase can differ (δ′) for the
penguin amplitudes. In HQET the strong phase difference is zero, thus the phases are
expected to at least be fairly small (nevertheless we will fit for a floating phase, as
explained below).
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where φ is the weak phase and δ is a possible strong phase difference in B0

and B0 amplitudes to the D∗D final states. The equalities hold under the
typical assumption that CP -violation purely in mixing may be neglected.

Formalism if penguins may be neglected

If one only considers the tree amplitude to the D∗D final states (which is not
so typical an assumption in a type II CP mode such as D∗D, where penguins
could potentially be significant), then φ is identical to the CKM Unitarity
Triangle angle β, allowing for direct measurement of sin2β. The magnitudes

of the amplitude ratios of
(−)
B0→ D∗±D∓, are then inversely related, ie.

|λD∗−D+| = 1

|λD∗+D−| (23)

Thus the PDFs for D∗+D− and D∗−D+ are

Γ


(−)

B0→ D∗+D−

 = e−ΓtA2

{
1
(−)
+ (1− 2w)R cos(∆mdt)

(+)
− (1− 2w)D sin(2β + δ) sin(∆mdt)

}
(24)

and

Γ


(−)

B0→ D∗−D+


 = e−ΓtĀ2

{
1
(+)
− (1− 2w)R cos(∆mdt)

(+)
− (1− 2w)D sin(2β − δ) sin(∆mdt)

}
(25)

where

R =
1− |λD∗+D−|2
1 + |λD∗+D−|2 D =

2|λD∗+D−|
1 + |λD∗+D−|2 (26)

One thus fits for the 3 parameters sin(2β+ δ), sin(2β− δ), and |λD∗+D−|.
The quantities sin(2β+ δ) and sin(2β− δ) can then be combined to solve for
sin(2β) (up to a discrete ambiguity) via:

sin2(2β) =
1

2

[
1 + SS̄ ±

√
(1− S2)(1− S̄2)

]
(27)
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where S = sin(2β + δ) and S̄ = sin(2β − δ).
In an HQET approximation, where final state interactions are neglected

(as well as penguins), |λD∗+D−| = 1 and the strong phase difference δ = 0,
ie. both decays measure sin(2β) exactly as a CP -eigenstate would, without
needing to have two coupled PDFs as above (although the above would of
course still be valid) [43]. Of the two discrete ambiguities above, one (minus
in front of the square root) occurs when |δ| < π/2 and the other occurs
when δ is obtuse, |δ| > π/2. Clearly the former is very strongly favored
— although HQET is not expected to hold exactly, such a large deviation
as would cause the latter solution would be highly unexpected. Thus the
doubling of uncertainty that one might expect from the addition of an extra
discrete ambiguity is not in fact the case; one of the ambiguity sets is very
strongly disfavored.

General formalism — multiple weak phases

If one no longer constrains oneself to a single weak phase from the tree
amplitude, a more general formalism is required. Penguins with a t and with
a u quark in the loop have a different weak phase than the tree — their phase
cancels with the mixing phase, leaving 0 rather than β. Such penguins may
potentially have some significance since they are not Cabbibo-suppressed
relative to the tree amplitude, although color-suppression and small QCD
coefficients indicate that they should in principle be smaller than the tree.
In addition, hypothetical new physics (for example, SUSY particles in the
penguin loop) could potentially have a still different CP -violating phase.

In general, when multiple CP -violating phase contributions are consid-
ered, the ratios of amplitudes

A(B̄0 → D∗+D−)
A(B0 → D∗+D−)

and
A(B̄0 → D∗−D+)

A(B0 → D∗−D+)
(28)

equal

λD∗+D− =
e−iβ −∑n

i=1 |Ri|ei(δi−φi)

R′
0e

i(β+δ′0) −∑n
i=1 |R′

i|ei(δ
′
i+φi)

(29)

and

λD∗−D+ =
R′
0e

−i(β+δ′0) −∑n
i=1 |R′

i|ei(δ
′
i−φi)

eiβ −∑n
i=1 |Ri|ei(δi+φi)

(30)

(assuming no CP -violation purely in mixing) where the |Ri| and |R′
i| are

the norms of the ratios of the amplitudes of the additional contributions

97



over the primary contribution (including CKM factors), the φi are the weak
phases of the additional contributions, δ′0 is the difference, if any, in strong
phase between B0 → D∗+D− and B̄0 → D∗+D−, and the δi and δ′i are the
differences in strong phase between the secondary (penguin) and primary
(tree) CP -violating contributions to the B̄0 and B0 decays respectively.

Let

(−)
a = cos(β + δ′0/2)−

∑
|Ri|cos(〈δi〉 − φi

(−)
+ ∆δi) (4.31a)

(−)
b = −sin(β + δ′0/2)−

∑
|Ri|sin(〈δi〉 − φi

(−)
+ ∆δi) (4.31b)

(−)
c = R′

0cos(β + δ′0/2)−
∑

|R′
i|cos(〈δi〉+ φi

(+)

− ∆δi) (4.31c)

(−)
d = R′

0sin(β + δ′0/2)−
∑

|R′
i|sin(〈δi〉+ φi

(+)

− ∆δi) (4.31d)

where

〈δi〉 =
δi + δ′i
2

and ∆δi =
δi − δ′i
2

. (4.31e)

Then the 3 parameters that are fit as in the single weak phase case, abs(λ),
sin(2φ+ δ), and sin(2φ− δ), instead become

|λ| =
√
a2 + b2

c2 + d2
=

√
ā2 + b̄2

c̄2 + d̄2
(32)

“sin(2φ− δ)” → ad− bc

c2 + d2
and

“sin(2φ+ δ)” → ād̄− b̄c̄

c̄2 + d̄2
(33)

One can instead use an alternate fitting parametrization, fitting for the
magnitudes of the cosine and sine terms of the PDF for each of D∗+D−

and D∗−D+. One thus fits for 4 parameters (CD∗+D−, SD∗+D−, CD∗−D+ , and
SD∗−D+) rather than the 3 in the case of no penguins, via the following PDFs:

Γ


(−)
B0→ D∗+D−


 = e−ΓtA2

{
1
(−)
+ (1− 2w)CD∗+D−cos(∆mdt)

(+)

− (1− 2w)SD∗+D−sin(∆mdt)

}
(34)
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and

Γ


(−)
B0→ D∗−D+


 = e−ΓtĀ2

{
1
(+)

− (1− 2w)CD∗−D+cos(∆mdt)

(+)

− (1− 2w)SD∗−D+sin(∆mdt)

}
(35)

Since an association between the 4 parameters and Standard Model Uni-
tarity Triangle values is not made, such a parametrization is by nature gen-
eral. In the case of the multiple weak phase formalism, these parameters
are:

CD∗+D− =
1− a2 − b2

1 + a2 + b2

SD∗+D− =
2(ad− bc)

a2 + b2 + c2 + d2
×
√
a2 + b2

c2 + d2

CD∗−D+ =
1− ā2 − b̄2

1 + ā2 + b̄2

SD∗−D+ =
2(ād̄− b̄c̄)

ā2 + b̄2 + c̄2 + d̄2
×
√
ā2 + b̄2

c̄2 + d̄2
(36)

Both parametrizations (3 and 4 parameter) may be fit using the D∗D
maximum likelihood fit and results using both parametrizations will be pre-
sented.

4.2.2 Likelihood fit method

To account for finite ∆z resolution of the detector, the PDFs above are
convoluted with a time-resolution function R(δt = ∆t−∆ttrue; â):

3−parFD∗+D−
(−)

B0

(∆t; Γ,∆md, w, |λ|, sin(2β + δ), â) =

3−parΓD
∗+D−

(−)

B0

(∆t; Γ,∆md, w, |λ|, sin(2β + δ)) ⊗ R(δt; â) (37)
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3−parFD∗−D+

(−)

B0

(∆t; Γ,∆md, w, |λ|, sin(2β − δ), â) =

3−parΓD
∗−D+

(−)

B0

(∆t; Γ,∆md, w, |λ|, sin(2β − δ)) ⊗ R(δt; â) (38)

and for the 4-parameter PDF parametrizations:

4−parFD∗+D−
(−)

B0

(∆t; Γ,∆md, w, |λ|, CD∗+D−, SD∗+D−, â) =

4−parΓD
∗+D−

(−)

B0

(∆t; Γ,∆md, w, |λ|, CD∗+D−, SD∗+D−) ⊗ R(δt; â) (39)

4−parFD∗−D+

(−)

B0

(∆t; Γ,∆md, w, |λ|, CD∗−D+ , SD∗−D+ , â) =

4−parΓD
∗−D+

(−)

B0

(∆t; Γ,∆md, w, |λ|, CD∗−D+ , SD∗−D+) ⊗ R(δt; â) (40)

The values of the floating parameters are extracted by maximizing the
likelihood functions:

lnL3−par
CP =

tagging∑
i

[

∑
B0tag

ln 3−parFD∗+D−
B0 (∆t; Γ,∆md, wi, |λ|, sin(2β + δ), â) +

∑
B0tag

ln 3−parFD∗+D−
B̄0 (∆t; Γ,∆md, wi, |λ|, sin(2β + δ), â) +

∑
B0tag

ln 3−parFD∗−D+

B0 (∆t; Γ,∆md, wi, |λ|, sin(2β − δ), â) +

∑
B0tag

ln 3−parFD∗−D+

B̄0 (∆t; Γ,∆md, wi, |λ|, sin(2β − δ), â)

]
(41)

for the 3-parameter parametrization and

lnL4−par
CP =

tagging∑
i

[

∑
B0tag

ln 4−parFD∗+D−
B0 (∆t; Γ,∆md, wi, CD∗+D−, SD∗+D− , â) +
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∑
B0tag

ln 4−parFD∗+D−
B̄0 (∆t; Γ,∆md, wi, CD∗+D−, SD∗+D− , â) +

∑
B0tag

ln 4−parFD∗−D+

B0 (∆t; Γ,∆md, wi, CD∗−D+, SD∗−D+ , â) +

∑
B0tag

ln 4−parFD∗−D+

B̄0 (∆t; Γ,∆md, wi, CD∗−D+, SD∗−D+ , â)

]
(42)

for the 4-parameter, where (in both cases) the outer summation is over tag-
ging categories i. The fits for the parameters are done on the combined
flavor-eigenstate and D∗D samples in order to determine the parameters
which are left floating in the fit. Additional terms included in the likeli-
hood are also required in order to account for backgrounds and their time
dependence, as explained in the following subsection.

In order to properly incoporate the correlations between the CP -violation
parameters of physical interest and the dilution and resolution function pa-
rameters which must also be determined, the fit is performed (for both the
3-parameter and 4-parameter fits) using both the mixing and D∗D samples
by simultaneously maximizing the sum:

lnLCP + lnLmix (43)

The values of B0 lifetime and the mixing frequency ∆md are kept fixed in
the fit. The value of the mixing frequency ∆md is obtained with an unbinned
maximum likelihood fit using the tagged flavor-eigenstate B0 sample alone.

B0 → D∗±D∓: Background modeling

In the presence of backgrounds, the PDFs F(−)

B0

above must be extended to

include a term for each of the four significant background sources: 1) contin-
uum, 2) B+B−, 3) combinatoric B0B0, and 4) peaking B0B0. The dominant
background in B0 → D∗±D∓ is combinatoric BB̄ background, however there
are known to be both a small continuum contribution and a small peaking
(non-CP ) B0B0 contribution. Furthermore, these backgrounds may differ
depending on tagging category. Thus a distribution must be specified for
each possibility

F
i,

(−)

B0

= fi,sigF(−)

B0

+ fi,peakBi,peak(∆t, âi) +
∑

β=bkgd

fi,βBi,β(∆t, b̂i) (44)
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where β runs over i) continuum, ii) B+B−, and iii) combinatoric B0B0 contri-
butions. This method of background modeling is very similar to what is used
for the charmonium sin2β measurement (for ηCP = −1 modes). The back-
ground PDFs B provide a description of the ∆t distribution for each of the
four types of background contributions (3 combinatoric + 1 peaking). The
probability breakdown for a given event between signal and each of the four
types of background is determined by an mES fit to data (to separate proba-
bility of combinatoric background vs. signal and peaking background), from
Monte Carlo (to determine the relative probabilities of signal vs. peaking
background), and from the data ∆t distribution (to determine the relative
probabilities of combinatoric B0B0 vs. B+B− vs. continuum). In the mES fit,
the signal (& peaking background) is described by a gaussian, and combina-
toric backgrounds by an ARGUS function. This provides a parametrization
of the combinatoric background probability as a function of mES; the further
subdivision of probabilities using Monte Carlo utilizes scale factors (which
are not functions of mES), i.e.

fi,sig(mES) =
(1− δpeak)S(mES)

S(mES) +A(mES)
(45)

fi,peak(mES) =
δpeakS(mES)

S(mES) +A(mES)
(46)

∑
β=bkgd

fi,β(mES) =
A(mES)

S(mES) +A(mES)
(47)

where S and A are the fitted signal gaussian and combinatoric ARGUS func-
tions respectively. In addition, the background resolution function param-
eters b̂i and background effective dilutions are included as free parameters
within the fit, as detailed in the following section.

Combinatoric B0B0 backgrounds to B0 → D∗±D∓ can potentially add an
effective cosine term in the asymmetry due to differing rates for B0 → D∗−X
and B0 → D∗−X (the former is a Cabbibo-favored decay whereas the latter is
not). This is corrected for by fitting the large sidebands (|∆E| < 200MeV)
for an effective cosine term in each of the 4 tag categories and in each of
D∗−D+ and D∗+D− (thus 8 parameters). These parameters are then input
to the fit as the effective cosine terms for the background. The systematic
error due to this method is evaluated by splitting up the sideband into high
and low ∆E halves as well as high and low mES halves and reevaluating
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the fit on each of these 4 subsets. The largest of the 4 deviations for each of
the 8 parameters is taken to be the systematic error on that parameter. The
results of the fits are:

stat syst

--> cos coeff D*-D+ bkgd (lepton) 0.4098 +/- 0.1663 +/- 0.1191

--> cos coeff D*-D+ bkgd (kaon) 0.2974 +/- 0.0630 +/- 0.0580

--> cos coeff D*-D+ bkgd (NT1) 0.2687 +/- 0.1573 +/- 0.2093

--> cos coeff D*-D+ bkgd (NT2) 0.1090 +/- 0.0910 +/- 0.0685

--> cos coeff D*-D+ bkgd (lepton) -0.6384 +/- 0.2045 +/- 0.1420

--> cos coeff D*-D+ bkgd (kaon) -0.1892 +/- 0.0636 +/- 0.0492

--> cos coeff D*-D+ bkgd (NT1) -0.2855 +/- 0.1638 +/- 0.0675

--> cos coeff D*-D+ bkgd (NT2) -0.1543 +/- 0.0907 +/- 0.0749

4.3 Blind analysis

For D∗+D∗− we choose the strategy of fitting for the sine and cosine coef-
ficients. These two parameters were blinded in order to eliminate possible
experimenter’s bias.

Similar to the charmonium sin2β measurement, the amplitude of the
asymmetry ACP (∆t) from the fits are hidden by a one-time random choice of
sign flip and arbitrary offset based on a user-specified key word. The sign flip
hides whether a change in the analysis increases or decreases the resulting
asymmetry. However, the magnitude of the change is not hidden.

With this technique, systematic studies may be performed while keeping
the numerical values of the physical parameters hidden. D∗+D∗− and D∗D
are blinded separately using separate blinding strings, and both of these
modes are separate from other sin2β modes.

For D∗D, the values of sin(2β + δ), sin(2β − δ), and |λ| (for the 3 pa-
rameter fit) and CD∗+D−, SD∗+D−, CD∗−D+ , and SD∗−D+ (for the 4 parameter
fit) are hidden.

4.4 Results

4.4.1 B0 → D∗+D∗− results

Subdivision in tagging categories

In table 4.1 the data are subdivided in four tagging categories. The number
of events for signal and background are evaluated from the unbinned fit to
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Number of events lepton Kaon NT1 NT2
all events 223 16 71 13 33
signal 90.0 8.0 29.8 8.6 10.6
background 134.0 8.0 41.2 4.3 22.4

Table 4.1: D∗+D∗− break down in each tagging categories.

S C fτ=0
−0.045± 0.453 0.121± 0.303 0.359± 0.162
(0.4463;−0.4623) (0.2969;−0.3024)

Table 4.2: Results of the fit to D∗+D∗− data. S and C are the sine and cosine
coefficients respectively and fτ=0 is the fraction of prompt background. The
numbers in parenthesis in the second row represent their almost symmetric
errors from the fit.

the mES distribution. For each category, the mean value µ and standard
deviation σ of the signal and the Argus coefficient K of the background were
fixed at the values obtained from a fit to all tagged and untagged events
(µ = 5.2801 GeV, σ = 0.0023 GeV, K = −39.4 respectively). The numbers
of signal and background events where floated.

Fit to data

A combined fit to theD∗+D∗− and Bflav samples was performed. ForD
∗+D∗−

we floated the sin and cos coefficients S and C and the fraction of prompt
background and we fixed the lifetime of the background to the B0 lifetime.

The usual parameters [40] for the Bflav sample were floated: D, ∆D,
the resolution function parameters for signal and background, and the back-
ground fractions. The results obtained are summarized in table 4.2. The
global correlation coefficient for the sine coefficient S is 12.3%, for the cosine
coefficient C it is 13.3%.
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Figure 4.2: Flavor tagged B0 → D∗+D∗− ∆t distributions with the fit likeli-
hood superimposed. The shaded portion represents the background contri-
bution.
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Figure 4.3: Raw B0 → D∗+D∗− time dependent asymmetry with the likeli-
hood superimposed.
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4.4.2 B0 → D∗±D∓ results

Blind fit on data

A blind fit on the B0 → D∗±D∓ data sample (combined with data Breco
events) has been performed. The four physical parameters corresponding to
the cosine and sine terms for each of D*+D- and D*-D+ were each separately
blinded with a blinding width of 0.7.

Using the central values of the background cosine terms (see Section 4.2.2)
in a blind fit on data with 13% peaking background gives:

===== Final value for Scale (core) - sig 1.1316 +/- 0.0597

===== Final value for Scale (core) - bgd 1.4335 +/- 0.0192

===== Final value for d(dt) (core) [ps] - lepton -0.0111 +/- 0.0440

===== Final value for d(dt) (core) [ps] - kaon -0.1706 +/- 0.0308

===== Final value for d(dt) (core) [ps] - NT1 -0.1118 +/- 0.0557

===== Final value for d(dt) (core) [ps] - NT2 -0.1667 +/- 0.0484

===== Final value for d(dt) (core) [ps] - bkgd -0.0262 +/- 0.0093

===== Final value for d(dt) (tail) [ps] - sig -0.8584 +/- 0.2790

===== Final value for fraction in tail - sig 0.0905 +/- 0.0246

===== Final value for outlier fraction - sig 0.0031 +/- 0.0016

===== Final value for outlier fraction - bgd 0.0120 +/- 0.0018

===== Final value for dilu ave - sig, lepton 0.8264 +/- 0.0189

===== Final value for dilu ave - sig, kaon 0.6392 +/- 0.0145

===== Final value for dilu ave - sig, NT1 0.5585 +/- 0.0312

===== Final value for dilu ave - sig, NT2 0.2553 +/- 0.0270

===== Final value for dilu ave - t=0 bkgd, lepton 0.6573 +/- 0.1213

===== Final value for dilu ave - t=0 bkgd, kaon 0.4845 +/- 0.0191

===== Final value for dilu ave - t=0 bkgd, NT1 0.3150 +/- 0.0497

===== Final value for dilu ave - t=0 bkgd, NT2 0.0994 +/- 0.0264

===== Final value for dilu ave - t>0 no mix, lepton 0.1390 +/- 0.1212

===== Final value for dilu ave - t>0 no mix, kaon 0.1610 +/- 0.0424

===== Final value for dilu ave - t>0 no mix, NT1 0.0588 +/- 0.0980

===== Final value for dilu ave - t>0 no mix, NT2 0.0431 +/- 0.0672

===== Final value for dilu diff - sig, lepton -0.0076 +/- 0.0315

===== Final value for dilu diff - sig, kaon 0.0194 +/- 0.0225

===== Final value for dilu diff - sig, NT1 -0.0401 +/- 0.0488

===== Final value for dilu diff - sig, NT2 0.1046 +/- 0.0403

===== BLINDED Final value for cos coeff D*-D+ signal 0.5440 +/- 0.5181 (+0.5142 -0.5101)

===== BLINDED Final value for sin coeff D*-D+ signal 1.2697 +/- 0.9191 (+0.8892 -0.9160)

===== BLINDED Final value for cos coeff D*+D- signal 0.3777 +/- 0.7731 (+0.7670 -0.7369)

===== BLINDED Final value for sin coeff D*+D- signal -0.1120 +/- 1.4577 (+1.4238 -1.3850)

===== Final value for f(tau=0) D*D 0.3442 +/- 0.0948

===== Final value for f(tau=0) breco lepton 0.4886 +/- 0.0581

===== Final value for f(tau=0) breco kaon 0.7108 +/- 0.0146

===== Final value for f(tau=0) breco NT1 0.6924 +/- 0.0297

===== Final value for f(tau=0) breco NT2 0.7563 +/- 0.0175

The unblind results of the fit are:

===== Final value for Scale (core) - sig 1.1315 +/- 0.0597

===== Final value for Scale (core) - bgd 1.4335 +/- 0.0192
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===== Final value for d(dt) (core) [ps] - lepton -0.0111 +/- 0.0440

===== Final value for d(dt) (core) [ps] - kaon -0.1706 +/- 0.0309

===== Final value for d(dt) (core) [ps] - NT1 -0.1117 +/- 0.0557

===== Final value for d(dt) (core) [ps] - NT2 -0.1666 +/- 0.0484

===== Final value for d(dt) (core) [ps] - bkgd -0.0262 +/- 0.0093

===== Final value for d(dt) (tail) [ps] - sig -0.8581 +/- 0.2789

===== Final value for fraction in tail - sig 0.0906 +/- 0.0246

===== Final value for outlier fraction - sig 0.0031 +/- 0.0016

===== Final value for outlier fraction - bgd 0.0120 +/- 0.0018

===== Final value for dilu ave - sig, lepton 0.8263 +/- 0.0189

===== Final value for dilu ave - sig, kaon 0.6392 +/- 0.0145

===== Final value for dilu ave - sig, NT1 0.5585 +/- 0.0312

===== Final value for dilu ave - sig, NT2 0.2553 +/- 0.0270

===== Final value for dilu ave - t=0 bkgd, lepton 0.6573 +/- 0.1213

===== Final value for dilu ave - t=0 bkgd, kaon 0.4845 +/- 0.0191

===== Final value for dilu ave - t=0 bkgd, NT1 0.3150 +/- 0.0497

===== Final value for dilu ave - t=0 bkgd, NT2 0.0994 +/- 0.0264

===== Final value for dilu ave - t>0 no mix, lepton 0.1390 +/- 0.1212

===== Final value for dilu ave - t>0 no mix, kaon 0.1610 +/- 0.0424

===== Final value for dilu ave - t>0 no mix, NT1 0.0588 +/- 0.0980

===== Final value for dilu ave - t>0 no mix, NT2 0.0431 +/- 0.0672

===== Final value for dilu diff - sig, lepton -0.0075 +/- 0.0315

===== Final value for dilu diff - sig, kaon 0.0193 +/- 0.0225

===== Final value for dilu diff - sig, NT1 -0.0403 +/- 0.0488

===== Final value for dilu diff - sig, NT2 0.1049 +/- 0.0403

===== Final value for cos coeff D*-D+ signal -0.2988 +/- 0.4974 (+ 0.4884 -0.4934)

===== Final value for sin coeff D*-D+ signal 0.3751 +/- 0.8754 (+ 0.8719 -0.8436)

===== Final value for cos coeff D*+D- signal 0.5329 +/- 0.7418 (+ 0.7362 -0.7076)

===== Final value for sin coeff D*+D- signal -0.4344 +/- 1.4093 (+ 1.3774 -1.3412)

===== Final value for f(tau=0) D*D 0.3440 +/- 0.0948

===== Final value for f(tau=0) breco lepton 0.4886 +/- 0.0581

===== Final value for f(tau=0) breco kaon 0.7108 +/- 0.0146

===== Final value for f(tau=0) breco NT1 0.6923 +/- 0.0297

===== Final value for f(tau=0) breco NT2 0.7563 +/- 0.0175

The addition to the error due to the statistical errors of the cosine terms
of the background (see Section 4.2.2) must be added in quadrature with these
statistical errors. (The systematic errors on the cosine terms are treated in
the Systematics section, but the statistical errors on these quantities result
in quadrature additions to the statistical error on the physical parameters.)
Variation of the background cosine terms according to their statistical errors
(Section 4.2.2) results in additional statistical errors of 0.066 for SD∗+D− ,
0.036 for CD∗+D− , 0.022 for SD∗−D+ , and 0.037 for CD∗−D+ . Combining these
in quadrature with the statistical errors from the global fit gives:

===== Final value for cos coeff D*-D+ signal -0.2988 +/- 0.4988 (+ 0.4898 -0.4948)

===== Final value for sin coeff D*-D+ signal 0.3751 +/- 0.8757 (+ 0.8723 -0.8439)

===== Final value for cos coeff D*+D- signal 0.5329 +/- 0.7427 (+ 0.7371 -0.7095)

===== Final value for sin coeff D*+D- signal -0.4344 +/- 1.4105 (+ 1.3786 -1.3428)

The above are the final results for the B0 → D∗±D∓ CP fit.
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4.5 D∗+D∗− systematics

Table 4.3 summarizes our estimate of the systematic errors δS and δC on the
coefficients S and C. In this section we describe the individual contributions
to the systematic error which are taken into account in the present analysis.

Systematics source δS δC

signal ∆t resolution function 0.008 0.003
tagging dilution 0.005 0.005
peaking background 0.003 0.009
CP background content 0.022 0.038
lifetime of background 0.034 0.005
B0 lifetime variation 0.001 0.001
∆md variation 0.030 0.022

SVT misalignment 0.011 0.008
Boost uncertainty 0.002 0.001

Fit bias 0.001 0.004

TOTAL 0.053 0.046

Table 4.3: Summary of the systematics errors estimated for the coefficients
S and C.

4.5.1 Signal Parameters

As for the charmonium CP events, the underlying assumption in the analysis
of B0 → D∗+D∗− events is that the resolution function and the dilutions are
the same in the B flavor sample and in the CP sample. Possible deviations
from these assumptions are accounted for in the systematic error.

Tagging Dilutions

We extract and compare the tagging dilutions from large samples of Bflav

and CP simulated samples. The results are shown in Table 4.4. We assign
as systematic errors the observed shift on the fitted S and C parameters,
fixing alternatively the mistag fractions at the values obtained from the two
samples. In the B0 → D∗+D∗− analysis, for the coefficient S of the sine term
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we assign a systematic error of 0.0052, for the coefficient C of the cosine term
0.0051.

Parameter D∗+D∗− MC Bflav MC

w (Lepton) 0.059± 0.004 0.066± 0.003
w (Kaon) 0.164± 0.004 0.171± 0.003
w (NT1) 0.196± 0.009 0.213± 0.006
w (NT2) 0.348± 0.008 0.353± 0.006

∆ w (Lepton) −0.028± 0.008 −0.007± 0.006
∆ w (Kaon) −0.005± 0.008 −0.014± 0.006
∆ w (NT1) 0.023± 0.018 0.045± 0.013
∆ w (NT2) −0.032± 0.016 −0.029± 0.011

Table 4.4: Values of mistag fractions inD∗+D∗− and Bflav MC samples (truth
level), used as alternative fixed parameters in the fit of the coefficients S and
C of the sine and cosine terms.

Parameterization of the signal resolution function

A similar method is also applied to study the systematic uncertainty in the
resolution function. We extract the ∆t resolution function parameters from
large samples of Bflav and CP simulated events. The fitted parameters values
are shown in table B.6. Table 4.5 shows the fitted values of the S and C coef-
ficients, obtained fixing four different sets of resolution function parameters,
corresponding to MC truth and fitted values for the D∗+D∗− and Bflav MC
samples. The shift in the fitted S and C coefficients values between the two
sets corresponding to D∗+D∗− Bflav truth level is assigned as the systematic
error.

CP background peaking component

In section B.1.2 we estimated an upper limit for the amount of peaking
background to be of the order of 2.9 events for 55 fb−1, that corresponded
to a fraction of peaking background fpeak = 0.032.

In the CP fit we fix the fraction of peaking background to be 0.0. The
systematic assigned to the measurement is estimated by a new fit done with
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Resol.F. Parameter set S C δS δC
D∗+D∗− MC Truth −0.2312± 0.0221 −0.0017± 0.0145 0 0
D∗+D∗− MC fitted −0.2328± 0.0223 −0.0044± 0.0145 0.016 0.0027
Bflav MC Truth −0.2229± 0.0219 −0.0042± 0.0145 0.0083 0.0025
Bflav MC fitted −0.2289± 0.0219 −0.0042± 0.0145 0.0023 0.0025

Table 4.5: Fitted values of the S and C coefficients obtained using different
resolution function parameters corresponding to the D∗+D∗− and Bflav MC
samples (truth level, fitted). The shift in the fitted S and C values from the
case of D∗+D∗− (truth level), is also shown.

a fraction of peaking background fixed to fpeak. The difference on fitted
values of sine and cosine coefficients between the two fits is 0.003 and 0.009
respectively.

CP content of background

We assume the CP content of the background events to be 0.0 in the CP
fit. We estimate the systematic error due to this assumption by changing its
value to±1. The difference on fitted CP parameters with respect the nominal
fit is 0.022 for the sine coefficient and 0.038 for the cosine coefficient.

Lifetime of the background

The ∆t spectrum of the background events is modeled as the sum of a prompt
component and a component with an effective lifetime τbkg that is fixed to
the B0 lifetime in the nominal fit. We evaluate the systematic error to be
0.034 for the sine coefficient and 0.005 by varying the fixed value from 1.0 to
2.5 ps.

Variation of ∆md and τB0

In the CP fit we fix the value of the mixing fraction to ∆md = 0.472 and the
lifetime of the B meson to τB0 = 1.548. By varying them of ±1σ (i.e. ±0.017
for ∆md and ±0.032 for τB0) we evaluate the systematic error due to the use
of those fixed values. The shift in lifetime produce a variation of both δS
and δC of 0.001. The variation of the mixing fraction of ±1σ results in a
variation of the sine coefficient of 0.030 and 0.022 for the cosine coefficient.
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Resol.F. Parameter set S C δS δC
D∗+D∗− “aligned SVT” −0.1778± 0.0550 0.0173± 0.0360 0 0
D∗+D∗− “misaligned SVT” −0.1885± 0.0554 0.0252± 0.0363 0.011 0.008

Table 4.6: Fitted values of the sine and cosine coefficients S and C, obtained
from D∗+D∗− Montecarlo samples processed with different SVT alignment
sets.

4.5.2 Detector effects

SVT misalignment

A subsample of D∗D∗ signal SP4 Monte Carlo was processed with and with-
out SVT misalignment (SVT “Misaligned set” called: diffBlend). In table 4.6
we compare the S and C fit results on reconstructed D∗D∗ from the mis-
aligned sample and on theD∗D∗ candidates reconstructed in the same events,
after reprocessing without misalignment. After the selection of the signal the
two sets have 4063 events in common (315 are present in the “aligned set”
only, 228 in the “misaligned set”). The systematic error due to SVT misalign-
ment, assigned to the S and C coefficients, is 0.011 and 0.008 respectively.

Uncertainty on Boost

The uncertainty on the values of the center-of-mass boost used for ∆z to ∆t
conversion can result in a scaling of ∆tmeasurement. In order to estimate the
systematic error due to 0.6% uncertainty on the boost we scale the measured
∆t and its error up and down by the same amount and repeat the nominal
fit. The systematic error assigned to the sine coefficint S is 0.002 and to the
cosine coefficient C is 0.001.

4.5.3 Monte Carlo correction (fit bias)

A fit was also done using the whole MC sample (26853 events) fixing the
tagging dilutions and resolution function parameters at the fitted value of
the Bflav MC sample and floating the sine and cosine coefficients. The input
value of the sine coefficient in the Monte Carlo is −0.231 corresponding to
Imλ = −0.7. Inputting a flat angular distribution gives K = 0.33. The
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input cosine coefficient is zero corresponding to |λ| = 1. The result obtained
is: S = −0.232± 0.022, C = −0.004± 0.015. The systematic error assigned
to S is 0.001 and the one assigned to C is 0.004.

4.6 D∗±D∓ systematics

Table 4.7 summarizes our estimate of the systematic errors δSD∗+D−, δCD∗+D−,
δSD∗−D+, and δCD∗−D+ on the 4 time-dependent asymmetry parameters for
D∗±D∓. In this section we describe the individual contributions to the sys-
tematic error which are taken into account in the present analysis.

Systematics source δSD∗+D− δCD∗+D− δSD∗−D+ δCD∗−D+

signal ∆t resolution function 0.057 0.049 0.010 0.011
tagging dilution 0.079 0.007 0.020 0.009
peaking bkgd. fraction 0.042 0.011 0.024 0.044
CP of peaking bkgd. 0.101 0.098 0.102 0.099
cos coeffs. of comb. bkgd. 0.044 0.024 0.015 0.025
lifetime of background 0.144 0.090 0.032 0.052
B0 lifetime variation 0.045 0.035 0.013 0.007
∆md variation 0.055 0.028 0.004 0.010

SVT misalignment 0.011 0.008 0.011 0.008
Boost uncertainty 0.002 0.001 0.002 0.001

Fit bias 0.039 0.029 0.038 0.027

TOTAL 0.225 0.154 0.120 0.127

Table 4.7: Summary of the systematics errors estimated for the coefficients
SD∗+D−, CD∗+D−, SD∗−D+, and CD∗−D+ .

4.6.1 Signal Parameters

Potential deviations from the assumption that the resolution function and
the dilutions in B0 → D∗±D∓ are the same in the B flavor sample, and
variations on other parameters which are fixed in the fit but have known
errors, are accounted for in the systematic errors below.
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Tagging Dilutions

We extract and compare the tagging dilutions from large samples of Bflav

and CP simulated samples. The results are shown in Table 4.8. We assign
as systematic errors the observed shift on the fitted S and C parameters,
fixing alternatively the tagging dilutions at the values obtained from the two
samples. In the B0 → D∗±D∓ analysis, we assign systematic errors on the
CP parameters of 0.079 for SD∗+D−, 0.007 for CD∗+D−, 0.020 for SD∗−D+ , and
0.009 for CD∗−D+ .

Parameter D∗±D∓ MC Bflav MC

w (Lepton) 0.059± 0.005 0.066± 0.003
w (Kaon) 0.161± 0.004 0.171± 0.003
w (NT1) 0.194± 0.012 0.213± 0.006
w (NT2) 0.344± 0.011 0.353± 0.006

∆ w (Lepton) −0.001± 0.011 −0.007± 0.006
∆ w (Kaon) −0.017± 0.010 −0.014± 0.006
∆ w (NT1) 0.039± 0.023 0.045± 0.013
∆ w (NT2) −0.057± 0.021 −0.029± 0.011

Table 4.8: Values of dilutions in D∗±D∓ and Bflav MC samples (truth level),
used as alternative fixed parameters in the fit of the coefficients S and C of
the sine and cosine terms.

Parameterization of the signal resolution function

A similar method is also applied to study the systematic uncertainty due
to the resolution function model. We extract the ∆t resolution function
parameters from large samples of Bflav and CP simulated events. The fitted
parameters values are shown in table B.7. Table 4.9 shows the fitted values
of the S and C coefficients, obtained fixing four different sets of resolution
function parameters, corresponding to MC truth and fitted values for the
D∗±D∓ and Bflav MC samples. The shift in the fitted S and C coefficients
values between the two sets corresponding to D∗±D∓ and Bflav truth level is
assigned as the systematic error.
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Resol.F. Parameter set δSD∗+D− δCD∗+D− δSD∗−D+ δCD∗−D+

D∗±D∓ MC Truth 0 0 0 0
D∗±D∓ MC fitted −0.034 0.042 −0.016 0.027
Bflav MC Truth 0.057 −0.049 0.010 −0.011
Bflav MC fitted 0.048 −0.052 0.011 −0.013

Table 4.9: Differences in fitted values of the S and C coefficients obtained
using different resolution function parameters corresponding to the D∗±D∓

and Bflav MC samples (truth level, fitted) from that obtained using D∗±D∓

MC truth values.

Fraction of peaking background

In section B.1.2 we estimate the number of peaking background events in
the signal region to be 6.0 ± 4.0 events. This correponds to the fraction of
peaking background being equal to 9.32 ± 6.15%. The systematic assigned
to the measurement is estimated by varying in the fit the fraction of peaking
background accourding to the measured value and error while fitting for sine
and cosine coefficients. The difference on fitted CP parameters with respect
the nominal fit is 0.042 for SD∗+D−, 0.011 for CD∗+D−, 0.024 for SD∗−D+, and
0.044 for CD∗−D+ .

CP content of the peaking background

We assume the CP content of the peaking background events to be 0.0 in
the nominal fit. We estimate the systematic error due to this assumption by
changing its value to ±1. The difference on fitted CP parameters with respect
the nominal fit is 0.101 for SD∗+D−, 0.098 for CD∗+D−, 0.102 for SD∗−D+, and
0.099 for CD∗−D+ .

Cosine coefficients of the combinatoric background

As explained in Section 4.2.2, combinatoric B0B0 backgrounds to B0 →
D∗±D∓ can potentially add an effective cosine term due to differing rates
for B0 → D∗−X and B0 → D∗−X. The 8 effective cosine coefficients are
fit on the large sideband with associated statistical and systematic errors on
the fit. The statistical errors from these parameters are incorporated into
the statistical error as detailed in Section 4.2.2. The systematic errors on the
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effective cosine coefficients result in systematic errors on theCP parameters of
0.044 for SD∗+D−, 0.024 for CD∗+D−, 0.015 for SD∗−D+, and 0.025 for CD∗−D+ .

Variation of ∆md and τB0

In the nominal fit we fix the value of the mixing frequency to ∆md = 0.472
and the lifetime of the B meson to τB0 = 1.548. By varying them ±1σ (i.e.
±0.017 for ∆md and ±0.032 for τB0) we evaluate the systematic error due to
fixing the values in the fit. The variation of the lifetime results in systematic
errors on the CP parameters of 0.045 for SD∗+D− , 0.035 for CD∗+D−, 0.013
for SD∗−D+ , and 0.007 for CD∗−D+ . The variation of the mixing frequency
results in systematic errors on the CP parameters of 0.055 for SD∗+D−, 0.028
for CD∗+D−, 0.004 for SD∗−D+ , and 0.010 for CD∗−D+.

4.6.2 Monte Carlo correction (fit bias)

A fit was also done using a large MC sample (15000 events) fixing the tagging
dilutions and resolution function parameters at the fitted value of the Bflav

MC sample and floating the 4 CP parameters. The input values of the sin2β
and |λ| in the Monte Carlo are 0.7 and 1.0 respectively, corresponding to
values of 0.7 for the sine parameters and 0 for the cosine parameters.

The result obtained is: SD∗+D− = 0.7374 ± 0.0385, CD∗+D− = 0.0247 ±
0.0294, SD∗−D+ = 0.7005 ± 0.0380, and CD∗−D+ = 0.0267 ± 0.0267. The
systematic error thus assigned are 0.039 for SD∗+D−, 0.029 for CD∗+D−, 0.038
for SD∗−D+, and 0.027 for CD∗−D+ .
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Chapter 5

Conclusions

Neglecting the effects of Standard Model penguins and assuming that HQET
holds for B → D(∗)D(∗) decays (the charm quark from the W makes it
likely that significant corrections to HQET may in fact be necessary in ac-
tuality), one can simply take the weighted average of the sine terms from
B0 → D∗±D∓ and the Rt-corrected sine term from B0 → D∗+D∗− to obtain
sin2β from b → cc̄d decays. With warning considered, this weighted average
is:

“sin2β” from B0 → D∗±D∓: 0.15± 0.75
“sin2β” from B0 → D∗+D∗−: −0.09± 0.811

“combined” (weighted average) “sin2β” from b → cc̄d: 0.04± 0.55

One should be forewarned, however, that theoretical corrections for penguins
are needed. Grossman and Worah estimate the Standard Model penguin cor-
rections to be < 0.1 on sin2β for b → cc̄d, however this is model-dependent.
It is likely that further phenomenological estimates of Standard Model pen-
guin corrections to b → cc̄d sin2β will be forthcoming as experimental errors
decrease.

The planned increases in luminosity at BABAR and Belle promise large
improvements in statistical error for D(∗)+D(∗)− as well as other CP viola-
tion measurements. The results presented here all have statistics-dominated
errors, and the largest systematics also scale with statistics, so updated re-
sults in coming years should contain significant decreases in error bars. The
prediction for luminosity increase over the next 4 years is summarized in fig-
ure 5.1. Statistics will quadruple from the present analysis by summer 2004,

1using Rt = 0.22± 0.18 [18]

116



Figure 5.1: Projected luminosities over the next four years at PEP-II-BABAR.

promising a factor of 2 decrease in errors. A factor of 3 should come by the
end of 2006, when the data is predicted to have increased nine-fold. Lest
one think that these predictions are likely to be optimistic, note figure 5.2,
which shows a comparison of the model as predicted in March 2001 with
data taken since that time. Note also that we are currently exceeding the
PEP-II design integrated data rate by over a factor of two. This also does
not include the likely future measurements of CP violation in B → D(∗)D(∗)

from Belle, which will create a still-smaller world-average error.
Supersymmetric models can have significant deviations in sin2β from b →

cc̄d from that of b → cc̄s decays such as B0 → J/ψK0
S
. Grossmann andWorah

predict that supersymmetric deviations of 0.3 can occur in measured sin2β
from b → cc̄d. With data collected over the next few years, significant light
will be shed on supersymmetric contributions to CP violation, both using
b → cc̄d decays as well as b → ss̄s, which will soon have sufficient statistics
for a first measurement of sin2β. At present, however, statistics do not allow
us to say anything definitive contributions to CP violation in b → cc̄d from
beyond the Standard Model.

To summarize, a first measurement of time-dependent CP violating asym-
metries in weak decays with quark process b → cc̄d is presented. This rep-
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Figure 5.2: Data taken at BABAR over the past 15 months as compared with
model (violet) predicted on March 29, 2001.

resents the first measurement of sin2β (neglecting penguins) outside of char-
monium. It is the first measurement to use a new quark process, b → cc̄d,
rather than b → cc̄s. Significant deviations to time-dependent CP violating
asymmetries in this mode may be expected from extensions to the Standard
Model, and as statistics increase, constraints on the CP violating sector of
these models will be possible. CP violation in the Standard Model is incon-
sistent with being the sole source of the CP asymmetry in the universe, so
with this measurement and its descendents, we gain a handle on why nature
and our universe is composed of matter.
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Figure 5.3: CP violating time-dependent asymmetry in B0 → D∗−D+ using
56 fb−1 of BABAR data. Fit is normalized to relative numbers of B0 and B0

seen in data in this mode.
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Figure 5.4: CP violating time-dependent asymmetry in B0 → D∗+D− using
56 fb−1 of BABAR data. Fit is normalized to relative numbers of B0 and B0

seen in data in this mode.
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Appendix A

Details of B → D(∗)D(∗)

Branching Fraction
Measurements

A.1 Data and Monte Carlo Samples

A.1.1 Data Sample

The data sample used for this analysis corresponds to Run 1 of BABAR.
A total of 3668 colliding beam runs are used, in the run range of 9931 to
17106. This data sample represents an integrated luminosity of 22.9 fb−1 ,
with 20.7 fb−1 collected on the Υ (4S) resonance and 2.2 fb−1 collected at
center-of-mass energy just below the Υ (4S). The total number of BB pairs
produced in this sample is [25]

NBB = (22.515± 0.360)× 106

Note that we do not require the same event selection as used by the B-
counting group and hence use the efficiency-corrected number of BB.

One of the features that distinguishes different data samples is the oper-
ating high voltage used in the drift chamber. The primary effect is seen in
the corrections applied to the Monte Carlo to account for differences seen in
the tracking efficiency (see Section A.7). In our data sample, 54.4% of the
luminosity was collected with a drift chamber voltage of 1900V, the rest at
a voltage of 1960V[27].
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A.1.2 Monte Carlo Samples

For optimizing and measuring the efficiency of our event selection criteria,
we use Monte Carlo simulated events of our signal modes.

For B0 → D∗+D∗−, the Monte Carlo for signal was generated as a ‘cock-
tail’ of the various D decay modes. The first cocktail for B0 → D∗+D∗−

signal was comprised of events where both of the charged D∗s decay via
D∗+ → D0π+. The D0s were then allowed to decay into the following modes:

• D0 → K−π+

• D0 → K−π+π0

• D0 → K−π+π−π+

• D0 → K0
S
π+π−

• D0 → K0
Sπ

0

• D0 → K−K+

Each D0 decay mode was generated with the same branching fraction.
For B0 → D∗±D∓, the Monte Carlo for signal was generated as a set

of separate runs for each of the various D subdecay modes. These B0 →
D∗+D− signal runs were comprised of events where the D∗ decays via either
D∗+ → D0π+ or D∗+ → D+π0. Charged D’s were allowed to decay via the
following 3 modes:

• D+ → K−π+π+

• D+ → K0
S
π+

• D+ → K−K+π+

The D0 from D∗+ → D0π+ was allowed to decay via the following 4 modes:

• D0 → K−π+

• D0 → K−π+π0

• D0 → K−π+π−π+

• D0 → K0
Sπ

+π−
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This gives a total of 21 subdecay modes generated: 3 for the bachelor charged
D multiplied by 4 + 3 = 7 for the D∗+ → D0π+ or D∗+ → D+π0.

The cocktail for B± → D∗±D∗0 signal was comprised of events where the
charged D∗ decays via either D∗+ → D0π+ or D∗+ → D+π0 (in the ratio
0.75:0.25) and the D∗0 decays via either D∗0 → D0π0 or D∗0 → D0γ (in the
ratio 0.667:0.333). D0s were then allowed to decay into the following modes:

• D0 → K−π+

• D0 → K−π+π0

• D0 → K−π+π−π+

• D0 → K0
S
π+π−

• D0 → K0
S
π0

• D0 → K−K+

Each D0 decay mode was generated with the same branching fraction. D+s
were allowed to decay into the following modes:

• D+ → K−π+π+

• D+ → K0
S
π+

• D+ → K−K+π+

• D+ → K0
Sπ

+π0

• D+ → K−K+π+π0

• D+ → K0
S
π+π−π+

Each D+ decay mode was generated with the same branching fraction.
A summary of the total Monte Carlo sample used is given in Section A.7.
For studying background and optimizing event selection, Monte Carlo

simulated generic B0B0, B+B−, and cc events are also used. The total num-
ber of events simulated of each type and the corresponding effective lumi-
nosity are summarized in Table A.1.
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Table A.1: Breakdown of Monte Carlo events used for background studies.

Event Type Events Generated Corresponding Luminosity
(×106) ( fb−1)

B0B0 4.2 8.0
B+ B− 6.7 12.8
cc 8.9 6.8

A.2 Event Pre-Selection

Pre-selection starts from events assigned to the isPhysicsEvents stream in
online prompt reconstruction (OPR). This stream includes events assigned to
any of the physics sub-streams by the background filter (BGF). We do not
make any explicit requirement that events belong to the BGFMultiHadron

sub-stream, but our requirements on charged track multiplicity and event
shape are tighter than those for the BGFMultiHadron list (3 or more tracks,
R2 < 0.6). Finally, the angle between the reconstructed B and the thrust
axis of the rest of the event is defined and we require cos(θthrust) < 0.9.

We also do not require that events pass the B Counting tag bit. This tag
bit is used by the B Counting group to obtain a statistical estimate of the
total number of B’s produced in the data set [25], rather than a direct count
of all B’s, so it is not necessary that signal events form a subset of the events
which pass this tag.

A.3 Charmed Meson Reconstruction

A.3.1 D∗ Decay Modes

The D∗+ meson is reconstructed in its decays into D∗+ → D0π+ and D∗+ →
D+π0 and the D∗0 meson is reconstructed in its decays into D∗0 → D0π0

and D∗0 → D0γ. InB0 → D∗+D∗−, for decay modes with a D∗+ in the
final state, the D∗+ meson is reconstructed in its decays into D∗+ → D0π+

and D∗+ → D+π0. We include for this analysis the decay combinations D∗+

D∗− decaying to (D0 π+,D0 π−) or (D0 π+,D− π0), but not (D+ π0,D− π0)
due to the smaller branching fraction and expected high backgrounds. The
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Table A.2: D∗ and D∗0 decay modes and branching fractions [24].

Particle Decay Mode Branching Fraction (%)

D∗+ D∗+ → D0π+ 67.7± 0.5
D∗+ → D+π0 30.7± 0.5

Total D∗+ Branching Fraction 98.4

Particle Decay Mode Branching Fraction (%)

D∗0 D∗0 → D0π0 61.9± 2.9
D∗0 → D0γ 38.1± 2.9

Total D∗0 Branching Fraction 100.0

branching fractions for these modes are summarized in Table A.2.

A.3.2 D0 and D+ Decay Modes

The decay modes of the D0 and D+ used in this analysis were selected by
an optimization of S2/(S + B) based on Monte Carlo. A more detailed
description of this procedure will be given in Section A.4. The D0 and D+

modes used and their branching fractions are summarized in Table A.3.

A.3.3 Charged Pion Selection

The selection of all charged pions, other than those from daughters of K0
S , is

based on the GoodTracksVeryLoose selection.
Charged pion daughters ofK0

S
are from the loosest selection, ChargedTracks,

a list containing all tracks reconstructed in the SVT, DCH, or both subde-
tectors.

The tracks used for the GoodTracksVeryLoose list are a subset of the
ChargedTracks list with the following:

1. a maximum momentum measured in the lab frame of 10 GeV/c, and

2. a distance of closest approach to the per-run nominal beam spot cen-
troid of

√
∆x2 +∆y2 < 1.5 cm, and |∆z| < 10 cm.
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Table A.3: D0 and D+ decay modes and branching fractions [24]. The
branching fraction for K0

S → π+π− is included for modes containing a K0
S .

Decay Mode Branching Fraction (%)

D0 → K−π+ 3.83± 0.09
D0 → K−π+π0 13.9± 0.9
D0 → K−π+π+π− 7.49± 0.31
D0 → K0

S
π+π− 1.85± 0.14

Total D0 Branching Fraction 27.1

Decay Mode Branching Fraction (%)

D+ → K−π+π+ 9.0± 0.6
D+ → K0

S
π+ 0.99± 0.09

D+ → K−K+π+ 0.87± 0.07
Total D+ Branching Fraction 10.9

A.3.4 Charged Kaon Identification

The kaon selection, KMicroNotPionGTL, is used for the kaon daughter for the
following D decays:

• D0 → K−π+π0

• D0 → K−π+π−π+

• D+ → K−π+π+

A particle passing the KMicroNotPionGTL selection must not have a Cerenkov
ring consistent with a pion in the DIRC, or not have dE/dx consistent with a
pion in the DCH and SVT. Details of this selection are given in BAD #116.

The tighter kaon selection, KMicroTight, is used for one of the kaon
daughters for the decay D+ → K−K+π+. The other kaon daughter is taken
from the KMicroNotPion list.

The kaon from the decayD0 → Kπ has no kaon ID applied — it is instead
is taken from the GoodTracksLoose list since this mode is background-free
enough not to require kaon ID. These tracks are a subset of the GoodTracksVeryLoose
list and are required to satisfy the following additional cuts:
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1. a minimum transverse momentum of 100 MeV/c, and

2. at least 12 hits recorded in the drift chamber, out of a possible maxi-
mum of 40 hits for tracks perpendicular to the beam pipe.

A.3.5 K0S Selection

K0
S
are taken from the standard KsDefault list, which contains K0

S
recon-

structed in the mode K0
S → π+π−, where the pion candidates are taken from

the ChargedTrack list. These candidates contain a vertexing constraint from
the GeoKin vertex fit (requiring only that the fit converge). The invariant
mass computed at this vertex location is required to lie within ±25 MeV/c2

of the nominal K0
S
mass.

A.3.6 π0 Selection

π0 from D0 and charged D decays are taken from the pi0AllDefault list. π0

from pi0AllDefault may be either standard or “merged” π0 (the photons
from a merged π0 share a cluster in the EMC). The π0 candidates are formed
by combining pairs of photon candidates from the GoodPhotonLoose list. The
photon energy threshold is set at 30 MeV and a cut LAT < 0.8 is applied
to reject the background. The invariant mass of the photon pair is required
to be within a window around the nominal π0 mass of ±35 MeV/c2, and a
mass constrained fit is applied for subsequent reconstruction ofD candidates.
Also, the π0 energy is required to be greater than 200 MeV.

Slow π0 s from D∗+ → D+π0 are taken from the pi0SoftDefaultMass

list. These candidates are required to have E(γ) > 30MeV and LAT < 0.8,
as well as a composite γγ momentum in the center of mass frame of 70MeV/c
< p∗ < 450 MeV/c. Again, an invariant mass cut around the nominal π0 mass
of ±35 MeV/c2 and a mass-constrained fit are applied.

Further details about π0 selection can be found in BAD #20.

A.3.7 D0 and charged D Selection

D0 candidates are taken from the D0DefaultMass list. The invariant mass
for D0 in this list is required to be within ±20 MeV/c2 of the nominal D0

mass. This cut is used for all D0 modes except K− π+ π0, which has a looser
cut of 35 MeV/c2 due to the π0 resolution. Charged D candidates are taken
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from DcDefaultMass list. Charged D candidates from this list are required
to have an invariant mass within ±20 MeV/c2 of the nominal charged D
mass. Also, a vertex fit is performed for both D0 and charged D candidates
using GeoKin, where a χ2 probability greater than 0.1% is required.

A.3.8 D∗± and D∗0 Selection

D∗± candidates are taken from the DstarDefaultMass list, where D0 and
charged D candidates are combined with a slow pion candidate to produce
D∗ candidates. D∗0 candidates are taken from the Dstar0DefaultMass list,
where D0 candidates are combined with a slow π0 or γ to produce D∗0s.
Before being combined with the slow pion a mass constrained fit is applied
to the D0 and charged D candidates. GeoKin is used to perform a vertex fit
for the D∗± using the constraint of the beam spot to improve the angular
resolution for the soft pion or photon. The fit is not required to converge, and
no cut is applied on the probability of χ2. After fitting a D∗±, a cut of total
width 11 MeV/c2, centered on the nominal ∆m (the D∗±-D mass difference),
is applied to D0 π candidates, and a cut of total width 30 MeV/c2, again
centered on the nominal ∆m, is applied to charged D π0 candidates. D∗0

candidates (from either D0 π0 or D0 γ) also have a cut applied of total width
30 MeV/c2, centered on the nominalD∗0 ∆m. The bachelorD candidate (but
not the D∗) is required to have p∗ > 1.3 GeV/c (the DstarHardDefaultMass
list). A mass constrained fit is also applied to these candidates for use in the
subsequent reconstruction of B0 and B±.

A.4 B Meson Reconstruction

B meson candidates are constructed by combining a D∗ candidate and a D∗,
charged D, or D∗0 which have passed the selection criteria described previ-
ously. The primary variables used to distinguish our signal from background
are the energy-substituted mass,

mES ≡

√√√√(√s

2

)2
− p∗B

2

and the difference of the B candidate energy from beam energy,

∆E ≡ E∗
B −

√
s

2
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(used for B0 → D∗+D∗−) or

∆E ′ ≡ E∗
B −

√
s

2
+mES −mPDG

B

(used for B0 → D∗±D∓ and B± → D∗±D∗0) where the star indicates vari-
ables evaluated in the center-of-mass frame and the last two of the four ∆E′

terms are introduced for the B0 → D∗±D∓ and B± → D∗±D∗0 analyses as
a correction to avoid ∆E -mES correlation (these analyses were done after
B0 → D∗+D∗− and included this additional correction, which is advantageous
for analysis optimization but not critical). The benefits of this correction are
shown in Figure A.1. Figures A.2, A.3, and A.4 show the distributions
for ∆E ′ and mES for signal Monte Carlo (where each subdecay mode con-
tribution is not weighted by individual branching ratios). Tables A.4, A.5,
and A.6 give resolutions for ∆E′ and mES for the individual submodes of
each channel.

Instead of cutting on individual D and D∗ masses, we form a χ2-like
quantity, χ2Mass, that includes all D and D∗ masses. For B0 → D∗+D∗− and
B± → D∗±D∗0, χ2Mass contains 4 terms:

χ2Mass =
(
mD−mDPDG

σmD

)2
+
(
m

D
−m

DPDG

σm
D

)2

+
(
∆mD∗−∆mD∗

PDG

σ∆mD∗

)2
+

(
∆m

D∗(0)−∆m
D

∗(0)
PDG

σ∆m
D∗(0)

)2

For B0 → D∗±D∓, χ2Mass contains 3 terms:

χ2Mass =

(
mD −mDPDG

σmD

)2
+


mDD∗ −mDPDG

σmDD∗



2

+

(
∆mD∗ −∆mD∗

PDG

σ∆mD∗

)2

where the subscript PDG refers to the nominal value, and ∆m is the D∗−D
or D∗0 −D mass difference. For σmD

we use errors calculated candidate by
candidate. For σ∆mD∗ we use fixed values of 0.83 MeV for D∗+ → D0π+

and 1.18 MeV for D∗+ → D+π0, and for σ∆mD∗0 we use fixed values of
1.32 MeV for D∗0 → D0π0 and 6.73 MeV for D∗0 → D0γ. These values are
derived from fits to Monte Carlo ∆m distributions shown in Figures A.5 and
A.6. The fit function is the sum of two Gaussians; the resolution we use is
a weighted average calculated from the square of sigmas obtained from the
two individual Gaussians.
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Table A.4: B0 → D∗+D∗− resolutions for ∆E and mES in individual sub-
modes (signal Monte Carlo).

mode mES resolution (MeV) ∆E resolution (MeV)

(Kπ) (Kπ) 2.43± 0.16 7.34± 0.77
(Kπ) (Kππ0) 2.36± 0.22 7.43± 0.52
(Kπ) (K3π) 2.34± 0.11 6.83± 0.33
(Kπ) (K0

Sππ) 2.67± 0.48 7.19± 1.73
(Kπ) (Kππ) 2.30± 0.05 7.08± 0.18
(Kπ) (K0

Sπ) 2.33± 0.07 7.22± 0.21
(Kπ) (KKπ) 2.24± 0.05 7.08± 0.25
(Kππ0) (Kππ0) 2.47± 0.09 9.91± 0.42
(Kππ0) (K3π) 2.35± 0.22 10.25± 0.89
(Kππ0) (K0

S
ππ) 2.10± 0.22 7.47± 0.82

(Kππ0) (Kππ) 2.27± 0.09 7.33± 0.26
(Kππ0) (K0

Sπ) 2.56± 0.16 10.24± 0.71
(Kππ0) (KKπ) 2.09± 0.08 8.62± 0.39
(K3π) (K3π) 2.27± 0.07 6.52± 0.22
(K3π) (K0

S
ππ) 2.87± 0.33 8.11± 0.95

(K3π) (Kππ) 2.40± 0.11 7.47± 0.35
(K3π) (K0

Sπ) 2.40± 0.14 7.59± 0.53
(K3π) (KKπ) 2.44± 0.12 6.40± 0.35
(K0

S
ππ) (K0

S
ππ) 2.17± 0.13 7.56± 0.62

(K0
S
ππ) (Kππ) 2.27± 0.09 6.17± 0.24

(K0
S
ππ) (K0

S
π) 2.32± 0.18 7.46± 0.43

(K0
Sππ) (KKπ) 2.21± 0.11 7.28± 0.38
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Figure A.1: Signal Monte Carlo plots of ∆E vs. mES for (a) ∆E (≡ E∗
B−

√
s
2
)

and (b) ∆E′ (≡ E∗
B −

√
s
2
+mES−mPDG

B ) (where mPDG
B = 5.279GeV ). Note

the tilted distribution of signal for the uncorrected ∆E , indicating a non-
optimal correlation with mES. Adding the ∆E′ correction removes this
correlation, producing the untilted distribution shown in (b), and improves
the ∆E resolution. This is especially necessary when using an elliptical cut
with ∆E(′) and mES as the ellipse axes, as described below.

When reconstructing Monte Carlo events, we use the σmD
and σ∆m values

as is, however for reconstructing data we scale σmD
by 1.2 to account for the

different resolutions seen in data and Monte Carlo. No additional smearing
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Figure A.2: Signal Monte Carlo distributions in B0 → D∗+D∗− for (a) ∆E
and (b) mES. (Note: each subdecay mode contribution is not weighted by
individual branching ratios).

is applied to the ∆m resolutions. These smearing factors are taken from pull
distributions found in Ref. [26].

Some events contain more than one B candidate. If several candidates
within an event each satisfy the χ2Mass cut for their respective modes, we
choose only the one with the smallest value of χ2Mass in order to prevent
double counting.
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Figure A.3: Signal Monte Carlo distributions in B0 → D∗±D∓ for (a) ∆E′

and (b) mES (note: each subdecay mode contribution is not weighted by
individual branching ratios). ∆E′ is best fit with a double gaussian (due
both to differing resolutions from D∗0 → D0π0 and D∗0 → D0γ and to
submode crossfeed).
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Figure A.4: Signal Monte Carlo distributions in B± → D∗±D∗0 for (a) ∆E′

and (b) mES (note: each subdecay mode contribution is not weighted by
individual branching ratios). ∆E′ is best fit with a double gaussian (due
both to differing resolutions from D∗0 → D0π0 and D∗0 → D0γ and to
submode crossfeed).
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Table A.5: B0 → D∗±D∓ resolutions for ∆E′ and mES in individual sub-
modes (signal Monte Carlo, for the submodes which contained
enough statistics for an individual fit).

mode mES resolution ∆E′ resolution
D∗ D± (MeV) (MeV)

(Kπ)π Kππ 2.25± 0.08 6.56± 0.25
(Kπ)π K0

S
π 2.34± 0.08 6.45± 0.23

(Kπ)π KKπ 2.27± 0.10 6.12± 0.21
(Kππ0)π Kππ 2.32± 0.09 8.46± 0.59
(Kππ0)π K0

S
π 1.90± 0.25 9.10± 1.46

(K3π)π Kππ 2.29± 0.15 5.74± 0.29
(K3π)π K0

S
π 2.18± 0.28 6.34± 0.61

(K3π)π KKπ 2.27± 0.20 6.54± 0.69
(K0

S
ππ)π Kππ 2.40± 0.14 6.47± 0.39

(K0
S
ππ)π K0

S
π 2.72± 0.18 5.75± 0.43

(K0
Sππ)π KKπ 2.48± 0.37 7.10± 1.27

(Kππ)π0 Kππ 2.27± 0.11 7.02± 0.53
(Kππ)π0 K0

Sπ 2.47± 0.13 7.71± 0.58
(Kππ)π0 KKπ 3.28± 0.89 4.40± 0.76
(K0

S
π)π0 Kππ 2.20± 0.13 7.07± 0.39

(K0
Sπ)π

0 K0
Sπ 2.34± 0.13 6.33± 0.40

(K0
S
π)π0 KKπ 2.14± 0.17 7.82± 0.86
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Table A.6: B± → D∗±D∗0 resolutions for ∆E′ and mES in individual
submodes (signal Monte Carlo, for submodes which contained
enough statistics for an individual fit).

mode mES resolution ∆E′ resolution
D∗ D∗0 (MeV) (MeV)

(Kπ)π (Kπ)π0 2.48± 0.21 8.40± 0.95
(Kπ)π (Kππ0)π0 3.60± 0.75 8.01± 1.76
(Kπ)π (K3π)π0 2.71± 1.04 6.97± 1.48
(Kπ)π (Kπ)γ 3.35± 0.81 8.70± 2.15
(K3π)π (Kπ)π0 3.15± 0.84 16.20± 5.82
(K0

S
ππ)π (Kπ)π0 3.20± 1.44 15.52± 5.56
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Figure A.5: Double-Gaussian fits to ∆m for (a)D∗+ → D0π+ and (b)D∗+ →
D+π0 from signal Monte Carlo (Note: contributions from each final state are
not weighted by individual subdecay mode branching ratios).
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Figure A.6: Double-Gaussian fits to ∆m for (a) D∗0 → D0π0 and (b) D∗0 →
D0γ from signal Monte Carlo (Note: contributions from each final state are
not weighted by individual subdecay mode branching ratios). The beamspot
refit is not done for D∗0 candidates, hence the wider ∆m distributions than
D∗.
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A.5 Analysis Optimization Procedure for B0 →
D∗+D∗−

A.5.1 Decay Mode Selection

We select which D decay mode combinations to use in this analysis using a
S2/(S + B) optimization. We first determined, based on Monte Carlo, the
expected S−B for each decay mode combination individually. We then sort
this list and successively add modes to compute an overall S2/(S+B) value.
Once the overall S2/(S + B) value begins to decrease, we stop including
modes.

Figure A.7 shows the results of this analysis. Table A.7 shows the ordering
of decay mode combinations outlined previously, and corresponds to the x-
axis values in Figure A.7. The last four mode combinations shown all contain,
and were the only combinations to contain, the decay mode D+ → K0

S
π+π0.

As a matter of simplicity in which modes are used, we therefore chose to
exclude this D+ mode from the final analysis but use all other combinations
listed in Table A.7.

A.5.2 Cut Optimization

The optimization of the analysis cuts was performed by maximizing S2/(S+
B) with respect to the cut in question after all other cuts have been applied.
The process was iterated as each cut was re-optimized. The cut tuning was
done entirely using the Monte Carlo samples described in Section A.1. For the
signal estimation in B0 → D∗+D∗−, a branching ratio of 0.1% was assumed.
For the background estimation we use appropriately weighted samples from
the BB generic and cc Monte Carlo. For the background sample we look at
the distributions for events in a sideband of the ∆E vs. mES plane away
from the signal region, defined as

|∆E| < 200 MeV

5.200 GeV/c2 < mES < 5.26 GeV/c2

and

50 MeV < |∆E| < 200 MeV
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Table A.7: Ordering of mode combinations based on S − B used for mode
selection. (See Figure A.7.)

Rank Mode Combination
1 (Kππ0)(Kππ0)
2 (Kππ0)(K3π)
3 (Kπ)(K3π)
4 (Kπ)(Kππ0)
5 (Kππ0)(Kππ)
6 (Kπ)(Kπ)
7 (K3π)(K3π)
8 (Kπ)(Kππ)
9 (K3π)(Kππ)
10 (Kπ)(K0

Sππ)
11 (Kππ0)(K0

S
ππ)

12 (K0
S
ππ)(Kππ)

13 (Kπ)(K0
Sπ)

14 (Kππ0)(KKπ)
15 (Kπ)(KKπ)
16 (K3π)(K0

S
π)

17 (K0
S
ππ)(K0

S
π)

18 (K0
Sππ)(KKπ)

19 (Kππ0)(K0
S
π)

20 (K3π)(K0
Sππ)

21 (K0
S
ππ)(K0

S
ππ)

22 (K3π)(KKπ)
23 (Kπ)(K0

Sππ
0)

24 (K0
S
ππ)(K0

S
ππ0)

25 (K3π)(K0
S
ππ0)

26 (Kππ0)(K0
Sππ

0)
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Total S^2/S+B  for modes sorted by largest S-B
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Figure A.7: Optimization of D modes to be reconstructed. The top curve
shows the expected S2/(S+B) at nominal background (B0B0 only), the mid-
dle curve at two times nominal background and the lower curve at five times
nominal background. All numbers are weighted by appropriate subdecay
mode branching ratios and scaled to 19.5fb−1.

5.26 GeV/c2 < mES < 5.290 GeV/c2

Figure A.8 shows the definition of the sideband region, as well as the
signal region (to be described below).

In Figure A.9 we show the results of this optimization for the cut on χ2Mass.
The top plot shows the χ2Mass distribution for signal Monte Carlo events, the
middle plot shows the χ2Mass distribution for background Monte Carlo, and
the bottom plot shows S2/(S+B) vs. the cut value on χ2Mass. Here all mode
combinations are appropriately weighted by branching ratios and the sample
is scaled to the total luminosity of the data sample. In choosing the cut value
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Figure A.8: Definition of sideband and signal regions used. The large un-
hatched area is the sideband. The smaller hatched box represents the signal
region.
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we take into consideration not only this plot, but also the fact that there are
differences in the reconstructed mass resolutions between data and Monte
Carlo. We therefore choose to lean towards looser cuts in order to reduce
any possible systematic error that may be incurred due to these resolution
differences. Our final choice for this cut is

χ2Mass < 20

Figures A.10 and A.11 show the results of the optimization procedure
for the ∆E and mES cuts used to define the signal region. Based on these
studies, we choose our signal region to be

|∆E| < 25 MeV

5.273 GeV/c2 < mES < 5.285 GeV/c2
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Figure A.9: Optimization of the cut on χ2Mass. (a) Distribution of χ2Mass

for signal Monte Carlo (not weighted by sub-mode branching ratios). (b)
Distribution of χ2Mass for background Monte Carlo in the ∆E , mES sideband.
(c) S2/(S + B) vs. cut value for χ2Mass (includes appropriate weighting for
subdecay mode branching ratios and scaled to the luminosity of the data
sample).
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Figure A.10: Optimization of the cut on ∆E′ . (a) Distribution of |∆E| for
signal Monte Carlo (not weighted according to decay mode branching frac-
tions). (b) Distribution of |∆E| for background Monte Carlo. (c) S2/(S+B)
vs. |∆E| cut (includes appropriate weighting for subdecay mode branching
ratios and is scaled to the luminosity of the data sample).

145



Figure A.11: Optimization of the cut onmES. (a) Distribution of |mES−mB|
for signal Monte Carlo (not weighted by submode branching ratios). (b)
Same distribution for background Monte Carlo. (c) S2/(S + B) vs. cut on
|mES−mB| (includes appropriate weights for subdecay mode branching ratios
and scaled to the luminosity of the data sample).
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A.6 Analysis Optimization Procedure for B0 →
D∗±D∓ and B± → D∗±D∗0

A.6.1 Submode-Specific Cut Optimization

Cuts are tuned on χ2Mass (the calculation of which is described in the previous
section) for each subdecay mode used based on a S2/(S + B) optimization.
Due to differing amounts of signal and background in each of the subdecay
modes, the cuts on χ2Mass for all individual submodes are treated as parame-
ters and tuned in Monte Carlo such that the overall S2/(S+B) is maximized
(this is a more optimal refinement of the procedure used for B0 → D∗+D∗−

in the previous section). This tuning maximizes the predicted significance of
the final result, but cannot affect or bias the central value; as such we are
not dependent on the accuracy of the Monte Carlo simulation. In the case
of B0 → D∗±D∓, we start with all 21 possible submode combinations:

Table A.8: Table of submodes used in χ2Mass cut optimization.

D±

K
π
π

K
0 S
π

K
K
π

(Kπ)π
√ √ √

(Kππ0)π
√ √ √

(K3π)π
√ √ √

D∗
(K0

S
ππ)π

√ √ √

(Kππ)π0
√ √ √

(K0
Sπ)π

0
√ √ √

(KKπ)π0
√ √ √

and in the case of B± → D∗±D∗0, we start with all 40 possible submode
combinations:

The cut tuning was done entirely using the Monte Carlo samples described
in Section A.1. For the signal estimation in B0 → D∗±D∓, a branching
fraction of 5×10−4 was assumed. For the signal estimation in B± → D∗±D∗0,
a branching fraction of 0.1% was assumed. For the background estimation
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Table A.9: Table of submodes used in χ2Mass cut optimization.

D∗

(K
π
)π

±

(K
π
π
0
)π

±

(K
3π
)π

±

(K
0 S
π
π
)π

±

(K
π
π
)π

0

(Kπ)π0
√ √ √ √ √

(Kππ0)π0
√ √ √ √ √

(K3π)π0
√ √ √ √ √

D∗0
(K0

S
ππ)π0

√ √ √ √ √

(Kπ)γ
√ √ √ √ √

(Kππ0)γ
√ √ √ √ √

(K3π)γ
√ √ √ √ √

(K0
Sππ)γ

√ √ √ √ √

we use appropriately weighted samples from the BB generic and cc Monte
Carlo. For the background sample we look at the distributions for events in
a sideband of the ∆E′ vs. mES plane away from the signal region, defined
as

|∆E ′| < 200 MeV

5.200 GeV/c2 < mES < 5.26 GeV/c2

and

50 MeV < |∆E′| < 200 MeV

5.26 GeV/c2 < mES < 5.290 GeV/c2

Figure A.12 shows the definition of the sideband region, as well as the
signal region (to be described below).

Each submode’s χ2Mass cut is tuned to maximize the overall S2/(S +B).
We begin with a global χ2Mass cut of 20. The change in overall S2/(S + B)
is determined as a function of changes in the χ2Mass cuts for each of the 21
individual submodes (for B0 → D∗±D∓) and 40 individual submodes (for
B± → D∗±D∗0). The value of the χ2Mass cut that maximizes the overall
S2/(S + B) is selected for each individual submode. After each submode’s
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cut is optimized, the process is then iterated, due to the fact that changes
in cuts from other submodes can affect the optimal cut in a given submode.
The process fully converges in 3 iterations (the coupling between submodes
is not very strong). The final values of the cuts in each of the submodes are
shown in Tables A.10 and A.11.

Table A.10: Final values of the χ2Mass cuts used for each B0 → D∗±D∓

submode.

D±

K
π
π

K
0 S
π

K
K
π

(Kπ)π 21.5 8.5 6.5
(Kππ0)π 10.5 4.5∗ 0.5∗

(K3π)π 7.5 1.5∗ 3.5∗

D∗
(K0

S
ππ)π 5.5∗ 5.5∗ 1.5∗

(Kππ)π0 8.5 8.5 1.5∗

(K0
Sπ)π

0 7.5 7.5 2.5∗

(KKπ)π0 0.0∗ 0.0∗ 0.0∗

In Figures A.13 and A.9 we show the results of the B0 → D∗±D∓ opti-
mization for the cuts on χ2Mass for 4 (representative) modes of each of the
respective decays.

The leftmost plots in each of the figures show the χ2Mass distribution
for signal Monte Carlo events, the second-from-left plots shows the χ2Mass

distribution for background Monte Carlo, and the third-from-left plots shows
S2/(S + B) vs. the cut value on χ2Mass. Here all mode combinations are
appropriately weighted by branching ratios and the sample is scaled to the
total luminosity of the data sample. The rightmost plots show the change
in global S2/(S + B) (S2/(S + B) for all modes combined, appropriately
weighted by submode branching ratios) as a function of a change in the cut
value for χ2Mass. As can be seen, for these plots all changes in the value of
the χ2Mass cut lead to negative changes in overall S2/(S+B), thus the modes
have the optimal cut applied — these plots were made after the 3rd iteration
when the cuts were fully optimized.

∗As described in the text, modes with a χ2
Mass cut of less than 6 (i.e. less than 2 per
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Figure A.12: Definition of signal, sideband, and feed-down regions used for
B0 → D∗±D∓. The large unfilled area is the sideband. The small filled
ellipse represents the signal region. The horizonally- and vertically-hatched
region below the signal area is the feed-down region, which is not included in
sideband background fits (see section 8) due to decays to higher resonances
such as B0 → D∗+D∗− peaking in this region. B± → D∗±D∗0 uses the
exact same signal and sideband regions, but does not require the feed-down
region, thus for B± → D∗±D∗0 the feed-down region above is included in the
sideband.
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Table A.11: Final values of the χ2Mass cuts used for each B± → D∗±D∗0

submode.

D∗

(K
π
)π

±

(K
π
π
0
)π

±

(K
3π
)π

±

(K
0 S
π
π
)π

±

(K
π
π
)π

0

(Kπ)π0 50. 22. 19. 50. 34.
(Kππ0)π0 17. 31. 17. 4.∗ 7.∗

(K3π)π0 22. 11. 14. 11. 2.∗

D∗0
(K0

Sππ)π
0 7.∗ 2.∗ 11. 0.∗ 2.∗

(Kπ)γ 50. 39. 37. 29. 4.∗

(Kππ0)γ 26. 8. 2.∗ 7.∗ 1.∗

(K3π)γ 23. 6.∗ 12. 7.∗ 0.∗

(K0
S
ππ)γ 26. 0.∗ 0.∗ 2.∗ 0.∗

Submodes which have an optimized χ2Mass cut of less than 6 (for B0 →
D∗±D∓) and 8 (for B± → D∗±D∗0) (i.e. less than 2 per degree of freedom)
are rejected for this analysis as the statistical significance of their optimized
cuts is low, and the systematic errors from these modes tend to be high.
Such submodes are removed from efficiency calculation and from data signal
yield.

Figures A.15 and A.16 show the results of the optimization procedure for
the ∆E ′ and mES cuts used to define the signal region from both B0 →
D∗±D∓ and B± → D∗±D∗0. Based on these studies, the signal region is
chosen to be the ellipse circumscribed by

|∆E ′| < 25 MeV

5.273 GeV/c2 < mES < 5.285 GeV/c2

We looked at several other discriminating variables, such as cos(θT ) and
the Dalitz weight in D0 → K−π+π0 using this same procedure, and found
no improvement in S2/(S +B) if a cut were to be made on these variables.

degree of freedom) are rejected from the analysis.
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Figure A.13: B0 → D∗±D∓ optimization of the cuts on χ2Mass. (a) Distri-
bution of χ2Mass for signal Monte Carlo for the 4 modes shown. (b) Distri-
bution of χ2Mass for background Monte Carlo in the ∆E′ , mES sideband.
(c) S2/(S + B) for the mode shown vs. cut value for χ2Mass (includes ap-
propriate weighting for subdecay mode branching ratios and scaled to the
luminosity of the data sample). (d) Change in global S2/(S + B) (for all
modes combined, appropriately weighted by submode branching ratios) as a
function of a change in the cut value for χ2Mass. As can be seen, for these
plots all changes in the value of the χ2Mass cut lead to negative changes in
overall S2/(S + B), thus the modes have the optimal cut applied — these
plots were made after the 3rd iteration when the cuts were fully optimized.
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Figure A.14: B± → D∗±D∗0 optimization of the cuts on χ2Mass. (a) Dis-
tribution of χ2Mass for signal Monte Carlo for the 4 modes shown. (b) Dis-
tribution of χ2Mass for background Monte Carlo in the ∆E′ , mES sideband.
(c) S2/(S + B) for the mode shown vs. cut value for χ2Mass (includes ap-
propriate weighting for subdecay mode branching ratios and scaled to the
luminosity of the data sample). (d) Change in global S2/(S + B) (for all
modes combined, appropriately weighted by submode branching ratios) as a
function of a change in the cut value for χ2Mass. As can be seen, for these
plots all changes in the value of the χ2Mass cut lead to negative changes in
overall S2/(S + B), thus the modes have the optimal cut applied — these
plots were made after the 3rd iteration when the cuts were fully optimized.
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Figure A.15: Optimization of the cut on ∆E′ . Plot shows S2/(S + B) vs.
|∆E ′| elliptical signal region size (includes appropriate weighting for subdecay
mode branching ratios and is scaled to the luminosity of the data sample).
The fit is to a S2/(S + B) function if signal were gaussian and background
were flat in ∆E′ . Although the maximum is at slightly less than 25 MeV,
the cut was placed there as there is not much difference in overall S2/(S+B)
in this region, for consistency with the B0 → D∗+D∗− analysis, and because
we wished to remain equal to or above 2 RMS widths in ∆E′ .
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Figure A.16: Optimization of the cut on mES. Plot shows S
2/(S+B) vs. cut

on |mES −mB| (includes appropriate weights for subdecay mode branching
ratios and scaled to the luminosity of the data sample). The fit is to a
S2/(S + B) function if signal were gaussian and background were flat in
mES. Although the maximum is at slightly less than 6 MeV, the cut was
placed there as there is not much difference in overall S2/(S + B) in this
region, for consistency with the B0 → D∗+D∗− analysis, and because we
wished to remain equal to or above 2 σ in mES.
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A.7 Reconstruction Efficiency Determination

The efficiency for reconstructing signal decay modes is determined using a
detailed Monte Carlo simulation. Once all of the event selection criteria are
established, the efficiency is simply the number of signal Monte Carlo events
passing the selection cuts divided by the number of events generated. Due to
differences in the Monte Carlo and data, there are a few corrections that need
to be applied. The difference in PID efficiency is corrected using the standard
PID correction procedure described in [28]. In addition to these differences
for PID the following efficiency corrections are applied to the signal Monte
Carlo:

• Tracking efficiency correction
No correction is applied for tracks from GoodTracksVeryLoose, but
tracks from GoodTracksLoose are corrected using a table parameter-
ized as a function of event multiplicity, pT , φ and theta of the track.
Two different efficiency correction tables are provided corresponding to
the DCH voltage of 1900V and 1960V. The average efficiency correc-
tion is in the order of 0.97 to 0.99 per track. This follows the procedure
proposed by the tracking efficiency group [30].

• K0
S
efficiency

The efficiency correction for K0
S is parameterized as a function of the

2d flight length of the K0
S
. Two different correction factors are applied

according to the DCH voltage of 1900V and 1960V. This follows the
procedure proposed by the tracking efficiency group [31].

• π0 efficiency
For each π0 a correction factor of 0.95 (2.5% per photon) is applied
to the event. This is done for π0 originating from D decays as well as
the slow π0 from the D∗+ and D∗0 decays. This follows the procedure
proposed by the neutral working group [32].

• γ efficiency
For each (slow) photon from D∗0 → D0γ, a correction factor of 0.975
(2.5% per photon, as above for π0) is applied. This follows the proce-
dure proposed by the neutral working group [32].

A weight is calculated for each Monte Carlo signal event using the cor-
rections for tracking, K0

S
, π0, and γ efficiency. Figures A.17, A.18, and A.19
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show the weights for 1900V and 1960V determined for signal Monte Carlo.
The efficiency is calculated for each combination of sub-decay modes using
the ratio of selected events weighted with the correction factor, divided by
the number of generated events. The weighted number of selected events, the
number of generated Monte Carlo events and the corresponding efficiency for
all the modes are summarized in tables A.12, A.13, A.14, and A.15 for 1900V
and 1960V. Only slight differences in efficiency between 1900V and 1960V
are expected, since mostly GoodTracksVeryLoose tracks are used for the
reconstruction of B candidates.

For the efficiency determination, the cocktail and exclusive Monte Carlo
are both used. The error on the generated cocktail events corresponds to
the statistical uncertainty of events generated in a certain mode (no truth
mapping used) and is calculated assuming a binomial distribution. In the
exclusive Monte Carlo collections the K0

S
is allowed to decay to π0 π0 and ππ.

However, we reconstruct only K0
S
→ ππ and a binomial error is assigned to

the events produced. The overall efficiency per mode is the average calculated
at 1900V and 1960V and weighted according to the luminosity taken at the
different voltages, 1900V and 1960V.

Because of the requirements for D vertex fits (convergence and χ2 prob-
ability > 0.001), and the differences in tracking resolution between data and
Monte Carlo, a correction is applied to the overall efficiency calculation. The
ratio

r =
ε(DATAvtx cut)/ε(DATAno vtx cut)

ε(MCvtx cut)/ε(MCno vtx cut)

is calculated and measures the relative difference between data and Monte
Carlo in applying the vertex cut on D candidates. Using the large samples of
B0 → D∗π data and Monte Carlo, the ratio r was found to be (98.21±1.07)%
for 2-charged-track vertices and (90.91±2.24)% for 4-charged-track vertices.1

To correct for differences between the vertex efficiency in B0 → D∗π and
B0 → D∗+D−, the corrected ratio

r′ = r ×

√
ε(MCD∗+D∗−, vtx cut)/ε(MCD∗+D∗−, no vtx cut)

ε(MCD∗π, vtx cut)/ε(MCD∗π, no vtx cut)

is used. This correction, although taken from B0 → D∗+D∗−, is thought
to be valid for all three decays due to the fact that it corrects for the p∗

1The average of the 2-charged-track and 4-charged-track numbers was used for 3-track
vertices.
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of the vertices, which are of similar magnitude in each of the three decays.
The square root is necessary to account for the two D vertices in each of the
three decay modes. r′ was calculated to be (98.96 ± 1.28)% for 2-charged-
track vertices and (92.53±3.52)% for 4-charged-track vertices. The efficiency
was corrected for each subdecay mode using these values. Since this analysis
has two Ds in the final state, the square of r′ is used to correct reconstruction
efficiencies.

The efficiency and the efficiency × branching fraction, εB, for all modes
used can be found in Tables A.16, A.17, and A.18. These tables do not
include the correction due to the above described vertexing differences. The
overall εB for all modes, after including the correction from the ratio r′, are

εB = (16.75±0.47(MC stat)±0.94(B error)±0.44(r′ error))×10−4 (B0 → D∗+D∗−)

εB = (15.04±0.35(MC stat)±1.12(B error)±0.40(r error))−4 (B0 → D∗±D∓)

εB = (10.49±0.60(MC stat)±0.95(B error)±0.29(r error))−4 (B± → D∗±D∗0)

where the last error comes from propagating the uncertainties in the mea-
sured values of r′ into εB. Therefore we calculate systematic uncertain-
ties due to the vertexing correction of 2.6% for B0 → D∗+D∗−, 2.6% for
B0 → D∗±D∓, and 2.8% for B± → D∗±D∗0.
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Figure A.17: The plots show the efficiency weight for selected B0 → D∗+D∗−

signal events. The upper plot corresponds to the weights determined for
Monte Carlo produced with 1900V, the plot below to 1960V. The distribu-
tions are not weighted according to individual decay mode branching frac-
tions.
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Figure A.18: The plots show the efficiency weight for selected B0 → D∗±D∓

signal events. The upper plot corresponds to the weights determined for
Monte Carlo produced with 1900V, the plot below to 1960V. The distribu-
tions are not weighted according to individual decay mode branching frac-
tions. The peaks at 95% correspond to the efficiency correction of 5% per
π0.
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Figure A.19: The plots show the efficiency weight for selected B± → D∗±D∗0

signal events. The upper plot corresponds to the weights determined for
Monte Carlo produced with 1900V, the plot below to 1960V. The distribu-
tions are not weighted according to individual decay mode branching frac-
tions.
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Table A.12: Number of selected and generated B0 → D∗+D∗− events and the
corresponding efficiency for 1900V. The first column represents the mode, the
second the weighted number of selected events and the the third and fourth
column the number of events produced in cocktail and exclusive Monte Carlo.
The last column shows the efficiency for each mode individually, scaled by
the weighting factor. The error corresponds to the binomial error and is
statistical only. The error on NMC exclusive comes from the fact that the
K0

S was not required to exclusively decay to π
+ π−. Zeros in the table indicate

that only one type of Monte Carlo (cocktail or exclusive) was generated.

mode NMC selected NMC generated NMC generated efficiency in %
cocktail exclusiv

(Kπ) (Kπ) 96.4± 8.9 550.3± 23.1 0± 0 17.52± 1.78
(Kπ) (Kππ0) 83.8± 8.8 1100.6± 32.2 0± 0 7.61± 0.83
(Kπ) (K3π) 69.6± 8.1 1100.6± 32.2 0± 0 6.32± 0.76
(Kπ) (K0

S
ππ) 51.3± 6.9 755± 26.9 0± 0 6.79± 0.95

(Kπ) (Kππ) 652.7± 24.6 0± 0 9104± 0 7.17± 0.27
(Kπ) (K0

S
π) 480.2± 21.1 0± 0 6861± 46.4 7± 0.31

(Kπ) (KKπ) 638± 24.4 0± 0 10000± 0 6.38± 0.24
(Kππ0) (Kππ0) 280.8± 16.5 550.3± 23.1 10000± 0 2.66± 0.16
(Kππ0) (K3π) 30.3± 5.4 1100.6± 32.2 0± 0 2.75± 0.5
(Kππ0) (K0

Sππ) 22.6± 4.7 755.6± 26.9 0± 0 3± 0.63
(Kππ0) (Kππ) 293.6± 16.9 0± 0 10000± 0 2.94± 0.17
(Kππ0) (K0

S
π) 166.2± 12.7 0± 0 6861± 46.1 2.42± 0.19

(Kππ0) (KKπ) 263.6± 16 0± 0 10000± 0 2.64± 0.16
(K3π) (K3π) 324.6± 17.7 550.3± 23.1 10000± 0 3.08± 0.17
(K3π) (K0

Sππ) 18.3± 4.2 755.1± 27 0± 0 2.42± 0.57
(K3π) (Kππ) 281± 16.5 0± 0 10000± 0 2.81± 0.17
(K3π) (K0

S
π) 190.7± 13.6 0± 0 6861± 46.1 2.78± 0.2

(K3π) (KKπ) 180.4± 13.3 0± 0 6746± 0 2.67± 0.2
(K0

S
ππ) (K0

S
ππ) 141.2± 11.7 259± 16 4707.3± 49.9 2.84± 0.24

(K0
Sππ) (Kππ) 220.1± 14.6 0± 0 6861± 46.1 3.21± 0.21

(K0
S
ππ) (K0

S
π) 137.8± 11.6 0± 0 4707.3± 49.9 2.93± 0.25

(K0
S
ππ) (KKπ) 185.1± 13.4 0± 0 6861± 46.4 2.7± 0.2
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Table A.13: Number of selected and generated B0 → D∗+D∗− events and the
corresponding efficiency for 1960V. The first column represents the mode, the
second the weighted number of selected events and the the third and fourth
column the number of events produced in cocktail and exclusive Monte Carlo.
The last column shows the efficiency for each mode individually, scaled by
the weighting factor. The error corresponds to the binomial error and is
statistical only. The error on NMC exclusive comes from the fact that the
K0

S was not required to exclusively decay to π
+ π−. Zeros in the table indicate

that only one type of Monte Carlo (cocktail or exclusive) was generated.

mode NMC selected NMC generated NMC generated efficiency in %
cocktail exclusiv

(Kπ) (Kπ) 983.9± 28.5 555.6± 23.4 5000± 0 17.71± 0.52
(Kπ) (Kππ0) 66.5± 7.9 1111.1± 32.4 0± 0 5.99± 0.75
(Kπ) (K3π) 85± 8.9 1111.1± 32.4 0± 0 7.65± 0.82
(Kπ) (K0

S
ππ) 55.6± 7.2 762.3± 27.1 0± 0 7.29± 0.97

(Kπ) (Kππ) 682.9± 25.2 0± 0 10000± 0 6.83± 0.25
(Kπ) (K0

S
π) 528.3± 22.1 0± 0 6861± 46.4 7.7± 0.33

(Kπ) (KKπ) 641.6± 24.5 0± 0 10000± 0 6.42± 0.25
(Kππ0) (Kππ0) 220.6± 14.7 555.6± 23.4 8166± 0 2.53± 0.17
(Kππ0) (K3π) 27.6± 5.2 1111.1± 32.4 0± 0 2.48± 0.47
(Kππ0) (K0

Sππ) 21.4± 4.6 762.3± 27.1 0± 0 2.81± 0.61
(Kππ0) (Kππ) 291.9± 16.8 0± 0 10000± 0 2.92± 0.17
(Kππ0) (K0

S
π) 202.4± 14 0± 0 6861± 46.4 2.95± 0.2

(Kππ0) (KKπ) 249.9± 15.6 0± 0 10000± 0 2.5± 0.16
(K3π) (K3π) 250.9± 15.6 555.6± 23.4 8080± 0 2.91± 0.18
(K3π) (K0

Sππ) 18.8± 4.3 762.3± 27.1 0± 0 2.47± 0.57
(K3π) (Kππ) 286.5± 16.7 0± 0 10000± 0 2.87± 0.17
(K3π) (K0

S
π) 211.6± 14.3 0± 0 6861± 46.4 3.08± 0.21

(K3π) (KKπ) 230.8± 15 0± 0 10000± 0 2.31± 0.15
(K0

S
ππ) (K0

S
ππ) 167.9± 12.7 261.5± 16.1 4707.3± 49.9 3.38± 0.26

(K0
Sππ) (Kππ) 221.8± 14.6 0± 0 6527.5± 45.3 3.4± 0.23

(K0
S
ππ) (K0

S
π) 178.3± 13.1 0± 0 4707.3± 49.9 3.79± 0.28

(K0
S
ππ) (KKπ) 206.4± 14.2 0± 0 6861± 46.4 3.01± 0.21
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Table A.14: Number of selected and generated B0 → D∗±D∓ events and
the corresponding efficiency for 1900V and 1960V. The first two columns
represent the mode, the second and third the weighted number of (truth-
tagged) selected events and the fourth column the number of events produced
in Monte Carlo. The last two columns show the efficiency for each mode
individually, scaled by the weighting factor. The error corresponds to the
binomial error and is purely statistical.

mode NMC selected NMC selected NMC efficiency efficiency
D∗ D± 1900V 1960V generated (1900V, in %) (1960V, in %)

(Kπ)π± Kππ 640.66 650.77 4000 16.02± 0.58 16.27± 0.58
(Kπ)π± K0

Sπ 580.48 589.04 4000 14.51± 0.56 14.73± 0.56
(Kπ)π± KKπ 449.25 456.39 4000 11.23± 0.50 11.41± 0.50
(Kππ0)π± Kππ 342.95 342.95 6000 5.72± 0.30 5.72± 0.30
(K3π)π± Kππ 199.35 199.35 4000 4.98± 0.34 4.98± 0.34
(Kππ)π0 Kππ 253.45 253.45 4000 6.34± 0.39 6.34± 0.39
(Kππ)π0 K0

S
π 253.79 253.79 4000 6.34± 0.39 6.34± 0.39

(K0
Sπ)π

0 Kππ 222.86 222.86 4000 5.57± 0.36 5.57± 0.36
(K0

S
π)π0 K0

S
π 215.65 215.65 4000 5.39± 0.36 5.39± 0.36
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Figure A.20: The B± → D∗±D∗0 efficiency crossfeed matrix for all modes
used. The total off-diagonal crossfeed is 4.7% of events (weighted by εB).
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Table A.15: Number of selected and generated B± → D∗±D∗0 events and
the corresponding efficiency for 1900V and 1960V. The first two columns
represent the mode, the second and third the weighted number of (truth-
tagged) selected events and the fourth column the number of events produced
in Monte Carlo. The last two columns show the efficiency for each mode
individually, scaled by the weighting factor. The error corresponds to the
binomial error and is purely statistical.

mode NMC selected NMC selected NMC generated efficiency efficiency
D∗ D∗0 1900V 1960V (cocktail) (1960V, in %) (1900V, in %)

(Kπ)π± (Kπ)π0 110.48 103.57 1036.81± 31.98 10.65± 1.01 9.99± 0.98
(Kπ)π± (Kππ0)π0 42.89 42.37 1036.81± 31.98 4.14± 0.63 4.09± 0.63
(Kπ)π± (K3π)π0 46.47 45.52 1036.81± 31.98 4.48± 0.66 4.39± 0.65
(Kπ)π± (Kπ)γ 43.07 41.96 518.33± 22.69 8.31± 1.27 8.10± 1.25
(Kπ)π± (Kππ0)γ 19.84 19.67 518.33± 22.69 3.83± 0.86 3.79± 0.86
(Kπ)π± (K3π)γ 12.43 12.11 518.33± 22.69 2.40± 0.68 2.34± 0.67
(Kπ)π± (K0

S
ππ)γ 6.54 6.53 355.57± 18.81 1.84± 0.72 1.83± 0.72

(Kππ0)π± (Kπ)π0 30.80 30.35 1036.81± 31.98 2.97± 0.54 2.93± 0.53
(Kππ0)π± (Kππ0)π0 14.30 14.30 1036.81± 31.98 1.38± 0.36 1.38± 0.36
(Kππ0)π± (K3π)π0 13.24 13.24 1036.81± 31.98 1.28± 0.35 1.28± 0.35
(Kππ0)π± (Kπ)γ 12.65 12.56 518.33± 22.69 2.44± 0.69 2.42± 0.68
(Kππ0)π± (Kππ0)γ 6.90 6.90 518.33± 22.69 1.33± 0.51 1.33± 0.50
(K3π)π± (Kπ)π0 37.11 36.24 1036.81± 31.98 3.58± 0.59 3.50± 0.58
(K3π)π± (Kππ0)π0 17.38 17.38 1036.81± 31.98 1.68± 0.40 1.68± 0.40
(K3π)π± (K3π)π0 16.28 16.28 1036.81± 31.98 1.57± 0.39 1.57± 0.39
(K3π)π± (K0

S
ππ)π0 5.22 5.22 711.25± 26.54 0.73± 0.32 0.73± 0.32

(K3π)π± (Kπ)γ 30.72 30.44 518.33± 22.69 5.93± 1.07 5.87± 1.06
(K3π)π± (K3π)γ 8.33 8.33 518.33± 22.69 1.61± 0.56 1.61± 0.56
(K0

Sππ)π
± (Kπ)π0 32.47 31.91 711.25± 26.54 4.56± 0.80 4.49± 0.79

(K0
S
ππ)π± (K3π)π0 10.45 10.45 711.25± 26.54 1.47± 0.45 1.47± 0.45

(K0
S
ππ)π± (Kπ)γ 15.05 14.86 355.57± 18.81 4.23± 1.09 4.18± 1.08

(Kππ)π0 (Kπ)π0 15.32 15.01 345.60± 18.55 4.43± 1.13 4.34± 1.12
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Table A.16: Efficiency and efficiency ×B for the different B0 → D∗+D∗−

modes. The error on the efficiency reflects the Monte Carlo statistical uncer-
tainty only.

mode efficiency in % efficiency ×B (×10−4)
(Kπ) (Kπ) 17.61± 0.99 1.184
(Kπ) (Kππ0) 6.87± 0.56 3.353
(Kπ) (K3π) 6.93± 0.56 1.822
(Kπ) (K0

S
ππ) 7.02± 0.68 0.456

(Kπ) (Kππ) 7.01± 0.19 1.004
(Kπ) (K0

Sπ) 7.32± 0.23 0.115
(Kπ) (KKπ) 6.4± 0.17 0.089
(Kππ0) (Kππ0) 2.6± 0.11 2.302
(Kππ0) (K3π) 2.63± 0.35 2.51
(Kππ0) (K0

S
ππ) 2.91± 0.44 0.686

(Kππ0) (Kππ) 2.93± 0.12 1.524
(Kππ0) (K0

S
π) 2.66± 0.14 0.152

(Kππ0) (KKπ) 2.57± 0.11 0.129
(K3π) (K3π) 3± 0.12 0.771
(K3π) (K0

S
ππ) 2.44± 0.4 0.31

(K3π) (Kππ) 2.84± 0.12 0.796
(K3π) (K0

S
π) 2.92± 0.14 0.09

(K3π) (KKπ) 2.51± 0.13 0.068
(K0

Sππ) (K
0
Sππ) 3.09± 0.17 0.048

(K0
S
ππ) (Kππ) 3.3± 0.16 0.228

(K0
Sππ) (K

0
Sπ) 3.32± 0.19 0.025

(K0
S
ππ) (KKπ) 2.84± 0.14 0.019

total 17.683
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Table A.17: Efficiency and efficiency ×B for the different B0 → D∗±D∓

modes. The error on the efficiency reflects the Monte Carlo statistical uncer-
tainty only.

mode efficiency efficiency ×B
D∗ D± (in %) (×10−5)
(Kπ)π± Kππ 16.13± 0.58 38.18± 1.38
(Kπ)π± K0

S
π 14.61± 0.56 4.25± 0.16

(Kπ)π± KKπ 11.31± 0.50 2.62± 0.12
(Kππ0)π± Kππ 5.72± 0.30 47.78± 2.51
(K3π)π± Kππ 4.98± 0.34 23.28± 1.61
(Kππ)π0 Kππ 6.34± 0.39 15.70± 0.95
(Kππ)π0 K0

Sπ 6.34± 0.39 1.93± 0.12
(K0

S
π)π0 Kππ 5.57± 0.36 1.70± 0.11

(K0
Sπ)π

0 K0
Sπ 5.39± 0.36 0.20± 0.01

total 135.67
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Table A.18: Efficiency and efficiency ×B for the different B± → D∗±D∗0

modes. The error on the efficiency reflects the Monte Carlo statistical uncer-
tainty only.

mode efficiency efficiency ×B
D∗ D∗0 (in %) (×10−5)
(Kπ)π± (Kπ)π0 10.29± 1.00 6.33± 0.61
(Kπ)π± (Kππ0)π0 4.11± 0.63 9.17± 1.40
(Kπ)π± (K3π)π0 4.43± 0.65 5.33± 0.79
(Kπ)π± (Kπ)γ 8.19± 1.26 3.10± 0.48
(Kπ)π± (Kππ0)γ 3.81± 0.86 5.23± 1.18
(Kπ)π± (K3π)γ 2.37± 0.68 1.75± 0.50
(Kπ)π± (K0

S
ππ)γ 1.84± 0.72 0.34± 0.13

(Kππ0)π± (Kπ)π0 2.95± 0.53 6.58± 1.19
(Kππ0)π± (Kππ0)π0 1.38± 0.36 11.17± 2.95
(Kππ0)π± (K3π)π0 1.27± 0.35 5.57± 1.53
(Kππ0)π± (Kπ)γ 2.43± 0.68 3.34± 0.94
(Kππ0)π± (Kππ0)γ 1.33± 0.51 6.64± 2.53
(K3π)π± (Kπ)π0 3.53± 0.58 4.25± 0.70
(K3π)π± (Kππ0)π0 1.68± 0.40 7.31± 1.75
(K3π)π± (K3π)π0 1.57± 0.39 3.69± 0.91
(K3π)π± (K0

Sππ)π
0 0.73± 0.32 0.43± 0.19

(K3π)π± (Kπ)γ 5.90± 1.07 4.36± 0.79
(K3π)π± (K3π)γ 1.61± 0.56 2.32± 0.81
(K0

S
ππ)π± (Kπ)π0 4.52± 0.78 1.34± 0.24

(K0
S
ππ)π± (K3π)π0 1.47± 0.45 0.85± 0.26

(K0
Sππ)π

± (Kπ)γ 4.20± 1.09 0.77± 0.20
(Kππ)π0 (Kπ)π0 4.38± 1.13 2.87± 0.74
total 92.73
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A.8 Signal Determination for B0 → D∗+D∗−

A.8.1 Background Estimation

In order to ascertain the contribution to these candidate events from the
actual signal in question, we must estimate the expected contribution from
background. This is accomplished by using the previously defined sidebands
in the ∆E′ vs. mES plane.

The number of background events expected in the signal region is taken to
be the number of events reconstructed in the sideband region times a scaling
factor, fSide, that is a measure of the relative areas of the signal region to
the sideband region:

NBkg = fSide ×NSideband

The determination of fSide is done under the assumption that the density
of events in the ∆E′ vs. mES plane can be parameterized as the product
of separate functions, f(∆E′) and g(mES), i.e. that ∆E′ and mES are
uncorrelated. Then we have

fSide =

∫ ∫
SigRegion f(∆E ′)g(mES)d∆E ′dmES∫ ∫
Sideband f(∆E ′)g(mES)d∆E ′dmES

We determine fSide and its associated systematic error by fitting projec-
tions of ∆E′ andmES from Monte Carlo BB and cc events to several different
parameterized functions. For the ∆E′ distributions our trial functions are a
first order polynomial, a second order polynomial, and an exponential. The
results of these fits are shown in Figure A.21 . For the mES projections
our trial functions are a first order polynomial and the Argus background
function. The results of these fits are shown in Figure A.22.

Combining the different parameterizations of ∆E′ and mES yield the
results for fSide summarized in Table A.19. The values of fSide range from
0.0171 to 0.0189. We take as our baseline parameterization the combination
f(∆E ′) = first order polynomial and g(mES) = Argus function and assign a
systematic error due to variation in parameterization of 0.001, giving

fSide = (1.72± 0.10)× 10−2

Based on our samples of Monte Carlo events, we see no evidence of peak-
ing of the background in the signal region.
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Figure A.21: Fits of trial functions to projections of ∆E′ from the back-
ground Monte Carlo sample. Figure (a) shows the fit to a straight line.
Figure (b) shows the fit to a second-order polynomial. Figure (c) shows the
fit to an exponential. The units on the x-axis are GeV.
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Figure A.22: Fits of trial functions to projections ofmES from the background
Monte Carlo sample. Figure (a) shows the fit to the Argus background
function. Figure (b) shows the fit to a constant. Figure (c) shows the fit to
a linear function. The units on the x-axis are GeV.
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Table A.19: Summary of values for fSide determined using different parame-
terizations of the background shape. Numbers are ×10−2.

f(∆E ′)
g(mES) Linear Quadratic Exponential
Argus 1.72 1.77 1.71
Constant 1.82 1.88 1.81
Linear 1.83 1.89 1.82

We observe a total of 363 events in the sideband region in data. This is
shown in Figure A.24. Combined with the value of fSide determined above,
we estimate the number of background events appearing in the signal region
to be

NBkg = 6.24± 0.33(stat)± 0.36(syst)

where the statistical error comes from the number of events in the sideband
region and the systematic error comes from our determination of fSide.

Because of the number of submodes that are used, the possibility of mis-
reconstructing one mode as another (crossfeed) was investigated. Using in-
dividual signal Monte Carlo samples, 1000 events per submode, we show in
Figure A.23 the number of events after passing all selection criteria recon-
structed in the different submodes. The horizontal axis represents each sub-
mode signal Monte Carlo collection, and the vertical axis shows the number of
events reconstructed in each submode. The number of events reconstructed
on the off-diagonal (indicating crossfeed between modes) was two out of a
total of 21000 events generated; the effect was considered negligible.

A.8.2 B0 → D∗+D∗− Signal

After all analysis selection criteria are applied, as described in previous sec-
tions, we are left with 38 candidates in the signal region of the ∆E′ vs. mES

plane. This is shown in Figure A.24. Based on the 38 candidate events in
the signal region and the background estimation from above, the number of
signal events is

NSig = 31.8± 6.2(stat)± 0.4(syst),
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Monte Carlo mode
11 13 14 16 17 19 22 23 24 26 27 29 33 34 36 37 39 44 46 47 49

11 186 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Reco 12 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
mode 13 0 81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14 0 0 54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 1 26 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 35 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 0 45 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0
37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 0 0
39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 0
44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 0 0 0
46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 0
47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0
49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25

Figure A.23: The number of events out of one thousand generated that pass
all selection criteria as a function of the individual submodes. The mode
generated in signal Monte Carlo is represented on the horizontal axis and
the mode reconstructed is shown on the vertical axis.

where the statistical error includes the statistical error on the number of back-
ground events and the systematic error is the uncertainty quoted previously
on fSide.

As a consistency check, we break up the data and Monte Carlo samples
by final state. Table A.20 shows a breakdown of the signal region by D
decay mode. Also, Figure A.25 shows the χ2Mass distribution for the signal
candidates.
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Figure A.24: (a)∆E′ vs. mES for data. (b) Projection on to the mES axis
after applying the signal region cut on ∆E′ . (c) Projection on to the ∆E′

axis after applying the signal region cut on mES.
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Figure A.25: χ2Mass for events in the signal region. Points with error bars are
data. The dashed histogram is the χ2Mass distribution from the data sideband
region, scaled by fSide. The dotted histogram is the sum of the dashed
histogram and the χ2Mass distribution from signal Monte Carlo, normalized
to the number of events in the data signal region.
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Table A.20: Comparison of events seen in signal region with expectation from
signal Monte Carlo, broken down by D decay mode combination. The Monte
Carlo expectation for signal is the εB for the given mode combination divided
by the total εB, all multiplied by the total number of signal events seen in data
(for normalization purposes). The background expectation is the number of
events in the data sidebands for that mode combination multiplied by fSide.
The sources of uncertainty in the expected values include the Monte Carlo
statistics in determining the efficiency, the uncertainties on the D∗ branching
fractions, the uncertainty on r (see Section A.7), the uncertainty on fSide,
and the statistical uncertainty from the number of events in the sideband for
that mode combination.

Final State NSig NBkg NTotal NData

(MC Expected) (Sidebands)

(Kπ)(Kπ) 2.07± 0.16 0.12± 0.05 2.19± 0.17 1
(Kπ)(Kππ0) 5.98± 0.67 0.17± 0.06 6.15± 0.67 8
(Kπ)(K3π) 3.12± 0.32 0.17± 0.06 3.29± 0.32 1
(Kπ)(K0

S
ππ) 0.80± 0.10 0.09± 0.04 0.88± 0.11 0

(Kπ)(Kππ) 1.91± 0.16 0.21± 0.06 2.11± 0.17 0
(Kπ)(K0

S
π) 0.21± 0.02 0.12± 0.05 0.33± 0.05 0

(Kπ)(KKπ) 0.16± 0.02 0.10± 0.04 0.26± 0.05 0
(Kππ0)(Kππ0) 4.19± 0.60 0.79± 0.13 4.98± 0.62 8
(Kππ0)(K3π) 4.43± 0.70 0.60± 0.11 5.03± 0.71 4
(Kππ0)(K0

Sππ) 1.23± 0.23 0.26± 0.07 1.49± 0.24 1
(Kππ0)(Kππ) 2.95± 0.32 1.03± 0.15 3.98± 0.36 6
(Kππ0)(K0

S
π) 0.28± 0.03 0.26± 0.07 0.53± 0.08 1

(Kππ0)(KKπ) 0.23± 0.03 0.69± 0.12 0.92± 0.12 0
(K3π)(K3π) 1.31± 0.16 0.05± 0.03 1.36± 0.16 2
(K3π)(K0

Sππ) 0.53± 0.10 0.17± 0.06 0.70± 0.12 3
(K3π)(Kππ) 1.50± 0.16 0.55± 0.10 2.05± 0.19 1
(K3π)(K0

S
π) 0.16± 0.02 0.15± 0.05 0.31± 0.06 0

(K3π)(KKπ) 0.12± 0.01 0.27± 0.07 0.39± 0.07 1
(K0

S
ππ)(K0

S
ππ) 0.08± 0.01 0.02± 0.02 0.10± 0.02 0

(K0
S
ππ)(Kππ) 0.44± 0.05 0.29± 0.07 0.73± 0.09 0

(K0
Sππ)(K

0
Sπ) 0.04± 0.01 0.02± 0.02 0.06± 0.02 0

(K0
S
ππ)(KKπ) 0.03± 0.01 0.10± 0.04 0.14± 0.04 0
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A.9 Signal Determination for B0 → D∗±D∓

and B± → D∗±D∗0

A.9.1 Background Estimation

In order to ascertain the contribution to these candidate events from the
actual signal in question, we must estimate the expected contribution from
background. This is accomplished by fitting the data sideband in the ∆E
vs. mES plane.

An unbinned maximum likelihood fit (using the RooFitTools package [33])
is used to fit the full 2-dimensional data ∆E vs. mES sideband (see Fig-
ure A.12) to a variety of functions. ∆E , rather than ∆E′ , is used for the
background fit. This is due to the fact that, although ∆E′ removes the
correlations in the signal between ∆E and mES, ∆E ′ adds such correla-
tions in the background. Thus, in order to fit using uncoupled functions for
background in ∆E and mES, ∆E must be used instead of ∆E′ . The stan-
dard ARGUS parametrization for mES and a linear polynomial for ∆E are
used for the background parametrization. We also fit a large variety of other
functions to the background and use the results of these fits to establish the
systematic error on the fit from the parametrization. A summary of the fit
functions used for B0 → D∗±D∓ are in the table below:

mES bkgd. ∆E bkgd.

ARGUS linear

linear quadratic

constant

This gives a total of 6 (= 2 × 3) possible B0 → D∗±D∓ fits. Each of these
6 fit combinations is done, and the results for the amount of background in
the signal region are summarized in Table A.21.

A summary of the fit functions used for B± → D∗±D∗0 are in the table
below:
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Table A.21: Amount of background in the signal region for each of the B0 →
D∗±D∓ fits. Each of the numbers is ±3.7% due to the sideband statistics.

Background parametrization
ARGUS mES linear mES

∆E ∆E ∆E ∆E ∆E ∆E
linear quad. const. linear quad. const.
8.89 8.96 8.57 10.06 10.14 9.71

mES bkgd. ∆E′ bkgd.

ARGUS linear

linear quadratic

constant constant

This gives a total of 9 (= 3× 3) possible B± → D∗±D∗0 fits. Each of these
9 fit combinations is done, and the results for the amount of background in
the signal region are summarized in Table A.22.

For the central value of the background measurement, we choose the fit
where mES background is ARGUS and ∆E background is linear. Other
fits are used to establish a systematic error for the combinatoric background
measurement. This gives measurements of

Ncomb.bkgd = 8.89± 0.33(stat)± 1.25(syst) (B0 → D∗±D∓)

Ncomb.bkgd = 17.25± 0.54(stat)± 1.63(syst) (B± → D∗±D∗0)

taking the systematic error to cover the full range of all the above fits.
The parameters and their errors of the fit used for the central value are

listed in Tables A.23 and A.24. Plots of the 2D fits are in Figures A.26
and A.28 and mES and ∆E projections are in Figures A.27 and A.30.

A.9.2 B0 → D∗±D∓ Signal

After all analysis selection criteria are applied, as described in previous sec-
tions, we are left with 31 B0 → D∗±D∓ candidates in the signal region of
the ∆E vs. mES plane.
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Figure A.26: 2-dimensional unbinned maximum likelihood fit of the B0 →
D∗±D∓ ∆E vs. mES sideband in data (after all analysis cuts). The fit
is to the product of an ARGUS function (in mES) and a linear polyno-
mial (in ∆E ) for background. Only the sideband (see Figure A.12) is fit;
the feed-down region and area around the signal region are excluded from
the background fit (as explained in the previous pages). This fit is used
for the central value of the background estimating, with 5 other such fits
to different parametrizations to establish the systematic error on the back-
ground measurement from the parametrization. NOTE: the feed-down re-
gion (mES > 5.26 GeV,∆E < −0.05 GeV ) has its data bins removed in the
above plot and, as explained above, is not part of the fit.
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Figure A.27: (top) Projection in mES (with −0.025 < ∆E < 0.025) of the 2D
fit to the ∆E vs. mES plane. Points with error bars are data and blue line
is background fit projection. Red line is the background fit projection plus
a gaussian fit to the residual in the region 5.26 < mES < 5.291. (bottom)
Projection in ∆E (with 5.273 < mES < 5.285) of the 2D B0 → D∗±D∓ fit
to the ∆E vs. mES plane. Points with error bars are data and blue line is
background fit projection. NOTE: points below ∆E = -0.05 GeV are in the
feed-down region and are thus not part of the fit. Red line is the background
fit projection plus a gaussian fit (centered at 0.) to the residual in the region
−0.05 < ∆E < 0.05.
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Figure A.28: 2-dimensional unbinned maximum likelihood fit of the B± →
D∗±D∗0 ∆E ′ vs. mES sideband in data (after all analysis cuts). The fit is to
the product of an ARGUS function (inmES) and a linear polynomial (in ∆E′

) for background. Only the sideband (see Figure A.12) is fit; the area around
the signal region is excluded from the background fit (as explained in previous
pages). This fit is used for the central value of the background estimating,
with 8 other such fits to different parametrizations to establish the systematic
error on the background measurement from the parametrization.
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Figure A.29: Difference of the 2-dimensional B± → D∗±D∗0 fit (see previous
page) and the data. This plot indicates that there are no signs of any signif-
icant clumping in data (other than, of course, the signal itself) not modelled
by the fit.
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Figure A.30: (top) Projection in ∆E′ (with 5.273 < mES < 5.285) of the 2D
B± → D∗±D∗0 fit to the ∆E′ vs. mES plane. Points with error bars are data
and blue line is fit projection. Red line is the background fit projection plus a
gaussian fit (centered at 0.) to the residual in the region−0.05 < ∆E′ < 0.05.
(bottom) Projection in mES (with −0.025 < ∆E′ < 0.025) of the 2D fit to
the ∆E ′ vs. mES plane. Points with error bars are data and blue line is fit
projection. Red line is the background fit projection plus a gaussian fit to
the residual in the region 5.26 < mES < 5.291.
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Table A.22: Amount of background in the signal region for each of the B± →
D∗±D∗0 fits. Each of the numbers is ±3.0% due to the sideband statistics.

Bkgd. parametrization
mES ∆E ′ Nbkgd.

param. param.

linear 17.25

quad. 16.99

A
R
G
U
S

const. 17.25

linear 15.98

quad. 15.73

li
n
ea
r

const. 15.98

linear 15.87

quad. 15.62

co
n
st
an
t

const. 15.87

Based on the 31 candidate events in the signal region and the back-
ground estimation from above, the number of signal events before peaking
background subtraction (described below) is NSig+PeakBkg = 22.1+6.8−5.7(stat)±
1.3(syst). The statistical error includes the both the statistical error on the
number of events in the signal region (calculated using the Gehrels approx-
imation to Poisson [34], where the upper error is 1 +

√
N + 0.75 and the

lower error is
√
N − 0.25) which predominates, and the statistical error on

the number of background events. The systematic error is the uncertainty
quoted previously on Nbkgd.

Studies of potential peaking background in the signal region have been
done and are described in the following section on systematic errors. The
studies described there allow us to determine that the fraction of of (combi-
natoric background-subtracted) signal events that are in fact peaking back-
ground (primarily from D∗KX events) is 7.3 ± 7.6%, or +1.6 ± 1.7 events.
This is subtracted from the measured number of signal events, giving

NSig = 20.5+6.8−5.7(stat)± 1.3(comb. bkg. syst)± 1.7(peak bkg. syst)
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Table A.23: Fitted parameters in the data 2D signal+background ∆E vs.
mES fit.

Parameter Value
ARGUS parameter -27.11±4.55

∆E slope -1.72±0.29 (Nevts/90 MeV2)/GeV

With fixed:
ARGUS kinematic limit 5291.00 MeV

Table A.24: Fitted parameters in the data 2D signal+background ∆E′ vs.
mES fit.

Parameter Value
ARGUS parameter -50.07±3.33

∆E ′ slope -0.50±0.25 (Nevts/90 MeV2)/GeV

With fixed:
ARGUS kinematic limit 5291.00 MeV

As a consistency check, we break up the data and Monte Carlo samples
by final state. Table A.25 shows a breakdown of the signal region by D decay
mode.

A.9.3 B± → D∗±D∗0 Signal

After all analysis selection criteria are applied, as described in previous sec-
tions, we are left with 39 B± → D∗±D∗0 candidates in the signal region of
the ∆E ′ vs. mES plane.

Based on the 39 candidate events in the signal region and the background
estimation from above, the number of signal events is

NSig = 21.7+7.3−6.2(stat)± 1.6(syst)

The statistical error includes the both the statistical error on the number of
events in the signal region (calculated using the Gehrels approximation to
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Figure A.31: χ2Mass for events in the B0 → D∗±D∓ signal region. Points
with error bars are data. The error bars are the asymmetric Poisson errors
(using the Gehrels approximation [34]). The dashed histogram is the χ2Mass

distribution from the data sideband region, scaled by the ratio of the fitted
background in the signal region over the total number of events in the side-
band. The dotted histogram is the sum of the dashed histogram and the
χ2Mass distribution from signal Monte Carlo, normalized to the number of
signal events in the data signal region.
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Table A.25: Comparison of B0 → D∗±D∓ events seen in signal region with
expectation from signal Monte Carlo, broken down by D decay mode com-
bination. The Monte Carlo expectation for signal is the εB for the given
mode combination divided by the total εB, all multiplied by the central
value of the branching fraction seen in data (for normalization purposes).
The background expectation is the number of events in the data sidebands
for that mode combination multiplied by the ratio of the integral of the fitted
background under the signal region to that in the sidebands. The sources
of uncertainty in the expected values include the Monte Carlo statistics in
determining the efficiency, the uncertainties on the D∗ and D branching frac-
tions, the uncertainty on r′ (see Section A.7), and the statistical uncertainty
from the number of events in the sideband for that mode combination.

Final State NSig NBkg NTotal NData

D∗ D± (MC Expected) (Sideband) D∗+D− D∗−D+ Total

(Kπ)π± Kππ 5.83± 0.23 1.43± 0.13 7.26± 0.26 3 5 8
(Kπ)π± K0

Sπ 0.65± 0.03 0.18± 0.05 0.83± 0.06 1 1 2
(Kπ)π± KKπ 0.40± 0.02 0.34± 0.07 0.74± 0.07 1 0 1
(Kππ0)π± Kππ 7.29± 0.40 3.14± 0.20 10.43± 0.45 6 7 13
(Kππ0)π± KKπ 0.05± 0.01 0.02± 0.02 0.07± 0.02 1 0 1
(K3π)π± Kππ 3.55± 0.25 1.14± 0.12 4.69± 0.28 1 1 2
(Kππ)π0 Kππ 2.40± 0.15 1.61± 0.14 4.01± 0.21 0 1 1
(Kππ)π0 K0

S
π 0.29± 0.02 0.42± 0.07 0.71± 0.07 1 2 3

(K0
S
π)π0 Kππ 0.26± 0.02 0.25± 0.06 0.51± 0.06 1 0 1

(K0
Sπ)π

0 K0
Sπ 0.03± 0.00 0.04± 0.02 0.07± 0.02 0 0 0
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Poisson [34], where the upper error is 1 +
√
N + 0.75 and the lower error is√

N − 0.25) which predominates, and the statistical error on the number of
background events. The systematic error is the uncertainty quoted previously
on Nbkgd.

As a consistency check, we break up the data and Monte Carlo samples
by final state. Table A.26 shows a breakdown of the signal region by D decay
mode.
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Figure A.32: χ2Mass for events in the B± → D∗±D∗0 signal region. Points
with error bars are data. The error bars are the asymmetric Poisson errors
(using the Gehrels approximation [34]). The dashed histogram is the χ2Mass

distribution from the data sideband region, scaled by the ratio of the fitted
background in the signal region over the total number of events in the side-
band. The dotted histogram is the sum of the dashed histogram and the
χ2Mass distribution from signal Monte Carlo, normalized to the number of
signal events in the data signal region.
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Table A.26: Comparison of events seen in the B± → D∗±D∗0 signal re-
gion with expectation from signal Monte Carlo, broken down by D decay
mode combination. The Monte Carlo expectation for signal is the εB for
the given mode combination divided by the total εB, all multiplied by the
central value of the branching fraction seen in data (for normalization pur-
poses). The background expectation is the number of events in the data
sidebands for that mode combination multiplied by the ratio of the integral
of the fitted background under the signal region to that in the sidebands.
The sources of uncertainty in the expected values include the Monte Carlo
statistics in determining the efficiency, the uncertainties on the D∗ and D∗0

branching fractions, the uncertainty on r′ (see Section A.7), and the statis-
tical uncertainty from the number of events in the sideband for that mode
combination.

Final State NSig NBkg NTotal NData

D∗ D∗0 (MC Expected) (Sideband)

(Kπ)π± (Kπ)π0 1.44± 0.55 0.08± 0.03 1.52± 0.55 4
(Kπ)π± (Kππ0)π0 2.09± 0.83 0.82± 0.11 2.91± 0.84 3
(Kπ)π± (K3π)π0 1.21± 0.48 0.37± 0.08 1.58± 0.49 0
(Kπ)π± (Kπ)γ 0.70± 0.28 0.25± 0.06 0.95± 0.29 0
(Kπ)π± (Kππ0)γ 1.19± 0.51 1.60± 0.16 2.79± 0.53 3
(Kπ)π± (K3π)γ 0.40± 0.18 0.73± 0.11 1.13± 0.21 1
(Kπ)π± (K0

S
ππ)γ 0.08± 0.04 0.15± 0.05 0.23± 0.06 0

(Kππ0)π± (Kπ)π0 1.50± 0.61 0.19± 0.05 1.69± 0.61 3
(Kππ0)π± (Kππ0)π0 2.54± 0.73 4.89± 0.28 7.43± 0.78 5
(Kππ0)π± (K3π)π0 1.27± 0.37 1.13± 0.13 2.40± 0.39 2
(Kππ0)π± (Kπ)γ 0.76± 0.41 0.59± 0.10 1.35± 0.42 3
(Kππ0)π± (Kππ0)γ 1.51± 0.80 2.09± 0.18 3.60± 0.82 2
(K3π)π± (Kπ)π0 0.97± 0.59 0.12± 0.04 1.09± 0.59 0
(K3π)π± (Kππ0)π0 1.66± 0.72 1.75± 0.16 3.41± 0.74 2
(K3π)π± (K3π)π0 0.84± 0.37 0.67± 0.10 1.51± 0.38 2
(K3π)π± (K0

S
ππ)π0 0.10± 0.06 0.08± 0.03 0.18± 0.07 1

(K3π)π± (Kπ)γ 0.99± 0.41 0.33± 0.07 1.40± 0.42 1
(K3π)π± (K3π)γ 0.53± 0.27 0.64± 0.10 1.17± 0.29 1
(K0

Sππ)π
± (Kπ)π0 0.30± 0.12 0.15± 0.04 0.45± 0.13 1

(K0
S
ππ)π± (K3π)π0 0.19± 0.09 0.29± 0.07 0.48± 0.11 1

(K0
S
ππ)π± (Kπ)γ 0.18± 0.08 0.06± 0.03 0.24± 0.09 1

(Kππ)π0 (Kπ)π0 0.65± 0.29 0.46± 0.08 1.11± 0.29 3
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A.10 Systematic Uncertainties

A.10.1 Tracking Efficiency

The systematic error on GoodTracksLoose is 1.2% and for GoodTracksVeryLoose
1.3% per track. For slow pions a systematic error of 2.6% is assigned. The
tracks from K0

S decays come from the ChargedTracks list and are each as-
signed a 1.0% systematic uncertainty, or 2.0% per K0

S
. Tables A.27, A.28,

and A.29 show the average number of tracks in each category, weighted by
εB, for each of the decay modes. Each of these tracking efficiencies is treated
as correlated, so the total systematic is the linear sum as opposed to the
quadrature sum. Tracks from charged kaons are not included here as they
are accounted for separately, except in the decay D0 → K−π+ where no kaon
identification is used.

Table A.27: Average number of tracks falling in each of the various track
categories for B0 → D∗+D∗− decays, and their associated systematic uncer-
tainty due to tracking efficiency.

Track Type Syst. per Track (%) Avg. Number Net Syst. (%)

GoodTracksLoose 1.2 1.873 2.25
GoodTracksVeryLoose 1.3 3.087 4.01
K0

S
2.0 0.127 0.25

Slow Charge π 2.6 1.763 4.58
Total 9.94

A.10.2 π0 Efficiency

The systematic uncertainty on the π0 efficiency is taken as 2.5% per π0,
including the soft π0 from the decay D∗+ → D+π0 [32]. The εB weighted
average number of π0s is 0.99 for B0 → D∗+D∗−, 0.480 for B0 → D∗±D∓,
and 1.54 for B± → D∗±D∗0. We therefore assign a systematic uncertainty
due to the π0 efficiency of 2.5
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Table A.28: Average number of tracks falling in each of the various track cat-
egories for B0 → D∗±D∓ decays, and their associated systematic uncertainty
due to tracking efficiency.

Track Type Syst. per Track (%) Avg. Number Net Syst. (%)

GoodTracksLoose 1.2 0.299 0.36
GoodTracksVeryLoose 1.3 4.981 6.48
K0

S 2.0 0.146 0.29
Slow Charge π 2.6 0.868 2.26
Total 9.39

Table A.29: Average number of tracks falling in each of the various track
categories for B± → D∗±D∗0 decays, and their associated systematic uncer-
tainty due to tracking efficiency.

Track Type Syst. per Track (%) Avg. Number Net Syst. (%)

GoodTracksLoose 1.2 0.605 0.73
GoodTracksVeryLoose 1.3 4.327 5.63
K0

S
2.0 0.072 0.14

Slow Charge π 2.6 0.908 2.36
Total 8.86
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A.10.3 γ Efficiency

In B± → D∗±D∗0, the systematic uncertainty on the (slow) γ (from D∗0 →
D0γ) efficiency is taken as 1.25% per γ [32]. The εB weighted average number
of γs is 0.32. We therefore assign a systematic uncertainty of 0.4% due to
the γ efficiency.

The π0 and γ efficiencies as correlated, so the systematic from these two
sources in B± → D∗±D∗0 is the linear sum (4.3%).

A.10.4 K0
S
Efficiency

The systematic uncertainty on the K0
S
efficiency is already included in the

charged track efficiency. Since the total systematic assigned to K0
S efficiency

comes from the tracking efficiency for ChargedTracks, an additional system-
atic is not assigned here [31].

A.10.5 Charged Kaon ID

To determine the systematic uncertainty from Kaon ID Monte Carlo events
without PID correction are compared with Monte Carlo with PID correc-
tion [29]. The εB for Monte Carlo events without PID correction is enhanced
by 2.8% in each of B0 → D∗+D∗−, B0 → D∗±D∓, and B± → D∗±D∗0, and
therefore a systematic uncertainty of 2.8% to charged Kaon ID is assigned
for each of the three modes.

A.10.6 Resolution Differences

To understand the sensitivity to unaccounted-for differences between the data
and Monte Carlo resolutions on reconstructed masses, ∆E′ , and mES, the
cuts on χ2Mass, ∆E ′ , and mES are each varied and a systematic uncertainty
on the total εB equal to the fractional change in εB is assigned.

For the variation of χ2Mass, we are guided by the pull distribution plots
for the D0 and D+ shown in [26]. It is from these plots that the factor of 1.2
that is used to scale the error on the D mass is extracted when constructing
χ2Mass in data. This factor of 1.2 has a 4% relative error. Because the Ds in
our sample are not of the exact same momentum spectrum, and we include
some additional D+ decay modes, we take a conservative uncertainty on the
scaling factor of 10%. The χ2Mass is inversely proportional to the square of
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this scale factor. This translates to a change in the χ2Mass scale of ±20%.
As we change the cut on χ2Mass from 16 to 24, the total εB changes from
18.00×10−4 to 18.88×10−4, leading to a systematic error of 2.7%. It should
be noted, however, that from Figures A.25, A.31, and A.32 the mean of the
χ2Mass in data and the mean of the sum of background and signal Monte
Carlo agree with each other within the errors of each.

For the variation of ∆E′ and mES, we also look at a 10% variation on the
cut values. Comparing Figure A.27 for data and Figure A.3, one sees that
although the errors on the resolutions for the data fits are rather large, both
the ∆E ′ and mES resolutions are within 1 sigma of the Monte Carlo values.
Changing the cut on ∆E′ by ±10% produces a systematic uncertainty on
εB of 2.3%. Variation of the mES cut produces an uncertainty of 2.0%.

Adding these three resolution uncertainties in quadrature produces a net
uncertainty of 4.1%.

A.10.7 Vertex Fitting

As described in Section A.7, the ratio r′ was calculated to determine a cor-
rection factor for the efficiency measurement due to the requirement of con-
verging vertex fits on D candidates and the cut of χ2 probability > 0.001.
The systematic uncertainty on εB determined in Section A.7 was 2.6% for
both B0 → D∗+D∗− and B0 → D∗±D∓, and 2.8% for B± → D∗±D∗0.

A.10.8 Background Estimation

The systematic uncertainty on the (combinatoric) background estimation is
described in Section A.9. The statistical error on the background estimation
coming from the number of events in the sideband region will be incorporated
in the statistical error on the branching fraction. The systematic uncertainty
propagates into the branching fraction as

σBkg(syst)

NSig
= 1.1% (B0 → D∗+D∗−)

σBkg(syst)

NSig
= 7.1% (B0 → D∗±D∓)

σBkg(syst)

NSig
= 7.5% (B± → D∗±D∗0)

relative systematics on the branching fractions.

194



A.10.9 Peaking Backgrounds

Possible sources of peaking backgrounds for B0 → D∗+D∗− potentially not
well modeled in the Monte Carlo sample were explored. Possible sources
include charged B → D∗0D∗ (which is currently not included in generic MC)
and B0 → D(∗)

s D∗ (which is included in generic MC but for which the current
published branching ratios have a relative error of over 25%[24]).

Figure A.33 shows the ∆E′ vs mES behavior for events in these channels
reconstructed as B0 → D∗+D∗−. From the expected relation BR(B+ →
D∗0D∗) ≈ BR(B0 → D∗+D∗−) and the error on the branching fraction for
BR(B0 → D(∗)

s D∗) we determine the relative systematic uncertainty on the
branching ratio due to peaking backgrounds not well modeled in Monte Carlo
to be 1.1%.

Examination of background events within the B0 → D∗±D∓ signal region
in generic B0B0 MC indicted that peaking background could occur from
events of the type B0 → D∗KX, where the KX system has the same final
state as a D submode and happens to be reconstructed within the D mass
resolution range. Four such events were found in 8 fb−1 of generic B0B0 MC,
indicating that it could potentially be a significant effect.

To determine the amount of peaking background within the observed
data signal peak, events were reconstructed with a shifted D mass window.
Since, as described above, the background is primarily from events with a
false D, shifting the D mass window and determining the resulting “signal”
will give an estimate of the amount of false D background included in the
B0 → D∗±D∓ signal itself. Data events were reconstructed with D mass
shifted ±20MeV (the limits set in ntuple production) with respect to the
nominal D mass (see Figure A.34). The resulting false signals produced
an estimate of 7.3 ± 7.6% of the B0 → D∗±D∓ signal to be from peaking
background. As described in the previous section, this value was subtracted
from the number of signal events reconstructed. The 7.6% error on the
measurement is taken to be the systematic error from peaking background
estimation.

A.10.10 Transversity Amplitudes

For B0 → D∗+D∗− and B± → D∗±D∗0, to obtain the systematic due to lack
of knowledge of true transversity amplitudes in data (which result in differ-
ing slow pion kinematics and thus a transversity-dependent efficiency), 5000
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Figure A.33: The upper plot shows the background on the ∆E′ vs mES plane
from 34617 generated charged B → D∗0D∗ events (which corresponds to an
effective luminosity of 550 fb−1). The lower plot shows the background on
the ∆E′ vs mES plane from 44000 generated B0 → D∗

sD
∗ events (which

corresponds to an effective luminosity of 20 fb−1).
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Figure A.34: 2-dimensional ∆E vs. mES plots of shifted D mass window
events, used for estimating peaking background, for (top) D mass 20 MeV
above nominal and (bottom)D mass 20 MeV below nominal. After combina-
toric background subtraction (via the two-dimensional unbinned maximum
likelihood fit to the sideband, as shown in both plots), the signals for these
D mass shifted events were used to estimate the contribution from peaking
background (from false D events) to B0 → D∗±D∓ signal.
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Monte Carlo events in each of the two extremes of transversity amplitudes: 1)
|G1+| = 1 |G0+| = 0 |G1−| = 0 and 2) |G1+| = 0 |G0+| = 1 |G1−| = 0,
and each of the two modes: a) D0π + D0π → (Kπ)π + (Kπ)π and b)
D0π+D±π0 → (Kπ)π+(Kππ)π0, were generated and reconstructed (4*5000
= a total of 20000 events). Figure A.35 shows the pT distributions at the
generator level for different values of the transversity amplitudes, including
the set of amplitudes used for signal Monte Carlo generation.

Efficiencies for reconstructing signal events were calculated from each of
the 4 samples and the differences in resulting efficiencies between samples of
differing transversity were used to calculate the systematic error from our lack
of knowledge of the true transversity amplitudes. The efficiency differences
were weighted by the relative εB for D0π + D0π and D0π + D±π0 events.
The resulting relative systematic uncertainty due to transversity amplitudes
of is 6.6%.

A.10.11 Summary

In Tables A.30, A.31, and A.32 the systematic uncertainties are summarized
as their fractional error on the branching fraction.

Table A.30: Summary of systematic uncertainties for B0 → D∗+D∗−.

Source Uncertainty (%)

Monte Carlo Statistics 2.7
Sub-mode Branching Fractions 5.6
Charged Tracking Efficiency 9.9
π0 Efficiency 2.5
K0

S
Efficiency 0.3

Kaon Identification 3.4
Vertex Fitting 2.6
Transversity Amplitudes 6.6
Background Estimation 1.1
Peaking Backgrounds 1.1
Resolution Differences 4.1
Number of B0 1.6
Total 15.0
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Figure A.35: Generator-level pT distributions for the slow pion for various
values of the transversity amplitudes. The upper-left plot shows the set of
amplitudes used for signal Monte Carlo generation. The upper-right and
lower-left show the same distribution for the sets of amplitudes used for the
systematic uncertainty study.
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Table A.31: Summary of systematic uncertainties for B0 → D∗±D∓.

Source Uncertainty (%)

Monte Carlo Statistics 2.3
Sub-mode Branching Fractions 7.4
Charged Tracking Efficiency 9.4
π0 Efficiency 1.2
Kaon Identification 2.8
Vertex Fitting 2.6
Background Estimation 7.1
Peaking Backgrounds 7.6
Resolution Differences 4.1
Number of B0 1.6
Total 17.1

Table A.32: Summary of systematic uncertainties for B± → D∗±D∗0.

Source Uncertainty (%)

Monte Carlo Statistics 5.7
Sub-mode Branching Fractions 9.1
Charged Tracking Efficiency 8.9
π0 and γ Efficiency 4.3
Kaon Identification 2.8
Vertex Fitting 2.8
Transversity Amplitudes 6.6
Background Estimation 7.5
Peaking Backgrounds 1.1
Resolution Differences 4.1
Number of B0 1.6
Total 18.7
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Appendix B

Details of B → D(∗)D(∗) sin2β
Measurement

B.1 Event Yields

B.1.1 CP Data Samples

Here we summarize the yields in 56 fb−1 of on-resonance data for the event
selection described in Chapter 3. For the branching ratio analyses, the ex-
traction of signal events is done via a cut-and-count procedure. For the CP
fit the mES distribution is used to assign a signal probability to each event.
We therefore quote below the signal yields determined by fitting to the mES

distribution to an ARGUS+gaussian function. The resolution of the gaussian
is fixed to that measured in the exclusive B data sample (2.63 MeV) and we
obtain the yield from the area of the gaussian. Tables B.1 and B.2 contain the
yields for B0 → D∗+D∗− and B0 → D∗±D∓ in the 56 fb−1 datasample. In
Table B.3 we see the mode by mode break down of events in B0 → D∗+D−,
as well as the number of events reconstructed as B0 → D∗+D− versus those
reconstructed as B0 → D∗−D+.
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Table B.1: Below are the results of the fits to the mES and ∆E projections
shown in Figures B.2-B.3 and Figures B.5-B.8. These yields neglect any
possible peaking background component. The value for σmES = 2.63MeV
was determined from the Breco data sample and was fixed in the fit to the
mES projection.

mode total area mES yield total area ∆E yield purity
mES fit with cuts from ∆E fit with cuts

B0 → D∗+D∗− 94.1± 11.0 92.3 93.8± 11.6 91.5 77.9%
B0 → D∗+D− 65.0± 11.0 60.4 60.1± 11.7 55.6 51.1%

Table B.2: Below are the details of the fits to the ∆E projections shown in
Figures B.3 and B.8.

σ∆E from ∆E fit mean of ∆E fit

B0 → D∗+D∗− Run1 16.0± 3.4 +3.6± 3.6
Run2 10.6± 1.6 −7.9± 1.8
Total 12.6± 1.6 −4.6± 1.7

B0 → D∗+D− Run1 5.5± 1.1 −5.3± 1.9
Run2 11.7± 2.4 +0.7± 2.7
Total 10.3± 2.0 −2.3± 2.2

B.1.2 Peaking backgrounds

Peaking background studies have already been performed for the BR deter-
minations of B0 → D∗+D∗− (PRL draft and BAD 166) and B0 → D∗+D−

(BAD 274). These studies, based on 20.4 fb−1, were done by using the
generic MC (corresponding to 8 fb−1 of B0B̄0, 12.8 fb−1 of B+B−, and 6.8
fb−1 of cc̄ of MC SP3), simulated events for some specific potentially dan-
gerous modes and finally data sidebands. More studies have now been done
and the results are summarized in the following two sections.
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Table B.3: Below is the mode by mode breakdown of the events seen in the
mES projection for B0 → D∗+D−. Given are the number of events in each
reconstruction mode seen in mES > 5.27MeV. The mode name is denoted
by the D∗ decay mode first and the D mode second.

mode number of events no. of evts. no. of evts.
in signal region D∗−D+ D∗+D−

(Kπ)(Kππ) 22 18 4
(Kππ0)(Kππ) 56 33 23
(K3π)(Kππ) 31 10 21
(K0

S
ππ)(Kππ) 6 1 5

(Kπ)(K0
Sπ) 3 1 2

(Kππ0)(K0
S
π) 8 5 3

(K3π)(K0
S
π) 6 1 5

(K0
Sππ)(K

0
Sπ) 0 0 0

Total 132 69 63

Peaking backgrounds for B0 → D∗+D∗−

Based on the described samples of generic SP3 Monte Carlo events, we see
no evidence of peaking of the background in the signal region.

Possible sources of peaking backgrounds potentially not well modeled in
the Monte Carlo sample were also explored. We studied in detail the decays
of charged B → D∗0D∗ (which is currently not included in generic MC) and
B0 → D(∗)

s D∗ (which is included in generic MC but for which the current
published branching ratios have a relative error of over 25%[37]).

The reconstruction of B0 → D∗+D∗− candidates was performed on a
sample of 44000 generated B0 → D∗

sD
∗ events, which corresponds to an

effective luminosity of 20 fb−1, and no events pass our selection criteria.
We repeated the same procedure on the channel B → D∗0D∗, where we

expect events to peak both in mES and ∆E. We analyzed 34617 generated
D∗0D∗ events, corresponding to an effective luminosity of 550 fb−1, assuming
BR(B+ → D∗0D∗) ≈ BR(B0 → D∗+D∗−) and we found 3 events in the
signal region.

Other possible sources of background that might peak in mES buth not
in ∆E can be investigated by using data sidebands.
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Figure B.1: Displayed is the ∆E vs. mES projection for B0 → D∗+D∗−.
The lines show where the ∆E cut is applied for the mES projection.

Figure B.9 shows the mES distribution in the ∆E sideband (50 < |∆E| <
200MeV ) fitted with an ARGUS function plus a Gaussian distribution, where
all the parameters except normalizations were fixed at the fitted values ob-
tained from a fit to the mES distribution in the ∆E signal region. From this
fit we estimate an upper limit of 1.1 ± 1.5 events of peaking background in
the signal region from source having linear distribution on ∆E.

Peaking backgrounds for B0 → D∗+D−

Examination of background events within the B0 → D∗±D∓ signal region
in generic B0B0 MC indicated that peaking background could occur from
events of the type B0 → D∗KX, where the KX system has the same final
state as a D submode and happens to be reconstructed within the D mass
resolution range. Four such events were found in 8 fb−1 of generic B0B0 MC,
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MINUIT Likelihood Fit to Plot 4001&0
mES (data)
File: dataplots_Run1Run2.hbook 19-FEB-2002 17:16
Plot Area Total/Fit    238.00 / 238.00
Func Area Total/Fit    237.87 / 237.87

Fit Status  3
E.D.M. 3.581E-08

Likelihood =    28.9
χ2=    26.2 for  45 -  3 d.o.f., C.L.= 97.3%
Errors Parabolic                     Minos
Function  1: Gaussian (sigma)
AREA   94.069 ±   10.97 -      0. +      0.
MEAN∗   5.2802 ±      0. -      0. +      0.
SIGMA∗  2.63000E-03 ±      0. -      0. +      0.
Function  2: ARGUS Background
NORM   4760.7 ±   1072. -      0. +      0.
OFFSET∗       0. ±      0. -      0. +      0.
EBEAM∗   5.2910 ±      0. -      0. +      0.
EFACT  -34.969 ±   10.72 -      0. +      0.

Figure B.2: Displayed is themES projection for B
0 → D∗+D∗− after applying

the signal region cut on ∆E . The line is a fit to an ARGUS+gaussian shape
where the gaussian resolution is fixed to the value seen in Monte Carlo.
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MINUIT Likelihood Fit to Plot 4002&0
∆E (GeV)
File: dataplots_Run1Run2.hbook 19-FEB-2002 17:17
Plot Area Total/Fit    262.00 / 262.00
Func Area Total/Fit    261.99 / 261.99

Fit Status  3
E.D.M. 2.209E-06

Likelihood =    28.2
χ2=    29.7 for  40 -  6 d.o.f., C.L.= 67.8%
Errors Parabolic                     Minos
Function  1: Gaussian (sigma)
AREA   93.830 ±   11.62 -      0. +      0.
MEAN -4.55154E-03 ±  1.7445E-03 -      0. +      0.
SIGMA  1.26319E-02 ±  1.5660E-03 -      0. +      0.
Function  2: Polynomial  of  Order 1
NORM   12.176 ±  0.5006 -      0. +      0.
POLY01  -5.7509 ±  0.6046 -      0. +      0.
OFFSET   70.986 ±   5.050 -      0. +      0.

Figure B.3: Displayed is the ∆E projection for B0 → D∗+D∗− after applying
the signal region cut on mES. The line is a fit to two gaussians+exponential
shape. The second gaussian is fitted to the feeddown region where B0 →
DSD

∗ is misreconstructed. While this fit is not used in the final CP analysis,
a comparison of the yields extracted from the mES projection can be made
from this figure.
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Figure B.4: Displayed is the ∆E vs. mES projection for B0 → D∗+D−. The
lines show where the ∆E cut is applied for the mES projection.
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MINUIT Likelihood Fit to Plot 4001&0
mES (data)
File: dstard_dataplots_Run1Run2.hbook 22-FEB-2002 08:03
Plot Area Total/Fit    432.00 / 432.00
Func Area Total/Fit    431.69 / 431.69

Fit Status  3
E.D.M. 1.338E-06

Likelihood =    32.5
χ2=    30.0 for  45 -  3 d.o.f., C.L.= 91.7%
Errors Parabolic                     Minos
Function  1: Gaussian (sigma)
AREA   64.965 ±   11.04 -      0. +      0.
MEAN∗   5.2802 ±      0. -      0. +      0.
SIGMA∗  2.63000E-03 ±      0. -      0. +      0.
Function  2: ARGUS Background
NORM   10750. ±   1526. -      0. +      0.
OFFSET∗       0. ±      0. -      0. +      0.
EBEAM∗   5.2910 ±      0. -      0. +      0.
EFACT  -28.158 ±   6.635 -      0. +      0.

Figure B.5: Displayed is the mES projection for B0 → D∗+D− after applying
the signal region cut on ∆E . The line is a fit to an ARGUS+gaussian shape
where the gaussian resolution is fixed to the value seen in Monte Carlo.

208



5.200 5.225 5.250 5.275 5.300
mES (GeV) D*-D+

0

10

20

30

MINUIT Likelihood Fit to Plot 6001&0
mES (data) D*-D+
File: dstard_dataplots_Run1Run2.hbook 22-FEB-2002 10:46
Plot Area Total/Fit    225.00 / 225.00
Func Area Total/Fit    224.88 / 224.88

Fit Status  3
E.D.M. 8.795E-08

Likelihood =    25.3
χ2=    23.8 for  45 -  3 d.o.f., C.L.= 99.0%
Errors Parabolic                     Minos
Function  1: Gaussian (sigma)
AREA   40.999 ±   8.016 -      0. +      0.
MEAN∗   5.2802 ±      0. -      0. +      0.
SIGMA∗  2.63000E-03 ±      0. -      0. +      0.
Function  2: ARGUS Background
NORM   4586.3 ±   936.0 -      0. +      0.
OFFSET∗       0. ±      0. -      0. +      0.
EBEAM∗   5.2910 ±      0. -      0. +      0.
EFACT  -19.434 ±   9.325 -      0. +      0.

Figure B.6: Displayed is the mES projection for B0 → D∗−D+ after applying
the signal region cut on ∆E . This excludes all events where B0 → D∗+D−.
The line is a fit to an ARGUS+gaussian shape where the gaussian resolution
is fixed to the value seen in Monte Carlo.
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MINUIT Likelihood Fit to Plot 6002&0
mES (data) D*+D-
File: dstard_dataplots_Run1Run2.hbook 22-FEB-2002 10:46
Plot Area Total/Fit    207.00 / 207.00
Func Area Total/Fit    206.81 / 206.81

Fit Status  3
E.D.M. 1.578E-05

Likelihood =    37.4
χ2=    37.5 for  45 -  3 d.o.f., C.L.= 66.8%
Errors Parabolic                     Minos
Function  1: Gaussian (sigma)
AREA   22.728 ±   7.561 -      0. +      0.
MEAN∗   5.2802 ±      0. -      0. +      0.
SIGMA∗  2.63000E-03 ±      0. -      0. +      0.
Function  2: ARGUS Background
NORM   6403.6 ±   1255. -      0. +      0.
OFFSET∗       0. ±      0. -      0. +      0.
EBEAM∗   5.2910 ±      0. -      0. +      0.
EFACT  -37.806 ±   9.412 -      0. +      0.

Figure B.7: Displayed is the mES projection for B0 → D∗+D− after applying
the signal region cut on ∆E . This excludes all events where B0 → D∗−D+.
The line is a fit to an ARGUS+gaussian shape where the gaussian resolution
is fixed to the value seen in Monte Carlo.
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MINUIT Likelihood Fit to Plot 4002&0
∆E (GeV)
File: dstard_dataplots_Run1Run2.hbook 27-FEB-2002 10:09
Plot Area Total/Fit    610.00 / 610.00
Func Area Total/Fit    610.02 / 610.02

Fit Status  3
E.D.M. 1.918E-06

Likelihood =    33.6
χ2=    33.0 for  40 -  9 d.o.f., C.L.= 36.8%
Errors Parabolic                     Minos
Function  3: Gaussian (sigma)
AREA   60.946 ±   11.73 -      0. +      0.
MEAN -2.27534E-03 ±  2.1985E-03 -      0. +      0.
SIGMA  1.02837E-02 ±  1.9902E-03 -      0. +      0.
Function  4: Gaussian (sigma)
AREA   90.504 ±   16.70 -      0. +      0.
MEAN -7.54041E-02 ±  3.2364E-03 -      0. +      0.
SIGMA  1.59558E-02 ±  2.9532E-03 -      0. +      0.
Function  5: Exponential
NORM   1009.7 ±   49.24 -      0. +      0.
SLOPE   3.7775 ±  0.4442 -      0. +      0.
OFFSET  8.90687E-03 ±  2.0839E-02 -      0. +      0.

Figure B.8: Displayed is the ∆E projection for B0 → D∗+D− after applying
the signal region cut on mES. The fit is to two gaussians + exponential. The
region ∆E < 50MeV is fitted with a gaussian show where other B0 decay
modes can appear as misreconstructed D∗D decays. While this fit is not
used in the final CP analysis, a comparison of the yields extracted from the
mES projection can be made from this figure.

211



Figure B.9: mES distribution of B0 → D∗+D∗− in the ∆E sideband fitted
with an Argus function plus a Gaussian distribution to evaluate peaking
background.
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Kπ invariant mass

Kπ invariant mass (D → Kππ)
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Figure B.10: Invariant mass of the Kπ pairs in B0 → D∗±D∓ data events
where the D∓ decays to Kππ. Both pion choices per event are used for the
plot. No unusual peaks are seen in signal.
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Figure B.11: Invariant mass of the Kπ pairs in the K+K− hypothesis for
B0 → D∗±D∓ data events where the D∓ decays to Kππ. Both pion choices
per event are used for the plot. No unusual peaks are seen in signal.
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Dalitz plot (D → Kππ sideband)
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Figure B.12: Dalitz plots for signal region and mES sideband for B0 →
D∗±D∓ data events where the D∓ decays to Kππ.
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Figure B.13: ∆M for signal and mES sideband normalized to the AR-
GUS+gaussian fit. The lack of significant excess of ∆M sidebands within
the signal is evidence for lack of peaking backgrounds with a false D∗.
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Figure B.14: mES distribution in data in windows of ∆M . The first plot is
within 1 MeV, the second between 1 and 2.5, the third between 2.5 and 5,
and the last beyond 2.5. No signal is seen in the outer bins, indicating lack
of false D∗ contribution to the signal.
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Figure B.15: Generator-level distribution of ∆M in D+D0π−. The small size
of the signal region effectively precludes any significant peaking background
from this source.
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indicating that it could potentially be a significant effect.
The possible peaking backgrounds in B0 → D∗±D∓ can be split into

three types: 1) events with a false D∗, 2) events with a true D∗ but false D
reconstructed from a different final state (these can peak in mES but should
not peak in ∆E ), and 3) events with a true D∗ and false D but which have
exactly the same final state as the signal (these can peak in ∆E as well as
mES).

Peaking background from 1) has been checked by looking at the ∆M =
M(D∗) − M(D0) distribution for the signal box and the mES sideband, as
well as looking at the mES distribution in windows around the nominal ∆M .
Given the narrowness of acceptable ∆M , it is reasonable to predict that
there is no significant peaking background with a fake D∗. This prediction is
borne out in the data. Figure B.13 shows that there is no significant excess
of ∆M sidebands within the signal. To check this result slices in ∆M have
been done and the Mes plots have been looked at for the following windows
around the nominal 0.1454; these are shown in Figure B.14. We do not believe
there should be any background contribution from this source, because even
if it existed it would be accounted for in the non-∆E peaking background
described below (B1). The only fake D∗ that would peak in ∆E is D+D0π−,
which, assuming a production rate similar to the signal, is innocuous: the
∆M mass window is narrow enough that nonresonant D0π have a very low
efficiency. Generator level studies (see Figure B.15) show that the efficiency
for the selection on D+D0π− is 0.06%.
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Figure B.16: mES and ∆E plots in 130 fb−1 of DsD
∗ SP4 signal MC.
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Figure B.17: mES and ∆E plots in 240 fb−1 of B0 cocktail (D(∗)π, ρ, a1)
SP4 signal MC.
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Figure B.18: mES and ∆E plots in 1.1 ab−1 of D∗Ksπ SP4 signal MC.

Peaking background from 2) may be checked via the yields as measured
onmES and ∆E , that are 65.0±11.0 and 60.1±11.7 respectively. In the case
that there were a large amount of peaking background that did not peak in
∆E , the ∆E fit would yield a significantly smaller number of events. That is
not the case, so the amount is not large. We can improve on the quantitative
measurement by checking individual sources:

• One of the candidates for such a source is DsD
∗, that appears as a

peak at -70 MeV in the ∆E plot. This background has been checked
on MC (see Figure B.16): from the ∆E and mES distributions on 130
fb−1 equivalent MC one infers that there is 1.0 ± 0.5 events expected
from this source.

• D∗a1(a1 → 3π) can be a concern. It has been checked running on B0

cocktail MC (D(∗)π, ρ, a1 with D∗ → D0π+ or D+π0). The mES plot
on 240 fb−1 equivalent MC is in Figure B.17: the peaking background
from this source has been estimated to be 2.5± 1.2.

• The D∗3ππ0 can also be a concern if the π0 is lost and one of the pions
is called a kaon. The kinematics has been checked at generator level.
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The distribution on 250,000 generated events (If one assumes a BF of
0.2% and an ε ∗ B(D∗ → X) 10% this is 1.2 ab−1), yields 7 events in
the signal region, consistent with the expectation that this background
should be small. In order to test the possibility of a pion ↔ kaon
mismatch causing peaking background, we checked the Kπ and K“K”
invariant mass (calling one of the two pions a kaon), see Figures B.10,
B.11, and B.12, and no unusual peaks were seen.

Adding these three contributions (1.0 ± 0.5, 2.5 ± 1.2, and 0.5 ± 0.4),
one then obtains the estimate of the peaking background from different final
states of 4.0± 1.4.

Peaking background from 3), i.e. with a true D∗ and the same final state
as the signal, can potentially come from several sources:

• D∗∗D0 (D0 → Kπ, D∗∗ → D∗π). This background should have BF
similar to the one of the signal, however the Kππ system would have
to coincidentally fall within the D∓ mass window, so it should not be
a concern.

• D∗Kππ – the charge of the K must be opposite to the D∗, while in
the signal the two charges are the same. Thus these modes cannot
constitute a significant background.

• D∗Ksπ – this mode is expected to have a branching fraction of about
5x10−4, thus some could feed in but not a very large amount. To quan-
titatively estimate the amount of D∗Ksπ in the signal region, a sample
equivalent to 1.1 ab−1 (with the above branching fraction hypothesis)
has been generated (see Figure B.18). Thus this mode would constitute
a peaking background in 55 fb−1 of 2± 2 events (error mainly due to
the lack of knowledge of the exact branching fraction of this mode, as
it is unmeasured).

Two additional studies to estimate the peaking background from the
above sources have been performed. The first is a generator-level study
on generic B0B0 to observe real D∗ background with the same final state as
the signal. The equivalent of 75 fb−1 yields just 2 events (as mentioned and
expected above) in D∗Ksπ, see Figure B.19. The second used filtered SP4
MC which is both generated and reconstructed. The equivalent of 150 fb−1

of MC reconstructed using the kinematic peaking backgrounds filter is seen
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Figure B.19: Generator-level mES vs. ∆E plot of same-final-state peaking
background in 75 fb−1 MC.
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Figure B.20: mES and ∆E plot of peaking background in 150 fb−1 generic
filtered MC.

in Figure B.20. No significant source other than D∗Ksπ (which is within
expectation) is seen.

Thus we find a peaking background contribution of 6 ± 4 events to the
B0 → D∗±D∓ signal peak. The error is a very conservative addition of the
errors on different final state peaking background (as above, 4.0 ± 1.4) and
same final state peaking background (as above, 2± 2).

B.1.3 Background Studies

The following section describes in more detail the background composi-
tion and the feed down region for B0 → D∗+D−. Also included is a pre-
liminary discussion of self cross feed within the sub-decay modes for both
B0 → D∗+D∗− and B0 → D∗+D−.

Feed Down in B0 → D∗+D−

As seen in Figures B.4 and B.8, a clear clustering of candidates is seen near
∆E = −75MeV. This peak is primarily due to the Cabbibo favored decay
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B0 → DsD
∗. Here the highly favored decay Ds → KKπ is misreconstructed

as D → Kππ because a kaon is misidentified as a pion. The incorrect mass
assumption is the cause of the shift in ∆E .

A study of the decay B0 → DsD
∗ in Monte Carlo gives an indication of

how much this decay is spilling over into the signal region for B0 → D∗+D−.
Looking at 98k sp4 Monte Carlo events, when all selection criteria is applied
excluding the ∆E cut, we see a total of 338 events peaking near ∆E =
−75MeV, as expected. In the region |∆E| < 18MeV, the cut applied to the
mES projection, we see 3 events; this gives an approximate spillover into the
signal region from this decay of 0.9%.

Lastly, in Figures B.4 and B.8, a second smaller clustering of events is
seen near ∆E = −170MeV. This is attributed to the misreconstruction
of B0 → D∗+D∗−; here, if a soft pion is not included, then a shift in ∆E
would be seen in the reconstruction of B0 → D∗+D−. Looking at 96k sp4
exclusive D∗D∗ Monte Carlo events, when all selection criteria is applied we
see a total of 4034 events peaking near ∆E = −170MeV, as expected. In the
signal region for D∗D, we see 23 events; this gives an approximate spillover
from B0 → D∗+D∗− of 0.2%.

Feed Across

Because of the number of submodes that are used, the possibility of mis-
reconstructing one mode as another (crossfeed) was investigated. For both
B0 → D∗+D∗− and B0 → D∗+D−, this study was done previously on sp3
Monte Carlo, and with a slightly looser selection. Though the event selection
is not the same as described above, it is shown here that the magnitude of
any cross feed effect is negligable.

In B0 → D∗+D∗−, using individual signal Monte Carlo samples, 1000
events per submode, we show in Figure B.21 the number of events after
passing the selection criteria reconstructed in the different submodes. The
horizontal axis represents each submode signal Monte Carlo collection, and
the vertical axis shows the number of events reconstructed in each submode.
The number of events reconstructed on the off-diagonal (indicating crossfeed
between modes) was two out of a total of 21000 events generated; hence, the
effect was considered negligible.

In B0 → D∗+D−, again using individual signal MC samples, approx.
4000 events per submode, we show in Figure B.22 the number of events after
passing the selection criteria reconstructed in the different submodes. For
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Monte Carlo mode
11 13 14 16 17 19 22 23 24 26 27 29 33 34 36 37 39 44 46 47 49

Reco 11 186 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
mode 12 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 59 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 83 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 0 1 26 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 35 0 0 0 0 0 0 0 0 0 0 0
27 0 0 0 0 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0
33 0 0 0 0 0 0 0 0 0 0 0 0 45 0 0 0 0 0 0 0 0
34 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 0
36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0
37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 0 0
39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 28 0 0 0 0
44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0 0
46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 0
47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 0
49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25

Figure B.21: The number of events out of one thousand generated B0 →
D∗+D∗− events per submode that pass selection criteria, as a function of the
individual modes. The mode generated in signal Monte Carlo is represented
on the horizontal axis and the mode reconstructed is shown on the vertical
axis.

a few sub-decay mode the off-diagonal entries are > 5 events; however, the
overall effect is still small when the percent rates are considered. The largest
feed across occurs when the decay (D∗)(D+) → (K0

S
π)(Kππ) (mode 7,6)

is misreconstructed as (D∗)(D+) → (Kππ)(K0
S
π) (mode 6,7) or vice versa.

However, the overall effect of self cross feed is seen to be small.

Kaon ID in D+ → Kππ

In B0 → D∗+D−, the bachelor D+ decays are potentially a major source
of background. In order to understand the magnitude of this we study the
effect of adding a tighter kaon selection to the kaon in D+ → Kππ. In all the
decay modes included, those containing Kππ contribute approximately 80%
to the total signal. Thus, adding the tighter selection could have a significant
effect.

Using the data sample, and adding the KTight selection to the bachelor
D (only), the resulting yield from the mES fit is 51.3 ± 9.4, purity = 56.9,
and the total S2/(S + B) = 29.2. While the purity increases by a small
ammount, the total S2/(S + B) decreases and indicates that the cut is not
optimal. The signal decreases by approximately 21%.

To verify the effect, we looked at 11000 sp4 Monte Carlo events for the
mode B0 → D∗D → (Kππ)(Kππ). With current kaon selection (notAPion),
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Monte Carlo mode
16 17 19 26 27 29 36 37 39 46 47 49 66 67 69 76

Reco 16 692 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 698 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 664 0 0 0 0 0 0 0 0 0 0 0 0 0
26 1 0 0 278 0 0 0 0 0 0 0 0 0 0 1 0
27 0 1 0 0 143 0 0 0 0 0 0 0 0 0 0 0
29 0 0 2 0 0 260 0 0 0 0 0 0 0 0 0 0
36 0 0 0 0 0 0 278 0 1 0 0 0 0 0 0 0
37 0 0 0 0 0 0 0 319 0 0 0 0 0 0 0 0
39 0 0 0 0 0 1 0 1 286 0 0 1 0 0 0 0
46 0 0 0 0 0 0 0 0 0 312 0 0 0 0 0 0
47 0 0 0 0 0 0 0 0 0 0 280 0 0 0 0 0
49 0 0 0 0 0 0 0 0 0 0 0 283 0 0 0 0
66 0 0 0 2 0 0 0 0 0 0 0 0 313 1 0 0
67 0 0 0 0 0 0 0 0 0 0 0 0 0 301 0 9
69 0 0 0 0 0 0 0 0 0 0 0 0 1 0 128 0
76 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 290

Figure B.22: The number of events out of 4000 generated B0 → D∗+D−

events per submode that pass selection criteria as a function of the individual
modes. The mode generated in signal Monte Carlo is represented on the
horizontal axis and the mode reconstructed is shown on the vertical axis.

the approximate efficiency for this mode is 7.3%. Adding tight kaon ID to
the bachelor D reduces the efficiency to approx. 6.0% – this corresponds to
a change in efficiency of about 18%. Thus the drop in signal seen in data is
believable and we conclude that adding tight kaon ID is not optimal for this
analysis.

Pion Veto in D+ → Kππ

Another possible means of lowering background in B0 → D∗+D− is to add
a kaon veto selection to the pions in D+ → Kππ. Given that our current
selection for kaons is notAPion, requiring the pions in this mode to explicitly
NOT have this selection may aid in reducing background.

In the data sample, adding the pion veto to the bachelor D (only) gives a
resulting yield from the mES fit of 55.9± 9.7, purity = 58.9%, and the total
S2/(S + B) = 32.9. Again, the purity increases by a small ammount, but
the overall S2/(S + B) decreases and indicates the cut is not optimal. The
signal decreases by approximately 14%.

To validate the effect, we looked at 11000 sp4 Monte Carlo events for the
mode B0 → D∗D → (Kππ)(Kππ). With current selection (no pion veto),
the approximate efficiency for this mode is 7.3%. Adding the pion veto to
the bachelor D reduces the efficiency to approx. 5.7% – this corresponds to
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a change in efficiency of about 22%. This would indicate that a pion veto in
these modes is not only reducing background but also significantly reducing
the signal – this is an undesirable effect and hence the tighter selection for
pions will not be included.

It is also interesting to note the change in the feeddown region in ∆E .
As explained above the dominate cause of the feeddown in B0 → D∗+D− is
the misreconstruction of B0 → DsD

∗ where a pion is misidentified as a kaon.
With the pion veto this peak disappears as expected (see Figure B.23).

Finally, another study on pion veto was also done to see the effects of
looser selection. Instead of requiring the pions in D+ → Kππ to be NOT
notAPion, here we only require that they NOT have KTight kaon selection.
This is a much looser selection and resulted in a signal yield of 64.5± 10.7,
purity of 54.2% and S2/(S + B) = 35.0. Clearly this is a slightly more
optimial selection for this analysis; however, because of the lack of validation
studies and time constraints, it will not be included in the current analysis.

B.2 Validation Analyses

B.2.1 Tagging and Vertexing in D(∗)+D(∗)−

Dedicated studies of tagging and vertexing inD(∗)+D(∗)− are necessary due to
the fact that one of the measurements of interest is the difference in measured
sin2β between D(∗)+D(∗)− and charmonium. Any differences in tagging and
vertexing could cause a systematic difference between those measurements,
which would obfuscate investigation of Standard Model consistency.

Large differences between D(∗)+D(∗)− and charmonium are not expected,
due to the fact that vertexing resolution is dominated by the resolution on
the tag vertex, not the reconstructed vertex, and there is no indication that
major differences in tag side reconstruction occur between these two types
of decays. However, even though effects are expected to be quite small in
comparison with our statistical errors, it is important to check that this is
the case and to assign any systematics or corrections if differences exist.

One method of checking for differences would be to obtain tagging dilu-
tions and resolution function parameters using D(∗)

s D(∗) events and compare
those results with the standard (D(∗){π, ρ, a1}) mixing sample in data. This
would provide a comparison of differences in tagging and vertexing from dou-
ble charm decays vs. charmonium and the mixing sample. However, that
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analysis is not feasible on the timescale of this first measurement and the
present checks are based on simulated data.

D∗+D∗− comparison of tagging dilutions between CP and Bflav MC

We have performed tests to measure possible bias introduced while fitting
for sine and cosine coefficients in the D∗+D∗− CP sample, due to the use of
tagging dilutions from the fit of Bflav sample.

By using a large statistics sample of D∗+D∗− and Bflav Montecarlo we
evaluated the average dilution D and difference ∆D between B0 and B̄0 for
the four tagging categories, at truth level for both Montecarlo sample and by
fitting Bflav. The values of average dilutions D and difference ∆D together
with the fitted value of sine and cosine coefficients, obtained with a fit where
dilutions were fixed at the truth or fitted values, are shown in table B.4.

Parameter D∗+D∗− MC Truth Bflav MC Truth Bflav MC fitted

D(Lepton) 0.882± 0.008 0.869± 0.006 0.868± 0.010
D(Kaon) 0.673± 0.008 0.658± 0.006 0.665± 0.008
D(NT1) 0.608± 0.018 0.574± 0.013 0.603± 0.018
D(NT2) 0.305± 0.016 0.298± 0.011 0.289± 0.015

∆D(Lepton) 0.056± 0.017 0.014± 0.013 0.0077± 0.0170
∆D(Kaon) 0.009± 0.016 0.027± 0.011 0.0382± 0.0126
∆D(NT1) −0.046± 0.036 −0.091± 0.026 −0.0784± 0.0282
∆D(NT2) 0.064± 0.032 0.058± 0.022 0.0675± 0.0229

sinCoef −0.231± 0.022 −0.236± 0.023 −0.235± 0.022
cosCoef −0.002± 0.015 −0.009± 0.015 −0.001± 0.0147

Table B.4: Value of mistag dilution parameters in D∗+D∗− and Bflav MC
sample and corresponding value of CP fitted parameters.

D∗±D∓ comparison of tagging dilutions between CP and Bflav MC

A similar study of tagging dilutions to that done above for D∗+D∗− is done
for D∗±D∗∓. The equivalent table for D∗±D∗∓ fitted D and ∆D is below:

More detailed tables of tagging efficiency and mistag for B0 → D∗±D∓

signal MC are summarized in the tables below:
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Parameter D∗±D∓ MC Truth Bflav MC Truth Bflav MC fitted

D(Lepton) 0.882± 0.011 0.869± 0.006 0.868± 0.0100
D(Kaon) 0.679± 0.010 0.658± 0.006 0.665± 0.0079
D(NT1) 0.611± 0.024 0.574± 0.013 0.603± 0.0175
D(NT2) 0.312± 0.021 0.298± 0.011 0.289± 0.0147

∆D(Lepton) 0.002± 0.022 0.014± 0.013 0.008± 0.0170
∆D(Kaon) 0.034± 0.020 0.027± 0.011 0.038± 0.0126
∆D(NT1) −0.079± 0.047 −0.091± 0.026 −0.078± 0.0282
∆D(NT2) 0.114± 0.042 0.058± 0.022 0.068± 0.0229

CD∗+D− 0.042± 0.027 0.035± 0.028 0.042± 0.028
SD∗+D− 0.694± 0.039 0.773± 0.040 0.765± 0.040
CD∗−D+ −0.048± 0.027 −0.057± 0.028 −0.049± 0.028
SD∗−D+ 0.694± 0.039 0.714± 0.040 0.707± 0.040

abs(λ) 1.046± 0.020 1.047± 0.020 1.047± 0.020
sin(2β + δ) 0.750± 0.039 0.774± 0.040 0.765± 0.040
sin(2β − δ) 0.695± 0.039 0.715± 0.040 0.708± 0.040

Table B.5: Value of mistag dilution parameters in D∗±D∓ and Bflav MC
sample and corresponding value of CP fitted parameters.

B0 events only:

Results from tagperf tag=MCB0 fmt=text:

Category TOTAL CAT WRONG EFF(%) SEFF(%) W(%) SW(%) Q(%) SQ(%)

------------------------------------------------------------------------------

NOTElKaon 7117 137 1.0 1.9 +- 0.2 0.7 +- 0.7 1.9 +- 0.2

NOTMuKaon 7117 122 1.0 1.7 +- 0.2 0.8 +- 0.8 1.7 +- 0.2

NOTElectron 7117 335 24.0 4.7 +- 0.3 7.2 +- 1.4 3.5 +- 0.3

NOTMuon 7117 303 26.0 4.3 +- 0.2 8.6 +- 1.6 2.9 +- 0.3

NOTKaon 7117 2497 380.0 35.1 +- 0.6 15.2 +- 0.7 17.0 +- 0.8

NT1 7117 516 111.0 7.3 +- 0.3 21.5 +- 1.8 2.4 +- 0.3

NT2 7117 995 312.0 14.0 +- 0.4 31.4 +- 1.5 1.9 +- 0.3

Total Q = 31.2% +/- 1.0% (eff = 68.9% +/- 1.0%)

B0bar events only:

Results from tagperf tag=MCB0bar fmt=text:

Category TOTAL CAT WRONG EFF(%) SEFF(%) W(%) SW(%) Q(%) SQ(%)

------------------------------------------------------------------------------

NOTElKaon 7059 132 1.0 1.9 +- 0.2 0.8 +- 0.8 1.8 +- 0.2
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NOTMuKaon 7059 92 1.0 1.3 +- 0.1 1.1 +- 1.1 1.2 +- 0.1

NOTElectron 7059 339 26.0 4.8 +- 0.3 7.7 +- 1.4 3.4 +- 0.3

NOTMuon 7059 304 24.0 4.3 +- 0.2 7.9 +- 1.5 3.1 +- 0.3

NOTKaon 7059 2468 417.0 35.0 +- 0.6 16.9 +- 0.8 15.3 +- 0.7

NT1 7059 569 100.0 8.1 +- 0.3 17.6 +- 1.6 3.4 +- 0.4

NT2 7059 986 369.0 14.0 +- 0.4 37.4 +- 1.5 0.9 +- 0.2

Total Q = 29.2% +/- 1.0% (eff = 69.3% +/- 1.0%)

B0 and B0bar together:

Results from tagperf tag=MC fmt=text:

Category TOTAL CAT WRONG EFF(%) SEFF(%) W(%) SW(%) Q(%) SQ(%)

------------------------------------------------------------------------------

NOTElKaon 14176 269 2.0 1.9 +- 0.1 0.7 +- 0.5 1.8 +- 0.1

NOTMuKaon 14176 214 2.0 1.5 +- 0.1 0.9 +- 0.7 1.5 +- 0.1

NOTElectron 14176 674 50.0 4.8 +- 0.2 7.4 +- 1.0 3.4 +- 0.2

NOTMuon 14176 607 50.0 4.3 +- 0.2 8.2 +- 1.1 3.0 +- 0.2

NOTKaon 14176 4965 797.0 35.0 +- 0.4 16.1 +- 0.5 16.1 +- 0.5

NT1 14176 1085 211.0 7.7 +- 0.2 19.4 +- 1.2 2.9 +- 0.2

NT2 14176 1981 681.0 14.0 +- 0.3 34.4 +- 1.1 1.4 +- 0.2

Total Q = 30.1% +/- 0.7% (eff = 69.1% +/- 0.7%)

D∗+D∗− vertex resolution

To check the vertex resolution of the reconstructed B in data we look at
the projections in x and y directions of the distribution of Breco vertex and
the Beam Spot positions. Figure B.24 shows a comparison between data
and MC, where a realistic svt misalignment was simulated. The following
figures B.25, B.26 show the distribution of the same quantity for the two x
and y projections respectively in data and MC. Due to the small dimension
of the beam spot in y (7µm) the value of the standard deviation of the
Gaussian fit to the y distribution can be interpreted as a rough estimation
of the B → D∗+D∗− vertex resolution in the transverse plane.

D∗+D∗− comparison of resolution function between CP and Bflav

MC

A comparison of signal resolution function parameters between D∗+D∗− sig-
nal MC and Bflav MC sample is summarized in table B.6.

Figure B.27 (left) shows δt residual in MC signal events (points). The
two curves superimposed are obtained by using the fitted parameters on the
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Parameter D∗+D∗− MC Truth D∗+D∗− MC fitted Bflav MC Truth Bflav MC fitted
Scale (core) 1.266 ± 0.010 1.178 ± 0.069 1.230 ± 0.007 1.192 ± 0.038
Scale (tail) 3.0 (fixed) 3.0 (fixed) 3.0 (fixed) 3.0 (fixed)
δ(∆t) lepton (c) −0.149 ± 0.024 −0.066 ± 0.070 −0.126 ± 0.018 −0.084 ± 0.045
δ(∆t) kaon (c) −0.299 ± 0.015 −0.185 ± 0.043 −0.292 ± 0.011 −0.294 ± 0.029
δ(∆t) NT1 (c) −0.225 ± 0.032 −0.159 ± 0.086 −0.171 ± 0.022 −0.191 ± 0.058
δ(∆t) NT2 (c) −0.241 ± 0.023 −0.120 ± 0.058 −0.237 ± 0.016 −0.257 ± 0.041
δ(∆t) (tail) −1.403 ± 0.129 −1.501 ± 0.505 −1.131 ± 0.077 −0.704 ± 0.257
f(tail) 0.075 ± 0.006 0.117 ± 0.035 0.087 ± 0.004 0.090 ± 0.016
f(outlier) 0.003 ± 0.001 0.002 ± 0.001 0.005 ± 0.001 0.003 ± 0.001

Table B.6: Signal parameters from exponential ⊗ resolution-function fits for
D∗+D∗− and Bflav MC samples. The scale factor for the tail component was
fixed to 3.0 in these fits.

signal sample (dashed curve) and on Bflav sample (plain curve). Figure B.27
(right) shows the pull distribution of δt residual difference between the two
MC samples.

D∗±D∓ comparison of resolution function between CP and Bflav MC

A comparison of signal resolution function parameters betweenD∗±D∓ signal
MC and the Bflav MC sample is summarized in table B.7.

Figure B.28 (left) shows the δt residual in D∗±D∓ signal events (points
with errors) and in the Bflav MC sample (histogram). Figure B.28 (right)
shows the pull distribution of δt residual difference between the two MC
samples.

A comparison of ∆z vertexing resolution between B0 → D∗±D∓ events
and J/ψKs events can be seen in Figure B.30. As can be seen, any differences
are quite small.

B.2.2 MC studies: B0 → D∗+D∗−

Toy MC studies of fitting properties

The performance of the fit to sine and cosine coefficients was checked using a
toy Monte Carlo. Experiments were generated with 1000 times the statistic
and the same properties of data as far as tagging dilutions, resolution func-
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Parameter D∗±D∓ MC Truth D∗±D∓ MC fitted Bflav MC Truth Bflav MC fitted
Scale (core) 1.2848 ± 0.0138 1.2039 ± 0.0700 1.2304 ± 0.0070 1.1921 ± 0.0378
Scale (tail) 3.0 (fixed) 3.0 (fixed) 3.0 (fixed) 3.0 (fixed)
δ(∆t) lepton (c) −0.1295 ± 0.0321 −0.0801 ± 0.0703 −0.1258 ± 0.0175 −0.0841 ± 0.0452
δ(∆t) kaon (c) −0.2827 ± 0.0199 −0.1912 ± 0.0435 −0.2920 ± 0.0105 −0.2942 ± 0.0294
δ(∆t) NT1 (c) −0.1649 ± 0.0407 −0.1775 ± 0.0865 −0.1705 ± 0.0218 −0.1909 ± 0.0584
δ(∆t) NT2 (c) −0.2398 ± 0.0307 −0.1188 ± 0.0577 −0.2371 ± 0.016 −0.2565 ± 0.0405
δ(∆t) (tail) −1.5155 ± 0.2155 −1.5663 ± 0.5700 −1.1311 ± 0.0770 −0.7044 ± 0.2536
f(tail) 0.0641 ± 0.0079 0.1098 ± 0.0367 0.0868 ± 0.0040 0.0898 ± 0.0164
f(outlier) 0.0056 ± 0.0010 0.0020 ± 0.0013 0.0048 ± 0.0005 0.0033 ± 0.0009

Table B.7: Signal parameters from exponential ⊗ resolution-function fits for
D∗±D∓ and Bflav MC samples. The scale factor for the tail component was
fixed to 3.0 in these fits.

tions and background fractions are concerned. At generation level several
sets of experiments with different values of |λ|, Imλ were created. A fit was
then performed floating the sine and cosine coefficients.

Figure B.31 shows the linearity of the fit of the sine coefficient while Imλ
was varied at generation level in the range [−1., 1.] and |λ| were fixed at
1. Figure B.32 shows the cosine coefficient linearity plots obtained fitting
the distributions generated with Imλ=0.59, and |λ| set in order to give the
values between ±0.45 at step of 0.15 for the cosine coefficient.

All those results show the good linearity of the fit of the sine and cosine
coefficients. To check the convergence properties at low statistics we repeated
the fit for one hundred experiments of 134 events each. In data and in this
toy study we have 59 tagged signal events and 75 tagged background events
distributed following the Argus distribution in the mES range from 5.2 to
5.29. None of the fits failed to converge.

Full MC studies

We used a large sample of signal D∗+D∗− MC to study the distributions
of mean fitted values and errors of CP parameters for several experiments
with the same number of events as the data sample (90 untagged events
each). The input values of the sine coefficient in the Monte Carlo is −0.231
corresponding to Imλ = −0.7 and flat angular distribution giving K = 0.33.
The input cosine coefficient is zero corresponding to |λ| = 1.
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The fit was performed fixing the tagging dilutions and resolution function
paramerets at the fitted value of Montecarlo Bflav sample and floating the
sine and cosine coefficients. The results are shown in figure B.33.

A fit was also done using the whole MC sample (26853 events), again
fixing the tagging dilutions and resolution function parameters at the fitted
value of the Bflav MC sample and floating the sine and cosine coefficients.
The result obtained is: sinCoef =−0.232± 0.022, cosCoef=−0.004± 0.015.

The large MC sample we used was generated as signal D∗+D∗−, decaying
in the two chains: D∗ → D0π, D0 → Kπ for both D∗ mesons or one D∗

meson decaying in D0π, D0 → Kπ and the other D∗ → D±π0, D± → Kππ.
In the future this sample will also be used to study the acceptance corrections
for the angular analysis.

B.2.3 MC studies: B0 → D∗±D∓

Toy MC studies

A CP fit for B0 → D∗±D∓ is implemented in the tFit package, which per-
forms an unbinned maximum likelihood fit according to the likelihoods spec-
ified in section 4.2.2. In addition, a toy Monte Carlo event generator for
B0 → D∗±D∓ events has been implemented within the same package, pro-
viding a fast and simple way of generating events for testing the fit behavior.
All known resolution and dilution effects, as well as adjustable background
levels, are incorporated within the toy MC generator, allowing for an accurate
statistical representation of the data.

The toy Monte Carlo is used to check for fit biases and to predict the
range of statistical error and log likelihood expected from the data. Samples
of events with exactly the same statistics as the data, i.e. same number of
events in every flavor tag category and flavor tag value as the data, with the
same dilutions and resolution as the data, are generated.
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MINUIT Likelihood Fit to Plot 4002&0
∆E (GeV)
File: dstard_dataplots_Run1Run2.hbook 22-FEB-2002 09:50
Plot Area Total/Fit    355.00 / 176.00
Func Area Total/Fit    248.11 / 178.41

Fit Status  2
E.D.M. 5.310E-05

Likelihood =    24.1
χ2=    21.6 for  24 -  6 d.o.f., C.L.= 25.2%
Errors Parabolic                     Minos
Function  3: Gaussian (sigma)
AREA   69.385 ±   11.55 -      0. +      0.
MEAN -1.33030E-03 ±  2.5656E-03 -      0. +      0.
SIGMA  1.49088E-02 ±  2.6744E-03 -      0. +      0.
Function  4: Polynomial  of  Order 1
NORM   14.155 ±   640.3 -      0. +      0.
POLY01  -17.167 ±   27.60 -      0. +      0.
OFFSET   25.203 ±   37.76 -      0. +      0.

Figure B.23: Displayed is the ∆E projection forB0 → D∗+D− after applying
the signal region cut on mES and the additional requirement that the pions
in the bachelor D decay veto the kaon selection. The fit is a line+gaussian
and is truncated to avoid the region ∆E < 50MeV where other B0 decay
modes can appear as misreconstructed D∗D decays. The dotted line shows
the extention of the fit into the excluded region.
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Figure B.24: Position difference distributions of the Breco vertex and the
Beam Spot in the x (left) and y (right) projection. The dots shows the
distribution on data, the red histogram superimposed correspond to the dis-
tribution of the svt misaligned MC.
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Figure B.25: Position difference distributions of the Breco vertex and the
Beam Spot in the x projection in data and MC wit SVT simulated misalign-
ment.
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Figure B.26: Position difference distributions of the Breco vertex and the
Beam Spot in the y projection in data and MC wit SVT simulated misalign-
ment.
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Figure B.27: Comparison of the fitted δt residual (left) and δt pull (right)
between the Bflav and D∗+D∗− MC samples. The tail scale factor for the
signal component was fixed to 3.0 for these fits.
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Figure B.28: Comparison of the fitted δt residual (left) and δt pull (right)
between the Bflav and D∗±D∓ MC samples. The tail scale factor for the
signal component was fixed to 3.0 for these fits.
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Figure B.29: The fitted δt residual in D∗±D∓ MC minus that from the Bflav

sample (equivalent to the difference of the two histograms in figure B.28
(left)). As can be seen, the difference is a decrease in the core and corre-
sponding increase in the tail. The differences are small, as can be seen in
figure B.28 above.
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∆z residual comparison, D(*)D(*) vs. J/πKs (log-Y plot)
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Figure B.30: ∆z residuals (= ∆zrec−∆ztrue) for D
∗±D∓ and J/ψKs events.

As may be seen, differences in vertexing resolution are small. (NOTE: despite
the title, these are justD∗±D∓ and not generalD(∗)D̄(∗) events. This plot will
need to be updated with SP4 results (this is SP3) and separate distribitions
for D∗+D∗− and D∗±D∓ events.)
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Figure B.31: Fitted sine coefficient parameter versus generated one (left) and
difference between Fitted and generated value versus generated (right) while
changing Imλ value at generation time.
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Figure B.32: Fitted cosine coefficient parameter versus generated one (left)
and difference between fitted and generated value versus generated (right)
while changing |λ| value at generation time.

240



0

20

40

-1 -0.5 0 0.5 1
0

10

20

30

40

-0.5 0 0.5

0

20

40

60

80

0.2 0.3 0.4 0.5 0.6
0

20

40

0.2 0.225 0.25 0.275 0.3

0

20

40

60

-4 -2 0 2 4
0

20

40

60

-4 -2 0 2 4
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Figure B.35: Fitted vs. generated sine coefficient parameter for D∗+D−

(left). Each point is 100 70-event experiments; the errors are the errors on
the weighted mean. The last 4 points on the left plot are above the line.
Rethrowing new experiments for these points yields the plot on the right,
indicating that those points were a large statistical fluctuation.
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Plots showing the distributions of expected errors and fitted values are in
Figure B.36 for the “3-parameter” CP fit, and in Figures B.37 and B.38 for
the “4-parameter” fit The parameters of the 4-parameter fit are very nearly
uncorrelated; this is shown in Figure B.39.
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Figure B.36: The upper plots show the distributions of fitted values for the
physical parameters of the “3-parameter” fit: sin(2β + δ), sin(2β − δ), and
abs(λ) for 2000 50-event toy Monte Carlo B0 → D∗±D∓ experiments. The
middle plots show the expected (symmetric) errors on these quantities, and
the lower plots show the pull distributions (xtrue − xfit)/σx. Note the non-
gaussian pull for abs(λ) — this is due to a highly non-parabolic error for this
parameter, which is displayed in figures following this.
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Figure B.37: The plots show the distributions of expected (symmetric) errors
on (upper left) CD∗+D−, (upper right) SD∗+D−, (lower left) CD∗−D+ , and
(lower right) SD∗−D+ from 1000 50-event toy Monte Carlo B0 → D∗±D∓

experiments.
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Figure B.38: The plots show the pull distributions (xtrue−xfit)/σx on (upper
left) CD∗+D−, (upper right) SD∗+D−, (lower left) CD∗−D+, and (lower right)
SD∗−D+ from 1000 50-event toy Monte Carlo B0 → D∗±D∓ experiments.
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Figure B.39: The plots show the correlation between the 4 fitted parameters
CD∗+D−, SD∗+D−, CD∗−D+, and SD∗−D+ . using 1000 50-event toy Monte Carlo
B0 → D∗±D∓ experiments. As can be seen, the correlation is very small.
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Figure B.40: Negative log likelihood (− ln( likelihood
max(likelihood)

)) vs. abs(λ) for

4 B0 → D∗±D∓ experiments. Note the asymmetric errors and the non-
parabolicity for this parameter.

248



Note that the parameter abs(λ) appears to behave in a non-gaussian
manner, as seen from its pull plot in Figure B.36. This is confirmed by
viewing likelihood curves of abs(λ), which display the non-parabolic errors
for this quantity. Figure B.40 shows some example likelihood curves for
abs(λ).

Full MC studies

B0 → D∗±D∓ CP fitting studies using the full BABAR Monte Carlo simula-
tion have also been done. A combined “4-parameter” fit to 20000 Breco and
15000 SP4 signal MC events, floating signal resolution function and dilution
parameters, gives the following fit output:

===== Final value for Scale (core) - sig 1.1282 +/- 0.0535

===== Final value for d(dt) (core) [ps] - lepton -0.0247 +/- 0.0386

===== Final value for d(dt) (core) [ps] - kaon -0.1894 +/- 0.0298

===== Final value for d(dt) (core) [ps] - NT1 -0.0836 +/- 0.0502

===== Final value for d(dt) (core) [ps] - NT2 -0.1186 +/- 0.0415

===== Final value for d(dt) (tail) [ps] - sig -0.3089 +/- 0.1527

===== Final value for fraction in tail - sig 0.1543 +/- 0.0231

===== Final value for outlier fraction - sig 0.0043 +/- 0.0014

===== Final value for dilu ave - sig, lepton 0.8733 +/- 0.0181

===== Final value for dilu ave - sig, kaon 0.6714 +/- 0.0147

===== Final value for dilu ave - sig, NT1 0.6154 +/- 0.0299

===== Final value for dilu ave - sig, NT2 0.3411 +/- 0.0256

===== Final value for dilu diff - sig, lepton 0.0013 +/- 0.0271

===== Final value for dilu diff - sig, kaon 0.0426 +/- 0.0197

===== Final value for dilu diff - sig, NT1 -0.0937 +/- 0.0395

===== Final value for dilu diff - sig, NT2 0.0722 +/- 0.0308

===== Final value for cos coeff D*-D+ signal -0.0652 +/- 0.0294 (+ 0.0294 -0.0294)

===== Final value for sin coeff D*-D+ signal 0.6987 +/- 0.0399 (+ 0.0399 -0.0400)

===== Final value for cos coeff D*+D- signal 0.0247 +/- 0.0294 (+ 0.0294 -0.0294)

===== Final value for sin coeff D*+D- signal 0.7540 +/- 0.0404 (+ 0.0404 -0.0405)

showing that the physical parameters of the resulting fit are unbiased up
to the statistical significance of the fit. An equivalent “3-parameter” fit also
demonstrates a lack of visible bias:

===== Final value for abs(lambda) 1.0460 +/- 0.0196 (+ 0.0198 -0.0194)

===== Final value for Scale (core) - sig 1.1289 +/- 0.0535

===== Final value for d(dt) (core) [ps] - lepton -0.0200 +/- 0.0382

===== Final value for d(dt) (core) [ps] - kaon -0.1865 +/- 0.0296

===== Final value for d(dt) (core) [ps] - NT1 -0.0808 +/- 0.0501

===== Final value for d(dt) (core) [ps] - NT2 -0.1174 +/- 0.0414

===== Final value for d(dt) (tail) [ps] - sig -0.3136 +/- 0.1532

===== Final value for fraction in tail - sig 0.1539 +/- 0.0231

===== Final value for outlier fraction - sig 0.0043 +/- 0.0014

===== Final value for dilu ave - sig, lepton 0.8730 +/- 0.0181
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===== Final value for dilu ave - sig, kaon 0.6712 +/- 0.0147

===== Final value for dilu ave - sig, NT1 0.6164 +/- 0.0299

===== Final value for dilu ave - sig, NT2 0.3411 +/- 0.0256

===== Final value for dilu diff - sig, lepton 0.0087 +/- 0.0258

===== Final value for dilu diff - sig, kaon 0.0501 +/- 0.0178

===== Final value for dilu diff - sig, NT1 -0.0864 +/- 0.0387

===== Final value for dilu diff - sig, NT2 0.0767 +/- 0.0303

===== Final value for sin(2b+d) signal 0.7544 +/- 0.0405 (+ 0.0405 -0.0405)

===== Final value for sin(2b-d) signal 0.7002 +/- 0.0400 (+ 0.0400 -0.0400)

Similar checks were performed on ensembles of SP4 signal MC samples
with more realistic statistics (70 B0 → D∗±D∓ events, equally divided be-
tween D∗+D− and D∗−D+) as shown in Figure B.41 and Figure B.42. In
a separate check, Breco signal MC was treated as B0 → D∗±D∓ signal (as-
signed randomly as 50% D∗+D− and 50% D∗−D+) and equivalent checks
were performed to make sure that the resulting fitted CP violation is zero.
Results are shown in Figure B.43 and Figure B.44.

A plot showing the raw CP asymmetry for 376 B0 → D∗±D∓ signal
events is shown in Figure B.45.
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Fitted D*+D- cos term, 200 70-event experiments
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Figure B.41: Ensemble bias check of the “4-parameter” fit for 200 B0 →
D∗±D∓ SP4 signal MC samples. Generated sin2β is 0.7 and abs(λ) is 1, thus
the cos terms (left) should center around 0., whereas the sin terms (right)
should center around 0.7. Pulls are shown on the folowing page.
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Pull distribution D*+D- cos term, 200 70-event experiments
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Figure B.42: Fitted pulls (xfit − xgen/σxfit
) of the 4 physical parameters

for 200 B0 → D∗±D∓ SP4 signal MC samples. No statistically significant
deviations are seen.
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Fitted D*+D- cos term, 250 70-event experiments
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Figure B.43: Ensemble bias check of the “4-parameter” fit for 250 experi-
ments where Breco MC samples are treated as signal (assigned randomly as
50% D∗+D− and 50% D∗−D+). The cos and sin terms shouls each center
around 0. Pulls are shown on the following page.
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Pull distribution D*+D- cos term, 250 70-event experiments
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Figure B.44: Fitted pulls (xfit − xgen/σxfit
) of the 4 physical parameters

for 250 experiments where Breco MC samples are treated as signal. No
statistically significant deviations are seen.
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Figure B.45: Raw CP asymmetry for 376 B0 → D∗±D∓ signal MC events
using the full Monte Carlo simulation (sp3). The fitted value of sin2β, 0.664±
0.187 (by combining the fitted values of sin(2β + δ) and sin(2β − δ) as
described in Section 4.2.1), is consistent with the input value of 0.7.
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Appendix C

Kink-Finding Software

C.1 Overview

Kink-finding is necessary at BaBar for two primary reasons: 1) as a fake
rejection criterion for muons found in the outer subdetectors and 2) as a
means of increasing yield of kaons that decay in the tracking volume, for
kaon tagging purposes. These two separate purposes also divide the strategies
involved in finding kink decays in the experiment.

Pion decays within the tracking volume, especially decays at the relatively
high momentum (> approximately 500 MeV) needed to reach the muon de-
tection subsystems (IFR and EMC), tend to be small angle and are predom-
inantly reconstructed as a single track. Using Babar’s Kalman filter track
fit, trajectory pieces before and after a hypothesized decay in a track can
be reconstructed. Obtaining these trajectory pieces allows both consistency
variables developed in previous experiments and novel consistency variables
to be used. As this involves searching for kinks within a single reconstructed
track, this is referred to as “1-track” kink-finding.

For decaying kaons, a slightly different strategy is required. The kaon
tagging spectrum is dominated by low-momentum (< 1GeV) particles (a
large percentage of which [10-11%] decay in the tracking volume). Charged
kaon decays, unlike pion decays, have a large p (205/236 MeV) associated
with the decay. The resulting large angle between the parent and child
tracks tends to result in 2 separate tracks being reconstructed by initial track
pattern recognition. As this involves searching through pairs of reconstructed
tracks for kinks, this is referred to as “2-track” kink-finding.
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Figure C.1: Distributions of kink angles in the two most common kink decays:
K → µνµ and π → µνµ. The former has a large average kink angle (>
0.25 radians for most momenta found in BaBar) whereas the latter has a
very small average kink angle (usually < 0.1 radians). Therefore the former
is usually reconstructed as 2 separate tracks by track pattern recongition,
whereas the latter tends to be reconstructed as a single track. This creates
the need for 2 separate kink finding software strategies to be run.

As the output of the kink-finding algorithms must be carefully observed to
watch for unusual detector or reconstruction behavior, kink-finding moni-
toring must be employed as an automatic method for producing diagnostics.
As the results of the algorithms must be stored after reconstruction, kink
persistance using BaBar’s Objectivity database must take place. And for
users wishing to obtain kink-finding information in analyses, a clear and
logical kink-finding interface is explained.
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C.2 “1-Track” Kink Finding

C.2.1 Previous Methodologies

As explained above, “1-track” kink-finding involves searching for kinks within
a single reconstructed track. Several methods for this form of kink detection
have been used in previous experiments. Of these, methods using the output
of Kalman filter track fitting algorithms have been particlarly successful. The
Kalman filter algorithm is able to produce a piecewise trajectory of optimal
parameters at any point along the particle path [62]; one can exploit the
output of the Kalman filter by using the differences between these sets of
parameters as a function of path length in a search for kinks. The DELPHI
collaboration was the first to use such information in a kink-finding algorithm
[63]. On can simply compare the track parameters before and after a given
point on the trajectory and form a χ2 for the matching of the two parameter
sets.

χ2match = (pB − pF )T [CB + CF ]−1(pB − pF ) (1)

where p are the forward and backward parameter vectors at a given point
and C are the associated covariance matrices. Small subtleties include the
fact that one must be sure to use the unsmoothed Kalman parameters, ie
those obtained directly from the forward and backward filters, and also that
one must not double-count the information from any Kalman sites along the
trajectory when separately computing the forward and backward parameter
sets. The BaBar Kalman algorithm stores the full filter outputs internally
when the track fit is made, so no fit recomputation is necessary to compute
this variable, making computation of this χ2 simple and fast.

Cousins et al describes an enhancement to this method which was used
by the NOMAD collaboration [64]. Using the fact that kinks are divided into
three physical categories:

I. Bremsstrahlung, in which only the momentum magnitude is changed at the
kink site.

II. Hard elastic scattering, in which the momentum magnitude is unchanged,
but the directional angles in theta and phi change.

III. Decays (most often π → µ+νµ) may change both momentum magnitude
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and direction.1

one can determine separate χ2 consistencies for each of these hypotheses. To
achieve this using the conventional BaBar track fit parameters[65], one must
transform the parameters and covariance to use the hypothesized kink site
as a reference point, rather than the nominal use of the origin (so that the
parameters d0 and z0 will simply describe continuity at the kink site and
thus can be eliminated). This is somewhat of a speed penalty; therefore
this information is only calculated at a given site if the basic mismatch χ2

described above provides an indication that a kink may be located there.

C.2.2 1-Track Kink Finding and the BaBar Kalman
Fit

The BaBar Kalman filter fit supports kink finding by providing the optimal
track fit parameters (and their covariance) on either side of a kink candidate.
This pair of parameters (one inside the kink, one outside) are equivalent
to the result that would have been obtained had a full Kalman fit been
performed on the subset of hits found inside or outside the kink candidate
flight length. Since these parameters include all material (dE/dx and multiple
scattering) effects and magnetic field inhomogeneitiy corrections, they can be
used to create an optimal descriminant for selecting a particular kind of kink
according to the physics model of a specific kind of kink.

A trivial model which exploits the interior fit parameters is the model
that the track was produced by a single particle (no kink). The statistic
produced by this model is the so-called matching chisquared, which is a
much more sensitive test of kinking than the fit chisquared itself, since it
is sensitive to the correlated displacement of hits produced by a kink. The
matching chisquared is an appropriate measure to use when initially selecting
kink candidates from the general track list. Discriminants for specific kink
models can be formed by allowing appropriate degrees of freedom (change in
track direction and/or momentum) to occur at the kink location without a
chisquared penalty.

Both the matching chisquared and the interior fit parameters are provided
as part of the KalRep interface, which is the transient representation of the

1Inelastic scatters with a single charged daughter particle would also fall under this
category.
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Kalman track fit result. In order to facilitate the process of finding a kink,
whose location is a priori unknown, the KalRep interface to the matching
chisquared and the interior fit parameters takes as input the flight length of
the candidate kink. This allows the implementation of kink finding which
actually searches for the location (flight length) of the kink by testing various
flight lengths, and choosing the one which minimizes the chisquared.

The ability to implement such powerful kink-finding tools in an efficient
way is a unique feature of the BaBar Kalman filter track fit implementa-
tion. This implementation caches the intermediate results of processing the
KalSites when a track is initially fit. Subsequent computation of the inte-
rior fit parameters or the matching chisquared can implemented extremely
efficiently using these intermediate results, requiring at most one five-by-five
matrix inversion and matrix multiply.

C.2.3 1-Track Kink Finding Strategy

The 1-track kink finding module, Trk1TrkKinkFind,2 runs at the very end
of the tracking reconstruction sequences, after all DCH and SVT pattern
recognition and fitting has taken place. Thus the kink finder can take ad-
vantage of the full DCH-SVT tracking volume and not be restricted to either
subsystem.3

Several cuts can be made to reduce the quantity of events and tracks
on which a kink search is performed; such cuts increase the speed of kink
finding. The first such cut that can be made is the number of tracks in
the event — as it is not important for physics to search for kinks in 2-track
events (which constitute a large percentage of the events passing through
reconstruction [dimuons and prescaled bhabhas]), such events are skipped.
The parameter representing the minimum number of tracks in an event for
a kink search to proceed can be varied in tcl (see Appendix A). In order
for there to be sufficient lever arm for finding a kink, a minimum number
of active hits are required. At bare minimum this number must be at least
10, to satisfy the minimum number of degrees of freedom for obtaining the
5 forward and 5 backward filter parameters at a point along the track. The
tcl parameter (minNActive) is currently set by default to 12 — at least 12

2The prefix “Trk” marks the module as part of the tracking reconstruction.
3A disadvantage of this is that it enhances the dependence of kink-finding on the

accuracy of tracking alignment calibrations, however alignment is universally critical for
physics measurements.
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active hits (SVT or DCH) are required before kink finding takes place (this
cut does not affect efficiency, as one needs sufficient lever arm for a kink to be
found via a search anyway). Another simple cut that may be used to reduce
the number of tracks that unecessarily pass through a kink search is pT.
As the major physics goal of 1-track kink finding is to reduce the number
of muon fakes found in the IFR, finding kinks in tracks that do not have
sufficient momentum to reach the IFR is not an important goal. Therefore
tracks which fall below the minPt tcl value, which is set by default to 500
MeV (as tracks below that pT will not be reconstructed as muons in the
IFR). Thus one will never see a 1-track kink in a track that has pT < 500
MeV. The last such simple cut that is made uses the χ2 consistency of the
reconstructed track. Studies showed that the vast majority of kinked tracks
have χ2 consistency < 0.2 (see below), which is the default setting for the
tcl parameter maxChiSqProbab. These simple cuts remove the majority of
unkinked tracks, providing a reduced sample on which a kink search can take
place quickly and efficiently.

After these initial cuts are made to eliminate tracks that are unlikely to
contain kinks, a full search can proceed on the remaining tracks. Mismatch χ2

is evaluated at positions along the track from the 5th to the 5th-to-last active
hit (the 5 is set by the tcl parameter trkEndMargin, however, as tracking
does not plan to change the fact that it uses 5 parameters, this is unlikely
to ever need modification). The distance between the positions at which the
mismatch χ2 is evaluated is set by the tcl parameter rangeStep — this is
set by default to 1 cm.4 The flightlength with the maximum mismatch χ2

is found and the χ2/nDof is evaluated at that site. A momentum-dependent
cut is then applied on the χ2/nDof. Momentum-dependence is expected for
the mismatch χ2 according to the dependence of the mean kink angle and
δp on momentum (as shown in figure C.1). Tcl parameters specifying three
terms of the Laurent series of momentum dependence are provided — at
present only one of these parameters is used (the others are set to zero) and
the mismatch χ2 cut is simply considered to be inversely proportional to
momentum. From the plots in figure C.1, this appears to be close to the true
dependence (although fitting for these parameters in MC may be a useful
tune for the future). If the track passes this cut, the maxiumum mismatch

4The fact that there will sometimes be no intervening KalSites between neighboring
locations is not a problem (having an ambiguity in the position with the maximum χ2 is
not a problem — the first one is simply chosen), in fact it is advantageous to throughly
search the full track.
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Figure C.2: Resolution of reconstructed flightlength at which kink occurred
foundkinkflightlength− truekinkflightlength in single pion MC (lifetime-
reduced to increase the percentage of decays in the sample). The distribution
is fitted to a double gaussian — the inner gaussian has a width of 4.6 cm.

χ2 is again used in a cut that attempts to separate kinks from tracks that
are simply poorly fitted. As the relationship

χ2trk = χ2forw + χ2back + χ2match (2)

holds at any point along the track, one can determine the percentage of total
track χ2 which is due to the mismatch at any given point. This percentage is
evaluated and required to be greater than the tcl parameter minMismatch-
Percent (set by default to 0.6) in order to reject tracks that are simply poorly
fitted. After this cut is made, the Cousins χ2 for the decay hypothesis is
evaluated at the flightlength with the maximum mismatch χ2. The Cousins
χ2/nDof is given a cut with the same momentum dependence as that given
for the mismatch χ2 (controlled by the tcl parameter cousConsistencyCut)
and this is the final cut.
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C.2.4 1-Track Kink Finding Performance

The performance of 1-track kink finding was measured on data and both
single pion and generic BB̄ monte carlo in 8.6.2c. The pions in the single
pion MC had their lifetimes reduced by a factor of 100 (to 0.2603 ps) to
increase the percentage of tracks that decay in the tracking volume and were
generated with momenta between 0.75 and 2 GeV. The following additional
tags were used (all of these tags, or more recent ones, are in all the 9.X series
releases):

KalPhysProcess V01-01-07

TrkKink V01-01-07

TrkKinkTests V00-00-07

TrkSequence jea-04-16-00

BbrGeom V00-07-08

Efficiency

Efficiency was measured in generic BB̄ and in the single pion MC mentioned
above. Efficiency is defined as the chance of reconstructing a kink given that
there is a single decay (represented by a single change in GTrack associated
with the GHits that correspond to the reconstructed HOTs) along the track
between the 1st and last hit (unless otherwise mentioned), also given that
the pT is greater than 500 MeV (unless otherwise mentioned). See table 1
for efficiencies.

Purity

Purity was similarly measured in generic BB̄ and in the single pion MC. See
table 2 for purity information.

Timing

CPU timing was measured on the ”tersk” machines at SLAC, on code com-
piled optimized for SunOS5. Note that the Trk1TrkKinkFind module is after
the background filter, so it does not run on every event. The following table,

5Note low statistics: > 1GeV pion kinks are not such common occurrances in BB̄.
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Table C.1: Efficiencies

SP3 BBbar + digi
bkg, 2000 evts (runs
200104 and 200105)

Single particle pion
decays, 100x reduced
ct, 0.75-2.0 GeV, 1000
evts

a) Pion decays occur-
ring in tracking vol-
ume, given that a
single track is recon-
structed, pt > 500
MeV

21/46 = 46% 289/557 = 52%

b) Same as a), if the
decay occurs between
the 5th and 5th-to-last
hit on track

19/29 = 66% 276/394 = 70%

c) Same as a), pt > 1
GeV

3/6 = 50%5 117/221 = 53%

d) Same as b), pt > 1
GeV

2/3 = 66%5 108/146 = 74%
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Table C.2: Purity

SP3 BBbar + digi
bkg, 2000 evts (runs
200104 and 200105)

Single particle pion
decays, 100x reduced
ct, 0.75-2.0 GeV, 1000
evts

1) Given a found kink,
what is the chance it is
really just a track with
no decays, no back-
ground hits, and no
anomalous hits from
other tracks (may be
brem or scatter)

49/170 = 29% 4/293 = 1%

2) What is the chance
it is not a decay and
has no background
hits, but has ≥1
anomalous hits from
other tracks?

68/170 = 40%6 0/293 = 0%7

3) What is the chance
that it is not a decay
but contains ≥1 back-
ground hits?

12/170 = 7% 0/293 = 0%

4) Actual decays 41/170 = 24% 289/293 = 99%

obtained from the AppAST module timing utility, summarizes the informa-
tion:

6This is the major background.
7Note that these are single track events.
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Figure C.3: Locations of reconstructed 1-track kinks in data (2000 isMulti-
Hadron events)

real data, 1000 events from run 12225

AppAST: 0.00 ‖ 311 ‖ 1.59 ‖ 5.11254 ‖ 0.00 ‖Trk1TrkKinkFind
real data isMultiHadron events (run 12225)

AppAST: 0.00 ‖ 500 ‖ 3.49 ‖ 6.98000 ‖ 0.00 ‖Trk1TrkKinkFind
SP3 BBbar w/bkg MC (run 200104)

AppAST: 0.00 ‖ 500 ‖ 2.75 ‖ 5.50000 ‖ 0.00 ‖Trk1TrkKinkFind

At 5-7 ms/event, kink finding is one of the faster reconstruction modules and
timing is not a major concern.

Miscellaneous

Information such as the number of 1-track kinks one can expect to find in
data and in MC is often of use. The following table summarizes this:
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Figure C.4: Locations of reconstructed 1-track kinks in SP3 BB̄ MC (2000
events)

real data, 1000 events from run 12225

# of reconstructed 1-track kinks: 17 (≈ 1 per 59 data events)

real data, 1000 isMultiHadron events from run 12225

# of reconstructed 1-track kinks: 90 (≈ 1 per 11 isMH events)

SP3 BB̄ w/bkg MC, 1000 events from run 200104

# of reconstructed 1-track kinks: 85 (≈ 1 per 12 BB̄ MC events)

Locations of found 1-track kinks in data and in MC can be found in figures
C.3 and C.4 respectively. The difference in the distributions can be attributed
to the loss of efficiency towards the center of the chamber for data in which
the DCH was at 1900V.
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C.3 “2-Track” Kink Finding

C.3.1 2-Track Kink Finding Strategy

2-track kink finding, as mentioned in the overview, involves searching for
kinks among pairs of reconstructed tracks. The 2-track kink finding module,
Vtx2TrkKinks, runs in the physics path, unlike 1-track kink finding (which,
as mentioned in the previous section, runs in reconstruction). This decision
was made in order to increase the flexibility of running 2-track kink finding.
1-track kink finding is restricted to running in the reconstruction by necessity,
due to the fact that it requires detailed information about piecewise track
trajectories, which is not available to users running physics modules from the
micro database. 2-track kink finding, however, does not require such detailed
information, and by making 2-track kink finding a physics module, users do
not have to rerun the reconstruction in order to run it at their leisure (and
with whatever tcl settings they prefer). There does exist the ability to run
2-track kink finding in the reconstruction, though, if this is ever necessary.

Vtx2TrkKinks takes a list of BtaCandidates as input, which is Charged-
Tracks by default (this is controlled by the tcl parameter inputBtCandi-
dateList). It then looks for pairs of tracks within this list that pass kink
cuts. Alternatively, if the tcl parameter selectTracks is set to false, one
can instead provide the module with 2 separate BtaCandidate lists in which
to search for kink “mothers” and “daughters” respectively (such as within
lists of kaons and muons) — these lists are specified by the tcl parame-
ters mothersList and daughtersList respectively. Events with just 2 or less
ChargedTracks are eliminated (this is controlled by the tcl parameter min-
NumTracks). If selectTracks is true (the default setting), internal “possible-
Mothers” and “possibleDaughters” lists of BtaCandidates are created. The
criteria for a BtaCandidate ending up on possibleMothers is: the DOCA
to the beam spot must be within a radius specified by the tcl parameter
motherDocaToOriginCut (2 cm by default) and it must not already end in
a decay vertex. The criterion for a track ending up on possibleDaughters is:
the DOCA to the beam spot must be outside a radius specified by the tcl
parameter daughtDocaToOriginCut (5 cm by default).

All possible pairs of tracks within these internal “possibleMothers” and
“possibleDaughters” lists are then considered. Pairs in which the tracks have
different charges are dropped (as long as the tcl parameter checkSameCharge
remains at its default value of true). The POCA of each track pair is calcu-
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lated and a cut on the maximum DOCA is made (set by the tcl parameter
maxTrkDist, by default 1 cm [which is fairly tight]) are dropped. A cut is then
made on the endFoundRange of the mother track (the flightlength of the last
HOT) — this flightlength must be within a distance to the flightlength at the
POCA to the daughter track which is specified by the tcl parameters moth-
erPocaBfrEndCut and motherPocaAftEndCut. These parameters are set to
-5 cm and 47.5 cm by default, meaning that 47.5 cm > (flightlength at kink)
− (flightlength at endFoundRange of mother) > -5. cm. This help elim-
inate ostensible mother tracks which unphysically extend beyond the kink
site itself. Similarly, a cut is made on the startFoundRange of the daughter
track — this flightlength must be within a distance to the flightlength at the
POCA to the mother tracks which is specified by the tcl parameters daught-
PocaBfrStartCut and daughtPocaAftStartCut. These parameters are set to
-5 cm and 25 cm by default, ie 25. cm > (flightlength at startFoundRange
of daughter) − (flightlength at kink) > -5. cm. If this is satisfied, a mass
hypothesis cut is made.

The invariant mass of the kink is calculated in both the decay to µνµ
hypothesis and the decay to ππ0 hypothesis. This is achieved by considering
the missing 3-momentum vector pmother−pdaughter, which is considered to be
the 3-momentum of the neutral. The hypothesis is then applied to create 4-
momenta for both the reconstructed daughter and the hypothesized neutral
daughter. The invariant mass of the mother is then calculated from the sum
of these two 4-momenta. A peak is obtained around the kaon mass (see
figures C.7 and C.8) which provides the ability to make a cut.

A cut is made around the mass in the µνµ hypothesis which is set by
the tcl parameters invMassMotherMuMin and invMassMotherMuMax. The
defaults for these values are 400 MeV and 570 MeV (the PDG mass of the
charged K is 493.7 MeV). This is wide enough to allow decays to ππ0 to
pass as well (such decays tend to form a second peak in µνµ hypothesis mass
plots). If this cut is passed, the kink is then vertexed.

Vertexing is done using the LeastChi algorithm in Fast mode by default.
These settings can be changed via the tcl parameters vtxFitAlg and vtxFit-
Mode respectively (a change of default to GeoKin may be made in the near
future due to the lack of continuing support for the LeastChi algorithm). A
VtxKink object (which inherits from a BtaAbsVertex) is created to represent
the vertex of the mother→ daughter decay (the interface is explained in more
detail in the Kinkfinding Interface section). A cut is made on the χ2 of the
vertex fit — if the χ2 is greater than the tcl parameter maxVtxChi2 (default
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is 8.), the kink is rejected. A composite track representing the neutral daugh-
ter is created and added to the VtxKink vertex. A consistency for the decay
is obtained by assuming a Lorentzian over flat background mass distribution
and a decaying exponential in mother-daughter track DOCA. Parameters
representing the Lorentzian shapes, the height of the flat background, and
the coefficienct for the decaying exponential in DOCA are given by the tcl
parameters alphaMuNumu, alphaPiPi0, flatBkg, and docaCoeff. The consis-
tency is considered to be the height of the Lorenzian at the calculated mass
divided by the total Lorenzian plus flat background height, all multiplied by
the value of the decaying exponential in DOCA, and this value is stored in
the VtxKink object. Finally, the mother BtaCandidate is put on the output
kink mother list (set by the tcl parameter outputKinkMothers, by default
KinkMothers) and the daughter and neutral daughter are put on the out-
put kink daughter list (set by the tcl parameter outputKinkDaughters, by
default KinkDaughters).

C.3.2 2-Track Kink Finding Performance

The performance of 2-track kink finding was last measured in detail in re-
lease 8.2.8 (the code has not changed much since then). The following table
summarizes the efficiency of each of the cuts with 500 generic BB̄ events.

475 scatters

53 albedo scatters

track pairs in 500 generic bbar events: +- 1046 non-merges

--------------------------------------- |

| topological

100 K -> mu numu kink decays background | kinks(*)

21 K -> pi pi0 ----------- ---------- | -----------

+------------> 122 19713 +------> 1574

mother DOCA to 110 16546 1163

beamspot < 2 cm

∗topological kinks = elastic scatters, inelastic scatters with not more than 1 charged
daughter, albedo scatters, bremsstrahlung, and failure to merge SVT and DCH tracks.
These were considered separately from signal and from combinatoric background (since
they are neither especially ”bad” nor especially ”good”–it depends on what the kink-
finding is being used for).
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daught DOCA to 104 9122 958

beamspot > 5 cm

r of POCA > 10 cm 91 6119 804

DOCA of track 50 273 177

trajectories < 1 cm

47.5 cm > mother 49 118 127

POCA flight length -

mother endFoundRange

> -5 cm

25 cm > daught

startFoundRange - 47 64 78

daught POCA flight

length > -5 cm

vtx chi^2 < 8. 46 52 74

0.575 > inv. mass of

mother in mu + numu

hypo. > 0.4 GeV 46 12 8

| 34 K->mu numu 3 scatters |

+- 12 K->pi pi0 5 non-merges --+

Timing infomation on BB̄ MC and on data using an executable compiled
opimized on Sun Ultra-5 machines is summarized in the following table:

real data, 500 events from “Padova” reprocessing

8.62 ms/event

BB̄ SP2 MC, 500 events

14.4 ms/event

A kink is found in approximately 1 out of every 50 BB̄ events. Event
displays of found 2-track kinks in real data and in MC can be found in figure
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C.5. The distribution of the found kink vertices in real data can be found in
figure C.6.

The reconstructed invariant mass in the µνµ hypothesis for found 2-track
kinks can be plotted (see figure C.7) and, as expected, shows a peak at the
charged Kaon mass in both MC and real data (invariant mass in the ππ0

hypothesis, as expected, shows a smaller peak in MC and in data,5 as shown
in figure C.8).

C.4 Kink Finding Interface

A uniform, clear, and logical physics interface for kink finding is of course
necessary, and this section outlines the interface that is in place currently
and details its use. There are 2 lists of BtaCandidates, KinkMothers and
KinkDaughters, that are in the event after kinkfinding is run. Each KinkMother
BtaCandidate ends in a decay vertex that can be accessed through the de-
cayVtx() member function of the BtaCandidate. The decayVtx() function
returns a pointer to a BtaAbsVertex; however, if a given candidate is on
the KinkMothers list, the decay vertex may be safely casted to a VtxKink
pointer (which inherits from a BtaAbsVertex). VtxKink resides in the pack-
age VtxBase and the interface it presents is shown in figure C.10.

C.4.1 Typical Use

Some code fragments providing examples of typical use of kinkfinding in
analysis code are presented here:

a) To add the 2-track kinkfinding module (Vtx2TrkKinks) to your AppUserBuild:

#include "VertexingTools/Vtx2TrkKinks.hh"

add( new Vtx2TrkKinks( "Vtx2TrkKinks", "2-track kinks" ) );

b) To add the 2-track kinkfinding module to your path (in myAnalysis.tcl):

sequence append MyAnalysis Vtx2TrkKinks

5The central values for the branching ratios for µνµ and ππ0 are 63.51% and 21.16%
respectively (PDG 1998)
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Figure C.5: Event displays of found 2-track kinks in real data and in SP2
BB̄ MC

Figure C.6: Distribution of found kink vertices in real data (Padova repro-
cessing). There is a predominance near the support tube — this can be
attributed to both support tube scatters and the fact that this is where the
lever arm for creating two separate tracks is largest.
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Figure C.7: Reconstructed 2-track kink invariant mass in the µνµ hypothesis
for real data (Charmonium skims) and for SP3 BB̄ MC.

Figure C.8: Reconstructed 2-track kink invariant mass in the ππ0 hypothesis
for real data (Charmonium skims) and for SP3 BB̄ MC.

274



Figure C.9: Reconstructed SVT dE/dx for all charged tracks vs. parent
tracks of found 2-track kinks in real data (Charmonium skims) and for SP3
BB̄ MC. The kaons band dominates — moreso in MC than in data due to
both better tracking resolution and better SVT dE/dx resolution in MC than
in data (in release 8.6.3x).

c) To get the full HepAList of KinkMother BtaCandidates (after doing a) and b)):

HepAList<BtaCandidate>* kinkMotherList;

IfdStrKey kinkKey("KinkMothers");

getTmpAList (anEvent, kinkMotherList, kinkKey);

if ( 0 == kinkMotherList ) {

ErrMsg(warning) << "no kinkMotherList found, skipping event" << endmsg;

return APPMODULERETURNVAL1;

}

d) To get the probability that a given BtaCandidate (*cand) is a decay
(after doing a), b), and c)):

#include "VtxBase/VtxKink.hh"
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class VtxKink : public BtaAbsVertex

{
public:

//*********************************

// Kink-specific Information

//*********************************

// "kinkConsistency" = percentage chance that it really *is* a kink

virtual double kinkConsistency() const = 0;

// this will have to wait for a calibration:

virtual double kinkConsistencyErr() const = 0;

// the type of kink

enum KinkType OneTrack=1, TwoTrack=2 ;

virtual KinkType kinkType() const = 0;

//*********************************

// Links to tracks

//*********************************

// equivalent to inComingCand() -- here to save confusion

virtual const BtaCandidate* motherCand() const = 0;

virtual BtaCandidate* daughtCand() const = 0;

// the uncharged daughter (neutrino in the case of pi -> mu numu and

// K -> mu numu or pi0 in the case of K -> pi pi0)

virtual BtaCandidate* neutDaughtCand() const = 0;

// "original" = before the vertexing refit occurs

virtual BtaCandidate* originalMotherCand() const = 0;

// this one is null if there originally was only a single track found

virtual BtaCandidate* originalDaughtCand() const = 0;

//*********************************************

// Position and fit-quality information

//*********************************************

// The kink’s ** POSITION ** in space & time lives here:

virtual HepLorentzVector v4() const = 0;

virtual HepSymMatrix covariance() const = 0;

// Cross-covariance of x and p.

virtual HepMatrix xpCov() const = 0;

virtual double chiSquared() const = 0;

virtual int nDof() const = 0;

// Flight length along (fitted) mother track & daughter track at which

// kink occurred

virtual double flightLenMother() const = 0;

virtual double flightLenDaught() const = 0;

Figure C.10: VtxKink interface for 1-track and 2-track kinks. VtxKink.hh
(this file) is located in the package VtxBase and provides the physics interface
for kinks in tracks.
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double decayProba(0.);

HepAListIterator<BtaCandidate> kinkMothersIter(*kinkMotherList);

const BtaCandidate* decay;

while (decay = kinkMothersIter()) {

if (cand->uid() ==

((VtxKink*) decay->decayVtx())->originalMotherCand()->uid()) {

decayProba = ((VtxKink*) decay->decayVtx())->kinkConsistency();

}

}
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