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Abstract

We present a new and unique measurement of the branching fractions of b hadrons

to states with 0, 1, and 2 open charm hadrons, using a sample of 350,000 hadronic Z0

decays collected during the SLD/SLC 97-98 run. The method takes advantage of the

excellent vertexing resolution of the VXD3, a pixel-based CCD vertex detector, which

allows the separation of B and cascade D decay vertices. A fit of the vertex count

and the decay length distributions to distribution shapes predicted by Monte Carlo

simulation allows the extraction of the inclusive branching fractions. We measure:

BR(B → (0D)X) = (3.7± 1.1(stat)± 2.1(syst))% (1)

BR(B → (2D)X) = (17.9± 1.4(stat)± 3.3(syst))% (2)

where B and D represent mixtures of open b and open c hadrons. The correspond-

ing charm count, Nc = 1.188 ± 0.010 ± 0.040 ± 0.006 is consistent with previous

measurement averages but slightly closer to theoretical expectations.
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This document is loosely organized as follows. First, in chapter 1, the idea of

charm counting is motivated from theoretical considerations and an experimental

plan of attack is then drawn up. In chapters 2, 3, and 5, an discussion of the SLC

collider and SLD detector shows how the experimental facilities are uniquely suited

for the desired measurement. The reconstruction of the B decay vertex topology is

the subject of chapters 4, 6, and 7. The analysis procedure is explained in detail and

the results of the measurement are presented in chapter 8. Systematic uncertainties

are discussed in chapter 9. Several appendices give more necessary details.

Experimental particle physics is a hugely collaborative effort, involving hundreds

of workers. It is often difficult to isolate the contributions of any individual worker,

but when possible, acknowledgements are made in the text. The results presented in

this thesis on which the author worked (often collaboratively) include: drift chamber

pattern recognition, beam position measurement, vertex detector alignment, vertex
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detector simulation, Monte Carlo B decay modelling, and of course the analysis being

presented.

Several conventions are used throughout. Distances are measured in centimeters

unless otherwise specified. Cylindrical coordinate systems are often used in which

the z direction is sometimes the beam direction for the barrel detector coordinate

system, and sometimes a particle flight direction. The transverse and longitudinal

directions are defined with respect to these cylindrical coordinates. The letters θ and

φ are reserved to describe the polar and azimuthal angles in the detector coordinate

system. The letter λ denotes the polar angle measured instead from the transverse

plane. The hadron names B and D refer to any b-type or c-type hadron with weak

interaction scale lifetimes, including baryons. Λb and Λc refer to b and c baryons

in general and (cc̄) refer to all charmonia resonances. Abbreviations include MC for

Monte Carlo simulation, IP for interaction point, POCA for point of closest approach,

and DOCA for distance of closest approach. For perturbative theoretical calculations,

LO, NLO, and NNLO are shorthand for leading-order, next-to-leading-order, and

next-to-next-to-leading-order.
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Chapter 1

Theoretical Motivation

The problem at hand concerns a long standing discrepancy between the measured

values of the B semileptonic decay branching ratio BRSL and the naive theoretical

expectation.1 In a semileptonic decay (see figure 1.3), the B hadron decays via a

virtual W± emission, and the W± produces a lepton and a neutrino. The branching

ratio may be defined as the ratio of the partial width ΓSL ≡ Γ(B → e ν̄e X) to the

total decay width Γtot.

BRSL =
ΓSL

Γtot

=
ΓSL

2.22 ΓSL + Γhad

=
1

2.22 + rhad
(1.1)

1Background information about the Standard Model and uncertainties in heavy quark calcula-
tions may be found in appendix A.
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where Γhad = Γūd + Γc̄s + Γrare is the hadronic width and the ratios of hadronic rates

to semileptonic rates may be defined as:

rhad ≡ Γhad/ΓSL = rūd + rc̄s + rrare. (1.2)

ūd, c̄s refer to the quarks produced by the mediating W− and ‘rare’ refers to all other

hadronic processes.2 Examples of contributing processes are shown in figure 1.3(right)

for Γūd, figures 1.5, 1.6, and 1.7 for Γc̄s, and figure 1.4 for Γrare.

The leptons in the total semileptonic rate come from decays of the mediating W±.

The factor of 2.22 comes from a contribution of 1 from W → e νe, 1 from W → µ νµ,

and 0.22 from the phase-space suppressed W → τντ [1].

Naively, since there are 3 colors for each quark, one would expect rūd ∼ 3. As-

suming rc̄s is phase space suppressed by a factor of ∼ 5-10 [2] and

rrare ≈ 0.25± 0.10 [3], (1.3)

BRSL is expected to be 1/(2.22 + rūd + rc̄s + rrare) ≈ (15± 1)% at the parton level

[4]. This expectation is much larger than the measured values of 0.1049±0.0046 from

CLEO [5] for a low energy mixture of Bu and Bd mesons, and 0.1056± 0.0021 from

LEP [6] for the mixture of B hadrons (∼ 40% Bu, 40% Bd, 10% Bs, 10% b baryons)

produced in Z0 decays.

2There is some sloppiness in these definitions due to contributions to the decay widths from fully
leptonic decays B → l ν̄l and semileptonic rare decays like b → u l ν̄l. These processes are assumed
to be sufficiently rare that, for the argument presented in this section, their effects can be safely
ignored. Production of CKM suppressed quark/antiquark combinations by the W is also assumed
to be negligible.
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Figure 1.1: LO, NLO, and NLO + non-perturbative calculations of rūd ≡ Γūd/ΓSL

for different values of the renormalization scale µ/mb. A value of mb = 4.5 GeV is
used.

Calculation of the semileptonic rate ΓSL is fairly straightforward since the only

QCD contributions involve the spectator quark and are thus suppressed by powers of

ΛQCD/mb. The spectator corrections have been estimated to give ∆BRSL < 0.01 at

tree level [4] [7]. Since ΓSL is more or less fixed, reduction of the predicted semileptonic

branching ratio can only be accomplished by increasing the partial width from non-

semileptonic decays, thus increasing the total B width.

It was recognized early on that NLO corrections could enhance the hadronic rate

and reduce the parton level prediction for BRSL. Indeed, a NLO calculation [8] [9]

shown in figure 1.1 gives an increased rūd = 4.0 ± 0.4. Recent NLO calculations [8]

also increase the rate Γc̄s by about 30%, thus accomodating values of BRSL as low as

∼ 12%.

However, charm counting measurements restrict further enhancements of Γcs, since
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increasing rc̄s also increases Nc, the average number of charm quarks per B decay:

Nc = 1 + BRc̄s −BRrare

= 1 +
rc̄s − rrare

2.22 + rhad

. (1.4)

The current experimental averages3 for Nc are 1.130±0.061 (CLEO) and 1.156±0.039

(LEP) whereas the naive theoretical prediction based on the measured BRSL, Nc =

1.30± 0.06 [10] is already too high.

Although these measurements have employed a variety of techniques including

direct charm counting via exclusive reconstruction of D mesons and of various char-

monia species, counting of ‘wrong-sign’ D’s in flavor-tagged B decays, and fits to

impact parameter distributions, their results are expected to have fairly correlated

errors. For example, measurements based on exclusive D reconstruction have com-

mon systematic uncertainties coming from the uncertainty in the branching fraction

to the decay mode used. The necessity of supplementing the D count with a char-

monia branching ratio of BR(cc̄) ≈ 0.023± 0.003 estimated from measurements and

theoretical calculations [11] yields another explicit correlation. Despite the correla-

tions, individual measurements used in the averages are not all consistent with one

another, and so the experimental picture is not completely clear. The measurements

of Nc are discussed further in chapter 10.

An enhanced rare B decay rate is another possible solution. Equations 1.4 and

3These averages are taken from reference [10] and updated with the new estimates for Σ0,+
c and

charmonium production given in reference [11]. The wrong-sign D measurements are not used for
reasons discussed in chapter 10.
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1.1 may be used to eliminate rc̄s to get:

Nc = 2− (2.22 + rūd + 2 · rrare) ·BRSL. (1.5)

Alternatively, equation 1.4 can be written as:

Nc = 1 + (rc̄s − rrare) · BRSL. (1.6)

In either case, rrare must be increased in order to bring the theoretical predictions

simultaneously into agreement with the measured values of both Nc and BRSL. In the

standard model, rare decays are dominated by b → u and b → sg processes. Possible

enhancements of the b → sg rate due to ‘penguin’ diagrams have been investigated

by Kagan [12]. On the experimental front many exclusive modes have been seen or

measured, but measurements of the inclusive rate are still elusive and potentially very

interesting. A determination of the CKM matrix element Vub may be extracted from

a measurement of b → u l ν, for example. A recent measurement by DELPHI [13]

based on impact parameter distributions gives BRrare = 0.007±0.021, consistent with

the theoretical expectation given in equation 1.3. Other measurements are discussed

in [14]. No surprises have yet been found.

A more modern theoretical calculation which more easily accomodates the mea-

sured values of BRSL and Nc is presented by Neubert and Sachrajda [7]. Their results,

along with the experimental values4, are shown in figure 1.2. The new theoretical pre-

4To make a fair comparison of ΓSL, the LEP measurement of BRSL has been multiplied by a
factor of 1/2 · (τB0 + τB±)/τb = 1.023 ± 0.021 in order to account for the differences in average
total decay widths between the mixture of b hadrons at the Υ(4s) and at the Z0. τb represents the
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diction depends on the renormalization scale µ and on the mass ratio mc/mb. Since

the strong force is asymptotically free, decreasing µ causes αs to increase. This in-

crease effectively scales up the NLO perturbative matrix elements for multi-hadronic

processes, resulting in a larger non-semileptonic width. Since the single and double

charm pure hadronic processes are scaled up by similar amounts, Nc is only modestly

affected. The dependence of the plot on mc/mb is just a phase space effect. Increas-

ing the charm quark mass relative to the bottom quark mass reduces the amount

of available phase space to produce charm, and lowers Nc. The total decay width

is then reduced causing BRSL to become larger. The allowed values of mc/mb are

constrained by heavy quark spectroscopy. Agreement with the data is achieved only

by picking a large value for mc to match the charm count and going to very low

renormalization scales µ/mb ≈ 0.25 to match the semileptonic branching fraction.

In addition to the purely theoretical motivation of testing the consistency of the

B hadron decay model, another practical motivation for charm counting is to reduce

systematic uncertainties in other heavy flavor analyses. For example, the sensitivity

of B mixing measurements scales linearly with the purity of the final state tag. This

tag, which determines whether the meson decays as a B or a B̄, is often performed

using charge information from both the B vertex and the cascade D vertex or vertices.

A decay producing two charmed hadrons will produce both a D and a D̄. The extra

‘wrong sign’ charmed hadron dilutes the information that may be obtained from the

tag. The amount of this dilution can only be correctly modelled by using data from

average lifetime of b hadrons produced at the Z0. The world averages (SLD+CDF+LEP) [11] for
the lifetimes are used.
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Figure 1.2: Measurements of the B semileptonic branching fraction and Nc by LEP
and CLEO compared with theoretical expectations.

charm counting measurements.

1.1 A topological classification

The present analysis extracts Nc by exploiting the rough correspondence between

the charm count and the B decay vertex topology. B decays can be categorized as

0D, 1D, and 2D, where ‘D’ refers to an ‘open charm’ hadron, (any charmed hadron

with an weak interaction scale lifetime such as D0, D±, Ds or the various charmed

baryons). At typical Z0 decay energies, weakly decaying heavy flavor hadrons typi-

cally decay within a couple of milllimeters of their production point, well within the

the tracking chambers. The tracks formed by the charged daughter particles may

then be intersected to reconstruct the position of the decay. Apart from the primary

7



b
u–

υe
–

e-

c
u–B- D0 b

u–

u–

d
c
u–B-

π-

D0
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Figure 1.7: Double-open-charm process producing Ds.

Z0 decay position which defines an origin of coordinates, such vertices are usually

only formed at the positions of B and D hadron decays. B and D here refer to

any weakly decaying b or c hadrons. The much shorter lifetimes typical of strong

or electromagnetic decays are not resolvable by a finite resolution tracking chamber,

and the much longer lifetimes in weak decays of lighter hadrons render these particles

effectively stable at the millimeter scale. Therefore, it is useful to categorize decays

based on the number of true D-type vertices, [n]D which are produced in addition to

the B vertex.

The 0D category includes B’s decaying to charmonia resonances as well as the

rare decay processes b → u, b → s γ, b → s g, etc. Examples of these processes
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are shown in figures 1.5 and 1.4.5 Charmonia (cc̄) resonances are considered to be

‘hidden charm’ because these cc̄ bound states decay much more quickly via strong or

electromagnetic annihilation processes than the weakly decay ‘open charm’ D’s and

so separate hidden charm vertices are not resolvable from the B vertex. Since none

of the other particles involved in any of these decay types have weak scale lifetimes,

0D decays are characterized by having only a single millimeter scale B decay vertex.

The 0D branching ratio may be written as:

BR0D = BRrare + BR(cc̄) (1.7)

BR0D is expected to be relatively small because it is composed of these CKM sup-

pressed, loop suppressed, and/or color suppressed processes.

The 1D category has the largest branching fraction and it includes most of the

semileptonic decays. The D is produced in the typical b → c transition while the

mediating W produces only lν̄l or ūd. Examples are shown in figure 1.3. These

decays typically have two secondary vertices, one from the B and one from the D,

and this property may be used to distinguish these decays from the 0D category. Low

charged track multiplicities and short decay lengths may sometimes complicate the

observability of these vertices however. The 1D branching ratio may be written as:

BR1D = BRSL + BRūd (1.8)

5The diagrams shown in this section are all for B− decays with a ū spectator quark. Assuming
local quark-hadron duality, the b quark decay is largely independent of the spectator quark(s) and
so analogous diagrams may be drawn for all B hadron species.
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BR1D is expected to be the largest branching ratio because it contains many non-

suppressed processes and a larger available kinematic phase space in the W decay.

The 2D category contains decays with two open charm hadrons, one of which

comes from W → c̄s. Examples of processes leading to a double-open-charm final

state are shown in figures 1.6 and 1.7. The 2D branching ratio may be written as:

BR2D = BRc̄s − BR(cc̄). (1.9)

BR2D is expected to be smaller than BR1D because of phase space suppression due

to the large mass of the extra D meson. Measurements of inclusive and exclusive

rates for these decays by CLEO and LEP are included in the Nc averages shown in

figure 1.2.

The 2D decays are the hardest to measure using vertexing techniques. Low

charged particle multiplicity problems are compounded by having two D’s in the

decay. Often, because the average charged particle multiplicity from D’s is low and

few charged particles are expected from the B vertex, one or more of the vertices will

yield no charged particles. It can be estimated based on measured exclusive decays

modes that all three vertices are potentially visible in only about 50% of the decays.

1.2 A Monte Carlo study of decay topology

The topological classification above is only useful if the decay vertices can actually be

resolved by the detector. In this section, the required detector resolution is estimated
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Figure 1.8: 1D decay topology with a primary Z0 decay vertex at the interaction
point (IP), a secondary B decay vertex, and a tertiary D decay vertex.

using MC studies.

In 0D decays, only the B vertex is produced with a millimeter scale decay length.

The charmonia decay ‘instantly’ through strong and electromagnetic interactions and

so their decay points coincide with the B decay point within the detector resolution.

Non-heavy decay vertices such as Ks, Λ, and gamma conversion vertices occur at the

centimeter scale and may be removed using cuts on vertex distance, mass, charge,

and opening angle. The only remaining millimeter scale vertex is therefore the B

decay vertex which is on average about 3 mm away from the IP for typical B boosts

in Z0 decays. This decay length distribution and the distributions described below

are shown in figure 1.9. It is worth noting that although Z0 → cc̄ decays have a

similar topology, they can most often be rejected based on kinematic considerations

used in a B-tag (see chapter 7). In the charm events which mistakenly get tagged

as B events, vertex finding is suppressed by the low D decay multiplicity and the

shorter average decay length ∼1.5 mm.

In 1D decays, there is an additional D decay point on average 1 mm away from
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Figure 1.9: MC predicted true vertex separations (cm) averaged over B and D types
in the standard SLD MC. Also shown is the exponential fit to each distribution.

the B decay point. The decay topology is shown in figure 1.8. The scale is primarily

set again by the B boost distribution but is also affected by the D boost distribution

in B → D decays. Also, although the various charm hadron species have widely

varying lifetimes as can be seen from figure 1.10, recent measurements by CLEO have

shown that charm production in B meson decays is dominated by production of neu-

tral D0’s: BR(B → (D0 or D̄0)X) = 0.636± 0.030, BR(B → D±X) = 0.235± 0.027

[15]. Furthermore, Ds mesons produced in B decays are expected to have a similar

decay length as D0 mesons due to their similar lifetimes. Therefore small variations

in the assumed charm species fractions do not drastically change the prediction of

the average decay length. 1D decays may be distinguished from 0D decays by the

detection of an additional vertex.

In 2D decays, there are two D decay points. Since the lab frame kinematics are
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Figure 1.10: MC predicted true vertex separations for various D types in 1D decays,
averaged over B types. Also shown is the exponential fit to each distribution.

dominated by the B boost, each of these vertices is again on average 1 mm away

from the B decay, just as in the 1D case. However, if we do not distinguish between

the two D vertices, then for any given proper time, there are two chances for a D

to decay. The effective lifetime for the first D to decay is therefore halved. Since

the lifetime distribution is an exponential, the remaining undecayed D then decays

approximately one lifetime later. So, the average B-D separations are actually 1/2

and 3/2 times the typical D decay length. These separation scales, shown in the lower

two plots in figure 1.9, are modified somewhat by the differences in lifetimes between

the various D species and the differences in their boost spectra. The modelling of the

2D decays is described in appendix B.

These MC studies indicate that the 0.5-1.0 mm scale separation of b and D ver-

tices is the critical scale which must be resolvable in order to give a sufficiently high

14



efficiency to separate and count vertices. The tracking resolution of the SLD and the

resulting vertexing resolution are discussed in chapters 2 and 5, respectively. The

effective 3 σ vertexing resolution is shown to be about 0.5 mm which is sufficient to

resolve a good fraction of the vertices in the decay chain.

1.3 The Goal

Simply stated, the goal of the analysis is to measure the inclusive branching fractions

BR(B → (0D)X) and BR(B → (2D)X) and therefore also determine

BR(B → (1D)X) = 1−BR(B → (0D)X)−BR(B → (2D)X). (1.10)

The basic method is to fit the measured vertex count and vertex separation distri-

butions to a set of distributions predicted by the MC for each of the BR[n]D topologies

as well as for the udsc background. From these measurements, the average number

of charm particles per B decay may be computed using:

nc = 1× BR1D + 2× BR2D + 2×BR(cc̄)

= 1− BR0D + BR2D + 2× BR(cc̄) (1.11)

where BR(cc̄) is the subset of BR0D containing hidden charm in the form of charmo-

nium resonances. (BR(cc̄) must be obtained from other independent measurements).

15



The rare decay branching fraction may then be obtained from:

BRrare = BR0D −BR(cc̄). (1.12)

16



Chapter 2

The Experimental Apparatus

2.1 The SLC

In this analysis we used a sample of approximately ∼62,000 tagged B or B̄ decays

which were obtained from the decays of a sample of ∼350,000 Z0 particles created by

the SLAC Linear Collider (SLC) in its 1997-8 run. The SLC, depicted in figure 2.1, is

a 2 mile long linear accelerator which accelerates electrons and positrons to energies

of 45.6 GeV before colliding them at a 120 Hz rate to produce particles at the Z0

pole. Details about the machine may be found in [16].

High luminosities are only achievable at e+e− linear colliders by using focussing

optics to compress the beams in order to create a very small high particle density in-

teraction region (IR). The SLC IR measures 1 µm × 2 µm in the directions transverse

to the beams, and approximately 200 µm in the longitudinal direction. The beam

spot is very stable by design since any instabilities would easily cause the two beams

17
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Figure 2.1: The SLC.

to miss each other. The stability of the beam spot allows its position to be measured

to very high accuracy as will be described in chapter 4. This precise determination of

the primary interaction point (IP) where the Z0 is created and instantaneously decays

allows a very efficient and pure heavy flavor tag based on finding secondary heavy

hadron decay vertices displaced from the IP. This tag will be discussed in chapter 7.

2.2 The SLD

The particles created in the Z0 decay are measured with the SLC Large Detector

(SLD), pictures of which are shown in figures 2.2 and 2.3. The components of the

detector are arranged in cylindrical barrels centered on the e+e− beam axis, and so

a standard cylindrical coordinate system will be used throughout this chapter. The

components most relevant to the present analysis include a inner tracking chamber

called the VXD3 [17] for measuring particle trajectory positions and directions, an

outer central drift chamber (CDC) [18] [19] and 0.6 T magnetic field for measuring
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particle momenta, several liquid argon calorimeter sections (49 X0, 2.8 λI) [20] for

electron identification and thrust axis determination, and an instrumented flux re-

turn/muon detector, the warm iron calorimeter [21]. The tracking chambers will be

described below, and details about the other individual detector components may be

found in the references given above.

Figure 2.2: The SLD.

2.3 The Vertex Detector

The VXD3 is a detector that uses silicon charge coupled devices (CCDs) to make

extremely precise position measurements of particle trajectories. The reconstructed

19



Figure 2.3: SLD section.
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tracks are later used to find particle decay vertices. Whereas conventional wire- or

strip-based detectors can only measure positions accurately in the dimension trans-

verse to the wire or strip (φ for a cylindrical detector), the great advantage of pixel-

based detectors like the VXD3 is that they can make measurements in both dimen-

sions along the surface of the detector (φ and z). The high cost of large area CCDs

constrains CCD detectors to be inner, low radius detectors, to be used in conjunction

with cheaper larger radius strip or wire detectors. The inner detector is used for

making precise position and direction measurements, while the outer detector with

its longer lever arm is used for measuring the curvature of the trajectory.

4–97 8262A11

Outer CCD

Flex-Circuit
Fiducials

Pigtail
(Kapton/
Copper
stripline)Beryllium

substrate

Inner CCD

South EndNorth End

CCD Fiducials

Figure 2.4: VXD3 ladder geometry.

The VXD3 consists of three cylindrical barrel layers of radius ∼ 2.8 cm, ∼ 3.8

cm and ∼ 4.8 cm respectively. The sides of each barrel are shingled with rectangular

support structures called ‘ladders,’ 12 in layer 1 (the innermost layer), 16 in layer 2,

and 20 in layer 3. Each ladder has two 1.6 cm × 8.0 cm CCDs attached, giving a total
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of 96 CCDs. The ladder geometry is shown in figure 2.4. The CCDs covering the

Northern hemisphere of the detector (cos θ > 0), are mounted on the outer surface

of each ladder, and the CCDs covering the Southern hemisphere (cos θ < 0) are

mounted on the inner surface. The layout of CCDs is displayed in figure 2.5. The

total radiation length of the ladders plus CCDs in each layer is 0.4%. The 3-layer

angular coverage of the detector extends to |cos θ| < 0.85. Each CCD contains 800

× 4000 pixels with pixel size 20 µm × 20 µm and charge deposition region extending

to a depth of 20 µm.

cosθ=0.85

RZ view

XY view 1.6 cm

2.8 cm

8.0 cm

Figure 2.5: The VXD3 detector geometry.

An example of a typical BB̄ event observed in the data is shown in figure 2.6 in the

RZ view and in figure 2.7 in the Rφ view. The precise track position measurement

allows the extrapolated BB̄ tracks to be resolved from the IP as shown in the zoomed
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Rφ view in figure 2.8. The measured tracks may be intersected to reconstruct heavy

hadron decay vertices as discussed in chapter 6, and used in heavy flavor tagging.

The B and B̄ vertices are clearly visible in figure 2.8, each at approximately 2 mm

separation from the primary vertex.

x                                           
y                                           

z                                      

centimeters                                                                     
     0                                                                            4.000                                                                           8.000                                                              

Figure 2.6: The RZ view of a typical BB̄ event. Scale = 2 cm.

The VXD3 tracking resolution is significantly better than that of other contem-

porary detectors. The ability to measure full 3D positions comes at the expense of a

slow CCD readout speed (∼ 200 ms for a full readout), but this is not a problem for a

relatively low event rate machine like the SLC. The low SLC beam related background

levels also allow the innermost detector layer to be placed very close (∼ 2.8 cm) to

the IR without suffering excessive radiation damage to the CCDs. The errors in ex-

trapolating a particle trajectory from the innermost detector hit back to the IR are
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x                                       

y                                            

z                                            

centimeters                                                                     
     0                                                                            4.000                                                                           8.000                                                       

Figure 2.7: The Rφ view of a typical BB̄ event. Scale = 2 cm.

x                                

y                                      

z                                      

centimeters                                                                     
     0                                                                           0.4000                                                                          0.8000                                                                           1.200                                                          

Figure 2.8: The zoomed Rφ view of a typical BB̄ event. Scale = 2 mm.
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therefore much reduced.

2.4 The Central Drift Chamber

The wires of the CDC are arranged in drift cells, with each drift cell containing 8

anode wires and an arrangement of cathode wires called ‘field’ wires in order to shape

the drift field. The arrangement of wires in the CDC is shown in figure 2.9. The drift

cells are arranged in 4 axial superlayers (layers 1, 4, 7, 10) and 6 stereo superlayers

(layers 2, 3, 5, 6, 8, 9). Wires in axial superlayers are strung parallel to the z axis

of the cylindrical geometry. Stereo wires are also strung in a cylindrical geometry,

but with a slight relative twist between the two endplates on which the wire ends are

mounted. Because of this twist, called the ‘stereo angle,’ the assumed Rφ position of

a hit on a stereo wire gives information about the z position of the hit. In practice,

the z measurement from the vertex detector is much more precise, and the stereo wire

z information is mainly used in the track reconstruction.

The drift gas is ∼ 21% argon for charge amplification, and ∼ 75% CO2, ∼ 4%

isobutane, and 0.2% H2O. The transverse position resolution is ∼ 100µm.

The large set of hits in the CDC must be grouped together somehow to find the

particle trajectories. The first step in reconstructing the tracks is the recognition of

helical patterns in the hit distribution. The pattern recognition algorithm and track

fit are discussed in appendix C.
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Figure 2.9: The CDC wire geometry.
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2.5 Analysis of the Tracking Chambers

For the purposes of a vertexing analysis, the most important detector components

are the tracking chambers. The vertex resolution derives directly from the transverse

track resolution, and the assumed track errors must be calculated from the measured

track momentum. In this section, the resolutions of the CDC and VXD3 are discussed.

2.5.1 Momentum measurement with the drift chamber

To measure the momentum, a spatially uniform B = 0.6 T magnetic field is generated

throughout the tracking chambers oriented along the beam axis. Charged particles

then move along helices coaxial with the magnetic field direction. The momentum

transverse to the field is given by

Pt = Q ·B · Rc (2.1)

where Rc is the radius of curvature of the projection of the helix to a circle. Written

in convenient units, this formula gives:

Pt =

(
c

m/s

)
× 10−9 ·

(
B

T

)
·
(

Rc

m

)
[GeV/c]

≈ 0.003

(
B

T

)
·
(

Rc

cm

)
[GeV/c] (2.2)

For the SLD’s relatively small magnetic field, the typical Rc is about 500 cm.
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For realistic detector sizes of ∼1 meter, the particle trajectories look very close to

straight lines with small xy deviations that can be locally described to a very good

approximation as parabolic.

y(x) = y0 +
1

2
K · (x− x0)

2 (2.3)

where x is the distance along the tangent vector at the point (x0, y0), and y − y0 is

the transverse deviation from a straight line and K ≡ 1/Rc is the curvature.

Measurements of a discrete set of hits along the track may be thought of as mea-

surements of these small transverse deviations. The resolution of a tracking chamber

in measuring both the direction of the tangent vector and the particle momentum is

therefore determined by the precision of the transverse position measurements σrφ,z.

Expressing the curvature as:

K = 2(y − y0)/(x− x0)
2, (2.4)

the resolution in 1/Pt is then approximately:

σ1/Pt =
1

0.003B
· d(K) = (1/0.003B) · F (n) · σrφ,z/r

2 (2.5)

where r is the effective radius of the detector between the innermost and outermost

hits, and F(n) is a statistical factor dependent on the number of hits that are mea-

sured. For large n, F (n) =
√

720/(n + 4). For the SLD drift chamber, n = 80,

σrφ ≈ 100 µm, and r = 80 cm, giving an ideal 1/Pt resolution of 0.0025 c/GeV,
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ignoring scattering effects. The measured asymptotic resolution 0.0049 c/GeV is

somewhat worse, presumably due to alignment effects and drift time variations [19].

Combined with vertex vertex detector information, the overall momentum resolution

is measured to be:

σ1/Pt = 0.0026⊕ 0.0095

P 2
t

(2.6)

2.5.2 Position measurement with the vertex detector

A minimum ionizing charged particle passing through the 20 µm active region of the

CCDs liberates approximately 103 electrons (∼ 80 electrons/µm) which are collected

in a grid of local potential wells of dimension 20 × 20 × 20 µm3, yielding a discrete

pixellated measurement of a particle’s trajectory. Assuming Gaussian statistics, a hit

completely contained within a pixel has a transverse resolution of 20 µm/
√

12 = 5.8

µm, but enough clusters span more than one pixel that a cluster centroid algorithm

can be used to improve the average local hit resolution to approximately 4 µm in the

directions transverse to the particle trajectory.

This local hit resolution is measured by finding combinations of 3 hits linked to

a common drift chamber track. The track is forced to go through the innermost and

outermost of the 3 hits in the ‘triplet,’ while retaining its measured curvature. The

residual of the middle hit to the interpolated track position plotted in figure 2.10 is a

direct measurement of the local hit resolution. The width of the residual distribution

divided by the average lever arm factor of
√

1.5 gives the single hit resolution as 3.6

µm in the rφ projection and 3.9 µm in z.

In order to reconstruct the particle decay vertices near the IP, tracks measured in
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Figure 2.10: The VXD3 triplet residuals in r − φ and in z.

the detector must be extrapolated or ‘swum’ back to positions near the IP. This is

accomplished by numerically integrating each track’s equation of motion. In each of

a series of discrete steps, one must calculate the new tangent vector to be used in the

next step, and also the new track error matrix including possible effects of multiple

Coulomb scattering if the particle passes through any material. As will be shown in

chapter 5, the performance of the tracking systems in vertexing is directly related to

the transverse track error near the IP. This error may be characterized by the impact

parameter resolution, i.e. the error in the measurement of the impact parameter of

the swum track to the IP.

By examining the parabolic expression for a particle trajectory given in equa-

tion 2.3, it is evident that the transverse errors have three sources: a constant due

to the error on the initial position of the track, a tangent vector angular error whose
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effects grow linearly with the swim distance, and a curvature error whose effects grow

quadratically with the swim distance. To minimize the errors, the swim is started at

the innermost detector hit in the VXD3, which typically occurs at a radius of 2.8 cm.

The constant error is then just the 4 µm transverse error on this hit. For centimeter

scale swim distances, the curvature error of order 0.1 µm/cm2 is negligible, so the

only remaining error comes from the tangent vector angle φ.

The φ error has two sources: transverse detector resolution, and multiple Coulomb

scattering. Since the VXD3 inner and outer layers are separated by 2 cm, the detector

resolution part may be estimated as

σφ,res =
4 µm

2 cm/ sin θ

= 2 sin θ
[µm

cm

]
(2.7)

The multiple scattering contribution has a Gaussian core of width

σφ,ms ≈ 13.6× 10−3[GeV]

p · v ·
√

x

X0

(2.8)

where x is the width of material traversed, and X0 the radiation length of the material.

The various possible scatters of a particle as it moves through the detector must

be modelled in the fit to the detected hits. For this discussion, only the scatters

between the IP and the VXD3 layer 1 will be considered. Including layer 1, there is

approximately 0.92% X0 of material at approximately the layer 1 radius. This gives
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a scattering angle distribution of width

σφ,ms = 13.0
[µm

cm

]
· [GeV ]

p · v · √sin θ
(2.9)

The total transverse position resolution at the IP can then be estimated as:

σrφ,z = 4 µm⊕
(

2 sin θ +
13 [GeV]

p · v · √sin θ

)[µm

cm

]
·
(

2.8 cm

sin θ

)

= 6.9 µm⊕ 36.4 [GeV ]

p · v · sin θ3/2
µm (2.10)

where 2.8 cm/ sin θ is the swim distance.

For typical particle momenta around 1 GeV, the impact parameter resolution is

dominated by multiple scattering. In addition, single scatters may produce a large

non-Gaussian tail falling as 1/θ4
scat in the scattering angle distribution, leading to

much worse impact parameter resolution for a few percent of the tracks. It is therefore

critical in detector design to minimize the amount of scattering material within the

vertex detector.

The SLD measured impact parameter resolution is measured to be:

σrφ = 8 µm ⊕ 33

(p/GeV) · sin θ3/2
µm (2.11)

σrz = 10 µm ⊕ 33

(p/GeV) · sin θ3/2
µm. (2.12)

The transverse beam position measurement errors are approximately 3.2 µm as is

discussed in chapter 4. After subtracting these errors, the measured impact param-
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eter resolution can be seen to be in fairly good agreement with the track transverse

resolution estimated before. The slightly larger asymptotic resolution in rz may be

due to CCD shape effects at high cos θ giving a transverse hit resolution worse than

∼4 µm and/or hit inefficiencies in the innermost VXD3 layer requiring some tracks

to have longer swim distances.

Another method of measuring the resolution is to use Z0 → µ+µ− decays. In these

‘µ-pair’ events, the two 45.6 GeV muons fly out back-to-back along very straight tra-

jectories. Since they were both created at the same Z0 decay point, the miss distance

of the two reconstructed tracks gives a good measurement of the asymptotic high

momentum transverse resolution independently of the beam position measurement.

This distribution is shown in figure 2.11. Dividing the widths of these distributions

by a statistical factor of
√

2, the single track transverse resolution is measured to be:

σrφ = 7.7 µm, σrz = 9.6 µm,

also in good agreement with the estimate.

The performance of the vertex detector may also be somewhat degraded by align-

ment errors. The resolution results reported in this chapter are achieved only after

a careful internal alignment procedure is performed Although local sections of the

detector may be internally aligned well enough to achieve ∼ 4 µm hit resolution, each

local section must still pieced together with the other local sections. The procedure

of aligning the detector and simulating the resolution will be discussed in chapter 3.
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Figure 2.11: The µ+µ− track miss distances in xy and in z.
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Chapter 3

Vertex Detector Alignment

It is useful to distinguish between four separate issues concerning detector alignment.

First, the physical alignment of the detector occurs during the construction and in-

stallation of the detector. CCDs are carefully mounted on ladders which are then

inserted into the detector frame. The whole assembly is placed inside the SLD barrel

and aligned with respect to the drift chamber. The subsequent cooling of the detector

to operating temperatures affects the physical alignment through thermal contraction

and associated geometric distortions.

Next, a detector alignment model is created in order to parameterize the observ-

able misalignments and thereby make corrections to the interpretation of collected

data. Physical effects such as CCD misplacement, thermal contraction, gravity sag,

and distortions of the CCD shapes are all included in the modelling. The parame-

terization of small displacements from the ideal detector geometry allows small cor-

rections to be made to the map from pixel coordinates on each CCD to physical
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3-dimensional space. More detailed information on the alignment procedure may be

found in [17] for the VXD3 internal alignment and [22] for the global alignment with

respect to the drift chamber.

Third, the detector must be simulated for the generation of MC simulation data.

With finite data sets, it is not always possible to construct a complete model for all

possible misalignment effects, and so in this step, the remaining small misalignments

are broadly characterized, and their effect simulated in the MC. The perfect geometry

in the MC is degraded until it provides an adequate match with the data resolution.

Finally, estimators for the track errors should be calculated in a consistent way

in the data and in the MC. Only then will χ2 or confidence level cuts correspond

to the same cuts on the assumed underlying distribution. For example, if the errors

are underestimated by some amount in the data, this underestimation must also be

modelled in the MC in order to make a fair comparison.

3.1 The Detector Alignment Model

The VXD3 detector alignment is done by minimizing the residuals of VXD3 CCD

hits to tracks constrained by other hits. More specifically, combinations of 3 hits on

distinct CCDs that are linked to the same drift chamber track are formed. The track

is constrained to pass exactly through two of the hits while retaining its curvature

(as measured by the drift chamber), and the distance residual of the remaining hit to

the extrapolated/interpolated track position is plotted. Misalignments of any of the

three CCDs involved cause the mean of the corresponding residual plot to deviate
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from zero. So, the mean residuals plotted as functions of φ and tanλ provide a set

of quantities to be minimized through reinterpretations of the CCD positions and

orientations.

Each combination of 3 CCDs provides a local constraint on the relative alignments

of the 3 CCDs with respect to each other. The most powerful constraints are from the

40 ‘triplet’ regions which are combinations in which each of the hits is on a different

barrel layer. These constraints can be imagined as girders enforcing the relative

alignment of the barrels. The 96 ‘shingles,’ combinations including two hits on the

same layer in the ∼0.3-1.0 mm shingled overlap region between ladders, glue each

detector layer together in φ. The 96 ‘doublets,’ which are combinations including

two hits on the same ladder in the ∼1.0 mm overlap region between the North CCD

and the South CCD, serve to glue the Northern and Southern halves of each detector

layer together.

One can still imagine that with this procedure of gluing CCDs together on their

overlap regions may still yield a flattened or otherwise distorted cylinder, despite the

structural support from the triplets. The µ-pair events provide a set of back to back

high momentum tracks which may be used as girders to support diametrically opposite

regions of the detector. Impact parameters of tracks to IP positions determined with

previous alignments are also used in this way.

In principle, the set of residuals given by constraint equations may be simulta-

neously minimized through a χ2 fit. In practice however, the number of parameters

in the fit is too large to do this efficiently. Each CCD has 3 rotational and 3 trans-

lational degrees of freedom, so the total number of quantities to be determined is
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96 × (3 + 3) = 576.

Instead, an innovative technique developed by David Jackson is used. The residual

parameters are reweighted according to their significance and the equations are solved

by matrix inversion. Because each residual plot gives constraints on only 3 CCDs,

the matrix to be inverted is sparse, and the numerical technique of singular value

decomposition may be employed. In the final alignment, CCD shape distortions are

also allowed as 4th-order polynomials in tan λ, further increasing the complexity of the

matrix equation.1 As shown in figure 2.10, the local single hit resolution is improved

to better than 4 µm after the data alignment.

3.2 MC Resolution Modelling

Although the tracking resolution is much improved after the VXD3 internal alignment

and global alignment are done, it is still not perfect. The remaining misalignments are

regarded as unavoidable and must be carefully modelled in the MC. The resolution in

the MC derived from a perfect detector geometry must be degraded until it provides

an adequate description of the true resolution of the detector.

The resolution degradation is done in two stages. The first constraint comes from

the observation that µ-pair miss distances (figure 2.11) give a direct measurement of

the asymptotic transverse tracking resolution. To match the miss distance distribu-

tions, the CCD positions in the MC model of the detector are smeared with Gaussians

of an appropriate width. However, because of low µ-pair statistics, this constraint is

1λ is the polar angle measured from the xy plane.
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not terribly strong.

The impact parameter distributions of tracks to the IP in uds events provides sim-

ilar information except for the fact that the IP measurement (described in chapter 4)

is itself derived from the track measurements. Nevertheless, given the hypothesis that

the detector misalignments are symmetrically distributed about the correct alignment,

the IP measurement is reliable on average and then the impact parameter distribu-

tions provide measurements of transverse track errors. The xy impact parameter may

be defined as the xy projection of the distance of closest approach (DOCA) of a track

to the beamline. A z position may be obtained from the point of closest approach

(POCA) to the beamline of this track, and the distance in z between this position

and the measured IP z position may be used as a measure of the z impact parameter.

A comparison of the cumulative distributions for all hadronic events indicates that

the Gaussian CCD smearing was by itself not large enough to account for all of the

misalignment effects. See, for example figure 9.2 in chapter 9.

Examination of the impact parameter distributions in bins of solid angle reveals

another feature: the means of the distributions exhibit systematic shifts as a function

of cos θ and φ. Figure 3.1 shows some examples of z DOCA distributions in four CCD

triplet regions of φ. These plots reveal that the shifts of the means are truly shifts

of the distributions and not due to spurious changes in the shapes of the distribu-

tions. Such shifts may potentially cause local systematic effects in vertexing due to

correlations between the shifts in tracks from neighboring regions.

These impact parameter shifts observed in the data distributions are modelled

in the MC simulation by taking tracks in those regions and systematically adjusting
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their positions to match the observed shifts. In principle, the observed shifts could be

due to either biases in the track positions which would give decay length independent

effects on vertexing or due to biases in the track angle which would give effects which

decrease with longer decay lengths. To model the worst case scenario, the impact

parameter mismatches are modelled as being completely due to position shifts. The

means of the xy and z impact parameter distributions in the data and the shifted

MC are compared in figures 3.2 and 3.3. In each case, the detector is divided into

four regions in cos θ and into the 40 triplet phi regions. The cos θ regions were chosen

to isolate the larger CCD shape effects at high | cos θ|. Some further tuning was also

done in the doublet region at very low | cos θ|. The cumulative shift distributions are

shown in figure 3.4. These distributions show that the mean shift is ∼0.02 µm so

that no unintended biases are introduced in heavy flavor decay length reconstruction.

The effective correlated smearing is ∼3.3 µm in rφ and ∼9.6 µm in z.

After the tuning is finished, the overall MC impact parameter distributions appear

to be well-matched to those from the data. The comparisons are shown in figures 3.5

and 3.6, plotted in four regions of momentum and three regions of cos θ. In these

plots, the xy impact parameters and the z DOCAs are signed with the thrust axis

so the small positive tails are due to heavy flavor decays. Most of the tracks are IP

tracks and so the overall width of the distribution is a measure of the momentum

dependent tracking resolution. The matches in the low momentum plots indicate

that multiple scattering in the detector material is being well-modelled. The matches

at high momentum indicate that the remaining small detector misalignments are also

now modelled. The xy impact parameter plots at high momentum indicate that
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the MC might be oversmeared by a small amount. This effect is presumably due

to the two cumulative attempts to reproduce the misalignments, first with Gaussian

CCD position smearing and next with the track position shifts. In principle, this

oversmearing could be corrected with a future re-generation of the MC simulation.
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Figure 3.5: Data versus MC comparison of XY impact parameter distributions (cm) in
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Figure 3.6: Data versus MC comparison of Z DOCA distributions (cm) in 4
ranges of track Pt (left to right: < 0.7 GeV/c, 0.7-2.0, 2-5, > 5) and 3 regions of | cos θ|
(top to bottom: < 0.3, 0.3-0.55, > 0.55).
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Figure 3.7: Data versus MC comparison of normalized XY impact parameter distributions
in 4 ranges of track Pt (left to right: < 0.7 GeV/c, 0.7-2.0, 2-5, > 5) and 3 regions of | cos θ|
(top to bottom: < 0.3, 0.3-0.55, > 0.55).
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Figure 3.8: Data versus MC comparison of normalized Z DOCA distributions in 4
ranges of track Pt (left to right: < 0.7 GeV/c, 0.7-2.0, 2-5, > 5) and 3 regions of | cos θ|
(top to bottom: < 0.3, 0.3-0.55, > 0.55).

47



3.3 Error Estimators

The error estimators are calculated from CCD cluster centroid errors, CCD position

errors, and multiple scattering errors, all propagated through the track swim to the

IP. For both the data and MC the errors are calculated from a common geometry

parameter set, and so they receive identical contributions from detector position er-

rors and also from multiple scattering on known detector material. However, the

CCD charge deposition model has not been well-tested and in principle, for high

momentum tracks, small differences might be seen at the level of VXD3 cluster cen-

troid errors. For example, the average number of pixels contained in clusters may be

different, leading to a different average cluster resolution. Figures 3.7 and 3.8 show

the normalized XY and Z impact parameter distributions, where each track impact

parameter histogrammed has been normalized by the calculated error estimator for

that track. Because of the common geometry used for the estimator calculation, no

differences between data and MC are expected in these plots as long as the true

error distributions are modelled correctly in the MC. Even at high momentum no

significant discrepancies are seen, implying that the cluster centroiding differences

are negligible.
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Chapter 4

The Beam Position Measurement

The small stable IR of the SLC combined with the precise position resolution of the

VXD3 allows the clean separation of heavy flavor decay tracks from IP tracks. The

heavy flavor tracks may then be vertexed and the vertex kinematics analyzed to give

a high efficiency, high purity B tag. In this section, a technique initially developed

by Steve Wagner for measuring the beam position will be discussed.

The SLC has a small stable IR which is approximately 1 µm ×2 µm in the direc-

tions transverse to the beam and about 200 µm in the longitudinal direction. The

longitudinal position of the Z0 creation and decay may change from event to event

by a relatively large amount over the 200 µm beam-beam overlap region, and so it

must be measured event by event. The xy position variation is small enough that an

event averaged determination is sufficient for physics analyses.

The xy position is determined using sets of Z0 hadronic decays. The hadronic

decays are jetty and have a well-defined thrust axis. Each track originating from
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the IP in these jets may be used to measure the beam position in the direction

transverse to the track. Because of the approximate colinearity of the jets in most

events however, a single event may usually only measure the beam position in one

of the two dimensions. Another event with an orthogonal thrust axis is required to

measure in the other dimension. The typical track error is about 50 µm, so in order

to make a precision measurement, many tracks should be used.

In the IP-finding algorithm, tracks from ∼30 consecutive hadronic events are

fit to a common vertex in order to determine the beam position. Each event has

approximately 15 usable quality tracks, and on average, half of the events measure

the x position and half measure y. The expected precision in each dimension is then

approximately 50 µm/
√

30 · 15/2 = 3.3 µm.

Tracks from heavy flavor decay vertices displaced from the IP may complicate

the measurement. Approximately 40% of hadronic events are heavy flavor events.

In these events however, a large fraction of the tracks still originate from the IP, so

the non-IP track contamination is less than 20%. The average over 30 events gives

a scatter of the ∼12 heavy flavor decays in φ which helps to avoid biasing the IP

measurement towards the heavy flavor decay vertices in the event sample.

Another method to reduce this bias is to reject heavy flavor tracks based on their

large impact parameters with respect to previous measurements of the IP. The pro-

cedure involves a running average over 30 events. Each time a new event is added,

the weights from the oldest event in the sample are removed from the running sum.

In this way, the newest event being considered always has the most current IP mea-

surement. To reject tracks from long decay length heavy flavor vertices, only tracks
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within 5σ in track errors to the most current measured IP position are included in

the vertex fit.

0 10 20 30 40
DAYS 

XPOS  VS DAYS 

37

32

27

22

X10
- 3

X
P

OS
 

0 10 20 30 40
DAYS 

YPOS  VS DAYS 

200

196

192

188

184

180

X10
- 3

Y
P

OS
 

Figure 4.1: X and Y beam position measurement [cm] versus days.
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Figure 4.2: Zoom in: Y beam position measurement [cm] versus hours.

A typical time history of the x and y beam positions plotted in figure 4.1 shows

that the beam position is stable under continuous machine running, but may change

when machine operating conditions are changed such as during downtimes. Zooming
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in to an hourly time history, figure 4.2 shows that the beam position drifts from day to

night by about 40 µm or about 3 µm/hour, presumably due to temperature variations.

The 30 hadronic events used in the measurement occur typically within a time period

of 15-30 minutes depending on the current machine luminosity, so the assumption of

beam stability over the averaging time is justified. Run periods in which the time

history shows the beam position changing rapidly are vetoed for heavy flavor analyses

since the average IP measurement is not reliable for these periods.

The beam position measurement errors are measured on average using µ-pair

events. The impact parameter of these high momentum tracks is plotted in fig-

ure 4.3. These distributions are the convolution of the IP error distribution with

the high momentum track error distribution. The width of the latter distribution is

independently measured to be ∼7.55 µm from the miss distance of µ-pair tracks to

each other. The fitted width of the impact parameter distribution is 8.2 µm, and so

the IP measurement errors may be estimated as σIP =
√

8.202 − 7.552 = 3.2 µm.

The longitudinal IP position IPZ must be measured event-by-event. In hadronic

events, a median track algorithm developed by Dong Su is used. In each event, a

set of well-measured tracks containing vertex detector hits is compiled. Each track

is swum to its 2D point of closest approach (POCA) to the measured IPXY . In 3D,

this procedure may be viewed as finding the POCA of the track to the beam line.

The z position at the POCA for fragmentation tracks (ZPOCA) is an estimator for

IPZ . However, tracks from heavy flavor decay vertices may intersect the beam line

at rather large distances of order cτ/ sin θ where τ is the lifetime of the decaying

heavy hadron. Also, mismeasured tracks or tracks with large scatters in the detector
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Figure 4.3: Impact parameter of µ-pair tracks to the measured IP position.

may cause the ZPOCA distribution to have a long tail. These large biases can lead to

unacceptable errors in decay length measurements. So, instead of simply averaging

the ZPOCA positions, the median ZPOCA position is chosen as the best estimator for

the IPZ . MC studies indicate that the resolution of this measurement is ∼20 µm on

average.

Unfortunately, there is no independent measurement that can be made in the data

to calibrate this resolution. In principle, dividing the Z0 decay into hemispheres and

using the median track in each hemisphere can give two independent measurements

of IPZ . The smaller number of fragmentation tracks in each hemisphere increases

the probability that the median track is a heavy flavor decay track though, and the

measurement resolution is degraded. So, for the charm counting analysis, the MC

prediction of the resolution is used. The 20 µm resolution scale is so much smaller
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than the typical millimeter decay length scale that the IP error may be neglected

in decay length calculations. For vertexing in general, the confidence level cut to

separate vertices from the IP is usually set to such a high value (99.5% in the current

analysis) that any possible small difference between the data and the MC resolution

does not cause a big change in the rate of fake vertex production from fragmentation

tracks. The fake vertex production rate is considered further in chapter 6.
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Chapter 5

Vertex resolution

5.1 Longitudinal track resolution

In chapter 2, we saw that the transverse track measurement resolution is:

σrφ = 8 µm ⊕ 33

(p/GeV) · sin θ3/2
µm (5.1)

σrz = 10 µm ⊕ 33

(p/GeV) · sin θ3/2
µm (5.2)

The typically large boost of a B hadron in a Z0 decay causes the Z0, the B hadron,

and the cascade D to be roughly colinear. We would therefore like to know the track

resolution longitudinally along this decay axis. The longitudinal resolution is simply

the transverse resolution divided by sin α where α is the angle the particle makes with
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the decay axis in the lab frame.

σL = σrφ,rz/ sin α (5.3)

A heavy flavor decay track typically makes an angle α of order 1/γ with the decay

axis. This angle may be calculated simply as

tanα = Pt/Pl =
P0 · sin α0

γ · (P0 · cos α0 + β ·E0)
(5.4)

≈ (1/γ) · sin α0

cos α0 + 1
+O(m2/P 2

0 , 1− β) (5.5)

where α0 is the angle of the track with respect to the decay axis in the rest frame of

the decaying particle, and E0 and P0 are similar rest frame quantities. The angular

factor

sin α0

cos α0 + 1

multiplying (1/γ) is typically of order one, but in principle can vary from zero to ∞
as Pl0 or Pt0 go to zero. For β close to 1,

Pl ≈ E ≈ γ(P0 · cos α0 + E0) (5.6)

so large tan α is only achievable for particles with very small lab frame energy E.

Using a practical cut of E > 0.5 GeV to select usable well-measured tracks with
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small errors, we get the requirement

cos α0 > (0.5 GeV/γ −E0)/(β · P0)

For typical values of γ = 6, E0 = 0.5 GeV, we find for pions,

cos α0 > −0.87.

Then for isotropic decays, roughly ∼ 6% of the solid angle of particles is useless for

vertexing because these particles are boosted to lab frame energies below 0.5 GeV.

Figure 5.1 (d) shows the longitudinal single track resolution as a function of cosα0

for pions at two values of E0. As argued, the resolution deteriorates quickly at large

negative cos α0.

Particles are also lost in the forward α0 region where the particles do not have

enough Pt to resolve vertex positions along the B decay axis. These particles have

large lab frame energies and correspondingly small transverse errors around 8 µm,

but this very precise resolution is degraded by the small α. As shown in figure 5.1 (d),

again about ∼ 6% of the solid angle is lost at high cosα0. So, the total particle loss is

∼ 12%, and only ∼ 88% of charged particles are potentially useful in resolving vertex

positions. These inefficiencies have only been calculated for particles of average decay

rest frame energy, and further inefficiencies due to low Pt can be expected for particles

of lower rest frame energy.

From this discussion, we see that the poorer transverse resolution of lower mo-

mentum tracks is compensated by a larger angle α with respect to the B decay axis.
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Figure 5.1: Predicted vertexing quantities in B decays: (a) Lab frame particle mo-
mentum P . (b) Transverse track errors. (c) Resolution projection factor. (d) Longi-
tudinal track errors. All are plotted as functions of the B rest frame particle angle
α0. Plots are for pions at high and low B rest frame energies E0. Note that the
longitudinal resolution has roughly constant valleys where the resolution is mainly
determined by the B rest frame energy.
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The better transverse resolution of higher momentum tracks is degraded by a smaller

α. Also, although the large boost of the B hadrons in a Z0 decay expands the decay

length of the B by a factor of γβ, the longitudinal track resolution is worse than

the transverse resolution by almost the same factor of 1/ sin α ≈ γ. So, in the end,

the figure of merit in evaluating a detector’s performance in resolving heavy flavor

vertices is the ratio of the transverse track resolution to the lifetime cτ , just as it is

in analyses based on impact parameter measurements.

5.2 Data/MC Vertex Resolution Comparison

While the transverse tracking resolution has been calibrated between data and MC

using µ-pair miss distances and track-IP impact parameter distributions, it would

still be useful to see how well the track resolution information gets propagated to the

found vertices. The Z0 → τ+τ− events give a particularly clean system in which to

make this measurement since each decay hemisphere contains only one τ± vertex.

To calculate the vertex position resolution, we must first define operationally what

we mean by a vertex. If the detector had perfect resolution, then a vertex can be

defined as the intersection of tracks. For finite resolution, a vertex may be defined as

a point with which a set of tracks have some finite probability of intersecting. This

notion can be formalized by approximating the track transverse errors with Gaussian

distributions, and calculating the χ2 of a collection of tracks with the hypothesis of

a common intersection point. The probability (confidence level) of this hypothesis

provides a 1-parameter criterion for determining whether to group the tracks into
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a vertex. Vertices may then be defined using a minimum probability requirement.

Decays of τ± into 3 charged particles can be used to study both the high probability

and the low probability regions of the vertex χ2 distribution in order to check that

same effective definition of vertices is being used in both data and MC.

3-prong τ± decays mostly occur through the broad a1(1260) resonance, but about a

third of the time, an additional neutral hadron is produced. The typical charged pion

energy might then be estimated to be ∼300 MeV in the τ± rest frame. In Z0 decays,

each τ± carries away 45.6 GeV of energy, resulting in a boost of γβ = 25.6.. The

single track longitudinal resolution predicted by the formulae in the previous section

are plotted in figure 5.2 as a function of cos α0. Comparison with the corresponding

plots in figure 5.1 shows that the longitudinal track resolution is somewhat degraded

by the high boost of the decaying particle. The typical 1 σ single track resolution may

be estimated as roughly ∼350 µm. Dividing this by
√

3 gives the predicted 3-prong

vertex resolution as ∼200 µm.

The goal is then to measure the vertexing resolution by measuring the width of

the negative tail of the 3-prong τ± vertex decay length distribution. Z0 → τ+τ−

events are selected by using a set of cuts developed by Jim Quigley [23]. These cuts

include track multiplicity cuts and jet energy/shape cuts to reject hadronic events

and 2-photon events as well as track angle and momentum cuts to reject µ-pair and

bhabha events. After selecting only 3-prong hemispheres, MC studies indicate that

the non-τ± background is below 0.2%.

The 3-prong τ± decays in this sample are fit to a common vertex in order to obtain

the τ± decay point. To calculate the decay length, a measurement of the IP position
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Figure 5.2: Predicted vertexing quantities in τ± decays: (a) Lab frame particle mo-
mentum P . (b) Transverse track errors. (c) Resolution projection factor. (d) Longi-
tudinal track errors. All are plotted as functions of the τ± rest frame particle angle
α0. Plots are for pions at a typical τ± rest frame energy E0 = 0.3 GeV.
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is needed. As described in chapter 4, the stable xy beam position can be measured

from hadronic events occurring at around the same time as the τ -pair event. The IP z

position must be determined from information in the current event however. Because

of the high τ± boost, the signature for a τ -pair event is two back-to-back highly

collimated jets of particles. The IP z position can therefore be measured by forming

the resultant momentum vector from all tracks in a jet, and finding its point of closest

approach to the well-determined beamline. MC studies indicate that the error in this

measurement is only ∼8 µm. The magnitude of this error is so much smaller than

the 200 µm scale of the longitudinal errors that any correlations between the two

measurements may safely be neglected. The measured decay length is calculated as

the distance between the IP and the 3-prong vertex position.

The measured decay length distribution is fit to a convolution of an exponential

distribution with a Gaussian smearing distribution:

f(x) =

∫
d(x0)

1√
2πσ

exp

(
−(x− x0)

2

2σ2

)
· 1

D
exp

(
− 1

D
(x0)

)

=
1

2

(
1 + erf

(
x− σ2/D√

2σ

))
· 1

D
exp

(
− 1

D

(
x− σ2

2D

))
(5.7)

As can be seen from the form of this function, the average resolution σ is determined

mainly from the negative tail of the distribution and the τ± decay length constant

D ≡ γβcττ± is determined mainly from the exponential tail at larger positive decay

lengths. The fitted MC and data distributions are shown in figure 5.3, where a cut

of vertex probability > 5% is used to limit the measurement to the core resolution.

The MC and data resolutions agree very well with each other and with the analytic
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estimate above.

The tails in the χ2 distribution are important as well since they determine the

rate of creating fake vertices. The vertex probability distributions in data and MC

are compared in figure 5.4 in four regions in cos θ. The horizontal axes represent

the integrated probability (confidence level) of the hypothesis that all three tracks

originate from the vertex. These integrated probabilities are calculated from the

assumed track errors. The probability distribution functions are normalized to unity

so that the vertical axes may be interpreted as the measured probability per bin. If

all errors were perfectly Gaussian, then these distributions would be flat with with

a binned probability of 0.02 in each bin. The match between data and MC in the

non-Gaussian tails at low confidence level appears to be reasonable.
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Figure 5.3: Measured τ± decay length distributions (cm) in the MC (top) and the
data (bottom). Only 3-prong vertices with vertex probability > 5% are plotted. The
fitted MC resolution is 202±8 µm and the fitted data resolution is 207±14 µm. The
uncorrected fitted lifetime is 300±8 fs.
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Figure 5.4: 3-prong τ± vertex probability distributions as functions of the vertex
hypothesis confidence level. The distributions are shown in 4 regions of cos θ: (a) <-
0.65, (b) -0.65 to 0, (c) 0 to 0.65, (d) >0.65. The bin size is 0.02 and all distribution
functions are normalized to unity. Solid histogram ≡ vanilla MC. Dashed histogram
≡ MC with track position shifts. Points ≡ Data.
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Chapter 6

Vertexing

To form multiple vertices from a set of tracks, some algorithm must be employed

to determine which tracks to put in each candidate vertex. For this purpose, the

primary tool used in this analysis is the ZVTOP3 topological vertexing package [24]

developed by David Jackson to exploit the excellent SLD vertex detector resolution.

It is used ubiquitously in SLD heavy flavors analyses as the first stage in heavy flavor

tagging, and it is also the basis for similar physics studies for future linear colliders.

ZVTOP3’s purpose is to take a set of tracks and find a discrete set of points or vertices

where they intersect within their position errors. It contains two separate methods

for accomplishing this purpose, both of which are used in this analysis.

The first method is referred to as the resolubility algorithm. A Gaussian probabil-

ity tube is made for each track to model the measurement uncertainty in the track’s

position. As shown in figure 6.1, the swum track position errors for the two directions

transverse to the tangent vector are used to define a 2-dimensional Gaussian P.D.F.
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Figure 6.1: Defining the Gaussian probability tube for a track. x′ and y′ are local
track coordinates. z is the beam direction and λ is the polar angle of the track tangent
vector measured with respect to the transverse x′y′ plane. The Gaussian widths σT

and σL in R− φ and z is defined using the track impact parameter errors.

Figure 6.2: Left: Intersections of Gaussian track tubes. Right: the tube overlap
function.
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at each point along the measured track. The resolubility algorithm then looks for

regions of large overlap of these probability tubes. Figure 6.2 shows an example of

intersections of track tubes and the overlap function produced. Vertices are sepa-

rated by requiring that local maxima in the overlap function are separated by deep

enough minima. A similar Gaussian P.D.F. is used to model the uncertainty in the

IP position in order to separate fragmentation tracks from heavy flavor decay tracks.

An obvious problem with this method is that it cannot find vertices for one-

prong decays. Furthermore, the vertex separation method is not based on a rigorous

probabilistic calculation, and so its performance in simultaneously finding both B

and D vertices is limited. However the resolubility algorithm excels at finding single

vertices well separated from the IP. It is a robust general-purpose algorithm to use in

heavy flavor analyses, particularly in the heavy flavor vertex mass tagging described

below.

The second method is called the ghost track algorithm [25] and it is used primarily

to reconstruct the cascade structure of B decays. It attempts to recover some of the

inefficiencies of the resolubility algorithm. Because of the large boost of the B particles

in Z0 decays, the B and D vertices in the decay cascade are typically close to being

colinear with the IP. (The momentum of the D transverse to the B flight direction

is typically very small compared to the longitudinal momentum.) The ghost track

algorithm models this line from the IP to the B to the D by threading a ‘ghost’

track through all of the tracks in the hemisphere by fixing one end at the measured

IP position and adjusting the angle to minimize the summed χ2 it makes with the

real tracks. The decay length of the heavy hadrons makes a long lever arm which
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pulls the ghost track towards the true heavy hadron decay position. The transverse

errors of the ghost track are determined from its largest normalized distance of closest

approach (DOCA) with any track in the cascade once its direction has been fixed.

The transverse error is defined such that every track in the hemisphere has χ2 ≤ 1

when vertexed with the ghost track. The IP is again modelled with a Gaussian P.D.F.

with dimensions 7µm ×7µm ×30µm.

A brute force probabilistic multiple vertex fit is then performed by calculating a set

of vertex probabilities for all possible ‘2 tracks + ghost track’ candidate vertices as well

as all possible ‘1 track + IP’ candidate vertices. The highest probability vertex is saved

and the track(s) used in that vertex are flagged as used. Of the remaining candidate

vertices, those which contain the used track(s) are rejected. New probabilities are then

calculated for all possible ‘saved vertex + 1 extra unused track’ candidate vertices,

and are considered along with the previous set of viable candidate vertex probabilities

involving unused tracks. Again, the vertex with the highest probability is saved and

the track used is removed from the list. New track appending data are calculated

and the procedure continues until the highest probability found is lower than some

probability cut criterion (PCUT), which is set to 0.5% in the current analysis. All

remaining unvertexed tracks are considered to be incompatible with any multi-prong

vertex and incompatible with the IP, and so they are vertexed with the ghost axis to

form 1-prong vertices.

The use of the ghost track accomplishes two goals, each with its caveats. First, it

has the ability to form 1-prong vertices by vertexing single tracks with the ghost axis.

The position resolution of 1-prong vertices is not very good since a single track can

70



only localize a vertex in two of the three spatial dimensions. Information on the third

dimension must come from the ghost axis, and is systematically biased. For example,

the tangent vectors to tracks from a D decay may be considered as estimators for the

D flight direction, and hence point back on average to the B decay position. If the

ghost track is considered as an estimator for the B flight direction, then a 1-prong

D vertex will typically intersect the ghost track close to the B decay position and

underestimate the D decay length. A small fraction of these tracks from off-axis D

decays will actually intersect the ghost axis in front of the B decay position giving an

apparently negative D decay length. Similarly, since the ghost track typically points

somewhere in between the B and D vertices, B decay lengths will be underestimated

by 1-prong B vertices.

Second, by using brute force probabilistic vertex fitting, the algorithm is able to

achieve a high efficiency for separating B and D vertices. The probabilities calculated

are based on the assumed ghost track width however. Underestimates of this width

give overestimates of the χ2 and cause off axis vertices to be broken up and vertexed as

sets of false 1-prongs on axis. Overestimates of this width will lead to an understimate

of the χ2 and inefficiencies in vertex separation. Underestimates are more common

however since all tracks point back in general to the B decay vertex and therefore

tend to give underestimates of the B-D transverse separation. Overestimates usually

happen only when there are particles in the event which are not associated with the

IP-B-D decay chain, such as products of decays of long lived particles or cosmic rays.

A special ‘tidy’ option in ZVTOP3 attempts to remove Ks, Λ and gamma conversion

tracks using kinematic cuts on neutral 2-prong vertices and also to reject other high
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impact parameter tracks from detector interactions and/or from misreconstructions.

The MC predicted vertex finding efficiencies using the ‘ghost track’ algorithm are

plotted in figures 6.3, 6.4, and 6.5 as functions of true IP-B separation, true B-D

separation, and the smallest true vertex separation (∆) in 2D decays. The effective

vertexing resolution is about 0.5 mm which is sufficient to resolve most of the vertices

in the decay chain.
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Figure 6.3: MC predicted ‘B’ vertex finding efficiency as a function of true IP-B
separation in 0D hemispheres.

The plots do not asymptote to perfect efficiency at large true separation because

of intrinsic inefficiencies due to vertex track multiplicity and kinematics, and possibly

also due to further inefficiencies in the vertexing algorithm. For example, vertices

producing no charged tracks are not detectable. This inefficiency is particularly se-

rious for 2D decays where the 3-vertex rate asymptotes to only ∼40%. In the SLD

B decay MC, all three heavy flavor decay vertices are visible only about 50% of the
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Figure 6.4: Left: True B-D separations in 1D hemispheres with ≥ 2, ≥ 3 found
secondary vertices. Right: The corresponding vertex finding rates as a function of
true B-D separation.
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Figure 6.5: Left: The smallest true vertex separation ∆ in 2D hemispheres with ≥ 2,
≥ 3 found secondary vertices. Right: The corresponding vertex finding rates as a
function of ∆.
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time. Even when a vertex is in principle visible, the decay kinematics may complicate

its detection. Vertices producing only tracks with low Pt with respect to the decaying

particle’s flight direction are difficult to resolve since these tracks are also likely to

be consistent with the decaying particle’s parent vertex. For example, a low Pt track

produced at the B vertex may also be consistent with the IP. Similarly, a slow pion

from a B → D∗X decay may be consistent with both the B vertex and with the

subsequent D decay vertex. Also, as mentioned previously, 1-prong vertices exhibit

particularly poor resolution for off-axis particle decays.

The vertex finding rates do not asymptote to zero either at small true separation

because of detector resolution effects leading to the production of mismeasured ‘fake’

vertices. This vertex overproduction is especially evident in the 2-vertex distribution

in figure 6.4 in which multiple vertices are found even for very low true B-D sepa-

rations below the resolution scale. Mismeasured tracks in these unresolvable vertices

cause fake vertices to be formed at larger apparent vertex separations. Similarly, even

if the B and the D vertices are resolved, mismeasured tracks in either vertex may

cause yet more fake vertices to be formed, giving for example, the non-zero 3-vertex

rate in 1D decays shown in figure 6.4.

The fake vertices are formed from tracks populating the tails of the track error

distribution. For the current analysis, a 3 σ probability cut is used to define ver-

tices. For a Gaussian error distribution, each vertex track would be expected to only

have a 0.5% chance of being inconsistent with its true position of origin and pos-

sibly forming a fake vertex through its intersection with either the ghost track or

with some other real track in the event. However, non-Gaussian tails in the error
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distribution lead to much larger rates of fake vertex production. These tails may

arise from mis-reconstructed tracks with incorrect detector hits attached, large single

scatters for lower momentum tracks, or small detector misalignments affecting mainly

higher momentum tracks. The tails in high momentum track error distributions are

a particularly serious problem, since these tracks provide most of the short distance

vertexing resolution needed to resolve the decay vertex topology.

For any track momentum, fake vertices will appear at distance scales larger than

the corresponding 3 σ distance scale characterizing the vertexing resolution. However,

it can be expected that the scale of the non-Gaussian error tails are not too much

different from that of the Gaussian core of the error distribution since particles with

grossly mismeasured detector hits will not survive through the track fit described

in appendix C, and will instead contribute to the overall track finding inefficiency.

Hence, the 3 σ vertexing resolution scale also roughly characterizes the distance scale

for fake vertex production.

The 3-vertex plots in figure 6.4 show fake vertex production in 1D decays to be at

least a 15% effect at large true separations, and only a 5% effect at small separation

where mismeasured tracks are more likely to be attached to pre-existing vertices

rather than to form new vertices on their own. However, even in the cases where the

correct number of secondary vertices is found, for example, 2 vertices for 1D decays

and 3 vertices for 2D decays, it is not clear from these plots whether every found

vertex is real or if fake vertices also contribute to the vertex count.

To summarize, the efficiencies to obtain the expected vertex count in each of the

[n]D categories are fairly good, but not perfect, and the problem of overcounts due

75



to fake vertex production is troublesome. Both of these issues are addressed in the

context of the data analysis in chapter 8.
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Chapter 7

B tagging

The long decay length of heavy hadrons provides a powerful way to distinguish heavy

flavor hadronic events from light flavor events. The daughter particles from the decay

of a heavy hadron with boost γ are distributed in a cone of angular size α ≈ 1/γ

(see chapter 5). The decay length is an exponential distribution of characteristic

length γβcτ , and so the impact parameter distribution of the daughter tracks is

roughly exponential with a width ≈ βcτ . Given sufficiently precise beam position

measurements and sufficiently precise track transverse errors:

σIP , σtrack << βcτ ≈ 100− 500 µm, (7.1)

heavy flavor decay tracks may be separated from the IP with high efficiency. The

beam position measurement is described in chapter 4 and yields σIP ≈ 3.2 µm in the

transverse directions and ≈ 20 µm along the beam, much smaller than the typical
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heavy flavor track impact parameter. The track transverse errors are analyzed in

chapter 2 where they are shown to be also typically much smaller than the impact

parameter scale.

An early method developed to tag heavy flavor decays is therefore to simply count

tracks with significant impact parameter to the IP. Because of the differences in life-

times and decay multiplicities, lower non-zero counts correspond to cc̄ events, and

higher counts correspond to bb̄ events. However, if tracks can be separated from the

IP, they may also be intersected to form vertices distinguishable from the IP. There

is no advantage in switching from using transverse information in the impact param-

eter distributions to longitudinal information in the decay length distributions. As is

argued in chapter 5, the time dilation factor of γ in the decay length is cancelled by

the same factor of 1/ sinα ≈ γ degrading the track resolution. However if sufficiently

many of the heavy hadron decay charged tracks can be put into the separated sec-

ondary vertex, then extra kinematic information about the decay becomes available.

By making the very good assumption that most tracks from B decays are π±, the

summed energy and momentum of all of the vertexed tracks may be calculated. The

invariant charged mass may then be defined as:

Mch =

√√√√(∑
i

√
|~pi|2 + m2

π

)2

−
(∑

i

~pi

)2

(7.2)

This quantity is typically less than the heavy hadron mass because of the missing

kinematic information in the neutral daughter particles and in the charged daugh-

ter particles which did not get vertexed. For example, charged particles may be
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Figure 7.1: The missing Pt due to non-vertexed daughter particles, measured using
the resultant charged momentum Pch and the vertex axis.

mistracked, lost to tracking inefficiencies, or swallowed by the IP. In principle, the

resultant missing particle kinematics may also be measured, but the SLD calorime-

ters do not have sufficient segmentation to do this. However, due to conservation of

momentum, the Lorentz invariant total transverse momentum of the missing particles

is equal and opposite to that of the vertexed charged particles. This fact is shown in

figure 7.1. The following inequality may then be derived:

Mch ≤
√

Mch
2 + Pt

2 + Pt ≤ Mtrue (7.3)

where Pt is the magnitude of the visible (or missing) transverse momentum and Mtrue

is the true mass of the decaying heavy hadron. The first inequality is obviously true

for any positive semidefinite Pt. The second inequality may be seen by going to the

rest frame of the decaying hadron and noting that Mtrue = Etrue = Ech + Emissing,
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and
√

Mch
2 + Pt

2 ≤ Ech and Pt ≤ Emissing. The ‘Pt corrected mass,’ defined as

MPt ≡
√

Mch
2 + Pt

2 + Pt (7.4)

is a much better estimator for Mtrue than just Mch.
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Figure 7.2: The Pt corrected mass, MPt distribution with contributions shown from
uds, c, and b hemispheres.

The distribution of MPt is shown in figure 7.2, in which the clean separation of

uds, c, and b hemispheres can be clearly seen. Further cuts on the vertex momentum

may also be used to more cleanly select c decays. The current charm counting analysis

employs a neural net B tag (B3MASS) [26] which incorporates the above information

along with the vertex flight distance and track multiplicity in order to produce a

exceedingly pure sample of B’s with high selection efficiency. The neural net has a

single output which varies from 0.0 to 1.0, with higher values being more B-like. The
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efficiency-purity curve of the tag is shown in figure 7.3 in which a cut on the neural

net output is varied.

Figure 7.3: The B3MASS neural net tag efficiency-purity curves for c and b tagging.

Since Z0 decays produce B hadrons in pairs, the B hemisphere tag and double

tag rate may be used to simultaneously measure the B tag efficiency, εb and Rb ≡
BR(Z0 → bb̄)/BR(Z0 → hadrons) if Rc, the c → b mistag rate εc, the uds → b

mistag rate εuds, and the hemisphere tag correlation Cb are assumed to be correctly

modelled by the MC [27]. The favorable comparison between the B tag efficiency

measured in the data and that predicted by the MC is shown in figure 7.4. The

current charm counting analysis uses the default cut of 0.75 on the neural net output

which corresponds to a B tag with efficiency εb = 61.7% and purity Πb = 98.3%.
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Figure 7.4: Measured B tag efficiency εb compared with the MC prediction for various
values of the B3MASS neural net cut. Also plotted are the predicted mistag rate εc

and the corresponding B tag purity Πb. (The mistag rate εuds is so small it does not
appear on the scale of this plot.)
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Chapter 8

The Analysis Procedure

8.1 Event Selection

The first step in the analysis is to get a sample of B decays that are unbiased so that

the decay mode composition and kinematics are representative of B decays in general.

At the Z0 pole, the high momentum of the primary quarks leads to the formation

of jets of hadronic particles. The jet formed by the b quark and the jet formed by

the b̄ quark are usually almost back to back as is typical of a two-body decay. Small

acolinearities may be caused by another primary parton carrying away momentum

in the form of a separate lower energy gluon jet. The Z0 decay event may then be

divided into hemispheres, each hemisphere containing a B hadron which originated

from a primary quark. The b and b̄ quarks are assumed to fragment independently

into hadrons. Due to the large number of degrees of freedom in the fragmentation

process, the decays of the resulting B hadrons are assumed to be uncorrelated.
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The procedure is first to get a sample of Z0 hadronic decay events which are

identified through jet energy deposition in the calorimeter and through detection

of multiple jet tracks in the tracking chambers. Event cuts are made requiring a

minimum visible energy of 18 GeV and at least 7 tracks consistent with coming from

the IR. Furthermore, to obtain events well contained within the detector, a thrust

axis angle | cos θ| < 0.8 is required. Using these cuts, about 250,000 hadronic Z0

decays are selected. The requirement of multiple tracks may introduce a small bias

in the event selection since very low multiplicity B decays may be rejected. However

the coincidence of low fragmentation multiplicity in both hemispheres along with low

B decay multiplicity again in both hemispheres is presumably a very low probability

occurrence, and so the multiplicity bias on the B sample is believed to be negligible.

A neural net B-tag (see chapter 7) is performed separately in each hadronic event

hemisphere. Since the B-tag is highly correlated with long decay length and with large

track multiplicity, a sample of tagged hemisphere is unlikely to be representative of

B decays in general. However, since b quarks and b̄ quarks are produced in pairs, a

positive tag in either hemisphere suffices to identify the event as a bb̄ event. Assum-

ing that the two B hadrons decay independently, the hemisphere opposite a tagged

hemisphere is then completely unbiased in proper decay time, decay mode kinematics

and particle multiplicity. In effect, the opposite hemisphere is tagged as containing a

B hadron decay without actually using any information from that hemisphere. The

same unbiased tagging argument applies to a positive tag in either hemisphere, so if

both hemispheres are tagged, then each is unbiased by virtue of being the hemisphere

opposite a tagged hemisphere. Altogether, a sample of 62,000 B decay hemispheres
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is obtained in this way.

8.2 Vertex Counting

To find topological vertices, the ZVTOP3 ‘ghost’ algorithm (described in chapter 6)

is applied to the sample of ‘opposite hemisphere tagged’ B decay hemispheres, both

in the data sample and in the MC. A vertex χ2 probability (confidence level) cut

of 0.5% is used to define vertices, and the ‘tidy’ option is used to find and remove

Ks, Λ and gamma conversion vertices. For the MC, the vertex count distribution

is generated separately for each of the [n]D B decay topologies as well as for the

udsc background. The details of the MC modelling of each of the [n]D topologies is

described in appendix B.

The SLD MC predicted vertex count distributions are shown in figure 8.1. The

0D distribution shown is modelled with a set of tabulated b → (cc̄) decays and is

strongly peaked in the 1-vertex bin. Modelling the distribution with b → u or b → s

decays gives a similar peak. A non-negligible fake vertex production rate of about

20% is also seen. The 1D distribution is modelled using a combination of tabulated

modes and quark decay models. This distribution shows the same large efficiency

as in the 0D distribution for separating the heavy flavor decay vertices from the IP.

Furthermore, both the ‘B’ and the ‘D’ vertex are reconstructed about 50% of the

time and the fake vertex rate is about 10%. The 2D distribution is modelled using

a set of tabulated modes based on CLEO measurements. This distribution shows a

low efficiency for reconstructing all three vertices, but a much higher efficiency for
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reconstructing at least two vertices compared with the 1D distribution. It is difficult

to estimate at this stage how many fake vertices populate the 3-vertex bin based on

the 2D plot alone. Also plotted is the found secondary vertex count for the udsc

background which leaks through the B tag. The shorter charm decay length and

low average charged particle multiplicity results in a low rate of finding secondary

vertices.

Figure 8.1: MC predicted found secondary vertex count. Each histogram has been
normalized to unit weight.

These predicted distributions are different enough that they contain significant

analyzing power in unfolding the data distribution. However, they are also similar
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enough such that small changes in the shapes of the distributions may cause large

systematic effects in the measurement. To try to minimize our susceptibility to such

systematic effects, we can require that the vertices being counted are found in the

correct places, so that the MC predicted vertex position distributions match the

vertex position distributions in the data. Such a requirement would ensure that the

vertices being counted in the MC are the same vertices being counted in the data.

8.3 The Vertex Separation Distributions

Physically, we would expect the found vertices to appear at several distinct distance

scales. True heavy flavor decay vertices would of course appear at the appropriate

decay length scales discussed before. However, these distributions would be truncated

at short decay lengths due to finite vertexing resolution. The scale for this trunca-

tion is set by the track momentum and angular distributions, and the corresponding

tracking resolution. For fake vertices formed by tails in the track measurement error

distribution, the distance scale is set by the tail width. However, as argued in chap-

ter 6, most of the tail population presumably lies very close to the distance scale set

by the 3 σ χ2 probability criterion used for defining vertices. Therefore, the appro-

priate scale for fake tail vertices can be approximated by the momentum-dependent

vertexing resolution scale of ∼ 100− 500 µm.

We could plot the vertex position distributions and examine them by eye to check

that we are not overcounting or undercounting vertices in any region. Even better, we

can incorporate the vertex position distributions in a fit of the data to the predicted
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distributions. Each bin in the vertex count distribution can now be viewed as having

a set of vertex position distributions hidden behind it. The 1-vtx bin has the IP

to vtx1 separation, the 2-vtx bin has the IP to vtx1 separation and the vtx1 to vtx2

separation, etc. These distributions are shown in figures 8.2 and 8.3 and are discussed

further below.

The MC predicted distributions of found vertices are generated using a MC sample

with ∼ 25 times the statistics of data. These distributions are shown in figure 8.2

for the IP to vertex 1 separation and in figure 8.3 for the nearest neighbor secondary

vertex separations. The distributions are plotted separately for the true topological

categories: udsc background, 0D, 1D, 2D, and also versus the apparent topological

categories: Nsv = 1, 2, 3, ≥4. The nearest neighbor secondary vertex separation

plots are all very similar, each containing the D decay length scale and the cutoff at

the resolution scale. Therefore, if there is more than one secondary vertex separation

to be plotted in a decay hemisphere, all are histogrammed in the same plot. For

example, in the Nsv=3 category, both the vertex 1 to vertex 2 separation and the

vertex 2 to vertex 3 separation are put in the same histogram. The histograms are

binned in constant logarithmic intervals in order to produce a higher sampling rate

at the shorter vertex resolution scale of interest, and a lower sampling rate at the

longer decay length scale which is mainly used for normalization. The histograms are

labelled with two indices, the first denoting the topological category (B,0,1,2), and

the second giving the total secondary vertex count. For example ‘B2’ refers to the

sample of true udsc background hemispheres in which two secondary vertices were

found.

88



N
um

be
r 

of
 ta

gg
ed

 M
C

 h
em

is
ph

er
es

/2
5

Figure 8.2: MC predicted IP-vertex 1 separations (cm) on a log scale. The rows
represent Nsv=1,2,3,≥4, and the columns represent udsc background, 0D, 1D, and
2D. The histograms have been normalized to a data-sized sample.
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Figure 8.3: MC predicted nearest neighbor vertex separations (cm) on a log scale. The
rows represent Nsv=2,3,≥4, and the columns represent udsc background, 0D, 1D, and
2D. In the cases of Nsv=3 or 4, all nearest neighbor separations are histogrammed
in the same plot. The histograms have been normalized to a data sized sample.
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By looking at the histograms on a logarithmic scale, the emergence of fake vertices

with increasing Nsv becomes apparent. As the number of found secondary vertices

increases, relatively more vertices appear at the 500-1000 µm separation scale than at

the decay length scales greater than 1 mm, even in the categories where there really

are no more true vertices to find. For example, since 1D decays contain at most two

true vertices, histogram 13 contains at least one fake vertex and 14 contains at least

2 fake vertices. The balance between the resolution scale and the decay length scale

is also seen for 2D decays in plots 21-24. The nearest neighbor plots 15-17, and 26-27

show these features to a lesser extent.

To create the MC predicted shapes, a set of four histograms (e.g. B1-B4, 11-14, 21-

24, 31-34) for each true topological category are appended together with an extra bin

for the Nsv=0 count. This set of bins is then projected into a vector and normalized by

the number of true decays of that category that was used in creating the histograms.

The resulting distribution shapes are shown in figure 8.4. These shapes still contain

the same information as the vertex count shapes in figure refF:mcvtxcnt but now

extra information about the vertexing resolution and the fake vertex production rate

is made available through the measurement of the IP-‘B’ separation. The data can

then be fit bin-by-bin to the predicted shapes for each category.

In principle, the nearest neighbor secondary vertex distributions (B5-B7, 15-17,

25-27, 35-37) contain extra vertexing resolution information and could be used in a

similar fashion in creating a set of shape functions. However, the statistics of using

this new set of fitting functions is not correct, since for n secondary vertices plus the

IP, there are n vertex separation distributions to be plotted. The n-vtx bin therefore
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effectively gets weighted n times in the vertex count distribution. The correct way to

include all of the information is to make a n-dimensional histogram with independent

pieces of information on orthogonal axes. This way, each B decay in the sample is

only put into a single bin. However, this procedure is not feasible since the MC sample

is not sufficiently large to create well-modelled multi-dimensional shape predictions.

Instead, the information from the nearest secondary vertex separations is rejected.

Not much is lost since these histogram shapes do not contain much differentiating

power anyway.

8.4 The Fit

The three inclusive branching ratios are measured simultaneously along with the

udsc background in the B-tag by doing a simultaneous fit of every vertex separation

distribution in the data to a linear combination of the set of distributions predicted

by MC simulation. The fitting function used is:

F i
data = Rn·[(1−Rbkgd)·[BR0D·F i

0D+(1−BR0D−BR2D)·F i
1D+BR2D·F i

2D]+Rbkgd·F i
bkgd]

(8.1)

where F0D, F1D, F2D, Fbkgd are the four normalized MC distributions, and i = {1..57}
is the bin number. The parameters extracted from the fit are normalization Rn, the

udsc background fraction Rbkgd in the B tag and the branching ratios BR0D, BR2D.

BR1D has been eliminated to impose the constraint that the branching fractions sum

to unity.
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Figure 8.4: Binned distribution shapes for each of the MC decay categories and the
distribution shape seen in the data. The horizontal axis represents the bin number.
The bin content is: bin 1 ≡ Nsv = 0 count; bins 2..57 ≡ IP − B separations for
Nsv = 1, 2, 3, 4 (14 bins each). The vertical scale is arbitrary.
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The results of the fit are plotted in figure 8.5. Plots (a)-(d) show the fitted IP-

vertex 1 separation distributions for Nsv = 1, 2, 3, 4. Plot (e) shows the fitted Nsv = 0

count as well as the other Nsv bins which are also effectively fitted by virtue of the fit

to the normalizations of plots (a)-(d). Plots (f)-(h) are the nearest neighbor secondary

vertex separations which are not included in the fit, but appear to be well-matched

nonetheless. The χ2/d.o.f. of the fit is about 1.6. There remains a small apparent

discrepancy for all of the distance plots for the few bins in the middle of the vertex

resolution scale, around 200-400 microns, indicating that the B decay model does

not predict exactly the correct kinematics. The shorter distance end of the vertex

resolution scale is well matched, indicating that the detector alignment modelling

is good. The measured udsc background level of (2.8 ± 0.3)% is consistent with

expectations of a high B tagging purity. The fit gives:

BR0D = (3.7± 1.1)%

BR2D = (17.9± 1.4)% (8.2)

with a error correlation coefficient of C0D,2D = 0.702. Varying the data and MC

histogram binning gives negligible changes to these results.

8.5 Using MC as Data

To make sure that the measurement procedure does not give any systematic biases to

the results, measurements are made on a set of 15 data-sized samples of BB̄ MC. The
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Figure 8.5: Fit results on a log scale. The stacked MC histograms are from bottom to
top: udsc background, 0D, 1D, and 2D. (a)-(d) show the IP to vertex 1 separation
[cm], (f)-(h) shows the nearest neighbor vertex separations [cm], and (e) shows the
resulting match in the vertex count distribution.
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MC shape distributions used in the fitting function are derived from an independent

unweighted MC sample with ten times the statistics of the data sample in order

to minimize statistical fluctuations in the fitting function. The true MC sample

fractions are BR0D = 2.3% and BR2D = 17.7%. The means of the 15 measurements

are BR0D = (2.4 ± 0.3)% and BR2D = (18.0± 0.4)%. There is no evidence for any

systematic bias in the method. The RMS scatter of the 15 measurements gives an

empirical check of the statistical errors calculated in the fit. The measured RMS

deviations of ∆0D = (1.0 ± 0.1)% and ∆2D = (1.5 ± 0.2)% are consistent with the

fit statistical errors in equation 8.2. An example of one of the fitted MC-as-data

distributions is shown in figure 8.6. The χ2/dof is typically close to 1.0, indicating

that the statistics of the fit is behaving as expected.

8.6 Crosscheck with tagged leptons

The results of the analysis may be cross-checked by experimentally varying the com-

position of the data sample being measured. This can be done by finding some other

measureable quantity which is sensitive to the inclusive branching fractions. One such

quantity is the momentum of leptons produced in B decays. As shown in figure B.4,

due to the larger available phase space, prompt B leptons have a harder momentum

spectrum than leptons from the cascade D decay. When the decay is boosted into

the lab frame, the Lorentz invariant transverse momentum still exhibits this separa-

tion as shown in the first plot in figure 8.7. Because in 2D decays, the virtual W

bosons must decay to charm and strange quarks, they are unable to produce prompt
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Figure 8.6: MC-as-data fit results on a log scale. The stacked MC histograms are
from bottom to top: udsc background, 0D, 1D, and 2D. (a)-(d) show the IP to
vertex 1 separation [cm], (f)-(h) shows the nearest neighbor vertex separations [cm],
and (e) shows the resulting match in the vertex count distribution.
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B leptons. The only leptons in 2D decays are therefore from decays of the D’s, and

the lepton momenta are distributed at lower values of Pt as shown in the second plot

in figure 8.7.
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Figure 8.7: Left: Measured Pt (GeV/c) for tagged leptons in the MC. Prompt B
leptons are distributed at higher Pt than the softer D decay leptons. Right: Measured
Pt for tagged leptons in 1D decays and 2D decays. The cumulative MC distribution
shape is compared with the tagged lepton distribution in the data (points). The
MC/data comparison plot has been normalized to the number of tagged leptons in
order to remove a possible small (< 10%) mismatch in the lepton tagging efficiency
normalization.

These plots contain e± tagged with showers in the innermost calorimeter (the

electromagnetic section of the liquid argon calorimeter), and µ± tagged with hits in

the outermost calorimeter (the warm iron calorimeter). The vertex/ghost axis is used

as an estimator for the B flight direction in order to calculate the lepton transverse

momentum. The high Pt tails in the distributions are presumably due to errors in

this flight direction estimator.
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The lepton tagging procedures are described in [28]. According to MC modelling,

the electron tagging efficiency is flat in momentum above 2 GeV/c and averages

∼ 62%. The electron tagging purity has been measured using pions from K0
s decays

to be ∼ 70%. The muon tag has an efficiency is ∼ 81% and a purity of ∼ 68% above

2 GeV/c according to the MC. Calibrations of these lepton tags are difficult to do,

but for the present purposes, the main concern is that the efficiencies are flat in mo-

mentum so that the tagged lepton momentum spectrum does not get distorted. The

comparison between the cumulative MC tagged lepton distribution and the tagged

lepton distribution in the data in figure 8.7 indicates a fairly good match between the

distributions.

The B decay sample fractions of the different decay categories may be varied by

requiring the measured Pt of tagged leptons to be greater than some minimum value.

By moving this cut around, the sample fractions may be continuously changed. For

example, most of the the 2D decays may be removed by requiring a high Pt tagged

lepton in each decay event in the sample.

Assuming that the B and D semileptonic decays and the D energy distributions

are correctly modelled, then for any value of the Pt cut, the MC should still make a

reliable prediction for the vertex separation distributions, provided that the same lep-

ton Pt cut is used in generating both the data distributions and the MC distributions.

The measurement technique may then be used to measure the decay type fractions in

the biased data sample. The results of repeated measurements with various minimum

Pt cuts is shown in figure 8.8. These results are shown compared with the biased frac-

tions predicted by the MC. The predicted drop in the 2D fraction with increasing Pt
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cut is observed in the data, thus showing that the measurement procedure is working.

An example of the results of the a new fit in which the data sample has been biased

to be mostly 1D is shown in figure 8.9. This plot indicates that the vertex separation

distribution shapes are being modelled correctly for the semileptonic decays in the

1D sector, both at the smaller resolution scale and the larger decay length scale. In

particular, figure 8.9(e) shows that, in a well-understood category of B decays, the

MC detector modelling produces the correct number of fake vertices.

8.7 Crosscheck with vertex charge

Another check on the MC modelling is to make the measurement separately for a

charged B sample and for a neutral B sample. With the assumption of local quark-

hadron duality, the [n]D rates are predicted to be independent of the spectator quarks

and thus independent of the charge of the B hadron. In order for the measurements

on the two samples to coincide, the MC modelling must be done correctly both for

the charged B sector and for the neutral B sector. A fundamental limitation of

this technique is that any method used to measure the charge of the B hadron will

undoubtedly introduce biases in the [n]D composition of the resulting charge-tagged

samples. These biases can only be estimated from MC studies.

The B3MASS B tagging package described in chapter 7 offers a natural way of

measuring the B hadron charge by simply summing the charges of the tracks put in

the secondary vertices [26]. This charge sum is further improved by including track

fragments called ‘VXD3 vectors’ which have good position and direction resolution
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Figure 8.8: Measured inclusive fractions as a function of the tagged lepton minimum
Pt cut (in GeV/c). Data measurements (points) are compared with the MC predicted
fractions (histogram). The min(Pt) < 0 bin represents the sample of decays with no
tagged leptons, and the min(Pt) = 0 bin represents the sample of decays with at least
one tagged lepton of any Pt
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Figure 8.9: An example of the fit giving one of the measurements plotted in figure 8.8.
Here, a minimum lepton Pt of 1.0 GeV/c is required, thereby biasing the data sample
to be mostly 1D semileptonic decays
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from vertex detector hits but did not get associated with drift chamber hits due to

inefficiencies in the tracking algorithms. When these track fragments are constrained

to go through the B3MASS secondary vertex, they are able to provide reliable track

charge information. The measured vertex charge Q is shown in figure 8.10 for the

data and the contributions from different sources as modelled by the MC.
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Figure 8.10: The measured vertex charge using fully reconstructed tracks and VXD3
vectors attached to the B3MASS secondary vertex.

The high vertex charge purity of this technique requires using only decay hemi-
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More variations of the sample composition

Sample type MC true BR0D MC true BR2D Data BR0D Data BR2D

Unbiased 2.3% 17.4% (2.9± 1.1)% (17.1± 1.3)%
MPt ≥ 2 GeV 2.3% 18.5% (3.7± 1.0)% (19.8± 1.5)%
Q = 0 2.3% 18.0% (3.2± 1.3)% (17.0± 2.1)%
Q 6= 0 2.3% 18.9% (3.4± 1.3)% (19.1± 2.1)%

Table 8.1: MC predicted sample biases for various samples and the corresponding
data measurements for various sample cuts.

spheres containing a vertex with Pt-corrected vertex mass MPt > 2 GeV/c2 in order

to reject hemispheres likely to have missing charged tracks. This requirement biases

the B decay sample composition towards higher charged multiplicity decays however.

Further model-dependent biases are introduced in creating Q = 0 and Q 6= 0 sam-

ples. The biased MC fractions and the results of the fits to the biased data sample

are shown in table 8.1. The MC predicted sample biases between the Q = 0 sample

and the Q 6= 0 sample are smaller than the data measurement statistical errors, so it

cannot be concluded that the biases are being modelled correctly. However, the Q = 0

and Q 6= 0 measurements are consistent with each other, so there is no evidence of any

problems with the MC modelling or with the local quark-hadron duality assumption.

The separate fits to the Q = 0 and Q 6= 0 samples are shown in figures 8.11 and 8.12.

No problems are seen with the modelling of either sector.
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Figure 8.11: The fit results using data and MC distributions with MPt > 2.0 GeV/C2

and Q = 0
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Figure 8.12: The fit results using data and MC distributions with MPt > 2.0 GeV/C2

and Q 6= 0
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Chapter 9

Systematic Errors

The main systematic uncertainties in this analysis are those affecting the MC pre-

dicted vertex count for each of the decay types. These can be separated into two

categories: the uncertainties due to detector modelling, and the uncertainties due to

physics modelling. The results of the systematic errors analysis discussed here are

tabulated at the end of the chapter.

9.1 Detector Effects

The detector resolution controls the ability to separate and count vertices. As dis-

cussed in chapter 6, tails in the resolution distribution lead to the production of fake

vertices and a resulting overcount. Ideally, the shape of the resolution function and

its cut-off at low vertex separation should be exactly matched between data and MC

to give a good model of the vertex count. In practice, this goal is impossible because
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of a lack of perfect knowledge of B decay physics, particularly of the daughter parti-

cle kinematics at each vertex. Using a phenomenological B decay model in the MC

gives reasonable results however, as shown in the fit to the vertex separation distribu-

tions, figure 8.5 in chapter 8. The short distance resolution given by high momentum

tracks is well-matched between data and MC, indicating that the detector alignment

is well-modelled.

Additional smearing of the tracking resolution can cause noticeable mismatches in

the short distance behavior of these plots. For example, for transverse smears of ∼10

µm, the corresponding plots are shown in figure 9.1. The fake vertices contribution

is especially evident in plot (d) which shows the overproduction of vertices for the

1D category throughout the resolution region (40-1000 µm). This 1D contribution

to this plot may be compared with the corresponding contribution to plot (b) which

shows correctly vertexed 1D decays. The transverse smearing does not affect most

of this resolution region since the longer fake vertex separation scales are induced by

multiple Coulomb scattering of lower momentum particles. Instead, the discrepancies

between data and MC caused by the smearing can be seen below 200 µm in plots (c)

and (d) where the fake vertices are presumably formed from high momentum/large

angle tracks from 1D decays.

Although the fitted distributions are somewhat sensitive to the detector resolu-

tion modelling, a better way to estimate the systematic effects is to make independent

measurements of the detector resolution. This has been done in several ways. The

smearing of the intrinsic resolution due to misalignments has been calibrated with

µ-pair miss distances as shown in chapter 2, figure 2.11. Local misalignments are
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Figure 9.1: Fit results on a log scale, using ∼10 µm smearing on MC tracks. The
stacked MC histograms are from bottom to top: udsc background, 0D, 1D, and
2D. (a)-(d) show the IP to vertex 1 separation [cm], (f)-(h) shows the nearest neigh-
bor vertex separations [cm], and (e) shows the resulting match in the vertex count
distribution.
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modelled by shifting tracks to match local mean impact parameter distributions as

shown in chapter 3, figures 3.2 and 3.3. Figures 3.5 and 3.6 of that chapter show the

match in the cumulative impact parameter distributions, both at high momentum

where alignment effects dominate and at low momentum where multiple scattering

errors dominate. These figures indicate that tracking resolution is well matched be-

tween data and MC. Figures 3.7 and 3.8 show that the error estimators are being

consistently calculated between the data and the MC and so a 3 σ probability cut

used to define vertices means the same thing in the data and in the MC. Finally, these

studies were repeated at the vertexing level using Z → τ+τ− events. In figure 5.3

the negative tail of the measured 3-prong τ decay length distribution indicates that

the resulting core vertexing resolution of the MC is well-matched to that of the real

detector. Figure 5.4 shows the match in the tails of the error distributions.

To estimate the systematic error due to detector misalignment, the fit to the vertex

separation distributions is performed both with and without the track shifts applied

to the MC detector model. Removing the track shifts corresponds to a correlated

unsmearing of the MC tracks of ∼3.3 µm in rφ and ∼9.6 µm in z. i.e. Instead of

shifting randomly about the nominal modelled track position, each track is shifted

towards a more correct position. The resulting mismatch between the data resolution

and the MC resolution is shown in figure 9.2 for the z impact parameter distributions.

A reasonable estimate of the systematic error due to uncorrelated local resolution un-

certainties is then obtained by taking half of the change in the measured values when

doing this simultaneous correlated variation of all tracks. In principle, the systematic

error could be even smaller than this estimate since the magnitude of the correlated
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variation is much larger than the errors on the mean impact parameter distributions.

However, since the precise origins of the shift effects can not be well determined, the

more conservative approach of making larger than necessary variations is adopted.
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Figure 9.2: Mismatched Data/MC comparison of Z impact parameter distributions in
4 ranges of track Pt (left to right: < 0.7 GeV/c, 0.7-2.0, 2-5, > 5) and 3 regions of | cos θ|
(top to bottom: < 0.3, 0.3-0.55, > 0.55).
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9.2 Physics Modelling Issues

A number of physics modelling issues lead to correlated effects on the measurement.

The efficiency cutoff in the vertex resolution function depends on the momentum

distribution of the tracks used for vertexing. The resolution function acts on the

true decay length distributions which in turn depend on particle type composition,

lifetimes, and boost distributions. The charged track multiplicity at each true vertex

also affects the efficiency to find the vertex, and the vertex position resolution. The

methods for estimating the modelling dependent systematic errors are described below

and the results are later summarized.

9.3 The B energy distribution in Z0 decays

The B hadron energy distribution controls the lab frame momentum of the daughter

particles created in the decay. Since the tracking resolution is dependent on particle

momentum, changes in the B energy distribution can affect the ability to find and

separate vertices. The shape of the energy distribution has recently been measured

by SLD [29]. The latest measurement [30] yields an unfolded energy distribution with

〈xB〉 ≡ 〈EB〉/45.6 GeV = 0.710±0.007. The default SLD MC generates an xB distri-

bution with 〈xB〉 ≈ 0.700 using a JETSET+LUND model for quark fragmentation.

The resulting distribution is reweighted to match the unfolded measured distribu-

tion. Both distributions are shown in figure 9.3. The ±0.007 variation is achieved

by forming a mixture of the original distribution and the reweighted distribution by

reweighting only some fraction of the sample.
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Figure 9.3: Original (dotted histogram) and reweighted (solid histogram) MC B
energy distribution. Both are normalized to unity.

The ‘opposite hemisphere tagging’ procedure could lead to small biases in the B

energy distribution which may later affect vertexing efficiency. In a 3-jet event, the

highest energy quark jet has the longest B hadron decay length on average, and is the

most likely to be tagged. The opposite hemisphere therefore is biased towards lower

quark energy and hence lower decay length on average. These energy biases may be

problematic if they are not modelled correctly in the MC. The MC predictions for

the B tagging efficiency as a function of B energy and the corresponding opposite

hemisphere energy bias are shown in figure 9.4. The predicted energy bias is much

smaller than the errors in the actual measurement of the B energy distribution, and

so the opposite hemisphere energy bias uncertainty is assumed to be included in the

xB variation above.
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Figure 9.4: Left: MC predicted B tagging efficiency εb as a function of energy. Right:
the opposite hemisphere energy bias.

9.4 Charmed hadron energies

Charmed hadrons are produced either directly from a Z0 decay or as cascade particles

from a B decay. The energy distribution of these hadrons again affects their daughter

particle momentum and hence the effective vertexing resolution. For direct D’s, the

variation of 〈xD〉 ≡ 〈ED〉/45.6 GeV = 0.484 ± 0.008 suggested by the LEP Heavy

Flavor Electroweak Working Group in [31] is used. The variation shown in figure 9.5

is performed by fitting the MC energy distribution to a Peterson function:

P (xD) ∼ 1

xD ∗ (1− 1/xD − ε/(1− xD)2)
. (9.1)

The mean energy is then changed by varying the parameter ε. In principle, changes in

the xD distribution might change the vertexing efficiency in charm decay hemispheres

and cause the background to look slightly more or less similar to B → 0D topologies.

However, the 0D measurement appears to be very insensitive to this variation.
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Figure 9.5: Original and reweighted MC D scaled energy (xD = ED/45.6 GeV)
distribution in Z0 → cc̄ events. Only events that are mistakenly tagged as Z0 → bb̄
events are histogrammed.

In the case of cascade D’s from B decays, the D energy distribution is also in-

versely correlated with the prompt B vertex particle multiplicity and energy. The

more energy the D has, the less phase space is left for the other particles produced

at the B vertex. Measurements by CLEO of the cascade D0 and D± momentum

distributions have been reported in [15]. The corresponding results for Ds and Λc

can be found in [32] and [33] respectively. For D meson production, variations of

these momentum distributions must be done carefully so that the tabulated mea-

sured branching fractions for various classes of decays such as semileptonic decays

do not get inadvertantly changed. So, only the momentum distributions for untab-

ulated decays producing D mesons are varied. These include the 1D Matrix 0, 8,

and 9 decays discussed in appendix B. For c-baryon production, both tabulated and

untabulated modes are varied. The variable part of the momentum distributions for
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D0’s, D±’s, and c-baryons are each fitted with Peterson functions. The functions

are then varied until the total energy distribution from tabulated and untabulated

modes reproduces the mean scaled momentum 〈x〉 ≡ 〈p〉/4.95 GeV for each of the

CLEO distributions. Since only 1D modes are varied, these changes can be made

independently of each other. (The variation of the 2D model is described below.)

The MC events are then reweighted to the new functional form in order to make the

branching fraction measurement. To estimate the error from the uncertainty in the

〈x〉’s in the CLEO distributions the measurement is made using an un-reweighted MC

to define the [n]D categories. These variations are larger than the apparent errors on

the 〈x〉 of the data distributions. However, since numerical values for the 〈x〉’s are

not reported in the CLEO publication, these larger variations are used to estimate

the (small) systematic error. The reweighted distributions and variations are shown

in figures 9.6 and 9.7.

9.5 Heavy hadron lifetimes

As argued in chapter 5, the figure of merit in determining vertexing resolution is

the ratio of the transverse track resolution to the decaying particle’s lifetime. Heavy

hadron lifetimes have been fairly well measured at the 1-6% level, and so small vari-

ations may be made in the MC by reweighting the exponential proper time distri-

butions for each hadron type to lengthen or shorten the distributions. The current

PDG numbers are used for the variations.
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Figure 9.6: c-meson scaled momentum x = P/4.95 GeV, MC comparison with CLEO
data. (a),(c) MC D0, D± reweighted to match 〈x〉. (b),(d) un-reweighted MC D0,
D± for the variation. All histograms are normalized to unity for shape comparison.

Figure 9.7: c-baryon scaled momentum x = P/4.95 GeV, MC comparison with CLEO
data. Left: MC reweighted to match 〈x〉. Right: un-reweighted MC for the variation.
All histograms are normalized to unity for shape comparison.
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9.6 B species

For the composition of b hadron types produced in Z0 decays, the LEP recommen-

dations in [34] are used.

fBs = 0.105± 0.018 (9.2)

fΛb
= 0.101± 0.039 (9.3)

fB± = fB0 =
1− fBs − fΛb

2
(9.4)

where fΛb
represents the fraction for all kinds of b baryons.

9.7 0D composition

The 0D topology is modelled with charmonia producing modes such as B → J/Ψ X

in the SLD MC. While rare B decays such as b → u and b → sg are expected to

produce the same single vertex topology, the kinematics may be slightly different,

and so the vertex finding efficiency and fake rate might also be different. To estimate

the magnitude of these effects, b → u and b → sg MC is also generated and mixed in

with the standard charmonia modes.

The JETSET generator [35] is used to produce b → u decays via flat phase space

sampling. For each Z0 decay event, one hemisphere is forced to undergo a b → u

quark decay, while the other hemisphere is allowed to decay freely via the SLD B

decay model. The b → u hemispheres therefore do not suffer any bias in the opposite

hemisphere B-tagging procedure. Similarly b → sg hemispheres are generated using
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a model created by Kagan and Rathsman [12] which simulates the production of hard

kaons. In order to be able to accomodate rare decay rates as large as the theoretical

expectation [3] of

BRrare ≡ rrare · BRSL ≈ (2.6± 1.1)%, (9.5)

the 0D sample fractions for each of b → u and b → sg are varied from 0 to 50%. This

procedure varies BRrare to be as large as BR(cc̄) = 2.3%±0.3%. For the central value

of the measurement, only (cc̄) modes are used.

9.8 1D composition

For the 1D sample, variations of the fractions fD±, fDs , and fΛc are made with

compensating variations in the largest fraction fD0. The magnitudes of the variations

are contrained by the CLEO D counting measurements which utilize reconstruction

of exclusive decays [15] [32], [33], [36]. T

For fD± , it is assumed that 80% of the D± counted in the CLEO measurement

come from the lower vertex 1D category. Hence, ∼ 80% of the measurement error

is applied to the MC fraction. The same variations are applied to Bs and b baryon

decays, although it is not obvious that the CLEO measurements really apply. How-

ever, the effects of the variations are generally small, so a rigorous methodology is not

necessary. The only exception is in charm baryon production where the CLEO meson

decay errors are rather large, and so the corresponding variations are not applied to b

baryon decays. The variations of the c-hadron momentum distributions have already

been described above.
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The last variation is that of the assumed B semileptonic decay rate into electrons,

muons and taus. The raw MC is reweighted such that the induced rates for each of

these processes (assuming the measured values of the BR[n]D) match the correspond-

ing world averages. The weights are then varied to reproduce the measurement errors.

For e± and µ±, a variation of BRSL = 0.1071± 0.0022 [6] is used. For τ±, a value of

BR(b → τ−ν̄X) = 0.0243± 0.0032 [37] is used. Although the decays producing both

a τ± and a D could mimic 2D decays, the systematic errors due to these variations

are very small.

9.9 2D composition

The modelling of the 2D category is based on measurements by CLEO of B →
D

(∗)
s D̄(∗)X and B → D(∗)D̄(∗)K modes. This modelling is described in appendix B.

Since the MC modelling defines the 2D modes for the BR2D measured in the present

analysis, variations of the modelling are necessary in order to estimate the possible

deviations of the results from the true BR2D.

The measured Ds momentum spectrum shown in figure B.3 has two components: a

high momentum peak due to two-body D
(∗)
s D̄(∗) decays, and a wider, lower momentum

n-body spectrum (n ≥ 3). Figure 9.8 shows various possible contributions to the

observed spectrum from different decay modes as modelled by CLEO. To vary the SLD

modelling, first the branching ratios for the four two-body decays to D
(∗)
s D̄(∗) are each

varied within their respective errors (∼ 30%) for the exclusive mode measurements

by CLEO.

121



Next, the kinematics of the n-body decays is varied. Although the CLEO mea-

surements indicate that the n-body spectrum is dominated by three-body decays,

the SLD modelling includes decay modes with multiple pion/kaon production and

appears to be slightly softer than the data spectrum. To get a better match to

the data, the spectrum is fit to a Gaussian with mean scaled momentum 〈xDs〉 ≡
〈PDs〉/4.91 GeV/c = 0.194 and then reweighted to a Gaussian with a higher mean,

〈xDs〉 = 0.234. This reweighted MC is used for the central value of the measurement.

The procedure is repeated to vary the distribution within the errors of the measured

xDs distribution: ∆〈xDs〉 = ±0.03. These variations, shown in figure 9.9 change not

only the boost of the D, but also the prompt charged track multiplicity of the B de-

cay and are thus expected to change the MC predictions for the number and distance

distributions of found vertices.
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Figure 9.8: The CLEO B decay Ds energy distribution. The solid histogram
represents the assumed Ds

(∗)+D̄∗ component, the dotted histogram represents the
Ds

(∗)+D̄∗∗ component, and the dashed histogram is the Ds
(∗)+D̄∗π/ρ contribution.
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Figure 9.9: Variation of the Ds scaled momentum x=P/4.91 GeV spectrum (B rest
frame) for ≥ 3-body B → DsX. The solid histogram represents the model used for
the present analysis, and the dotted histogram represents the shape variation. Left:
Only the ≥ 3-body decays. Right: The effect on the inclusive B → DsX decays and
comparison to CLEO data points. (Note: the CLEO measurements are in the Υ(4s)
rest frame and have a little extra momentum smearing due to the average 340 MeV
B momentum.)

Preliminary measurements for the exclusive branching ratios of several of the

B → D(∗)D̄(∗)K modes have been reported in [38]. These modes, and corresponding

modes derived through strong isospin rotation are used for the MC modelling. Addi-

tional decay modes producing K∗ instead of K are included to make the cumulative

wrong sign D branching fraction match the inclusive CLEO measurement [39]. To

vary the modelling, the DD̄K, DD̄∗K, D∗D̄K, and D∗D̄∗K modes are each varied

within the corresponding CLEO measurement errors. For each measured mode, the

other modes derived by charge conjugation or isospin rotation, or by changing the

K to a K∗ are simultaneously varied by the same relative amount. For example,
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when doing a variation of the DD̄K modes, the B− decays to D0D̄0K−, D0D−K̄0,

D0D̄0K∗−, and D0D−K̄∗0 modes are all simultaneously weighted up or down by the

same multiplicative factor along with the corresponding modes for B+, B̄0, B0, B̄s,

and Bs decays.

The above types of variations within each decay class are each expected to change

the predicted charged track multiplicity at the B vertex and affect its visibility. An-

other possible variation is to change the relative overall magnitudes of the D
(∗)
s D̄(∗)X

and D(∗)D̄(∗)K(∗) contributions to the modelled 2D category. However, since each of

these two decay classes is expected to produce some number of pions (or kaons) in

addition to the D mesons, the MC predicted vertex count distributions (figure 9.10)

for the two classes are rather similar. While this similarity precludes the possibil-

ity of measuring the two classes separately, it also makes the measured BR2D fairly

independent of the relative fractions of the two classes used for the modelling. The

correlated variation of the overall magnitudes of each class causes smaller systematic

effects than the previously discussed variations of the branching ratios within each

class. The small systematic error from this source is evaluated by varying the overall

branching fractions into each class by the errors in the world measurement averages

for wrong sign Ds and wrong sign D production [11]. The systematic uncertainties

produced through all of the discussed variations of the 2D modelling are small enough

that correlations among the variations are ignored.
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MC predicted Nsv (D D K decays)MC predicted Nsv (Ds D decays)

Figure 9.10: MC predicted found secondary vertex count for B → D
(∗)
s D̄(∗)X (left)

and B → D(∗)D̄(∗)K(∗) (right) decays. Each histogram has been normalized to unit
weight.

9.10 Charged particle multiplicity

In order for vertices to be detected, the decays must produce at least one charged

daughter particle. For D0, D±, and Ds, the multiplicities have been measured by

MARKIII [40]. The multiplicity distributions are varied within the errors of these

measurements by using the LEP procedure described in [31].

No direct measurements exist of the B prompt charged daughter multiplicity.

However, DELPHI has measured the total B decay multiplicity to be 4.97 ± 0.07

charged particles, excluding products of Ks
0 or Λ decays. The B vertex multiplicity

in the 1D category is varied in order to reproduce this ±0.07 track uncertainty. In

principle, this variation of the prompt B vertex multiplicity should already be covered

by the D energy variations discussed earlier, and might be double counted here.
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No direct measurements exist for charm baryon multiplicities either, and so the

shape of the distribution is arbitrarily reweighted in order to shift the average by 0.3

tracks.

9.11 Tracking Efficiency Modelling

Small mismatches in the overall track count are observed between data and MC, with

typically an excess of tracks found in the MC. Although these differences could be

due to improper modelling of quark fragmentation, they could also be due to small

errors in the tracking efficiency. To correct for this effect, tracks are binned in regions

of solid angle and of momentum. In each bin, found MC tracks are randomly thrown

away until the average bin counts match the counts seen in the data.

The entire difference between the measurement results with the tracking correc-

tions turned on and off is taken to be the systematic uncertainty. The procedure

may really be correcting a tracking overefficiency in the MC. Alternatively, if the

track overcounts were really caused by overproduction of fragmentation tracks, the

procedure could be introducing a false underefficiency for finding heavy flavor decay

tracks. The systematic error derived from this procedure therefore really is two-sided

though probably not distributed as a Gaussian.
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9.12 cc̄ and bb̄ popping

In the jet fragmentation process, g → cc̄ and g → bb̄ processes may lead to production

of additional vertices unrelated to the sample of primary B hadron decays being

studied. To give an accurate model of this extra vertex contamination, the SLD MC

is reweighted to give g → cc̄ and g → bb̄ rates of 2.33%±0.50% and 0.269%±0.067%

as suggested in [34].

9.13 MC statistics

The analysis uses a MC sample with 25 times as many events as in the data sam-

ple. Since the fitting functions are modelled with shapes derived from the MC, the

error from having finite MC statistics might be expected to be about a factor of 5

smaller than the data statistical error. To evaluate the MC statistics error, events in

the MC sample are numbered and the MC sample is broken up into five subsamples

which contain every 5th event. Separate measurements are made on the same data

sample using the sets of functions derived from each MC subsample. The RMS of

the measurement results gives an estimate of the MC statistics error for a subsam-

ple measurement. Since the RMS is poorly determined using only 5 independent

measurements, the actual number used is the sum of the RMS and the error in the

RMS. Finally, whatever the functional form of the MC statistics error, it must scale

as 1/
√

NMC where NMC is the number of MC events. The subsample measurement

error is therefore divided by a factor of
√

5 to estimate the error on the measurement

made with the full MC sample. The MC statistics error estimated in this way is only
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slightly smaller than the data statistcal error. The calculated correlation between

the systematic fluctuations of the measurements of BR0D and BR2D is about 0.92,

indicating that most of the compensating fluctuations are in BR1D.
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Source Variation δBR0D(%) δBR2D(%)

vertex resolution track shifts on/off ±0.08 ±1.70

b energy 〈Xb〉 = 0.710± 0.007 ±0.12 ∓0.22

bkgd c energy 〈Xc〉 = 0.485± 0.09 ∓0.00 ∓0.04

(b → c) energy 〈XD0〉 = 0.2523± 0.0072 ±0.08 ±0.09

〈XD±〉 = 0.2660± 0.0110 ∓0.06 ±0.13

〈XΛc〉 = 0.1690± 0.0124 ∓0.03 ∓0.03

B± lifetime 1.65 ps ±2.4% ∓0.05 ∓0.26

B0 lifetime 1.55 ps ±2.6% ∓0.05 ∓0.32

Bs lifetime 1.57 ps ±4.6% ∓0.03 ∓0.13

b baryon lifetime 1.22 ps ±6.5% ∓0.11 ∓0.11

D0 lifetime 0.420 ps ±1.0% ±0.15 ∓0.21

D± lifetime 1.067 ps ±1.4% ±0.02 ∓0.08

Ds lifetime 0.450 ps ±3.6% ∓0.08 ∓0.24

c baryon lifetime 0.19 ps ±5.8% ±0.31 ∓0.02

b species fBs = 0.105± 0.018 ∓0.02 ±0.10

fΛb
= 0.101± 0.039 ∓0.84 ±0.45

g → cc̄ rate (2.33± 0.50)% ±0.01 ∓0.16

g → bb̄ rate (0.269± 0.067)% ∓0.01 ∓0.27
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Source Variation δBR0D(%) δBR2D(%)

0D Model frac. b → u : 0.0 → 0.5 ∓0.20 ±0.60

frac. b → sg : 0.0 → 0.5 ∓0.78 ±0.22

1D Model fD± ± 0.0163 ±0.39 ∓0.01

fDs ± 0.0187 ±0.11 ±0.14

fΛc ± 0.0131 ∓0.64 ±0.10

BRSL = (10.71± 0.22)% ±0.08 ±0.12

BRτ±X = (2.43± 0.32)% ±0.01 ±0.00

2D Model n-body xDs = 0.234± 0.030 ±0.24 ±0.36

BR(B → D+
s D̄) = (1.10± 0.35)% ±0.09 ±0.19

BR(B → D+
s D̄∗) = (1.12± 0.36)% ±0.09 ±0.20

BR(B → D∗+
s D̄) = (0.89± 0.31)% ±0.08 ±0.18

BR(B → D∗+
s D̄∗) = (2.41± 0.74)% ±0.14 ±0.39

BR(B → DD̄K) = (0.25± 0.25)% ∓0.13 ∓0.47

BR(B → DD̄∗K) = (0.50± 0.35)% ∓0.17 ∓0.48

BR(B → D∗D̄K) = (0.50± 0.30)% ∓0.07 ∓0.21

BR(B → D∗D̄∗K) = (1.50± 0.85)% ∓0.28 ∓0.39

inc. wrong-sign Ds rate = (9.8± 3.7)% ±0.19 ±0.41

inc. wrong-sign D rate = (8.2± 1.3)% ∓0.11 ∓0.25
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Source Variation δBR0D(%) δBR2D(%)

B prompt tk mult 4.97± 0.07 ∓0.05 ∓0.92

D0 tk mult. wgt 0-prongs ∓0.64 ±0.29

wgt 4-prongs ∓0.03 ∓0.28

wgt 6-prongs ∓0.17 ∓0.26

D± tk mult. wgt 1-prongs ±0.01 ±0.46

wgt 5-prongs ∓0.03 ±0.11

Ds tk mult. wgt 1-prongs ±0.03 ±1.47

wgt 5-prongs ∓0.14 ±0.15

c baryon tk mult. 2.269± 0.302 ∓0.96 ±0.79

tracking efficiency reject excess MC tks ±0.25 ∓0.81

MC statistics using 5 MC subsamples ±0.70 ±0.86

Total 2.1 3.3
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Chapter 10

Discussion of the Results

10.1 The Results

The results of the measurement are:

BR(B → (0D)X) = (3.7± 1.1± 2.1)% (10.1)

BR(B → (2D)X) = (17.9± 1.4± 3.3)% (10.2)

where the first error is statistical and the second is systematic. The correlation

coefficients between the two measurements are C0D,2D = 0.702 and −0.080 for statis-

tical and systematic errors, respectively. Nc is calculated using a value of BR(cc̄) =

(2.3± 0.3)% [11] in equation 1.11:

Nc = 1.188± 0.010± 0.040± 0.006. (10.3)
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Here, the third error is due to the uncertainty in BRcc̄. Limits on BRrare may be set

using equation 1.12:

BRrare = (1.4± 2.4)%. (10.4)

The measured value of Nc is plotted in figure 10.1 and compared with the LEP and

CLEO measurement averages discussed in [10] and [11], and with the theoretical

region discussed in chapter 1. BRrare is consistent with the theoretical expectation of

(2.6± 1.1)% [3]. Since the fractions add up to unity, figure 10.1 indicates that BR2D

is also consistent with theoretical calculations.
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Figure 10.1: The SLD measurement of Nc compared with measurements of Nc and
BRSL by LEP and CLEO and with theoretical expectations. Since the SLD BRSL

measurement [41] has not been finalized, the SLD Nc result is shown as a horizontal
band on this plot.
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10.2 Discussion of other measurement techniques

Several techniques have been employed to measure Nc in B decays and a nice summary

may be found in [11]. The measurement averages shown below are taken from this

reference.

10.2.1 Exclusive reconstruction techniques

The first class of measurements uses exclusive reconstruction of D decay modes to

count open charm hadrons. The D count may be supplemented by determinations

of BR(cc̄) to obtain the charm count. The largest common systematic uncertainty in

these analyses is the uncertainty in the branching ratio of the exclusive D decay mode

used (D0 → K−π+, D+ → K−π+π+, D+
s → φπ+, φ → K+K−, etc). The correlated

systematic errors account for about half of the total measurement errors. The LEP

and CLEO averages for this technique are:

Nc,LEP = 1.176± 0.039± 0.063 (10.5)

Nc,CLEO = 1.130± 0.041± 0.045 (10.6)

where second error indicates the correlated errors from the c-hadron branching frac-

tion uncertainties.

A variant of the exclusive reconstruction technique is to tag the sign of the de-

caying B hadron using leptons or kaons produced in the decay of the other B hadron

in the event. The sign of the exclusively reconstructed D may then be used to deter-
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mine the wrong-sign D fraction and hence BR2D. Again these techniques are directly

correlated through the uncertainty in the exclusive D decay rates and the charmonia

production rate. A further problem is that to calculate Nc via equation 1.11, these

BR2D measurements must be supplemented with measurements (or guesses) of either

BR0D or BR1D.

To date, the values of Nc determined using wrong-sign D measurements have

not calculated using a consistent methodology and are thus not included in the ex-

perimental comparison plots, figures 1.2 and 10.1. In reference [11], for example,

measurements of

rD ≡ BR(B̄ → D̄ X)/BR(B̄ → D X) (10.7)

are used together with measurements of the unsigned open charm count to extract

BR2D. The values obtained are:

BR2D,LEP = 0.247± 0.039± 0.043 (10.8)

BR2D,CLEO = 0.174± 0.030± 0.029 (10.9)

where the second error again represents the correlated systematics. The measure-

ments of the wrong-sign D rate and the unsigned D rate together are enough to

determine BR1D and BR0D as well since the second measurement alone is enough to

determine Nc − BRcc̄. Instead, the authors arbitrarily ignore this information and

calculate Nc using an independently determined smaller experimental value of BR0D

(and hence a larger BR1D). This procedure is equivalent to assuming without justi-

fication that the efficiency for detecting wrong-sign D’s is greater than the efficiency
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for detecting correct-sign D’s in the measurement of the total D rate. If the correct

values for BR0D and BR1D are used, then the calculated Nc would of course coin-

cide with the value calculated using the unsigned D rate measurement alone. The

only new information really obtained by combining the two measurements is that the

implied BR0D value is anomalously high.

10.2.2 Topological techniques

The second class of measurements uses topological and kinematic information about

the B decays in order to make inclusive measurements of the 0D, 1D, and 2D cate-

gories. The present analysis as well as an impact parameter-based measurement by

DELPHI [13] are included in this class. Whereas DELPHI’s technique relies on the

number of D decay tracks found at the impact parameter scale c·(τB + τD) in order

to separate 1D and 2D decays, the SLD analysis actually reconstructs the vertex

topology. The SLD measurements are consistent with the DELPHI measurements of

BR0D,DELPHI = (3.3± 2.1)% (10.10)

BR2D,DELPHI = (13.6± 4.2)% (10.11)

Using the same BRcc̄ as above, these measurements give:

Nc,DELPHI = 1.149± 0.046 (10.12)
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The common systematics between the SLD and DELPHI measurements include the

modelling of the decay categories since most details of the B decay modelling come

from common sources. The BRcc̄ value must again be used as well to extract Nc from

either analysis. However, the largest systematic error in each analysis is the detector

resolution uncertainty which is obviously not correlated with the results of any other

measurement.

The sizable correlations among the measurement techniques is a little worrisome.

However, the dominant systematic uncertainties (exclusive D decay rates, detector

resolution) for the two classes of measurements are different so that systematic biases

in the measurement averages are ameliorated. Correlations between the topological

method and the exclusive reconstruction method appear to be small. For example,

the modelling of the 2D category in the topological method comes directly from

the wrong-sign D0, D±, and Ds rates discussed above and so uncertainties in the

c-hadron branching fractions can affect the modelling. As shown in chapter 9, the

SLD measurement is only mildly dependent on variations of the 2D modelling.

10.3 Conclusions

The overall experimental picture shows consistency among the various experiments.

The new SLD results for BR0D, BR2D, and Nc are consistent with the previous

measurements listed above. However, the central value of the SLD Nc result is slightly

higher than that of previous measurements and should pull the world average more

into the theoretically preferred region in figure 10.1.
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The measurements of Nc and BRSL are in good apparent agreement with the

predictions of local quark-hadron duality and the heavy quark effective theory. How-

ever, the region of agreement in figure 10.1 still corresponds to an uncomfortably low

value of the renormalization scale µ/mb ≈ 0.25. The calculated NLO hadronic rates

(figure 1.1) begin to blow up as µ is lowered causing the predicted BRSL to decrease

more and more rapidly as µ approaches ΛQCD. This runaway behavior in the calcu-

lation as well as the substantial difference between the NLO and the LO calculations

shown in this figure suggest that the perturbative calculation has not yet converged.

Similar remarks apply to the slightly differrent rūd and rc̄s calculations [7] used to

generate the theory region in figure 10.1. NNLO calculations are needed before any

definite conclusions may be drawn.

As for experiments, future improvements in the measurement of Nc through ex-

clusive reconstructions may be achieved mainly through precision measurements of D

decay rates, in particular the rate BR(D0 → K−π+). The current best measurements

(by CLEO and ALEPH) are already close to being dominated by systematic errors,

and so improvements may be most easily obtained at a future dedicated tau-charm

factory.

For the inclusive topological techniques, future improvements will come naturally

as measurements of B decay properties from the B-factories become available for MC

B decay modelling. Improved detector resolution should also help in reconstructing

the decay topologies. Improvements in resolution can increase the analyzing power of

the topological measurement by increasing the efficiency to separate vertices at short

decay length and thus provide greater differences in the expected 1D and 2D vertex
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count distributions. The greater analyzing power should reduce the susceptibility of

the technique to systematic uncertainties in the modelling.

More importantly, the track measurement tails must be under control. Figure 8.1

indicates that tail production of fake vertices is at least a 10-20% effect, causing a

large dilution of analyzing power and also a large errors in the analyzing power due

to uncertainties in the vertexing resolution. The low momentum track error tails

may be reduced by using less detector material which might cause multiple Coulomb

scattering. The high momentum track error tails due to local detector misalignments

may be reduced by collecting enough data to achieve a very precise alignment. If a

detector has such good resolution that the typical distance scale characterizing the

tails is still smaller than the decay length scales of interest, then a larger vertex χ-

squared cut may be used to make the measurement using the tail resolution rather

than the core resolution of high momentum tracks. Such good tail resolution is again

only achievable after a precision detector alignment.
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Appendix A

Theoretical Background

The Standard Model is the best known description of the strong, weak, and elec-

tromagnetic interactions. It is formulated as a strictly Lorentz invariant quantum

field theory and thus satisfies the principle of causality and provides a local descrip-

tion of physical phenomena. The structure of a Langrangian field theory such as

the Standard Model is completely determined by the symmetry groups describing the

interactions, the representations that the fields transform as, and the way the symme-

tries are broken. The model can then be constructed by writing down the Lagrangian

as a sum of the kinetic terms for the fields as well as all possible renormalizable1

interaction terms allowed by the symmetries and the symmetry breaking mechanism.

The strengths of the low energy couplings are not determined by any known principle

1The finite set of allowed interaction terms whose coupling constants have positive semi-definite
mass dimension are called ‘renormalizable’ because all divergences in loop integrals can be absorbed
into redefinitions of that same set of coupling constants. The infinite set of interactions whose
coupling constants have negative mass dimension are deemed ‘irrelevant’ because by dimensional
analysis, their effects at energy k must be suppressed with powers of (k/M) for some presumably large
mass scale M. The low-energy effective action then only contains the renormalizable interactions.

141



(other than the anthropic principle), and can only be measured in experiments.

A.1 The Standard Model

The Standard model has the gauge symmetry group SU(3) × SU(2) × U(1). The

field content and representations are:

Spin Name Gauge Representation

0 Higgs scalars: (φ) (1, 1, 0) or (1, 2, +1/2)

1/2 left-handed leptons: (eL, νe), (µL, νµ), (τL, ντ ) (1, 2, +1/2)

1/2 right-handed charged leptons: eR, µR, τR (1, 1, -1 )

1/2 left-handed quarks: (uL, dL), (cL, sL), (tL, bL) (3, 2, -1/6)

1/2 right-handed u-type quarks: uR, cR, tR (3, 1, 2/3)

1/2 right-handed d-type quarks: dR, sR, bR (3, 1, -1/3)

1 SU(3) connections (gluons, or g) (8, 1, 0)

1 SU(2) connections (1, 3, 0)

1 U(1) connection (1, 1, 0(adjoint))

In the spontaneous symmetry breaking paradigm, the Higgs potential energy density

V (φ) = −µ2 · (φ · φ) + λ · (φ · φ)2 (A.1)

causes the Higgs field(s) to condense in the vacuum as the universe cools to a tem-

perature T 4 < µ4/λ. An emergent vacuum expectation value for any component of
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the Higgs field, for example:

〈φ〉 =

√
µ

2λ
(A.2)

is a non-vanishing order parameter and so a 2nd-order phase transition occurs in

which the SU(2) × U(1) is spontaneously broken to a single U(1) whose generator

is a linear combination of the two original Cartan generators. This remaining U(1)

describes the electromagnetic force, and its connection is the photon field Aµ. In

analogy with the Meissner effect in superconductors, the connections corresponding

to the broken symmetries become massive and mediate short-range interactions. The

connection corresponding to the broken orthogonal combination of Cartan generators

gives the massive Z0 vector boson which mediates neutral current weak interactions.

The connections corresponding to the SU(2) ladder operators become the massive W±

vector bosons which mediate the charged current weak interactions. The B hadron

sample studied in in this document are created in Z0 decays and they in turn decay

weakly via virtual W± emission.

The quark and lepton matter fields are arranged in three copies or ‘genera-

tions.’ For example, there are three flavors of up-type (SU(2) isospin +1/2) quarks

u′i ≡ (u′, c′, t′) and three flavors of down-type (isospin -1/2) quarks d′i ≡ (d′, b′, t′). The

primes here indicate that these fields are the flavor eigenstates which the W± couples

to. The Hamiltonian eigenstates ui and di are expected in general to be superpositions

of fields with identical gauge quantum numbers.

ui ≡ (M−1)ij · u′j, di ≡ (N−1)ij · dj, (A.3)
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where Mij and Nij are unitary matrices. The coupling of the W± to the quark fields

can then be written in terms of the quark mass eigenstates as:

Lint ∼ ūi ·M †
ik · γµ(1− γ5)W±

µ ·Nkj · dj (A.4)

∼ ūi · γµ(1− γ5)W±
µ · Vij · dj (A.5)

where the Cabbibo-Kobayashi-Maskawa (CKM) matrix Vij has been defined as:

Vij ≡ M †
ik ·Nkj. (A.6)

The CKM matrix parameterizes the observable effects corresponding to the dressing

of the flavor eigenstates by the interaction terms. Measurements of Vij indicate that

the matrix is mostly diagonal. Furthermore, b-hadrons are seen to primarily decay to

c-hadrons, indicating that b → u W transitions are quite rare: Vub � Vcb.

The Standard Model has a total of 19 free parameters to be determined by exper-

iment:

2 symmetry breaking couplings (µ, λ)

6 quark masses

3 lepton masses

3 gauge couplings

3 quark mixing angles in Vij

1 complex phase in Vij

1 angle characterizing the QCD vacuum
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In addition, if recent measurements are correct and neutrinos do indeed have mass,

this list must be augmented to include the neutrino masses and a lepton mixing

matrix as well.

A.2 A conundrum in high energy physics

A great deal of effort has been made on the part of both theoretical and experimental

physicists to verify the perturbative predictions of the Standard Model. Through this

process, the Standard Model has become recognized as the most accurate model of

the relatively low energies that present day experiments are able to probe. Indeed,

the current program of high precision measurements is predicated on the assumption

that deviations from SM predictions are indicators of new physics present at higher

energy scales.

However, the situation is not as clear for phenomena which must be described non-

perturbatively in the SM. Particularly troubling is the SU(3) description of the strong

force which is asymptotically free at large energy scales but becomes strongly coupled

at low energies ΛQCD around the proton mass.2 This energy scale characterizing the

breakdown of perturbation theory may be defined implicitly by αs(ΛQCD) = 1, where

αs is the SU(3) coupling constant squared. Attempts to predict non-perturbative

phenomena by numerically evaluating path integrals have had some limited success

in predicting the energy spectrum of bound states, but there is still no real firm

2In order to minimize the chromo-electromagnetic potential energy due to locally isolated color
charge, quarks and anti-quarks are confined in color-neutral bound states called hadrons. Since
ΛQCD characterizes the typical binding energy, it is reasonable to expect that ΛQCD is approximately
the proton mass.
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theoretical understanding of basic empirical observations such as the mass gap, quark

confinement, and chiral symmetry breaking.

In heavy flavor physics, the computational problem can be simplified by employ-

ing the spectator model. In the approximation that the heavy quarks b and c have

masses much larger than the QCD scale, the heavy flavor physics decouples from the

lower energy QCD effects involving the light quarks. In this limit, the light quarks

become independent spectators of whatever is happening to the heavy quarks. Effects

from interactions between the heavy and light quarks are presumably suppressed by

powers of ΛQCD/MQ where MQ is the heavy quark mass scale. Furthermore, in the

hadronization process after the weak decay, interactions between the decay products

from the W and the spectator quarks are suppressed by a statistical color factor

(1/Nc)
2, where Nc is the number of colors. Effects due to the spectator quarks are

therefore believed to be only refinements to the basic heavy quark decay process. Us-

ing this assumption (local quark-hadron duality), the hadronic decay matrix elements

needed to predict the physical decay rates may be approximated with quark decay

matrix elements. The latter transition probabilities can be calculated using operator

product expansions in the heavy quark effective theory.

Within perturbation theory, a persistent problem in heavy quark QCD predic-

tions is the dependence of the calculations on the renormalization scale µ through

the running of the strong coupling constant αs. To obtain a convergent perturbative

expansion, µ should be chosen to be around the typical energy scale in the process,

in this case the heavy hadron binding energy. Luckily, these binding energies are

sufficiently larger than ΛQCD such that QCD interactions may indeed be treated per-
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turbatively within this regime. Computations truncated at a given order in αs have

a µ dependence since the precise value of µ influences the magnitude of the higher

order terms which are being neglected. Of course, the µ dependence may be reduced

by including more higher order terms, but this procedure can be very computation-

ally intensive, involving hundreds of diagrams even at 2-loops. In practice, precise

theoretical predictions are rarely possible and even the extraction of useful informa-

tion from experimentally measureable quantities is often difficult. Nevertheless, hard

experimental data can sometimes be used to validate or invalidate certain theoret-

ical assumptions and approximation procedures, and to reduce uncertainties in the

experimental inputs to theoretical calculations.
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Appendix B

Modelling the Decay Categories

B.1 Issues in modelling the vertex count

The 0D, 1D, and 2D branching fractions measured in the analysis are defined in

terms of the SLD Monte Carlo, in particular by the B decay modelling. Information

about the modelling is therefore necessary in order to properly interpret the results.

For a vertex counting analysis, the main issues to be considered in the B decay model

are the correct rate of production of visible vertices and the correct production of

decay length distributions. In order to find a vertex, it first must have detectable

charged tracks emanating from it. Vertices with no associated charged particles are

an unavoidable inefficiency in the vertex count, and must be accounted for in the

modelling. Kinematics also plays a role since vertices with only low Pt particles may

not be distinguishable from other vertices elsewhere along the decay chain. More

specifically, the resulting low Pt tracks tend to be consistent with more than one true
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decay point. For example, the slow pion from a D∗ decay is an excellent estimator

for the true D flight path and hence it should vertex well with the B vertex as well

as the D vertex. Then, about half of the time, it will be captured by the D causing

the B vertex to be harder to detect.

An accurate model of the decay kinematics is necessary to predict the efficiency

for separating vertices. A feature of the cascade structure of B decays is that the

kinematics of the B vertex is somewhat correlated with the kinematics of the D

vertex. The higher the energy of the D meson, the less phase space is available to

create particles and transverse momentum at the B vertex. The modelling of the

momentum spectrum of the various D species should therefore be sufficient to mostly

constrain the phase space available to produce direct B daughter particles.

The vertex separation efficiency also depends on the D decay length distributions

which are controlled by the B rest frame D momentum distribution ‘convolved’ with

the B boost distribution. The latter distribution is generated through the quark

fragmentation model in LUND which is tuned to produce an 〈xB〉 ≡ 〈EB〉/MZ0

of 0.700. The generated distribution is reweighted to reproduce the unfolded SLD

measured distribution with 〈xB〉 = 0.710 as shown in figure B.1.

Other data distributions to be matched include the B and D decay lepton spec-

trum, the charged particle multiplicity distribution, and the production rates of var-

ious light hadron species. The B decay model and its reproduction of independently

measured data are discussed below.
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                     x B

Figure B.1: The LUND raw B scaled energy distribution (dashed histogram) is
reweighted to reproduce the sharper SLD measured distribution (solid histogram).

B.2 The SLD B decay model

The SLD B decay model uses a combination of the JETSET [35] and CLEO [43] decay

models.1 The organizational structure of the two models is similar. For each unstable

particle, a list of possible decay modes is tabulated, along with the desired branching

fraction into each mode. Each decay mode is described using a list of daughter

particles produced in the decay as well as some specific instructions on generating

the decay kinematics. If no specific instructions are given, then the kinematics are

determined using random phase space sampling. In the SLD MC, the CLEO table

and associated software is used for Bu, Bd, and Bs meson decay. The JETSET code

is used for everything else, including decays of b-baryons and charmed hadrons.

The B meson decay tables are compiled using measured exclusive branching frac-

tions. However, the list of well-measured decays is far from complete, so various

1Many thanks to Peter Kim for his help with tuning the SLD version of the CLEO decay table.
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theoretically motivated assumptions must be made in constructing the list of exclu-

sive modes. Two common assumptions are factorization and strong isospin symmetry.

As mentioned before, factorization is the approximation that the mediating W± par-

ticle decays and fragments into hadrons independently of the fragmentation of the

remaining quarks from the decaying particle. Rates of processes mixing the ‘upper

vertex’ W± decay products and the ‘lower vertex’ decay products are believed to be

suppressed by a statistical color factor 1/N2
c .

The approximate strong isospin symmetry between bound states containing u

quarks and those containing d quarks is then applied separately to the upper vertex

and the lower vertex (or to the combined vertex in the color suppressed diagrams).

Any combination of hadronic products which require a g → uū popping is isospin

rotated to a final state with g → dd̄ popping instead, and vice versa. The branching

fraction into the new final state is considered to be the same as that for the original

final state. The isospin symmetry of the spectator quark is also used to make the

Bu, Bd, and Bs decay tables manifestly isospin symmetric. This procedure of course

ignores the different interference effects present for each B species between diagrams

which contribute to the same physical process. This kind of error, while in principle

correctable, is probably small compared to the errors due to the large fractions of

unknown decays which must also be modelled.

Another assumption made is that since vector mesons have three polarizations,

the branching fraction to the vector meson is approximately three times the branching

fraction for the corresponding pseudoscalar meson since each polarization is approxi-

mately equally likely to be produced. In cases where vector meson branching fractions

152



have not been measured and tabulated, this rule is used to model the appropriate

relative rates.

Even after symmetry considerations are applied, the exclusive mode branching

fractions sum only to about 60%. The remaining 40% reflects our lack of knowledge

of B decay physics, and is one of the primary motivations for the current study of B

physics. It is precisely here that we may expect to find possible enhanced signals for

b → s g and b → D D̄ X. Much of the unknown branching fraction is presumably

from untabulated 1D modes also. In the B decay modelling, the unknown modes

are modelled using three separate ‘inclusive’ models to produce generic 1D decays.

The main difference between the models is that they populate different regions of

the daughter D momentum spectrum and thus can be used to fit the distributions

measured by CLEO.

The first model, referred to as ‘Matrix 0’ uses the simplest possible assumption–

that the B undergoes a random phase space decay to the appropriately charged D

and a number of hadrons. qq̄ pairs are popped out of the vacuum, hadronized, and

given kinetic energy until all of the phase space from the B mass is used up. The rate

of producing vector D∗ mesons is tuned to match the rates measured by CLEO [15].

Matrix 0 decays typically produce a relatively low D energy, and a large number of

low momentum light hadrons.

The second and third models are referred to as ‘Matrix 8’ and ‘Matrix 9’ respec-

tively. These models attempt to shift the D meson to higher energies compared to the

Matrix 0 decay, thereby producing a better match to the measured B → D energy

distributions. To force the production of more energetic D mesons, the B is consid-
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ered to first decay to a fictitious higher mass resonance which then decays exclusively

to 2-body modes like D π or D K. The mass of the resonance then controls the

produced D energy. The remaining quarks in the B decay are hadronized using the

same procedure as in Matrix 0. Matrix 8 and Matrix 9 use slightly different fake res-

onances, each peaked in a different characteristic region of the D energy distribution

with the spreads in D energy determined by the widths of the resonances.

B.3 Comparison with experimental data

In order to compare directly MC with CLEO data, a special sample of B decays

generated in a MC simulation of Υ(4s) decays is used. The D momentum distributions

measured by CLEO [15] are fit with a combination of Matrix 0, 8, and 9 decays to

determine the appropriate branching fractions into each inclusive mode. Thus, the

measured distributions are then reproduced in the MC with minimal assumptions.

The comparison plots are shown in figure B.2. For the purposes of the current analysis,

the main effect of the inclusively modelled modes is to provide an accurate simulation

of the 1D decay kinematics and the resulting topology.

The Ds and c-baryon production is modelled using mainly tabulated modes. The

match in the momentum spectrum to measurements for Ds [32] and Λc [33] by CLEO

is displayed in figure B.3.

Tracks with high Pt give very good vertexing resolution. These tracks tend to be

formed by prompt particles from the B vertex, especially in low multiplicity decays.

A large portion of these decays are semileptonic, and so an accurate modelling of the
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Figure B.2: B decay D momentum distributions. The SLD MC histogram is com-
pared with CLEO data points. The plots are normalized to the number of D’s per
Υ(4s) decay. The difference in the normalizations reflects the lower value of Nc mea-
sured by CLEO.
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Figure B.3: B decay Ds, Λc momentum distributions. The SLD MC histogram is
compared with CLEO data points. The plots are normalized to the number of c-
hadrons per Υ(4s) decay.
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Figure B.4: Left: B decay lepton momentum distribution. Right: B direct and
cascade e± momentum distribution. The SLD MC histogram is compared with CLEO
data points.

semileptonic decays is needed. The SLD/CLEO MC uses the Isgur-Wise model [44]

[45] to produce the kinematics of these decays. The results are compared with CLEO

data [46] [5] in figure B.4.

The other data distributions to be reproduced include the low momentum π±, K±,

p±, and K0
s distributions from ARGUS [47], and the total B decay charged particle

multiplicity distribution measured by CLEO [48]. The results are shown in figures B.5

and B.6. Getting precise matches of these two plots has proven to be difficult and

is a recurring problem in many attempts by different experiments to model the B

decays. The small mismatches in the modelling of these distributions are accepted as

an unavoidable consequence of our lack of knowledge.

For decays of the cascade D’s produced in B decays, the LUND decay tables for

D mesons are tuned in order to match data from MARK-III [49]. The main concern
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for a vertexing analysis is the charged particle multiplicity distributions [50] which

determine the visibility of the D vertex. The matching to these distributions is shown

in figure B.7.
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Figure B.5: B decay π±, K±, p±, and Ks momentum distributions. The SLD MC
histogram is compared with ARGUS data points.

B.4 Defininition of the decay categories

To interpret the results of the charm counting analysis, the following assumptions

must be examined. While the three topological categories have a physical interpre-

tation, they are actually defined for the purposes of the analysis by the decay modes

produced in the SLD B decay MC. The default composition of B hadrons produced

is 41% Bu, 41% Bd, 11% Bs, and 7% b baryons but these are reweighted to the

world averages as described in chapter 9. The decay categories are defined using the
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Figure B.6: B decay charged track multiplicity. The SLD MC histogram is compared
with data from ARGUS (boxes) and CLEO (data points).
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Figure B.7: Charm hadron decay charged track multiplicity. The SLD MC histogram
is compared with MARK-III data points. No data exists for the Λc decay multiplicity.
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reweighted mixture of B hadrons and the modelled decays of each hadron type. For

the B meson contributions, the CLEO-based decay modelling is described in more

detail below. For the b-baryon contribution, the LUND modelling produces primarily

(∼ 75%) correct-sign c-baryons in 1D decays although small fractions of the other

decay types are also produced. Variations of the following definitions are discussed

in chapter 9.

0D decays are defined to be those decays which only produce a B vertex and no

D vertices. It is assumed that these decays may be modelled rather generically using

just about any decay model as long as a reasonable number of daughter particles are

produced. In the analysis, the 0D topologies are modelled using decays to charmonia

resonances. A LUND b → u quark decay model and a b → sg model [12] are used to

evaluate systematic uncertainties due to differences in kinematics.

1D decays are defined using the MC modelled decays of B hadrons to D0, D±, Ds,

and c-baryons shown in table B.1. The meson decays are generated using tabulated

measured modes including the Isgur-Wise model for semileptonic decays. Also, the

inclusive decay models described above contribute to reproduce the measured B decay

kinematics. A large fraction of the c-baryon modes in this category are produced by

the LUND-generated decays of b-baryons. The MC default charm hadron composition

for 1D decays is 56.6% D0, 19.3% D±, 9.4% Ds, and 14.8% c baryons.

The 2D decays are defined using the tabulated modes indicated in table B.2

in which a rough categorization has been used. Further details are given for the

specific example of B− decays in tables B.3, B.4, B.5, and B.6. Appropriate charge

conjugation and strong isospin rotations of the daughter particles can be used to derive
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the corresponding tables for the other B mesons. The listed branching fractions are

based on the CLEO decay tables which have been tuned to various measurements by

CLEO.

Wrong sign Ds production is the main source of Ds in B decays. The decay

table (tables B.3 and B.4) has been tuned by CLEO to match to the measured Ds

momentum spectrum [32] as shown in figure B.3. Both upper vertex and lower vertex

Ds production are included. As discussed in chapter 9, for the current analysis, the

n-body decays are reweighted to higher xDs from the default MC to better reproduce

the measured spectrum.

The upper vertex production of non-strange D mesons is modelled using mea-

surements of BR(B → D(∗)D(∗)K) based on exclusive reconstructions [38]. These

measurements, which favor production of vector mesons over scalar mesons, are tab-

ulated in table B.5. Because the sum of the measured modes does not exhaust the

inclusive wrong-sign D branching ratio [39], additional modes producing K(∗) are

also included in the decay table. The measured upper vertex D0 and D± momentum

spectrum is well-modelled by assuming generic three-body phase space for all of these

decays so no extra assumptions about the decay matrix elements are necessary. In

addition, a small contribution from W → (c̄d) processes is modelled based on the re-

sults reported in [51]. These modes are shown in table B.6. The cumulative branching

fraction into all of these modes agrees with the world average of measurements of the

wrong-sign D0 and D± production rate [11].

Wrong sign charmed baryon production in B meson decays is expected to be a

small effect (BR(B → Λ+
c X) = 0.008± 0.006 [52]) and is not modelled. Even in the
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B Decay Model composition

Category Decay mode default BR reweighted BR

1D BR(B → D0 X) 0.452 0.443
1D BR(B → D± X) 0.154 0.151
1D BR(B → Ds X) 0.075 0.072
2D BR(B → D D̄ X) 0.178 0.173
1D BR(B → c baryon X) 0.118 0.137
0D BR(B → (cc̄) X) 0.023 0.023

Table B.1: Inclusive mode composition of the SLD B decay MC. The default com-
position of the B hadrons is 41% Bu, 41% Bd, 11% Bs, and 7% b baryons. These
are reweighted to the world averages of 39.7% Bu, 39.7% Bd, 10.5% Bs, and 10.1% b
baryons in order to get the reweighted branching ratios (BR) into each decay mode.
The D composition of the 2D modes is listed in table B.2.

LUND b-baryon decay modelling, W− → c̄s processes primarily yield wrong sign D

mesons rather than baryons.
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B meson → 2D composition (broad categories)

Mode type Daughter particles BR

upper vertex Ds Ds
(∗)D(∗) 0.0552

Ds
(∗)D(∗)π 0.0246

Ds
(∗)D(∗)ππ 0.0202

lower vertex Ds Ds
(∗)Ds

(∗)K 0.0008

Ds
(∗)Ds

(∗)Kπ 0.0004
W → (c̄s), no Ds D(∗)D(∗)K(∗) 0.0800
W → (c̄d), no Ds D(∗)D(∗) 0.0040

D(∗)D(∗)π 0.0012
D(∗)D(∗)ππ 0.0008

Table B.2: Tabulated B meson → 2D branching fractions. To avoid an abundance
of notation, the charges and anti-particle notations have been omitted. Each en-
try is to be read as the sum over all possible spin, charge, and particle-antiparticle
configurations. For example, for B0 → D(∗)D(∗)K(∗), there are 2 charge configu-
rations corresponding to the 2 non-degenerate places the neutral charge could be
placed. This should be multiplied by the number of possible spin configurations:
1 (no vector mesons) + 3 (one vector meson) + 3 (two vector mesons) + 1 (three
vector mesons), which gives the 16 different tabulated modes in table B.5.
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B− meson → 2D composition (upper vertex Ds)

BR Daughter particles

0.0110 D−
s D0

0.0112 D−
s D∗0

0.0089 D∗−
s D0

0.0241 D∗−
s D∗0

0.0082 D−
s D+π−

0.0041 D−
s D0π0

0.0082 D∗−
s D+π−

0.0041 D∗−
s D0π0

0.0045 D−
s D+π−π0

0.0045 D−
s D0π−π+

0.0011 D−
s D0π0π0

0.0045 D∗−
s D+π−π0

0.0045 D∗−
s D0π−π+

0.0011 D∗−
s D0π0π0

Table B.3: Tabulated decay modes for upper vertex production of Ds in B− decays.

B− meson → 2D composition (lower vertex Ds)

BR Daughter particles

0.0002 D+
s K−D−

s

0.0002 D+
s K−D∗−

s

0.0002 D+
s K−D−

s π0

0.0002 D∗+
S K−D−

s

0.0002 D∗+
S K−D∗−

s

0.0002 D∗+
S K−D−

s π0

Table B.4: Tabulated decay modes for color-suppressed lower vertex production of
Ds in B− decays.
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B− meson → 2D composition (W− → c̄s, no Ds)

BR Daughter particles

0.0025 D0D̄0K−

0.0025 D0D−K̄0

0.0025 D0D̄0K∗−

0.0025 D0D−K̄∗0

0.0050 D∗0D̄0K−

0.0050 D∗0D−K̄0

0.0050 D0D̄∗0K−

0.0050 D0D∗−K̄0

0.0025 D∗0D̄0K∗−

0.0025 D∗0D−K̄∗0

0.0025 D0D̄∗0K∗−

0.0025 D0D∗−K̄∗0

0.0150 D∗0D̄∗0K−

0.0150 D∗0D∗−K̄0

0.0050 D∗0D̄∗0K∗−

0.0050 D∗0D∗−K̄∗0

Table B.5: Tabulated decay modes for upper vertex production of D̄0 and D− in B−

decays.
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B− meson → 2D composition (W− → c̄d)

BR Daughter particles

0.0010 D−D0

0.0010 D−D∗0

0.0010 D∗−D0

0.0010 D∗−D∗0

0.0004 D−D+π−

0.0002 D−D0π0

0.0004 D∗−D+π−

0.0002 D∗−D0π0

0.0003 D−D+π−π0

0.0002 D−D0π0π0

0.0003 D−D0π−π+

Table B.6: Tabulated decay modes for W− → c̄d processes in B− decays.
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Appendix C

CDC Track Reconstruction

C.1 Pattern Recognition

To reconstruct the trajectories of charged particles traversing the CDC, the discrete

set of hits left by the particles must be grouped together to form helices with helix

axes parallel to z. The helix curvature then gives a measurement of the particle

momentum. The reconstructed helices are referred to as ‘tracks.’ To simplify the

task, the ∼8 hits in each drift cell are first grouped together and fit to straight lines.

These groupings are referred to as ‘vector hits’ because they approximate tangent

vectors to the circular Rφ projection of the track helix. Because of the stereo angle,

the Rφ positions and directions of vector hits in stereo superlayers are both functions

of the assumed z position of the vector hit. Also, the electric fields about each anode

wire have a two-fold symmetry, so a drift time measurement could correspond to an

ionization signal on either side of the wire. Therefore, each vector hit has a partner
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which is its image mirrored across the local anode plane.

In the next step, VXD3 vectors are also formed from 3 hit combinations in the

vertex detector. These vectors are similar to axial vector hits since they give unam-

biguous measurements of the helix tangent vectors in Rφ. They also provide a precise

measurement of the dip angle for each helix:

tan λ ≡ dz

dst
(C.1)

where st is the transverse projection of the arclength s along the helix. For the typi-

cally large radii of curvature in the SLD magnetic field, st may be safely approximated

as the distance along the radial cylindrical coordinate R. The tanλ measurement gives

very precise information on the expected z position of the extrapolated track, and it

can be used to constrain the expected z positions of the stereo hits, as will be shown

shortly.

The set of VXD3 vectors is grouped together with the axial vectors, and from

this set, primitive circles are formed. The criterion for adding a vector hit to a

circle is of course that it is consistent with being a tangent vector to that candidate

circle. For example, for a combination of two vector hits, the two positions and one

tangent vector define a circle. The second tangent vector can now be required to be

consistent with the hypothesized circle. The list of all two-vector-hit combinations

may now be sorted to provide 5-vector-hit combinations in which all vector hits are

pairwise consistent.

At this stage, the track measurement is basically done. The curvature is measured
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by the combination of 4 axial vector hits + 1 VXD3 vector, and the dip angle is mea-

sured by the VXD3 vector. To get further precision, stereo vector hits may be added

to each circle by shifting them in z to the positions predicted by the extrapolated

VXD3 vector and then checking if they are consistent with being tangent vectors to

the circle. Ideal combinations of 11 layers = 10 vector hits + 1 VXD3 vector may

thus be formed.

After the 11-layer combinations are formed, their vector hits and image vector hits

are removed from consideration, and a search begins for 10-layer hits, 9-layer hits,

etc.... The only qualitative difference is that if a VXD3 vector is not associated with a

given primitive axial vector circle, then a priori, the stereo hits are not constrained in

z. The stereo vector hits are allowed to move around freely until they are consistent

with the circle, but in doing so, they acquire definite z positions. The z positions

of the set of stereo vector hits attached to the circle can then be fit to a line in

R − z to ensure that they are consistent with being from the same helix. For three

or more stereo vectors, the χ2 from the linear fit is used as a criterion to select good

combinations.

C.2 The track fit

The tracks produced by the pattern recognition algorithm must then be fit to a

realistic model of particle propagation, including multiple Coulomb scattering and

energy loss. In order to produce a track error matrix close to the interaction region,

the fit proceeds from the outermost CDC hit inwards. To fit a track, the track’s second
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order equation of motion is integrated using as initial conditions the outermost CDC

hit position, and the momentum vector derived from the pattern recognition helix.

The track is swum to its point of closest approach (POCA) to the next wire layer,

and a search begins for nearby hits. The hit most consistent with the track is added,

and the track parameters are recalculated for the next integration. Possible Coulomb

scatters are incorporated as uncertainties in the track error matrix. The procedure

continues inwards all the way to the innermost VXD3 layer. The fitted track is then

swum to its POCA to the IP, at which point, the track parameters and error matrix

are saved for use in physics analyses.
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