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ABSTRACT 

We study two aspects of one loop structures in quantum field theories which 

describe two different areas of particle physics: the one loop unitarity behavior of 

the Standard Model of electroweak interactions and modular invariance of string 

model theory. Loop expansion has its importance in that it contains quantum 

fluctuations due to all physical states in the theory. Therefore, by studying the 

various models to one loop, we can understand how the contents of the theory can 
. _ 

contribute to physically measurable quantities and how the consistency at quantum 

level restricts the physical states of the theory, as well. 

In the first half of the thesis, we study one loop corrections to the process 

e+e- + W+W- . In this process, there is a delicate unitarity-saving cancella- 

tion between s-channel and t-channel tree level Feynman diagrams. If the one 

loop contribution due to heavy particles corrects the channels asymmetrically, the 

cancellation, hence unitarity, will be delayed upto the mass scale of these heavy 

particles. We refer to this phenomena as the unitarity delay effect. Due to this 

effect, cross section below these mass scales can have significant radiative correc- 

tions which may provide an appropriate window through which’we can see the high 

energy structure of the Standard Model from relatively low energy experiments. 

In the second half, we will show how quantum consistency can restrict the 

physical states in string theory. Despite the absence of a complete formulation 

of string field theory, it is known that conventional Feynman loop diagrams of 

point field theory generalize to the two dimensional Riemann surface. Modular 
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transformations are symmetries of the Riemann surface and, therefore, a physical 

amplitude should be invariant under this operation. The zero-point ampitude 

on the torus can be interpreted as the partition function of the underlying two 

dimensional conformal field theory. Modular invariance of the partition function 

plays the role of a selection rule for the allowable physical spectrum of the conformal 

field theory. Complete classifications of modular invariant partition functions for 

general conformal field thGories are important unsolved problems because they 

serve both as the classical vacuua of string theory and as systems in statistical 
_. . 
mechanics at their critical points. We provide a method to derive modular invariant 

partition functions for Wess-Zumino-Witten models of general group manifolds 

using the orbifold construction. When we add both the twisted and untwisted 

sectors correctly, we obtain the modular invariant partition functions on non-simply 

connected group manifolds. 
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I. INTRODUCTION 



1. Loop Expansion 

Quantum field theories are very effective in describing the dynamics of parti- 

cles. The validity of a model for elementary particle interactions can be tested by 

comparing experiments with predictions based on the model using quantum field 

theory. While exact solutions of quantum field theories are very few .in number, 

relativistic perturbation theories are well developed and are quite successful. For 

theories with small expangon parameters, scattering amplitudes of physical pro- 

cesses can be obtained up to a desired order of accuracy by computing the Feynman 

diagrams with appropriate numbers of external lines, propagators and loops. Un- 

like tree diagrams, loop diagrams contain all possible quantum fluctuations of fields 

that are allowed by the symmetries of a theory. If a theory is renormalizable, one 

can absorb all divergences of loop dia,grams into the parameters of the theory. 

. 

The loopwise perturbative expansion, i.e., the expansion according to the in- 

creasing number of independent loops of connected Feynman diagrams, may be 

identified with an expansion in powers of fi. To see this, consider a loop diagram 

with I-internal lines, V-vertices and L-independent loops. Due to the topology of 

the diagrams, the relation L - 1 = I - V is satisfied. Because the Feynman rules 

are derived from the functional integral over exp [; s C/6], the propagator of each 

quantum field has a factor of fi. and each vertex has a factor of 6-l. Thus, the 

diagram is proportional to fi’-’ or tiL-‘. Since there is an overall factor of ti-’ to 

make the effective action dimensionless, the scattering amplitude is proportional to 

tiL. Therefore, the tree level diagrams, the leading order in fi describe the classical 

limit of the theory. For the case of L 2 1, that is, one or higher loop diagrams, the 

amplitude depends on tL and, hence, are corrections due to quantum mechanical 

effects. If the loop diagrams correct scattering amplitude through a systematic 

perturbation theory, higher loops will contain more powers of small coupling con- 

stant. Therefore, one loop diagram is the most dominant quantum mechanical 

contribution to the perturbative computation of a scattering amplitude. 

In addition to being the most dominant part of quantum corrections, the one 
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loop structure of a theory can also be used to place constraints on the contents 

of the theory. For example, to guarantee renormalizability, the Ward identities 

must be preserved at loop levels. Quite generally, if there is a possible difficulty, 

it arises at the one loop level. Consequently, if there is an anomaly at one loop 

level, we must restrict the particle contents to cancel the anomaly. This quantum 

consistency condition, that certain fundamental properties of the theory should be 

maintained at the quantum level, is an exact theoretical restriction which must be 

implemented in the theoryfrom the beginning. 

In this thesis, these aspects of the one loop structure of quantum field theories 

-are investigated in detail by considering two quite different theories. In chapter 

II, we consider a physical process in-the Standard Model in which the one loop 

diagrams with heavy internal particles give significant quantum corrections. In 

chapter III, we show how an exact restriction on string models can be obtained 

from the one loop structure of string dynamics. In this case, the fundamental 

property that must be implemented in the theory from the beginning is called 

modular invariance. This consistency condition is quite effective in constraining 

two-dimensional, generally covaria.nt theories, such as string theories. 

As in point particle theories, we can consider the loop diagrams of string the- 

ories built from quantum fluctuation of string fields. Even without a complete 

construction of interacting string field theories, one can still, in principle, compute 

string scattering amplitudes up to any desired order of the loop expansion. Each 

order of the loop expansion corresponds to field theory on a two dimensional Rie- 

mann surface attached to an appropriate number of external on-shell states. The 

number of loops corresponds to the genus of the surface in this case. In particular, 

one loop diagrams correspond to the torus. If we can quantize string field theories 

canonically, the conclusion that the loop expansion is an expansion in powers of 

fi will hold for string theories, too. However, since the coupling constant is de- 

termined dynamically and is not obviously weak, perturbative analyses of string 

scattering amplitudes may not be valid. 
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Nevertheless, by studying two dimensional surfaces with given topology, we 

may derive a consistency condition that string field theories must satisfy at the 

quantum level. One such condition is modular invariance. The modular invariance 

condition arises for the following reason: The set of all two dimensional surfaces 

with a given topology is parametrized by a set of complex numbers called modular 

parameters. Such a parametrization is unique up to a set of discrete transforma- 

tions called modular transformations. Since the loop computation should depend 

only on the topology of thesurfaces, string scattering amplitudes must be invariant 

under the modular transformations. The modular transformations are inherent to 

string theories because they are symmetries of the space of Riemann surfaces. The 
-. 
modular invariance gives strong constraints on the possible string compactifica- 

tions. In chapter III, we investigate-the consequences of imposing the modular 

invariance on the zero-point one loop scattering amplitudes. 



2. Unitarity Delay 

Since the S matrix, by definition, acts on in-coming states to generate out-going 

states in a scattering process, the unitarity of the S martrix reflects the fundamen- 

tal principle of probability conservation. Following the standard formulation of 

quantum field theories, the unitarity of S matrix, StS = 1 becomes a relation be- 

tween Green’s functions. W riting S = 1 + i T, the unitarity condition becomes a 

relation between Feynman amplitudes, 

2 ImTf; = 
_-. 

c Tfn Ti*n . (2.1) 
n 

For two particle scattering processes,-it is very convenient to decompose the am- 

plitudes into partial waves: 

T(s,t) = 16 7r c (2J + 1) a.&) PJ(COS~) . 
J 

(2.2) 

In the process jf --) Vv, where f and V denote a fermion and a vector boson, 

the partial-wave amplitude UJ may be written as 

UJ= A& + B (2.3) 

where A and B are dimensionless constants with some mass scale M. For two 

fermion annihilation processes, only J = 0,l states are allowed. If A # 0 for 

al, the theory may behave badly at high energies. To preserve the unitarity, tree 

diagrams must add to make A = 0. The second constant B need not be cancelled 

because it does not violate unitarityr 

In principle, the restriction A = 0 may appear only after a full, all-orders 

calculation. However, if a theory is consistently weakly coupled, we should find 

A = 0 (or the stronger restriction laoj < 1 ) at each order of perturbation theory. 

If these perturbative unitarity bounds are violated, we should conclude that either 
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the theory is not unitary, and hence unphysical, or the perturbation theory is not 

valid. Since B depends only on the parameters of the theory, these perturbative 

unitarity bounds can also restrict the parameters of the theory. For example, in 

the standard theory of electroweak interactions, one can give the upper limits on 

masses of Higgs and heavy fermions using the s-wave unitarity bounds!“21 

These unitarity bounds become crucial in studying the high-energy limit of 

theories for the following reason. If the loop corrections increase as a power of the 

center of mass energy E Cf the tree level S-matrix element, it is not difficult to 

see that this theory is not renormalizable. It is argued that in any renormalizable 

Jagrangian theory, the high-energy unitarity bounds should not be violated in 

perturbation theory!’ This leads to the specific requirement of tree unitarity: the 

N-particle S-matrix elements in the tree approximation must grow no more rapidly 

than E4-N in the limit of high energy (E) at fixed, nonzero angles. If this condition 

is satisfied at tree level, the loop correction cannot violate unitarity bounds. 

. 

While all renormalizable theories satisfy this tree unitarity, in the case of spon- 

taneously broken gauge theories, such as the Standard Model, the unitarity behav- 

ior is particularly interesting. In processes like e+e- + W+W- with longitudinally 

polarized W ’s, or in any process that creates I%‘; and Zi, the S-matrix element 

can satisfy tree unitarity only when we add correctly both the s-channel and the 

t-channel tree diagrams. Each of these diagrams contains unitarity violating terms 

which are exactly cancelled when they are added together. In other words, A in 

(2.3) vanishes after adding all relevant diagrams. The gauge symmetry plays an 

important role in gauranteeing the delicate cancellation. This is another statement 

of the fact that the only renormalizable quantum field theories with massive vector 

bosons are spontaneously broken gauge theories. Once tree unitarity is realized, 

unitarity will hold for all orders of perturbation expansion. 

However, if we consider one-loop corrections to this process due to heavy par- 

ticles with mass M, since only the s-channel gets the correction, the delicate can- 

cellation between the s- and the t-channel is delayed until energy scale becomes 
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comparable with the mass scale M. Below fi = M, A gets non-vanishing radia- 

tive corrections. Therefore, the tree unitarity is temporarily violated and scattering 

amplitudes increase linearly with the center of mass energy scale. We refer to this 

phenomena as unitarity delay. 

In chapter II, we will show that we can get a significant enhancement factor 

like s/m& in (2.3) f or the cross section due to this effect. The magnitude of 

this enhancement is eventually limited by the unitarity bounds on heavy fermions. 

The material in chapter If is based on the author’s work with Peskin, Lynn, and 

Selipsky. The results of this analysis have been published previously in ref. 4. 



3. Modular Invariance 

- 

The propagation of strings on space-time manifold is described as a two di- 

mensional world sheets, which are Riemann surfaces with a given boundary. If 

we consider only closed strings, the surfaces are closed with no boundary. f3trin.g 

scattering amplitudes can be formulated as functional integrals over fields on these 

Riemann surfaces!51 The genus of the surface-corresponds to the number of loops 

in quantum field theory. In- and out-states of strings are represented by vertex 

operators which carry definite conformal dimensions and momenta. Since the dy- 

namics of strings does not depend on how we parametrize the world sheet, the 

classical action of string theory defined on the two-dimensional surface should 

have local reparametrization invariance. The action should have another symme- 

try corresponding to the local Weyl scaling of two-dimensional metric. These two 

symmetries of the classical, gauge-fixed string action combine to two-dimensional 

conformal symmetry. 

This symmetry is represented by two infinite dimensional chiral algebras for the 

left- and right-moving sectors of closed strings. These algebras are generated by 

holomorphic energy-momentum tensor T(z) and anti-holomorphic T(Z) and pos- 

sibly by other generators. The fundamental parameters of these two-dimensional 

theories are c, the strength of the anomaly term in operator product expansion 

of T(z), (h;& h’ h w IC are the conformal dimensions of primary fields and Cijk, 

the OPE coefficients of the primary fields. The Hilbert space of the theory is 

represented by X = $;; 3-I; @  7?; for primary fields @ ;i(z, 5). 

The class of theories with conformal symmetry, called conformal field theories, 

have many interesting features and much applicability to physical systems. b-91 The 

main motivation for considering this class of theories is that we can solve these 

theories exactly in the sense that we can compute any correlation function exactly 

with the above input parameters by solving a finite number of differential equa- 

tions derived from Ward identities for the conformal symmetry and from physical 

arguments? Th ere are two fundamental problems that one would like to solve in 
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order to understand conformal field theories. The first one is the classification 

problem to determine the allowed values of (c, h;) unambiguously. The second 

problem is to combine the left-moving and the right-moving sectors together. This 

sewing problem is very important in solving conformal field thoeries completely. 

The solution to these problems would give a complete description of string com- 

pactifications. The point in this section is that modular invariance is crucial in 

solving these two problems. In addition to understanding string theories, we can 

also understand two-dimensional statistical mechanics systems at their criticality 

using the techniques of conformal field theories!” 

e-- We are going to examine the consequences of imposing modular invariance on 

the torus. We shall do this for several reasons. First, one loop is the simplest 

and most significant quantum mechanical correction to the scattering amplitudes 

in perturbation theory. Second, the modular invariance of the torus is relatively 

simpler than those of higher genus surfaces. Lastly, the modular invariance of the 

torus is of a fundamental importance in conformal field theoriesf10-131 In particular, 

the further conditions of modular invariance on Riemann surfaces of genus greater 

than one introduces no additional conditions on the the theory!14”51 

Conformally invariant parameters that enter in specifying the metric of a Rie- 

mann surface of a given genus are known as moduli of the Riemann surface, and 

the space of these parameters is called the moduli space. Some apparently distinct 

values of different modular parameters may be equivalent, that is, describe same 

Riemann surface. Therefore, the loop integrals over string world sheets include 

integrals over the set of points in the moduli space that are not related to each 

other via modular transformations. The set of all modular transformations form a 

discrete group, called the modular group. The conformal structure of the torus is 

uniquely specified by a point r in the upper half of complex plane. The modular 

group is then SL(2, Z), namely the set of all transformations r -+ (UT + b)/(cr + d) 

where a,b,c,d are integers satisfying ad - bc = 1 . The moduli space is the quotient 

of the upper half plane by SL(2,Z). 
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The zero-point scattering amplitude is the simplest object on the torus that 

one can consider. It is also an important quantity because it can be identified 

with the partition function of the underlying conformal field theory. The partition 

function is defined as 

where the trace is over the Hilbert space, H = Lo+& -c/12, P = Lo-Eo, and T is 

the modular parameter. The partition function can be expressed as a sesquilinear 

form of characters of primary fields for left- and right-moving conformal algebras, 

h,ii -. 

Each character is defined on a given holomorphic (anti-holomorphic) primary field 

and its decendents. The partition function in (3.2) shows how the left- and the 

right-moving sectors should be combined. Only Nh,h of the primary fields @h,K 

should appear in the spectrum. This is the solution for the sewing problem using 

the modular invariance. In the examples we will consider, these characters form 

finite dimensional unitary representations of modular group:161 and so only subset of 

the primary fields are allowed in the modular invariant partition functions. Hence 

we have a selection rule for the primary fields in conformal field theories. 
. . 

The complete classification problem of conformal field theories is very impor- 

tant, unsolved problem. For c < 1 conformal field theories, called minimal models, 

unitarity condition is enough to classify the theories completely.[17] Their mod- 

ular invariants are also completely classified!lE’lgl However, if c 2 1, unitarity 

is not sufficient. Moreover, imposing modular invariance on the theory results 

in an infinite number of primary fields. We may in this case introduce new ex- 

tended chiral symmetries under which the number of primary fields become finite. 

Only a few classes of extended algebras are known so far. Examples of these 

symmetries are superconformalflol parafermionic :I1 KaE-Moody symmetries, and 
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W-algebras!z21 KaE-Moody algebras, which come from the two-dimensional Wess- 

Zumino-Witten models on group manifolds~““’ are particularly interesting because 

they may give gauge symmetries in low energy string models and because conformal 

field theories of other classe are given as coset constructions of these algebras.‘23’241 

Furthermore, many exactly solvable two-dimensional lattice models have been de- 

rived from Kac-Moody algebras!51 Therefore, the classification of KaE-Moody 

conformal field theories is a very important problem. 

There has been signific’ant progress on classification of rational conformal field 
theOrjeS;10.13.261 which have a finite number of primary fields. Examining the be- 

havior of characters on the torus under r --t -l/r, xn(--l/r) = C,,, S,+ xm, _. 
Verlinde, Moore and Seiberg, and others have shown that it might be possible to 

classify all rational conformal field theories. This implies that all properties at tree 

level, i.e. on the sphere, and on higher genus can be derived from the modular 

invariance of the partition functions defined on the torus. 

However, finding a complete classification of modular invariant partition func- 

tions for theories with extended algebras is still a hard problem. -Only theories with 

the SU(2) Kac-Moody algebra have been completely classified so far!” For this 

theory, the modular invariants are classified by three classes A, D and E. Class 

A consists of diagonal combinations of characters. The characters form a finite 

unitary representation under the modular group, and hence make the partition 

function invariant under modular transformations. Class D consists of partition 

functions of non-simply connected SO(3) group manifolds. Class E consists of 

the three remaining invariants that do not belong to class A or D. Although the 

complete classification for general group manifolds is a very difficult subject, we 

construct some partition functions for more general theories using the orbifold ap- 

proach in chapter III. The material in chapter III is based on work with M. Walton. 

Parts of this work have been published previously in ref. 27. 
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II. DELAYED UNITARITY CANCELLATAION IN e+e- -P W+W- 

- 
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1. Introduction 

Radiative corrections allow us to probe the high-energy world with compara- 

tively low-energy experiments. Because any intermediate state allowed by symme- 

try, however heavy, can appear as a quantum fluctuation, precision experiments 

which isolate radiative corrections can probe for particles with masses much higher 

than the experimental energy scale. The mostsensitive such experiments are those 

which involve flavor mixing, such as the measurement of the K~-l(s mass differ- 

ence. However, even quantities which entail no special flavor violation, such as 

the muon (g-2), can yield important information on heavy states. Now that we 

-are entering the era of experiments on the properties of the weak.vector bosons, 

it is interesting to think of precision experiments which might be carried out on 

these new fundamental particles. Such experiments would necessarily be done at 

energies of 100 GeV, or even much higher; still, extending the reach of the avail- 

able machine energy by measurements sensitive to the radiative corrections is an 

attractive possibility. 

. 

Two important experiments of this type which have been discussed extensively 

in the literature are the measurements of the W  boson mass ‘28-321 and the polar- 
(31-331 ization asymmetry for fermion pair production at the 2’ resonance. Both 

of these experiments are difficult, requiring large statistical samples and methods 

which cancel systematic errors below the 1% level. Yet in both cases the influ- 

ence of new heavy states is larger than one has a right to expect. Naively, one 

would predict that electroweak radiative corrections due to new particles of mass 

M would affect the masses and couplings of the weak bosons by terms of order 

Q/T, times a factor m2,/M2 representing the Appelquist-Carazzone 1341 decoupling. 

However, the Appelquist-Carazzone theorem does not apply to theories with chiral 

gauge couplings or large mass splittings within gauge multiplets, and indeed one 

finds by explicit calculations both terms with no suppression for M2 >> rn& and 

terms actually enhanced by the factor AM2/rnh, with AM2 the mass-squared 

splitting within an isodoublet!“] The chiral nature of the weak interactions thus 
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increases the power of radiative corrections to illuminate new physics. 

In this chapter we would like to analyze another set of weak-interaction ex- 

periments, to be done at still higher energy. The next step for electron-positron 

colliders beyond the current generation of 2’ resonance machines will be to a linear 
collider with an energy of order 1 TeV in the center of mass. At such-a machine, 

the most important single process contributing to the electron-positron annihilation 

cross section is the production of W boson pairs. It is well known that confirma- 

tion of the qualitative, treF-level properties of the W pair production cross section 

already provides a stringent test of the standard model of weak 136,371 interactions. 

The various diagrams contributing to this process, considered individually, grow -- . 
faster with s than would be permitted by unitarity. The unitarity constraint on the 

tree-level amplitude is maintained or& by virtue of a delicate cancellation among 

the various diagrams; this cancellation requires the precise gauge-theory form of 

the vertices coupling W pairs to the photon and the Z’.[“] This observation has 

been used to propose experimental tests of the idea that W bosons are composite 

states; indeed, models with composite W bosons produce wildly different cross 

sections from those of the standard mode1!381 

. 

We observe here that even within the standard model, the introduction of new 

heavy particles can cause large deviations from the tree-level cross section. New 

species with perfectly conventional electroweak couplings naturally yield different 

radiative corrections to the s and t channel diagrams involved in the tree-level 

unitarity cancellation. All of these corrections together must sum to zero (to 

leading order) for asymptotic s. However, the regime of greatest experimental 

interest corresponds to the case of a state with mass M too large to allow its 

pair-production at the high-energy lepton collider: s < M2, while s >> mh. 

In this regime, there is no reason for the unitarity cancellations to occur, and, 

indeed, we find enhanced radiative corrections of order (CY/T) . (s/n&). These 

effects can be readily identified experimentally. We call this phenomenon, in which 

heavy-particle radiative corrections postpone the asymptotic cancellation among 

diagrams, ‘unitarity delay’. 
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As a part of our calculation, we will give a simplified analysis of the general 

structure of radiative corrections to W pair production. The radiative corrections 

due to the conventional states of the standard model have of course been calcu- 

lated some time ago by Lemoine and Veltman!3’] Philippet(” and others.* However, 

the structure of the corrections is quite complex, since the theory must be renor- 

malized to the standard model’s physical parameters as measured in lower-energy 

weak interactions. It was observed in ref. 33 that the renormalization program for 

weak-interaction radiativecorrections at the one-loop level is greatly simplified if 

one assumes that the virtual particles do not couple directly to light leptons but 

only to the gauge bosons through their standard-model gauge interactions. This 

--assumption is valid for most new particles one might wish to introduce-heavy 

quarks, heavy leptons, technicolor bosons, and all of the states of supersymmetric 

theories except the selectron and the smuon. Lynn, Peskin, and Stuart termed this 

scheme of coupling ‘oblique’. They showed that the oblique radiative corrections 

to the properties of the 2 and W can be represented quite generally by straight- 

forward and manifestly finite expressions. These expressions allow one to classify 

the various corrections and to understand which precision experiments should give 

identical and which complementary information on new physics. One of our goals 

in this chapter is to extend this analysis to the corrections to e+e- + W-‘-W-. 

Accordingly, this chapter will proceed as follows. We begin in Section 2 by 

reviewing the basic kinematics of W pair production. Following the formalism 

of Hagiwara, Peccei, Zeppenfeld, and Hikasar” we present formulae for observ- 

able differential cross sections in terms of W pair form factors, which might then 

be analyzed at the one-loop level. In Section 3, we present a general analysis 

of the oblique weak-interaction radiative corrections to the W form factors. We 

explicitly extract corrections which-are already observable in low-energy and 2” 

resonance experiments, incorporating these into the effective running electroweak 

parameters defined by Kennedy and Lynn!” What remains is a set of intrinsically 

* See Refs. 41, 42, and 43. An extensive bibliography of theoretical work on the reaction 
e+e- + W+W- can be found in Ref. 44. 
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new radiative effects; we organize these into manifestly ultraviolet-finite combina- 

tions. Finally, we evaluate these new corrections for the case of heavy fermions 

and scalars. In Section 4 we study the various asymptotic limits of the form fac- 

tors and confirm the kinematic enhancement of the radiative corrections in the 

region s N M” >> m&. We also check explicitly the restoration of the unitarity 

cancellation for asymptotic s. In Section 5 we discuss the physics underlying ob- 

servability of the corrections, and present numerical examples relevant to future 

high-energy experiments. Ne find that a new heavy generation of fermions gives 

a sizable correction, an enhancement of-roughly 0.02 pb, constant in cos 0. At 1 

TeV, this represents a 5% enhancement of the total cross section at non-forward 
-. 
angles. 
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2. General Formalism 

Since our analysis concerns oblique corrections due to new heavy particles, we 

should expect that the most interesting effects we will uncover will be corrections 

to the form of the three-gauge-boson vertices. It is easiest to keep track of these 

corrections by studying the reaction eSe- --$ WsW- for vertices of the most 

general structure, and then inserting the specific expressions for the form factors 

which arise from explicit _one-loop computations. The general analysis which we 

require has been carried out most efficiently by Hagiwara, Peccei, Zeppenfeld, and 

Hikasa (HPZH).““” In this section, we will review their results and express their 

‘-formulae in a fashion convenient for our analysis. 

HPZH begin their analysis with &-general parametrization of the WWA and 

WWZ vertices. In this chapter, we will work in the Euclidean metric. With that 

convention, their general vertex takes the following form: Let fiy represent form 

factors (V = A or 2) and 7’; represent canonical Lorentz structures (implicitly 

carrying three vector indices). The vertex shown in Fig. 1 is built from these 

ingredients as 

The form factors are dimensionless functions of s and mw. We will consistently 

ignore the electron mass. 
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Figure 1. The general vertex for W pairs. 

At the tree level, the A and 2 vertices have the same kinematic structure; both 

are of the form gvZ’0, where 

gA = e , gz = e - z 

(so and cg denote cos 0, and sin O,), and 

To = Tl + 2T3 = (q - ?#‘@ + Z(P55”p - 

Thus, at the tree level, we would write 

je = jf = 1 ) j$L j.f=2, 

Pwy. 

(2.2) 

(24 

(2.4) 

and set the other form factors to zero. 

Using (2.1), we can write the full amplitude arising from the s-channel diagrams 
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Figure 2. The amplitude for ewe- ---+ W+W-: (a) s-channel (general vertex); (b) t-channel. 

for e+e- + W+W- (Fig. 2(a)) as 

where P2 = -s, u and v are electron and positron Dirac spinors, and la(q), fp(Tj) 
are polarization vectors of IV, respectively. We may consider the electron to have 

definite helicity and write 13 = -3 for eL,, 13 = 0 for eR. Eq. (2.5) suggests that 

we combine the photon and 2 vertices according to 

Fi = Qf,P + (1&Q) 
s; _ 

Jo i=l,...,7, t 7 (2.6) 

and define l?‘@p as the vertex built from these form factors according to (2.1): 
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Then the matrix element (2.5) can be written more concisely as 

- 

(2.8) 

The form factors F4, Fs, and F7 multiply CP violating terms; these always vanish 

explicitly in the standard i%odel and in the CP-conserving extensions that we will 

consider here. 

-. 
It is quite straightforward to evaluate (2.8) d irectly for each initial and final 

polarization state by inserting explicit forms for the electron and positron spinors 

and the W boson polarization vectors. We sketch this development in Appendix 

A. Following this analysis, we can construct the differential cross section for W 

scattering from electron and positron states of definite helicity into W states of 

definite polarization. Expressing these cross sections in units of the point cross 

section 1 R = 4ncu2/3s, we find 

da 
-= ~+C (R), 
dcosB 8 

Cm = 2sin26 [I Al I2 -(Ad; + Ad;) cos 8 + IA2j2(1 + 2cos2 ,g)J 

CTL = CLT =I A3 I” (1 + ~0s~ 0) + (AsA; + A4A;) cos 8 sin2 8 + I&l2 sin4 0 

CLL =/ A5 I2 sin2 0, 
(24 

where 8 is the scattering angle in the center-of-mass frame, and the subscripts T, L 

denote transverse or longitudinal polarization of the W’ and W+. For ei+ ei, the 

t-channel diagram does not contribute and so the coefficients A; are built directly 

from the F;: 
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AZ= 0 

1 (2.10) 

-where ,f3 is the W velocity: ,8 = (1 --4m$/s)i. For ez + ei, we find the more 

complicated result 

P A~=P.FI+~ 
6 

1 
AZ=- 2@ 

where p is as above and 

27 = :(I + p2 - 2p cos e). (2.12) 
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‘Ikee level differential cross section vs. 8: longitudinal polarizations only 

(LL), mixed polarizations (LT), transverse polarizations (TT), and their sum. 
. 

In practice, it is not experimentally straightforward to separate the cross sec- 

tions for W pair production into the various polarization states. The easiest way 

to extract some of the information on the W polarization is to use the decay of the 

W to a charged lepton. The decay distribution obviously depends on whether the 

W is longitudinally or transversely polarized. Further, the parity violation in the 

decay amplitude allows one to distinguish the two transverse polarization states. 

The explicit formula involves only the form factors A; of eqs. (Z.lO), (2.11). Let x 

be the angle between the W momentum vector and the lepton momentum vector 
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as measured in the W rest frame. Then the angular distribution in x is given by 

da 
d COS ed COS X ( 

e+e- + w+r 6) 

= -$.p.~~(W-+e-fi) / 

. Cm-(1 - ~sin2x)f4cosBsin2!1A212-c~~~ 

+xLT.(l + $ sin2 x> f (2 cos.01A3j2 + sin2 @(AsA: + A4A+3)) . cos x 

+CLL - sin2 x , _-. 1 
_ (2.13) 

where the upper (lower) sign refers to the cross section for e;ei (esez). The 

same formula holds for the x distributions in e+e- -+ W-@v from each electron 

polarization state. This formula agrees with HPZH; it is a simple byproduct of the 

analysis leading to (2.9). We discuss its derivation in Appendix A. 

The tree-level differential cross sections predicted by eqs. (2.9) and (2.13) are 

shown in Fig. 3. In Fig. 3(a), we display the differential cross section predicted 

for W pair production by unpolarized e+e- pairs at fi = 1 TeV and the de- 

composition of the cross section into the contributions from the various W boson 

polarization states. (In principle, one might also consider the effect of polarizing 

the electrons; however, the contribution from right-handed electrons is generally 

quite small.) In Fig. 3(b), we plot the x distribution at three values of cos 8. 

The change in the form of this distribution reflects the increasing proportion of 

longitudinally polarized W bosons produced as one moves toward the backward 

direction. 

Since the A; are dimensionless scattering amplitudes, they will violate the uni- 

tarity limit if they grow asymptotically with any positive power of s. For example, 

eqs. (2.10) and (2.11) h s ow clearly that Ag will violate unitarity if the combina- 

tion of form factors in brackets has asymptotic so behavior, since this amplitude 
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Figure 3(b). Tree level x distribution ratio. 

contains an overall factor s/m& arising from the scalar product of longitudinal 

polarization vectors. At the tree leiel, (2.4) and (2.6) give 

Fl = ;F3 = !2(1+?5) + Y+ + . . . (2.14) 

Examining (2.10) and (2.11) we see that for right-handed electrons, 13 = 0 and the 
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unitarity cancellation is immediate. For left-handed electrons, with 13 = -3, the 

residual term from the form factors is cancelled by the constant term l/4.$, which 

represents the asymptotic behavior of the i-channel diagram. 

This type of cancellation should occur order-by-order in perturbation theory. 

In section 4, we will show this explicitly for one loop radiative corrections due to 

a heavy generation. The cancellation guarantees good asymptotic behavior up to 

logarithmic factors. However, the cancellation is guaranteed only for values of s 

which are actually asympt&ic. A new heavy particle of mass A4 could potentially 

produce very large radiative corrections by disturbing the delicate cancellations in 

.A5 at energies of order M if M >> mw. In the next section, we will explain how 

to compute the corrections to the form factors Fi which allow us to analyze that 

situation. 
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Figure 4. One-loop oblique corrections to e+e” + Wt W- : (a) corrections to the t-channel 

diagram; (b) external leg corrections to the s-channel diagram; (c) propagator corrections to the 

s-channel diagram; (d) vertex corrections to the s-channel diagram. 

3. One-Loop gadiative Corrections 

It will be useful to consider the various contributions systematically before be- 

ginning an explicit computation of the one-loop corrections. In this chapter we deal 

only with oblique corrections; this still includes a variety of corrections, as we show 

in Fig. 4. In the standard model, as long as we have no subdiagrams which involve 
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Figure 5. Notation for vector boson self-energies. 

Higgs-Higgs or W-W scattering processes (as is the case here), the divergences of 

all one-loop diagrams are removed when we adjust three basic parameters, which 

may be taken to be g, g’ and the Higgs vacuum expectation value or, more con- 

cretely, cy, G,, and mz. In this section, we will explain how to renormalize the 

various diagrams of Fig. 4 and organize them into finite corrections with direct 

physical meaning. 

We would particularly like to address the question of which part of the one-loop 

corrections to e+e- -+ W+W’ are already constrained by measurements at low 

energy or at the 2’ and which are new to the W pair production process. To make 

this separation, we follow Kennedy and Lynn’321 in parameterizing our amplitudes 

in terms of running electroweak parameters; ref. 32 shows in detail how these 

quantities summarize the information on weak interaction radiative corrections 

available from low-energy experiments. From the remaining corrections, we will 

also extract a finite overall factor representing the W boson wavefunction renor- 

malization. This will leave over other finite contributions which correct the various 

form factors f,y in the three-gauge-boson vertices. These are the corrections which 

have the largest physical effect on W pair production. 

We begin our analysis by presenting our notation for the loop corrections. 

These will be given at first in terms of bare parameters (which always carry a 

subscript 0). The boson self energies will be denoted IIvv~(P’), as in Fig. 5. We 
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define 

The various boson self-energies can be written as two-point functions of the elec- 

tromagnetic currents jzM and the weak isospin currents 

nAA = &QQ _ 

rI&+-= 4 
~-(~~Q--~JJQQ) 

3 

j:” according to 

JJZZ = & * (7133 - ~S$JQ + S;fnQQ) 
(3.1) 

e2 ._ 
J&VW = +n,, 

SO 

where so = sin 00 and co = cos ~90 are defined by so = es/go. In general, only the 

real parts of these amplitudes are relevant to the O(a) corrections. 

Following ref. 32, we can use Dyson’s equations to account for vacuum po- 

larization and boson self energies by exchanging the bare coupling constants for 

renormalized, running coupling constants (subscripted with a star). This results 

in an effective Lagrangian with the same form as Lo, but with all bare quantities 

replaced by starred quantities. To include the effects of the oblique corrections we 

are accounting here, we thus write 

1 
e4(p2)= 

1 -- 
= e5(/J2> 

[“;Q(p2) - nP,,(p2)] 

from these we define sz = ef/gz and c: = 1 - si. These formulae allow us to relate 
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processes occurring at P2 to measurements performed at p2. We similarly define 

running boson mass parameters to include self-energy and mixing effects: 

with 

P*(P2) = 
1 

1 - 4fiGp*(U33 - IAl) * 
(3.5) 

-{-All starred quantities in this chapter should be evaluated at P2, unless explicitly 

written otherwise). A little algebra yi.elds an explicit form 

M;,(P”) =m2, + $ (II 3Q - n33)(p2) - (n3Q - n33)(-& 
* 

The combination of self-energies on the right-hand side of (3.6) has no uncan- 

celled ultraviolet divergences. With these definitions and light external fermions, 

the boson propagator and non-Abelian vertex contributions to the neutral-current 

interactions sum up to the fully renormalized expression 
1321 

We use the renormalization scheme detailed in ref. 32: 

na2, E M;,(P2 = -r-n;) = (93.00 GeV)2 

(3.7) 

$r/e$(O) = 137.036 (3.8) 

GpLS(0) = 1.1581 x 10-5(GeV)-2. 
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(G, differs from Gpt(0) by residual vertex and box corrections.) All of the diver- 

gences in our calculation will be absorbed into the three functions Mz,, ef, and 

9: or*sz. Note that in this renormalization scheme, sz(-mi) is extracted from 

the measured 772~ through terms including pt. Thus, sE(-mi) will be affected by 

large isospin mass splittings. 

With this renormalization, contributions from individual fermion generations 

or scalar doublets are separately gauge invariant and finite; each such contribu- 

tion can be considered err its own footmg. Accordingly, while our calculations 

include all electroweak effects of the new heavy particles, they ignore the conven- 

tional particles of the standard model, since the standard effects are of order CY, -. 
unenhanced, and smooth as a function-of s. The standard contributions should of 

course be included to correctly analyze precision measurements. We also neglect, 

minor corrections from the,Higgs and vector boson sector; this eliminates longitu- 

dinal self-energy contributions and the need to rediagonalize the 2 and photon!21 

Bremsstrahlung effects merely produce an overall multiplicative factor convolved 

with a hard-photon energy shift, which can be treated[451 straightforwardly and will 

have no qualitative influence on the effects reported here. Finally, QCD corrections 

should be quite small at the energies we consider, and we neglect them as well. 

In our formulae, the influence of the running of ez and .s: is relatively minor, 

and the reader may reproduce the value of any differential cross section that we 

present to a few percent accuracy by fixing these running parameters at the values 

47r/e2 = 128.0 , s; = 0.223 ; (3.9) 

.$ will be affected by the p parameter of course. The W boson mass, unlike the 

2 mass, appears in our calculation -only from the kinematics and should be set 

directly to its physical value. In the calculations of Section 5, we have used the 

value of m& E M$*( -m&) computed from the electroweak theory, including 

one-loop radiative corrections. This means that we change rn~ slightly in accord 

with the properties of the new heavy particles; this change is small except when we 
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include heavy generations with very large isospin splitting. Even in the worst case 

consistent with current p parameter measurements (Jp - l] < 1% , translating to 

Am2 < (200 GeV)2)1[46’471 one would make an error of less than 2% in the differential 

cross section by taking the value mw = 82 GeV. 

Having defined the parameters of the theory, we can now put together the 

various corrections to e+e- + WsW-. We begin with the external leg corrections 

shown in Fig. 4(a) and (b). These multiply the matrix element by an overall wave 

function renormalization &tor 

(3.10) 

For the t-channel diagram, this is the only one-loop correction. If we recall that 

the bare tree diagram is proportional to gi, we can rewrite the overall factor so as 

to have the same gz appearing in both channels: 

(3.11) 

where 

< A 1 + &p2) (&(-m&) - n;Q(p2)) * (3.12) 

. 
Since a Ward identity relates vertex and leg corrections, this is a finite object, as 

may be checked explicitly. 

The easiest way to analyze the s-channel diagrams is to use the effective- 

Lagrangian insight in eq. (3.7) that the diagrams of the form 4(c) simply renor- 

malize the parameters of the zeroth-order diagrams. Folding these corrections into 

the zeroth-order amplitude, we have 

where 2’0 is the tensor (2.3). We then consider the diagrams of Fig. 4(b) to multiply 
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this amplitude by the additional and divergent factor 

&v = e * (1 + &-f&(P)) . (3.14) 

Finally, we must include t&e true vertex corrections shown in Fig. 4(d). In order 

to keep track of the electroweak currents’as in (3.1), we notate. these corrections as 

using gi = g,” to the required accuracy. Then the diagrams of Fig. 4(d) yield an 

additional term 

(3.16) 

Here we can neglect the O(g2) difference between Mb* and m$, although in 

(3.13) we must retain corrections proportional to M$* - m$. There it is useful 

to expand the denominator (s - Mi,) to first order about (s - nzi); then the 

zeroth-order term can enter the tree-level unitarity cancellation unchanged. The 

results of eqs. (3.13), (3.14), and (3.16) can thus be combined to form the following 

expression for the sum of the s-channel diagrams: 
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. r$. (;i~y~u) - [Q + (I3 ;;:&) s -sm2 ] . To”“’ 
* z 

+ (134Q) S M;,-mi/gd 
4 s-m: s-m: 

+ [Q .g,2 (CrI! + fl;,T,f*‘) 

-- . (3.17) 

Each line of (3.17) h as cancelling ultraviolet divergences, since cQ+- , x3+-, 

and -II!,To contain identical divergences. In the first line, we have separated out 

a piece proportional to the zeroth order s-channel amplitude; when this is added to 

the t-channel amplitude, the sum is simply the zeroth-order amplitude evaluated 

with running coupling constants and multiplied by [. The remaining three lines of 

(3.17) give intrinsically new corrections. 

. . 

We expect that the full one-loop-corrected amplitude should obey perturbative 

unitarity. In the combination of the t-channel amplitude with the first line of (3.17), 

the unitarity cancellation is explicit; eqn. (3.11) arranges for both channels to have 

gz(P2) as the coupling and < as an overall factor. For the remaining terms in (3.17), 

we can only check case by case that the leading, unitarity-violating s dependence 

cancels when s is large. If the loop diagrams contain a heavy species of mass M, 

we cannot expect this cancellation to occur except when s >> M”. Thus, when 

s - M2 >> m&, we expect the last three lines of (3.17) to produce radiative 

corrections enhanced by a factor (s/m2,). These are the dominant effects arising 

from our analysis. 

We conclude this section by converting the amplitude (3.17) into a set of form 

factors which can be inserted into the formulae of Section 2. If we use To = Tl+2T3 
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and decompose each vertex function according to 

7 
p”“P = - c 

Ti . Et’) , 

i=l 

(3.18) 

we can read from (3.17) 

_ 

4 jf = 2 + 5. [($’ - S@)) + 2@;,] + 2 Ms’52 
(3.19) 

t z 

i=2,5 

. . 

To use these form factors, we must also make two modifications in the formulae 

of section 2: first, the coupling constants e2, s$ should be replaced by ef, sz; 

second, the final cross sections should be multiplied by the factor Iti2 defined in 

eq. (3.12). Both of these corrections are numerically quite small, although one 

should note that, for light fermions or scalars, t contains logarithmic factors which 

are important in the correct coupling constant evolution of the three-gauge-boson 

vertex. 
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Figure 6. Feynman diagrams renormalizing the amplitude for e+e- -+ W+ W- : 

(a) two-point functions; (b) three-point functions. 
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4. Low alld High Energy Behavior 

We are now in a position to evaluate the various Feynman diagrams contribut- 

ing one loop corrections to the process eSe- + I+‘+M~- and to organize the results 

explicitly into finite corrections. For heavy fermions, we consider the diagrams 

shown in Fig. 6(a), (b). Th e actual formulae for the various corrections are com- 

plicated and, in themselves, rather unilluminating, so we have chosen to display 

these expressions onIy in Appendix B. In this section and the next, we will dis- 

cuss their important properties. Here, we analyze the formulae analytically in the 

limits of high and low energy. For a heavy generation of mass M we will show 

--explicitly the presence of enhanced radiative corrections when s << M* and also 

a perturbative unitarity cancellation in the radiative corrections for s >> M2. In 

section 5 we will study the form&e numerically for general values of s. 

. . 

In our presentation of the complete results given in Appendix B, we have fol- 

lowed the method of Passarino and Veltman’4e1 in expressing the various diagrams 

in terms of a fixed set of standard one-loop integrals. One can then evaluate these 

integrals analytically;“” tailored computer programs exist for this purpose!0’511 In 

our analysis, we have found it convenient to make some further simplifications, in- 

cluding the explicit cancellation of ultraviolet divergences, and to write our results 

in terms of a set of finite and dimensionless reduced Passarino-Veltman functions. 

These functions are defined, and their asymptotic forms are presented, in Appendix 

C. The results of this section can then be obtained by inserting the appropriate 

asymptotic formulae into the results for the form factors given in Appendix B. 

4.1. Nondecouyling Efiects at Low Energy 

We consider first the case of radiative corrections for s well below the heavy 

fermion threshold. ,4s we have explained, we expect in t,his region to find terms 

enhanced by a factor (s/m&). Ordinarily, one might expect that loop corrections 

due to heavy fermions are suppressed by powers of (s/A~~) because of Appelquist- 

Carazzone decoupling. However, with chiral currents or la.rge doublet mass split- 
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tings, it is possible to evade the decoupling theorem and isolate a finite contribu- 

tion, Clearly, degenerate scalar particles will not exhibit this effect, as we discuss 

in section 5. 

Let us then expand the expressions of Appendix B, for s in the range rn& < 

s << M2, assuming a fermion doublet with hypercharge Y and masses m, and md. 

Defining 

- 
Am2=mi-mi and m2 = f(m: + mi), (44 

with Am2 < Tn.‘, we find 

7 AT-2 my.-.- 
12~; m2 

+ 
)I 

F5 d- 1 
47$ 

--.$-Y.;(l+$t-&(-;.Y+$)] 
24~; 

(4.2) 
where I3 = -+,O for ei,ei. These formulae simplify dramatically if we in- 

elude a full generation in which all the doublets have the same masses, namely, 

.I quark’ 
and use the fact &,U,,lets Y = 0; [%qepton = [% 

F2E 0 

Note that only F5 depends on the mass splitting and Fl, F2 and F3 are zero for 
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the right-handed electron. For left-handed electrons, the process e’el + w,‘wF 

will show leading behavior 

As(l - loop) r -?- . --$ . -$ 
m2, e e 

and the cross section for e+ei + wTl4’i becomes 

da da -g- 
di-l -dR ree * I+‘* 6 > [ 

- A5( 1 - loop)] 
A5( ’ tree) J 

(44 

(4.5) \ I 

where As(tree) is given by (2.11); thus 

. . 

This radiative correction is proportional to the number of heavy generations; aside 

from the effects of isospin mass splittings on the p parameter, it does not depend 

on the masses of the heavy generation as long as s < m2 and lepton/quark mass 

differences are small. The factor 10m3 is typical of one loop radiative corrections, 

but the enhancement factor s/rnb y ields a 10% effect for fi -= 500 GeV. This 

relative enhancement continues rising, quadratically in energy, until it is cut off 

above threshold. In essence, the unitarity delay effect can be thought of as adding 

a constant 0.02 pbarn to a tree-level cross section which is falling like l/s. The 

unitarity delay thus exists and is measurable at lower energies, but it would be 

a,dvantageous to use as high an energy as possible. 

4.2. Asymptotic Behavior at High Energy 

We now consider the case s >> m2 >> m&, including one heavy generation 

where all fermions are of equal mass- m. As already mentioned in section 2, any 

uncancelled leading so behavior in the form factors 3’; will violate unitarity because 

of the factor k in As. We check this cancellation below, keeping next-to-leading 

order terms as a check on our numerical results and to provide physical insight into 

the system’s high-energy behavior. 
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Referring to the appendices, the F; can be seen to tend asymptotically to 

S -. 
m2W 

+41n2s -47r2. )I WV 

thus . 

As(l - loop (4.8) 

Notice that the leading so terms in the Fi are cancelled in As, a result of unitarity 

cancellation at the one loop level. Also cancelled are all dilogarithms. Even so, if 

m2 >> m2W then the magnitude of Ag(l-loop) can be as large as that of As(tree) in 

(2.10) and (2.11). The perturbative expansion requires careful examination at high 

energy with a sufficiently heavy fermion generation, as we shall discuss in detail in 

section 5. 
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5. Numerical Results and Discussion 

We can now compare the above results with numerical calculations and discuss 

the experimental observability of the heavy particle corrections. In assessing the 

size of these corrections, one should remember that nondecoupling effects generally 

arise from the breaking of global symmetries in association with large dimensionless 

parameters. For heavy fermions in the standard model, these parameters might 

arise either from isospin-breaking mass differences or from the large Yukawa cou- 

plings needed to generate even large isospin-symmetric massses. We should assess 

the relative importance of these two contributions. For scalars, only the isospin 

-splitting of masses arises from a symmetry breaking, and so here there is only one 

possible source for the effect. . 

Let us begin with the case of a heavy, isospin-degenerate fermions. The detailed 

forms of the radiative corrections to the W form factors, valid over the full range 

of energies, are presented in Appendix B. By inserting these expressions into (2.9), 

we obtain the effects of the heavy fermions on the differential cross section for 

W pair-production. In Fig. 7, we plot the corrected differential cross section 

at cos 8 = 0, incorporating effects of a degenerate heavy generation of fermions, 

for several different masses. (Integration over cos0 merely shifts the whole curve 

upward by including the unenhanced forward peak). We can see that the radiative 

correction gives a small but noticeable effect at low energies and contributes a 

significant enhancement of the cross section in a region within a factor of 2 in 

fi of the pair production threshold. The suggestion from the analytic formulae 

of an effect increasing quadratically with energy is actually well confirmed by the 

numerica results shown in Fig. 7. Note the rapid onset of unitarity cancellations 

above threshold. 

The physics of the correction terms is clarified by a more detailed look at the 

numerical results. Since the delayed unitarity cancellation affects mainly the cross 

section for producing pairs of longitudinal W bosons, we should expect that the 
enhanced radiative corrections appear mainly in that polarization state. Indeed, 
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Figure 7. Corrections to the differential cross section for e+e- -+ W+W- with various 

degenerate fermion masses, at cos 0 = 0. 

Fig. 8 shows the contributions to the cross sections of Fig. 7 from longitudinally 

polarized W  pairs; the enhancement of this polarization state is very large and 

accounts for essentially the whole effect. The heavy fermions make at most a 2% 

correction to the cross section due to the other polarization states. The importance 

of the longitudinal W  pairs can be assessed in another way, which can be observed 

directly in experiments: in Fig. 9, we plot the distribution of the lepton decay 

angle cos x in the presence of heavy fermion corrections. The enhancement near 
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Figure 8. Contribution to fig. 7 from longitudinal polarizations only, at cos 0 = 0. 

cos x = 0 indicates the increasing importance of longitudinally polarized W bosons. 

The dependence on cos 0 of the heavy fermion corrections shows less structure; the 

corrections are roughly independent of cos8. However, for cos 19 > 0.5, the W 

pair production cross section is dominated by transversely polarized pairs, and the 

relative enhancement due to radiative corrections disappears. 

Eq. (4.6) displays the low energy limit of the correction term. Well below 

threshold, this contribution is independent of the heavy fermion masses. We con- 

firm this result in Fig. 10 by plotting the differential cross section at cos 13 = 0 for 
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Figure 9. Corrections to the x distributions at case = 0, for degenerate fermions. 

relatively low energies. The 3% shift indicated in the figure is just that predicted 

by (4.6), diluted by the inclusion of the other W polarization states. 

Introducing an isospin-breaking mass splitting for the fermion or doublets 

breaks the standard model’s custodial SU(2) symmetry. This is known to lead 

to a large renormalization of the p parameter. In W pair-production, however, 

such a mass splitting does not generate additional large contributions; rather, its 

main effect is simply to split the existing peak of the correction term into two. 

Fig. 11 illustrates this behavior in the differential cross section at cos 8 = 0, for 
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Figure 11. Peak structure for split fermion doublets; nd = 500 GeV, COSC~ = 0. 

Since the corrections to the tree level cross sections we have found are so large, 

we must address the question of their reliability. On the one hand, we have seen 

that the tree-level amplitudes for W pair production are unusually small, due to a 

cancellation of amplitudes. The large size of the corrections is the result of the fact 

that they do not exhibit the cancellation. On this ground, we would not expect 

radiative corrections of still higher order to show a further enhancement. 

This argument cannot be complete, however, because the size of our correction 

term, at threshold and above, increases rapidly with the mass of the heavy gener- 
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Figure 12. Effects of fermions with an isospin-breaking mass splitting; cos0 = 0. Dotted 

lines: md = 350 GeV. Dashes: md = 550 GeV. Solid lines: md = 750 GeV. 

ation. For example, the residual term (4.8) at very high energies is proportional to 

m2. We can understand this dependence by recalling that the production of lon- 

gitudinal W  bosons at high energy is governed by the Equivalence Theorem,[1’3’521 

which states that the production amplitude is equal to that for production of the 

Goldstone scalars eaten by the W  bosons in their mass generation. Indeed, the am- 

plitude for production of scalars through a heavy fermion loop precisely reproduces 

(4.8), with the prefactor arising from the large fermion-Higgs Yukawa coupling 
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m2f X2/4T = -!- (“‘>z = 5. - . 
4x (4) e m&J 

(5.1) 

- 

It has been shown by Chanowitz, Furman, and Hinchliffef2’ that quarks with masses 

above 550 GeV cannot be treated perturbatively, since their Yukawa couplings are 

sufficiently large to violate tree-level unitarity in four-fermion processes. For such 

heavy quarks, we must expect large corrections to our calculation, proportional to 

additional powers of the Yukawa coupling, due to virtual Higgs bosons coupling 

to the fermion loop. Thus, while our calculations should be trustworthy for small 

enough quark masses (plausibly, for masses as high as 400 GeV), for higher masses 

--they should be taken only as an indication of the size of the correction to be 

expected. We should recall, though, that for the main case of interest; s << m2, 

we predict an effect which is independent of mass and so extrapolates smoothly 

into the high-mass regime. 

Heavy scalars exhibit much smaller effects than heavy fermions. Scalars with 

no mass splitting can acquire large mass without coupling to the Higgs sector; 

at low energies these scalars decouple and at high energies they have no strong 

couplings to longitudinal W’s. The only significant corrections for scalars, then, 

are proportional to the mass-squared splittings within isodoublets. Fig. 13 exhibits 

this behavior; we see that even for 200 GeV mass splittings in either direction, the 

vertex effect is small and only the p parameter effect is observable. Without a mass 

splitting, it is impossible to separate the corrected and tree-level curves. 

Let us finally discuss the size of the corrections we have found in terms of the 

expected event samples for future e+e- colliders. A design for such a collider which 

is well matched to the requirements of the physics should provide data samples 

containing a few thousand events for typical annihilation processes; a,t fi = 1 

TeV, such a sample would correspond to a luminosity of 3 x 1O33 cmm2 set-r over 

a running time of a year (3 x lo7 set), for a total integrated luminosity of 9 x lo4 

pb-’ or 9000 R-r. The heavy fermion corrections could be sought either in the 

gross form of the distribution in cos 8 or in the shape of the cos x distribution. 
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Figure 13. Effect of a supersymmetric generation of scalar partners; cos 6 = 0, md = 500 

GeV. The upward shift arises almost entirely from the shift in the p parameter. 

The measurement of cos x requires a leptonic decay. Determining the sign of cos 8 

also requires a lepton or a tightly constrained count of charged particles. However, 

measures of the differential cross section which are symmetric about cos 8 = 0 can 

be evaluated with essentially the whole sample of W  pair events. Our corrections 

predict a substantial percentage increase in the cross section except at forward 

angles, suggesting use of the ratio 
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J da 
R,g = d cos 6- dcos9 I J da 

dcosb’- 
dcos8 * (5.2) 

~cos8~<0.4 Icose[<o.8 

This cancels luminosity measurement errors. At fi = 1 TeV with a degenerate 

generation of fermions of mass 750 GeV, using our calculation as an estimate of 

the effect, we find 
0.305 heavy fermions 

0.289 standard model . 
(5.3) 

For the conditions described at the beginning of this paragraph, the numerator 

of Re corresponds to 11,200 events; these should be accepted with efficiency well 

-above 50%. Thus the statistical error on Be should be about 1.1%; and the effect 

indicated in (5.3) should b e readily observable at nearly 5 standard deviations. An, 

orthogonal measure of the heavy fermion corrections is 

J d cos Od cos x 
da 

IJ 
d cos 8d cos x 

da 
R, = d cos Od cos x dcos8dcosx ’ 

Icosx1<0.6 (5.4) 
where the denominator includes all events with semileptonic decays and both inte- 

grals are taken over 1 cos 81 < 0.6. For a heavy generation of fermions of mass 750 

GeV and fi = 1 TeV, we predict 

Rx = 
0.563 heavy fermions 

0.543 standard model . 
(5.5) 

Roughly 40% of W pair events will involve one leptonic decay to e or p, and these 

events will be readily reconstructed. Thus, for the same conditions, we expect a 

statistical error on Rx of 1.4%. At better than 2.5 standard deviations, this can 

serve to at least independently confirm an effect discovered in the cos 0 distribution. 

New fermions of lower mass, but still above threshold, will produce even larger 

deviations from the standard model predictions, while higher luminosity would 

lower the statistical errors. 
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6. Conclusion 

Adding a finite, gauge invariant heavy sector to the standard model gives rise 

to large effects in e+e- + WsW-, which we have analyzed in terms of non- 

decoupling and unitarity delay. Broken global symmetries and large dimensionless 

parameters are responsible for non-decoupling, while the standard model’s gauge 

cancellations are responsible for unitarity delay. Unitarity delay is most important 

in the case of longitudinal W ’s with their kinematically enhanced s dependence. 

Since boson vertex corrections generate- the main part of the effect, we are able 

to glean from this process important information which no fermion production 

--experiment can provide; the three-boson-vertex corrections CQ+- and X3+- give 

new and independent contributions from the virtual states. Effects occurring in 

four-fermion processes (and most easily measured there), including isospin splitting 

effects on the p parameter and running of coupling constants and boson masses, 

are all summarized in the running electroweak parameters discussed in Section 3. 

At low energy the new contributions are not yet in the asymptotic regime; they 

disturb the delicate tree-level unitarity cancellation and allow us to probe the non- 

Abelian structure of the standard model’s radiative corrections. At higher energies 

the cancellations are re-established. For sufficiently heavy fermions or sufficiently 

split scalars there is also a strong coupling regime; either strong coupling effects or 

our calculated results will be measurable, with a cross section shift on the order of 

0.02 picobarn. 
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&F = (zT,o) with g-+=0 for transverse polarization 

&L” = -A- a&, i IfI) 
t A.21 

for longitudinal polarization. 
mw 

With these choices, it is straightforward though a bit tedious to work out the 

explicit values of (2.8) and the t-channel exchange diagram for each polarization 

state. This calculation yields the following expression for the e+e- -+ WsW- 

scattering amplitudes between states of definite helicity: 

APPENDIX A: Computation of Differential Cross Sections 

In this appendix, we give some details of the derivation of the general formulae 

for the e+e- + W+W- differential cross sections (2.9)) (2.13). These formulae fol- 

low straightforwardly from (2.8) by inserting explicit forms for the fermion spinors 

and the W  bosons’ polarization vectors. 

To define the electron spinor matrix elements, choose the electron beam direc- 

tion as the 3 axis. Then the matrix elements for spinors of definite helicity are 

given by the simple expression: 

-. . ~-Y',UR,L = J+(E1,0) , where & = i&ii. (A4 

The upper sign refers to the helicity state e; + ei, the lower sign to ei + ei. The 

IV polarization vectors may be specified more directly as 

. . _, 
M = -ie2A 

where for the various cases of W  polarizations: 

(A.3) 
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where 6 is a unit vector in the direction of the W- momentum, c$. are the transverse 

polarization vectors, and the factors Ai are just those listed in (2.10), (2.11). 

Squaring this expression and summing over the transverse unit vectors q, $ 

produces precisely the formula (2.9). To obtain (2.13), we require only a small 

extra piece of analysis. The square of the amplitude for the decay of W- to !-ti, 

evaluated in the W- rest frame, is proportional to 

g* . 
[ 
sij _ ,i,j _ ieijk,k . g’ - 1 , (A-5) 

where <is the polarization vector of the W- and n’ is a unit vector in the direction -. 
of the lepton’s momentum as viewed from this frame. We may specify the direction 

of n’ in terms of two angles-the angle x and an azimuthal angle 1c, about the 4 

axis. We may define x to be the polar angle between n’ and t. Although we can 

obtain interference terms between different polarizations from this formula, we find 

it simplest to average over x; then we may replace in (A.5) 

rlk + cos x ’ cjk ) 1 ninj --f cos2 x . $fjj + sin2 x . 2 ( 6ij I GiGj) . 
(A-6) 

This simplified form of (A.5) may be combined with the squares of the amplitudes 

(A.4) and summed over W- polarizations, to yield eq. (2.13) in the narrow-width, 

on-shell approximation. 
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APPENDIX B: Explicit Formulae for the W’W- Form Factors 

In this appendix, we present explicit expressions for the Feynman diagrams of 

Fig, 6, and we convert these expressions to formulae for the one-loop corrected 

form factors, eq. (3.19). W  e express these formulae in terms of the one-loop 

integrals defined by Passarino and Veltman~481 and in terms of a set of reduced 

Passarino-Veltman functions defined in Appendix C. 

- B.l. HEAVY FERMIONS 

We consider first the case of one generation of heavy fermions. To cancel 

--anomalies, we must consider a full generation; our formulae will be written as 

sums over f = ui, di, V, e or doublets d = (u;, di) (Y, e), where i runs over 3 colors. 

When we sum over doublets, the subscripts u and d will denote the up and down 

components. Q will denote the electric charge of a particle and 13, Y its isospin 

and hypercharge: Q = 13 + Y. 

The vacuum polarization insertions defined in (3.1) are given in terms of the 

functions b; defined in appendix C by the following expressions:132’531 

16T2n$~(P2) = 8CQ;[-$ + b3(P2,m;,m;)] 
f 

16~~n&(f’~) = 4C(Qk)f[-+ + bs(P’,m$m:)] 
f 

16~~h3 (P2) = 2c(13);[2p2(-$ + b3(P2,m2f,m;)) 
f 

- m2f A + bo(P2,m2f,m2f) 

1f3n2nll (P2) = C [2P2 (-t + b3(P2, m i, m i)) _ mE l “:A 
d 

+m&(P2, mfj, mz) t mzbl(P2, me, mj)] 

53 

(B*l) 



Here, A is the divergence of dimensional regularization, A = 7r-(2-$) . I’(2 - 4) N 

l/(2 - $) - -y - 1 n7r. An arbitrary mass parameter lnm’$, arising from coupling 

constant dimensions and serving to eliminate dimensionful logarithms, follows A 

and cancels out along with it. From these formulae, we can immediately assemble 

expressions.for the heavy particle contributions to the running coupling constants, 

the running 2 mass, and the wave function factor <. For the running couplings,. 

- 
1 1 ---=- 

ew2> 2b2> 
&Q;(W2,+ m;) - h(p2, m;, m;)) 1 

1 1 --- = - 
--- dP2> S,2(P2> 

&(QJ3) 

The factor < becomes 

2P2b3(P2,m;,m;) + m2,bl(P2,m;,m;) 

(B-3) 

- 4 ;$ + Y)W’“,m;,m:) + ;(; - Y)b3(P2,m;,m;) 1 11 . 

. We require the running 2 mass in the particular form which appears in eq. (3.17); 

for a generation of fermion doublets this is 

IG* - 2 s,2 -. 
mZ = 167r2cz 8Q2fmi. [b3(P2) - h(--&)I 

+ 4(LQ)f{ [P2 + mi( 1 - 253)3 - b3( P2) + 2misz . h(--m2Z)) 

- P2. b3(P”) - rni. b3(-rni) + f-; . [bo(P2) - bo(-mi)] 1 . 

‘(B.4) 
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The computation of the vertex diagrams, Fig. 6(b), is less straightforward. Af- 

ter performing the Dirac algebra, one must gather terms together into the Lorentz 

structures given in eq. (2.1), ‘g I noring terms proportional to the electron mass and 

using the trick in Appendix A of ref. 44 to eliminate additional structures. Af- 

ter this rearrangement, the coefficients of the structures T4, TG, and Z?T disappear 

as required. Evaluating the integrals using -dimensional regularization, we find 

additional finite terms of the form 

- d 
A-(2--) + 1 

-- 2 P.5) 

arising from fermion traces. It is essential to keep these terms in order to obtain the 

unitarity cancellation in the one loop corrections. The final result can be written 

as follows: 

x3+- = - i C [(~3)d*H(P2,77C,774) - (13)u -ri(P2,m~,m~)] 
doublets 

CQ+- = i c [Qd- [H(P2,mE,mi) - G(P2,mz,ms)]- 
doublets 

P.6) 

Qu* [H(P2,mi,mi) - G(P2,mi,mt )]I 
, 

where H = xi H(‘) * T; and fi = H - 2Hc4) . T4 - 2Hc5) * T5, i.e. T4 and T5 reverse 

sign, and similarly with G. Finally, in terms of Passarino-Veltman integrals 
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167r2G(P2, m!, mz) = (To - T3 - T5) . $(c2 - c3) 

167r2H(P2,mT,mz) = 

To $1 -A)+co +cl -’ 
( 

+c4 - c5) - -+ + c,)) 

mtv -T2. 4. -q 
mi2 

+T3 co - 3cl - 
c 

=&3 - 5C4 + 3C5)+ -+ + 3~7) > 

+T5 
( 

-co + 3Cl - m2, 
--@4 - c5> + -+ - cd) ; 

-. . 03.7) 

the ci have arguments (P2,mT, mi). -_ 

B.2. HEAVY SCALARS 

We now consider a hypothetical heavy scalar doublet Cp = (&, dd) with SU(2) x 

U(1) quantum numbers 13 = III;, Q = (QU,Qd), masses (m,,md), and vanishing 
- vacuum expectation value. We obtain vertex corrections 

1 
cQ+- = =X 

(;A-+&23 c7 a T2 + (3~1 -CO). T3 (P",mi,&) 

- &d ($A - cl) . To - 295~7 . T2 + (3~1 - co) * T3) (p2, mi, mi> 
mR 1 

-E x3+- = 16n2 
K 

(~A-cI)-TcI-Z~C~*T~+ (3~1 -cg)*T3)(P2,~n~,m~) 

t 
m2w 

(;A - cl) - To - Z---&I - T2 t (3~1 - co) - T3 > 
(P’, r-n;, m;) , 1 P-8) 
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and two-point corrections 153,541 

%Q = -& Q", - ($ t 4b3 t bo)(P2,mi,mz) 

- 

t Q i - (t t 4b3 t bo)(P2, m$, m$) 1 
1 1 l-p =--.- 

3Q 167~~ 2 1 
Qu -7: t 4b3 t bo)(P2, m$ mz) 

- 
Qd. ($ + 4b3 t b)(P", m$, m$) 1 _ 

f133 = --- 3 t (4b3 t bo)(P2, mi, mi) t (4b3 t bo)(P2, mi, mz) 
3 

l-J11 
1 1 

= --. - 167r2 2 [ P2( 0 t 4b3 t bo)(P2, mi, rni) 

$ (rni - mz). [bl(P2,mi,mz) - bl(P2,mi, 

For the case of a full generation of superpartners, we can sum over sleptons and 

squa#rks. 
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APPENDIX C: Reduced Passarino-Veltman Functions 

- 

All higher Passarino-Veltman functions may be uniquely decomposed into lin- 

ear combinations of the scalar integrals Bo and Co, for which closed form expres- 
[48,491 sions are known. The decomposition algorithm has been implemented in an 

algebraic manipulation program; [511 for purposes of asymptotic analysis, however, 

we have found it convenient to define reduced Passarino-Veltman functions repre- 

senting finite, dimensionless parts of two- and three-point one-loop integrals. All of 

these functions include an arbitrary mass scale mR, which cancels out of all phys- 

ical results. For the two-point functions, it is straightforward to determine the 
-. 
asymptotic forms of these functions. For the three-point functions, the asymptotic 

‘analysis requires some effort, and so tie have catalogued the required formulae. 

The functions bi(P”, rnf, mi) which appear in Appendix C are defined as fol- 

lows: 

1 

[bo, bl, h] = 
J 

dx log([zmT $ (1-z)rnz t ~(1 - x)P2 iit]/mi) 
0 W) 

* [ -1, 2, x(1 -z) ] 1 

These functions are related to the corresponding Passarino-Veltman integralsL4” by 

&(mz,ml) = bo(ml, m) + (A - lnmi) 

Bl(w,ml) = bl(ml,m) - $A - 1nmf-d 

&(mz,ml) = b3(ml,m2) - fiA - lnmi). 

W) 

with B3 = B21 t B1; B3 and Bo are symmetric in nz;, rni. 
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Passarino and Veltman’s C functions are defined by 

J ddk (1, k,, k,k,, k,kvk,} (C.3) 

h2 (k2 t mf)[(k t q)2 t m;][(k + I’)2 -t r-n;] 

and can be written in terms of form factors; _ 

with braces summing over distinct permutations. P = q + ?j always. 

In the present case we may set my = rni + V-L; and 172: + 972:; then we 

define the reduced Passarino-Veltman functions ci(P2,m~,m~) in terms of the 

denominator 

D = a7-L~ $ (1 - +n; - z(1 - *)T& + ryP2 - k (C-5) 

. 
as follows: 

[CO,Cl] = J dzdydzS(a: t y t z - 1) lo,(D/& 

[C2$3,C4,C5rC6,C7] = 
J 

m”R dsdyd+ + y t z - 1) (-) 
D 

x [ 1, 2, z2, z3, zy, q/z ] . 
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Note that 

[c6,c7] = ~[-$,-;] $ $2,c3j $ (m' - mj - m’)[C3;C4j + 9+4,C5] . WY 
These functions are related to the corresponding Passarino-Veltman integrals by 

mi-c22 = i(C2 t C4) - c3 - c6 _ 

mi-& = $(c2 - c3) - c6 

mf&2 = +2 - k3 $ k4 - c5) $ @6 - C7) 

C24 = -4~ $ $(A - lnmi) 

C35 = ~(CO •t cl) - $(A - Inmi) 

c36 = $(CCI - cl) - &(A - lnmi) 

where 

Ci =C;(P2, ?724,7f2;). 
F.9) 

We reduce the integrations over three Feynman parameters to one parameter 
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integrations for numerical analysis and asymptotic expression. 

[c2,c3,c4,c51 = jdr ~.l~(*,~)l-1’2.Q(;).~~(~)-~~,~,,*2,23j 
0 

(C.10) 

where we define 
_. _ 

/ 

K(z) = ( 

A(z) = zmf $ (1 -- z)mz - z(1 - z)m& (C.11) 
_ 

R(z,s) = y - (1 - “)2 

Q( I={ 
1 for z > z+ 

Z 
-1 for z < z+ 

2arctan [(1 - ~)~R(z,s)~-~‘~] for z+ < z L: I 

r I 11121 

, In [=I -ir.O(A) for O<z<z+ 

(C.12) 

(C.13) 

(C.14) 

and z+ , a solution for R(z, s) = 0, is given by 

s + 2(mf - rni - m2,) 
z+ = s - 4m2, 

2 
(C.15) 

- 
s - 4m2, 

. [mys -I- (9724 - rnfii2 - Zrn$(rnf $777:) $ 9724W]1i2. 

For present purposes, we may disregard the imaginary parts. 
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For large and small values of s, the functions ci take the following asymptotic 

forms. We always assume that the mass difference between ml and m2 is small 

and set Am2 = rn? - rni , m 2 = $(rnf + mi) , with Am2 < m2. Then for 

mtv < s << m2, 

- 

co=-lnS------ 1 1 Am2 1 s 
2 972; 12 m2 24 m2 

_. 
1 i s q=-lnL--- 
6 4 120 m2 

(C.16) 
1 Am2 1 s 

--$gs 120 m2 1 
1 Am2 1 s ---- -- 

120 m2 t 840 m2 1 

When s >> m2, dropping Am2/m2 and non-asymptotic terms, 
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- 

1 3 co=-lnS-2 
2 rni 

1 11 cl=-lnL-- 
6 rn$ 18 

- E!f 
s- 

S 1 2 s -. 

m2R 
c2=--[ln ----‘I m2 

-I-$kln-$] -- 

S -. 

miz 
Ea=-~[ln2~-.2]+21n--$-4 

m2 
t -y [-21n 3 - 41 

S -. 

m2R 
c4=--i[ln’$-7r2]+31ns-7 

7 m2 [-[ln2 3 - T”] - 41n 3 - 6] 

S -. 
m2R 

m2 
t y [ -3[ln2 3 - 7r2] - 18 I 

S 1 m2 -.cs=--+-. 
m”R 2 s 1 

S 1 m2 

mf2 ’ c7 = - - + s 6 
-J-[ln2s-7r2]t21ns-4 . I 
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III. MODULAR INVARIANT PARTITION FUNCTIONS 

ON NONSIMPLY CONNECTED GROUP MANIFOLDS 
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1. Preliminaries 

1.1. CONFORMAL FIELD THEORIES ON THE PLANE['] 

Conformal field theories are quantum field theories with conformal symmetries. 

The Poincare symmetry is extended to the conformal symmetry by requiring that 

the action be scale invariant. Since translational invariance under xp t xp + up 

gives the energy-momentum tensor T,, as the corresponding conserved current, 

conservation of the dilatazon current D, = Tp,, xv implies that the energy mo- 

mentum tensor is traceless. Using these two conditions on the energy-momentum 

tensor, we can construct additional currents of the form J{ = Tpv f”(x). If the 

functional parameter f”(x) satisfies ._ 

the currents Jif are conserved and generate the generalized conformal group. Under 

the generalized coordinate transformations xp + x’p = xp $ f”(x), the metric gpLy 

transforms according to (1.1) , 

where d denotes the dimension of space-time and Q(x) = 1+(2/d) (8-f). Eq.(1.2) 

shows that the transformation preserves angles between two vectors defined on the 

space-time, which is the original definition of a conformal transformation. 

In d > 2, the only non-trivial solutions of (1.1) are fti(x) = u~,x~,w~~x~ and 

b,x2 - 2x,b. x where a and b are constant vectors. These form the finite confor- 

ma1 group: the Poincare group, plus scale transformations and special conformal 

transformations. In d = 2 with the Eucleadian metric gcly = SF,V, any holomorphic 

and anti-holomorphic functions, f(z) and f(z) satisfy (l.l), where z, Z = x1 f ix2. 

Therefore, the conformal group in two dimensions is infinite dimensional and is 
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generated by two independent coordinate transformations, 

In two dimensions, scale invariance implies conformal invariance. The energy- 

momentum tensor has two non-vanishing components TZZ = T(z) and .j’sf = i’(z), 

which become generators of the two conformal transformations. Using (1.3), we 

define z = exp(z:! - isi), Z = exp(--zz - izr) so that as time component 22 

goes to -00, z goes to & This is called radial quantization because equal ra- 

dius means equal time in this complex coordinate. Since these holomorphic and 

anti-holomorphic sectors are completely independent of each other, we can concen- 
-- _ 
trate on holomorphic sector only from now on. However, these two sectors must 

eventually be combined together to fulfill the fuIl consistency requirements on the 

theory. 

The conformal field theories are classified by an anomaly term called the central 

charge of the conformal algebra, which arises from operator product expansion of 

T(z). The general form of the operator product is, 

where c denotes this central charge. Using a Laurent expansion fo the energy- 

momentum tensor, one can define the mode L, as L, = $ $$zn+lT(z). From 

(1.4), we get the Virasoro algebra, 

We can define two vacuum states IO), (01 at z = 0,oo. In order to make sense out 

of T(z)lO) as f -i 0, (O[T+(z) as z --) 00, we must require 

LnlO) = 0, (OIL; = (OIL-, = 0, n>--1. (1.6) 

The operators L1, Lo, L-1 generate a SL(2, C) subalgebra of the Virasoro algebra 

which preserves the vacuum. The primary field 4h(z) generates highest weight 
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state Ih) s $h(O)\O) which satisfies 

LOP) = w-4 L,Jh) = 0, n > 0 . (1.7) 

- 

Here, h denotes the conformal dimension of the primary field. From-the highest 

weight state Ih), d ecendents are generated as a form of L-,, L-,, . . . L-,, Ih) ( all 

n; > 0). Th e sum N = X:=1 n; is called the level of the decendent field. The 

complete set of states descended from 1-h) is called a Verma module. A Verma 

module is a (possibly reducible) representation of the Virasoro algebra that is 

characterized by the central charge c and the dimension h of the highest-weight _. 
state. 

The correlation functions of quantum fields are central objects to compute 

in quantum field theories. The standard formulation for this computation is ei- 

ther canonical quantization formalism or path-integral method based on the given 

action. However, if the theory is interacting, these formalism can provide solu- 

tions only perturbatively. Meanwhile, the two-dimensional conformal field theories 

promise a new possibility for exact solutions for the quantum field theories. Cor- 

relation functions for the primary fields $;(z, Z) should satisfy conformal Ward 

identities from the invariance of vacuum under SL(2, C). 

2 az,(~i,(Z1,21)..‘~in(Zn,En)) = 0 
j=l 

n 

CL Zjdz, •t hi,l(~i,(Zl,zl)“‘~i,(Zn,z,)) = 0 
j=l 

n 

D ‘iazj + 2zjhi,](h,(Zl, 21) * ’ ’ di,(Zn, Zn)) = 0 

j=l 

P-8) 

Correlators for the decendents can be derived from those of primaries using the 

conformal Ward identities. Equations (1.8) completely characterize one, two, and 
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three-point correlation functions up to some constants. These constants are con- 

formal dimensions of primary fields hi and generalized three point couplings Cijk. 

From these solutions, we can deduce the operator product expansions 

+i(Z7 2) ’ 4j(W, w> = 
cijk 

(z - ,)h,+h,-hk(Z - f#+&-Ak 
[4kb-‘-‘,*) +-** ] (1.9) 

where the dots denote a sum over an infinite set of decendents with corresponding 

coefficients which, in prindple, can be completely determined by the given input 

parameters, hi and Cijkm Using these operator product expansions, we can compute 

any correlation function. For example, the four-point function can be written down 
-- 
as 

where J$f (.%$) are called as (anti-)holomorphic conformal blocks. In computing 

correlation functions, there is an arbitrariness in the order in taking the operator 

product expansion. Since the final result should not depend on the arbitrariness, 

we get the associativity condition for the operator expansion product algebra which 

goes under the name of duality, or crossing symmetry. 

. 

The problem of solving the conformal field theories completely reduces to that 

of computing conformal blocks ,7$ for all the decendents for the given primaries. 

This is not easy because conformal blocks involve a sum over an infinite number 

of decendent fields. In special cases, however, we can derive differential equations 

for the conformal blocks. The differential equations arise from degenerate repre- 

sentations of the conformal algebra. A degenerate representation of the Virasoro 

algebra is a representation that contains a null state, a state which is both primary 

and decendent state at the same time. Then Ix) is a null state if 

Lolx) = th + Wlx), L/X) = 0 for n > 0 . (1.11) 

These conditions imply that Ix) has zero norm. A typical example of null state is 
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given by 

Ix) = [ L-2 t 2(2h3+ qLz’] lh) * (1.12) 

This state is null if 

h=$ [5-c&&c-l)(c-25)] . (1.13) 

The correlator of any field with this null state should vanish. This condition gives a 

new differential equation fgr the conformal blocks. This equation can be solved for 

a certain class of theories called minimai models. The two-dimensional conformal 

field theories, therefore, are based on a different computational formalism from the 

-conventional approach which can give non-perturbative solutions for the quantum 

field theories. 

1.2. UNITARITY IN CLASSIFICATION 

The two-dimensional conformal field theories are classified by three input pa- 

rameters, c, hi and Cijkm The problem of deciding all possible sets of parameters 

is called the classification problem. The solution for the problem has fundamen- 

tal importance for both string theories and two-dimensional statistical systems. 

By taking vacuum expectation values for (1.4), c 2 0 for a positive semi-definite 

Hilbert space. 

. 
For a given Verma module of a highest weight Ih), the unitarity condition that 

all decendents should have positive definite norm can provide strong restriction 

on possible values of c and h. For a given level N, there are P(N) number of 

decendent states where physical states are given as linear combinations of positive 

norm. P(N) d enotes the number of partitions of integer N. The determinant of 

the P(N) x P(N) inner product matrix has been computed by I<aE!551 The formula 

is 

detMN(c, h) = CUN n (h - h,,,(c))P(N-Pq) 
PqlN 

(1.14) 

where h,,,(c) is a positive number given as a function of c and integers p,q. By 
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excluding the region where the determinant becomes negative, one can classify the 

theory completely for 0 < c < 1 by discrete series of allowed values of c and h!17’ 

This is called the unitary minimal series and the allowed values are 

(1.15) 

with allowed primary fields of conformal dimension for given m are given by 

h 
PY9 

@) = [cm + ‘)P - mq12 - ’ 
4m(m t 1) 

(1.16) 

where integers p, q are given as 1 5 p 5 m - 1,l 5 q 5 p. The Verma module of 

Ih,,,) has a null state at level pq. 
--. 

For c > 1, the determinant becomes positive definite if the conformal dimen- 

sion h > 0. Therefore, we need another principle for these class of theories for 

complete classification. Most of all, there must exist extended conformal sym- 

metries because the number of primaries with respect to the Virasoro algebra is 

infinite for c > 1. If the number of primary fields are finite, the theories are called 

ra.tional conformal field theories. Recent progress shows that complete classifica- 

tion for the rational conformal field theories may be possible by studying modular 

transformation properties of characters defined on torus. 

1.3. MODULAR INVARIANCE ON THE TORUS 

Partition functions of conformal field theories on the torus are defined as 

Z(T,T) = q-c/24q--Ef24 Tr qLoijLo = c N,J xh(q) X&(Q). 
h,?i 

(1.17) 

We use short notation q = exp (27rir) with the modular parameter r and Nh,h are 

nonnegative integers. The Virasoro character Xh is defined as 
03 

Xh(d - q -c/24 Trh q Lo = q-(c/24)+h c ddn) qn (1.18) 
n=O 

where dh,(n) is equal to the degeneracy of states in the representation at level 

n. Since the trace is defined over all decendents of the primaries, we should not 
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include the null states and their decendents in the trace. If there is no null state, 

dh(?Z) = P(n) and the character is, 

(1.19) 
n 

where 

_ q(q) E q’iZ4 fi(l - qk). 
k=l 

(1.20) 

For the minimal models, we should subtract the contribution from the Verma 

--module generated by the null state at level pq. Since each null state.of the minimal 

model has its corresponding null state,. we should add and subtract these modules 

alternately to avoid overcounting: 

xpq(q> = q-(c-1)/24 77(q>-1 O” 
Cl 

qh2m~+~.p - qh-+n-,] . 
k-w 

(1.21) 

Modular transformations on the torus are generated by two fundamental trans- 

formations T and S; 7’ : 7 --+ 7 + 1 and 5’ : 7 3 -l/7. The partition functions 

(1.17) must be invariant under the modular trasformations. Under the T, 

T : xh(q) --f e2*i(h-c’24)Xh(q) (1.22) 

and by S 

s : Xh(q) --f Xl&f) = c Sh,h Xh’(q) I 

h’ 

(1.23) 

where h’ runs over all primary fields in the theory and Fdenotes exp (-27ri/r). The 

matrix Sh,h’, referred to S-transformation matrix, must satisfy unitary condition 

SSt = SfS = 1 for th e inverse S transformation. Also, S and T satisfy (SZ’)3 = 

1, S2 = C ( C denotes complex conjugate coming from time reversal). The 
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S-transformation matrix must be symmetric!131 For the minimal models, the S- 

transformation matrix is 

s$‘J’ = (,(,8+ 1,) 1’2 (-l)(P+q)(p’+qr) sin (7r$) sin (r--$$) . (1.24) 

The modular invariance of the partition function gives a condition on the matrix 

with nonnegative integer gements Nh il : , 

SNS+ = N 
_. (1.25) 

and on the conformal dimensions of the primaries : 

AT,,& = 0 if h - 71 # integer for c=c. (1.26) 

. 

Finding the solutions for (1.25) is very important both for the classification of 

conformal field theories and in understanding of operator contents of the theories. 

The only complete solutions found up to now are for the minimal models and SU(2) 

Kac-Moody algebra!1a”g1 In these cases, the solutions are known as A - D - E 

classifications. The original nomenclature was motivated by the close relationship 

with the classification of simply-laced Lie algebras. Class A denotes the diagonal 

fOrIn Nh,h = b,,~, which is obvious from the unitarity of S-transformation matrix. 

Class D includes the partition functions with off-diagonal form of Nh,h = 6h,n(hl 

with a permutation 7r. Class E contains three special modular invariants which do 

not belong to class A or D. The operators of class A are all spinless fields while 

class D and E contain nonzero integer-spin fields. 

Modular invariance can play important role in the classification of conformal 

field theories . If there are null states, the number of decendents of level n should 

be reduced, or dh(n) 5 P(n). Th ere ore, f if q and f are purely real, we get an 
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inequality 

Xh(Q) 2 q-(c-l)/2*+h q(q)-1 . (1.27) 

By taking the limit of Imr --t O+ or q -t 1 and c ---t 0, the right-hand of (1.27) 

becomes q(q + 1)-r and, using the identity q(a = (Imr)1/2q(q), 

(1.28) 

Then, the partition function has the upper limit of 

While from the modular invariance of 2 and (1.17), as ?i t 0, 2 = Z(Q,a Z 

Q ---(c+E)/24 from the fact that the most dominant contribution to (1.17) comes from 

the identity primary field with conformal dimension 0. Therefore, the condition 

(1.29) becomes 

lpc+w4 < (d---1/12 ImT - c Nh,k . (1.30) 
h,it 

If (c$ C)/2 2 1 or, especially c > 1 for the case of c = E, only solution for (1.30) is 

xh i Nh 7~ = 00. In other words, we need an infinite number of Virasoro primaries 

for the conformal field theories with c 2 1I”’ However, we may introduce a larger 

infinite-dimensional algebra so that there may exist a finite number of primary 

fields with respect to this algebra. In next section, we will explain one typical 

example of this extended algebra. 

If one deals with rational conformal field theories with finite number of pri- 

maries, ultimate classification may be possible by investigating the matrix S using 

the results of E. Verlinde!‘“’ The story starts with fusion rule algebra, which de- 

scribes a selection rule for the operator product expansions. The fusion rule matrix 

element Nijk is defined as the number of different ways to fuse the primaries that is 
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consistent with the operator product expansion (1.9). If Cijk = 0, then Nijk = 0. 

Verlinde’s observation is that the modular transformation S : r + -l/7 diago- 

nalizes the fusion rules. Therefore, for a given Nij’ from 4; x $i = CkNijk~k 

one can find possible S-transformation matrix element Sij as eigenvectors of Nijk. 

Using the identities S2 = C and (ST)3 = 1, all possible values of (c, h) can be 

classified. Furthermore, one can get new modular invariant partition functions out 

of known ones using fusion rule automorphisms which preserve operator algebras 

under renaming of primary fields!1Z’131 We want to emphasize again that the mod- 

ular invariance on the torus, which is an one-loop consistency condition for string 

field theory, is very important both for the determination of operator contents and 
-- . 
for the complete classification of rational conformal field theories. 
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2. KaE-Moody AlgebraL7’“] 

In the previous section, we showed that conformal field theories with c > 1 can 

be rational only when the chiral algebra is extended from the Virasoro algebra. 

Every primary field with respect to the new chiral algebra A creates highest-weight 

state representation of the algbra A by acting on the vacuum. From the result of 

the previous section, it can be shown that a-single A representation contains an 

infinite number of Virasor_o primaries. We can formulate conformal field theories 

with extended algebras in exactly the same fashion as with Virasoro algebra. 

Among the extended algebras, KaZ-Moody algebra is particularly interesting 
-. . 
as emphasized in the previous section. Mathematically, KaE-Moody algebra comes 

as an extension of a finite Lie algebra-by adding an extra simple root to the finite 

roots. Physically, this algebra is realized as a continuous symmetry of the Wess- 

Zumino-Witten models on group manifolds. The Wess-Zumino-Witten action is 

given by 

where the Wess-Zumino term I’ is given by 

J d3y fijk Tr[g-r&g g-‘ajg g-‘dl,g] (2.2) 

. where the parameter k, called the level, must be integer for the consistency of 

Wess-Zumino term. This action describes the motion of string on group manifold 

G. If this manifold is taken to form some extra dimension of a string theory, 

the group G becomes the gauge group of the theory in space-time. The finite 

group G must be extended to the affine algebra for describing local symmetry of 

two-dimensional world-sheet. In addition to string theories, Wess-Zumino-Witten 

models are also useful for statistical models. 

The action (2.1) is classically scale invariant. Quantum mechanically, it gives 

rise to a conformal field theory, whose central charge depends on the level k and 
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the finite group G. The action is also invariant under the transformation 

where R E G. Here z and Z are two-dimensional complex coordinates. The Wess- 

Zumino term is essential for the invariance. This G x G local symmetry is the 

Kac-Moody symmetry. The symmetry is generated by conserved currents J”(z) 

and ?( 5). They are defined as 

J(z) = J”(Z)P = -$g) 9-l , _. 
J(z) = ja(Z),p = -+?,s-‘) g ) 

(2.4) 

where the P’s are antihermitian generators of the finite algebra G nomalized by 

Tr.rarb = - $,b. With energy- momentum tensor T(r) and p(E), the currents (2.4) 

generate the full chiral algebra A x A which contains the Virasoro algebra as a 

subalgebra. In addition to operator product between T’s in (1.4), one can find 

operator products as follows, 

w-9 

Using the mode Jz from J,” = f d zznJu(z) and the modes Ln’s from T(Z), we find 

the commutation relations for A, 

[Lx, J;] = -mJ;+, 

[Jn, Jk] = fabc JkSm + S n ~5~~6,+~,0 . 
W-v 

Of course, similar relations hold for the anti-holomorphic generators E, and J,“. 

From the action (2.1), we can find that the energy-momentum tensor is given as a 

76 



Sugawara form with the second Casimir of the adjoint representation cV, 

T(z) = -& : J”(z) J”(z) : 
V 

In terms of the modes: 

1 O”- 
L,=--- 

k t G, c : J; J;a_, : : 
m=-oo 

(2.7) 

(2.8) 

Then, the central charge and conformal dimension of a primary field of a represen- 

tation X of G are given by -- . 

k dimG.. CA 
‘= k-t-c, 

-- 
hA - k + cv ’ (2.9) 

where CA is the second Casimir of the X representation. If the vacuum is invariant 

under the extended symmetry, we can find an extra Ward identity corresponding 

to the KaE-Moody algebra in addition to (1.8), 

i: Tit (~i,(zl,Zl)“‘~i,(z,,Z,)) = 0. 
k=l 

(2.10) 

This equation plus the previous informations determines the four-point correlation 

functions completely in terms of the input parameters k and fabc, through the 

following procedure: We can find a null state for the Kac-Moody algebra which 

can be used to construct additional differential equations. The null state is derived 

by acting [r;L-1 - JE,J{] on a highest weight state. This state can lead to the 

differential equation known as Knizhnik-Zamoldchikov equationt7’ 

(2.11) 

where n = -(k t cv)/2. 
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The primary fields 4;‘s of KaE-Moody algebra generate the highest-weight state 

IX;), I&) E ciao), with respect to both Virasoro and finite algebra G. One of 

great advantages of Kac-Moody algebra is that characters for the highest weights 

are given by the well-known formula for characters of affine Lie algebras due to Weyl 

and Kac. Since Lo is added to the Cartan subalgebra, our definition of character 

(1.18) is consistent with the specialized Weyl-KaE formula with some vanishing 

parameters. The difficulty in expressing the character of a given highest-weight 

state explicitly arises from the problem of finding null states systematically. It is 

particularly difficult for conformal field theories with extended symmetries because 

of their complicated structures. The reason why the Weyl-KaE formula is powerful 

7s that one can sum the allowed decendents systematically using the extended Weyl 

group. The character is expressed as a certain sum over Weyl group: 

XA = c wE,f,7 E(W) ew(*++p 
c wEW e(w) ew(P)--P ’ (2.12) 

where the affine Weyl group Ii/ is a semidirect product of the finite Weyl group r/i/ 

and translation group 2’ in the root lattice M. The constant p is half the sum of 

positive roots. Furthermore, we can express the sum over M using theta functions 

whose modular transformation properties are well-known. The formal definition of 

the theta function is 

ox = e-Ix126/2k c ,w 7 (2.13) tET 
where 6 is the imaginary root of the Kac-Moody algebra. Therefore, the specialized 

character is given by 

where the number SA is given by 

IA + PI2 Ip12 
sA = 2(lc + h”) - 2h” . (2.15) 

We use here the dual Coxeter number h” which is equal to the second Casimir c,. 
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Using the standard formula of Lie algebra, one finds 

CA 1 k dimG 
s A =--- 

k + h” 24 k + h” 
= hA - &, (2.16) 

as one expects from the definition of a character. 

The modular transformations of the characters can be derived from those of 

the theta function. 

-. . 
OxIs = (-ir)“21M’/kMI-1’2 

0~ . -- 

0, 
(2.17) 

M* denotes the weight lattice and Pk is the set of allowed integer affine weights 

for a given level k. By applying these equations to (2.14), the S-transformation 

matrix element is given by 

SJ p = (-;)I”’ IM*/( k + hV)MI-‘/2 t c +4 exp [-s (w(J)I fi)] , (2.18) 
uf& 

where x = A + p and A is the highest weight of the finite Lie algebra G. One 

can check that the matrix S is unitary. Although we derived explicit formulae for 

the modular transformations, solutions of (1.25) for th e modular invariant partition 

functions are not easy to find. Only for SU(2), IlSl are the complete solutions known. 

In the next section, we are going to find a set of modular invariants for nonsimply- 

connected group manifolds defined by orbifold constructions. This approach can 

be extended toward a complete classification of the conformal field theories with 

extended chiral algebras. 

We want to close this section with additional remarks on the possible appli- 

cations of KaE-Moody algebras. The coset construction of G/H models with any 
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subgroup H of G can describe many interesting known conformal field theories. 

Using the fact thatfl” 

the central charge of G/H is given by cGIH = cG - cH. The Hilbert space %(A, X) 

of the coset conformal field theory is defined by the relation 

_-. 

where X(A) and 7f( A) d enote the Hilbert space of G and H, respectively. The - 
case of cGjH = 0 describes the equivalence of two conformal field theories of group 

manifolds. The condition can be satisfied only if the level of G equals 1. In this 

case, H is called a conformal subalgebra, and we should conclude that the lower 

algebra H is extended to the higher algebra G. If cGjH # 0, we have a new model 

which we can relate to other known theories. For example, the coset model based 

on 

(2.21) 

describes the unitary minimal series when p = 1 and its supersymmetric version 

when p = 2. In similar way, parafermionic theories are described by the coset mod- 

els of SU(n). Furthermore, the characters built on ‘FI(A,X), referred to branch- 

ing functions can have direct physical meanings in two-dimensional lattice models 

where order parameters of the models are obtained from the theta function iden- 

titieP Therefore, by understanding the modular invariant partition functions of 

general group manifolds, we can understand the modular transformaion structures 

of the coset models. 
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3. Modular Invariant Partition Functions from Orbifolds 

Wess-Zumino-Witten models”*” are prototypical rational conformal field the- 

ories. The classification of rational conformal field theories has been the focus of 

much recent attention. But even the small subclass consisting of Wess-Zumino- 

Witten models is not well understood; all consistent models are not known. 

One powerful restriction is modular invariance. For example, the states of the 

theory must be such that-the one loop partition function is modular invariant. A 

list of possible modular invariant partition functions has been compiled and proven 

complete only for the simplest case, that of SU(2)!“’ 
-. 

Remarkably, the SU(2) partition-functions may be labelled by the simply- 

laced L’ le algebras, i.e. those of class A, D and E. There are the trivial diagonal 

modular invariants (class A) and also exceptional ones (class E) occurring for 

isolated values of KaC-Moody central charge k. The remaining modular invariants 

(class 0) are the partition functions for strings propagating on the group manifold 

SO(3) 18r563 So besides the trivial and exceptional, all SU(2) modular invariants 

are partition functions for strings on nonsimply-connected group manifolds. If 

this pattern continues for other Lie groups: strings on nonsimply-connected group 

manifolds are certainly important. 

Felder, Gawedzki and Kupiainen ‘se’ have studied the canonical quantization 

of Wess-Zumino-Witten models. Using the geometry of line bundles over the 

loop groups of G, they derive consistent spectra for arbitrary nonsimply-connected 

groups G = G/B, where G is the covering group, and B a subgroup of its center 

B(G). In this letter we use the orbifold15g1 approach advocated in reference 8 to 

construct the partition functions, thus providing a simple confirmation of their 

results. 

The crucial mathematical relation we use is the isomorphism between the outer 

automorphism group O(i) of the (untwisted) KaE-Moody algebra g and the center 

* This was conjectured for N(3) in reference 57. 
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B(G), and its relation to the modular transformations of the torus. Bernard”‘] has 

shown that in the space of characters of highest weight representations of j, it is 

the modular tranformation S (T -+ -l/r) that transforms an element A E O@) 

into an element cr E B(G), and vice versa. He and others [611 have used this fact to 

derive many modular invariants! These are now understood to be some, but not 

all, of the partition functions for strings on nonsimply-connected group manifolds. 

A Wess-Zumino-Witten model one-loop partition function is a sesquilinear 

combina.tion of specialized-characters 

of highest weight representations of a-Kac-Moody algebra 4. Here X = A,wfi = 

(X0, x) is the high es weight of the corresponding representation, X E 2, and wfi are t 

the fundamental affine weights. i is a highest weight of the finite Lie algebra given. 

For a unitary representation, we must have X,k”” = k, where k is the KaE-Moody 

central charge and k”p are the dual KaE labels. 

In particular, the partition function for strings propagating on the nonsimply- 

connected group manifold G = G/B, B c B(G), is of the form 

Z(G/B) = c x*x, Nxq xx. (3.2) 
A’, x 

. It can also be written as an orbifold15g1 partition function!‘] If 01 + crzr are the 

coordinates of the torus and r its modulus, we let (al, CY~) denote the contribution 

to the partition function from fields obeying the twisted boundary conditions 

$(a1 + 27w2) = ~1~(%~2) 

#@,a:! + 24 = Q24(%a2) . (3.3) 

Since the boundary conditions are defined for real coordinates, and not for complex 

coordinates, it is not clear how the chiral structure of the original theory will change 

t Many of these may also be derived from the branching rules for the conformal embedding 
s”u(p)q @  s^u(q)P c si(pq)l !=I 
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by orbifolding. Actually, using z = exp [(al + ~2)i] and z = exp [(al - q)i] one 

finds that the holomorphic and anti-holomorphic coordinates are invariant under 

the twist. Understanding chiral structures of orbifold conformal field theories is a 

very difficult subject!631 One way to understand the chiral structure is to find modu- 

lar invariant partition functions expressed with holomorphic and anti-holomorphic 

characters. To do this, we derive the partition function by adding untwisted and 

twisted sectors consistently. The guiding principle is modular invariance. Later, 

we express the partition function using the characters. 

The partition function can be written as 

-. 
Z(C/B) = $q c (W&2) : (3.4) 

- a1/-72EB 
IPI ,%!I=0 

where ]B] is the order of B. The modular invariance of this expression is guaranteed, 

since under any transformation r --t (ur + b)/(cr + d), (ad- bc = 1; a, b, c, d E Z), 

(cq,cq) transforms to (~~a~,a~c~~)f~~~~~~ If B = ZN, (3.4) reduces to 

(3.5) 

The trivial example is the partition function on the simply connected group 

manifold e : “I 

N(&x = (1, l)XlX = 6x,x . (3.6) 

Untwisted fields are those obeying (3.3) with q = 1. The contribution to (3.5) 

from the untwisted sector is denoted 21 : 

Z](G/ZN) = hNg (1,2) . 
n=O 

(3.7) 

Using these last two objects and the generators S (r + -l/r) and 7’ (r -+ T + 1) 

of the modular group, it is in principle possible to obtain the full partition function 
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Z(@ZN)181 Th e o f 11 owing formula is valid for N prime: 

For N not prime, the situation is more complicated. For example, one can verify 

Z(QZ4) = 1 + CT s Zl(G/ZN) - Z(G) - ;z(B/zz) . 
[ .1, v I 

P-9) 

--The Z2 group of the last term is generated by cu2 if o generates Z4: For general N 

not prime, we expect subtraction of terms proportional to Z(C?/Z,) for p[N would 

be necessary. For simplicity, we therefore restrict to N prime, and use (3.8).* 

The T transformation is of quite simple form: 

7h IX + PI2 h IPI2 
k + h” - h” 

(3.10) 

. . 

Here p = C, wp and the dual Coxeter number is h” = C, Ic”pwp. But the dimen- 

sion of the S-transformation matrix grows rapidly with k, and the expression for 

its. elements involves a sum over the Weyl group of g. So explicitly constructing 

the S-transformation matrix is extremely tedious. This is the main obstruction 

to using formulae like (3.8) to derive orbifold partition functions. 

However, identities proved by Bernardf601 allow us to bypass this difficulty. 

Consider an element A of the outer automorphism group O(G) of 4 acting on a 

highest weight X for a given value of the KaC-Moody central charge k (X,kp = 

k). (An example is the generator of O(s^u( N)), which permutes the fundamental 

* This is a significant restriction only for g = A (where g is the Lie algebra of G). The first 
interesting case excluded is SU(4). ZN with N prime covers all other cases, except for half 
the possibilities with g = D. 
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weights as follows: Awp = wp+l; w* G w’.) Restricting to the weight lattice of 

the finite Lie algebra g, one can write 

,4(X + p) = (k + hV)wAco) t WA(x t P> . (3.11) 

Here rC = &o t~;w ’ is the restriction of an affine weight K to the g weight lattice, 
wA(O) = Awe , and WA is an element of the Weyl group of j acting in the following 

way: 

wA(wi) = wA(i) _ kViWA(0) . (3.12) 

--For s^u(N), t i is straightforward to check that WA is given by 

WA = t&y, wff2 - * * wCIN--l * (3.13) 

Substituting (3.11) to (2.18), we get an overall phase factor from the first term on 

the right-hand side of (3.11). Instead of summing over w in (2.18), we can sum 

over w’ = WWA because w’ covers the same set of elements of Weyl group as w. 

Finally, using E(WW,J) = E(W)E(WA), we obtain 

sA(X)X = SAX/ E(WA) exp (3.14) 

Here E(WA) is the signature of WA; i.e. E = +1(-l) for the product of an even 

(odd) number of reflections. Now for all outer automorphisms A, we have (581 

a = exp k W { ’ ( A(“)lp)} = exp {rib” lwA(‘)12} . (3.15) 

So (3.14) reduces to 

sA(X)X' = (3.16) 

This last equation is the starting point. Considering it with A replaced by A’ 
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yields 

(WA’(O) 1 A) = r (WA(O)/ A) mod 1 (3.17) 

implying 

N (WA(~)1 A) = 0 mod 1 (3.1~) 

if AN = 1. So we see that the phase on the-right hand side of (3.16) is an Nth 

root of unity. In fact, it @  the eigenvalue of an element of B(G) of order N. So, 

as mentioned above, the modular transformation S maps elements of O(i) into 

elements of B(G). 

--- Now the untwisted sector partition function Z~(C?/ZN) is built from the di- 

agonal partition function Z(G) by projecting onto ZN invariant states (compare 

(3.7) and (3.5)). So 

NI(G/ZN)YA = &VA $f E exp { 27rir (wA(‘)I A)} 
t=O 

where we have defined 

h(x) = 
1, ifa:=Omodl, 

0, otherwise. 

Using (3.16) it is then easy to show 

N-l 
sNd~/z~)xlx = f c &'A'(X) . 

r=o 

Applying successive T-transformations yields 

(3.19) 

(3.20) 

(3.21) 

1 N-l IAV + PN2 - IX -t- PI2 
2(k $ h”) ’ 

(3.22) 
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Since kVA(0) = 1, 

(t,/(o)1 w(v)) = (w~(o)I v) mod 1 (3.23) 

for any element w of the Weyl group of g, and any integral weight V. This and 

equations (3.11) and (3.15) simplify (3.22) to 

N-l 

T"SNI(~/ZN)YX = f x 6X'&(X) 
r=O 

exp { -27riv [(WA’(O)/ A) + S lwAr(0)l’l). 

(3.24) 

Twisting a string by CY * -- . = 1 must make no difference. Replacing v with u + N 

in (3.24) therefore demands 

E WA'(O) 2 I I = 0 mod 1 
2 

for all T. This can be simplified, however, since 

- wA(‘) 2 = 0 mod ] Nk 
2 I I 

is sufficient to ensure (3.25) and furthermore that 

k 5 ( I w~‘(O) wA”(“) + WAf(O) ) = S (w~~(o)I BAG+*) mod 1 . 

(3.25) 

(3.26) 

(3.27) 

Equation (3.26) d isa 11 ows certain integer values of KaE-Moody central charge 

k. For s%(N), since wA(‘) I I 2 is the f&m of integer/N, (3.26) restricts the level k 

to be even integer. It was derived in reference 58 by requiring consistency of the 

Wess-Zumino term on a torus, with one of its cycles mapped into a nontrivial 

closed path in G. Thus it is a consequence of the nontrivial fundamental group 

q(G = c/z*) = ZN. 

87 



Substituting (3.24) into the general formula (3.8), and using (3.27), we finally 

obtain 

N@/ZN)X'X = NI(@~N)M t 
N-l 

c 
r=l 

6AfAr(A) k g exp { -2rir [ (uAuO( x t &Ar’o!)]} . 

(3.28) 

Since N is prime the factor T outside the square brackets may be dropped, and we 

can write 

N-l 

-..N(@Z~)xlx = ; c &'A"@) 
m,n=O 

exp { -2ri (wAn(O)I X + swag)} . (3.29) 

This is exactly the form found by Felder, Gawedzki and Kupiainen? Furthermore, 

it is easy to convince oneself that 

(am,an) = &X’@‘(X) exp { -27ri (wAn( X $ EwAm(o))} . (3.30) 

This result shows how each twisted sector has chiral structure. 

The condition (3.26) g uarantees the integrality of the elements of the matrix 

Z(e/zN). Th is must be, since these quantities count the numbers of primary fields. 

We may rewrite the final result in a way that manifests this property: 

N-l 

N(G/ZN)YA = 1 SX~A~(X) . (3.31) 
m=O 

We should emphasize here that (3.29) is a modular invariant for all cases, whether 

or not it is integer valued. But it- reduces to the physically sensible partition 

function (3.31) with integral values only when the Kac-Moody central charge k 

obeys (3.26). 

* The authors of reference 58 also considered the unique semi-simple possibility for C? simple: B = Zz x Zz for g = Dl, 1 even. 
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We will now write the partition function in a more compact notation, and use 

it to verify modular invariance. Considering an outer automorphism A as 

on the space of highest weights of unitary representations, we have 

-4vx = ~X’A(A) . 

Then (3.16) becomes in matrix notation 

AS = Sa 

--where o E B(G) is of course diagonal _ 

Thus the modular transformation S 

If we have another related pair 

define 

eXp k*i (,‘(‘)I A)] . 

diagonalises the outer automorphisms 

acting 

(3.32) 

(3.33) 

(3.34) 

of (j. 

A’ E U(j), a’ E B(e), i.e. A'S = Sa', we 

A' o Q' = A'CY exp +rik w [ ( A’(O) 1 W4~~)] 

Q o A’ = cu A' exp [-aik (u’(‘)/ uA’(‘))] 

so that 

A’oa! = CYOA’. 

Then the partition function may be written simply as 

N-l 

Z(e/ZN) s ; c A” 02 . 
m,n=O 

If C is the charge conjugation matrix, we have 

S2 = C, CA = A-% ; 
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(3.35) 

(3.36) 

(3.37) 

(3.38) 



so that (3.33) also implies 

Therefore 

S+oS = A-l . (3.39) 

s.@/&r) = ; c am o A-” = Z(G/ZN) . . (3.40) 
m,n 

Finally, it is straightforward to prove 

T+(A o d)T = A o cr cx’ , 

establishing the T-invariance of Z(G’/ZN). 

90 

(3.41) 



4. Further Remarks 

- 

In reference 13, it has been shown that unless Iv,, is diagonal or a permu- 

tation matrix (6,,,(i)), the chiral algebra of the theory extends to a higher one. 

Furthermore, the existence of nondiagonal theories can always be unclerstood ei- 

ther in terms of the existence of automorphisms of the fusion rule algebra, or in 

terms of an enhancement of the chiral algebra. For the fully extended algebra, 

the only nondiagonal modular invariants come from automorphisms of the fusion 

rule algebra. The fusion rule automorphism is defined as a permutation of primary 

fields which leaves the fusion coefficients Niik invariant. _. 

We can classify our results (3.31) -according to the above results.. Using the 

condition in (3.31) 

(4.1) 

we can select an appropriate integer m for a given weight A. Then, the permutation 

is given as 7r = Am. We can easily prove that this permutation of highest weights 

is the automorphism of fusion rule algebra. By applying Eq. (3.16) to Verlinde’s 

relation IlO1 

JZlijk = C 
Sin Sjn Sink 

7 
n son 

one can see that the phase factors cancel in this expression to give 

(4.2) 

(4.3) 

However, some of the modular invariants in (3.31) are not associated with 

fusion rule automorphisms. These cases arise when (4.1) is satisfied irrespective of 

m. For SU(N), th is is satisfied if level k = p. N with some integer p. Then, the 
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condition reduces to 

and the partition function will be the form of 

where M is set of the highest weights which satisfy (4.4) and are not related by 

outer automorphism A to another. As long as the order of the center N is prime, all 

--the weights generated from a weight X in M by applying A successively are different 

from another in the orbit, except for. -one special weight X0 given by [p,p, . - - , p] 

which satisfies A(&) = X0. Since the matrix Nx,xt for (4.5) is not a permutation 

matrix, the chiral algebra is extended to a higher algebra. From the point of view 

of this extended algebra, the partition function (4.5) is a diagonal form with the 

characters x1\ defined by 

xh = xx+*-+&IN--1(A) (4.6) 

and N xxo’s which may represent different primary states of the higher algebra. 

Using this partition function, we may find exceptional modular invariants which 

are neither of diagonal nor permutational form. If there exists an automorphism of 

fusion rules of the extended algebra, we can find an additional nondiagonal modular 

invariant partition function. Since this partition function, as a combination of the 

original characters, cannot be obtained from (3.31), this should give a new modu1a.r 

invariant partition function for the original algebra. 

To find the fusion rule automorphism of the extended algebra, we try to find 

relation similar to (3.16) for the matrix S of the extended algebra. The matrix S 

for the extended algebra is completely determined by that of the original algebra 

because the phase factor exp 27ri w [ ( A(o)I 93 
in (3.16) disappears as far as X 
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satisfies (4.4). Therefore, we can get a new permutation 7r by finding a pair (X, A’) 

such that 

sxp = SX’p for all ~1 E M. (4.7) 

The permutation is given by the relation X(X) = X’. By computing the matrix 

S numerically for SU(N), we have found two well-known exceptional partition 

functions:[1g’571 SU(2)k=16 and SU(3)k=g. For these solutions, one highest weight 

in the pair comes from the special weight X0. But we did not find any other 

exceptional modular invariants of SW(N) from this method. 

The simple structure of Eq. (3.31) may exist in a more general class of rational _. 
conformal field theories, perhaps those-obtained by the coset [231 construction. Since 

the characters of the coset models are given as branching functions defined by 

(4.8) 

where XA, ,xx are the characters of G and H respectively, we can find new modular 

invariants for the coset model from modular invariant partition functions for G and 

H. The new modular invariant partition functions are given by 

with two matrices NA,A’, M~,J, from (3.31). H owever, this expression may not be 

physically acceptable for two reasons!“‘First, many pairs of weights (A, X) may not 

appear in the spectrum of the coset theory. Second, some states may be labelled 

by several pairs (A, X) which should be identified. Although these two problems 

(selection rules and field identification) may be solved rather easily for the special 

coset models considered in the reference 65, this is much more difficult for a general 

coset theory. 

Using the formalism presented in section 3, it is possible to solve these problems 

for the cases in which G and H are KaE-Moody algebras. This analysis will be 
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presented in reference 66. There we will present a projection matrix p to find the 

relationship between the outer automorphisms of G and H. Since the modular 
transformation matrix S for the coset model is obtained as a direct product of two 

S matrices of G and H, if the phase factors in Eq. (3.16) for G and H cancel each 

other we can identify two fields in the coset models. Since the projection matrix F 

applies to the highest weights of G to produce those of H, the outer automorphism 

A of G and a of H is related by 

PA = al? (4.10) 

-. . 
Since the phase depends on the nature of the automorphisms, the field identification 

for a general coset model can be obtained by studying the projection matrix. 
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