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PRODUCTION AND DECAY OF HEAVY TOP QUARKS 

Russel P. Kauffman, Ph.D. 

Stanford University, 1989 

Experimental evidence indicates that the top quark exists and has a mass 

between 50 and 200 GeV/c2. The decays of a top quark with a mass in this 

range are studied with emphasis placed on the mass region near the threshold 

for production of real W bosons. Topics discussed are: 1) possible enhancement 

of strange quark production when Mw + m, < ml < Mw + ma; 2) exclusive 

decays of 7’ mesons to B and B* mesons using the non-relativistic quark model; 

3) polarization of intermediate W’s in top quark decay as a source of information 

on the top quark mass. 

The production of heavy top quarks in an e+e- collider with a center-of-mass 

energy of 2 TeV is studied. The effective-boson approximation for photons, 2”s 

and W’s is reviewed and an analogous approximation for interference between 

photons and 2”s is developed. The cross sections for top quark pair production 

from photon-photon, photon-Z’, Z”Zo, and W+W- fusion are calculated using the 

effective-boson approximation. Production of top quarks along with anti-bottom 

quarks via y W+ and Z”W+ fusion is studied. An exact calculation of ye+ -+ Ft6 

is made and compared with the effective-W approximation. 
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1. Introduction 

The last character (except the Higgs) to be added to the cast of the Standard 

Model with three generations is the top quark. Since the top quark has yet to be 

discovered, the first question we must address is: “What top quark?” By the top 

quark we mean the partner to the b quark in an SU(2) doublet. The existence 

of the top quark is inferred from the measured properties of the b. Experiments 

at PEP and PETRA: in which ese- + y, 2’ --t bi; is measured, show a non- 

zero forward-backward asymmetry. This indicates that the axial coupling of the 

bottom to the 2’ is non-zero, ruling out the possibility that the bottom quark 

is an SU(2) singlet. Furthermore, if the b were an SU(2) singlet there would be 
n 

decays mediated by flavor-changing neutral currents: such as b --f se+e-, which 

are not seen.3 Lastly, the top quark is needed on theoretical grounds, in order that 

the Standard Model be anomaly-free. 

The t quark mass is constrained to be above 29 GeV from TRISTAN: above 44 

GeV from UAl f and above about 50 GeV from theoretical considerations6 based 

on the ARGUS result7 for B - B mixing. In fact, the B - B mixing results, 

interpreted within the standard model, would have one entertain t quark masses 

in the vicinity of 100 GeV. Recent results8 from CDF, UAl, and UA2 show no 

evidence for a top quark with mass less than 60 GeV and new data accumulated 

by CDF should be able to set a bound that approaches the W mass. 

In Chapter 2 we consider in some detail the transition region between the 

production of “virtual” and “real” W’s in t decays: i.e., values of ml M Mw + rnb. 

The absolute width for a t quark with a mass in this range has been considered 
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previously:’ usually as a special case of a generic heavy quark decaying to a “real” 

W. 

After reviewing some of this analysis at the beginning of Chapter 2, we examine 

some particular properties of the region where rnt z M, + mb, noting especially 

how the possibility of a sharp transition or threshold is smeared out by the finite 

width of the W. In Section 2.3, we consider the decay rate for t ---f s + W compared 

to that for t + b + W. The first process is suppressed relative to the second by 

the ratio of Kobayashi-Maskawa matrix elements squared, (&,[2/[&b(2, which is 

knownl’ to be z l/500. There is a region, however, where the first process is above 

threshold for production of a real W, while the second is below threshold. The 

question of whether this can compensate for the Kobayashi-Maskawa suppression 

is answered (negatively) in Section 2.3. 

In Section 2.4 we consider the possibility that the hadronic final state recoiling 

against the W and containing a b quark will be dominated by a very few hadronic 

states, rather than be a sum of many states in the form of a jet. We calculate the 

specific matrix elements in this case in the quark model-one of the few cases in 

which the nonrelativistic quark model may really be well-justified a priori. 

This ties into Section 2.5, where we examine the relative population of longi- 

tudinal and transverse W’s as we move through the threshold region. The ratio of 

decay widths involving longitudinal and transverse W’s varies fairly rapidly near 

the threshold and we show how the associated lepton or quark jet angular distri- 

bution in the W decay can be used to measure this quantity and help determine 

the t quark mass to a few GeV. 
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Section 2.6 contains a summary of Chapter 2 and conclusions. 

Chapter 3 is devoted to the study of top quark production via vector-boson 

fusion in an ese- collider with a center-of-mass energy of 2 TeV. We first review the 

effective-photon approximation and then use it to calculate the production of t - j 

pairs via photon-photon fusion. We then review the effective-boson approximation 

for W* and 2’ bosons, deriving a consistent set of distributions and showing that 

the interference terms between different he&cities do not contribute. 

In Sections 3.5-3.7 we discuss the production of t - 5 pairs via WsW-, 7Z”, 

and Z”Zo fusion. These calculations are carried out in the effective-boson ap- 

proximation. We present the results as a function of ml for a variety of Higgs 

masses. 

The analogue of the effective-boson approximation for the interference between 

photons and 2”s is derived in Section 3.8. We then use this formalism to calculate 

the contribution of these interference terms to eSe- + e+e-t 5. 

The next two sections concern the production of top quarks with associated 

anti-bottom quarks. These processes proceed through 7W+ and 2’ Ws fusion. 

We calculate the cross section for rljl/ + fusion in the effective-w approximation 

and compare the result to an exact calculation of e+T + Ft 5. 

The luminosities for beamstrahlung photons are presented in Section 3.11. The 

cross sections for fusion of beamstrahlung photons into top quarks and interactions 

of beamstrahlung photons with positrons to produce t - 5 pairs are calculated. 

We conclude Chapter 3 with a summary and comparison to previous results. 



2. Top Quark Decays when mt c Mw + mb 

2.1. INTRODUCTION 

The decays of a heavy top quark have a much different character than the 

decays of the lighter quarks. Even for values of ml M 50 GeV, the finite mass of 

the W results in a z 25% increase in the t decay width over the value calculated 

with the point (infinite M,) Fermi interaction; for Mi sz 100 GeV we have decay 

into a “real” W resonance and the width is proportional to G, rather than G:. In 

this chapter we focus on the transition region between the production of “virtual” 

and “real” W’s in t decays, i.e., values of ml KZ M, + mb. 

2.2. THE DECAY RATE FOR t -+ b e+v, 

Consider the semileptonic decay of t to b. The tree-level width, for any value 

of rni, can be calculated from the diagram in Figure 2.1. 

b 

e+ 

Figure 2.1 The Feynman diagram for the semi-leptonic decay of the top quark, t -+ best,. 
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Iyt 4 b e+v,) = 

G2 5 
(m-mb)2 

Fmt 

24~~ J 
dQ2 MS IQI QO (24 

(Q2 _ ML)2 + M!tJ2, 21Q12 + 3 Q2(l - & )I 9 
0 

where lTW is the total width of the W and the integration variable Q2 is the square 

of the four-momentum which it carries, with the associated quantities 

Qo = (mf + Q2 - m;)/2mt, 
(2.2) 

lQ12 = Q; - Q2. 

In general, the right-hand side of Eq. (2.1) should contain the square of the relevant 

Kobayashi-Maskawa matrix element, II&12, which in the case of three generations 

is one to high accuracy. 

In the limit that mt < M,, the momentum dependence of the W propagator 

can be neglected and the expression simplifies to 

G2 5 
(rw-wJ2 

l?(t -+ b e+v,) 
Fmt 

=TiG- J 
dQ2 I&l [2lQl” + 3 Q2(1 - Qw'mt,] 

0 

where A = mb/mt. 

G2 5 
(mt-mJ2 

Fmt 

=-gp- 
J 

dQ2 l&l3 
0 

G2 : 
=& [l - 8A2 + 8A6 - A8 - 24A4 ZnA] , 

(2.3) 

In the other limit, where mt is sufficiently above M,, we may integrate over 
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the Breit-Wigner for producing a “real” W, and using 

r(w+ -+ e+v,) GM; 
= -iGz ‘, 

rewrite Eq. (2.1) as 

(24 

r(t -+ b + W -4 b e+v,) = B(W -+ eve). 3[2i4iz + 3M;(1 - $J] , (2.5) 

where now Q” = M$, so that Qo = (m: + Mi - mi)/2mt and l&j2 = Qi - Mi. 

For very large values of mt, the width in Eq. (2.5) behaves as 

r(t ---f b + w --+ b e+v,) = B(W ---f ev,) * G,mf/&& ) (2.6) 

to be contrasted with Eq. (2.3). 

The finite width of the W determines the behavior of the rate as we cross 

the threshold for producing a real W. Once we are several full widths of the W 

above threshold, the much larger width given in Eq. (2.5) for producing a “real” W 

dominates the total t decay rate. This is seen in Figure 2.2, where the t ---t be+v, 

decay rate is plotted versus mt. The dashed curve is the result in Eq. (2.5) which 

would hold for production of a real, infinitely narrow W, while the solid curve 

gives the result of integrating Eq. (2.1) numerically.12 For smaller values of mt 

the width is less than Gimf/192x3 because of the finite value of rnb [here taken 

to be 5 GeV, see Eq. (2.3)], but then is enhanced by the W propagator as mt 

increases. The exact result quickly matches that for an infinitely narrow W once 

we are several W widths above threshold. The finite W width simply provides a 
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0 50 100 
mt (GeV) 

150 

Figure 2.2 2 r(t --+ b esve)/(G,m,/ ’ 192x3) as a function of ml from the full expression in 
Eq. (2.1) for M, = $3 GeV, rw = 2.25 GeV and mb = 5 GeV (solid curve), and from Eq. (2.5) 
for decay into a real, infinitely narrow W (dashed curve). 

smooth interpolation as the decay rate jumps by over an order of magnitude in 

crossing the threshold. 

The peaking of the differential rate around the W-pole can be seen in Figure 

2.3, in which we plot dI’/dQ2 for a range of values for mt. We see that for top 

masses above the threshold for real W production the peaking of the distribution 

becomes pronounced and the bulk of the rate comes from values of Q2 very near 

M;. This rapid change in both the absolute rate and its phase-space distribution 

is what will drive the processes which we will study in the following sections. 
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0 2000 4000 6000 8000 

Q* (GeV*) 

Figure 2.3 The differential width dI’(t --) be+v,)/dQ2 ( in arbitrary units), as a function of 
Q2 for a succession of top quark masses, spanning the threshold for decay into a real W  and b 
quark. The masses are taken as M, = 83 GeV and mb = 5 GeV. 

2.3. RATIO OF t -+ b TO t -+ s 

Ordinarily the weak transition t -t s is suppressed relative to t -+ b by the ra- 

l1 tio of the relevant Kobayashi-Maskawa matrix elements squared, l&s12/Ihb12 = 

l/500. However, we have seen that r(t -+ b e+v,) increases sharply as mt crosses 

the W  threshold, changing from being proportional to G$ to being proportional 

to GF. Thus we expect r(t -+ se+v,) to be enhanced relative to l?(t ---f be+v,) 

when mt lies between the two thresholds: Mw + m, < ml < M, $ mb. The ques- 

tion is whether the threshold enhancement “wins” over the Kobayashi-Maskawa 

suppression. 

To examine this quantitatively we consider the ratio of the widths with the 
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1.0 
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0.4 
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0 
20 40 60 80 

mt (GeV) 

Figure 2.4 The ratio pf decay rates with Kohayashi-Maskawa factors taken out, 

( 
I’(t --+ b e+~~)/j&,l~)/(r(t + se+v,)/j&12) with mb = 5 GeV and m, = 0.5 GeV and rw 

equal to fictitious values of 0.0225 GeV (dotted curve) and 0.225 GeV (dashed curve), and the 
expected 2.25 GeV (solid curve). 

Kobayashi-Maskawa factors divided out: 

Either well below or well above threshold for a “real” W this ratio should be 

near unity. For an infinitely narrow W the denominator is strongly enhanced, 

but the numerator is not, when M, $ m, < rnt < M, $ mb. The ratio indeed 

drops dramatically near t + s + W threshold, as shown in Figure 2.4, for rW = 

0.0225 GeV (dotted curve) and even for rW = 0.225 GeV (dashed curve). However, 

the expected W width of 2.25 GeV (solid curve) smears out the threshold effect 

over a mass range that is of the same order as mb - m,, and gives only a modest 

dip (to M 0.6) in the ratio. This is hardly enough to make t -+ s comparable to 

t --+ b. 
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2.4. EXCLUSIVE MODES 

When ml is in the present experimentally acceptable range, the rate for weak 

decay of the constituent t quarks within possible hadrons becomes comparable 

with that for electromagnetic and weak decays. Weak decays of toponium become 

a major fraction of, say, the Jp = l- ground state, and even for the T*(Q) vector 

meson, weak decays can dominate the radiative magnetic dipole transition to its 

hyperfine partner, the T meson Jp = O- ground state.13 

In decays of heavy flavor mesons the branching ratios for typical exclusive 

channels scale like (~/MQ)~, where f is a meson decay constant (like fx or f~), of 

order 100 MeV, and MQ is the mass of the heavy quark. For D mesons individual 

channels have branching ratios of a few percent; for B mesons they are roughly 

ten times smaller; and for T (or T*) mesons they should be a hundred or more 

times smaller yet. It should be possible to treat T decays in terms of those of the 

constituent t quark, t --f b + I%‘+, with the b quark appearing in a b jet not so 

different from those already observed at PEP and PETRA. 

There is one possible exception to these last statements, and that is when 

nat x mbtMw, the situation under study here. In this case there is a premium on 

giving as much energy to the W as possible, i.e., keeping as far above threshold for 

“real” W production as possible, and hence on keeping the invariant mass of the 

hadronic system containing the b quark small. Then we expect the 7’ and 7” to 

decay dominantly into a few exclusive channels: a “real” W plus a B or a “real” 

W plus a B*. 

Furthermore, this is one place where the use of the non-relativistic quark model 

10 



is a priori well-justified. The t quark and final W are very heavy. When rr~t M 

rnb + M,, the final heavy b quark is restricted to have a few GeV or less of kinetic 

energy if the W is to be as “real” as possible. The accompanying light quark in 

the 7’ hadron is very much a spectator which simply becomes part of the final B 

or B’ hadron. Thus we can match up the weak current of heavy quark states, 

@(Pb> Ab)l VP - Ap ht, At>> = u(pb, xb)‘-/‘l(l - y5)u(pt, A,) , W) 

sandwiched between the appropriate hadronic wavefunctions in spin and flavor 

space, with the matrix elements of the exclusive hadronic channels T + B + W 

and T -+ B” + W, defined in terms of the form factors 14-16 

PbJI VP P’h-1) = f+(p! + pi) + f-4~: - 143 (2.8) 

and 

(B*(P~ 41 VP - AP IT(pd) = 

The quark-level calculation is carried out using explicit spinors and y-matrices 

in the rest frame of the t: 

(2.10) 
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with 

1 
x+= 0 9 [I 0 

x- = 
[I 1 ’ 

and where Eb is the energy of the &-quark and p = -Qw is its momentum. 

Evaluating the matrix elements from Eq. (2.7) yields 

(%‘b, xb)lvp &t, At)) = 

(Eb $ UQ,)/lpI, 0, 0, 1; AlAb = ++,---; 
(2.11) 

0, -1, -i, 0; AtAb = i---i 

0, 1, -i, 0; A&, = --t; 
and 

(b(Pb, Ab)iAp k(Pt, At>) = 

(Ipl/(Eb t 7-Q), 0, 0, 1; hxb = -++; 

1, i, 0; &xb = $--; (2.12) 

1, -i, 0; A&, = -+; 

+I/(& t ma), 0, 0, -1; hAb = - - * 

We choose the polarization vectors of the W to be: 

$ = --$j(O,*l,i,O), 
(2.13) 

P- CL - +-$/p/, O ,O, Ed, 

where E, is the energy of the W. To obtain the amplitudes we dot the currents 

from Eqs. (2.11) and (2.12) with the polarization vectors: 

J%,x~ = (b(Pb, A,)\ v, It(Pt, At>) E:*, 
(2.14) 

M$A~ = (b(Pb, xb>l A, it(Pt, k>) c;*. 

The appropriate polarization vector to go with each spin configuration is chosen 
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by angular momentum conservation. For the vector current we find 

M1;- = Ml+ = -2 v- &,m+lma “I’ 
and for the axial current 

(2.15) 

M$ = -Mf+ = -2 
J Eb7n:mb IpI7 (2.16) 

M;, = .-MA- = 2,/mt(Eb -t mb)a 

The quark model results for the amplitudes for 2’ + BW and T + B*W 

are obtained by sandwiching the quark level results between the appropriate wave 

functions in spin and flavor: 

where q is a light quark: q = u, d, or s 

(2.17) 

We can now write down the quark model results. The decay T + BW yields 

only longitudinally polarized W’s, by angular momentum conservation. By parity, 
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it proceeds only through the vector current: 

M(T + BWL) = 2 +M;+ t ML-) 
(2.18) 

= 

The decay of a T into a transverse B* involves both the axial and vector currents, 

whereas the decay into a longitudinal B’ involves only the axial current: 

MT -+ B;;=+, Wx,+l) = -$(MV+ t ME,) 

= (Eb t mb -I- /PI), 

M(T + B;,-,W+I) = $(M”+ -I- M”_+) 

= 

(2.19) 

(2.20) 

M(T + B;WL) = ;(M;, t MA-) 

= (mi - mb) d----- 
MkV 

mt(Eb t mb). (2.21) 

The corresponding quantities in terms of the form factors are computed by 

dotting the polarization vectors into Eqs. (2.8) and (2.9): 

M(T + B t WL) = 2M ?lPlf+ 

M(T + B* + WT) = (a t bgm,lpl) 

M(T --f B*$ WL) = f M m B’ [41p12 t J%JL) t 26db12] . 

(2.22) 

Identifying rnt = mT and mb = mB = mB* an d comparing the quark level and 
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hadron level expressions: 

.f+ = 
mTtmB 

2mT(EB + mB> 

a = @m,(E, t mB) 
2 

g= 
2m,(& t m,) 

In the limit IpI -+ 0 the form factors reduce to 

mTtmB 

‘+ = 2JrnT B 

a = 2Je 

(2.23) 

(2.24) 

These results agree in the appropriate limit with previous results13-15. The form 

factors f+, a, and g all have straightforward limits as IpI + 0, while that for 

b can be subtle, as explicitly seen in Eq. (2.23). It is more sensitive to bound 

quarks being off the mass-shell.15 Our result agrees with that of Ref. 16 with the 

appropriate change of flavors. 

2.5. W POLARIZATION IN t DECAY 

Within the scenario of discovery of the top quark at a hadron collider, it would 

be useful to have several handles on the value of rnt. An indirect method would 

be to measure a quantity in top decays which depends strongly on the top mass. 
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For rnt in the vicinity of M, + ?nb, we now show that such a quantity is the ratio 

of the production of longitudinal W’s to that of transverse W’s in top decay. 

The decay widths into longitudinal and transverse W’s are defined by decom- 

posing the numerator of the W propagator as 

g/w - Q,Q,IM; = c E&+;(A) = cJ;e)&++‘)* $ tf)t-p)* + tj;-)&-)* , (2.25) 
x 

where the superscripts give the helicity of the W, whether virtual or real. In 

calculating the t decay rate in Eq. (2.1), we define rL = I’(‘), originating from W’s 

with helicity zero, and rT = I’(+) t l?(-1, originating from W’s with helicity $1. 

There is no interference between amplitudes involving the different W helicities, 

since the he&city of the t and b quarks determines the helicity of the intermediate 

W. Separating in this way the portions of Eq. (2.1) originating from longitudinal 

and transverse W’s, we find 

G2 5 

(ml--mb)’ 

rL = -2% 

241r~ J 
dQ2 Mk I&I 

(Q2 - M;)2 + M2 IT2 [ZIQI" -t Q2(1 - z)] , (2.26) 
ww 

0 

G2 5 

(mt-mb)’ 

ITT = $ 

.I 
dQ2 M$ IQI 

(Q2 - M;)2 + M$I’$ 
[2 Q2(1 - &“)I . 

mt 
(2.27) 

0 

In the case mt << M, the integrals become 

r G2 5 Fmt -- 

L - 24d 

(mt-mb)’ 

J 
dQ21QI [2lQl” + Q2U - g,] 7 

0 

r G2 5 Fmt -- 

T - 24~~ 

(mt-mbj’ 

Qo 2 Q2P - m,,] . 

(2.28) 
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Noticing that 

4&I 1 Qo 
d&2= - 2lQ l ( -l-l-- ) 

mt > 

and using integration by parts, we find 

G2 5 
(mt-mb)’ 

r Fmt -- 

L - 187r3 J 
dQ221Q13 , 

0 

G2 5 
(7%~mb)’ 

Fmt r - 
= = 187r3 J 

dQ21Q13 . 
0 

Without needing to perform the integrals we see that 

rL 2 
r,= * 

(2.29) 

(2.30) 

(2.31) 

Sufficiently far above the W threshold we need only calculate the relative pro- 

duction of longitudinal and transverse real W’s: 

rL 1 wlQw12 
r,=ii’ E&f& * (2.32) 

As mt gets very large the longitudinal piece dominates because its coupling grows 

like (mt/Mw)2. For th e case of an infinitely narrow w, &/I?, = i, precisely at 

threshold. At the threshold the decay is purely s-wave and the three polarization 

states are produced equally. The value of I’,/I’, near the threshold is shown in 

Figure 2.5 for rw = 0.0225 GeV (dotted curve), 0.225 GeV (dashed curve), and 

the expected 2.25 GeV ( so i 1 d curve). In this case we see that even for the expected 

value of rw the ratio varies rapidly with mt, especially just below the threshold. 
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Figure 2.5 The ratio I?‘/I’T of t + b + W + b e+v, decay widths into longitudinal 

compared to transverse W’s as a function of nt for r ,+, equal to fictitious values of 0.0225 GeV 

(dotted curve) and 0.225 GeV (dashed curve), and the expected 2.25 GeV (solid curve). 

The ratio of longitudinal to transverse W’s is reflected in the angular distribu- 

tion of the electronsr’ from its decay. With the final b quark direction as a polar 

axis, 

dl-’ -= 
dcos0 

1 + p cos 6 + CY co2 8 ) (2.33) 

where 

rl- - L 
Q = rT + rL * (2.34) 

Thus a measurement of the piece of the angular distribution even in 0 gives a value 

for IL/IT and indirectly a value for mr. In particular, Q becomes positive only a 

few GeV below the threshold, and this may provide a useful lower bound on ml. 

The coefficien t of cos 8 contains information on the difference between the two 
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transverse polarizations: 

(2.35) 

If the energy of the b quark is much larger than its mass then the b will be left- 

handed, since its coupling to the W is V - A. Thus if the spin of the top quark 

is aligned along the W momentum then the W will be dominantly longitudinal; 

if the top spin is anti-aligned with the W momentum then the W will prefer 

negative helicity. So between the two transverse states the negative helicity state 

will dominate when the b energy is high. Indeed, in the case of a massless b the 

positive helicity state would not be produced at all. However at the threshold for 

making a real W, mb/Eb is no suppression at all and the two transverse states are 

produced equally. To see how this comes about consider the difference of the two 

transverse rates divided by their sum: 

(2.36) 

For top masses sufficiently far away from the threshold this ratio will be close 

to one as the positive helicity piece will be suppressed. At exactly the thresh- 

old the ratio goes to zero, in the limit that the W is infinitely narrow. The 

results for the expected width of the W are shown in Figure 2.6, along with 

two fictitious choices of the width for comparison. We see that for very small 

values of the width the ratio becomes very small near the threshold, but for 

the expected width the effect is slight, the ratio achieving a minimum of N 0.8. 
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Figure 2.6. The ratio (I’(-, - r(+))/(r(-) + I?(+)) oft -+ b+ W  -+ b e+y, decay widths into 

left-handed minus right-handed W ’s divided by the sum as a function of ml for rw equal to 
fictitious values of 0.0225 GeV (dotted curve) and 0.225 GeV (dashed curve), and the expected 
2.25 GeV (solid curve). 

2.6. SUMMARY AND CONCLUSIONS 

W e  have seen that the range of top masses near the threshold for production of 

real W  bosons has a  rich structure. Both the absolute width of the top quark and 

its differential width in Q2 vary wildly across this region. Top quarks in this region 

have a  slightly enhanced decays into strange quarks. The exclusive decay rates for 

top mesons can calculated around the threshold using the non-relativistic quark 

model.  The relative populations of the different polarizations of intermediate W  

in top quark decays changes rapidly in this region and could provide information 

on the top quark mass.  
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3. Top Quark Production in e+e- Colliders 

3.1. INTRODUCTION 

In the last several years much thought has gone into the prospects for physics 

using an e+e- l8 collider with energy in the TeV range. These machines show great 

promise for being able to address a wide range of experimental issues. These include 

(but are not limited to) Higgs boson searches, W-pair production, supersymmetry 

searches, and charged Higgs searches. Here we wish to study the production of top 

quarks in a eSe- collider with a total center-of-mass energy of order 1 TeV. Top 

quarks, besides being of considerable interest in their own right, provide signals 

and/or backgrounds in all the aforementioned experiments. In particular, since 

Higgs bosons couple predominantly to the most massive particle available, top 

ral quarks will figure prominently in any Higgs study, whether for a charged or neut 

Higgs. 

The scale of cross sections for all Standard Model processes (and most non- 

standard ones) is set by the elementary QED point cross section: 

47X? 86.8 fb 
UPt = - = [E(TeV)12’ 3s 

(2.36) 

The canonical production mechanism for fermion pair production is eSe- annihi- 

lation into a photon or 2 ‘, shown in Figure 3.1. At center-of-mass energies much 

larger than the 2’ mass the lowest order cross-section for a fermion, f, can be 

written 

a(e+e- ---f ff) = aptNc 
[10Q2s4, + 2&13&l - 6~2,) + 1 - 4~2, + Ss&] 

16s$,(l - $J2 , (2.36) 

where 13 is the weak isospin of the fermion, Q its charge, and NC is the number of 
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Figure 3.1 The Feynman diagrams for ese- -+ y, Z” + t Z. 

colors, 1 for leptons, 3 for quarks. For compactness we have written sin 8, = sw. 

For top quarks (or any other up-type quark for that matter) the cross section is 

a(e+e- -8 ti) N 2.1 opt (2.36) 

where we have assumed s >> nf, AI,” and taken .s”, = 0.23. 

The question we want to investigate is whether there are any other important 

production mechanisms for top quarks. The natural candidates are the vector 

boson fusion processes. These processes are suppressed relative to apt by a factor 

of 02. However, since the vector bosons are exchanged in the t-channel they can 

come close to being on shell in the limit where the energy they carry is much larger 

than their mass. Furthermore, longitudinal bosons have enhanced couplings to 

heavy fermions. These factors could combine to make vector-boson fusion processes 

competitive with annihilation through 7 or 2’. 

In this chapter we will make an exhaustive survey of the vector-boson fusion 

processes which contribute to the production of top quarks. We will calculate cross 

sections for these processes using the effective-vector-boson approximation. For 
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definiteness we will present results for a collider with a center-of-mass energy of 2 

TeV. 

3.2. THE EFFECTIVE-PHOTON APPROXIMATION 

Among the vector-boson fusion processes, the one with the longest history by 

far is photon-photon fusion, with theoretical investigations going all the way back 

to Williams and Landau and Lifshitzrg in 1934. At the energies in which we are 

interested, these reactions are well described by the effective-photon approxima- 

tion, originally developed by Fermi, Weizsacker and Williams, and Landau and 

Lifshi tzfO and given a modern treatment by Brodsky, Kinoshita and 21 Terazawa. 

For completeness and as a warm-up for subsequent calculations, we will present 

a brief derivation of the effective-photon approximation, keeping only the leading 

term. In this strategy we will neglect the mass of the electron wherever possible. 

We will follow closely the treatment of Ref. 21. 

Consider the process depicted in Figure 3.2. The essence of the effective-photon 

approximation is that the cross section is dominated by phase space configurations 

in which the virtual photon is nearly on-shell, i.e., when the final electron goes 

almost straight forward. The strategy is to integrate over forward angles and 

express the result as the cross section for rf + X multiplied by an effective flux of 

photons inside the electron. In this respect the effective-photon approximation is 

identical to the parton model of hadrons, the difference being that the distribution 

of photons inside the electron is calculable, whereas the distribution of quarks and 

gluons within a hadron must be extracted from experimental data. 
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Figure 3.2 One-photon production of an arbitrary final state X in a collision of an electron 

with an arbitrary initial particle f: e-f + e-X. 

The amplitude for this process can be written 

(-is/w) (2.36) 

where A” describes the three-point coupling, y*f -+ X. After summing over the 

helicities of the initial and final electron and performing the Dirac trace we have 

; c IM I2 = (p ?a,, (fp” + pup’” - p - p’gp”)dpd;. 
spins 

Proceed to the cross section: 

df? (2T)4 = 2s@ t pj - px)dL 

(2.36) 

(3.2) 

where s = (p + ~f)~, k = p - p’, is the momentum of the photon and dI’ is the 

invariant phase space of the state X. 
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We now break up the photon propagator into a sum of polarization vectors: 

The sum runs over the two polarization vectors perpendicular to the photon mo- 

mentum k plus a longitudinal one. Inserting Eq. (3.3) into Eq. (3.1) yields 

da(ef + eX) = 2(P * G)(zJ * 6;) t ;(ei - e;)k’] (-4 . ci)(dt - E;)dfl 

(2.36) 

The integral over the azimuthal angle of the final electron causes the polariza- 

tion sum to be diagonal; the interference terms between longitudinal and transverse 

polarizations and between the two transverse polarizations integrate to give zero. 

Furthermore, the contribution from the longitudinal polarization vectors is sup- 

pressed. The longitudinal polarization vector becomes proportional to Ic when the 

photon goes on shell. Thus the Ward identity guarantees that it couples with an 

extra factor of k2 compared to the transverse mode. The longitudinal piece will 

only be important if it is anomalously enhanced, e.g., by a small mass appearing 

in a propagator, or if the transverse coupling is forbidden; the longitudinal piece 

will not contribute significantly to yr production of fermion pairs, and we neglect 

it in what follows. 

After the azimuthal integration is performed, we have 

cx 
da(ef + eX) = - 

J 

E’dE’d cos 8’ 
lr k4 PP? - k2) ; da(yf ---) X), (3.4) 

where w = E - E’ is the energy of the photon and pl is the projection of p 
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perpendicular to k. In writing Eq. (3.4) we have made the substitution 

,l;lim, c (A. c;)(df . cf)dF = 2~. da(rf --$ X). 
&I,2 

(3.4) 

The remaining integral over the polar angle of the final electron is peaked 

sharply around 0 = 0 so we replace 

k2 N -2EE’(l - cos0) - m; 
(E - E’)2 

EE, , 

I 

pl N -;k’. 

Changing variables to integrate over k2 we find 

(3.4) 

da(e-f + e-X) = E J dE, (E2 + E’2) dk2 
UE2 pp(Yf + x>. (34 

The leading term comes from the fact that the smallest k2 is proportional to mz: 

- J dk2 4EE’ 
- = log ---JJ -N 210g $-. 
k2 e 

(3.4) 

We present the final answer in the form 

cT(e-f --f fX) = 
J 

dMM7.f + Xl li=zsT (3.4) 

where i = (k+pf)2. W e conclude that the leading contribution to the photon flux 

is 

Q [I + (1 - x)“] E fr(4 =; 2 l%m,. (3.5) 

The term proportional to l/a: derives from photons’with spins aligned with the spin 

of the incoming electron, while the term proportional to (1 - x:>~/cc provides the 
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Figure 3.3 The effective flux of photons in an electron with energy 1 TeV as a function 
of the momentum fraction z: the full expression, Eq. (3.6), compared to the leading-logarithm 

approximation, Eq. (3.5). 

distribution of anti-aligned photons. At an energy of E = 1 TeV the logarithmic 

enhancement is log $ N 14.5. The full expression is 
21 

fr(4 = ; 1 [l+(:-x)21 (logE$) 
(34 

+; log ( 
2(1 - x) 

+ 1 $ (2 ;xz)2 log 2’2’ -,“) 1 . 
X ) - 

The full photon flux compared to the “leading-log” distribution is shown in Fig- 

ure 3.3. We see that at these energies the leading term approximates the full 

distribution to high accuracy. 
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3.3. TWO-PHOTON PRODUCTION OF TOP QUARKS 

In the previous section we derived the effective-photon approximation for a 

process involving one exchanged photon. To treat photon-photon collisions we 

need to fold in another factor of the photon flux. Accordingly, the cross section for 

two-photon production of top quark pairs is 

o( e+e- 4 e+e- t 1) = 
J 

dxldx2fy(xl)fy(x2)0(r7 -W, (3.4) 

where a(77 + t3) is evaluated at a center-of-mass energy squared, s^ = 21x2s and 

j?(x) is given by Eq. (3.6). 

Yl 
1 

t 
t 

Y2 1 
Figure 3.4 The Feynman diagrams for my -+ 15. 

The two-photon process proceeds through the two diagrams in Figure 3.4. The 

cross section is (for unpolarized photons) 

a(77 + tq = 47&Q, Q -;- 4 2: 
[ 
~(lt4&-sa:)-1-4*,], (3.4) 

t 

with the dependence on the top-quark mass entering through 

and 
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1 + Pt L, = log-. 
1 - Pt 

In Figure 3.5 the full cross section at fi = 2 TeV is plotted for various values 

mt. We see that for rni 5 100 GeV the two-photon cross section is comparable 

that from annihilation through a photon or 2’. 

0 100 200 300 400 

mt (GeV) 
Figure 3.5 The cross section for two-photon production of top quarks, e+e- --+ 77 -) 
at 6 = 2 TeV in the effective photon approximation as a function of the top quark mass. 

of 

to 

t 1, 

3.4. THE EFFECTIVE-W APPROXIMATION 

In this section we derive the analogue for massive vector bosons of the effective- 

photon approximation, in order to use this technique to calculate top quark pro- 

duction from the fusion of W’s and 2’s. The effective-W approximation has been 

22 discussed extensively in the literature. It has been used to calculate production of 

very heavy Higgs particles and heavy fermion pairs arising from W-boson fusion, 

both in the context of hadron-hadron collisions and electron-positron collisions.23 

There are several immediate differences between processes involving photons 
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and those involving IV* or 2’. The’ IV* and 2’ have both vector and axial- 

vector couplings to fermions. As we will see shortly, interference between these 

coupling will cause the bosons of helicity +l to have different distributions from 

those with helicity -1. Since the W* and 2’ are massive, processes involving 

these particles are suppressed until very high energies are obtained. If a process 

is to be well-described by the effective-boson approximation, the energy that the 

virtual boson carries must be significantly larger than its mass. This creates a 

threshold below which the effective-boson approximation is no longer applicable. 

For example, we do not expect the effective-boson approximation to be applicable 

to the production of light fermion pairs, since these are produced most copiously at 

energies much less than MZ and Mw. Finally, the IV* and Z”, being massive, are 

allowed to have longitudinal polarization states. Longitudinal polarizations couple 

to the mass of fermions and thus become important in heavy fermion production, 

whereas in photon interactions the longitudinal contributions are suppressed due 

to the Ward identity. 

These distinctions duly noted, the derivation of the effective-IV approximation 

proceeds in a very similar fashion to our previous derivation of the effective-photon 

approximation. We will present the derivation in detail because there has been 

some controversy in the literature and because the cross sections for heavy fermion 

production from vector-boson fusion depend strongly on the parton distributions 

used. We will follow closely the treatment of Dawson, Ref. 22. 
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Figure 3.6 The production of an arbitrary final state X via exchange of a massive vector 
boson V between an electron and an arbitrary initial particle j: e-j + IX, 1 is either an electron 
or a neutrino depending on whether the V is a Z” or a W-. 

For generality, we study processes involving a massive vector boson, V, which 

may be either charged or neutral. We allow V to have arbitrary vector and axial- 

vector couplings to the electron, gV and ga, respectively. Consider the process 

depicted in Figure 3.6. The amplitude for the process is 

where as before A” describes the three-point coupling: V” + f + X. For W* and 

2’ bosons the couplings are 

w* : gv = -ga = -&, 

and 

z” : gv = A(-: + sin2 8,), 

9 ga = 4cosBw’ 
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Squaring the amplitude and summing over spins yields 

@I2 2 ; c WI2 = ck2 _2,,,, {Cd + d)b”p’” + P*P” - p - hpL”l 
spins V 

(W 
+ 2igvga~papuppp', > gavg,pdudtP. 

We now decompose the propagator into a sum over polarization vectors. We 

choose unitary gauge and substitute 

(3.9) 

We choose the helicity basis for the polarization vectors: X runs over X = fl,O. 

The explicit polarization vectors we will use are: 

C$ = $(O, fl, i, 0), 

4 = & (PI, 0,0,4, 
(3.10) 

where k defines the z-axis. Note that since k is a space-like vector (k2 < 0), 60 must 

be time-like, if it is to be orthogonal to k. Thus ~0. c(; = $1, whereas E&. E$ = -1. 

Inserting Eq. (3.9) into Eq. (3.8) yields 

+ 2igvga~ Papa~~PEj,ppp> (d * ti)(d+ * 6:). 

(3.11) 

In order for the derivation to proceed it is necessary that all the interference terms 

between different polarizations vanishf4 either identically or after integration over 

the azimuthal angle of p’, This condition is indeed satisfied, as we will now see. 
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To facilitate the argument define explicit components for p and p’. Momentum 

conservation requires that the components of p and p’ perpendicular to k be equal 
,. 

and opposite. With k defining the z-axis we write: 

P = (PI cw4~1 sin 54~3)~ 
(3.4) 

P' = t-m cos 4, --P-L sin 9, P',). 

Let us analyze each of the terms in Eq. (3.11) separately, focussing on the case 

i # j in the d ual polarization sum. When i = fl and j = 0 the first two terms are 

linear combinations of sin 4 and cos 4 and so vanish upon the 4 integration. When 

i = $1 and j = - 1 these terms yield pt(cos2 $ - sin2 #J), which also integrates 

to zero. The third term, being proportional to ET . ej, is automatically diagonal, 

since the different polarization vectors are orthogonal. Now examine the piece 

containing cPapu. The antisymmetry of the E. symbol causes this term to vanish 

when i = +l and j = -1, since c$ = -c-. When one E: is transverse and the other 

is longitudinal each term in the Lorentz sum is forced to have exactly one power 

of either sin C# or cos 4, again yielding zero under the 4 integral. We conclude that, 

as claimed, the interference terms do not contribute. 

Discarding the off-diagonal terms in Eq. (3.11), and inserting the explicit po- 

larization vectors from Eq. (3.10), we find 

. 

(3.12) 

Note that the term proportional to gvga changes sign depending on the helicity 
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of the virtual boson, resulting in different distributions for the two transverse 

polarizations.25 

We can now pass to the cross section: 

1 
da(e-f ---) IX) = - 

2(2n)3 J 
!$qxq2dF, (34 

where d? is defined by Eq. (3.2). Th e integration over $ gives a factor of 27r and 

the cross section becomes 

da( e- f + e - (v)X) = - 
2(2:)2 

E’dE’d cos 6 laj2d?. (3.13) 

Up to this point we have made no approximations; Eq. (3.13) is exact, with 

InI2 given by Eq. (3.12). T o implement the effective-boson approximation we 

assume that the amplitudes Jd - c(X)12 are slowly varying with respect to the rest 

of the integrand in Eq.(3.13) so that we can take them to their values at 8 = 0 and 

remove them from the integral over cos 6. The cross section for the sub-process, 

V+f + X is given by Id.c(X)12, multiplied by the appropriate phase-space factor. 

Since the transverse polarization vectors have straightforward limits at 6 = 0 we 

write 

Ji:o Id. c&l2 dT; = ; da(Vx=hl + f + X). (3.4) 

The corresponding limit for the longitudinal amplitude is slightly more subtle. 

The longitudinal polarization vector in Eq. (3.10) contains a factor of l/p, 

which diverges in the forward direction. So in order to make our continuation to 
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the forward direction we define a “physical” longitudinal polarization vector: 

P kc” 
‘phys = M, * 

We then write 

Jiy Id- co\2 dT; = 
w M; 
- - da(Vx,o + f + X). 

+ E (-k2) 

(3.14) 

(3.4) 

The factor of Mz/(-k2) results from the conversion from the “virtual” polarization 

vector to the “physical” one, and the sub-process cross section is evaluated using 

fphys- 

We define the effective boson distributions, fx by 

da(e-f-tiX)=C/dt~~(T)db(v,tf jX) * 
x 8=x3 

(3.15) 

Comparing Eq. (3.13) and Eq. (3.15) and using Eq. (3.12) for IM12, we can read 

off the distribution functions: 

and 

(3.17) 

It is convenient to define linear combinations of the transverse distributions: 

G@:> = f-t@ ) f f-W* (3.15) 

Before performing the integrals in Eqs. (3.16) and (3.17) we need to do some 

kinematics, expressing the relevant quantities in terms of s and k2. The quantities 
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we need are 

P”, = 
E2 Et2 sin2 0 - k2 

lk12 
= 41k12b(l - 4 -t k21, 

E/p3 - Ep; = &tt.‘), 

(P * eoj2 = $32 - x)2, 

with lk12 = u2 - k2. With these substitutions we have 

(3.15) 

(3.15) 

(3.15) 

F+(x) = (9,” + g,“), 
J 

dk2(-k2) 
167r2 (w2 - k2)(k2 - M$2 

[s(l - x) t 2w2 - k2], 

f’-(x) = +$E(2 _ 4 dk2(-k2) J ’ 
dv(k2 - M;)2’ 

fo(x) = (9,” i-g?& 
2 

641r~ v J (w2 _ k2;;$ _ j$,,f32 [d2 - x)2 - 4(w2 - lc2)]* 

(3.18) 

The integrals are straightforward to perform; the results are: 

1 + (2 - X)2 
,274 

2(2 - x)2 
,&4 log (q) + 

4(1 - x)(x2/2 + 1 - x + A) - 
x2q2(1 - x t A) 7 (3.19) 

(2 - x - 277) (1 + 17) 1 
(3.20) 

(3.21) 
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with the definitions: 
M2 A=” 

s (3.15) 

Although Eqs. (3.19) - (3.21) app ear singular as q + 0, they are in fact well- 

behaved, as they must be, since Eqs. (3.18) are clearly smooth as w + M,. 

The leading terms in the distributions are obtained by taking A < x2 (which 

of course forces A << 1). The distributions in this limit become 

1 
0 n ’ 

(3.22) 

(3.23) 

(3.24) 

The averaged transverse distribution, J’+(x), is the analogue of the effective- 

photon distribution, derived in Section 1. Whereas the photon flux is enhanced 

by a factor of log(s/mz), the transverse states of a massive vector boson, V, are 

enhanced by a factor of log(s/Mz), a much weaker enhancement. The boson mass 

takes the place of m, because it is Mv that prevents the boson propagator from 

hitting the pole. The relative enhancements can be seen in Figure 3.7 in which we 

plot the fluxes in the leading log approximation for the case of a IV- being emitted 

from an electron; the photon flux is presented for comparison. We should note that 

approximating F+(x) by its leading term can lead to a gross overestimate of the 

flux, since the term proportional to log(l/ x ma cancel destructively against the ) y 

leading termf6 especially at small z. The parity-violating distribution, F- (xc>, 
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which is not present in the effective-photon distribution, causes the two transverse 

helicities to have distinct fluxes. For 2’ bosons, for which the vector coupling 

to electrons is very small, F-( x is negligible and the two helicities, fl, have ) 

approximately the same flux. 

For W* bosons, the parity-violating term changes sign depending on the charge 

of the W, as required by CP invariance. Since W bosons have V - A couplings, 

F-(x) is negative, causing left-handed W-‘s to be enhanced over right-handed 

ones, and vice versa for W+‘s. To see this in more detail, assume the neutrino in 

Figure 3.6 to be emitted at a small angle 8 from the incoming electron. Defining 

the polarization vectors as in Eq. (3.10) an using explicit left-handed spinors, we d 

can readily compute 

%(P)Y”uL(P’)~; - x 
(1 - 4 (j 

7 

~L(P)Y~L(P’k, N ; le * 

(3.15) 

We see that for x close to 1, when the W carries most of the momentum, the 

left-handed polarization dominates; while for small x the two helicities are equally 

likely. This behavior is manifest in the leading log distributions. If we write the 

helicity distributions for a W- we find: 

f-(x) = 
g2 1 

g&s ; 3 
0 

f+(x) = &” ;x)2 log (;) . 
(3.15) 

The distribution of longitudinal bosons does not exhibit the logarithmic en- 

hancement of the transverse modes. Instead, the longitudinal mode is enhanced 

by a factor of s/M;, which we have absorbed into our definition of the longitudinal 
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Figure 3.7 The leading logarithm approximation to effective distribution for W bosons in 
an electron [Eqs. (3.22)-(3.24)] with b earn energy 1 TeV as a function of the momentum fraction 

t. The effective photon distribution is shown for comparison. 

polarization vector. The longitudinal and transverse fluxes depend differently on 

M;/s as a result of their different kinematics: emission of a longitudinal boson is 

allowed in the full forward direction, while the emission of a transverse boson is 

forbidden by angular momentum conservation. We also note that for the longitu- 

dinal distribution the leading term accurately approximates the full distribution 

since the next order term is suppressed by a factor of it4z/s. 

The distributions derived here agree in leading approximation with those in 

the literature.22 However, the non-leading terms differ between authors depend- 

ing on the exact definitions of the distribution functions and the extent to which 

higher order terms in Mz/s are retained. In situations in which the effective- 

boson approximation is accurate these differences in the non-leading terms are not 
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important numerically. For definiteness we will use the distribution functions of 

Eqs. (3.19) - (3.21). Th ey are displayed in Figure 3.8 for a beam energy of 1 TeV, 

along with the leading approximations for comparison. We see that the leading 

approximation to the longitudinal distribution is quite accurate, whereas in the 

transverse case the leading-log distribution differs from the full distribution by as 

much as a factor of 10. 

0 0.2 0.4 0.6 0.8 1.0 
X 

Figure 3.8 Comparison of the full expression for the W fluxes in an 
at energy 1 TeV with the leading logarithm approximations (dashed lines) 
momentum fraction z: a) Sum of the two transverse distribution, F+(z); b) 
transverse distribution, F+(z); c) The longitudinal distribution, lo(z). 

electron (solid lines) 
a.5 a function of the 

Difference of the two 
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3.5. TOP-QUARK PRODUCTION FROM WW FUSION 

In this section we compute the cross section for e+e- t ~6 tZ through W W  

fusion. We will treat this process in the effective-W approximation derived in 

the previous section. By employing the effective-W approximation we restrict 

out attention to the so-called W-fusion diagrams, those of the form shown in 

Figure 3.9. We expect these diagrams to contribute the bulk of the cross sections 

e’ 

3z 

V 

W- t 

W+ 
T 

e+ v 

Figure 3.9 Production of top quark pairs via WW fusion. 

at high enough energies. The “peripheral diagrams” that we neglect are shown in 

Figure 3.10. The degree to which these diagrams alter the cross section is unknown 
27 

in general although there have been exact calculations in some special cases. 

e+ 
(4 (W 

e- 7,z” t 

x 

V 

i 

e+ 

(c) 
Figure 3.10 Peripheral diagrams for et e- + vi;il, neglected in the effective-W approx- 
imation: a,c) the intermediate boson coupling to the t 5 pair can be a 2’ emitted from any of the 
four lepton legs or a photon from the electron or positron; b) the 2’ can be emitted from any of 
the four fermion lines. 

41 



Since the effective-W approximation yields different distributions for the three 

possible polarizations of the W’s, we must treat the polarizations separately when 

computing the cross section for the subprocess WsW- 3 t5. Furthermore, the ap- 

propriate choice of basis for the polarization vectors of the W’s is the helicity basis, 

since the effective-W approximation is diagonal only in that basis. Accordingly, 

we write the full cross section as 

a(e+e- 4 vEtI) = C a(e+e- --$ Wx’,WX_ + tt) 
X+L 

where the helicities Xi of the Wf each run over l,O, -1. 

The cross section for the sub-process WsW- + t 5 is straightforward, if te- 

dious, to calculate. It proceeds through the diagrams in Figure 3.11. 

Figure 3.11 Diagrams contributing to Wt W- -+ 1 i. 

Along with the Compton-like graph, familiar from photon-photon fusion, we 

have the s-channel graphs involving the photon, Z”, and Higgs. It is well known 

that the individual graphs are not well behaved at high energies and that it is 

only the sum of the graphs which is unitary. The cancellations between diagrams 
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are especially large for processes involving longitudinal bosons, since they have a 

polarization vector which grows with energy: cc1 N P‘/Mw. For simplicity, we will 

present cross sections summed over the spins of the t and f. We note that, since the 

W has left-handed couplings to fermions, left-handed top quarks (accompanied by 

right-handed anti-quarks) will dominate. 

In the calculation of W+W- + t? cross section we wiI1 take the momenta of 

the W’s to be light-like: k2 = 0. Th ere are two reasons for this. First, the limit of 

the integration over k2 in the effective-w approximation is k2 = 0; continuing k2 

to k2 = Mi adds additional error at the order of Mi/s. Second, it is simpler to 

perform the calculation for k2 = 0 than for k2 = Mz. For polarization vectors we 

take those defined in Eq. (3.10) for helicity fl, and Eq. (3.14) for the longitudinal 

polarization. 

We begin with the cases where both the IV+ and IV- are transverse: X = fl. 

Note that not all of these configurations are independent: CP invariance requires 

wx+,+.lw+, --) ts> = qqI_,w,-, + t?). The actual calculation of the 

cross section is routine: add the various diagrams, square the full matrix element, 

sum over the quark spins, and finally integrate over the phase space. The cross 

sections for the various helicity combinations are: 

4w,+=+,w,-, tt) -- rJG2 Pt Lt 1 2 4 = 
2& i 4A;(l-4Ai)K+3+3At-8A; (3.26) 

1 -;+;At-4A; 

(3.27) 



.rrNca2 Pt =-- 
2s& i 

3-4At--X,(1-2At)tXt(l--&)tReXH(l--2At)] 

t At i 4-2XztX~-t-2ReXH-~X~ -;xzxtt;x:+Ix,12] (3.28) 

- 2Af [6-2XZtX2$6ReXHt2/X,12] t6 2x:-2xzxttxil), L[ 
L 

The quantities .Lt, pi, and Ai are defined as in Eq. (3.7), while sW is defined as 

before, sw = sin 8,. The other quantities are 

Xt = 4Q&&, 

(3.29) 

There are two principal factors at work in Eqs. (3.26) - (3.28). First, the t 

and i quarks want to be left-handed and right-handed, respectively, because of 

the V - A coupling to the W. Second, the helicity of the t prefers to follow that of 

the IV+ while the helicity of the Z tends to follow the W-. The only configuration 

in which both of these conditions can be met is when the Ws is left-handed 

and the W- is right-handed; then the cross section receives the enhancement 

proportional to L t, as exhibited in Eq. (3.27). The other cases do not receive 

this enhancement: Eq. (3.26) h as a constant term in place of the logarithm and 

Eq. (3.28) is suppressed by powers of rnt/i and Mi/i?. ( Note that only these latter 

states with spin projection sz = 0 along the collision axis receive any contribution 

44 



from the photon, Z”, and Higgs diagrams, and so have any dependence on iVz or 

Me) 

To obtain the contribution of each of the intermediate poIarizations to the full 

cross section for e+e- -+ YF t 5 we need to integrate over the flux distributions using 

Eq. (3.25). We note that the contributions from kV’~=.,,kV.J,=-, and kV~~+,kV’~=+, 

are equal, since the cross sections for the subprocess and the distributions are equal. 

The results of the numerical integration are shown in Figure 3.12. Comparing 

with the photon-photon results from Figure 3.5 we see that the contribution to 

t T production from transverse W’s is three orders of magnitude smaller. This 

difference is due mainly to the fluxes of W’s being much smaller than the photon 

flux, especially at small momentum fractions. 
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Figure 3.12 Contributions to the cross section for e+e- + vP t 5 at fi = 2 TeV from 
fusion of transverse W’s in the effective-W approximation as a function of mt. 

Now consider the processes involving longitudinal W’s. The longitudinal state 
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couples differently than the transverse ones, its polarization vector being ei = 

kc”/M,. Naively, this would lead to a unitarity-violating coupling proportional to 

i/M&. However, large cancellations between the various diagrams reduce this to 

mf/M&, at sufficiently high energies. We can explain this behavior in terms of 

the Higgs mechanism. It is the charged part of the original scalar doublet which 

is “eaten” to provide the longitudinal degree of freedom of the W*. At high 

energies (i > M&), the electro-weak symmetry is restored and the longitudinal 

state couples like the scalar particle from which it came. Just like the Higgs, the 

longitudinal state couples to fermions via their masses. For very heavy fermions 

this can yield a substantial enhancement, one factor of mf/M, in the amplitude 

for every longitudinal W invoIved. We begin by including one longitudinal W. 

We can easily calculate the contributions from helicity states in which one W is 

transverse and the other longitudinal. Just as in the completely transverse case, 

the relative sizes of the cross sections are determined by the helicity structure of 

the initial state. The process with X+ = -1 and X- = 0 will be enhanced over 

that in which X+ = +l and X- = 0. Invariance under CP requires equality among 

the cross sections for some of the initial states: 

(3.15) 

After some algebra we can write down the two independent cross sections, for a 

left-handed Ws and longitudinal W-, 
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qJ$-,wx,o 
TN&Y2 mt 2Pt -bit> =--pJ--- - 

SW 
( > Mw -i- 

(I-2At+zA:)(l-X,)-AtXt(l-At)] 

+ f [6-3X,+;Xt+X;-2X,x,-X;] 

+ At [l-&+;Xt] + & [x”” - xzxt + ;x;]}, 

(3.30) 

and for a right-handed W+ with a longitudinal W-, 

y(z)‘${ y [Xt+At(2-2X,+Xt)] 

[ 
l-x,,;,] -f [3x,-;xt+x:+ax,xt-x:] (3.3 

+ 6At 
- [xi-x,x,+;x:]}. 

1) 

We see that, as advertised, the leading terms in the cross sections at high 

energies are proportional to (mt/M,) 2. The cross section for a left-handed I%‘+, 

Eq. (3.30)) contains the logarithmic enhancement proportional to Lt. The right- 

handed cross section, Eq. (3.31), is suppressed by a power of At relative to the 

left-handed process. Neither process depends on the Higgs, since coupling of a 

transverse W and a longitudinal W to the scalar Higgs is forbidden. 

To obtain the contribution of these processes to e+e- + VP t? we again need to 

fold in the effective-W distributions from Eqs. (3.19)-(3.21) and integrate over the 

momentum fractions of the two W’s. To get the full contribution we multiply by a 

factor of two to account for the cross sections in which the Ws is longitudinal and 

the W- is transverse. The results are displayed in Figure 3.13. We see that the 

contribution from Wz,+l WY&-, dominates, as expected. The factor of (mt/Mw)2 
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causes the cross section to be basically flat as mt grows. However, it never surpasses 

the two-photon result. 
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Figure 3.13 Contributions to the cross section for e+e- --c vii t 5 at fi = 2 TeV from 
fusion of a transverse W with a longitudinal one in the effective-W approximation as a function 
of ml. 

The remaining configuration to be considered is when both W’s are longitudi- 

nally polarized. The leading contribution to this cross section is proportional to 

(mt/Mw)4. In this case the Higgs plays a critical role. The t-channel, photon, and 

2’ diagrams add to cancel the bulk of the unitarity-violating behavior. However, 

there are terms of order rntfi/Mi in the amplitude that remain, only to be can- 

celled by the Higgs contribution. At energies below the Higgs mass (& < Mi), 

this cancellation will not occur.28 This will lead to an enhancement for top-quark 

masses less than M,/2. 

The cross section is 
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l+;ReX,+At(2X,-XI)] - 4 [l-X.+;Xt+ReX,+IXHi2] (3.32) 

- & [3xttx,2+2x,xrx:-~x~~2] t & [xi-2x,x,+x:]}. 
t 

It contains the leading factor of (mt/Mw)4, as claimed. The strong dependence 

on the Higgs mass comes from the term containing /XH12/At. When the center of 

mass energy & is substantially less than the Higgs mass, (x,12 Eli 1. In this case 

the term proportional to IX,12/At p ro d uces a term proportional to mfilMi. Of 

course as soon as .G grows beyond M,, 2 the correct asymptotic behavior is restored. 
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Figure 3.14 Contributions to the cross section for e+e- -+ uEt 5 at fi = 2 TeV from 
fusion of longitudinal W’s in the effective-W approximation as a function of ml for three choices 
of the Higgs mass: Mn = 100 GeV, 500 GeV, and 1 TeV. 

The full cross section for e+e- + t? through fusion of longitudinal W’s is 

shown in Figure 3.14 for representative values of the Higgs mass. The numerical 
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results exhibit the promised enhancement for top quark masses less than MH, as 

much as a factor of 10 for M, = 1 TeV, and 100 for MH = 500 GeV. The sum of 

all the WsW- contributions is graphed in Figure 3.15. For Higgs masses of 500 

GeV and 1 TeV the contribution from two longitudinal W’s dominates. 
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Figure 3.15 The fuI1 cross section for e+e- -) v6ll at fi = 2 TeV in the effective-W 
approximation as a function of mt for three choices of the Higgs mass: M,, = 100 GeV, 500 GeV, 
and 1 TeV. 

3.6. TOP-QUARK PRODUCTION FROM ZZ FUSION 

In this section we compute the cross section for eSe- --) e+e- tS through 22 

fusion, again treating the process in the effective-boson approximation. The Z- 

fusion process is easier to analyze than the W-fusion process because to a high 

degree of accuracy the distribution for the two transverse helicity states are the 

same. Recall that the difference between the distributions for right-handed and 
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left-handed bosons is proportional to gvga. The vector coupling of the Z” to the 

electron, gV N (-i + sin2 6,), is negligible, since sin2 8~ N 0.23. ( This would 

not be the case if we were considering Z”‘s being emitted by quarks in hadron 

collisions.) Thus, we are allowed to sum over the two transverse polarizations in 

our calculation of Z”Zo + t?. 

The cross section for the sub-process, 2’2’ + t?, is readily calculated. The 

relevant diagrams are depicted in Figure 3.16, the two Compton-like graphs and 

the Higgs graph. Again, only the sum of all three graphs is well-behaved at high 

energies. We will present cross sections summed over the spins of the t and F. 

Just as in our W-fusion calculation, we will take the Z” momenta to be light-like, 

k2 = 0. For polarization vectors we take those defined in Eq. (3.10) for helicity 

fl, and Eq. (3.14) for the longitudinal polarization. 

HO .--m 

Figure 3.16 Diagrams contributing to Z”Zo -+ t?. 

Let us begin with the cases where both Z”‘s are transverse. The cross section, 

averaged over the two transverse polarizations is 
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a(z;z; -+ t3) = 

- 4&(1-2At)(3-2cZ-c~)-AtReX~(l-4At)(l-c~)] -I-14ci-ct (3.33) 

+ 4At(7+2c~-c~+8ReX,+4~X~~2)-64A~(I+2ReX~+/X,~2)}. 

For convenience, we have defined reduced vector and axial vector couplings of the 

Z” to the top quark: 

9 
g44 = 4 COS ow %4 7 (3.34) 

and introduced cw = cos 8,. In writing Eq. (3.33) we have used ca = -1. The other 

constants are defined as in the previous sections. As a check on our calculation, 

we can set c, = 0, c, = -1, and X, = -1 and so retrieve the form of the photon- 

photon result from Section 2. 

To get the full contribution from transverse Z”‘s to e+e- --f ese- t t, we use 

the distributions derived in Section 4. The results for J;F = 2 TeV and a Higgs 

mass of 100 GeV are displayed in Figure 3.17. The numerical results depend only 

weakly on the Higgs mass. We see that the transverse Z” contribution is smaller 

than the transverse W  contribution by an order of magnitude. The difference is 

due mainly to the smaller couplings of the Z ‘, both to the electron and to the top 

quark. 
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Figure 3.17 Contributions to the cross section for e+e- -+ e+e- t? at fi = 2 TeV from 
fusion of two transverse 2”s and from one transverse 2’ with a longitudinal one in the effective- 
2 approximation as a function of mt. The Higgs mass is taken to be M,, = 100 GeV but the 
result in very insensitive to M,. 

Now let us include the longitudinal polarization. As with the W*, we will 

take the longitudinal 2’ to have a polarization vector, cP = Ic,/M,. Let us first 

present the result for one transverse and one longitudinal 2, averaged over the two 

transverse polarizations: 

o(z,“z; + is> =’ T;;~(~)2$[(c: + c$ - 2cq]. (3.35) 

As we found for W~X&lWX,o -+ tt, Eq. (3.35) is proportional to (mt/M,)2 and 

independent of the Higgs mass. Note also that the result is proportional to ci, since 

without the axial coupling the 2’ would mimic the photon and its longitudinal 

mode would not couple. (An on-shell 2’ would also have a vector amplitude, 

but it would be suppressed by M,/i.) Th e result after folding in the effective-Z 

distributions is shown in Figure 3.17; it is again much smaller than the equivalent 

W-fusion process. 

53 



I I I I I I I $ 

1o’3 E 

10”’ 
I 
I I I I I I I 

0 100 200 300 400 

m, WV) 

Figure 3.18 Contributions to the cross section for e+e- -( e+e- t T at ,f% = 2 TeV from 
fusion of two longitudinal Z”‘s in the effective-2 approximation as a function of r-q for three 
choices of the Higgs mass: M,, = 100 GeV, 500 GeV, and 1 TeV. 

Finally, consider the process with both Z’s longitudinally polarized. The cross 

section is 

cT(z,oz; + ts> (l+sReX,)($ - 2)+iXH12(& - 2)]. 

(3.36) 

It has the expected factor of (mt/MZ)4. Th e result also contains a factor of ci = 1, 

since each 2: couples with a power of ca. Repeating the familiar procedure of 

integrating over the effective fluxes we obtain the contribution of longitudinal 2”s 

to eSe- --) e+e- t 5. The full results are shown in Figure 3.18 for our three canonical 

values of the Higgs mass. We see again the delayed unitarity cancellation for the 

larger two choices of the Higgs mass. The sum of all 22 fusion contributions 

to top-quark production is shown in Figure 3.19 for the same three choices of 

the Higgs mass. The contribution from longitudinal Z’s dominates for the whole 
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Figure 3.19 The sum of the contributions to the cross section for e+e- --$ e+e- t i at fi = 
2 TeV from fusion of 2”s in the effective-Z approximation as a function of ml for three choices 
of the Higgs mass: M,., = 100 GeV, 500 GeV, and 1 TeV. 

considered range of rnt if MH = 500 or 1000 GeV, and for ml > 200 GeV for 

hfH = 100 GeV. 

3.7. PHOTON-2’ FUSION PRODUCTION OF TOP QUARKS 

Leaving no stone unturned, we now direct out attention to the production of 

2 t pairs through fusion of a photon and a 2 ‘. The diagrams are the same as those 

for photon-photon fusion, with one of the photons replaced by a 2’. They are 

depicted in Figure 3.20. 

The calculation of the cross section for the sub-process 72’ -+ t T holds no 

subtleties; we simply add the two amplitudes, square the result and integrate over 

the t ? phase space. Since the distribution of transverse 2”s in the electron is very 

nearly independent of the helicity, we will average over the transverse helicities. 
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Figure 3.20 Diagrams contributing to yZ” -+ t7. 

The cross section for transverse Z”‘s, averaged over polarizations, is 

a(yZy- --f is) = > -c;-c+c,c, , 

(3.37) 

where cl and cz are reduced right-handed and left-handed couplings of the 2’ to 

the top quark: 

2 cl = 1 - 2Qtsw 
(3.38) 

c,= -2&&v 

The cross section for photon-photon fusion to top quarks is regained if we set 

cl = c, = Qt. 

The cross section for the case of longitudinal 2”s is equally easy to evaluate. 

The result, averaged over photon spins, is 

rNcQfo2 mt 2 
6(+/ZL--q= 2 2 

swcw ( > M, (Cl - c1)2?. (3.39) 

Our result contains the expected factor of (mt/M,)2. Since the longitudinal 2’ 

couples axially at high energies, our result is also proportional to (cl - c,)~ = 1. 
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Figure 3.21 Contributions to the cross section for e+e- -+ e+e- t? at 6 = 2 TeV from 
fusion of a photon with a 2’ in the effective-boson approximation for both photon and Z” as a 
function of ml. 

The convolution of these cross sections with the relevant distributions yields 

the portion of the eSe- t eSe-t? cross section due to photon--Z’ fusion. The 

results of the numerical integration are displayed in Figure 3.21. We see that the 

transverse contribution is very small, two orders of magnitude below the photon- 

photon result. The enhancement of the longitudinal mode allows the longitudinal 

result to surpass the two-photon result for top masses above 300 GeV.2g 

3.8. PHOTON-Z" INTERFERENCE 

In the previous sections we have discussed the effective-boson approximation 

for processes involving the photon, 2’ and W *. Our discussion has neglected the 

fact that amplitudes involving the photon may interfere with amplitudes involving 

the 2’. There is no a priori reason why these amplitudes should vanish. In 

this section we derive the analogue of the effective-boson approximation for these 
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Figure 3.22 Production of an arbitrary final state X in a collision of an electron with an 
arbitrary initial particle f by exchange of a photon or a Z”: e-f -+ e-X. 

interference terms. We then proceed to calculate the interference contribution to 

e+e- -+ e+e-t? using our formalism. 

The derivation proceeds in complete analogy to our previous derivations of the 

effective-boson approximation for photons and heavy vector bosons. We begin by 

considering the process depicted in Figure 3.22, e-f + e-X, for some particle f 

and final state X, both arbitrary. The full amplitude is a sum of the photon and 

2’ diagrams: 

(gv + gar5)& 
k2-M; I 

Y,U(P), (3.40) 

where, as before, A, is the three-point coupling rf + X, and A, is the analogous 

quantity for the Z ‘. When we square the amplitude and average over the spin of 

the electron we find 
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where the interference contribution is 

IFfint I2 = - 2e k2(k2 - M;) { gv [ppp’a + pap” - (P.P’)$Y] + ig.~pUPuppp~} 

x !JCLugcYp (d;d;%d;A:"). 

(3.42) 

When we replace the propagators by polarization sums [Eq. (3.9)] we obtain 

IFiintl’ = - k2ckzTM2) C{g~[(p.sf)(p’.fj)+(P.cj)(P”rl)-(P’p~)(6:’Cj)] 
2 i3 

(3.43) 

where the sum runs over the three polarizations of the intermediate photon or 2’: 

i,j = 0,fl. We see immediately that Eq. (3.43) has the same structure that we 

observed in the effective-boson approximation, Eq. (3.11). The same argument we 

used in that case shows to that the terms in the double sum for which i # j vanish, 

either identically or after integration over the azimuthal angle of the electron. 

As we did in the effective-photon approximation we will neglect the longitudi- 

nal coupling of the photon. Thus the sum in Eq. (3.43) runs only over transverse 

polarizations. When we insert the explicit polarization vectors defined in Eq. (3.10) 

into Eq (3.43), dropping the off-diagonal and longitudinal terms in the sum, we 

find 

Imint12 = -pck22fM2) C { gv(Pi - :kZ, - XS,(EPi - QPS)} 
z X=ztl (3.44) 

x [(dew&Q;) + (dZ.E+C.e;)]- 

Note that the term proportional to ga in Eq. (3.44) is proportional to the helicity A. 

When we repeat our argument for the case in which the photon and 2’ are emitted 
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from a positron we find that this term also changes sign, the sign difference coming 

from an interchange of p with p’. We expect the axial portion of the distribution 

to dominate since the vector coupling of the 2’ to the electron is small; however, 

the sign flip from electron to positron will cause some of these terms to cancel, as 

we will see. 

We now invoke the assumptions of the effective-boson approximation: we re- 

place the amplitudes A, and A, with their values at k2 = 0 so that they can be 

removed from the angular integral. We define an interference cross section 

~f”({~~Z”}f + X) = Jdr[(d,.q)(d;.c;) + (dzq)(d:+i)], (3.45) 

where dl? is the invariant phase space of the state X. We write the contribution of 

the interference terms to the full cross section as 

@(e-f + e-x) = /dx c f?“(d ~in”({r(X)I~o(~)~f --f X)li=zs. (3.46) 
x 

Just as we did in Section 4, we can read off the interference distributions: 

J dcose {gt,(p:-;k2)-Xg,(Ep;-E’p3)}. 
k2( k2-ii&j) 

For convenience, we break up the distributions into vector and axial vector 

pieces: 

f:y,) = - ($ E’w J 
dcose 

k2( k2-M;) (Pf+‘), 

f?(5) = (;$$w J 
dcos0 @(j$-,,f;) @k%)* 

(3.47) 

(3.48) 
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Figure 3.23 The interference distributions [Eqs.(3.49) and (3.50)] for a photon interfering 

with a Z” emitted from an electron at energy 1 TeV as a function of the momentum fraction z. 

When we insert the kinematics from Eq. (3.7) and perform the integrals, we find 

(lag [ ‘-;-Az]( l-Az-~+T -log ““) E] (2;x)2}, (3.49) 

(3.50) 

where 7 and A, are defined as before, A, = Mz/s and 17 = dm. The 

interference distributions are plotted in Figure 3.23. The axial distribution is 

between a factor of 2 and 10 times as large as the vector distribution. 

Now that we have developed our formalism we can proceed to calculate the 

contribution to e+e- ---f e+e-tS from the interference of diagrams involving dif- 

ferent numbers of photons and 2”s. The complete set of diagrams are shown in 

Figure 3.24. Brute force procedures could be used to calculate each amplitude and 

interfere it with each of the others, followed by integration of the terms over the 
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Figure 3.24 The set of diagrams contributing to the cross section for e+e- -+ e+e-t? in 
the effective-boson approximation. 

appropriate distributions. However, since there are many contributing amplitudes, 

we will use our knowledge of the distributions to pick out the dominant terms and 

compute those only. 

Since the photon distributions are much larger than the 2’ distributions we 

might naively expect the dominant contributions to come from interference terms 

involving the maximum number of photons. The terms with the maximum num- 

ber of photons are products of a photon-photon fusion diagram with a photon-Z’ 

fusion diagram as shown in Figure 3.25a. However, the axial portion of this con- 

tribution will be cancelled by the mirror-image term, shown in Figure 3.25b, the 

product of a photon-photon diagram with a photon-Z’ diagram with the photon 

being emitted by the positron and not the electron. The piece left over contains 

only the “vector” distribution, proportional to gV, which is considerably smaller 

than the axial distribution. Similarly the terms involvjng three 2”s and one pho- 
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Figure 3.25 The diagrams representing terms involving three photons and one 2’. The 
axial portion from the term in a), where the 2’ is on the positron line, cancels with the axial 
portion of the term in b), where the 2’ is on the electron line. 

ton will only receive vector contributions; we will neglect these terms completely, 

since the flux of 2”s in the electron is much smaller than the flux of photons. Con- 

tributions from the “axial” distribution will cancel out from all terms except those 

shown in Figure 3.26. These are the diagrams which are symmetric with respect 

to interchange of the electron and positron. So we expect the leading terms to be 

those involving three photons with a single 2’ and those involving two photons 

and two 2”s. 

We begin with the interference terms containing three photons and one 2’. 

It is straightforward to calculate the product of the two amplitudes and integrate 

over the appropriate phase space. Since the “vector” interference distribution is 

independent of helicity we can sum over the helicities of the interfering bosons; we 

average over the helicity of the photon. An additional factor of two comes from 

the fact that the 2’ can be emitted from the electron or the positron, The result 
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Figure 3.26 The diagrams representing the terms that are symmetric with respect to the 

interchange of the electron and positron. These are the only terms that receive a contribution 
from the axial distribution. 

is: 

u -int = 2.; c ay {y(X,)lZ0(X1)}y(X2) --f tt) 
x1 x2 

(3.51) 

= 4TQ’a2 $c, + c~){ $(l + 4A1 - 8A;) - 1 - 4A1}, 
swcw s t 

where cl and c, describe the right- and left-handed couplings of the 2’ to the top 

quark defined in Eq. (3.38). The polarization sum runs over X1, X2 = fl. The 

astute reader will recognize that Eq. (3.51) has th e same form as the cross section 

for yy --+ tt. Note also that this “cross section” is positive. 

The interference terms involving two photons and two 2”s are also straight- 

forward to calculate. In this case we do not average over polarizations. Since the 

sign of the “axial” distribution alternates with the helicity we calculate the sum 

over polarizations weighted by a factor of X1X2: 

,int = 
c m2a ‘““({r(~l)lz~(x,))(Y~x,)jzO(x?)J --$ q. 
Xl x2 
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We calculate the terms depicted in Figure 3.26 integrated over the t - T phase 

space: 

zint = 87rcr2 pt Lt --- 
ww { [ - c;+c;-A&-- 

s2 c2 2 pt 
c,)2] -c~-c~-c~C+ . 1 (3.52) 

Note that this “cross section” is negative. 

The contribution to e+e- + ese-t? are then obtained by folding in the ap- 

propriate distributions: 

f+(e+e- + e+e-tZ) = 
J 

dds2.f34&(~2) et Id = Ic122s> (3.53) 

up(e+e- -+ e+e-t Z) = - 
J 

dxld52p(zl)p(zz) q; = z152s’ (3.54) 

The factor of -1 in Eq. (3.54) comes from the axial interference distribution off 

of the positron. Since LP is negative, both contributions are positive. The nu- 

merical integration of Eqs. (3.53) and (3.54) are plotted in Figure 3.27. The two 

contributions are of roughly equal magnitude, the vector contribution dominates 

at smaller masses since the vector distribution is peaked at small x while the axial 

distribution is relatively flat. We might naively expect the interference to be larger 

than the yZO-fusion contribution. This is not the case due to the cancellation of 

the leading axial terms. Instead, the interference contribution is roughly compa- 

rable with that from fusion of transverse Z”s, two orders of magnitude less than 

the yZ” contribution. 
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Figure 3.27 The contributions to the cross section for e+e- - e+e- t? at 6 = 2 TeV 
from interference among diagrams involving photons and Z”‘s as a function of r-q. 

3.9. PRODUCTION OF tz PAIRS FROM 7W FUSION 

There exists another vector boson fusion process which is capable of producing 

top quarks. In this section we will calculate the production of t f; pairs through the 

fusion of a photon and W +. This process has an advantage over the tS processes: 

it has a lower threshold energy, since the bottom quark is much lighter than the top 

quark. Since the cross section for the subprocess of two bosons going to fermion and 

anti-fermion goes like l/i, the lower threshold provides an effective enhancement. 

Furthermore, the effective-photon flux grows at the lower momentum fractions 

allowed in this process. Finally, the yW fusion process involves a bottom quark 

propagator which may become nearly on shell in the forward direction, causing an 

enhancement proportional to log( s/m;). 

We will first treat the process in the effective-W approximation, even though 
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Figure 3.28 Feynman diagrams for the process -yW+ -+ 15. 

this is an occasion in which we do not have much trust in the accuracy of the 

approximation. The effective-w approximation breaks down when the energy 

of the virtual W does not exceed its mass. There are parts of the phase space 

for which this is the case in the production of t6 pairs. However, these parts 

of the phase space do not contribute the bulk of the cross section. Rather it is 

configurations where the photon is at low CC and the W at relatively high CC which 

will dominate. These parts of the phase space are well described by the effective-W 

approximation. 

Fusion of a IV+ and a photon to form t$ proceeds through the diagrams in 

Figure 3.28. The photon may couple to the t quark or the anti-b. (Note that this 

second diagram is absent in the analogous leptonic process: 71/T/ -t lo.) We will 

restrict ourselves to top quark masses above M,, so that the s-channel W will 

never be on-shell. We will present the analytic forms of the cross sections for the 

sub-process ?I&‘+ --t t 5, with the different helicity combinations treated separately. 

Our numerical results will averaged over the polarization of the photon, since the 

effective-photon distributions are polarization independent. 

The calculations of the cross sections are easily carried out. The results for 
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transverse W’s are: 

uh=+lwL+l + tb) = $f{ -24&L; [l-&+x,(1+&)] 

t (1-b) [16+6X; - At(7-48X&3X;) - 3A:(3+X;)]}, (3.55) 

~t~x,+lwx+,-~ --f t b) = g 2t;(l-At)2+8A;L;-(1-At)(7-5At+6A;) , 
W { 

(3.56) 

TN&X2 
4Yx=-1Wx+,+1 --f tb) = ~ 

{ 
8&(1+5At+3A;)-(l-At)(25+41At+6A;) , 

W 1 

(3.57) 

T N,C? 
~(~x=-~WX+,-~ --f t b) = 18s2 

W { 
- 8A;.C;( 1+ 3X,) + 4A;L; 

t (1 - A,) [4+6X;+At(13t12Xw- ; 3x )I} . (3.58) 

In writing Eqs. (3.55) - (3.58) we have used the values of the quark charges: 

Qt = $ and &a = -$. W e h ave also taken mb = 0 wherever possible. The only 

place where rnb enters is in the logarithmic term: 

(3.59) 

where Ab is the analogue of At for the b quark: Aa = rni/i. 

The cross sections as displayed in Eqs. (3.55) - (3.58) are rather complicated 

but their general structure is easily understood. Note that it is Eqs. (3.56) and 

(3.57) that feature the logarithmic enhancement coming from the forward direc- 

tion. The bulk of Eq. (3.56) comes from the b quark exchange diagram which is 
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enhanced when the t is emitted in the direction of the W+ momentum and is left- 

handed. In this case the virtual b quark becomes almost on-shell. The logarithmic 

enhancement in Eq. (3.57) comes from the t quark exchange diagram in exactly 

the same way. Note that the difference in the coefficients of Lb in Eq. (3.56)and 

,Ci in Eq. (3.57) is a factor of &f/Q; = 4. The other two helicity configurations, 

Eqs. (3.55) and (3.58) d o not receive the logarithmic enhancement. 

Remaining are the processes involving longitudinal W’s The cross sections for 

the two photon helicities are: 

ohx=+1 Wx+,o 8L;(l+At-2A;-3AtX,) 

l-At)2+(1-At) [-28(l-At)-6X,(l+3A,)+3X;($-l-At)]}, (3.60) 

-1wx’=, + tq = s ($)‘{ 8&L; [3X,(l+At)-3Ar2Af] 

6X; 
+ 2AfL; + (l-A,) [10+At(28-18X,-3X$)-42X,-3X$+- 

At 
. (3.61) 

We see that only Eq. (3.60) contains the logarithmic enhancements -Ci and Lb, 

indicating that this cross section is peaked in both the forward and backward 

directions. The analogous logarithmic terms in Eq. (3.61) have been omitted, 

since they are suppressed by powers of (ma/M,). 

To obtain the contribution to e+e- + e-c t 8 from yW fusion we average the 

above cross sections over photon polarizations and integrate over the momentum 

fractions of the W and photon. The results are plotted in Figure 3.29. 

As mentioned earlier, we have no guarantee that the effective-W approximation 

will give accurate results for yW fusion, even at energies as high as 2 TeV. In what 
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Figure 3.29 Figure 3.29 The contributions to the cross section for e+e- - e-6 i 3 at 6 = 2 TeV from The contributions to the cross section for e+e- - e-6 i 3 at 6 = 2 TeV from 

yW fusion in the effective-boson approximation as a function of ml with mb = 5 GeV, yw fusion in the effective-boson approximation as a function of ml with mb = 5 GeV, 

follows we will check the effective-W approximation by doing an exact calculation 

of the process e+Y --f i7 t 5. In calculating the full process e+e- t e-F t 6 we will 

continue to treat the photon in the effective-photon approximation, since we have 

confidence in its accuracy. We will also neglect the peripheral diagrams that do 

not contribute in the effective-photon approximation. 

The cross section for the process e+7 --$ v t b is calculated via the diagrams 

in Figure 3.30. Note that the diagram coupling the electron line directly to the 

photon line was neglected in our effective-W calculation; this diagram must be 

included where the effective-W approximation is relaxed, in order to cancel gauge 

dependent terms. The calculation of the cross section is quite lengthy. We have 

used REDUCE to perform the trace over r-matrices and the angular integration 

of the t 5 system. The remaining phase-space integrals are performed numerically. 
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Figure 3.30 Feynman diagrams for the process e+~ -+ i?ti. 

To obtain the full cross section for e+e- ---f e-li t $ we integrate over the photon 

distribution in the electron. 

To compare the exact result with that obtained from the effective-MT approx- 

imation we plot the differential cross section versus the energy fraction of the 

intermediate W: 

where 2 is the energy fraction of the W. This comparison is made, for several values 

of the top mass, in Figure 3.31. We see that we achieve very good agreement for all 

three masses, except at very small values of z where the exact cross section increases 

dramatically. Figure 3.32 shows the results of integrating the exact differential cross 

section over the photon distribution. It agrees with the effective-W calculation to 

within approximately 30%. This process competes with the photon-photon process 

for top quark masses larger than 200 GeV. 
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Figure 3.31 The differential cross section da(e+r -+ c t 6)/& at fi = 2 TeV as a function 
of x calculated exactly compared to calculated in the effective-W approximation for three choices 

of the top mass: a) mt = 100 GeV, b) ml = 200 GeV, c) mt = 400 GeV. The bottom mass is 
mb=5GeV. 
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Figure 3.32 The contribution to the cross section for e+e- + e-ii t b at 6 = 2 TeV from 
-yW fusion as a function of the top mass calculated using the effective-boson approximation for 

both the photon and the W compared to the result using the effective-photon approximation 
alone and treating the W exactly. The bottom mass is mb = 5 GeV. 

3.10. PRODUCTION OF t& PAIRS BY WA’ FUSION 

The final(!) production process which we will discuss is WZ” fusion. This 

process is similar in structure to 7W fusion, with the 2’ taking the place of the 

photon. We do not expect the effective-boson approximation to have high accu- 

racy for this process since, even for heavy top quarks, there are portions of the 

phase space in which the intermediate W and 2’ carry energies less than their 

masses. These uncertainties aside, we will use the effective-boson approximation 

to estimate the contribution from WZ” fusion. 

The process WsZo --t tb is calculated via the diagrams in Figure 3.33. This is 

the same set of diagrams we studied in the case of W’y fusion, with the 2’ taking 

the place of the photon. It is a tedious but straightforward exercise to evaluate 

the diagrams, and sum them to find the complete amplitude. The cross sections 
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Figure 3.33 Feynman diagrams for the process Z”W+ -+ 2z. 

for the various polarizations of the IV+ and 2’ are then obtained by squaring the 

amplitude and summing over the quark spins. We first write the results for the 

cases in which both W+ and 2’ are transverse: 

x A;& 24&(X;- 
{ [ 

.2)+~,;9-18xl-42S2,+24S;(x~+S~))] 

+(1-nt) [16s$+6~~+A~(24~2,-7~$+i8x:,-48~2,x~) 

- 3A;(3c4, +X:)1}, (3.62) 

X 
1 [ 

Ll, 9-24.~+16~;+A~;4~132~;+8O~P,)+l2A~c2,(3-4~;)] 

+(1-A,) [-30+78&50+ A,(57-138&+82&) - 12&A:]}, (3.63) 

4w,‘=-, zxo,+1 ---f tx> = 
K N&Y2 

18s4 c2 i ww 

x (l-A,)2L;(9-12$,+4&)+A;L;(9-24s2,+) 
{ 

(l-A,) [-30+42+ 14s4,+A~(33-42s2,+10&)-12c4,A~ (3.64) 
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x A;L;(9-12&+4s4,)-8s2,a;L;(s$-3X;) 
i 

+(I - at) [4&+6~$-A~(i2 s2,(1+x~)-13s4,+18x~+3x~) 

- 3A;(3c$+X;)]}, (3.65) 

with XL = c$X, and the other quantities are as defined in the previous sections. 

The structure of Eqs. (3.62)-(3.65) is d t e ermined by the same dynamics we discov- 

ered in our earlier studies: the coupling of the W to fermions is left-handed and 

the spin of the fermion prefers to align with the boson to which it couples. When 

both of these conditions are satisfied the cross section is enhanced. The cross sec- 

tions involving longitudinal W’s and 2”s are calculated in the same manner. The 

results for the various combinations of helicities are 

~(wx+=-&0 2(1 - A,)2(2 + A,), (3.66) 

2 

~cw,‘=,,zx”=o + 6) = 

x 3(1+4X,& (&;-l+A,) + 2cy ( 1-&)2(2+&) , (3.67) 

~w~o~L+l --f t5) = (9-12$,$4&(1-At)“L’b 

+ ,C; [ lSs;( l+At-2A;)-48A&X;-27A;] 

(1 - At) [- 
X$ 

18$48$,-56&+12X;(3 t s;)-6X$tl2- 
At 

$ At(45- 108s; t56s4, -36&X&-6X:)]}, (3.68) 

75 



x L; 36X;-48&X;-12At(3-7$+4&-3X;+4s;Xk) 
{ [ 

-A;(27-60&+32&)] .tA&C;(9-12&,+4&) 

+(1-A,) [9-24sz,+20&-12X;(6-7&)-6X~ 

t At(45-108&56&36c2,X;-6X;)+F . (3.69) 

The leading terms in Eqs. (3.66)-(3.69) are proportional to (mt/M,)2 or (mt/Mw)2, 

as expected. 

The calculation of the fusion of a longitudinal IV+ and a longitudinal 2’ is 

slightly more subtle than the previous cases. Our general program has been to use 

light-like momenta for the I&‘+ and 2’ and to use longitudinal polarization vectors, 

G‘ = kp/M,. The cancellations involved in the full longitudinal calculation are very 

delicate. If the bosons are not taken on their physical mass shell the cancellations 

do not take place. Of course, if the physical momenta and polarization vectors are 

used the cancellations occur and the unitary behavior of the gauge theory is seen. 

Our procedure will be to calculate the full amplitude for on-shell bosons. This 

amplitude will be free of unitarity-violating behavior. We will then continue the 

amplitude back to k2 = 0 and @ ’ = kp/M, for both IV+ and 2’. 

The result of this procedure is 

76 



100 200 300 

mt (GM 

400 

Figure 3.34 Contributions to the cross section for t 6 production at fi = 2 TeV via WZ 
fusion in the effective-boson approximation as a function of the top mass with mg = 5 GeV. 

3Lc',(1-4XI,+2X,) -I- (l-At) -3-6&Xw-(1-2&+4&)X; 

2x$ 
t-&(SX;t(-1t2sz,t2s4,)X;)tF 

t 

The cross section has the expected factor of m:. 

To find the contribution to t8 pair production from these processes we need 

to repeat the familiar process of folding in the effective boson distributions and 

performing the integrals over the momentum fractions. The results of this are 

shown in Figure 3.34, as a function of mt. The results are comparable with those 

from WW fusion. 
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3.11. BEAMSTRAHLUNG 

Since most processes of interest in a linear collider scale like l/s it is necessary 

for a TeV linear collider to have a very high luminosity. If the process of interest 

has a cross section on the order of gpt then a luminosity of order 1033cm-2sec-1 

is necessary to produce lo3 events in a year. At the bunch densities required to 

produce this luminosity the bulk interactions between the bunches become impor- 

tant. One of the consequences is that the incoming electrons bremsstrahlung in 

the field of the positron bunch. 3o Th’ IS intense radiation, called “beamstrahlung,” 

smears out the energy of the electrons and positrons. 

There is also the possibility of the beamstrahlung photons interacting with each 

other and the electrons and positrons in the colliding beams. Blankenbecler and 

Drel131 have shown that the effective luminosities for photon-photon or photon- 

electron collisions can be quite large, depending on the parameters of the machine. 

The beamstrahlung two-photon luminosity can even dominate the flux of “virtual” 

photons, calculated in the effective-photon approximation, as shown in Figure 3.35. 

The electron-photon luminosity, plotted in Figure 3.36, is also substantial. 

We can easily calculate the production of top quarks from the fusion of beam- 

strahlung photons: 

gbeamstrahlung (e+e- --+ deet ?> = 
J 

(3.71) 

The results of the numerical integration are shown Figure 3.37. We see that for our 

chosen set of beam parameters the beamstrahlung production process dominates 

the effective-photon process by two orders of magnitude. 
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Figure 3.35 The differential photon-photon luminosity d&/dr relative to the incident 
electron-positron flux as a function of the energy fraction z = $$ at a 2 TeV linear collider. 
The bunches are taken to have circular cross section and the luminosity and laboratory bunch 
length are: L - 2.8 x 103’ cm-’ and lo - 0.15 mm, respectively. The two-photon flux from 
the effective-photon approximation is shown for comparison. ( Reprinted with permission from 
Blankenbecler and Drell, Ref. 31.) 
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Figure 3.36 The differential photon-electron luminosity d&/dr relative to the incident 

electron-positron flux as a function of the energy fraction t = m . The beam parameters are 
the same as those in Figure 3.35. The photon flux from the effective-photon approximation is 
shown for comparison. ( Reprinted with permission from Blankenbecler and Drell, Ref. 31.) 
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Figure 3.37 The cross section for production of top quarks by fusion of beamstrahlung 
photons as a function of the top quark mass for the same choice of beam parameters as in Figure 
3.35. The contribution from the effective-photon approximation is displayed for comparison. 

We can also calculate the production of t - 5 pairs as a result of the interaction 

of beamstrahlung photons interacting with positrons: 

%mnstrahlung (e+e- + 5 e-t $1 = J &Z&’ 
(3.71) 

This cross section, calculated in the effective-W approximation, is displayed in 

Figure 3.38. Again the beamstrahlung contribution dominates, Of course an equal 

number of anti-top quarks are produced in the charge-conjugate reaction. These 

results were calculated for the case of circular beams which give the maximum 

beamstrahlung flux. For flat beams the fluxes can be reduced by an order of 

magnitude.31 
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Figure 3.38 The cross section for production of t - rd pairs by fusion of beamstrahlung I 
photons with virtual W bosons, calculated in the effective-W approximation, as a function of 
the top quark mass for the same choice of beam parameters as in Figure 3.35. The contribution 
from the effective-photon approximation is displayed for comparison. 

3.12. SUMMARY AND CONCLUSIONS 

After reviewing the range of possible vector boson fusion processes we see that 

the 77 fusion dominates at the smaller top masses, rni < 200 GeV and exceeds 

lowest order cross section for mt < 100 GeV. At larger masses, fusion of longitudinal 

W’s exceeds the 77 result, due to the enhanced W couplings. Processes involving 

2”s are seen to be an order of magnitude smaller than the analogous processes 

involving W’s. The interference between photons and 2”s is seen to be much 

smaller than one would naively expect due to the small vector coupling of the 

electron to the ZO. Our check of the effective-W approximation in the reaction 

e $7 + v t 8 shows that it is accurate to within 30%. Including beamstrahlung can 

greatly enhance the photon fluxes. For circular beams the photon-photon cross 

section dominates both the lowest order cross section and the effective-photon 
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result for rnt < 200 GeV. 

These results are easily transferable to production of other heavy quarks or 

heavy leptons. In 77 fusion we simply need to scale by the charge to the fourth 

power. The leading terms in processes involving longitudinal W and 2”s are the 

same for up-type quarks, down-type quarks and heavy leptons. 

Our results on processes involving longitudinal W’s and 2”s agree with those 

presented by Yuan, Ref. 23 and Eboli et al., Ref. 23. 
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