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OPTICAL TUNING OF THE ARCS AND FINAL FOCUS
SECTION OF THE STANFORD LINEAR COLLIDER (SLC)

In this thesis, we present the experimental tuning procedureé developed for the Arcs
and for the Final Focus Section of the Stanford Linear Collider (SLC). Such tuning is
necessary to maximize the luminosity, by minimizing the beam size at the interaction
point, and to reduce backgrounds in the experiment.

In the final Focus Section, the correction strategy must result from the principles of
the optical design, which is based on cancellations between second order aberrations, and
on the ability to measure micron-size beams typical of the SLC. '

In the Arcs, the corrections were designed after the initial commissioning, to make
the system more error-tolerant, through a modification in the optical design, and to enable
adjustments of the beam phase-space at the injection to the Final Focus System, through a
harmonic perturbation technique inspired from circular accelerators. Although the overall
optimization of the SLC is not entirely finished, an almost optimal set-up has been
achieved for the optics of the Arcs and of the Final Focus Section.

Beams with transverse sizes close to the nominal ones, of a few microns, have been

obtained at the interaction point. We present and discuss our results and the optical limits
to the present performance.
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I. INTRODUCTION



1.1 LINEAR COLLIDER APPROACH AND BASIC NOTIONS

In the past twenty years, electron-positron colliders have established themselves as
powerful tools for studying high-energy particle physics.

Until now, electrons and positrons have been collided by confining particle bunches in
storage rings. This approach can however not be extrapolated as desired to very high
energy because of the rapid increase in synchrotron radiation emitted in the bending
magnets. The energy loss per turn to synchrotron radiation scales as E*/R, where E
is the beam energy and where R is the average radius of the storage ring. It can be
shown! that because of this, both the size and the cost of a storage ring with an optimized
design scale as E*. This law is illustrated in Fig. 1, where the average radius of most
electron-positron storage rings is shown as a function of their energy.

An alternate method for producing electron-positron collisions consists of colliding
beams of two opposed linear accelerators®. In this case there is no significant synchrotron
radiation except in the vicinity of the collision point, and thus more favorable scaling with
energy may be possible.

[n order to be a useful tool for particle physics, an electron-positron collider must in
addition to high energy also provide high luminosity - or event rate for a process with
unit cross-section. The luminosity can be expressed as a function of the frequency of the
collisions f, the number of particles per bunch N, and the effective transverse area 4 over
which the collisions take place: '

L= : (1)

Present technology limits the repetition rate of linear accelerators to a few hundred Hz.
This is much less than the frequencies of several hundred KHz at which bunches circulate
in typical storage rings. Also, the bunch population is usually higher in a storage ring than
in a linear accelerator. In order to reach comparable or higher luminosity, the transverse
area of the beams at the collision point of a linear collider must be made substantially
smaller than that typical of storage rings*.

The collision point area A is conveniently expressed as a function of ¢, the transverse
emittance of the beam, defined as the area of the phase-space occupied by the particles
divided by m, and of 8%, which we define as the second moment of the transverse particle
distribution at the collision point normalized to this emittance®. If these two parameters

* Stronger space-charge effects arise in the collision of beams with very small areas. but the resulting

disruption to the particle trajectories is not as severe a limitation as in storage rings since the beams of
linear colliders are not saved for future collisions after each crossing.

The J-parameters of a beam imaged through a focusing array can more generally be interpreted



are the same in each transverse plane, one obtains for 43:
A =4drp%e. (2)

The factor 4 in (2) arises through the overlap of the particle distributions, assumed to be
gaussian in this calculation.

To produce a small interaction area .4, both the emittance and the 3*-parameter
must be small. The emittance can only be made small at the source, or through radiation
daniping, which can be used fo cool the beams in a dedicated storage ring. Such a storage
is referred to as a “damping ring”. The 3*-parameter can only be reduced by focusing the
beam to the smallest possible size. This is achieved in a dedicated optical system imme-
diately upstream of the collision point, which must in general be corrected for chromatic
aberrations. This optical system is referred to as a “final focus system”.

"Besides the basic design of the components of a linear collider, the handling .of im-
perfections in the long open structure involved presents conceptually new problems. Such
handling must be folded into both the detailed design of the individual components and
into the overall system optimization. Considerable effort is in fact required at several
stages of the system to preserve the carefully damped emittance and to precisely monitor
and control beam parameters. Both are necessary conditions for the final focusing to work
properly and to minimize backgrounds in the experimental apparatus from secondaries
produced by the beam halo and by the tails which are typical of linear accelerators. Solv-
ing such issues at reasonable cost appears to be a crucial element in the development of
linear colliders which must be factored into basic scaling and feasibility arguments.

1.2 THE STANFORD LINEAR COLLIDER

The Stanford Linear Collider (SLC) is the first linear collider presently operating. It
was conceived and built with the double motivation of*:

1. Producing high luminosity electron-positron collisions with a center of mass energy
of about 92 GeV, to study the physics of the intermediate vector boson Z°.

2. Providing the first practical test of the linear collider approach towards high energy
electron-positron machines.

A schematic of the SLC is shown in Fig. 2. In the case of the SLC, one single linear
accelerator - the Stanford linear accelerator - is used rather than two opposing systems

as the values taken by an envelope function J(s) This function describes the evolution through the
array of the square of the beam size corresponding to a phase-space with emittance unity. More on the

correspondance between these two definitions can be found in section VI.1



as was described in 1.1, to accelerate both electron and positron beams. The beams are
then aimed into collision by means of two arcs. The collision point beam size required to
achieve significant luminosity is nominally a few microns.

More specifically, at the begining of each cycle, two electron bunches are generated and
co-accelerated to 1.116 GeV in the injector and in the first sector of the linear accelerator®.
At 200 MeV, they are joined by a positron bunch. The three are then injected for cooling
into two damping rings®, from which they are extracted before the next linac pulse. They
are then reinjected into the linear accelerator and co-accelerated up to energies of 50 GeV".
The 6 mm equilibrium ring bunch-length is compressed to 1.5 mm before reinjecting into
the linear accelerator to minimize wake-field effects produced in the accelerator wave-guide
structure by the intense bunches. The last electron bunch is ejected onto a target at 33
Gev, to produce positrons®. These are returned along the length of the Linac to the 200
Mev point in the injector. At the end of the linear accelerator, electrons and positrons are
bent around and into collision through two arcs?. The final focus system, straddling the
interaction area, provides the necessary optical demagnification and steers the beams into

collision?.

The main parameters of the SLC are shown in Table 1. Column one lists the design
parameters, and column two lists presently achieved parameters. As can be seen the lumi-
nosity reaches unfortunately only a thousandth of the nominal value. Also, the operating
efficiency for achieving peak luminosity with acceptable background in the experimental
apparatus (not listed in Table 1) was lower than 5% in the last cycle of luminosity runs
during the summer of 1988.

The discrepancy between expected and achieved performance results partly from in-
sufficient emphasis, during the early phases of the project, on the design of systematic
diagnostic and correction schemes to control the beams adequately at each stage of the
system, on the development of a global integrated tuning strategy, and on hardware reliabil-
ity and stability. Tuning and correction methods were in most cases developed empirically
and added-on to each of the components of the SLC after the basic optics and geometry
had been fixed, or sometimes in response to specific difficulties encountered in the com-
missioning phase. In several cases, the methods developed were therefore imperfect, and
their improvement is the centerpoint of the ongoing effort to bring the SLC towards its
design performance. The experience gained with the SLC, which is the first linear collider
to be brought into operation, will be very useful to the design of future linear colliders.

1.3 SCOPE AND OUTLINE OF THESIS

In this thesis, we present the procedures developed to correct and to tune the optics in
two parts of the SLC complex: the arcs and the final focus sections. The methods which we

3



describe were conceived and developed in preparation for and during the commissioning
of the SLC, mainly between 1984 and now. They are presented through a selection of
technical notes, conference articles and publications describing in detail their design and
the operational experience which has been acquired. Although the entire SLC complex
has not yet reached its nominal performance, these methods have enabled to achieve a
close to optimized optical transport in these two sections, and to characterize the optical
limitations to the SLC performance.

We introduce these papers in an overall presentation where we:

——

1. Review the basic principles of the optical designs of the arcs and final focus sections,
on which our tuning methods are based.

2. Study the effect of focusing errors in the system on the luminosity and on the back-
ground. These errors can result in both recoverable and unrecoverable distortions of the
beam phase-space. We give order of magnitudes for resulting tolerances and characterize
the different cases in terms of their effect on the phase-space and of their correctability.

3. Describe the context of the SLC commissioning, and the evolution of the global
tuning strategy, from which the optimization of the arcs and final focus can not be entirely
isolated. Some of the methods were developed in preparation for the commissioning, while
others were conceived in response to specific difficulties encountered during the first tests.

We then introduce each of the papers presented, show its relevance to the subject of
this thesis, and outline its original components.

In the case of the arcs, the papers presented describe essentially:

1. A method for correcting long FODO arrays in a compact and economical way.
This method is inspired from harmonic correction techniques common to circular acceler-
ators. Its application to an open beam-line is new. We have designed and implemented
this method in the last portion of the arc beam-line, to enable tuning the phase-space
at the entrance to the final focus section. Such tuning has turned out to be crucial to
minimize backgrounds resulting in the experimental apparatus from secondary particles.
Such secondaries are generated when edges or tails of mismatched beams get scraped off
in the final focus system, where the aperture (normalized to the nominal beam size) is
significantly smaller than in the arcs.

2. The study of the partial modification of the arc lattice. To follow the terrain of
the SLAC site, the arcs were designed in three dimensions: in addition to the horizontal
bending, the beam-line is deflected vertically by rotating the bending magnets about their
axis. I[n the initial design, these rotations were introduced abruptly. The coupling between
the horizontal and vertical betatron motions was suppressed by grouping these rotatious
in long-range cancelling pairs. This strategy, however, made the system sensitive to sys-
tematic errors. It has been possible to modify the design to produce smoother transitions.
These new transitions almost entirely suppress the sensitivity to systematic errors, and



render the overall optical transport much more tolerant.
In the case of the final focus, the papers presented describe essentially:

1. The elaboration of the interaction point beam size minimization procedure. This
procedure consists of the sequential application of ten corrections in the different optical
modules of the final focus section, following a strategy which must take into account the
ability to measure very small beam sizes and to resolve the various distortions, as well as the
specificity of the final focus optics. The final focus design is in effect based on balancing
several higher order optical aberrations which can individually dominate the minimum
beam size if the system is not adjusted correctly. It is now possible to adequately coutrol
the interaction point beam size, starting with a very distorted phase-space at the entrance
to the system.

- 2. The practical implementation of this procedure and the operational experience
which has been acquired, along with the present optical factors which limit the SLC lu-
minosity. As we explain, these optical limits result principally from the requirement to
minimize backgrounds in the experimental apparatus, and from a somewhat larger than
nominal emittance at the exit to the SLAC linear accelerator.

Finally, we include, in an appendix, papers on the development and on the initial
performance of one of the three measurement techniques, based on electromagnetic space-
charge effects occuring in the collisions between the two beams, which were conceived to
diagnose the beams at the interaction point: the “beam-beam deflection” technique. The
two other methods which were developed are based on “beamstrahlung”, or synchrotron
raciation from the space-charge forces, and on “disruption”. Such methods are particularly
important to diagnose the beams at the interaction point, but do not belong directly to
the subject of this thesis.
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II.1 OPTICS IN THE ARCS!!

I1.1.1 Overview

The arcs are the only part of the SLC which will not be required in linear colliders of
the future. They are needed in the SLC system, which uses the same linear accelerator to
accelerate both beams, to bend each beam around 270°, and into frontal collision. Because
of the limited size of the SLAC site, they have a short bending radius of 279 meters. They
are intended to behave passively and to produce a close to exact optical image of the
electron and positron beams injected from the linear accelerator. The optics is therefore
designed to be an optical identity from the beginning point to the exit. A schematic of the
two arcs is shown in Fig. 3. Two physical mechanisms must be counteracted to prevent
the beam phase-space from being enlarged as it is imaged through: synchrotron radiation
emittance dilution and filamentation effects from the natural chromaticity of the lattice
and from the fact that the beam has a finite energy spread.

I1.1.2 Synchrotron Radiation

Synchrotron radiation photons are emitted at random and cause energy fluctuations.
Lower energy particles are bent more and follow curves with shorter average radius. This
disperses their trajectories incoherently which in turn dilutes the phase-space in the plane
of the bending. Such trajectories execute betatron oscillations in the quadrupole lattice.
To minimize the growth, both the photon emission rates and the oscillation amplitudes
must be small. This is achieved by making the bending radius large and the betatron
period short, through tight focussing. It can be shown that the growth is proportional
to Tj/p‘*, where T3 is the betatron period and p the average radius*. The transport
therefore uses the lowest possible field compatible with the size of the SLAC site, and a
strong focusing alternating gradient lattice, with optical parameters chosen to minimize the
average invariant amplitude of the dispersed oscillations. For a FODO array, the optimum
cell phase-shift!*> to minimize emittance growth is near 135°. For reasons explained below,
the design in fact uses 108°. The packing factor is in addition maximized by using combined
function magnets.

At 30 Gev, the emittance added in one passage is 1.3 107!° rad-m (or one half of the
design value at the entrance) in the horizontal plane, and 0.5 107!° rad-m in the vertical
plane*. The emittance growth occurring in the vertical plane arises because of vertical
dispersion introduced by the rolls (described later).

11.1.3 “Chromatic Filament_ation”



The second mechanism for phase-space growth arises through residual energy spread
resulting from the bunch-length and the accelerating linear accelerator RF. Because of the
energy dependance in the focussing, or chromaticity, optical distortions at the injection to
the arc, or arising from gradient errors within the arc lattice, are not imaged coherently.
For example an off-energy slice of a mismatched phase-space is transmitted with a phase-
shift Ay = 27rN,9%-g63 where 85 is the relative energy error, N3 is the number of betatron

periods, and dig- ~ 1.5 is the ratio of phase change to excitation change in the arc lattice.
For large phase-shifts, the overall mismatch averaged over all energies looses its phase
relation to the input. The effective volume occupied by the observable phase-space is
thereby enlarged. This effect is referred to as “chromatic filamentation”. Unlike the
phase-space dilution resulting from synchrotron radiation, this enhancement of the effective
volume does not violate Liouville’s Theorem. The volume of the full six-dimensional phase-
space (z,z',y,y', %Z, z)is in fact not changed, but acquires a complicated internal structure
corresponding to a second order correlation.

The arc beam-lines have N3 = 69 betatron periods. For a fractional energy spread
of cg/E ~ 0.5%, the spread in betatron phases at the output is about oy >~ 7. In order
to assure coherent imaging of focusing errors injected into the arc or generated along the
beam-line, over an energy band-pass of +0.5%, the design uses sextupoles to cancel the
first-order chromaticity of the lattice.

II.1.4 Chromatic Correction

The sextupoles are introduced by shaping the combined function magnet poles’. For
the horizontal optics, the vertical component of the magnetic field on the horizontal axis
(y =0) is:

By(r):Byo(l—Q.r.ﬁ-—ST.rz), (3)
p P

where Q and S are the strengths of the quadrupole and sextupole components respectively,
and p is the bending radius. The sextupole provides additional focusing for off-energy and
off-axis rays with ¢ = &z + 8gn, where 7 is the dispersion function, which suppresses the
chromaticity if 257 = Qp. Since sine and cosine-like components are equivalent modulo
m/2 in a repetitive lattice, only one family per plane is needed. Additional terms in o2
and &2 for rays solely oft-axis or off-energy are suppressed by grouping the cells to produce
cancellations as locally as possible. Second order achromats achieve this by pairing the
sextupoles 7 phase-shift apart and by requiring at least four-fold sequential symmetry!?.
This is done by grouping the cells into achromatic superperiods with the smallest possible
multiple of 27 compatible with the cell phase-shift. In the SLC arcs, each such superperiod -
or achromat - spans a 67 phase-advance and consists of ten 108° cells. This is a compromise
between achromat compactness, best with 90%, and quantum dilution, smallest near 135°.
The resulting lattice functions 8 and 5 are shown in Fig. 4.



I1.1.5 General Layout

The whole arc consists of 23 such achromats. In addition, as shown in Fig. 3, special
matching sections are used at the inflexion points (reverse bends sections) and between
the linear accelerator and the main arc (beam switchyard section). The matching sections
needed at the exit of the arcs are described in the section on the final focus.

-

Finally, for economical reasons, the arc beam-lines are required to follow the terrain of
the SLAC site, and are therefore not planar. To provide the necessary vertical deflections,
the achromats are rolled relative to each others. The distribution of rolls for the north and
south arcs are shown in Fig. 5. -

I1.2 OPTICS IN THE FINAL FOCUS™

I1.2.1 Overview

The final focus is the last section of beam-line in the SL.C before the interaction point.
Its main function is to focus the beam to a transverse size of less than 2um at the collision
point.

Schematically the final focus consists of a demagnifying telescope, similar to a low-73
insertion in a circular machine, with a special section at its entrance to match the arc
lattice parameters. Because of the finite emittance and momentum spread in the beam, a
2um beam spot cannot be obtained without carefully minimizing higher order chromatic
and geometric aberrations. The dominant optical aberration is the first order chromaticity
- or momentum dependance of the focusing - of the demagnifying telescope. Physically,
this first order chromaticity causes particles with difterent energies to be imaged into
longitudinally displaced focal points at the interaction point. The magnitude of this effect
is easy to estimate by considering solely the variation with energy of the focal length of
the last focusing elements. Since this focal length, computed as the distance from the
interaction point to the principal planes of the final lens system in each plane, is about
5 meters, and because the depth of focus of the optical system, measured by the linear
3-function at the interaction point is required to be about 0.5 centimeters, we see that
particles with energy errors of a few parts per thousand are totally out of focus (See Fig.

6)

I1.2.2 First Order Chromaticity



More quantitatively, we use TRANSPORT'® to compute the rate of change F of the
interaction point beam size with the fractional energy error §z. We have:

€

o*(6g) = eB*(8g) = e8¢ + —
Bs

F?68%, (4)

where 85 = 3*(0g = 0) represents the nominal value of the 3* parameter, and where € is
the emittance. One obtains F' >~ 15 m. where F"~ 15 meters, where ,H:ff and 3
effective and linear 3-functions at the interaction point,

*

lin are the

—

The presence of this first order® chromiatic term in (4) leads one to define an energy
band-pass over which the demagnifying telescope will perform its function. This band-pass
is shown in Fig. Ta. As can be seen it is much smaller than the minimum fractional energy
spread of 0.002 which can presently be obtained® at the end of the linear accelerator.

"An effective value could be calculated for the 3* parameter, by averaging equation
(4) over the particle’s energy distribution. This parameter would however not represent
the new particle distribution very well since this new distribution is more peaked than a
gaussian, and has tails. Rather than calculating this new distribution explicitly, we will
directly estimate the effect on the luminosity, by averaging the usual expression over the
two beam’s energy distributions, which we take to be equal and square. One obtains:

L(B" 0E) ~ fUE/UE e (5)
YOE = B . P} —2 -
T et fo o 287+ £ S 4650

The result is shown in Fig. 8 for different energy spreads and allows to determine an
optimum 3*. Since this energy band-pass scales as 3* from (4), and because the optimum
occurs when the band-pass is matched to the energy spread, one expects the optimum 3~
to scale roughly linearly with the energy spread in Fig. 8. This can indeed be verified.

11.2.3 Chromaticity Compensation and 2"¢ Order Distortions!**

The first order chromaticity is correeted by introducing a special chromatic correction
section upstream of the demagnifying telescope (see Fig. 9). This chromatic correction
section consists of two —/I telescopes, combined with dipoles at their foci, to generate
significant energy dispersion at the quadrupoles. Sextupoles, where the focusing strength
varies linearly with excursion, are put near the quadrupoles, to provide additional focusing
proportional to energy. This compensates for the intrinsic first order chromaticity. Ad-
ditional first-order perturbations to the imaging produced by each sextupole are made to
cancel over the length of the section by pairing the sextupoles 7 betatron phase-shift apart

* The chromatic term in question appears to be a second order term in (4). but it is really does
correspond to a first order term in the optical transfer since (1) gives the behaviour of the square of the

beam size.
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and by imposing sequential symmetry for the dispersion function. In this way, all residual
perturbations to the focusing are pushed to second order. The parameter 3* can thus now
be written: :

54, §g ? e?

L] * 2 .2 .2 ~

8" ~ 13, +h1——ﬁ* + Kye— + K303, 7 (6)
0 0 0

where K1, k3 and k3 measure the magnitudes of the residual second order perturbations
to the focusing.

I1.2.4 Origin and Scaling Faws for 2"* Order Distortions

~Because the SLC is designed for round beams at the collision point, with equal emit-
tances and F-functions in each plane, the linear chromaticity must be corrected in both
planes, and two families of sextupoles must be used. In order to save space, a single chro-
matic correction section, with interleaved families for correction in each plane, is used.
The second order perturbations to the focusing come in most part from coupling between
these two interleaved families. This consideration allows to develop approximate scaling

laws for these terms!®.

Since the largest contribution to the first order chromaticity comes from the final
demagnifying telescope, we can find a nearly exact scaling law for the strengths of the
sextupoles by neglecting the first order chromaticity introduced by the telescopes which
make up the chromatic correction section: the scaling law is obtained by equating the
first order chromatic contributions to the variation of the interaction point angular spread,
from the intrinsic first order chromaticity of the final demagnifying telescope and from the
sextupoles. We obtain: -

) "
where 5 is the strength of the sextupoles, [* is the distance from the interaction point to
the principal planes of the last lenses, B is the angle of bending in the chromatic correction
section, and [, is the length of the chromatic correction section (see Fig. 9).

Next, because the dominant second order perturbations to the focusing in (6) come
from the cross-coupling of the sextupole families used to correct in each plane, we can
neglect the final demagnifying telescope in the scaling laws for these second order terms.
We find in this case:

ny x S B2,

cCcs

ns o S23. BAM, (8)

K3 X S'Zlgcsi\lz,
where A = [*/L is the magnification of the final demagnifying telescope, and where L is
the distance between the lens and the “source™ in Fig. 9.

By substituting in (8) for the sextupole strength needed to correct the first order
chromaticity in (7), we find the following scaling laws for the three contributions to the
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interaction point beam size which arise from the second order terms in (6):

lo'Z 2

O.Kl & lccaéE BET’
1'? M €

T X 1 B OB (9
"2 M2 K

Ty o E ()2 (53

It can in addition be noted that scaling I* at constant M = {*/L is equivalent to
scaling the full length of the.final demagnifying telescope*. Thus if we scale the whole
length l;,: of the final focus system, we expect all terms in (9) to scale linearly.

The dependence of these three limiting residual second order terms on the design
variables: B, l.s, [* and l;¢ has been checked with TRANSPORT, by scaling the SLC

final focus design. The results of such calculations are shown in Fig. 10a,b,c,d.

As can be seen the scaling is not perfect. This arises mainly because the first order
chromaticity of the lenses in the chromatic correction section is not, as was pointed out,
included in the scaling argument. Because of this, the reduction of the magnitude of these
terms when increasing the length [..; of the chromatic correction section is less than linear
and eventually saturates, in particular for the geometric term o,. Similarly, the reduction
of their magnitude when decreasing [* is less than quadratic. The actual simulated power
dependances are given in the figure captions.

11.2.5 Limits on Chromatic Correction Bend Angle

As can be seen from (9), there is a lower limit on the angle B of the bending in the
chromatic correction section, from both the chromatic term in k2 and from the geometric
term in x3. We will return to this point in the next section.

In addition, there is a sharp upper limit on this bend angle from synchrotron radiation
emittance dilution, which increases as the fifth power of the bend angle and of the beam
energy. For the SLC final focus, the limit occurs'® when this bend angle B is of the order
of about one degree, which corresponds to an emittance growth of about 20% at 50 GeV.

I1.2.6 Optimization Procedure

The scaling laws given in (9) allow one to understand the different procedures which
can be followed to optimize the optical design. A full description of the optimization
process can be found in Ref. [16].

* By length of the telescope, we intend the distance between the image and the source
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Several points of views can be taken. Here, we will show one of them, which consists
in considering that the emittance € and the energy spread ég have been set in the overall
system specification, that a given 3* is desired, and that one wishes to choose the lengths
liot, lecs and {*, and the bend angle B in an optimal way*.

A reasonable procedure would go as follows:

1. Set the bend angle B to the maximuwmn possible consistent, from the point of
view of the synchrotron radiation emittance dilution, with the chosen minimum beam size

o* = \/Bje. -

2. Set the magnification M such that all terms in (9) be about equal, for the given
emittance and energy spread, and for the chosen 35. When this has been done, it can be
seen from the two first equations in (9) that the betatron and chromatic angular spreads
at the input to the chromatic correction section are about equal. '

3. Decrease the ratio (*?/l.., until the second order aberration terms and the linear
term in (6) are about equal. This determines a minimum for 3* in (6). As we will also
see, this optimum can also be interpreted as the point for which the energy band-pass of
the corrected system is matched to the energy spread ég of the beam.

Implicit in this is the fact that the sextupole strengths are free parameters. Also, the
magnification M of the final demagnifying telescope is in general not sufficient to demagnify
the input J-function to the desired 33, and an initial demagnifying section is needed
upstream of the chromatic correction section. Therefore, when M, the magnification of
the final demagnifying section, is varied, we assume that this initial demagnifying section
can be adjusted to keep the overall magnification of the beam-line (and thus 37) constant,
and that over this adjustment range, this initial section does not contribute significantly
to the chromaticity of the overall beam-line.

In practice, the minimum distance {* between the interaction point and the principal
planes of the last focusing elements is set by the maximum gradient available in those
focusing elements, and by the requirement to leave sufficient space for components of
the experimental apparatus. In the case of the SLC final focus system, [* ~ 5m. The
optimization led to introducing a demaguification of a factor four in both planes for the final
telescope, and of factors eight and three in the horizontal and vertical planes respectively
for the initial telescope. Besides initiating the demagnification, the initial transformer also
serves to match the final focus and arc betatron lattices!*. This results, given an energy

* Two different points of view would consist in asking:

1. For given constraints on the lengths lior and ™, what are the requirements on the emittance and
on the energy spread to reach a given ar
2. For a given emittance and energy spread, and for given constraints on the lengths lio¢ and [*.

what is the minimum 3% that can be reached ?
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spread of §g =~ 0.002 and an emittance of ¢ >~ 3 10'° rad-m, to about a g%, =~ 4 mm
(this is also illustrated in II.2.8). The bend angle B is set to about one degree as was
mentionned above.

11.2.7 Optical Bandpass

The overall effect of the chromatic correction is to broaden the energy band-pass,
described above, over which rays are imaged to the same interaction point focal point.
From (6), the width of this band-pass scales roughly as m (if only the term in x; from
(6) is used). The bandpass is shown in Fig. 7b. Defining it quantitatively as the band
of energy deviations for which 8* < 1.254;, it is £0.5% for g3 = 16 mm and £0.22% for
By =4 mm.

11.2.8 Optimum g*

Much as in the case without chromatic correction described above, the luminosity is
maximized by matching this enlarged band-pass, defined by 3*, to the beam energy spread.
This is illustrated in Fig. 11, where the luminosity loss is computed as a function of J*
for two different energy spreads, using the raytracing code MURTLE!?. The solid lines
indicate the luminosity loss as a function of 3* for the chromatically corrected system,
and the dashed lines, reproduced from Fig. 8, show for comparison the loss which occurs
without the chromatic correction. As can be seen the wider band-pass produced by the
chromatic correction results in a smaller optimum for 3*.

I11.2.9 General Layout

The whole system is shown in Fig. 12. It includes, in addition to the two telescopes
and to the chromatic correction, a section to match the arc dispersion function. Also the
extraction of the spent beam is built in to the upper telescope, using a kicker and septum
magnet.
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1I. IMPERFECTIONS AND TOLERANCES




III.1 INTRODUCTION

The goal in this chapter is to describe the effect of errors on the beam phase-space,
in order to define tolerances and a global strategy for adjusting the SLC or an SLC-like
system. We give this description at a qualitative level, and we give only orders of magnitude
for the tolerances.

-——

We first determine the evolution of the phase-space from the different kinds of errors,
and in the different cases. We then analyse the effect of the distortions induced by these
errors on the performance of the system —i.e. on the luminosity and on the backgrounds in
the experimental apparatus, and the ability to correct them. As we shall see, this analysis
enables to classify the different kinds of errors in terms of their consequences and in terms
of the type of correction they require (local or at the end) and to split up the tuning of
the machine sequentially into several pieces. This then allows to define criteria for setting
tolerances, and to outline a global commissioning strategy.

This thought-process results from our accumulated experience in learning to operate
the SLC. The actual commissioning strategy which was followed differed initially from the
prescription we give here. We briefly describe this initial strategy in the next chapter.

Ideally, such conceptual analysis would be carried through at an early enough stage

so as to be able to incorporate its most important implications into the basic design and
architecture of the optics and of the control system.

II1.2 EFFECTS FROM IMPERFECTIONS

II1.2.1 Errors in the Guide-Field and Betatron Oscillations

Static dipole errors along the entire system cause spurious kicks to the beam, which
then as a result executes betatron oscillations in the quadrupole lattice. Such dipole errors
arise from misalignments of the lenses in the focusing lattice, or from field errors in the
bending magnets of the transport. This is illustrated in Fig. 13a. The frequency of the
betatron oscillation is referred to as the betatron frequency.

II1.2.2 Errors in Focusing-Field and Phase-Space Distortions
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Static quadrupole - or focusing - errors perturb the beam phase-space ellipse as shown
in Fig. 14. Such focusing errors arise from gradient errors in the focusing lenses of the
system, or, if the lattice uses sextupole magnets, from horizontal misalignments of the
beam in these sextupoles. Because the quadrupole error will kick particles in this ellipse
proportionally to their excursion in the quadrupole, its effect is the stretching of the ellipse
shown in Fig. 14. The ellipse will then rotate in the coordinate system as it is imaged
through the rest of the system. The beam envelope, or the projection of this ellipse on the
horizontal axis, will therefore beat along the optical array. Because the ellipse is invariant
under rotation of m, the beating which is generated has twice the betatron frequency. This

is illustrated in Fig. 13b. ~

II1.2.2.2 Skew Focusing Field Errors and Cross-Plane Coupling

If sextupoles are used in the transport, as in the arcs and final focus sections, or if
the system does not satisfy mid-plane symmetry, such as the arcs, where the beam-line is
rolled about the axis to allow following the terrain, then another type of focusing error can
arise, which couples the horizontal and vertical planes. Such cross-plane coupling arises
from vertical misalignments of the beam in the sextupoles, or from the imaging of beats
in the beam envelope, generated by the regular focusing errors described above, across
the rolls. In this case, the projections of the - coupled - four-dimensional phase-space
onto the horizontal and vertical planes are in general not preserved and can result, if left
uncorrected, in larger effective emittances.

IT11.3 EVOLUTION OF PERTURBATIONS - CORRECTIBILITY

II1.3.1 Case of Chromaticity Corrected Optical Lattice

In parts of the system where the first order chromaticity of the lattice is corrected,
such as the arcs or the final focus sections, the distortions of the envelope, from both
regular and skew quadrupole errors, and the coherent oscillation of the beam generated by
dipole errors, are transmitted with the same frequency for all energies within the optical
band-pass of the chromaticity-corrected optics. In this case, the effects of these errors can
be corrected further downstream in the system. This is in particular the case for the arcs.

I11.3.2 Case of Lattice Not Corrected for Chromaticity

In parts of the system which do not have chromatically corrected optics, such as the
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linear accelerator, both these errors will gradually loose their coherence, due to the finite
energy spread in the beam.

II1.3.2.1 Incoherent Propagation of Betatron Oscillations — Beam Dispersion

The propagation of a dipole error will generate linear correlations between the energy
and the transverse coordinates, which we refer to as beam dispersion. After the phase-
shift accumnulated between particles with maximum positive and negative energy errors has
reached 7, the effective phasé-space area containing the beam will become as large as the
phase-space trajectory described by the betatron oscillation induced by a dipole error. This
occurs without violating the conservation of the six-dimensional (z,z',y,y', -%:, =) phase-
space volume. However this phase-space volume has become correlated, and its projection
on one of the (z,z') or (y,y') planes corresponds to an enlarged area. We illustrate this
mechanism in Fig. 15a,b. -

Such beam dispersion is correctable downstream, through adjustments in a purposely
designed matching section. :

I11.3.2.2 Incoherent Propagation of Betatron Mismatch — Chromatic Filamentation

Similarly, the propagation of a quadrupole error will cause second order correlations
- or aberrations - of energy to transverse coordinates. In this case, the quadrupole error
generates an anomalous correlation between positions and angles in the transverse (v, z')
or (y,y') phase-space. This correlated ellipse then rotates in phase-space with different
speeds for different energy slices in the beam, as was described in II.1.3. Also here, when
the accumulated phase-shift between slices with opposite and maximal energy error has
reached m, the ensemble of trajectories composing the beam will be contained in an effective
area as large as the circle in which the distorted phase-ellipse in inscribed. The actual area
occupied by the trajectories is not enlarged, but acquires a complicated smeared structure.
This effect, usually referred to as chromatic filamentation, is illustrated in Fig. 16.

In this case, the distortions cannot be corrected downstream and must be corrected
locally. This is particularly the case for the linear accelerator, and is important to minimize
the effective emittance at the injection to the arcs.

I11.3.3 Frequency Analysis

The effects from the accumulation of these two errors will in general only be significant
if they add in phase. In the case of the dipole errors, subsequent kicks of the same sign and
separated by 2m phase-advance will add up and cause a betatron oscillation with increasing
amplitude. In the case of the quadrupole errors, the beats in the beam envelope will grow
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if errors with the same sign are separated by = phase-advance. In general, since the errors
are random, their Fourier component, at the betatron frequency for the dipole errors,
and at twice the betatron frequency for the quadrupole errors, is not more significant
statistically than other components in the frequency spectrum of the errors. Also, the
specific distribution of the errors can be such that cumulative effects occur in one section
of the array and not in the others. '

We will examine the case of focusing errors in more detail.

II1.3.3.1 Average Growth fromn Random Focusing Errrors

In a repetitive FODO array, and for an ensemble of error distributions, the average
fractional growth (ATA> of the beam phase-space which occurs at the end, in any of its
dimensions, is related to the magnitude of the errors in the following way:

AAd
<T> 26’\”‘\/:\7, (10)

where €g is the standard deviation of the random errors, NV is the number of cells in the
array, and A is a parameter or order unity, which characterizes the lattice. For the arc
lattice, we find through simulation that A ~ 2. In this case, the exponential law arises
because the differential growth of the beam size is proportional to the beam size and to
the cell number for a quadrupole error at twice the betatron frequency. The VN in the
exponent arises from the fact that the one standard deviation statistical expectation value
for the magnitude of any given component in the spectrum of random quadrupole errors

iS 63/\/1_\[—.

Growth occuring through the accumulation of random errors can in some cases be
corrected globally, by deliberate introduction of a perturbation at the resonant frequency.
This is explored in more detail in sections VI.3 and 4 for the case of focusing errors in the
arc lattice.

When chromatic filamentation effects are negligible, the induced distortions remain
coherent and can also be corrected downstream, in a purposely designed matching section.
Such a matching section has been developed in the final focus (see chapter VII)

[I1.3.3.2 Bandwidth Limits from Discontinuities in the Focusing Lattice

[t is not uncommon that there be a rather large component in the spectrum of random
errors at zero frequency, from systematic errors in the calibration of the magnets or in the
knowledge of the energy (if the lattice is not chromatically corrected). For a truly repetitive
lattice, such errors are harmless and simply cause the betatron frequency to be shifted.

This is however no longer the case if the lattice includes discontinuities, as is the case
for the arcs, where large rolls of up to ten degrees were introduced to enable following
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the terrain (see section II.1.5). These rolls were matched in pairs, to produce long-range
cancellations of the distortions induced on the phase-space. This arrangement produced a
relatively strong artificial sensitivity to systematic errors (see also section VI.2).

The distortions of the phase-space are correctable, either globally, through systematic
adjustments of the focusing elements, or further downstream, in the same conditions as in

I11.3.3.1.

I11.3.4 Electromagnetic Goupling to the Environment — Wake-Field Effects!®

~Electromagnetic coupling of the beain charge distribution to the environment can
result in correlations between transverse and longitudinal coordinates. Orbit excursions
of the beam, caused by dipole errors, induce in general asymmetries in the image-currents
on the inner walls of the vacuum chamber, or of any other structure seen by the beam.
For large enough current, these asymmetries can result in significant transverse fields -
or wakefields — affecting the trailing part of the bunch, and thus causing a growth of the
effective emittance.

The most sensitive part of the system is the linear accelerator, where large wakefield
effects are generated in the RF waveguide structure, for typical SLC beams. Beam tra-
jectory errors must be corrected locally and launch parameters must be stabilized at the
entrance for minimization. Such wakefield effects, pertinent to the dynamics of the linear
accelerator, are not considered further in this Thesis.

I11.3.5 Number of Free Parameters of Transverse Phase-Space

[t is important to know the number of independent phase-space distortions which can
be corrected downstream, in order to enable designing appropriate correction schemes. We
will evaluate this number in the case of the transverse phase-space, and include also the four
dispersion terms. We will include in our counting neither correlations to the longitudinal
coordinate from wakefields, nor second order correlations between energy and transverse
coordinates, from chromatic filamentation effects, both of which must be corrected locally.

[I1.3.5.1 Optical Transfer Matrix

The optical transfer is described through a four by four matrix R (transport matrix),
relating the four input coordinates X, to the four output coordinates X,,;: '

-\:ou,t = R-’\?in (11)

20



Since the particle motions are governed by Hamilton’s equations, this transfer matrix
is constrained to be symplectic, which means that:

0 10 0
RISR=S, where S = (1) 8 8 _01 , (12)
0 0 1 0

is the symplectic matrix in four dimensions. It can be shown!® that (12) results in six
independent constraints on the matrix R, which has therefore a total of ten independant
parameters. ’

I11.3.5.2 Beam Phase-Space Matrix

‘The phase-space is described through a symmetrical four by four variance matrix o,
describing the correlations between the four «,z',y and y' beam excursions. For a linear
transformation of the coordinates described by R, this matrix is mapped through similarity
transformation as follows:

Tout = RUinRt- (13)

II1.3.5.3 General Case of Unequal Input Emittances -

The o-matrix is fully specified through ten terms. However, only eight of these terms
can be perturbed through a perturbation satisfying Hamilton’s equations. This comes
about because in general, Hamiltonian systems with two degrees of freedom can be shown
to possess two canonical invariants®®. Including the four linear dispersions, the phase-space’
can thus in general be perturbed in twelve independent ways.

I11.3.5.4 Special Case of Equal Input Emittances

[n the case of equal input emittances, it is possible to show, using the symplectic
constraint of (12), that two additional coustraints exist on the beamn phase-space, restrict-
ing the total number of independent distortions, including the four linear dispersions, to
ten. The proof, which we outline below, is straightforward. What is lacking, however, is a
physical understanding of the mechanism by which this symmetry between the emittances
can generate these two new constraints.

PI’OOf: The proof consists of showing that because the transport matrix is symplectic, the -matrix
transformed through this transport matrix will also be symplectic, if the emittances are equal in each plane at
the input point. This then imposes two additional conditions on the elements of the O-matrix. Consider an input
phase-space with the two (I, &'y and (Y. y') planes decoupled. The 0-matrix &, representing this phase-space

is block-diagonal. The emittance in each plane is given by the square root of the determinant of each two by two
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block. Since we assume that these two emittances are equal, we scale each two by two block by this common

value € for the square root of the determinants. We can thus write:

1 .
E—,zainSain =5 ) (14)

Next we multiply (14) by R trom the left and by Rt from the right, and use (12). In the rest of this proof, we

will in additon set € = 1. We have:
— RSR' = Ro;,R'SRo;, Rt. ' (15)
In (15), we recognize Tpyt, given by (13). We have thus:

.- RSRt = Uouisaout- T (16)

To show that the output phase-space matrix 0,y is also symplectic, we need to show that the left hand side of

(16) is equal to S. To do so, we start with (12) and take its inverse, go through the following manipulations,

and note that SZ = —I. where [ is the identity matrix. We have:
§1 = R-1§Y(RYY, (17)
RS™'R' =851, i (18)
~RSR' = -8. (19)

Thus the output O-matrix Gyt is symplectic. Writing out the conditions explicitly at a point where positions
and angles are simultaneously uncorrelated within each plane, as occurs for example at the collision point, after

a waist has been obtained there in each plane, i.e. where @15 = 034 = 0, we obtain:

o11022(1 — 7‘%3 - "34) =1,

033044 = 0110122, (20)
T23 = I'i4,
P24 = —Ti13.

where we have defined the normalized correlations: rij = 0',']'/‘ /0 ;i ;j. Thusthereis a total of four constraints
restricting the distortions of the phase-space if the input emittances in each of the two transverse planes are equal.

In this case, there is a total of ten independent distortions, including the four linear dispersion terms.

I11.3.6 Classification of Phase-Space Perturbations

The different cases described in this section are sumumarized in Table 2, where we
list, for each basic type of perturbation, the consequences on the beam phase-space if a
correction is not applied until the very end, as a function of each location in the SLC,
downstream of the damping rings. In each case, we then ask if the distortion is in principle
correctable at the very end.
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Distortions correctable in principle may however not be tolerable in practice because
of the requirement to minimize backgrounds in the experimental apparatus. As we shall
explain in the next section, such requirements impose much more stringent constraints on
the distortions which can be allowed to accumulate to the very end. We do not attempt
to incorporate such requirements in Table 2 :

For completeness, we have also included the emittance dilution effects from syn-
chrotron radiation which occur in the arcs. )

a——

III.4 CONSEQUENCES ON PERFORMANCE AND SENSITIVITIES

III.4.1 Sensitivities Pertinent to the Luminosity
II1.4.1.1 Phase-Space Distortions

The luminosity which can be obtained depends strongly on the ability to correct the
distortions of the beam phase-space which we have described. The distortions which are
uncorrectable at the very end, such as the correlations of transverse to longitudinal coordi-
nates and chromatic filamentation effects, are translated into a larger effective emittance,
and affect the beam size directly through (2) if they are not taken care of locally at their
source. For the ten distortions which, in the case of equal emittances in both planes, can
be corrected at the very end, the SLC is equiped with a special matching section just
downstream of the arcs. This matching section serves as a buffer section to absorb the
distortions. Because the beam size at the interaction point is produced by carefully bal-
ancing higher order chromatic and geometric aberrations, all of these ten distortions must
be corrected to fully optimize the luminosity. Allowable distortions are of the order of
one half to one standard deviations of the optimum parameters at the collision point, for
reasonable luminosity to be maintained.

II[.4.1.2 Beam Jitter

Maintaining the luminosity also requires that the .beams remain in collision. The
luminosity reduction for an offset corresponding to ¢ standard deviations of the beam can
be ‘calculated by perturbing the overlap integral performed to obtain (1) and (2). One
obtains, in the case of round beams:

ey

L(q) = Loe™ T, C(21)

where Ly is the luniinosity for an offset ¢ = 0. From (21) can be seen that the maximum
offset between the two beams which can be tolerated is about ¢ < 1 standard deviations.
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In the SLC, the main source of pulse to pulse jitter in the beam position resides
in the kicker magnets used to extract the beams from the damping rings. This pulse
to pulse jitter causes variations in the beam trajectory along the whole machine, and
as mentionned in II1.3.5, such variation can blow up the emittance through transverse
wake-field effects. Therefore, at high intensity, the tolerance to beam position jitter is
in fact not set by the requirement to maintain the beams in collision, but rather by the
requirement to minimize these wakefield effects. With large local energy spread (several
percent) introduced on purpose along the bunch to reduce the build-up of wake-field tails
(so-called BNS Damping), the tolerance to launch jitter is of the order of a tenth of a
standard deviation of the trafisverse beam distributions, at 5 10!° particles per bunch.

II1.4.1.3 Intensity Dependance

More generally, the entire system enters a new regime at high intensity. Because of
the wake-field effects, tolerances for maintaining a nominal phase-space at the end of the
linear accelerator become more stringent with increasing intensity. It is therefore expected
that the effective emittance at the collision point will be a growing function of the beam
intensity, and that the gain in the luminosity from raising the current will not be as rapid
as that implied through (1).

I11.4.2 Sensitivities Pertinent to Backgrounds in the Experimental Apparatus

II1.4.2.1 Introduction

Beyond the goal of maximizing the luminosity, the beam phase-space must also be
stabilized to minimize backgrounds in the experimental apparatus. Such backgrounds arise
when tails of the beam generated by wakefields in the linear accelerator strike apertures
near the interaction point, causing electromagnetic showers into the detector, or further
upstream in the final focus beam-line, where they produce muons which can reach the
detector.

Such beam tails are clipped by using collimators at the exit of the linac and in the
arcs. Ideally, such collimation would be perfect and define a full-proof beam stay-clear,
allowing to precisely shadow the critical apertures in the final focus.

IIT.4.2.2 Principle of C'ollimation

The basic principle of a collimation system is illustrated in Fig. 17, as an exam-
ple. Simplistically, a minimum of three collimators is used to enclose a three-dimensional
(XX,.X', éE—E) phase-space volume in the horizontal plane. The two first ones are upstream
of a bending magnet, and serve mostly to define the spatial and angular dimensions. The
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third one is downstream. It serves mainly to define the energy.

If the two spatial and angular dimensions of this volune are defined at reference point
(0) by X(0) and X'(0), and if the desired cut on the energy is '—AEE-, then the settings of the
collimators is obtained by inverting the three linear equations relating the parameters of
this volume at the reference point to the spatial coordinates X (1), X(2) and X(3) of the
beam at each collimator. If R, fori = 1,2 and 3, represent the optical transfer matrices
between the reference point and the three collimators, then these three relations can be
writen:
AE

X() = RYX(0) + RYx'(0) + R =

(22)
Similar equations can be writen for the vertical plane.

In order that the equationsin (22) be far from degeneracy, it is important to choose the
locations of the two first collimators with-about a m/2 betatron phase-advance separation,
and the third collimator where the natural dispersive size of the beam is significantly larger
than its betatron size. Moreover, with high current small emittance beams, it is desirable
to collimate the beams at relatively high values of the 3-parameter, so as to minimize the
power deposition on the collimators*.

In many cases, a more sophisticated collimation system is usually required, of which
the arrangement described above is only the first stage. There are two basic reasons for
this. The first is that the equations in (22) fully define the specified phase-space volume
only to the extent that the optics between them is independent of energy over the specified
iéEﬁ range. To minimize such chromatic effects it is important to place the collimators
as close to each other as possible. The second perhaps more important reason is that
each collimator impinged by the beam will reradiate some fraction of the incident beam
through edge-scattering. For this reason, it is often desirable to add a fourth collimator
m/2 phase-advance upstream of the first one in Fig. 17. With this redundant collimator,
the two following ones can also serve to clean up large angle debris, and the last one to
catch components of this debris with large energy errors.

Even with this extra collimator, the scheme we have described will not enable to
entirely suppress particles from forbidden regions beyond the specified beam-stay-clear,
and there will be a certain probability for transmitting particles into such regions. This
probability can be reduced by adding more stages to the collimation system.

II1.4.2.3 Beam-Stay-C'llear Requirements
In relation to the nominal beam size, the tighest aperture in the system are the

quadrupoles near the collision point. Although these quadrupoles only represent one be-
tatron phase, it is appropriate to define a full phase-space volume corresponding to their

* With very small emittances and a large 3-parameter, one must also begin to worry about wakefields

from the discontinuities in the beam-pipe generated by the collimators.
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aperture. The reason is that the phase relation between the collimation and these apertures
is not well defined for typical tail particles with large energy errors, if the collimators are
far upstream in the system. For nominal emittance and with the optics in the final focus
adjusted to minimize the beam size at the collision point, this aperture, and therefore the
phase-space volume to be defined by the collimators, corresponds to about five standard
deviations of the beam phase-space distribution*.

II1.4.2.4 Constraints on Performance from Partial Collimation

——

(1) Requirements on Beam Stability

~During initial commissioning, the collimation scheme available at the SLC was insuf-
ficient. Only a primary cut was being made, and, in addition, the different dimensions of
phase-space were cut non-orthogonally and sometimes a significant betatron phase-distance
apart. As a result, not only could secondaries be transmitted, but also primary particles
from corners of phase-space which are significantly correlated. Consequently, the beam
stay-clear defined by these collimators was far from full-proof and was very sensitive to the
detailed shape of the phase-space at the end of the linear accelerator. This generated an
abnormally stringent tolerance on the stability of the phase-space. Small variations would
often cause the collimator configuration to no longer be optimal and backgrounds to rise
in the experimental apparatus.

With ideal collimation, the end of the linear accelerator would provide a break-point
in the accumulation of errors, separating the minimization of backgrounds produced by
the errors in the sections upstream of the arcs from tuning in the arcs and final focus
to maximize or simply maintain the luminosity. The fraction of particles outside of the
beam stay-clear defined by the collimators would then be small enough not to generate
backgrounds, independent of variations in the beam phase-space upstream of this break-
point. Variations would of course still need to be stabilized within this (five standard
deviation) beam stay-clear, in order to maintain the luminosity. As we described in I11.4.1,
such stabilization must be done roughly at the level of one half to one standard deviations.

Short of such a well defined break-point, the tolerance to changes in the beam shape
at the end of the linear accelerator is very tight. In the initial commissioning of the system,
it was of the order of a tenth of a standard deviation, which was very hard to maintain.
The collimation scheme is at present being upgraded with additional collimators. This is
expected to reduce this sensitivity substantially.

* This comes about from the fact that for the optimum /3% of about 0.5 cm required at the interaction
point to optimize the luminosity, the one standard deviation value of the beam size in the last lenses
reaches a maximum of about three milimeters, and from the fact that the aperture of these last lenses is
about two centimeters. Thus, since one must allow for off-centering from misteering of about one standard
deviation, the useful aperture is about seventeen millimeters or just over five standard deviations of the

beam size.
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(2) Requirement to Operate with Detuned Optics

Operationally, in order to reduce the requirement for a good full-proof five standard
deviation cut on the phase-space, the optical demagnification in the final focus is reduced
by about-a factor two. This reduces the natural beam size in all the high-3 quadrupoles
near the interaction point by a factor two, and lowers the probability that stray particles
which have been transmitted through the collimation at the end of the linear accelerator,
wander outside of the beam stay-clear specified by the aperture. This is however costly
in overall performance since.the beam size at the collision point is thereby enlarged, and
thus the luminosity reduced. ' '

. (3) Requirements on Phase-Space at_the Arc Exit

The sensitivity to insufficiently collimated beam-tails was in addition enhanced, ini-
tially, because the apertures of the final focus beam-line, upstream of the correction ele-
ments used as part of the optical buffer section for phase-space distortions (described in
I11.4.1), are tighter than those in the arcs, by factors of five to ten, after normalising to the
nominal beam size. For this reason, otherwise correctable phase-space distortions could
cause scraping off this aperture. This in turn would generate muons which could reach
the detector. The tolerance to beam loss along the final focus bean-line was of the order
of 107 particles per crossings, or one part per thousand of a beam with 10'° particles per
bunch. This was a very stringent tolerance, which required that the beam phase-space be
nearly matched at the arc exit. To meet this tolerance special optical controls within the
arc lattice had to be designed, to enable controlling the beam size and shape at the end.
More recently, special magnetic shielding has in addition been installed in the final focus
tunnel, to relax tolerance to beam loss there by almost an order of magnitude.

I1I.5 TOLERANCES AND TUNING: THREE MAJOR PIECES
I11.5.1 Introduction

[t is appropriate to evaluate tolerances to errors and a global strategy for adjusting
the system by dividing up the SLC in three major pieces, and in terms of their overall
effect on performance, described in I11.4.

The three major pieces are:

1. The parts of the SLC which are upstream of the damping rings: the electron and
positron sources, the injector and first sector of the linear accelerator, and the transport
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lines feeding the beams into the damping rings,

2. The parts of the SLC which are between the damping rings and the end of the linear
accelerator: the transport lines connecting the damping rings to the the linear accelerator,
and the linear accelerator,

3. And the parts of the SLC which are between the end of the linear accelerator and
the collision point: the arcs and final focus sections.

I11.5.2 Sources and Injecror

" The damping rings, thanks to the radiation damping, will “standardize” virtually
anything® that is injected into them. Therefore, errors in the sections upstream of the
damping rings matter only if the distortions generated become larger than the available
aperture, in which case the transmission into the rings is derated. The detailed shape
of the beam and its emittance are not very important as long as the beams makes it
into the rings without getting scraped off. The tolerances are therefore relatively loose
on the transport, as long as the phase-space generated at the source is not abnormally
large. This is true both of static and dynamic errors. In this way, except for possible
losses in beam current, errors and tuning upstream and downstream of the damping rings
are independent of each-other. The damping rings provide a breakpoint in the overall
accumulation of errors, where the beam “looses memory” of what perturbed it before.

I11.5.3 Ring to Linear Accelerator Section and Linear Accelerator

Errors in the ring to linear accelerator section and in the linear accelerator will cause a
combination of effective emittance growth and betatron mismatch. The effective emittance

* This is strictly true only for a storage time large compared with the damping time. If the storage
time, which is equal to the time between pulses in the linear accelerator, is T, and the damping time is T,
then output emittance can be written ! :

_aT _2r N
€out = €eq{l — €77 )+ €ne” 7, (23)

where €¢q > 2 107° mrad is the normalized equilibrium emittance of the ring. For the initial specification
of the SLC at 120 Hz, T = 8.3ms. The damping time is T >~ 3ms. This allows to calculate the

‘ . . M macr
maximum emittance or distortion €

in " of the phase-space at the injection to the damping rings which

will be damped to the desired normalized emittance value of egﬁf =3 10" mrad. We find. using (23):

€Nt ~ 35 ng‘f This sets a theoretical tolerance on the input phase-space at injection. As can be seen
it is a rather comfortable tolerance. The practical tolerance set by the aperture of the injection lines is In

fact more stringent.
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growth is uncorrectable and affects the luminosity that can be achieved directly. The
mismatch of the phase-space will if left uncorrected combine with the mismatch generated
in the arcs and final focus. As long as such errors are static, this is not a major problem
for the luminosity. The effects from, and sensitivity to such mismatch, from the pomt of
view of the luminosity, was described in I1I.4.1.

The static tolerances must be specified to avoid significant emittance growth. If the
collimation system at the end of the linear accelerator is close to perfect, and defines a full-
proof beam-stay-clear, as described in I11.4.2, then these tolerances must be determined
to maintain a stable phase-space at the end of the accelerator to one half to one standard
deviations of the nominal parameters. In this case, the tolerances in the linear accelerator
are of the order of 100um for the orbit errors, and of the order of half a percent for the
focusing errors, in order to assure emittance growth below a factor 1.5*. The tolerance on
the focusing errors is not difficult to meet for the quadrupole strengths. It is however quite
difficult to know the energy of the gradually accelerated beam, locally, to that precision.

In addition, because this energy depends on the population of klystrons used to gen-
erate the RF power which is fed to the beam, and on the correct phasing of this RF at
each station, and because both these are not entirely stabilized, the phase-space mismatch
and effective emittance growth are not necessarily stable. It is therefore most often un-
reasonable to allow them to accumulate and combine with residual errors in the arcs and
final focus, because as we will see, the tuning procedures for the final focus are complex
and lack orthogonality, which means that a full reoptimization can be required even for
modest changes. In general, this second part of the system can be considered the “active”
part of the SLC. Stabilization is still an ongoing effort.

In the case of the ring to linear accelerator transport line, a chromaticity corrected
optical system, the tolerances are determined by the requirement to minimize higher order
aberrations. This is similar to the requirements in the final focus which we describe in
chapter VII. Work on this is also ongoing.

111.5.4 Arcs and Final Focus: Range of Optical Buffer Section

Because the arc lattice is achromatic, the errors are transmitted coherently to the
end, and can therefore be corrected optically in the final focus. The final focus is equipped
with special optical matching elements to perform such corrections. Because the SLC' has
nominally equal emittances in both transverse planes, this optical matching is designed
to correct the ten possible independent phase-space distortions, and uses therefore ten
variable elements. The correction range allows to match phase-spaces distorted by as
much as four standard deviations of the nominal parameters, and in any of its dimensions.

* As we described in I11.4.2.4. the tolerances in the linear accelerator were initially much more stringent.

due to the fact that the collimation system was insufficient.
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If the beam phase-space is close to matched at the exit of the linear accelerator, and
if for a moment we do not consider the background problems, then the tolerances to errors
in the arcs are in principle set by the correction range available in the final focus. We can
then estimate the tolerances through (10), by calculating the standard deviation eg of the
random errors compatible with the factor four correction range. We find, since the number
of cells is N = 230, and if require a 98% confidence level: e ~ 0.023.

This is a rather loose tolerance. Initially the system was much more sensitive, for the
two following reasons.

1. As already mentionned in II1.3.3.2, the discontinuities introduced into the arc
lattice by the rolls of the achromats resulted before the modification of the roll transitions
in a severe tolerance to systematic errors, of the order of 0.005 (see section VI.2)

2. As already mentionned in II1.4.2.4, the smaller normalized apertures in the final
focus beam-line required initially that the beam phase-space be negligeably mismatched
at the end of the arc. The tolerances to random errors were in this case also of the order

of e ~ 0.005.

II1.5.5 Global Tuning Strategy

The above considerations on the tolerances and on the tuning in the SLC are sum-
marized in Fig. 18. Both static and dynamic random errors naturally cause an average
growth of the phase-space with the exponential of the square root of the distance. Two
breakpoints exist, where the beam is in principle reset to its nominal condition. These
breakpoint separate the tuning in the three parts of the SLC which they define. The first
breakpoint, the damping rings, re-standardizes the beam perfectly. The second breakpoint,
consisting of the collimators at the end of the linear accelerator, serves to separate tuning
related to maximizing the luminosity from the requirement to nunimize backgrounds in
the experimental apparatus. The settings of the collimators are determined by the op-
tical set-up arrived at in the arcs and final focus. This set-up results from tuning both
these sections to maximize the luminosity at the interaction point. After this, the second
breakpoint - the collimators - decouples the backgrounds in the detector from tuning in
the upstream sections. The tolerable error level and performance of feedback corrections
and tuning are determined at each stage by the “capture-range” defined by each of these
break points.

Much of the present challenge in optimizing the overall tuning strategy of the SLC
is the definition of the second breakpoint, by improving the collimation at the end of the
linear accelerator, and the tuning of the beam in the second part of the SL(C: the ring
to linear accelerator and linear accelerator sections. Once this is done, the optics in the
arcs and final focus can be adjusted to optimize the luminosity independent of background
considerations.
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IV. SLC TURN-ON PROGRAM




IV.1 INTRODUCTION

What was described above is the current status and understanding of the commission-
ing of the SLC. Both result from our accumulated experience with this machine??. The
initial program proceeded in a rather different-way, as we were learning to operate this
new kind of machine.

Commissioning and tests of successive stages of the SLC were an ongoing enterprise
since the fall of 1981, and throughout the construction period (fall 1984 to spring 1987).
Subsequently, and for a little over one year, much dedicated work was devoted to the newly
installed arcs and final focus sections, with continuing improvements in the upstream parts.
This last half-year, the full extent of the overall tuning problems of the SLC have been
recognized. Special efforts are now dedicated to optimize each system according to the
general framework described in IIL.5.5.

IV.2 EARLY COMMISSIONING PHILOSOPHY

The early commissioning philosophy for the systems downstream of the damping rings
consisted in transmitting the beam rapidly and as far as possible into each newly built and
installed systems to enable early diagnosis of major installation and construction errors.
After this was done, the program continued with an overall tuning and correction strategy
which treated the final focus section as an optical buffer section for the accumulated errors
in the whole machine.

The program therefore began early on trying to focus the beam to a small size at the
collision point, although with little success, because of primarily two reasons: the specific
problems with the arc lattice, which were not understood initially, and were discovered
experimentally, and the lack of understanding and stability of the phase-space at the end
of the linear accelerator, due to insuflicient time spent commissioning the upstream parts

of the SLC.

IV.3 OPTIMIZING THE ARC PHASE-ADVANCE?*

After the mechanism which caused the arc lattice to distort the beam phase-space
had been identified, namely the sensitivity to systematic phase errors introduced by the
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rolls, the program shifted towards minimizing the distortions, through a combination of
measurements of the phase-advance in each of the achromats, and partial corrections, pos-
sible in the combined function magnets, by physically moving magnets and by combining
trim windings in each achromat and a global imbalance between focusing and defocusing
magnets set up in a separate circuit.

1V.4 MODIFICATION OF ROLL-BOUNDARIES

—

A second cure which was devised consisted in modifying the roll distributions to
generate transitions with a greater tolerafce to systematic phase errors. The adjustments
of the arc phase-advance had brought the system close to specification, and had minimized
the coupling to the point where it could be handled relatively well by the optical matching
sections in the final focus. It was however felt important for future operability to implement
this passive cure, which made the system significantly more error-tolerant, particularly for
equal or close to equal input emittances. After implementation of this modification, the
arcs behaved much as arcs without rolls, and although some cross-plane coupling remained
at the arc exit, the beamn envelope was near its nominal size. This, and improvements made
in controlling the phase-space at the end of the linear accelerator, enabled to obtain and
to maintain small focused spots of about 5um at the collision point.

IV.5 NEW AND TIGHTER CONSTRAINTS FROM BACKGROUNDS

In the next commissioning phase, the problems of minimizing backgrounds in the
detector began to be included in the tuning strategy. The initial collimation strategy
concentrated the primary collimation in the final focus, where nearly every accessible
place on the beam-line is at the same betatron phase because of the large 3-functions, and
where only small fractions of the phase-space could be cut without generating excessive
numbers of muons reaching the detector. Because of these two problems, a nearly matched
phase-space was found to be required at the entrance to the final focus. For this reason,
two additional modifications had to be introduced. Firstly the collimation strategy had
to be modified, and the primary collimation redeployed to the linear accelerator to arc
beam-line (“beam switchyard”) and to the arc “reverse bend”. Secondly, a new scheme
for doing optical corrections with the combined function arc magnets, through harmonic
perturbations, had to be devised to enable adjusting the beam shape at the arc exit.

IV.6 COLLIDING BEAM OPERATION
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After this, the program proceeded trying to maintain stable colliding beams at the
interaction point, with low backgrounds. This involved both small adjustments to the
optics in the arcs and final focus and extensive use of the new collimators. In this phase,
the beams were made to collide and maintained in collision for the first time by detecting
beam-beam deflections, which result if the beams don’t collide head-on.

The beam-beam deflection method was proposed at an early stage in the commission-
ing, as a way to bring the focused micron size beams into collision at the interaction point,
using the electromagnetic fields produced by the charged electron and positron bunches.
These fields are intense enough to deflect the opposing bunch coherently, if the collision is
not head-on. The deflections can be measured with strip-line beam position monitors at
the system’s high 3-points, where they are magnified.

This method is one of the three observable effects from the beam-beam interaction at
the -SLC. The two other methods are the synchrotron radiation emitted as the particles
are deflected in the electromagnetic field of the opposing bunch (“beamstrahlung”), and
the enlargement of the betatron angular spread at the interaction point from these same
fields (“disruption”).

With its strong and relatively easy to detect signals, the beam-beam deflection method
has become the primary method for maintaining the beams in collision. It also provides a
signal strongly correlated with the luminosity, which may in the future be used to optimize
the beam sizes of the two beams at the interaction point.

IV.7 TOO MANY KNOBS

With a not fully stabilized phase-space at the end of the linear accelerator, with the
presence of still some unstable pieces of hardware in the arcs and final focus, and because
of insufficient and solely primary collimation, the program often became non-convergent:
collimators were set-up one day for a given phase-space; then the beam phase-space would
change and particles would begin to get transmitted into forbidden parts of the required
beam stay-clear. The response would be a combination of re-adjustments of the collimators
and of the optics in the arcs and final focus, which images the collimators. This would
then require further optical adjustiments to re-optimize the beam size at the interaction
point and so on. [t was understood that to solve this problem, the program had to
begin by ascertaining a stable optical set-up in the arcs and final focus, where corrections
would not be made continually to feedback on variations in the beam sizes at the collision
point or to rising backgrounds, but rather as well thought out adjustments based ou timnie-
averaged observations and measurements. [t was also understood that the stability of
the linear accelerator is essential, and that a more full-proof collimation system is needed
to separate luminosity maximization from background minimization, as described above.

34



Also, reliability issues began to receive more attention, as the time to reach a well optimized
set-up became longer, with the ever increasing requirements put on the phase-space, and
sometimes almost reached the time between hardware failures in the machine.

IV.8 PRESENT GOALS

——

The SLC is at present being restarted. A new collimation system is to be installed at
the end of the linear accelerator. Also, special magnetic shielding has been installed in the
final focus tunnel, to reduce the rate of muons generated by beam tails getting scrapped
off the vacuum chamber of the early parts of the final focus. This, combined with the
alreacdy existing slits, will enable beam tails to be cut more efficiently.

Furthermore, much attention is now given to controlling and stabilizing the beam
phase-space at the end of the linear accelerator. This, coupled with improvements in
handling the backgrounds, is expected to enable using the nominal rather than the detuned
optical configuration in the final focus, and thus to reach a lower 3*-parameter for the beam
at the interaction point.

In addition, tests are being made with larger intensities (2 and 3 10'° particles per
bunch), to begin exploring experimentally the hich current dynamics and the possibility to
reduce wakefield effects through the introduction of a large energy spread along the bunch
in the early sectors of the linear accelerator (so-called BNS damping).

The combination of these improvements, and of others not mentionned here, is ex-
pected to enable producing a useful rate of detectable Z° particles.
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V. OVERVIEW OF OPTICAL TUNING
IN THE ARCS AND FINAL FOCUS



V.1 INTRODUCTION

The optical tuning procedures which were devised to adjust the arcs and final focus
sections of the SLC result from:

1. The basic principles of the optical design of these two sections, which were described
in chapter I, and -

2. The global evaluation of the sensitivity to imperfections and of the overall tuning
considerations described in chapter III.

These procedure where furthermore developed in the framework of the actual strategy
followed to commission the SLC, as sketched in chapter IV.

V.2 OPTICAL TUNING IN THE ARCS

The SLC arcs have an achromatic lattice consisting of a FODO array. To maximize
the packing factor, combined function magnets are used. All magnets except in the “beam
switchyard” and “reverse bend” are on the same power supply. The magnets are equipped
with backleg windings, on a achromat by achromat basis. These backleg windings were
originally introduced to provide a gradual adaptation of the magnet excitation to the beam
energy, which decreases by about 1 GeV because of the synchrotron radiation emitted in
the bending field. In addition, an imbalance between focusing and defocusing magnets can
be set up globally over the length of the arc, through a separate circuit.

The goal of the tuning in the arcs is primarily to render the optical transfer as close
as possible to an identity transformation. To some extent, tuning in the arcs is also used
to supplement the tuning of the final focus, as explained in 111.4.2.4, in order to correct
for errors in the incoming phase-space. Three methods were devised for this purpose. The
two first ones are specifically geared towards optimizing the lattice in the presence of the
large discontuities introduced by the rolls. The third one is a more general method for
adjusting long repetitive FODO arrays.

V.2.1 Phase-Adjustments®?

The first one is a partial adjustment of the phase-advance per achromat in each plane,
by moving magnets horizontally, by readjusting the backleg windings and by setting up the
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global imbalance. This had to be done since the rolls were in the original design grouped
in compensating pairs separated by one or several achromats, to adjust the phase-advance
in each plane near its design value of 67 per achromat.

V.2.2 Smoothing out Roll Discontinuities

The second one is a modification to the roll distribution, enabling a smoother transi-
tion, which was shown to reduce the sensitivity of the lattice to systematic errors substan-
tially. This was a passive correction, which reduced the need for doing precise adjustments
of the phase-advance.

This modification is described in section VI.2.

V.2.3 Harmonic Corrections

The third correction is a harmonic correction. It applies more generally to FODO
arrays, and allows to correct any kind of error generated in the.arcs. It is designed in
particular to correct for coherent build-up of the phase-space distortions due to errors at
twice the betatron frequency, including both in-plane phase-space distortions and cross-
plane coupling. The required trim corrections were introduced in the combined function
magnets by rewiring the backleg windings in each magnet of the last seven achromats of
each arc into sets, spatially modulated at twice the betatron frequency. By driving the
upper and lower windings of each magnet separately, it is possible to generate both regular
and skew quadrupole perturbations in the magnets. In total, the lattice can be perturbed
in nine independent ways through this method. These additional adjustments allow both
to take out errors in the lattice and to correct distortions of the phase-space injected into
the arcs.

This method is described in sections VI.3 and 4.

V.3 OPTICAL TUNING IN THE FINAL FOCUS

The optical corrections in the final focus were designed to enable readjusting the lat-
tice, in order to absorb phase-space distortions in beams with equal emittances in both
planes at the injection to the section. The design of these adjustments and of the strategy
for optimally applying them started out with an optical system which had already been op-
timized for the required performance of the final focus and for the available space. Because
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of this, the design work had to take a pragmatic approach, and only slight modifications
to the lattice were possible. As a result, some of the correction modules straddle several
of the telescopes of the final focus, and are therefore strongly coupled. In addition, one of
them has a practical range severely limited by perturbations to the trajectory produced
on the outgoing spent beam.

The maximum adjustments of the optics which are possible enable absorbing distor-
tions of up to a factor four in any of the orientations of the phase-space. All components
of the transverse phase-space and the couplings between them must be controlled to mini-
mize the beam size at the coltision point. This involves ten independent distortions of the
phase-space, and thus the correction algorithm uses ten variable quadrupoles.

The adjustments are grouped in three sets:

- 1. Four corrections to minimize the spatial and angular dispersion in both planes,
using two pairs of quadrupoles to perturb the matching of the dispersion in the first
section of the final focus. The pairs are separated by 7 and consist of regular and skew
quadrupole for control in each plane.

2. Three corrections to the betatron angular spread at the interaction point, by
. controlling the magnitude of < z' > and of < y'* >, and by minimizing the < z'y' >
correlation. This is done using the two last erect quadrupoles and a skew quadrupole in
the upper telescope, where the demagnification of the final focus is initiated.

3. Three adjustments to position the waists in both planes at the interaction point, by
minimizing the correlations between the positions z,y and the angles z',y’ in both planes.
This is done using trim windings on the next to last two quadrupoles of the final telescope,
and with a skew quadrupole just upstream.

The ten variable quadrupoles used for these corrections are shown in Fig. 12. Because
each correction is coupled to the ones downstream, they must be applied sequentially. A
flow diagram illustrating this sequential application is shown in Fig. 19.

The seven first adjustments are strongly coupled and depend non-linearly on phase-
space parameters. The final three waist corrections can be orthogonalized independent of
the input phase-space. A ten-dimensional non-linear fitting program has been developed
to match the lattice in the final focus to the input beam. Local orthogonal “knobs” are also
defined for fine-tweaking around the initial solution, although this is not always practical
because of steering from the lenses.

The optical tuning of the final focus is the subject of chapter VII.
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Figure 6. Longitudinal displacement of the focal point with the energy.
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Figure 7. Variation of the B-parameter with the fractional energy error in the final
focus section, with chromaticity correction (a), and without chromaticity correction (b). As
can be seen, the optical bandpass of the system is enlarged by the chromaticity correction.
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In the case of (c), the power dependance is slightly weaker for T1344 and for Ty44¢; for

large values of l.c,.
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Figure. 14 Distortion and rotation of beam phase-space from a focusing error.
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Figure. 16 Incoherent imaging of a phase-space distortion. In (a), we show the
nominal phase-space, and in (b) the distortion of this phase-space from a focusing error.
The incoherent imaging of this distortion generates a second order correlation between
the transverse coordinates and the energy of the particles. When this correlation becomes

large, the projection of the phase-space on the plane (z,z') will correspond to the larger
cercle in which the ellipse is inscribed.

T
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o m

Figure. 17 Basic principle of collimation.
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Figure. 18 Illustration of the separation in three major pieces of the tuning in the
SLC. There are two breakpoints in the accumulation of the errors, from the radiation
damping in the rings, and, in a more imperfect way, from the collimators at the end of the
linear accelerator.
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Design Achieved Unit
f 120 Hz 30 Hz Hz
EN 3.10-5 5.4 10-5 m.rad.
N (e*) 7.1010 5.10°
N(e") 7.1010 1010
B* 0.75 _ 3 m
c* 1.5 4 um
L 2.3 1030 (;.8 1027 cm—2 sec—!
Table 1
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Location Consequence on Downstream Correc-
in SLC Phase-space tability (Excluding
* Background Constraint)
Synchrotron Arcs Incoherent Dilution NO
Radiation
SE ——
< Xi’ E > YES
R.T.L.
Betratron ]
< Xi’ Z> NO
Oscillations e
SE
< Xi’ —1-3-— > YES
from Linac
< Xi’ Z> NO
Errors
Arcs <X, Xj> * YES
in
< Xi, Xj > YES
Guide-Field Final Focus
OE
< Xi’ F > YES
< Xi’ Xj > YES
Phase-Space R.T.L.
OE
Distortions
< Xi’ Xj > YES
from Linac
OE
< Xi’ Xj E > NO
Errors
Arcs < Xi’ X. > YES
in
Focusing < Xi’ Xj > YES
Final Focus
Fields <X. 3E > YES
" E

* The arc transfer is sensitive to steering for large steering errors.

Table 2
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VI REPORTS AND PUBLICATIONS ON OPTICAL
CORRECTIONS IN THE ARCS




VI.1 “Betatron Phase-Space Diagnostic in a FODO Array”

This collider note describes one of the experimental methods used to determine the
beam phase-space injected into the arcs. The method consists of:

1. Varying the phase-advance per cell in the optical lattice of the linear accelerator, in
order to cause the beats in the S-parameter which result from the accumulation of focusing
errors upstream of the arcs to move longitudinally, and of,

2. Measuring the beam-size on a fixed phosphor profile monitor screen.

This method is being successfully applied to monitor the phase-space at the end of
the linear accelerator.
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SINGLE PASS COLLIDER MEMO CN-367

AUTHOR: Philip Bambade DATE: October 2, 1988

TITLE: BETATRON PHASE-SPACE DIAGNOSTICS

IN A FODO ARRAY*

I. INTRODUCTION

As has been shown!, betatron mismatch is conveniently diagnosed in long
repetitive FODO arrays by systematically varying the cell phase-shift x and by
measuring beam size at the end. For small variations, lattice parameters « and
B change negligibly. This can be seen calculating? for example 3 as a function of

uin a thin lens FODO array. One gets:

_ ! + stn(p/2)
- Stnu

B+ (1)

where 4 are the minimum and maximum values, occurring at the D and F lens
respectively, and L is the cell length. The beam-size remains therefore nearly
constant ¢f the phase-space is matched to the lattice. If it is not matched, beam
parameters beat at twice the betatron frequency along the array, and the size
at the end will vary as the beats are moved back and forth. A total phase-shift
of 7 is needed to go through a full cycle of variation. In the Linac, where the
total phase-advance is 607, a £2.5% systematic variation of F and D lenses is
sufficient.

In this note, we show by parametrizing the mismatch in normalized coor-
dinates, that the beam phase-space is readily determined from the measured
size-variations. The parametrization given is general and applies to any transfer
channel. The insensitivity of lattice parameters to systematic phase-shift applies
however only in a FODO array. In addition, the calculation assumes uncoupled
motion. The proposed method is therefore not applicable in the Arcs or Final
Focus Sections. It is relevant however at the end of the Linac, where it enables
rapid diagnostic, in both planes simultaneously, and without extensive set-up, of
the beam injected into the passive part of the Collider.

*Work supported by Department of Energy Contract DE-AC03- 76SF00515.
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Phase-space parameters can also be determined without varying any focussing
element, through measurements at at least three different betatron phases. The
e Qambnes IN AT Avic arvroanas ot ha tiand Fre thle allactom svnmem tdnclon ~ vesldl oo &
10Ur ©S€eCL0r-ov Uli-axis 3CItCliio illay DT USTU 10T LiliS, allOWIIE IMOonitoring wiuiloutv
intercepting the beam during running. Practical formulas can be derived. An
approximate expression is given for the emittance as an example.

As noted*, the spacing in betatron phase of the four screens is not regular.
Also, two out of four screens are at fSmqz Whereas the two others are at fpp.
This gives about a factor two assymetry in their sensitivities, which the error
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traditional methods® is not included here.

equation:
d?z

S5+ ki(s)z=0 | 2)

where z and s = ct are the transverse and longitudinal coordinates respectively,
and k.(s) represents the strength of the time-varying restoring force from the
focussing array.

Z

Introducing the normalized variables z = W and d¢ = %‘1, where [ satisfies:

1 dz_ﬂ 1/dp
ds? 4

2
- haladl 2 _1=—
15 %) +ho-1=0 (3

transforms the governing equation (2) into that of a pure harmonic oscillator:

d?z
r& +2z=0. (4)
Thus the solution of (2) is: )
z = av/Bcos(¢ + b), (5)

where a and b are integration constants.
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It is easily verified that:
v2? + 2027 + 827 = a2, (6a)

3
where 2/ = g: vy = li#, and a = :f—, The quantity in (6a) is called the

Courant-Snyder invariant®. It can also be written in matrix form:

(2, z')T"l(:,) = a?,where T = ( g —a) and det(T)=1.  (6b)

(6) defines the closed phase-space trajectory - an ellipse - of a particle with
initial condition a. It also defines the envelope of the phase-space matched to the
lattlce The Twiss parameters a, 3 and v are here properties of the lattice. The
area ma? of the ellipse is identified as 7 times the emittance €. In the matched
condition, the beam-matrix? o = €T.

III. PARAMETRIZATION OF MISMATCH

In the normalized coordinates z = ﬁ and ' = g—% = VB(2 - %z), the

matched phase-space is a csrcle of radius e. This can be verified by direct sub-
stitution in (6a). A mismatch amounts to distorting this circle into an ellipse.
We characterize the mismatch by the ratio M of the radius of the larger circle
in which the ellipse is inscribed to that of the initial circle corresponding to the
matched case, and by the angle ¢o between its major axis and the abscissa (see
Fig. 1): M and ¢o can be thought of as the amplitude and phase of the mismatch.

The equation of the distorted ellipse is calculated in terms of M and ¢y, first

in the coordinates rotated by ¢¢ in which it is erect, and then transforming back
into the unrotated coordinates. This gives:

. 1 oD g . 1 s .
P (M2 coséo+ mszn2¢o)+ (z')2 (Mzszn2¢o+ mcoszcﬁo) +2zz'cos¢osm¢o(M2(;)H—

The corresponding beam-matrix, written in the normalized system, is:

) ( M?sinlgo + SGfe  —cosgosingo(M? — M—‘H) ®)
o =€

—cosgosingo(M? — ) M?*cos?¢g + 1’7"72,@
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Transforming back into real coordinates gives:

o1 = B0,
o12 = 012 — 011, (9)

o2 = %(522 + a?dy1 — 2a612).

In the matched condition, characterized by M = 1, (9) reduces to (6b) as ex--
pected. '

IV. PHASE-SPACE DETERMINATION

From (8) and (9), the beam-size measured at an arbitrary point at the end
of the array as a function of the total induced phase-shift ¢ is:

2 ~ Gﬂ 2 1 2 1
o*(¢) = - ((M* + 7)) + (M = j7z)c082(4 — o). | (10)
The period of this function is 7 as expected. The mismatch parameters M, ¢¢
and the emittance € are easily computed:

ezg.MinB‘.’.M.ll’

M? ~ IMi (11)

OMas’
bo.

In (11), ¢o is the difference in phase between o($) = oars, and the starting point
o(0).

The full beam-matrix can then be reconstructed from (9), using the lattice
parameters « and § at the measurement point. Equations (10) and (11) are
approximate because Twiss parameters a and 8 change slightly with the induced
phase-shift from (1). The contribution to the error from this is however small as
it is bounded by their variation over the 2.5 % phase changes which are applied.

We can also use (10) to determine the phase-space from measurements on
the four off-axis screens3, without varying any focusing element. Approximate
expressions are easily written if the slight mismatch present in the design lattice

is neglectedT . Using? A¢13 =~ Adayg =~ 22.5°, and A¢23 ~ 67.5°, where ¢ = 1,4

t The design Linac lattice is not fully periodic. It includes deviations in quadrupole strengths
required to match across sector boundaries. These local deviations can be as large as 20
%. However because the systematic strength variations induced in this method are about
2.5 %, effects from these irregularities are small. This has been checked! using the on-line
model,
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refer to the four screens, the horizontal electron emittance is:

A,+A2+A3+A4)2_(A1—A3 V2(Az — Ag) — (A1 — A3)

€~ ( 1 —"é—"")z —( 2 )%, (12)

aps

where 4; = & ',' , in which 81,3 = Bmin =~ 20m. and B34 = Pmaz =~ 50m.. The
same expression applies for the vertical plane by exchanging fmin for Bmez, and
for the positron emittance, by exchanging horizontal for vertical electron results.

Similar expressions can be obtained in the same way for mismatch parameters
M and ¢o. -
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V1.2 “Roll-fix - An Adiabatic Roll Transition for the SLC Arcs”

This conference article describes the modification of the roll transitions which were
used to provide the vertical deflections necessary to follow the terrain of the SLC site. The
boundary was modified into a smoother transition, which almost perfectly suppressed the
coupling of horizontal lattice dispersion into the vertical plane, and substantially reduced
the sensitivity of the betatron lattice to systematic focusing errors. This modification was
proposed and implemented to help control the magnification and build-up of errors from
the arc lattice, by making the system more error-tolerant. The paper summarizes the
evaluation and performance of this scheme.

i
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ROLLFIX — AN ADIABATIC ROLL TRANSITION FOR THE SLC ARCS®

P. BAMBADE,T K. BrowN, T. FIEGUTH, A. HuTTON, D. RITSON, M. SANDs and N. TOGE
Stanford Linear Accelerator Center, Stanford University, Stanford, California 94309

Contributed to the IEEE Particle Accelerator Conference, Chicago, lllinois, March 20-23, 1989.

ABSTRACT

The SLC Arcs were rolled at achromat boundaries to follow
the terrain of the SLAC site. This makes the linear optics
sensitive to systematic gradient errors, from which severe cross-
plane coupling effects may arise. As a partial correction, a
smoother roll transition was introduced which relieves much of
this sensitivity. We present an evaluation of this scheme and
report on the observed improvements.

INTRODUCTION

The two Arcs of the Stanford Linear Collider (SLC) are
designed to bend the electrons and positrons around and into
collision, without significant emittance dilution.! To minimize
emittance growth from synchrotron radiation in the bend field,
the focusing must be strong and compact and, therefore, use
combined function magnets. To assure achromatic imaging,
the magnets must also include sextupole components, and be
grouped into sets (achromats) appropriately symmetrized for the
suppression of optical aberrations.? In addition, for economical
reasons, the two Arcs were designed to follow the terrain of the
SLAC site (see Fig. 1), and thus include vertical deflections.
For maximum compactness, these deflections were produced by
rolling the magnets around their axis by up to 10° at achromat
boundaries (see Fig. 2). To provide an overall cancellation of
the induced cross-plane coupling, the rolls were grouped in pairs
separated by one or several achromats, corresponding in the
ideal system to an identity transfer matrix with 6 nr phase-
advance.

However, these long-range cancellations resulted in a limited
bandwidth for the optical transfer, which had relatively stringent
tolerances to systematic focusing errors. This fact was realized
in several stages, before and during the initial beam tests. At
first, a stringent tolerance to systematic horizontal displacement
errors, which in the combined function magnets generate
systematic focusing errors, was noticed through computer
simulations. For example, see Ref. 3.

During the first beam tests, it was observed that the transfer
of betatron oscillations and of the dispersion function across
rolled achromat boundaries could be associated with a large
magnification. A detailed calculation of the magnification
associated with this transfer can be found in Ref. 4. In the initial
commissioning, this magnification was observed to be as large
as a factor of three over the whole length of the Arc because
the sygtema.tic errors exceeded the specified design tolerances of
0.002.

Although, for the case of equal input emittances (correspond-
ing to the SLC design specification), such growth is in princi-
ple recoverable downstream, in the Final Focus, where a set of
skew corrections are installed,® its magnitude required initial
correction within the Arcs. Also, as was later found, the pro-
jected transverse emittance must in fact be close to the nominal
design value at the exit to the Arcs, in order to minimize de-
tector backgrounds induced by beam-tails striking the smaller
(normalized) aperture in the Final Focus region.” Two basic
cures were therefore devised. The first consisted of adjusting the
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Fig. 1. Vertical profiles of the SLC Arcs.

* Work supported by the Department of Energy, contract DE-AC03-76SF00515.
t Present address: Laboratoire de I'Accélérateur Linéaire, Orsay, France.
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Fig. 2. Roll angle about beam azis versus achromat number for
North and South Arcs.

focusing gradients, based on measurements of the phase-advance
in each achromat,? to their nominal values. Such adjustments
helped bring the growth in the betatron transfer down to within
a factor of about two, but further reductions by this procedure
were limited by measurement errors and by thre-lack of fully
separate controls in each plane and in each achromat.?

A second cure consisted of splitting each roll over several
magnets on each side of the boundaries, to yield smoother
transitions having a greater tolerance to phase-advance errors,
"and’ to nearly ‘suppress the coupling of horizontal lattice
dispersion into the vertical plane. The adjustments of the

phase-advance had brought the system close to specification, -

and had minimized the coupling to the point where it could be
handled relatively well in the Final Focus. It was however felt
important for future operability to implement this passive rolifiz
cure, which makes the system significantly more error-tolerant,
particularly for equal or close to equal initial emittances in both
planes, as was noted above.

In addition, the nearly suppressed vertical dispersion is
expected to reduce synchrotron radiation induced emittance
growth in the vertical plane. The scheme could be installed
without major disruption to the beam-line, and resulted in
some observed improvements. The reference trajectory could be
kept unperturbed through small vertical displacements of the
magnets involved.

In this paper, after introducing an approximate measure for
the cross-plane coupling in the betatron transfer, we evaluate
the sensitivity to errors in the initial and modified designs, and
characterize the predicted improvements. We then report on
observed improvements.

. APPROXIMATE CHARACTERIZATION OF
o CROSS-PLANE COUPLING

The practical consequences of cross-plane coupling are dif-
ferent in a beam-line .than in a circular machine. In a cir-
cular machine, the motion is stable only for tunes such that
sum-resonances (corresponding to pvz + gvy = n), have negli-
gible effects. Residual coupling arises in this case exclusively
from difference-resonances (corresponding to pvz — quy = n),
which can be shown to result in stable beating between the
two projected transverse emittances.” In a beam-line, distor-
tions from cross-plane coupling can correspond both to growing
and decaying solutions.!®!! The two projected emittances can
in this case both grow. It has been shown that the severity
of such growth can be characterized by the determinant of the
off-diagonal two-by-two submatrix C of the general four-by-four
transfer matrix:!°

Ru Rz Ry Ry

R = Rz1 Ry Raa Ry _ A B) W
R31 R32 R33 Ru C D
Ry Rsy Ry Ry

This can be seen from calculating the projected emittances
€x and ¢, onto each plane of a four dimensional phase-space
transfered through a fully coupled system, and by using the
six symplectic conditions imposed by Hamiltonian Mechanics.®
With the simplifying assumption of upright phase-ellipses and
of beams initially uncoupled in both planes, one can show that
the following inequality holds:!?

>

ez,y(0)]1 — det C| + ¢,,2(0)} det C| (2)

€z,y

In most cases, the inequality sign in Eq. (2) can be replaced
by an equality. This has been observed in several computer
simulations. An analytical attempt to show this is described in
the Appendix.

From Eq. (2), we see that the most severe coupling effects
arise if: detC < 0, or if: detC > 1. In this case, the phase-
space projections will grow in both planes, irrespective of the
initial emittance values. On the other hand, coupling effects
with 0 < detC < 1 are severe only if the initial emittance
values are very assymetric (and if it is desirable to preserve such
an assymetry). In this case, the coupling will tend to equalize

. the two emittance projections. In the SLC, where the initial
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emittances are close to equal, coupling effects with 0 < det C < 1
are benign.

DESCRIPTION OF ORIGINAL AND
TAPERED ROLL TRANSITIONS!?

Figures 3(a) and (b) show the principle of the original and
tapered roll transition pairs. The first transition has a total
angle 6. It is matched by a second transition, with a total
angle —@, located an integer number of achromats downstream.
In this way, all cross-plane coupling effects cancel after the
second transition, if the achromats in between are perfect, and
correspond to an identity transfer matrix.
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Figs. 8(a) and (b). Principle of original (a) and tapered (b) roll
transition pairs. In the original set-up (a), pairs of rolls were
concentrated at achromat boundaries separated by 6 nm betatron
phase-advance. In the tapered solution. (b), each roll was split
about five magnets to yield a smoother transition. The optimum
value for the ratio r of the total roll of the first cell to the total
roll of the transition is near r = 0.28.

In the original traasition [see Fig. 3(a)], the full roll is
concentrated at the achromat boundary. In the tapered
transition [see Fig. 3(b)], the rolls are distributed across three
cells around the boundary. As we will show, this tapering
suppresses the most damaging component of the cross-plane
coupling induced in the betatron transfer. Within each cell,
the rolls are split equally across the defocussing magnet. This
was found to nearly cancel the coupling of horizontal lattice
dispersion into the vertical plane, and is due to the fact that
the vertical phase-advance across a defocusing magnet is only
about 22°, and because the angular horizontal lattice dispersion



has opposite sign at the entrance to focusing and to defocusing
magnets. We define by r the ratio of the roll of the first cell to the
total roll of the transition. In the original proposal, r = 0.38 was
used, by analogy with the coefficients for a matched trajectory
bump. It was later found that r = 0.28 gives a slightly better
results.

TOLERANCES WITH ORIGINAL AND
TAPERED ROLL TRANSITIONS

Following the above description of cross-plane coupling
effects, we use the magnitude and the sign of detC to
characterize the severity of the cross-plane coupling effects which
arise from errors in the Arc lattice.

The original design was especially sensitive to the total
deviations Apzy from the nominal phase-advance between
transition pairs. For two original roll transitions, each of angle
0, and separated by a regular FODO lattice with an integer
number of betatron periods [as in Fig. 3(a)], it can be shown
that after the second transition:

Apz — Apy

det C = sin®(26) | sin? bz —a? sin Kjig sin Ap ,
2 v

)

where « is the usual Twiss parameter at the transition (in the
Arc, a = 2.65)..

For phase-advance errors with the same sign in each plane,

det C < 0, while for phase-advance errors with opposite sign,

det C > 0. The magnitudes of det C, computed with a
simulation?5 to confirm Eq. (5), are shown in Fig. 4 as a function
of (1/2)(Apz £ Apy), for a typical transition with § = 100. As
expected, the maximum value for |det C|, which is close to one,
is reached for (1/2)(Aps = Apy) = £90°. The same quantity is
shown in Fig. 5 for the tapered transition. As can be seen, the
onset of a negative det C is nearly suppressed by the tapered
transition, and the onset of a positive det C is reduced by a
factor of two.

1.0

| ! | 1 { I
-100 0 100

15 (auxtapy)  (degrees)

1-89 22004

Fig. {. detC as a function of systematic phase-advance errors
of equal sign (dashed line) and of opposite sign (solid line),
between two original roll transitions.

The actual roll distributions in the two Arcs are more
complicated (see Fig. 2), but are superpositions of the basic
ones shown in Fig. 3. We therefore expect the same overall
features as for the simple examples examined above. To verify
this, we show in Figs. 6 and 7, the same quantities as in Figs. 4
and 5, under the same conditions — but for the whole North
Arc, as a function of the fractional phase-advance deviations
(1/2)[(Apc/ps) = (Apy/py)]. As can be seen in Fig. 6 (solid
line), the tolerance to systematic phase-advance errors, for
negligible coupling to occur, was about +0.006 in the original
North Arc.

i
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Fig. 5. detC as a function of systematic phase-advance errors
of equal sign (dashed line) and of opposite sign (solid line),
between two tapered roll transitions.
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Fig. 6. detC as a function of systematic phase-advance errors

of equal sign (dashed line) and of opposite sign (solid line) in
the entire North Arc with original roll transitions.
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Fig. 7. detC as a function of systematic phase-advance errors
of equal sign (dashed line) and of opposite sign (solid line) in
the entire North Arc with tapered roll transitions.

In the modified North Arc, and in the case of equal emittances
in both planes (for which cross-plane coupling with 0 <
det C < 11is benign), this particular tolerance is very broad and
one expects the sensitivity to errors to be comparable to that of
a flat Arc. For unequal x and y emittances, the improvements
are, however, not expected to be as great (see Fig. 7 — dashed
line).

In practice, the system can be perturbed by both random
and systematic errors. Also, the tolerance to errors depends
on the requirement put on the phase-space at the Arc exit.
As was mentioned in the introduction, the cross-plane coupling
distortions of the phase-space are correctable in the Final



Focus, but large distortions of the beam envelope — from any
kind of error — can result in unacceptable background in the
experiment, and must therefore be avoided. This leads us to
define a tolerance in terms of the maximum deviation from
the nominal size reached by the beam envelope at the end of
the Arcs, as generated through the mixing of the distortions
from both random and systematic errors. Extensive computer
simulations!®16:17 were performed to evaluate the sensitivity of
the Arcs, with both random and systematic errors. It was found
that in the case of equal emittances, the Arcs with modified roll
transitions are about as sensitive to errors as a flat Arc without
rolls. We illustrate this point with the result from one of these
simulations in Figs. 8(a)-(c), where the geometric mean of the
maximum growth of the horizontal and vertical monochromatic
beam sizes at the end of the Arcs is calculated for the original
North Arc, for the tapered North Arc, and for a hypothetical flat
Arc.}® The errors are the same in each case and correspond to
systematic errors of 0.01 and to a sample of randomly distributed
errors with a standard deviation of 0.005, in both the focusing
and the defocusing magnets. As can be seen, the distortions are
almost the same for the tapered Arc [case (b)] and for the flat

¢ [case (c)]. Similar results were obtained for The South Arc.
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Figs. 8(a), (b) and (c). Mazimum growth of the geometric
mean of the monochromatic beam sizes in the vertical and
horizontal planes at the end of the North Arc perturbed by
systematic errors with the same sign in each plane, of 0.01, and
random errors, with a standard deviation of 0.005. The same
sample of errors are used for comparing the North Arcs with the
original roll transitions (a), with the tapered roll transitions (b),
and without rolls (c). The nominal value i3 35 pm in each plane.

OPTIMIZATION OF TAPERED ROLL
TRANSITION

. A perfect match of the betatron transfer can be achieved
by including at least five cells in the transition, but is not
practical because the sign of the rolls must alternate in this case
(presumably because the phase-advance across more than two
cells becomes larger than 7), and because the solution depends
in this case very nonlinearly on the total roll of the transition.

The distribution of rolls indicated in Fig. 3(b), however, can
be improved. An example of such an optimization is shown
in Fig. 9, where the maximum positive and negative values
of det C, occuring when the phase-advances between the pairs
of roll transitions shown in Fig. 3 are perturbed to satisfy
(1/2)(Apz £ Apy) = £90°, is computed as a function of r. The
dependance is fairly flat. The optimum value of r = 0.28 results
in slight improvements in the overall performance.!*
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Fig. 9. Mazimum value of det C resulting from systematic
errors with opposite sign (dashed line) and with the same sign
{solid line) between the tapered transitions of Fig. 8(b), as a
function of the roll ratio r.
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Figs. 10(a) and (b). Horizontal and vertical dispersion mea-
sured in the North Arc, before (a) and after (b) the installation
of the tapered roll transitions. The vertical dispersion was es-
sentially suppressed by the modification.

PERFORMANCE AND CONCLUDING REMARKS

The performance of the modification was particularly clear
for the suppression of vertical lattice dispersion. This can be
seen from the measurements in the North Arc, before and after
the modification of the roll transitions [see Figs. 10(a) and (b)].

The minimization of the coupling in the betatron transfer
which was achieved during the recommissioning of the Arcs after
the installation of the modification cannot be attributed solely to
this design change. It was also the result of the previous phase-
advance adjustments,® of several other empirical adjustments
and resteering performed at turn-on.

The modification did in addition improve the overall per-
formance of the Arc, by reducing, as expected, the need for



feeding back on the optics to cancel variations from steering or
other changes. However, later, expectations on the quality of
the phase-space at the exit to the Arcs were also enhanced, in
particular from the requirement to minimize beam tail induced
backgrounds in the detector.” Because of this it became neces-

sary to implement further and more precise corrections.!!

More recently, it has been possible to determine the transfer
matrix along the Arc beam-line, by fitting betatron oscillations
launched at several input phases.’® Such calculations have shown
that presently det C ~ 0.2 at the exit to the North Arc, leading

to small coupling effects in the case of equal emittances.

APPENDIX

It is possibie to calculate the projected emittances exactly
with the simplifying assumption of upright phase-ellipses and
of beams initially uncoupled in both planes, by folding the
contributions to each emittance projection from the two planes.
Because the phase-ellipses are not in general upright, the derived
expression is an upper bound of the cases with phase-ellipses of

arbitrary orientation. One obtains:

T ey = [esy(0)]1 — det Cl+ ,2(0)|det C]VIF 7

(4)

where €;:(0) and €,(0) are the initial values, and where the factor:

_ €:(0)¢;(0)| det C||1 — det C| & + 1\;
ey (011 —det C[ + 62 (0)]det O] \ X2 T X2

—2) (5)

describes the mixing which results from folding the phase-ellipses
if they are not similar. Such dissimilarity arises from upright
quadrupole perturbations to the lattice, both through random
and, in the presence of rolls, systematic errors. The parameters
Az,y describe the magnitude of the mismatch which result in each
plane. These parameters are defined in normalized phase-space
as the ratio of the radius of the circle in which a distorted phase-
ellipse is inscribed to that of the smaller circle which corresponds
to the matched case.}? If there are no upright quadrupole errors
(Az,y = 1) or if the two phase-ellipses are similar (A; = ),),
then the mixing term F = 0. For mismatches with A;, < 2,
corresponding to upright quadrupole errors of up to 1%, then

v+ F 5 25

For such cases, the inequality sign in the

expression given in Eq. (2) can be replaced by an equality sign,

for approximate calculations.
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V1.3 “Specification of Harmonic Corrections (Wirefix) for the SLC Arcs”

This collider note describes the theory and the design and implementation of harmonic
corrections in the arcs. Normally a method which applies to circular accelerators, harmonic
corrections can under certain conditions be used efficiently for doing optical corrections in
long open FODO arrays. Such corrections were introduced in the last third of the arcs
to supplement the optical corrections in the final focus. They are necessary to enable
adjusting the beam at the entrance to the final focus, where a nearly matched phase-space
is required to minimize backgrounds in the experimental apparatus.

—
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I INTRODUCTION

_ In the original SLC commissioning plans, it was thought that accumulated
optical mismatch, generated by focusing errors in the whole machine, would be
corrected at the very end, in the Final Focus. Dedicated correctors for optical
matching and a special adjustment strategy were planned for this purpose, with
a large tuning range of up to about a factor four in any dimension of the beam
phase-space!.

For several reasons, this does not appear to be feasible. One major constraint
limiting the magnitude of mismatches which can be absorbed in the Final Focus is
the background generated in the detector, from electromagnetic debris and from
muons produced when beam-tails strike apertures there. The apertures in the Final
Focus, normalized to the nominal beam size, are in effect significantly smaller” than
in the Arcs, both upstream and downstream of the dedicated optical correctors.
Because of this, otherwise correctable optical distortions can result in enhanced
backgrounds, as imperfectly collimated beam tails get magnified by the optical
distortions, and can get scraped off.

With the present collimation and shielding arrangements, it is necessary to
control the beam upstream of the Final Focus in order to inject a nearly matched
phase-space there. Following work by Stiening in the Linac?, and by Fieguth in
the Arcs®, we have developed and irstalled a new system of harmonic focusing
corrections at the end of the SLC Arcs, to provide such control.

% The protection collimator PC18, for example, has a radius of 4 millimeters. After normal-
izing by the nominal beam size, it is smaller than the Arc 6 millimeter vacuum chamber by
a factor 6.7.
** Work supported by the Department of Energy Contract DE-ACO03-

76SF00515.
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The scheme consists of introducing small regular and skew focusing deviations
at specific harmonics of the betatron frequency which the phase-space is specially
sensitive to. The harmonics in question are the zeroeth harmonic and the second
harmonic of the betatron frequency*. The focusing deviations are introduced in
the Arc lattice by perturbing the strengths of the combined function magnets with

a set of appropriately rewired trim windings at their backlegT. The corrections
provide an efficient way for adjusting both for errors in the Arc lattice and for
mismatch at the injection to the Arc, generated by the upstream systems.

In this note, we describe the specification of this correction procedure as well

as the present installation. Initial operational experience with this new method for
adjusting beam-lines is psesented elsewhere?.

We begin with a description of the theoretical work which guided the specifica-
tion. We then define the harmonics in the case of the Arc lattice, and describe the
wiring modification and the strength of the regular and skew quadrupole compo-
nents which can be generated, as calculated with POISSON®. We also describe the

intra-magnet wiring arrangement through which the spatial strength modulations
are produced.

Finally we present the predicted effects from the present installation, and out-
line possible improvements.

» In a circular accelerator, these harmonics correspond to the half-integer resonance in each
plane, and to the sum and difference coupling resonances.
t The backleg windings were introduced in the Arc magnets originally to provide a step-wise

adaptation of the strength of the lattice to the energy of the beam, which loses about 1 Gev
through the emission of synchrotron radiation in the guide-field.
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II. THEORY OF HARMONIC CORRECTIONS

II.1 Concept of Harmonic Correction in a Beam-Line*3

In a beam-line where the focusing lattice consists of a periodic FODO array, the
optical mismatch which occurs from focusing errors is conveniently described by
an ellipse which rotates in phase-space with the betatron phase-advance®. Because
ellipses are invariant under rotation of m, the beats in the beam envelope occur at
twice the betatron frequency. Therefore, focusing errors which are separated by r,
and more generally, which-occur at twice the betatron frequency, will build up and
enhance the optical mismatch. '

Thus it is natural to consider adjusting the lattice and the phase-space in
a FODO array by introducing controllable focusing perturbations at twice the
betatron frequency. In general, the focusing errors in the lattice are random.
" Such focusing perturbations will thus add to or subtract from the strength of the
Fourier component of the random errors which is at twice the betatron frequency.
Controlling the strength of this harmonic thus enables to either make an overall
correction of the lattice, or to purposely distort the lattice to minimize optical
mismatch in the injected beam. This notion can be applied both to regular focusing
errors and to skew focusing errors.

Because the perturbations from the errors are random and contain in general a
systematic component, the accumulating optical mismatch will not remain indefi-
nitely in phase with the focusing perturbations which are introduced. The longer
the array, the larger the phase-shift between the two will be, and the weaker the
effects from the controls become, as the system becomes more narrow-band. Be-
cause of this, harmonic corrections cannot be performed over a region that is too
long, without losing much of their efficiency.

A second reason why harmonic corrections can in general not be applied over a
region that is too long arises if the momentum dependance of the focusing, referred
to as the chromaticity of the lattice, is not or is imperfectly corrected. In this case,
the finite momentum spread in the beam will cause the optical mismatch from the
focusing deviations to filament into a larger effective phase-space. The efficiency
of a harmonic correction can in this case be reduced. Because the SLC Arcs are
designed to be achromatic, such effects arise only to the extent the chromaticity-
correction, because of the errors, is imperfect. For the range of errors which we
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consider”, this is a small effect which we will not consider here.

I1.2 Scope of Theory

The scope of this theoretical description is not that of full generality or rigor.
The goal is rather to show the basic features of betatron oscillations and of trans-
verse phase-space, as they are imaged through a FODO array which has been
perturbed by a periodical focusing deviation. We will calculate the effects for each
perturbation separately, in an idealized system with no errors, and ignore mixing
effects which arise when=several perturbations are applied simultaneously. Such
mixing effects can change the magnitude of the effects, but do not change the
basic features of the solutions which we will derive.

The only case of mixing which we will treat is that of a systematic focusing
_ deviation, from the random errors or applied as an independent perturbation,
combined with a periodic focusing perturbation at twice the betatron frequency.
Rather than calculating the explicit solution for this case, we will indicate the
magnitude of the reduction factor which results.

A practical case of periodic focusing deviation applied to a lattice with random
errors will be explored through simulation in section VI.

In order to calculate the effects to be expected from harmonic focusing pertur-
bations in a repetitive lattice, it is convenient to introduce and work with normal-
ized variables.

I1.3 Normalized Variables’

The transverse motion of a particle in a focusing array is governed by Hill’s
equation:

:4+Kz2=0 (1)
where z = z,y and s = ct are the transverse and longitudinal coordinates respec-

tively, and where K represents the strength of the varying restoring force from the
focusing array.

* We consider focusing perturbations of up to about one percent.
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The use of the normalized variables uz y = ﬁ and d¢ = gﬂi, where 3 satisfies:

1 . 1. '
BB~ B+ KF ~1=0, (2)
transforms (1) into the equation of a pure harmonic oscillator:
Uz,y + uzy = 0. _ (3)

In (1) and (2), f= %, V\:Pere f=28 In(3),u= d%gl The solution of (1) is
thus: ’
z = ay/Bcos(¢ + b), (4)

where a and b are integration constants, and is referred to as a betatron oscillation.
By definition the frequency of this oscillation, written as a function of the phase

variable ¢, is one.

Although the form in (4) is general, it is specially suited to periodic arrays
consisting of repeated cells. In this case K, 8 and ¢ are periodic with the cell
length and the betatron oscillation is pseudo-harmonic. An equivalent harmonic
oscillator can be defined by sampling”™ (4) at each cell:

zn = av/Bcos(én + b), )
with ¢n, = npu.

where 4 is the phase-shift per cell. In what follows, we consider perturbations of
(3). The solutions we will derive coincide with those of (1) at the sampling points,
after rescaling by +/B. It is therefore possible to use (1) or (3) interchangeably, as
long as one considers the restriction of the solution to the sampling points. We
will use this fact to write simplified expressions for the perturbed motion.

11.4 Periodical Focusing Perturbations

I1.4.1 Regular Quadrupole Perturbations

» From the sampling theorem, (4) is not undersampled by this procedure as long as the cell
phase-shift is less than m, which is always the case®. In the SLC Arcs, u = §5-"—
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To study the effect from a focusing modulation with regular quadrupoles, we
replace K by K + kcos(vé+1)) in the governing equation (1), where k cos(vé + 1)
represents a periodic deviation in the restoring force K, of amplitude k and of
phase 3, and with v cycles per radians of phase-advance along the array. For
the horizontal motion (z = z), the most important deviations are the ones in the
focusing lenses. Conversely, for the vertical motion (z = y), the most important
deviations are the ones in the defocusing lenses”. We consider small ecvors so that

kL K.

In the normalized system, the equation of motion in (3) becomes:

—

fiay + (L4 g cos(v + ¥ )uzy =0, (6)

with g" = B%k, and " = 9. The function B is sampled at the center of each
focusing magnet for the horizontal metion, and at the center of each defocusing
magnet for the vertical motion. Since only errors in the focusing (respectively
defocusing) magnets affect the motion significantly in the horizontal (respectively
vertical) planes, the factor g" can be considered constants in (6).

I1.4.2 Skew Quadrupole Perturbations

Similarly, we write the equations which govern the motion when focusing mod-
ulations with skew quadrupoles are applied. In this case, the restoring focusing
force, proportional to the beam excursion in each transverse plane, acts on the per-

pendicular plane. This generates cross-plane coupling. The equations of motion
are in this case:

ty +uy + g° cos(vé + P*)uz =0,

where g° and ° represent the amplitude and phase of the skew focusing modulation

= This results from the fact that in a FODO array, the beam size is naturally larger in each
lens, in the plane in which the lens focuses. Because of this, the set of F and D magnets
form close to orthogonal sets, in terms of their effect on the one-dimensional beam motion.
A measure of this orthogonality is given by the ratio of the maximum to minimum beam
size in the array. In the Arc lattice, this ratio is 2.8. The two sets are orthogonal for all
practical purposes.

74




t

along the array'.

Defining ut = uz £ uy, we can rewrite (7) in a form similar to (6):

Gy 4+ (1 £ g% cos(ved + ¥°))uy = 0. (8)

Next, we show that the perturbed motions, solutions of (6) and (7), are affected

significantly only for two specific values of the frequency v of the modulations,
namely:

v~0 and v ~2, : | (9)

corresponding respectively to the systematic component in the errors and to the
second harmonic of the betatron frequency.

Ii.5 First Order Solution

II.5.1 Method of Variation of Constants

Following Nayfeh, and along with the method of variation of constants, we

t The factor g* can be related to the amplitude of skew quadrupole modulations in the
focusing and in the defocusing magnets as follows:

gb,p = ﬁj,yﬁy%,:kb,l’:

where kp r represent deviations to the focusing and defocusing magnet strengths in the
regular coordinate system. The largest effect in the first (respectively second) of the two
equations in (7) occurs in the defocusing (respectively focusing) magnet, since uy (respec-
tively u;) is naturally the largest there. Therefore the term ¢* in the first (respectively sec-
ond) equation in (7) is essentially g3, (respectively g). Since in a FODO array, 87, = 82,
we have g} = gp. For this reason, we use the same g° in the two equations in (7).

Furthermore, it has been shown (through computer simulation) that modulations where
the skew quadrupole components have opposite signs in the focusing and in the defocusing
lenses produce effects which cancel over one betatron period, except in the case of the
systematic component, corresponding to v ~ 0. For this reason, we use the same phase °
in the two equations in (7). In the case v ~ 0, skew quadrupole focusing perturbations with
opposite sign in the focusing and in the defocusing magnets correspond to a rotation of the
coordinate system. It can be shown that such a rotation can be expressed in the normalized
variables by simply exchanging the sign of g* in one of the two equations in (7)°. In this
case, the two equations cannot be decoupled simply as in (8).

75




u = acos(¢ + ¢)). (10)

where a and ¢ are functions of ¢ to be determined. In (10) and in the rest of this
paragraph, u represents ury +—. By taking the first derivative of (10), letting a
and ¢ vary, and by requiring that the result be what it would be if a and ¢ were
constants (i.e. & = —asin(¢ + ¢)), an equation relating the first order derivatives
a and ¢ is found. By calculating the second derivative of u, and after inserting
it in an equation of the form of (6), we find a second equation relating & and ¢.
Thus we have replaced a second order differential equation in u by two coupled

first order differential equations in a and in ¢. By solving this coupled system, we
find that ¢ and ¢ satisfy:

do _

désin(2 — v)¢ + 2p — 9]
+sin((2 + 1) + 2 + 9], (11a)
do = %dé(? cos[vé + 9]

+ cos{(2 = v)¢ + 2¢ — ¢]
+ cos[(2 + v)¢ + 2 + ¥}), ) (11b)

> Q

where ¥ = ™* and g = ¢g"°.
I1.5.2 Averaging Method

To find the behavior of the solutions in the limit of small g¢, we solve (11)
to first order. To do so, we first note the fact that for values of v # 0,2, the
solutions of (11) are rapidly oscillating functions with amplitudes of order g. We
will neglect such contributions, as they are bounded by g. Thus for v # 0,2, the
motion, solution of (6) and (7), is perturbed negligibly.

The amplitudes of the functions a and ¢ can only become significant if the

functions on the right hand side of (11) are slowly varying functions. This occurs
for v ~ 0, 2.

From now on, we will write go for the magnitude of the systematic focusing

deviations, corresponding to v > 0, and g2 and 3 for the amplitude and phase of
focusing modulations at twice the betatron frequency, corresponding to v =~ 2.
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We first solve for v o2 0. The solution is obtained by integration of (11b). This
gives:

u ~ agcos[(1 + 922)45 + o), (12)
where ap and (g are integration constants.

Next we solve for v = 2, integrating this time both (11a) and (11b). From
(11b), and including only the slowly varying term cos[(2 — v)¢ + 2p — 2], we
note that dp < %ggdqﬁ. The total variation of ¢ over the interval of integration is
thus bounded by %gggﬁ. Thus the right hand sides of (11) stay about constant if
%ggqﬁ < 7. We can in this case treat the slowly varying terms on the right hand
side of (11) as constants in the integration. We obtain in this case:

u =~ gpe? cos[(1 + )¢ + o). (13)

where:

(14)

K=

A = Zsin(2¢p9 — 12),
l:— COS(Q(,DQ - ¢2)

11.6 Physical Description of Perturbed Motion

I1.6.1 One-Dimensional Oscillations

From (14), (15) and (16), we characterize the effect of regular focusing modula-
tions on the one-dimensional motion, in the limit of small perturbation, as follows:

Case v ~ 0:

The fundamental frequency of the oscillations is shifted by systematic regular
focusing deviations, corresponding to v = 0. This shift is independent of the initial
phase of the betatron oscillation.

Case v ~ 2;

The amplitude and frequency of the oscillations are perturbed resonantly by
regular focusing modulations at the second harmonic of the fundamental betatron
frequency, corresponding to v = 2. Depending on the phase 15 of this modulation
and on the initial phase @g of the betatron oscillation, the amplitude will initially
decay or grow exponentially with a growth rate A, and the frequency will increase
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or decrease linearly by the slippage parameter «. These two effects are out of
phase: maximum frequency-slippage coincides with a constant amplitude, and zero
frequency-slippage with a maximally perturbed amplitude”.

We will describe the consequences for the phase-space and for the beam enve-
lope in the next section.

I1.6.2 Two-Dimensional Oscillations
Case v >~ 0: (Systematic Skew Component)

We can use (12) and ut = ug + uy to calculate the effects from systematic
skew perturbation. We obtain:

——

ug = [uz(0) cos ¢ + ¢ (0) sin @] cos g5é
+ [~uy(0) sin ¢ + 1y (0) cos ¢] sin gg¢ (15a)

and:

uy ~ [—uz(0)sin @ + ©;(0) cos ¢] sin g3 b
+ {uy(0) cos ¢ + 1y(0) sin @] cos gg ¢ (156)

The results in (15a) and (15b) show that in the case of a systematic skew
focusing perturbation (v =~ 0), oscillations originating in one plane are gradually
transferred into the other plane, and that the sum of squares of the oscillation
amplitudes in both planes remains constant. Thus there is beating between the
two planes. The period of this beating is determined by ¢g. This is true for both
the positions uzy and the angles 4, ,, as can be seen from differentiating (15).
Therefore the beating phenomenon which arises is between the two full phase-
spaces in both planes.

Case v > 0: (Coordinate Rotation)
The solutions are in this case simple harmonic oscillators, in the rotated coor-
dinate system. We will not write these solutions explicitly.

Case v ~2:

= The separation between the two initial phases ¢q, corresponding to maximum growth or
decay, and to maximum phase-slippage, depends on the magnitude of the perturbation. It

is strictly 45 deg only in the limit of small perturbation. We will describe the behavior for
larger perturbation in the next section.
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From (8) and (13), the form of the solutions are:
uy = afet*? cos[(1 £ k1o + ). _ (16)

For initial conditions contained in one of two uy, %z or uy, %y planes, corresponding
to the propagation of betatron oscillations launched from one plane at a time (for
example: uy(0) = 2y(0) = 0), one can show that the solutions can be written as the
sum of two functions, one exponentially growing and one exponentially decaying:

Qo

Uzy =3 €% cos[(1 + x)¢ + o) £ € cos{(1 — k)¢ + ol]. (17)

In this case, the oscillations will grow exponentially in both planes for arbitrary
initial phase. :

It is however possible to find initial conditions such that both uy and u_
decay simultaneously initially. This has been shown independently by solving (8)
numerically®. One example of such initial conditions is uz(0) = 45(0) = uy(0) =

1y (0).

In the next section, we will analyse the consequences from this cross-plane
coupling on the areas of the beam phase-space, projected in each plane (projected
emittances), and for the beam envelopes, in each of the above cases.

I1.7 Physical Description of Perturbed Phase-Space

I.7.1 Matched Phase-Space

In the case of a perfect lattice and when the beam phase-space is matched at
the input, it remains matched as it is imaged through the array by the optics.

The equation of the envelope of the matched phase-space is easily constructed
from the form of the betatron oscillation in (4). One obtains an ellipse:

vz + 2az3 + B2% = a2, (18a)

éZ_ N
where 2z = ‘j—j, v = -1-%-*-, and a = :zﬁ The quantity in (18a) is called the Courant-
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Snyder invariant’. It can also be written in matrix form:

(z,é)T"1<z> = a? where T = ( g —a) and det(T) = 1. (18b)

The equations in (18) also define the closed phase-space trajectory of a particle
with initial condition a. The parameters a, 8 and v are called Twiss parameters.
They characterize the lattice. They also describe the beam phase-space if and
when it is matched to the lattice. In this case, the beam-matrix!! ¢ = ¢T. The
area ma® of the ellipse is .iiientiﬁed as 7 times the emittance e.

In the normalized coordinates u = 7% and 4 = % = B(z - -2%2) defined in
11.3, the matched phase-space is a circle of radius e. This can be verified by direct
substitution in (18a). . :

I1.7.2 Perturbed One-Dimensional Phase-Space

Case v ~ 0:

In I1.6.1, we described the effect of a systematic regular focusing deviation, with
magnitude gj, corresponding to v o~ 0. The motion is in this case simply frequency-
shifted, and the solutions in (12) will satisfy the equation of the matched circle
defined in II.7.1. The beam phase-space remains in this case matched™.

Case v ~ 2:

When the lattice is perturbed by focusing errors, this matched circle is distorted
into an ellipse. We describe this condition of the beam phase-space by mismatch.
We characterize this mismatch by the ratio M of the radius of the larger circle
in which this ellipse is inscribed to that of the initial circle corresponding to the
matched case, and by the angle ¢o between its major axis and the abscissa (see
Fig. 1): M and ¢¢ are the amplitude and the phase of the mismatch.

* This is strictly speaking only approximately true, as the Twiss parameters in (18b), which
characterize the FODO array, depend on the phase advance per cell. For example, it can
be shown that for a thin lens FODO array!?:

_“Ll + sin(u/2)
- sin y

P+

where (4 are the maximum and minimum values, occurring in each plane in the lenses which
are focusing, and respectively defocusing, in that plane. For small systematic perturbations

of up to one percent, the variation of the Twiss parameters is of the order of one percent.
We neglect such variations.

80




In I1.6.1, we described the effect of a regular focusing modulation at twice
the betatron frequency, with magnitude g5 and with phase 7, corresponding to
v ~ 2. We found that the maximum oscillation amplitude which can be reached

a
. 24
1S Umar = €74 %,

The phase ¢ of the mismatch depends on how far along the array the mismatch
has propagated, i.e. on the accumulated phase advance ¢, and on the phase Y5 of
the regular focusing modulation. We can thus write:

o = ¢+ ¥5. (19)

Since ¢o can take an arbitrary value, we can identify:

gr
M = upa, =e*9, ' (20)

The equation of the distorted ellipse is calculated in terms of M and @9, first
in the coordinates rotated by ¢y in which it is erect, and then transforming back
into the unrotated coordinates. This gives:

20ar2 2 1 .4 2nr2 . 2 1,
u*{ M~ cos ¢0+H§sm $0) + ©*(M*sin ¢0+WCOS #0)

+ 2ut cos ¢g sin go(M? — _]\_;7) = . (21)

The corresponding be.am-matrix, written in the normalized system, in terms of the
amplitude gj and of the phase ¢}, is:

Sn T ’
ng,w;(fﬁ)‘—'ﬁ( B 12), (22)

Y2 X2
where:
In= cosh(%iqﬁ) + sinh(%£¢) cos(2¢ + 97)
12 = —sinh(% ¢) sin(24 + ¥7) (23)

Ty = cosh(%isé) - sinh(%i¢) cos(2¢ + ¥3),
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and where ¢ is the emittance. Transforming back into real coordinates gives:

g11 = ﬁzlly
o12 = 12 — ali, (24)
o2 = 2-3(222 +a?Z11 — 2aZp2).

For the ideal lattice, characterized by g5 = 0, (24) reduces to (18b) as expected.

In summary, when the lattice is perturbed by a regular focusing modulation
at twice the betatron frequency, with amplitude g7 and phase %7, the phase-space
gradually becomes elongated into an ellipse with a major axis which grows expo-

" nentially with the accumulated phase advance, at a growth rate 325- This ellipse

rotates in phase-space at the betatron frequency. The initial value of the phase of
the mismatch is determined by the phase 5.

From (23), we see that the beam size beats between minimum and maximum
* values, of e= %% and %% respectively. The beating occurs with a period of , as
illustrated in Fig. 1. Equation (23) (and graphically Fig. 1) also allows us to study
the behavior of the solutions, both for large and for small perturbation. For small
perturbation (gj¢ < 1), the first equation in (23) reduces to £;; =~ 1+-‘1%9 cos(2¢+
¥3). In this case, the separation in the phase ¢ between maximally growing or
decaying solutions, and solutions with an unperturbed amplitude (corresponding to
M = 1), is exactly 45 deg. This is in agreement with the results from the first order
calculations described in II.6.1. For larger gj¢, the initial phases corresponding
to an unperturbed amplitude move closer and closer to the phase corresponding
to a maximally decaying solution. For infinite g}, all solutions become eventually
exponentially growing, except for the "single” one for which, strictly, cos(2¢+47) =
—1. This has been shown independently by solving (6) numerically®.

I1.7.3 Coupled Two-Dimensional Phase-Space

In I1.6.2, we gave expressions describing the cross-coupling of betatron oscilla-
tions which occurs from systematic skew focusing errors, corresponding to v =~ 0,
and from skew focusing modulations at twice the betatron frequency, corresnond-
ing to v ~ 2. e use these expressions to infer the evolution of the areas of
the phase-space projections in each-plane. The correctness of all forms (except
(28)) given in this section has been verified through simulation. Results from these
simulations are presented in section IV.

We assume an input phase-space where the horizontal and vertical planes are
not coupled, but where the emittances are not necessarily equal. Let r = ¢;/e;
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be the ratio of the initial vertical to the initial horizontal emittances (we assume
r < 1), and let us normalize the results to the initial horizontal emittance, by
putting €;(¢ =0) = L.

Case v ~ 0: (Systematic Skew Component)

In this case, it is possible to calculate, from (15), the projected emittances, as
the beam is imaged through the array. We obtain:

f fz(¢) =
ey(9) =

[(L+7) + (L= r) cos g39]

1
%[(1 +7r) — (1 —r)cos g3¢)]. (25)

Putting 7 = 0 in (25) shows explicitly the beating phenomenon which we
described in I1.6.2. One obtains in this case:

) { x(4) = cos%(939)
&y(9) = sin®(34)

The sum of the two emittances is in this case constant, and transverse oscillation
energy is transferred back and forth between one plane and the other. This condi-
tion describes adequately the imaging of betatron oscillations launched from one
plane at a time. ‘

(26)

In the special case of equal emittances, corresponding to r = 1, we have from
(25) that: )

ex(8) = () = 1. 1)

The motion remains in this case unperturbed by systematic skew focusing devia-
tions.

For an arbitrary value of r, the two emittances will beat between minimum and
maximum values of » and 1. As can be seen, the variations of the two emittances
are out of phase.

Case v ~0: (Coordinate Rotation)

In this case, the projected emittances are calculated by transforming a four-

dimensional uncoupled beam-matrix through a rotation of the coordinate system.
We obtain:

{ ez(9) = cos’(2g3) + r sin’(2g3) (28)

&,(#) = sin’(2g3) + r cos?(2g3).

The same features apply as for the systematic skew component: for r = 0, the
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sum of the projected emittances is preserved, and for » = 1, the phase-space is not
perturbed.

Case v o~ 2.

In this case, we write, by analogy with (25):

{ €z(9) = cosh? %iqﬁ + 72 sinh? %f&g& (29)

€y($) = sinh? %{Lﬁ + r? cosh? "{fgﬁ.

In the special case of~zero initial emittance in the vertical plane (r = 0), we
obtain:

(30)

{ ez(¢) = cosh?(L2¢)
ey(¢) = sinh?(2¢),

'in accordance with (17), from which all solutions grow exponentially if the initial
conditions are restricted to one plane.

The difference between the two emittance projections is in this case constant,
and the projected emittances grow exponentially in both planes. This condition

describes adequately the imaging of betatron oscillations launched from one plane
at a time

In the special case of equal initial emittances in each plane (r=1), we obtain:
g3
€z(P) = €y(¢) = cosh E-QS. (31)
The two projected emittances remain in this case equal, and grow exponentially”.

I1.8 Summary Description - Number of Independent Perturbations

Thus we find that, in total, the transverse motion can be perturbed by ten
independent parameters:

* Although the envelope grows, there can exist, as we found in (16), individual solutions
which are decaying.
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1. The one-dimensional horizontal motion can be perturbed in three ways,
namely through a systematic strength deviation in the focusing quadrupoles,
and through the amplitude and phase of a periodic focusing deviation at
twice the betatron frequency in the focusing quadrupoles.

o

The one-dimensional vertical motion can be perturbed in three ways, namely
through a systematic strength deviation in the defocusing quadrupoles, and
through the amplitude and phase of a periodic focusing deviation at twice
the betatron frequency in the defocusing quadrupoles.

3. The two-dimensional coupled motion can be perturbed in four ways, namely
through a systematic skew quadrupole component, through the amplitude
and phase of a periodic skew focusing deviation at twice the betatron fre-

quency ', and through an overall coordinate rotation.

These ten perturbations correspond to the number of free parameters in a fully
general two-dimensional transfer mat;ix13.

To the extent that the errors are small and that only one perturbation is
applied at a time, it is possible to simply parametrize the perturbed motion as a
function of these ten parameters, as was shown above. In general, however, a full
parametrization will be complicated as the mixing between the perturbations, not
considered here, will yield higher order dependances.

In the case of the four-dimensional beam phase-space, it would appear from
our calculations that it only can be perturbed in seven independent ways, since
the two systematic strength deviations, in the focusing and in the defocusing mag-
nets, do not distort the phase-space, and since the coupling effect from the overall

coordinate rotation can be reproduced through the systematic skew quadrupole
component.

This is however in contradiction with the counting of the number of invari-
ants imposed by Hamiltonian Mechanics. As can be shown, two invariants exist
for hamiltonian systems with two degrees of freedom: the volume of the four-
dimensional phase-space and the sum of the projections onto each coordinate
plane of any two-dimensional surface in the four-dimensional phase-space!*. From
this counting, one expects eight degrees of freedom for the fully coupled four-
dimensional phase-space. We have not resolved this discrepancy.

In the special case of equal initial emittances in both planes (r = 1), our cal-

t With in both cases the same sign skew quadrupole component in the focusing and in the
defocusing quadrupoles.
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culations show that the fully coupled four-dimensional phase-space has six degrees
of freedom. This is in agreement with an independent proof!®, and has also been
verified in extensive computer simulations of optical corrections in the Final Focus
System!S.

I11.9 Case of the SLC Arcs

Not all perturbations are equally important in the case of the SLC Arcs.

Effects from the systematic coordinate rotation can in the SLC be ignored for
all practical purposes, because the magnitude of the rotation angle can never be
very large: for skew focusing errors of one percent, the rotation angle is only 1.15
degree.

In addition, effects on the phase—sp;ice from both the systematic skew quadrupole
perturbation and the overall coordinate rotation are vanishing if the beam has; as
is nominally specified, equal emittances in both planes.

In the case of the systematic skew quadrupole perturbation, there can however
be significant effects on the betatron oscillations and on the transfer matrix. For
beamns with unequal emittances, the beats which are produced in each of the two
emittances out of phase and are bounded by the larger emittance (see equation
(25)). In the case of the SLC, where beams with emittance ratios of about one to
three are presently measured at the end of the Linac, this is not a large effect™.

Effects from systematic focusing errors, over the whole length of the Arc, in the
focusing and in the defocusing quadrupoles, would be small in entirely flat Arcs,
- except for mixing effects with the other perturbations. In the original design, the
Arcs were rolled around their axis to enable following the terrain of the SLAC
site, and this generated a strong sensitivity to systematic focusing errors. With
the adiabatic roll transition which was introduced to remedy this problem, such
systematic errors will produce coupling effects similar to the ones produced by a
systematic-skew focusing perturbation!?. In the case of close to equal emittances,
the effects on the phase-space from this are small, as was described above, and the
modified Arcs have sensitivities which are similar to those of a flat Arc.

» This argument ignores mixing effects between several perturbations. It has in particular
been shown that the upper bound described above can be significantly larger if the sys-
tematic skew deviation is mixed with a systematic phase difference between the motions in
both planes and a one-dimensional mismatch from regular quadrupole errors!3.
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The effect from the focusing modulation at the second harmonic of the be-
tatron frequency, corresponding to v = 2, is weakened if a systematic focusing
deviation, corresponding to v = 0, is simultaneously present, from either the er-
rors in the array, or applied externally. This results from the gradual phase-shift
which accumulates in this case between the resonantly growing optical mismatch
and the induced focusing modulation (see Fig. 2). The mixing between the two
perturbations will cause the resonant growth of the oscillations to reach a maxi-
mum and to then decay, in a long-range beating effect. The nominal phase-space
will be fully restored when the phase-shift between the resonantly growing optical
mismatch and the induced focusing modulation reaches .

We will not derive the explicit form of the perturbed solution. We can however
evaluate, at any given point along the array, the reduction in the growth of the
oscillation amplitudes, by considering-the modulation in frequency domain. The
harmonic strength - or spectrum - of the focusing perturbation introduced along the
array is given by the modulus of the Fourier transform of the perturbation. Here,
we consider periodic perturbations - or modulations - which are applied along an
array with finite length, corresponding to a total phase shift of ¢pmaz = nu, where p

is the phase-shift per cell, and n is the number of cells in the array. The harmonic
strength is therefore given by:

f[dnu(¢)gei"”"’¢]i = ’g&(u — Vpert) ® sinnurv)
nuTY

sin{num(v — Vpert)]
num(V = Vpert)

(32)

where §(v) is the Dirac distribution, ® symbolizes the convolution product, and
dnu(9) is a function of ¢ which is equal to unity between 0 and nyu, and zero
everywhere else”.

This calculation is illustrated in Fig. 3. The range Av over which the harmonic
strength is still reasonably large is given by about half the separation between the
zeros of the function in (32), or Av = £1/2nu cycles per radians. This corresponds
to a maximum phase-shift of 5, accumulated between the growing mismatch and

* This function is usually called the “door” function.
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the focusing modulation, along the total length of the array, or to a maximum
systematic phase-error per cell of:

™

A/-"rna:t: = ?T: (33)

Equation (33) gives the requirement on systematic errors in the array, as a
function of its length, to maintain strong effects from the induced focusing mod-
ulation. The system of harmonic focusing corrections installed in the SLC Arcs
extends over seven achromats, or n = 70 cells. The requirement on systematic
phase-errors is in this cascLAumn = +1.3° per cell.
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III. HARMONIC PERTURBATIONS IN THE SLC ARCS

III.1 Definitions

A systematic perturbation in the focusing or in the defocusing magnets means
that each focusing or defocusing magnet is perturbed the same way. -

The cell phase-shift in the SLC Arc lattice is 108° or %I Thus a perturbation

at twice the betatron frequency is a perturbation whose strength is modulated by
exp(z‘%—’fk) along the cells in the array, where £ is the cell number.

A total of nine” independent harmonic perturbations can be generated in the
SLC Arc lattice. We will represent the strength perturbations in the focusing and
defocusing magnets respectively by F' and D. We have:

1. Cosine-like in-plane (regular) horizontal second harmonic component:

F(k) = g cos( Tk

2. Sine-like in-plane (regular) horizontal second harmonic component:

, . O
F(k) = g5 sin(°Lk)

3. Cosine-like in-plane (regular) vertical second harmonic component:

, 6m
D(k) = g3 cos(-5—k)

* Only nine adjustments can be generated, out of the ten which are needed to fully control the
optical transfer. The missing one would be a regular focusing perturbation, as in 7. below,
but with the same sign in the focusing and in the defocusing magnets. Such a perturbation
can be generated electrically through the harmonic correction system described in this note,
or through the already installed backleg windings, but has no optical effects because of the
achromaticity of the lattice. The only way in which it can be generated in the SLC lattice

is physically moving the focusing magnets closer or farther horizontally from the defocusing ,
magnets.
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4. Sine-like in-plane (regular) vertical second harmonic component:

r . 67('
D(k) = g} sin(k)

5. Cosine-like cross-plane (skew) second harmonic component;:

F(¥) = D(k) = g3 cos( )

6. Sine-like cross-plane (skew) second harmonic component:

F(k) = D(¥) = g3sin( k)

7. Systematic regular focusing strength difference between focusing and defo-
cusing magnets (FD-Imbalance):

F(k) = —D(k) = g5

8. Systematic skew focusing perturbation in the focusing and defocusing mag-
nets:

F(k) = D(k) = g3

9. Overall coordinate rotation:

II1.2 Strength Perturbations in the Alternating Gradient Magnets

I11.2.1 Backleg Wiring Modification
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The combined function magnets in the Arc lattice are equipped with backleg
windings on each coil. These backleg windings have 29 turns and are connected in
series along one achromat. Their purpose is to provide a step-wise adaptation of
the lattice to the energy of the beam, which loses about 1 Gev through the emission
of synchrotron radiation in the guide-field. The strengths of each magnet in the 7
last achromats are perturbed individually by separately connecting and powering
4 out of 29 backleg winding turns on the upper and lower coils. The remaining 24
turns” are connected as for the original use of the backleg windings. A schematic
of the modified wiring arrangement is shown in Fig. 4.

II1.2.2 Strength Calculation

The separate four-turn-windings are inter-connected to produce periodic and
systematic perturbations along the 7 last achromats in a way which we will describe
below. Each circuit is presently powered with bi-polar HCOR12 supplies limited to
+5 amperes by the voltage requirement. With four turns in each circuit and with
the main Arc magnets powered with about 4000 amperes, the maximum strength
perturbation of each magnet is of the order of £0.005.

More precisely, the magnitudes of the nominal and increment

quadrupole components' which are generated on the central trajectory have been
calculated with POISSON, for Arc-type magnet, nominally powered with 3766 am-
peres in the main coil, and trimmed with 20 ampere-turns in the backleg windings®.

When the top and bottom windings are perturbed with the same polarity,
mid-plane symmetry is preserved and the strengths of the horizontally deflecting
dipole field (vertical magnetic field), and of the regular quadrupole component in
the combined function magnets are perturbed.

When the top and bottom windings are perturbed with opposite polarity, a
vertically deflecting dipole field (horizontal magnetic field), and a skew quadrupole
component are generated. The magnitudes of the components are listed below:

1. Nominally powered magnet: horizontal dipole = 5701.60 Gauss, regular
quadrupole = 715.64 Gauss/mm.

2. Trimmed magnet with same polarity for top and bottom coils: incremen-

» The bottom windings on each coil have in some magnets been observed to droop and to
cause partial shorts. As a preventive measure, the last turn was cut off and disconnected
on each of the modified coils.

t We neglect the perturbation to the sextupole component, which is very small (less that
0.005 of the nominal value) and for which the tolerance for sizeable effects on the beam is
loose (a few percent). :
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tal horizontal dipole = 27.87 Gauss, incremental regular quadrupole = 3.49
Gauss/mm. The magnitudes of the perturbations are close to equal in the

focusing and defocusing magnets, and correspond to a 0.00488 of the nominal
values.

3. Trimmed focusing magnet with opposite polarity for top and bottom coils:
incremental vertical dipole = 14.05 Gauss, incremental skew quadrupole =
1.59 Gauss/mm. This corresponds to 0.0022 of the nominal values. ‘

4. Trimmed defocusing magnet with opposite polarity for top and bottom coils:
incremental vertical dipole = 16.58 Gauss, incremental skew quadrupole =
2.15 Gauss/mm. This corresponds to 0.0030 of the nominal values.

——

It can be noted that the skew components have about half the strength of the
regular components. In addition, the magnitudes of the effects from trimming the
focusing and defocusing magnets with opposite polarity for top and bottom coils

are slightly assymetric. This may arise from an assymetry in the pole shape which
exists between the two magnets.

II1.2.3 Polarities of Components

We use the TRANSPORT polarity convention!!. We have determined that:

1. A positive trim current in both top and bottom coils, to generate regu-
lar quadrupole components, will strengthen both focusing and defocusing
magnets. This means that both the total bending angle and quadrupole
component become stronger.

o

A positive trim current in the top coil and a negative trim current in the
bottom coil, to generate skew quadrupole components, will generate a neg-
ative vertical kick in the defocusing magnets, a positive kick in the focusing

magnets, and a negative skew quadrupole in both focusing and defocusing
magnets.

II1.3 Magnet Interconnections - Wiring and Layout

II1.3.1 Intermagnet Wiring
Each trim winding, top or bottom, is connected in series with equivalent wind-

ings, top or bottom, exactly five cells (corresponding to 3x betatron phase-advance)
(or ten magnets) apart, along the 7 last achromats (70 cells or 140 magnets) in the
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Arcs. Since focusing and defocusing magnets are wired separately, there are thus
20 independent circuits. The wiring arrangement is illustrated in Fig. 5.

II1.3.2 Nomenclature
The database formal names for the 20 supplies are listed below.

SMPS,CA13,1703=Top coil of defocusing magnet.
SMPS,CA13,1704=Bottom coil of defocusing magnet.
SMPS,CA13,1708=Top coil of focusing n;agnet.
SMPS,CA13,1709=Bettom coil of focusing magnet.
SMPS,CA13,1713=Top coil of defocusing magnet.
SMPS,CA13,1714=Bottom coil of defocusing magnet.
SMPS,CA13,1718=Top coil of focusing magnet.
SMPS,CA13,1719=Bottom coil of focusing magnet.
SMPS,CA13,1723=Top coil of defocusing magnet.
SMPS5,CA13,1724=Bottom coil of defocusing magnet.
SMPS,CA13,1728=Top coil of focusing magnet.
SMPS,CA13,1729=Bottom coil of focusing magnet.
SMPS,CA13,1733=Top coil of defocusing magnet.
SMPS,CA13,1734=Bottom coil of defocusing magnet.
SMPS,CA13,1738=Top coil of focusing magnet.
SMPS,CA13,1739=Bottom coil of focusing magnet.
SMPS,CA13,1743=Top coil of defocusing magnet.
SMPS,CA13,1744=Bottom coil of defocusing magnet.
SMPS,CA13,1748=Top coil of focusing magnet.
SMPS,CA13,1749=Bottom coil of focusing magnet.

The last digit of the unit number (3,4,8,9) refers to top or bottom windings
and to focusing and defocusing magnets. The next to last digit (0,1,2,3,4) refers
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to the cell number of the first coil in the each string. The first two digits (17) refer
to the achromat number of the first coil on each string.

II1.3.3 Multiknob Definitions

The nine harmonic perturbations defined in IIL.1 are produced by linearly
combining the 20 above supplies according to the coefficients given in the same
paragraph, using the software multiknob facility!®. The table below gives the
mapping relating the 20 supplies to the 9 knobs: '

SINXX | COSXX | SINYY | COSYY | SINXY | COSXY | SYSKEW |SYSROT | FDIMB
1703 | +0.00 | +0.00 | .59 | -0.81 | -0.59 | -0.81 | +1.00 | +1.00 | +1.00
1704 | +0.00 | +0.00 | -0.59 | -0.81 | +0.59 | +0.81 | -1.00 -1.00 | +1.00
1708 | -0.59 | -0.81 | +0.00 | +0.00 | -0.79 | -1.09 | +1.35 | -1.35 | -1.00
1709| -0.59 | -0.81 | +0.00 | +0.00 | +0.79 | +1.09 | -1.35 +1.35 | -1.00
1713 | +0.00 | +0.00 | +0.95 | +0.31 | +0.95 | +0.31 | +1.00 | +1.00 | +1.00
1714| +0.00 | 4+0.00 | +0.95 | +0.31 | -0.95 | -0.31 | -1.00 -1.00 | +1.00
1718 | +0.95 | +0.31 | +0.00 | +0.00 | +1.28 | 4042 | +1.35 | -1.35 | -1.00
1719| +0.95 | +0.31 | +0.00 | 40.00 | -1.28 | -0.42 | -1.35 +1.35 | -1.00
1723 +0.00 | +0.00 | -0.95 | +0.31 | -0.95 | +0.31 | +1.00 | +1.00 | +1.00
1724 | +0.00 | +0.00 | -0.95 | +0.31 | +0.95 | -0.31 -1.00 -1.00 | +1.00
1728 ] -0.95 | +0.31 | +0.00 | +0.00 | -1.28 | +0.42 | +1.35 | -1.35 | -1.00
1729} -0.95 | +0.31 | +0.00 | +0.00 | +1.28 | -042 | -1.35 +1.35 | -1.00
1733| +0.00 | +0.00 | +0.59 | -0.81 | +0.59 | -0.81 | +41.00 | +1.00 | +1.00
1734 | +0.00 | +0.00 | +0.59 | -0.81 | -0.59 | +0.81 | -1.00 -1.00 | +1.00
1738 | +0.59 | -0.81 | +0.00 | +0.00 | 40.79 | -1.09 | +1.35 | -1.35 | -1.00
1739 +0.59 | -0.81 | 4+0.00 | 4+0.00 | -0.79 | +1.09 | -1.35 +1.35 | -1.00
1743 | +0.00 | +0.00 | +0.00 | +1.00 | +0.00 { +1.00 | +1.00 | +1.00 | +1.00
1744| +0.00 [ +0.00 | +0.00 | +1.00 | +0.00 | -1.00 | -1.00 -1.00 | +1.00
1748 | +0.00 | +1.00 | 40.00 | +0.00 | +0.00 | +1.35 | +1.35 | -1.35 | -1.00
1749 | +0.00 | +1.00 | +0.00 | 4+0.00 | 4+0.00 | -1.35 | -1.35 +1.35 | -1.00
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Only seven of these nine knobs have been connected and used. The two missing
ones are the second harmonic skew modulations: SINXY and COSXY. It can be
noted that for the skew multiknobs, the focusing magnets have coefficients which
are scaled by a factor of 1.35 with respect to those of the defocusing magnets, in
order to account for the assymetry between the skew components which was no,ted

in J11.2.2

95



IV. SIMULATION OF EFFECTS

IV.1 Introduction to Simulation

We have used ARCSIM1!® and TRANSPORT!! to simulate the effects from

focusing perturbations at zero and twice the betatron frequency.

ARCSIM1 is a fast simulation which treats small perturbations of the Arc
magnets through a linear expansion around the design optical transfer matrix.
The overall perturbed optical transfer is then reconstructed by multiplying each
individually perturbed Arc matrix. '

ARCSIMI is ideally suited to study the physics of the harmonic focusing per-
-turbations. However, in its current version, ARCSIM1 does not include steering
effects from the combined function magnets. Such steering effects do not modify
the physics but do modify the magnitude of the effects. In effect, through the
sextupole component in the combined function magnets, horizontal deflections will
cause regular quadrupole perturbations and vertical deflections will cause skew
quadrupole perturbations. Because the strength perturbations are at zero or twice
the betatron frequency, the trajectory excursions from these deflections, and the
induced optical effects, will also be at zero or twice the betatron frequency. The
optical effects will thus add to or subtract from the optical effect from the pertur-
bations of the quadrupole components themselves. In addition, the perturbations
will also cause net trajectory deviations™ at the end. As will be seen, the trajec-
tory deviations are large enough to require a correction. To correctly estimate the
magnitude of the combined effects, we have used a perturbed TRANSPORT deck
of the Arcs, in second order and including steering effects.

We first show the maximum effects of the first order optical distortions from
the nine multiknobs defined above, in a perfect planar SLC Arc lattice. We do
not consider second order optical distortions which arise from deviations in the
achromaticity of the optical transfer caused by the first order distortions. Such
effects have not been calculated in detail, but are estimated to be small.

Effects from rolls, which are present in the stretch of Arc lattice where the
harmonic correction is introduced, will result in not fully orthogonal controls. The

* In theory, trajectory deviations would be resonant if the deflections were at the betatron
frequency, and not at zero or twice the betatron frequency. In reality, because of the phase-
slippage induced by the second harmonic (see I1.6.1), the steering effects will grow slightly
as the cancellations of deflections 7 apart no longer occur perfectly.
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magnitude of the effects is however not strongly affected, since the component of
the perturbed phase-space which is coupled into the other plane across each roll is
not driven in that plane. In addition the component of the perturbed phase-space
which is coupled into the other plane is not very large. To illustrate this point, we
show the magnitude of one of the optical distortions in a lattice with the actual
rolls installed in the present North Arc.

The plots shown are made with ARCSIM1, but the strengths of the knobs have
been adjusted so that the maximum effect at the end of the seven achromat long
stretch corresponds to the magnitude calculated with TRANSPORT, including the
steering effects (this fudging exercise has however not been done for the phasing

of the knobs). -

We then show one simulated example of empirically correcting a lattice per-
turbed by errors with the harmonic correctors defined above. In the case of a
systematic regular focusing error, we also illustrate the bandwidth limit discussed
in I1.10.

IV.2 Simulated Effects of Harmonic Correctors

IV.2.1 One-Dimensional Oscillations
Case v ~ 0: FD-Imbalance

A nominal horizontal oscillation is shown in Fig. 6a. The same oscillation, but
with the focusing and defocusing magnets perturbed through systematic regular
focusing errors of £0.005 respectively is shown in Fig. 6b. As can be seen the
amplitude of this oscillation is perturbed negligibly, but its frequency is shifted. It

can be calculated that the corresponding shift, including optical effects from the
displacement of the trajectory, is:

(Apz, Apy) ~ (£87deg, F115deg).

The trajectory displacement can also be calculated: it is 42um®. Both agree well
with simulated values.

A plot of the unperturbed and perturbed horizontal beam envelopes is shown
in Fig. 7a,b. As can be seen, the beam envelopes are negligibly perturbed.

Case v =~ 2: Regular Second Harmonic

Two one-dimensional horizontal oscillations with the same initial amplitude,
but with two different initial phases separated by 90deg, and with the focusing
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magnets perturbed through regular focusing periodic modulation at twice the be-
tatron frequency, with amplitude +0.005, are shown in Fig. 8a,b. The two initial
phases have been chosen to obtain a maximally growing and a maximally decaying
oscillation. As can be seen, the predicted maximum growth is about a factor four.
The beats generated in the horizontal and vertical beam envelopes are shown in
Fig. 9a,b. As can be seen, the orthogonality of the focusing and defocusing mag-
nets which was noted in I.4.1 is almost perfect (i.e. there is almost no effect on
the vertical beam envelope). This orthogonality is however not fully preserved if
rolls are present in the lattice. To illustrate this point, we show in 9c,d the beats
produced in the horizontal and vertical beam envelopes, from the same perturba-
tion as in 9a,b applied to the North Arc with the present roll configuration. A
reduction of the effect in"the horizontal plane and some coupling into the vertical
plane can be seen”.

Identical effects can be obtained for vertical oscillations with the defocusing
‘magnets perturbed through regular focusing periodic modulation at the twice the
~betatron frequency.

The displacement of the trajectory is nearly 300um from these knobs. This is
large and requires a correction at the very end in order to be able to launch into
the Final Focus.

I1V.2.2 Two-Dimensional Oscillations

Case v ~ 0: Systematic Skew Component

The coupling of an initially fully horizontal oscillation into the vertical plane,
from the systematic skew knob set to its maximum of 5 amperes, is shown in Fig.
10a,b. As can be seen the maximum effect is just under 50%, which is rather weak.
The same coupling would be obtained for an initially fully vertical oscillation into
the horizontal plane, and for any input phase of the oscillation.

Plots of the corresponding beam envelopes are shownT, for a nominal initial
phase-space in the horizontal plane and for zero initial phase-space in the vertical
plane (Fig. 1la,b), and for a nominal equal initial phase-space in both planes
(Fig. 12a,b). These two cases correspond to the beating effect described in I1.7.2
through (26) and (27) respectively. In the case of nominal initial phase-space in

* A slightly smaller effect from these rolls would have perhaps been seen if the harmonic
correction had been installed in a region where the major rolls are matched. Such a region
could have been the region between the beginning of achromat 14 and the end of achromat
20.

t In order to make the effects more visible, we have calculated the perturbations of the
envelopes for a systematic skew perturbation with three times the maximum knob strength.
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both planes (Fig. 12a,b), the envelopes are not perturbed, as was found in (27).

The displacement of the trajectory from setting this knob at its maximum of
5 amperes is about 30um. This is a small effect (partly because the knob is weak).

Effects from the systematic coordinate rotation are very small and are not
illustrated here.

Case v ~ 2: Skew Second Harmonic

The coupling of an initially fully horizontal oscillation into the vertical plane
resulting from the skew second harmonic knob set to its maximum of 5 amperes
is shown in Fig. 13a,b”. As can be seen the maximum effect is quite small. The
same coupling would be obtained for an initially fully vertical oscillation into the
horizontal plane, and for any input phase of the oscillation.

_ Plots of the corresponding beam envelopes are shownjr, for a nominal initial
phase-space in the horizontal plane and zero initial phase-space in the vertical plane
-(Fig. 14a,b), and for a nominal initial phase-space in both planes (Fig. 15a,b).
These two cases correspond to the exponentially growing cross-plane coupling ef-
fects which were described in 11.7.2 through (30) and (31) respectively.

The displacement of the trajectory from setting this knob has not been calcu-
lated in detail but appears to be large enough to require a correction at the very
end, to launch properly into the Final Focus System.

IV.3 Systems with Errors

IV.3.1 Bandwidth Limit from Systematic Error

In Fig. 9.a, we showed the beat in the one-dimensional horizontal beam en-
velope caused by a regular second harmonic focusing perturbation. In Fig. 16,
we show the same envelope, but now perturbed also by a systematic focusing per-
turbation corresponding to 3% per cell, or about twice the maximum systematic
perturbation which can be caused by the FD-Imbalance. This corresponds to just
over twice the maximum cell phase-shift which can be allowed for the harmonic
knobs to work properly, as stated in"I1.10 by (33). As can be seen, the growth

*» The two skew second harmonic knobs have not been tried experimentally.

t In order to make the effects more visible, we have calculated the perturbations of the
envelopes for a skew second harmonic perturbation with five times the maximum knob
strength.
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in the beating envelope is in this case reversed half way through, and is nearly
cancelled at the end.

IV.3.2 Empirical Correction of Randomly Perturbed Lattice

Fig. 17 shows the horizontal beam envelope imaged through the seven achro-
mat long stretch, perturbed by random regular focusing errors only, with strengths
normally distributed with a standard deviation of 0.01. The particular “seed”
shown in Fig. 17 was chosen as one which generates significant growth of about
a factor two. With this magnitude error, such a large growth represents a rather
improbable case”. Fig. 18 shows a correction of the case presented in Fig. 17, by
combining the sine-like and cosine-like regular focusing second harmonic correc-
tors. Correction is found™&mpirically rather easily for such one-dimensional cases.
In lattices fully perturbed with regular and skew focusing errors, the empirical
method is in some cases difficult.

x As per IV.2.2, a factor two growth can be generated with a regular focusing modulation at
twice the betatron frequency of amplitude 0.0025 (half the knob strength). For randomly
distributed regular focusing errors with a standard deviation of 0.01, the one standard devi-
ation expectation value for the strength of the component at twice the betatron frequency
is 0"3‘1 = 0.0012, where n = 70 is the number of cells in the seven achromats. Thus a 0.0025

strength would correspond to about two standard deviations of the strength distribution,
or about 5% of the seeds.
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V. LIMITATIONS AND PROSPECTS

V.1 Strength Limitations

The strength of the controls provided in the installation described above is
severely limited in the case of the cross-plane coupling correctors (the “skew knobs”).
Stronger "systematic skew knobs” in particular would be important for future op-
eration with assymetric emittances, to fully-cancel the coupling between the two
emittances. They do however not appear to be essential for the present operation
with close to equal emittances, a case for which they have no or little effect on the
beam envelope (see I1.7.3). '

In addition, in the presence of systematic regular focusing errors of more than
one degree per cell, the strength of the correctors for one-dimensional mismatches
are significantly weakened. More generally, the strengths of all the correctors are

" weakened by phase errors distributed in the stretch where the harmonic correction
is installed.

V.2 Guide-line for Upgrade

The obvious upgrade would consist in raising the maximum current through
the rewired backleg windings, from the present value of about 5 amperes, to twice
or three times that. There may be an impediment to doing this from the limited
elasticity in the copper wires composing the windings: after the controls have been
turned on and off a large number of times, the repeated thermal contractions and
dilatations may cause the windings to sag. An enhanced support mechanism would
perhaps be required. The possibility of this sagging is presently being examined.

Another possible upgrade would consist in repeating the installation in one or
two new stretches upstream of the one described above. Because of the observed
tendency of the bottom turn of the backleg windings to droop (see the footnote at
the bottom of page 22), it may be desirable, as a preventive measure, to implement
the wiring modification in the remaining 16 achromats. In this case, two new
installations similar to the one in achromats 17-23 could be installed in achromats
9-16 and in achromats 1-7. The existing supplies could in this case be kept, as knobs
in adjoining stretches could be combined to enhance the effects. The drawback of
this is evidently a much increased complexity, as one would then have to deal with
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a theoretical” total of 27 knobs, with their relative phasing "and so on”.

In summary, if the possible sag in the wires from heating can be solved with
a better clamping mechanism, or otherwise shown not to be a problem, and if it
is not essential to implement the wiring modification as a preventive measure for

the sagging of the last wire, our recommendation would be to upgrade the power
supplies.

V.3 Predictive and Precision Control ]

The harmonic corrections are presently performed successfully as approximate
and empirical adjustments to control the beam shape at particularly sensitive
places at the entrance to the Final Focus, where significant backgrounds can be

-generated by optical mismatches, or to adjust the overall lattice of the Arcs to be
close to nominal.

More work would be required to design fully predictable model-driven correc-
tions for precision control of phase-space parameters at the end of the Arcs. This
may be doable by using empirically determined transfer matrices for the Arcs, to-
gether with a perturbation technique similar to the one described in IV.1%%, Some
attempts which were made in this direction have shown that this is not straight-
forward, and requires a detailed understanding of the propagation of measurement
errors involved in the empirical matrix determination. More work in this direction
may enable precision controlling the phase-space for future optical optimizations

of the SLC Arcs.

* In practice, the coordinate rotations do not matter, so “only” 24 knobs would be used.
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FIGURE CAPTIONS

(1) Mismatched one-dimensional phase-space. The beam-size beats between
maxima and minima of M and 1/M respectively.

(2) If a systematic regular focusing error is present, the focusing madulation
being applied and the beat of the beam size become gradually out of phase This
weakens the effect of the harmonic corrector.

(3) Harmonic strength associated to a focusing modulation over a finite length.

(4) Wiring modification of backleg trim windings. Four of the twenty-nine turns
are connected to a separate circuit, via the upper right terminal. The twenty-five
remaining turns are connected as for the original use of the backleg windings, via
the top terminal, except for the bottom, which is removed from the circuit.

(5) There are twenty independent circuits connecting the 280 top and bottom
coils of the last seven achromats in the Arcs. In each circuit, top and bottom coils
of magnets separated by five cells are connected in series.

(6) Horizontal betatron oscillation in seven achromats of the SLC Arcs, with
no errors (a), and with a 1% FD-Imbalance (b).

(7) Horizontal beam size in seven achromats of the SLC Arcs, with no errors
(a), and with a 1% FD-Imbalance (b).

(8) Horizontal betatron oscillation in seven achromats of the SLC Arcs, with a
cosine-like regular quadrupole modulation at twice the betatron frequency in the
focusing magnets, corresponding to COSXX=>5 Amperes, and for two initial phases
amounting to maximum growth (a) and maximum decay (b).

(9) Horizontal and vertical beam sizes in seven achromats of the SLC Arcs,
with a cosine-like regular quadrupole modulation at twice the betatron frequency
in the focusing magnets, corresponding to COSXX=>5 Amperes. Cases (a) and (b)
correspond to respectively the horizontal and vertical beam sizes in entirely flat
Arcs. As can be seen, the modulation affects mostly the horizontal motion. Cases
(c) and (d) correspond to respectively the horizontal and vertical beam sizes in
the last seven achromats of the North Arc, with the present roll distribution. As
can be seen, some coupling is generated in the vertical plane, and the beats in the
horizontal plane are weakened by about 25%.

(10) Horizontal (a) and vertical (b) betatron oscillation in seven achromats
of the SLC Arcs, with a systematic skew focusing perturbation, corresponding to
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SYSKEW=5 Amperes.

(11) Horizontal (a) and vertical (b) beam size in seven achromats of the SLC
Arcs, with a systematic skew focusing perturbation, corresponding to SYSKEW =15
Amperes. In these plots, the initial emittance is zero in the vertical plane. An ex-
change of oscillation energy from the horizontal plane to the vertical plane can be
seen.

(12) Horizontal (a) and vertical (b) beam size in seven achromats of the SLC
Arcs, with a systematic skew focusing perturbation, corresponding to SYSKEW=15
Amperes. In these plots, the initial emittances are equal in the horizontal and ver-
tical planes. In this case, the skew focusing perturbation has no effect on the beam
envelopes. -

(13) Horizontal (a) and vertical (b) betatron oscillation in seven achromats of
the SLC Arcs, with a skew focusing modulation at twice the betatron frequency,
corresponding to COSXY=5 Amperes.

(14) Horizontal (a) and vertical (b) beam size in seven achromats of the SLC
Arcs, with a skew focusing modulation at twice the betatron frequency, corre-
sponding to SYSKEW=25 Amperes. In these plots, the initial emittance is zero in
the vertical plane. Growth of the phase-space in both the horizontal and vertical
planes can be seen.

(15) Horizontal (a)-and vertical (b) beam size in seven achromats of the SLC
Arcs, with a skew focusing modulation at twice the betatron frequency, correspond-
ing to SYSKEW=25 Amperes. In these plots, the initial emittances are equal in the
horizontal and vertical planes. Growth of the phase-space in both the horizontal
and vertical planes can be seen.

(16) Horizontal beam size in seven achromats of the SLC Arcs, with a cosine-
like regular quadrupole modulation at twice the betatron frequency in the focusing
magnets, corresponding to COSXX=5 Amperes, and with a systematic focusing
perturbation of 1.33% in the focusing magnets. As can be seen, a beat in the beam
size is initiated as in Fig. 9a, but is reversed in the middle of the section and
vanishes almost at the end.

(17) Horizontal beam size in seven achromats of the SLC Arcs with the focusing
magnets perturbed by random quadrupole errors with a 1% standard deviation.
The particular “seed” was chosen as one which generates large beats at the end.

(18) Horizontal beam size in seven achromats of the SLC Arcs with the focusing
magnets perturbed by the same random quadrupole errors as in (17), and corrected
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by superimposing a quadrupole modulation at twice the betatron frequency in
the focusing magnets, corresponding to COSXX=3.9 Amperes and to SINXX=0.7
Amperes. As can be seen, the correction is almost perfect at the end.
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V1.4 FIRST TESTS OF HARMONIC CORRECTION METHOD

In this section, we present the first tests made with the system of harmonic corrections
described in VI.3. These tests have shown that it was possible to adjust the phase-space,
‘empirically, at the exit to the arcs, to minimize backgrounds produced by mismatches.
Although it has not been possible to study all the cases which were explored in the collider
note above, the measurements we have made confirm qualitatively the theoretical results
presented in this note, and the validity of this approach towards adjusting open beam-lines.
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VI.4.1 Resonant Amplification of One-Dimensional Motion

In Figs. 20a-f and 21a-f, we show a set of betatron oscillations in the north arc and in
the first third of the north final focus section*. These oscillations are launched horizontally
in the last sector of the linear accelerator. The plots correspond to two different settings of
the harmonic correction at twice the betatron frequency, and to two different initial phases
for the betatron oscillation. The harmonic correction is applied in the last third of the arc.
Figs. 20a-f represent the horizontal transfer of the these oscillations, and Figs. 21a-f the
coupling into the vertical plane of these oscillations.

We first concentrate on Figs. 20a-f. Figs. 20a-c and 20d-f correspond to oscillations
which are separated by w/4 at theworigin. In Figs. 20a and 20d, no perturbation has been
applied. As can be seen, the amplitudes of the oscillations are almost regular in Fig. 20a,
while they are slightly damped in Fig. 20d. In 20b and 20e, we have applied, respectively
a sine- and a cosine-like regular focusing perturbation at twice the betatron frequency,
with an amplitude close to 0.005 of the nominal focusing strength. As can be seen in both
cases, the amplitudes of the two oscillations are damped. In 20c and 20f, we have applied
the same perturbations to the same oscillations, but with opposite sign. In this case, the
oscillation which was slightly damped (Fig. 20d) becomes regular, and the one which was
regular (Fig. 20e) becomes rather strongly amplified.

The effects are in good qualitative agreement with the description given in section
I1.6.1 of the collider note presented in VI.3: solutions with a maximally perturbed am-
plitude (damped or amplified) correspond to harmonic perturbations which are m out of
phase. Furthermore, the effects (damping or amplification) remain unchanged if the phase
of the launched betatron oscillation is varied by 7/4 and if the phase of the harmonic per-
turbation is varied by 7/2. This is in agreement with the phase dependance of the effects,
as calculated for small perturbation in section I1.5.2 of the collider note mentionned above.

In Figs. 21a-f, we show the coupling into the vertical plane corresponding to the oscil-
lations in Figs. 20a-f. As can be seen, this coupling, already present for the unperturbed

~ oscillations (Figs. 21a,d), is modified rather appreciably by the perturbations we apply. As

was explained in section IV.2.1 of the collider note above, this modification results from the
rolls introduced in the arcs to follow the terrain of the SLAC site (see section VI.2). This
coupling contributes to weaken the perturbation in the horizontal plane. This explains
partially the fact that the amplitude of this perturbation is weaker than was predicted, by
almost a factor two. The two other reasons for a weaker perturbation than predicted are:

1. The fact that the relative phase of the perturbation and of the betatron oscillation
at its origin has not been tuned to better that 7/2 in these first tests. This relative phase

* In the arcs, the data are raw, while in the final focus section, they are scaled with the square root of
the ratio of the 3-functions in the two respective sections. This enables to make the oscillation comparable

in the two sections.
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is a priori arbitrary, because of the large distance between the end of the linear accelerator,
where the betatron oscillations are launched, and the part of the arc which we perturb.

2. The focusing errors in the part of the arc which we perturb. Such errors can reduce
the effects from the harmonic perturbations, as was shown in section II.10 of the above
collider note, especially in the case of systematic errors.

V1.4.2 Separation of Horizontal and Vertical Betatron Frequencies

We show in Figs. 22a,b the vertical phase-shift produced by a systematic regular
focusing deviation of 0.0035 of the main field, and of opposite sign for the focusing and
defocusing magnets*. In Fig. 22a, a negative perturbation has been induced in the focusing
magnets, and in Fig. 22b, a positive perturbation.

As ¢an be seen, the variation of the vertical phase is positive in Fig. 22a, and negative
in Fig. 22b, for the part of the arc where the perturbation has been applied (units 1700
to 2400). The cumulative phase-shift is about 80°, which is close to what is expected for
a relative perturbation of 0.0035.

VI1.4.3 Other Perturbations and Empirical Adjustments

As shown in chapter IV of the collider note above, the skew focusing perturbation are
too weak to have significant effects. We have however used the full set of perturbations to
tune, the lattice on the one hand, and the spots at the entrance to the final focus section
on the other hand, in an empirical way. We give exemples of this below.

We show in Figs. 23 and 24 a full set of betatron oscillations, horizontal and vertical,
with their couplings in the opposite plane, and for four initial phases separated by /4.
" These oscillations were measured after empirical adjustments of the harmonic correctors.

* The phase-shift is calculated in the following Way24: By noting that consecutive measurement points
are separated by the phase-shift per cell, which is i = 1080, and by considering that a weakly perturbed
oscillatory mouvement can be represented by letting the phase and the amplitude of the oscillation vary

slowly, one can solve, for each couple of consecutive data points (Zn,Tn41), the system:

T, = ap cos(np + Ady),
{ Tpt1 = ancos((n+1)p + Ady), (24)

where @, and A, represent the variable amplitude and phase in question. An exact calculation would

also give terms proportional to the derivatives of @ and ¢. Since we consider that these functions are

slowly varying, we can neglect these terms.
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As can be seen, they are essentially regular.

We show in Figs. 25a,b the beam shape on a phosphor screen, photographed before
and after adjusting it empirically. The two sets correspond to two different experiments,
where the optical parameters of the beam at the entrance to the arc were different. In
both cases, it was possible to adjust the harmonic correctors to cancel the variations.

VI1.4.4 Conclusions from the First Tests

These first tests have shown the feasibility of the harmonic correction method which we
have proposed, have contributed ta improve the optical transfer of the arcs, and given the
system an additional “knob”, upstream of the final focus section, to adjust the matching
of the phase-space there.

These tests have also shown that the effects are weaker the predicted, in most part
because of systematic errors and because of the rolls along the part of the arc where the
harmonic correction system is installed. To obtain larger effects, the current of the power
supplies feeding the correction windings would have to be raised, by a factor of two or
three.
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Figure. 25 Empirical adjustments of the beam size at the end of the arc, on two
occasions ((a) et (b)). The photographs on the right show the beam before correction, and
those on the left the beam after correction.
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VII REPORTS AND PUBLICATIONS ON OPTICAL
CORRECTIONS IN THE FINAL FOCUS o




VIL.1 “Orthogonality of Final Waist Corrections at the IP
of the SLC”

The optical corrections in the final focus are all strongly coupled except for the three
final adjustments to position the waists at the interaction point, which can be made fully
orthogonal. This enable to simultaneously correct and measure phase-space parameters at
the interaction point. The orthogonalization is shown in this collider note, together with
a summary of the experimental algorithm.
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SINGLE PASS COLLIDER MEMO  CN-369

AUTHOR: Philip Bambade DATE: October 27, 1988

TITLE: ORTHOGONALITY OF FINAL WAIST CORRECTIONS
AT THE IP OF THE SLC*

I. INTRODUCTION

Because the SLC final IP spot is produced by an aberration-dominated op-
tical system!, all components and couplings between dimensions of transverse
phase-space must? be controlled in the experimental tuning algorithm. For equal

emittances e; = €y, this amounts to ten linear optics adjustmentsﬂ . These
adjustments are coupled and depend non-linearly on phase-space parameters. A
ten-dimensional non-linear fitting program? is therefore used to match the lattice
in the Final Focus to the input beam. Local orthogonal “knobs” are also defined
for fine-tweaking around the initial solution, although this is not always practical
because of steering from the lenses.

The three final waist corrections* are however fully orthogonal to the other
seven optical adjustments. This means that they do not cause any of the other
seven optical distortions. We refer to this as external orthogonality.

They can also be made internally orthogonal. This means that each one of
the three orthogonalized controls can be applied independently of the two others.

It also allows one to simultaneously correct and determine the phase-space at the
IP.

*Work supported by Department of Energy Contract DE-ACO03- 76SF00515.
t In the case of equal emittances these ten adjustments are grouped? in three sets:
1. Four corrections to minimize the spatial and angular dispersion in both planes,

2. Three corrections to the betatron angular spread at the IP, by controlling the mag-
nitude of < z/* > and of < y'2 >, and by minimizing the < z'y! > correlation,
and

3. Three adjustments to position the waists in both planes at the IP, by minimizing the
correlations between the positions z,y, and the angles z/,y/ in both planes.

The ten variable quadrupoles used for these corrections are shown in Fig. 1. Because
each correction is coupled to the ones downstream, they must be applied sequentially. A
flow diagram illustrating this sequential application is shown in Fig. 2.
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Both have been demonstrated to work experimentally’®, and form the basis
for the on-line tuning algorithm?. In this note, we show the orthogonality of the

corrections and outline the experimental procedure and its limits.
II. EXTERNAL ORTHOGONALITY OF WAIST CORRECTIONS

The three final waist corrections are designed to cancel the correlations be-
tween the posmons z, ¥, and the angles z/, y' in both planes at the IP. The
< zz' > and < yy' > correlations® are minimized by combining trim windings
in two regular quadrupoles of the Final Triplet, one defocusing (QD2B), and one
focusing (QF3). We refer to them as the in-plane waist adjustments. The < zy' >
correlation, which at the waist and for €; = ¢y is equal® to < yz' >, is minimized
with a single skew quadrupole (SQ3) just upstream of the Final Triplet. This
one is referred to as the out of plane waist adjustment. The correctxon elements
‘are indicated in Fig. 1.

These final adjustments are normally decoupled from dispersion corrections
because the dispersion is nominally zero in the Final Triplet.

They are also close to decoupled from the angular spread corrections. To see
this, we consider for simplicity an uncorrelated (< zz' >=0) beam focused to a
waist by a thin lens in the horizontal plane. From linear optics, we compute (to
first order) the variation of the spatial beam size o; and of the angular beam size
o as a result of varying the strength of the lens:

62(6q) = 03(0) + 6303,

AO‘ () —5 (1)
[ 1+(§8— ]

In (1), oq is the beam size at the lens and ég is the fractional strength variation
of the lens.

For og large compared to the minimum beam size 0;(0), small adjustments
are sufficient to change the size at the waist significantly, with only a small per-
turbation to the angular spread. At the Final Triplet, ogq is typically a thousand
times larger than 0,(0). The quadfupole adjustments need therefore be only a -
few percent. Over that range, the change in angular spread is negligible.

Thus the three final waist adjustments are essentially orthogonal to the other
seven optical corrections. The opposite is not true: the other seven corrections

* In Transport® notation, < zz' >= 0,3, < yy' >= 043, and s0 on...
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are strongly coupled to the three final waist adjustments. The experimental
tuning algorithm is therefore sequential. It is summarized in the flow diagram in
Fig. 2.

III. INTERNAL ORTHOGONALITY OF WAIST CORRECTIONS

We begin by considering the in-plane waist adjustments (i.e. the minimization
of the < zz' > and < yy' > correlations). "A regular lens perturbs each plane
proportionally to the beam size at the lens in that plane. Since this beam size is
naturally larger in each lens in the plane in which it is focusing, QF3 and QD2B
can be combined to control the horizontal and vertical waists independently. The
coupling coefficients, found using TRANSPORT?, are:

' /-1.89 0.70
<Af‘> = c( bas ) with C = (2)
Afy 0028 0.80 —1.37 :

In (2), the fractional quadrupole strengths 6gs and 6gsp are in parts per thou-
sand, and the longitudinal waist motions A f; y are in centimeters.

The couplings in C are close to independent of input mismatch. This is
evident for a mismatch of the IP angular spreads from the form of (2). It is
also true in the case of a largely correlated input phase-space into the Final
Triplet (in-plane correlations), which the waist corrections are designed to cancel.
This can be seen by considering the nominal IP phase-space obtained after the
correction, and by back-tracking the beam into the lenses: since the changes in
the strengths of QF3 and QD2B required by the correction are small, the beam
sizes are perturbed negligibly in the lenses. Since their effect is proportional
to this beam size, the couplings in C do not change significantly. The linear
combinations defined in (2) can thus be used for orthogonal control sndependent
of the mismatch of the input beam phase-space™ .

In the case of the out of plane waist-adjustment, (the < zy' > and < yz' >
correlations) using the skew lens SQ3, orthogonality to the in-plane corrections
is obtained by requiring an upright beam shape near the Final Triplet (i.e. <

* This is not the case for the other optical adjustments in the Final Focus, where the relative
settings must be calculated through a non-linear fitting program® and depend thus on
the initial condition. Since this initial condition must be obtained from measurements
with possibly large errors, the calculated solution can be significantly off as a result. The
correction can in this case require several iterations. This is especially the case for the
angular spread corrections. Operationally, some improvement is obtained by basing the
calculations on time-averaged quantities.
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zy >= 0). Operationally, this condition is obtained by observing the beam on
a profile monitor (ST4) near the Final Triplet, and by adjusting a second skew
lens, SQ17.5, located in the First Telescope, which is part of the angular spread
corrections.

We show this by the following thin lens argument!®. Consider two lenses, one
regular and one skew, of strengths K and S respectively, with parallel to point
focusing to the waist. The change in angular spread at the waist is in this case
strictly zero. The combined effect of the two lenses on the beam is:

w——

-K 1 -S 0

: L -1 0 0 0
o°% = Ro'"R*,with R = s 0o K 11 (3)

0 0 -1 0

where 0,4t in are the beam matrices? describing the four-dimensional phase-space
at the waist and in the lenses. From (3), the beam-size at the waist is, in the
horizontal plane:

(03 =0k + 02K +02S? -2<z2' >K-2<yr > S+2<zy> KS, (4)

where the subscript in has been omitted on the right hand side. The coupling
between the two corrections cancels if the correlation < zy >= 0. This has been
verified independently in two simulations!!:12 of the optical corrections for the
Final Focus System. ‘

IV. EXPERIMENTAL PROCEDURE AND PHASE-SPACE DETERMINA-
TION AT THE IP

After the < zy > correlation has been minimized at ST4, by adjusting the
skew lens SQ3, the out of plane waist adjustment SQ3 and in plane controls A f; ,
defined in (2) form an orthogonal set of correctors. For minimization of the IP
spot, they can therefore be applied independently and in any order. '

From (4) or from (1), we see that the beam sizes depend parabolically on the
controls. This enables one to find the optimal corrections by symmetry even if
the minimum of the parabola is not resolved instrumentally. This minimum is
not resolved for beam sizes smaller than the carbon filament target!? used for
diagnostic purposes (there are three wires, with diameters of 4,7, and 20 microns).
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In order to simultaneously measure the phase-space parameters at the IP, we
first apply the SQ3 correction, to minimize the out of plane correlations. After
this, the beam sizes at the IP can be written as a function of the sn-plane Final
Triplet orthogonal controls A f; 4 as:

€
Ug,y = leyﬂz)y + =Y Afzz:.y' : (5)
z,y .

where ¢;y and §;,y are the emittances and the S-functions in each plane respec-
tively. Fitting a parabola to each measurement gives €y and 8;y. Although

the angular spreads oz, = 5‘:’; are well determined from the branches of the
parabolas, the minimum linear beam-sizes 0z,y = \/€z,y0:y are not if the mini-

mum of the parabola is not resolved. This lack of resolution can occur because of
the finite wire-target size mentioned above, and because of the following optical
reasons:

1. For unequal emittances, because the correlations < zy’ > and < z'y >
are not® necessarily equal, there may be residual uncorrected cross-plane
coupling terms in the spot.

2. Before full implementation? of the seven other optical corrections, the size of
the third order chromatic aberrations can dominate® the linear component
of the beam size at the IP* .

In both cases, the linear variables 8;y and €;y will be over-estimated. In
order to relieve the effects from 2., a detuned optical configuration, with purposely
small angular spreads, can be used, such that the third order aberrations are
negligible compared to the linear beam size. For the reason, such a configuration,
with Bzy = 3 centimeters, instead of the nominal 8 = 0.75 centimeters, was used
in the initial commissioning phase.

Effects from 1. cannot be handled in the Final Focus with the present correc-
tion scheme, which is designed for equal emittances in both planes. Operationally,

it is therefore desirable to maintain equal emittances throughout the upstream
parts of the SLC.

* The second order aberrations must also be cancelled by fitting the chromatic correction
sextupoles after each significant optical adjustment, to take into account the deviations
in the lattice caused by the optical matching. This results from the fact that the six
quadrupoles used to correct the betatron phase-space straddle the chromatic correction.
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Fig. 1: Schematic of the SLC Final Focus System optics. The siz variable
quadrupoles used for adjusting the betatron phase-space are shown shaded. The
four quadrupoles used to correct the dispersion function are shown cross-hatched.
The profile monitor ST4 is located immediately upstream of the skew quadrupole
SQ3. The sequential application of these ten adjustments is summarized in the
flow-diagram in Fig. 2.
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Fig. 2: Flow-diagram summarizing the ten linear optics adjustments required to
minimize the beam size at the IP of the SLC. These adjustments are grouped
and applied sequentially as shown in the boxes. Some iteration of the waist and
IP dispersion minimization is usually performed. In addition, the sextupoles are
refitted after each significant waist correction. The main correctors used at each
step are indicated in parenthesis. The full system is shown in Fig. 1.
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VII.2 “Beam Dynamics in the SLC Final Focus System”

This conference article describes the initial development of the experimental tuning
algorithm, enabling to adjust the final focus for maximum luminosity, given a perturbed
input phase-space. The correction algorithm had to be designed pragmatically and given
the already built final focus beam-line. It is based on the general framework of the optical
design of the system. The paper gives an overview of the general commissioning strategy
for the final focus. It also provided the basic groundwork for the specification of the on-line
computer control and modeling of the final focus, and served as a building block towards
further work on this subject.
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BEAM DYNAMICS IN THE SLC FINAL FOCUS SYSTEM®
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Abstract

The SLC luminosity! is reached by colliding beams fo-
cussed to about 2 um transverse sizes. The Final Focus System
(FFS) must enable, beyond its basic optical design,!? the de-
tection and correction of errors accumulated in the system. In
this paper, after summarizing the design, we review the sen-
sitivity to such errors and the ability to correct them. The
overall tuning strategy involves three phases: single beam spot
minimization, steering the beams in collision and luminosity
optimization with beam-beam effects.

Summary of Optical Design!?

Focussing the beamn to a small transverse size wouid be
easy if the input phase space (transverse emittance and energy
spread) were small enough. A monoenergetic beam with hori-
zontal emittance ¢; = oi"oj* would, for example, be focussed
to o = oi"*/L a distance I* from a lens with focal length
1/f = 1/1* + 1/L (see Fig. 1). In a more realistic beam with
finite energy spread o, rays on the edge of the energy distri-
bution are focussed at an axial position displaced by [*oE, thus
adding 2/*cgo; to the overall size (a factor 2 is put in since at
least two lenses are used to focus both planes). This chromatic
aberration is negligible if ecp < 032/2!*. In the SLC where
o} =~ 1.5um, ¢ = 3 107'% mrad, o = 0.002 and {* = 5m (com-
puted to the principle plane of the final lenses), it amounts to
O krom = 4um, and thus dominates the spot.

Fig. 1. A simplified Final Focus.

The resulting luminosity, computed by averaging the usual
expression over the two beams’ energy distributions (assumed
square with half-width og), is given by:

IN? 77 53 ds "
2rol J 26" + 5 F2 (65" + 65%)

L(B',0E) =

where F=0}(6g)/0,6E is a measure of the aberration. It is
shown versus 8* in Fig. 2, normalized to L(fp,m,0E = 0), for
an as-built FFS with no chromatic compensation (F = 15m).
Independent of ¢, it gives the optimum B° for such an FFS.
For og = 0.002 and Bopt = 1.5 cm, L is down by a factor
3.5. This is not as low as what we get directly with the size
estimate because the aberration spreads the edges of the bunch

out more than its core, and because the luminosity is a sum of
squares.

* Work supported by the Department of Energy, contract
DE-ACQ03-76SF00515.
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Fig. 2. Relative luminosity loss versus 3°* and o,
for a Final Focus without chromatic correction.

Compensation requires a special Chromatic Correction
Section (CCS) upstream of the final lens. In a simplified CCS,
two dipoles of strength B separated by 2!..,, are imaged by a
quad with focal length l..,/2, resulting in a 1** order achro-
mat (see Fig. 1). Near the quad is a sextupole of strength
S, in which the field varies quadratically with excursion, and
in which rays with energy deviation §g are transported off-
axis. This produces a stronger overall quad for rays both off-
angle and off-energy (665 term), which offsets the weaker fo-
cussing in the final lens. Equating the contributions to ¢},,,.
from the final lens and from the sextupole (neglecting the CCS
quad), we find that M = {*/L, Ry = {*/I?,,, B and S scale like
S « Ri/MB.

Unfortunately, the sextupole also deflects rays solely off-
energy or off-angle, thus giving terms in % and 6}. Can-
celling these two new aberrations requires that the CCS be
made of two consecutive and identical sections, with sextupoles
in pairs » phase shift apart and sequential symmetry for the
n-function. The real system,? designed to focus achromatically
in both planes, uses telescopes, each consisting of two triplets,
instead of the lenses. This minimizes! the dominant 8¢, ¢ég
terms and suppresses the other 2"¢ order term in z6g,yé while
demagnifying in both planes. The chromatic correction, also
done in both planes, requires two sextupole families. Cou-
pling effects between them can significantly enhance 3% order
chromatic and geometric contributions and must be minimized.
The three dominant terms are §6%, 8265 and 83. Neglecting the

final lenses, these terms scale like S?B*0}o; M, S?Bogo;*M?
and 5%0;°M3. Substituting for the sextupole strength needed

2,3 *\1/3 g - 3 *\3/3
to correct, we get ME%B—L—, ﬁﬂé‘_&’_) and BM(/8 . For
given phase-space volume, space constraints and desired 3° the

overall effect of these aberrations is minimized adjusting M,B
and S to balance them out. An approximate criterion!:? is ob-
tained equating the two 1°! terms giving o*=ogB. Physically
this means that monochromatic and chromatic sizes should be
about equal in the sextupoles.

Invited paper presented at the 1987 Particle Accelerator Conference,
Washington, D. C., March 16-19, 1987
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These considerations are relevant not only to the design,
but as we shall see, to the ezperimental tuning strategy: We
must in effect insure proper optical matching into the CCS
to maintain the optimization. The whole system is shown in
Fig. 3. It includes two more sections to match the Arc lattice.
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Fig. 3. Schematic of FFS.

Sensitivity to Optical Mismatch

In real operation, both the volume and shape of the injected
phase space differ from specification because of errors, thereby
increasing o*.

Enhancements in ¢, from wakefields in the Linac or syn-
chrotron radiation in the Arc, as well as an imperfectly mini-
mized og, are uncorrectable in the FFS. The damage can, how-
ever, be reduced somewhat by retuning the betatron match
into the CCS. For larger ¢, o¢* is first dominated by the
3'4 order 826 term. Varying B* to minimize the overall
(eB° + (ope/B°)?)? size gives L o €~ § for Bopt ¢3. Similarly
for op (now with 6%6) we would get L 0;:2 for By x ok if
the bunch remained gaussian. Actual simulation (MURTLE")
shows close to linear loss with weak dependance on §* (see
Fig. 4).

Optical distortions from gradient errors upstream are
mostly linear’ and can be corrected within some bounds.
The primary effect results from a 1** set enhancing o* di-
rectly by correlating positions with angles or with ég at the
IP. This amounts to axial offsets in the waists, x-y coupling
(z¢ or yb terms) and anomalous 7 y. The axial waist offset
Ayeist must be corrected to better than §°=0.75 cm, since
By =8+ Auwaist’/B*, and 1y to better than 1 mm. A 2"
set affects luminosity indirectly by perturbing the IP angu-
lar spread, through the magnitude of < 62 > and < ¢? >, and
through anomalous 7 4 and 6¢ coupling terms. Smaller spread
increases B8* linearly. Inversely, a larger spread reduces it but
also enhances the 3¢ order 66%, 6%6g and 62 aberrations, as
the criterion for optimal balancing is no longer satisfied. The
relative luminosity loss versus #* is shown from simulation in
Fig. 4 for different og. The shape is the same as in the chro-
matically uncorrected case in Fig. 2. Here, although the CCS
has left 3"¢ aberrations, it has removed the dominant 2™ order
terms, thereby raising £L™°* and shifting B;,, towards smaller
values. The tolerance on f§* is about +£20%. Outside this
range, the spot will not have the design size even if the 1% set
of distortions are corrected. For 8* too large, £ o« 1/8* from
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Fig. 4. Relative luminosity loss versus 8* and o
for a Final Focus chromatically corrected to 2"
order.

linear optics. For 8* too small, £ falls off, first linearly, than
parabolically, as it becomes dominated by 3"¢ aberration.

Optical Corrections

The FFS could in principle be designed to fully match op-
tical distortions generated upstream. Accumulated errors of
any size would then be left for correction there. This is not
feasible in the SLC because of the Arc, where minimizing syn-
chrotron radiation induced emittance growth requires a rea-
sonable optical match throughout. The 1* step to specify the
matching solution is to set tolerances for the Arc and its input
match to avoid large growth. Investigating such tolerances is
beyond the scope of this paper. Let us simply mention that
the blowup is small® for random imperfections three times the
specified tolerance.” Input mismatch and systematic errors are
more damaging.

The distortion’s size then determine the range over which
the FFS must be tunable, and the above sensitivities how well
one must match. Not all parameters are important. With no
pinch effect initially and with og basically set by the Linac,
we consider distortions only in the four betatron dimensions
and in their couplings to energy. Betatron space is described
by the usual o-matrix,® with ten terms 0;;=< z;z; >. The
R-matrix describing the lattice has 16 terms. Output phase
space is related to input by ooyt = Roiya R' where R! is the
transpose of R. For linear optics and neglecting synchrotron
radiation, Poincarré invariance requires®!? that R be symplec-
tic: ’

0 -10 0
. , 1 0 00
RISR=5, with S= (2)
0 0 0 -1
0 0 1 0

thereby restricting the number of free terms in R to ten. Apply-
ing the same algebra to the o-matrix, we find that the betatron
space can only be perturbed by the optics in six independent
ways. With the four dispersions ., 4, we thus have a total
of ten independent distortsons to correct.



We choose to represent them by those for which tolerances
were given above: the five IP angular sizes < 62 >, < ¢? >,
< 8¢ > and ng 4, and the five correlations of IP positions to
angles and energy < 20 >,< y¢ >,< yd > (or < z¢ >) and
7)2,y- Ideally correction would be done upstream of the CCS,
to avoid perturbing its optimization relative to the Final De-

magnifier. This is possible for n, but only partially possible for
betatron space.

Dispersion is corrected perturbing the n-match with four
quads,? installed in pairs 7/2 and x phase shift from the IP,
to control spatial and angular 5, respectively. Each pair con-
sists of an erect and a skew quad for control in both planes.
Naturally orthogonal for small input n, 4 (the two erect ones
perturbing the match of the horizontal lattice dispersion, and
the two skew ones coupling it into vertical), they are coupled
if it is large. Correction range is limited by quad strengths but
also by the particular orientation of input n. Some specific val-
ues make them ineffective. This happens, for example, when

ninmelows exactly cancels n'ifice. The domain of correctable

72,6 therefore has a dead zone (see Fig. 5). With nf:gg‘ mod-
ulating around 35 mm with maximum slopes of +18 mrad,
uncorrectable cases appear if, for instance, the horizontal be-
tatron phase in the back of the Arc is off by a quarter of a
modulation cycle with the appropriate sign. Gross control is
thus required upstream to bring n within capture range.

Mg {mrad)

Dead Zone

LeLIAY

Fig. 5. Domain of correctable horizontal dispersion.

Betatron matching is split across the CCS, in the
B-match and Final Demagnifier. The three angular terms
< 6% >, < ¢* > and < 0¢ > are adjusted upstream of the
CCS with two of the 8-match quads and a skew quad, allow-
ing to control the ratio of betatron to chromatic sizes in the
sextupoles. The three waist offsets < z8 >,< y¢ > and < y8 >
cannot be adjusted within the S-match independently of the
angular terms. The are taken out at the very end, with two of
the final lenses and a 2" skew quad. This strategy does not
maintain exactly the relative optimization of the Final Demag-
nifier and CCS, as the last lenses are tweaked. The luminosity,
somewhat derated as some 2™ order aberration reappears, can
be restored readjusting the sextupoles. Except for some cases
of large errors, this is a small effect. With present hardware,
the correction range is about +40 x #* for waist control (or
30 cm for B* = 0.75 cm) and a factor 3 in either direction
for angular spread. Simulations and calculations show that

random errors three times those expected in the Arc can be
handled.

Overview of Tuning Strategy

Turning 12 coupled knobs guided only by the IP spot—let
alone optimizing two colliding beams—would be very difficult
without an ordered procedure. Since measuring um-size beams
is not straightforward, we must minimize the number of tuning
experiments requiring IP information by diagnosing as many
aspects of phase space as possible before demagnification or
wherever conventional instruments are adequate.

Our tuning strategy begins with optical matching of a sin-
gle beam using strip-line Beam Position Monitors (BPMs) with
about 20 um resolution and phosphor screens with about 35 um
resolution. At the IP, crude measurements are done using thin
carbon wires, about 5 um in diameter, from which spot sizes
and centroids are inferred by scanning. Such wire targets and
BPMs near the IP have been designed for initial commission-
ing, but are also part of the early detector configuration.

After both beams are minimized, they are brought and kept
in collision, first with BPMs near the IP, and then exploiting
the electromagnetic fields from the bunches, which for small
enough size and large enough population cause them to be
deflected if they miss each other.!! The ability to detect this
effect determines the size and intensity to be reached in the
single beam phase. We shall see that about 5 um and a few
10!° particles is adequate.

Finally we maximize luminosity looking at beam-beam ef-
fects in three ways: magnitude of deflection, synchrotron ra-
diation from the collisions (Beamstrahlung)!? and disruption
imaged in the extraction-lines.!® Detector background!* mini-
mization is not covered here.

Single Beam Spot Minimization

We first correct anomalous input . BPMs at the end of
the Arc and in the FFS are used to measure beam motion ver-
sus energy. This does not give the position-energy correlation
within the bunch if anomalous 7 exists where the energy is var-
ied, but gives a good estimate if the Arc is (as expected) the
dominant contributor. As more accuracy is needed, one must
constrain n in the Linac or measure spot sizes directly. With
1% energy scans, we determine % to a few mm, or about 5%
of the Arc average. Using a model, we determine n:,';‘:;"‘:“""
from a least-square fit to the measurements and calculate the
matching solution. Locally orthogonal “knobs” are derived for
fine-tweaking. We first correct the S-match, to enable measur-
ing betatron phase space there. Final settings for IP correction
will differ if the CCS and Final Demagnifier generate n, for ex-
ample, through orbit errors. The resulting n;p is mostly spatial
as the lenses there are 7/2 phase shift from the IP. Final IP
correction is inferred from BPM measurements and from mea-
suring o* versus the derived orthogonal knobs, using the wire
targets.

Betatron phase space is then diagnosed measuring spot size
on a screen versus the strength of an upstream quad, and fitting
a parabola.l® Special emphasis is put on emittance, to help
guide tuning in the Arc. Since ¢ enters as a overall scale, we
must resolve the parabola’s minimum. For a quad and a screen
separated by !, this requires e/2/8 > r?, where r is the screen
resolution. This condition is met before demagnification, in the
B-match. A setup with about 100 um minima in both planes
is installed. Twiss paramelers, found from the parabola’s axis
and branches, serve to diagnose gross betatron mismatch. x-
y coupling obscuring the e-measurement is diagnosed looking .
at the tilt of the spot versus quad strength, giving another
parabola and three more terms. With nine terms in total, we
can in principle fully determine betatron space. In practice,
being mostly interested in ¢, while betatron mismatch is better
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measured elsewhere, we simply correct for the measured x-y
coupling.

Betatron mismatch is best diagnosed in the Final Demag-
nifier, where angular and spatial sizes are naturally separated.
Using the three §-match knobs, we first set the three angular
terms < 6% >, < ¢? > and < 04 >, looking at a nominally
round spot on a high-f screen upstream of the Final Triplet.
We begin, first ignoring ¢y, by standing the beam upright
using the skew quad. Then, taking €., into account, we per-
turb the two sizes with the erect quads, so as to best satisfy
the f;, ¢} scaling law (minimizing 3"¢ order aberration).
After this, the beam will have the predicted size at the axial
position where it comes to a waist, although that place may
be offset from the IP. Correction, amounting to cancel < z6 >,
< y¢ > and < z¢ > terms, is calculated sweeping the three
Final Triplet knobs and measuring o; | versus strength. As
in the phase-space measurement, only the parabola’s axis and
branches are needed. The axis give the offsets and the branches
the derivatives of size versus strength. In principle, resolving
the minima is not essential. With all lenses 7/2 from the IP,
it can be shown that the skew quad is fully orthogonal to the
two other waist controls, provided the < ¢ > coupling term
is properly nulled; however, the latter two are coupled. The
algorithm first orthogonalizes them using the derivatives and
then sets them based on the measured axis. The skew quad is
adjusted equivalently before or after. n;p can also be cancelled
with such parabolic sweeps. Final minimization is achieved it-
erating all the corrections.

Steering the Beams in Collision
The average mutual deflection of two gaussian beams col-
liding at an offset A is!!

-2r Ny 1- ezp(A?/20})
~ A

o(a) = Flopfor) (3)

~ wherer, is the classical electron radius, « the relativistic factor,

N7 the number of particles in the target and or p the target

and probe sizes. F (r)=l‘—"(—l;1+—',) is a form factor computed for
small A by folding in the probe distribution. It reduces the
average for A =~ o, whereas it should be dropped for A > o,
as the beams then see each other as point charges. Deflection
versus offset is shown in Fig. 6 for 50 GeV beams with 5 x 101°
particles and 2, 5 and 10 um sizes. Detection is best done
at the system’s high-# points, near the Final Triplet, where
it translates into the largest possible shift. Special BPMs are
designed?® for this purpose.

The tuning method proceeds in three steps:

1. Initial beam finding: After bringing the beams close
with BPMs near the IP, one of them (the most intense) is
toggled on and off while the other is measured at the outgoing
high-8 point. This gives the shift induced by the collision, the
sign telling in which direction to steer. For large A and with

. 70Nz /5%10'°
numerical factors, we get § Xoy¢(um) = —A;xlo:p—m'

2. Beam centering: Scanning one beam across the other en-
ables optimal centering on the zero-deflection symmetry point
(see Fig. 6). The largest shift occurs for A ~ 1.50r giving

§Xme*(um) = %%:%‘ﬂ. With 20 um measurements and
about 2 x 100 particles initially, we expect good signals for

o < Sum. This sets the goal for single beam optimization.

3. Feedback: The mutual deflections are also used to keep
the two beams in collision. In simple versions of such feedback,
we sample position deviations from an initial reference at recip-
rocal high-8 points on ingoing and outgoing paths. Drifts in the
offset are approximated by A(t) o (6 Xout(t) — 6 X n(t)). A slow
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Fig. 6. Beam-beam deflection versus offset for
three spot sizes.

version of such a system, with a time constant of about 20 sec-
onds, is available as an extension of existing software.l” More
sophisticated pulse to pulse schemes with optimal filtering!® of
specific frequencies are in progress.

Luminosity Optimization with Beam-Beam Effects

Algorithms based on three beam-beam signals are in
progress.

1. Magnitude of deflection: The maximum deflection pro-
duced in the centering scan is a strong function of beam sizes
and can be used for tuning. For centered beams, this signal
allows separating improvements in the two planes, but unfor-
tunately not in the two beams. This can be seen noticing that
after normalizing by N7 p, conservation of the total transverse
momentum implies equal average deflections for each beam.
The maximum must thus be symmetric in the two beam sizes,
making it hard to know which one needs to be optimized (ex-
cept by sensing derivatives).

2. Beamstrahlung:'* The total photon flux emitted in the
collisions is a strong function of beam sizes. For each particle,
N, « 0,/p* = 6%/0,, where o, 6 and p are the bunch-length,
deflection angle and radius of curvature. For centered beams of
equal size o and populations N2, Beam 1 radiates Note!
N\N2/ cr,o‘%l. Without the shape of the photon beams it is hard
to separate the two planes. One can however distinguish the
larger from the smaller by scanning one across the other. This
is the reversed situation from the deflection signal, making the
two methods complementary. The reason is the §2-dependence
of N, leading to a sum of squares for N***/. The dependence
of N.‘,“"" from the probe versus A is indicated in Fig. 7 for a
target with equal, larger or smaller size.

3. Disruption: When beams have been made small and
intense enough, they act as lenses for each other, thereby in-
creasing their angular spread after collision. In the linear ap-
proximation, o; grows by about 50% for beams with 2 x 1010
particles and 2 pm transverse sizes. Monitoring of this ef-
fect will be possible in the extraction lines, by imaging IP an-
gles on screens through optics designed for the planned energy
spectrometers.!3 Tuning for the largest possible spot on these
screens will then maximize luminosity.
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VIL38 “First Order Optical Matching in the Final Focus Section
of the SLAC Linear Collider”

This publication describes the modeling and fitting algorithms that were developed
to perform on-line model-driven optical corrections. The tuning algorithm is summarized,
and some initial experimental results presented.
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1. INTRODUCTION

The SL;&C Linear Collider"’ (SLC) is designed to collide electron and posi-
tron bunches each with a round beam spot and with a transverse size of about 2
microns at the interaction point (IP). The Final Focus™® sections of the beam
ible for focusing the b to this small

lines, on each side of the IP, are resp
size.

The Final Focus optical system, shown in Fig. 1, of five tel
modules. Demagnification is achieved in two stages, in the First and Final Tele-
scopes. The chromaticity of the quadrupole array is compensated through sex-

4

tupoles in the Chromatic Correction Section. Matching of the dispersion and the
betatron motion to the Arc lattice is provided in the n-Matching Section and
the First Telescope respectively. Extraction of the spent beam, moving in the
opposite direction, is achieved in the First Telescope, through a pulsed magnet
and a septum.

The Final Focus must also provide variable optical matching for the correc-
tion of distortions in the lattice arising through gradient errors in the beam line
upstream and within the Final Focus Section itself. This note describes two parts
of the optical tuning procedure used during the commissioning and running of
the SLC Final Focus: the dispersion and betatron matching.

To attain the desired beam spot size, any contribution from the finite energy
spread of the beam must be eliminated by making the beam dispersion gero at
the IP. The method for doing this is described in Section 2.

The SLC design has equal emittances in the horizontal and vertical planes. In
this case, six adjustments are involved to match the Final Focus monochromatic
beam envelope to that coming out of the Arc. The procedure for doing this,
referred to as betatron matching, is discussed in Section 3.

In order to perform these matching operations routinely it is necessary to
have detailed optical modelling and fitting included as part of the online control

program for the Final Focus. The existing online SLC optical mode! was not

adequate since it assumes that the beam dynamics in the horizontal and vertica)
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planes are independent and hence cannot accommodate cross-plane coupling.
A straightforward and general method for extending the model to incorporate
cross-plane coupling was devised and is explained in Appendix A.

2. DISPERSION CORRECTION

2.1 DEFINITIONS

Dispersion refers to the correlation between the transverse position or angle
of a particle in a bunch and its energy relative to the mean energy of the bunch;
e.g. horizontal spatial dispersion:

Az

s = 5 (2.1)

where z is displacement in the local borizontal plane and § is the energy spread,
& = AE/E. More precisely this can be termed the “beam dispersion”. It cor-
responds to the sixth column of the beam o-matrix® and contributes to the
first-order transverse beam size according to the formula:

o =y/ef + (6n)

where ¢ is the emittance and /ef is the monochromatic (§ = 0) beam size.

(2:2)

The term “lattice dispersion” will be used to describe a slightly different
quantity. It is a property of the optical lattice of the beam line, independent
of the beam, and corresponds to the sixth column of the transfer matrix, or R-
matrix) dgscribing a section of beam line. The lattice dispersion adds on to the

* The o-matrix and R-matrix sre defined in the mannal for the program TRANSPORT!"

beam dispersion of a beam passing through the section; e.g. for horizontal spatial
dispersion from point A to point B:

78 = Run? + Ruan,* + Run} + Run}* + Rus (2.3)
where nA is the beam dispersion at the start of the section, nP is the beam

dispersion at the end of the section and R is the transfer matrix across the
section. The horizontal spatial lattice dispersion from A to B is Rys.

2.2 DESIGN DISPERSION

The SLC requires sero spatial and angular beam dispersion (n and n') in
z and y at the interaction point in order to optimise the luminosity. With an
energy spread of 0.5% a residual spatial beam dispersion of only 1 mm will more
than double the spot size from 2 to 5 microns.

Fig. 2 shows the design value for 1, as a function of distance along the beam
line (2) in the Final Focus from the end of the Arc to the IP. Whereas 1, is
designed to be sero everywhere in the Final Focus, this is not true of n,. The
condition n? = 0 is achieved by having non-zero beam dispersion at the end of
the Arc, nARC = 47.5mm. This is cancelled by an equal and opposite lattice
dispersion in the n-Matching Section at the beginning of the Final Focus, leading
to nIT = 0 at the end of the First Telescope (FT). The Chromatic Correction
Section (CCS) temporarily generates large values of n; as part of its function,
but the design value of n, returns to sero at the end of the CCS and through the
Final Telescope to the IP.



2.3  ANOMALOUS DISPERSION

In practice the dispersion functions someti show lous deviations
from the design. Possible errors contributing to a non-zero beam dispersion at

the IP can be grouped into two classes,

(a) Beam dispersion coming from the Arc which is different from its design

value.

(b) Anomalous dispersion arising from errors in elements of the Final Focus
beam line itself. These are most likely to come from the CCS (due to
misalignment of & sextupole or quadrupole, for example) since n, is locally
large there, and so small errors lead to big effects at the IP.

It is desirable to deal with errors of type (a) first by correcting the dispersion
at the end of the First Telescope to give !,_n =0" If this anomalous dispersion
is left uncorrected at the end of the FT it will propagate through to the IP. The
Final Focus optics cause demagnification of the spatial dispersion

p t and
magnification of the angular component. The resulting anomalous 0" is likely
to be of much greater magnitude than n'F, making it difficult to measure n¥
accurately enough for it to be corrected at the IP.

Errors of type (b), combined with residual errors of type (a), must then be
handled separately by correcting the dispersion at the IP to give 21? =0.

In both cases the tools available to make the dispersion correction are th§
same: two pairs of small quadrupoles in the n-Matching Section of the Final Focus
with one upright and one skew quadrupole in each pair. These are shown cross-
hatched in Fig. 1! The skew quadrupoles, which are tilted at 45° to the standard
axes, are needed to couple the non-zero z beam dispersion into the y plane and
hence give some control over n,. The pair CQ6 and SQ6 are approximately in

* The vector notation 7 will be used to repr all four comp ts of  and n'.
¢ In Fig. 1 upright quadrupoles are represented by lens shapes and skew quadrupoles are

represented by diamond shapes.

phase with the end of the FT whereas the pair CQ5 and SQ5 are approximately
§ out of phase. The IP is in antiphase with the end of the FT. Hence, for a beam
with design specifications coming from the Arc and with the correctors initially
set to sero, the first pair controls n and ), whereas the second pair controls 1,
and ny. This orthogonality is lost in moving away from the design parameters
for the beam and lattice. However, it is always possible to find a combination
of four quadrupole settings to correct the four n components at the end of the
FT or at the IP. The only limitation is the maximum current available from the
magnet power supplies.

2.4 MEASURING DISPERSION

The spatial dispersion (n; and #,) at a point along the beam line can be
measured by stepping the beam energy through, say, £0.3% about its nominal
value and finding the slope of s plot of displacement versus energy™ This can
be done only at points where there is a device for measuring the transverse beam
position, such as a beam position monitor (BPM) or, at the IP, a secondary
emission wire target called the wire scanner!! This technique is illuﬁ.uted in
Fig. 3.

To infer the spatial and angular dispersion at any point a fit must be made
to the n measurements. The details of this fitting procedure are given in Ap-
pendix B.

It should be noted that this technique in fact measures the lattice dispersion
of the beam line between the point where the beam energy is varied (the Linac)
and the location of the BPM. Any beam dispersion already in the Linac cannot
be measured in this way. The design dispersion in the Linac is sero and any
anomalous Linac dispersion is expected to be small. However, it will not be

# There are some values of nA*C for which the effactive range of the b . 50

measured and hence will not be corrected by the First Telescope Dispersion
Correction scheme to be described in Section 2.5. It will propagate through to
the IP and must be corrected there as described in Section 2.6.

2.5 FIRST TELESCOPE DISPERSION CORRECTION

To correct the dispersion at the end of the First Telescope it is first necessary
to determine the spatial and angular dispersion at the end of the Arc, nARC.
This is done by measuring the spatial dispersion at BPMs near the end of the
Arc, as described in Section 2.4, and then using the fitting technique described
in Appendix B.

The model is used to transport 2”“ through the n-Matching and FT Sec-
tions of the Final Focus to give n¥" at the end of the FT:

0T = RARC=TT(ky Ky, ks, k() nARC (24)

where, now,
nARC = (nﬁ“‘cm',*m.n:n .n;“‘c,o.l) (25)
= (nf’m',",n:"m;",m 1) (2.6)

and RARC—FT jg the transfer matrix from the end of the Arc to the end of the FT
calculated from the model. The sixth element of the » vectors, which is always
unity, ensures that the lattice dispersion elements contained in the final column

of R are correctly incorporated according to equation (2.3).

The matrix, RARC—FT ig a function of ki, ks, ks and k,, the magnetic
strengths of the four dispersion corrector quadrupoles described above. In order
to make y_ﬂ = 0, the values of kj,k3,ks, ks must be found which minimise
n*T. This is done using the least squares fitting program, NPSLAC™  The

corrector strengths are varied and RARC—TT and p¥T evaluated for each new set
of strengths. The minimisation program exits when the sum

4

Y {ry (27)
i=1

is sufficiently small. The corresponding values of k;, k3, k3, k4 are returned and

can be used to set the strengths of the physical magnets.

This algorithm was used regularly during the 1987 period of the SLC Finatl
Focus commissioning™ and has now become routine and highly reliable. Cor-
rection usually yields a dispersion function within a few per cent of the design.
One example is shown in Fig. 4. Up to now, the ultimate limit to the precision
of this correction has been small alignment errors on the dispersion correction
quadrupoles themselves. As their strengths are varied to perform the correction,
the misalignment causes the beam to be steered as well as focused downstream

and hence the result is not exactly as predicted by the online model.
2.6 INTERACTION POINT DISPERSION CORRECTION

Even after a successful 1” correction there might still be beam dispersion
at the IP which must be corrected. This can be due to residual anomalous
dispersion propagating from the FT or due to alignment or magnetic errors in
the Final Focus beam line itself.

One poesible technique is to determine 1!9 using the wire scanner and the
BPMs near to the IP and the measurement and fitting schemes described in Sec-
tion 2.4 and Appendix B. Corrector settings can then be calculated which will
generate an equal and opposite _!'_!P‘ On iteration the IP dispersion should tend
towards zero. There are two disadvantages to this method. Firstly it requires
an accurate measurement of n™. As explained in Section 2.4 this is difficult

small that the disp cannot be ted using this scheme!” These *dead sones” can
be avoided by adjusting the dispersion upstream.
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b of the spatial demagnification produced by the Final Focus. Secondly,
the measurement technique of Section 2.4 is insensitive to anomalous dispersion



generated in the Linac or further upstream, since it actually measures the lattice
dispersion between the point where the beam energy is varied and the measure-

ment device. Hence this contribution to the beam dispersion at the IP would not

be corrected.

Another technique involves minimising the true beam dispersion at the IP by
using the transverse beam spot size as measured by the wire scanner!® The spot
size is directly related to the beam dispersion according to equation (2.2). For
each of the four components of !n’, four coefficients are found corresponding to
the changes in each of the four corrector quadrupole settings needed to produce
a unit change in that component of g_u’ while leaving the other three compo-
nents of nI¥ unchanged. These represent orthogonal “n-knobs” for controlling
the dispe:aion at the IPY A scan can then be made over a suitable range of
each component of E‘P and the size of the spot at the IP measured at each point
in the scan. To first order, the minimum spot size corresponds to the optimum

corrector settings.

3. BETATRON MATCHING
3.1 BETATRON PHASE-SPACE DISTORTIONS

The six distortions of the betatron phase-space which are possible"' in the
case of equal horizontal and vertical emittances are the two waist offsets (< z6 >
and < y¢ > correlations), the two IP angular spreads and two cross-plane corre-
lations of IP angles (< 8¢ >) and of IP positions to angles (< z¢ >).

« In fact the problem is nonlinear. Adjustments to ups tor quadrupoles change
the disperzion of the beam passing through downstream correctors, and hence they cannot
d led letely. H , over a limited range of p'F a linear approximation is

valid. .
I the Final Focus optics has been changed from the design configuration of §* = 7.5mm
(see Section 3.2) then these “n-knobe” will also move the powitions of the beam waists along
£ away from the IP (a # 0). Additional corrections must be made to compensate for this
effect.

The angular spread terms are controlled upstream of the CCS by cancelling
the < ¢ > cross term with a skew quadrupole (SQ17.5) and by varying #* in each
plane with two quadrupoles (16 and 17). This amounts to detuning the overall
demagnification factor in the Final Focus beam line. Waist terms are corrected at
the very end, with trim windings on the last quadrupoles (2B and 3) and another
skew quadrupole (SQ3) immediately upstream. Two additional terms (< zy >
and < yé >} would require additional correction elements in the case of unequal
emittances, but are redundant otherwise. All six quadrupoles which must be
controlled to achieve this are shaded in Fig. 1. )

The waists must be positioned at the collision point to within the depth of
field 8* >~ 1 cm and the < z¢ > correlation removed.

After cancelling the < #¢ > cross-term, 8°, which for fixed emittance deter-
mines the angular spread, must'™ be adjusted close to the design optimum. This
optimum occurs when linear optics and higher order effects contribute about
equally to the spot size at the waist. For §* t0o small, the IP spot is dominated
by chromatic aberrations (third order if the second order chromatic correction is
properly tuned, second and third order otherwise). Conversely for #* too large,

it is dominated by a larger linear size. The tolerance on B* is about 50%.
3.2 CORRECTION PROCEDURE

Waist controls can be made orthogonal, linear and independent of input
phase-space distortions, allowing position to angle correlations in the IP spot
to be cancelled by empirically minimising its size. This is done using the wire
scanner® Spots are measured as functions of the orthogonal waist controls, and
a parabola, ¢f* + ¢/8° A f?, is fitted to the square of the spot size (where Af is
the distance to the waist) to determine both ¢ and B*.

Actual angular spreads are well determined from the branches of the parabola,
but both € and B* estimates suffer if the linear spot is not resolved. This can

arise through residual cross-plane coupling, only partially corrected in cases of
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unequal emittances, and through third order chromatic aberration which can
dominate before the betatron matching is fully implemented. Sextupoles must
also be fitted in the perturbed lattice at each iteration of the betatron matching

procedure described here, to preserve good second order correction.

Measured values of 5* are used to determine angular corrections needed for
matching. The adjustments are nonlinear functions of the three quadrupoles used
for control. In addition, the correctors also affect the waists. The solution must
therefore be the result of an overall fit of the six correctors towards the desired
IP phase-space. The fitting procedure is outlined in Secti‘on 3.3. Because of the
uncertainty in the measurement noted above, some amount of guessing is also
necessary to determine the matching correction required. The procedure must

in general be iterated in an empirical search for the optimal angular correction.

The online modelling and fitting package developed allows full flexibility in
the generation of detuned optical configurations needed to match distorted beam
envelopes, based on measured or on estimated optical parameters. The fitting
procedure can also be adjusted conveniently by user intervention, to suit specific
situations. This is explained in more detail in Appendix C. An example of such a
detuned solution is shown in Fig. 2. The solid f; and Sy curves show the design
lattice of 8* = 7.5mm. The dash-dotted curves show a detuned configuration
calculated to give §* = 30mm. This lattice is presently installed as the default
configuration for commissioning of the SLC. It corresponds to a first guess of
the most probable angular correction needed to match possibly varying optical
mismatch at the Final Focus input, generated by errors and tuning in the up-
stream systems. In this configuration, residual angular errors are small enough
to reproduce small IP spots at the five micron level by sweeping only the three
waist controls. It is anticipated that additional iterations of this matching will
be required to optimise the spot size further.

3.3 FITTING PROCEDURE

Before starting the last stage of bet‘tr_on matching it is assumed that, to
a first approximation, the dispersion has been corrected as described in Sec-
tion 2, and the waist and cross-plane coupling corrections have been completed
as outlined in Section 3.2. Bence a:, a, and all the cross-plane terms in the
beam o-matrix” at the IP are approximately sero. The assumed initial o-matrix
(“0* iteration”) is:

ﬂ; (D) €z 0 0 0

0  efBi0) O (Y
FO=| o B0 © &)
0 0 Y € /B;(0)

1t is diagonal and can be specified by four independent parameters. Any two out
of o} (spatial size at IP = ,/G17), o,° (angular size at IP = V033), €& (emittance)
and 8 (betatron function at IP) can be measured to determine the initial oI

matrix, and similarly for y.

The o matrix of the beam at the end of the Arc is then:
oARC = R-1(k(0)) . 6™ (0) . [R! (k(0))]T (3:2)

where R(k(0)) is the initial transfer matrix from the end of the Arc to the IP
and
k(0) = k;(0), k2(0),...,ka(0) (3.3)

are the initial strengths of the n quadrupoles and skew quadrupoles in the Final
Focus beam line which are used for the betatron matching.

* The notation used for o-matrix elements is the same as that described on pages 33-35 of
the TRANSPORT manual!® For simplicity, only the first four columns and rows of the
o-matrix are shown.



The goal after the 1* iteration of betatron matching is to find a new set of
strengths, k(1), such that:

o (1) = R(k(1)) .e**C . [R(k(1))]"

ﬁ;(l)e, 1] [4] 0
0 /B1) © 0 (34
| o o By O
0 0 0 4/80)

is the desired o-matrix at the IP. To go from equation (3.1) to (3.4) the spatial
magnification is changed by a factor of /A*(1)/8*(0) (which may be different in
z and y), while the off-diagonal terms (a., @y and cross-plane coﬁpling) are kept
at zero. The details of the fitting algorithm used are presented in Appendix C.
The quadrupole strengths, k(1), returned by the fitter after the first iteration
can be used to set the physical magnets on the beam line.

The beam spot is then remeasured and further iterations of the matching

procedure are implemented to optimise the luminosity.

One example of a small spot measured during the 1987 SLC commissioning
is shown in Fig. 5. At the time of writing the smallest electron spot sizes which
have so far been obtained were measured at 3-4 microns. Simultaneous elec-
tron and positron spot sizes of 5-7 microns can be reproduced without difficulty.
Commissioning work is continuing to bring the SLC parameters up to the level

necessary for the production of Z° events.

APPENDIX A

MODELLING CROSS-PLANE COUPLING

Al Twiss PARAMETERS

® the standard online optical model of the

is stored in the form of so-called Twiss parameters at each significant

In the SLC control program
machine"

point along the beam line:
¢z = the horizontal betatron phase or tune (scmetiﬁu denoted by v;)
B; = the horizontal betatron function
a; = the horizontal alpha function
n: = the horizontal spatial dispersion

n!, = the horizontal angular dispersion

and similarly in the vertical (y) direction. The Twiss parameters are generated
by running the program COMFORT (Version 3)!"" using as input either design
{10,9)

parameters or values taken from the SLC online database.

In order to model a section of the beam line between points A and B it is
necessary to know the 6 x 6 first order beam transfer matrix; R, from A to B. If

the optics in z and y planes are independent then it can be written in the form:

Ry Ry O 0 0 R
Ry Ry 0 0 O Ry
(¢} 0 R R. 0 R
R= e % (A1)
0 0 Rg Ry O R
0 0 o0 0 1 O
0 0 0 o O
with all cross-plane coupling elements at zero.
« The notation used for transfer matrix el is that described on pages 4 and § of the

TRANSPORT manual!!
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In this case the elements of R can be evaluated from the Twiss parameters

at points A and B using standard formulae. For z:

Ry1 = /Bs/Pa(cos Ay + apsin Ay)

Ry; = /BaBpsin Ay

Rie = np ~ Runa - Ruany

Ray = —{(1 + axap)sin Ay + (ap — ax) cos AY}/\/BaBs
Ry = \/Ba/Bs(cos &Y — apsin AY)

Rye = 1 — Rauna — Raan)

(A2)

where Ay =¢Yp—ya

For y, these formulae give R33, R34, Rss, R43, R4s and Ryg respectively. To obtain
the transfer matrix elements only the change in the Twiss parameters between
points A and B is needed. Their absolute values at each point are not important
for this purpose.

A2 CRoss-PLANE COUPLING

The procedure outlined in Section Al is valid only if there is no coupling
between z and y planes since the z and y Twiss parameters are assumed to be
independent. That is, it works only if the transfer matrix can be written in the

form of equation (A1).

This is a valid representation for most standard beam line elements, but it
is invalid for skew quadrupoles and rotations of the coordinate system (rolls).
Since skew quadrupoles play a vital part in the SLC Final Focus optics it was
necessary to modify the online modelling.

One solution would be to abandon the present mode! and replace it with one

where the full two-dimensional transfer matrix to each beam line point is stored.

Since COMFORT (Version 3)"" does not include croes-plane coupling this would
also need to be upgnded.’

Instead it was decided to keep the Twiss parameters and to add a relatively
small amount of extra dedicated Final Focus modelling and fitting code to handle
cross-plane coupling where this was necessary. To do this the model beam line is

divided into a series of discrete, sequential sections of two sorts:

(a) thoae for which cross-plane coupling is unimportant, i.e. there are no skew

quadrupoles, rolls or similar beam line elements;
(b) those for which cross-plane coupling is important. .

For category (a) the online Twiss parameters for the points at the beginning
and end of the section are sufficient. The full two-dimensional transfer matrix
can be found using equations (A2) and (A1).

For category (b) the Twiss parameters cannot be used. However, these sec-
tions can be reduced so that they consist of just a single beam line element - a sin-
gle skew quadrupole or a roll, for example. In these cases the full two-dimensional
transfer matrix can be determined separately using a small number of input pa-
rameters taken from the online database. In the case of a skew quadrupole the
data required are the integrated magnetic field gradient (strength), the effective
length of the magnet, the skew angle and the energy and charge of the beam.

Thus a set of consecutive transfer matrices is produced, running between each
of the points along the whole beam line. By multiplying this string of matrices
together in the correct sequence the cumulative transfer matrix between any two
of the points can be obtained. This is all that is needed for a model incorporating

cross-plane coupling.

It is sometimes useful to enlarge category (b) above. For example, to perform
a fit in which the magnetic strengths of certain quadrupoles are allowed to vary

t When COMFORT is used to generate Twiss parameters for the present online model rolls
are ignored and skew quadrupoles are treated as drift spaces.



in the model, each of these quadrupoles is treated as a separate beam line section.
After each iteration of the fit, their transfer matrices are recalculated using the
new magnetic strengths and hence the cumulative transfer matrix for the whole
beam line is updated. This technique is used in the programs for the dispersion
and betatron matching which are described in the main text.

APPENDIX B
DETERMINATION OF SPATIAL AND ANGULAR DISPERSION

This Appendix describes the fitting technique used to determine the spatial
and angular dispersion at any point P from spatial dispersion measurements
made by beam position monitors.

Measure n} and n}, i = 1, N, the spatisl dispersions in z and y at N points.
Using a model of the beam line, as explained in Appendix A, evaluate the transfer
matrices, R!, between P and each of the measurement points. From the first and
third rows of each transfer matrix a mew matrix, A, of dimensions 4 x 2N, can
be formed, which relates the spatial and angular dispersions at the point P to

the spatial dispersion measurements:-

An=AnP (B1)

where
Aﬂ_" ('7; —Rierﬂz"RgM": ‘H;OY ey 'l!"ﬂﬁa’lf"‘}zﬁ) (Bz)
'_TP = (n:y ﬂ’xpl ﬂf, ""P) (33)

and the rows of A are formed from the rows of R! by (j=1,4):

Ay = R}
Ay = Ry

Ay =R B4

Aan-yyy = RY]

Aany = Ry
The Ry (Rss) elements are subtracted from the n; (n,) measurements in order
to eliminate the lattice dispersion component which the model associates with

the beam line between P and the measurement points. The remainder, Ay, is
the spatial dispersion at the points associated solely with the dispersion at P.

In order to solve for n* the matrix equation (B1) must be inverted. Since A

is not a square matrix the solution is not unique. The estimated uncertainti

oy, on the n; measurements can be used as weighting factors to obtain a unique
inversion. The x? sum:-

(®5)

i=1 o

1
ﬁ{@gwﬂ—m}
is minimised by taking
nF =(BA)'BAn (Bs)

where the elements of the 2N x 4 dimensional matrix B are formed from those
of A by

A
By = ﬁ (B7)

Hence the spatial and angular dispersions at P can be inferred from the
measurements.
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APPENDIX C
FITTING ALGORITHM FOR BETATRON MATCHING

The details of the fitting algorithm used for the betatron matching scheme
described in Section 3.3 are presented in this Appendix.

The least squares fitting program NPSLAC" is used. The strengths, k, of all
the quadrupoles to be used for the betatron matching are varied and R(k), the
transfer matrix from the end of the Arc to the IP, and o'F, the beam o-inatrix at
the IP, are evaluated for each new set. The program miniiniaes a sum of squares
composed from the elements of o7

(Bs term)? + (8, term)® + ( S

\/511_02?) + ( ::U«Y

o513 034 033 ) ( o4 )

—_— | | C1
"(,/zm‘ru) +(¢6§‘a‘.:) +(v’0—z'27§ Tonon c1)
Depending on the input beam parameters scme of these terms may be omitted
from the sum 8o that those o-elements remain free.

The third and fourth terms of this sum constrain a; and a, to remain at zero
and hence keep the beam walsts at the IP. The last four terms keep all cross-plane
coupling terms at sero. The denominators make each term a dimensionless and
reasonably scaled number.

Studies using offline simulations™” have shown that different expressions
are needed for the “B; term™ and “S, term® depending on the initial input,
in order to ensure that the fit converges rapidly and reliably. For many input
conditions, using: ’
o33 — &2/B;(1)

€ /B:(1)

(similarly for By) is found to give satisfactory results. This is equivalent to fitting

Ps term = (C2)

the angular beam size. Sometimes it is better to fit the spatial beam size:

Bs term = .___"uﬂ—;.(ﬁ_liﬁ)‘s (c3)

or sometimes apatial and angular sizes together.

For both cases (C2) and (C3) it is necessary to constrain the Ry and Ry
elements of the transfer matrix between the end of the Arc and the IP to remain
less than zero. This ensures that the fit converges to the correct minimum? For
difficult situations, such as having unequal emittances in z and y, it is sometimes

better to fit these elements directly:

Raz — Ryp(fit)

Bs term = Ralt)

(c1)

where Ry3(fit) = Rz2(k(0))/B:(0)/8:(1).

The efficiency and resilience of the fitting program can also be improved by
splitting the minimisation up into several steps. The output from step number n
is used as the input to step number n+1. The steps are choeen to guide the fitter
along a path which is known to lead towards the desired minimum, taking into
account the properties of the optics of the Final Focus beam line. For a range of

input conditions the following two-step fit is found to be suitable:

(a) Fit B;, S, and minimise 0,3, Jeaving other o-elements free. Only two upright
quadrupoles (17 and 16) and the nearby skew quadrupole (SQ17.5) are
allowed to vary in the fit, all others having their strengths fixed. These
quadrupoles are in the First Telescope and are the ones most sensitive to
Bz, By and o13. Quadrupoles 17 and 16 control the overall demagnification
factor of the Final Focus and are the ones whose strengths are changed
most during the betatron matching.

w A solation with R;; or Ry greater than sero corresponds to having an extra beam waist,
in z or y, upstream from the IP.



(b) Minimise e, o and o33 while keeping Sz, fy and 013 at the values they have
after step (a). In addition to the three quadrupoles varied during step (a),
two more upright quadrupoles (3 and 2B) and the nearby skew quadrupole
(SQ3) are also allowed to vary. These are in the Final Telescope. Step (b)
amounts to a minor retuning of the optics to reposition the horizontal and
vertical beam waists at the IP (a = 0) and eliminate remaining cross-plane
coupling.

This two-step fit is the default used in the SLC control program, but great
flexibility is available for changing the fitting algorithm when necessary.
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FIGURE CAPTIONS

. The optical design of the SLC Final Focus. The four quadrupoles used for

the dispersion correction are shown cross-hatched and the six quadrupoles
used for betatron matching are shown shaded.

. Betatron and dispersion functions of the SLC Final Focus. The n, function

(not shown) is zero everywhere. The solid curves show the SLC design
whereas the dash-dotted curves show §; and 8, in the detuned 8* = 30 mm
configuration described in Section 3.2 of the main text.

. Dispersion Measurement Technique. To measure the lattice dispersion of a

section of beam line from A to B (here represented as a single bend magnet)
the beam energy is increased from E to E + AE and the beam deflection
at point B, Az, is measured using 8 BPM. The dispersion is Az/(AE/E).
If the beam dispersion at A is sero then this is a measure of n,B, the beam
dispersion at B. In practice the dispersion is obtained by averaging over
a scan of several different beam energies, and at each energy point Az

is measured by taking the average of several BPM readings on successive
beam pulses.
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4. The First Telescope Dispersion Correction. The borizontal (upper figures)
and vertical (lower figures) dispersion is shown before (left) and after (right)
correction, using an example of data taken during the 1987 SLC commis-
sioning. Note the changes in scale. In each figure the error bars on the
solid curve show the results of simultaneous dispersion measurements on
the electron beam using BPMs in the SLC North Arc and the n-Matching,
First Telescope and Chromatic Correction Sections of the North Final Fo-

cus. The solid curve is a series of straight lines joining these measurement

points. The dotted curve is a series of straight lines joining points showing
the corresponding value of the design dispersion at the location of each of
the BPMs. After correction the measured dispersion in the n-Matching and

First Telescope Sections is very close to the design values.

5. An example of a transverse scan of the electron beam at the Interaction
Point, using wire scanner data from the 1987 SLC commissioning. Unfold-

ing the 3.5 micron size of the wire target gives a corrected beam size of 4.6

microns.
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VIL.4 “Operational Experience with Optical Matching in the SLC
Final Focus System”

This conference article summarizes the experience acquired with the optical tuning
algorithm developed for the final focus. The algorithm and some of the control software
are reviewed, and a comprehensive set of measurements are presented. The algorithm
has allowed to focus spots at the collision point with transverse sizes of 3 to 5um, and to
diagnose its various components. The residual beam size at the collision point is limited by
a somewhat larger than nominal emittance delivered by the linear accelerator, and by the
requirement to minimize backgrounds in the detector, from which a larger than nominal
3* parameter must be used.
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ABSTRACT

In the SLC Final Focus System, all components of trans-
verse phase-space and the couplings between them must be con-
trolled to minimize the beam size at the interaction point. After
summarizing the experimental algorithm and the on-line tuning
programs, we present a consistent set of measurements and de-
scribe our present understanding of the various contributions to
this beam size.

INTRODUCTION

The Final Focus System! (FFS) is the last section of beam-
line in the Stanford Linear Collider (SLC) before the interaction
point (IP). Its main function is to maximize the luminosity by
focusing the beam to the smallest possible size. Because the
beam has a finite emittance and energy spread, a nominal beam
size of 2 um at the IP can only be achieved with elaborate aptics
where higher order aberrations are carefully minimized.? In op-
eration the FFS must also be tunable to absorb focusing errors
accumulated in the transport lines upstream and in the FFS
itself.3 Effects from such errors manifest themselves primarily
as linear mismatches between the transverse phase-space of the
injected beam and the FFS optics, and must be corrected be-
fore the final focusing works properly. An experimental tuning
algorithm has been developed® to achieve these corrections, and
extensive operational experience has been acquired.*

Initially it was thought that this tuning would be used as
an overall correction for mismatches accumulated in the entire
SLC, or at least in the Arcs: except for a few special cases, it is
possible in principle to absorb optical distortions of up to a fac-
tor of four.? It was also thought that variations would be tuned
continuously in the FFS. Neither appears to be feasible. Elimi-
nation of backgrounds® in the detector from electromagnetic de-
bris and muons produced when beam-tails strike aperture limits
upstream of the matching elements requires a nearly matched
phase-space at injection. Thus, major mismatches must be cor-
rected upstream, and in practice only small adjustments are
made in the FFS. The main limitations to continuous optical
feedback are lack of orthogonality in the corrections and the fact
that the only place available to diagnose all the distortions is the
higher order corrected focal point at the IP. As a result of non-
orthogonality, even modest variations in the incoming phase-
space can require extensive re-tuning. These weaknesses result

Work supported by the Department of Energy, con-
tracts DE-AC03-76SF00515, DE-AC02-T6ER01112, DE-
AC02-86ER40253, DE-AC03-81ER40050 and DE-AMO03-
76SF00010.

from adding-on the optical and background tuning strategies to
a design where the basic architecture was already fixed, and
suffered from severe space limitations.

Operationally, the optical tuning has evolved towards de-
termining a stable set-up. Partly because the Linac emittance
presently exceeds the design value by a factor of about three
in the horizontal plane’ the optics must be configured with
a larger than optimal f-function at the IP (3*), in order to
reduce backgrounds generated in the last quadrupoles by the
beam tails. The larger #* and Linac emittance limit the at-
tainable luminosity. Phase-space parameters are monitored rou-
tinely to distinguish stable changes from spurious ones, and to
base corrections on time-averaged quantities. After reviewing
the optics, the tuning strategy and the on-line programs used,
we describe measurements made with the electron beam in the
last run (September 1988). Similar results have been obtained
with the positron beam.

SUMMARY OF OPTICS

The FFS consists of four telescopic modules (Fig. 1). Opti-
cal demagnification is achieved in the first and final telescopes,
which straddle a chromatic correction section where the intrinsic
first-order chromaticity of the beam-line is compensated. The
Arc lattice - and S-functions are matched in the n-match sec-
tion and in the first telescope, respectively.

The optimization of the chromatic correction is the central
point of the design.? The Chromatic Correction Section (CCS)
consists of two —1I telescopes, combined with dipoles at the foci,
to generate significant energy dispersion at the quadrupoles.
Sextupoles, where the focusing strength varies linearly with ex-
cursion, are put near the quadrupoles to provide additional fo-
cusing proportional to energy. This allows cancellation of the
intrinsic first-order chromaticity. Additional first-order pertur-
bations to the imaging produced by each sextupole are made to
cancel over the length of the CCS by appropriate symmetries. In
this way, all residual perturbations are pushed to second-order.
The effective 8* can thus be written:

5 2
i = e gk g o

where x),2 3 measure the magnitudes of the residual second-order
chromatic and geametric perturbations, ¢ is the emittance, and
8E is the fractional energy spread.

The effect of the chromatic correction is to broaden the en-
ergy band-pass over which rays are imaged to the same IP focal
point. The width of this band-pass scales roughly as /& (if

* PRESENT ADDRESS: LABORATOIRE DE L'ACCELERATEUR LINEAIRE,
BAT. 200, Orsay, FRANCE 91405

t UNIVERSITY OF CALIFORNIA, SANTA Cruz, CA 95064.

t UNIVERSITY oF CoLORADO, BOULDER, CO 80309.

§ CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CA 91125.
4 UNIVERSITY OF MICHIGAN, ANN ARBOR, MI 48109.
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Fig. 1. Schematic of the Final Focus. The four
quadrupoles used for dispersion corrections are
shown cross-hatched, and the siz quadrupoles used
for betatron corrections are shown shaded.

only the term in «; from (1) is used).? Defining it quantitatively
as the band of energy deviations for which ﬂ:ﬂ <1.258% it is
+0.5% for #* = 16 mm, and +0.22% for #* = 4 mm. With-
out chromatic correction, it is less than +0.05% in both cases
(Fig. 2).

emittances from correcting only these ten distortions. is close
to 4r/(1 4+ r)?, where r is the ratio of the smaller to the larger
emittance.® The reduction can become severe for r < 1/4.

The distortions are best characterized by what matters phys-
ically at the IP:

1. Five correlations of positions to angles and energy:
021,043, 032 = —04, Nz and 7y, corresponding respec-
tively to longitudinal offsets of the waists in both planes at
the IP (we refer to these as offsets of the in-plane waists).
cross-plane coupling (by analogy we refer to this as an off-
set of the out-of-plane waist), and residual spatial disper-
sion. The waists must be positioned to within some frac-
tion of the depth of focus 8* of the demagnifying optics.
and the dispersion 7 must be tuned to less than /€5* /6
to avoid dominating the final spot size. _

2. Five terms affecting the angular spread at the IP: 022, 044.
031 = 042, Nz and 7y, determine the band-pass of the
optics. This is illustrated in Fig. 3, which shows the lu-
minosity L versus 8* for an energy spread of 0.002 (1/3*
is taken as a measure of the overall angular spread)®. If
the band-pass is larger than the energy spread. linear op-
tics dominates and L drops as 1/3*. If it is smaller, L
is dominated by second order chromatic and geometric
perturbations and drops rapidly with decreasing 3* [see
Eq. (1)]. The optimum occurs when the band-pass and
energy spread are matched. For energy spreads of 0.002
now achieved!?, opt = 4 mm. This defines the optical

limit to the luminosity.

Correction elements for the above ten distortions are shown
in Fig. 1. The waists are corrected with trim windings on two
of the last quadrupoles just before the IP, and with a skew
quadrupole just upstream. The betatron angular spread is con-
trolled with one skew and two upright quadrupoles in the first
telescope. These, combined with the waist controls, form an ef-
fective zoom-lens. Spatial and angular dispersions are corrected
by perturbing the n-match with-two pairs of upright and skew
quadrupoles.!}
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CORRECTION SCHEME

We describe the four-dimensional transverse phase-space
with the usual’ beam-matrix o, where gi; = < ziz; >. The
matrix ¢ has eight free terms if the emittances ¢; and ¢, are
set. With the four dispersion functions 7., 1., 7, and n,, we
thus need twelve parameters to describe an arbitrary optical
mismatch. For the SLC, equal emittances e; = ¢, are speci-
fied. In this case, two of the four cross-plane coupling corre-
lations — 031, 741,032, 042 — are redundant.® With the condi-
tion o071 = 043 = 0 at the IP, this redundancy takes the form
a31 = 042 and 032 = —0y4).

The tuning strategy is designed for this case and thus in-
volves ten corrections. It can be shown that the maximum lu-
minosity reduction factor, which results in the case of unequal

TUNING STRATEGY

The flow diagram in Fig. 4 summarizes the experimental al-
gorithm. Because each correction is coupled to the ones down-
stream, they must be applied sequentially.

After matching the input dispersion, the core of the program
is to bring the beam to a focus at the IP in a condition such that
the phase-space parameters can be correctly measured at that
point. Therefore, the initial set-up has a purposely enlarged 5*
of 30 mm, with the sextupoles tuned to suppress the first-order
chromaticity. In addition to reducing backgrounds, this helps to
avoid having the beam size at the IP dominated by the second
order chromatic and geometric perturbations. It is also a guess
of the most probable direction for the angular spread correction.
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Fig. 3. Optical luminosity versus B* in the
chromaticity-corrected Final Focus, for an energy
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Fig. 4. Flow-diagram summarizing the applica-
tion of the 10 linear optics adjustments required
to minimize the IP spot. '

. In order to decouple the final in- and out-of-plane waist
adjustments (one of the angular spread corrections) the min-
imization of the cross-plane o4, correlation is applied first.!?
Then the beam is brought to an initial focus by correcting the
in-plane waists. This, if residual angular dispersion is present,
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and if the o4 correlation has been imperfectly minimized, helps
to diagnose residual spatial dispersion and cross-plane ¢3; and
041 correlations in the IP beam size. It thus reduces the num-
ber of iterations of waist and dispersion corrections needed to
minimize the beam size. In the case of unequal emittances, the
two cross-plane correlations cannot in general be simultaneously
made zero. In this case, it is advantageous to set the out-of-plane
waist correction to minimize the beam size in the plane with
the smaller emittance (typically the vertical plane). Finally. to
maintain the minimization of the first-order chromaticity, the
sextupoles are refitted after each major optical adjustment.

After this, and unless the angular spread at the IP is too
large in spite of the §* = 3 c¢m configuration, scans of the in-
plane waists can be used to measure phase-space parameters at
the IP. Inferred values of 3* are used to calculate angular spread
corrections, and of ¢ to compare with measurements in the rest
of the machine.

ON-LINE MATCHING PACKAGES

An on-line modeling and fitting package is required for dis-
persion and betatron angular spread corrections.!?

For dispersion matching, the input consists of ., and 7,
measured at chosen strip-line beam position monitors, and, op-
tionally, at the wire targets!* which are used to diagndse the
beam at the IP. The data are obtained by recording beam mo-
tion correlated with varying the energy in the Linac. The n; and
ny values consistent with the model are determined from a fit to
the measurements and give 7., 1., 7y and 7, at the entrance to
the FFS. The strengths of the four correction quadrupoles in the
n-match section are then varied to minimize the four dispersion
terms at the end of the first telescope or at the IP.

For corrections to the betatron angular spread, the waist
measurements at 8* = 3 cm are used to specify an initial di-
agonal beam o-matrix at the IP. The o-matrix at the entrance
to the FFS is calculated from the model. The six quadrupole
strengths of the zoom-lens are then varied in a fit to give a new
diagonalized o-matrix with the desired §* at the IP. To help
convergence, considerable flexibility is incorporated, including
multistep fitting and choice of which o- and R-matrix elements
to include in the x? function to be minimized.

The waists are also adjusted through automated proce-
dures, which record beam profiles measured with the wire-
targets at the IP, while stepping orthogonal combinations of the
two trim windings on the last quadrupoles, or the nearby skew
quadrupole.l® Estimates of 3* and ¢ are obtained by fitting

€

2
g

o’ =8 + (2)

to the in-plane waist data, where Af is the displacement of the
waist at the IP along the beam direction. Because the squares
of the beam sizes vary parabolically, the optimal correction is
found, by symmetry, even if the minimum beam size is less than
the wire size.

INPUT DISPERSION MATCH

Figure 5 shows measurements of the lattice dispersion, mea-
sured in the n-match, First Telescope and chromatic correc-
tion sections, before and after correction. Variations serve
to diagnose changes in the set-up of the Arc and are usually
correctable.!® In this Figure the horizontal (upper figures) and
vertical (lower figures) dispersion is shown before (left) and af-
ter (right) correction, using an example of data taken during
the 1987 SLC commissioning. Note the changes in scale. In
each figure the error bars on the solid curve show the results
of simultaneous dispersion measurements on the electron beam

using BPMs in the SLC North Arc and the n-Matching, First



Telescope and Chromatic Correction Sections of the North Final
Focus. The solid curve is a series of straight lines joining these
measurement points. The dotted curve is a series of straight lines
joining points showing the corresponding value of the design dis-
persion at the location of each of the BPMs. After correction
the measured dispersion in the n-Matching and First Telescope
sections is very close to the design values. Such measurements
are performed routinely to monitor the match. They are usually
repeated to average out trajectory fluctuations during the mea-
surement which can mimic dispersion mismatch. The match has
been observed to be stable over periods of days to weeks.
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Fig. 5. The First Telescope dispersion correction.

CROSS-PLANE COUPLING CORRECTION

Figure 6 shows the correction for the tilt in the spot on a
phosphor screen near the Final Triplet (ST4 in Fig. 1). A tilted
spot at that point corresponds to a finite o4y correlation at the
IP. This is done manually by adjusting the skew quadrupole in
the first telescope. The correction is difficult to set accurately
and reproducibly because of changing bearn tails and saturation
effects on the screen. A fit of the 0,3 correlation coefficient using
the digitized profile may improve this. The available correction
range is large, but the practical range is severely limited by
perturbations caused to the trajectory of the opposing outgoing
beam, which must pass off-axis through the skew quadrupole be-
fore reaching the final beam dump. A procedure for controlling
cross-plane coupling within the Arc has been developed, which
mitigates this problem substantially.!” Such control has reduced
coupling in the lattice to about 50% and has brought the FFS
skew corrections to acceptable values, although this is not fully
stable and depends on the ratio of emittances at the Linac exit,
as described above.

WAIST ADJUSTMENTS AT THE IP

Figure 7 shows an example of a waist scan (in the vertical
plane). Such scans are done routinely, allowing minimum beam
sizes of 3 to 5 um to be attained.

DISPERSON CORRECTIONS AT THE IP

There can be significant residual dispersion in the IP beam
size, even after the input dispersion has been matched, due to
imperfections in the FFS lattice or in the beam trajectory, or
from energy-position correlations in the phase-space at the end
of the Linac. Dispersion from the FFS can be measured by
the online package described earlier. Corrections with the four
quadrupoles in the n-match section are practical for moderate
dispersions (n7p < 2 mm). Larger dispersions, however, can
require extreme corrector strengths which, in turn, also distort
the betatron phase-space.

=cm—
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Fig. 6. Approzimate correction of cross-plane cou-
pling in the IP angular spreads, looking at the tilt
in the beam shape on a screen at the high-8 point
in the system.
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Fig. 7. Minimization of the vertical IP beam

size by displacing the vertical waist with an or-
thogonal combination of trim windings in the last
quadrupoles.

A complementary scheme for empirically minimizing resid-
ual spatial dispersion at the IP makes use of closed steering
bumps in the chromatic correction section. Such orbit distor-
tions generate spatial dispersion at the IP, through the first-
order chromaticity of this section. For the range of inter-
est, second-order chromatic and geometric perturbations remain
small. An example of successfully applying this method to min-
imize the spot at the IP is shown in Fig. 8. In combination with
the lattice dispersions measured in the first telescope and at the
IP, this method has allowed separation of lattice dispersion gen-
erated in the Arcs and in the FFS. Since the spatial dispersion
introduced by this bump to minimize the spot size has coincided
with the previously measured lattice dispersion at the IP, it has
been possible to put an upper limit on beam dispersion at the
end of the Linac.

BETATRON PHASE-SPACE DIAGNOSTICS AND
ADJUSTMENTS AT THE IP

History plots of ¢ and $*, estimated from in-plane waist
scans performed after iterating the waist and dispersion correc-
tions to minimize the spot at the IP, are shown in Fig. 9.

The emittances ¢, and ¢, were mostly larger than nominal
and reflected, in most cases, larger than nominal values in the
Linac. The $* values were larger than the expected optimum
of 355 = 4 mm needed to optimize the luminosity, and resulted
from requiring a small enough angular spread to minimize beam
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Fig. 8. Correction of residual dispersion at the
IP, by minimizing the spot size with a closed
dispersion-generating trajectory bump in the CCS.
The parameter 2’KICK is the magnitude of the
kick applied by a steering dipole located at the up-
stream end of the CCS. A corresponding dipole at
the downstream end is used to close the bump.
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Fig. 9. History plots of the emittances and j-
functions inferred from in-plane waist-scans at the
IP. The effect of an initial attempt towards reduc-
ing the vertical 3-function is indicated. As can be
seen, at the end of the run, emittance measure-
ments performed simultaneously at the end of the
Linac and at the IP gave consistent results.

tail-induced backgrounds in the last quadrupoles. In some cases,
larger than nominal effective e and §* values were also obtained
because of an imperfectly corrected phase-space at the IP. The
data in Fig. 9 are therefore generally upper limits of actual val-
ues.

A first attempt to enlarge the (vertical) betatron angular
spread is indicated by an arrow in Fig. 9(d). The effect from
this was clear but smaller than expected, and may have been
partially offset by an upstream variation. Such adjustments will
have to be iterated in order to reach the expected optimum value
of Bop = 4 mm.

167

The last values in the plot were obtained in the final run
before the September 1988 shutdown. Dispersion at the IP gen-
erated by trajectory errors and misalignments was measured and
minimized with the bump technique described above. This, and
several iterations of the waist corrections, resulted in emittances
close to the design value in the vertical plane and too large in the
horizontal by a factor of three. This was consistent with mea-
surements performed simultaneously at the end of the Linac.®
showing that the final beam sizes at the IP were not dominated
by chromatic effects, and that the residual cross-plane coupling
from the Arc did not significantly enlarge projected emittances.
At that time, the linear phase-space at the IP was thus correctly
estimated from these measurements.

CONCLUSION AND PROSPECTS

The experimental algorithm developed for_the FFS has en-
abled beams focused at the IP with 3 to 5 um transverse sizes to
be attained, and the various contributions to the residual beam
size to be diagnosed.

The residual beam size is presently limited by the larger
than optimal 8* (dictated by detector backgrounds) and by the
somewhat larger than nominal Linac emittance. The reduction
in luminosity from this is about an order of magnitude. In ad-
dition, a small loss in attainable luminosity arises from not fully
correcting the cross-plane coupling in the case of asymmetric
emittances. This loss can be up to about 25%, with the current
emittance ratio of one to three.

In the next run, a new collimation system will be available at
the end of the Linac which, combined with the existing slits and
with additional muon shielding that has been installed in the
FFS tunnel, will enable beam tails to be cut more efficiently.
This, coupled with progress in maintaining a nominal phase-
space at the injection to the Arcs, and in reducing the §-function
at the IP, should enable the optical limit to the luminosity to be
reached.
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VIII. REPORT ON GENERAL STATUS
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VIII.1 “Recent Progress at the Stanford Linear Collider”

This article describes the main advances in the commissioning of the SLC, during the
spring, summer, and winter 1988. The seminar concentrates on the start-up of the arcs
and final focus, which were the main activities in those periods.

.
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RECENT PROGRESS AT THE STANFORD LINEAR COLLIDER*
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*ABSTRACT
A status report on SLC commissioning is given, with special emphasis on
recent progress in the Arcs and Final Focus.

—

INTRODUCTION

The Stanford Linear Collider (SLC) has two main goals {1].. The first is the production of high
lum-iﬂosity electron-positron collisions for studying the physics of the Z°. The second is to test linear

colliders as a new approach towards future high-energy machines.

Circular colliders, where counter-rotating electrons and positrons are stored, are not easily extrapolated
to very high energy because of copious synchrotron radiation emitted in the bends. Both size and cost
scale [2] as E? for an optimized design. Linear colliders avoid this by accelerating beams in linacs to the
desired energy and by aiming them at each other on each pulse. More favorable scaling is predicted, but
not fully established, and new problems exist. Besides the acceleration mechanism, a special challenge is
the small collision point beam size needed to make up in the luminosity for low crossing rate. At the SLC,
it is about 2 pm in radius. Both elaborate optics and emittance reductions via radiation damping are
required. Considerable effort is also needed to preserve and control phase-space through the system. The

SLC, serving to explore such problems, is an important learning experience.
PROJECT OVERVIEW

Table 1 shows the basic parameter specifications [3,4]. The design luminosity is ambitious and will
take several years to reach. Initial parameters are projections based on recent progress. Fortunately, even

a thousandth of the design luminosity allows to do some interesting physics.

Table 1. Basic parameters for the SLC.

Design Goal Initial Goal Achieved Units
Beam energy at IP 50 46 46 GeV
Beam energy at end of linac 51 47 53 GeV
Electrons at entrance of arcs 7 x 10%° 10%° 3.5 x 1010
Positrons at entrance of arcs 7 x 101° 1010 0.9 x 10'°
Repetition rate 180 120 Hz 10 Hz Hz
Normalized transverse emittance 3x10°8 10 x 1075 3-10 x 10~5 rad-m
at end of linac (electrons)
Spot radius at IP 1.6 4 pu ~4pu pm
Luminosity 6 x 10%° 6 x 10%7 - em~? gec™!

*Work supported by the Department of Energy, contract DE-AC03-76SF00515.

Invited talk presented at the 19°™ Ecole de Physique des Particules, Marseille-Luminy, France,
September 7-11, 1987 and at the CERN Accelerator School, Berlin, Germany, September 14-25, 1987
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Figure 1 shows the entire SLC complex. Two electron bunches are generated and co-accelerated to
1.2 GeVin the Injector [5]. At 200 MeV, they are joined by a positron bunch. The three are then injected
for cooling into two Damping Rings (6], from which they are extracted before the next linac pulse. The
existing SLAC Linac has been upgraded |7] and co-accelerates them to 50 GeV. The 6 mm equilibrium
ring bunch length is compressed to 1.5 mm before injecting into the Linac in order to minimize wakefield
effects there. The last electron bunch is ejected onto a target at 33 GeV, to produce [8,9] positrons. These
are returned along the length of the Linac to the 200 MeV point in the Injector. At the end of the Linac,
electrons and positrons aré Brought into collision through two Arcs {1,10]. The Final Focus System [11-13],

straddling the interaction area, demagnifies and steers the beams into collision.
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Fig. 1. The Stanford Linear Collider (SLC).

Commissioning and tests of successive stages have been ongoing since the Fall of 1981 and throughout
the construction period (Fall 1984 to Spring 1987). Subsequently, much work has been devoted to the
newly installed Arcs and Final Focus Systems, with continuing improvements upstream in the Linac, the

Electron and Positron Sources, and in the Damping Rings. In this paper, we review the Arcs and Final
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Focus activities in detail. The general status of the project, reported on numerous occasions [3,14-18], is

briefly summarized.

LINAC AND SOURCES

Injector [5]

The Electron Source and Injector are specified to provide two bunches of 7 x 10'° particles with a
momentum spread within the Dampitig Ring acceptance of £1%. Invariant emittances must be smaller
than 180 x 10~% mrad at 120 Hz operation. These goals are met easily for 5 x 10!° particles per bunch

and the system is stabilized through computer controlled feedback.
Damping Rings [6] -

" The Damping Rings have provided the design invariant emittance of 3 x 10~% mrad at 1.2 GeV. Both
rings are operational but useful current extracted is limited to about 2 x 10!° particles per bunch because
of bunch lengthening. The origin of this effect is excessive longitudinal impedance from discontinuities in
the vacuum chamber. It is possible to extract larger currents, but the bunches can then not be compressed
in the ring to linac transport because of limited aperture. Short-term fixes have included opening up
this aperture, and inducing quadrupole oscillations to precompress the bunch within the ring just before

extraction.

Some reduction of the impedance can be achieved by installing sleeves inside the bellows, to smooth

out the transitions there.

Such fixes are expected to help bring the current up towards the design value. In the short term, the

system is adequate for operation at 101° particles per pulse.
Positron Source [8,9]

At 33 GeV in the Linac, the second electron bunch is ejected onto a W-Re target to produce positrons.
These are captured in a high gradient acceleration section and confined through solenoidal focusing. They
are then transported at 200 MeV back to the beginning of the Linac for reinjection. The biggest issue is to
increase the yield of daréxpéd positrons reinjected into the Linac per electron incident on the target. Prior
to the Fall 1987 shutdown, this yield was down about a factor two due to combined failure of the capture
gection, which could not be operated at the design 40 MeV/m gradient, and the DC solenoid, which had
developed turn-to-turn shorts. This hardware has now been replaced. The solenoid is working properly
but the capture section still works more reliably at a reduced gradient. The yield has improved slightly
but has not yet been pushed to the design value. 1 x 10!° positron bunches have been obtained at the end

of the Linac.
Linac 7]

The Linac has been upgraded with about 200 new 67 MW klystrons {19]. Energies up to 53 GeV

have been measured, but running-in is at 47 GeV to produce collisions at the Z°. Co-acceleration of

101° electrons and positrons is fairly easy and common automated beam guidance is operational. The

energy spread can be minimized to .2 to .3%, and work is ongoing to improve launch and energy feedback
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stabilization into the Arcs. Optical matching, important to preserve emittances, is underway both at the
injection and throughout the lattice. A klystron management program, enabling automatic scaling of the
lattice to match to a varying klystron population, is being tested. Invariant emittances between 3 and

10 x 105 mrad are at present obtained at the end of the Linac for both beams.

ARCS

Summary of Optics Goals [1,20]

w——

The Arcs are designed to bend the beams without significant dilution of transverse phase-space. Two

mechanisms must be counteracted.

The first effect results from synchrotron radiation. The photons, emitted at random, cause energy
fluctuations. Lower energy particles are bent more and follow curvés with ‘shorter average radius. This
disperses their trajectories incoherently which enhances horizontal phase-space. Such trajectories execute
betatron oscillations in the quadrupole lattice. To minimize the growth, both photon emission rates and
oscillation amplitudes must be small [21,22]. This is achieved by making the bending radius large and the
betatron period short, through tight focusing. As can be shown [1], the growth is proportional to Tg‘ /o4,
where Tj is the betatron period and p the average radius. Alternating gradient transport modules with the
lowest possible field compatible with the SLAC site are therefore used. The packing factor is maximized
using combined function magnets, and the lattice chosen to minimize the average invariant amplitude of
the dispersed oscillations. For a FODO array, the optimum [23] cell phase-shift to minimize emittance
growth is near 135°. For reasons explained below, the adopted design uses 108°. At 50 GeV, the emittance

added in one passage is [1] 1.5 x 10710 rad-m, or one-half of the design value.

The second mechanism for phase-space dilution arises through residual energy spread resulting from
the bunch length and the accelerating Linac RF [24]. Because of energy dependance in the focusing, or
chromaticity, optical distortions from gradient errors are not imaged coherently. For example, an off-
energy slice of a mismatched phase-space transmits with a phase-shift Ay ~ 2xNzbég where 6g is the
relative energy error and Ng the number of betatron periods. For a large phase-shift, the overall mismatch
averaged over all energies looses its phase relation to the input. The effective volume occupied by the
observable phase-space is thereby enlarged. Such chromatic filamentation is illustrated in fig. 2, where a
normalized phase-space with area one but amplitude two distortion gradually fills up an area of two. With

Ng =270 in the Arc and for o = 0.5%, the spread in betatron phases at the output is about oy =~ 0.7 7.

This effect can be controlled in tv;o ways. In an active approach, it is reduced with careful energy spread
minimization [7) and good trajectory and optics matching into and through the Arc. In the adopted passive
approach, sextupoles are used to cancel the chromaticity. Accumulated errors are thus imaged coherently
and the final correction can be concentrated in the Final Focus. From a purely optical standpoint, this
eases requirements on upstream control. In practice and as we shall explain, much upstream control is

still necessary to maintain detectable luminosity.

Sextupoles were introduced by shaping the combined function magnet poles [10]. For the horizontal

optics, the vertical component of the magnetic field may be expressed as:

By(z) = Bo(1 - Qz + Sz?),
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Fig. 2. Nominal phase-space (a), distorted by optical mismatch (b), filaments (c) into a
larger area when not correcting the chromaticity of the lattice.

where>Q and S are the quadrupole and sextupole strengths. The sextupole provides additional focusing
for off-energy and off-axis rays with £ = éz + g7, where 5 is the dispersion function, which suppresses the
chromaticity if 2 Sn = Q. Since sine and cosine-like components are equivalent modulo 7/2 in a repetitive
lattice, only one family per plane is needed. Additional terms in z? and 6? for rays solely off-axis or off-
energy are suppressed by grouping cells into reasonably local cancellations. Second-order achromats [25)
achieve this by pairing sextupoles 7 phase-shift apart into superperiods with the smallest possible multiple
of 27 compatible with the cell phase-shift. In the SLC Arcs, each superperiod is 67, consisting of ten 108°
cells. This is a compromise between achromat compactness, best with 90°, and quantum growth, smallest

near 135°. .

The price to pay for using sextupoles is a lattice sensitive to misalignments. A poorly controlled trajec-
tory generates erect and skew gradient errors through the sextupole which add to magnet imperfections [26)
and enhance optical distortions. This lead to stringent magrnet to magnet alignment tolerances {20} of about
100 pm. '

The efficacy of the chromatic correction was tested by comparing a set of betatron oscillations at two
energies. An example of this is shown in fig. 3, where the input beam was deflected horizontally on-energy
and 400 MeV off-energy. Overlaying the plots shows no phase difference.

Nonplanar Geometry

Commissioning revealed another problem. Although the beam [10] was steered through the North
Arc early on with little loss, spots measured at several stages neither reproduced‘ nor agreed with the
design, and the beam injected in the Final Focus for hardware tests would not fit in the aperture easily.
At times, loss also appeared in the Arc, pointing to suspected mechanical problems with the vacuum
chamber or the magnet movers used for steering. In attempts to probe available aperture with beam, it
was found that launched oscillations coupled strongly from one plane to the other with growing amplitude
(see fig. 4). Measured n also showed coupling and amplification. The origin of this was the nonplanar
geometry dictated by strongly varying site elevation, and large installation errors in magnet positioning.
Achromats were rolled at their interface to folldw the terrain, and big couplings correlated with the largest

rolls.

In the original design, rolls were matched in pairs one or more achromats apart for long-range sup-

pression of the coupling, and this was sensitive to deviations in the 6 n7 phase-advance, from systematic
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Fig. 3. Betatron oscillation at the end of the Arc, on-energy and 400 MeV off-energy. The
chromatic correction suppresses any phase-shift.
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Fig. 4. Cross-coupling of betatron oscillation in the North Arc. Large coupling occurs at
the largest rolls.

gradient errors. Such errors initially exceeded the specified design tolerances [1]. Effects can be large as
cross-coupling oscillations each time see out of phase optics in the other plane. At a 10° roll, the cou-
pling [27] can be 100%. Overall sensitivity of the betatron size is shown in fig. 5 from TRANSPORT 28],
for systematic errors of 3° per cell in each plane. Measured errors were smaller and accounted for a factor
three to four overall growth. This was not sufficient to explain the large spots observed in the Final Focus,

indicating that the Linac phase-space was not fully controlled.
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.. Fig. 5. Growth of betatron spot size in the Nogth Arc, for systematic errors of 3° per cell
in each plane.

Phase-Fix and Roll-Fix

Average achromat phase-advances were measured fitting sinusoids to betatron oscillations, and cor-
rected by physically moving magnets, and by combining trim windings in each achromat and a global
imbalance between F and D magnets set up in a separate circuit. This phase-fix, which was limited by
measurement errors, brought errors in the North Arc to within about 0.5° per cell. Owverall betatron
growth was reduced to a factor 2 and n was essentially matched. The South Arc, only partially corrected,
still had large growth. Phase-space injected in the North Final Focus was also reduced, enabling an initial

optics program for small IP spots to proceed, but remaining growth, still amplifying variations, would

often result in uncorrectable cases.

Splitting up major rolls into smoother transitions was proposed fo reduce the sensitivity to systematic
gradient errors. It was first found {29] empirically that rolling D lenses near roll transitions by half the
total amount suppressed cross-coupling of lattice . For the betatron motion, an approximate correction

scheme was found by splitting rolls in three parts, each a cell apart and with magnitudes satisfying:
o_lc—"2l/3 + 60+ 0+1ei21r/3 =0,

as for a matched trajectory bump. Figure 6 illustrates the combined roll-fix transition and relative roll
ratios. Simulated [30] improvements are shown in fig. 7, for a sample of random and systematic errors, in
the as-built and roll-fixed Arcs. Reduction of the growth of spot sizes at the end of the Arc from roll-fix
is a factor 1.5 to 2. -
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Fig. 6. Roll-fix transition.
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Fig. 7. Growth of betatron size at the end of the Arc, for as-built {(white area) and roll-fixed
(shaded area) lattice.

Present Status and Plans

Both Arcs have been roll-fixed and recommissioned. In the South, a slightly smoother transition {31}
is installed. With proper launch, n is matched throughout. The sensitivity of the betatron motion from
systematic gradient errors is reduced, but random erect and skew quadrupole errors still cause some
blowup and cross-coupling, although more gradual in nature [see fig. 8 (a)]. Cures involve empirically
varying phases in troubled aréas to reduce the coherence in the buildup, much as tunes are adjusted away
from resonances in circular machines. Such a detune-fix {32] is shown in fig. 8{(b) where blowup was reduced

by disconnecting the FD-imbalance, thus causing about a 1° per cell difference between X and Y phases.

Another planned [33] cure consists of exciting harmonic [34,35] gradient perturbations with a pattern
of trim windings, to suppress damaging Fourier components in the errors at twice the betatron frequency.
Although this will be required for the final optimization, beams are now routinely transported to the Final

Focus with distortions which can be absorbed by optical matching there.

FINAL FOCUS
Summary of Optics Goals [11-13]

The primary goal is to focus both beams to a small transverse size of about 2 um. This would be
easy for small enough transverse emittances and energy spreads. The limiting effect is the chromaticity of
the focusing system needed to demagnify the beams, which as was described in the Arc causes both sine
and cosine-like trajectories to be shifted for different energies. For a simplified Final Focus (see fig. 9),
the contribution to the betatron spot size from chromatic aberration is oprom 2 21*0po;, where o} is the
IP angular size and /* the distance from the principal plane of the final lens system to the IP (a factor
two is put in since at least two lenses are used to focus both planes). The effect would be tolerable if
eop < 032/21*. This is not the case in the SLC Final Focus, where ¢ =~ 1.5 um, € ~ 3 10~1° mrad,

op ~0.002 and I* = § m, amounting to 07, ,,, =~ 4 um.

The reduction in luminosity, computed [36] by averaging the usual expression over the two beam’s
energy distributions, is shown in fig. 10 (dotted lines) versus 8*, for the as-built Final Focus. With og =

0.002 and B, =~ 1.5 cm, the luminosity is reduced by a factor 3.5.
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Fig. 8. Growth of a betatron oscillation in the South Arc, before (a) and after (b) detune-
fix.

A Chromatic Correction Section (CCS) is introduced upstream of the final'lens to cancel this effect.
In a simplified CCS, two dipoles of strength B, separated by 2!..,, are imaged by a quad with focal length
lees/2 (see fig. 9). Near the quad is a sextupole of strength S, through which rays with energy deviation
6 travel off-axis. This produces a stronger overall quad for ég > 0, which must here offset the weaker
focusing in both final and CCS quads. The largest contribution to the chromaticity is from the final lens.
Equating it to the effect from the sextupole, we find that $ o R;/M B, where M = {*/L and R, = {*/1?

ccs’

Additional aberrations in 8% and 6%, as in the Arc, are suppressed by pairing the sextupoles m phase-
shift apart and by assuring sequential symmetry for n. The section departs, however, from a pure second-
order achromat through the bends, placed where angular spreads are large to minimize synchrotron ra-

diation emittance growth. The real system [11-13], designed to focus achromatically in both planes, is
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Fig. 9. A simplified Final Focus System.
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Fig. 10. Luminosity loss versus §*, with second-order chromatic correction (solid line) and
without (dotted line).

telescopic and uses triplets instead of lenses. This suppresses [12,37] the cosine-like terms in z6g,yég and
minimizes [13] the sine-like chromaticities in 88,46, while demagnifying in both planes. Two interleaved
sextupole families are used to correct both planes. Coupling effects between these can enhance third-order
aberrations and must be minimized. If we neglect the final lens system, the three dominant terms in 06}5,
8265 and 6° scale like S?B%0}0; M, S?Bogo;*M? and S%0;3M3. Substituting for the sextupole, we get
E&i%é:)‘_/” &z"—lgm and B"M%M For given phase-space volume, space constraints and desired 8*,
the overall effect from these aberrations can be minimized by adjusting {1} M,B and S to balance them

out.

The overall effect of the chromatic correction is shown in fig. 10 (solid line), from MURTLE [38]). As
expected, removing all second-order aberrations raises L™%* and reduces Bopt- The optimum is now limited

by leftover third-order terms. As it is more peaked, it is also more sensitive to proper matching.
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The entire system is shown in fig. 11. Two additional sections are included to match the Arc n and
pB-functions. Extraction of the opposing beam is also provided, in the f-match section, through a pulsed

magnet and septum.
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Fig. 11. Schematic of the Final Focus System.

Variable Matching [36)

Both the volume and shape of the input phase-space can be perturbed by imperfections. Errors
generated within the Arc are in principle stable, but the linac is more variable as the energy profile
depends on the set of klystrons used to accelerate. This set can change as faulty ones are exchanged for
spares, and the phase-space then varies unless the fdcusing is rescaled. Also, mismatch at the Linac input
flaments through the chromaticity of the Linac lattice, if and when the energy spread is minimized at the
end but not locally. Good matching in the Linac is especially important at high current, when large local
energy spreads are used to stabilize [39] transverse wakefields. Ongoing efforts have improved controls in
the Linac, but some variations still exist. These are then further amplified by distortions in the Arcs.

The Final Focus includes adjustable matching mainly for static errors accumulated upstream. In
establishing a proper setup and while work on stability proceeds, this matching is also used to some extent

as an overall variable feedback. This is not optimal for several reasons, as will be explained.
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Enhanced emittances or energy spread are uncorrectable. Larger €;,; are a major concern for both
luminosity and detector backgrounds. The purely optical damage is slightly worse than linear because of
third-order aberration, giving [36] L o e~ # for Bopy e}, Third-order effects from a larger o are apparent

“in fig. 10, showing close to linear loss with o and weak dependance on §8°. The tolerance on o is about
0.005.

Optical distortions in the Arcs are mostly linear [40] and are correctable within some bounds. The
primary set enhances ¢* by correlating positions with angles or with dg, amounting to axially offsetting
the waists, z-y coupling‘(?:d’ or y# terms) or anomalous n;y. The waist must be corrected to within the
depth of field #* =~ 0.5 cm; 1;y must be smaller than 1 mm. A second set enlarges o* by perturbing
IP angular spreads (< 6% >,< ¢* >, anomalous 74,4 and 8¢ coupling terms). Smaller spread increases
B*, leading to £ o 1/8* from linear opt_ics. Larger spread reduces §°, but also enhances higher order

contributions, leading to rapid loss. From fig. 10, 8* must be within £50%.

Optical corrections: In the design e,‘= €y case, the betatron phase-space can [36] be perturbed in
only six independent ways. With the four dispersions, 1n;¢ 4, there are thus ten independent distor-
tions in total. We represent them by those for which tolerances were given: the five IP angular sizes
< 6% >,< ¢?* >,< 8¢ > and ny 4, and the five correlations of IP positions to angles and energy < z6 >,
< yp >, <yb > (or < z¢ >) and n;y. The Final Focus is equipped to correct these ten distortions. If
€; # €y, the six betatron variables chosen do not fully describe [41] the phase-space and more correction

elements are needed.

Dispersion is corrected in the n-match with four quads [13), installed in pairs 7/2 apart, to control
spatial and angular terms, respectively. Each pair consists of an erect and a skew quad to correct both
planes. Naturally orthogonal for small input error, these correctors are coupled if it is large. Correction
range is mainly limited by quad strengths, but some values of the input make the correction singular; for

example, when q::’;”"“‘“‘ exactly cancels n%"“c. In this case, control is required upstream.

Correctors for betatron mismatch straddle the CCS. The three angular terms are adjusted upstream of
the CCS with two erect and one skew quad. The three waist terms cannot be adjusted there independently
of the angular terms. They are taken out with trims on two of the final quads and a second skew quad.
Correction range is about £50 x * for waists and a factor four in either direction for angle spreads. The

scheme is shown in fig. 12.

Optically, the system can correct as large as factor three mismatches. In practice, large distortions are

not handled well for two reasons.

The first is lack ¢.>f orthogonality in the corrections resulting from severe space limitations. The three
waist corrections can internally be made orthogonal (42], but all the others are coupled. This is the
case for the two skew quadrupoles, for the sextupoles, which must be refitted after betatron matching
as the correctors straddle them, and for the extraction, which straddles two of the variable lenses and
must be reoptimized after betatron matching. The n-correction is also non-orthogonal to the S-match,
particularly [43] for magnified or demagnified optical configurations. Operationally, modest variations are
amplified by distortions remaining in the Arcs, and can require extensive reoptimization. Effort is therefore
directed both towards improving the Arc lattice and towards correcting variations in the Linac, to avoid
feeding back on them in the Final Focus.
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Fig. 12. Optical matching inthe Final Focus System.

The second reason is the background induced in the detector by beam-tails impinging on tight apertures
at the injection to the Final Focus. These apertures as well as some adjustable collimators are upstream of
the main match%ng elements. Harmful background from hits on these apertures can result from otherwise
correctable distortions. Recent experimental work [44] indicates more stringent tolerances on input errors
from this viewpoint. This may require introducing further optical corrections in the Arcs, and redeployment

of some collimators upstream.
Tuning Strategy and Initial Results

In this section, we describe single-beam optical adjustments in the Final Focus. Combined adjustments
of several SLC systems to produce and maintain luminosity with tolerable background are ongoing and not
described here. Similarly, two-beam tuning and steering methods are described elsewhere [45,46]. Some

initial beam tests are reported.

We first match [47] n from the Arc. Strip-line beam position monitors are used to measure beam
motion versus energy. This does not give position-energy correlations in the bunch if anomalous n exists
where the energy is varied, but gives a good estimate if the Arc is (as expected) the dominant contributor.
Using a model, we determine n:";‘:;"‘g““' from a least-square fit to the measurements and calculate the

correction. An example of this is shown in fig. 13.

Trajectory errors within the Final Focus can also generate n at the IP. Correction is achieved by
undoing some of the upstream match, although this also affects [43] waist-corrections and must be the

result of a combined fit.

Betatron mismatch is best diagnosed near the IP, where angular and spatial sizes are naturally sep-
arated. The three angular terms, < 82 >, < ¢* > and < 8¢ >, are first adjusted crudely looking at a
nominally round spot on a high-3 screen upstream of the Final Triplet. An example of this is shown in

fig. 14, where the action of the upper skew quad is seen and where the beam has close to the design size.

This does not give 8* if ¢ is unknown. Also, if waist offsets are large, design size at the high-f screen
does not correlate well with IP angular size. For better determination, spot sizes are measured at the IP, by

scanning the beam across a thin 5 um secondary emission wire target (48], as functions of the three waist
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4 Fig. 13. On-line matching of the vertical dispersion function at the injection to the Final
Focus. (b) shows mismatch before correction. (a) shows the effect of the correction. Please
note the change of scale.

controls, starting with the second skew quad. Neglecting changes in IP angular spread, 8* and e are found
fitting e4* + 3‘: to the square of the beam §ize. Angular spreads are well determined from the parabolas
branches, but both € and B* estimates suffer if the linear spot is not resolved. This arises through residual
cross-coupling, only partially correctable for €, # ¢, and through third-order aberration present before
fully matching the S-function. Sextupoles must also be fitted in the perturbed lattice before scanning the
waists, to maintain good second-order correction. Measured ¢ and 8* values serve as input for fitting the
six B-matching quads towards design phase-space parameters. Both on-line and off-line models [47,49,50]

are used. An empirical search around the calculated 8* is also planned for optimization.

Relatively small spots were sometimes obtained originally by only scanning the waists. An example
of this is shown in fig. 15, where a2 5 um spot was obtained, with sextupoles turned off all together. The

phase-space had to be rather close to nominal for this to be possible. As input parameters changed, small
spots did not always reproduce.

More recently, the tolerance to input variations has been widened by running with a 8* = 3 cm lattice,
as a starting guess of the most probable angular spread correction needed. Also, improvements have been

made on stability and matching upstream. Beams with smaller than 5 um sizes are now relatively easy to

reproduce for both electrons and positrons with only the three waist-scans.
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Fig. 14. Crude correction of cross-coupling in the IP angular spreads, looking at the tilt
on a screen at the high-8 point: (a) before correction; (b) after correction.
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Fig. 15. First measurement of “small spot” at the IP.
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SUMMARY STATUS AND NEAR FUTURE

Commissioning is now proceeding rapidly towards an initial low luminosity physics run. Both beams
are routinely extracted onto their dumps, and reasonably small beam sizes are usually reproduced at the
IP. Main priorities are phase-space controls and stability in the whole machine neeaed to maintain small
spots, background reductions and general system reliability and operability. A shift towards operation has
been made to assure more continuity in the commissioning and a more global approach towards stability
and tuning issues. The Mark II detector, installed on the beamline during last year's shutdown, has
been turned on a few times to help look at backgrounds. Stuaies indicate that collimators may have
to be redeployed from the Final Focus to upstream places where beams can be comfortably trimmed
without generating excessive muons in the detector. Also, enhanced optical matching in the Arcs through
harmonic corrections is being considered for early installation, to help reduce distortions in the Final
Focus. Extrapolating our recent rate of progress, and with some well-deserved luck, we hope to produce
and detect a hundred Z° before Summer 1988. '
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IX. CONCLUSION
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In this thesis, we have developed, tested and analysed the methods for optical tuning
in two sections of the Stanford linear collider: the arcs and the final focus. These methods
have enabled to reach a quasi-optimal set-up.

In the arcs, we have proposed and studied a design modification reducing harmful
effects from the rolls, introduced in the lattice to enable following the terrain of the SLAC
site. This modification has made the system much more tolerant to systematic errors.

We have also proposed and studied a new optical tuning method for the arcs, consist-
ing of introducing focusing perturbations at the most efficient harmonics of the betatron
frequency. This method has allowed, on the one hand, to make the optical transfer close
to perfect, and on the other hand, to adjust the beam empirically at the entrance to the
final focus section, to minimize backgrounds produced by mismatches in the phase-space.

In the final focus section, we have designed the optical correction and optimization al-
gorithm. This algorithm has enabled beams focused at the interaction point with three to
five micron transverse sizes to be attained, and the optical factors limiting the luminosity
to be identified. These factors are mainly the requirement to operate with a 3*-parameter
larger than the theoretical optimum, by a factor of five to ten, resulting from the back-
ground generated by beam-tails in the last quadrupoles.

190



APPENDIX: REPORTS AND PUBLICATIONS ON THE BEAM-BEAM
DEFLECTION DIAGNOSTIC METHOD
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A.1 “Beam-Beam Deflections to Measure Spot Size and
Offset at the SLC IP”

This collider note contains the original proposal and description of the beam-beam
deflection method. This method allows to detect the interaction of the beams when they
interact at the collision point. It is presently the primary method used to optimize the
beams in collision.
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SINGLE PASS COLLIDER MEMO CN-303
AUTHOR: P. Bambade DATE: June 10, 1985

TITLE: BEAM-BEAM DEFLECTIONS TO MEASURE
SIZE SPOT AND OFFSET AT SLC IP

PART 1: CALCULATIONS

As soon as two SLC beams make it to the IR, both transverse offsets, spot sizes
and shapes can be extracted from the pattern of angular deflections produced by the
electromagnetic interaction of the two beams, as one is scanned across the other. These
deflections, measured in two high resolution Beam Position Monitors (BPM) mounted
symmetrically on both sides of the IP (Fig.1), will produce detectable signals allowing
spot sizes to be tuned, even with the very low luminosities expected at turn on. They
will also furnish a good signal to monitor beam centering and will therefore become an
important part of the FFS feedback system.

This note summarizes the formulae which will allow us to correlate BPM offset
readings with the properties of the two beams, and describes the range and limitations
of the technique in the case of SLC.

Further work needed includes simulations, specifications for the feedback system,
such as its algorithm, veto conditions and so on, aswell as integration of the beam-
strahlung signal into the diagnostic scheme.

I Basic Principle

The angular deflection produced by the interaction of a SLC beam with the elec-
tromagnetic field of its colliding partner (see fig. 1) is easily expressed in the simplified
case of a round target beam and a point size probe

1—exp [—w—'Az]
_ —2T¢ NT - 20’5—.

where r, is the classical radius of the electron, « the relativistic factor, Nr the number
of particles in the target, or its RMS transverse size, and A the impact parameter of
the probing charge.

Deflection versus impact parameter is shown in fig. 2 for targets with 2.5 and 10 um
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transverse spot sizes respectively.
The basic principle of the methed is three-fold:

1. Initial beam finding: One beam — the probe in this case — is temporarily sup-
pressed and BPM readings are compared before and after. In the case of initially
large impact parameters, the magnitude of the difference is inversely proportional
to the transverse offset at collision point and its sign tells in which direction to
steer.

2. Beam centering: Scanning the probe across the target and recording a plot similar
to fig. 2 will allow optimal centering of the two, by looking for the zero deflection
symmetry point.

3. Spot size tuning: Since the slope of the deflection at the above mentionned sym-
metry point is inversely proportional to the transverse cross-section of the target,
the same measured plot will allow spot sizes to be infered and thus minimized.

In all three cases, the sensitivity of the method is based on the fact that relative
rather than absolute position information is used.

Of course, the simplifying assumption of round target and point size probe is not
likely to be satisfied, and the problem therefore needs to be parametrized in two di-
mensions.

II Formulae

The following results are valid for collisions between gaussian, un- pinched beams.

a. Deflection of point charge

The deflection of a point charge colliding with a target consisting of a two dimen-
sional gaussian charge distribution can be written (1,2)

—2r. N. o 202 +t 203 +t
82y = =L Az,y,/; 7 & dt (2)

v (20,2,2'; + t) 3 (20%%3 + t)1/2)

The aspect ratio is defined by f = or,/or,. For f =1, (2) reduces to (1).

The two deflection angles are shown in fig. 3 - 5 as a function of impact parameters
in both planes, for Ny = 5-10° particles. Figures 3.a,b and 4.a,b correspond to round
beams (f = 1) with o, , = 2.5 and 7.5 um respectively, whereas fig. 5.a,b correspond
to a flat target with o7, = 25.0um and o1, = 2.5um (f = 0.1). Note the change in
vertical scale going from fig. 3 and 4 to 5.
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In the limit of large impact parameters, both target and probe are well approxi-
mated by point charges and (2) reduces to

—4r, Nt Ay
GZ,y = ,; A2 _,z_yAZ (3)
z y

Turning off one of the two beams and comparing BPM readings before and after
then allows, via (3), to measure initial offsets.

Taking the limit for small impact parameters gives the linear dependance

0 ~ —2T¢ NT Az’y
= v or, (o1, + or,)

(4)

Measurement of the slopes of the deflections as a function of impact parameters
will then allow, via (4), to infer the two transverse sizes of the target beam to be tuned.

b. Form factor accounting for finite probe beam size

When the two beams are close, the average deflection measured in the BPM is
reduced due to the finite size of the probe. This can be accounted for via the convolution
of the probe density distribution with (2). The result of the calculation is summarized
in two-dimensional form factors, by which the slopes in (4) are reduced, and given by

Fi(f, Ry, Ry) = Fy(1/f, Ry, Rz) =

1+ f [ dt (5)
2 /0 (1+t)[1+R§+t]1/2[f2(1+R§)+t]1/2

where R; and Ry are the ratios of probe to target transverse sizes in both planes
(Rzy = op,,/0T,,). As is consistent, the form factors become one for small R:y and
zero for large R;y. The functions are shown in fig. 6 and 7 for target aspect ratios

f=.1and f=1.
In the special and initially unlikely case of round target and probe beams (R; =

Ry =R, f =1), (5) reduces to

o 2
FRaund (R) = Lg(%}?:_) (6)

The corresponding plot is shown in fig. 8.
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III . Application to SLC : Numbers and Ranges of Utilization

a. Limitations

Three types of limitations are anticipated. The main and most obvious one is
the performance of the measuring BPMs. The better their resolution, the smaller the
measurable offsets and the more effective the method. We hope for 20 um or better on
a single pulse. Particular attention has to be payed to their directivity, since beams
will be measured from both directions. Harmful synchrotron radiation present in the
environmeat will furthermore have to be masked.

The second limitation, the stability of the beams, is a fundamental limitation of
SLC and is common to all colliding beam diagnostic and tuning procedures.

A third difficuly arises from the non-gaussian, assymmetric distributions expected
as a result of Linac wakefields and Arc non-linearities. Beam finding at large impact
parameters is not affected, but the pattern of deflections shown in fig. 2 and 3 will be
distorted to the extent that a lot of charge is carried by the tail. This and uncorrelated
tilted z — y distributions of the two beams, due to errors, will make the patterns hard
to interpret. Fortunately, tuning for maximum slopes will always lead us in the right
direction in the same way as beamstrahlung can be tuned for maximum emission power.

b. Scaling laws and relation to luminosity

The scaling laws are more favorable at low luminosities for this technique than for
other beam-beam related signals.

The deflection at large impact parameters, which will be used for initial beam
finding, scales as Ny /A, as can be seen from (3).

The maximum deflection produced as we scan the beams across each other to
minimize spot sizes scales as Ny /or, or as the root of luminosity.

c. Beam finding and centering

Initially, a first SLC beam will be threaded, at low repetition rate and intensity,
through Arc and FFS, and to its dump. After best possible optimization of transmission
and optical parameters, the above operation will be repeated with the other beam.
BPMs on both sides will then be used to match the two orbit as well as possible. After
this is done, the two beams will miss each other at the IP by offsets of a few hundred
microns, which accounts for limited absolute BPM accuracy and alignment errors.

Bringing the two beams into collision, in preparation for spot size measurements,
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will have to be done at full intensity since upstream wakefields, which affect the pa-

rameters to be tuned, are intensity dependant. Turning one of the two beams off
momentarily will then produce an offset of

—2Np,r. 1 .
ARPM ~ ‘“_’Y—‘e'zdzp—»BPM (7)

in the BPM located 2.5 meters away. When this offset is large enough to be resolved,
so that we know that the beams feel each other, they can be centered by mapping
out two dimensional surfaces similar to those shown in fig. 3 to 5, in order to find the
symmetry points.

Assuming 20 um resolution, the range of utilization can be written

Nr[5-1019) >

A[100pm] ~ 28 (&)

This means that at Ny = 5 - 1019, signals will be measurable when the beams pass
within 350 um of each other.

c. Spot size minimization
The maximum offset produced in the BPMs, during the above described mapping

can be approximated by

2Nrr,
Yor

lARBPM| ~
maXx

. FRound(l) . dlp - BPM (9)

or

Nr(5-101]
BPM ~ 2000 ———— 10
IAR lma.x[#m] or(2.5 um] (10)
Also here assuming 20 um resolution, the range covered is
.10l0
Nrls: 107 5 s (11)

or(2.5pum|] ~

which corresponds to a luminosity of 4 - 10%° cm~2s~1
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A.2 “Beam-Beam Deflections as an Interaction Point
Diagnostic for the SLC”

This conference article gives a more detailed description of the experimental method
and an outline of the diagnostic hardware used.
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Abstract

A technique is described for non-destructive measurement

and monitoring of the steering offset of the electron and positron -

beams at the interaction point of the SLC, based on using
stripline beam-position monitors to measure the centroid of
one beam as it is deflected by the opposing beam. This tech-
nique is also expected to provide diagnostic information related
to the spot size of the micron-size beams.

1. Introduction

The electromagnetic force acting between two intense col-
liding beams of oppositely cha-ged particles will cause them to
be deflected in passing by an angle that depends on the off-
set between the bunches, and the distribution of charge within
the bunches. This deflection, measurable with nondestructive
techniques, is expected to be the key to the final steering of
the ete~ beams in the SLC. More generally, the beam-beam
deflection phenomenon is a measurable manifestation of the
collision of micron-size beams and is applicable to any large
future linear collider.

In an et ¢~ storage ring with a purely magnetic guide field,
the counter-rotating beams follow exactly the same central tra-
jectory and thus head-on collisions are unavoidable. There is
no a priori reason why this should be true in linear colliders,
however. In any linear collider, inciuding the SLC, the op-
posing beams must be actively steered into collision guided by
some observable that is sensitive to the impact parameter. Us-
ing state-of-the-art strip-line beam position monitors (BPMs),
it may be possible to direct the two beams independently to
the intended interaction point with an accuracy of perhaps
100 um. In order to achieve acceptable luminosity with the
SLC, the beams must be steered to within about one beam
radius (about 2 um) of each other. It is in this regime, far
below the resolution limits of single-beam diagnostic devices,
that the beam-beam deflection is strongest.

3. Basic Formulae

The angular deflection produced by the interaction of an
SLC beam with the electromagnetic field of its colliding part-
ner can be estimated analytically in the simplified case of two
round Gaussian beams (see Fig. 1). Realistically, the beams
are not expected to be round and gaussian until the final fo-
cus optical tuning is completed, a procedure that requires that
the beams be colliding. A two-dimensional parametrization
for the collision of two beams with transverse distributions of
arbitrary flatness and orientation is given in Ref. 1.

The deflection of a single particle of charge ¢, passing at an
offset A from the centroid of an oppositely charged Gaussian
distribution, is given by:

« Work supported by the Department of Energy, contract
DE-ACO03-76SF00515.
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Fig. 1. The trajectory of each beam is deflected
by the opposing beam passing at an offset A,

S4424:

02) = -2:NT 1 - exp[~ A? /20

- SV

where r, is the classical radius of the electron, v the relativis-
tic E/m factor, Ny the number of particles and o the RMS
transverse size of the Gaussian distribution.

When the beams pass with offsets large compared to their
transverse sizes, they see each other as point charges and (1)
is a good approximation for their mutual deflection. When
colliding with a small offset, the finite sizes of the beam dis-
tributions must be taken into account. This can be done by
convoluting (1) with the distribution of the opposing beam.
The result of such a calculation, carried out in the limit of
small A, is expressed in terms of a form factor which reduces
the average deflection:

cothey @)

Here R is the ratio of the transverse sizes of the two beams.

Deflection versus offset is plotted in Fig. 2 for 50 GeV
beams consisting of 5 x 1019 particles, with transverse spot
sizes 0 of 2, 5, and 10 um. 10 um is the estimated size of the
beams at the SLC interaction point before optical corrections
are made. Magnet setting errors and misalignments contribute
to this estimate. By adjusting the final focus corrector mag-
nets, o can be reduced to about 2 um. The above form factor
has been incorporated in the curves as a multiplying reduction
factor, assuming in each case R = 1.

3. Deflection Detection

F(R) =

Several methods have been studied for detecting and mea-
suring the beam-beam deflections. The most obvious is to use
a pair of BPMs stradling the interaction point. If the drift
length “lever arm” is long enough, a deflection at the L.P. will
result in a measurable position shift at the BPM. The power
of this method can be greatly enhanced by suppressing the op-
posing beam on some pulses and watching the measured beam
jump back to its undeflected position. To make this possible,
a pair of special pulsed magnets, the “single-beam dumpers”,

Contributed to the Stanford Linear Accelerator Conference,
Stanford, California, June 2-6, 1986

206



0.6 T T T T T T T

0.4 N:5x10'C e /puise ]

0.2

(mrad)

e

-0.2

-0.4 .

-40 -20 0 20 40
BEAM/BEAM OFFSET  (um)

6 86 5442A2

Fig. 2. The deflection angle © as a function of offset
A, plotted for three spot sizes.

will be provided upstream of the final focus to kick either beam
out of the transport system on command.

In principle, the beam-beam deflection can also be observed
with conventional screen profile monitors located in the paths
of the outgoing extracted beams as they are transported to
the dumps. In the SLC, such measurements will be possible in
the vertical dimension only. Deflections in the horizontal plane
will be obscured by the momentum dispersion introduced by
the extraction septum magnets. As part of a planned upgrade
for the north extraction line,? it will be possible to cancel the
dispersion with additional magnets to enable deflection mea-
surements in both the horizontal and vertical dimensions. In
any case, position measurements in the extraction lines provide
essentially no information about the absolute position of either
beam near the L.P., because of the large number of magnets,
traversed by the outgoing beam before reaching the extraction
line. However, relative position shifts can be measured using
devices in the extraction lines in conjunction with the single-
beam-dumpers mentioned above to give a useful measure of
the deflection at the LP.

Another approach is based on detecting beamstrahlung ra-
diation. This is the name given to the synchrotron radiation
emitted by each beam as it is deflected by the other. The an-
gular distribution of this radiation, strongly peaked forward in
the direction of the outgoing beam, can be measured with a
suitable detector along a line of sight but quite distant from
the interaction point.?

4. Application to Steering and Tuning Procedures

A three-step tuning procedure is envisioned:

1. Initial beam finding: One beam - designated the “target”
in this case - is momentarily suppressed with a single-
beam dumper while position measurements are made on
the “probe” beam. In this way, the shift induced by
the target beam can be determined. When the offset
between the beams is large, the magnitude of the shift
is inversely proportional to the offset and its sign tells in
which direction to steer. This can be seen by taking the
limit of (1) for large A:

0(8) = “""TNT % . 3)
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2. Beam centering: Scanning the target across the probe
and recording a plot similar to Fig. 2 for the probe will
facilitate optimal steering of the two beams. The zero-
deflection symmetry point in Fig. 2 is reached when the
beams are perfectly centered.

3. Spot size tuning: Taking the limit of (1) for small A and
multiplying by the form factor (2) gives:

—re Np A
——= = F(R) . ()

0(8) =
The slope of the deflection of the probe beam near the
sero-deflection symmetry point is inversely proportional
to the cross-sectional area of the target. By differenti-
ating (1), it can be seen that the deflection is maximum
for offsets of about 1.6 standard deviations of the target
distribution, and that the maximum deflection scales as
the inverse of the transverse spot size:

2r, Nt il_
o

Omes = 0.451 (5)
A relative measure of spot size can thus be obtained by
scanning one beam acroes the other as in Step 2 above.
Guided by these measurements, an operator can adjust
optical elements of the transport system to minimize this
final spot size.

The procedures described here are based on relative mea-
surementas of the outgoing beam position at locations where the
angular deflection produced in the collision leads to a trans-
verse position shift. Many of the BPMs in the outgoing trans-
port system have suitable phase shifts from the IP to be used
for this purpose. The best locations, however, are in the final
optical transformer quadrupoles, where the S-functions reach
their largest values, thereby magnifying the deflections the
most, and where dispersion is negligible, (which minimizes con-
fusion with energy variations). Three BPMs, near quadrupoles
Q1, 3 and 4, are planned for this purpose® (Fig. 3). Each has
an effective optical lever arm of about 3 meters. Position shifts
corresponding to a wide range of IP parameters can be resolved
at these locations.

SINGLE-BEAM DUMPERS

Pulsed Magnet
Beam Absorber =7

FINAL FOCUS
Q1 Q2 Q3

xy xy

Air-Core\ \S'eermq
Dither Coils Dipoles

BPMs / 506

S44243

Fig. 3. Schematic of beamline components relevant to
the deflection technique.



The useful range of these techniques, i.e., the maximum
offset that still gives a measurable deflection, is limited only by
the ability of the BPM to resolve beam centroid movements.
For example, assume the BPM near Q1 can resolve the centroid
position of a single bunch of § x 10° particles to a level of 20 um.
It will then be possible to detect relative beam-beam offsets up
to a maximum of:

Nr
A(um) ~ 40 m . (6)
For larger beam currents, it may be possible to do better than
the limit indicated in (6), because the BPM resolution also
improves with increasing current. By chopping one beam off
and on using the single beam dumpers and averaging over
many pulses, the resolution can be improved further. Al-
though marginal at low intensity, this beam finding technique
should bridge the gap between the usual orbit matching meth-
ods which rely on absolute BPM accuracy to steer the beams
independently to the IP, and techniques based on Juminosity-
related signals, such as beamstrahlung,! disruption imaging,?
and the Bhabha scattering rate.

5. Dynamic Errors and Corrections

It is expected that even when the static crossing errors
have been corrected as described above, the two beams will
not remain centered on each other without an active feedback
system. Many sources of drift and jitter that could cause the
beams to wander at the IP have been identified. In most cases,
these effects can be minimized with careful attention to rei-
evant hardware designs. Magnet power supplies, for exam-
ple, must be well regulated, and support structures must be
rigid. Natura! ambient ground vibrations at frequencies above
1 Hz have been shown® to be negligible, although some local
man-made vibration sources such as reciprocating pumps could
cause problems if not isolated. On a slower time scale, thermal
effects will cause mechanical support structures to expand, and
power supplies to drift enough to adversely effect the luminos-
ity unless steering corrections are made. Studies of feedback
schemes for the SLC have focused on simple and relatively slow
algorithms, although the BPM electronics, control system, and
other key components are being built to allow pulse-by-pulse
feedback to accommodate faster or more complex schemes.

A simple feedback algorithm for correcting relatively slow
drifts is based on automatically suppressing one beam periodi-
cally using the.single beam dumper. Of course, the luminosity
would be sacrificed on these occasional pulses, but they would
enable a steering correction to be computed from the measured
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position shifts of the outgoing beam. Because each measured
deflection can correspond to two possible offsets, the operation
has to be carried out frequently enough to ensure that the ac-
tual offset does not drift outside the domain of the IP, bounded
by the deflection maxima, in the time between updates. This
approach is probably adequate to track the thermal expansion
of support structures and other mechanical effects.

An approach that does not require sacrificing any beam
pulses would be to excite small “dither coil” dipoles (Fig. 3) in
a pre-programmed way to induce small periodic offsets at the
IP, with an amplitude of a fraction of a standard deviation. In
this way, one beam can be made to trace out a pattern such as
a small circle at the IP. The deflections of the opposing beam
will then project the same pattern at the BPM. When the off-
set between the beams corresponds to a point on a steeply
rising positive slope in Fig. 2 (beyond the 1.6 o peak on either
side), the projection is a magrified image of the dither pattern.
When the offset is less than 1.6 o, the projection is an inverted
image of the dither pattern. Synchronous position measure-
ment would then allow a determination of whether the beams
were colliding within or beyond 1.6 standard deviations of each
other. If necessary, a correction could be applied to bring them
back to within one 0. The sign of the deflection would indi-
cate the direction in which to steer. In both these algorithms,
corrections are applied using steering correctors immediately
upstream of Q3.
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A.3 “Observation of Beam-Beam Deflections at the Interaction
Point of the Stanford Linear Collider”

In this publication, we report the first measurements of beam-beam deflections at
the SLC. The successful application of this method to maintain the beams in collision is
described, with a summary of the experimental limitations.
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ABSTRACT

We report the first direct observation of the electromagnetic deflection of high
energy electron and positron beams as they pass each other with small impact
parameters. Measurements of the deflection amplitude are found in agreement
with theoretical expectations. This phenomenon, which is sensitive both to the
relative position of the two beams and to their transverse sizes, has been used

successfully to optimize and maintain collisions at the interaction point of the

SLAC Linear Collider.
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The SLAC Linear Collider’ (SLC) is a novel electron-positron accelerator de-
signed to operate with center-of-mass energies around the mass of the neutral
intermediate vector boson (Z°). The frequency of collisions in linear colliders is
limited by power considerations to a few hundred Hertz, typically two or three
orders of magnitude lower than in storage rings. At these frequencies, achiev-
ing interaction rates useful for physics requires focusing the beams to transverse
sizes of at most a few microns, and then establishing and maintaining collisions
between beams with impact parameters smaller than the beam sizes themselves.
One technique which has been proposed2 for this purpose is based on measuring
the deflections produced in the beam trajectories by the coherent electromagnetic
interaction between the beam bunches as they pass near or through each other at

the interaction point (IP).

In this letter we report the first observation of beam-beam deflections, which
constitutes a crucial step in establishing the viability of the linear collider concept.
After deriving the predicted properties of the phenomenon and their dependence
on beam parameters, we describe the technique used to measure the deflections.
We then turn to a discussion of the experimental results, and conclude with an
outline of possible refinements in applying beam-beam deflections to luminosity

optimization in linear colliders.

When two oppositely charged, relativistic beams pass each other, they feel an
attractive impulse as a result of their electromagnetic interaction. The resulting
deflection in their trajectory is given by 6 = tan™! (p:/p) = (pt/p), where p; is the
transverse momentum imparted to one bunch as it passes through the field of the

other bunch, and p is the longitudinal momentum of the bunch.
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Consider the deflection of a single “probe” particle in the field of an oppositely
charged “target” bunch of N; particles, each with charge ¢, having a Gaussian

charge distribution:

3 Ny z° y2 22
Gz 9:2,02,0y,0:) = (27)%2 0,0,0, exP {_203 B 202 T 202 (n

The transverse electric field of the bunch is given by:3

2 2 2
) ex ——r S _ = -
) Nig " P { t+202 t+207 1+ 207

Ecy=-5— |—7=17— 172 1/2 172
Oz,y \/1741r600 (t+20§)/ (t+20§)/ (t+203)/

We now solve for the transverse momentum in z and y:

Pzy = /qEz,y dr =
As

y
4m €oc t+202,) (t+202)" (t+202)")*
,y y

(3)

where A, is the length of time the probe charge is in the field of the beam and Az

00 exp {— Ar Ay }
(

is the offset between the probe charge and the center of the bunch. To obtain the
right-hand side of Eq. (3), we have made the substitution cr = z and performed the
integration over 2. Equation 3 is valid when disruption effects, where the beams
induce size changes in each other during collision, are negligible. Since p = m.vyc,

we may write:

az,y =

A2 Al
—2r Ny Az,y 7 dt exp{ t+2dz t+ 20 }
2! (t+202,) (t+202)"% (

L
+
[\]
Q
(%)
N—
—
~
~

where r, is the classical radius of the electron.
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For the realistic case of a probe beam with a Gaussian charge distribution a
convolution with the expression obtained for the deflection of a single particle must

be done:

0o
<0z,y) = / / dzdy é(m —Zp,Y — Yp, Up,zo'p,y) 9x,y y (5)
—00 —00

where (6, 4) is the average deflection angle of the probe bunch (i.e.the deflection
of the center of gravity of the bunch). The density distribution of the probe beam
is G, where Zp({p) is the center and 0p,z(0py) is the standard deviation in the z(y)
direction. If we assume that the two beam spots are erect ellipses in the transverse

plane, then*

(0z,y) =

2 A2
o0 exp {— A _ = }
~2r¢ Ny Agy / it (t+257) (t+2%2) ®)

1/2 1/2
7 S (t+282) (t+252)" (t4252)Y

where A;(Ay) is now the distance between beam centers and X2 = ‘73,: + O‘;Z’I
(3 = o}, + 0f,) is the sum of the squares of the probe and target beam sizes.
The integration in this expression can be performed analytically if we assume that

¥y = ¥y = X (this includes the case of round probe and target beams). With
A= (A4 A;)l/2 the result is:

A2
—2re N Ay L—exp {-22 }
(otvy) = 7A A M (7)

Equation 7 shows, as expected, that there is no deflection either when the

beams are far from each other or when they are exactly centered. The maximum
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deflection for round beams occurs when the impact parameter is approximately
1.6 £. During its start up phase, the SLC ran with typical beam intensities of
slightly less than 1 x 1010 particles/pulse, and transverse beam sizes at the IP
of approximately 5 um, so the maximum deflections seen in this data should be
about 35 urad. At these sizes and intensities disruption effects are expected to be
negligible.

We used four beam position monitors (BPMs), two on either side of the IP,
to determine the beam deflection at the IP. These BPMs’® are captured between
quadrupole magnet pole pieces due to space limitations (Fig. 1). The four elec-
trodes in each BPM are carefully impedance-matched and are read out on both
ends into custom-designed electronics’ This allows us to measure the vertical and
horizontal positions of both beams on the same machine pulse, even though the
beams are separated by less than 30 nsec in the BPMs closest to the IP. The pulse-
to-pulse resolution of these BPMs is measured to be better than 10 um for beam
intensities of ~ 5 x 10 particles/pulse, and is expected to improve further as SLC

beam intensities increase.

Measuring positions in two BPMs on both sides of the IP independently de-
fines incoming and outgoing beam trajectories at the IP. The information from
all four BPMs is used in four separate linear fits which yield the beam position,
the incoming beam angle, and the beam deflection angle (all evaluated at the IP)
in each plane for both beams on a single beam pulse.6 While the positions and
angles of the beams at the IP are observed to be stable on a pulse-by-pulse basis
to a fraction of the measured beam size and angular divergence (typically several
hundred prad), fluctuations of this magnitude in the outgoing beam angle can still

be several times larger than the expected maximum deflection. Fitting directly
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for the difference between the outgoing and incoming angles of a given beam ef-
fectively decouples any angular motion of the incoming beam from the deflection
angle measurement. This can also be shown to reduce any static misalignments
in the BPMs to a constant offset of the measured deflection z«mgle,6 which can be

ignored for our applications.

In practice, the deflection angles for both beams are measured as a function of
the impact parameter as one beam is swept across the other in either the horizontal
or the vertical direction. These beam scans are accomplished using small air-core
dipole magnets (Fig. 1), which can increment the beam position, between machine
pulses, with a resolution of 0.05 pm. Since the beams deflect each other very little
when they are far apart, they must first be brought to within a few beam radii of
each other. This has been done.by steering the beams, one at a time, onto carbon
filaments with radii comparable to the beam size, which are inserted into the
center of the beam pipe at the IP. "8 These filaments produce secondary emission
and Bremsstrahlung signals proportional to the fraction of the beam intercepted.
The filaments, which are primarily used to measure and optimize transverse beam

sizes, stay retracted during deflection measurements.

To get the information necessary to precisely center the beams, one beam is
scanned past the other, typically over a range of +40 ym in 2 ym steps. The BPM
signals are read out on each pulse, processed, and stored by a microcomputer until
the scan is finished. The microcomputer also sets and reads back the current in the
air-core dipole magnets used to position the beams. When the scan is finished, the
microcomputer sends the scan data to a VAX-8800 computer on which the data is
analysed and displayed. The results of a typical positron beam scan in z are shown

in Fig. 2. The deflection angles parallel ((6;)) and perpendicular ({8,)) to the scan
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direction as a function of the scanned beam’s distance from its original position
are shown in Figs. 2(a) and 2(b), respectively. For approximately round beams
the data are expected to be described by Eq. (7). For real-time beam centering,
fits to the data were approximated using Eq. (7) for the in-plane deflection curve,
assuming the beams were aligned in the scanned direction, and by a Gaussian for
the out-of-plane curve. As can be seen by the curves shown in Fig. 2, the data
is consistent with these approximate functional forms, with the maximum out-of-

plane deflection occurring at the zero-crossing of the in-plane deflection curve.

Figure 3 shows a scan with one of the largest maximum deflections measured to
date. After centering the beams in z, the et beam was scanned past the e~ beam
in the y direction. The beam sizes measured prior to this scan using the carbon
filaments were o0y = 7.2 pym, oy = 3.9 um for the electron beam; o, = 4.9 pm, o, =
3.9 pum for the positron beam. The curve derived using these measured beam sizes
as input overlays the data. The beam currents, which provide a multiplicative
normalization, were adjusted to give the best fit and were found to be consistent
with currents measured by other means. The agreement between data and theory

indicates that beam-beam deflections are well understood and reliably measured.

Beam-beam deflections are a powerful tool for luminosity optimization at the
SLC. Positioning the scanned beam on the zero-crossing of the deflection curve
aligns the beams to a small fraction of the beam size. This has been the primary
method used to steer the SLC beams into collision. In most cases, the beam spots
at the interaction point are approximately round, so that meaningful fits to the
deflection data using the form of Eq. (7) can be made. These immediately yield

estimates of the beam sizes and intensities. In the future, pulse-to-pulse sampling
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of the beam deflection will be made in a feedback microcomputer which will be

used to compensate for any slow drifts of the beams relative to each other.

Beam-beam deflections may also be used to minimize the spot size at the IP.
Small changes in beam size are signalled by measurable changes in the slope of the
deflection curve through the zero-crossing point. This is demonstrated in Fig. 4,
which shows the dependence of the slope on the size of the e~ beam in z for
several different et beam radii. The electron beam size in y is assumed fixed near

its optimal value.

The relationship between the slopes of the deflection curves and the luminosity

.9
18:

_Nfy
L= y (S: +Sy) (8)

where S; and S, are the slopes of the deflection curves measured with separate
z and y scans after the beams have been centered. The repetition rate of the
collider is f. An independent measurement of the number of particles, N, in the
deflected beam is also required. The advantage in using the slopes is that they can
be accurately measured even when the beams are not round. Optimal luminosity
can be achieved by adjusting the focus of the beams to obtain the maximum
" slopes. Once this has been established, it can be monitored by checking the slopes

periodically with short scans across the zero crossing point.

In conclusion, we have presented measurements of the deflections of high-energy
electron and positron beams as they pass by each other. These measured deflections

agree with theoretical expectations. We have discussed how the deflections have
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been used to steer micron-sized beams into collision, and how they will be used for
spot size optimization at the SLC.
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Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

FIGURE CAPTIONS

Schematic of beamline components relevant to the beam-beam de-

flection measurement.

A beam-beam deflection scan of the et beam relative to its initial
position showing (a) the in-plane deflection, and (b) the out-of-plane
deflection. The e~ beam intensity was about 7 x 10° e~ /pulse, and
both beams were approximately round with ¢ = 7 um. The beams

were approximately 10 ym apart in the out-of-plane direction during

this scan.

An et beam deflection scan in y after alignment in z. The curve
overlaying the data is a theoretical calculation using as input the

beam sizes as measured by the wire filaments.

The expécted slope of the in-plane deflection curve at the zero-
crossing point as a function of the e™ beam o7 with a fixed o
of 1.5 um. Thé solid curve corresponds to a round et beam with
ot = 1.5 um, the dashed to 6% = 3.0 um and the dotted to

ot = 6.0 um. The target beam intensity for these calculations

was 1 x 1019,
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