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ABSTRACT OF DISSERTATION

Measurement of the B0 lifetime using Partial Reconstruction

We present here the first measurement of the B0 lifetime using partial reconstruc-

tion in B0 → D∗−ρ+ decay.

A sample of approximately 5500 B0 → D∗−ρ+ events were identified among 22.7

million BB̄ pairs collected by the BABAR experiment during the years 1999-2000.

With this data, the B0 lifetime is measured to be 1.616 ± 0.064 ± 0.075 ps, in good

agreement with the world average.

This measurement demonstrates that is it possible to use this technique to perform

time-dependent B0 decay analysis that is central to the measurement of the charge-

parity ( CP ) asymmetries. Investigation of CP observables through measurements

of the decays of B0 mesons is the primary goal of the BABAR experiment at the

PEP-II storage ring located at Stanford Linear Accelerator Center (SLAC). As the

B0 particle decays to final states that are directly sensitive to the CP parameter

γ are highly suppressed, a promising alternative approach is to use the final state

B0 → D∗h. Using the partial event reconstruction analysis method it is possible to

compensate for the small CP asymmetries in this decay.

Mahalaxmi Krishnamurthy
Physics Department
Colorado State University
Fort Collins, CO 80523
Fall 2002
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Chapter 1

Introduction

1.1. Topic Overview

The discovery of parity violation in 1956 by C. S. Wu [1] and collaborators in

nuclear β decays added a new perspective to the way we view nature. Prior to that

pioneering work, equations that describe the fundamental interactions were thought

to be invariant under the discrete symmetries of charge conjugation and parity. Sub-

sequently the discovery of CP violation in 1964 by Christenson, Cronin, Fitch and

Turlay [2] in the decay of neutral kaons at the Brookhaven National Laboratory

overturned the untested assumption that the product of charge and parity, CP , is a

good symmetry in nature. Motivated by this discovery Kobayashi and Maskawa pre-

dicted the existence of a b quark (the thrid generation), as more than two generations

of quarks are needed for CP violation, a year before the c quark was discovered and

four years before the b quark was discovered in the form of the Υ (4S) resonance [3].
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1. Introduction

From the Standard Model of weak interactions it is expected that in the kaon

system the CP violation is a small effect and hence an impediment to the progress in

that sector. There have been thirty-seven years of experimental studies in the kaon

system since the discovery of CP violation and only recently direct CP violation has

been observed [4; 5]. In contrast to the kaon system, the Standard Model of weak

interactions implies that the B particle decays exhibit larger CP asymmetries as you

compare things which are of the same order of magnitude. This prediction has been

demonstrated by the BABAR and BELLE experiments [6; 7]. The ultimate goal of

the B factories is to provide enough measurements on a large variety of final state

decays of the B meson to fully understand CP violation in the context of the Standard

Model or invalidate the Standard Model.

The resources required by such experiments mean that it is no longer a one nation

quest but an international effort. The manpower required by such experiments is

enormous. For example, there is a need for sub-system experts who are responsible

for the day to day maintenance of the sub-detectors, responsible for maintaining

the necessary software and to produce billions of Monte Carlo events that correctly

simulate data to understand systematic effects. The BABAR experiment is made up

of 560 collaborators from nine countries and 76 institutions from around the world.

Though the success of each measurement is due in large part to the contributions of all

collaborators, the results presented in this thesis are due primarily to the intellectual
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efforts of the author.

1.2. Thesis Overview

The goal of this thesis is to establish whether or not the method of “partial recon-

struction” can be used to do time-dependent measurements and hence the measure-

ment of sin(2β + γ). The most convincing demonstration is the measurement of the

B0 lifetime, which would be the first measurement using this technique in the mode

B0 → D∗−ρ+ and is complementary to the precise measurement of the B0 lifetime

using the standard technique of “full reconstruction” (the low statistics in full recon-

struction is compensated by the use of many decay channels). Previously, the method

of partial reconstruction has been used to do only time-independent measurements.

The advantage of the method of partial reconstruction over the traditional technique

of full reconstruction is a gain in the number of reconstructed final state events. This

is necessary to obtain a statistically significant measurement of sin(2β + γ). With

a gain in the number of signal events there is also an increase in the number of

background events that may influence the final result.

To establish the validity of a procedure one has first to establish the feasibility

to do a competitive B0 decay vertex reconstruction. A critical component is the un-

derstanding of backgrounds and their influence on the final result. One also needs to

establish a stable and reproduceable fit procedure. In this thesis we hope to demon-
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strate that the method of partial reconstruction can be used to do a time-dependent

measurement. In the course of this analysis, we have made use of numerous software

packages provided by members of the BABAR collaboration. Although we will attempt

to use generic descriptions as much as possible, as an aid to other collaborators we

provide references to BABAR specific terminology in parenthesis. These tools are pro-

vided and tested for use by the entire collaboration so that certain systematic errors

and efficiencies are common to all analyses and a common correction can be applied.

The basic theoretical background for this analysis is presented in Chapter 2. It

presents the different manifestations of CP violation. We describe the Standard Model

prediction of CP violation with emphasis on the B system. The parameter of partic-

ular interest is sin(2β + γ), in the modes B0 → D∗h, is expected to be in the order

of 2%. The details presented are a condensation of published papers.

Chapter 3 provides an overview of the PEP-II electron-positron storage ring and

the sub-system components of the BABAR detector. Though the author was not

involved in the design and construction of the detector she was a commissioner for

the DIRC, the particle identification detector, for eighteen months. She gained a

wealth of experience in the day to day operational issues of this sub-system. Some

details of the operations and performance of the DIRC sub-detector are provided in

Appendix-A.

Chapter 4 explains the selection and reconstruction of the final state of interest
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out of millions of triggered events in the data collected by the experiment during the

years 1999-2000. The special challenge is that the time-dependent CP asymmetries in

the B0 → D∗h are expected to be at a level of only about 2%. Hence a large number

of events are needed to do a significant measurement, but the reconstruction of the

D0 decay modes produced in the decay of the D∗ have a low efficiency. For a data

set corresponding to approximately 100 million B0B0 pairs the expected statistical

error on sin(2β + γ) is 0.51 for the B0 → D∗−π+ mode hence a large data sample

is required to do a statistically significant measurement. The technique to increase

efficiency is to select signal events in which the D0 is not reconstructed from its decay

products. This method of B0 reconstruction is called “Partial Reconstruction”. This

results in a much larger efficiency albeit with higher background. In this chapter

we describe the technique of partial reconstruction for event selection, which has

been successfully used by the CLEO experiment in B decays to do time-independent

measurements. The code to select events using partial reconstruction was already

available as a standard BABAR code when the author started working on it.

At the time of this analysis no time-dependent measurements had been done using

partial reconstruction in hadronic decay modes of the B0, hence it was necessary

to establish a procedure to reconstruct the decay vertex of the B0 meson and the

decay length time-difference, ∆t. It is from this point on that the author made the

most significant contributions to the analysis. Chapter 5 contains the details of the
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reconstruction of the decay vertex position of the partially reconstructed B0, and the

other B0. From the difference between the two decay positions the B0 lifetime is

derived. This difference between the two decay positions the B0 is also central to the

measurement of sin(2β + γ).

Chapter 6 describes the data and Monte Carlo simulation samples used in this

analysis. The data set used for this analysis was collected during the 1999-2000 data-

taking period and consists of 22.7 million BB̄ pairs corresponding to an integrated

luminosity of 20.7 fb−1 taken at the Υ (4S) resonance. An additional 2.6 fb−1 of data

was collected about 40 MeV below the Υ (4S) resonance and was used to study the

continuum background e+e− → qq̄ where q = u, d, s.

The final fit procedure used to extract the B0 lifetime from multiple backgrounds

requires 18 parameters. In chapter 7 the author explains the technique of the fit

method used to obtain the B0 lifetime. Backgrounds, with a signal to background

ratio of 0.6 in partial reconstruction in the final state of interest, are a bigger challenge

compared to full reconstruction where the ratio is greater than 4. Understanding the

backgrounds is imperative to this analysis.

The fits were based on a likelihood fit package that was developed for BABAR

within the ROOT frame work. The underlying minimization algorithm is the estab-

lished MINUIT package from CERN. This fit package was developed at the same time

when the author was working on time dependent fits for the lifetime measurement
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and hence the author became involved in debugging and providing feedback on the

code. This package is now a standard BABAR fit package.

Chapter 8 contains the results of the fit. It explains and quantifies the effect of

various biases to the final lifetime measurement.

As the fit technique is very involved, a simplified Monte Carlo referred to in this

thesis as a “Toy” Monte Carlo was used to test the technical correctness of the fit

engine. This provides a robust estimate of the distribution of the fit parameters,

their errors and the correlations between the parameters. In chapter 9 we describe

this process in detail.

Chapter 10 explains the systematic error evaluation in the analysis and cross-

checks that were done to establish the stability of the result. Due to backgrounds and

a complicated fit technique a number of systematic checks needed to be performed

that were not common to other BABAR time-dependent analysis. The systematic

errors that are common to other BABAR time-dependent analysis are taken directly

from them.

1.3. Analysis Review and Associated Work

The analysis detailed in this thesis has been presented at numerous BABAR col-

laboration meetings and has been reviewed by several senior collaboration physicists,

primarily Prof. Patrica Burchat (Stanford University), Prof. Su Dong (SLAC) and
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Dr. Martino Margoni (Universita’di Padova). It has been presented at the American

Physical Society Division of Particles and Fields 2002 conference by the author and

is to be submitted as a journal publication to Phys. Rev. D. Rapid Communications

As a consequence of the author’s experience with time-dependent measurements

she became involved in the preliminary steps for the measurement of sin(2β+ γ) and

also in the measurement of sin(2β) in the charmless decay of B0 → φKs
0. The latter

analysis is to be presented at conferences in summer 2002 but is not included in this

thesis.
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Chapter 2

CP Violation in the B system

2.1. Introduction

From a theoretical stand-point CP violation can be incorporated in the three

generations of quarks of the Standard Model [8], but the model does not predict

specific values for the CP violating parameters. Even though CP violation is observed

in the K and B meson system we lack a fundamental understanding of its origins

[9]. This is a critical gap in our knowledge since CP violation is a crucial ingredient

in the current efforts to explain the observed matter-antimatter asymmetry [10].

It is now believed that it is not possible to explain the observed asymmetry based

on the Standard Model alone, the parameters of the Standard Model must be fully

examined. Such tests are the primary purpose of the BABAR experiment; the goal of

which is to measure a set of CP parameters and to confirm or refute the ability of the

Standard Model to accommodate these values.
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2. CP Violation in the B system

2.2. The Meaning of Discrete Symmetries

For an operator acting on a quantum field to be physically meaningful to an

inertial observer it must preserve the Minkowski interval t2 − �x2. Such quantities are

known as Lorentz invariants. The set of continuous transformations that preserve

this interval are the familiar Lorentz transformations that comprises the product

space of rotations, translations, and Lorentz boosts. The three independent discrete

transformations that also preserve t2 − �x2 are the charge conjugation operator (C),

the parity operator (P ), and the time-reversal operator (T ).

2.2.1. Parity

The parity operator P sends (t, �x) → (t,−�x), that is it reverses the signs of the

three spatial elements of a four-vector. Thus it reverses the sign of the momentum of

the particle ((E, �p) → (E,−�p)) but leaves the angular momentum (�x×�p) unchanged.

Parity can be visualized as a mirror-image operation plus an 180-degree rotation

about a normal to the plane of the mirror as shown in Fig. 2.1.

180-degree

rotation

mirror

Figure 2.1: The parity operation :(t, �x) → (t,−�x).
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2.2.2. Time Reversal

The time reversal operator T sends (t, �x) → (−t, �x) and (E, �p) → (−E,−�p) thus

it reverses momentum and spins, and also flips the sign of the time component of a

state. This is shown schematically in Fig. 2.2.

T

Figure 2.2: The time operation shown here that reverses the direction of the spin of
a particle.

2.2.3. Charge Conjugation

The charge conjugate operator C transforms a particle into its anti-particle without

changing position or momentum or spin of the particle.

2.2.4. Field Transformation of P, C, T

The transformation properties of the various bilinear fields are summarized in

Table. 2.1, [11]. The above CP transformation rules imply that each combination of

fields that appear in the Lagrangian transforms under CP to its Hermitian conjugate.

However there are coefficients in front of these expressions that represent either a

11



2. CP Violation in the B system

Table 2.1: Summary of the action of the C, P, and T operators on bilinears of the
Dirac field; x̃µ = xµ

Term (form) C P T CPT
Scalar:S(x) (ψ̄(x)ψ(x)) S(x) S(x̃) S(−x̃) S(−x)
Pseudo-scalar: P (x) (ψ̄(x)γ5ψ(x)) P (x) -P (x̃) -P (−x̃) P (−x)
Vector: V µ(x) (ψ̄(x)γµψ(x)) -V µ(x) V µ(x̃) Vµ(−x̃) -V µ(−x)
Pseudo-vector:Aµ(x)(ψ̄γµγ5ψ) Aµ(x) −Aµ(x̃) Aµ(−x̃) -Aµ(−x)
Tensor:T µν(x) (ψ̄(x)[γµ, γν ]ψ(x)) -T µν(x) Tµν(x̃) -Tµν(−x̃) T µν(−x)

coupling constant or a particle mass. These coefficients are invariant under a CP

transformation. If any of these quantities are complex the coefficients in front of

the CP related term are complex conjugates of each other. In such a case CP is not

necessarily a good symmetry of the Lagrangian. When the rates of a physical process

that depend on these Lagrangian parameters are calculated, CP violating effects may

introduce rate differences between pairs of CP conjugate processes.

The combined transformation CPT simultaneously performs time evolution, in-

terchanging a particle into its anti-particle and a reflection of the space axis through

the origin. There is a strong theoretical prejudice against the possibility of CPT vi-

olation [12]. The most basic consequence of CPT symmetry is the equality of the

masses and lifetimes of a particle and its anti-particle. The best experimental test of

CPT comes from the neutral kaon system by measuring [13].

|mK0K0 −mK̄0K̄0| = (1.5 ± 2.0) × 10−18 GeV/c2. (2.1)

12
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From here on CPT symmetry is assumed.

2.3. Mixing of Neutral Mesons and their Time Evolution

The four pairs of conjugate neutral mesons that decay weakly, K0, D0, B0
d, and

B0
s , can each mix with their respective anti-particle via a pair of “box” diagrams;

Fig. 2.3. The ability to mix implies that the flavor eigenstates may not be equivalent

to the mass eigenstates; the observed presence of mixing (into conjugate flavor-specific

decays) implies that the mass and flavor eigenstates are in fact different. Lack of CP

symmetry implies a third set of eigenstates, CP eigenstates, which could differ from

the mass and flavor eigenstates, as will be shown.

2.3.1. Mixing of Neutral Mesons

Let us first consider the Schrodinger equation of motion for a single particle in its

own rest frame. Omitting the spatial part we get:

−ih̄∂|Ψ〉
∂t

= E|Ψ〉. (2.2)

setting (h̄ = c = 1) The solution is

|Ψ(t)〉 ∝ e−imt|Ψ〉. (2.3)

13
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q1

q2

q2

q1

W+ W−

t,c,u

t,c,u

q1 q2

q1
q2

W+

W−

t,c
,u

t,c
,u

Figure 2.3: The two mixing diagrams, q̄1, q2 can be either b, d, s quarks. These
diagrams are called “box” diagrams.

Suppose the particle is unstable and its amplitude decays according to an exponential

decay law with a decay constant of γ
2
. Then

|Ψ(t)〉 ∝ e−imte
−γt
2 |Ψ〉 ⇒ e−iAt|Ψ〉. (2.4)

Where Re(A) = m and Im(A) = −γ
2

Now let us consider a system made of two states

such that

|Ψ(t)〉 = α|X0〉 + β|X̄0〉. (2.5)
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2. CP Violation in the B system

The time evolution given is given by:

i
∂

∂t



α

β




= H



α

β




≡



m11 − 1

2
iγ11 m12 − 1

2
iγ12

m21 − 1
2
iγ21 m22 − 1

2
iγ22






α

β



. (2.6)

The m and γ parts represent the mass and decay width, respectively, of the time

dependence. Each of the off-diagonal elements can be complex. Thus a state that

starts off as a pure |X0〉 after some time is an admixture of the two states. If the

state |X0〉 and |X̄0〉 are the particle and anti-particle of each other then according to

CPT invariance m11 = m22 = m, γ11 = γ22 = γ and m21 = m∗
12, γ21 = γ∗21. Therefore

the equation of motion becomes:

i
∂

∂t



α

β




=




m− 1
2
iγ m12 − 1

2
iγ12

m∗
12 − 1

2
iγ∗12 m− 1

2
iγ






α

β



. (2.7)

The Schrodinger equation is best solved by diagonalizing the matrix [14]. The so-

lution yields two decoupled equations to represent the two mass eigenstates given

by

|XL〉 = p|X0〉 + q|X̄0〉

|XH〉 = p|X0〉 − q|X̄0〉. (2.8)
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2. CP Violation in the B system

where q and p obey the normalization condition

|p|2 + |q|2 = 1. (2.9)

The eigenvalues for the eigenstates |XL〉 and |XR〉 are given by

MH − i

2
ΓH = m− i

2
γ +

q

p
(m12 −

i

2
γ12),

ML − i

2
ΓL = m− i

2
γ − q

p
(m12 −

i

2
γ12). (2.10)

The observables are

MH −ML = ∆m = −2Re(
q

p
(m12 −

i

2
γ12)),

ΓH − ΓL = ∆Γ = 4Im(
q

p
(m12 −

i

2
γ12)). (2.11)

q

p
= ±

√√√√m∗
12 − i

2
γ∗12

m12 − i
2
γ12

,

or
q

p
=

∆m− i
2
∆Γ

2(m12 − γ12)
. (2.12)

An initially pure |X0〉 state will, therefore, time evolve as a superposition of the mass

eigenstates |XL〉 and |XH〉. The time-evolution can be fully expressed in terms of the
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physically intuitive quantities m, Γ, ∆m, and ∆Γ.

|X0(t)〉 = g+(t)|X0〉 + (q/p)g−(t)|X̄0〉,

|X̄0(t)〉 = (p/q)g−(t)|X0〉 + g+(t)|X̄0〉. (2.13)

where

g+(t) = e−imte−Γt/2(e−i∆mt/2e−∆Γt/2 + e+i∆mt/2e+∆Γt/2) (2.14)

g−(t) = e−imte−Γt/2(e−i∆mt/2e−∆Γt/2 − e+i∆mt/2e+∆Γt/2). (2.15)

2.3.2. The Neutral B System

In the case of the neutral B0 meson the theoretical expectation [15] for the ratio

∆Γ to Γ.

∆Γ

Γ
= O(10−2). (2.16)

In fact ∆ΓB has yet to be measured experimentally. On the other hand ∆m has

been measured by BABAR [16] to be 3.37 × 10−13 GeV/c2, a factor of 13 orders of

magnitude smaller than the mass of the B, 5.27 GeV/c2. The ratio [17]

∆mB

ΓB

= 0.723 ± 0.032. (2.17)
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From Eq. 2.16 and Eq. 2.17 one learns that [15],

∆mB >> ∆ΓB. (2.18)

Taking into account these observations the time evolution of the neutral B meson

Eq. 2.13 simplifies to

|B0
phys(t)〉 = g+(t)|B0〉 + (q/p)g−(t)|B0〉. (2.19)

|B0
phys(t)〉 = g+(t)|B0〉 + (p/q)g−(t)|B0〉. (2.20)

where

g+(t) = e−imte−Γt/2 cos(∆mt/2). (2.21)

g−(t) = e−imte−Γt/2i sin(∆mt/2). (2.22)

A state which is created at time t = 0 as a pure B0 system, evolves in time as a

mixture of B0 and B0 and is denoted as B0
phys. The evolution of a pure B0 state at

time t = 0 is denoted as B0
phys.

2.4. Time Formalism for Coherent BB States

This section considers the consequences of producing neutral BB meson pairs in

an e+e− collider at the Υ (4S) resonance. In this situation the B0 and the B̄0 mesons
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are produced in a coherent state of angular momentum, L = 1. Each of these particles

evolves in time as described in Sec. 2.3.2. However they evolve in phase such that up

to when one decays there is always one B0 and one B0 present. After one of them has

decayed the constraint no longer applies and the other particle continues to evolve

independently until it decays. Thus it is possible to find events with two B0 or two

B̄0, at a rate whose probability is governed by the time between the two decays.

2.5. Types of CP Violation in B Decays

There are three main types of CP violation in the B system. CP violation is

possible only when there is an interference between at least two phases. In the

charged B system only CP violation in decay is possible.

2.5.1. CP Violation in Decay

Let Af and Āf̄ represent the amplitude of the decay of B and B̄ to decay into final

states f and f̄ . The quantity
∣∣∣∣ Āf̄

Af

∣∣∣∣ is phase-convention independent and is physically

meaningful.

There are two types of phases present in the amplitudes Af and Āf̄ .

The complex parameters of the Lagrangian contributing to the amplitude will

appear as complex conjugates in the CP conjugate decay amplitude. This means that

the phases will appear in Af and Āf̄ with opposite sign. In the Standard Model,
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such phases enter only via the electroweak sector of the theory, that is, through

the Cabbibo Kobayashi Maskawa (CKM) mass mixing matrix, and are often called

“weak” phases. The second type of phase arises due to strong interactions and are

called “strong” phase. They appear in the two amplitudes with the same sign and in

general do not violate CP . The phase of any one term is convention dependent and

hence a meaningless quantity, but the difference between the phases is convention

independent and hence is a meaningful quantity.

The amplitude of a decay process can be written as a sum of three components, its

magnitude A, its weak phase eiφ and its strong phase eiδ. Then if several amplitudes

represented by decay graphs contribute to the process B → f , the amplitude Af is

written as

Af =
∑

i

Aie
i(δi+φi). (2.23)

the corresponding phase independent quantity is

∣∣∣∣∣Āf̄

Af

∣∣∣∣∣ =
∣∣∣∣∣
∑

iAie
iδi−φi∑

iAieiδi+φi

∣∣∣∣∣ . (2.24)

Thus if the phases of the amplitudes are not the same then the two amplitudes will

be different, leading to CP non-conservation. Thus the condition for CP conservation

is ∣∣∣∣∣Āf̄

Af

∣∣∣∣∣ = 1. (2.25)
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The deviation from equality is known as CP violation in decay or “direct” CP violation.

Thus direct CP violation only occurs if two terms with differing weak phases acquire

different strong phases [15]:

|A|2 − |Ā|2 = −2
∑
i,j

AiAj sin(φi − φj) sin(δi − δj). (2.26)

Furthermore the rate asymmetry can be expressed in terms of the decay amplitudes:

af =
1 − |Ā/A|2
1 + |Ā/A|2 . (2.27)

The most compelling evidence of CP violation in decay has been observed in the kaon

system at the Na48 experiment [4] at CERN and the KTeV experiment [5] at Fer-

milab. Direct CP violation is yet to be seen in the B system. Since the strong phases

that enter into measurements of CP violation in decay involve hadronic uncertainties

(which arise due to QCD gluon exchange where perturbative or symmetry arguments

can not be used), the relation of such measurements to CKM factors (see next sec-

tion) cannot be calculated from first principles, but the strong phases may themselves

be measured if the CKM factors are known from other measurements. These strong

phase measurements can then be used as an input to other measurements that have

equivalent strong phases (thus allowing the extraction of other parameters). Thus

measurements of CP violation in decay can, indirectly, provide a useful handle on
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fundamental quantities.

This is the only kind of CP violation that can occur in the charged B system.

2.5.2. CP Violation Purely in Mixing

From section. 2.3 recall that the mass eigenstates of the neutral meson system are

the eigenvectors of the Hamiltonian

|XL〉 = p|X0〉 + q|X̄0〉,

|XH〉 = p|X0〉 − q|X̄0〉. (2.28)

where

q =

√√√√m∗
12 − 1

2
iγ∗12

m12 − 1
2
iγ12

p. (2.29)

If CP was conserved quantity then m21 = e−i2ηm12 and γ21 = e−i2ηγ12 where η is some

arbitrary phase. Thus from Eq. 2.29 we have

q

p
= e−iη. (2.30)

If CP is violated :

∣∣∣∣∣qp
∣∣∣∣∣ �= 1,

q �= e−iηp. (2.31)
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This implies that q and p have different magnitudes and the CP conjugates of the

mass eigenstates clearly will differ from the mass eigenstates themselves by more

than a trivial phase. Thus the mass eigenstates will not be CP eigenstates and CP

violation will be manifest. It is purely an effect of mixing and is independent of decay

mode. Thus it may be referred to as CP violation purely in mixing or as “indirect”

CP violation.

This type of CP violation has been observed in the neutral kaon system [2]; the

discovery of CP violation in 1964 was a detection of CP violation purely in mixing.

In the neutral B system this can be measured by studying semi-leptonic decays as

they are dominated by a single decay graph and the only way CP violation can enter

is through mixing. Thus

asl =
Γ(B0

phys(t) → l−νX) − Γ(B0
phys(t) → l+νX)

Γ(B0
phys(t) → l−νX) + Γ(B0

phys(t) → l+νX)
. (2.32)

or in terms of |q/p|

asl =
1 − |q/p|4
1 + |q/p|4 . (2.33)

As discussed in Sec. 2.3.2 such effects are expected to be very small, since

∆m = O(103)∆Γ. (2.34)
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this implies that

|m12| � |γ12|. (2.35)

In the neutral B system CP violation purely in mixing is expected to be at a 10−3

level. Moreover, it is difficult to calculate |q/p| as it requires calculation of γ12 and

m12, which involve large hadronic uncertainties [18].

2.5.3. CP Violation in the Interference Between Decays of Mixed and

Unmixed Mesons

The final states, f and f̄ , that may be reached from either B0 or B0 decays can

exhibit a third type of CP violation, which results from the interference between the

decays of mixed and unmixed neutral B mesons that both decay to the same final

state. Here, the physically meaningful phase convention independent quantity is:

λ ≡ q

p

Āf

Af
= ηf

q

p

Āf̄

Af̄

. (2.36)

where ηf(±1) is the CP eigenvalue of the state f and

Āf = ηf Āf̄ . (2.37)
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If |q/p| = 1 and |Āf/Af | = 1 then |λ| = 1 and CP is conserved in mixing and decay

separately. But if

arg(λf) �= 0 (2.38)

there is a relative phase between mixing and decay, and CP is not conserved in the

interference between mixing and decay. To see this last point consider the following:

The amplitudes of the decay for the time evolved neutral B meson is from Eq. 2.20

can be written as

|〈f |H|B0
phys(t)〉| = Af (g+(t) + λg−(t)) ,

|〈f |H|B0
phys(t)〉| = Af

p

q
(g−(t) + λg+(t)) . (2.39)

This gives

Γ(B0
phys(t) → f) = |〈f |H|B0

phys(t)〉|2 = |Af |2
[
e−Γt cos2(

∆mt

2
) + e−Γt|λ|2 sin2(

∆mt

2
)

+ ie−Γtλcos(
∆mt

2
)sin(

∆mt

2
)

− ie−Γtλ∗ cos(
∆mt

2
) sin(

∆mt

2
)
]
,

= |Af |2e−Γt
[
1 + |λ|2

2
− 1 − |λ|2

2
cos(∆mt)

−Im(λ) sin(∆mt)
]
.

(2.40)
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Where Im(λ) is the imaginary part of λ Similarly,

Γ(B0
phys(t) → f) = |〈f |H|B0

phys(t)〉|2 = |Af |2e−Γt
[
1 + |λ|2

2
− 1 − |λ|2

2
cos(∆mt)

+Im(λ) sin(∆mt)
]
.

(2.41)

where the approximation |q/p| = 1 has been used. If one now forms the difference of

these rates divided by the sum, the time dependent CP asymmetry is given by

af(t) = ng
Γ(B0

phys(t) → f) − Γ(B̄0
phys(t) → f)

Γ(B0
phys(t) → f) + Γ(B̄0

phys(t) → f).
(2.42)

Where ng is the CP eigenvalue taking values ±1 and is obtained from experiment.

Thus giving

af (t) =
(1 − |λ|2) cos(∆mt) − 2Im(λ) sin(∆mt)

1 + |λ|2 . (2.43)

which is non zero if any of the three types of CP violation are present. However, in

the absence of CP violation in decay and mixing, |λ| = 1 the asymmetry reduces to

af (t) = −Im(λ) sin(∆mt). (2.44)

where t is the difference between the decay times of the two B meson, tf − tftag . This

type of CP violation is called CP violation in the interference between the decays with
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and without mixing.

2.5.4. Summary

There are three types of CP violation in the B system .

1: CP violation in decay or direct CP violation: This occurs whenever the magni-

tude of the amplitude of a decay is not the same as its CP conjugate. This is the only

type of CP violation in the charged B meson sector. It requires the presence of at

least two interfering amplitudes with different weak and strong phases, |Āf/Af | �= 1

2: CP violation in mixing or indirect CP violation: This occurs when |q/p| �= 1.

3: CP violation in interference and decay: This occurs only when the final state

is common to both the particle and its anti-particle and is due to the interference

between direct decay and a decay when the B0 meson gets mixed into its anti-particle

B0 meson and then subsequently decays into the same final state f. CP violation in

interference and decay requires arg(λ) �= 0.

2.6. CP Violation in the Standard Model

CP violation within the context of the Standard Model SU(2)×U(1) electroweak

symmetry was introduced by Kobayashi and Maskawa in 1973 with the postulation

of a third family of quarks. The b-quark was first observed in 1977. The development

of the 3 × 3 CKM matrix and its CP violating phase was a steady and piecewise
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process. More detailed information can be found in references [9] and [19].

2.6.1. Weak Interactions and the CKM Matrix

Rochester and Butler in October of 1947 discovered the K0 meson through its

decay to two charged π [21]. Later in 1955 the Λ hyperon was discovered through its

decay to a proton and a π. The lifetime of the Λ hyperon is 10−10 seconds which is

large compared to strong transition of about 10−23. These discoveries led to the puzzle

that the production rate of these particles far exceeded the decay rate. Thus it was

found experimentally that strangeness-changing decays are suppressed compared with

strangeness-conserving weak decays. To account for the decay of strange particles in

1963 Cabbibo introduced quark mixing angle, now known as the Cabibbo angle [22].

In order to supress strangness changing neutral currents Glashow, Iliopoulous and

Maiani (GIM) proposed the existence of the c quark some years before its discovery.

To calculate the K0K̄0 mixing Lee and Gaillard [20] predicted the mass of the c

quark from the box diagram. Due to this mixing the mass eigenstates differ from the

weak eigenstates. The mixing matrix is used to describe transitions between quark

generations

Such a matrix must be unitary since quark number is manifestly conserved. With
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two generations, a unitary matrix can be described by a single parameter Θc:



dmass

smass




=




cos Θc sin Θc

− sin Θc cos Θc






d

s



. (2.45)

where dmass and smass are the mass eigenstates while d and s are the flavor eigenstates.

The Cabbibo angle Θc is thus a full description of two-generation mixing. More

generally, we can write the charged-current coupling jcc with two generations as

jµ
cc =



ū c̄


 γµ(1 − γ5)



dmass

smass




=



ū c̄


 γµ(1 − γ5)Vij



d

s



. (2.46)

where Vij is the 2 × 2 Cabbibo matrix parameterized by Θc above. With an arbitrary

number of generations, the charged current (W±) Lagrangian becomes:

LW =
g√
2

{
ūL

i γ
µW+

µ Vijd
L
j + d̄L

i γ
µW−

µ V
∗
iju

L
j

}
. (2.47)

with uL
i representing the vector of up-type quarks and dL

i representing the down-type

quarks. Applying the CP operation to the Lagrangian, one obtains:

CP (LW ) =
g√
2

{
d̄L

i γ
µW−

µ Viju
L
j + ūL

i γ
µW+

µ V
∗
ijd

L
j

}
. (2.48)

29



2. CP Violation in the B system

This is exactly the same except for the complex conjugation of V . Thus, if we can

find a basis for which V (as well as the quark masses) are real, then CP is a symmetry.

Unitary matrices of dimension N form a group, the Lie group SU(N) [9]. An

orthogonal N × N matrix has N(N−1)
2

real parameters and (N−1)(N−2)
2

phases. Thus

for two generations of quarks there is only one real parameter, the Cabbibo angle

Θc. For three generations of quarks there are three real parameters and one complex

phase. If this phase is not an integer multiple of π then we can no longer find a basis

in which V is real and CP will no longer be a good symmetry.

2.6.2. Unitarity Conditions and the Unitarity Triangle

Unitarity of the CKM matrix V requires that

V †V = V V † = 1 ⇒
∑
j

V ∗
jiVjk =

∑
j

VijV
∗
kj = δik. (2.49)

With a 3-generation CKM matrix given by V as:

V =




Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



. (2.50)
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A convenient parameterization of the CKM matrix can be made in terms of four

Wolfenstein parameters, [23], λ,A, ρ, η with λ = sin(Θc) playing the role of the

expansion parameter and η representing the CP violating parameter.

V =




1 − λ2

2
λ Aλ3(ρ− iη)

−λ 1 − λ2

2
Aλ2

Aλ3(1 − ρ− iη) −Aλ2 1




+ O(λ4). (2.51)

The unitarity of the CKM matrix produces certain relation among its elements.

Three of these equations are useful for understanding CP violation in the standard

model :

V ∗
usVud + V ∗

csVcd + V ∗
tsVtd = 0 (2.52)

V ∗
ubVus + V ∗

cbVcs + V ∗
tbVts = 0 (2.53)

V ∗
ubVud + V ∗

cbVcd + V ∗
tbVtd = 0 (2.54)

These expressions require the sum of the three complex numbers to vanish and can be

represented as a triangle in the complex plane. The area of all these three triangles is

the same and is directly proportional to the amount of CP violation [24]. The third

equation is the most interesting because all the sides of the triangle are of the same
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2. CP Violation in the B system

order of magnitude, λ3 and the angles are larger compared to the other two triangles.

This triangle is used in the study of the Bd system and is commonly referred to as

the unitarity triangle.

It is useful to show this triangle in a rescaled form. Since V ∗
cbVcs is a real quantity

this side lies along the horizontal axis and is taken to be of unit length, as shown in

Fig. 2.4. The apex of this triangle lies at (ρ, η) and the three angles labeled α, β and

VtdV
*
tb

|VcdV
*

cb|

VudV
*

ub

|VcdV
*

cb|

η
A

α

γ
0

0 ρ 1

β

Figure 2.4: The rescaled Unitarity Triangle where all the sides have been divided by
|V ∗

cbVcs| and the CKM angles.

γ are given by

α ≡ arg
[
− VtdV

∗
tb

VudV
∗
ub

]
, β ≡ arg

[
−VcdV

∗
cb

VtdV
∗
tb

]
, γ ≡ arg

[
−VudV

∗
ub

VcdV
∗
cb

]
. (2.55)
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2. CP Violation in the B system

The sides and the angles are physical quantities. The angles are extracted from time-

dependent asymmetries and the sides are measurable from semi-leptonic branching

fractions. A theoretical error is associated with the extraction of the CKM param-

eters. By doing redundant measurements on the sides and the angles one looks for

violation of the conditions of unitarity in the three generation theory.

2.7. Extraction of sin(2β + γ) in the B0 System

D*−

u

d

-2β
b -γ

b

d d

d
c

B0 h+

D*−
cb

d d

u
d

B0

h+

Figure 2.5: The Feynman diagram represent the two possible decay models of B0 →
D∗−h+.
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2. CP Violation in the B system

The final states D∗−h+ where h can be π, ρ, a1 meson can be produced both in

the B0 and B0 decays as shown in Fig. 2.5. The B0 → D∗−ρ+ mode has been studied

in detail in [26]. The interference through mixing and decay leads to CP violation.

Recall that

λ =
q

p

Ā

A
=
q

p

Ā(B0 → f)

A(B0 → f)
. (2.56)

The q
p

part comes from the B0 mixing process as shown by the bottom diagram

in fig. 2.5 and is given by

q

p
= e−2iβ . (2.57)

At present the most precisely measured CKM angle is the angle β. It is determined

using modes such as B0 → J/ΨK◦
s . The value as measured by the BABAR experiment

is [25] sin(2β) = 0.79 ± 0.11.

For the decays B0 → D∗h, λ is given by

λD∗+h− =
q

p

V ∗
udVcb

V ∗
cdVub

M̄f

Mf
=

1

|λD∗+h−|
e−i(2β+γ),

λD∗−h+ =
q

p

V ∗
ubVcd

V ∗
cbVud

M̄f̄

Mf̄

= |λD∗−h+ |e−i(2β+γ). (2.58)

Where M̄f ,Mf are the strong hadronic matrix elements.

As seen from Eq. 2.58 the decay B0 → D∗+h− is suppressed by a factor λ2

compared to the Cabibbo allowed mode of B0 → D∗−h+, hence a lot of events are

needed to do a significant measurement of 2β + γ. This can be done using partial
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2. CP Violation in the B system

reconstruction techniques described in Chapter 3.

Thus if one measures the corresponding CP asymmetries, both λ(B → f) and

λ(B → f̄) can be determined up to discrete ambiguities (due to the unknown strong

phases) providing for a theoretically clean determination of 2β + γ from

λ(B → f)λ(B → f̄) = e−2i(2β+γ). (2.59)

Since 2β is measured from other measurements, one can extract γ.
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Chapter 3

The BABAR Detector

3.1. Introduction

The BABAR detector at SLAC was designed and built by a large international

team of scientists and engineers, including members of the Colorado State University

High Energy Physics group. A detailed description of the BABAR detector and PEP-II

can be found in [15; 28; 59]. In this chapter we shall provide an overview of PEP-II

and the various sub-detectors of BABAR. All figures in this chapter are taken from

[28]. As the author had direct experience and operational responsibility of the DIRC

sub-system, we provide a more detailed description of it in Appendix A.

The primary motivation for constructing an asymmetric B-factory at the PEP-II

electron (e−) and positron (e+) storage ring operating at the Υ (4S) resonance, is to

probe the Standard Model.
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3. The BABAR Detector

Even though the expected CP asymmetries in the Standard Model for the B me-

son system are large the branching fractions of the channels used in the measurement

are only on the order of 10−4. This places challenging requirements on the accel-

erator and the detector. The accelerator must provide a very high luminosity with

low backgrounds. After three years of operation, the PEP-II design luminosity of

3 × 1033 cm−2s−1 has been achieved and surpassed. The detector was required to

have a large and uniform acceptance, charged particle tracking down to a momentum

transverse to the beam direction, pt, approximately 60 MeV/c, detection of photons

over a range of roughly 20 MeV < E < 5 GeV, particle identification, particularly

of kaons and pions up to 4 GeV, and a very good vertex resolution, both in the

transverse and parallel direction to the beam. Though the design of the detector was

optimized for CP measurements it has proven to be well suited for other physics topics

as well.

3.2. PEP-II and the Interaction Region (IR)

PEP-II 1 is an e+e− storage ring. The High Energy Ring (HER) stores 9 GeV

electrons and the Low Energy Ring (LER) stores 3.1 GeV positrons. Thus PEP-II

operates at a center of mass energy of 10.58 GeV, the mass of the Υ (4S) resonance

which is moving with respect to the laboratory frame. The cross-section for the

1PEP is an acronym for Positron Electron Project

37



3. The BABAR Detector

production of fermion pairs at the Υ (4S) is shown in Table. 3.1. Approximately 12 %

of the data are taken 40 MeV below the peak of the resonance to provide a sample

of non-resonant background called continuum, (e+e−− > qq̄, where q = u, d, s, c).

Table 3.1: Production cross-sections at the Υ (4S) resonance.

e+e− → Cross-section (nb)

bb̄ 1.05

cc̄ 1.30

ss̄ 0.35

uū 1.39

dd̄ 0.35

τ+τ− 0.94

µ+µ− 1.16

e+e− ∼ 40

The asymmetric energies produce a boost of βγ = 0.56 in the laboratory frame for

the resulting B meson. As a consequence, the decay points of the B mesons produced

in the Υ (4S) resonance are separated by approximately 250 µm on average along the

beam axis, taken as the z axis in the BABAR coordinate system. Selecting the boost

for an optimal physics performance required balancing two conflicting effects: a) The

average B decay vertex separation in z is related to γβcτ , where τ is the lifetime of

the B. Thus increasing the boost would result in an increase in the separation of

the B decay vertex making it easier to resolve the two decay vertices. b) However,

the greater the boost the tracks will all be boosted in the forward direction therevy
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3. The BABAR Detector

worsening the z resolution. Also choosing too large a boost would degrade the physics

performance by allowing too many particles to escape undetected through the dead

region.

Figure 3.1: A schematic representation of the acceleration and storage system at the
PEP-II.

A schematic representation of the acceleration and the storage system is shown in

Fig. 3.1. An electron gun is used to create two electron bunches that are accelerated

to approximately 1 GeV before entering one of the damping rings, whose purpose is

to reduce the dispersion in the beams. After that those electrons are accelerated in

the Linac. The other bunch is diverted to collide with a tungsten target and to create

a positron beam, which in turn passes through the damping ring and is accelerated

in the Linac.

On reaching the design energies at the end of the Linac, the electron and the

positron beams are fed into the PEP-II storage rings, here they collide at the inter-

action region as shown in Fig. 3.2. A primary impediment to achieve currents of the
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Figure 3.2: A plan view of the interaction region. The vertical scale is exaggerated.
The beams collide head-on and are separated magnetically by the B1 dipole magnets.
The focusing of the beams is achieved by using the quadrupole magnets,Q1,Q2,Q4 and
Q5 The dashed lines indicate the beam stay-clear region and the detector acceptance
cutoff at 300mrad.

required magnitude are beam-beam interference and related beam instabilities. After

collision at the interaction point, IP, the beams are separated by the dipole magnet

B1, located at ± 21 cm on either side of the IP, the two beams are separated within

62 cm of the IP, thus avoiding spurious collisions between out of phase bunches. To

achieve this the B1 magnets had to be located entirely within the BABAR detector

volume. The strong focusing of the beam is achieved by using an array of quadrupole

magnets. The innermost focusing magnet (Q1) is common to both beams and par-

tially enters the detector volume. The support tube of the Q1 magnets runs through
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3. The BABAR Detector

the center of the detector between the drift chamber and the silicon vertex tracker.

Q2 is used to focus only the LER whereas Q4 and Q5 are used only for the HER.

Both Q1 and B1 are permanent magnets while Q2, Q4 and Q5 are standard iron

electro-magnets. The IP is surrounded by a water-cooled Beryllium pipe with an

outer radius of 2.8 cm, presenting about 1.08 % of a radiation length to particles at

normal incidence.

The impressive luminosity of 4.5 × 1033 cm−2s−1 was achieved by using high beam

currents, a multi-bunch mode and strong focusing of the beams with magnets. Within

three years of its operation PEP-II has not only achieved its design luminosity of

3.3 × 1033 cm−2s−1 but has also surpassed it by about 30%.

The high luminosity of PEP-II has important implications in terms of acceptable

background levels for the proper functioning of the detector. Background sources in-

clude synchrotron radiation, interactions between the beam and the residual gas in the

rings, and electro-magnetic showers produced in beam-beam collisions. Bremsstrahlung

and Coulomb scattering of the beam particles off the residual gas in the rings dom-

inate the Level 1 trigger rate, the instantaneous silicon vertex detector dose rates,

and the total drift chamber current. Energy-degraded beam particles resulting from

such interactions are bent by the separation dipole magnets horizontally into the

beam pipe, resulting in occupancy peaks for almost all of the BABAR subdetectors

in the horizontal plane. The rate of this background is proportional to the product
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3. The BABAR Detector

of the beam currents and the gas pressure in the rings. At higher luminosities the

background from radiative Bhabha scattering is expected to be crucial.

3.3. Detector Overview

A layout of the BABAR detector is shown in (Fig. 3.3)

Figure 3.3: Layout of the BABAR detector, see text for key.

Trajectories of charged particles are measured in the Silicon Vertex Tracker (1)

which is surrounded by a cylindrical wire chamber, the Drift Chamber (2). A novel
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3. The BABAR Detector

Cherenkov detector (3) used for charged particle identification surrounds the drift

chamber. The electromagetic showers of electrons and photons are detected by the

CsI crystals of the Electromagnetic Calorimeter (4) which is located just inside the

solenoidal coil of the super-conducting magnet (5). Muons and hadrons are detected

by arrays of resistive plate chambers that are inserted in the gaps of the iron flux

return of the magnet (6). The detector acceptance is 17◦ < θlab < 150◦ in the labora-

tory frame (-0.95 < cos θCM < 0.87 in the center of mass frame) where θ is the polar

angle.

3.4. The Silicon Vertex Tracker (SVT)

The device most critical to this thesis analysis is the SVT. The SVT was designed

to provide precise reconstruction of charged particle trajectories and decay vertices

near the interaction region. Good vertexing is crucial for CP violation studies, it is

imperative to measure the mean spatial position of each B meson decay vertex along

the z axis with better than 80 µm in resolution. As many of the decay products of

the B have a low pT , the SVT must also provide track reconstruction for particles

with pT , less than 120 MeV/c, as these tracks do not reach the drift chamber. As

it is the detector closest to the beams, it must also withstand an integrated dose of

2 MRad of ionizing radiation. A radiation monitoring system capable of aborting

the beam is needed to ensure that the device is not exposed to radiation that would
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Support ribs

Detector wafer

Figure 3.4: SVT layout in x− y view. Only barrel wafers are shown.

exceed the design tolerance within the anticipated lifetime of the experiment. As the

SVT is inaccessible during normal running, robustness and reliability are essential.

3.4.1. Silicon Vertex Tracker Overview

The SVT is a five layer double-sided silicon micro-strip detector. Fig. 3.4 shows

the layout of the detector in the x − y plane and Fig. 3.5 shows an r − z view of

the upper half. The acceptance of the device is 17.2◦ < θ < 150◦ in the laboratory

frame. To reduce the effect of multiple scattering on the determination of the track

impact parameters, it is important to minimize the amount of material between the

interaction-point and the first measuring plane and to place the first layer of the SVT
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Kevlar/carbon-fiber support rib
Carbon-fiber endpiece

Carbon-fiber
support cone

Upilex fanouts

350 mr
e- e+

Beam pipe
Hybrid/readout ICs

Cooling ring

30o

Si detectors
z=0

BaBar Silicon Vertex Tracker

Figure 3.5: SVT layout: cross-section view of the upper half. The first layer radius
is 3.3 cm, and the maximum fifth layer radius is 14.4 cm. The outer layers have an
arch structure to minimize the amount of silicon needed for the solid angle coverage
and to reduce large incidence angles.
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as close as possible to the beam pipe.

The first three layers are arranged in a barrel structure, divided into sextants.

Their primary goal is to provide precision angle (azimuthal angle φ and the polar

angle θ) and impact parameter measurements. The outer layers are needed for pattern

recognition and stand-alone tracking. Within each layer, silicon wafers are combined

into modules. There are 6 modules in the first three layers. The modules have 4 wafers

each in the first two layers and 6 wafers each in the third layer. Layers 4 and 5 have

16 and 18 modules with 7 and 8 wafers per module, respectively. The total number

of wafers is 340. This design was chosen to minimize the amount of silica required to

cover the solid angle, while not compromising on efficiency. Each module is divided

into two halves, forward and backward. To measure the z coordinate there are strips

on the inner sides of the detector that run perpendicular to the beam direction while

the strips on the outer sides run orthogonal to the z strips in order to measure the φ

coordinate.

As the SVT is the closest sub-detector to the interaction point, the radiation

doses are constantly monitored with 12 silicon photo-diodes, located at a radius of

3 cm from the beam pipe. Even though the instantaneous dose can be very high

during beam injection, the lifetime of a detector subsystem is determined not by the

instantaneous rates, but by the total integrated radiation dose.
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3.4.2. Performance

The SVT hit resolution can be calculated by comparing the number of associated

hits to the number of tracks crossing the active area. The combined hardware and

software efficiency as a function of the track incident angle, for each of the five layers

is about 97%. The measured charged particle energy loss as it passes through the

silicon, dE/dx is used for particle identification and achieves a 2σ separation between

kaons and pions up to a momentum of 500 MeV/c and between kaon and proton

beyond 1 GeV/c.

The SVT has been operating efficiently since its installation in the BABAR experi-

ment and has satisfied the original goal for vertex and low transverse momentum hit

resolution.

3.5. Drift Chamber (DCH)

The most important sub-system of the experiment is the Drift Chamber, DCH.

The central tracking device of BABAR is the DCH, which provides trajectory informa-

tion for charged particle with momenta greater than approximately 100 MeV/c. It

also complements the silicon vertex tracker in the measurements of the impact param-

eter and momentum of charged particle. The DCH is used for particle identification

through the measurement of ionisation loss ( dE/dx ) and it is the central component

of the charged particle trigger (L1).
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Figure 3.6: Longitudinal section of the DCH with principle dimensions in mm.

3.5.1. Drift Chamber Overview

A longitudinal section of the DCH is shown in Fig. 3.6. It primarily consist of a

280 cm long concentric cylinders with the end-plates made of aluminum, strung with

low-mass aluminum wires and filled with a 80:20 mixture of helium:isobutane. A low

density helium-based gas mixture is used to reduce multiple scattering. It achieves a

dE/dx resolution of approximately 7.5%.

The inner radius is 23.6 cm. The outer radius is 80.9 cm. The forward-backward

coverage is −1.11 < z < 1.66 m due to the Υ (4S) boost along the z axis. In order to

facilitate track matching between the silicon vertex tracker and the DCH and reduce

photon conversion, the DCH cylinder walls were made as thin as possible. The inner

cylinder is 1 mm of beryllium or 0.28 % radiation length and the outer cylinder consist

of 2 layers made of carbon fiber on a nomex core of 1.5 % of radiation length. The
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Figure 3.7: Schematic layout of the drift chamber layer arrangement. The layers are
arranged into 10 super-layers of 4 layers each.

total thickness of the DCH is approximately 1.08 % of radiation length at normal

incidence.

The wires are organized into 40 layers of small hexagonal cells, subdivided into

10 super-layers in an alternating axial (A) and stereo (U,V) pattern, as shown in

Fig. 3.7. The stereo angle increases radially from ± 45 mrad to ± 76 mrad. The

stereo measurements are used for extracting the longitudinal (z) position information.

There are a total of 7,104 small drift cells typically 1.2 x 1.9 cm2 in size. Each cell

contains a 20 µm gold-plated tungsten-rhenium sense wire, surrounded by a grid of
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gold-plated aluminum field wires which are 120 µm and 80 µm thick. Near the sense

wire, isochrones are circular; however, they become distorted close to the field wires.

A potential of 1900-1960 V is applied to the sense wires, while the field wires are

grounded. This potential difference gives an avalanche gain of about 5 × 104. The

cells are designed to provide an average intrinsic spatial resolution better than 40µm.

The DCH meets the design expectations. It contributes primarily to the mea-

surement of the momentum transverse to the beam, pT , while the angle and position

measurement near the interaction point is dominated by the silicon vertex tracker.

The data is well represented by the following formula:

σpt

pt
= (0.13 ± 0.01)% pt + (0.45 ± 0.03)% (3.1)

3.5.2. Tracking Performance

Charged tracks are defined by five parameters (d0, φ0, ω, z0, and tanλ). These

parameters are measured at the point of closest approach to the axis, d0 and z0 are

the distance of this point from the origin of the coordinate system in the x-y plane

and along the z axis, λ is the dip angle relative to the transverse plane, ω = 1
pt

is

its curvature, φ0 is the azimuth of the track. Track reconstruction in BABAR can be

performed independently by the silicon vertex tracker and the DCH, thus making it
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possible to determine the absolute tracking efficiency of the DCH to the number of

tracks detected by the silicon vertex tracker, provided that corrections for fake tracks

found in the silicon vertex tracker and scattering of the tracks from the support tube

are applied. A small additional correction needs to be applied to account for the

fact that the two tracking subsystems are linked together at one stage by a common

track finding algorithm. This method of estimating tracking efficiencies is applied

to both the Monte Carlo and Data sample, Fig. 3.8 shows the tracking efficiency as

a function of transverse momentum and polar angle for a sample of multi-hadron

events. During the years 1999-2000 the data was taken with two different voltage

settings of 1900 V and 1960V. The tracking efficiency at 1960 V was measured to be

(98 ± 1)% for tracks with pT > 200 MeV/c and polar angle θ > 500 mrad, at 1900

V, the efficiency is slightly lower, by about 5%, for tracks at normal incidence. The

resolutions of the five track parameters are monitored using Bhabhas and dimuon

events. The resolutions in the coordinates, d0 and z0 are dependent on the transverse

momentum, which are obtained using multi-hadron events and are about 25 µm and

40 µm respectively at pT of 3 GeV/c.

The estimated error in the measurement of the difference along the z axis between

the decay vertices of the two neutral B meson where one B0 is fully reconstructed

while the other is partially reconstructed is shown in Fig. 3.9. The rms width of

190 µm is dominated by the reconstruction of the partially reconstructed B0 (170 µm)
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while the rms for the resolution for the fully reconstructed B0 is 70 µm.

3.6. Detection of Internally Reflected Cherenkov Light (DIRC)

The device that plays a significant role in the flagship CP analysis is the DIRC.

Good particle identification is crucial for measurements that depend on the need to

identify the favor of the B0 meson or to identify kaon and pion with high purity

and efficiency. Kaon pion separation up to momenta of 0.7 GeV/c is obtained by

measuring the ionisation energy loss, dE/dx, in the silicon vertex detector and the

drift chamber. The DIRC provides the particle identification for higher momentum

tracks that are important to many analyses..

3.6.1. DIRC Overview

A schematic of the DIRC geometry to illustrate the principles of light produc-

tion, transportation, and imaging is shown in Figure 3.10. The DIRC uses thin,

long rectangular bars made of synthetic fused silica (quartz) [29] (H × W × L =

17 mm × 35 mm × 4900 mm) both as Cherenkov radiators and light guides (re-

fractive index n ≈ 1.47). The 144 bars are arranged in a 12-sided polygonal barrel

with a radius of about 84 cm around the beam axis. The DIRC bars extend 178 cm

forward from the interaction point of BABAR covering 87% of the polar solid angle

in the center-of-mass frame. Each set of 12 bars are housed in a bar box surrounded
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by nitrogen at NTP (refractive index n ≈ 1). The Cherenkov angle is given by the

familiar relation

cos θc = 1/nβ. (3.2)

where β = v
c
, v = speed of the particle, c = speed of light. Since the refractive index

of the radiator bar is larger than
√

2, a certain fraction of the Cherenkov photons

produced by a relativistic charged particle traversing the quartz bar will undergo total

internal reflection, regardless of the incidence angle of the tracks, and propagate along

the length of the bar. Only one end is instrumented, so a mirror (reflectivity ≈ 92%)

is placed perpendicular to the bar axis on the other end. Photons exiting the bar

in downward direction, or with large angles in radial direction, are partly recovered

into the instrumented area by a prism at the readout end. The prism reduces the

required photon-sensitive area by more than a factor of two, with little complexity to

the image reconstruction.

A thin (9 mm) quartz window separates the prism from the so called standoff

box (SOB), a water tank filled with 6000 liters of purified water (index n ≈ 1.33)

built in a toroidal shape. The backplane of the SOB is divided into 12 sectors,

each equipped with 896 conventional photo-tubes of approximately 25% detection

efficiency at 400 nm wavelength (spectral range: 250 nm – 650 nm) pointing to the

exit of a corresponding bar box.
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3.6.2. Performance

The overall single photon resolution is about 9.6 mrad, dominated by the track

reconstruction and the chromatic aberrations. The resolution on a track scales as

σγ/
√
Nγ, where σγ is the resolution of a single photon and Nγ is the number of

detected photons. Nγ is about 30 for normal incidence tracks. The average track

Cherenkov angle resolution, measured in dimuon events, turns out to be 2.5 mrad,

which leads to a approximately 4 σ separation between kaons and pions at 3.3 GeV/c

momenta.

3.7. Electromagnetic Calorimeter (EMC)

The electromagnetic calorimeter (EMC) of BABAR is designed to measure the

energy in the electromagnetic showers with excellent efficiency, energy and angular

resolution over the energy range of 20 MeV to 9 GeV. This capability allows for

reconstruction of π0 and η mesons and for the separation of photons, electrons and

positrons from charged hadrons. The active elements are thallium-doped cesium

iodide (CsI(Tl)) crystals.

3.7.1. Electromagnetic Calorimeter Overview

The EMC as shown in Fig. 3.11 and consists of a cylindrical barrel and a conical

forward end-cap. The range of coverage in the center of mass solid angle is −0.916 ≤
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cos θ ≤ 0.895, the backward-forward asymmetry reflecting the boost of the collision

in the laboratory frame. The barrel section covers the center of mass solid angle of

−0.916 ≤ cos θ ≤ 0.715 and has an inner radius of 91 cm. It contains 5760 barrel

crystals, arranged in 48 θ rows, each row having 120 identical crystals around φ.

Each crystal is held in a 250µm thick carbon fiber composite compartment, that are

grouped into 2804 modules of 3 crystals wide and 7 crystals long. The forward end-

cap is a conic section and covers a center of mass solid angle of 0.718 ≤ cos θ ≤ 0.895.

It contains 820 end-cap crystals grouped into 20 modules of 41 crystals each.

The crystals have a trapezoidal shape with typical dimensions of 47 × 47 mm2 at

the front face and 60 × 60 mm2 and ranges from 17.5 to 16 radiation length thickness

in the forward and the end-cap part. The emission of the scintillation light produced

in the crystals permits the use of silicon photo-diodes which are attached to the back

faces of the crystals. The signal is amplified and sent to the data acquisition board

and to the Level 1 trigger system. The average light yield per crystal is 7300 photo-

electrons/ MeV varying between 5000 and 10000 over an electronic noise of the order

of 900 photo-electrons.

3.7.2. Performance

The calorimeter has an efficiency of more that 96% for detecting photons, above

a minimum measurable energy of about 20 MeV. The limit is largely determined
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by beam and event related backgrounds and the amount of material in front of the

calorimeter. At low energy, the energy resolution of the EMC is measured periodically

with a radioactive source. At high energy the energy resolution is measured from

Bhabha scattering events and is parameterized by :

σE

E
=

(2.32 ± 0.30)%

E( GeV)
1
4

⊕ (1.85 ± 0.12)% (3.3)

where E is the photon energy in GeV. At lower energies the resolution is dominated

by fluctuations in photon statistics and by beam generated backgrounds and at higher

energies(> 1 GeV) by the non-uniformity in light collection from leakage or absorption

in the material between or in front of the crystals. The reconstructed π0 mass has a

width of 6.9 MeV/c2 and is shown in Fig. 3.12. The mass resolution is dominated by

the energy resolution at lower energies (below 2 GeV). At higher energies, the mass

resolution is dominated by the angular resolution. The latter is determined primarily

by the transverse crystal size. The angular resolution can be found from analyses of

π0 and η decays. The angular resolution can be parameterized by

σθ =
3.87 ± 0.07√
E( GeV)

⊕ (0.00 ± 0.04) mrad (3.4)
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3.8. Instrumented Flux Return (IFR)

The Instrumented Flux Return was designed to identify muons with high efficiency

and good purity and to detect neutral hadrons over a wide range of angles and

momenta.

Data from this sub-system was not central to the analysis described in this thesis

but a brief description is included for completeness

3.8.1. Instrumented Flux Return Overview

The IFR, shown in Fig. 3.13, consists of three parts: the barrel and the forward

and backward endcaps. All of them are subdivided into sextants. The active detec-

tors are 806 Resistive Plate Chambers (RPC) [30], located in the gaps between the

layers of steel. There are 19 RPC layers in the barrel, and 18 layers in the endcaps.

Additionally, there are two layers of cylindrical RPCs between the EMC and the

magnet. The thickness of the steel layers ranges from 2 cm in the inner 9 layers to

10 cm in the outermost layers. RPCs are gas chambers enclosed between bakelite

(which is a phenolic polymer) plates. In both the planar and cylindrical RPCs, the

gap between the bakelite sheets is 2 mm, and the sheets themselves are 2 mm thick.

One of the plates is kept at approximately 8 kV, and the other is grounded, so that

an ionizing particle crossing the gas gap will produce a quenched discharge. The gas

used is a mixture of 56.7% Argon, 38.8% Freon-134a, and 4.5% isobutane.
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3.8.2. Performance

The efficiencies of the RPCs are routinely evaluated for both colliding beam events

and cosmics. 75% of the RPCs are over 90% efficient. The average RPC efficiencies

during the 1999-2000 data taking run were ∼ 78% in the barrel and ∼ 87% in the

forward endcap region.
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Figure 3.8: The track reconstruction efficiency in the DCH at operating voltage of
1900 V and 1960 V as a function of a) transverse momentum and b) polar angle. The
measurement at the DCH voltage of 1900 V(open circle) and 1960 V (solid circle) are
shown.
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Figure 3.9: Estimated error in the difference ∆z between the B0 meson decay vertices
for a sample of events in which one B0 is fully reconstructed.

Mirror

4.9 m

4 x 1.225m Bars
glued end-to-end

Purified Water

Wedge

Track
Trajectory

17.25 mm Thickness
(35.00 mm Width)

Bar Box

PMT + Base
10,752 PMT's

Light Catcher

PMT Surface

Window

Standoff
Box

Bar

{ {
1.17 m

8-2000
8524A6
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Figure 3.12: Invariant mass of two photons in a BB events. The energies of the
photons and the π0 are required to be between 30 MeV and 300 MeV. The solid line
is the fit to data.
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Figure 3.13: The Instrumented Flux Return consists of three sections: the barrel
(left), containing 342 RPC modules between 19 layers of steel, and the forward and
backward end-doors (right), with a total of 432 RPC modules in 18 layers. 32 more
RPCs are placed in the two cylindrical layers (not shown here).
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Chapter 4

Analysis Method

4.1. Introduction

The CP asymmetry in B0 → D∗−h+ 1, where h can be a π, ρ, or an a1 is expected

to be small since the two interfering decays have very different amplitudes (Sec. 2.7).

The technique of partial reconstruction has the potential to achieve an interesting

sensitivity to the small CP asymmetry in these decays. In this chapter we describe

the technique of “partial reconstruction” which has been used successfully by the

CLEO collaboration to measure the B0 → D∗−π+ branching ratio [31] and time-

independent mixing analysis using B0 → D∗−ρ+ and B0 → D∗−π+ events [32]. This

technique increases the acceptance for the sequence Υ (4S) → B0B0, B0 → D∗−h+,

D∗− → D0π−, by one order of magnitude compared to the usual technique of “full

reconstruction”, where all the particles in the final state are reconstructed. Using the

1charge conjugate decays are implied throughout the text
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latter technique the CLEO collaboration reconstructed 248 data events while using

the partial reconstruction they selected 2600 data events out of approximately 8700

possible B0 → D∗−π+ candidate events. Thus the technique of partial reconstruction

should provide a significant increase in the number of available events, albeit with a

decrease in the purity of the selected event sample compared to full reconstruction.

4.2. Method of Partial Reconstruction

A schematic of the principle of partial reconstruction is shown in Fig. 4.1. Consider

the decay chain B0 → D∗−ρ+, followed by D∗− → D0π−
s (the πs has an average

momentum of 200 MeV/c hence the sub-script s to indicate slow). The difference

between the Υ (4S) mass and twice the B0 mass is very small, hence the B0 mesons

are produced nearly at rest in the Υ (4S) rest frame, which is the Center of Mass

(CM) frame. As the energy released in the D∗ decay is small, the πs from the

decay will maintain approximately the same direction as that of the D∗. The B0 →

D∗−ρ+ decay can be fully described by 20 parameters, namely the four-momenta

of the B0, ρ, D∗, D0 and πs. In partial reconstruction only the ρ and the πs are

“observed”; their four-momentum are measured, while the four-momentum of the

“missing” D0, labeled as Dmiss, is not measured. As there are twelve unmeasured

parameters, twelve constraints are used to describe the decay namely: the energy-

momentum conservation in the B0 and the D∗ decay (eight constraints); the masses
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of the B0, the D∗ and the Dmiss (three constraints); and the energy of the B0 in

the CM frame which is equal to half the machine CM energy (one constraint). The

ρ+

πs
−

θ

φ

α

Figure 4.1: A schematic drawing to represent the decay B0 → D∗−ρ+. ρ is the
daughter of the B0 and the πs is the daughter of the D∗. The momentum of the B0

is known up-to an angle θ with respect to the ρ momentum.

constraints are applied as follow:

We designate �pq, Mq, Eq, as the momentum, mass and energy of the particle q,

where q is either: πs, ρ, D
∗, D0, B0 respectively, in the CM frame.

From four-momentum conservation in the decay of the B0 we obtain:

�pB = �pρ + �pD∗ . (4.1)

EB = Eρ + ED∗ . (4.2)

Using the above equations one can calculate the angle between the momenta of the
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θD∗ρ

Figure 4.2: Definition of the coordinate system �x, �y, �z, with �z parallel to the direction
of �pρ and �pB lies in a cone of half angle cos θBρ about ρ and the angle φ is unknown.
�x lies in the plane defined by �pρ and �pπ

B0 and the ρ to be:

cos θBρ =
M2

D∗ −M2
B −M2

ρ + 2EBEρ

2|�pB||�pρ|
. (4.3)

Knowing the CM energy,
√
s, the energy and mass of the B0, EB and |�pB| is obtained

from :

EB =

√
s

2
. (4.4)

|�pB|2 = E2
B −M2

B. (4.5)
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The four-momentum of the missing D0, PDmiss
, can be obtained from the four-

momentum conservation in the decay of the D0 and the D∗:

P 2
Dmiss

= M2
B + (Pρ + Pπ)2 − 2(EB(Eρ + Eπ) + �pB · (�pρ + �pπ)). (4.6)

where Pρ and Pπ are the four-momentum of the ρ and πs respectively. Introducing a

system of coordinates: �x, �y, �z, with �z parallel to �pρ and �x lies in the plane defined by

�pρ and �pπ (see Fig. 4.2), the B0 momentum can be expressed as �pB = |�pB|(cos θBρ�z+

sin θBρ cosφ�x+sin θBρ sin φ�y). The only term in Eq. 4.6 that depends on the direction

of the B0 momentum is the last term, which can be re-written as

�pB · (�pρ + �pπ) = |�pB||�pρ| cos θBρ + |�pB||�pπ| cos θBρ cosα + |�pB||�pπ| sin θBρ sinα cos φ.

(4.7)

where α is the angle between the �pρ and �pπ. The angle φ is unknown. Thus for a

given value of φ, the φ-dependent missing mass is calculated as :

m(φ) =
√
PDmiss

(φ) · PDmiss
(φ). (4.8)

We define a parameter to represent the missing D0 mass referred to as the missing

mass, mmiss:

mmiss ≡
m(φmax) +m(φmin)

2
. (4.9)
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Where φmax (φmin) is the value of φ for which m(φ) obtains a maximal (minimal)

possible value. As seen from signal Monte Carlo events mmiss distribution peaks
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Figure 4.3: mmiss distribution for signal, D∗ρ, Monte Carlo events.

around the nominal mass of the D0, 1.864 GeV/c2, shown in Fig. 4.3. The error

introduced by the use of this parameter is not large since both |�pB| and �pπ are small

with respect to other terms in Eq. 4.6. The smearing in the mmiss is due to the

averaging over φ and is much larger than the errors due to reconstruction of the π

and ρ tracks. The spread in mmiss is about 3.5 MeV/c2 for signal events. Background

events have a different mmiss distribution as shown in Fig. 4.4. Thus mmiss is used as

a variable to separate signal from background events.
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Figure 4.4: mmiss distribution for (combinatoricBB̄ ) background Monte Carlo events.

4.3. Event Selection

The two steps used for event selection in data and Monte Carlo are described

in this section. In the first step, a very rough selection of events is made to reduce

the large size of the data sample. This process is done automatically as part of the

standard reconstruction procedure (skim). For example in 20.6 fb−1 of data there

are roughly 270 million events [33]. Of these roughly 120,000 events satisfy the pre-

selection criteria. To these selected events a signal selection algorithm is applied and

tighter selection criteria are applied to get a sample of B0 → D∗−ρ+ events.
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4.3.1. Pre-Selection Criteria

A very loose selection is done by looking at quantities relating to the whole event

and to specific tracks in the event. To discriminate the more spherical BB̄ events

from the more jet-like continuum events as shown in Fig. 4.5 we use an event topology

variable called the Fox-Wolfram moment, [34], defined as :

a b

Figure 4.5: A schematic to show charge particle trajectories for (a) typical BB̄ and
(b) continuum event.

Hl =
∑
i,j

|�pi||�pj|
s

Pl(cos(φij)). (4.10)
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where �pi, �pj is the momenta of the ith and the jth particle in the event and φij

the angle between them. Pl(cos(φij)) are the Legendre polynomials and
√
s is the

center-of-mass energy. Only charged tracks are used in this definition.

An event is required to have a value of the ratio of the Fox-Wolfram moment,

R2 =
H2

H0
, (4.11)

to be less than 0.35. H2 and H0 are the Fox-Wolfram moment of order two and

moment of order zero respectively.

An event is also required to have at-least one πs and one ρ candidate, where the

ρ decays into a π0 and πf (where the average momentum of the πf is 1.0 GeV/c,

hence the subscript f to indicate fast). The ρ candidate is selected from a standard

list (RhoCdefaultList) that consists of ρ candidates that are obtained by applying

selection criteria on the difference between the reconstructed (mρ) and the nominal ρ

mass Mρ = 770±0.8 MeV/c2 and the cosine of the helicity angle, cos θρ. It is required

that the daughter π0 of the ρ is selected from a standard list (Pi0AllLooseList) that

consists of the π0 candidates that are obtained by applying selection criteria to its

daughter photons (π0 → γ + γ), the minimum merged energy of the photons, the

photon polar angle, θγ and the minimum energy of both the photons, Emin−γ. The

selection criteria are summarized in Table 4.1. In addition to these requirements the

ρ candidate must also satisfy the following criteria:
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• 1.95 GeV/c ≤ |�pρ| ≤ 2.45 GeV/c.

• |(mπ0 −Mπ0)| < 0.025 GeV/c2.

• |�pπ0| ≥ 0.200 GeV/c.

where mπ0 is the reconstructed π0 and Mπ0 = 134±0.001 MeV/c2 is the nominal mass

of the daughter π0 and |�pG| is the magnitude of the CM momentum of the particle G

which can be either a ρ or a π0. The πs candidate is selected from another standard

list (GoodTracksVeryLooseList). This list consists of tracks that are obtained by

applying selection criteria to (1) the transverse momentum of the track, pT ; (2) the

number of hits of the track in the drift chamber; (3) the absolute value of the closest

distance between the track and the beam spot in the x − y plane, |x0|; (4) and the

absolute value of the closest distance between the track and the beam spot in the z

direction, |z0|. The cuts are summarized in Table 4.2. The momentum of the πs

in the CM frame is required to be between 0.05 GeV/c and 0.8 GeV/c. A charged

track that satisfies the πs requirement is then checked to make sure that it is not also

consistent with being a πf that comes from the decay of the ρ. If it fails to meet

this requirement, the track is rejected. The two charged tracks, πf and πs, are then

checked to make sure that they are not consistent with tracks that satisfy either the

e, µ or K hypothesis. This is done by checking for a match between this track and a

track that belongs to the XMicroTight list, where X is e, µ, or K. The requirements

for a track to belong to the XMicroTightlist are described in Sec.4.3.5.
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Table 4.1: The selection criteria used for a track to belong to the standard ρ list
(RhoCDefaultList).

Variable cut

|mρ −Mρ| < 0.380 GeV/c2

| cos θρ| < 1
m(ρ)−Mρ

σm(ρ)
< 0.001

π0 Pi0AllLooseList

Variable cuts (Pi0AllLooseList)

Minimum merged energy 1

Polar angle of the photons 0.6 < Egamma < π − 0.6 rad

Minimum energy of the photons Emin−γ > 3 MeV

Table 4.2: The selection criteria for a track to belong to the standard track list
(GoodTracksVeryLoose) .

Variable GoodTracksVeryLoose

no. of DCH hits > 0

|x0| < 1.5 cm

|z0| < 10.0 cm

4.3.2. Final Selection Criteria

Events that satisfy the pre-selection criteria are subject to tighter conditions. Of

the 120,000 events that satisfy the pre-selection criteria only 59,000 events satisfy the

final selection criteria.

The requirements on the daughter π0 of the ρ are tightened:
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• |mπ0 −Mπ0 | ≤ 20 MeV/c2.

• | �pπ0| ≥ 0.400 GeV/c in the CM frame.

To obtain a cleaner reconstructed signal events we require the candidates obtained

from applying partial reconstruction technique to the ρ and the πs satisfy the following

criteria:

• | cos θBρ| ≤ 1, where θBρ is the CM angle between the ρ and the B0, calculated

using Eq. (4.3).

• The absolute value of the closest distance between the track and the beam spot

in the x− y plane ≤ 1.5 cm.

• The absolute value of the closest distance between the track and the beam spot

in the z direction ≤ 6 cm.

• mmiss ≥ 1.845 GeV/c2.

• If multiple candidates are found in an event, we select the candidate with the

smallest value of mmiss −MD0 , where MD0 is the nominal mass of the D0 .

We define the D∗ helicity angle, θD∗ , Eq. 4.12 to be angle between the directions of

the D0 and the B0 in the D∗ rest frame.

cos θD∗ =
−βD∗(E∗

πs
−E∗

D0)

2P ∗
πs

+
|�pπs|2 − |PD0|2

2γ2
D∗βD∗MD∗P ∗

πs

. (4.12)
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where E∗
q and P ∗

q is the energy and momentum of q in the D∗ rest frame and γr and

βr is the Lorentz boost factor and velocity of r in the CM frame, obtained from the

kinematics of the decay. Similarly we define the ρ helicity 2 angle, θρ to be angle

between the directions of the π0 and the CM frame in the ρ rest frame. Since the

longitudinal polarization in the B0 → D∗−ρ+ decay [35] is (87.8 ± 4.5)%, the cos θρ

and cos θD∗ distributions of signal events peak close to ±1 (Fig. 4.6). By applying

the D0 mass constraint the cos θD∗ is computed. It is possible for background events

to have | cos θD∗ | greater than one. Signal events can also have | cos θD∗| greater

than one due to detector resolution. Due to the characteristic shape of the signal

and background in the helicity angle distribution, as shown in Fig. 4.6, it is a useful

variable to separate signal from background events. We apply the following criteria

to reject background events.

• | cos θρ| > 0.3, where θρ is the angle between the momenta of the π0 and the

Υ (4S) in the ρ rest frame.

• | cos θD∗ | > 0.3, where θD∗ is the angle between the momenta of the D0 and the

B0 in the D∗ rest frame, calculated as in Eq. (4.12.)

• Events are rejected if they satisfy cos θρ > 0.3 and cos θD∗ < −0.3. The corner

of the (cos θD∗ , cos θρ) plane that contain a lot of BB background (Fig 4.6) are

cut off.

2here we use a different convention for helicity

75



4. Analysis Method

The total efficiency for all the criteria that are used to select signal events is (4.35 ±

0.09)% where the error is purely due to Monte Carlo statistics.

4.3.3. Fisher Discriminant

We do not cut on the Fisher discriminant in this analysis but use it in the fit as

described in Sec. 7.1.

To further suppress continuum background, seven event shape variables are com-

bined into a Fisher discriminant, F [36]. To select particles that are produced by the

decay of the other B0 meson in the event these variables are calculated using two sets

of tracks and calorimeter cluster: Set 1: All tracks and calorimeter clusters excluding

the ρ and πs. Set 2 : Created from Set 1 by removing particles that are consistent

with originating from the decay of the D0. Here we take advantage of the fact that

the D0 has a substantial boost in the CM frame, hence its decay products tend to lie

in a cone around its direction of flight Sec.5.2.2. Particles that lie within a 1.25 rad

cone around �PD0 are removed from Set 2 . The variables used in F are:

• The CM energy flow in nine, 10◦-wide cones around �pρ, computed with Set 1.

• The sphericity of Set 1.

• | cos θsp|, where θsp is the angle between �pρ and the sphericity axis of Set 2.

• The angle between �pρ and the highest momentum particle in Set 2.
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• The invariant mass of Set 2.

• The absolute momentum of Set 2.

• The angle between the total Set 2 momentum and �pρ.

The sphericity axis �s of a set of momentum vectors, P, is the unit vector for which

the quantity
∑

i |�p× �s|2 is a minimum value.

Since continuum events typically contain two almost back-to-back jets Fig. 4.5,

| cos θsp| tends to be close to one. In BB̄ events there is, in general, no correlation

between the decay of the two B0 meson distributions, thus these events are distributed

more or less equally in all possible values of | cos θsp|.

None of the seven variables described above are a good discriminant between signal

and background events by themselves, hence in order to enhance the discriminating

power of these variables, they are combined into a Fisher discriminant. The Fisher

discriminant is a linear combination of seven input variables: F =
∑7

i=1 αixi, where

the coefficients (or the weights) αj are defined by [36]

αj ≡
7∑

i=1

(U sig
ij + Ubkg

ij )−1 × (µbkg
i − µsig

i ). (4.13)

where U sig
ij and Ubkg

ij are the covariance matrices for the input variables for signal and

background, respectively, and µsig
i and µbkg

i are the mean values of the xi’s.

The coefficients of the Fisher discriminant are determined using signal Monte Carlo
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and off-resonance data to provide a background sample. The Fisher discriminant for

signal and continuum events is shown in Fig. 4.7.

4.3.4. Event Selection for Fully Reconstructed Events

Fully reconstructed events are fit simultaneously with partially reconstructed

events. Being a cleaner sample of events they help better distinguish a signal event

from a background one. Fully reconstructed B0 candidates are reconstructed in the

D0 decay modes Kπ and Kππ0 (see Sec. 7.1.6 for the reason for dropping the Kπππ

mode). Two kinematic variables are calculated for each candidate event: the so called

beam-energy substituted mass, mES, and the energy difference, ∆E defined by:

mES ≡

√√√√√
(

1
2
s + �p0 · �p1

)2

E2
0

− p2
1,

∆E ≡ 2q0 · q1 − s

2
√
s

, (4.14)

where q0 ≡ {E0,p0} is the four-momentum of the initial state for the process e+e− →

BB̄, q1 ≡ {E1,p1} and q2 ≡ {E2,p2} are the four-momenta of the B0 mesons, and

s ≡ q2
0 = (q1 + q2)

2 is the CM energy squared. In the center of mass frame, mES and

∆E are given by:

mES =
√

(E∗
beam)2 − (

∑
i

�p∗i )2
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∆E =
∑

i

√
m2

i + (�p∗i )2 −E∗
beam. (4.15)

where E∗
beam , mi and p∗

i are the beam energy, mass and momentum, respectively

in the CM frame, of the ith constituent particle of the B0 candidate. For a properly

reconstructed B0 candidate, the beam-energy substituted mass, mES, peaks at the B0

mass with a resolution of the order of a few MeV/c2, and ∆E peaks at zero with a

resolution of approximately 20 MeV. These variables are discussed in detail in [37].

The fully reconstructed events are selected by applying the following selection

criteria:

• 0.142 MeV/c2 < |m(D∗+) −m(D0)| < 0.150 MeV/c2.

• |∆E| < 50 MeV.

• mES > 5.25 GeV/c2.

• It is required that πf , the charged daughter of the ρ identified by partial recon-

struction, be the same track identified by full reconstruction. No such require-

ment is applied to the πs or π0. Thus, although partial reconstruction may be

imperfect for a fully reconstructed event, the identified πf will point back to

the decay point of the B0 (see Sec. 5.1.3).

In events that contain more than one fully reconstructed candidate, the candidate

with the smallest value of |∆E| is chosen.
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4.3.5. Particle Identification (PID)

Information on particle identification comes from several sub-systems. This is

then put together by the experts belonging to the sub-systems by applying certain

cuts to optimize the performance of the detector with respect to selecting a particle

with as high an efficiency and as low a misidentification as possible. In the following

subsections we present a very brief description of particle identification, and point to

references for detailed reading.

Kaon Identification

The selection criteria used to separate kaons from pions and protons are:

LK > rπLπ and LK > rpLp. (4.16)

where LK , Lπ, Lp is the total likelihood for the kaon, pion and proton hypothesis

respectively. The values of rπ and other parameters used for “tight” kaon selection

are summarized in Table 4.3. A detailed description of the kaon selector can be found

in reference [38].

Electron Identification

The variables used to separate electrons from pions and muons are: the ratio of the

energy, E, deposited in the calorimeter to the track momentum, p, E/p; the energy
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Table 4.3: tight kaon identification requirements

Sub-System Momentum range ( GeV/c)

Silicon Vertex Tracker < 0.7

Drift Chamber < 0.7

Cherenkov detector > 0.7

Momentum ( GeV/c) rπ

< 2.7 1

> 2.7 80

0.5 < p < 0.7 15

loss due to ionisation in the silicon vertex detector and the drift chamber per unit

length, dE/dx; lateral energy distribution, LAT; Zernike moment, A42; the measured

Cherenkov angle, θC, of the e+. The cuts are summarized in Table 4.4. A detailed

description of the e selector can be found in reference [39].

Table 4.4: tight electron identification requirements.

Parameter cuts

E/p 0.75 < E/p < 1.3

no. of crystals > 3

dE/dx 500.0 < dE/dx < 1000.0

LAT 0.1< LAT < 0.6

A42 -10 < A42 < 10

|θC − θexp
C | < 3σ
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Muon Identification

The variables used to separate µ from e and π are: the energy deposited in the

calorimeter, E; the number of IFR layers in a cluster matched to the muon candidate,

NL; the measured and expected interaction lengths, λ and λexp and their difference

∆λ; the average multiplicity of strips hit per layer of the instrumented flux return, m;

its standard deviation, σm, the χ2 of the track. The cuts are summarized in Table 4.5.

A detailed description of the µ selector can be found in reference [40]:

Table 4.5: tight muon identification requirements.

Parameter cuts

E 0.05 < E < 0.4 GeV

NL ≥ 2

∆λ < 1

λ > 2.2

χ2
trk < 5

χ2
fit < 3

Tc > 0.3

m < 8

σm < 4

K veto tight
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cosθρ

co
sθ

D
*

Uncorrelated BB Monte Carlo Correlated BB Monte Carlo

Signal Monte Carlo Off−resonance data

Figure 4.6: cos θD∗ vs. cos θρ distributions of (clockwise from top left) Monte Carlo
signal events, off-resonance data, Monte Carlo correlated backgrounds (see section
6.4) and uncorrelated Monte Carlo generic BB̄ events. cos θρ < 1 due to the require-
ment |�pπ0| > 0.4 GeV/c. The polarization generated in the signal Monte Carlo is
based on the CLEO polarization measurement [35].
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Figure 4.7: Fisher variable distribution for Monte Carlo signal (solid histogram) and
continuum data (dotted histogram).
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Chapter 5

Decay Time Difference

��

B0

h−

D*+

B0

∆z

��

Figure 5.1: Event topology. Figure not drawn to scale.

The primary motivation for an asymmetric B factory is that the B mesons are

Lorentz boosted. With the boost βγ ≈ 0.55 their typical flight path along z is

approximately 260 µm, compatible with the experimental resolution of 130 µm. If it

were not for the boost the flight length of the B0 with the small kinetic energy from
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5. Decay Time Difference

the Υ (4S) decay would be approximately 30 µm, much smaller than the experimental

resolution. Hence to measure the CP asymmetries or the B0 lifetime it is necessary to

have an asymmetric e+e− collider. The Υ (4S) decays at some unknown point inside

the beam spot, which has a spread along the z axis of 80 mm, the y axis of 35 µm

and the x axis of 5 µm, to BB̄ mesons, and the decay length of the individual B0

meson is unknown. Therefore the lifetime of the B0 meson is determined from the

difference between the decay lengths of the two B0 mesons. The topology of the

events is sketched in Fig 5.1, it is not drawn to scale.

The z axis of the BABAR coordinate system is defined to be parallel to the magnetic

field of the solenoid [41]. Suppose the boost is parallel to the z axis and the B0 mesons

are produced at rest in the CM frame. We define zrec and zother as the z coordinate

of the decay points of the partially reconstructed B0 and the other B0 respectively.

Then ∆z = zrec − zother is defined as the signed decay length difference. Under the

above assumption, 〈|∆z|〉 = (βγ)cτB, where β is given by Eq. 5.18, and γ is calculated

from β.

Complications arise for several reasons, for example: the energies of the beam

fluctuate giving the Υ (4S) momenta a Gaussian distribution with a standard dis-

tribution of 6 MeV. The B0 mesons are not produced at rest in the Υ (4S) frame

(〈pCM
B 〉 =

√
Ee+ + Ee− −M2

B ≈ 340 MeV) resulting in a non-vanishing opening angle

(smaller than 215 mrad [15]) between the trajectories of the B0 and the B0 mesons.
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5. Decay Time Difference

In practice, all these effects are small compared to the experimental resolution on ∆z.

We reconstruct ∆z and then calculate ∆t for each event (see Sec. 5.3.1). From the

∆t distribution the B0 lifetime is extracted as explained in Sec. 7.1. In the following

section we describe the reconstruction of zrec and zother.

5.1. Determination of Partially Reconstructed B0 Decay Vertex, zrec

5.1.1. General Vertexing Formalism

The algorithm used to reconstruct zrec in BABAR (GeoKin algorithm) is based on a

generalized least square method using the Lagrange Multiplier technique [42]. In this

method it is assumed that the constraint equations can be linearized and represented

by three matrices, Ã, B̃,�c.

Let �η represent the measurable quantities(n-vectors). The actual measured quan-

tities �y (for example the measured track parameters) deviate from �η by errors �δ. We

assume that these errors are normally distributed about the measured value. We

then group the r unknowns (for example the vertex position) into a vector, �x. The

m constraint functions that relate �x and �η are given by:

fk(�x, �η) = fk(�x, �y + �δ) = 0, k = 1, .., m. (5.1)

If the function fk can be linearized at �x = �x0 and �η = �η0, then the χ2 can be expressed
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5. Decay Time Difference

as [42].

χ2 = δT W̃yδ + 2µT (Ã�ψ + B̃�δ + �c). (5.2)

where µ is a vector of Lagrange multipliers, and

�ψ = �x− �x0. (5.3)

�δ = �η − �η0. (5.4)

and W̃y is the weight matrix of the parameter, �y.

akl = (
∂fk

∂xl
)

x0,
η0

= Ã. (5.5)

bkl = (
∂fk

∂ηl
)

x0,
η0

= B̃. (5.6)

�ck = fk(�x0, �η0). (5.7)

The matrices, Ã and B̃, are the derivatives of the constraints with respect to the

unknown (�x) and the parameter (�η) respectively, and are estimated at the point �x0

and �η0. �c, is a vector of values of the constraints at the point �x0 and �η0.

The χ2 in Eq. 5.2 is minimized. As a first approximation, we take, �η0 = �y, and also
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5. Decay Time Difference

require an expansion about �x0. By doing so we estimate the initial vertex coordinate.

If Eq. 5.1 is a linear equation, the final solution can be calculated in a single

iteration. In general, the constraints are not linear and hence a better approximation

method is needed and several iterations are required before a satisfactory result is

obtained. The calculated covariance matrix has a physical meaning and can be used

to estimate errors on any of the vertex fit parameters.

A detailed description of the algorithms used for vertexing can be found in refer-

ence [43].

5.1.2. Constraint

The only constraint condition used in the fit to the zrec vertex in this analysis is

the beam spot constraint which is a χ2 constraint.

Beam Spot Constraint: The vertex position in the transverse (x,y) plane, is con-

strained to be compatible with the beam-spot position

(x− xBS)2 + (y − yBS)2 = 0. (5.8)

As this is a χ2 constraint, (xBS, yBS) are introduced as additional parameters in the

fit, so that their covariance matrix can be used to account for the actual size of the

beam.
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5.1.3. Reconstruction of the B0 → D∗−ρ+ Vertex

The zrec vertex is obtained by using the charged pion daughter of the ρ, the πf ,

and the beam spot constraint. As this constraint is applied to the B0 decay point

rather than the Υ (4S) decay point, the beam spot calculation takes into account the

small transverse flight of the B0 in the CM frame due to the finite lifetime of the B0

and the small energy release in Υ (4S) → B0B0 decay. (The beam-spot is obtained

using event-Info->beamSpotBFlight().) The fit for the zrec vertex is done using

the GeoKin algorithm, as described in Sec. 5.1.1 thus yielding the z position of the

partially reconstructed B0 meson.

The πs from the decay of the D∗ is not used in the vertex fit because signal

events may be misreconstructed if the πf or the πs, or both, may be misidentified.

If both of these tracks are used to fit for the vertex, it will result in a complicated

variety of misreconstruction effects on the measured lifetime, thus using only the πf

simplifies the treatment of these effects, as outlined in Sec. 6.4. In addition, due to

the low momentum of the πs (approximately 200 MeV in CM frame) the effects of

multiple scattering are large. The resolution of zrec determined from Monte Carlo is

130 µm. It is obtained by fitting the residue, ∆zrec = zrec − zrec−truth to the sum of

two Gaussians as shown in Fig. 5.2. To check for consistency between the measured

resolution and the per-event error in the measurement of zrec, σzrec, we define the pull

of zrec as ∆zrec

σzrec
, and is shown in Fig. 5.3. As ∆zrec is a measure of σzrec, for a properly

90



5. Decay Time Difference

Figure 5.2: Resolution of the zrec vertex obtained from Monte Carlo.

reconstructed vertex one expects the pull of the zrec distribution to be approximately

one. This distribution is fit to the sum of two Gaussians, where approximately 89 %

of the events lie in the core Gaussian. The core Gaussian has a width of 0.91 as

expected, thereby validating the procedure for the reconstruction of the zrec vertex.

5.2. Determination of the Other B0 Vertex, zother

5.2.1. Vertex Algorithm for the Other B0

The other B0 decay vertex labeled as zother is reconstructed with the charged

tracks in the event excluding those that belong to the partially reconstructed B0, Brec.

To retain high efficiency the other B0 is reconstructed using partial reconstruction.

The other B0 vertex reconstruction is difficult because secondary tracks from short
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Figure 5.3: Pull of the zrec vertex obtained from Monte Carlo.

and long lived particles tend to bias the vertex position. The algorithm tries to

minimize this effect by using the following strategy: start with a list of charged

tracks in the event, except those that come from Brec decay; remove charged tracks

from reconstructed composites (V 0) such as K0
S and Λ to reduce the bias in the vertex

and outliers in the resolution; retain only those V 0 that decay close to the IP; fit for

zother using the GeoKin algorithm, Sec 5.1.1, to a common vertex; if the fit is bad,

(χ2 > χ2
cut) remove the candidate that contribute the largest to the χ2 and try the fit

again. The algorithm that does this in BABAR is called VtxTagBtaSelFit

The parameters used in this procedure are :

• position and momentum of other B0 candidates : (x, y, z, px, py, pz)i,i=1,.....,n,

where n is the total number of recoiling candidates.
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• position of the interaction point in the transverse plane : (xΥ (4S), yΥ (4S)).

• the three-momenta of the beams: (px,e−, py,e−, pz,e−), (px,e+, py,e+, pz,e+).

The unknowns are : position and momentum of the other B0 :

• (xother, yother, zother, px,other, py,other, pz,other).

The only constraint that is used is the beam-spot constraint.

The iterative procedure is applied until no track has a contribution of more than six

units to the χ2 or only n tracks remain, where n ( which can be zero) is a parameter

that can be tuned. In general, n should be greater than 1, as studies have shown

that a large fraction of the poorly reconstructed vertices contributing to a worse ∆z

resolution is due to events that were reconstructed using a single track.

5.2.2. Rejection of D0 Tracks

The otherB0, Bother, vertex zother is reconstructed from the tracks in the event that

do not belong to the partially reconstructed B0, Brec. Since the D0 in B0 → D∗−ρ+

decay is not reconstructed it is necessary to remove the tracks coming from the D0

decay before reconstructing zother vertex. Inclusion of the D0 tracks in zother vertex

reconstruction may pull the zother vertex close to the zrec vertex thereby biasing ∆z,

and hence the lifetime to smaller values.

In order to remove the tracks that belong to the decay of the D0, without full

reconstruction of the D0 decay, an assumption that all the decay products are pro-
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duced in a cone around the momentum direction of the D0 in the CM frame is made.

The size of this cone determines the efficiency and purity of the method of partial

reconstruction. Thus �pD0 needs to be calculated. We define an angle θD∗ρ of the D∗

direction with respect to the opposite direction of the ρ, about the − �z axis, Fig. 4.2.

By applying four-momentum conservation to the decay of the B0 we get

cos θD∗ρ =
−(M2

B −M2
D∗ −M2

ρ − 2EBEρ)

2|�pD∗||�pρ|
. (5.9)

ρ

D0 π
s

θ

Figure 5.4: A schematic representation of the cone-cut. In this analysis we use
θ = 1 rad.

This gives a cone of possible D∗ direction around the − �z axis. Applying four-

momentum conservation in the decay of the D∗ we get:

�pD0 = �pD∗ − �pπs. (5.10)
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and again from Fig. 4.2 we have :

�pπs = |�pπs|(cosα�z + sinα�y). (5.11)

�pD∗ = |�pD∗|(− cos θD∗ρ�z + sin θD∗ρ cosφD∗�x+ sin θD∗ρ sinφD∗�y). (5.12)

By squaring Eq. 5.10 and using Eq. 5.11 and Eq. 5.12 we get :

sin φD∗ =

M2
D0−M2

D∗−M2
π+2ED∗Eπ

2|
pD∗ ||
pπ| − cos θD∗ρ cosα

sin θD∗ρ sinα
. (5.13)

Thus from Eq. (5.13) and

cosφD∗ = ±
√

1 − sinφ2
D∗ . (5.14)

there are two solutions for �pD∗ , which then yields two possible directions for �pD0 ,

Eq. (5.10).

We exclude all tracks that lie within a one-rad cone around the two directions of

D0. This cut is referred to as the “cone-cut”. A pictorial representation of a cone-cut

is shown in Fig. 5.4. For stability studies we use four other cone-cuts that have values:

0.6, 0.8, 1.2, 1.4 rad
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5.2.3. Reconstruction of the Other B0 Vertex

The selection of tracks used in the determination of zother is described in Sec. 5.2.2.

The zother vertex is obtained using the standard BABAR module, VtxTagBtaSelFit.

The resolution of the zother depends on the number of tracks used by the fit. To

achieve a high vertex quality it is required that the fit be performed with at-least two

tracks, i.e. n ≥ 2.

A possible background arises from the tracks from the decay of the charm hadrons.

These tracks are generally at large z due to the charm hadron lifetime and the boost,

and their net effect is to produces a bias in the mean value of zother coordinate on

the order of 20 µm. The resolution of zother determined from Monte Carlo is

Figure 5.5: Resolution of the zother vertex obtained from Monte Carlo.

108 µm. It is obtained from a fit to the residue, ∆zother = zother − zother−truth to the
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Figure 5.6: Pull of the zother vertex obtained from Monte Carlo.

sum of two Gaussians as shown in Fig. 5.5. To check for consistency between the

measured resolution and the per-event error in the measurement of zother, σzother we

define the pull of zother as ∆zother

σzother
and is shown in Fig. 5.6. This distribution is fit

to the sum of two Gaussians, where approximately 90% of the events lie in the core

Gaussian which has a width of 1.04 as expected, thereby validating the procedure for

the reconstruction of the zother vertex.
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5.3. ∆z and ∆t Reconstruction

Having obtained the vertex of the partially reconstructed B0 and the other B0,

we define the decay length difference as

∆z = zrec − zother. (5.15)

and from ∆z the decay length time difference is calculated.

In order to optimize the resolution on ∆t further cuts are applied:

• The πf−beam-spot vertex probability be greater than 1%.

• The decay length time difference between the two B0 mesons, |∆t| < 15 ps.

• The per-event error on ∆t, 0.3 < σ
∆t
< 4 ps.

Less that a percent of events had σ
∆t
< 0.3. It is possible that the per-event error

calculation of these vertices are wrong, hence as a pre-caution we require σ
∆t
> 0.3.

5.3.1. ∆z to ∆t Transformation

In order to estimate ∆t for each event, we note that the distance ∆z can be written

in terms of trec and tother as [43]:

∆z = βγγ∗recc(trec − tother) + γβ∗
recγ

∗
rec cos θ∗recc(trec + tother). (5.16)

98



5. Decay Time Difference

γ∗rec, β
∗
rec and cos θ∗rec are respectively, the boost factor, velocity and angle with respect

to the beam direction of the fully reconstructed B0 in the Υ (4S) frame. The derivation

of the above expression uses the fact that the two B0-mesons are back-to-back in the

CM frame.

As trec + tother are unknown on an event by event basis, some average value must

be used. However under the assumption that the experiment has no polar angle bias

and neglecting the event-by-event variation of trec + tother (due to changes in ∆t),

〈cos θ∗rec〉 = 0, so on average the second term in Eq. 5.16 vanishes. If we also neglect

the small kinetic energy release in Υ (4S) → BB̄ decay, we have γ∗rec = 1. Using these

two assumptions we get :

∆t = ∆z/γβc. (5.17)

where γ is the boost factor of the Υ (4S) in laboratory frame and β its velocity

calculated using the beam energies:

β =
Ee − Ep

Ee + Ep
. (5.18)

where Ee is the energy of the electron beam (9 GeV) and Ep is the energy of the

positron beam (3.1 GeV).

Compared to the experimental resolution on ∆z, the effects on ∆t produced by

the approximation (Eq: 5.17) is small. The bias and the systematic error introduced
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by this approximation has been studied in [44] and [45]. In particular, [45] has

shown analytically that for B0 lifetime measurements the bias introduced by this

approach is about 0.4 %, which is small compared to the other systematic errors in

this analysis, Sec. 10.1.

The error introduced in the measurement of the lifetime due to the variations in

the beam energies used in the calculation of the boost is discussed in Sec. 10.1.9.

5.3.2. ∆t Per-Event Error

In addition to providing a measurement of ∆z, the algorithm described above also

provides an error estimate for ∆z, σ∆z. The distributions of σ∆t for data, is shown

in Fig. 5.7. It is fit to a Crystal Ball function [46] plus a Gaussian. A Crystal Ball

function is a Gaussian signal peak matched to a power law tail. Time-dependent

studies using fully reconstructed B0 [47] have shown that σ∆t is correlated with

the width of the residual (∆t − ∆ttrue) distribution as shown in Fig. 5.8. A similar

correlation is also expected in this analysis. To account for this dependence on σ∆t, the

resolution function (Sec.7.1.5) parameterization of ∆t for each event should depend

on both ∆t and σ∆t, R(∆t, σ
∆t

).
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Figure 5.7: Distribution of σ∆t for data. The solid line is a fit to σ∆t using the Crystal
Ball function plus Gaussian.
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Figure 5.8: RMS of the residual (∆t−∆ttrue) distribution plotted for various bins of
σ∆t.
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Chapter 6

Data and Monte Carlo Samples

6.1. Introduction

This chapter contains a description of data and Monte Carlo simulation samples

used in this analysis. It also contains the definitions of the various event types referred

to in this analysis.

6.2. Data Sample

The data set used for this analysis was collected during the 1999-2000 data taking

period, referred to as the “Run 1” data. BABAR divides its data into runs, defined as

periods of three hour duration or less during which the beam and detector conditions

are judged stable. This period consisted of 3371 runs with run numbers in the range

9931-17106. The total integrated luminosity, L, ( L = #events
cross−section

) of the sample

taken on the Υ (4S) peak, known as “on-resonance” data, is (22.7 ± 0.4) × 106 BB̄
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pairs [48]; this corresponds to 20.6 fb−1 of data. This data is divided into two blocks

according to the drift chamber high voltage settings, which was raised from 1900 V to

1960 V, approximately in the middle of the Run1 data taking period. Table 6.1 lists

the integrated luminosity for each block. Some data was taken 40 MeV below the

peak of the Υ (4S) resonance, known as the “off-resonance” data, to provide a sample

of continuum data (e+e− → qq̄, where q = u, d, s or c). The integrated luminosity of

this off-resonance sample is 2.6 fb−1.

The data (on and off the Υ (4S) peak) is sub-divided into four sets according

to the four software alignment configurations of the silicon vertex tracker. These

configurations were necessary to remove the misalignment of the silicon vertex tracker

with respect to the drift chamber in the track reconstruction stage. This optimizes

the tracking and vertexing performance of the sub-detectors. These sets are referred

to as Alignment Sets A, C, D, E. Table. 6.2 gives the break up of the Run-1 data in

these four alignment sets.

Only good runs, as flagged by the BABAR data quality monitoring processes, are

used in this analysis. The main criteria for the goodness of a run is the status and

performance of all the sub-detectors, the running condition of the beams, and the

total luminosity of the run.
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Table 6.1: The composition of the 1999-2000 on-peak data sample. Roughly half of
the data was taken with the high voltage (HV) of the drift chamber set at 1900 V,
and the other half, with the voltage raised to 1960 V.

Block DCH HV L ( fb−1)

1 1900 V 11.2

2 1960 V 9.4

TOTAL 20.6

Table 6.2: Break-down of the data into different alignment sets. The distribution of
the data taken during the year 1999-2000 into different alignments sets.

on-resonance off-resonance

Alignment Set L ( pb−1)

A 452 0

C 3163 332

D 5688 555

E 11361 1690

6.3. Monte Carlo Samples

The GEANT3-based [49] Monte Carlo simulation used in this analysis was pro-

duced in a simulation cycle called Simulation Production # 3 (SP3). It will be often

referred to as the “SP3 Monte Carlo simulation” or just the “Monte Carlo simulation”.

The generic SP3 Monte Carlo samples include BB̄ events, with approximately

equal number of B0B̄0 and B+B− events; continuum cc̄ events; and continuum uds

events. These samples are used extensively to perform data/simulation comparisons.
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For this purpose, the Monte Carlo samples need to be scaled to data luminosity. The

scaling factor Fsc is calculated in the following way. If Nsam is the number of Monte

Carlo events in a given sample (e.g., the number of generic BB̄ events), then:

Fsc =
σsam L
Nsam

, (6.1)

where L is the integrated luminosity and σsam is the cross-section for the process in

question. The number of events in each generic SP3 Monte Carlo sample, as well as

the scaling factors and the cross-sections used in Eq. 6.1, are listed in Table 6.3.

Table 6.3: Number of events in the generic Monte Carlo samples and scaling factors
for data/Monte Carlo comparison. The number of events in the generic BB̄ and
continuum udsc SP3 Monte Carlo. Cross-sections σ and scaling factors Fsc used for
data/Monte Carlo comparison are also given.

SP3 Sample no. of Events σ (nb) Fsc

Generic BB̄ 8,436,700 1.11 2.72

Continuum cc̄ 12,086,400 1.35 2.54

Continuum uds 19,475,900 2.04 2.41

6.4. Event Types

The high level of the background constitutes the greatest complication to this

analysis. Signal and background event types are classified according to their contri-

bution to the B0 lifetime measurement and the availability of data control samples.
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The various events types are classified as follows:

• Signal B0 → D∗−ρ+ events. This may include some non-resonant B0 →

D∗−π+π0 events. In some of these events the π0 and/or πs is mis-reconstructed,

but they are considered “signal” because they peak in the mmiss region and their

fast pion, πf (the daughter of the ρ), correctly points to the decay point of the

B0, Brec.

• B0 → D∗−a+
1 events. They constitute about 11.6% of the B0 → D∗−ρ+ +

B0 → D∗−a+
1 sample. Since they come from a B0 they have the correct life-

time information, hence these events are used along with the signal events to

determine the B0 lifetime.

• Peaking B0B0 background. They are B0 → D∗−ρ+ or B0 → D∗−a+
1 events,

in which the track associated with the fast pion, πf , actually originates from

the other B, Bother. This results in the measurement of a zero decay distance,

∆z = 0. Due to the kinematics of these events they peak in the signal region

of the missing mass distribution.

• Combinatoric BB background: These events do not peak in the signal region

of the missing mass distribution but due to random combinations they satisfy

the kinematic requirement for signal events. These events are potentially the

most dangerous background as they have a lifetime which is compatible to the
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lifetime as measured from B0 → D∗−ρ+ events.

• B → D∗∗ρ+ : These events are B0 → D∗∗ρ where the D∗∗ → D∗X. If X is

not reconstructed these events will fake signal events. These events peak in the

signal region of the missing mass distribution.

• Continuum background. These events are light quark initiated events which

satisfy the criteria for signal events and do not peak in the signal region of the

missing mass distribution.
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Chapter 7

Unbinned Maximum Likelihood Fit

7.1. Introduction

The technique to measure the B0 meson lifetime, τ
B
, is outlined in Sec. 5. We

reconstruct ∆t for each of the selected events and extract τ
B

from the ∆t distribution

using an unbinned maximum likelihood fit. The fits were performed using the stan-

dard BABAR fit package, RooFitPackage [46], that uses MINUIT [50] to perform the

maximization of the likelihood function numerically. If the likelihood involves several

convolutions the maximization is done analytically.

The general philosophy of the time-dependent fits is to obtain τ
B

from the ∆t

event distribution by simultaneously fitting the off-resonance events and the fully re-

constructed on-resonance events with the partially reconstructed on-resonance events.

The ∆t distribution for all the BB background types, except B → D∗∗ρ+, is obtained

from control samples, Sec. 7.1.7. The fit procedure is described in detail in Sec. 7.1.8.
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7. Unbinned Maximum Likelihood Fit

The probability density function (PDF) for each event type (see Sec. 6.4) per event

is the product of probability density functions of four variables: ∆t, mmiss, m(ρ), and

F .

The three kinematic variables {mmiss, m(ρ),F} are used to distinguish between

the various event types. A fifth variable, m
ES

, is used only with fully reconstructed

events.

The total likelihood for the partially reconstructed on-resonance event is :

P(�x) = fs Ps(�x) + fD∗a1 PD∗a1(�x)

+ fpeakB0 PpeakB0(�x) + fBB PBB(�x)

+ fD∗∗ PD∗∗(�x) + fqq Pqq(�x). (7.1)

where �x ≡ ∆t, σ
∆t
, mmiss, m(ρ),F and the fractions fi are constrained to add up to

unity, and the six terms correspond to the six event types as described in Sec. 6.4.

The PDF for the off resonance events is Pqq(�x) of Eq. (7.1). From Monte Carlo

we find a small number of events from the various background event types also satisfy

the requirements for fully reconstructed signal events as seen from Fig. 7.1. The PDF

for the fully reconstructed events is given by :

P(�y,m
ES

) = f s Ps(�y)G(m
ES

)

+ fD∗a1
PD∗a1(�y)A1(mES

)
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7. Unbinned Maximum Likelihood Fit

Figure 7.1: The m
ES

distributions of fully reconstructed events. From left to right,
top row: Signal, peaking B0B0, combinatoric B0B0, combinatoric B+B−. Bottom
row: B0 → D∗−a+

1 , B0 → D∗−a+
1 reconstructed as peaking B0B0 (see Sec. 6.4), B →

D∗∗ρ+, off-resonance data.

+ fpeakB0 PpeakB0(�y)A1(mES
)

+ fBB PBB(�y)A2(mES
)

+ fD∗∗ PD∗∗(�y)A2(mES
)

+ f qq Pqq(�y)A2(mES
). (7.2)

where �y ≡ {mmiss, m(ρ),∆t, σ
∆t
}, which is the same as �x, but without the Fisher

discriminant, F . As seen from Fig. 7.2, both Monte Carlo and data show the distri-

bution of the Fisher discriminant for the fully reconstructed events is different from

the Fisher discriminant for which the events were partially reconstructed. The low-
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7. Unbinned Maximum Likelihood Fit

Figure 7.2: A comparison of the normalized distribution of the Fisher discriminant
between the partially reconstructed events (error bars) and fully reconstructed events
(histogram) in Monte Carlo (top) and data (bottom).

multiplicity of the reconstructed D0 modes, tend to increase the jetiness of the fully

reconstructed event as compared to the partially reconstructed event. For this rea-

son the Fisher discriminant is not used with fully reconstructed events. G(m
ES

) is a

Gaussian, and A1(mES
), A2(mES

), are ARGUS functions [51] with two different sets

of parameter values. The ARGUS function is defined as

A(m
ES

; ε,MA) ∝ m
ES

√
1 − (m

ES
/MA)2 exp

[
ε
(
1 − (m

ES
/MA)2

)]
Θ(MA −m

ES
).

(7.3)
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7. Unbinned Maximum Likelihood Fit

where ε is the ARGUS exponent, MA is the end point, and the Θ function ensures that

A(m
ES

) = 0 for m
ES
> MA. This function was first used by the ARGUS collaboration

to describe combinatoric BB̄ and continuum background. All the fractions f i are

obtained from Monte Carlo, except for f qq which is obtained from a fit to the fully

reconstructed data, Sec. 7.1.4.

The following subsections describe the functional dependence of the different vari-

ables of the PDF.

7.1.1. ρ Mass, m(ρ), Distribution

The m(ρ) distribution is fit to a function of the form

R(m(ρ)) = fBB(m(ρ)) + (1 − fB)P (m(ρ)). (7.4)

where P is a second-order polynomial and

B(m(ρ)) ∝
M4

ρ(
M2

ρ −m(ρ)2
)2

+m(ρ)2Γ(m(ρ))2
. (7.5)

is a relativistic p-wave Breit-Wigner, where

Γ(m(ρ)) =
M2

ρ p
3
0

m(ρ)2p3
π

Γ. (7.6)
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7. Unbinned Maximum Likelihood Fit

pπ is the momentum of a pion in the ρ rest frame. p0 = pπ when m(ρ) = Mρ. Both

P and B are normalized between the m(ρ) fit range of 0.4 GeV/c2 and 1.1 GeV/c2.

The parameters, Mρ and Γ are floating in the fit, and are identical for all the

event types as they describe a true ρ meson. However, the parameters of the polyno-

mial (which describes the combinatoric background in the ρ mass window) and the

fraction, fB, are different for each of the event types. They are obtained from the

fit to the respective background Monte Carlo for all the background events except

continuum. For the continuum events fB was obtained from the simultaneous fit to

the off-resonance data and partially reconstructed on-date. The m(ρ) distribution

of Monte Carlo and off-resonance data events is shown in Fig. 7.3 and Fig. 7.4 The

m(ρ) PDF parameters obtained from Monte Carlo are summarized in Tables. 7.1

through 7.4. Parameters obtained from data are summarized later, in Tables. 8.1.

7.1.2. Missing Mass, mmiss, Distributions

The mmiss distribution is fit to a function of the form :

R(mmiss) = FBG(BG(mmiss)) + (1 − FBG)A(mmiss). (7.7)
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Figure 7.3: m(ρ) and mmiss distributions (from top to bottom) of Monte Carlo sig-
nal, B0 → D∗−a+

1 , peaking B0B0 , The shaded region in the m(ρ) plots shows the
polynomial component of the fit.

where A(mmiss) is an ARGUS function defined in Eq. 7.3, replacing mES by mmiss and

BG(mmiss) is a bifurcated Gaussian :

BG(mmiss) ∝
{ exp [−(mmiss −M)2/2σ2

L] , mmiss <M

exp [−(mmiss −M)2/2σ2
R] , mmiss >M

. (7.8)
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Figure 7.4: m(ρ) and mmiss distributions (from top to bottom) of B → D∗∗ρ+ (Monte
Carlo ), and combinatoric BB events (Monte Carlo ) , and off-resonance data. The
shaded region in the m(ρ) plots shows the polynomial component of the fit.

The mmiss distributions of the various event types are shown in Fig. 7.3 and Fig. 7.4.

For signal events FBG is equal to one; for misreconstructed signal, B0 → D∗−a+
1 , and

B → D∗∗ρ+ events the ARGUS function describes the left-side plateau. Continuum

and combinatoric BB events are mostly described by the ARGUS function, the bifur-

cated Gaussian component accounts for the small tail beyond the ARGUS end point.

This bifurcated Gaussian typically has σR in the order of 1−3 MeV/c2 and σL greater
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7. Unbinned Maximum Likelihood Fit

than 10 MeV/c2.

For all the background event types except continuum, the mmiss PDF parame-

ters are obtained from Monte Carlo and are summarized in Tables. 7.1 through 7.4.

Parameters obtained from data are summarized later, in Table. 8.1.
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Figure 7.5: Fisher (F) distributions of signal and various background events.

7.1.3. Fisher Discriminant, F Distributions

The variables used in the construction of the Fisher discriminant, F are different

for each of the different event types, hence the F distribution is slightly different

for each. The F distribution is parameterized by a bifurcated Gaussian and the

parameters are obtained from Monte Carlo for all the BB event types. For continuum
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Table 7.1: Results of mmiss and m(ρ) fits to B0 → D∗−a+
1 Monte Carlo.

No Description Value

m(ρ) polynomial

1 m(ρ) coefficient 1.31 ± 0.20

2 (m(ρ))2 coefficient −0.61 ± 0.22

3 Fraction of Breit-Wigner area 0.273 ± 0.029

mmiss

4 ARGUS end point 1.86818 ± 0.00008 GeV/c2

5 ARGUS exponent −52 ± 26

6 Mean 1.86449 ± 0.00030 GeV/c2

7 σL 0.0060 ± 0.0007 GeV/c2

8 σR 0.00169 ± 0.00015 GeV/c2

9 Fraction of ARGUS area 0.39 ± 0.12

events the parameters are obtained from a simultaneous fit to the off-resonance and

on-resonance data. The F distributions are shown in Fig. 7.5, and the fit parameters

obtained from Monte Carlo are summarized in Table. 7.5.

7.1.4. Energy Substituted Mass, m
ES

, Distributions

The m
ES

PDFs of the fully reconstructed signal and background events are de-

scribed by Eq. 7.2. The m
ES

distributions of signal and background events are shown

in Fig. 7.1. A 3-dimensional fit to the fully reconstructed data events is shown in

Fig. 7.6.
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Table 7.2: Results of mmiss and m(ρ) fits to peaking B0B0 background Monte Carlo.

No Description Value

m(ρ) polynomial

1 m(ρ) coefficient 22938.5± 1.0

2 (m(ρ))2 coefficient −3256.3 ± 1.0

3 Fraction of Breit-Wigner area 0

mmiss

4 ARGUS end point 1.867230± 0.000041 GeV/c2

5 ARGUS exponent −100 ± 16

6 Mean 1.86389 ± 0.00024 GeV/c2

7 σL 0.00375 ± 0.00048 GeV/c2

8 σR 0.00190 ± 0.00014 GeV/c2

9 Fraction of ARGUS area 0.52 ± 0.08

7.1.5. ∆t Distributions

In measurements that use the decay length difference technique it is more difficult

to disentangle the effects of the lifetime and the detector resolution than in an analysis

where both the production point and the decay points are measured like in LEP and

SLD experiments. In those experiments, the true proper decay times are described by

a simple exponential. There can be no events at negative decay times so the width of

negative part of the measured decay time distribution provides valuable information

about the detector resolution. The positive part contains the combined effect of both

the resolution and the lifetime. For the decay length difference ∆t, theory predicts a

distribution that is symmetric around zero. The width of the distribution is a result
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Table 7.3: Results of mmiss and m(ρ) fits to combinatoric BB background Monte
Carlo.

No Description Value

m(ρ) polynomial

1 m(ρ) coefficient −1.61 ± 0.43

2 (m(ρ))2 coefficient 1.36 ± 0.20

3 Fraction of Breit-Wigner area 0.287 ± 0.028

mmiss

4 ARGUS end point 1.86798 ± 0.00005 GeV/c2

5 ARGUS exponent −16.0 ± 2.9

6 Mean 1.8683 ± 0.0007 GeV/c2

7 σL 0.036758 ± 0.13 GeV/c2

8 σR 0.00078 ± 0.00039 GeV/c2

9 Fraction of ARGUS area 0.972 ± 0.017

of the convolution between the theoretical distribution and detector resolution.

A detailed understanding of the resolution function is crucial for lifetime measure-

ments using the decay length difference technique, and we need to learn as much as

possible from data about the resolution function. There exists a strong correlation

between the width of the residual and the event-by-event error in the measurement

of ∆t as seen in Sec. 5.3.2. This means that the resolution function R(∆t, σ
∆t

), is a

function of both the event-by-event error and ∆t.
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Table 7.4: Results of mmiss and m(ρ) fits to B → D∗∗ρ+ Monte Carlo.

No Description Value

m(ρ) polynomial

1 m(ρ) coefficient 33000 ± 11000

2 (m(ρ))2 coefficient −14000 ± 6000

3 Fraction of Breit-Wigner area 0.679972 ± 0.014

mmiss

4 ARGUS end point 1.869290± 0.000026 GeV/c2

5 ARGUS exponent −29 ± 8

6 Mean 1.86462 ± 0.00023 GeV/c2

7 σL 0.0090 ± 0.0009 GeV/c2

8 σL 0.00189 ± 0.00012 GeV/c2

9 Fraction of ARGUS area 0.52 ± 0.06

Signal Modeling

The ∆t is described by a theoretical distribution t(∆t), where t(∆t) ∝ exp−|∆t|
τ
B

.

To obtain the PDF Ts(∆t) for the reconstructed ∆t, we form a convolution of the

theoretical distribution t(∆t) and the resolution function R(∆t, σ
∆t

). Thus:

Ts(∆t) =
∫ ∞

−∞
t(∆t− ∆̄t) · R(∆̄t, σ

∆t
) d(∆̄t). (7.9)

There is no a priori reason for choosing a particular parameterization for the resolu-

tion function, hence some functional form is assumed. In this analysis, the resolution

function was obtained from the best fit to the ∆t pull distribution and is parameter-
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Table 7.5: Results of fits to Fisher distributions in Monte Carlo.

No Description Value

B0 → D∗−ρ+

1 Mean −2.934 ± 0.010

2 σL 0.490 ± 0.007

3 σR 0.503 ± 0.007

B0 → D∗−a+
1

4 Mean −3.023 ± 0.036

5 σL 0.486 ± 0.023

6 σR 0.503 ± 0.023

Peaking B0B0

7 Mean -2.876 ± 0.028

8 σL 0.502 ± 0.018

9 σR 0.518 ± 0.018

Combinatoric BB

10 Mean −3.135 ± 0.029

11 σL 0.495301± 0.015

12 σR 0.620 ± 0.035

ized by a sum of three Gaussians.

The lifetime PDF for B0 → D∗−ρ+ and B0 → D∗−a+
1 events is:

Ts(∆t, σ∆t
) =

[
fnGn(∆t, σ

∆t
) + (1 − fn − fo)Gw(∆t, σ

∆t
) + foGo(∆t, σ∆t

)
]

⊗ 1

τ
B

e−|∆t|/τ
B . (7.10)
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Figure 7.6: A 3-dimensional kinematic fit to fully reconstructed data. The shaded
histograms show the continuum contribution. All m(ρ), mmiss and m

ES
parameters

of signal events were allowed to float in the fit. m(ρ) and mmiss parameters of the
backgrounds were fixed from fits to Monte Carlo or off-resonance data. The parame-
ters of the m

ES
distributions of the backgrounds (A1(mES

) and A2(mES
) of Eq. (7.2))

were also allowed to float. The fractions of all backgrounds, except the continuum
background, were fixed by the Monte Carlo yields (Fig. 7.1). The continuum fraction
was allowed to float in the fit.

where Gn, Gw, and Go are the narrow, wide, and outlier Gaussians, of the form

G(∆t, σ
∆t

; b, s) ≡ 1√
2πsσ

∆t

exp

(
− (∆t− b)2

2(sσ
∆t

)2

)
. (7.11)

Fig. 7.8 shows that this PDF fits well to the pull distribution of signal Monte Carlo

events. As the parameters of the resolution function are strongly correlated to

τ
B

they are left floating while fitting for τ
B

in order to avoid the need to extract

them from Monte Carlo distribution. However fitting simultaneously for correlated

parameters increases the statistical error on all the parameters, hence a trade off

between statistical and systematic errors needs to be made. To do so the parameters
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Figure 7.7: The ∆z distribution of fully reconstructed signal Monte Carlo events
(histogram) and inclusively reconstructed signal Monte Carlo events (dotted line).

of the third Gaussian, Go are fixed: b = 0 ps and s = 8 ps; Go describes the fraction of

poorly reconstructed ∆t events, such events are called as outlier events. As described

in Sec. 10.1.5 the systematic error introduced by fixing the third Gaussians parameters

is approximately 1 % of the total systematic error in this analysis.

Background Modeling

The ∆t distribution for the backgrounds events need not be necessarily symmetric

about zero due to biases from vertex reconstruction for the background events.

The ∆t PDF that best describes the combinatoric BB background events have

the form:

Tb(∆t, σ∆t
) =

[
fnGn(∆t, σ

∆t
) + (1 − fn)Gw(∆t, σ

∆t
)
]
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Figure 7.8: Pull distribution of signal Monte Carlo events, using the PDF of
Eq. (7.10).

⊗
[
fτ

1

τ
e−|∆t|/τ + (1 − fτ ) δ(∆t)

]
. (7.12)

a 2-Gaussian resolution function convoluted with an exponential decay term (“life-

time”) plus a prompt decay term (zero lifetime component). The parameter τ is

phenomenological in nature, and is in general different from the B0 lifetime, τ
B
.

The PDF of the peaking background have the same functional form, except that

it has fτ = 0, leaving only the prompt decay term. This reflects the fact that this

type of background is due to events in which the πf originates from the other B0

vertex hence zrec − zother = 0

The continuum PDF is functionally the same as Eq. (7.12), plus an outlier term
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7. Unbinned Maximum Likelihood Fit

that does not use per-event errors, thus:

Tqq(∆t, σ∆t
) = (1 − fo)Tb(∆t, σ∆t

) + foGo(∆t ; b, s). (7.13)

where

Go(∆t ; b, s) ≡
1√
2πs

exp

(
− (∆t− b)2

2s2

)
. (7.14)

Note that despite the functional similarity, there is no relation between the parameter

values used for the PDFs of the different event types.

The PDF of B → D∗∗ρ+ events is that of Eq. (7.12), with the parameter val-

ues taken from Monte Carlo and is only used to evaluate systematic errors (see

Sec. 10.1.4).

7.1.6. Use of Fully Reconstructed Events

The simultaneous fit of fully reconstructed events with the partially reconstructed

events is intended to help the fit extract the signal parameters from a clean signal

sample. Therefore, ∆t is calculated for fully reconstructed events in exactly the same

way as for partially reconstructed events (see Sec. 5.1.3), without using the better

knowledge of the Brec decay position offered by full reconstruction.

Fully reconstructed events do their job if their ∆t distribution agrees with that of

partially reconstructed signal events. This only happens if both event samples have
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a similar distributions of the number of Dmiss daughter tracks assigned to the other

B0 vertex, ND
tr ,

The distributions of ND
tr in partially and fully reconstructed Monte Carlo for

different cone cuts is shown in Fig. 7.9. It can be seen that the high multiplicity

in the K3π mode results in values of ND
tr which are significantly higher than those

observed in the partially reconstructed events while the Kπ and Kππ0 modes agree

much better with partially reconstructed events, especially at our selected cone cut

of 1 rad, hence the K3π mode is not used. From signal Monte Carlo we find that

for the ∆t distribution the Kolmogorov-Smirnov [52; 53] confidence level of the fully

and partially reconstructed events to originate from the same distribution is 75%.

The Fig. 7.7 compares the ∆z of the fully and partially reconstructed events. Thus

partially reconstructed events that are also fully reconstructed in these two D0 decay

modes are expected to have the same ∆t distribution and zrec bias as the generic

partially reconstructed events, and can be used in the final simultaneous fit. The

K3π mode is not used. The good agreement between the ND
tr distributions of fully

reconstructed data and fully reconstructed signal Monte Carlo, for all cone cuts is

shown in Fig. 7.10

Validation of Use of Fully Reconstructed Events

To check for a possible bias that the fully reconstructed events may introduce

to the lifetime fit, we compared fits of signal Monte Carlo events, including and
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excluding fully reconstructed events for the 5 cone cuts. The average difference in

the lifetime between the two cases was 0.001 ps. It is seen that the addition of the

fully reconstructed events does not significantly bias the lifetime or the resolution

parameters.

7.1.7. BB Backgrounds Control Sample Validation

As described in Sec. 7.1.5, it is important that the parameters of the resolution

function are obtained from data. If the parameters of the background resolution

function do not properly describe the background events, the parameters of the sig-

nal resolution function will absorb the discrepancy, and the measured lifetime will

be biased. As it is not possible to float the parameters of the signal and the BB̄

background resolution function simultaneously due to correlations between the pa-

rameters, we need control samples, obtained from data, that can be used to obtain

the resolution function parameters of the background. It is important that ∆t have

the same distribution in both the control sample region and the signal region.

As described in Sec. 7.1.8, the ∆t distributions of the combinatoric and peaking

BB̄ backgrounds are obtained from the mmiss sideband region ( events which satisfy

1.8 < mmiss < 1.84 GeV/c2) and the wrong-sign events (where πs and πf have the same

charge), respectively. Monte Carlo events were used to determine that the control

sample distributions agree with the signal region distributions. These distributions
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are overlayed in Fig 7.11. The Kolmogorov-Smirnov confidence level for the control

sample and signal region ∆t to originate from the same distribution is 60% for the

combinatoric BB and 56% for the peaking B0B0 events.

7.1.8. Fit Procedure

The fits are conducted in several steps:

1. Obtain kinematic parameters from Monte Carlo distributions:

• The kinematic variable PDF parameters of B0 → D∗−a+
1 , combinatoric

BB and peaking BB are determined by fitting the individual Monte Carlo.

See Tables. 7.1 through Table. 7.5.

• The Fisher PDF parameters of B0 → D∗−ρ+ are also obtained from Monte

Carlo (see Table. 7.5).

• By counting how many Monte Carlo events of each type pass the cuts, we

determine fD∗a1 , and fpeakB0 of Eq. (7.1), Table. 7.6.

Obtain initial values of parameters to be determined later from simultaneous

data fits:

• Initial values of all PDF parameters of continuum events are determined

by fitting off-resonance data.
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• Initial values of the ∆t, mmiss, m(ρ) and m
ES

PDF parameters of signal

are obtained from the fully reconstructed sample.

2. The combinatoric BB ∆t distribution is parameterized by fitting the mmiss side-

band (See Sec. 7.1.7 for the validity of using this control sample). Only two event

types populate the sideband: Combinatoric BB and continuum. Consequently,

we fit in only two variables: Fisher and ∆t. The fit is done simultaneously for

on- and off-resonance data, in 2 steps:

• Kinematic fit: We float the Fisher PDF parameters of the continuum and

the fraction of BB events. All other fractions are fixed at 0.

• Float the ∆t PDF parameters of the combinatoric BB and the continuum,

everything else is fixed. The fraction of non-prompt continuum events is

fixed at 0.

3. The peaking B0B0 ∆t distribution is parameterized by fitting the wrong-sign

events in the normal mmiss range (referred to as the signal region). The only

event types populating this sample are continuum, combinatoric BB and peak-

ing B0B0. The on-resonance and off-resonance data samples are fit simultane-

ously. This fit is again done in two steps:

• Kinematic fit: We float the Fisher, m(ρ) and mmiss PDF parameters of the

continuum, as well as the fractions of combinatoric BB and continuum
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events. Floating the continuum kinematic parameters improves their de-

termination, which would otherwise be done using only the low-statistics

off-resonance data sample.

• The ∆t PDF parameters of the peaking B0B0 and the continuum are al-

lowed to float, everything else is fixed. The combinatoric BB ∆t PDF

parameters are taken from the sideband fit. The fraction of non-prompt

continuum events is fixed at 0.

4. Fit to right-sign signal-region on-resonance data, simultaneously with off-resonance

data and fully reconstructed data, done again in two steps:

• Kinematic fit: We float the mmiss, m(ρ) and m
ES

PDF parameters of signal

events, the kinematic variable PDF parameters of continuum, and the

fractions of combinatoric BB and continuum events. The fraction of B →

D∗∗ρ+ events is initially set to 0. All other fractions are determined in

step 1.

• The ∆t PDF parameters of continuum and signal float. To improve sta-

bility, we fix the values of the mean and width of the continuum outlier,

and the mean and the width of the signal outlier. They are later varied to

evaluate systematic errors (Sec. 10.1.5).
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Table 7.6: Fractions of events obtained by counting the number of events, N, in
Monte Carlo and then used in the fit. See Eq. (7.1) for parameter definitions, and
Secs. 10.1.4, 10.1.6, and 10.1.7 for systematic error variation in these parameters.

No Description Value

1 fD∗∗ = ND∗∗/(ND∗∗ +NBB) 0

2 fD∗a1 = ND∗a1/(ND∗a1 +ND∗ρ) 0.116

3 fpeakB0 = NpeakB0/(NpeakB0 +ND∗a1 +ND∗ρ) 0.0965

7.1.9. Monte Carlo Validation of the ∆t Fit Procedure

The entire fit procedure described in Sec. 7.1.8 was carried out on Monte Carlo

data. In order to obtain a more realistic fraction of continuum events in the Monte

Carlo sample, off-resonance data events were used alongside continuum Monte Carlo.

One eighth of the continuum sample obtained this way was labeled as “off-resonance”

for the purpose of conducting the fit, and seven eighths were added to the BB Monte

Carlo to serve as the continuum component of the “on-resonance” sample. B →

D∗∗ρ+ events were excluded from the “on-resonance” sample (See Sec. 10.1.4).

Projections of the PDF onto the 4 fit variables are shown in Fig. 7.12. The fit

results are shown in Table. 7.7. The value of τ
B

obtained is in good agreement with

the generated value of 1.548 ps, as well as the Monte Carlo truth fit value of 1.534 ps

(Sec. 8.1.3). The other fit parameters appear reasonable as well. The large statistical

errors reflect the low Monte Carlo statistics.

It may be worthwhile to note that doing the kinematic fit on data would take
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anywhere between one to two CPU hours to obtain a convergent fit and between two

and four hours to do the lifetime fit. The fit sometimes would not converge due to

local minima that would cause MINUIT to crash and the fit had to be restarted with

slightly different parameters and/or constraints.

Table 7.7: Results of the fit to the validation sample containing signal and background
events. The value of τ

B
obtained in the fit is 0.51 σ away from the Monte Carlo truth

value of 1.534 ps (Sec. 8.1.3). See Eqs. (7.10-7.11).

Parameter Fit value

b of Go 9.4 ± 3.5 ps

s of Go 6.3 ± 5.1

fo 0.0002 ± 0.0012

b of Gn −0.31 ± 0.10 ps

s of Gn 0.888 ± 0.081

fn 0.874 ± 0.039

b of Gw −0.18 ± 0.73 ps

s of Gw 3.79 ± 0.63

τ
B

1.48 ± 0.11 ps
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7. Unbinned Maximum Likelihood Fit

Figure 7.9: The number of Dmiss daughter tracks wrongly assigned to the Bother vertex
for cone cuts of (from top to bottom) 0.6, 0.8, 1.0, 1.2, and 1.4 rad. The histograms
are from partially reconstructed Monte Carlo events. The data points are from fully
reconstructed Monte Carlo in the modes (from left to right) Kπ, Kππ0, and K3π.
All distributions are normalized to unit area.
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Figure 7.10: The number of Dmiss daughter tracks wrongly assigned to the tag B
vertex for cone cuts of (from top to bottom) 0.6, 0.8, 1.0, 1.2, and 1.4 rad. The
histograms are fully reconstructed Monte Carlo events, and the data points are from
fully reconstructed data in the modes (from left to right) Kπ, Kππ0, and K3π. All
distributions are normalized to unit area.
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7. Unbinned Maximum Likelihood Fit

Figure 7.11: Left: The ∆t distribution of peaking background Monte Carlo for right-
sign (histogram) and wrong-sign (data points) events. Right: The ∆t distribution
of the combinatoric background Monte Carlo for sideband (data points) and signal
region (histogram) events.
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Figure 7.12: Projections of the PDF onto the right-sign Monte Carlo “off-resonance”
sample (top) and “on-resonance” sample (bottom). The variables, from left to right,
are m(ρ), mmiss, F , and ∆t.
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Chapter 8

B0 Lifetime Result

8.1. The Uncorrected Lifetime

The results of the kinematic fit are reported in Table. 8.1 and Table. 8.2, and

projections of the PDFs onto the data are shown in Fig. 8.1. The numbers of events

of the different types found in the on-resonance data sample are listed in Table. 8.3.

A branching ratio estimate can be made using the number of events, 7400 ± 171

without cuts on ∆t or σ
∆t

, the reconstruction efficiency is 0.0435±0.009 and the total

number of B0, 22 × 106, corresponding to the integrated luminosity. This leads to

BR(B0 → D∗−ρ+) ≈ No. of B0 decay to B0 → D∗−ρ+

efficiency
/total no. of B0, (8.1)

which is approximately (0.78±0.014)%, where the error is only statistical. This num-

ber compares well to the PDG [55] value of (0.73±0.15)%, the error is a combination
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of statistical and systematic. Thus the kinematic fit does its job in identifying signal

events. The results of the fit to the sideband data is shown in Table. 8.4 and Fig. 8.2.

Projections of the kinematic fit to the wrong-sign data are shown in Fig. 8.3. Fig. 8.4

and Table. 8.5 show the results of the wrong-sign data ∆t fit. Finally, the results of

the ∆t fit to the signal region data are shown in Fig. 8.5 and Fig. 8.6 and summarized

in Table. 8.6.

By varying τ
B

from the fitted value we look at the change in the negative log

likelihood. This was done to check whether the fitted value is at the true minima and

they were no secondary minima in the distribution. From this scan of the negative

log likelihood as a function of τ
B

it is seen that the fitted value is indeed at the true

minima as shown in Fig. 8.7.

The uncorrected value of the lifetime obtained from the fit is

τ raw
B

= 1.535 ± 0.064(stat) ps. (8.2)

Studies done in Monte Carlo data show that the partial reconstruction procedure

and the fit procedure have biases and hence the fitted τ
B

has to be corrected to take

into account these biases. One may note that the corrections due to the biases are

consistent with zero at a two sigma level. Thus it is conservative to add these biases

to the final result. In the following section we shall describe these biases.
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8.1.1. B0 → D∗−a+
1 Bias

We assign the same ∆t parameters, including τ
B
, to both the B0 → D∗−ρ+ and

B0 → D∗−a+
1 events in our data sample. Since the a+

1 and Dmiss are almost back-to-

back, the cone cut is not effective in preventing the a+
1 daughter tracks being assigned

to the other B0 vertex as shown in Fig. 8.8. As a result, the B0 → D∗−a+
1 events

reduce the value of the measured τ
B
.

Fitting Monte Carlo events for signal plus B0 → D∗−a+
1 yields a measured lifetime

which is ∆tbias
a1

= 0.008± 0.011 ps smaller than the lifetime obtained with only signal

events. The error is due to Monte Carlo statistics. We therefore correct the lifetime

measured on data by adding 0.008 ps to it, with a systematic error of 0.011 ps.

8.1.2. D0 Bias

The cone cut as described in Sec. 5.2.2 is not 100 % effective at removing all

the D0 tracks. These tracks have, on average the effect of reducing ∆z to smaller

values thereby biasing the lifetime τ
B

to smaller values compared to the true value.

It is observed from Monte Carlo that a fit to the true ∆t yields a value of 1.534 ps

(Sec. 8.1.3) for the B0 lifetime, while the fit to the reconstructed ∆t yields 1.506 ±

0.033 ps. Thus in Monte Carlo the fitted lifetime should be corrected by a factor of

RD0 = 0.982±0.022. We assume the same correction factor for data with a systematic

error of 0.036 ps due to Monte Carlo statistics.
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8.1.3. Selection Bias

Our event selection cuts may bias the sample toward events that have a non-

average lifetime. Fitting the true lifetime of our selected signal events to an exponen-

tial PDF convoluted with a Gaussian (to account for B0 motion in the CM frame),

we obtain a lifetime of 1.534± 0.013 ps. Since the Monte Carlo is generated with the

value 1.548 ps, we apply a +0.014 ps correction to our final result, with a systematic

error of 0.013 ps.

There is an additional bias due to the likelihood fit discussed in Sec. 9.1.2 of

0.031 ± 0.016 ps

8.1.4. Bias Correction Summary

Table. 8.7 provides the summary of the change in the B0 lifetime after each bias

correction.

The bias corrected B0 lifetime is calculated as follows:

τ
B

=
τ
B
(a1) + τ

B
(D0)

RD0

+ τ
B
(SB) + τ

B
(fit) ps. (8.3)

The B0 lifetime after correcting for all the biases is

τ
B

= 1.616 ± 0.064(stat) ps. (8.4)
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Figure 8.1: Projections of the kinematic variable PDF on the partially reconstructed
on-resonance data (top), fully reconstructed on-resonance data (middle), and off-
resonance data (bottom). All events are right-sign, signal region. The variables
are, from left to right, m(ρ), mmiss, and Fisher (for partially reconstructed and off-
resonance data), or m(ρ), mmiss, and m

ES
(for fully reconstructed data).
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Table 8.1: Results of the kinematic fit to data.

No Description Value

m(ρ) parameters of true ρ+

1 Mean 0.7703 ± 0.0014 GeV/c2

2 Width 0.1556 ± 0.0038 GeV

B0 → D∗−ρ+ m(ρ) polynomial

3 m(ρ) coefficient 1.1 ± 1.0

4 (m(ρ))2 coefficient 0.5 ± 1.0

5 Fraction of Breit-Wigner area 1.00000 ± 0.00012

B0 → D∗−ρ+ mmiss

6 ARGUS end point 1.8779 ± 0.0030 GeV/c2

7 ARGUS exponent −75 ± 83

8 Mean 1.86388 ± 0.00017 GeV/c2

9 σL 0.00433 ± 0.00017 GeV/c2

10 σR 0.00154 ± 0.00012 GeV/c2

11 Fraction of ARGUS area 8 × 10−9 ± 4 × 10−6

Continuum m(ρ) polynomial

12 m(ρ) coefficient −0.335 ± .020

13 (m(ρ))2 coefficient 0.002 ± 0.015

14 Fraction of Breit-Wigner area 0.131 ± 0.008

Continuum mmiss

15 ARGUS end point 1.868820± 0.000021 GeV/c2

16 ARGUS exponent 24.259 ± 0.040

17 Mean 1.86343 ± 0.00018 GeV/c2

18 σL 0.0200 ± 0.0029 GeV/c2

19 σR 0.00197 ± 0.00010 GeV/c2

20 Fraction of ARGUS area 0.543 ± 0.033

Continuum Fisher

21 Mean −2.120 ± 0.010

22 σL 0.772 ± 0.007

23 σR 0.453 ± 0.005
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Table 8.2: Fraction of events from Eq. 7.1.

24 fBB/(fBB + fpeakB0 + fD∗a1 + fs) 0.616 ± 0.017

25 fqq 0.660 ± 0.009

Table 8.3: Numbers of signal and background events found in the on-resonance data
sample, as determined by the kinematic fit. The first error is statistical, reflecting
only the statistical error in the fractions reported in Table. 8.1. All other fractions
were fixed. Their variation is discussed in Secs. 10.1.4, 10.1.6, and 10.1.7. The second
error is systematic, due only to the statistics in the Monte Carlo samples used to
obtain the parameters reported in Table. 7.1 through 7.6, and evaluated using the
method of Sec. 10.1.1.

Event type Number of events

B0 → D∗−ρ+ 5266 ± 251 ± 34

B0 → D∗−a+
1 691 ± 36 ± 4

Peaking B0B0 636 ± 43 ± 4

Combinatoric BB 10034 ± 392 ± 310

B → D∗∗ρ+ 0

Continuum 34271 ± 441 ± 347

Table 8.4: Results of the ∆t fit to the sideband data. See Eqs. (7.11-7.12).

No Description Value

1 Lifetime of combinatoric BB events 1.389 ± 0.028 ps

2 b of Gn −0.27 ± 0.06 ps

3 s of Gn 0.61 ± 0.05

4 fn 0.68 ± 0.05

5 b of Gw 0.25 ± 0.13 ps

6 s of Gw 1.65 ± 0.10

7 fτ 1.000 ± 0.011
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Figure 8.2: Projections of the sideband PDF on the on-resonance (top) and off-
resonance (bottom) sideband data. The variables shown are the Fisher (left) and ∆t
(right).
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Figure 8.3: Projections of the wrong-sign kinematic variable PDF on the wrong-sign
on-resonance (top) and off-resonance (bottom) data. The variables are, from left to
right, m(ρ), mmiss, and the Fisher discriminant.

Table 8.5: Results of the ∆t fit to the wrong-sign data. See Eqs. (7.11-7.12).

No Description Value

1 b of Gn 1.81 ± 0.23 ps

2 s of Gn 0.96 ± 0.16

3 fn 0.61 ± 0.07

4 b of Gw −1.5 ± 1.8 ps

5 s of Gw 11.3 ± 2.7
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Figure 8.4: Projections of the wrong-sign ∆t PDF on the wrong-sign on-resonance
(top) and off-resonance (bottom) data. Both linear and log scales are shown.
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Figure 8.5: Projections of the ∆t PDF on the partially reconstructed on-resonance
data (top), fully reconstructed on-resonance data (middle), and off-resonance data
(bottom). Both linear scale and log plots are shown. All events are right-sign, signal
region. 147
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Figure 8.6: The missing mass, ρ mass, Fisher distribution and the ∆t distribution
for the on-resonance right sign events. The result of the fit is superimposed on data.
The hatched, cross-hatched and shaded areas are the peaking BB̄, combinatoric BB̄
and continuum events respectively.
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Table 8.6: Results of the ∆t fit to the right-sign signal-region data. See Eqs. (7.10-
7.13).

No Description Value

B0 → D∗−ρ+ (and B0 → D∗−a+
1 parameters)

1 τ
B

1.535 ± 0.064 ps

2 b of Gn −0.239 ± 0.005 ps

3 s of Gn 1.0380 ± 0.0042

4 fn 0.9681 ± 0.0013

5 b of Gw −0.29 ± 0.18 ps

6 s of Gw 4.50 ± 0.13

7 fo 2 × 10−10 ± 8 × 10−6

Continuum parameters

8 Lifetime of continuum events 0.78000 ± 0.00002 ps

9 b of Gn 0.0163 ± 0.0009 ps

10 s of Gn 1.0349 ± 0.0007

11 fn 0.9038 ± 0.0005

12 b of Gw 0.346 ± 0.010 ps

13 s of Gw 2.440 ± 0.007

14 fo 0.01046 ± 0.00014

15 fτ 0.2125 ± 0.0020

Table 8.7: The change in τ
B

due to each bias correction.

Description ∆τ
B

Value (ps)

D0 correction 0.008 ± 0.011

RD0 correction 0.028 ± 0.036

Selection bias 0.014 ± 0.013

Fit Bias 0.031 ± 0.016
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Figure 8.7: Scan of the negative log likelihood obtained from the data, as a function
of τ raw

B
. The minima is at the fitted value of 1.535 ps.

Figure 8.8: The fraction of a+
1 daughter tracks assigned to the other B0 vertex in

B0 → D∗−a+
1 events.
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Chapter 9

Toy Monte Carlo Studies

9.1. Introduction

A “toy Monte Carlo” sample is a set of random events generated according to a

known PDF. These samples are useful for several reasons:

• To generate and fit a sample using the same PDF tests the technical correctness

of the generator and the fit engine.

• To generate and fit many statistically independent samples using the same PDF

provides a robust estimate of the distribution of the fit parameters, their errors,

and their correlations.

• A comparison of the results from generating and fitting a sample using different

PDFs can be used to study the systematic errors due to the incorrect assumption

about the fit model or the values of the fixed parameters.
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9. Toy Monte Carlo Studies

• The distribution of the maximum likelihood obtained from a toy Monte Carlo

study can be used to estimate the goodness of the fit of a real sample under the

assumption that the fit model correctly describes the sample.

A series of studies were done as described below using toy Monte Carlo to check for

inherent biases due to numerical limitations, fit parameters close to the limit, limited

statistics.

9.1.1. Toy Monte Carlo Simulations of the Signal PDF

Toy Monte Carlo experiments for signal-only events used the ∆t PDF that de-

scribe the signal events. The value of τ
B

used to generate these events was 1.534 ps

(Sec. 8.1.3), and the σ
∆t

distribution was taken from a Crystal Ball function plus

Gaussian fit to the σ
∆t

distribution of the on-resonance data, a plot of the error dis-

tribution is shown in Fig. 5.7. All other parameters used to generate the signal events

were taken from a fit to SP3 signal Monte Carlo. 200 toy experiments were conducted,

each having 11740 events, corresponding to the number of events in the SP3 signal

Monte Carlo sample. 21 of these fits either failed to converge or the cpu time of the

fit exceeded the cpu time limit of the batch machine processing the fit. This shows

that there is 10.5% probability for the fit to fail in SP3 signal Monte Carlo. The

results of the remaining 179 experiments are shown in Fig. 9.1, and indicate a good

agreement between the toy and full Monte Carlo. To study a possible statistics-
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Table 9.1: Summary of results from the signal-only toy Monte Carlo experiments.
All experiments were generated with τ gen

B
= 1.534 ps. 〈τB〉 − τ gen

B
is the difference

between the mean value of τ
B

obtained from the fits and the generated value. The
error in this quantity is taken to be rms(τB) divided by the square root of the number
of experiments, where rms(τB) is the r.m.s. width of the τ

B
distribution of all the

experiments.

No. events/experiment No. experiments 〈τB〉 − τ gen
B

(ps) rms(τB) (ps)

1000 169 −0.053 ± 0.006 0.074

5000 179 −0.023 ± 0.004 0.049

11, 500 179 −0.012 ± 0.003 0.033

50, 000 23 −0.003 ± 0.003 0.012

dependent bias, this test was repeated with experiments containing different numbers

of events. The results are shown in Tab. 9.1. It is seen that a bias exists for low

statistics and diminishes at high statistics. To study the possible bias due to fitting

the true ∆t distribution with a Gaussian convoluted with an exponential (Sec. 8.1.3),

we generate 100 Toy Monte Carlo experiments with approximately 11,000 events (the

same number of events in SP3 signal Monte Carlo) with this PDF and fit it with the

same PDF. We find the 〈τB〉 − τ gen
B

(ps) = −0.003 ps and the rms(τB) = 0.0011 ps.

Thus no bias is attributed to the fit of the true distribution of ∆t.

9.1.2. Toy Monte Carlo Simulation of the Data PDF

The full fit procedure was validated on Toy Monte Carlo. 200 toy experiments

were generated using the simultaneous PDF, described in Sec. 7.1, with the numbers
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of events from Tab. 8.3. The value of τ
B

used to generate the events was 1.534 ps i.e.

the value obtained from the fit to the true ∆t in Monte Carlo (Sec. 8.1.3), and the

σ
∆t

distribution was taken from a Crystal Ball function plus Gaussian fit to the σ
∆t

distribution of on-resonance data (Fig. 5.7).

200 experiments were simulated, 25 of which either failed to converge or crossed

the cpu time limit of the batch machine. This shows that the probability for the fit

to fail in data is 12.5 %. The results of the converged 175 experiments are shown in

Figs. 9.2 and 9.3. These fits are seen to have an average bias in τ
B

of

〈
τmeasured
B

− τ generated
B

〉
= −0.031 ± 0.005 ps. (9.1)

where the error is due to toy Monte Carlo statistics. Consequently, we correct for

this bias by adding 0.031 ps (See Sec. 10.2.1 for the associated systematic error) to

our data measurement of τ
B
, yielding the final corrected result

τ
B

= 1.616 ± 0.064 (stat) ps. (9.2)

9.1.3. Toy Monte Carlo studies with Different Resolution Function

To study the bias due to the choice of the resolution function for signal events we

try the full toy Monte Carlo data simulation with a different resolution function to

describe the signal events. We replace the 3-Gaussian resolution function of signal
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Table 9.2: Summary of results from the signal-only toy Monte Carlo experiments,
using the GExp resolution function. All experiments were generated with τ gen

B
=

1.534 ps. 〈τB〉 − τ gen
B

is the difference between the mean value of τ
B

obtained from
the fits and the generated value. The error in this quantity is taken to be rms(τB)
divided by the square root of the number of experiments, where rms(τB) is the r.m.s.
width of the τ

B
distribution of all the experiments.

No. events/experiment No. experiments 〈τB〉 − τ gen
B

(ps) rms(τB) (ps)

1000 99 −0.032 ± 0.007 0.070

5000 97 −0.016 ± 0.005 0.045

11, 500 122 −0.012 ± 0.003 0.031

50, 000 16 0 ± 0.005 0.014

events with a non-per-event-error outlier Gaussian plus the GExp function (a single

Gaussian whose bias is fixed at 0 ps and has a floating scale plus the same Gaussian

convoluted with an exponential) and repeated the study of full fit procedure. This

function has been used to model signal events in the measurement of the B0 lifetime

using fully reconstruction [54]. The result of the fit is τ raw = 1.541± 0.067 (stat) ps,

0.006 ps away from the generated value of 1.534 ps.

We also conducted signal only toy Monte Carlo experiments with the GExp resolu-

tion function. The results of the signal-only experiments using GExp are summarized

in Tab. 9.2. It is seen that the negative bias 〈τB〉 − τ gen
B

in these fits is slightly

smaller than with the 3-Gaussian resolution function (Tab. 9.1) for low statistic sam-

ples. At higher statistics the two resolution function yield the same bias. Thus the

agreement of τ raw when using the 3-Gaussian or the GExp resolution function is mir-
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rored in signal-only SP3-Monte Carlo fits which have approximately 11000 events.

Fitting the SP3-signal Monte Carlo using the 3-Gaussian resolution function yields

τ raw = 1.506 ± 0.033 (stat) ps, and the GExp gives τ raw = 1.507 ± 0.032 (stat) ps.

The smaller bias in GExp is also seen in full (signal + background) toy Monte

Carlo. The results of these experiments are shown in Figs. 9.4 and 9.5. However,

when the signal events in the full toy Monte Carlo are generated with the 3-Gaussian

function and then the GExp function is used in the full toy Monte Carlo fit, we see

an average bias of −0.026 ± 0.008 ps (Figs. 9.6 and 9.7). This is consistent with

the −0.031 ± 0.005 ps bias obtained when the 3-Gaussian function is used for both

generating and fitting the events (Figs. 9.2 and 9.3). Similarly, when generating

events with the GExp function and fitting them with the 3-Gaussian function, a bias

of −0.015 ± 0.007 ps is found (Figs. 9.8 and 9.9). The results of the full toy Monte

Carlo fits are summarized in Tab. 9.3

Based on these tests, we conclude that using the GExp resolution function is

equivalent to and consistent with using the 3-Gaussian function. To account for the

differences between the entries seen in Tab. 9.3, we take an conservative systematic

error of 0.016 ps.
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Table 9.3: Summary of results of biases (〈τB〉 − τ gen
B

, in ps) in the full (signal +
background) toy Monte Carlo experiments. Errors are due to toy experiment statistics
only, and are correlated.

Generation PDF Fit PDF

GExp 3-Gaussian

GExp −0.003 ± 0.006 −0.015 ± 0.007

3-Gaussian −0.026 ± 0.008 −0.031 ± 0.005

157



9. Toy Monte Carlo Studies

τB (ps)

0

10

20

30

1.4 1.5 1.6

στB (ps)

0

20

40

60

0.03 0.04 0.05

Pull

0

10

20

30

-4 -2 0 2 4

Figure 9.1: Signal-only toy Monte Carlo results, with 11740 events per experiment:
Top left: Distribution of τ

B
. The solid vertical line is the value with which the

events were generated. The dashed line shows the mean τ
B

obtained with these toy
experiments. Top Right: Distribution of the τ

B
statistical error. The vertical line is

the value found in the fit to SP3 signal-only Monte Carlo. Bottom: Pull distribution;

i.e.
〈τB〉−τgen

B

στ
B

.
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Figure 9.2: Full toy Monte Carlo results: Left: τ
B

distribution. The solid vertical
line shows the value generated (1.534 ps), and the dashed-line indicates the mean
measured value (1.503 ps). Right: Error in τ

B
. The vertical line is the value obtained

from the fit to the data.
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Figure 9.3: Full toy Monte Carlo results: Left: τ
B

pull distribution. Right:
− log(likelihood) distribution; i.e. goodness of fit. The vertical line is the value
obtained from the fit to the data.
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Figure 9.4: Full toy Monte Carlo results when using the GExp resolution function:
Left: τ

B
distribution. The solid vertical line shows the value generated (1.534 ps),

and the dashed-line indicates the mean measured value (1.531 ps). Right: Error in
τ
B
. The vertical line is the value obtained from the fit to the data.
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Figure 9.5: Full toy Monte Carlo results when using the GExp resolution function:
Left: τ

B
pull distribution. Right: − log(likelihood) distribution. The vertical line is

the value obtained from the fit to the data.
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Figure 9.6: Full toy Monte Carlo results when signal events are generated using the
3-Gaussian resolution function, but the GExp resolution function is used in the fit:
Left: τ

B
distribution. The solid vertical line shows the value generated (1.534 ps),

and the dashed-line indicates the mean measured value (1.531 ps). Right: Error in
τ
B
. The vertical line is the value obtained from the fit to the data.
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Figure 9.7: Full toy Monte Carlo results when signal events are generated using the
3-Gaussian resolution function, but the GExp resolution function is used in the fit:
Left: τ

B
pull distribution. Right: − log(likelihood) distribution. The vertical line is

the value obtained from the fit to the data.
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Figure 9.8: Full toy Monte Carlo results when signal events are generated using the
GExp resolution function, but the 3-Gaussian resolution function is used in the fit:
Left: τ

B
distribution. The solid vertical line shows the value generated (1.534 ps),

and the dashed-line indicates the mean measured value (1.531 ps). Right: Error in
τ
B
. The vertical line is the value obtained from the fit to the data.
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Figure 9.9: Full toy Monte Carlo results when signal events are generated using the
GExp resolution function, but the 3-Gaussian resolution function is used in the fit:
Left: τ

B
pull distribution. Right: − log(likelihood) distribution. The vertical line is

the value obtained from the fit to the data.
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Chapter 10

Systematic Uncertainties

10.1. Introduction

The measurement of the B0 lifetime using the technique of partial reconstruction

is complimentary to the same measurement using full reconstruction. The advantage

of using the former is the increase in statistics, the disadvantage is that it is a novel

technique and many new potential sources of systematic error had to be considered.

One could not rely on the systematic error studies done for other time-dependent

measurements in BABAR that use fully reconstructed events. The signal to background

level is 0.61 compared to approximately 4 for full reconstruction so a great deal of

work had to go done to understand the influence of the backgrounds on the final

result. The following subsection outlines the systematic error studies conducted. A

summary of the systematic errors is presented in Table. 10.1. The total systematic

error from all contributions is 0.075 ps.
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10.1.1. Propagation of Control Sample Kinematic Fit Statistical Errors

The signal, background kinematic parameters and the background ∆t parameters

were fixed while ∆t was fitted in the signal region for τ
B
. Hence the effect on the

measurement of τ
B

due to these fixed parameters was studied by varying the fixed

parameters by their respective errors. The associated change in τ
B

contributes to the

final systematic error.

As described in Sec. 7.1.8 the ∆t parameters of the combinatoric and peaking

background are obtained from fits to data control samples, with an error matrix to

represent not just the statistical errors but also taking into account correlations be-

tween the floating parameters. A similar error matrix is obtained from the kinematic

fit that precedes the ∆t fit in the signal-region. The following procedure is used to

propagate these errors to the final ∆t fit.

Let V be the N × N error matrix of the fit, and p be the corresponding vector

of N floating parameters of the fit, which are later fixed in the signal-region fit.

T is a unitary matrix such that D ≡ TV T−1 is a diagonal matrix. Then D is

a representation of the errors in a basis in which they are uncorrelated. Similarly,

q ≡ Tp is the representation of the parameters in that basis. q±,i is a vector identical

to q, except that the ith element (i ∈ [1, N ]) has been varied by ±
√
Dii from its
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original value:

q±,i ≡




q1

...

qi ±
√
Dii

...

qN




. (10.1)

This corresponds to a ±1σ variation of the uncorrelated ith error. The transformation

p±,i ≡ T−1q±,i produces the corresponding values of the parameters in the original

basis. The two vectors, p±,i, are then used in the signal-region fit to obtain two new

values of the B0 lifetime, τ±,i
B

. The total systematic error associated with the error

matrix V is taken as

σ =

√√√√√ N∑
i=1

(
τ+,i
B

− τ
B

)2
+
(
τ−,i
B

− τ
B

)2

2
. (10.2)

where τ
B

is the nominal fit result.

Using this procedure to propagate the error matrix of the kinematic fit to the ∆t

fit, we find a total error in τ
B

of 0.029 ps.

In the case of the sideband fit for the combinatorial B0B0, each vector p±,i was

first used in a wrong-sign fit to obtain a new set of peaking B0B0 parameters, before

proceeding to the signal-region fit. The error in τ
B

is 0.033 ps.

The error obtained by propagating the error matrix of the wrong-sign fit, for the
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peaking B0B0 parameter is 0.002 ps.

10.1.2. Monte Carlo Statistics

The Dmiss correction factor, RD0 , is obtained with a 2.2% relative error, due to

signal Monte Carlo statistics Sec. 8.1.2. This translates to an error of 1.616×0.022 =

0.036 ps in τ
B
. All the kinematic variables for the various background events were

obtained from Monte Carlo and are varied according to the method described in

Sec. 10.1.1. The resulting error in τ
B

is 0.014 ps. Limited Monte Carlo statistics

in the true lifetime measurement, Sec. 8.1.3, results in a 0.013 ps systematic error.

The B0 → D∗−a+
1 bias (Sec. 8.1.1) is known up to an error of 0.011 ps, which is

determined by B0 → D∗−a+
1 Monte Carlo statistics. Limited Monte Carlo statistics

translates into a systematic error.

10.1.3. RD0 Correction

The D0 bias correction factor RD0 is obtained from signal Monte Carlo. A good

agreement between the data and Monte Carlo distribution of the number of Dmiss

daughter tracks assigned to the other vertex, ND
tr is shown in Fig. 7.10. Extensive

studies were conducted with high statistics, partially reconstructed, B0 → D∗−l+ν

Monte Carlo and data [56]. These also show good agreement, in the distribution

of ND
tr between data and Monte Carlo. To account for a systematic effect due to an
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uncertainty in Monte Carlo to generate tracks that go to the other B0 vertex, we vary

the fraction of events for which ND
tr = 0 by ±5% in signal Monte Carlo. The fraction

of ND
tr to the total number of tracks in the other B0 vertex changes from 66 % to

71 % and 61 % respectively when ND
tr = 0 is changed by ±5%. The associated change

in RD0 and τ
B

is 0.999, τ
B

= 1.533 ± 0.034 ps and 0.967, τ
B

= 1.480 ± 0.035 ps. Thus

a variation of +0.018
−0.015

in RD0, translates to ∓0.027 ps variation in τ
B
. An additional

error in RD0 is due to Monte Carlo statistics, Sec. 10.1.2.

10.1.4. Level of B → D∗∗ρ+ Background

From Table. 7.6 we see that in the nominal fit we set the contribution of B →

D∗∗ρ+ events, fD∗∗ to 0. To evaluate the systematic error associated with this as-

sumption, we take

Q∗∗ ≡ BR(B → D∗∗ρ+) · BR(D∗∗ → D∗+π) = 0.3%. (10.3)

The reasoning behind this value of Q∗∗ is described in reference [57]. From the

B → D∗∗ρ+ Monte Carlo corresponding to an integrated luminosity of 70 fb−1, 8309

events satisfied all the criteria for a signal event. From this we can estimate that there

will be approximately 2400 events in 20 fb−1. This corresponds to approximately

24% of the total NBB̄ = 10, 000 events found by the kinematic fit. Hence fD∗∗ is

fixed to this fraction. With this value of fD∗∗ , we repeat the kinematic fit, floating
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only the parameters fqq and (fD∗∗ +fBB)/(1−fqq) resulting in a contribution of 2425

B → D∗∗ρ+ events in the data sample. We then proceeded to carry out the ∆t fit,

with the B → D∗∗ρ+ ∆t parameters taken from Monte Carlo. The change in τ
B

with

respect to the nominal result is 0.023 ps.

10.1.5. Variation of Fixed Parameters

The scale of the continuum outlier Gaussian is fixed at 10 ps. Varying it between

8 and 12 ps results in a variation of ±0.015 ps in τ
B
. The mean of the continuum

outlier Gaussian is fixed at 0 ps. Varying it between ±1 results in a variation of

0.001 ps. The bias of the outlier signal Gaussian is fixed at 0 ps. Varying it between

±3 ps yields a change in τ
B

of 0.001 ps. The scale of the outlier signal Gaussian is

fixed at 8 ps. Varying it between ±2 ps yields a change in τ
B

of 0.0001 ps.

10.1.6. Uncertainty in BR(B0 → D∗−a+
1 )/BR(B0 → D∗−ρ+)

In the kinematic fit the fraction ND∗a1/(ND∗a1 +ND∗ρ) is set to 11.61 %, which is

obtained from Monte Carlo. Hence a systematic error arises due to the uncertainty in

the ratio of branching fractions Ra1 ≡ BR(B0 → D∗−a+
1 )/BR(B0 → D∗−ρ+). Taking

the branching fractions and their errors from the CLEO collaboration measurements

[31], we assign a relative error of 31% to Ra1 . Varying the value of Ra1 used in the

data fits by ±0.31 results in a +0.003
−0.002

ps change in τ
B
. Taking into account the variation
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in ∆tbias
a1

due to the variation in Ra1 yields a total variation of ±0.005 ps in τ
B
. Note

that when Ra1 is varied the fraction fpeakBB̄ is still maintained at 9.6 %, Table. 7.6.

10.1.7. Level of Peaking Background

The ratio between the number of peaking background and the sum of the number

of signal events and peaking background events in the data is set to 9.6%, the value

obtained from Monte Carlo. We expect the simulation of this ratio to be accurate,

since it depends only on the probability of substituting the πf for a track from the

other B0 meson. When this ratio is varied in the data fit by ±5%, τ
B

varies by

±0.003 ps. An additional error associated with the peaking background is described

in Sec. 10.1.1.

10.1.8. Bias due to Fully Reconstructed Events

As shown in Sec. 7.1.6, fitting signal Monte Carlo events with or without including

fully reconstructed events results in very small difference in the value of τ
B

obtained

from the fit. To account for a possible bias, we take the average difference between

the fits obtained with the different cone cuts, which is 0.001 ps.
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10.1.9. Machine and Detector

Uncertainties in the detector alignment can influence the ∆z reconstruction and

thus change the ∆t resolution function. As we obtain most of the parameters of

the resolution function from data, most of the misalignment effects are automatically

taken into account. A detailed study of the possible effects to the measurement of

the B0 lifetime has been done in [54], where an error of 0.008 ps is assigned to the

effect of detector misalignment. We assume a similar error in this analysis.

The uncertainties in the boost parameters of the machine is about 0.1 % [58].

Since the lifetime depends linearly on the boost parameters we assign a 0.1 % error

to the lifetime due to variations in the value of the boost.

Various alignment and calibration procedures use the data to estimate the size of

the relative displacement of different sub-detector components. These procedures do

not determine or adjust the global length scale of the experiment. Uncertainties in the

z scale of the detector biases the B lifetime measurement. One way to determine the z

scale is a measurement of the length of something with known dimensions. One mea-

surement of the length of the beryllium beam pipe [59] using protons from material

interaction and in the tantalum foil wrapped around it as described in [60]. For the

alignment sets C,D,E, the scale factor f = length seen by detector
length from independent measurement

is

consistent with one or two per mil level. This z scale determination predominantly

uses tracks that pass the extremities (in z) of the silicon tracker. There is no reason
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to expect the z scale of the inner regions of the silicon tracker to be an order of

magnitude worse than that of the outer region, and assign 0.4 % as the uncertainty

on the z scale in these alignment sets.

10.2. Additional Cross-Checks

We perform a series of consistency checks that are not a part of the systematic

error calculation. These studies were done to check for the stability of the measured

lifetime as a function of various quantities.

10.2.1. Resolution Function

Additional checks were made regarding the choice of the resolution function and

its effect on the measurement of τ
B
. The signal resolution function was modified so

that the Gaussian biases also scale with σ
∆t

, changing Eq. (7.11) to

G(∆t, σ
∆t

; b, s) ≡ 1√
2πsσ

∆t

exp

(
− (∆t− bσ

∆t
)2

2s2

)
. (10.4)

The result of this fit is τ raw
B

= 1.547± 0.072 (stat) ps. Comparing with Eq. (8.2), the

change in τ raw
B

is 0.012±0.033 ps, but with a significantly larger error. This difference

is accounted for by the 0.016 ps error, Sec. 9.1.3. Fitting SP3 signal Monte Carlo

using the resolution function defined in Eq. (10.4), we obtain τB = 1.505 ± 0.033 ps,

consistent with the result obtained with Eq. (7.11). We conclude therefore that within
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the errors, no significant systematic effect can be associated with the choice of scaling

or not scaling the signal Gaussian bias with the per-event errors.

We also repeat the fit using the Gaussian convoluted with an exponential, GExp,

function, Sec. 9.1.3 and the result of the fit to data is τ raw
B = 1.541 ± 0.067 ps.

Comparing with Eq. (8.2), the change in τ raw
B

is 0.006 ± 0.020 ps.

The results of the fits to the data and signal Monte Carlo using the three signal

resolution functions studied here are summarized in Tab. 10.2.

10.2.2. Cone Cut Variation

To check for possible biases to the B0 lifetime due to the choice of the cone cut

of 1 radian, the full fit procedure was repeated for events passing the 0.6, 0.8, 1.2

and 1.4-radian cone cuts. The values of RD0, τ raw
B

, and τ
B

obtained with each of the

5 cone cuts are summarized in Tab. 10.3. The consistency between the results of the

different cone cuts is displayed in Fig. 10.1. In this figure, the errors shown are the

τ
B

errors quoted in Tab. 10.3, subtracted in quadrature from the error of the 1-radian

cone cut result. Using this measure of the uncorrelated errors, the χ2 probability

for all the results to be consistent with the 1-radian result is 23.3%. The 0.8- and

1.2-radian results are consistent with the 1-radian result at the 55% confidence level.

We therefore conclude that the results obtained with the different cone cuts are

consistent. It should be noted that separate evaluation of all the systematic errors
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for the different cone cuts will most likely result in higher confidence levels.

Figure 10.1: τ
B

vs. the cone cut. The errors are the τ
B

errors quoted in Tab. 10.3,
subtracted in quadrature from the error of the 1-radian cone cut result. The χ2

probability for all the results to be in agreement is 23.3% (left). The probability for
just the 0.8- and 1.2-radian cone cut results to be consistent with the 1-radian result
is 55% (right).

10.2.3. Parameters of the πf and Alignment Set

The full fit procedure was performed in bins of the polar angle θ (measured with

respect to the z axis) and the azimuthal φ to check for dependencies on detector
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acceptance. Only the πf daughter of the ρ is used along with the beam spot constraint

to determine zrec. To check for a possible bias to the lifetime due to the momentum

of πf the full procedure was also done in momentum bins of the πf . As the data is

made up of four different alignment sets to study for a possible bias due to this the

full fit procedure was done on each of the four alignment sets A, C, D, E. The results

of the studies are summarized in Figs. 10.2 and 10.3. Flat line fits of these plots give

χ2 probabilities of 75%, 37%, 8%, and 90%, respectively for the 4 figures. This is

consistent with the results being independent of the binning parameter.

Figure 10.2: Difference from nominal τ
B

obtained when fitting the data in bins of the
azimuthal angle (left) or cos θ (right) of the πf in the lab frame.
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Figure 10.3: Difference from nominal τ
B

obtained when fitting the data in bins of the
momentum of the πf in the lab frame (left), or when separating the data by local
alignment set (right). The alignment sets are 1 =A, 2 =C, 3 =D, 4 =E.

10.3. Discussion of the systematic errors

From Table. 10.1 we note that the contribution to the systematic error due to

Monte Carlo statistics is 0.042 ps, hence a factor four increase in Monte Carlo statistics

will help reduce this error by almost a factor of two(taking roughly into account

the effect of background events also). Another significant contribution is from the

statistics used in data sideband fit and the kinematic fit which contribute 0.044 ps

to the total systematics using more data will help reduce this contribution. data
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compared to With the use of more data the contributions from the fit bias may also

reduce with an increase in the number of signal events, as shown by toy Monte Carlo

studies1. Having Monte Carlo represent data in a more consistent way would help

reduce the errors due to the uncertainties in the number of D0 tracks that make it

into the other B0 vertex, that now contributes to a systematic error of 0.026 ps. The

systematics of 0.01 ps due to global uncertainties are a minor contributions to the

total systematics in this analysis.

There is room for improvements to reduce the total systematic error in future

analysis using the data collected in the most recent run.

10.4. Conclusions

The measured B0 lifetime using a sample of partially reconstructed B0 → D∗−ρ+

events is

τ
B

= 1.616 ± 0.064 ± 0.075 ps. (10.5)

This value is consistent with the measured B0 lifetime using fully reconstructed

hadronic decay modes with the same integrated luminosity τ
B

= 1.546 ± 0.032 ±

0.022 ps.

This is the first measurement of the B0 lifetime using partially reconstructed

1With the present data set of 80 fb−1 in BABAR we could use a cone cut of 1.4 radian instead of
the 1 radian, thereby reducing the number of background events.
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B0 → D∗−ρ+ events. The consistency of the result between two complementary

procedure validates the use of partial reconstruction for time-dependent analysis.

BABAR has already started to work toward a measurement of sin(2β+γ) using partial

reconstruction and a result is expected in the near future.
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Table 10.1: Summary of systematic errors. In the section column we refer the reader
to the section where the particular systematic error is discussed.

Source Error (ps) Section

Statistical error of sideband fit 0.033 10.1.1

Statistical error of kinematic fit 0.029 10.1.1

Statistical error of wrong-sign fit 0.002 10.1.1

Monte Carlo statistics: RD0 0.036 10.1.2

Monte Carlo statistics: kinematic parameters 0.014 10.1.2

Monte Carlo statistics: Event selection bias 0.013 10.1.2

Monte Carlo statistics: B0 → D∗−a+
1 bias 0.011 10.1.2

RD0 correction 0.027 10.1.3

Level of B → D∗∗ρ+ background 0.023 10.1.4

Likelihood fit bias 0.016 10.2.1

Variation of fixed parameters 0.015 10.1.5

Br(B0 → D∗−a+
1 )/Br(B0 → D∗−ρ+) 0.005 10.1.6

Level of peaking background 0.003 10.1.7

Bias from fully reconstructed events 0.001 10.1.8

SVT misalignment 0.008 10.1.9

Z-scale uncertainty ±0.4% 0.007 10.1.9

Boost parameters ±0.1% 0.002 10.1.9

Total 0.075
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Table 10.2: Summary of results of fits to the data and signal Monte Carlo using
different signal resolution functions. Errors are statistical only.
.

Resolution function τ raw
B (ps), data τ raw

B (ps), signal Monte Carlo

Eq. (7.11) 1.535 ± 0.064 1.506 ± 0.032

Eq. (10.4) 1.547 ± 0.072 1.505 ± 0.033

GExp 1.541 ± 0.067 1.507 ± 0.032

Table 10.3: Results of the fits obtained with the different cone cuts, used to create
Fig. 10.1. τ true

B
is the lifetime obtained from signal Monte Carlo truth (Sec. 8.1.3).

RD0 is the ratio between the lifetime measured on signal Monte Carlo and τ true
B

, with
the errors of the numerator and denominator taken to be fully correlated. τ raw

B
is

the value of the lifetime obtained in the fit, with only the statistical error due to
the fit. τa1

B
is the value of τ raw, corrected for the B0 → D∗−a+

1 bias (Sec. 8.1.1).
The error includes the Monte Carlo statistics error from the evaluation of the bias.
τ
B

= τa1

B
/RD0.

0.6 radian 0.8 radian 1.0 radian 1.2 radian 1.4 radian

τ true
B

(ps) 1.530 1.530 1.533 1.537 1.542

±0.013 ±0.013 ±0.013 ±0.013 ±0.013

RD0 0.923 0.958 0.982 0.987 1.003

±0.019 ±0.029 ±0.020 ±0.021 ±0.022

τ raw
B

(ps) 1.493 1.525 1.535 1.576 1.633

±0.067 ±0.066 ±0.064 ±0.074 ±0.079

τa1

B
(ps) 1.504 1.537 1.543 1.582 1.646

±0.068 ±0.067 ±0.064 ±0.075 ±0.080

τ
B

(ps) 1.629 1.604 1.571 1.602 1.641

±0.081 ±0.085 ±0.073 ±0.083 ±0.087
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Appendix A

The DIRC - Operational Experience and Performance

Studies

As part of her research training at the Stanford Linear Accelerator Center the

author spend much of the last eighteen months of her doctoral studies involved with

the daily operation of the DIRC. As the work was not a central part of her thesis

analysis a more complete description of the device and a summary of her DIRC studies

is included in this appendix for completeness.

The DIRC, [61] is a new type of detector for particle identification used in the

barrel region of the BABAR detector. It is a Cherenkov ring imaging device which

utilizes totally internally reflecting Cherenkov photons in the visible and near UV

range [62]. This technique reduces space requirements and increases the particle

identification performance as compared to ring imaging detectors of the previous

generation. It provides the identification of pions, kaons and protons for momenta up
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to 4 GeV/c with high efficiency.

Mirror

4.9 m

4 x 1.225m Bars
glued end-to-end

Purified Water

Wedge

Track
Trajectory

17.25 mm Thickness
(35.00 mm Width)

Bar Box

PMT + Base
10,752 PMT's

Light Catcher

PMT Surface

Window

Standoff
Box

Bar

{ {
1.17 m

8-2000
8524A6

Figure A.1: Schematic of the DIRC fused silica radiator bar and imaging region.

A.1. Principle of the DIRC

Figure A.1 shows a schematic of the DIRC geometry that illustrates the principles

of light production, transport, and imaging. The DIRC uses thin, long rectangular

bars made of synthetic fused silica (quartz) [29] (H × W × L = 17 mm × 35 mm

× 4900 mm) both as Cherenkov radiators and light guides (refractive index n ≈

1.47), this material was chosen because of its resistance to ionising radiation, its long

attenuation length, large index of refraction, small chromatic dispersion within the

wavelength acceptance of the DIRC and because it allows an excellent optical finish
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of the bar surfaces [63]. Bars are glued together from four pieces, each 1225 mm

long. Altogether, 144 bars are arranged in a 12-sided polygonal barrel with a radius

of about 84 cm around the beam axis. The DIRC bars extend 178 cm forward from

the interaction point of BABAR covering 87% of the polar solid angle in the center-of-

mass frame. The azimuthal coverage is 93%, since there are gaps between the bars

at the 12 sides of the radiator polygon. Each group of 12 bars are housed in a bar

box surrounded by nitrogen at NTP (index n ≈ 1). The overall assembly of the

detector is shown in Fig. A.2. The radiation length of bars at normal incidence is X0

= 14% and X0 = 19% for the full assembly. In the following, the variable θc is used

to designate the Cherenkov angle, φc denotes the azimuthal angle of a Cherenkov

photon around the track direction, and n represents the mean index of refraction of

fused silica (n = 1.473). The Cherenkov angle is given by the familiar relation and a

cartoon illustrating the principle is shown in Fig. A.3

cos θc = 1/nβ. (A.1)

β = v
c
, v = velocity of the particle, c = velocity of light. Since the refractive index

of the radiator bar n is larger than
√

2, a certain fraction of the Cherenkov photons

produced by a relativistic charged particle traversing the quartz bar will undergo

total internal reflection, regardless of the incidence angle of the tracks, and propagate

along the length of the bar. Only one end of the bars is instrumented and a mirror
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Figure A.2: Schematical view of the DIRC assembly within BABAR.

(reflectivity ≈ 92%) is placed perpendicular to the bar axis on the other end, where

positrons enter the BABAR detector. Due to the boost of the Υ (4S) in the lab frame,

the density of charged tracks is enhanced on this side and hence it is less preferable

for readout. The bars are made of high optical precision (mean surface reflectivity

≈ 99.96% per bounce at 442 nm photon wavelength and opposing faces parallel to

25 mrad), the initial direction of the photon is captured within the rectangular bar

during its propagation.

Photons exiting the bar in downward direction, or with large angles in radial
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z
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θdip

θC

φC

Figure A.3: A cartoon illustrating the principle of Cherenkov angle.

direction, are partly recovered into the instrumented area by a prism at the readout

end, Fig. A.1. This optical element is 91 mm long and the top side has a 30 degree

opening angle. The bottom side is slightly tilted upwards by 6 mrad to recover

the downward going photons that would otherwise hit the support tube. The prism

reduces the required photon-sensitive area by more than a factor of two with only a

modest effect on reconstruction due to the two ambiguities introduced by the wedge.

A thin (9 mm) quartz window separates the prism from the so-called stand-off

box (SOB), a water tank filled with 6000 liters of purified water (refractive index
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n ≈ 1.33) in a toroidal shape (see Fig. A.1). The backplane of the SOB is divided into

12 sectors, each equipped with 896 conventional photo-multiplier tubes The PMTs

have a quantum efficiency of approximately 25% at 400 nm wavelength, spectral range:

250 nm – 650 nm, pointing to the exit of a corresponding bar box. Hexagonal reflectors

(light catchers) with water-resistant rhodium surfaces surround the photomultiplier

tubes forming a honeycomb of reflecting surface that improves the photon detection

efficiency by about 20%.

The ratio of the refractive indices of the quartz and water is nearly wavelength

independent. Due to this ratio the internal reflection at the readout side of the bar is

reduced. Furthermore, the exit angle is magnified by this ratio, increasing the position

resolution of the photons. The detector provides a three-dimensional measurement of

the photon from the photon exit angles, αx, αy with respect to the bar axis and the

hit time thit of the photon. A cartoon to illustrate the DIRC as a three-dimensional

imaging device is shown in Fig. A.4. Knowledge of the spatial position of the bar

through which the track passes and the photo-tube hit time within a certain readout

time interval is used to reconstruct the photon vector pointing from the center of

the bar end to the center of the tube. This vector is then extrapolated back into

the quartz bar using Snell’s law, where the exit angles (φC, θc) with respect to the

track are calculated. Most of the photon phase space (αx, αy, thit) is mapped onto

the Cherenkov angles (φc, θc). The contribution of timing, apart from resolving the
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Figure A.4: A cartoon to illustrate the DIRC as a three-dimensional imaging device.

forward-backward photon propagation, is not competitive with the position informa-

tion, but it is crucial for the suppression of beam background that have a different

time structure.

A.2. Timing

An important observable for a Cherenkov photon in the DIRC is the difference, ∆t

between its measured arrival time, tm, and expected, arrival time, te. The measured

arrival time is obtained in several steps:

Bunch crossings in the PEP-II ring occur with a minimum spacing of 4.2 ns, while
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relevant physics is accepted at a rate of about 2 kHz. In the level-one (L1) trigger

the bunch-crossing time is derived by fast pattern recognition in the super-layers of

the drift chamber with a precision of about 70 ns (time jitter). This compares to

the 50 ns width of the time distribution of Cherenkov photons created by tracks of

a typical collision event in the quartz bars. To collect all photons of an event the

readout interval in the DIRC is set to ±300 ns with respect to the L1-trigger time.

The DIRC time, thit, measurement is provided by a custom made digital chip

TDC [64] that resides in the front-end boards mounted on the standoff box. The

digitization clock is obtained by subdividing the 59.5 MHz BABAR system clock into 5

bits to result in 0.525 ns wide time bins. It was chosen as a function of the 1.4±0.2 ns

photo-tube resolution. The time value is stored in a memory buffer for 12 µs, the

time it takes for the L1-trigger to complete its operation. The hit time information is

transferred by a 1.2 Gbit/s optical fiber from the front-end electronics of the twelve

sectors pairwise into six readout modules (ROMs).

At the level of reconstruction, the calibration time tc is corrected for different

delays in the readout electronics and photo-tube response time variations are applied.

These are determined with a light pulser system which generates 1 ns pulse duration

from a blue light LED, inserted by an optical fiber into 12 diffusers which are located

above each bar box window facing the photo-tubes. The pulser produces roughly

10% photo-electron occupancy almost uniformly throughout the photo-tube array.
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The pulser is run at about 2 kHz to collect approximately 65,000 light pulses for the

determination of the mean-time delay of each tube with a statistical uncertainty of

better than 0.1 ns. The time delay values per channel are typically stable to a rms

of less than 0.1 ns over more than one year of daily calibrations.

A measure of the bunch-crossing time, tb, comes from a combined fit to drift-

chamber tracks. Therefore, the resolution of tb depends on the track multiplicity and

angular distributions. A typical resolution is about 2.5 ns.

Finally, the measured time calculated from:

tm = thit − ttrigger − tc − tb − toffset. (A.2)

where toffset is a global time offset. The precision in the parameter tm for a Cherenkov

photon is dominated by the bunch-crossing time tb. Cherenkov photons originating

from charged tracks in a collision event cluster in the arrival time as measured by

the DIRC. The mean arrival time of the Cherenkov photons in an event, 〈δt〉event,

has a resolution of 100 - 200 ps. In practice, this self-triggering feature of the DIRC

corrects the uncertainty in the bunch-crossing time (neglecting systematic corrections

from detector alignment, trigger jitters or calibration). Furthermore, the mean value

of the 〈δt〉event for a given run measures the deviation from toffset.

The expected arrival time, te, of the Cherenkov photon is a sum of the time-of-

flight of the charged track from its origin to the quartz bar (typically 3-5 ns), the
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photon propagation time in the quartz bar and the prism along its reconstructed

path and the time to travel through the water before reaching the surface of the

photomultiplier (typically 25-70 ns). The photon propagation time is given by

tp =
Lng

ckz

. (A.3)

where L is the bar length, where the photon group velocity (vg = c
ng

) is used instead

of the phase velocity (vp = c
n
). Since in a dispersive medium energy propagates at

the photon group velocity. The relation between the group and phase velocities as a

function of the photon wavelength λ is given by

ng(λ) = n(λ) − λ
dn(λ)

dλ
. (A.4)

For fused silica, ng is typically several percent larger than n(λ) for photons in the

energy range detectable by the PMTs. The weighted average value
〈

n(λ)
ng(λ)

〉
≈ 0.97. In

the earlier DIRC reconstruction the photon phase velocity was used to calculate the

propagation time. As a part of my DIRC software project I helped establish the value

of 0.97 by using a sample of dimuon events that is now used in the reconstruction

code.

The spread in the arrival time of a photon is greater than the average bunch

crossing. Applying 〈δt〉event as a correction yields a precision of better than 1.7 ns
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in ∆t = tm − te - < δt >event which is close to the intrinsic time resolution of the

phototubes.

In principle, the resolution of the bunch-crossing time tb becomes infinitesimal

small if one can identify the occurrence of the bunch that collided in the PEP-II fill

pattern. The minimum bunch spacing of 4.2 ns is set by the overall 476 MHz system

clock common to PEP-II and BABAR. However current operational pattern consist of

varying spacing of 12.8 ns, 8.4 ns or even alternating between 8.4 ns and 4.2 ns. Due

to this variation, the colliding bunches are found empirically from a fit of the bunch

pattern to the event ∆t.

A.3. Operational Issues

Interactions of lost beam particles with residual gas in the beam pipe (bremsstrahlung,

Coulomb scattering) produce low energy photons with energies between 2 MeV and

2.5 MeV for 90% of them. These penetrate the water in the standoff box and the

quartz bars and can generate secondary Cherenkov photons due to electrons from

Coulomb scattering. Another source of secondary Cherenkov light is not a physical

source due to lost beam particles. They preferentially hit beam pipe elements and

produce secondaries which can enter the standoff box. They produce so-called “hot

spots” in the read-out.

For a maximum background photon hit rate per photo-tube of 200 kHz one expects
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1300 hits in a ±300 ns readout time window corresponding to 12% occupancy. The

readout efficiency rapidly degrades when counting rates exceed this threshold. The

TDC and readout electronics dead-time reaches several percent at 300 kHz and 20%

at 700 kHz single tube hit rate. At the highest current luminosity the rate of single

photon hits per tube is kept below 200 kHz. Therefore, fast feedback to the Pep-

II control provided by an analog signal from a tube in the innermost row of each

standoff-box sector. Locations of beam related hot spots are tracked with CsI-crystal

detectors placed along the beam-pipe and then covered with local lead shielding. A

cylindrical lead shielding in the inner radius of the standoff box was inserted during

the fall of 2001 to reduce the occurrence of hot spots. To improve the DIRC data

acquisition robustness, an upgrade of the TDC has been designed to keep the dead-

time at a few percent for rates up to 1 MHz. Installation is scheduled for the summer

2002 shutdown.

On the other hand, in a time interval of ±8 ns about 11 randomly distributed

photons are present while for a typical multi-hadron event with 8 charged tracks

entering the quartz bars at the same time all 240 signal photons are recorded. This

demonstrates the potential use of the time observable ∆t in suppressing background

at the reconstruction level. In Fig. A.5 the dramatic effect is shown for a dimuon

event.
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Figure A.5: A typical e+e− → µ+µ− event in the rφ projection of the standoff box.
Left: Photo-multipliers which detect light within a time interval of ±300 ns centered
at the beam crossing time are shown as dots. Right: Only those photo-tubes are
plotted which were hit within 8 ns of the expected Cherenkov photon arrival time.

A.4. Performance

In the absence of correlated systematic errors, the resolution (σC,track) on the track

Cherenkov angle should scale as

σC,track = σC,γ/
√
Npe. (A.5)

In Figure A.6 we show the single photon angular resolution obtained from dimuon

events in data. There is a broad background of less than 10% relative height under the

peak, that originates mostly from track-associated sources, such as δ rays, reflections

off the glue-fused silica boundaries, and combinatorial background [65]. As a part of
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Figure A.6: The difference between the measured and expected Cherenkov angle for
single photons, ∆θc,γ for single muons in µ+µ− events. The curve shows the result of
a fit of two Gaussians to the data. The width of the narrow Gaussian is 9.6 mrad.

DIRC software work the author made comparative studies between DIRC Monte Carlo

and data. In Fig. A.7 we show Monte Carlo and data Cherenkov angle reconstruction.

This indicates a 20% discrepancy between the amount of background level in Monte

Carlo and data. This is because the Monte Carlo does not include effects due to

refraction off the glue and underestimates the amount of δ rays. The track Cherenkov

angle resolution for dimuon events is shown in Figure A.8. The width of the fitted

Gaussian distribution is 2.4 mrad compared to the design goal of 2.2 mrad.

The measured time resolution is 1.7 ns, close to the intrinsic 1.5 ns transit time

spread of the PMTs. The number of photo-electrons shown in Figure A.9 varies

between 16 for small values of | cos θtrack | at the center of the barrel and 60 at large

values of | cos θtrack |. This variation is well reproduced by Monte Carlo simulation,

and can be understood from the geometry of the DIRC. The number of Cherenkov

photons varies with the path-length of the track in the radiator, it is smallest at
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Figure A.7: The single photon Cherenkov angle distribution for the muon track as
reconstructed in the DIRC for data(dots) and Monte Carlo(line) overlayed. On the
y axis is the probability plotted on a log scale.
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Figure A.8: Resolution of the reconstructed Cherenkov polar angle per track for
dimuon events. The curve shows the result of a Gaussian fit with a resolution of
2.4 mrad.
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Figure A.9: Number of detected photons versus track polar angle for reconstructed
tracks in dimuon events compared to Monte Carlo simulation.The mean number of
photons in the simulation has been tuned to match the data.
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Figure A.10: Invariant Kπ inclusive mass spectrum with and without the use of the
DIRC for kaon identification. The mass peak corresponds to the decay of the D0

particle.

perpendicular incidence at the center and increases towards the ends of the bars. In

addition, the fraction of photons trapped by total internal reflection rises with larger

values of | cos θtrack |. This increase in the number of photons for forward going

tracks is a good match to the increase in performance required at larger momentum.

The Kπ invariant mass spectra is shown as an example of the use of the DIRC

for particle identification is in Figure A.10. It is seen that the ratio of signal to

background increases by a factor of five from without the DIRC to with the DIRC

used for particle identification. The peak corresponds to the decay of the D0 particle.
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Figure A.11: DIRC π-K separation versus track momentum measured in D0 → K−π+

decays selected kinematically from inclusive D∗ production.
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Figure A.12: Efficiency and misidentification probability for the selection of charged
kaons as a function of track momentum, for a particular choice of particle selection
criteria. The data use D0 → K−π+ decays selected kinematically from inclusive D∗

production.
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Due to the small mass difference between the D∗ and the D0 the decay of D∗ can be

kinematically well constrained by its decay to a D0 and a slow π. The D0 decays to

a kaon and a pion. Thus there are three charged tracks where the two π’s have the

same charge while the kaon has the opposite charge. This constraint helps measure

the signal over background in the decay of the D∗. Thus the PID performance of

the DIRC has been studied with a sample of pions and kaons, selected kinematically

using D0 → K−π+ decays from inclusive D∗ production. The pion-kaon separation

power of the DIRC was defined as the difference of the expected Cherenkov angles

for pions and kaons, divided by the measured track Cherenkov angle resolution. As

shown in Figure. A.11, the separation between kaons and pions at 3 GeV/c is about

4.4σ, which is within 10% of the design goal.

The efficiency to identify correctly a charged kaon that traverses a radiator bar and

the probability to mis-indentify a pion as a kaon are also determined from the inclusive

D∗ sample. This is shown as a function of the track momentum in Figure A.12 for a

particular choice of particle selection criteria. The kaon selection efficiency and pion

misidentification, integrated over the K and π momentum spectra of the D∗ control

sample, are 97.97±0.07% (stat. only) and 1.83±0.06% (statistics only), respectively.
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A.5. Summary

The new type of Cherenkov detector DIRC developed for BABAR is well suited

for the particle identificaton requirments of the experiment. It has been a crucial

component of many published physics analysis including the flagship CP violation

measurements.

The DIRC has been robust and stable for three years and is operating essentially

in factory mode. 99% of all photomultiplier tubes and electronic channels operating

with nominal performance.

The detector performance achieved is close to that predicted by the Monte Carlo

simulations, though alignment and additional code developments are expected to

provide further improvements.
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