
sIAc-186 
STAN-CS-75-513 
UC-32 

A SURVEY OF TECHNIQUES FOR FIXED RADIUS 
NEAR NEIGHBOR SEARCHING 

JONLOUISBENTLEY 

STANFORD LINEAR ACCELERATOR CENTER 

STANFORD UNIVERSITY 

Stanford, California 94305 

PREPARED FOR THE 
U. S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION 

TJYNTBR CONTRACT NO. E( 04-3)-515* 

August 1975 

Printed in the United States of America. Available from National Technical 
Information Service, U.S. Department of Commerce, 5285 Port Royal Road, 
Springfield, Virginia 22161. Price: Printed Copy $3.75; Microfiche $1.45. 

* 
This work also supported in part by National Institutes of Health under 
Grant 1-POT-~~00898-01. 



_ ii . I 

ARS’IRACT 

This paper is a survey of techniques used for searching in a 

multidimensicnal space. Though we ccnsider specifically the 

Froblem of searching for fixed radius near neighbors (that 

is, all points within a fixed distance of a given point), 

the structures presented bere are applicable to eiany different 

search problems in multidimensional spaces. The orientation 

of this paper is practical; nc theoretical results are 

presented. ?Iany areas open for further research are mentioned. 
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1, Introduction 

This paper deals with searching in a multidimensional metric 

space, We consider specifically the probl~em of searching for 

fixed radius near neighbors, that is, all Faints nithin a fixed - 
distance r of a given Faint, Though our primary examination of 

the problem will take place in Euclidean k space, the constructs 

we examine will be applicable to an arbitrary multidimensional - I 
metric space. There are many ways of viewing the fixed 

radius near neighbor problem, The *'online" problem first 

allows the procedure to store the Feints in a data 

structure then reFetitively asks for all near neighbors 

within a given radius r of given llquery points'V, The 

batched query approach assuaes that the queries both arrive 

and are to be answered in grouPsI or "batches", The 

"all pairs" problem, given a collection of n points, 

asks for an enumeration of all pairs of the n within 

diStaACe r of one another, We will examine techniques for 

dealing with ail of these questions. 

There are many applicaticns of fixed radius near neighbor 

searching. These arise, in general, when an agent has the 

potential of affecting the state of all objects within a certain 

distance. Levinthal (11) rsed a fixed radius nearest neighbor 

search in his interactive computer graphics study 0f protein 

molecules. Since the interactions of the atoms within the 

molecule drop off so quickly with increasing distance, he 

approxim.ated the forces acting on any given atom by considering 

only tha forces caused by atons within five angstroms of each 
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other- An air traffic ccntrol system might be interested in 

locating all planes within, say, ten miles of each other (here a 

metric vould be used in which one thousand vertical feet would 

be equivalent to many horizontal miles.) Iverson gave the fixed 

radius near neighbor problem as an excercise in his 

book A Prcgraoming Language (8,ex. 4,8(c)), 

This paper is an attempt to provide a survey of the methods 

used to deal with the fixed radius near neighbor problem. As 

such, it contains no nev results. The author has tried to gather 

together many different problems and techniques from different 

areas for a systematic presentation of the state of the problem. 

Throughout this paper we will assume that ve are dealing 

mith a collection of n points in k dimensional Euclidean space. 

The fixed radius within which we are searching fcr near neighbors 

will be denoted by r. Except where otherwise noted, the distance 

function between two pcints will be the Euclidean distance. 

All of the structures developed will be extendable to other 

metrics such as the t'city block" and the maximum coordinate 

metrics. When referring to a point x in k space, x's value in 

the i-th dimension will be vritten xi. 

The fixed radius near neighbor problem is very similar to 

the nearest neighbor problem. The nearest neighbor in a set to a 

given point is defined to be that point in the set uhich is 

closest to the given point. Hany of the notions discussed in 

this work were developed in connection vith nearest neighbor 

algorithms. A great deal of work has appeared recently on 

the nearest neighbor problem. The interested reader is referred 
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to Friedman, Baskett and Shustek (4), Friedman, Bentley and 

Pinkel (S), Yuval (141, and Fukunaga and Narendra (6) l The 

techniques described in this paper will be applicable to the 

nearest neighbor problem as veil as many other search problems in 

multidimensional spaces. 

Section 2 of this paper examines the online problem. It 

is here that the data structures used throughout the paper 

are defined. The batched query model is considered in section 3. _, I 
In sect ion 4 the all pairs problem is 

investigated, Section 5 considers what actions are appropriate 

when the points in the space are objects in motion, Some of the 

details of implementation cf the algorithms are covered in 

section 6, Section 7 discusses the many areas open for further 

work in this problem. 

2. The Online Model 

As the online model applies to the fixed radius near 

neighbor problem, the search procedure is initially given the 

collection of a points and sufficient time to organize the points 

into a suitable data structure. After that the system is 

repetitively asked to search for all fixed radius near neighbors 

to given ntarget points" which may or may not be among the 

original collection of n points. The radius r may vary among 

queries, It is important to specify approximately how many 

queries vi11 be posed during the lifetime of the system. If 

only some vzry small number of queries will be made, then it will 

probably' not pay to impose any expensive structure on the - 

data (unless fast response is critical). Cn the other hand, 
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if an extremely large number of queries vi11 be made, then it 

uould be cost effective to perform some very elaborate and 

expensive structuring of the data, In this discussion we 

will assume that the number of queries will be approximately n, 

We will nov proceed to examine various data structuring _ 

schemes suitable for the fire3 radius near neighbor problem. He 

will investigate both the structures themselves and the 

corresponding search algcrithms, Figures 1 thru 4 will be used _ > 
to illustrate the brute fcrce, projection, cell, and k-d tree 

techniques, respectively. In figures 2 thru 4, the solid lines 

represent the partitioning of the space. In all the figures, the 

diagonally striped regions are those examined when searching for 

the tarqet pcint, which is marked with an x. The meaning of the 

figures will be obvious, given the description af the structures 

which follows in sections 2.1 thru 2.4, 

2.1 Brute force 

The simF1ast approach to the fixed radius near neighbor 

problem is to store each of the n points in an array, list, 

or some other simple sequence. As each query arrives, all 

members of the list are scanned and all fixed radius near 

neighbors are enumerated. This technique involves linear 

storage for the structure, preprocessing tire linear in A, and 

each 9-y is ansvered with n distance calculations. Though 

this technique is unsophisticated iA that it performs 

many distance calculations, the overhead is quite small. 

For small pcint sets (especially in high dimensionality 

spaces), the brute force approach vi11 be hard to beat, 
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2.2 Projection 

The projection technique is referred to as inverted lists by 

Knuth (9). This technique was applied by Friedman, Baskett and 

Shustek in their solution cf the nearest neighbor problem (4). - 
Projection involves keeping, for each dimension, a sequence of 

the points in the space scrted by that dimension. (A plex 

of pointers to the elements of the Faint set is probably the most 
I 

favorable irplementation-- we vi11 see below that binary searches 

should be easily accomplished.) These k lists can be obtained 

using some standard scrting algorithm in time of O(k*n*log n), 

and stored using O(n*k) words of storage, After 

the preprocessing, a query for all fixed radius near 

neighbors to point x can be answered by the following 

search procedure: Choose a dimension, say the i-th, Look up 

x's Fositicn in the i-th sequence, using a binary search (of 

cost 0 (log n)) - Now scan down the list in decreasing order 

until a record is found whose i-th key is less than xi-r, and 

scan up the list until a record is found whose i-th key is 

greater than xi+r (ncte that these scans could be made using 

a binary search). All points in the collection vithic 

distance r of point x must be in the list betveen the two 

extremal points just found. 

bore should be said about how the i-th dimension is chosen. 

If the points are fairly randomly distributed amonq all 

dimensions, then one sorted sequence is all that really needs to 

be kept, If, however, there is much clustering in certain parts 

of the space, then it can pay to k+e p sorted sequences of 
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all k dimensions. To choose which one tc use for a given 

g-rye the local density around the pcint x in each dimension 

could be examined, and the sparsest dimension vould be 

chosen, One implementation of this philosophy would be to 

calulate all the extremal pairs by doing. hinary searches for 

xi-r and xitr (in O(k*log n) time), then choose the -. 

dimension vhich has the fevest points between the extremal 

pair. It might be vorthuhile to spend some 

preprocessing time to determine how many of the 

dimensions should be kept as sorted sequences; if the points 

are bunched closely together in a particular dimension, then 

it would rarely be chosen, 

The projection methcd is quite efficient for point sets of a 

moderate size which are non-uciformlp distributed in the space, 

Though a large number cf distance calculations are made in each 

queryI when compared to the k-d trees described in section 2.4, 

the computational overhead is much less. The reader interested 

in a more detailed analysis cf this approach is referred to 

the paper of Friedman, Baskett and Shustek (U) which contains an 

excellent discussion of projection as applied to the nda rest 

neighbor FxOblem. 

2.3 Cell techniques 

Cell techniques are apprcpriate structures when the point 

set is constrained to be almost uniformly distributed in 

a subset of the Euclidean space. For example, the cell 

technique might be suitable to represent cities cn a map 

of t he United States, witF the tvo dimensions in the 
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Euclidean space hei ng the latitude and the longitude 

(in this example ve ignore the spherical shape of the 

globe,) The cell technique structures the data by 

placing a "checker hoard" over the map and assigning each city 

to a square on the checkerboard. The cell in vhich any 

city belongs can he computed efficiently by truncating the 

latituda and longitude down to the next leultiQe of (say) five 

degrees, B cell structure can be used in higher dimensional 

spaces by considering points to fall in hyper-cubes, The points 

in the hyper-cubes can be efficiently stored as a linked list, 

or some other similar structure. In a sense, this 

structure is a multi-dirensional hasbing scheme with 

cubical buckets, The bucket in which a particular point 

belongs can be determined quickly by a division operation, 

Knuth has discussed this scheme for the tvc dimensional case 

in (9) - Levinthal (11) used a cell technique in three 

dimensional Euclidean space for determining all atoms within five 

angstroms of every atom in a protein molecule--he referred to 

the technique as "cubinq9w, Puval applied this structure to 

the nearest neighbor problem in (14), 

The storage required for this scheme is prcFortiona1 to the 

number of hypercubes in the space plus the number of points. 

(The number of hypercubes in the space is the product of the 

number of regions in each of the k dimensions; for example, if 2 

space is divided into 8 regions cn the x-axis and 8 on the 

y-axis, tha resulting partition is the standard checkerboard of 

64 squares,) Retrieval of all near neighbors within r of 

point x is accomplished by examining all the points in 

- I 
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all of the cubes within distance r of x, (The distance from a 

point to a cube, or any hyper-rectangular body, can be determined 

efficiently using the method described in section 6,) The 

time required for retrieval will be proportional to the sum of 

the number of cubes Overlapped by the sphere of radius 1: plus 

the number of points within those cubes. 

This technique is suitable for point sets which are 

uniformly distributed throughcut a low dimensionality space. In 

a bighly ncnuniform space, either the cells would have to be very 

large (increasing search time), or much extra storage would be 

used. For suitable point sets, the cell structure can 

be iaplemented very efficiently in terms of both space and time. 

2.4 k-d trees 

The multidimensional binary search tree (in k dimensions, 

the k-d tree) is described by Bentley in (1). It is a 

generalization of the standard binary search tree as described by 

Knuth (10). In the standard binary search tree the decision to 

proceed to one of the tvo sons of a node is rade by comparing the 

query key to the value of the key stored in the node. Since 

there are k keys associated with each point, this scheme can be 

extended to k dimensions by specifying in the node not only the 

value against vhich the ccmFarison should be made, but also 

vhich dimension should be COrnpared. For the k-d trees described 

in (1) # every point in the aFace is stored in an internal node 

of the tree, and the structure of the tree is quite dependant 

on the way the points were presented to the tree building _ 

algorithm. In (5) Friedman, Bentley and Finkel discuss a 
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modification of the k-d tree in which the points are all stored 

in external nodes of the tree (but kets) and the structure 

is determined by an "optimization prescriptiorP which guarantees 

a nice partitioning of the search space. Appendix A 

contains a brief descriptioc of k-d trees, It is beyond the 

scope of this paper to describe k-d trees in detail, and - . 

the reader interested in their implementation is referred 

to Friedman, Bentley and Pinkel (5) for such a description. 

The storage required by k-d trees is proFortiona1 to n, The 

preprocessing time required tc build a k-d tree is O(k*n*log n). 

The nearest neighbor search algorithm described in (5) can be 

easily modified to find fixed radius near neighbors. 

As the search algorithm visit2 a node it must visit one or both 

of that node's subtrees, The algorithm must test the bounds of 

both of the subtrees and visit each if and only if that 

subtree's bounds overlap the ball of center x and 

radius r, Since this is equivalent to determininq if 

the hyper-rectangle defined by the bounds cf the subtrer, is 

within distance r of Feint x, the test can be made efficiently 

using the technique described in section 6. (It might be noted 

for the sake of efficiency that if the bcunds of the 

first son tested did not overlap the ball, then the bounds 

of the other son must overlap the ball and the test to 

deteraine so need not be made.) 

The author conjectores that k-d trees provide the 

asymptotically optimal structure for use in the fixed radius 

near neighbor problems. The partitioning they impose on 

the space has the desirable property of conforming to the 
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peculiarities of the data: in this sense, k-d trees are an 

"adaptive cellingVV technique. Given one dimensional data, the 

k-d tree vi.11 meld itself into a standard one 

dimensional binary search tree. Given highly uniform data, the 

k-d tree will impose a partitioning very similar to the cell 

technique described in section 2.3. Although the number of _. 

operations that must be perfcrmed to find fixed radius near 

neighbors is small (in propcrtion to the number of points), the 

preprocessing to construct the tree and each tree operation are 

relatively time consuming. For small n, the other techniques 

mentioned in this section miqht prove faster than k-d trees. 

2.5 Cther %echniques 

In this section the author has included schemes that he 

feels are no lcnger compe tetive with the above mentioned 

techniques. These are included hoth for historical completeness 

and in the hope that scmeone might be inspired by o&e of these 

ideas to invent a new technique for the problem. 

2.5-l Recursive cells 

Knuth points out that the notion of cells can be applied 

recursively (9). That is, when one of the cubes has more than 

some certain number of points, that cube is further divided into 

subcubes of Yet smaller size. This scheme i.mFlies a 

multidimensional tree with multiway branching. In terms of 

both the partitioning imposed on the space and the ease of 

implementation, this idea seems to be dominated by the quad tree 

(section 2,5,3), which is in turn dominated by the k-d tree 
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(section 2.4). 

2.5.2 Post office trees 

A tree structure developed by Bruce McNutt for the fixed 

radius near neighbor problem is described by Knuth in (9). The -. 
structure has been named the "post-office tree", Each node of 

the tree correspcnds to a point in 2 space and a "test radiusVt, 

A distance calculation determines which of a node's two sons 

should be visited. The preprccessing of the structure is done 

for a fixed radius r, so r can not vary betveen queries. 

The structure uses a high redundancy of storage. For example, a 

tree was built that contained the 231 most populous cities in 

the continental United States. For a value of r = 35 miles, a 

tree of 1600 nodes was required. Because of the high 

storage redundancy, this scheme appears to be inferior to k-d 

trees. 

2.5.3 Quad trees 

Quad trees vere descrikd by Pinkel and Bentley in (3) - 

They are a generalization of the binary tree in which every node 

has 2**k sons. Bentley and Stanat (2) analyzed the performance 

of quad trees for fixed radius near neighbor searches in 2 space 

using the maximum cocrdinate metric in uniform point sets. John 

Linn discussed in his thesis (2) the fact that quad 

trees (which he called "Search-sort k treesn) have 

advantages over binary trees when used in a 

synchroniped multiprocessor system. This application aside, 

however, quad trees seem tc be dominated by their historical 
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2.5.4 Voronoi diagrams 

Voronoi diagrams are polygonal graphs which induce a 

fascinating partition on point sets in 2 space. Michael Shamos - 

has described their application in many diverse areas in (13) - 

John Zolnowsky (15) has applied Yoronoi diagram to finding 

fixed radius near neighbors in 2 space for "sparse*@ point sets. 

Sparse sets have the property that no point has more than c 

neighbors within radius r. In such a space, Zolnowsky's 

algorithm requires O(n*lcg n) preprocessing time and has a query 

response time of O(log n + c), Not only are these times 

asymptotically efficient, but the algorithms car( be implemented 

efficiently for point sets cf practical size. Unfortunately, 

Voronoi diagrams have net (yet) been extended to 3 

space or higher, so Zolncwsky's results hold only for 2 space. 

i.5.S Yultiway cluster trees 

In (6) Pukunaga and ‘Narendra discuss a tree structure 

which allows the branch and bound technique of operations 

research to be employed in finding nearest neighbors. The 

algorithm uses a clustering procedure to determine .the subtrees 

of each node. The covering induced on the search space is 

very irregular and includes much overlap. A comparison of these 

trees with k-d trees is available for the nearest neighbor 

problem. To find the nearest neighbor in 2 space among a 

thousand. points required 51 distance calculations in the 

experiments of Fukunaga and Narendra. Similar experiments in k-d 
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trees reported by Friedman, Bentley and Finkel (5) showed that 

k-d trees required only 4 distance calculations. Thus k-d trees 

seem to be superior. 

2.5.6 ?lultidimensicnal search tries 

Edvard McCreight (Frivate communication) has proposed a 

scheme by which the kits representing the ccordinates of the 

points are merged together into a Nsuperkey*', That is, the first -; 

bit of tht superkey for Faint x will be the first bit of xl, the 

second bit of the suFerkey is the first bit cf x2, ana so on, 

until the ktlst bit of the superkey is the second bit of xl, 

and the cycle repeats- The records are stored in a table 

sorted by the superkey, A fixed radius near neighbor 

search can avoid examining large parts of the table using 

this 'scheme. In a sense, this structure is to k-d trees as 

digital search tries are to Etandard binary trees. This scheme 

needs to be studied more carefully, but it appears to be 

inferior to k-d trees, 

2-5.7 Sophisticated cell techniques 

Yuval has suggested in (14) more sophisticated cell 

techniques than the simple "cubing9* techniques described in 

section 2.3. Among these are a system of cverlapping cubes 

designed such that the response to any query will be found in 

only one cell. This scheme requires storage redundancy 

exponential in diraension, Be alsc suggests that a hexagonal 

covering of 2 space might be more efficient than the square 

covering, Though this covering would indeed reduce the number 
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of distance calculations made, the computational overhead if0uia 

be costly compared to the relatively cheap cubing scheme. 

2 -5.8 Distribution dependent cell techniques 

It was pointed out in section 2.3 that straightforward cell - 
techniques are inappropriate if the distribution of points in 

the space is highly nonuniform. If, however, the probability 

distribution of the points is known a priori, this information , 
could be used to create cells which are large in the sparse 

regions of the space and small in the dense regions, so that 

every cell contained approprcximately the saw rumber of points. 

This approach would fuccticn only if the exact probability 

distribution of the point set was known beforehand--any deviation 

from that exact distribution might be disastrous. It is 

interesting to note that k-d trees automatically provide this 

distributicn dependent partitioning, without being given the 

exact distribution. 

3. The Batch Hods1 

Oftentimes queries for all fixed radius near neighbors to 

points do not just trickle into the system haphazardly--they 

arrive in batches, Examples of this are numerous. This 

occurs when queries are generated by a number of users at 

remote terminals and ccllected in concentrators before they are 

sent (in a batch) to the central ccsputer, As a 

substructure of a molecule is being rctated in 3 space, it might 

be desired to find all fixed radius near neighbors to all 

atoms in th+ substructure; thus the atoms in the substructure 
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form the batch, Such batch queries could be answered by merely 

iterating the online techniques discussed in section 2 

for each point in the batch, but there are other more 

sophisticated ways of handling the problem. We will assume 

that the radius r is the same for all points in the batch, and 

that the number of points in the batch (for notation) is m, 

3-l Bruta force 

When the points in the batch are allowed to be 

arbitrary Faints, one can Il0t do any better than to 

compute the distances betveen each of the m points in the batch 

and each of the n Faints in the point set, for a 

total of m*n distance calculaticns. If the m points are 

constrained to be in the point set, then cne could reduc? the 

number of distance calculations made by using the 

following strategy. First, compute I-y brute force all of 

the near neighbor Fairs among the m points in the batch 

using the technique described in section 4.1, which uses 

m**2/2 distance calculations. Now for each of those m points in 

the batch, mark their representations in the main point set as 

having been present in the batch we know we have already 

found all of their near neighbors in the batch.) For each 

of the m points in the batch, compute all the distances to 

the n-a points not in tne batch, finding all near 

neighbors in Iti* (n-a) distance calculations. Using 

this nathod, all of ths near neighbor Fairs will be found 

using only n*m m**2/2 distance calculations, a 

savings of m**2/2 calculaticns over the naive approach. The 

overhead involved in implementing this approach would 
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make it practical only if m were fairly large. 

3.2 Frojection 

A variant of the data proces.sing technique of 

sequential file updating can tc used to increase the efficiency - . 
of batched fixed radius near neighbor searches. The procedure 

works by choosing a dimension (perhaps the one with the 

greatest variance in the point set) and sorting the points in the 

batch by that dimension. The next step is to sequence through 

both the batch and tha pcint set lists in Farallel, reducing 

the search time by noticing that points separated by r in 

one dimensicn are of distance greater than r apart in k space. 

There are many ways of irplementing this Fhilosophy, One 

might have an outer loop going through all the points in the 

point set and an inner loop iterating through that subset of 

the points in the batch that are within r (in the 

chosen dimension) cf the current point in the point set. This 

technique avoids the time required fcr 81 binary searches at 

the cost of going through the entire list, so it is feasible only 

when n is less than PI * log n. 

3.3 Cell techniques 

One possible approach to speeding up batched queries when 

using cells as the storage structure uould be to group together 

all the points in the batch that fall in the same cell, Then all 

the points in the surrounding cells (all cells within r of the 

given cell) v0uia be compared to those Faints from the batch, 

This right be particularly efficient if the points in the batch 
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happened to be bunched rather closely together. 

3.4 k-d trees 

One of the most expensive aspects of searching a k-d tree 

is the overhead of tree traversal incurred when stacking _. 

the nodes to be revisited and in updating the bounds arrays. 

If a number of queries are Fresent in a batch, it might be 

worth-uhile to perform scire other bookkeeping in order i 
to incur this overhead cnly once. That could be 

accomplishe3 by performing one traversal of the tree, 

keeping track at each node of those points in the batch 

that are currently nactivel* in the traversal by use of a 

bitstring OXI some other set ieplementation, Each 

such bitstring would require m bits, and in a balanced tree 

the depth of the recursion stack is bounded by log n, so 

there would b3 only m*log n kits of stcrage required to 

a0 the bookkeeping. At each internal node of the 

tree, a point in the batch is considered active if and only 

if its corresponding bit is one, Before proceeding 

to one of the two subtrees the search procedure tests 

for every active point to see if the bounds of the 

subtree are vithin r cf that point, and sets the bits of the 

node's son's bitstring to cne if and cnly -if the bounds 

are within r. If none of the bits are one, then the 

search does not bother tc proceed dovn the subtree, When 

the search visits a bucket it compares all the points in the 

bucket to all the actiwe points in the bitstring, 

and reports all near neighbors thus found, It might be that 

if the cardinality of the set shrank belcw a 
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certain size, then some other set representation, such 

as a linked list, might be more efficient than the 

bitstring, This mathod (using bitstrinqs) has been 

implemented by the author, and for batches of size 

n the program ran in about half the time of the iterated use 

of the online strategy. 

4. The All Close Pairs Froblem 

The all close pairs problem can be stated as follows: given 

a collection of n points in k space, enumerate all pairs among 

the n within distance I of each other, One cculd approach this 

problem using the simple cnline or batch models, but there are 

better methods that can te used. One reason for this is that 

those solutions would enumerate all close pairs tvice: once vher 

x vas within r of y, and again vhen y was four.d to be within r of 

XI Avoiding this redundancy can yield UF to a factor of two 

speedup, 

4.1 Brute force 

Tha following program (in pseudo-ALGOL) will solve the all 

close pairs problem using n (n-l)/2 distance calculations: 

for i := 1 until n-l do 

for j := it7 until n do 

if distance (i, j) <= r then 

report <i,j> as a close pair: 

The program is easy to irplement efficiently on a computer. 
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4.2 Projection 

The projection method can be used to search for all close 

pairs. The first step of an algorithm based on this technique is 

to choose the sparsest dimension (in some sense). This could be -^ 

accomplished in O(n*k) time by calculating the variances of the 

points in all dimensions and choosing the dimension of maximum 

variance. Once a dimension is chosen, the points are sorted by 

that dimension, which requires O(n*log n) time. This structure 

can be used immediately to find the set of all close pairs 

{without redundancy). The outer loop of the procedure vould 

consider the elements of the list in order, maintaining a pointer 

to the present element in the list and the first element in the 

list greater than r away from the present element in the 

chosen dimension. These two pointers together define a 

sublist, The inner loop traverses this sublist, comparing 

every point on it to the current point in the outer loop, and 

reports all near neiyhbors, The number of distance 

calculations made using this method is bounded by n(n-1)/2, 

and for nany distributions will be substantially less. The 

overhead involved in this technique is small if a good sorting 

algorithm is used. 

4-3 Cell techniques 

The mcst simple nonredurdant all pairs algorithm for a 

cube structure is merely to iteratively search for all points 

in the half sphere of radius r centered at all 

points (use of half EFheres avoids redundancy). A more 
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sophisticated scheme wculd, for each cube, compute all near 

neighbor pairs with one Feint in the given cube and the other 

pcint in any cube within r of the given cube. Note that the 

naive implementation of considering for every cube all other 

cubes within r will lead to redundancy. Therefore, a 

method such as that used in section 4.2 should be employed here - . 
to consider each pair of cubes only once. One implementation 

of this scheme would employ the knowledge of the relationship 

of r to the length of the edge of a cube. For instance, if _ 
the edge size uas exactly r, then tbe larger cube of side 3+r 

forme. by taking all the cubes adjacent to any cube C 

would certainly contain all of near neighbors to any point 

in C, This large cube will contain 3**k-1 cubes besides C, It 

is easy to see a scheme where one looks for near neighbors to 

points in C in only (3**k-1)/2 of C's neighboring cubes, and 

then the remainder of the pairs are found as C's neiqhbors 

investigate C. For example, in 2 space (using the compass 

system), any cube need consider only its N, NE, E, and SE 

neighbors: then it will in turn be a N neighbor to its S 

neighbor,.and likewise for its SW,U, and NY neighbors. This 

scheme could be implemented very efficiently using well known 

techniques for multidimensional arrays (see Gries (7) for a 

discussion of the implementation of multidimensional arrays.) 

4.4 k-d Trees 

The most simple nonredundant all pairs algorithm for the k-d 

tree is the same as for a cute structure, that is, searching for 

all points in half spheres centered at all points. A more . 
sophisticated scheme would, for each bucket, find all other 
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buckets within r, and examine all the points in the two buckets 

for fixed radius near neighbors. Naively implemented this 

scheme would compare each bucket to every other near bucket 

twice, just as the naive implementation of the cell technique 

would. However, avoiding the redundancy is not so easy with 

k-d trees as it is with c+lls, due to the irregular shape of _. 

the buckets. One way to avoid this is to define some 

relation R on the cells such that (Cl R C2) if and only if not 

(C2 R Cl), for any cells Cl and C2, Then C2 would be _, 

examined when searching for Cl's near neighhcrs, because (Cl a 

C2) l but Cl would not be searched when searching for C2.s near 

neighbors, A particularly nice relation is Ci R Cj if and only 

if i < j, This relation is easy to test for pairs of buckets. 

This relation can also be used to prune the search of the tree if 

the buckets are numbered such that all the buckets in the left 

subtree of a node are numbered less than a given field of the 

node, and all buckets in the right subtree have a greater bucket 

index than the field. 

5. Dynamic Point Sets 

Many applications of fixEd radius near neighbor searching 

deal with point sets that are dynamic--that is, points can be 

inserted, deleted, or change their locations (though a change of 

location could be accomplished by a deletion followed by an 

insertion, we will see later that change is a useful primitive,) 

AS such events take place, it is desirable to change as 

little of the data structure as possible. In this section we 

will investigate some of the techniques used for dealing with 

the problem of dynamic changes to the various structures we have 
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discussed, 

The most simple type of change is when a single point is 

modified. when the modification is an insertion or deletion, the 

corresponding structure can be easily modified using the brute 

force, projection, or cell techniques quite easily. - 
Insertions and deletions with k-d trees are a bit more 

difficult. They could be made by inserting or deleting the 

items in the buckets, but that is disastrous if successive 

insertions are going into only a few buckets--the tree would 

grow quite out of balance. In this case the tree should not 

use buckets but instead stcre the points in the nodes of 

the tree and use the dynamic insertion and deletion routines 

described in (1). For any of the structures, if the set of 

all close pairs in the Feint set was known before a position 

change of point x, the new set of all close pairs can easily be 

calculated after the position change of x. The only previous 

close pairs that are nc longer close pairs are points that 

were close to x before x moved, and the cnly new close pairs are 

the new near neighbors to x, 

Any batch of changes can be handled by iterating the above 

techniques. A more radical situation occurs when all the points 

in the structure change their locations. If the new locations 

are totally unrelated to the old ones, not much can be done 

besides throwing out the old structure and starting over again 

frcm scratch. 

Oft.entimes, however, the new positions are related to the - 
old ones. Consider the case cf an air traffic control system 
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which updates the locations of the planes in the system by a 

radar scan every five seconds. It is safe to assume (for today's 

civilian aircraft) that no Flane will have travelled more than 

a mile frcm its pre9ious position in five seccnds, Using such. 

restrictions (that a point will be no more than some 

constant distance from its cld position), it is possible to 
- 

develop very fast Updating algorithms. For the 

projection technique, the new projection will very likely 

closely resemble the old, and a variation of the bubble sort 

could be used to modify the projection, The main loop of the 
I 

procedure changes the position of each point. As the position 

of a point is changed, it *8bubbles" up or down the 

projection until it finds its new home. This procedure will 

efficiently give the new Frojection. For k-d trees a 

similar notion can be used. Ehen the location of each point 

changes, test if the change is great enough to cause the 

point to move from its present bucket to a new bucket. If not, 

all is well; ctherwise, transfer the node to the new bucket. 

Once again, this strategy runs the risk of creating 

unbalanced trees, One wav to counter this is to use the same 

buckets until the tree is found to be out of balance, then 

reorganize the tree at that time. 

6. Implementation Suggestions 

In this section we will discuss some of the problems 

associated with implementing the scheees we have investigated. 

The issues raised in this section might also be important for 

future techniques not discussed in this paper. . 
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6.1 Computing interpoint distances 

It is easy to compute the distance from x to y by 

summing tha squares of their differences in each dimension, 

and then taking the square root of the sum. In many of the 

schemes in this paFern however, the complete interpoint _, 

distance is not needed--we only need to kncv if x is greater 

than r from y. Since square root is a monotonically 

increasing function, the sum of the squares of the 

differences could be compared to r**2, and the costly 

square root operation avcided. A more sophisticated 

technique, appropriate for very high dimensional spaces and point 

sets with few near neighbors, is to ccmpute the sum of the 

squares of the distances only until they exceed r**2. 

This involves making a ccaparison after each addition to the 

sum of the squares. This is cost effective if a few 

comparisons help to ?iQCid mafi y multiplications and additions. 

This idea could be used in a limited form by testing 

after every few additions, 

6.2 Computing distances to hypcr-rectangles 

Using the cell and k-d tree structures, it is necassary 

to compute the distance from a hyper-rectangle (which could 

be a cell, bucket, or the boucds of a subtree) to a point. 

A mcdification of the bounds-overlap-ball procedure described 

bY Friedman, Bentley and Pinkel (5) can be used to 

efficiently calculate the distance. The procedure notices that 

the distance from a point to a hyper-rectangle is the distance 

from the pcint tc the closest point in the 
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hyper-rectangle, and that the location of that point can be 

deduced by considering the k disiensions independently, 

The procedure calculates tbe distance from the point to the 

hyper-rectangle in each dilrension and sums the squares of 

these distances to obtain the desired answer. The 

hyper-rectangle is defined ty its lover and upper bounds 

in each dimension (it i s asscmed to be rectilinearly oriented in 

the space), The distance from a giveE Feint x to the 

hyper-rectangle in a given dimensicn (say i) is 

calculated as follows: if xi is between the lover and upper 

bounds, the distance is zerc; otherwise it is the distance from 

xi to the closest bound. As vith distances between points, 

often one is only interested if the distance from a point 

to a hyper-rectangle is less than some r. If this is all that 

is desired, a similar technique to that described in 

section 6.1 of computing the partial sum only until it exceeds r 

(or the total sum has been computed) can be employed. 

The algorithm described here can also be used to compute 

distances betvean points and hyper-rectangles for other metrics. 

If the city block metric uere used, then the sum of the distances 

{not their squares) in each dimension would be computed. If the 

maximum coordinate metric vere used, then the maximum sinqle 

dimensional distance would be recorded. The algcrithm can also 

be used to calculate distances between two hyper-rectangles, For 

that application the single dimensional distance is zero if the 

line segments defining the two rectangles in that dimension 

overlap, .othervise it is the Gstance between the line segments. 

. I 
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6.3 Using multiple structures in refinement 

Instead of employing cnly one structure, it might be 

effective to use different structures for different parts of the 

problem. In effect, the k-d trees 'and cell structures as 

described use the brute force technique in the buckets and cells _. 

in which the Faints are stored. St might be cost effective to 

sort the elements in a bucket by one dimension and use a 

modification of the projection algorithm to search in the bucket _( 

if it were very large. The recursive cell structure 

! 
defined in section 2.5.1 is an example of refinement 

using the same structure. Other more exotic kinds of refinements 

can be imagined. 

6.4 Cells within the fixed radius 

In either the k -d tree or cell structures, if it is 

determined that the entire tucket (or cell) is within the fixed 

radius r of the point x, then clearly all the points in the 

bucket are within r of R, Whether a cell is entirely within 

a fixed radius ball can ke dEtermined quickly using a method 

similar to that described in section 6.2. St is 

sufficient to determine if the point in the cell furthest 

from x is within r. The point in the cell furthest from x is (by 

the independence among the dimensions for the metrics ue have 

used) that point which maximizes the distance to xi in each 

dimension i. This point can easily be determined in time 

linear in k, Once again, as in sections 6.1 and 6-2, the partial 

sum of the distance sguared need only be computed until it 

exceeds r. 
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Jerome Friedman has pointed out that this technique 

will prove extremely valuable when k-d trees are used in 

point sets that have sut-collections of great local density. 

This "bounds within ballH test cou1.d note that a whole 

subtree vas in the region cf interest. When that was 

noticed, the search procedure would merely traverse the 

subtree, enumerating all the points therein as near neighbors. 

7, Areas For further Uork 

Very little is known about the behavior of the 

structures described in this paper. The performance of these 

structures for different distributions of points should be 

carefully analyzed to determire how many distance calculations 

each structure needs to solve the different prchlems mentioned, 

The algorithas described should be coded efficiently in some 

common lanquage (such as FORTRAN) and the details of 

implementation overhead carefully analyzed so that the 

know ledge of the number of distance calculations made can 

be translated into actual running times cn ccmmon computers. 

The implementation Farame ters, such as bucket sizes for 

k-d trees and cell sizes for the cell method, need to be analyzed 

in detail. 

The problem of points in motion discussed in section 5 is 

very important, especially as it relates to traffic control 

systems, Huch more work needs to be done in this area. 
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Appendix A. An introduction t'o k-d trees 

The k-d tree is a ganeralization of the simple binary 

tree used for sorting and searching. The k-d tree is a binary 

tree in which each node represents a subcollection of the points -. 

in the space, and a partitioning of that subcollection, The 

root of the tree represents the entire ccllection. Each 

nonterminal node has two successors. These successor nodes -, I 
represent the two subcollections defined by the 

partitioning. The terminal nodes represent mutually 

exclusive small subsets of the points, which collectively 

form a partition of k space. These terminal subsets are 

called buckets. 

In tbe case of cne-diaensional searching, a point is 

represented by its value in a single dimension and a 

partition is defined bp some value of that dimension. All 

records in a subcollection with key values less than or equal 

to th8 partition value belong to the left successor node, vhile 

those with a larger value belong to the right 

successor. The dimension thus becomes a discriminator for 

assigning records to the two subcollections, 

In k space, a point is represented by k dimensions. Anv one 

of these can serve as the discriminator for partitioning the 

subcollection represented by a particular node in the tree: 

that is, the discriminator can range from 1 to k. The original 

k-d tree proposed by Bentley (1) chose the discriminator for 

each node on the basis of its level in the tree: the 
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discriminator for each level was obtained by cycling through 

the keys in crder. That is, 

D = L mod k + 1 

where D is the discriminator for level L and the root node is 

defined to be at level zero, The partition-values were chosen to 

be random key values in each particular subcollection. 

In (5) Friedman, Bentley and Finkel describe a way of 

constructing an "cptinized" k-d tree. Instead of cycling through 
. I 

the dimensicns, the discririnator for a node is that dimension 

which exhibits the largest variance in the subcollection. The 

variance can be calculated easily for each dimension, and the 

maximum is chosen, The partition value is chosen to be the 

median value in tha discriminator dimension. This construction 

imposes a nicely shaped partitioning on the space. 

Associated with each each node or bucket in a k-d tree 

is a set of geometric bounds within which the points in that 

subcollection must lie. Ibe bounds are reFrt?Sented by two 

one dimensicnal arrays of k elements, called LCFER and UPPER. 

For a given subcollection S it must be true for every node x in S 

and every dimension i that LOHER <= xi <= UPPER(i). 

The bounds are updated during the descent in the tree to a 

subcollection by replacing UPPER(i) uith the partition value of 

an i-discriminator node when going to its left son, and 

modifying LOWER(i) accordingly when visiting a node's right son, 

The root's upper and lower bounds are set initially to plus and 

minus infinity, respectively, These bounds form a 

rectiline.arly oriented byper-rectangle in k space within vhich 

all the points in any suhcollection must be. 
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A fixed radius near neighbor search procedure is easily 

defined recursively. When visiting a node x, it computes the 

bounds for x's right son and visits the right sea recursively if 

and only if its bounds are uithin r of the target point, and 

likewise for the left son. Uhen visiting a bucket, it scans all _ 

points in the bucket to see if any are within r of the target 

point. 


