
sIAc-186
STAN-CS-75-513
UC-32

A SURVEY OF TECHNIQUES FOR FIXED RADIUS
NEAR NEIGHBOR SEARCHING

JONLOUISBENTLEY

STANFORD LINEAR ACCELERATOR CENTER

STANFORD UNIVERSITY

Stanford, California 94305

PREPARED FOR THE
U. S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

TJYNTBR CONTRACT NO. E(04-3)-515*

August 1975

Printed in the United States of America. Available from National Technical
Information Service, U.S. Department of Commerce, 5285 Port Royal Road,
Springfield, Virginia 22161. Price: Printed Copy $3.75; Microfiche $1.45.

*
This work also supported in part by National Institutes of Health under
Grant 1-POT-~~00898-01.

_ ii . I

ARS’IRACT

This paper is a survey of techniques used for searching in a

multidimensicnal space. Though we ccnsider specifically the

Froblem of searching for fixed radius near neighbors (that

is, all points within a fixed distance of a given point),

the structures presented bere are applicable to eiany different

search problems in multidimensional spaces. The orientation

of this paper is practical; nc theoretical results are

presented. ?Iany areas open for further research are mentioned.

KEY WORDS AND KEY FBRASES

associative searching

k-a trees

fixed radius near neighbcr searching

nearest neighbor searching

1.

2.

Introduction T 1

The Online Model 3
2.1. Brute force 4
2.2. Projection 5
2.3. Cell techniques 6
2.4. k-d trees 8
2.5. Other techniques 10

3. The Batch Model 14
3.1. Brute force 15
3.2. Projection 16

3.3. Cell techniques 16
3.4. k-d trees 17

4. The All Close Pairs Problem 18
4.1. Brute force 18
4.2. Projection 19
4.3. Cell techniques 19
4.4. k-d trees 20

5*

6.

Dynamic Point Sets 21

Implementation Suggestions 23
6.1. Computing interpoint distances 24
6.2. Computing distances to hyper-rectangles . . . 24
6.3. Using multiple structures in refinement . . . 26
6.4. Cells within the fixed radius 26

7. Areas for Further Work 27

- iv -

TABLE OF CONTEIXTS

Page

Bibliography 29

Appendix A. An introduction to k-d trees 31

-l-

1, Introduction

This paper deals with searching in a multidimensional metric

space, We consider specifically the probl~em of searching for

fixed radius near neighbors, that is, all Faints nithin a fixed -
distance r of a given Faint, Though our primary examination of

the problem will take place in Euclidean k space, the constructs

we examine will be applicable to an arbitrary multidimensional - I
metric space. There are many ways of viewing the fixed

radius near neighbor problem, The *'online" problem first

allows the procedure to store the Feints in a data

structure then reFetitively asks for all near neighbors

within a given radius r of given llquery points'V, The

batched query approach assuaes that the queries both arrive

and are to be answered in grouPsI or "batches", The

"all pairs" problem, given a collection of n points,

asks for an enumeration of all pairs of the n within

diStaACe r of one another, We will examine techniques for

dealing with ail of these questions.

There are many applicaticns of fixed radius near neighbor

searching. These arise, in general, when an agent has the

potential of affecting the state of all objects within a certain

distance. Levinthal (11) rsed a fixed radius nearest neighbor

search in his interactive computer graphics study 0f protein

molecules. Since the interactions of the atoms within the

molecule drop off so quickly with increasing distance, he

approxim.ated the forces acting on any given atom by considering

only tha forces caused by atons within five angstroms of each

-2-

other- An air traffic ccntrol system might be interested in

locating all planes within, say, ten miles of each other (here a

metric vould be used in which one thousand vertical feet would

be equivalent to many horizontal miles.) Iverson gave the fixed

radius near neighbor problem as an excercise in his

book A Prcgraoming Language (8,ex. 4,8(c)),

This paper is an attempt to provide a survey of the methods

used to deal with the fixed radius near neighbor problem. As

such, it contains no nev results. The author has tried to gather

together many different problems and techniques from different

areas for a systematic presentation of the state of the problem.

Throughout this paper we will assume that ve are dealing

mith a collection of n points in k dimensional Euclidean space.

The fixed radius within which we are searching fcr near neighbors

will be denoted by r. Except where otherwise noted, the distance

function between two pcints will be the Euclidean distance.

All of the structures developed will be extendable to other

metrics such as the t'city block" and the maximum coordinate

metrics. When referring to a point x in k space, x's value in

the i-th dimension will be vritten xi.

The fixed radius near neighbor problem is very similar to

the nearest neighbor problem. The nearest neighbor in a set to a

given point is defined to be that point in the set uhich is

closest to the given point. Hany of the notions discussed in

this work were developed in connection vith nearest neighbor

algorithms. A great deal of work has appeared recently on

the nearest neighbor problem. The interested reader is referred

-3-
to Friedman, Baskett and Shustek (4), Friedman, Bentley and

Pinkel (S), Yuval (141, and Fukunaga and Narendra (6) l The

techniques described in this paper will be applicable to the

nearest neighbor problem as veil as many other search problems in

multidimensional spaces.

Section 2 of this paper examines the online problem. It

is here that the data structures used throughout the paper

are defined. The batched query model is considered in section 3. _, I
In sect ion 4 the all pairs problem is

investigated, Section 5 considers what actions are appropriate

when the points in the space are objects in motion, Some of the

details of implementation cf the algorithms are covered in

section 6, Section 7 discusses the many areas open for further

work in this problem.

2. The Online Model

As the online model applies to the fixed radius near

neighbor problem, the search procedure is initially given the

collection of a points and sufficient time to organize the points

into a suitable data structure. After that the system is

repetitively asked to search for all fixed radius near neighbors

to given ntarget points" which may or may not be among the

original collection of n points. The radius r may vary among

queries, It is important to specify approximately how many

queries vi11 be posed during the lifetime of the system. If

only some vzry small number of queries will be made, then it will

probably' not pay to impose any expensive structure on the -

data (unless fast response is critical). Cn the other hand,

-4-

if an extremely large number of queries vi11 be made, then it

uould be cost effective to perform some very elaborate and

expensive structuring of the data, In this discussion we

will assume that the number of queries will be approximately n,

We will nov proceed to examine various data structuring _

schemes suitable for the fire3 radius near neighbor problem. He

will investigate both the structures themselves and the

corresponding search algcrithms, Figures 1 thru 4 will be used _ >
to illustrate the brute fcrce, projection, cell, and k-d tree

techniques, respectively. In figures 2 thru 4, the solid lines

represent the partitioning of the space. In all the figures, the

diagonally striped regions are those examined when searching for

the tarqet pcint, which is marked with an x. The meaning of the

figures will be obvious, given the description af the structures

which follows in sections 2.1 thru 2.4,

2.1 Brute force

The simF1ast approach to the fixed radius near neighbor

problem is to store each of the n points in an array, list,

or some other simple sequence. As each query arrives, all

members of the list are scanned and all fixed radius near

neighbors are enumerated. This technique involves linear

storage for the structure, preprocessing tire linear in A, and

each 9-y is ansvered with n distance calculations. Though

this technique is unsophisticated iA that it performs

many distance calculations, the overhead is quite small.

For small pcint sets (especially in high dimensionality

spaces), the brute force approach vi11 be hard to beat,

-5-

2.2 Projection

The projection technique is referred to as inverted lists by

Knuth (9). This technique was applied by Friedman, Baskett and

Shustek in their solution cf the nearest neighbor problem (4). -
Projection involves keeping, for each dimension, a sequence of

the points in the space scrted by that dimension. (A plex

of pointers to the elements of the Faint set is probably the most
I

favorable irplementation-- we vi11 see below that binary searches

should be easily accomplished.) These k lists can be obtained

using some standard scrting algorithm in time of O(k*n*log n),

and stored using O(n*k) words of storage, After

the preprocessing, a query for all fixed radius near

neighbors to point x can be answered by the following

search procedure: Choose a dimension, say the i-th, Look up

x's Fositicn in the i-th sequence, using a binary search (of

cost 0 (log n)) - Now scan down the list in decreasing order

until a record is found whose i-th key is less than xi-r, and

scan up the list until a record is found whose i-th key is

greater than xi+r (ncte that these scans could be made using

a binary search). All points in the collection vithic

distance r of point x must be in the list betveen the two

extremal points just found.

bore should be said about how the i-th dimension is chosen.

If the points are fairly randomly distributed amonq all

dimensions, then one sorted sequence is all that really needs to

be kept, If, however, there is much clustering in certain parts

of the space, then it can pay to k+e p sorted sequences of

-6-
all k dimensions. To choose which one tc use for a given

g-rye the local density around the pcint x in each dimension

could be examined, and the sparsest dimension vould be

chosen, One implementation of this philosophy would be to

calulate all the extremal pairs by doing. hinary searches for

xi-r and xitr (in O(k*log n) time), then choose the -.

dimension vhich has the fevest points between the extremal

pair. It might be vorthuhile to spend some

preprocessing time to determine how many of the

dimensions should be kept as sorted sequences; if the points

are bunched closely together in a particular dimension, then

it would rarely be chosen,

The projection methcd is quite efficient for point sets of a

moderate size which are non-uciformlp distributed in the space,

Though a large number cf distance calculations are made in each

queryI when compared to the k-d trees described in section 2.4,

the computational overhead is much less. The reader interested

in a more detailed analysis cf this approach is referred to

the paper of Friedman, Baskett and Shustek (U) which contains an

excellent discussion of projection as applied to the nda rest

neighbor FxOblem.

2.3 Cell techniques

Cell techniques are apprcpriate structures when the point

set is constrained to be almost uniformly distributed in

a subset of the Euclidean space. For example, the cell

technique might be suitable to represent cities cn a map

of t he United States, witF the tvo dimensions in the

-7-
Euclidean space hei ng the latitude and the longitude

(in this example ve ignore the spherical shape of the

globe,) The cell technique structures the data by

placing a "checker hoard" over the map and assigning each city

to a square on the checkerboard. The cell in vhich any

city belongs can he computed efficiently by truncating the

latituda and longitude down to the next leultiQe of (say) five

degrees, B cell structure can be used in higher dimensional

spaces by considering points to fall in hyper-cubes, The points

in the hyper-cubes can be efficiently stored as a linked list,

or some other similar structure. In a sense, this

structure is a multi-dirensional hasbing scheme with

cubical buckets, The bucket in which a particular point

belongs can be determined quickly by a division operation,

Knuth has discussed this scheme for the tvc dimensional case

in (9) - Levinthal (11) used a cell technique in three

dimensional Euclidean space for determining all atoms within five

angstroms of every atom in a protein molecule--he referred to

the technique as "cubinq9w, Puval applied this structure to

the nearest neighbor problem in (14),

The storage required for this scheme is prcFortiona1 to the

number of hypercubes in the space plus the number of points.

(The number of hypercubes in the space is the product of the

number of regions in each of the k dimensions; for example, if 2

space is divided into 8 regions cn the x-axis and 8 on the

y-axis, tha resulting partition is the standard checkerboard of

64 squares,) Retrieval of all near neighbors within r of

point x is accomplished by examining all the points in

- I

-8-
all of the cubes within distance r of x, (The distance from a

point to a cube, or any hyper-rectangular body, can be determined

efficiently using the method described in section 6,) The

time required for retrieval will be proportional to the sum of

the number of cubes Overlapped by the sphere of radius 1: plus

the number of points within those cubes.

This technique is suitable for point sets which are

uniformly distributed throughcut a low dimensionality space. In

a bighly ncnuniform space, either the cells would have to be very

large (increasing search time), or much extra storage would be

used. For suitable point sets, the cell structure can

be iaplemented very efficiently in terms of both space and time.

2.4 k-d trees

The multidimensional binary search tree (in k dimensions,

the k-d tree) is described by Bentley in (1). It is a

generalization of the standard binary search tree as described by

Knuth (10). In the standard binary search tree the decision to

proceed to one of the tvo sons of a node is rade by comparing the

query key to the value of the key stored in the node. Since

there are k keys associated with each point, this scheme can be

extended to k dimensions by specifying in the node not only the

value against vhich the ccmFarison should be made, but also

vhich dimension should be COrnpared. For the k-d trees described

in (1) # every point in the aFace is stored in an internal node

of the tree, and the structure of the tree is quite dependant

on the way the points were presented to the tree building _

algorithm. In (5) Friedman, Bentley and Finkel discuss a

-Y-

modification of the k-d tree in which the points are all stored

in external nodes of the tree (but kets) and the structure

is determined by an "optimization prescriptiorP which guarantees

a nice partitioning of the search space. Appendix A

contains a brief descriptioc of k-d trees, It is beyond the

scope of this paper to describe k-d trees in detail, and - .

the reader interested in their implementation is referred

to Friedman, Bentley and Pinkel (5) for such a description.

The storage required by k-d trees is proFortiona1 to n, The

preprocessing time required tc build a k-d tree is O(k*n*log n).

The nearest neighbor search algorithm described in (5) can be

easily modified to find fixed radius near neighbors.

As the search algorithm visit2 a node it must visit one or both

of that node's subtrees, The algorithm must test the bounds of

both of the subtrees and visit each if and only if that

subtree's bounds overlap the ball of center x and

radius r, Since this is equivalent to determininq if

the hyper-rectangle defined by the bounds cf the subtrer, is

within distance r of Feint x, the test can be made efficiently

using the technique described in section 6. (It might be noted

for the sake of efficiency that if the bcunds of the

first son tested did not overlap the ball, then the bounds

of the other son must overlap the ball and the test to

deteraine so need not be made.)

The author conjectores that k-d trees provide the

asymptotically optimal structure for use in the fixed radius

near neighbor problems. The partitioning they impose on

the space has the desirable property of conforming to the

- 10 -

peculiarities of the data: in this sense, k-d trees are an

"adaptive cellingVV technique. Given one dimensional data, the

k-d tree vi.11 meld itself into a standard one

dimensional binary search tree. Given highly uniform data, the

k-d tree will impose a partitioning very similar to the cell

technique described in section 2.3. Although the number of _.

operations that must be perfcrmed to find fixed radius near

neighbors is small (in propcrtion to the number of points), the

preprocessing to construct the tree and each tree operation are

relatively time consuming. For small n, the other techniques

mentioned in this section miqht prove faster than k-d trees.

2.5 Cther %echniques

In this section the author has included schemes that he

feels are no lcnger compe tetive with the above mentioned

techniques. These are included hoth for historical completeness

and in the hope that scmeone might be inspired by o&e of these

ideas to invent a new technique for the problem.

2.5-l Recursive cells

Knuth points out that the notion of cells can be applied

recursively (9). That is, when one of the cubes has more than

some certain number of points, that cube is further divided into

subcubes of Yet smaller size. This scheme i.mFlies a

multidimensional tree with multiway branching. In terms of

both the partitioning imposed on the space and the ease of

implementation, this idea seems to be dominated by the quad tree

(section 2,5,3), which is in turn dominated by the k-d tree

- 11 -
(section 2.4).

2.5.2 Post office trees

A tree structure developed by Bruce McNutt for the fixed

radius near neighbor problem is described by Knuth in (9). The -.
structure has been named the "post-office tree", Each node of

the tree correspcnds to a point in 2 space and a "test radiusVt,

A distance calculation determines which of a node's two sons

should be visited. The preprccessing of the structure is done

for a fixed radius r, so r can not vary betveen queries.

The structure uses a high redundancy of storage. For example, a

tree was built that contained the 231 most populous cities in

the continental United States. For a value of r = 35 miles, a

tree of 1600 nodes was required. Because of the high

storage redundancy, this scheme appears to be inferior to k-d

trees.

2.5.3 Quad trees

Quad trees vere descrikd by Pinkel and Bentley in (3) -

They are a generalization of the binary tree in which every node

has 2**k sons. Bentley and Stanat (2) analyzed the performance

of quad trees for fixed radius near neighbor searches in 2 space

using the maximum cocrdinate metric in uniform point sets. John

Linn discussed in his thesis (2) the fact that quad

trees (which he called "Search-sort k treesn) have

advantages over binary trees when used in a

synchroniped multiprocessor system. This application aside,

however, quad trees seem tc be dominated by their historical

successor, k-d trees.
- 12 -

2.5.4 Voronoi diagrams

Voronoi diagrams are polygonal graphs which induce a

fascinating partition on point sets in 2 space. Michael Shamos -

has described their application in many diverse areas in (13) -

John Zolnowsky (15) has applied Yoronoi diagram to finding

fixed radius near neighbors in 2 space for "sparse*@ point sets.

Sparse sets have the property that no point has more than c

neighbors within radius r. In such a space, Zolnowsky's

algorithm requires O(n*lcg n) preprocessing time and has a query

response time of O(log n + c), Not only are these times

asymptotically efficient, but the algorithms car(be implemented

efficiently for point sets cf practical size. Unfortunately,

Voronoi diagrams have net (yet) been extended to 3

space or higher, so Zolncwsky's results hold only for 2 space.

i.5.S Yultiway cluster trees

In (6) Pukunaga and ‘Narendra discuss a tree structure

which allows the branch and bound technique of operations

research to be employed in finding nearest neighbors. The

algorithm uses a clustering procedure to determine .the subtrees

of each node. The covering induced on the search space is

very irregular and includes much overlap. A comparison of these

trees with k-d trees is available for the nearest neighbor

problem. To find the nearest neighbor in 2 space among a

thousand. points required 51 distance calculations in the

experiments of Fukunaga and Narendra. Similar experiments in k-d

- 13 -

trees reported by Friedman, Bentley and Finkel (5) showed that

k-d trees required only 4 distance calculations. Thus k-d trees

seem to be superior.

2.5.6 ?lultidimensicnal search tries

Edvard McCreight (Frivate communication) has proposed a

scheme by which the kits representing the ccordinates of the

points are merged together into a Nsuperkey*', That is, the first -;

bit of tht superkey for Faint x will be the first bit of xl, the

second bit of the suFerkey is the first bit cf x2, ana so on,

until the ktlst bit of the superkey is the second bit of xl,

and the cycle repeats- The records are stored in a table

sorted by the superkey, A fixed radius near neighbor

search can avoid examining large parts of the table using

this 'scheme. In a sense, this structure is to k-d trees as

digital search tries are to Etandard binary trees. This scheme

needs to be studied more carefully, but it appears to be

inferior to k-d trees,

2-5.7 Sophisticated cell techniques

Yuval has suggested in (14) more sophisticated cell

techniques than the simple "cubing9* techniques described in

section 2.3. Among these are a system of cverlapping cubes

designed such that the response to any query will be found in

only one cell. This scheme requires storage redundancy

exponential in diraension, Be alsc suggests that a hexagonal

covering of 2 space might be more efficient than the square

covering, Though this covering would indeed reduce the number

- 14 -

of distance calculations made, the computational overhead if0uia

be costly compared to the relatively cheap cubing scheme.

2 -5.8 Distribution dependent cell techniques

It was pointed out in section 2.3 that straightforward cell -
techniques are inappropriate if the distribution of points in

the space is highly nonuniform. If, however, the probability

distribution of the points is known a priori, this information ,
could be used to create cells which are large in the sparse

regions of the space and small in the dense regions, so that

every cell contained approprcximately the saw rumber of points.

This approach would fuccticn only if the exact probability

distribution of the point set was known beforehand--any deviation

from that exact distribution might be disastrous. It is

interesting to note that k-d trees automatically provide this

distributicn dependent partitioning, without being given the

exact distribution.

3. The Batch Hods1

Oftentimes queries for all fixed radius near neighbors to

points do not just trickle into the system haphazardly--they

arrive in batches, Examples of this are numerous. This

occurs when queries are generated by a number of users at

remote terminals and ccllected in concentrators before they are

sent (in a batch) to the central ccsputer, As a

substructure of a molecule is being rctated in 3 space, it might

be desired to find all fixed radius near neighbors to all

atoms in th+ substructure; thus the atoms in the substructure

- 15 -

form the batch, Such batch queries could be answered by merely

iterating the online techniques discussed in section 2

for each point in the batch, but there are other more

sophisticated ways of handling the problem. We will assume

that the radius r is the same for all points in the batch, and

that the number of points in the batch (for notation) is m,

3-l Bruta force

When the points in the batch are allowed to be

arbitrary Faints, one can Il0t do any better than to

compute the distances betveen each of the m points in the batch

and each of the n Faints in the point set, for a

total of m*n distance calculaticns. If the m points are

constrained to be in the point set, then cne could reduc? the

number of distance calculations made by using the

following strategy. First, compute I-y brute force all of

the near neighbor Fairs among the m points in the batch

using the technique described in section 4.1, which uses

m**2/2 distance calculations. Now for each of those m points in

the batch, mark their representations in the main point set as

having been present in the batch we know we have already

found all of their near neighbors in the batch.) For each

of the m points in the batch, compute all the distances to

the n-a points not in tne batch, finding all near

neighbors in Iti* (n-a) distance calculations. Using

this nathod, all of ths near neighbor Fairs will be found

using only n*m m**2/2 distance calculations, a

savings of m**2/2 calculaticns over the naive approach. The

overhead involved in implementing this approach would

- 16 -

make it practical only if m were fairly large.

3.2 Frojection

A variant of the data proces.sing technique of

sequential file updating can tc used to increase the efficiency - .
of batched fixed radius near neighbor searches. The procedure

works by choosing a dimension (perhaps the one with the

greatest variance in the point set) and sorting the points in the

batch by that dimension. The next step is to sequence through

both the batch and tha pcint set lists in Farallel, reducing

the search time by noticing that points separated by r in

one dimensicn are of distance greater than r apart in k space.

There are many ways of irplementing this Fhilosophy, One

might have an outer loop going through all the points in the

point set and an inner loop iterating through that subset of

the points in the batch that are within r (in the

chosen dimension) cf the current point in the point set. This

technique avoids the time required fcr 81 binary searches at

the cost of going through the entire list, so it is feasible only

when n is less than PI * log n.

3.3 Cell techniques

One possible approach to speeding up batched queries when

using cells as the storage structure uould be to group together

all the points in the batch that fall in the same cell, Then all

the points in the surrounding cells (all cells within r of the

given cell) v0uia be compared to those Faints from the batch,

This right be particularly efficient if the points in the batch

- 17 -

happened to be bunched rather closely together.

3.4 k-d trees

One of the most expensive aspects of searching a k-d tree

is the overhead of tree traversal incurred when stacking _.

the nodes to be revisited and in updating the bounds arrays.

If a number of queries are Fresent in a batch, it might be

worth-uhile to perform scire other bookkeeping in order i
to incur this overhead cnly once. That could be

accomplishe3 by performing one traversal of the tree,

keeping track at each node of those points in the batch

that are currently nactivel* in the traversal by use of a

bitstring OXI some other set ieplementation, Each

such bitstring would require m bits, and in a balanced tree

the depth of the recursion stack is bounded by log n, so

there would b3 only m*log n kits of stcrage required to

a0 the bookkeeping. At each internal node of the

tree, a point in the batch is considered active if and only

if its corresponding bit is one, Before proceeding

to one of the two subtrees the search procedure tests

for every active point to see if the bounds of the

subtree are vithin r cf that point, and sets the bits of the

node's son's bitstring to cne if and cnly -if the bounds

are within r. If none of the bits are one, then the

search does not bother tc proceed dovn the subtree, When

the search visits a bucket it compares all the points in the

bucket to all the actiwe points in the bitstring,

and reports all near neighbors thus found, It might be that

if the cardinality of the set shrank belcw a

- 18 -

certain size, then some other set representation, such

as a linked list, might be more efficient than the

bitstring, This mathod (using bitstrinqs) has been

implemented by the author, and for batches of size

n the program ran in about half the time of the iterated use

of the online strategy.

4. The All Close Pairs Froblem

The all close pairs problem can be stated as follows: given

a collection of n points in k space, enumerate all pairs among

the n within distance I of each other, One cculd approach this

problem using the simple cnline or batch models, but there are

better methods that can te used. One reason for this is that

those solutions would enumerate all close pairs tvice: once vher

x vas within r of y, and again vhen y was four.d to be within r of

XI Avoiding this redundancy can yield UF to a factor of two

speedup,

4.1 Brute force

Tha following program (in pseudo-ALGOL) will solve the all

close pairs problem using n (n-l)/2 distance calculations:

for i := 1 until n-l do

for j := it7 until n do

if distance (i, j) <= r then

report <i,j> as a close pair:

The program is easy to irplement efficiently on a computer.

- 19 -

4.2 Projection

The projection method can be used to search for all close

pairs. The first step of an algorithm based on this technique is

to choose the sparsest dimension (in some sense). This could be -^

accomplished in O(n*k) time by calculating the variances of the

points in all dimensions and choosing the dimension of maximum

variance. Once a dimension is chosen, the points are sorted by

that dimension, which requires O(n*log n) time. This structure

can be used immediately to find the set of all close pairs

{without redundancy). The outer loop of the procedure vould

consider the elements of the list in order, maintaining a pointer

to the present element in the list and the first element in the

list greater than r away from the present element in the

chosen dimension. These two pointers together define a

sublist, The inner loop traverses this sublist, comparing

every point on it to the current point in the outer loop, and

reports all near neiyhbors, The number of distance

calculations made using this method is bounded by n(n-1)/2,

and for nany distributions will be substantially less. The

overhead involved in this technique is small if a good sorting

algorithm is used.

4-3 Cell techniques

The mcst simple nonredurdant all pairs algorithm for a

cube structure is merely to iteratively search for all points

in the half sphere of radius r centered at all

points (use of half EFheres avoids redundancy). A more

- 20 -

sophisticated scheme wculd, for each cube, compute all near

neighbor pairs with one Feint in the given cube and the other

pcint in any cube within r of the given cube. Note that the

naive implementation of considering for every cube all other

cubes within r will lead to redundancy. Therefore, a

method such as that used in section 4.2 should be employed here - .
to consider each pair of cubes only once. One implementation

of this scheme would employ the knowledge of the relationship

of r to the length of the edge of a cube. For instance, if _
the edge size uas exactly r, then tbe larger cube of side 3+r

forme. by taking all the cubes adjacent to any cube C

would certainly contain all of near neighbors to any point

in C, This large cube will contain 3**k-1 cubes besides C, It

is easy to see a scheme where one looks for near neighbors to

points in C in only (3**k-1)/2 of C's neighboring cubes, and

then the remainder of the pairs are found as C's neiqhbors

investigate C. For example, in 2 space (using the compass

system), any cube need consider only its N, NE, E, and SE

neighbors: then it will in turn be a N neighbor to its S

neighbor,.and likewise for its SW,U, and NY neighbors. This

scheme could be implemented very efficiently using well known

techniques for multidimensional arrays (see Gries (7) for a

discussion of the implementation of multidimensional arrays.)

4.4 k-d Trees

The most simple nonredundant all pairs algorithm for the k-d

tree is the same as for a cute structure, that is, searching for

all points in half spheres centered at all points. A more .
sophisticated scheme would, for each bucket, find all other

- 21 -

buckets within r, and examine all the points in the two buckets

for fixed radius near neighbors. Naively implemented this

scheme would compare each bucket to every other near bucket

twice, just as the naive implementation of the cell technique

would. However, avoiding the redundancy is not so easy with

k-d trees as it is with c+lls, due to the irregular shape of _.

the buckets. One way to avoid this is to define some

relation R on the cells such that (Cl R C2) if and only if not

(C2 R Cl), for any cells Cl and C2, Then C2 would be _,

examined when searching for Cl's near neighhcrs, because (Cl a

C2) l but Cl would not be searched when searching for C2.s near

neighbors, A particularly nice relation is Ci R Cj if and only

if i < j, This relation is easy to test for pairs of buckets.

This relation can also be used to prune the search of the tree if

the buckets are numbered such that all the buckets in the left

subtree of a node are numbered less than a given field of the

node, and all buckets in the right subtree have a greater bucket

index than the field.

5. Dynamic Point Sets

Many applications of fixEd radius near neighbor searching

deal with point sets that are dynamic--that is, points can be

inserted, deleted, or change their locations (though a change of

location could be accomplished by a deletion followed by an

insertion, we will see later that change is a useful primitive,)

AS such events take place, it is desirable to change as

little of the data structure as possible. In this section we

will investigate some of the techniques used for dealing with

the problem of dynamic changes to the various structures we have

- 22 -

discussed,

The most simple type of change is when a single point is

modified. when the modification is an insertion or deletion, the

corresponding structure can be easily modified using the brute

force, projection, or cell techniques quite easily. -
Insertions and deletions with k-d trees are a bit more

difficult. They could be made by inserting or deleting the

items in the buckets, but that is disastrous if successive

insertions are going into only a few buckets--the tree would

grow quite out of balance. In this case the tree should not

use buckets but instead stcre the points in the nodes of

the tree and use the dynamic insertion and deletion routines

described in (1). For any of the structures, if the set of

all close pairs in the Feint set was known before a position

change of point x, the new set of all close pairs can easily be

calculated after the position change of x. The only previous

close pairs that are nc longer close pairs are points that

were close to x before x moved, and the cnly new close pairs are

the new near neighbors to x,

Any batch of changes can be handled by iterating the above

techniques. A more radical situation occurs when all the points

in the structure change their locations. If the new locations

are totally unrelated to the old ones, not much can be done

besides throwing out the old structure and starting over again

frcm scratch.

Oft.entimes, however, the new positions are related to the -
old ones. Consider the case cf an air traffic control system

- 23 -

which updates the locations of the planes in the system by a

radar scan every five seconds. It is safe to assume (for today's

civilian aircraft) that no Flane will have travelled more than

a mile frcm its pre9ious position in five seccnds, Using such.

restrictions (that a point will be no more than some

constant distance from its cld position), it is possible to
-

develop very fast Updating algorithms. For the

projection technique, the new projection will very likely

closely resemble the old, and a variation of the bubble sort

could be used to modify the projection, The main loop of the
I

procedure changes the position of each point. As the position

of a point is changed, it *8bubbles" up or down the

projection until it finds its new home. This procedure will

efficiently give the new Frojection. For k-d trees a

similar notion can be used. Ehen the location of each point

changes, test if the change is great enough to cause the

point to move from its present bucket to a new bucket. If not,

all is well; ctherwise, transfer the node to the new bucket.

Once again, this strategy runs the risk of creating

unbalanced trees, One wav to counter this is to use the same

buckets until the tree is found to be out of balance, then

reorganize the tree at that time.

6. Implementation Suggestions

In this section we will discuss some of the problems

associated with implementing the scheees we have investigated.

The issues raised in this section might also be important for

future techniques not discussed in this paper. .

- 24 -

6.1 Computing interpoint distances

It is easy to compute the distance from x to y by

summing tha squares of their differences in each dimension,

and then taking the square root of the sum. In many of the

schemes in this paFern however, the complete interpoint _,

distance is not needed--we only need to kncv if x is greater

than r from y. Since square root is a monotonically

increasing function, the sum of the squares of the

differences could be compared to r**2, and the costly

square root operation avcided. A more sophisticated

technique, appropriate for very high dimensional spaces and point

sets with few near neighbors, is to ccmpute the sum of the

squares of the distances only until they exceed r**2.

This involves making a ccaparison after each addition to the

sum of the squares. This is cost effective if a few

comparisons help to ?iQCid mafi y multiplications and additions.

This idea could be used in a limited form by testing

after every few additions,

6.2 Computing distances to hypcr-rectangles

Using the cell and k-d tree structures, it is necassary

to compute the distance from a hyper-rectangle (which could

be a cell, bucket, or the boucds of a subtree) to a point.

A mcdification of the bounds-overlap-ball procedure described

bY Friedman, Bentley and Pinkel (5) can be used to

efficiently calculate the distance. The procedure notices that

the distance from a point to a hyper-rectangle is the distance

from the pcint tc the closest point in the

- 25 -

hyper-rectangle, and that the location of that point can be

deduced by considering the k disiensions independently,

The procedure calculates tbe distance from the point to the

hyper-rectangle in each dilrension and sums the squares of

these distances to obtain the desired answer. The

hyper-rectangle is defined ty its lover and upper bounds

in each dimension (it i s asscmed to be rectilinearly oriented in

the space), The distance from a giveE Feint x to the

hyper-rectangle in a given dimensicn (say i) is

calculated as follows: if xi is between the lover and upper

bounds, the distance is zerc; otherwise it is the distance from

xi to the closest bound. As vith distances between points,

often one is only interested if the distance from a point

to a hyper-rectangle is less than some r. If this is all that

is desired, a similar technique to that described in

section 6.1 of computing the partial sum only until it exceeds r

(or the total sum has been computed) can be employed.

The algorithm described here can also be used to compute

distances betvean points and hyper-rectangles for other metrics.

If the city block metric uere used, then the sum of the distances

{not their squares) in each dimension would be computed. If the

maximum coordinate metric vere used, then the maximum sinqle

dimensional distance would be recorded. The algcrithm can also

be used to calculate distances between two hyper-rectangles, For

that application the single dimensional distance is zero if the

line segments defining the two rectangles in that dimension

overlap, .othervise it is the Gstance between the line segments.

. I

- 26 -

6.3 Using multiple structures in refinement

Instead of employing cnly one structure, it might be

effective to use different structures for different parts of the

problem. In effect, the k-d trees 'and cell structures as

described use the brute force technique in the buckets and cells _.

in which the Faints are stored. St might be cost effective to

sort the elements in a bucket by one dimension and use a

modification of the projection algorithm to search in the bucket _(

if it were very large. The recursive cell structure

!
defined in section 2.5.1 is an example of refinement

using the same structure. Other more exotic kinds of refinements

can be imagined.

6.4 Cells within the fixed radius

In either the k -d tree or cell structures, if it is

determined that the entire tucket (or cell) is within the fixed

radius r of the point x, then clearly all the points in the

bucket are within r of R, Whether a cell is entirely within

a fixed radius ball can ke dEtermined quickly using a method

similar to that described in section 6.2. St is

sufficient to determine if the point in the cell furthest

from x is within r. The point in the cell furthest from x is (by

the independence among the dimensions for the metrics ue have

used) that point which maximizes the distance to xi in each

dimension i. This point can easily be determined in time

linear in k, Once again, as in sections 6.1 and 6-2, the partial

sum of the distance sguared need only be computed until it

exceeds r.

- 27 -

Jerome Friedman has pointed out that this technique

will prove extremely valuable when k-d trees are used in

point sets that have sut-collections of great local density.

This "bounds within ballH test cou1.d note that a whole

subtree vas in the region cf interest. When that was

noticed, the search procedure would merely traverse the

subtree, enumerating all the points therein as near neighbors.

7, Areas For further Uork

Very little is known about the behavior of the

structures described in this paper. The performance of these

structures for different distributions of points should be

carefully analyzed to determire how many distance calculations

each structure needs to solve the different prchlems mentioned,

The algorithas described should be coded efficiently in some

common lanquage (such as FORTRAN) and the details of

implementation overhead carefully analyzed so that the

know ledge of the number of distance calculations made can

be translated into actual running times cn ccmmon computers.

The implementation Farame ters, such as bucket sizes for

k-d trees and cell sizes for the cell method, need to be analyzed

in detail.

The problem of points in motion discussed in section 5 is

very important, especially as it relates to traffic control

systems, Huch more work needs to be done in this area.

- 28 -

ACKNCWLEDGMENT

The author gratefully acknouledges both the technical advice

and the general encouragement given hy Forest Baskett, Fred

Brooks, Don Stanat, and Fill wright,

- 29 -

Bibliography

1. Bentley, J. L. Multidimensional binary search trees usad for

associative searching. To appear in Communications of the ACH.

2. Bentley, J, L. and D, P. Stanat, Analysis of range searches

in quad trees. To appear in Information Processing Letters.

3. Pinkel, R. A. and J, I. Bentley, Quad trees: A data

structure for retrieval by ccaposite key. Acta Informatica 4(l),

l-9. 1974.

4, Friedman, J, H., F, Baskett, and 1, J, Shustek. An

algorithm for finding nearest neighbors, To appear in IEEE

Transactions on Computers.

5. Friedman, J. B,, J. L, Bentley, and R. A. Finkel. An

algorithm for finding best lratcbes in logarithmic time. Stanford

cs Report STAN-CS-75-482, Submitted to Transactions on

Mathematical Softvare,

6. Fukunaga, K, and P. B. Narendra, A branch and boun a

algorithm for computing k-nearest neighbors. IEEE Transactions

on Computers C-24 (7). 750-753. July, 1975,

7. Gries, D. Compiler Construction for

John Wiley and Sons, 1971,

8. Iverson, I(. E, A Programming Language.

Digital Computers.

John Wiley and Sons,

- 30 -

1962,

9. Knuth, D. E. The art of computer programring, volume 3,

Sorting and searching. Addison-Wesley, 1973, Section 6.5.

10. ---a- , section 6.2.2.

11, Levinthal, C, Holecular model-building by computer.

Scientific American 214, 42-52. June 1966.

12. Linn, J, General methods for parallel searching, Technical

Report Number 61, Digital Systems Laboratory, Stanford

Electronics Laboratory, Stanford University. May, 1973.

13. Shamos, M. I, Problem Book in Computational Geometry. To

appear as a Carnegie-Mellon University Coapu ter Science

Department deport, .

14. Yuval, G. Finding near neiqhbours in k-diEensiona1 space.

Information Processing Letters 3(4), 113-114, Harch, 1975.

15, Zolnowsky, J, To appear as a SLAC-FUB.

- 31 -

Appendix A. An introduction t'o k-d trees

The k-d tree is a ganeralization of the simple binary

tree used for sorting and searching. The k-d tree is a binary

tree in which each node represents a subcollection of the points -.

in the space, and a partitioning of that subcollection, The

root of the tree represents the entire ccllection. Each

nonterminal node has two successors. These successor nodes -, I
represent the two subcollections defined by the

partitioning. The terminal nodes represent mutually

exclusive small subsets of the points, which collectively

form a partition of k space. These terminal subsets are

called buckets.

In tbe case of cne-diaensional searching, a point is

represented by its value in a single dimension and a

partition is defined bp some value of that dimension. All

records in a subcollection with key values less than or equal

to th8 partition value belong to the left successor node, vhile

those with a larger value belong to the right

successor. The dimension thus becomes a discriminator for

assigning records to the two subcollections,

In k space, a point is represented by k dimensions. Anv one

of these can serve as the discriminator for partitioning the

subcollection represented by a particular node in the tree:

that is, the discriminator can range from 1 to k. The original

k-d tree proposed by Bentley (1) chose the discriminator for

each node on the basis of its level in the tree: the

- 32 -

discriminator for each level was obtained by cycling through

the keys in crder. That is,

D = L mod k + 1

where D is the discriminator for level L and the root node is

defined to be at level zero, The partition-values were chosen to

be random key values in each particular subcollection.

In (5) Friedman, Bentley and Finkel describe a way of

constructing an "cptinized" k-d tree. Instead of cycling through
. I

the dimensicns, the discririnator for a node is that dimension

which exhibits the largest variance in the subcollection. The

variance can be calculated easily for each dimension, and the

maximum is chosen, The partition value is chosen to be the

median value in tha discriminator dimension. This construction

imposes a nicely shaped partitioning on the space.

Associated with each each node or bucket in a k-d tree

is a set of geometric bounds within which the points in that

subcollection must lie. Ibe bounds are reFrt?Sented by two

one dimensicnal arrays of k elements, called LCFER and UPPER.

For a given subcollection S it must be true for every node x in S

and every dimension i that LOHER <= xi <= UPPER(i).

The bounds are updated during the descent in the tree to a

subcollection by replacing UPPER(i) uith the partition value of

an i-discriminator node when going to its left son, and

modifying LOWER(i) accordingly when visiting a node's right son,

The root's upper and lower bounds are set initially to plus and

minus infinity, respectively, These bounds form a

rectiline.arly oriented byper-rectangle in k space within vhich

all the points in any suhcollection must be.

- 33 -

A fixed radius near neighbor search procedure is easily

defined recursively. When visiting a node x, it computes the

bounds for x's right son and visits the right sea recursively if

and only if its bounds are uithin r of the target point, and

likewise for the left son. Uhen visiting a bucket, it scans all _

points in the bucket to see if any are within r of the target

point.

