SLAC-186
STAN-CS-75-513
uc-32

A SURVEY OF TECHNIQUES FOR FIXED RADIUS
NEAR NEIGHBOR SEARCHING

JON LOUIS BENTLEY
STANFORD LINEAR ACCELERATOR CENTER
STANFORD UNIVERSITY

Stanford, California 94305

PREPARED FOR THE
U. S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION
UNDER CONTRACT NO. E(04-3)-515%

August 1975

Printed in the United States of America. Available from National Technical
Information Service, U.S. Department of Commerce, 5285 Port Royal Road,
Springfield, Virginia 22161. Price: Printed Copy $3.75; Microfiche $1.45.

*
This work also supported in part by National Institutes of Health under
Grant 1-PO7-RRO0898-01.

- i1 -

ABSTRACT

This paper is a survey of techniques used for searching in a
multidimensicnal space. Though we <ccnsider specifically the
prokblen of searching for fixed radius near neighbors (that
is, all points within a fixed distance of a given point),
the structures presented here are applicable to many different
search problems in multidimensional spaces. The orientation
of this paper is practical; nc theoretical results are

presented. Many areas open for further research are mentioned.

- iii -

KEY WORDS AND KEY PFBRASES

associative searching
k=-d trees
fixed radius near neighbcr searching

nearest neighbor searching

TABLE OF CONTENTS

1. Introduction

2. The Online Model
2.1. Brute force . . .
2.2. Projection .

2.3. Cell techniques
2.4, k-4 trees . ..
2.5. Other techniques .

3. The Batch Model . . .
3.1. Brute force . . .
3.2. Projection
3.3. Cell techniques .
3.4, k-d trees

4, The All Close Pairs Problem

4,1, Brute force

4,2, Projection
4.3, Cell techniques
hoh, k-d trees

5. Dynamic Point Sets .

- iv -

6. TImplementation Suggestions .

6.1. Computing interpoint distances .

6.2. Computing distances to hyper-rectangles
6.3. Using multiple structures in refinement
6.4, Cells within the fixed radius

7. Areas for Further Work .

Bibliography« .

Appendix A. An introduction to k-4 trees .

O O I EwWw

10

1h
15
16
16
17
18
18
19
19
20
21

23

. 2k
. 2k
. 26
. 26

.27
. 29

31

1« Introduction

This paper deals with searching in a multidimensional metric
space. We consider specifically the problem of searching for
fixed radius near neighbors, that is, all points within a fixed
distance r of a given point. Though ocur primary examination of
the problem will take place in Euclidean k space, the constructs
we examine will be applicable to an arbitrary multidimensional
metric space. There are many ways of viewing the fixed
radius near neighbor problen. The "online" problem first
allows the procedure to store the pcints in a data
structure then repetitively asks for all near neighhors
within a given radius r of given "“query points". The

batched query approach assures that the queries both arrive

and are to be answered in groups, or "batches". The
"all pairs" problem, given a collection of n points,
asks for an enumeration of all vrpairs of the n within
distance r of cne another. We will examine techniques for

dealing with all of these questions.

There are many applicaticns of fixed radius near neighbor
searching. These arise, 1in general, when an agent has the
potential of affecting the state of all objects within a <certain
distance. Levinthal (11) <tsed a fixed radius nearest neighbor
search in his interactive computer graphics study of protein
molecules. Since the interactions of the atoms within the
polecule drop off so quickly with increasing distance, he
approximated the forces acting on any given atom by considering

only the forces caused by atcms within five angstroms of each

-2 -
other. An air traffic ccntrol system might be interested in
locating all planes within, say, ten miles of each other (here a
metric would be used in which one thousand vertical feet would
be equivalent to many horizontal miles.) Iverson gave the fixed
radius near neighbor protlea as an excercise in his

book A Prcgramming Language (8,ex. U4.8(c)).

This paper is an attempt to provide a survey of the nmethods
used to deal with the fixed radius near neighbor protlem. As
such, it contains no new results. The authcr has tried to gather
together many different problems and techniques from different

areas for a systematic presentation of the state of the problem.

Throughout this paper we will assume that we are dealing
with a collection of n points in k dimensional Euclidean space.
The fixed radius within which we are searching fcr near neighbors
will be denoted by r. Except where otherwise noted, the distance
function between two pcints will be the Euclidean distance.
All of the structures develored will te extendable to other
metrics such as the "city block™ and the maximum coordinate
metrics. When referring to a point x in k space, x's value in

the i-th dimension will te written xi.

The fixed radius near neighbor problem is very similar to
the nearest neighbor protlem. The nearest neighbor in a set to a
given point is defined to be that point in the set which is
closest to the given point. Many of the notions discussed in
this work were developed 1in connecticn wvith nearest neighbor
algorithns. A great deal of work has apveared recently on

the nearest neighbor problem. The interested reader is referred

-3 -
to PFriedman, Baskett and Shustek (4), Friedman, Bentley and
Finkel (5}, VYuval (14), and Fukunaga and Narendra (6). The
techniques described in this paper will be applicable to the
nearest neighbor problem as well as many other search problems in

multidimensional spaces.

Section 2 of this paper €xamines the online problen. It
is here that the data structures used throughout the paper
are defined. The batched query model is considered in section 3.
In section 4 the all pairs problen is
investigated. Section 5 considers what actions are appropriate
when the points in the space are objects in motion. Some of the
details of implementation c¢f the algorithes are covered in
section 6. Section 7 discusses the many areas oper for further

work in this problenm.

2. The 0Online Model

As the online model applies to the fixed radius near
neighbor problem, the search procedure is initially given the
collection of n points and sufficient time to organize the points
into a suitable data structure. After that the system is
repetitively asked to search for all fixed radius near neighbors
to given "target points"™ which may or m®may nct be among the
original <collection of n points. The radius r méy vary among
queries. It is important to specify approximately how many
gqueries will be posed during the 1lifetime of the systen. if
only some very small number of queries will be made, then it will
probably* not pay to 1impose any expensive structure on the

data (unless fast response is critical). Cn the other hand,

T
if an extremely large number of queries will be made, then it
would be cost effective to perform some very elaborate and
expensive structuring of the data. In this discussion we

vill assume that the number of queries will be approximately n.

We will now proceed to examine various data structuring
schemes suitable for the fixec¢ radius near neighber problemn. We
will investigate both the structures themselves and the
corresponding search algcrithms. Figures 1 thru 4 will be used
to illustrate the brute fcrce, projection, cell, and k-d tree
techniques, respectively. In figures 2 thru 4, the solid 1lines
represent the partitioning of the space. 1In all the figures, the
diagonally stripad regions are those examined wﬂen searching for
the target pcint, which is marked with an x. The meaning of the
figures will be obvious, given the description cf the structures

which follows in sections Z.1 thru 2.4.
2.1 Brute force

The simrplast approach to the fixed radius near neighbor
problem is to store each of the n points in an array, 1list,
or some other simple sequence. As each query arrives, all
members of the list are scanned and all fixed radius near
neighbors are enumerated. 1his technigque involves linear
storage for the structure, preprocessing tiwme linear in n, and
each query is ansvered with n distance calculations. Though
this technigque is unsophisticated in that it performs
many distance <calculations, the overhead is quite small.
For small ©pcint sets (esrecially in high dimensionality

spaces), the brute force aprroach will be hard to beat.

2.2 Projection

The projection technique is referred to as inverted lists by
Knuth (9). This techniqus was applied by Friedman, Baskett and
Shustek in their solution cf the nearest neighbor problem (4).
Projection involves keeping, for each dimension, a sequence of
the points in the space scrted by that dimension. (A plex
of pointers to the elements of the point set is grobably the most
favorable 4implementation--we will see below that binary searches
should be easily accomplished.) These k 1lists can be obtained
using some standard scrting algorithm in time of O(k*n*log n),
and stored using 0 (n*k) words of storage. After
the preprocessing, a query for all fixed radius near
neighbors to point x can be answered by the following
s2arch procedure: Choose a dimension, say the i-th. Look up
x's rfpositicn in the i-th sequence2, using a binary search (of
cost 0O(log n)). Now scan down the 1list in decreasing order
until a record is found whose i-th key is 1less than xi-r, and
scan up the 1list until a record 1is found whose i-th key is
greater than xi+r (ncte that these scans <could be made using
a binary search). All points in the <collection withir
distance r of point x pust te in the 1list between tha two

extremal points just found.

More should be said about how the i-th dimension is chosen.
1f the points are fairly randomly distributed among all
dimensions, then one sorted sequence is all that really needs to
be kept, If, however, there is much clustering in certain parts

of the space, then it can pay to k=ep sorted sequences of

-6 -
all k dimensions. To choose wvhich one tc use for a given

guery, the local densify around the pcint x in each dimension
could be examined, and the sparsest dirension would be
chosen. One irplementation of this philosophy would be to
calulate all the extremal pairs by doing tinary searches for
Xi-r and xi+r (in O(k*log n) time), then choose the
dimension wvhich has the fewest points between the extremal
pair. It might be worthwhile to spend some
preprocessing time to deternmine how many of the
dimensions should be kept as sorted sequences; if the points
are bunched closely tcgether in a particular dimension, then

it would rarely be chosen.

The projection methcd is quite efficient for point sets of a
moderate size which are non-uriformly distributed in the space.
Though a 1large numbher cf distance calculations are made in each
query, when compared to the k-d trees described in section 2.4,
the computational overhead is much less. The reader interesta=d
in a more detailed analysis cf this approach is referred to
the paper of Friedman, Baskett and Shustek (4) which contains an
excellent discussion of projection as applied to the nearest

neighber rroblen.
2.3 Cell techniques

Cell techniques are apprcpriate structures when the point
set 1is <constrained to be almost uniforrly distributed in
a subset of the Euclidean space. For example, the cell
technique might ba suitable to represent cities o¢n a map

of the United States, withF the tvo dimensions in the

7
Euclidean space being the latitude and the longitude

(in this example ve ignore the spherical shape of the
globe.) The cell technique structures the data by
placing a "checker bocard" over thg mar and assigning each city
to a square on the checkerboard. The cell irn which any
city belongs can be computed efficiently by truncating the
latitud=2 and longitude down to the next rultiple of (say) five
degrees. A cell structure can be used in higher dimeasional
spaces by considering points to fall in hyper-cubes. The points
in the hyper-cubes can be efficiently stored as a 1linked 1list,
or some other similar structure. In a sense, this
structure is a multi~-dirensional hashing scheme with
cubical buckets. The bucket in which a particular point

belongs can bhe determined quickly by a division operation.

Knuth has discussed this scheme for the twc dimensional case
in (9). Levinthal (11) wused a cell technique in three
dimensional Euclidean space for determining all atoms within five
angstrons of every atom in a prctein molecule-~-he referred to
the technique as "cubing". Yuval applied this structure to

the nearest neighbor protlem in (14).

The storage required for this scheme is prcportional to the
nueber of hypercubes in the space plus the number of points.
(The number of hypercubes in the space is the product of the
number of regions in each of the k dimensions; for example, if 2
space is divided into 8 regions c¢cn the x-axis and 8 on the
y-axis, th2 resulting partition is the standard checkerboard of
64 squares.) Retrieval of all near neighbors within r of

point X is accomplished by examining all the points in

-8 -
all of the cubes within distance t of x. (The distance from a

point to a cube, or any hyper-rectanqular body, can be determined
efficiently using the method described in section 6.) The
time required for retrieval will be proportional to the sum of
the number of <cubes overlaprped by the sghere of radius r plus

the number of points within those cubes.

This technique is suitable for point sets vhich are
uniformly distributed throughcut a low dimensionality space. In
a highly ncnuniform space, either the cells would have to be very
- large (increasing search time), or much extra storage would be
used. For suitable point sets, the cell structure can

be irplemented very efficiently in terms of both space and tiwme.

2.4 -4 trees

The multidimensional binary search tree (in k dimensions,
the k-d +tree) 1is descrited by Bentley in (1). It is a
generalization of the stardard binary search tree as described by
Knuth (10). In the standard tkinarv search tree the decision to
proceed to one of the two sons of a node is rade by comparing the
query key to the value of the key stored in the node. Since
there are k keys associated with each point, this scheme can be
extended to k dimensions by specifying in the node not only the
value against vhich the ccmparisen should be made, but also
which dimension should be compared. For the k-d trees described
in (1), every point in the space is stored in ar 4internal node
of the tree, and the structure of the tree is quite dependent
on the way the points were presented to the tree building

algorithnm. In (5) Priedman, Bentley and Finkel discuss a

-9 -
modification of the k-d tree in which the points are all stored
in external nodes of the tree (buckets) and the structure
is determined by an "optimization prescription® which guarantees
a nice partiticning of the search space. Appendix A
contains a brief descriptior of k-4 *rees. It is beyond the .
scope of this paper to describe k~d trees in detail, and
the reader interested in their implementation is referred

to Friedman, Bentley and Finkel (5) for such a description.

The storage required by k-d trees is prorortional to n. The
preprocessing time required tc build a k-d tree is O(k*n*log n).
The nearest neighbor =search algorithm described in (5) can be
easily modified to find fixed radius near neighbors.
As the search algorithm visits a node it must visit one or both

of that node's subtrees. 1The algorithm must test the bounds of

both of the subtrees and visit each if and only if that
subtree's bounds overlap the ball of center x and
radius r. Since this 1is equivalent to determining if

the hyper-rectangle defined by the bounds c¢f the subtree is
within distance r of pcint x, the test can be made efficiently
using the technique descrited in section 6. (It might be noted
for the sake of efficiency that if the becunds of the
first son tested did not overlap the ball, then the bounds
of the other son nust overlap <the ball and the test to

deterzine so need not be nmade.)

The author conjectures that k-4 trees provide the
asymptotically optimal structure for wuse in the fixed radius
near neighbor problems. The partitioning they imposa on

the space bhas the desirable rproperty of conforming to the

- 10 -

peculiarities of the data; in this sense, k=-d trees are an
"adaptive celling” technique. Given one dimensional data, the
k-d tree will mcld itself into a standard one
dimensional binary search tree. Given highly uniform data, the
k-4 tree will impose a partitioning very siwgilar to the cell
technique described in section 2.3. Although the number of
operations that must be perfcrmed tc find £fixed radius near
neighbors 1is small (in propcrtion to the number of points), the
preprocessing to construct the tree and each tree operation are
relatively time consuming. Fcr small n, the other techniques

mentioned in this section might prove faster than k-4 trees.

2.5 Cther techniques

In this section the authcr has included schemes that he
feels are no lcnger competetive with the above mentioned
techniques. These2 are included hoth for historical completeness
and in the hope that screonre might be inspired by oue of these

ideas to invent a new technique for the protlem.

2.5.1 Recursive cells

Knuth points out that the notion of cells can be applied
recursively (9). That is, when one of the cubes has more than
some certain number of points, that cube is further divided into
subcubes of yet smaller size. This schenme imglies a
multidimensicnal tree with multiway branching. 1In terms of
both the partitioning imposed on the space and the ease of
implementation, this idea seems to be dominated by the quad tree

(section 2.5.3), vhich is in turn dominated by the k-4 tree

- 11 -
(section 2.4).

2.5.2 Post office trees

A tree structure developed by Bruce McNutt for the fixed
radius near neighbor problem is described by Knuth in (9). The
structure has been nawed the "post-office tree". Rach node of
the tree corresgcnds to a poirt in 2 space and a "“test radius".
A distance <calculation determines which of a node's two sons
should be visited. The preprccessing of the structure is done
for a fixed radius r, so r can not vary between queries.
The structure uses a high redundancy of storage. For example, a
tree was built that contained the 231 most populous cities in
the continental United States. For a value of r = 35 miles, a
tree of 1600 nodes was required. Because of the high
storage redundancy, this scheme appears to be inferior to k-d

trees.

2.5.3 0Quad trees

Quad trees were descriked by Finkel and Bentley in (3).
They are a generalization of the binary tree in which every node
has 2**k sons. Bentley and Stanat (2) analyzed the performance
of quad trees for fixed radius near neighbecr searches in 2 space

using the maximum cocrdinate metric in uniform point sets. John

Linn discussed in his thesis {2) the fact that quad
trees {(vhich he called "Search-sort k trees"m) have
advantages over binary trees when used in a

synchronized multiprocessor systen. This apglication aside,

however, gquad trees seem tc be dominated by their historical

- 12 -

successor, k-4 trees.

2.5.4 Voronoi diagrams

Voronoi diagrams are gpolygonal graphs which induce a
fascinating partition on point sets in 2 space. Michael Shawmos
has described their application in many diverse areas in (13).
John Zolnowsky (15) has applied Voronoi diagrasms to finding
fixed radins near neighbtors in 2 space for "sparse" point sets.
Sparse sets have +the property that no point has more than <c
neighbors within radive r. In such a space, Zolnowsky's
algorithm reguires O (n*lcg n) preprocessing time and has a query
response time of O(leg n + o). Not only are these times
asymptotically efficient, but the alqgorithms can ke implemented
efficiently for point sets cf practical size. Unfortunately,
vVoronoi diagrans have nct (yet) bean extended to 3

space or higher, so Zolncwsky's results hold only for 2 space.

2.5.5 Multiwvay cluster trees

In (6) Fukunaga and "Narendra discuss a tree structure
which allows the branch and bound technigue of operations
research to be employed in finding nearest neighbors. The
algorithm uses a clustering rrocedure to determine the subtrees
of each node. The covering induced on the search space is
very irregular and includes much overlap. A comparison of these
trees with k-4 +trees is available for the nearest neighbor
problem. To find the nearest neighbor in 2 space among a
thousand* points required 61 distance calculations in the

experiments of Fukunaga and Narendra. Similar experiments in k-d

- 13 -
trees reported by Friedman, Bentley and Finkel {5) showed that

k-3 trees required only 4 distance calculations. Thus k-d trees

seem to be superior.
2.5.6 Multidimensicnal search tries

Edward McCreight (private communication) has proposed a
scheme by which the Lits representing the cccrdinates of the
points are merged together into a "superkey". That is, the first
bit of th2 superkey for point x will be the first bit of x1, the
second bit of the superkey is the first bit cf x2, and so on,
until the k+1st bit of the superkey is the second bit of «x1,
and the «cycle repeats. The records are stored in a table
sorted by the superkey. A fixed radius near neighbor
search can avoid examining large parts of the table using
this schene. In a sense, this structure is to k-4 trees as
digital search tries are to standard binary trees. This schene
needs to be studied nmrore <carefully, but it appears to be

inferior to k-d trees.
2.5.7 Sophisticatad cell tectniques

Yuval has suggested ir (14) nmore sophisticated cell
techniques than the simple f"cubing" techniques described in
section 2.3. Among these are a syster of cveriapping cubes
designed such that the response to any query will be found in
only one cell. This schene requires storage redundancy
exponential in dimension. He alsc suggests that a hexagonal
covering of 2 space might e mwmore efficient than the square

covering. Though this covering would indeed reduce the number

- 14 -
of distance calculations made, the computatiocnal overhead would

be costly ccepared to the relatively cheap cubing scheme.
2.5.8 Distribution dependent cell techniques

It was pointed out in section 2.3 that straightforward cell
techniques are inappropriate if the distribution of points in
the space is highly nonuniform. If, however, the probability
distribution of the points is known a priori, this information
could be wused to create cells which are large in the sparse
regions of the space and small in the dense regions, so that
every cell contained approprcximately the sare rumber of points.
This approach would furcticn only if the e?act probability
distribution of the point set was known beforehand--any deviation
from that exact distriltution might be disastrous. It is
interesting to note that k-d trees automatically provide this
distributicn dependent partitioning, without being given the

exact distribution.
3. The Batch Mod=1

Oftentimes queries for all fixed radius near neighbors to
points do not just trickle into the system haphazardly--~-they
arrive in batches. Examples of this are numerous. This
occurs when queries are generated by a number of users at
remote terminals and ccllected in concentrators before they are
sent (in a batch) ¢to the central cceputer. As a
substructure of a molecule is being rctated in 3 space, it might
be desired ¢to find all fixed radius near neighbors to all

atoms in tha substructure:; thus the atoms in the substructure

- 15 -
form the batch. Such btatch queries could be answered by nmerely
iterating the cnline techniques discussed 1in section 2
for each point in the tatch, but there are other more
sophisticated ways of handling the problem. We will assume
that the radius r is the same for all points in the batch, and

that the number of points in the batch (for notation) is m.

3.1 Brute force

when the points in the batch are allowed to be
arbitrary roints, one can not do any Letter than to
compute the distances batween each of the m points in the batch
and each of the n points in the point set, for a
total of m*n distance calculaticns. If the m points are
constrained to be in the poinrt set, then <cne could reduc2 the
number of distance calculations made by using the
following strategy. First, compute Tty trute force all of
the near neighbor pairs among the nm points in the Dbatch
using the technique described in section 4.1, which uses
n**2/2 distanca calculations. Now for each of those m points 1in
the batch, mark their representations in the main point set as
having been present in the tLatch (we know we have already
found all of their near neighbors in the batch.) For each
of the m points in the batch, compute all the distances to
the n-m points not in the batch, finding all near
neighbors in =¥ {n-n) distance calculations. Using
this m=2thod, all of the near neighbor rairs will be found
using only n*m - m**2/2 distance calculations, a
savings of m*#2/2 calculaticns over the naive approach. The

overhead involved in implementing this approach would

- 16 -

make it practical only if = were fairly large.
3.2 Frojection

A variant of the data processing technique of
sequential file updating can te used to increase the efficiency
of batched fixed radius near neighbor searches. The procedure
works by choosing a dimension (perbaps the one with the
greatest variance in the point set) and sorting the points in the
batch by that dimension. The next ster is to sequence through
both the batch and the pcint set 1lists in parallel, reducing
the search time by noticing that points serarated by r in
one dimensicn are of distance greater than r apart in k space.
There are wmany ways of isplementing this rhilosophy. One
might have ar outer loop going through all the points in the
point set and an irner loop iterating through that subset of
the points in the batch that are within (in the
chosen dimension) c¢f the current point in the point set. This
technique avoids the time required for © tinary searches at
the ccst of going through the entire list, so it is feasible only

when n is less than m * log n.
3.3 Cell techniques

One possible approach to speeding up batched gqueries when
using cells as the storage structure would be to group together
all the points in the bkatch that fall in the same cell. Then all
the points in the surrounding cells (all cells within r of the
given cell) would be compared to those points from the batch.

This sight be particularly efficient if the points in the batch

- 17 -
happened to be bunched rather closely together.

3.4 k=d trees

One of the most expensive aspects of searching a k-4 tree
is the overhead of tree traversal incurred when stacking
the nodes to be revisited and in updating the bounds arrays.

If a nunmber of queries are present in a batch, it might be

worth-while to perfornm scume other bookkeeping in order
to incur this overhead cnly once. That could be
accomplished by performing one traversal of the tree,
keeping track at each node of those points in the batch

that are currently "active™ in the traversal by use of a
bitstring or some other s5et irplementation. Fach
such bitstring would require m bits, and in a balanced tree
the depth c¢f the recursicn stack is bounded by log n, so
there would b2 only m*log n rits of stcrage required to
do the bookkeeping. At each internal node of the
tree, a point in the tatch 1is considered active if and only
if its corresponding bit is one. Before proceeding
to one of the two subtrees the search procedure tests
for every active point tc see if the bounds of the
subtree are within 1t cf that point, and sets the bits of the
node's son's bitstring to cne if and c¢nly if the bounds
are within r. If none of the bits are one, then the
search does not bother tc proceed down the =subtree. When
the search visits a bucket it compares all the points in the
bucket to all the active points in the bitstring,
and reports all near neightors thus fcund. It might tLe that

if the cardinality of the set shrank belcw a

- 18 -

certain size, then somnme other set representation, such
as a linked list, might be more efficient than the
bitstring. This m2thod (using bitstrings) has been
implemented by the author, and for batches of size

n the program ran in abont half the time of the iterated use

of the online strategy.

4. The All Close Pairs Froltlen

The all close pairs problem can be stated as follows: given
a collection of n points in k space, enumerate all pairs among
the n within distance r of each other. One cculd approach this
problem using the simple cnline or batch models, but there are
better methods that <can Le used. One reason for this is that
those solutions would enumerate all close pairs twice: once when
¥ was within r of y, and again when y was fourd to be within r of
X¥. Avoiding this redundancv can yield ur to a factor of two

speedup.

4.1 Brute force

The following program (in pseudo=-ALGOL) will solve the all

close pairs problem using n(n-1) /2 distance calculations:

for i := 1 until n-1 do
for j := i+1 until n do
if distance(i,j) <= r then

report <i,j§> as a close pair;

The program is easy to irplement efficiently on a computer.

- 19 -

4.2 Projection

The projection method can be used tc search for all close
pairs. The first step of an algorithm based on this technique is
to choose the sparsest dimension (in some sense). This could be
accomplished in O(n*k) time by calculating the variances of the
points in all dimensions and choosing the dimension of maximunm
variance. Once a dimension is chosen, the points are sorted by
that dimension, which requires O0(n*log n) time. This structure
can be nsed immediately to find the set of all close pairs
{without redundancy). The outer 1loop of the procedure would
consider the elements of the list in order, maintaining a pointer
to the present element in the list and the first element in the
list gr=ater than r away frcno the present element in the
chosen dimension, These two pointers together define a
sublist. The inner loop traverses this sublist, comparing
every point on it to the current pcint in the outer loop, and
reports all near neighbors. The nugber of distance
calculations made using this method 1is bounded by n(n-1)/2,
and for rany distributions will be substantially less. The
overhead involved in this technique is small if a good sorting

algorithm is used.

4.3 Cell techniques

The mcst simple nonredurdant all pairs algorithe for a
cube structure is merely to iteratively search for all points
in the half sphere of radius r centered at all

points (use of half stheres avoids redundancy). A more

- 20 -
sophisticated scheme wculd, for each cube, compute all near
neighbor pairs with one ©[pcint in the given cube and the other
pecint in any cube within r of the given «cube. Note that the
naive implementation of considering for every cute all other
cubes within r will 1l2ad to redundancy. Therefors=, a
method such as that used in section 4.2 should ke employed here
to consider each pair of cubes only once. One implementation
of this scheme would employ the knowledge of the relationship
of r to the length of the edge of a cube. For instance, if
the edge size was exactly r, then the larger cube of side 3*r
formed by taking all the «cubes adjacent to any cube C
would certainly contain all of near neighbors to any point
in C. This 1large cube will contain 3*%*k-1 cubés besides C. It
is easy to se2 a scheme where one looks for near nsighbors to
points in C in only (3**k-1)/2 of C's neighboring cubes, and
then the remainder of the pairs are found as C's reighbors
investigate C, For example, in 2 space (using the compass
system), any cube need consider only its N, NE, E, and SE
neighbors; then it will in turn be a N neighbor to its S
neighbor, and likewise for its SW,H, and NW neighbors. This
scheme could be implemented very efficiently using well known
techniques for multidimensional arrays (see Gries (7) for a

discussion of the implementation of multidimensional arrays.)

4.4 k-4 Trees

The most simple nonredundant all pairs algorithm for the k-4
tree is the same as for a cute structure, that is, searching for
all points in half =sgheres <centered at all roints. A more

sophisticated scheme would, for each bucket, find all other

- 21 -
tuckets within r, and examine all the points in the two buckets
for fixed radius near neighbors. Naively irplemented this
scheme would compare each bucket to every other near bucket
twice, just as the naive implementation of the cell technique
would. However, avoiding the redundancy is not so easy with
k-d trees as it is with c211ls, due to the irregular shape of
the buckets. One way to avoid this 1is to define some
relation R on the cells such that (C1 R C2) if and only if not
(C2 R CT), for any cells C1 and C2. Then C2 would be
examined when searching for C1's near neighbcrs, because (C1 R
C2), but C1 would not be searched when searching for C2's near
neighbors. A particunlarly nice relaticn is Ci R Cj if and only
if 1 < j. This relation is easy to test for pairs of buckets.
This relation can also be used to prune the search of the tree if
the Dbuckets are numbered such that all the kuckets in th2 left
subtree of a node are nuebered less than a given £field of the
node, and all buckets in the right suktree have a greater bucket

index than the field.
5. Dynamic Point Sets

Many applications of fixed radius near neighbor searching
deal with rpoint sets that are dynamic--that is, points can be
inserted, deleted, or change their locations (though a change of
location could be accomplished by a deletion followed by an
insertion, we will see later that change is a useful primitive.)
As such events take rlace, it 1is desirable to change as
little of the data structure as possible. 1In this section we
will inwestigate some of +the techniques used for dealing with

the problem of dynamic changes to the various structures we have

- 20 -

discussed.

The mrost simple type of change is when a single point is
modified. When the modification is an insertion or deletion, the
corresponding structure can be easily modified using the brute
force, projection, or cell techniques quite easily.
Insertions and deletions vwith k-d trees are a tit nmore
difficult. They <cculd be made by inserting or deleting the
items in the buckets, but that is disastrous if successive
insertions are going into only a few buckets~--the tree would
grow gquite out of balance. In this case the tree should not
use buckets but instead stcre the ©points in the nodes of
the tree and wuse the dynamic insertion and deletion routines
descrited in (1). For any of the structures, if the set of
all close pairs in the ©pcint set was known before a position
change of point x, the new set of all clcse pairs can easily be
calculated after the position change of x. The c¢nly previous
close pairs that are nc longer close pairs are points that
were close to x before x moved, and the cnly new close pairs are

the new near neighbors to x.

Any batch of changes can be handled by iterating the above
techniques. A more radical situation occurs when all the points
in the structure change their locations. If the new locations
are totally unrelated to the o¢l1d ones, not much can be done
besides throwing out the 0ld structure and =starting over again

frcm scratch.

Oftentimes, however, the new rositions are related to the

old ones. Consider the case cf an air traffic control system

- 23 -
which wupdates the 1locations of the planes in the system by a
radar scan every five seccnds. It is safe to assume (for today's
civilian aircraft) that no fplane will have travelled more than
a pile frcm its previous position in five seccnds. Using such
restrictions {that a Foint will be no more than some
constant distance from its cld position), it is possible to
develop very fast updating algorithms. For the
projection technique, the new projecticn will very 1likely
closely resemble the o013, ard a variation of the bubble sort
could be used to modify the projection. The main loop of the

procedure changes the positicn of cach point. As the position

of a point is changegd, it "bubbles™ up or down the
projection until it finds its new hone. This procedure will
efficiently give the new projection. For k-4 trees a

similar notion can be used. When the 1location of each point
changes, test if the change is great enough to cause the
point to move from its present tucket to a new bucket. If not,
all 1is well; cthervise, transfer the node to the new bucket.
Once again, this strategy runs the risk of creating
unbalanced treas. One wav to counter this is +to use the same
tuckets until the tree is found to be out of balance, then

reorganize the tree at that time.
6. Implementation Suggestions

In this section we will discuss some of the problems
associated with implementing the scheres we have investigated.
The issues raised in this section might also be important for

future techniques not discussed in this fraper.

- o -

€.1 Computing interpoint distances

It is easy to conmpute the distance from x to y by
sumping th2 squares of their differences in each dimension,
and then taking the square root cf the sum. In many of ¢the
schenmes in this parer, howvever, the conmplete interpoint
distance 1is not needed--we only need to kncw if x is greater
than r from vy. Since square root is a monotonically
increasing function, the sun of the squares of the
differences <could be <compared to T*%*2, and the costly
square root operation avecided. A more sophisticated
technique, appropriate for very high dimensional spaces and point
sets with few near neightors, is tc ccmpute the sum of the
squares of the distances only until they exceed r**2,
This involves making a ccaparison after each addition to the
sum of the sSquaraSs. This 1is cost effective 1if a few
comparisons help to avcid many mnultiplications and additions.

This idea could be used in a limited form by testing

after every few additions.

6.2 Computing distances to hyper-rectangles

Using the cell and k-4 tree structures, it is necassary
to compute the distance from a hyper-rectangle (which could
be a cell, bucket, or the bourds of a subtree) to a point.
A mcdification of the bounds_overlap_ball procedure described
by Friedman, Bentley and Finkel (5) can be used to
efficiently calculate the distance. The rrocedure notices that
the distance from a point to a hvyper-rectangle is the distance

from the pcint tc the closest point in the

- 25 -
hyper-rectangle, and +that the location of that point can be

deduced by considering the k dimensions inderendently.

The procedure calculates the distance from the point to the
hyper-rectangle in each disension and sums the squares of
these distances to ottain the desired answver., The
hyper-rectangle is defined ty its 1lower and aupper bounds
in each dimension (it is assumed to be rectilinearly oriented in
the space). The distance from a giver ggcint x to the
hyper~rectangle in a given dimensicn {say i) is
calculated as follows: if xi 1is between the lower and upper
bounds, the distance is zerc; otherwise it is the distance fronm
xi to the closest bound. As with distances between points,
often one is only interested if the distarce frorm a point
to a hyper-rectangle is less than some r. If this is all that
is desired, a similar technique to that described in
section 6.1 of computing the partial sur only until it exceeds r

{or the total sum has been computed) can be employed.

The algorithm described here can also be used to compute
distances between points and hyper-rectangles for other metrics.
If the city block metric vwere used, then the sum of the distances
(not their squares) in each dimension would be computed. If the
maximum coordinate metric were wused, then the maximum single
dimensional distance would te recorded. The algcrithm can also
be used to calculate distances between two hyper-rectangles. For
that application the single diwmensional distance is zero if the
line segments defining the two rectangles in that dimension

overlap, .otherwis= it is the éistance betveen the line segmants.

- 26 -

6.3 Using multirle structures in refinement

Instead of employing <c¢nly one structure, it might be
effective to use different structures for different parts of the
problen. In effect, the k-d trees and cell structures as
described use the brute force technique in the buckets and cells
in which the ©foints are stcred. It might be cost effective to
sort the elements in a tLucket by c¢ne dimension and use a
modification of the projection algorithm to search in the bucket
if it were very large. The recursive cell structure
defined in section 2.5.1 is an example of refinement
using the same structure. Other more exotic kinds of refinements

can be imagined.
6.4 Cells within the fixed radius

In either the k-d tree or cell structures, if it is
determined that the entire Lucket (or cell) is within the fixed
radius r of the point x, then <clearly all the points in the
bucket are within r of x. Whether a cell 1is entirely within
a fixed radius ball can te determined quickly wusing a =method
similar to that descrited in section 6.2, It is
sufficient to determine if the point in the <cell furthest
from x is within r. The point in the cell furthest from x is (by
the independence among the dimensions for the metrics we have
used) that point which maximizes the distance to xi in each
dimension i. This fpoint can easily be determined in time
linear in k. Once again, as in sectioms 6.1 and 6.2, the partial
sur of the distance squared need onrly be computed until it

exceeds r.

- 27 -

Jerome Friedman has rointed out that this technique
will prove extremely valuakle when k-d trees are used in

point sets that have suk-collections of great local density.

This "bounds within kall® test could pote that a whole
subtree was in the region cf interest. When that was
noticed, the search procedure would wrerely traverse the

subtree, enumerating all the points therein as near neighbors.
7. Areas For Purther Work

Very little is known about the behavior of the
structures described inm +this paper. The performance of these
structures for different distributions of points should be
carefully analyzed to determire how many distance calculations
each structure neads to solve the different prcblems mentioned.
The algorithes described should be <coded efficiently in some
comrmon language {such as FORTRAN) and the details of
implementation overhead <carefully analyzed so that the
knowledge of the number of distance calculations made can
be translated into actual running times c¢n ccmmon computers.
The implementation rarame ters, such as bucket sizes for
k-d trees and cell sizes for the cell method, need to be analyzed

in detail.

The problem of points in motion discussed in section 5 is
very important, especially as it relates tc traffic control

systems. Much more work needs to be done in this area.

- 28 -
ACKNCWLEDGMENT

The author gratefully acknowledges both the technical advice
and the general encouragement given by Forest Baskett, Fred

Brooks, Don Stanat, and PBill &right.

- 29 -

Bibliography

1. Bentley, J. L. HMultidimensional binary search trees usaed for

associative searching. To aprear in Communications of the ACM.

2. Bentley, J. L. and D, F. Stanat. Analysis of range searches

in guad trees. To appear in Information Prccessing Letters.

3. PFinkel, R. A. and J. 1. Bentley. Quad trees: A data
structure for retrieval ty ccrposite key. Acta Informatica 4 (1),

1=-9. 1974,

4. Friedman, J. H., P. Baskett, and 1. J. Shustek. An
algorithm for finding nearest neighbors. Tc appear in IEEE

Transactions on Computers.

5. PFriedman, J. H., J. 1. Bentley, and R. A. PFinkel. An
algorithm for finding best matches in logarithmic time. Stanford
CSs Report STAN-CS-75-482. Submitted to Transactions on

Mathematical Software.
6. Fukunaga, K, and PB. M. Narendra. A branch and bound
algorithm for computing k-nearest neighbors. IEEE Transactions

on Computers C-24 (7), 750-7%3. July, 1975.

7. Gries, D. Compiler Construction for Digital Computers.

John Wiley and Sens, 1971,

8. Iverson, K. E. A Programming language. John Wiley and Sons,

- 30 -
19€2.

9. RKnuth, D. E. The art of computer programring, volume 3,

Sorting and searching. Addison-Wesley, 1973. Section 6.5.

10, ===== s Section 6.2.2.

11. Levinthal, C. Molecular model-building by computer.

Scientific American 214, 42-52, June 1965,

12. Linn, J. General methods for parallel searching. Technical
Report Number 61, Digital Systenms Labecratory, Stanford

Electronics Laboratory, Stanford University. May, 1973.
13. shamos, M. I. Problem Book in Computational Geometry. To
appear as a Carnegie-Mellon University Computer Science

Department Report.

4. Yuval, G. Finding near neighbours in k-dirensional space.

Information Processing Letters 3(4), 113-114., March, 1975.

15. Zolnowsky, J. To appear as a SLAC-FUB.

- 31 -

Appendix A, An introduction to k-3 trees

The k-d tree is a generalization of the simple binarvy
tree used for sorting and searching. The k-d tree is a binary
tree in which each node represents a subcollection of the points
in the space, and a partitioring of that subcollection. The
root of the tree represents the entire ccllection. Each
nonterminal node has two successors. These successor nodes
represent the two subcollections defined by the
partitioning. The terminal nodes rerresent mutually
exclusive small subsets of the points, which collectively
form a partition of k srace. These terminal subsets are

called buckets.

In the case of cne-dirensional searching, a point is
represented by its value 1in a single dimension and a
partition is defined by some value of that dimension. All
records in a subcollection with key values less than or equal
to the partition value belong to the left successor node, while
those with a larger value belong to the right
SucCCessor. The dimension thus becomes a discriminator for

assigning records to the two subcollections.

In k space, a point is represented by k dimensions. Anv one
of these can serve as the discriminator for partitioning the
subcollection represented by a particular node in the tree;
that 1is, the discriminator can range from 1 to k. The original
k-d tree proposed by Bentley (1) chose the discriminator for

each node on the basis of its 1level in the tree; the

- 32 -
discriminator for each level was obtained by cycling through

the keys in crder. That is,

D=1 mod k + 1
vhere D is the discriminator for level L and the root node is
defined to be at level zero. The partition values were chosen to

be random key values in each rparticular subcollection.

In (5) Friedman, Bentley and Finkel describe a way of
constructing an "cptimized" k-d tree. Instead of cycling through
the dimensicns, the discrieinator for a node is that dimension
wvhich exhibits the largest variance in the subcollection. The
variance can be calculated easily for each dimension, and the
maximum is chosen. The partition value is chésen to be the
median value in the discriminator dimension. This construction

imposes a nicely shaped partitioning on the space.

Associated with each each node or bucket in a k-d tree
is a set of geometric Ltounds within which the fpcints in that
subccllection must 1lie. The bounds are represented by two
one dimensicnal arrays of k elements, called LCWER and UPPER.
For a given subcollection S it must be true for every node x in S
and every dimension i that LOWER(i) <= xi <= UPPER(i).
The bounds are updated during the descent in <the tree to a
subcollection by replacing UPPER(i) with the rpartition value of
an i-discriminator ncde when going to its left son, and
modifying LOWER(i) accordingly when visiting a node's right son.
The root*s upper and lowvwer bounds are set initially to plus and
minus infinity, respectively. These bounds forn a
rectilinearly oriented hyper-rectangle in k space within which

all the points in any sutcollection must be.

-33-

A fixed radius near neighbor search procedure is easily
defined recursively. when visiting a node x, it computes the
bounds for x*'s right son and visits the right scn recursively if
and only if its bounds are within r of the target point, and
likewise for the left son. When visiting a bucket, it scans all
points in the bucket to see if any are within r of the target

point.

