Catalogue Of High-Energy Accelerators

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309

Work supported by Department of Energy contract DE-AC03-76SF00515.

IX th International Conference on High-Energy Accelerators

C14/05/02-23

CATALOGUE OF HIGH-ENERGY ACCELERATORS

SLAC Stanford, California

May 1974

COVER ILLUSTRATIONS

Front: Computer reconstruction of a 10 prong multihadron event in the SPEAR magnetic detector, produced by the annihilation of e^+e^- at 5 GeV in the center of mass. Large rectangles represent shower counter latches, small rectangles-trigger counters. Dots and squares are fiducial points. Coded times of arrival of shower pulse heights are indicated. The axial magnetic field strength is 4 KG.

Back: Axial view of the SPEAR magnetic detector (with iron end caps removed) surrounding the west interaction region vacuum chamber. From the interaction point outward, particles traverse four sets of cylindrical spark chambers, trigger counters, the magnet coil, shower counter, magnet flux return and muon spark chamber planes. The objects in the foreground are the innermost quadrupoles of the storage rings' low beta insertion.

FOREWORD

It has become customary to issue an up-to-date catalogue of the parameters and performance of high-energy accelerators at the time of the International Accelerator Conferences. Accordingly, we have sent out data sheets to the various laboratories, requesting their co-operation in obtaining this information. The forms are identical to those used for the 1971 CERN conference and we thank M. H. Blewett for her kind permission to use them again.

We would like to express our warmest thanks to all those who have returned the filled-out data sheets that include considerable new information.

Unfortunately, sheets for a few of the machines were not returned to us, at least by the publication deadline. Rather than publish out-of-date or incorrect material, we have not included any data for these machines. (They are shown with an asterisk in the Table of Contents.)

In contrast to previous years you will find in this catalogue a new section listing parameters of a few new major projects that are not yet funded. Realizing that such information is at best tentative, reply to our questionnaire was left as an option for the laboratories contacted and is therefore in no way complete. Further, the authors of these pages which were returned wish us to emphasize that their data is subject to change, however we feel that this information may reflect the direction in which the High Energy Accelerator field is currently moving.

> G. E. Fischer Ruth Thor Nelson

CONTENTS

\mathbf{Pro}	ton Synchrotron ($E \ge 1$ GeV) and Boosters	
1.	CERN, Geneva, 400-GeV PS - SPS	1
2.	CERN, Geneva, 28-GeV PS - CPS	2
3.	CERN, Geneva, 0.8-GeV Booster for CPS - PSB	3
4.	France, CEA Saclay, 3-GeV PS - Saturne	4
5.	Japan, Nat. Lab. Tsukuba, 10-GeV PS	5
6.	Japan, Nat. Lab. Tsukuba, 0.5-GeV Booster for 10-GeV PS	6
7.	UK, Rutherford, 8-GeV PS - Nimrod	7
8.	USA, Argonne, 12.7-GeV PS - ZGS	8
9.	USA, Argonne, 0.2-GeV Booster for ZGS	9
9A.	USA, Argonne, 0.5-GeV Booster for ZGS	10
10.	USA, Brookhaven, 33-GeV PS - AGS	11
11.	USA, Lawrence, 6.2-GeV PS - Bevatron	12
12.	USA, NAL Batavia, 200/500-GeV PS	13
13.	USA, NAL Batavia, 8-GeV Booster for 200/500-GeV PS	14
14.	USSR, IHEP Serpukhov, 76-GeV PS	15
15.	USSR, ITEP Moscow, 10-GeV PS	16
16.	USSR, JINR Dubna, 10-GeV Synchrophasotron	17
17.	USSR, RI Moscow, 1-GeV Cybernetic Accelerator	(*)

II. Electron Synchrotrons $(E \ge 1 \text{ GeV})$

I.

1.	German Fed. Rep., Bonn, 2.5-GeV Synchrotron	18
2.	German Fed. Rep., Hamburg, 7.5-GeV Synchrotron - DESY	19
3.	Italy, Frascati, 1.1-GeV Synchrotron	20
4.	Japan, INS Tokyo, 1.3-GeV Synchrotron	21
5.	Sweden, Lund, 1.2-GeV Synchrotron	22
6.	UK, Daresbury, 5.2-GeV Synchrotron - Nina	23

Page

II.	Electron Synchrotrons ($E \ge 1$ GeV) Cont.	
	7. USA, Cornell, 12-GeV Synchrotron	24
	8. USSR, Tomsk, 1.5-GeV Synchrotron - Syrius	(*)
	9. USSR, Yerevan, 6.1-GeV Synchrotron - ARUS	(*)
ш.	Electron Linear Accelerators ($E \ge 1 \text{ GeV}$)	
	1. France, Orsay, 2-GeV Linear Accelerator	25
	2. USA, HEPL Stanford, 1.2-GeV Mark III Linear Accelerator	26
	3. USA, HEPL Stanford, 2-GeV Superconducting Mark III Linear Accelerator	27
	4. USA SLAC Stanford, 22-GeV Linear Accelerator	28
	5. USSR Kharkov, 2-GeV Linear Accelerator	(*)
IV.	Proton Linear Accelerator ($E \ge 500 \text{ MeV}$)	
	1. USA, Los Alamos, 800-MeV Proton Linear Accelerator - LAMPF	29
v.	Proton Linear Accelerators used as Injectors for Synchrotrons	
	1. CERN, Geneva 50-MeV injector for CPS	(*)
	2. France, Saclay, 20-MeV injector for Saturne	30
	3. Japan, Nat. Lab. Tsukuba, 20-MeV injector for 8-GeV PS	31
	4. UK, Rutherford, 15-MeV injector for Nimrod	32
	4A. UK, Rutherford, 70-MeV injector for Nimrod	33
	5. USA, Argonne, 50-MeV injector for ZGS (Polarized)	34
	5A. USA, Argonne, 50-MeV injector for ZGS (Unpolarized)	35
	6. USA, Brookhaven, 200-MeV injector for AGS	36
	7. USA, NAL Batavia, 200-MeV injector for 200/500-GeV PS	37
	8. USA, Lawrence, 19-MeV injector for Bevatron	38
	8A. USA, Lawrence, 50-MeV injector for Bevatron	39
	8B. USA, Lawrence, 8.5-MeV SuperHILAC injector for Bevatron	40

Page

V. Proton Linear Accelerators used as Injectors for Synchrotrons Cont.

9.	USSR, IHEP Serpukhov, 100-MeV injector for 76-GeV PS	41
10.	USSR, ITEP Moscow, 24.6-MeV injector for 10-GeV PS	42
11.	USSR, JINR Dubna, 9.4-MeV injector for Synchrophasotron	(*)

VI. Storage Rings

1.	CERN, Geneva, 10 to 28-GeV, proton-proton - ISR	43
2.	France, Orsay, 1.8-GeV, electron-positron - DCI	44
3.	France, Orsay, 0.5-GeV, electron-positron - ACO	45
4.	German Fed. Rep., Hamburg, 3-GeV electron-positron - DORIS	46
5.	Italy, Frascati, 1.5-Gev, electron-positron - ADONE	47
6.	USA, SLAC Stanford, 2.6-GeV, electron-positron - SPEAR	48
7.	USA, Wisconsin, 0.24-GeV, electron (storage only) - Tantalus I	49
8.	USSR, Novosibirsk, 25-GeV, proton-antiproton - VAPP-4	(*)
9.	USSR, Novosibirsk, 3-GeV, electron-positron - VEPP-3	(*)

10. USSR, Novosibirsk, 1.8-GeV, antiproton (storage) - NAP (*)

VII. Unfunded Projects

1.	Italy, Frascati, Super Adone, 10-12 GeV, electron-positron storage ring	50
2.	UK, Daresbury, 2-GeV, electron storage ring for synch. rad.	51
3.	UK, Rutherford-Daresbury, 14-GeV, electron-positron storage ring - EPIC	52
4.	USA, Argonne, 12-GeV, Superconducting Stretcher Ring (ZGS - SSR)	53
5.	USA, Brookhaven, 200-GeV, proton-proton storage rings - ISABELLE	54
6.	USA, LBL-SLAC, 15-GeV, electron-positron storage ring PEP - Stage I	55
7.	USA, Wisconsin, 1.7-GeV, electron storage ring for synch. rad Tantalus II	56

Page

NAME OF MACHINE	CERN SPS
INSTITUTION	CERN Laboratory II
	Geneva - Pavs de Gex (F)
EUCHTION	

ACCELERATOR PERFORMANCE

PERSON IN CHARGE

DATA SUPPLIED BY___

DATE __

J.B. Adams

G. von Holtev

January 1974

Norma i

Maximum

CONSTRUCTION STARTED (date) 1971
FIRST BEAM OBTAINED, OR GOAL (date) end of 1976
TOTAL COST OF FACILITY
FUNDED BY 11 Member States of CERN
TOTAL ACCELERATOR STAFF (now)360
ANNUAL OPERATING BUDGET

ACCELERATOR PARAMETERS

Physical Dimensions (Mean)		
RING DIAM. 2200 m; Tunnel sect.	$\phi =$	<u>4</u> m
MAGNET	4.5	cm
"DONU14.5x4.5cm; Aperture 11.0 ×.	4.3	cm

Injector System

TYPE	improve	ed CPS	
OUTPUT (max)	10 ¹³ ppp	at 10 to	14 GeV/c
BEAM EMITTANCE	(10 GeV/	c)H:2.6π	V:3 3Thrad
INTECTION DEDI	23		1 turns
INDECTION PERI		magnetic	kicker
INFLECIUR ITPE			

~

. .

__keV/turn

Magnet System

RADIATION LOSS

FOCUSING TYPE AG Separate function
No. MAG. UNITS 744+216 (ea) 6.26/3.085 m
STRAIGHT SECT. 216 Total S.S. Length 1260 m
FOCUSING ORDER FODO
BETATRON OSC. FREQ. VH
FIELD, AT INJ. 450 G, at max 18 kG
RISE TIME 3.4 sec; Flat-top time 0.7to2.0sec
MAG. WEIGHT (tons) Fe <u>13500</u> , Cu <u>1400</u>
POWER INPUT (MW) PEAK 135 MEAN 36
Acceleration System
HARMONIC No. 4620 No. Cavities 2
RF RANGE 200.2 MHz
ORBIT FRED. 43.3 kHz
ENERGY GAIN 3.6 MeV/turn

Other Relevant Parameters or Notable Features

RF POWER INPUT (KW) PEAK 1.0 MW

(or Goal) Achieved 400 ENERGY (GeV) Ŧ RESOLUTION DE/E (%) 0.17(0.11) REPET. RATE (pulse/sec)* PULSE WIDTH DUTY FACTOR, macroscopic (%) *12 (22 1013 INTERNAL BEAM (part/pulse) _10¹² 1.1 10¹²) (part/sec) * 69.5 CURRENT (mA) 2 π Ω BEAM EMITTANCE (mm-mrad) SCHEDULED OPERATION (hr/wk) "ON BEAM"______ # OF SCHEDULED TIME Some Typical External and Secondary Beams PARTICLE FLUX BEAM AREA ENERGY ∆E/E (part/sec) (cm²) (Ge¥) (%) RESEARCH PROGRAM total experimental area ca. 27000 _ m² BEAM LINES TO____ Stations STATIONS SERVED AT SAME TIME ____ BEAM SEPARATORS _____ SPECTROMETERS ____ ON-LINE COMPUTERS WITH ____ Inputs BUBBLE CHAMBERS, in-house _____ Users'_____ TOTAL POWER INSTALLED FOR RESEARCH___ MM No. USER GROUPS: in-house _____ outside ____ TOTAL RESEARCH STAFF, in-house _____ outside ____ ANNUAL RESEARCH BUDGET, in-house_____ SCHEDULED RESEARCH TIME, hours/week_____

RECENT IMPROVEMENTS OR MODIFICATIONS TO MACHINE

* for 0.7 sec (2.0 sec) flat top.

Published Articles Describing Machine

The 300 GeV Programme, CERN/1050, January 1972.

	CERN	Proton	Synchrotron (CPS)
NAME OF MACHE	Europea	<u>)</u> Ûrgani	zation for Nuclear
LOCATION	Meyrin,	Geneva	Switzerland

CONSTRUCTION STARTED (date)	1955
FIRST BEAM OBTAINED, OR GOAL	(date) November 24, 1959
TOTAL COST OF FACILITY _200	MFr. Sw. (1954-1959)
FUNDED BY CERN Member	States
TOTAL ACCELERATOR STAFF (now	460
ANNUAL OPERATING BUDGET	52 MFr.Sw.

ACCELERATOR PARAMETERS

Physical Dimensions (Mean)	_		_	
RING DIAM, 200 m: Tunnel sect.	6	_X	6	m
MAGNET 1.16,0.94 m: Mag. Gap.	10.0	×	15.0	cm
"DONUT 7.4 x15.0 cm; Aperture_	7.0	_ ×	14.6	, сп

Injector System

type Linar or Booster
$\frac{1}{1} \frac{1}{1} \frac{1}$
BEAM EMITTANCE 20 x 20 π / 30 x 12 π mm-mrad
INJECTION PERIOD 20/2.5 usec. or 3/1 turns
INFLECTOR TYPE electrostatic dc and pulsed ma-
gnetic kicker or septum and pulsed kicker
FOCUSING TYPE AG Field Index. n= 288
No. MAG. UNITS 100 Length (ea) 4.26 m
STRAIGHT SECT. 100 Total S.S. Length 188 m
FOCUSING ORDER FOFDOD
BETATRON OSC. FREQ. VH 6.25 6.25
FIELD, AT INJ. <u>147</u> G, at max <u>14</u> kG
RISE TIME <u>U. /-I.U</u> sec; Flat-top time <u>U.5-U./</u> sec
MAG. WEIGHT (tons) Fe <u>13000</u> , Cu <u>130</u>
POWER INPUT (MW) PEAK MEAN
Acceleration System
HARMONIC No. 20 to 0.55 Mu
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ORBIT FREQ. RANGE $(\pi_2 \chi)$ 80
RE POWER INPUT (KW) PEAK 1000 MEAN 300
*** Including developments. Linac and Booster
PUBLISHED ARTICLES DESCRIBING MACHINE
Record traif E CEPN 50-20 CERN 60-26
CEDN 62 3
Uine M G N Int Conf Instrum for High
France Accol LD Cost 60 21/ 222
Emergy Accer.,LRL,Sept.00,214-222.
Lapostorre, P., onde erectrique 40,
489+004(1900).
Adams, J.B., Nature 185,508-72(1900).
Germain,P., Industries Atomiques 7,
J-10/01-/3(1903).
Reich, K. H., Kerntechnik 3, (8) 345-55(1961).
Hereward,H.G.,Nucl.Instr.Meth.20,9-11(1963).
Standley,P.H.,Fourth Int.Conf.High Energy Acc
Dubna 1963,99-109 (USAEC Conf.114)
Fifth Int.Conf.High En.Acc.Frascati,1965
Baconnier et al. Seventh Int.Conf.High En.Acc

Erevan 1969, 565-575.

Baconnier et al. U.S.Nat.Acc.Conf.Chicago 1971.

PERSON IN CHARGE_	G.L. Munday	
DATA SUPPLIED BY	0. Barbalat - L.	Hoffmann
DATE	February 1974	

ACCELERATOR PERFORMANCE

ENERGY (GeV RESOLUTION , REPET. RATE PULSE WIDTH DUTY FACTOR) ΔΕ/Ε (%) (pulse/sec) , macroscopic	No (or (2 	30a1) 5 0.05 0.5	Maximum Achieved 	•	
INTERNAL BEA BEAM EMITTA SCHEDULED O "ON BEAM"	AM (part/puls (part/sec) CURRENT (NCE (mm-mrad) PERATION (hr/ 9]	.e) <u>1.5-</u> mA) <u>10</u> (wk) <u>14</u> 4	2.10 ⁻² /5 12 <u>π</u> 5 (excl LED TIME	3.1012	(with , , garly	Booster) shutdown)
Some Typica	il External and	Secondary Be	ams			
PARTICLE	FLUX	BEAM AREA	ENERGY	ΔE/E		
	(part/sec)	(cm²)	(GeV)	(%)		
$\frac{\text{Slow eject}}{\frac{\pi}{\pi}}$	$\frac{100}{0.5 \cdot 10^{12}}$	0.1 1 2	<u>24</u> <u>6</u> 6	<u>1.0</u> 4 2	on 3	targets

2.8

RESEARCH PROGRAM

6-106

104

TOTAL EXPERIMENTAL AREA 20.000 m ²
REAM LINES TO 17 + 1SR + 3 tests Stations
STATIONS SERVED AT SAME TIME $10 + 1SR + tests$
SEPARATED BEAMS 10SPECTROMETERS 10
ON-LINE COMPUTERS
BUBBLE CHAMBERS, in-house Users'
TOTAL POWER USED FOR RESEARCH 27 (average)
No. USER GROUPS: mixed $15+5$ outside $15 + 40^{**}$
TOTAL RESEARCH STAFF, in-house 190 outside $620 + 500$
ANNUAL RESEARCH BUDGET, in-house 90 MFr. Sw
SCHEDHLED RESEARCH TIME, hours/week 125
** Bubble chamber picture analysis
RECENT IMPROVEMENTS OR MODIFICATIONS TO MACHINE

- 800 MeV Booster Injector
- Transformations for use as SPS injector
- * For the whole of CERN

PUBLISHED ARTICLES (cont.)

PS Staff, Ninth Int. Conf. High Energy Accelerators Stanford 1974

NAME OF MACHINE_	Booster	for the	<u>CPS (PS</u> B)
INSTITUTIONCER	L.Europe	an Org.N	ucl.Res.
LOCATION Mey	rín, Gene	⊇va, Šwi	tzerland

CONSTRUCTION STARTED (date) January 1968 FIRST BEAM OBTAINED, OR GOAL (date) May 1972 TOTAL COST OF FACILITY 60 MFr (Swiss)
FUNDED BY CERN Member States
TOTAL ACCELERATOR STAFF (now) 72 ANNUAL OPERATING BUDGET 8 MFr
(including develop.)
Physical Dimensions (Mean) (width x height) RING DIAM. 50 m; Tunnel sect. 4.05 x 5.15 m MAGNET $0.7x 1.52m$ Gap 24.1 x 7.0 cm "DONUT: x 1)cm; Aperture 1)x cm

Injector System

TYPE Improved CERN PS Linac s
OUTPUT 50 mA at 50 MeV P
BEAM EMITTANCE 30 TX 30 TT 095% of beam) mm-mrad
INJECTION PERIOD 100 usec, or 4 x 15 turns _
INFLECTOR TYPE magnetic(1 for multiturn,
2) 1 for monoturn)
Magnet System /
FOCUSING TYPE AG, sep. functions: triplets -
No. MAG. UNITS 32 Length (ea) (mag.) 1.618 m -
STRAIGHT SECT. $\frac{3}{m}$ Total S.S. Length $\frac{3}{m}$ -
FOCUSING ORDER L1, B, L2, F, L3, D, L4, F, L5, B, 2L1-
BETATRON OSC. FREQ. v_{ij} 4 to 5 v_{ij} 4 to 5.3 R
FIELD, AT INJ. 1253 G, at max 5.93 kG
RISE TIME 0.60 sec; Flat-top time 0.08 sec
MAG. WEIGHT (tons) Fe <u>580</u> , $cu 34.6(B+F+D)$
POWER INPUT (MW) PEAK 5.64) MEAN 1.644

Acceleration System

HARMONIC No	<u> </u>	o. Cavitie	<u>s l per 1</u>	<u>ing</u>
RE RANGE 2.	997	8.0	33	MHz
ORBIT FRED.	0.59	9	1,607	MH z
ENERGY GAIN	1		ke	≥V/t
RADIATION LOSS			ke	V/turn
RE POWER INPUT	(KW) PEAK 4	x 7	Mean <u>4</u>	<u>x 4</u>

Other Relevant Parameters or Notable Features 4 rings stacked on top of each other. Bending magnets and quadrupoles combined to 4-gap units. Linac beam switched to 4 rings by vertical deflector. At 800 MeV the 4 beams are ejected sequentially and combined by vertical bending septum and kicker magnets.

Publications describing machine: Proc. Int. Accelerator Conferences: VI (Cambridge): Bovet, Reich (p.315) VII(Yerevan): Bigliani et al.(p.433) VIII(Geneva): Bovet et al.(p.102,380 IX (1974): Baribaud et al.; Reich Proc. Nat. Accelerator Conference: 4th (Chicago):Asseo et al;Bigliani; Bigliani et al;Brückner; Koziol,Reich Rufer,Unterlerchner;Sacherer,Sherwoo 5th(San Francisco):Bovet;Baribaud, Metzger; Rabany.

PERSON IN CHARGE	К.Н.	<u>Reich</u>		<u></u>
DATA SUPPLIED BY	H. Ko	ziol.	к.н.	Reich.
DATE 8th Ma	rch 1	974		

ACCELERATOR PERFORMANCE

(presen	t,at 800	MeV) No	ormal Goal)	Maximum Achieved	
ENERGY (Gev	()	0.8	300		
RESOLUTION		∆p∕	$\frac{p \pm 1}{2}$	<u>.3x10</u>	
REPET. RATE	(pulse/sec)	as	$\frac{CPS}{1}$	<u>nax 0.8</u>	\$7
PULSE WIDTH	4	4 2	<u>c 0.6</u> 2	2	
DUTY FACTOR	R, macroscopic	: (*) 2.	<u>6 10</u>	_%	
INTERNAL BE	AM (part/puls	e) <u>7 ×</u>	<u>101</u> 2	ppp	
	(part/sec)	<u>(go</u>	$\frac{al}{l}$	$3_{X}10^{-5}$	ppp)
	CURRENT (mA) <u>4(</u>	JU mA		•
BEAM EMITT	ANCE (mm-mrad)	H:281	T <u>; V:</u>	13π	
SCHEDULED (PERATION (hr/	/wk) <u>19</u>	<u>974 :</u> '	<u>v 3000</u>	h
"ON BEAM"		_% OF SCHED	ULED TIME		
Some Typic	al External and	Secondary B	eams		
PARTICLE	FLUX	BEAM AREA	ENERGY	∆E/E	
	(part/sec)	(cm²)	(GeV)	(%)	
	PS INJE	TOR		·	•

RESEARCH PROGRAM

TOTAL EXPERIMENTAL AREA	m²
BEAM LINES TO	_Stations
STATIONS SERVED AT SAME TIME	
BEAM SEPARATORS SPECTROMETERS	<u>.</u>
ON-LINE COMPUTERS WITH	Inputs
BUBBLE CHAMBERS, in-house Users	
TOTAL POWER INSTALLED FOR RESEARCH	MW
No. USER GROUPS: in-houseoutside	
TOTAL RESEARCH STAFF, in-houseoutside_	
ANNUAL RESEARCH BUDGET, in-house	
SCHEDULED RESEARCH TIME, hours/week	

RECENT IMPROVEMENTS OR MODIFICATIONS TO MACHINE

Mobile console in PSB equipment rooms giving full access to central control computer.

	the second s	the second se		
1)	section	apert	.(und.va	c.)
in bend.mag.	13.8x6.8	13.2x	6.1	
in triplet	13.8x12.4	13.5x	12,1	
in Ll	Ø 12.3	Ø 1	2.0	
²⁾ Data for quad	drupoles			
-	~	F	D	
number	3	32	16	
magn.lengtl	n (m)	0.50	0.88	
bore radius	5	0.	06	
gradient (r /m)	0.	81(inj)	
		3.	83(max)	
³⁾ L.:16x2.54m:1	LL_:16x0.	28m:L2	.L. : 16x0	.59m:
4) At output of	power supr	ly.	• 4	
Publ. (cont.)	Int.Conf.M	agnet '	Technolo	gv:
3rd(Hamburg)	:Asner et a	al.(p.4	18)	67 ·
d. 4th(Brookhav	en):Pahud	(p.718)	•	
·	·			

NAME OF MACHINE	SATURNE
INSTITUTION C	E.A.
LOCATION SACE	LAY - FRANCE
20011101122	

CONST	RUCTIO	ON STAR	TED (date)	1955)		
FIRST	BEAM	OBTAIN	ED, OR GOA	L (date)	Augi	ist	<u>195</u> 8
TOTAL	COST	OF FAC	unvin	1957	{	32 1	1F
FUNDE	D BY_	C.E	. A				
TOTAL	ACCEI	LERATOR	STAFF (no	w))2		
-		DATING	NIDGET				

.

ACCELERATOR PARAMETERS

Physical Dimensions	(Mean)	
RING DIAM. 22 m	Tunnel sect	n
MAGNET 77 2	: Mag. Gap17.5	x <u>52_75_</u> cm
-DONUT 0 . 6,48	m; Aperture 10.6	× <u>34</u> a

injector System

TYPE DINGC
OUTPUT (max) 4 Om A at 20 MeV
BEAM EMITTANCE 18 mA in 2.8 m mmmrad
INJECTION PERIOD 600 usec, or 550 turns
INFLECTOR TYPE. electrostatie v=100 KV
Magnet System
FOCUSING TYPE Weak
No. MAG. UNITS4 Length (ea)_13_255m
STRAIGHT SECT. 4 Total S.S. Length 16 m
FOCUSING ORDER
BETATRON OSC. FREQ. V. 0.721 0.884
FIELD, AT INJ. 771 G, at max 15 kG
RISE TIME 0.87_sec; Flat-top time 0.5sec
MAG. WEIGHT (tons) Fe 1x080, Cu. 55
POWER INPUT (MW) PEAK 24 MEAN 1
Acceleration System

HARMONIC No	2	_No. Cavities	1
RF RANGE	1.6	8.44	MHz
ORBIT FREQ.		<u> </u>	
ENERGY GAIN	1.16		
RADIATION LOSS			keV/turn
RF POWER INPUT	(kW) PEAK.	36	<u> </u>

Other Relevant Parameters or Notable Features

acceleration of deutons 5.10¹¹ d/pulse at 2,3 GeV

Published Arsides Describing Machine Onde electrique nº 387 (juin 50)

PERSON IN CHARGE GOUTTEFANGEAS

DATA	SUPPLIED	BY		
DATE.	JAN	•	1974	

ACCELERATOR PERFORMANCE

	Kormal (or Goal) 3	Maximum Achieved 3
ENERGY (GeV)	3).	
RESOLUTION AE/E (%)	<u>, , , , , , , , , , , , , , , , , , , </u>	b Flot ton
REPET. RATE (pulse/sec)	0.22410	<u>n ria</u> c co <u>b</u>
PULSE WIDTH	<u>V-42</u>	
DUTY FACTOR, macroscopic (%)	1 21012	1 6 1012
INTERNAL BEAM (part/pulse)	$\frac{1.210}{2.61012}$	$\frac{1.5}{2.5}$ 1011
(part/sec)	2.010-4	<u></u>
CURRENT (mA)		<u></u>
BEAM EMITTANCE (mm-mrad) x28	/ # x 8	
SCHEDULED OPERATION (hr/wk)	130	190
"ON BEAM" * OF 1	SCHEDULED TIME	
Some Typical External and Second	ary Beams	
PARTICLE FLUX BEAM	AREA ENERGY	ΔĒ/Ē
(part/sec) 5 (cm	2) (GeV)	(X) 2
$\frac{p}{-p}$ $\frac{6 \times 10^{-20}}{8 \times 10^{-10}}$	$\frac{ \mathbf{X} ^2}{ \mathbf{Y} ^2} = \frac{3}{ \mathbf{X} ^2}$	
	<u></u>	
<u><u>u</u> <u>4.4x10</u></u>		7
$\frac{a}{2x10}$. ·
<u>n</u> <u>•5xt</u> 0' <u>2</u>	<u>0 2 5e</u>	v <u>/ c</u>
····		6.
RESEARCH PROGRAM ~ emit	tance π	10-0)
TOTAL EXPERIMENTAL AREA	48 0	m²
BEAM LINES TOO		Stations
STATIONS SERVED AT SAME TIME	3	
BEAM SEPARATORS	SPECTROMETERS_	
ON-LINE COMPUTERS WITH	8	Inputs
BUBBLE CHAMBERS, in-house	Users '	
TOTAL POWER INSTALLED FOR RESE	arch_22	M
No. USER GROUPS: in-house_2_	outside	2
TOTAL RESEARCH STAFF, in-house	outsid	e
ANNUAL RESEARCH BUDGET, in-hou	ISE	
SCHEDULED RESEARCH TIME, hours	;/week93_	· · · · · · · · · · · · · · · · · · ·

RECENT IMPROVEMENTS OR MODIFICATIONS TO MACHINE - acceleration of particles a 1,2 $10^{11}a/bulse$ at 1.2 GeV/A

- a superconducting quadrupole doublet OGA permits to increase the number of pions by a factor 4
- A renovation of Saturne is being studied. With a new magnet and the same injector, one should obtain 1.10¹² p/s external in 3 mmmrad at 1 GeV (max. energy 2.7 3 GeV)

NAME	0F	MACHINE	<u>U Gev</u>	_Pro	oton	Synchrot	ron
INST	I TU'	TION Nat	.Lab.	for	High	Energy	Phys.
LOCA	110	N	kuba,	Ja	nan	······	

CONSTRUCTION STARTED (date) April, 1971
FIRST REAM ORTAINED, OR GOAL (date) 1975
Taral cost of fact $Tx = 4 \times 10^9$ Yep
Torac Contemport
FUNDED BY Japanese Government
TOTAL ACCELERATOR STAFF (now) 65
ANNUAL OPERATING BUDGET 5×10^8 Yen

ACCELERATOR PARAMETERS

Physical Dimensions (Mean) RING DIAM, 108 m: Junnel sect.	4.0 x	4.7	
MAGNET 85 x 70 m; Mag. Gap	<u>5.6</u> ×_	14	Cm
"DONUT 5.0x 14 cm; Aperture	<u>5.0 ×</u>	_14_	cm

Injector System

TYPE 20 MeV 1	<u>linac + :</u>	<u>500 MeV</u>	<u>Booster</u>
OUTPUT (max) 1.6	5x10 ⁻³ at	500 Me	I
BEAM EMITTANCE	75π(H) x	$10\pi(V)$	m~mrad
INJECTION PERIOD	5×10^5 usec.	or 9	turns
INFLECTOR TYPE	magne	tic	
INFLECTOR TIPE			

Magnet System

ragner bystem
FOCUSING TYPE AG separated function
No. MAG. UNITS 48 (bng)ength (ea) 3.2 (bng) m
STRAIGHT SECT. 4(10ng)otal S.S. Length 48.4(L) m
FOCUSING ORDERFODO
BETATRON OSC. FREQ. VH 7.25 7.25
FIELD, AT INJ. <u>1.5' k</u> G, at max <u>13 (17.5)</u> kG
RISE TIME 0.5(0.85ec; Flat-top time_0.5sec
MAG. WEIGHT (tons) Fe 680
POWER INPUT (MW) PEAK 13(25) MEAN 4.5(8.6)

Acceleration System

HARMONIC No	<u> 9 </u>	avities <u>3</u>	
RF RANGE 6.)to_	7.9	MHz
ORBIT FREQ.	<u>0.67</u> t	o <u>0.88</u>	
ENERGY GAIN	12.6		
RADIATION LOSS	-19.6 (1	6.7)	keV/turn
RF POWER INPUT (k	W) PEAK <u>46</u>	mean	26.5

Other Relevant Parameters or Notable Features

T. Nishikawa PERSON IN CHARGE_ DATA SUPPLIED BY. March, 1974 DATE_

ACCELERATOR PERFORMANCE

		Nor (or (mal Soal)	Maximum Achieved
ENERGY (GeV)	<u>8(1</u>	<u>2)</u> -	
RESOLUTION	∆E/E (%)	0 <u>.2(</u>	<u>0.1)</u>	
REPET. RATE	(pulse/sec)	_1/	2	<u> </u>
PULSE WIDTH		0.	<u> </u>	
DUTY FACTOR	. macroscopic	(*) _2	5	
INTERNAL BE	AM (part/puls	e^{2x1}	0^{12} (1	10^{13}
	(part/sec)	>101	2 (5x1	10^{12})
	CURRENT (m∆) >280	(1415	5)
REAM EMITTA	NCE (mm-mrad)	$13\pi x^{1}$.	7π (9π)	$(1, 2\pi)$
	PERATION (br)	wki		hata distili bioghan.
HON BEAM		T OF SCHEDU	ED TIME	
UN DEAM		_* OF SCHEDU		
Some Typica	il External and	Secondary Be	ams	
PARTICLE	FLUX	BEAM AREA	ENERGY	∆E/E
	(part/sec)	(cm²)	(GeV)	(%)
				-
. <u> </u>			<u></u>	
	·			<u> </u>
			<u></u>	
. <u></u>	<u>. </u>			<u> </u>
<u></u>				
RESEARCH	PROGRAM			
TOTAL EXPER	IMENTAL AREA.	3	500	m²
BEAM LINES	то	3		Stations
STATIONS SE	RVED AT SAME	TIME		
BEAM SEPARA	TORS 3	SPECTR	OMETERS	2
ON-LINE COM	PUTERS WITH	2		Inputs
BUBBLE CHAN	BERS. in-house	se_1Us	ers '	·
TOTAL POWER	INSTALLED FO	R RESEARCH	11	M

No. USER GROUPS: in-house__3___outside__9_ TOTAL RESEARCH STAFF, in-house 25 outside 60 ANNUAL RESEARCH BUDGET, in-house..... SCHEDULED RESEARCH TIME, hours/week

RECENT IMPROVEMENTS OR MODIFICATIONS TO MACHINE

Published Articles Describing Machine

	Boos	ster	Syr	ichr	otro	n	
	for	10-0	GeV	PS			
LHIRE.							 _

- 6 -

NAME OF M	ACHINE					
	"Nat.	Lab	.for	High	Energy	Phys.
142(110(1	UR			0		
LOCATION	Tsuku	iba,	_Japa	an 👘		

HISTORY AND STATUS

CONSTRUCTION STARTED (date) April, 1971 1974 FIRST BEAM OBTAINED, OR GUAL (date) ____ TOTAL COST OF FACILITY

FUNDED BY Japanese Government TOTAL ACCELERATOR STAFF (now) _____10 ANNUAL OPERATING BUDGET___

ACCELERATOR PARAMETERS

Physical Dimensions (Mean)			
RING DIAM. 6 m; Tunnel sect.			m
MAGNET 0.7 0.8. Mag. Gap	7.2	× 14.0	cm
10000 7.0 16.0 Aparture	5.6	-14.0	
DUNUI X			

Injector System

injector system	
ТҮРЕ	Linac
OUTPUT (max) 100	<u>IIAat20_MeV</u>
BEAM EMITTANCE	101 (norm.) mm-mrad
INJECTION PERIOD	<u>5.5</u> usec, or <u>9</u> turns
INFLECTOR TYPE	<u>magnetic</u>

Magnet System

FOCUSING TYPE combined function	
No. MAG. UNITS 8 Length (ea) 2.6	m
STRAIGHT SECT. 8 Total S.S. Length 17	m
FOCUSING ORDER FDDFO	
BETATRON OSC. FREQ. VII 2.25 VII 2.2	5
FIELD, AT INJ. 1.97 G, at max 11.0	kG
RISE TIME 0.025 sec; Flat-top time	sec
MAG. WEIGHT (tons) Fe 88.1	7
POWER INPUT (MW) PEAK MEAN	5
Acceleration System	
HARMONIC No. 1No. Cavities	
RF RANGE 1.616 to 6.027	MHz
OPBIT FRED 1.616 to 6.027	
ENERGY GAIN MAX. 7	
RADIATION LOSS	_keV∕turn

60

40

mean

Other Relevant Parameters or Notable Features

PERSON IN CHARGE	T. Nishikawa
DATA SUPPLIED BY	T. Nishikawa
DATE	March, 1974

ACCELERATOR PERFORMANCE

	Normal (or_Goal)	Maximum Achieved
ENERGY (GeV)		
RESOLUTION AE/E (%)	-0.3	
REPET. RATE (pulse/sec)	20	<u></u>
PULSE WIDTH	0.06 μs	
DUTY FACTOR, macroscopic (%)	1.2×10^{-6}	
INTERNAL BEAM (part/pulse)	0.5×10^{-2}	$(2x10^{-1})$
(part/sec)	1×10^{13} (4×10^{13}
CURRENT (mA)	<u>480 (1</u> 9	00)
BEAM EMITTANCE (mm-mrad) 7	5π <u>(H)x10</u> π	(V)
SCHEDULED OPERATION (hr/wk)	,	
"ON BEAM" % OF	SCHEDULED TIME	
Some Typical External and Secon	dary Beams	
PARTICLE FLUX BEAM	AREA ENERGY	∆£/E
	•	

PARTICLE	FLUX (part/sec)	BEAM AREA (cm²)	ENERGY (GeV)	∆E/E (%)	
					_
	·				_
					
		<u> </u>			
					-
					-

RESEARCH PROGRAM

TOTAL EXPERIMENTAL AREA	
BEAM LINES TO	Stations
STATIONS SERVED AT SAME TIME	
BEAM SEPARATORS SPECTROMETERS	
ON-LINE COMPUTERS WITH	Inputs
BUBBLE CHAMBERS, in-houseUsers'	
TOTAL POWER INSTALLED FOR RESEARCH	M
No. USER GROUPS: in-houseoutside	
TOTAL RESEARCH STAFF, in-houseoutside_	
ANNUAL RESEARCH BUDGET, in-house	
SCHEDULED RESEARCH TIME, hours/week	<u></u>

RECENT IMPROVEMENTS OR MODIFICATIONS TO MACHINE

Published Articles Describing Machine

RF POWER INPUT (kW) PEAK_

NAME OF MACHIN	E NIMROD		
INSTITUTION	RUTHERFORD LA	BORATORY	
LOCATION	CHILTON, DIDC	OT, BERKS.,	UK

CONSTRUCTION STARTED (date)
FIRST BEAM OBTAINED, OR GOAL (date) August 1963
TOTAL COST OF FACILITY £10M to first operation
FUNDED BY Science Research Council
TOTAL ACCELERATOR STAFF (now) 330 incldg expl area
ANNUAL OPERATING BUDGET ~ £8M (Lab. total)

a 000

ACCELERATOR PARAMETERS

Physical Dimensions (Mean) BING DIAM 53.27 m: TANANA X SAC	Room	61_x_	9	m
MAGNET 3.15 2.74 m; Mag. Gap	116	×_	28.4	cm
"DONUT cm: Aperture	100	×_	20	cm

Injector System

TYPE Alvarez linac	
011TPUT (max) 45 at	14.9
BEAM EMITTANCE At 18 mA 100% 1:	n 50 mm-mrad
INJECTION PERIOD 350 USEC. or	120 turns
INFLECTOR TYPE Electrostatic	

Magnet System

FOCUSING TYPE	Weak	<u>n</u> =	0.6		
No. MAG. UNITS 8	Len	gth (ea)_	14.7	51	m
STRAIGHT SECT. 8	Tot	al S.S. L	ength_	30.44	m
FOCUSING ORDER	-				
RETATRON OSC EREC	0.	71 .	u	0.87	
FIELD, AT INJ. 29	9 <u> </u>	at max	14.	2	kG
RISE TIME 0.75	sec; F	lat-top t	ime ^{Up}	to 0.95	_sec
MAG. WEIGHT (tons)	. Fe 7,	000	Cu	250	
POWER INPUT (MW) P		60	MEAN	2.5	

Acceleration System

HARMONIC No. 4	,	No Cavit	ies 1 m	nit	2 gaps
RE RANGE 1.416			7.980		MHz
ORBIT FREQ.	•354	to	1.995		MHz
ENERGY GAIN	5.5				_keV/turn
RADIATION LOSS	Neg	ligible			_keV/turn
RF POWER INPUT (kW)	PEAK	45	Mean	20	

Other Relevant Parameters or Notable Features

a) Vacuum vessel is double glass-epoxy laminate system.

b) Magnet is C-type, with field correction using 'crenellations'.

Published Articles Describing Machine

- i) Nimrod A 7 GeV proton synchrotron. Ruth. Lab. Report NIRL/R/44 (1965).
- ii) The work of the Rutherford Laboratory 1972. Ruth. Lab. Report RHEL/R270 (1973).

DATA SUPPLIED BY DA GRAY	
DATEJanuary 1974	

ACCELERATOR PERFORMANCE

ENERGY (GeV)	(or Goal) 7.1	Achieved 8.0
RESOLUTION &E/E (%) REPET. RATE (pulse/sec)	0.015	
PULSE WIDTH (ms) DUTY FACTOR, macroscopic (%) INTERNAL BEAM (part/pulse)	$\frac{450}{20}$ $\frac{3 \times 10^{12}}{1 \times 10^{12}}$	$\frac{4.2 \times 10^{12}}{1.7 \times 10^{12}}$
(part/sec) CURRENT (<u>mA</u>)		
BEAM EMITTANCE (mm-mrad) SCHEDULED OPERATION (hr/wk)	120 avera	ge for research and machine development.

Norma 1

Max imum

"ON BEAM" ______ & OF SCHEDULED TIME for research. Some Typical External and Secondary Beams Momentum PARTICLE FLUX BEAM AREA ENERGY &E/E

n	(part/sec) (cm ²)	(Ge¥) 78	(%) 0.7 F	Extracted	heam.
	$\frac{7.7 \times 10}{5 \times 10^5}$	1-4	2-10		DC LLAI I
 	$\frac{3}{4 \times 10^7}$ 6	0.2	10	-	
<u></u>	3 x 103	1.0-2.0	2	-	
K-	6 x 103(K-)	0.4-1.0	6	-	
				_	
	<u> </u>			-	

RESEARCH PROGRAM

TOTAL EXPERIMENTAL AREA	7300	
BEAM LINES TO	9	Stations
STATIONS SERVED AT SAME	TIME9	
BEAM SEPARATORS	SPECTROMETER	ls
ON-LINE COMPUTERS WITH_		Inputs
BUBBLE CHAMBERS, in-hous	se Us ers '	
TOTAL POWER INSTALLED FO	DR RESEARCH	24M
No. USER GROUPS: in-hous	se4outside.	12
TOTAL RESEARCH STAFF, in	n-house <u>39</u> out:	ide <u>141</u>
ANNUAL RESEARCH BUDGET,	in-house	
SCHEDULED RESEARCH TIME	hours/week 94 E	werage in 1973

RECENT IMPROVEMENTS OR MODIFICATIONS TO MACHINE

1) Second-harmonic cavity commissioned in 1973 gave 40% increase. Characteristic of cavity:

Harmonic No.8. Drift tube acceleration. RF Voltage 8 kV peak. RF power kW 21 peak 12 mean.

 New 70 MeV injector being built ready for 1975. Should give x 5 beam.

NAME OF MACHINE Zero Gradient Synchrotron	PERSON IN CHARGE	Ronald L. Martin
INSTITUTION Argonne National Laboratory	DATA SUPPLIED BY	Ronald L. Martin
Argonne, Illinois USA	DATE	February 1974

CONSTRUCTION STARTED (date)	June	1959	
FIRST BEAM OBTAINED. OR GOAL	(date) _	Sept.	1963
TOTAL COST OF FACILITY	50 M		
FUNDED BY US AEC		<u> </u>	
TOTAL ACCELERATOR STAFF (now)	230		
ANNUAL OPERATING BUDGET \$10	<u>).5 м</u>		<u> </u>

ACCELERATOR PARAMETERS

Physical Dimensions (Mean)			
RING DIAM. 54.7 m; Tunnel sect.	12.7	<u>x 10.4</u>	m
MAGNET 1 . 4 . x 2 . 6 m; Mag. Gap	14.6	<u>,136.5</u>	cm
"DONUT 14. 6x82,2 cm; Aperture	13.3	× 81.3	_ cm

Injector System

TYPE	Linac					
	(max) 40	mA	at	50	MeV	
REAM EI	MITTANCE	25 π				mm-mrad
INJECT	TON PERIOD	100	usec. or		60	turns
INFLEC	TOR TYPE de	c mag	gnetic			
110.000						

Magnet System	field	index,	~ `
FOCUSING TYPE weak	<u>n = 0</u>	(wedge	toc)
No. MAG. UNITS 8	Length (ea)	$\frac{16.3}{41.45}$
STRAIGHT SECT. 8	.Total S.S.	Length	41.4Jm
FOCUSING ORDER	<u> </u>		01 ()
BETATRON OSC. FREQ. VH-	0.83	<u></u>	<u>81 (at</u> 11
FIELD, AT INJ. 482	_G, at max_		<u>21.5</u> kG
RISE TIME 0.85 se	c; Flat-top	time	<u>0-1</u> _sec
MAG. WEIGHT (tons) Fe_	<u>4700</u>	., Cu <u>6</u>	8
POWER INPUT (MW) PEAK_	110	MEAN	0

Acceleration System

HARMONIC No. 8	No. Cavities to	<u>1 (3 gaps)</u> 14.0 _{MHz}
ORBIT FRED.	0.55 to	1.75 MHz
ENERGY GAIN 10) keV/turn	
RADIATION LOSS		keV/turn
RF POWER INPUT (KW)	PEAK 60	<u>Mean 30</u>

Other Relevant Parameters or Notable Features

Only high energy synchrotron using wedge focusing

Published Articles Describing Machine

ACCELERATOR PERFORMANCE

ENERGY (GeV RESOLUTION REPET. RATE PULSE WIDTH DUTY FACTOR INTERNAL BE BEAM EMITTA SCHEDULED CO "ON BEAM") (pulse/sec) (SEC) (sec) (part/puls (part/sec) CURRENT (NNCE (mm-mrad))PERATION (hr/ 90	$ \begin{array}{c} & (\bullet) \\ & 1 \\ \pm 0 \\ 0 \\ 0 \\ (z) \\ 2 \\ e^{\chi_1 0^{12}} 2 \\ \chi_{10}^{12} 2 \\ \chi_{10}^{12} 0 \\ (int) 2 \\ (int) 2 \\ Wk \\ \pm 0 \\ F \text{ SCHED} \end{array} $	orma 1 2.0 .01 .30 .70 0 .5 .8 00 5 π 0 0 0 0 0 0 0 5 π 0 0 0 0 0 0 0 0 0 0 0 0 0	Maximum Achieved 12.7 ±0.01 0.5 1.0 (max flattop) 20 3.8 1.5 1000 150 T 135 ave for year
Some Typic	al External and	Secondary I	Beams	
PARTICLE	FLUX	BEAM AREA	ENERGY	ΔE/E
	(part/sec)	(cm²)	(GeV)	(1)
π <u>K</u> <u>K</u> 0 n	$ \frac{10^5}{10^3} \frac{2\times10^5}{10^6} $	$ \frac{1}{1} \frac{200}{6} $	0.5-8 0.5-6 0.2-2 2-11	$ \frac{\overline{8}}{6} \frac{\pm (0.75-2)}{\pm 2} $ 2.5
	<u> </u>			······
2 J RESEARCH	PROGRAM			
TOTAL EXPE	RIMENTAL AREA		13(<u>000 </u>
BEAM LINES	TO			17_Stations
STATIONS S	ERVED AT SAME	TIME 13	peak,	<u>7 average</u>
BEAM SEPAR	ATORS	SPEC	TROMETERS.	<u> </u>
ON-LINE CO	MPUTERS WITH.			<u> </u>
BUBBLE CHA	MBERS, in-hou	se	Users U	<u>(1 streamer chamber)</u>
TOTAL POWE	R INSTALLED F	OR RESEARCH		<u> </u>
No. USER G	ROUPS: in-hou	se_5	outside	30

SCHEDULED RESEARCH TIME, hours/week 120 ave. RECENT IMPROVEMENTS OR MODIFICATIONS TO MACHINE

ANNUAL RESEARCH BUDGET, in-house \$3.5 M

TOTAL RESEARCH STAFF, in-house____

2 simultaneous external beams Resonant Extraction - 90% (40 µsec - 700 msec) Titanium vacuum chamber installed 1972 Polarized protons to 8.5 GeV/c 1973 70% polarization - 5 x 10^8 /pulse internal 200 MeV injection from booster 1974

.outside.

L.C. Teng, "Status of the Argonne 12.5-BeV Zero Gradient Synchrotron," Dubna - 1963 Proceedings, pp. 223-232.

NAME OF MACHINE ZGS BOOSter Synchrotron I	PERSON IN CHARGE Ronald L. Martin	
INSTITUTION Argonne National Laboratory	DATA SUPPLIED BY James D. Simpson	
LOCATION Argonne, Illinois USA	DATE February 1974	
HISTORY AND STATUS FORMER 2.2 GeV HISTORY AND STATUS FORMER 2.2 GeV CONSTRUCTION STARTED (date) Cornell Electron Sy FIRST BEAM OBTAINED, OR GOAL (date) October 1971 TOTAL COST OF FACILITY FUNDED BY US AEC (Development and AI) TOTAL ACCELERATOR STAFF (now) 8 ANNUAL OPERATING BUDGET ACCELERATOR PARAMETERS Physical Dimensions (Mean) RING DIAM. 12 m; Tunnel sect m MAGNET 0.40x0.55m; Mag. Gap 3.5 × 10.0 cm "DONUT'2.5 x8.0 cm; Aperture 2.8 × 6.4 cm INJECTOR System TYPE Linac (H ION) OUTPUT (max) 5 mA at 50 MeV BEAM EMITTANCE 25 mm-mrad INJECTION PERIOD 200 usec, or 300 turns INFLECTOR TYPE NONE. Strips H to H ⁺ after injection. Magnet System FOCUSING TYPE AG field index, n = 26.1	February 1974 ACCELERATOR PERFORMANCE YII. Normal (or Goal) Achieved O.2 PUISE O.2 REPET. RATE (pulse/sec) 30 PULSE WIDTH ———————————————————————————————————	1)
No. MAG. UNITS <u>12</u> Length (ea) <u>3.16</u> m STRAIGHT SECT. Total S.S. Length <u>13.2</u> m FOCUSING ORDER <u>ODFO</u> BETATRON OSC. FREQ. v_{H} <u>3.375</u> v_{V} <u>3.375</u> FIELD, AT INJ. <u>1.7 Hk G</u> , at max <u>3.5 kG</u> RISE TIME <u>16 m sec</u> ; Flat-top time <u>sec</u> MAG. WEIGHT (tons) Fe <u>60</u> , Cu <u>2.7</u> POWER INPUT (MW) PEAK <u>MEAN 0.15</u> Acceleration System HARMONIC No. <u>1</u> No. Cavities <u>1</u> RF RANGE <u>1.8 to 3.3</u> MHz ORBIT FREQ. ENERGY GAIN <u>5.5 (max)</u> RADIATION LOSS <u>keV/turn</u> RF POWER INPUT (kW) PEAK <u>50</u>	RESEARCH PROGRAM TOTAL EXPERIMENTAL AREA BEAM LINES TOStations STATIONS SERVED AT SAME TIME BEAM SEPARATORS ON-LINE COMPUTERS WITH SUBBLE CHAMBERS, in-house USERS' TOTAL POWER INSTALLED FOR RESEARCH MN NO. USER GROUPS: in-house OUTAL RESEARCH STAFF, in-house OUTAL RESEARCH BUDGET, in-house SCHEDULED RESEARCH TIME, hours/week	

- 9 -

Other Relevant Parameters or Notable Features

RECENT IMPROVEMENTS OR MODIFICATIONS TO MACHINE

Published Articles Describing Machine

R. L. Martin, Proceedings 1971 Particle Accelerator Conference, Chicago, Illinois, "The Argonne ZGS Booster," p. 957.

NAME OF MACHINE ZGS Booster Synchrotron II	PERSON IN CHARGE	Ronald	l L. Mart	in
INSTITUTION Argonne National Laboratory	DATA SUPPLIED BY	James D. Simpson		
LOCATION Argonne, Illinois USA	DATE	Februa	ary 1974	
HISTORY AND STATUS Procurement begun CONSTRUCTION STARTED (date) February 1974 FIRST BEAM OBTAINED, OR GOAL (date) January 1976 TOTAL COST OF FACILITY FUNDED BY US AEC (AI) TOTAL ACCELERATOR STAFF (now) 8	ACCELERATOR PERFO ENERGY (GeV) RESOLUTION AE/E (%) REPET. RATE (pulse/se	RMANCE	Normal (or Goal) 0.5 60	Maximum Achieved
ANNUAL OPERATING BUDGET	PULSE WIDTH	nic (%)		
ACCELERATOR PARAMETERS	INTERNAL BEAM (part/p	ulse)	5x10 ¹²	
Physical Dimensions (Mean) RING DIAM. 13.7m; Tunnel sect. MAGNET m; Mag. Gap "DONUT'cm; Aperture cm "DONUT'cm; Aperture cm Injector System cm TYPE Linac (H ⁻ Ion) OUTPUT (max) 5 mA at 50 MeV BEAM EMITTANCE 2.5 mm-mrad INJECTION PERIOD 250 usec, or 400 turns INFLECTOR TYPE None. Strips H ⁻ to H ⁺ after Magnet System	(part/s CURRENT BEAM EMITTANCE (mm-mm SCHEDULED OPERATION ("ON BEAM"	ec) (mA) ad) hr/wk) 		ΔΕ/Ε (%)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	RESEARCH PROGRAM TOTAL EXPERIMENTAL AN BEAM LINES TO STATIONS SERVED AT SU	REA		m² Stations
POWER INPUT (MW) PEAK MEAN Acceleration System HARMONIC No. 1No. Cavities 2	BEAM SEPARATORS ON-LINE COMPUTERS WI BUBBLE CHAMBERS, in-	TH S	SPECTROMETERS_	Inputs
RF RANGE 2.2 to 5.3 MHz ORBIT FREQ.	TOTAL POWER INSTALLE No. USER GROUPS: in- TOTAL RESEARCH STAFF ANNUAL RESEARCH BUDG SCHEDULED RESEARCH T	D FOR RESE/ house , in-house. ET, in-house. IME, hours,	ARCHOutside outside seoutsid /week	e

Other Relevant Parameters or Notable Features

RECENT IMPROVEMENTS OR MODIFICATIONS TO MACHINE

Published Articles Describing Machine

Alternating Gradient Synch

п.	rrernarr	.ng ι	JIAUICHE	Synchrotron	n n	D	
NAME OF MACH	INE			PERSON IN CHARGE	<u> </u>	, <u>Rau</u>	
INSTITUTION_	Brookha	ven	National	LaboratoryATA SUPPLIED BY_	A. v	van Steenbergen	
LOCATION	Upton,	New	York	DATE	Janu	arv 28, 1974	

CONSTRUCTION STARTED (date)	<u> 1953 </u>
FIRST BEAM OBTAINED, OR GDAL (date)	July 29, 1960
TOTAL COST OF FACILITY	\$30.65 M
FUNDED BY	USA-AEC
TOTAL ACCELERATOR STAFE (now)	538
ANNUAL OPERATING BUDGET	\$17 M

ACCELERATOR PARAMETERS

Physical Dimensions (Mean)

RING DIAM 256.9 m; Tunnel sect.	<u>5.49</u>	<u>x 5.49</u>	_ m
MAGNET 0.84,0.99 m; Mag. Gap_	5.67	<u>× 31.75</u>	cm
"DONUT 7.9 x 17.4 cm; Aperture_	6.35	<u>× 13.33</u>	cm

Injector System

TYPE Alvarez	Linear	Accelerat	or
OUTPUT (max) 10)0 _{at}	200.3	
BEAM EMITTANCE	10	π	.mm-mrad
INJECTION PERIOD S	150 usec.	$_{\rm or} \leq 30$	turns
INFLECTOR TYPE	pulsed	magnetic	

Magnet System

FOCUSING TYPE AG	
No. MAG. UNITS 240 Length (ea) 2.28, 1.90, res	Pa_m
STRAIGHT SECT. <u>*</u> Total S.S. Length <u>270</u>	m
FOCUSING ORDER $(F/2)o(F/2)(D/2)o(D/2)$	
BETATRON OSC. FREQ. VII 8.75	
FIELD, AT INJ. 251 G, at max 13.1	_kG
RISE TIME 0.45sec; Flat-top time 1.0	sec
MAG. WEIGHT (tons) Fe 4000, Cu 400	
POWER INPUT (MW) PEAK 30 MEAN 2.4	

Acceleration S	ystem				
HARMONIC No.	12	No.	Cavities_	12	double_
RF RANGE	2.52		4.4	6	MHz
ORBIT FREQ.	0.21	0	0.3	80	
ENERGY GAIN	19	2			. <u> </u>
RADIATION LOS	s	-			keV/turn
RF POWER INPU	T (KW) PEAK.	1	000	_	

Other Relevant Parameters or Notable Features

 $*24 \times 3$ m; 72 × 1.5 m; 144 × 0.6 m

Published Articles Describing Machine

G.K. Green, E.D. Courant, "The Proton Synchrotron," Handbuck der Physik 44, 218-340 (1959).

ACCELERATOR PERFORMANCE

	Normal ∹(mr=Goarl→ =	Maximum Achieved	
ENERGY (GeV)	(33	
RESOLUTION AE/E (%)		0.1	
REPET. RATE (pulse/sec)		0.5	
PULSE WIDTH		1.2 sec flat	top
DUTY FACTOR, macroscopic (%)		50	•
INTERNAL BEAM (part/pulse)	6 10 ¹²	>9 1012	
(part/sec)	$2.5 10^{12}$	² 4.5 10 ¹²	
CURRENT (mA)			
BEAM EMITTANCE (mm-mrad)	0.8 TT x	3.0 π	
SCHEDULED OPERATION (br/wk)	(6d/)	7d)	
"ON BEAM" 100 % OF S	CHEDULED TIME	- 	
Some Typical External and Second	lary Deans		
PARTICLE FLUX	ENERGY	ΔĒ/Ę	
(part/sec)	(GeV)	([*])	
$\frac{\text{FED, FILLUIS 0 10}}{\text{OD, Determs (10^{12})}}$		0.2	
$\frac{3ED_{1}HUUS}{V^{+}V^{-}}$ $\frac{4}{10^{5}}$ $\frac{10}{10^{4}}$		<u> </u>	
		2	
<u>K,K 310°,10°</u>	<u> </u>	± 1.5	
$-\frac{\pi}{2}$ $-\frac{10^{\circ}}{10^{\circ}}$ $-\frac{10^{\circ}}{10^{\circ}}$	20	$-\frac{\pm 2}{1}$	
<u>p</u> <u>10</u> ⁻		<u> </u>	
$\frac{11}{8}$ $\frac{310}{10^6}$ $\frac{10}{10^6}$		···	
RESEARCH PROGRAM	3-20		
TOTAL EXPERIMENTAL AREA	15000		
BEAM LINES TO	10	Stations	
STATIONS SERVED AT SAME TIME	66		
BEAM SEPARATORS 12	SPECTROMETERS	6	
ON-LINE COMPUTERS WITH	2	Inputs	
BUBBLE CHAMBERS, in-house	Users '	0	
TOTAL POWER INSTALLED FOR RESEA	ARCH54		
No. USER GROUPS: in-house. 5	outside_6	<u>3 invol</u> ved	
TOTAL RESEARCH STAFF, in-house.	138_outside		
ANNUAL RESEARCH BUDGET, in-hous	<u>\$5.0</u>	M	
SCHEDULED RESEARCH TIME, hours	week_ 4_wee	<u>eks ≅ 5</u> 00 hrs.	

RECENT IMPROVEMENTS OR MODIFICATIONS TO MACHINE

50-MeV Linac injector replaced by 200-MeV Linac. New magnet system power supply and rf system for doubling repetition rate. New ring vacuum system. Magnet system modularized. New external beam branches, SEB system. Addition of third FEB system for v physics area.

NAME OF	MACHINE	B	<u>evatr</u>	<u>`on</u>		
INSTITU	TION LAWI	rence	Berk	eley	Labor	atory
LOCATIO	NUmiv	of C	alif.	Berl	celey.	Calif
COOKITO	·····	- 				

CONSTRUCTION STARTED (date) 1949
FIRST REAM OBTAINED, OR GOAL (date) Feb. 1954
TOTAL COST OF FACILITY \$31 M
TOTAL COST OF PACIEITY
FUNDED BYUSAFC.
TOTAL ACCELERATOR STAFF (now)
ANNUAL OPERATING BUDGET 25.4 M

ACCELERATOR PARAMETERS

Physical Dimensions	(Mean)				
RING DIAM. 38.23m;	Tunnel sec	:t			m
MAGNET6. 1x 2.75 m	; Mag. Gap.	_152	×	_30_	_cm
"DONUT : x c	m; Aperture	112	×	25	_ cm

Injector System

	injector system
	TYPE Cockroft-Walton and Linac
* *	OUTPUT (max) 25 (*) (nA)at 19.2(4.8/Amu) MeV
	BEAM EMITTANCE 25 mm-mrad
	INJECTION PERIOD <u>600</u> usec, or <u>300</u> turns
	INFLECTOR TYPE 3 Magnet Achromatic + E.S
	Magnet System FOCUSING TYPE Weak Field index n=0.67
	No. MAG. UNITS <u>144</u> Length (ea) 0.66 m
	STRAIGHT SECT. 4 Total S.S. Length 6.1m
	FOCUSING ORDER
	BETATRON OSC. FREQ. V. 0.647 V. 0.922
	FIELD, AT INJ. 417 G, at max 15,53 kG
	RISE TIME <u>1.7</u> sec; Flat-top time $0.3 \rightarrow 2.0$ sec
	MAG, WEIGHT (tons) Fe9700 . Cu347
	POWER INPUT (MW) PEAK 121 MEAN 6.0
	A
	HARMONIC No. 1 No. Cavities 1 (2 gaps)
	DE DANCE 0.24 2.50 MHZ
	$\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{10000000000000000000000000000000000$
	$\frac{1}{1} = \frac{1}{1} = \frac{1}$
	ENERGY GAIN to S [U. / S]
	RF POWER INPUT (KW) PEAK <u>12 UR</u>
	Other Relevant Parameters or Notable Features

** Four injector systems. See appropriate one for more details.

Published Articles Describing Machine

- 1)F.G.H. Lothrop, D.M.Evans, Digital Control of Bevatron Accel. Cycle, Vol. NS-18 Number 3, June 1971.
- 2)D.M.Evans, et al, Bevatron Guide Field Control, Vol. NS-18 Number 3, June 1971.
- 3)R.A.Byrns, J.T.Tanabe, The Bevatron Cryopump, Vol. NS-20 Number 3, June 1973.
- 4)K.C.Crebbin et al, First Phase of Heavy Ion Acceleration at the Bevatron, Vol. NS-20 Number 3, June 1973.

PERSON IN CHARGE E	<u>dward J.</u>	Lofgren	
DATA SUPPLIED BY K	enneth C	. Crebbin	
DATE February	, 1974	-	

ACCELERATOR PERFORMANCE

	Normal	Maximum	
-	(or Goal)	Achieved	
ENERGY (GeV)	<u>4-0,1</u>	<u> 0.2 12</u> /	5/Amu)
RESOLUTION DE/E (%)	0.02	<u>~0.03</u>	
REPET. RATE (pulse/sec)	.0.2	0.29_	
PULSE WIDTH	1.5_sec	at 5.4 0	GeV
DUTY FACTOR, macroscopic (%)	_25	<u>,</u>	
INTERNAL BEAM (part/pulse) 4:	$x10^{12}$	6-0x10'	o
(part/sec) 0.	<u>.75x10</u> **	1.5×10^{-1}	2
CURRENT (mA) 1	<u>.9x10³</u>	-2.4×10^3	
BEAM EMITTANCE (mm-mrad)	<u>∿ 330 r</u> a	dial	
SCHEDULED OPERATION (hr/wk)	158		
"ON BEAM" X OF SC	HEDULED TIME		
Some Typical External and Secondar	y Beams		
PARTICLE * FLUX BEAM AR	EA ENERGY	ΔE/E	
(part/sec) (cm ²)	(GeV)	(\$)	
P 4.5x10 ¹¹ 0.1	3 6.2	$\sqrt{0.03}$	
² H_~3.8x10 ¹ ⁰ Minin	num <u>5.</u> 5	<u>~_02</u>	
4 He $\sim 3.8 \times 10^{9}$ at		$1 \sqrt{02}$	
¹² C ~1.9x10 ⁷ Peak		$1 \sqrt{-02}$	
$14N_{01.0x10}$ Field	1	<u>~02</u>	
160 v3.8x106	44.0	$1 \sim .02$	
²⁰ Ne 0,1,9x10 ⁴	55.0	2 ~ . 02	
These values for the RESEARCH PROGRAM	e 19.2(4	.8/Amu)	injector.
TOTAL EXPERIMENTAL AREA $\sim 70^{\circ}$	00	m²	
BEAM LINES TO 5 Prim (6 se	<u>c from 2</u>	<u>Prim</u>) Sta	tions
STATIONS SERVED AT SAME TIME 3	prim +	6_sec.	
BEAM SEPARATORS 11 SI	PECTROMETERS_		
ON-LINE COMPUTERS <u>3-PDP</u>	<u>-5;2-PDF</u>	2 <u>-8;1</u> -PDF	-9;2-PDP-11
BUBBLE CHAMBERS, in-house	Users '	0	
TOTAL POWER INSTALLED FOR RESEAR	ксн <u>21</u>	MW	
No. USER GROUPS: in-house 10	outside	22	
TOTAL RESEARCH STAFF, in-house_	outsid	ie	
ANNUAL RESEARCH BUDGET, in-hous	e		

SCHEDULED RESEARCH TIME, hours/week $_ \sim 142$

RECENT IMPROVEMENTS OR MODIFICATIONS TO MACHINE

Installation of cryogenic vacuum pumping reduced base pressure to $\sim 3 \times 10^{-7}$ Torr from 2×10^{-6} Torr and reduced pumpdown time required to reach full beam intensity.

With the completion of the Bevalac project, there will be three different injectors available for the Bevatron.

- 1	3
NAME OF MACHINE 200/500 GeV Synchrotron INSTITUTION National Accelerator Lab. LOCATION Batavia, Illinois U.S.A.	PERSON IN CHARGE P. J. Reardon DATA SUPPLIED BY F. T. Cole/H. L. Allen DATE March 1, 1974
HISTORY AND STATUS	ACCELERATOR PERFORMANCE
CONSTRUCTION STARTED (date) 1969 FIRST BEAM OBTAINED, OR GOAL (date) $\frac{March 1, 1972}{5230M}$ TOTAL COST OF FACILITY	Normal Maximum (or Goal) Achieved ENERGY (GeV) <u>300</u> 400
FUNDED BYUSAEC TOTAL ACCELERATOR STAFF (now) 275 ANNUAL OPERATING BUDGET	RESOLUTION AE/E (1) REPET. RATE (pulse/sec) $\frac{1/6}{1 \times 10^{-2}}$ $\frac{1/6}{1 \times 10^{-2}}$ $\frac{1/2}{4}$ at 200 GeV PULSE WIDTH $\frac{1}{5}$ $\frac{1}{6}$ $\frac{1}{2}$
ACCELERATOR PARAMETERS	INTERNAL BEAM (part/pulse) 5×10^{12} 7×10^{12} at 300 GeV
Physical Dimensions (Mean) RING DIAM. 2000 m; Junnel sect. 3.05 2.44 m MAGNET 0.64×0.33 m; Mag. Gap 13 $\times 5.2$ cm "DONUT $12.7.5.2$ cm; Aperture 12.5 $\times 5$ cm	$\begin{array}{c} (part/sec) & \underline{1012} & \underline{1012} \\ current (mA) & \underline{0.8} & \underline{1.0} \\ \end{array}$ BEAM EMITIANCE (mm-mrad) & \underline{0.1\pi} & \underline{0.1\pi} \\ SCHEDULED OPERATION (hr/wk) & \underline{140} (oyerall ayerage) \\ \hline non pranu & 60 \\ \end{array}
TYPE8-GeV Booster	Some Tunical External and Secondary Reams
OUTPUT (max) 350 at 8-GeV	PARTICLE FLUX BEAM AREA ENERGY $\Delta E/E$
BEAM EMITTANCE $\frac{3\pi}{1.6 \text{ µsec pulses in } 0.8}$ INJECTION PERIOD 1.6 µsec, or pulses in 0.8 sec INFLECTOR TYPE Electromagnetic	$ \begin{array}{c} \sum_{m,K} (pant/sec) & (cm^2) & (GeV) & (X) \\ \hline \pi,K & 10 & @ \\ \hline \pi,K & 10^7 & 100 & up to 200 & 0.14 - 1 & 0 \\ \end{array} $
Magnet System	$\frac{n}{10^8/cm^2}$ up to 300
FOCUSING TYPE AG field index, $n = sep fn$	$-\frac{K^{\circ}}{100/cm^2}$ up to 300
No. MAG. UNITS 1014 Length (ea) 6.1 m	$\frac{10^{-7}}{10^{-7}}$ up to 200 5
FOCUSING ORDERQ_OBBBBQ OBBBB(FOD)	p <u>protons</u> 100 - 400
BETATRON OSC. FREQ. V. 19.25 V. 19.25 (900-	* Approx. flux per 10 ¹³ interacting protons
FIELD, AT INJ. <u>396</u> , at max <u>13.5</u> kGCE	V) TOTAL EXPERIMENTAL AREA 10,500
RISE TIME <u>4.4</u> sec; Flat-top time <u>1</u> (SecGE)	BEAM LINES TO 6 Primary Targets Plus 2 Internal Targets
POWER INPUT (MW) PEAK 60 MEAN 36	STATIONS SERVED AT SAME TIME
Acceleration System	BEAM SEPARATORS V SPECTROMETERS 4
HARMONIC No. 1113 No. Cavities 15	BUBBLE CHAMBERS, in-house 2 Users

RECENT IMPROVEMENTS OR MODIFICATIONS TO MACHINE

No. USER GROUPS: in-house 15 outside 100. TOTAL RESEARCH STAFF, in-house 60 outside 1000

35

MW

TOTAL POWER INSTALLED FOR RESEARCH____

ANNUAL RESEARCH BUDGET, in-house \$5M

SCHEDULED RESEARCH TIME, hours/week 120

Published Articles Describing Machine

Other Relevant Parameters or Notable Features

1. Operating results from NAL, D. E. Young, National Accelerator Conference, IEEE Transactions NS-203, p. 191, (1973).

NAME OF MACHINE BOOST	er Synchrotron	PERSON IN CHARGE_	<u>P. J.</u>	<u>Reardon</u>	
INSTITUTION National	Accelerator Lab.	DATA SUPPLIED BY.	E.L.	Hubbard	
Incation Batavia.	Illinois, U.S.A.	DATE	March	1, 1974	

CONSTRUCTION STARTED (date)	1969
FIRST REAM ORTAINED. OR SOAL	(date) 1971
TOTAL COST OF FACILITY \$17	,000,000
FUNDED BY	USAEC
TOTAL ACCELERATOR STAFF (now).	(Part of NAL
ANNUAL OPERATING BUDGET ACC	elerator Div.)

ACCELERATOR PARAMETERS

Physical Dimensions (Mean)	3.0	2.4 -
MAGNET 46×33 m; Mag. Gap.	<u>15.2</u> ×	m
"DONUT NONE cm: Aperture	<u>16.5</u> ×	<u>4.2</u> cm

Injector System

TYPE	Li	near	AC	cele	rato	r
OUTPUT	(max)	80 r	nA an	20	3 Me	v
BEAM EN	ITTANCE.		10π			mm-mrac
INJECT	ION PERIO		µsec	, or	3	turns
INFLEC	TOR TYPE.	W_	ire	Sept	.um	

Magnet System

FORUSING TYPE Alternating Gradien	£_
No MAG LINTTS 96 Length (ea) 3.04	m
STRAIGHT SECT. 24 Total S.S. Length 144	m
FOCUSING ORDER FOFDOOD	
BETATRON DSC. FRED. V. 6.72 6.78	
FIELD, AT INJ. 490 ^H , G. at max6.7	_ kG
RISE TIME . 033 sec: Flat-top time none	sec
MAG WEIGHT (tons) Fe 250	
POWER INPUT (MW) PEAK 1.8 MEAN 1.3	

Acceleration System	1			
HARMONIC No. 8	4No.	Cavities_1	6	
RE RANGE 30.	3	52.	8	MHz
OPRIT FRED	0.36	0.63	k Hz	2
ENERGY GAIN	600	keV/t	urn	max
			ke	V/turn
DE DOWER INDUT /VI	IN DEAK 8	80		
AL LANCE THEAT INCOME		and the second se		

Other Relevant Parameters or Notable Features

ACCELERATOR PERFORMANCE

	Normal (or Goal)	Maximum Achieved
ENERGY (GeV)	8	8
RESOLUTION AE/E (%)	0.1	<u></u>
REPET. RATE (pulse/sec)		<u>15</u>
PULSE WIDTH (μsec)	1.6	1.6
DUTY FACTOR, macroscopic (%)		
INTERNAL BEAM (part/pulse) (4	$\frac{x}{x} \frac{10^{-2}}{10^{-2}}$	$\frac{1}{1} \times \frac{1}{2}0^{+}3$
part/main-ring (5	<u>X 1013</u>	
CURRENT (mA)	<u>380</u>	100
BEAM EMITTANCE (mm-mrad)	<u>6.5</u> <i>π</i>	
SCHEDULED OPERATION (hr/wk)	<u> 164 </u>	<u> 164 </u>
"ON BEAM"_95* OF S	CHEDULED TIME	
Some Typical External and Second	ry Beams	
PARTICIE FLUX BEAM A	REA ENERGY	ΔE/E
(cm ²) (GeV)	(%)
$p 1 \times 10^{13} 0.$	<u>3 8</u>	
(Particles/mair	-ring_g	vcle
main-ring cycle	<u>timē</u> 1	varies
from 3 to 12 sec	<u></u>	
		• <u> </u>
RESEARCH PROGRAM		
TOTAL EXPERIMENTAL AREA	none	m²
BEAM LINES TO		Stations
STATIONS SERVED AT SAME TIME	<u></u>	
BEAM SEPARATORS	SPECTROMETERS_	
ON-LINE COMPUTERS WITH		Inputs
BUBBLE CHAMBERS, in-house	Users '	
TOTAL POWER INSTALLED FOR RESE	ARCH	MW
No. USER GROUPS: in-house	outside	
TOTAL RESEARCH STAFF, in-house	outsid	e
ANNUAL RESEARCH BUDGET, in-hou	se	
SCHEDULED RESEARCH TIME, hours	/week	

RECENT IMPROVEMENTS OR MODIFICATIONS TO MACHINE

Published Articles Describing Machine

- Booster Synchrotron, E. L. Hubbard, ed., 1. National Accelerator Lab. Report TM-405 (1973)
- The NAL Booster Synchrotron Magnet Power Supply Servo, 2. A. R. Donaldson and R. A. Winje, National Accelerator Conference, IEEE Transactions NS-20, 3, p. 409, (1973)
- Synchronous Transfer of Beam from the NAL Fast Cycling Booster 3. Synchrotron to the NAL Main Ring System, J. A. Dinkel, J. E. Griffin, E. L. Hubbard, R. E. Peters, and L. C. Teng. National Accelerator Conference, IEEE Transactions NS-20, 3, p. 409, (1973)

76-GeV IHEP

- 15 -

MAME OF MACHINE_	Proton S	ynchrot	ron	PERSO	N IN CHARGE_	Yu.M.	Ado	
INSTITUTION Ins	<u>stitute o</u>	f High	Energy	Ph .DATA	SUPPLIED BY_	E.F.Tr	ojanov	
OCATION Ser	pukhov.	USSR		DATE_	Februa	ary, 19	74	

HISTORY AND STATUS

ACCELERATOR PERFORMANCE

CONSTRUCTION STARTED (date) 1962	
FIRST BEAM OBTAINED, OR GOAL (date) October, 19	16
TOTAL COST OF FACILITY	
FUNDED BY	
TOTAL ACCELERATOR STAFF (now)	
ANNUAL OPERATING BUDGET	

ACCELERATOR PARAMETERS

Physical Dimensions (Mean)	~		~	
RING DIAM. 472 m; Tunnel sect.	6	*	8	M
MAGNETm; Mag. Gap		×		cm
"DONUT 195x11.5m; Aperture	_17	_×_1	1.5	cm

Injector System

TYPE		Lin	ac					
OUTPUT	(max).	120	mA (at.	10	0	Mev	
BEAM EN	TTAN		0π	(90%	5) (nor	m)	.mm-mrad
INJECT	ION PER		36	.usec.	or	7	5	turns
INFLEC1	OR TYP	РЕ	ele	atro	sta	tic		

Magnet System

Magnet System
FOCUSING TYPE AG Field Index n=443
No. MAG. UNITS 120 Length (ea)72x104+48x93m
STRAIGHT SECT. <u>120</u> Total S.S. Length <u>287.5</u> m
FOCUSING ORDER FODO
BETATRON OSC. FREQ. VH 9.80 VV 9.85
FIELD, AT INJ. <u>76</u> G, at max <u>13</u> kG
RISE TIME <u>2.5</u> sec; Flat-top time <u>2</u> sec
MAG. WEIGHT (tons) Fe <u>20,000</u> , &1 _700
POWER INPUT (MW) PEAK <u>80</u> MEAN <u>15</u>
_

Acceleration S	iystem 30	No. Cavi	ities)
RF RANGE	2.6	to	6.1	MHz
ORBIT FREQ.	0.	<u>086 t</u> i	0,202	MHz
ENERGY GAIN_	18	0 kev,	/turn	-
RADIATION LO	ss		···· · · · · · · · · · · · · · · · · ·	keV/turn
RE POWER INP	UT (KW) PE	ak 300	mean	80

Other Relevant Parameters or Notable Features

There are 12 superperiods and in each there are 2 long straight operating on 3 directions. sections, each 4.86m long.

Published Articles Describing Machine

67		Normal (an Casl)	Maximum	
07		(or Goal) クロ	machieved 776	
		0.03	70	
		1/8		
	REPET. RATE (pulse/sec)	1/0		
	PULSE WIDTH		<u>_2.0sec</u>	
	DUTY FACTOR, macroscopic (%)	<u>25</u> 1		10
	INTERNAL BEAM (part/pulse)	2.2x10	<u> 2.7x</u>	1,01'-
	(part/sec)	<u>2.7x10</u>	<u>3.4x</u> 1	o.,
	CURRENT (mA) .			
	BEAM EMITTANCE (mm-mrad)	11		
	SCHEDULED OPERATION (hr/wk)	<u>O(aver</u> a	ge for	year)
	"ON BEAM"88 # OF SCH	EDULED TIME		-
	Some Typical External and Secondary	Reams		
		A ENEDGY	AE /E	
	(namt / 2011 - Se / cm²)	(CoV)	(4)	
	π^{-} 10 - 10 4	30.65	(*)	
	$\frac{1}{10^{\circ}}$			
	$\frac{1}{37}$ 10^{-1}	- 		
	10 106 /			
			0.25	
1	P 5-10	$-\frac{17-40}{10.25}$		
	$\frac{1}{106}$ $\frac{1}{100}$	$-\frac{10-22}{10}$		
	<u> </u>	$_20=40$		
	RESEARCH PROGRAM			
	TOTAL EXPERIMENTAL AREA 23	3.300	m ²	
	BEAM LINES TO 13		Stations	
	STATIONS SERVED AT SAME TIME	3-5		
	BEAM SEPARATORS 2 SPE	CTROMETERS	5	
		5	Innuts	
	BUBBLE CHAMBERS, in-bouse	lisers ¹	2	
	TATAL POWER INSTALLED FOR RESEARC	-w 30		
	No USER GROUPS: in-house 6	nutside	6	
	TOTAL RESEARCH STAFE in-house	nuteida		
	ANNIAL DESCARCH STATT, IN-HOUSE			
	ANNOAL REJEARCH DUDGET, IN-HOUSE,			

Norma 1

Maximum

RECENT IMPROVEMENTS OR MODIFICATIONS TO MACHINE

SCHEDULED RESEARCH TIME, hours/week_____

Fast beam extraction system is

There is neutral beam with intensity $10^6 - 10^7$ ppp.

NAME OF MACHINE.	ITEP P.S.	
INSTITUTION.	ITEP	
	Moscow, USSR	

Goldin L PERSON IN CHARGE. Goldin DATA SUPPLIED BY. February DATE.

HISTORY AND STATIC	£.

CONSTRUCTION STARTED (date) 1956	•
FIRST BEAM OBTAINED, OR GOAL (date)	
TOTAL COST OF FACILITY	ENERGY (GeV)
FUNDED BY	RESOLUTION DE/E
TOTAL ACCELERATOR STAFF (now)	REPET. RATE (pu
ANNUAL OPERATING BUDGET	PULSE WIDTH
	DUTY FACTOR, ma
	INIERNAL BEAM
Physical Dimensions (Mean)	(
RING DIAM. OVm; Tunnel sectm	
$MAGNET _ \underline{\leftarrow} \times \underline{\leftarrow} m; \ Mag.^{Gap} _ \underline{-11} \times \underline{R}$	BEAM EMITTANCE
"DONUT <u>' x</u> cm; Aperture <u>1</u> ' x C cm	SCHEDULED OPER
Injector System	"ON BEAM"
TYPE Linear Accelerator	Some Typical Ex
OUTPUT (max) 200mA at 24.6 MeV	PARTICLE
BEAM EMITTANCE 60 mm-mrad	(Pi
INJECTION PERIOD 4 usec, or 1 turns	·
INFLECTOR TYPE Blectrostatic	
	·
Magnet System Strong	
FOCUSING TYPE 96	
No. MAG. UNITSLength (ed,	·····
RODFODFDFDFDFD	
FOCUSING ORDER 9393	
BETATRON OSC. FREQ. VH 12	RESEARCH PRO
FIELD, AT INJ. $c_1 \circ c_2$, at max $c_2 \circ c_3$	TOTAL EXPERIME
RISE TIME <u>vev</u> sec; Flat-top time <u>vev</u> sec	BEAM LINES TO_
MAG. WEIGHT (tons) Fe, Cu 3 - 5 RAIMAN	STATIONS SERVE
POWER INPUT (MW) PEAK MEAN MEAN	BEAM SEPARATOR

NERGY (GeV ESOLUTION EPET. RATE ULSE WIDTH UTY FACTOR NTERNAL BE) AE/E (%) (pulse/sec) , macroscopic AM (part/puls (part/sec) CURRENT (Nc (or) 	Goal) 10	Maximum Achieved 10.4
EAM EMITTA	NCE (mm-mrad))		
CHEDULED 0	PERATION (hr/	/wk)		
'ON BEAM"		_% OF SCHED	ULED TIME	
iome Typica	External and	Secondary B	eams	
PARTICLE	FLUX	BEAM AREA	ENERGY	ΔE/E
	(part/sec)	(cm²)	(Ge¥)	(%)
				. <u> </u>
		<u> </u>		<u> </u>
			<u></u>	•
<u></u>				•
		. <u></u>		
<u> </u>	- <u></u>			
RESEARCH	PROGRAM	-		
TOTAL EXPER	IMENTAL AREA	70	$\overline{000}$	m²
BEAM LINES	то			Stations
STATIONS SE	RVED AT SAME	TIME		
BEAM SEPAR	TORS	SPECT	ROMETERS_	
ON-LINE COM	PUTERS WITH_			Inputs
BUBBLE CHAP	MBERS, in-hou	se	isers '	
TOTAL FOWER	R INSTALLED F	OR RESEARCH.		M
No INCED CI	ONDS Inchou		utside	

.09 RF RANGE ... 0.2 ORBIT FREQ.

4

Acceleration System

HARMONIC No.

15 KeV ENERGY GAIN_ keV/turn RADIATION LOSS_ 12-KW/cavity RF POWER INPUT (kw) PEAK_

Cavities

Other Relevant Parameters or Notable Features

After reconstruction X

RECENT IMPROVEMENTS OR MODIFICATIONS TO MACHINE

TOTAL RESEARCH STAFF, in-house_

ANNUAL RESEARCH BUDGET, in-house

SCHEDULED RESEARCH TIME, hours/week_

_outside

The accelerator is in the course XX of ajustement after reconstruction.

5

MH7

Published Articles Describing Machine

INSTITUTION DUBDE. for Nucl. DATA SUPPLIED BY I.N. Semenyushkin Ocation Dubbe. USSR DATE July 1971	HAME OF MACHINE 10 GeV proton Sync	hrophazotrop	A.M.Baldin
OCATION DUBDA. USSR DATE July 1971	INSTITUTION DOINT Inst.for Nucl.	DATA SUPPLIED BY	I.N.Semenyushkin
	OCATION DUDDA, USSR	DATE	<u>July 1971</u>

- 17 -

CONSTRUCTION STARTED (date)	1952
FIRST BEAM OBTAINED, OR GOAL (date)	1901
TOTAL COST OF FACILITY	<u></u>
FUNDED BY	
TOTAL ACCELERATOR STAFF (now)	
ANNUAL OPERATING BUDGET	

ACCELERATOR PARAMETERS

HISTORY AND STATUS

Physical Dimensions	(Mean)		
RING DIAM. 72 m;	Tunnel sect.		m
MAGNET 7.5.5.3	, Mag. Gap	<u>40 ×</u>	<u>200</u>
"DONUT ci	n; Aperture	<u>35</u> ×_	<u>120</u> cm

INJECTOR TYPE_____Linac_____ TYPE____Linac_____ OUTPUT (max)_I_O____at___9.4____ BEAM EMITTANCE_II_IO_____mm-mrad INJECTION PERIOD.350_usec, or__50____turns INFLECTOR TYPE_____Electrostatic_____

Magnet System

rugnet system
FOCUSING TYPE weak field Index, n=0.6
No. MAG. UNITS48_ Length (ea)3_7m
STRAIGHT SECT. 4 Total S.S. Length 32 m
FOCUSING ORDER
BETATRON OSC. FREQ. VH 0.626 V 0.892
FIELD, AT INJ. 150_G, at max 12.0 kG
RISE TIME 3.0 sec; Flat-top time 0.5 sec
MAG. WEIGHT (tons) Fe 36000, Cu 2.700
POWER INPUT (MW) PEAK <u>140</u> MEAN <u>13</u>
Acceleration System
I

HAKMUNIL NO		_NO. Lavi	ties	
RF RANGE	0.2	to	1.45	MHz
ORBIT FRED.	0.2	to	I.45	
ENERGY GAIN	2.4			
RADIATION LOSS				_ _keV/turn
RE POWER INPUT	(kW) PEAK	500		150
	,, ·			

Other Relevant Parameters or Notable Features

Published Articles Describing Machine

ACCELERATOR PERFORMANCE

ENERGY (GeV) RESOLUTION $\Delta E/E$ (%) REPET. RATE (pulse/sec) PULSE WIDTH DUTY FACTOR, macroscopic (%) INTERNAL BEAM (part/pulse) XI (part/sec) XI CURRENT (mA) BEAM EMITTANCE (mm-mrad) SCHEDULED OPERATION (hr/wk) "ON BEAM" % OF S	Normal Maximum (or Goal) Achieved IO $IO0.08$ $0.110.50.50.50.510$ $120.515\Pi (v) 80\Pi (H12015\Pi (v) 80\Pi (H$	[)
Some Typical External and Second	arv Beams	
PARTICLE FLUX BEAM /	AREA ENERGY DE/E	
TT (part/sec) (cm	²) (GeV) (%)	
$\frac{11}{11}$ ~ $\frac{10^{-}}{10^{-}}$ _ 5	<u>2-7</u> <u>+</u> I	
$\underline{\underline{\mathbb{H}}}$ $\underline{\underline{\mathbb{H}}}$ $\underline{\underline{\mathbb{H}}}$ $\underline{\underline{\mathbb{H}}}$ $\underline{\underline{\mathbb{H}}}$ $\underline{\underline{\mathbb{H}}}$ $\underline{\underline{\mathbb{H}}}$	<u> </u>	
<u>Sep. K,p</u>	-0.6-5+1	
$\frac{6}{n}$		
······································		
	<u> </u>	
RESEARCH PROGRAM	20	
TOTAL EXPERIMENTAL AREA 27	<u> </u>	
BEAM LINES TO	Stations	
STATIONS SERVED AT SAME TIME	<u> </u>	
BEAM SEPARATORS	SPECTROMETERS	
ON-LINE COMPUTERS WITH	Inputs	
BUBBLE CHAMBERS, in-house	Userst 1	
IUTAL PUWER INSTALLED FOR RESER	autoida	
NO. USER GROUPS: IN-HOUSE	outside	
ANNUAL RESEARCH BUDGET, in-hou	se	
SCHEDULED RESEARCH TIME, hours	/week	
RECENT IMPROVEMENTS OR MC	DIFICATIONS TO MACHINE	

Exceleration of deuterons up to IO GeV I=IO^{IO} pulse, He²₄ up to 20 BeV I=IO⁷ \swarrow/p Slowly extraction of beem from synchrophazotron (τ =400 msec, efficiency 94%)

K.H. Althoff, G. Knop,

NAME OF MACHINE Bonn 2.5 Gev Synchrotron PERSON IN CHARGE G. Nöldeke, W. Paul INSTITUTION Physikal. Institut d. Univ. DATA SUPPLIED BY D. Husmann LOCATION D-53 Bonn, Nussallee 12 DATE.

HISTORY AND STATUS

ACCELERATOR PERFORMANCE

22.1.1974

CONSTRUCTION STARTED (date) <u>April 1965</u> FIRST BEAM OBTAINED, OR GOAL (date) <u>March 1967</u> TOTAL COST OF FACILITY <u>DM 12.3 x 10</u> Federal <u>Hep. of Germany and</u> FUNDED BS tate of Nordrhein Westfalen TOTAL ACCELERATOR STAFF (now) <u>19</u> ANNUAL OPERATING BUDGET <u>1.8 x 10</u> ACCELERATOR PARAMETERS Physical Dimensions (Mean) RING DIAM22.15m; Tunnel sect. <u>2.2 x 4.1 m</u> MAGNET <u>695.74 m</u> ; Mag. Gap <u>6 x 20 cm</u> "DONUT <u>4.2x 12 em</u> Aperture <u>4 y 0 cm</u> Injector System TYPE Linac	Normal (or Goal) Maximum Achieved ENERGY (GeV) 2.3 2.5 RESOLUTION ΔΕ/Ε (\$) 0.5 REPET. RATE (pulse/sec) 50 PULSE WIDTH Max . I mae c DUTY FACTOR, macroscopic (\$) Max . 1 mae c INTERNAL BEAM (part/pulse) 4 x 100 12 (part/sec) 2 x 10 12 CURRENT (mA) 0.32 µA BEAM EMITTANCE (mm-mrad) 1 150 "ON BEAM" 85 \$ of scheduled Time Some Typical External and Secondary Beams 50 10
OUTPUT (max) 250 at 25 BEAM EMITTANCE 3 mm-mrad INJECTION PERIOD 1 usec, or 5 turns INFLECTOR TYPE septum magnet	PARTICLE FLUX BEAN AREA ENERGY $\Delta E/E$ (part/sec) (cm ²) (GeV) (X) <u>e 1012 0.1 5 - 2.3 5</u> <u>y 5 x 10¹¹ eff. qu. at 2.1 GeV</u>
Hagnet System+23.26FOCUSING TYPEAG-22.26NO. MAG. UNITS12 Length (ea)4.005mSTRAIGHT SECT.12 Total S.S. Length21.48FOCUSING ORDEROFDOBETATRON OSC. FREQ. v_H 3.4FIELD, AT INJ.110G, at max11KGRISE TIME8.8sec; Flat-top timeSecMAG. WEIGHT (tons) Fe133Cu10POWER INPUT (MW) PEAK80MEANAcceleration SystemHARMONIC NO.116NO. Cavities1ORBIT FREQ.499.67MHzORBIT FREQ.499.67MHzORBIT FREQ.4.3074ENERGY GAIN330keV/turnRF POWER INPUT (kW) PEAK80mean40	RESEARCH PROGRAM TOTAL EXPERIMENTAL AREA 1100 BEAM LINES TO 6 STATIONS SERVED AT SAME TIME 2 BEAM LINES TO 6 STATIONS SERVED AT SAME TIME 2 BEAM SEPARATORS SPECTROMETERS BON-LINE COMPUTERS SPECTROMETERS ON-LINE COMPUTERS SPECTROMETERS ON-LINE COMPUTERS SPECTROMETERS ON-LINE COMPUTERS SPECTROMETERS TOTAL POWER INSTALLED FOR RESEARCH 1.2 MN NO. USER GROUPS: in-house Outside TOTAL RESEARCH STAFF, in-house 50 outside ANNUAL RESEARCH BUDGET, in-house 2.5 10 ⁶ SCHEDULED RESEARCH TIME, hours/week 150 RECENT IMPROVEMENTS OR MODIFICATIONS TO MACHINE Eiection of electrons
	Ejection of electrons up to 2.3 GeV

Published Articles Describing Machine

K.H. Althoff et al. : The 2.5 GeV Electron Synchrotron of the University of Bonn, Nuclear Instr. a. Meth. 61 (1968), 1 - 30

On line computer with CAMAC interface

- 19 -

NAME OF MACHINE ____ DESY

INSTITUTION_Deutsches	Elektronen-Synchrotron
LOCATION_ Hamburg, Ge	ermany

HISTORY AND STATUS

CONSTRUCTION STARTED (date)_	1959	
FIRST BEAM OBTAINED, OR GOAL	(date) February	1964
TOTAL COST OF FACILITY 110	MDM (orig.const	(r.costs)
FUNDED BY Federal Govern	ment, City of H	lamburg
TOTAL ACCELERATOR STAFF (now)	80	
ANNUAL OPERATING BUDGET_ 6 M	DM	

ACCELERATOR PARAMETERS

Physical Dimensions (Mean)
RING DIAM. 100.84m; Tunnel sect. 3.7 x 8.8
MAGNET 0.77,0.69 m; Mag. Gap 5.6(8:8) 14.4 (9.0)
"DONUT : x cm; Aperture 3.8(7.0) 120(10.0) cm
Injector System
TYPE Electron/rositron Linacs
OUTPUT (max) 200 mA(e) at 300 - 500 MeV
BEAM EMITTANCE 2 m
INJECTION PERIODµsec, orturns
INFLECTOR TYPE septum + fast kicker magnet
Magnet System Field Index n 70.16 (D)
No. MAG. UNITS 48 Length (ea) 4.15
STRAIGHT SECT. 48 Total S.S. Length 117.6 m
FOCUSING ORDERFODO
BETATRON OSC. FREQ. VH 6.29 Vy 6.23
FIELD, AT INJ. 315(42) G, at max 7.9 kG
RISE TIME 9x10 sec; Flat-top timemax. 3.1 x10 sec
MAG. WEIGHT (tons) Fe, Cu77
POWER INPUT (MW) PEAK MEAN 1.7
Acceleration System HARMONIC No. 528 No. Cavities 16

RF RANGE	499.666	to 499.645	MHz
ORBIT FREQ.	0.9463		
ENERGY GAIN_	max. 1250	keV/turn	
RADIATION LO	ss <u>max.</u> 88	30	keV/turn
RF POWER INP	UT (KW) PEAK	1000 mean	700

Other Relevant Parameters or Notable Features

*Positron Data: 1.6 mA $\left(\left|\frac{\Delta E}{E}\right| \le \frac{1}{2}Z\right)$ at 380 MeV

**The old 40 MeV-Electron Linac (140 mA max.) is still in use

Published Articles Describing Machine

Die Atomwirtschaft, July 1964 Proc. 1973 US Particle Accelerator Conference, San Francisco, (Improvements) DESY Annus Reports

PERSO	N IN CHARGE.	н.	Schopper	
DATA	SUPPLIED BY	н.	Kumpfert	
DATE.	January	1974	•	

ACCELERATOR PERFORMANCE

		(Normal or Goal)	Maximum Achieved
ENERGY (GeV)	_	7.4	7.5
RESOLUTION	∆Ē/E (\$)		0.25	+ 0.25
REPET. RATE	(pulse/sec)	-	50	50
PULSE WIDTH			3.1	3.1
DUTY FACTOR	. macroscopi	c (X)	15.4	15.4
INTERNAL BE	AM (part/pu)	- (=) _ se) _	4x10 ¹¹	5x1011
	(part/sec) _	2×10^{13}	2.5x10 ¹³
average	CURRENT (mA) _	64	80
BEAM EMITTA	NCE (mm-mrad) _		
SCHEDULED O	PERATION (hr,	/wk) _1	.68	
"ON BEAM"	90 - 95	_S OF SCH	EDULED TIME	
Some Typica	External and	Secondary	Beams	
PARTICLE	FLUX	BEAM ARE	A ENERGY	ΔE/E
	(part/sec)	(cm²)	(Ge∀)	(%)
<u>2 x e</u>	5×10^{12}		1-7.25	± 0.25
····	$\frac{\varepsilon_2 \approx 0.1 \pi x_1}{z}$	nmxmrad		
or	<u>ε</u> ,≃0.5πX	mmxm	rad	
	50 % <1	n< 85 %		
2 x e ⁺	1011		1-7.25	± 0.25
<u>3 × γ</u>				
<u> 3 x conv</u>	verted γ	(test be	ams)	
2 x 5 v n c	hrotron	Radiatio	n	

RESEARCH PROGRAM

TOTAL EXPERIMENTAL AREA 6400		m²
BEAM LINES TO 17		Stations
STATIONS SERVED AT SAME TIME & e	orγ+testa	synchr.
BEAM SEPARATORS SPECTR	OMETERS 11	ad.bean
ON-LINE COMPUTERS WITH 20		Inputs
BUBBLE CHAMBERS, in-houseUs	iers '	
TOTAL POWER INSTALLED FOR RESEARCH_	23	M
No. USER GROUPS: in-house : 3	tside:2 mi:	xed:9
TOTAL RESEARCH STAFF, IN-NEURO	_XOLAR STHERE _2	75
ANNUAL RESEARCH BUDGET, in-house	7.5 MD	M
SCHEDULED RESEARCH TIME, hours/week.	136	

- RECENT IMPROVEMENTS OR MODIFICATIONS TO MACHINE - flat top operation (duty factor 15.4 7) - 2 e⁺/e⁻beams (fast extraction) for DORIS - max. circulating currents (e⁻)up to 80 mA average as compared to 30 mA
- e⁺beams (slow extraction) for use in normal e⁻-experimental areas
- additional p⁺-acceleration capability expected for 1975

NAME OF MACHINE Electron	Synchrotron
INSTITUTION Laboratori	Naz.dl CNEN
LOCATION Frascati -	Italy

PERSON IN CHARGE	Ubaldo	Bizzarri	
DATA SUPPLIED BY	11	11	
DATE Febre	lary 19	974	_

Ubaldo Bizzarri

ACCELERATOR PERFORMANCE

CONSTRUCTION STARTED (date) January 1956.		Norma 1	Maximum
FIRST BEAM OBTAINED, OR GOAL (date) Feb.9, 1959		(or Goal)	Achieved
TOTAL COST OF FACILITY 2.0 M	ENERGY (GeV)		
FUNDED BY CNEN	RESOLUTION DE/E (%)		
TOTAL ACCELERATOR STAFF (now)30	REPET. RATE (pulse/sec)	<u> </u>	<u></u>
ANNUAL OPERATING BUDGET	PULSE WIDTH	<u> </u>	4 <u>_msec</u>
ACCELERATOR PARAMETERS	DUTY FACTOR, macroscopic (%)		$\frac{0}{2+5,10}$
Physical Dimensions (Mean)	(part/sec)		4+10.10
RING DIAM. 8.7.4. Tunnel sect.	CURRENT (mA)		
MAGNET 0.96×0.8 m; Mag Gap $8 \times 6 \times 23$ cm	REAM EMITTANCE (mm-mrad)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	OH AV
"DONUT7.7x21 cm2 Aperture_5.7	Extracted bean		141
Injector System	"ON BEAM"_75% * OF S	CHEDULED TIME	
TYPE Microtron	Some Typical External and Seconda	ry Beams	
OUTPUT (max) 30 at 12.4	PARTICLE FLUX BEAM A	REA ENERGY	ΔΕ/E
BEAM EMITTANCE H:8 V:4 mm-mmad	(part/sec) (cm ²) (GeV))· (\$)
INJECTION PERIOD_2usec, or100turns			
INFLECTOR TYPE Electrostatic	<u>e</u> 2 <u>.10</u>	0.5+1	<u> 40.5</u>
Magnet Surrem	X 1.3.10 10	L 0.4	ı zı 1
FOCUSING TYPE WEAK FIELD INDEX 0.61	<u> </u>	<u> </u>	
No MAG LINITS 4 Length (ea) 5.65 m		L 	<u> </u>
STRAIGHT SECT 4 Total S.S. Length 27.4 m	- X		<u> </u>
	<u>50%polarize</u>	ed	÷
RETATEON OSC. FRED. N	RESEARCH PROCRAM		•
FIELD, AT INJ 110.6. at max 10.2 kG			•
RISE TIME 23 sec: Flat-top timesec	IUIAL EXPERIMENTAL AREA		m-
MAG. WEIGHT (tons) Fe 100 , cu 10 , cu		1	Stations
POWER INPUT (MW) PEAK MEAN 0.150	STATIONS SERVED AT SAME TIME		1
Magnet supply LC Resonant	BEAM SEPARATURS	PEUIKUMEIEKS.	
Acceleration System CLIQUL	W-LINE COMPUTERS WITH		Inputs
HARMONIC No. 4 No. Cavities 42.7	BUBBLE CHAMBERS, In-house	Users · <u></u>	5
$\frac{T \rightarrow L}{10.9}$ MHz	IUTAL POWER INSTALLED FOR RESEA	KCH	~ ™
ORBIT FREQ.	NO. USER GROUPS: In-house	0UTS10e	4. 44
ENERGY GAIN 7 4	IUIAL RESEARCH STAFF, in-house_	<u> </u>	3e
RADIATION LOSS HIGA 2)keV/turn	ANNUAL RESEARCH BUDGET, In-hous	e1	A 1
RF POWER INPUT (KW) PEAK <u>IO</u> VIELAIV 4	SCHEDULED RESEARCH TIME, hours/	weekL	<u>** 1</u>

Other Relevant Parameters or Notable Features

Published Articles Describing Machine

- Proc . 2nd UN Conf. Peaceful Uses Atomic Energy Geneva 1958, Paper 15/8/1374, UN, NEw York (1958)
- Nuovo Cimento Suppl. 3, 324 (1959)
- Nuovo Cimento Suppl. 24 (1962)
- Lettere al Nuovo Cimento Vol. 1, 16, 820 (1969)
- Frascati Reports (available on request)

NAME OF MACHINEL. 3 GeV Electron Synchrotron PERSON IN CI	HARGE K. Huke
INSTITUTION Inst. for Nuclear Study, Univ. DATA SUPPLI	ED BY K. Huke
LOCATION Tanashi, Tokyo, Japan of Tokyo DATE Feb	ruary 1974

CONSTRUCTION STARTED (date) <u>1957 January</u>	
FIRST BEAM OBTAINED, OR GOAL (date) 1961 (750 MeV)	
TOTAL COST OF FACILITY $\sim \$ 2M*$	ENE
FUNDED BY Japanese Government	RES
TOTAL ACCELERATOR STAFF (now) 14	REF
ANNUAL OPERATING BUDGET ~ \$ 0.1M*	PUL
*(salaries not included)	DUI
ACCELERATOR PARAMETERS	INT
Physical Dimensions (Mean)	
RING DIAM. 10.9 m; Tunnel sect. $2.8 \times (dia) 14$ m	
MAGNET 0.7 x 0.5 3 Mag. Gap 5.4 × 15 cm	BEA
"DONUT <u>4.5 x 15</u> cm; Aperture <u>3.5 x 11</u> cm	SCł
Injector System	"ON
TYPE Linac	
(HTPHT (max) 100 mA at inflector, 9 MeV	
BEAM FMITTANCE 8	
INJECTION REDIOD 1 USec or 10 turns	
INFLECTOR TYPE Electro-static plate and	
pulsed magnets for multi-turn.	
Magnet System	
FOCUSING TYPE AG	
No. MAG. UNITS_8Length (ea)3.14m	
STRAIGHT SECT. 8 Total S.S. Length 9.60 m	- c
FOCUSING ORDER $\frac{1/2}{2}$ O, $\frac{1/2}{2}$ D, F, $\frac{1/2}{2}$ D, $\frac{1}{2}$ O	5
BETATRON OSC. FREQ. $v_{\mu} \sim 2.25 v_{\nu} \sim 2.25$	RES
FIELD, AT INJ. <u>80</u> , at max <u>11</u> , kG	TOT
RISE TIME 20^{19} msec; Flat-top time sec	
MAG. WEIGHT (tons) Fe <u>53</u> , cu <u>7.9</u>	06/ 678
POWER INPUT (MW) PEAKSTOREd MEAN 0.402):/ 027
0.18 MJ	DC#
Acceleration system 16 No Coulddor 1)99-
$\frac{138 \text{ fixed}}{138 \text{ fixed}}$	508
$\frac{1}{\sqrt{8.6}}$	101
ENERGY CATH DEAK 10	ΠQ. Το7
energy win_ pould at	101
$\frac{1}{2} \frac{1}{2} \frac{1}$	ANN
RF PUNER INPUT (KW) PEAK	SCH

Other Relevant Parameters or Notable Features

ACCELERATOR PERFORMANCE

		Nc (or	Goal)	Maximum Achieved	
ENERGY (Ge	V)			1.3	
RESOLUTION	ΔΕ/Ε (%)).1		
REPET. RAT	E (pulse/sec)	_22	2.5	22.5	
PULSE WIDT	н		<u> </u>	6(max)	
DUTY FACTO	R. macroscopi	c (\$)	5	10	
INTERNAL B	EAM (part/pul:	se)×10 ^{TU}	2	<u>4 at 1</u>	GeV
	(part/sec) $\times 10^{11}$	_4	<u>8 at 1</u>	GeV
	CURRENT (mA)	<u>30</u>	60	
BEAM EMITT	ANCE (mm-mrad)	5		
SCHEDULED (OPERATION (hr.	/wk) <u>1</u>	<u>.44</u>	168	
"ON BEAM"	95	OF SCHEDU	ILED TIME		
Some Typic	al External and	i Secondary Bo	ame		
PARTICLE	FLUX	BEAM AREA	ENERGY	∆E/E	
_	(part/sec)	(cm²)	(GeV)	(%)	

e []	$\frac{(part/sec)}{4 \times 10^{11}}$	(cm^{-}) (GeV) (X) <u>0.6×0.8_1_0.3</u>	
γ	e×10 ¹⁰	2.2 1.14 brems.	
		(at 3,1 m from radi	ator)
Soft	X-ray		

ESEARCH PROGRAM

TOTAL EXPERIMENTAL AREA 1000 m²	
BEAM LINES TO 3 (two Y, one e & Y) Stations	
STATIONS SERVED AT SAME TIME <u>max 2</u>	
BEAM SEPARATORS <u>none</u> spectrometers <u>4(25,18,</u> 5,6 ton	s)
ON-LINE COMPUTERS WITH 2 (TOSBAC-40) Inputs	
BUBBLE CHAMBERS, in-house Users '	
TOTAL POWER INSTALLED FOR RESEARCH 0.45	
No. USER GROUPS: in-houseoutside5	
TOTAL RESEARCH STAFF, in-house 16 outside 45	
ANNUAL RESEARCH BUDGET, in-house \sim S_0.05M*	
SCHEDULED RESEARCH TIME, hours/week <u>132</u>	

RECENT IMPROVEMENTS OR MODIFICATIONS TO MACHINE Epoxy-resin doughnuts were replaced by thin stainless steel bellows. Add a fast extraction system to supply electrons to the 300 MeV storage ring.

Published Articles Describing Machine

- 1. H. Kumagai, et al., Japanese J. appl. Phys. <u>1</u> (1962) 66.
- 2. Annual Reports from 1960 to 1973, Institute for Nuclear Study, University of Tokyo.
- 3. K. Huke, et al., Japanese J. appl. Phys. 7 (1968) 1274.

-	22	_
---	----	---

			- 2	12 -	Facility:	Bengt Forkman
NAME OF MACHINE.	Lund	Electron	Synchrotron	PERSON IN CHARGE_	Machine:	Rune Alvinsson
INSTITUTION	Univ	of Lund,	<u>Inst of Phys</u>	DATA SUPPLIED BY_	Rune Alvin	nsson
LOCATION	Lund	Sweden	· · · · · · · · · · · · · · · · · · ·	DATE	January 2	2, 1974

HISTORY AND STATUS	ACCELERATOR PERFORMANCE			
CONSTRUCTION STARTED (date) <u>1957</u> FIRST BEAM OBTAINED, OR GOAL (date) <u>Dec. 1960</u>		Normal (or Goal)	Maximum Achieved	
TOTAL COST OF FACILITY <u>\$ 1 M exc1. buildings</u>	ENERGY (GeV)	<u> </u>	<u>_</u>	
FUNDED BY Swedish Atom. Research Council	RESOLUTION AE/E (%)	10 5	_ _	
TOTAL ACCELERATOR STAFF (now)8	REPET. RATE (pulse/sec)	14.5	Emeog	
annual operating budget \sim \$ 30 000 exc1.	PULSE WIDTH		<u></u> .	
salaries	DUTY FACTOR, macroscopic (%)	<u> </u>	$\frac{10}{2}$ $\frac{10}{10}$ 10	(0, 0, Cov)
	INTERNAL BEAM (part/pulse)		$\frac{7.4 \times 10}{7.1011}$	
Physical Dimensions (Mean)	(part/sec)		50	(- " -)
RING DIAM. $10 \cdot 0$ m; Tunnel sectm	LURRENT (MA)			()
MAGNET $0.5.200 \text{ m/s}^2$ Mag. Gap 4.0 x^2 Cm	BEAM EMILIANCE (mm+mrad)	120		
"DONUT cm; Aperture x cm	SCHEDULED OPERATION ($\frac{h}{h}$ wk)		·····	
Injector System	UN BEAM & UP 3	CHEDULED TIME		
TYPE TICTOLIOII	Some Typical External and Seconda	ry Beams		
OUTPUT (max) / 3 mar at 10 met	PARTICLE FLUX BEAM A	REA ENERGY	ΔE/E	
BEAM EMITTANCE <u>NOI. 20, VEIL. 50</u> mm-mrad	(part/sec) (cm ^z) (GeV)	(%)	
INJECTION PERIOD <u>J</u> usec, or <u>40</u> turns			·	
INFLECTOR TYPE BIECCIOS LALIC	synchr light		<u> </u>	
Magnet System			<u> </u>	
FOCUSING TYPE AG				
No. MAG. UNITS 16 Length (ea) 12 m				
STRAIGHT SECT. <u>10</u> Total S.S. Length <u>11.2</u> m				
FOCUSING ORDER	·····			
BETATRON OSC. FREQ. $v_{\rm H} = \frac{1}{100} v_{\rm V} = \frac{1}{110} v_{\rm V}$	RESEARCH PROGRAM	700		
FIELD, AT INJ. 100 G, at max 11.0 kG	TOTAL EXPERIMENTAL AREA	300	m²	
RISE TIME Sec; Flat-top time sec	BEAM LINES TO	4	Stations	
MAG. WEIGHT (tons) Fe <u>24</u> , Cu 11.2	STATIONS SERVED AT SAME TIME	4		
POWER INPUT (MW) PEAKMEAN_VALOD	BEAM SEPARATORS	PECTROMETERS		
Acceleration System	ON-LINE COMPUTERS WITH 2X1.	6 DIT di	<u>g11</u> anputs	
HARMONIC No. 45 No. Cavities 2	BUBBLE CHAMBERS, in-house	Users '		
RF RANGE	TOTAL POWER INSTALLED FOR RESEA	NRCH	<u>8</u> MW	
ORBIT FREQ O.07 MITZ	No. USER GROUPS: in-house	outside	<u> </u>	
ENERGY GAIN III. III. III. III. III. III. III. I	TOTAL RESEARCH STAFF, in-house.	<u>47</u> OUTS10	۳ <u> </u>	solarios
RADIATION LOSS IIIdX. DU keV/turn	ANNUAL RESEARCH BUDGET, in-hous	112		5a1a1105
RF POWER INPUT (KW) PEAKL/YIEAIN	SCHEDULED RESEARCH TIME, NOUPS,	week		

Other Relevant Parameters or Notable Features

RECENT IMPROVEMENTS OR MODIFICATIONS TO MACHINE

Published Articles Describing Machine

Wernholm, O., Arkiv för Fysik 37, 527 (1964)

NAME OF MACHINE_NINA	PERSON IN CHARGE PROFESSOR A. ASHMORE
INSTITUTION DARESBURY LABORATORY	DATA SUPPLIED BY D. J. THOMPSON
LOCATION DARESBURY, WARRINGTON, U.K.	DATE 21ST JANUARY, 1974
HISTORY AND STATUS	ACCELERATOR PERFORMANCE
CONSTRUCTION STARTED (date) NOVEMBER, 1963	Normal Maximum
FIRST BEAM OBTAINED, OR GOAL (date) 2nd DECEMBER	1966 (or Goal) Achieved
TOTAL COST OF FACILITY £4.5.106	ENERGY (GeV) 1.0 00 5.0 5.2
FUNDED BY SCIENCE RESEARCH COUNCIL	RESOLUTION AE/E (%)
TOTAL ACCELERATOR STAFF (now) 110 (inc. exp area	REPET. RATE (pulse/sec)
ANNUAL OPERATING BUDGE: E1.2 M	PULSE WIDTH <u>2 msec</u>
ACCELERATOR PARAMETERS	DUTY FACTOR, macroscopic (%) $\frac{7}{8.10^{10}}$ $\frac{11}{2.4.10^{11}}$
Physical Dimensions (Mean)	(part/sec) 4.10 ¹² 1.2.10 ¹³
RING DIAM. 70 m; Tunnel sect. 6.7 x 5.8 m	CURRENT (mA) = 18 54
MAGNETm; Mag. Gap×cm	BEAM EMITTANCE (mm-mrad)
"DONUT 17.3x 5.Qm; Aperture 15.0 × 4.4 F cm	SCHEDULED OPERATION (br/wk) 168 hrs/wk 5 wks in 7
13.5 7.0 11.2 6.1 D Injector System	"ON BEAM" 82 # OF SCHEDULED TIME for research
TYPE IRIS LOADED WAVEGUIDE LINAC	Some Typical External and Secondary Beams
OUTPUT (max) 500 at 43	PARTICLE FLUX BEAM AREA ENERGY DE/E
BEAM EMITTANCE 3.2	(part/sec) (cm ²) (GeV) (%)
INJECTION PERIOD 0.73 USEC, or 1 turns	$Electron 2.10^{12} 0.6 1.0 - 5.0$
	Photon 2 1011 / 0 0 P F 0
Magnet System	Tagged
FOCUSING TYPE AG	Photon 10° 10° 5°
No. MAG. UNITS <u>40</u> Length (ea) <u>3.2625</u> m	
STRAIGHT SECT. 3.5m Total S.S. Length 90 m r	Iwo synchrotron radiation beams ($\lambda_c = 0.94 \text{ Å}^*$)
RETATION OSC EDEO 5.21 5.26	
ELED AT IN 69 C at any 7.45*	RESEARCH PROGRAM
DISE TIME 9m and Flat for the	TOTAL EXPERIMENTAL AREA DOUD m ²
$Mac = Mac = \frac{2}{100} \text{ sec}, \text{Frace top time} = \frac{40}{100} \text{ sec}$	BEAM LINES TO 5 (inc. test beam) Stations
POWER TADUT (MU) DEAK \Box MEAN 0.95	STATIONS SERVED AT SAME TIME 3 (inc. test beam)
FOWER INPUT (MW) PEAKMEANMEAN	BEAM SEPARATORS SPECTROMETERS5
Acceleration System	ON-LINE COMPUTERS WITH O
HARMONIC No. 300 No. Cavities 5	BUBBLE CHAMBERS, in-houseUsers'
RF RANGEMHz	TOTAL POWER INSTALLED FOR RESEARCH15
ORBIT FREQ. 1.36 MHz	No. USER GROUPS: in-house 2outside 6
ENERGY GAIN 4/0 (max.) keV/turn	TOTAL RESEARCH STAFF, in-house 35 outside 88
RADIATION LOSS 2700"keV/turn	ANNUAL RESEARCH BUDGET, in-house <u>£2.2 M</u>
RF POWER INPUT (KW) PEAK <u>480 Mean</u> <u>150</u>	scheduled Research TIME, hours/week.year 5900 in 1973
Other Relevant Parameters or Notable Features	RECENT IMPROVEMENTS OR MODIFICATIONS TO MACHINE

Published Articles Describing Machine

A.W. MERRISON, CONTEMPORARY PHYS. 8, 4 (1967), p.373 DNPL Reports 1-6 and Annual Reports

* Refers to 5.0 GeV

** Excluding Synchrotron Radiation Facility

	Lornell IZ Gev	
NAME OF NACHINE.	Electron Synchrotro	n
INSTITUTION	Cornell University	
LOCATION	Ithaca, N.Y.	_

10 0 V

PERSON IN CHARGE	Maury Tigner
DATA SUPPLIED BY	M. Tigner
DATE	January, 1974

HISTORY AND STATUS

CONSTRUCTION STARTED (date) April, 1965
EIRST REAM OBTAINED, OR GOAL (date) May, 1967
TOTAL COST OF FACILITY \$11.5 M
EUNDED BY National Science Foundat
TOTAL ACCELERATOR STAFE (now) 45
ANNUAL OPERATING BUDGET \$1 M

ACCELERATOR PARAMETERS

Physical Dimensions	(Mean)	2 7	2
RING DIAM. 200m;	Tunnel sect	<u> </u>	m
MAGNET 20%.29	Mag. Gap 2	<u>.5/3.7</u>	<u> 10 </u>
"DONUT NQNE cr	n; Aperture	2.5 <u> </u>	<u>5.5</u> cm

Injector System

Injector System	
TYPE Varian S-Band IW Linac	
DUTPUT (max) 100 MA at 150 MeV	
PEAN ENTITANCE .16	mm-mrad
NUSCINON DEPICO	turne
Pulsed Magnetic	corns
INFLECTOR TYPE I UTSEU HUGHEETE	

Magnet System Alternating Gradient

FOCUSING TYPE
No. MAG. UNITS 192 Length (ea) 3.4 m
STRAIGHT SECT Total S.S. LengthM
FOCUSING ORDERFUDF
BETATRON OSC. FREQ. VH 10.75 10.75
FIELD, AT INJ. <u>50</u> G, at max <u>4</u> kG
RISE TIME $\frac{8 \times 10^{-5}}{100}$ sec; Flat-top timesec
MAG. WEIGHT (tons) Fe IUU , Cu 20
POWER INPUT (MW) PEAK MEAN
Acceleration System 800 No. Cavities 6
PE PANCE fixed 714 MHz
ORBIT FREQ. 0.395 MHz
ENERGY GAIN 6 MeV/turn. Max.
RADIATION LOSS_18 x 10 ⁴ keV/turn

_220____

Other Relevant Parameters or Notable Features

RF POWER INPUT (KW) PEAK_1500

ACCELERATOR PERFORMANCE

Normal	Maximum	
(or Goal)	Achieved	
12	12.2	
<u></u>	<u></u>	
	<u></u> 3	
$2x10^{-3}$ s	e <u>c. 2x</u> 10 v	sec
$-\frac{12}{12}$	$\frac{12}{10}$	
	$3x10^{-3}$	
6x10 ¹²	<u>1.8x10</u>	
7	2	
<u></u>	·	
144	144	
SCHEDULED TIME		
	$\begin{array}{c} \text{Normal} \\ (\text{or} \text{Goal}) \\ \hline 12 \\ \hline 5 \\ \hline 60 \\ 2x10-3 \\ \hline 2x10-3 \\ \hline 5 \\ \hline 2x10-3 \\ \hline 5 \\ \hline 2x10-3 \\ \hline -5 \\ \hline$	$\begin{array}{c c} Maximum \\ (or, Goal) \\ \hline 12 \\ \hline .5 $

Some Typical External and Secondary Beams

PARTICLE	FLUX	BEAM AREA	ENERGY	∆E/E	
Ŷ	(part/sec)	(cm²)	(GeV) 12	(%)	
<u>ĺ</u>	1012		12		
	<u> </u>	<u></u>	. <u></u>		
		<u> </u>			
	······	<u> </u>			
	<u> </u>				

RESEARCH PROGRAM

TOTAL EXPERIMENTAL AREA1400	
BEAM LINES TO 5	Stations
STATIONS SERVED AT SAME TIME2	
BEAM SEPARATORS SPECTROMETERS	2
ON-LINE COMPUTERS WITH2	Inputs
BUBBLE CHAMBERS, in-house <u>NONe</u> Users' <u>NON</u>	e
TOTAL POWER INSTALLED FOR RESEARCH3	
No. USER GROUPS: in-house4outside4	·
TOTAL RESEARCH STAFF, in-house 25 outside	_20
ANNUAL RESEARCH BUDGET, in-house\$1.8 M_	
SCHEDULED RESEARCH TIME, hours/week	

RECENT IMPROVEMENTS OR MODIFICATIONS TO MACHINE

Published Articles Describing Machine

Orsay Electron - 2	25 -
NAME OF MACHINE Linear Accelerator	
INSTITUTION Lab. Accelerateur Linéaire	PERSON IN CHARGE P BRINET
LOCATION ORSAY (France)	DATEFebruary 1974
HISTORY AND STATUS	ACCELERATOR PERFORMANCE
CONSTRUCTION STARTED (date) 1956	Kormal Maximum (or Goal) Achieved
FIRST BEAM OBTAINED, OR GOAL (date) 1959	electrons
TOTAL COST OF FACILITY 108 F fr.	ENERGY (GeV) 2.3 2.1
FUNDED BY National Ministry of Education	ENERGY GAIN (MeV/m) 10 10
TOTAL ACCELERATOR STAFF (now) 50	RESOLUTION DE/E (%)
ANNUAL OPERATING BUDGET $1.5 \times 10^{\circ} F$	REPET. RATE (pulse/sec) 1.25 to 50 50
ACCELERATOR PARAMETERS	PULSE WIDTH (μ s) $0.0281_5_{10}_{10}_{10}_{10}_{10}_{10}_{10}_{10}$
Physical Dimensions	DUTY FACTOR, macroscopic (%) $10 - 30 = 10$
ACCELERATOR LENGTH 360 m, DIAM.	$\frac{1}{0.3}$
TUNNEL SIZE (L×H×W)m³	
Injection System	Positrons ACO DCI
TYPE Electron Buncher	10
OUTPUT 1000 ma at $12(1.5\mu s)$, $20(0.02\mu s)M$	e_{R} Solution $\Delta E/E$ (3) 2 2
BEAM EMITTANCE mm-mrad	REPET. RATE (pulse/sec) 50 50
INJECTION PERIOD 1.0 µs 50 RF cycles	PULSE WIDTH (US) 1.5 0.02
Acceleration System	DUTY FACTOR, macroscopic (1) $\frac{8 \times 10^{-3}}{10^{-4}}$
No. SECTIONS $1 + 38$ length (ea) 6 m	BEAM CURRENT (1)A) 2.5×10^{-2} 3×10^{-3}
FIELD MODE <u>1172</u> FREQUENCY 2999 MHz	BEAM EMITTANCE (mm-mrad) $\underline{6\pi}$
GROUP VELOCITY c ; Phase Vel. c c c	Some Typical External and Secondary Beams
SHINT IMPEDANCE (MO/CM) 0.45	PARTICLE FLUX BEAM AREA ENERGY DE/E
ATTENUATION (No/m) 0.54 and 0.92 (total)	(part/sec) (cm ²) (GeV) (%)
IRIS, aperture 1.8 cm, thickness 3	
IRIS SPACING (cm)2.5	
Q 10.150 and 11.800	e^+ 3×10^9 0.8 0.25 2 (ACO)
POWER UNITS, No. 39 TYPE Klystrops	
POWER RATING (MW/unit) 25 and 20	
	RESEARCH PROCRAM (Linac only)
RF POWER DEMAND (MW) PEAK	Total synchronian 250 -3
Focusing System doublets and triplet	
QUADRUPOLES, No. 13 SELP SPACING <u>b to 25 m</u>	STATIONS SERVED AT SAME TIME
	BEAM SEPARATORS 0 SPECTROMETERS 1
Other Relevant Parameters or Notable Features	ON-LINE COMPUTERS WITHInputs
$e^- \rightarrow e^+$ converter after	BUBBLE CHAMBERS, in-houseoutside
16	TOTAL POWER INSTALLED FOR RESEARCH
lo sections e.g. ≃ 1.0 GeV	No. USER GROUPS, in-houseoutside
	TOTAL RESEARCH STAFF, in-house outside
	ANNUAL RESEARCH BUUGEI, IN-ROUSE
Bublished Ausieles Describing Marking	Schebulle Research Haddlandens as Markins
Fuchanes Articles Describing Placinine	
Onde Electrique (juillet 1969) -	Linac beams are not directly used for physics
(juliet 1909)	experiments any more but only for injection
	in storage rings : ACO in 74 DCT and ACO in 75
	The last second in the
-	handlo a 500 Moll a
* Université DADIC-CUD	nanute a 500 mev e or e' beam.
Dependent of TM 07D 2 7T	(i 1). Dissions N. 15-ins - to Dissions los

Dependent on I.N.2.P.3 (Institut National de Physique Nucléaire et de Physique des Particules).

Mark III Flectron - 2	26 -
linear Accelerator	Professor B Hafstadton
NAME OF MACHINE CHICAT ACCEPTION	PERSON IN CHARGE THORESSON N. HOTSLAULEN
INSTITUTION AIght Ellergy raystes Lab.	DATA SUPPLIED BY PRUIESSOR M. R. Tearian
Stanford Calle 0/305	DATEIICIT_UT_UT_UT_UT_UT_
Stantoru, carri. 94505	
HISTORY AND STATUS	ACCELERATOR PERFORMANCE Normaì Maximum
CONSTRUCTION STARTED (date) 1052/2001 1064	(or Goal) Achieved
FIRST BEAM OBTAINED, OR GOAL (date) 1935(200); 1904	Velethrona 12
TOTAL COST OF FACILITY \$3.5 M (Accel only)	ENERGY (GeV)
FUNDED BY 1956-69; UNR, AEC, AFOSR*	ENERGY GAIN (MeV/m)
TOTAL ACCELERATOR STAFF (now) See Note A	RESOLUTION $\Delta E/E(x)$ $0.4 - 1.0$
ANNUAL OPERATING BUDGETOCC_ HOCE A	REPET. RATE (pulse/sec) $0.1 - 120$
ACCELERATOR PARAMETERS	PULSE WIDTH $1.5 \mu\text{Sec}$
Physical Dimensions	DUIT FACIDE, macroscopic (z) 5
ACCELERATOR LENGTH 100 m, DIAM. 10 CM	
TUNNEL SIZE (L×H×W) 150 m (variable H&W) ^m '	
Internation Sustains	positrons
Type Uxide cathode gun	ENERGY (GeV)
OUTPUT 300 ma at 80 keV MeV	ENERGY GAIN (MeV/m)
REAM EMITTANCE	
INJECTION PERIOD 1.5 US	REPET. RATE (pulse/sec)
	PULSE WIDTH 0.6×10^{-2}
Acceleration System	BEAM CHIPPENT (ua) 0.2×10^{-3}
EVEN MODE $2\pi/3$ EDECHENCY 2856 MHz	BEAM EWITTANCE (mm-mmad)
WAVE TYPE TH 01 ETILING TIME 0.83	Some Typical External and Secondary Beams
SHUNT IMPEDANCE (MQ/cm) 560	PARTICLE FLUX BEAM AREA ENERGY ALLE
ATTENUATION (Np/m) 0.19	$\mathbf{e} = \frac{(\mathbf{part/sec})}{2 \times 10^{12}} (\mathbf{cm}^{-}) (\mathbf{vev}) (\mathbf{x})$
IRIS, aperture	e^+ 109 0.3 0.8 0.5
IRIS SPACING (cm)	γ Depends on radiation thickness
<u>q13_500</u>	
POWER UNITS, No. 31 TYPE Klystrons	
POWER RATING (MW/unit)	
FEED SPACING (m)	
rf power demand (MW) peak. <u>600</u> _mean <u>0.1</u>	ITES ITES ITES ITES ITES ITES ITES ITES
Focusing System	TOTAL EXPERIMENTAL AREA
QUADRUPOLES, No. 4 pairs spacing variable	BEAM LINES TOStations
GRADIENTS <u>plus magnetic lenses</u>	STATIONS SERVED AT SAME TIME
Other Relevant Parameters or Notable Features	BEAM SEPARATORS SPECTROMETERS
N	DUDDIS CHAMPEDE in-house NONE outside
Note A: Mark III in process of phasi	MATAL POWER INSTALLED FOR RESEARCH
out; staff and operating budget	No. IISER GROUPS, in-houseoutside
minimal.	TOTAL RESEARCH STAFF, in-houseoutside See Note A
+10.50	ANNUAL RESEARCH BUDGET, in-house
*1969 - present - NSF	SCHEDULED RESEARCH TIME, hours/week
Published Articles, Describing Machine	Recent or Planned Modifications to Machine

 General Description: M. Chodorow et al., Rev. Sci. Instr. <u>26</u>, 134 (1955).

	-	27 -		
	Superconducting Mark III			
NAME OF MACHINE_	Electron Linac	PERSON IN CHARGE Mason	<u>n R. Yearian, Acti</u>	ing Director
INSTITUTION	High Energy Physics Lab.	DATA SUPPLIED BY R.E.	Rand	-
LOCATIONStanfo	ord Univ., <u>Stanford,Ca</u> 9430	5DATEMarch	1974	ter ·

HISTORY AND STATUS	ACCELERATOR PERFORMANCE	Norma] M	aximum
CONSTRUCTION STARTED (date) 1969 FIRST BEAM OBTAINED, OR GOAL (date) 1976	electrons FNFRGY (GeV)	(or Goal) A 0.7 - 2	chieved
FUNDED BY ONR & NSF	ENERGY GAIN (MeV/m)	12.3	·····
total accelerator staff (now), $57 + 13$ students annual operating budget $1 M$	RESOLUTION ∆E/E (%) REPET. RATE (pulse/sec)		
ACCELERATOR PARAMETERS	PULSE WIDTH	100 -	
Physical Dimensions ACCELERATOR LENGTH 150 m, DIAM. Dewar 90 cm TUNNEL SIZE (L×H×W) 180 x 4 x 4 m ³	BEAM CURRENT (μA) BEAM EMITTANCE (mm-mrad)	100	
Implection System TYPE Superconducting Buncher & Pre- OUTPUT O Max AT Beam BEAM EMITTANCE O. 5 77 Mmmmrad INJECTION PERIOD US RF cycles	ENERGY (GeV) ENERGY GAIN (MeV/m) RESOLUTION ΔΕ/E (%) REPET. RATE (pulse/sec)		
Acceleration System No. SECTIONS $\underline{8}$ length (ea) $\underline{6}$ m FIELD MODE $\underline{\pi}$ 12 FREQUENCY 1300 MHz	DUTY FACTOR, macroscopic (%) BEAM CURRENT (µA) BEAM EMITTANCE (mm-mrad)		
GROUP VELOCITYC; Phase VelC	Some Typical External and Secon	dary Beams	
WAVE TYPE ITTO FILLING TIMEUSEC	PARTICLE FLUX BEAM	AREA ENERGY	ΔΕ/Ε (٣)
	e 10 0.	05 2	0.01
IRIS, aperturecm, thicknessmm			
IRIS SPACING (cm)		<u> </u>	
	·······		
POWER UNITS, NO. 8 TYPE <u>A LYS LEON</u>			
ECED SPACING (m) 6			·
RF POWER DEMAND (MW) PEAK 0.36 MEAN 0.36	RESEARCH PROGRAM	3000	m²
Focusing System	BEAM LINES TO.	5	Stations
GRADIENTS	STATIONS SERVED AT SAME TIME.	l	2
Other Relevant Parameters or Notable Features	BEAM SEPARATORS	SPECTROMETERS	fanuto
	ON-LINE COMPUTERS WITH	outside	
operating temperature = 1.85 [°] K	TOTAL POWER INSTALLED FOR RES	EARCH 6	MW
	No. USER GROUPS, in-house	outside	
	TOTAL RESEARCH STAFF, in-hous	eoutside	·
	ANNUAL RESEARCH BUDGET, in-ho	use	
	SCHEDULED RESEARCH TIME, hour	s/week	

Published Articles Describing Machine

.

Suelzle, L. R., IEEE Trans., June 1971, to be published.

Recent or Planned Modifications to Machine

Stanford Linear	20 -
Accelerator Center	PERSON IN CHARGE W.K.H.Panofsky
INSTITUTION Stanford University	DATA SUPPLIED BY R. B. Neal
LOCATION Stanford, California, USA	DATEMarch 1974
S	
HISTORY AND STATUS	ACCELERATOR PERFORMANCE
CONSTRUCTION STARTED (date) 1962	Norma) Maximum
ETAST REAM OPTATINED OF COAL (date) May 21, 1966	(ur dual) Achieved
TOTAL COST OF FACTURE SLITH	20 22.28
	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
ANNUAL OPERATION STAFF (NOW)	RESOLUTION $\Delta E/E(k)$ 360 360
ANNOAL OPERATING BUDGET	
ACCELERATOR PARAMETERS	
Physical Dimensions	$\frac{1}{30} \frac{1}{48}$
ACCELERATOR LENGTH 3050 m, DIAM. 10 cm	$\frac{1}{2} = \frac{1}{2} = \frac{1}{2}$
TUNNEL SIZE (L×H×W)3350x3.05x3.35m3	
federation frances	positrons
mection system	ENERGY (GeV) $\frac{1 \cdot 2^{-1} \cdot 3 \cdot 2}{2 \cdot 2^{-1} \cdot 2 \cdot 2}$
autour 100 peak at 35	ENERGY GAIN (MeV/m)
	RESOLUTION $\Delta E/E(x)$ $\frac{1}{2.00}$
BEAM ERITIANCE	REPET. RATE (pulse/sec) $\frac{160}{2}$
INJECTION PERIOD. CLOODS RF Cycles	PULSE WIDTH 1.6 0.02
Acceleration System	DUTY FACTOR, macroscopic (%) 1.00 1.2
No. SECTIONS $\frac{900}{2\pi/2}$ length (ea) $\frac{5\cdot004}{2856}$	BEAM CURRENT (µA)
FIELD MODEFREQUENCYMHz	BEAM EMITTANCE (mm-mrad)
GROUP VELOCITYC; Phase VelC	Some Typical External and Secondary Beams
WAVE TYPE TTM- OL FILLING TIME 0.00 wsec	PARTICLE FLUX BEAM AREA ENERGY ∆E/E
SHUNT IMPEDANCE (M Ω /cm) 0.55	$(part/sec)$ (cm^2) 2 (GeV) (%)
ATTENUATION (Mp/m) 0.07 MD/SECULOII	$\gamma Brems. 2/ 0.15 cm 5-20$
IRIS, aperturecm, thicknessmm	<u>K^{T} 10/pulse2 cm² 7-13 4% max.</u>
IRIS SPACING (cm) 3.7	YCoherent 109eq0.15cm 1-15
9 <u>211</u> Klugtron	$K_{\rm m}^{\rm 0} = \frac{150}{\rm pulse} = \frac{1-10}{\rm m}$
POWER UNITS, No. 244 TYPE ILLYS CI OII	$\frac{3}{K} = \frac{15}{\text{pulse}} \cdot \frac{3\text{m}^2}{1-6} = \frac{1-6}{1-6}$
POWER RATING (MW/unit)	π^{\pm} <u>10⁻/pulse 2cm</u> <u>1-16</u> <u>4% max</u> .
FEED SPACING (m)	p = 50/pulse 2cm = 1-14 2% max.
RF POWER DEMAND HW PEAK 7.000 MEAN 7.0 AT.	μ^{+} max.
Focusing System triplets of Goublets and	TOTAL EXPERIMENTAL AREA <u>2000 AND 100</u> m ²
QUADRUPOLES, No, SPACINGO m	BEAM LINES TO TO CAPCE Interioral Stations
42 singlets at 12m spacing.	STATIONS SERVED AT SAME TIMEO
Other Relevant Parameters or Notable Features	BEAM SEPARATORS 4 SPECIROMETERS 4
1.5 GeV ef beams are available	ON-LINE COMPUTERS WITH Inputs
on a pulse-to-pulse basis inter-	BUBBLE CHAMBERS, IN-NOUSE OUTSIDE 43MW
laced with all e beams up to \sim	TOTAL POWER INSTALLED FOR RESEARCH
~21 GeV.	No. USER GROUPS, In-nouse Outside Goto date
Ream Kreak-un limit .	INTAL RESEARCH STAFF, MENDUSE 8.6 MS (FY 74)
$85 \text{ m/ } a \pm 20 \text{ GeV}$] 6 uses	ANNUAL RESEARCH DUDGET, MANUSE
of ma at zo dev, 1.0 µsec.	SCHEDULED RESEARCH TIME, HOURS/WEEK
Published Articles Describing Machine	Recent or Planned Modifications to Machine
R.B.Neal (Editor), "The Stanford Two-	SLED: A Method of Doubling SLAC's Energy, "
Mile Accelerator, "W.A.Benjamin, Inc	Z.D.Farkas, et al., paper to be presented at IXth
1968.	4/3 focused magnetic spectrometers. 2 wire chambers
R H Millon of al "Pocont Flood on	1 under construction. 2 solenoid spect. (1 in
Insurating the STAC Accolematics "	SPEAR.)
Proceedings of the 1971 Dentials Acc	5/1 streamer chamber operating
anoton Conformance Chicage Tilinei	6/ 1 rapid cycle hubble chamber and 1-40" conven-
erator conference, unicago, illinois	tional chamber
	7/ Plus 12 theoreticians
$\pm v_{g/c} = 0.0204 \text{ to } 0.0065$	$\frac{1}{1}$ 1.105 12 UNCOTENTICIANS
2/ 3×10 ⁹ eq.	of puring running time, reo beams may be used
	simuremeousry (interfaced)
3/ Time of Flight	

- 29 -

NAME OF MACHINE LAMPE	
INSTITUTION LOS Alamos	Scientific Lab.
LOCATION Los Alamos,	NM, USA

PERSON IN CHARGE Louis Rosen DATA SUPPLIED BY Edward A. Knapp DATE_January 21, 1974

HISTORY AND STATUS

ACCELERATOR PERFORMANCE

CONSTRUCTION STARTED (date) October 1968	Normaì Maximum
FIRST BEAM OBTAINED, OR GOAL (date) 7/4/72	(or Goal) Achieved
TOTAL COST OF FACILITY \$57M	ENERGY (GeV) <u>0.800</u> <u>800</u>
FUNDED BY U. S. Atomic Energy Commission	ENERGY GAIN (MeV/m)
TOTAL ACCELERATOR STAFF (now) 70	RESOLUTION $\Delta E/E(x)$ <u>.5</u> <u>.2%</u>
ANNUAL OPERATING BUDGET \$6M	REPET. RATE (pulse/sec) <u>120</u> 1 <u>20 pps</u>
	PULSE WIDTH <u>500use</u> c <u>500 u</u> sec
ACCELERATOR PARAMETERS	DUTY FACTOR, macroscopic (%) $\frac{6}{5}$ $\frac{6\%}{1013}$
Physical Dimensions	INTERNAL BEAM (part/pulse) $\frac{5 \times 10^{15}}{5 \times 15}$
ACCELERATOR LENGTH 795 m, DIAM.	$(part/sec) \qquad \frac{6 \times 10^{13}}{1000000000000000000000000000000000$
TUNNEL SIZE (L×H×W) $800 \times 4 \times 4$ m ³	CURRENT (μA) 1000 $30\mu A$
niection System	BEAM EMITTANCE (mm-mrad) ≤ 5
ION SOURCE Duoplasmatron	SCHEDULED OPERATION (hr/wk) <u>120</u>
OUTPUT 48 mA EMITTANCE 1.5	"ON BEAM" <u>65%</u> for scheduled time
INJECTOR TYPE Cockcroft-Walton (3)	Some Typical External and Secondary Beams
OUTPUT 48 mA EMITTANCE 1.5 mm-mrad	PARTICLE FLUX BEAM AREA ENERGY DE/E
BUNCHER #1 (4kV, 7m), Buncher #2 (16kV,	⊥ (part/sec) (cm ²) (GeV) (%)
1.5m)	π^{-} 10 ⁹ 4 5 10
A contraction for the state	π^+ 2 x 10° 160 .2 .05
Acceleration System <u>1</u> <u>11</u>	$\frac{1}{14} = \frac{5 \times 10^7}{50} = \frac{.04}{.04} = \frac{5}{.04}$
MeV 100 800	$\frac{p_{1ed}}{p}$ $\frac{10^{14}}{10^{14}}$ $\frac{20}{10^{14}}$ $\frac{8}{10^{14}}$ $\frac{01}{10^{14}}$
BEAM ENERGY (m) 62 727	<u>n $2 \times 10^{\circ}$ 10 .8 .5</u>
$\frac{1}{1-1} = \frac{1}{2} = \frac{1}{2}$	$v_{a} = 5 \times 10^{7} = 03 =$
201 25 805	π^- and μ^- beams at reduced intensities.
$\frac{1}{10000000000000000000000000000000000$	RESEARCH PROGRAM
$(x = 10^3)$ $60-75 = 18-25$	TOTAL EXPERIMENTAL AREA 4400
(1, 1, 20) $(2, 1, 20)$	BEAM LINESSTATIONS
$M\Omega/m$ 50-70 25-40	STATIONS SERVED AT SAME TIME
111111111111111111111111111111111111	BEAM SEPARATORS SPECTROMETERS
	ON-LINE COMPUTERS WITH <u>4</u> INPUTS <u>4</u>
TANK DIAM (cm) 94-90 26	BUBBLE CHAMBERS, in-house <u> </u>
	TOTAL POWER INSTALLED FOR RESEARCHMW
DRIET THRE LENGTH (CIII) $4.9-37$	No. USER GROUPS: in-houseoutside
	TOTAL RESEARCH STAFF, In-house <u>200</u>
GAP/CELL LENGTH RATIO .2142	ANNUAL RESEARCH BUDGET, IN-HOUSE
	SCHEDULED RESEARCH TIME, HOURS/WEEKCLEDULED RESEARCH TIME, HOURS/WEEKCLEDULED RESEARCH TIME, HOURS/WEEK
IRIS SPACING	
APERTUR(cm) 1.5-3.0 4	Published Articles Describing Machine
No. OUADS 135 104 doub1	ets "Counted Decemptor Model for Standing Here
GRADIENT (kG/cm) 8.482 3.0	Accolorator Terks " Dev Coi Test. W.1 20
NO. RF POWER UNITS 444	Accelerator lanks, Kev. Sci. Instr., Vol. 38 ,
POWER INPUT, PEAK (MW)	NO. 11, pp. 1303-07, NOV. 1907.
MEAN (MW) 0.258 0.090	E. A. Knapp, B. C. Knapp, J. M. Potter,

Other Relevant Parameters or Notable Features

Simultaneous acceleration of + and proton beams to full energy and at full duty. Intensities of H⁻ beam restricted to 100 µA average current. Negative polarized proton source in preparation.

Emittance quoted as (Area * $\beta\gamma$)

tter, "Standing Wave High Energy Linear Accelerator Structures," Rev. of Sci. Instr. Vol 39, No. 7, 979-91, July 1968.

D. C. Hagerman, "805 MHz Power Sources for the LAMPF Accelerator," Proc. 1968 Proton Linear Accel. Conf., BNL-59120 (C-54), BNL

H. S. Butler, "A Computer-Based Accelerator Control System," to be published Proc. Inst. Soc. of Am. Conf., Philadelphia, PA (Oct. 1970)

INJECTOR FOR SATURN	E	IN OPERATION SINCE Aout 1969	
INSTITUTION C.E.A.		DATA SUPPLIED BY Rommel	
LOCATION Saclay	- France	DATE Janv. 1974	

PERFORMANCE

Physical Dimensions TOTAL LENGTH 10,47m; No. TANKS 1 TANK DIAM. 1, m; No. DRIFT TUBES 58	Normal Maximum (or Goal) Achieved OUTPUT ENERGY (MeV)
DRIFT TUBE LENGTHS 4,53 to 20,73 cm DRIFT TUBE DIAMETERS 18 to 15 cm	ENERGY SPREAD $\Delta E/E(x)$ <u>0.8</u> CURRENT (mA) <u>40</u>
GAP/CELL LENGTH_0,20 CB 0,32 APERTURE 0,79 cm to 1,25 cm	BEAM ENITTANCE (mm-mrad) ISOTILIATISEd 290 T Other Parameters or Notable Features
ton Source Duoplasmatron	 performance maximum of preinjector 120 mA at 1,1 MeV
OUTPUT_40 mA at30keV BEAM EMITTANCE (mm-mrad) <u>0,31</u> _π_normalised	- acceleration of deuterons 7 mA at 10 MeV - acceleration of a 2 mA at 19,4
Injector Pressurized Cockroft - Walt	ton
OUTPUT50_mA at750keV BEAM EMITTANCE (mm-mrad) 0.5π normalised	Published Articles Describing Machine Proceedings of 1968 proton linear accele- rator "Brookhaven"
Buncher Double cavity (harmonic)	The new Saturne injector
POTENTIAL 27 kV, DRIFT LENGTH 84 cm	Status on the 20 MeV Linac - JM. Lefèbvre - M. Promé
RF FREQ ² 00 MHz, Field mode <u>TMO10</u> <u>80.000</u> EQUIL PHASE <u>5to2</u> , Accel. rate <u>1.84</u> MeV/m DUTY FACTOR <u>0.1</u> , Pulse length <u>600</u> usec	Status on the 750 KeV preinjector - J. Faure
SHUNT RESIST 63 MG/m, Filling time 400 used RF POWER INPUT (KW) PEAK 2 MW MEAN 3 kW	Proceedings of 1972 protons linar accele- rator conference
Focusing System No. QUADS 58 TYPEMagnetokor ++ GRADIENTS 53 to 0.64	Deuterons acceleration with the Saturne linac
OTHER	Saturne linac three years operation report
- additionel ramping energy ca	avity

phase variation 90 ° in 600 us energy modulation 600 keV in 600 µs peak power 100 kW potential - 430 kV

- debuncher cavity

PARAMETERS

drift length 8,50 m phase variation 160° in 600 us peak power 55 kW potential 230 kV

INJECTOR FOR TO GEV FIELDER Synchrotish INSTITUTION Nat.Lab.for High Energy Phys. LOCATION Tsukuba, Japan	IN OPERATION SINCE DATA SUPPLIED BY T. <u>Nishikawa</u> DATE March, 1974
PARAMETERS	PERFORMANCE
Physical Dimensions TOTAL LENGTH 15.5 m; No. TANKS 1 TANK DIAM. 94 m; No. DRIFT TUBES 90 DRIFT TUBE LENGTHS 4.8 ~ 20.6 cm DRIFT TUBE DIAMETERS 18 cm GAP/CELL LENGTH $1/5 \sim 1/3$ APERTURE 2.0 cm to 2.5 cm	Normal Maxi OUTPUT ENERGY (MeV) (or Goal) ENERGY SPREAD ΔΕ/Ε (%) (±1) CURRENT (mA) (100) BEAM EMITTANCE (mm-mrad) 10π (norm)] Other Parameters or Notable Features
Kon Source Mofidified Duoplasmatron TYPE 300 mA at 750 keV OUTPUT 300 mA at 750 keV BEAM EMITTANCE (mm-mrad) 5π (norm) Injector Open type Cockcroft-Walton OUTPUT_250 mA at 750 keV OUTPUT_250 mA at 750 keV OUTPUT_250 mA at 750 keV	Published Articles Describing Machine
Buncher TYPESingle POTENTIALLOkV, DRIFT LENGTHLOOCM	
Acceleration System RF FREQ. 201 MHz, field mode 0-mode v_{-} >60,000 EQUIL. PHASE 25 deg., Accel. rate 1.3 MeV/m DUTY FACTOR 0.5%, Pulse length 250 usec SHUNT RESIST. 70 MR/m, Filling time 150 usec RF POWER INPUT (kW) PEAK 3000 MEAN 15	
Focusing System No. QUADSTYPE Magnet DEDERFDFD GRADIENTS11to4kG/cm	

OTHER_

•

INJECTOR FOR	NIMROD
INSTITUTION.	Rutherford Laboratory
LOCATION	Chilton, Didcot, Berks., UK

Physical Dimensions						
TOTAL LENGTH 13.45	, No. TA	NKS	1			
TANK DIAM. 1.69 m;	No. DRIFT	TUBES_	48 +	2 :	x Į	
DRIFT TUBE LENGTHS	8.05 to	32.0	cm			
DRIFT TUBE DIAMETERS_	28.15					
GAP/CELL LENGTH	0.194					
APERTURE 2.1	_cm to		4.9			

Ion Source

TYPE	RF,	Thonem	ann-H	arri	son	ty	<u>pe</u>		
OUTPUT	120	mA_at_		24					keV
REAM EMIT	TANCE (m-mrad)	95 π	for	50	mA	at	15	k₩

injector

TYPE .	Conve	ntional,	low	grad	Lent	col	umn		
	120	.mA at.	6	500				k	e٧
BEAM EMI	TTANCE	(mm+mrad)_	73π	for	100%	of	44	mÅ	

Buncher

TYPE	Single	gap.	. Re-entr	ant	
POTENTIAL _	23	kV, D	RIFT LENGTH.	1.44	<u>n</u>

Acceleration System

RF FREQ. 115 MHz, Field mode E-010 0 80,000	
EQUIL. PHASE 30 deg., Accel. rate 1.06 MeV/m	
DUTY FACTOR 0.5 %, Pulse length 2500 usec	max
SHUNT RESIST. 19_MO/m, Filling time 400usec	to stabilisation
RF POWER INPUT (KW) PEAK 1300 MEAN 6.5	

Focusing Syst	em 48	TYPE	DC	ORDER	+	- +	_
GRADIENTS	3.70		. to	0.64		k0	i/cm
OTHER			<u>.</u>				

IN OPERATION SINCE	August 1961
DATA SUPPLIED BY	D A Gray
DATE	January 1974

PERFORMANCE

OUTPUT ENERGY (MeV)	Normal (or Goal) 14.9	Maximum Achieved
ENERGY SPREAD AF/F (%)	0.67	
CURRENT (mA)	18	45
BEAM EMITTANCE (mm-mrad)	50	

Other Parameters or Notable Features

Linac is a cavity inside a separate vacuum tank. RF system operates as a self oscillator. Multipactor in linac overcome by carbon blank on

drift tube faces.

Ramped debuncher giving energy shift during injection into Nimrod.

Published Articles Describing Machine

Nimrod - A 7 GeV Proton Synchrotron (Part I) Ruth. Lab. Report NIRL/R/44 (1965).

It is planned to replace this injector by a 70 MeV injector in 1975. (See separate data sheet).

INJECTOR FOR	NIMROD (7 GeV P.S.)	
	Rutherford Laboratory	
	Chilton, Didcot, Berks., UK	
LUCATION		

IN OPERATION SINCE Under construction, completion due 1975 DATA SUPPLIED BY N D. West

DATA	SOMATIED	BT		
DATE.		January	1974	

PERFORMANCE

⊾keV

keV

¢π

Physical Dimensions
TOTAL LENGTH 43.8 No. TANKS 4
TANK DIAM8194m; No. DRIFT TUBES 144 + 8 halves
DRIFT TUBE LENGTHS 0.045 - 0.341 m
DRIFT TUBE DIAMETERS 0.16 - 0.18 m
GAP/CELL LENGTH0.21 - 0.37
APERTURE

42

665

-

Duoplasmatron

BEAM EMITTANCE (mm-mrad) ~ 0.9 TT/BY

Cockcroft-Walton

200 _____mA_at___

OUTPUT ENERGY (MeV)	Normal (or Goal) 70.4	Maximum Achieved
ENERGY SPREAD AE/E (%)		
CURRENT (mA)	75	
BEAM EMITTANCE (mm-mrad)		<u> </u>

Other Parameters or Notable Features

Tanks 2 and 3 were previously part of the Rutherford Laboratory 50 MeV PLA.

Published Articles Describing Machine

Bunche	r

ion Source

TYPE_

OUTPUT_

Injector

TYPE___

TYPE $\lambda/2$ co-axial line POTENTIAL ~ 27 kV, DRIFT LENGTH 80

Acceleration System

BEAM EMITTANCE (mm-mrad)____

Acceleration system
RF FREQ. 202 MHz, Field mode <u>E010</u> $\sim 60,000$
EOUIL, PHASE 30 deg., Accel. rate 1.64 MeV/m (1)
DUTY FACTOR 0.07 %, Pulse length 700 usec
SHUNT RESISTMO/m, Filling timeusec (2) RF POWER INPUT (kW) PEAK $\sim 11,000$ _MEAN7.7(2)
Focusing System $N = 1$ (Tenk 1)
No. QUADS 152 TYPE PUISED DORDER N = 2 (THINKS 2-4)
GRADIENTSto0.4kG/cm
oruse Quadrupole triplets used in low and high

energy beam transport.

(1) Average over 4 tanks.

(2) Includes beam loading (75 mA)

INJECTOR FOR ZGS - Polarized Protons INSTITUTION Argonne National Laborator LOCATION Argonne, Illinois

PARAMETERS

Physical Dimensions

TOTAL LENGTH 33. 28 m; No. TANKS 1	
TANK DIAM 0.95 m; No. DRIFT TUBES 124	
DRIET THRE LENGTHS 4. 9 to 35. 46 cm	
DELET THE DIAMETERS 24.9 to 14.7	
$c_{AB/CELL LENGTH} 0.225 to 0.250$	
ADEDITION 1. 270 on to 3. 175	
AFENIUNE CONTRACTOR OF A STATEMENT O	Cm

type Ground State		
OUTPUT $2x10^{-2}$ mA at	20	ke
BEAM EMITTANCE (mm-mrad)	425	

Injector

TYPE Cocke	<u>roft-Walton</u>	
OUTPUT	mA at 750	ke
BEAM EMITTANCE	(mm-mrad) Unmeasu	red

Buncher

TYPE One-gap r	<u>e-entrant</u>	cavity
POTENTIAL 15 KV,	DRIFT LENGTH	220 cn

Acceleration System

RF FRED 220 MHz. Field mode $TM - 010.060.000$	_
FOULT PHASE - 26 deg. Accel. rate 1.89 MeV/	m
DUTY FACTOR 0.1 Y Pulse length $0-1000$ use	c
CULURY DESIST 39 More Filling time 150	~
SHUAT RESIST. 92 RAVIN, FITTING CIME BE	~
RF PUWER INPUT (KW) PEAKMEAN	_

Focusing System

No.	OUADS	124	TYPE Magnetic ORDER	<u>+-</u>
GRA	DIENTS	8.0	to <u>1.4</u>	kG/cm
OTH	C D			

	IN OPERATION SINCE	January 1963
ory	DATA SUPPLIED BY E.	F. Parker
•	DATE_ February	1974

PERFORMANCE

	Normal (or Goal)	Maximum Achieved
OUTPUT ENERGY (MeV)	<u> </u>	
ENERGY SPREAD AE/E (%)	0.6	0.6
CURRENT (mA)	6×10^{-3}	9×10^{-3}
BEAM EMITTANCE (mm-mrad)	<u>Unmea</u>	<u>sured</u>

Other Parameters or Notable Features

50 MeV Polarization = 75% Polarized deutrons can also be produced.

Published Articles Describing Machine

"Zero Gradient Synchrotron (ZGS) High Energy Polarized Proton Beam Program - Injector System" E. F. Parker, et al., 1973 Particle Accelerator Conference, March 5-7, 1973, page 395.

"Acceleration of Polarized Protons to 8.5 GeV" T. K. Khoe, et al., (to be published) INJECTOR FOR ZGS - Unpolarized Protons IN OPERATION SINCE January 1963 INSTITUTION Argonne National Laboratory Data Supplied By E. F. Parker DATE February 1974 LOCATION Argonne, Illinois

_keV

keV

PARAMETERS

PERFORMANCE

Physical Dimensions
TOTAL LENGTH 33. 28 m; No. TANKS 1
TANK DIAM. 0. 95 m; No. DRIFT TUBES 124
DRIFT TUBE LENGTHS 4. 9 to 35. 46 cm
DRIFT TUBE DIAMETERS 24.9 to 14.7
GAP/CELL LENGTH 0. 225 to 0. 250
APERTURE 1. 270 cm to 3. 175 cm
Ion Source

TYPE <u>Duoplasmatron</u>

Injector Cockcroft-Walton

BEAM EMITTANCE (mm-mrad) 80 TT (90%)

OUTPUT_160_____MA at_ 750____

OUTPUT 160 mA at.

BEAM EMITTANCE (mm-mrad).

	Normal (or Goal)	Maximum Achieved
OUTPUT ENERGY (NeV) st	<u> </u>	
ENERGY SPREAD DE/E (%)	0.6	0.6
CURRENT (mA)	40	42
BEAM EMITTANCE (mm-mrad)		<u>20 π (</u> 90%)

Other Parameters or Notable Features

See "Recent Measurement of the ZGS Injector Beam Characteristics" E. F. Parker, Proceedings of the 1972 Proton Linear Acc. Conf. Oct. 10-13, 1972 Published Articles Describing Machine

See Synchrotron Sheet.

Buncher

TYPE One-ga	<u>p re-entran</u>	<u>t cavity</u>
POTENTIAL 15	kV, DRIFT LENGTH_2	<u>20</u>

Acceleration System

RF FRED. 220MHz, Field mode TM-0100 60,000
EQUIL PHASE -26 deg., Accel. rate 1.89 MeV/m
DUTY FACTOR 0. 1 X. Pulse length 0-1000 usec
SHINT RESIST. 39 MQ/m. Filling time 150 used
DE DOWER INDIT (AN) PEAK 3500 MEAN 3.5
A FOREN IN OF THE OF TH

Focusing System

No. QUADS	<u>124</u>	TYPE TO A STATE ORDER	<u> </u>
GRADIENTS	8.0	to_ <u>1.4</u>	kG/cm
ATHER			

	36	-
--	----	---

INJECTOR FOR Alternating Gradient Synchro INSTITUTION Brookhaven Nat'l. Laboratory LOCATION Upton, New York	DATE January 28, 1974	
PARAMETERS	PERFORMANCE	
Physical Dimensions TOTAL LENGTH 145m; No. TANKS_9 TANK DIAM. 0.89 m; No. DRIFT TUBES 286 DRIFT TUBE LENGTHS 4.74 cm to 44.6 cm DRIFT TUBE DIAMETERS 18 cm(Tank 1)16 cm(othe: GAP/CELL LENGTH 0.20 to 0.47 APERTURE 2.0cm to4.0cm	Normal Maximum (or Gool) Achieved OUTPUT ENERGY (MeV) 200.3 206 ENERGY SPREAD DE/E (%) 0.5 0.6 rsURRENT (mA) 70 100 BEAM EMITTANCE (mm-mrad) (80%) 5TT 10TT Other Parameters or Notable Features	
Ion Source Duoplasmatron TYPE	Pulse rate of 10 pulses/s allows Li Beam to be used for about 9 pulses/ Radio Chemistry, radio-biology and tope production. The beam is defle into a special side tunnel for this pose.	nac s for Iso- cted pur-
OUTPUT <u>400</u> mA at <u>780</u> keV	rubished Articles Describing rischine	

BEAM EMITTANCE (mm-mrad) ____ 500 TT__

Focusing System No. QUADS ______

GRADIENTS 10

OTHER_

Buncher TYPE 2 Fundamental Frequency Units

POTENTIAL 10/20 KV, DRIFT LENGTH 100/75 cm

Acceleration System $TM_{010} \sim 50000$

DUTY FACTOR 0.2 *, Pulse length Beam 200 usec SHUNT RESIST. 20 MO/m, Filling time 80 usec

Pulsed

ORDER +-+-

.kG/cm

1

TYPE Mag

.to_

RF POWER INPUT (KW) PEAK 45000 MEAN 180

G.W. Wheeler, "The AGS Conversion Project" IEEE Trans. Nucl. Sci. NS-18, No. 3, 515 (1971).

G.W. Wheeler, VIII International Conf. on High Energy Accelerators, CERN, 531-39, Sept. 1971.

Tanks stabilized by the multi-stem method in tanks #2-9.

INJECTOR FOR	200/500 GeV Synchrotron
	National Accelerator Lab.
LOCATION	Batavia, Ill. USA

IN OPERATION SINCE	November 30, 1970
NATA SUPPLIED BY	C. W. Owen
DATE	March 8, 1974

Injector

OUTPUT_

Buncher

TYPE

Physical Dimensions	
TOTAL LENGTH 144.8 m; No. TANKS 9	
TANK DIAM. 8. 84. m; No. DRIFT TUBES	
DRIFT TUBE LENGTHS 4.7-44.6 CM	
DRIFT TUBE DIAMETERS 10-18 CM	
GAP/CELL LENGTHU.21 - U.47	
APERTURE _ 2. 0 cm to 4. 0	Cm1

on Source Duoplasmatron

TYPE	100111001		-
OUTPUT	mA at	k	eV
BEAM EMITTANCE	(mm-mrad)		

750

 50π

TYPE pulsed ORDER NSNS

 $\begin{array}{c} \hline 201.25 \\ \text{RF FREQ.} \\ \hline 201.25 \\ \text{HHz, Field mode} \\ \hline TM010_{0} \\ 50-60.000 \\ \hline 2000 \\ \hline 2$

6.9 to 0.68

75

CIII

usec

_kG/cm

ockcroft-Walton

manA at

Single cavity

POTENTIAL 25 KV, DRIFT LENGTH_

SHUNT RESIST 27-15 MO/m, Filling time_

RF POWER INPUT (KW) PEAK 37.103 MEAN 110

BEAM EMITTANCE (mm-mrad).

Acceleration System RF FREQ.____MHZ, I

Focusing System

No. QUADS

GRADIENTS_

OTHER.

PERFORMANCE

205	* Normal (or Goal)	Maximum Achieved
OUTPUT ENERGY (MeV) 200 *0 4	(200.3)	
ENERGY SPREAD $\Delta E/E$ (%) 0.4	(75)	110
CURRENT (ma) BEAM EMITTANCE (mm-mrad)	10π	$(5\pi - 10\pi)$

Other Parameters or Notable Features

A three-cell debuncher to reduce further the energy spread is under construction.

Published Articles Describing Machine

Initial Performance of the NAL 200-MeV Linear Accelerator, D. E. Young et al, IEEE Transactions on Nuclear Science NS-18, June 1971, p. 517.

Operation of the First Section of the NAL Linear Accelerator, C. D. Curtis et al, Particle Accelerators 1, 51, (1970)

Operating experience with the NAL 200-MeV Linac, C. D. Curtis et. al. Proc. of the 1972 Proton Linear Accelerator Conf., LA-5115, p. 17 (1972)

*Typical operating values with design goals in parentheses. Measurements of energy spread and emittance are for 95% and 90% of the beam respectively at 100 mA.

	INJECTOR FOR_	Bevatro	n		
	INSTITUTIONLawrence Berkeley Laboratory				
	LOCATION Univ. of Calif., Berkeley, CA				
	PARAMETERS				
	Physical Dimen	sions			
	TOTAL LENGTH	m; No	. TANKS	<u> </u>	
	TANK DIAM.	Lm: No. DR	IFT TUBES 12		
	DRIFT TUBE DT	AMETERS 20	- 22.0 cm		
	GAP/CELL LENG	TH 0.23			
	APERTURE	25cm to.	3.27	Cm	
*	lon Source	Ardenne (hio plasmat	ron	
	OUTPUT 150	mA_at	<u>60</u>	keV	
ىد	BEAM EMITTANC	E (mm-mrad)			
î	See belo	ow for hea	avy-ion sour	rce.	
	TYPE Cock	roff-Walt	<u>.on</u> 480		
	DUIPUI TOU	mAat E (mm_mrad)	179	Ke¥	
		.c. (1001-107.00)			
	Buncher TYPE Sing	gle-cavity	v re-entran	t	
	POTENTIAL 1)	r LENGTH 100	cm	
	Acceleration S	vstem			
	RF FREQ 199	.3 MHz, Fie	1d <u>TM-010</u>	Q <u>70,000</u>	
	EQUIL. PHASE	260_deg., A	10 ccel. rate $2(0-5)$	<u>)</u> MeV/m	
	DUTY FACTOR 0, 12, X, Pulse length 600 usec				
	SHUNT RESIST	. <u>2</u> _MΩ/m, F	illing time <u>20</u>	C usec	
	RE POWER INP	UI (KW) PEAK	<u>2000 </u>	<u></u>	
	No. OUADS	<u>75 _{түре} М</u>	agnet.order_C	CDD	
	GRADIENTS		to ~20 kG-cm/	<u>cm</u> _kG/cm	
	OTHER		<u> </u>		
	() valı	e for hea	avy-ion ope	ration.	
	Ion Sour	cce for He	eavy-Ion Ōp	eration	
	Туре - Н	PIG			
	Ion	Output I	Exit of C-W		
	$\frac{\mathrm{H}^{\mathrm{T}}}{2}$	10 ma	480 kV	,	
	[~] H ⁺	8	253		
	⁴ He ⁺⁺	1.5	251		
	$\frac{12}{14}$	0.1	376		
	$\frac{14}{N}^{5+}$	0.04	350		
	$\frac{160^{5+}}{10^{5+}}$	0.05	402		
	²⁰ Ne ⁶⁺	0.0001	418		

IN OPERATION SINCE _	1963 (1971)
DATA SUPPLIED BY	Kenneth C. Crebbin
DATE	February 1974

PERFORMANCE

	Normal (or Goal)	Maximum Achieved	
OUTPUT ENERGY (MeV)		19.27	(4.8/Amu)
ENERGY SPREAD DE/E (%)	<u> 1.5 </u>	_1	.(.8)
CURRENT (mA)	50	40	. (*)
BEAM EMITTANCE (mm-mrad)	20		
* Approximately 2	0% of C-W	l output	

Provides heavy-ion acceleration in the 2 $\beta\lambda$ mode.

Cavity is pre-pulse excited and driven with ten main oscillators.

Published Articles Describing Machine

- R. W. Allison, et al, Rev. Sci. Instr. 32, 1331 (1961).
- R. W. Allison et al, Measurements of The Linear-Accelerator Exit Beam of the Bevatron Injector, UCRL-17001 (1966), Proc. 1966 Linear Accel. Conf., Los Alamos.

٢ø٧

Bevatron	IN OPERATION SINCE Preliminary tests (1973-1974)
INSTITUTION Lawrence Berkeley Laboratory	DATA SUPPLIED BY John Staples
ICCATION Univ. of Calif. Berkeley, CA	DATEFebruary 1974

PERFORMANCE

Physical Dimensions	
TOTAL LENGTH 33 m; No. TANKS 124	
TANK DIAM. U.97 m; No. DRIFT TUBES 124	
DRIFT TUBE LENGTHS 4.91 CO 55.40 CIII	
DRIFT TUBE DIAMETERS 23.02 CO 14.71 CIII	
APERTURE 1.90 cm to 3.17 cm	
too Source	
Von-Ardenne-duo plasmatron	
OUTPUT ~200 mA at keV	

750

	(or Goal)	Achieved
DUTPUT ENERGY (MeY)	50.8	
ENERGY SEREAD AF/F (%)	0.5	_0.8_
	80	
CORRENT (MA)	204	
BEAM ENITTANCE (mm-mrad)		

other Parameters or Notable Features

formerly the injector for the AGS at Brookhaven National Laboratory.

Published Articles Describing Machine

1. D. Brodzik, et al, The 50 MeV Bevatron Injection Linac, Vol. NS-20, Number 3, June 1973, pp 923-927.

Norma 1

Maximum

Buncher Single gap TYPE___

DUTPUT_ 180 _____ mA at ____

BEAM EMITTANCE (mm-mrad) _____

Cockroft-Walton

BEAM EMITTANCE (mm-mrad) 25.5 TT.

PARAMETERS

Injector

TYPE___

POTENTIAL 22 KV, DRIFT LENGTH 135 __ Cm

Acceleration System RF FREQ 201.6 MHz, Field TM-010 Q:60,000 EQUIL. PHASE 26_deg., Accel. rate 2.0 MeV/m DUTY FACTOR___12_ %, Pulse length___600____usec SHUNT RESIST. 39 Ma/m, Filling time 150 usec RF POWER INPUT (KW) PEAK 9,000 MEAN 11

Focusing System

No.	OUADS_	124	TYPE Mag.	ORDER ++	·
GRAD	IENTS_	4.5	to	0.91 -	kG/cm
ОТНЕ	R				

SuperHILAC a heavy-ion	<i>u</i> –	
INJECTOR FOR the Bevatron	IN OPERATION SINCE	April, 1972
INSTITUTION LAWREnce Berkeley Laboratory	DATA SUPPLIED BY	F. Selph
action Univ. of California Borkeley CA		3/5/74
EQUATION DEL CALLED TILLA, DEL ACTES, CA		

Physical Dimensions	
TOTAL LENGTH 73.3 m; No. TANKS 8	
TANK DIAM 3.05 m; No. DRIFT TUBES 214	
DRIFT TUBE LENGTHS 4.9 to 38.5 cm	
DRIFT TUBE DIAMETERS 25.4 to 17.2 cm	
GAP/CELL LENGTH 0.26 to 0.32	
APERTURE 1.2 cm to 4.2	cm

ion Source

ТҮРЕ	P10		
OUTPUT_	mA at		ke¥
REAM EM	TTANCE (mm-mrad)	240π	

Injector

TYPE_	2.5	MV	press.	C.W./750	kV	<u>C.W.</u>
OUTPU						keV
BEAM	EMITTAN	ICE (#	m-mrad) <u>3</u>	0 π / 70π		

Buncher (750 kV C.W.) TYPE<u>two gap</u>

POTENTIAL 7.5 KV, DRIFT LENGTH 224

- Acceleration System
- $\begin{array}{c} \text{RF FREQ. } 70 \text{ MHz, Field mode} & 010 & 100,000 \\ \text{EQUIL. PHASE } 20 & \text{deg., Accel. rate} & 1.35 & q & \text{MeV/m} \\ \text{DUTY FACTOR } 30-50 \text{z, Pulse length} & 8-14 & \text{msec} \\ \text{SHUNT RESIST. } 22 & \text{MG/m, Filling time} & 500 & \text{usec} \\ \end{array}$
- RF POWER INPUT (kW) PEAK 7,500
 MEAN 2,500
 Jun

 Focusing System
 NSNS prestripper

 No. QUADS
 209
 TYPE
 D.C. ORDERNSS poststripper

 GRADIENTS
 14.5
 1.3
 kG/cm
- OTHER_____
- * q equals charge state of ion.

PERFORMANCE

MITPHT ENERGY (MeV)	Normal (or Goal) 8.5	Maximum Achieved 7.2
ENERGY SPREAD $\Delta E/E$ (%)	0.5	0.3
CURRENT (mA) ** BEAM EMITTANCE (mm-mrad)	10π	10π

Other Parameters or Notable Features

The SuperHILAC is capable of accelerating beams of heavy ions from Helium (mass 4) through Uranium (mass 238). Injection to the Bevatron is possible, using the Bevalac transfer line, for ions as heavy as Argon Published Articles Describing Machine (mass 40).

- R. M. Main, <u>Modification of the Berkeley</u> <u>Hilac</u>, Nuclear Instruments and Methods <u>97</u>, <u>51-64</u> (1971).
- A. Ghiorso, <u>Progress with the SuperHILAC</u>, Vol. NS-20, <u>Number 3</u>, June 1973.
- 3) A. Ghiorso, et al, <u>The Bevalac-An Econo-</u> <u>mical Facility for Very Energetic Heavy</u> <u>Particle Research</u>, Vol. NS-20, Number 3, <u>June 1973</u>.
 ipper <u>Goal Achieved</u>
 ripper ** Current (particle μA)

Carbon	(A=12)	80	1.6
Argon	(40)	8	0.8
Kryptor	ı (84)	0.8	0.1

INJECTOR FOR	<u>6GeV Pro</u>	<u>ton-Syncl</u>	<u>hrotro</u> n
INSTITUTION I	HE P		
LOCATION Se	rpukhov,	USSR	

OTHER.

IN OPERATION SINCE <u>1957</u> DATE February, 1974

PERFORMANCE

Physical Dimensions	
TOTAL LENGTH 80 m; No. TANKS 3	
TANK DIAM. 1.8 th; No. DRIFT TUBES 160+6×1/2	OUTPUT ENERGY (MeV
DRIFT TUBE LENGTHS 6.2cm to 62.4cm	ENERGY SPREAD DE/E
DRIFT TUBE DIAMETERS 23.2-10cm(T1)and10cm	CURRENT (mA)
GAP/CELL LENGTH 0.185 to 0.284	BEAM EMITTANCE (mm
APERTURE	Other Parameters of
ton Source **	*for vacuu
OUTPUT_1000	
BEAM EMITTANCE (mm-mrad)	******
injector	filling
$\frac{450}{450} = 200$	Published Articles De
BEAM EMITTANCE (mm-mrad) 8 T (norm)	
Buncher TYPE	
POTENTIAL 30 kV, DRIFT LENGTH ~ 85 cm	
Acceleration System RF FREQ1485MHz, Field mode TM MO 067,000-46.	000
EQUIL. PHASE <u>38</u> deg., Accel. rate <u>1.2</u> MeV/m	
DUTY FACTOR 0.004 , Pulse length 300 usec	
SHUNT RESISTED 1542/m, Filling time 150 usec	
RF POWER INPUT (KW) PEAK 15,000 MEAN 0.6	
Focusing System No. QUADS	
GRADIENTS 6.0 to 0.399 kG/cm	

Normal (or Goal) Maximum Achieved 100 .100 1) - -+0.5 (with debuncher) (%) 180 90 -mrad) 10 5 (90% current) (norm) r Notable Features m tank. 1cavity diam=1.32m " =1.22m 11 11 " =1.09m 111 "

isma-cathode and pulse gas

escribing Machine

INJECTOR FOR 10 Gev PS	IN OPERATION SINCE November 1966
	DATA SUPPLIED BY N.V. LASSTEV
LOCATION MOSCOW USSH	DATE FEDERALJ 1974

PERFORMANCE

GRADIENTS 2.2 to to kG/cm OTHER each drift tube contains 2 lenses of opposite signs.

- 43 -CERN Intersecting

NAME OF STORAGE RINGS	Storage Rings (ISR)	PERSON IN CHARGEK.	Johnsen		
INSTITUTION_	C.E.R.N.	DATA SUPPLIED BY M.H.	Blewett,	W.	Schnell
LOCATION	Geneva, Switzerland	DATE Febr	<u>uary, 197</u>	4	

F

ORAGE RINGS PERFORMANCE

HISTORY AND STATUS S
CONSTRUCTION STARTED (date) 1966
FIRST COLLISIONS, OR GOAL (date) January, 1971
TOTAL COST OF FACILITY ~326 million Sw.Fr.
FUNDED BY CERN Supplementary Programme
TOTAL MACHINE STAFF (now) 330
ANNUAL OPERATING BUDGET ~40 million Sw.Fr.
STORAGE RINGS FARAMETERS
General protono and 11 to 31 a
COLLIDING PARTICLES <u>process</u> ENERGY II <u>co</u> since the s
APPROX. SHAPE CITCUTAL DIMENSIONS JOU III GIAIII
ORBIT: length $\frac{942 \cdot 0}{10}$ m, time $\frac{9 \cdot 2 \mu 3}{10}$
NO. INTERSECTS CRUSSING ANGLE TT. 7.7 U.C.
injector System
TYPE CERN Proton Synchrotron
INJ. ENERGY TO 28 GEVOUTPUT 2 × 101297 purse
EMITTANCE,
FILLING SPEED approx. 1 pulse/2.5 s
TOTAL FILLING TIME ~ 1000 S/FING
Magnet System
FOCUSING TYPECOMD. In ERD. RAD. 78.590 1
LATTICE ORDER FODO
No. MAGNETS 2×132 Length (ea) 2.44 ; 4.88 m
No. QUADSLength (ea)m 1
MAX BEND. FIELD_12_kG; MAX. GRAD. U.4/8_kG/cm
OTHER MAGNETS Kad. field, sext., spec. quads.
TOTAL WEIGHT (tons) $\operatorname{Fe}_{\underline{2}} \times 3300$ Cu $\underline{2} \times 300$
BETATRON OSC. FREQ. $v_{\mu} = \frac{0.795}{21} v_{V} = \frac{0.700}{12.86}$
AMPL. FUNCT. AT INTERSECT, (H) 21 III (V) 15.00 III
Acceleration System Centre
HARMONIC NO. 30 FREQUENCY 9.5 MHz
No. TRANSMITTERS 6/ring No. CAVITIES 6/ring
BUNCH TO BUNCH TIME Spare 105 ns 1 Spare
BUNCH SIZE (L×W×H)
PEAK RE VOLTAGE PER BEAM 20 KV per turn
MAX RF POWERON BEAMS SEE NOTE 1
Vacuum System
PRESSURE IN RINGS, NO BEAM 2×10 ⁻¹¹ (N2eq.) Torr
WITH BEAM Torr
PRESSURE AT INTERSECTIONS $\sim 3 \times 10^{-12}$ Torr
PUMPS (no., type, speed) $\frac{2 \times 144}{5}$ $\frac{400 \ \text{\&/s}}{5}$
sputter ion; 2×7 , 100 ℓ/s sputter
10n; 2 × 250 tlt, Sublim. Other Relevant Parameters or Notable Features
ISR are two identical interlaced
rings intersecting at 8 points
Note 1: RF system is used for
stacking and for phase-displacement
acceleration from 26 to 31.4 GeV/c

	Norma i	maximum
	(or Goal)	Achieved
NERGY (GeV/C)	20 10 20	<u>J1.4</u>
RESOLUTION DE/E (%)	$\frac{26}{1030}$	<u> </u>
UMINOSITY (cm ⁻² sec ⁻¹)	4×10^{30}	0.7×1030
BEAM SIZE, horizontal		1
vertical -effec	t <u>ive nei</u> g	$\frac{nt}{200}$
URRENT, PER BEAM	<u>20 A</u>	<u>22 A</u>
	-10.1	
BEAM LIFE, AT <u>20</u> A	<u>12 hr</u>	×
ypical lo <u>ss rate</u> s _a		$\frac{0.1\%/hr}{1.000}$
SCHEDULED OPERATION (XXXXX)	<u> </u>	hr/year
"ON BEAM" > 90 % OF	SCHEDULED TIM	E
longest life to d	ate: 58	hr, 12 A.
RESEARCH PROGRAM	. 6000	
APPROX. EXPERIMENTAL AREA	~ 0000	m²
No. EXPERIMENTAL INTERSECTS O	<u>+0 110w 1</u>	<u>n use</u>
No. EXPERIMENTS/INTERSECT	<u> </u>	
SPECIAL RESEARCH EQUIPMENT OR	FACILITIES:	
magnetic spectro	meters	a a a 3
Split-field analyz	ing magne	et of 28 m^3
Eield volume.		
Thin-walled (down	to 0.15 r	mm), specially
shaped vacuum cham	bers at i	intersection
cegions.	1/. 5	MT7 A wear
TOTAL POWER INSTALLED FOR RESI	EARCH 14.J	MVA X
USER GROUPS: in-houseU;mix	eu toutside 14	220
TOTAL RESEARCH STAFF, in-house	$e^{\sim} 40$ outside	le_~ 230_
ANNUAL RESEARCH BUDGET	2200	hr /man
SCHEDULED RESEARCH TIME, KON H	~2200	J nr/year

ANNED EXTENSIONS OR MODIFICATIONS TO MACHINE

igh-luminosity insertions (low-beta) t intersections; first stage (steelopper quadrupoles) at one intersecion in 1974.

ublished Articles Describing Machine

ontributions in Proc. of Int. Conf. n High-Energy Accelerators for 1967, 969 and 1971.

- . Keil, "Intersecting Storage Rings", CERN report 72-14, 1972.
- . Schnell, IEEE Trans. Nucl. Sci., NS-20 no. 3, p. 747, 1973.
- . Johnsen, Nucl. Instr. and Methods, 108, p. 205, 1973.

-	44	-
---	----	---

NAME OF STORAGE RINGS	PERSON IN CHARGE P. MARIN
INSTITUTION Lab. Accélérateur Linéaire	DATA SUPPLIED BY M. SOMMER
LOCATION ORSAY (France)	DATEFebruary 1974

HISTORY AND STATUS	STORAGE RINGS PERFORMANCE
CONSTRUCTION STARTED (date) March 1971 FIRST COLLISIONS, OR GOAL (date) 1975 TOTAL COST OF FACILITY 41.5 MF (October 1970) FUNDED BY National Ministry of Education TOTAL MACHINE STAFF (now) 150 ANNUAL OPERATING BUDGET Not evaluated yet STORAGE RINGS PARAMETERS	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} \hline \textbf{General} \\ \textbf{COLLIDING PARTICLES} & 2(e^+e^-) & \textbf{ENERGY} & 1.8 & \textbf{GeV} \\ \textbf{APPROX. SHAPE} & \textbf{Race trackmensions} & 33 \times 21 & m^2 \\ \hline \textbf{ORBIT: length} & \textbf{94,6m, time} & \textbf{316 ns} \\ \textbf{No. INTERSECTS} & \textbf{2} & \textbf{CROSSING ANGLE} & \textbf{0} \\ \hline \end{array}$	BEAM LIFE, AT 1 A > 5 h A
$\begin{array}{llllllllllllllllllllllllllllllllllll$	RESEARCH PROGRAM APPROX. EXPERIMENTAL AREAm ² Sexperimental intersects NO. EXPERIMENTS/INTERSECT Special RESEARCH EQUIPMENT OR FACILITIES:
Magnet SystemFOCUSING TYPEStrongbend. RAD. H: 3.82. V: 4 mLATTICE ORDER2No. MAGNETS2 × 12 Length (ea)No. QUADS2 × 48 Length (ea)MAX BEND. FIELD16 kG; MAX. GRAD. 1.2 kG/cmOTHER MAGNETS2 × 16 sextupolesTOTAL WEIGHT (tons) Fe800BETATRON OSC. FREQ. v_H 3.5-4.9 v_V AMPL. FUNCT. AT INTERSECT. (H)2 mAcceleration SystemHARMONIC No.8 FREQUENCY25.352MHzNo. TRANSMITTERS2 No. CAVITIESBUNCH TO BUNCH TIME316 nsBUNCH SIZE (L×W×H)300 × 1.6 × 1.8 mm ³ PEAK RF VOLTAGE PER BEAM450 kV (max)MAX RF POWER× 350 kW BEAMSMAX RF POWER× 350 kW BEAMS	TOTAL POWER INSTALLED FOR RESEARCHMW USER GROUPS: in-houseoutside TOTAL RESEARCH STAFF, in-houseoutside ANNUAL RESEARCH BUDGET SCHEDULED RESEARCH TIME, hours/week PLANNED EXTENSIONS OR MODIFICATIONS TO MACHINE
Vacuum System PRESSURE IN RINGS, NO BEAM $< 10^{-9}$ Torr WITH BEAM $< 10^{-8}$ Torr PRESSURE AT INTERSECTIONS Torr PUMPS (no., type, speed) 2×24 Ionic 2×50 Sublimation	 Published Articles Describing Machine Proceedings of the 8th International Conference on High Energy Accelerators, CERN, Geneva (1971)
Other Relevant Parameters or Notable Features	
- Space charge compensation.	
- 2 rings, with two beams in each.	
- One bunch per beam.	
- Possibility of e ⁻ e ⁻ mode with 8 bunches /beam.	

* Université PARIS-SUD Dependent on I.N.2.P.3 (Institut National de Physique Nucléaire et de Physique des Particules). - 45 -

NAME OF STORAGE RINGS ACO	PERSON IN CHARGE P. MARIN
INSTITUTION Lab. Accélérateur Linéaire*'	DATA SUPPLIED BY M. SOMMER
LOCATION ORSAY (France)	DATEFebruary 1974

HISTORY AND STATUS

STORAGE RINGS PERFORMANCE

_

i

HISTORT AND STRIDS	STORAGE RINGS FERFORMANCE
CONSTRUCTION STARTED (date) <u>1962</u> FIRST COLLISIONS, OR GOAL (date) <u>June 1966</u> TOTAL COST OF FACILITY <u>15 MF</u> FUNDED BY <u>National Ministry of Education</u> TOTAL MACHINE STAFF (now) <u>13</u> ANNUAL OPERATING BUDGET <u>0.35 MF + Elect. Co</u> st STORAGE RINGS PARAMETERS General COLLIDING PARTICLES <u>e⁺e⁻</u> ENERG MAX <u>0.54 Gev</u>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
APPROX. SHAPECITCULAT DIMENSIONS $\phi = 7 \text{ m}$ ORBIT: length 22 m, time 73 ns No. INTERSECTS 2 CROSSING ANGLE 0	$\frac{0.30}{10 h} = \frac{10 h}{168 h/wk}$ Scheduled operation (hr/wk) 168 h/wk 3 wk only of 4 "On beam" 75 of scheduled time
Injector System TYPE Linac INJ. ENERGY 0.24 GeVoutPUT 3.10 ⁹ e ⁺ /1µs puls EMITTANCE, for e ⁺ : 6 π mm-mrad FILLING SPEED 0.5 A/hour for e ⁺ TOTAL FILLING TIME 3/4 hour (e ⁺ ,e ⁻)	RESEARCH PROGRAM APPROX. EXPERIMENTAL AREA
Magnet System FOCUSING TYPE Strongpend. RAD. 1.11 m LATTICE ORDER 4	- magnetic detector - 1 synchrotron radiation external beam (LURE) TOTAL POWER INSTALLED FOR RESEARCH <u>1.9</u> USER GROUPS: in-house <u>2</u> outside <u>1</u> TOTAL RESEARCH STAFF, in-house <u>25</u> outside <u>15</u> ANNUAL RESEARCH BUDGET <u>LAL (2.0 MF), LURE</u> (1 MF) SCHEDULED RESEARCH TIME, hours/week <u>135</u>
Acceleration System HARMONIC No. 2 FREQUENCY 27.236 MHz NO. TRANSMITTERS 1 NO. CAVITIES 1 BUNCH TO BUNCH TIME 73 ns BUNCH SIZE (L×W×H) 300 × 1.3 × 1.3 mm ³ at 0 PEAK RF VOLTAGE PER BEAM 17.5 kV at 0.5 GeV MAX RF POWER 10 kW ON BEAMS 0.5 kW	PLANNED EXTENSIONS OR MODIFICATIONS TO MACHINE
Vacuum System PRESSURE IN RINGS, NO BEAM <u>few 10⁻¹⁰</u> Torr WITH BEAM <u>< 10⁻⁹</u> Torr PRESSURE AT INTERSECTIONS <u>4×10^{-10}</u> with beam TO PUMPS (no., type, speed) <u>3 ionic</u> <u>6 sublimation</u> 2 distributed Other Relevant Parameters or Norable Securet	Published Articles Describing Machine - Proceedings of the Dubna Conference (1963) r# Proceedings of the Frascati Conference (1965) - Proceedings of the CERN Conference (1971)
 One bunch mode operation. Possibility of modification of the lattice order in order to obtain higher luminosities. 	
★ UNIVERSITE PARIS-SUD	

Dependent on I.N.2.P.3. (Institut National de Physique Nucléaire et de Physique des Particules).

NAME OF STORAGE RINGS	DORIS
INSTITUTION_	DESY
LOCATION	Hamburg

CONSTRUCTION STARTED (date)	1969
FIRST COLLISIONS, OR GOAL (date).	1974
TOTAL COST OF FACTLITY	10 ⁸ DM
	Government
TOTAL MACHINE STAFF (now)	80
ANNUAL OPERATING BUDGET	

STORAGE RINGS PARAMETERS

General	
---------	--

General	- +	.,		-		
COLLIDING PAR	TICLE <u>e</u>	(e e	. ENERGY	3,0	<u>.</u>	GeV
APPROX. SHAPE.	oval	DIME	NSIONS_	110m	x	<u>55m</u>
ORBIT: length	2x288 m.	time	0.96	use	2	_
No INTERSECT	<u>, 2</u>	CROSSING	ANGLE	2x12	mr	ad
NOT THIERDEOF		_onessand				

Injector System
type 40/400 MeV Linac + Synchrotron
INJ. ENERGY ≤ 2.2 Gey TPUT e :15mA e ⁺ :0,5mA
EMITTANCE, e: 1mmmrad, e+: 5 m mm-mrad
FILLING SPEED e-: 100mA/s e+: 20mA/s
TOTAL FILLING TIME approx. 5 min for 0,9A

Magnet System	
FOCUSING TYPE SEP. ICTEEND. RAD. 12.19 m	
LATTICE ORDER Q/2 0 Q 0 B B 0 0 0/2	5
No. MAGNETS 2×24 Length (ea) $3,19$ m	
No. QUADS 2x56 + 13 ength (ea) 0.6m resp. 1 1	
MAX BEND. FIELD 9,7 kG; MAX. GRAD. 0,9 kG/cm	TOT
OTHER MAGNETS 2x12vert.bend:2x12sext;2x2c	octusi
TOTAL WEIGHT (tons) Fe. 800 t Cu 70 t	TO.
BETATRON OSC. FREQ. Vy 45.5	ANI
AMPL. FUNCT. AT INTERSECT, (H) 0,5m (V) 0,1m	SCI
Acceleration System	PL

HARMONIC No. 480 FREQUENCY 499,67 MHz
NO. TRANSMITTERS 2×3 NO. CAVITIES 2×12
BUNCH TO BUNCH TIME 2 nsec
BUNCH SIZE (LXWXH) 40mmx6,0mmx0,3mm
PFAK RE VOLTAGE PER BEAM 6,5 MV
MAX RF POWER 2x750 KWON BEAMS 2x580 KW

Vacuum System

Vacuum System	1 10-0		Published Articles D
PRESSURE IN RINGS, NO BEAM	$\frac{1 \cdot 10^{-9}}{2 \cdot 10^{-8}}$	Torr	-K.Steffen
WITH BEAM	< 10 ⁻⁹	Torr	-K.Steffen
PUMPS (no., type, speed) 84	ion sput.1	<u>.45</u> 0 1/s	secKerntechn
48 distr.	ion sput.p.	<u>200</u> 0 1/s	sec

Other Relevant Parameters or Notable Features

Double ring with vertical crossing

PERSON IN CHARGE	н.	Schopper	-	
DATA SUPPLIED BY	D.	Degèle.	к.	Steffen
DATE	17.	1.1974		

STORAGE RINGS PERFORMANCE

	ENERGY (GeV) RESOLUTION △E/E (%) LUMINOSITY (cm ⁻² sec ⁻¹) BEAM SIZE, horizontal mm vertical mm CURRENT, PER BEAM	Normal (or Goal) 3 GeV 7×10^{-4} 1032 0.6 0.03 0.9A	Maximum Achieved
	BEAM LIFE, AT 0.9 A SCHEDULED OPERATION (hr/wk) "ON BEAM" % OF	6 h	
n A	RESEARCH PROGRAM APPROX. EXPERIMENTAL AREA NO. EXPERIMENTAL INTERSECTS NO. EXPERIMENTS/INTERSECT SPECIAL RESEARCH EQUIPMENT OR 1.4 m Ø supercondu	$\frac{2 \times 3}{2}$ $\frac{1 - 2}{1 - 2}$ FACILITIES: LICTING SO	00m² lenoid magnet
	of 1.15 m length. 500 tons doublearr $B \cdot l = 18 \text{ K}\Gamma \cdot \text{m}$ ga	B = max = ma	20 KF meter magnets 0,90 m
c	TUTAL POWER INSTALLED FOR RESE TUTAL RESEARCH STAFF, in-house ANNUAL RESEARCH BUDGET SCHEDULED RESEARCH TIME, hours	outside outside outsid	e
	PLANNED EXTENSIONS OR MOD Max. Energy: 2x5,0 Max. Injection end Injection of proto	Difications to GeV ergy: 5,0 ons for e	O MACHINE GeV -p-collisions

Published Articles Describing Machine

-K.Steffen,DESY	Int.Rep	port H/18	(Sept.69)
-K.Steffen,DESY	Report	70/24 (Ju	ıne 70)
/secKerntechnik 12	(1970)	526, 536	

ADONE - 47 ADONE - 47 INSTITUTION Laboratori Naz.del CNEN LOCATION Frascati - Italy	PERSON IN CHARGE DATA SUPPLIED BY DATEFebruary 1974
HISTORY AND STATUS CONSTRUCTION STARTED (date) 1964 FIRST COLLISIONS, OR GOAL (date) 1969 TOTAL COST OF FACILITY \$9 millions FUNDED BY CNEN (2/3); CNR (1/3) TOTAL MACHINE STAFF (now) 54 ANNUAL OPERATING BUDGET \$7 millions STORAGE RINGS PARAMETERS	STORAGE RINGS PERFORMANCE
General COLLIDING PARTICLES <u>e</u> <u>e</u> ENERGY <u>1.5</u> GeV APPROX. SHAPE <u>circular</u> DIMENSIONS <u>16.4m</u> <u>radiu</u> ORBIT: length <u>104</u> m, time <u>35</u> <u>M.S</u> NO. INTERSECTS <u>6</u> CROSSING ANGLE <u>0</u>	BEAM LIFE, AT $1 a \sim 10 h$ SCHEDULED OPERATION (hr/wk) 143 "ON BEAM" 55 z OF SCHEDULED TIME("two beams on" time) RESEARCH PROGRAM
TYPE Linac TYPE Linac INJ. ENERGY 320 MeVoutPut 1A e ⁻ ; 6mA e ⁺ EMITTANCE, $\approx 2 \pi e^-$; $\approx 10\pi e^+$ mm-mrad FILLING SPEED 10 mA/s e ⁻ ; 5 mA/s e ⁺ TOTAL FILLING TIME ~ 20 m	APPROX. EXPERIMENTAL AREA m ² No. EXPERIMENTAL INTERSECTS 1 No. EXPERIMENTS/INTERSECT 1 SPECIAL RESEARCH EQUIPMENT OR FACILITIES:
Magnet System FOCUSING TYPE AG SF PEND. RAD. 5.00 FOCUSING TYPE AG SF PEND. RAD. 5.00 LATTICE ORDER $O/2$ Qf Qd B Qd Qf $O/2$ No. MAGNETS 12 Length (ea) 2.61 m No. QUADS 48 Length (ea) 5.0 MAX BEND. FIELD 10 kG; MAX. GRAD. 5.6 MAX BEND. FIELD 10 kG; MAX. GRAD. 5.6 MAX. GRAD. 5.7 MAX. GRAD. 5.7	TOTAL POWER INSTALLED FOR RESEARCH <u>2.7</u> USER GROUPS: in-howse <u>mixed</u> outside <u>4</u> TOTAL RESEARCH STAFF, in-house <u>21</u> outside <u>34</u> ANNUAL RESEARCH BUDGET <u>average S~.7 mil</u> lions SCHEDULED RESEARCH TIME, hours/week <u>100 average</u> PLANNED EXTENSIONS OR MODIFICATIONS TO MACHINE
HARMONIC No. <u>3</u> FREQUENCY <u>8.568</u> MHz No. TRANSMITTERS <u>4</u> No. CAVITIES <u>2 x 2</u> BUNCH TO BUNCH TIME <u>117 ns</u> BUNCH SIZE (L×W×H) <u>~600 x 3.5 x 2 mm3</u> PEAK RF VOLTAGE PER BEAM <u>160 KV/turn</u> MAX RF POWER <u>190 KW</u> IN BEAMS <u>20 KW</u>	50 MHz RF system (1975)
Vacuum System PRESSURE IN RINGS, NO BEAM $\sim 10^{-10}$ WITH BEAM $\sim 10^{-9}$ Torr PRESSURE AT INTERSECTIONS $\leq 10^{-9}$ PUMPS (no., type, speed) 28×500 lt/s + distributed pumps ($\sim 6\times200$ lt/s Other Relevant Parameters or Notable Features	 Published Articles Describing Machine ADONE Status Report - Proc.of the Int. Conf.on high Energy Acc Dubna (1963) F.Amman et al. Lettere al Nuovo Cimento (1969) Status Report on the e⁺ e⁻ storage ring ADONE - Proc.of the 1971 Particle Acc. Conf Geneva, p. 132

NAME OF STORAG	E RINGS	SPE	<u>AR</u>	
INSTITUTION	Stanford	Lin.	Accel.	Ctr.
	Stanford,	Cal	ifornia,	USA

CONSTRUCTION STARTED (date	<u>August 1970</u>
FIRST COLLISIONS, OR GOAL	(date) April 1972
TOTAL COST OF FACILITY	\$5 million
FUNDED BY	USAEC
TOTAL MACHINE STAFE (now)	44
ANNUAL OPERATING BUDGET	\$1 million

STORAGE RINGS PARAMETERS

General each ENERGYbeam 2.5Gev е COLLIDING PARTICLES____ e APPROX. SHAPE Racetrachimensions 40 x 32 m ORBIT: length 234 m, time per rev 0.78 used NO. INTERSECTS _____ CROSSING ANGLE___ 0

Injector System

TYPE Stanford Linear Accelers	<u>ator</u>
INJ. ENERGY 1.5 GeV DUTPUT 7 mA e+	<u>in 7-n</u> s
EMITTANCE, $\pi \times 1 \text{ mm} \times 0.4$	
FILLING SPEED ~ 10 mA/min	
TOTAL FILLING TIME 20 min for both	beams_

Magnet System

FOCUSING TYPESED fune NO. RAD. 12.7
LATTICE ORDER OFBDBFO
No. MAGNETS 36 B Length (ea) 2.35/1.75 m
No. QUADS 46 Q Length (ea) 0.5
MAX BEND. FIELD 6.5 KG; MAX. GRAD. 0.4 KG/cm
OTHER MAGNETS 8 Int Reg Q, 52 Sext, 4 Oct
TOTAL WEIGHT (tons) Fe - 220 tons Al - 10 tons
BETATRON OSC. FREQ. V. 5.0 - 5.25 5.0 - 5.25
AMPL. FUNCT. AT INTERSECT, (H) 1.25 m (V) 0.05 Val

PERSON IN CHARGE	B. Ric	hter
DATA SUPPLIED BY E. H	Paterson.	G. Fischer
DATE 20 February	7 1974	

STORAGE RINGS PERFORMANCE

		Normal	Maximum
		(or Goal)	Achieved
	ENERGY (GeV)	2.5 Ge	V
	RESOLUTION DE/E (%)	0.06%	
	LUMINOSITY ($cm^{-2} sec^{-1}$) 6.	<u>X 10⁵⁰</u>	<u>at 2.6</u> GeV
	BEAM SIZE, horizontal	<u>3.mm</u>)
	vertica]	<u>0.08 m</u>	<u>h at In</u> t
	CURRENT, PER BEAM	<u>0.25 V</u>	<u> </u>
	BEAM LIFE, AT <u>60 m</u> A	<u>3 hrs</u>	
	and <u>2.5 Ge</u> V		
2	SCHEDULED OPERATION (hrXXX)	4000	
	"ON BEAM"75% OF	SCHEDULED TIM	IE
	RESEARCH PROGRAM		
		reas ea	120
р	ULSE	2	<u></u> m [_]
	No. EXPERIMENTAL INTERSECTS	<u></u>	
	No. EXPERIMENTS/INTERSECT	<u>_</u>	•
	SPECIAL RESEARCH EQUIPMENT OR F	FACILITIES:	
	(1) One large magne	etic dete	ectorwith
	chamber readout	t, shower	r counters,

- spark muon identifier, and time-of-flight system.
- (2) Time-shared on-line data acquisition and remote terminals.

	TOTAL POWER INSTALLED FOR RESEARCH 4.0	_MW
:t	USER GROUPS: in-houseoutside7	
3	TOTAL RESEARCH STAFF, in-house 12outside11	
	ANNUAL RESEARCH BUDGET \$1 million	
ri	Achemical Research TIME, hours / Vear 3.000	

Acceleration System

HARMONIC NO. 40 FREQUENCY 40× 1.28 MHz	
NO. TRANSMITTERS 8 No. CAVITIES 2	
BUNCH TO BUNCH TIME 1 bunch in each beam = 780 ns	3
$E_{\text{BUNCH ST7F}(1 \times W \times H)} = 30 \text{ cm}$	
peak de voi tage der beam 500 kV	
MAX RE POWER 160 KW ON BEAMS 110 KW (typ.)	

 \cap

Vacuum System

		7		
PRESSURE IN	RINGS, NO BEAN	<u>1</u>	Τ	orr (
	WITH BEA	<u>3 X 10 </u>	,,T	orr
PRESSURE AT	INTERSECTIONS	<u>~1 X 10</u>	<u>-9</u>	orr
PUMPS (no.,	type, speed)	20, Ion,	4001/se	с,
		36m Dist	<u> Ton 60</u> 0	∖l/seç

Other Relevant Parameters or Notable Features

Two low-beta interaction regions having 5 meters clear for experimental apparatus. The machine is computer-controlled.

PLANNED EXTENSIONS OR MODIFICATIONS TO MACHINE

Energy increase to 4.0 to 4.5 GeV per beam, scheduled for completion October 1974.

Published Articles Describing Machine

- 1) Colliding Beams Present Status and the SIAC Project, B. Richter, invited paper presented at 1971 Accelerator Conference, Chicago, Illinois, March 1-3, 1971.
- (2) The SLAC Storage Ring Project SPEAR, presented at VIIIth Accelerator Conference, CERN, 1971.

NAME OF	STORAGE RINGS	<u>Tantalu</u>	s I	
INSTITUT	10N	-		
LOCATION	Wisco	nsin	<u> </u>	

E.M. Rowe DATA SUPPLIED BY____ DATE January 21, 1974

E.M. Rowe

of year

FIRST COLLISIONS, OR GOAL (date) February 1968TOTAL COST OF FACILITYENERGY (GeV)FUNDED BY NSF beginning Sept. 1, 1974ENERGY (GeV)FUNDED BY NSF beginning Sept. 1, 1974RESOLUTION $\Delta E/E$ (1)TOTAL MACHINE STAFF (now)12ANNUAL OPERATING BUDGET\$350,000STORAGE RINGS PARAMETERSCURRENT, PER BEAMGeneral20XXXXXXX PARTICLES. electrons ENERGY240GeneralCURRENT, PER BEAMSTORAGE RINGS PARAMETERSCURRENT, PER BEAMGeneral20SORBIT: length9.4m, time3.12STORAGE"ON BEAM"100% of scheduled TIME	
Injector System microtron TYPE	
Magnet SystemFOCUSING TYPE_AG_PEND. RAD65FOCUSING TYPE_AG_PEND. RAD65NO. MAGNETS_8_Length (ea).68NO. QUADS_4_Length (ea).10MAX BEND. FIELD 12.3 KG; MAX. GRAD. 1.2.10MAX BEND. FIELD 12.3 KG; MAX. GRAD. 1.2.10MAX BEND. FIELD 12.3 KG; MAX. GRAD. 1.2.10TOTAL WEIGHT (tons) Fe10COTHER MAGNETS.10TOTAL WEIGHT (tons) Fe10CULL FUNCT. AT INTERSECT. (H).14AMPL. FUNCT. AT INTERSECT. (H).14	try.
Acceleration System HARMONIC No. 1FREQUENCY_31.955MHz NO. TRANSMITTERS_1NO. CAVITIES_1 BUNCH TO BUNCH TIME3.2 x 10 ⁻⁸ sec BUNCH SIZE (L×W×H) variable, 600 x 1.5 x .5 nominal PEAK RF VOLTAGE PER BEAM 20 kV MAX RF POWER_20 kW ON BEAMS	и уеа:
Vacuum System PRESSURE IN RINGS, NO BEAM 5 x 10 ⁻¹⁰ WITH BEAM 2 x 10 ⁻⁹ Torr PRESSURE AT INTERSECTIONS PUMPS (no., type, speed) Torr magnet Torr Torr PRESSURE AT INTERSECTIONS PUMPS (no., type, speed) Torr Torr Torr Torr Torr Torr Torr Torr Torr Torr Torr Torr Torr Torr Vol. 4, pp. 211-227.	'e 3 ,

Other Relevant Parameters or Notable Features

STORAGE RINGS PERFORMANCE

PERSON IN CHARGE

- 49 -

NAME OF STORAGE RINGS	SUPER ADONE
INSTITUTION Laborator	i Nazionali del CNEN
LOCATION Frascati	

STORAGE RINGS PERFORMANCE

Feb. 1974

50 -_

. .

DATE

PERSON IN CHARGE ...

DATA SUPPLIED BY_

CONSTRUCTION STARTED (date) Prel. Project
FIRST COLLISIONS, OR GOAL (date).
TOTAL COST OF FACILITY ~ \$ 27 millions (1973)
FUNDED BY Not Yet Funded
TOTAL MACHINE STAFF (now)

STORAGE RINGS PARAMETERS

General

COLLIDING PARTICLES_	e* e*	ENERGY 10 + 12 GeV
APPPON SHAPE Race	Track DIME	NSTONS Av. rad. 136
OPRIT: Jongth 857	m time	2.86 ms
No. INTERSECTS 2	CROSSING	ANGLE 0

Injector System

Injector System				
TYPE	<u> </u>	+ ADUNE		
TNJ. ENERGY.	1.5 GeV	OUTPUT		
EMITTANCE.	5 RAD	3	VERT	mm-mrad
ETLIING SPEED	8+: ~4	5 mA/m:	e=: ~ 20	
TOTAL FILLING	TIME	~ 1 h		

Magnet System

FOCUSING TYPE S.F. PEND. RAD.	64m	
LATTICE ORDER standard cell: 0/2-	<u>-8-D-0-D-8-F-0/</u>	2
No MAGNETS 48 ± 16 Length (ea)	<u>6.28</u> m	
No DIADS 96 (st.cell) ength (ea)		
MAX BEND FIELD 5.2 KG: MAX. GRAD	. <u>~ 5</u>	
OTHER MAGNETS 40 insert, quads:	sextunoles	
TOTAL HEICHT (tons) Fe ~ 1100	cu ~ 160	_
DETATION OSC EDEO N 9.2	7.2	
BETATION USC. TREQ. 0H 142.2	m (V) .7 m	-
AMPL, FUNCI, AI INIERSEUL, (D). LEASE	مرد می از این از این از ای این از ای این اولی ا	-

Acceleration System

HARMONIC No. 294	FREQUEN	CY	103		MHz
No TRANSMITTERS 5	бNo.	CAVITIE	S	56	
RUNCH TO BUNCH TIME	one hund	h) 2.	ير 86.	<u>s </u>	_
	754 34	6	at	X-ind	
BUNCH SIZE (LXWXH)		20 MV		y	
PEAK RE VOLTAGE PER B	ILAM	<u>20 111</u>	4 1	NU	
MAX RF POWER	0N	BEAMS		<u>r10</u>	

Vacuum System

Vacuum System	1-10
PRESSURE IN RINGS, NO BEAM	TOTT
WITH BEAM	~ 10 ⁻⁹ Torr
DESCRIPT AT INTERSECTIONS	~ 10-10 Tory
PUMPS (no type sneed)	120 x 200 1/s +
distributed pumps	$(\sim 64 \times 6000 \ 1/s)$

Other Relevant Parameters or Notable Features

	XIOCONIX XIAXUAU (or Goal) XXXVAU
ENERGY (GeV)	10 • 12
RESOLUTION DE/E (%)	$\sim 10^{-3}$
LUMINOSITY (cm ⁻² sec ⁻¹)	<u>~ 10³²</u>
BEAM SIZE, horizontal	<u>.6 mm</u>
vertical	3 ==
CURRENT, PER BEAM	200 m max
BEAM LIFE, AT	~9h
A	
SCHEDULED OPERATION (hr/wk)	
"ON BEAM" % OF	SCHEDULED TIME

S. TAZZARI

RESEARCH PROGRAM

APPROX. EXPERIMENTAL AREA	, m²
NO. EXPERIMENTAL INTERSECTS 2)
No. EXPERIMENTS/INTERSECT	
SPECIAL RESEARCH EQUIPMENT OR FACILITIES	:

TOTAL POWER INSTALLED FOR RESEARCH ~ 5	_MW
USER GROUPS: in-houseoutside	
TOTAL RESEARCH STAFF, in-houseoutside	
ANNUAL RESEARCH BUDGET	
SCHEDULED RESEARCH TIME, hours/week	

PLANNED EXTENSIONS OR MODIFICATIONS TO MACHINE

Published Articles Describing Machine

SUPERADONE

(Special Document of INFN & CNEN)

- 5 Synchrotron Radiation Sourc		
where of the storage ring)	BEDSON IN CHADGE PROFESSOR A. ASHMORE	
INCLUTION DARESBURY LABORATORY	DATA SUPPLIED BY D.J. THOMPSON	
DARESBURY, NR. WARRINGTON, U.K.	DATE 22ND JANUARY 1974	
HISTORY AND STATUS	ACCELERATOR PERFORMANCE	
CONSTRUCTION STARTED (date) Not yet funded	Normal Maximum	
FIRST BEAM OBTAINED, OR GOAL (date) December 1978		
TOTAL COST OF FACILITY LZM approx (capital)		
FUNDED BY Science Research Council	REPET, RATE (pulse/sec)	
TOTAL ACCELERATOR STAFF (now)	Storage time 8 hours at full inten	eitw
ANNUAL OPERATING BUDGET	DITY FACTOR, macroscopic (1)	SILY
ACCELERATOR PARAMETERS	INTERNAL BEAM (part/pulse)	
Physical Dimensions (Mean)	(part/sec)	
RING DIAM. 30.1 m; Tunnel sectm	CURRENT (mA) 1000	
MAGNETm; Mag. Gap6.5×_vert_cm	BEAM EMITTANCE (mm-mrad)	
"DONUT <u>19 4.5</u> cm; Aperture <u>15 × 4</u> cm	SCHEDULED OPERATION (hr/wk)	
Interne Surren	"ON BEAM"% OF SCHEDULED TIME	
TYDE 10 MeV linac + 600 MeV synchrotro	In Some Typical External and Secondary Beams	
OUTPUT $(max)10^{10}e^{-}/pulse at 600 MeV_$	PARTICLE FLUX BEAM AREA ENERGY $\Delta E/E$	
BEAM EMITTANCE mm-mrad	(part/sec) (cm²) (GeV) (%)	
INJECTION PERIODO.315 usec, or turns	1) Synchrotron Radiation, characteristic	
INFLECTOR TYPE Pulsed magnetic, Multicycle	wavelength 3.9 Å. 5×10^{13} photons (s/mr in 0.17 handwidth)	at no alc
Magnet System	2×10^{12} """"""""""""""""""""""""""""""""""""	at peak
FOCUSING TYPE Separated Function		at 4000 Å
No. MAG. UNITS <u>16</u> Length (ea) <u>dipoles 2.18</u> m	2) Test beam from synchrotron injector	AL 4000 A
STRAIGHT SECT. <u>16</u> Total S.S. Length <u>60</u> m		
FOCUSING ORDER FBODBO		
BETATRON OSC. FREQ. VH Both in vyrange 2 to 3.	5 RESEARCH PROGRAM	
FIELD, AT INJ. <u>3600</u> G, at max <u>12</u> kG	TOTAL EXPERIMENTAL AREA m ²	
RISE TIMEsec; Flat-top timesec	BEAM LINES TO <u>~ 20</u> Stations	
MAG. WEIGHT (tons) Fe, Cu, Cu	STATIONS SERVED AT SAME TIME <u>All</u>	
POWER INPUT (MW) PEAK MEAN MEAN	BEAM SEPARATORS SPECTROMETERS	
Acceleration System	ON-LINE COMPUTERS WITH Inputs	
HARMONIC No. 135 No. Cavities 4	BUBBLE CHAMBERS, in-houseUsers'	
RF RANGE	TOTAL POWER INSTALLED FOR RESEARCHMW	
ORBIT FREQ. <u>3.17 MHz</u>	No. USER GROUPS: in-houseoutside	
ENERGY GAIN	TOTAL RESEARCH STAFF, in-house outside	
RADIATION LOSS 400 keV/turn	ANNUAL RESEARCH BUDGET, in-house	
RF POWER INPUT (KW) PEAK 430	SCHEDULED RESEARCH TIME, hours/week	
Other Relevant Parameters or Notable Features	RECENT IMPROVEMENTS OR MODIFICATIONS TO MACHINE	

İ

Ì

This electron storage ring is proposed as a dedicated source of synchrotron radiation at Daresbury Laboratory after the closure of NINA.

Published Articles Describing Machine

Daresbury Laboratory Internal Technical Memorandum T/M 105 (D.J. Thompson).

- 52 -	
--------	--

INSTITUTION Rutherford and Daresbury LOCATION Ruth.Lab., Chilton, Didcot, Berks.,UK	NAME OF STORAGE RINGS.	EPI	<u> </u>	
LOCATION Ruth.Lab., Chilton, Didcot, Berks.,UK	INSTITUTION Rutherf	ford and	Daresbury	r
	LOCATION Ruth.Lab.,	Chilton,	Didcot,	Berks.,UK

CONSTRUCTION STARTED (d)	ate) <u>1976</u>
EIDST COLLISIONS OR GO	Al (date) 1981
	~ £20M (excl.staff costs)
TOTAL COST OF FALILITY	accorch Council IIV
FUNDED BY Science Re	esearch council, ok
TOTAL MACHINE STAFF (nor	w)
ANNUAL OPERATING BUDGET	

STORAGE RINGS PARAMETERS

General	<u>+</u>	14
COLLIDING PARTICLES.	ENEN	ERGYGeV
APPROX SHAPE Symm	. race- DIMENSI	ONS 349m radius
OPRIT: Length 2200	m time 7.33	10 ⁻⁶ secs
w wrencere 4	CDOCKING AN	Collinear
NO. INTERSECTS	CR035114G AM	IUL

Injector System

TYPE	Linacs	; 🕂 Bo	oster Syn	chro	tron	
101C -	ENERGY	5 GeV	OUTPUT_	109	e [±] /puls	se
EMITT	ANCE,	3 _П (Н)	π(V)			.mm-mrad
FILLI	NG SPEED	~ 2	x 109 e+	or e	-/sec	<u> </u>
TOTAL	FILLING	TIME	<1000 se	c		

Magnet System

lagner system		
FOCUSING TYPE Sep.FN PEND. RAD	171.89	m
LATTICE ORDER(14, FBDB) + (FODBOFDO)FDO Insert	<u>+ Ins</u> er
No MAGNETS 240 Length (ea)	4.5	m
No DUADS $132 + 32$ [ength (ea)]	1.0	m
MAX BEND FIELD 4.27 KG: MAX. GRAD	0.95	_kG/cm
OTHER MAGNETS 160 sext, 4 oct, 4	sk.quad	
TOTAL WEICHT (tons) Fe	Cu	
RETAILORN OSC ERED 19.1/18.1/15	1 19.1/18	3.1/15.1
BETATION USC. THEU. OH -4-1-	2m (v) •1-	- Зш
AMPL. FUNCT. AT INTERSECT, (H)		

Acceleration System

HARMONIC No. 288	O FREQUENCY	394	MHz
	16 No CAVI	TIFS 16 x 10	
DUNCH TO BUNCH TIM	4F 1.83 10-6	sec	
	70mm x 1.2mm	x 0.3mm at X	n _
DEAK DE VOLTAGE DI	ED BEAM 30 MV	7	
MAY DE DOWER 2-2.	6 MW ON BEAMS	2 x 0.7 MW	

Vacuum System

Vacuum System	
PRESSURE IN RINGS, NO BEAM 10 -	Torr
WITH BEAM	Torr
PRESSURE AT INTERSECTIONS <	Torr
PUMPS (no., type, speed)	

Other Relevant Parameters or Notable Features

Single ring, long insertions.

PERSON IN CHARGE	D A Gr	ay
DATA SUPPLIED BY	G H Ree	es
DATE	January 19	74
UA1C		

STORAGE RINGS PERFORMANCE

	Normal (cr Goal)	Max1mmm Achieved
ENERGY (GeV)		
RESOLUTION DE/E (%)		
LUMINOSITY (cm ⁻² sec ⁻¹)		
BEAM SIZE, horizontal	·	
vertical		
CURRENT, PER BEAM		
		_
BEAM LIFE, AT		<u></u>
A		
SCHEDULED OPERATION (hr/wk)		
"ON BEAM"% OF	SCHEDULED TIM	E

RESEARCH PROGRAM

APPROX. EXPERIMENTAL AREA	m ²
No EXPERIMENTAL INTERSECTS.	4
	1
SPECIAL RESEARCH EQUIPMENT OR	FACILITIES:

t Reversed)

TOTAL POWER INSTALLED FOR RESEARCH	1
USER GROUPS: in-houseoutside	
TOTAL RESEARCH STAFF, in-houseoutside	-
ANNUAL RESEARCH BUDGET	-
SCHEDULED RESEARCH TIME, hours/week	-

PLANNED EXTENSIONS OR MODIFICATIONS TO MACHINE

Published Articles Describing Machine

- 1. Series of R.L. internal reports EPIC/MC/1-40 (1973/74)
- 2. A description is to be given by G H Rees in the 1974 International Accelerator Conference Proceedings.

Sup	erconducting Stretcher
NAME OF MACHINE Rin.	g (ZGS-SSR)
INSTITUTION Argo	nne National Laboratory
LOCATION Argonne	, Illinois USA

PERSON IN CHARGE	Ronald L. Martin
DATA SUPPLIED BY	Edwin A. Crosbie
DATE	February 1974

Normal

 12°

dc

100

 10^{13}

Variable

ENERGY

 ± 0.01

(Goal)

Maximum

Achieved

∆E/E

ACCELERATOR PERFORMANCE

ENERGY (GeV)

PULSE WIDTH

RESOLUTION DE/E (%)

REPET. RATE (pulse/sec)

DUTY FACTOR, macroscopic (%)

(part/sec)

BEAM"_____% OF SCHEDULED TIME

INTERNAL BEAM (part/pulse)

HISTORY AND STATUS

CONSTRUCTION STARTED (d	late) January 1976
CIDET DEAM OPTAINED (C	GOAL (data) January 1978
FIRST BEAM UDIATHED, OR	C/ M
TOTAL COST OF FACILITY	<u> </u>
FUNDED BY US AEC	(proposed)
TOTAL ACCELERATOR STAFF	(now)
ANNUAL OPERATING BUDGET	í

ACCELERATOR PARAMETERS

Physical Dimensions (Mean)	(part/sec) Valia
RING DIAM. 63.6.6m; Tunnel sect. ZGS ring building	$CURRENT (mA) = \frac{250}{255}$
MAGNET <u>46diam_m; Mag. GaplO diam_</u> cm	BEAM EMITTANCE (mm-mrad) 25π
"DONUT' cm; Aperture 9 diam_cm	SCHEDULED OPERATION (hr/wk)
· · · · · · · · · · · · · · · · · · ·	"ON BEAM"% OF SCHEDULED
Injector System TYPEZGS	Some Typical External and Secondary Beams PARTICLE FLUX BEAM AREA EN (part/sec) (cm ²) (See Zero Gradient Synch
Magnet System FOCUSING TYPE_Separated Function No. MAG. UNITS_24_Length (ea)6.25_m STRAIGHT SECT. 6.25_Total S.S. Lengthm FOCUSING ORDER_FODO	
BETATRON OSC. FREQ. vy 5.3-5.1 vy 5.26	RESEARCH PROGRAM

FODO
FOCUSING ORDER 5 2 5 1 5 26
BETATRON OSC. FREQ. VH J.J-J-L-VV J.20
FIELD, AT INJG, at maxKG
RISE TIMEsec; Flat-top timesec
MAG. WEIGHT (tons) Fe, Cu, POWER INPUT (MW) PEAK 0.3 MEAN 0.3
Acceleration System
HARMONIC NoNO. Cavities

1

<u>5 MHz</u>

_keV/turn

(part/sec) (cm²) (GeV) See Zero Gradient Synchrotre	(%) Sn
	<u></u>
RESEARCH PROGRAM	
TOTAL EXPERIMENTAL AREA	m ²
BEAM LINES TO	_Stations
STATIONS SERVED AT SAME TIME	
BEAM SEPARATORS SPECTROMETERS	<u> </u>
ON-LINE COMPUTERS WITH	Inputs
BUBBLE CHAMBERS, in-houseUsers'	
TOTAL POWER INSTALLED FOR RESEARCH	MW
No. USER GROUPS: in-houseoutside	
TOTAL RESEARCH STAFF, in-house outside.	
ANNUAL RESEARCH BUDGET, in-house	

Other Relevant Parameters or Notable Features

RECENT IMPROVEMENTS OR MODIFICATIONS TO MACHINE

SCHEDULED RESEARCH TIME, hours/week____

Published Articles Describing Machine

RF RANGE ...

ORBIT FREQ. ENERGY GAIN_

RADIATION LOSS_

RF POWER INPUT (KW) PEAK_

-	54	_
---	----	---

NAME OF STORAGE RINGS ISABELLE INSTITUTION Brookhaven National Lab. Upton, New York LOCATION_

HISTORY AND STATUS IN	design stage
	1976
CONSTRUCTION STARTED (date)	1001
FIRST COLLISIONS, OR GOAL (da	te) <u>1981</u>
TOTAL COST OF FACILITY	
FUNDED BY	U.S. AEC
TOTAL MACHINE STAFF (now)	
ANNUAL OPERATING BUDGET	

STORAGE RINGS PARAMETERS

LATTICE ORDER QBB QBB

MAX BEND. FIELD 40 KG; MAX. GRAD. 6.7

General

General	nn	200	า	
COLLIDING PARTICLES	<u>h-h</u>	ENERGY 200	GeV	
APPROX. SHAPE CITCU	ilar _{DIME}	NSIONS 428	<u>m radi</u> u	Ş
ORBIT: length 2690)_m, time9	usec		
No. INTERSECTS 4	CROSSING	ANGLE U ÷	6 mrad	
Injector System TYPE Synchrotic Construction System	on (AGS	28.5 Ge	J	
EMITTANCE, 0.4 TT			mm-mrad	
FILLING SPEED 250	AGS pul	ses		
TOTAL FILLING TIME	60 minu	ites		
Magnet System FOCUSING TYPE AG	EEND. RAD	266	n	

_Length (ea) <u>4.25</u>

_Length (ea) 1.30

_kG/cm

19.4

6.7

R. R. Rau PERSON IN CHARGE Hahn н. DATA SUPPLIED BY. 1974 January 18 DATE.

STORAGE RINGS PERFORMANCE

	Normal (or Goal)	Maximum Achieved
ENERGY (GeV)	200	. <u></u>
RESOLUTION DE/E (%)	$\frac{0.3}{22}$	
LUMINOSITY (cm ⁻² sec ⁻¹)	$\frac{1033}{1000}$	
BEAM SIZE, horizontal	<u>0.6 mm</u>	
vertical	<u>0.4 mm</u>	
CURRENT, PER BEAM	<u>10 A</u>	
BEAM LIFE, AT A		
SCHEDULED OPERATION (hr/wk)		
"ON BEAM"% OF	SCHEDULED TIM	E
RESEARCH PROGRAM	7200	m
	4	

APT	WA. EAPERIMENTAL ANER
No.	EXPERIMENTAL INTERSECTS4
No.	EXPERIMENTS/INTERSECT

SPECIAL RESEARCH EQUIPMENT OR FACILITIES:

TOTAL POWER INSTALLED FOR RESEARCH	M
USER GROUPS: in-houseoutside	
TOTAL RESEARCH STAFF, in-houseoutside	
ANNUAL RESEARCH BUDGET	
SCHEDULED RESEARCH TIME, hours/week	

PLANNED EXTENSIONS OR MODIFICATIONS TO MACHINE

15 GeV electron ring

Published Articles Describing Machine

J.P. Blewett, Proc. 8th Int. Conf. High-Energy Accelerators, CERN, 1971, p. 501.

F.E. Mills, IEEE Trans. NS-20, No. 3, 1036 (1973).

R.R. Rau, Comments Nucl. & Part. Phys. (to be published).

Acceleration System

BETATRON OSC. FREQ. VH -

AMPL. FUNCT. AT INTERSECT, (H) 2.2

NO. MAGNETS 256

No. QUADS 96

OTHER MAGNETS _ TOTAL WEIGHT (tons) Fe ...

HARMONIC NOFREQUENCYU.ZZ3MH	z
NO. TRANSMITTERS 1/ring No. CAVITIES 1/ring	_
BUNCH TO BUNCH TIME 4.5 USEC	
BUNCH SIZE (L×W×H) 600m x 8mm x 3mm	
PEAK RE VOLTAGE PER BEAM 40 kV	
MAX RE POWER 550 KW ON BEAMS 180 KW	
10	
Vacuum System	

23.4

Vacuum oystem		. 10 **	
PRESSURE IN RINGS, I	O BEAM	\$ 10	Torr
M1.	ГН ВЕАМ		Torr
PRESSURE AT INTERSE	CTIONS	× 10 ^{−11}	Torr
PHMPS (no., type, s	peed)	sputter	ion
town (not s of bot of	···· ,	'i subli	imation

Other Relevant Parameters or Notable Features

Superconducting magnets

	- 5	5 - J. Ree	s, T. Elioff	
	NAME OF STORAGE RINGS	PERSON IN CHARGE	R. H. Helm	
		DATA SUPPLIED BT		
	HISTORY AND STATUS	STORAGE RINGS PERFORMANC	ĴĒ	
	CONSTRUCTION STARTED (date) OCL. 75 (proposed))	Normal Maximum (or Goal) Achieved	
	FIRST COLLISIONS, OR GOAL (date) 1979	ENERGY (GeV)	<u> </u>	
	TOTAL COST OF FACILITY SOUM	RESOLUTION DE/E (%)	0.1	
	FUNDED BY U.S.A.E.C.	LUMINOSITY (cm ² sec ⁻¹)	10 ³²	@15 GeV
	TOTAL MACHINE STAFF (now)	BEAM SIZE, horizontal	1.2 mm	
	ANNUAL OPERATING BUDGET	vertical	0.06mm	
	STORAGE RINGS PARAMETERS	CURRENT, PER BEAM e	100 mA	
	COLLIDING PARTICLES e e ENERGY 5 to 15 Gev	BEAM LIFE, AT <u>0.1</u>	A > 2 hr	
	APPROX. SHAPE <u>ITEXAGOIL</u> DIMENSIONS 700 m diam.		A	•
	ORBIT: length_ <u>ZIO7</u> m, time_ <u>7.25</u> <u>µSEC</u> No. INTERSECTS_ <u>6</u> CROSSING ANGLE0	"ON BEAM"% C	OF SCHEDULED TIME	•
	Injector System	RESEARCH PROGRAM		
	$\frac{1}{100} \frac{10-15 \text{GeV}}{10-15 \text{GeV}} \frac{10-15 \text{GeV}}{1000 \text{GeV}} \frac{10-15 \text{GeV}}{10-15 G$	APPROX. EXPERIMENTAL AREA 5	<u>areas; 100-200</u> m [:] 6*	2
	EMITTANCE $\pi \times 10^{-1}$ mm-mrad	NG. EXPERIMENTAL INTERSECTS		•
	FILLING SPEED .17 to .1 mA/sec, ea. beam	SDECTAL DESEADON FOUTPMENT OF	R FACTUITTIES:	•
	TOTAL FILLING TIME 10 to 15 min., both beams	*5 intersection	ns for HE. Phys	sics
	Magnet System	1 intersection	n for Accel. Phys	sics Studies
	FOCUSING TYPESTRONG PEND. RAD. 170			
	LATTICE ORDER(F/2)BBDBB(F/2) cel1			
	No. MAGNETSLength (ea)5.56m			
	No. QUADSQLength (ea)Q_78m			
15 GeV	MAX BEND. FIELD 2.94 KG; MAX. GRAD. 0.80 KG/cm	TOTAL POWER INSTALLED FOR RE	SEARCHM	Ŵ
	OTHER MAGNETS 48 str.sect.quads;84 sextup	O USER GROUPS: in-house	outside	-
	TOTAL WEIGHT (tons) Fe 3100 A1 . 130	TOTAL RESEARCH STAFF, in-hou	seoutside	-
	BETATRON OSC. FREQ. $v_{\rm H} \frac{12 \text{ to } 22}{5 \text{ m}} \frac{12 \text{ to } 22}{5 \text{ m}}$	ANNUAL RESEARCH BUDGET		-
Nominal	AMPL. FUNCT. AT INTERSECT, (H) -5 m (V) -0.2 m	SCHEDULED RESEARCH TIME, hou	irs/week	_
	Acceleration System	PLANNED EXTENSIONS OR M	ODIFICATIONS TO MACHINE	coton ring for
	HARMUNIC NO REQUENCI	1. Addition of st	αperconducting p	locon ring for
	NO. TRANSMITTERSNO. CATTLES	200 GeV p of 0	ed alastron ring	
al5 GeV	BUNCH TO BUNCH THE $46 \times 2 \times 1$ mm rms	Z. Addition of Z	ild election ling	•
a15 GeV	DEAK DE VOLTAGE PER BEAM 44 MV			
-	MAY OF POWER 7.2 MW ON BEAMS 5 MW			
		Published Articles Describing Ma	achine	
	PRESSURE IN RINGS, NO BEAM $<10^{-9}$ Torr	1. "The PEP Ele	ctron-Positron R:	ing", J. Rees,
	WITH BEAM $\leq 2.5 \times 10^{-8}$ Torr	to be presen	ted at IXth Inte:	rnational Accelera
	PRESSURE AT INTERSECTIONS 5×10^{-9} Torr	tor Conferen	ce. STAC. 1974.	
	PUMPS (no., type, speed) 192, Distrib, 400 L/	sec;	,, -	
	<u>96, Ion, 100 [/</u> sec(holding);		•
	120, Ion, 260 \$\mathcal{L}\$/sec(Other Relevant Parameters or Notable Features	I.R.)		
		2. "Preliminary	Design Considera	tions for the
		PEP Lattice",	R. H. Helm, and]	M. J. Lee, to
		be published	in Proceedings o	i IXth Int. Acc.
		Conf., SLAC,	1974.	

NAME OF STORAGE RINGS	Tantalus II
INSTITUTION	
LOCATION Wisco	onsin

E January 21. 1974 DATE

E. M. Rowe

. M. Rowe

Normal

(or Goal)

100 mA

STORAGE RINGS PERFORMANCE

PERSON IN CHARGE .

DATA SUPPLIED BY_

- 56 -

Design KANNAKAN STARTED (date) January 1971	-
FIRST COLLISIONS, OR GOAL (date) 52.5×10^6 est.	ENERGY (GeV)
FUNDED BY	RESOLUTION AE/E (%)
TOTAL MACHINE STAFF (now)	BEAM SIZE, horizontal
STORAGE BINGS PARAMETERS	vertical
	CORRENT, FER DEAM

General XXXXXXX PARTICLES electrons ENERGY 1.76 GeV APPROX. SHAPE Race Track IMENSIONS 10.9 x 13.1 m ORBIT: length 82 m, time 2.73 x 10-7 NO. INTERSECTS_____CROSSING ANGLE_

Sucrem

HISTORY AND STATUS

injector system
TYPE see below
INJ. ENERGY 44 MeV OUTPUT 3 x 1011/pulse
EMITTANCE, 2 TT x .5 TTmmm-mrad
FILLING SPEED single pulse, multiturn
TOTAL FILLING TIME
Magnet System FOCUSING TYPE AG DEND. RAD. 4.5 m LATTICE ORDER $0/2$ DFD $0/2$
No. MAGNETSLength (ea)m
No. QUADS 24 Length (ea) .20 m
MAX BEND. FIELD 12.3 KG; MAX. GRAD. 1.2 KG/cm
OTHER MAGNETS 4 sextupoles
TOTAL WEIGHT (tons) Fe. 100 Cu. 7.5
BETATRON OSC. FRED. V. 2.18 V. 2.14
AMPL. FUNCT. AT INTERSECT, (H) (V)
Acceleration System HARMONIC No. 9 FREQUENCY 33 MHz
NO. TRANSMITTERS_1NO. CAVILLES_1
BUNCH TO BUNCH TIME 3 x 10-8
BUNCH SIZE (L×W×H)

250 kV

 1×10^{-9}

<u>5 x 1</u>0-9

internal, 800

per magnet

ON BEAMS

60 kW

Torr

Torr

Torr

l/sec

BEAM LIFE, AT SCHEDULED OPERATION (hr/wk) _% OF SCHEDULED TIME "ON BEAM" RESEARCH PROGRAM 1800

APPF	ROX.	EXPERIM	IENTAL	AREA	 1800	 m²
No.	EXPI	RIMENTA	AL INTI	ERSECTS	 	
No.	EXPI	ERIMENTS	S/INTE	RSECT	 	

SPECIAL RESEARCH EQUIPMENT OR FACILITIES:

This storage ring is designed to be used exclusively as a synchrotron radiation source. Sixteen beam ports are planned initially. Several photon beam lines may be served by each port.

Maximum

Achieved

TOTAL POWER INSTALLED FOR RESEARCH	4
USER GROUPS: in-houseoutside	-
TOTAL RESEARCH STAFF, in-houseoutside	
ANNUAL RESEARCH BUDGET	<u> </u>
SCHEDULED RESEARCH TIME, hours/week	

PLANNED EXTENSIONS OR MODIFICATIONS TO MACHINE

Published Articles Describing Machine

Tantalus II: An Electron Storage Ring for Vacuum Ultraviolet Research. Ednor Rowe. Proceedings of the Brookhaven Synchrotron Radiation Study Symposium BNL 50381, pp. 1-27, June 1973.

Other Relevant Parameters or Notable Features

WITH BEAM

PEAK RF VOLTAGE PER BEAM_ MAX RF POWER 100 kW

PRESSURE IN RINGS, NO BEAM

PRESSURE AT INTERSECTIONS

PUMPS (no., type, speed)

Vacuum System

Injector machine would be a 44 MeV microtron initially, as experimental program needs lead to increased stored beam current, Tantalus I would be installed as a booster to raise the injection energy to 240 MeV.

