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ABSTRACT 

We discuss some aspects of hadron-hadron scattering in the deep region. 

The deep region can be very roughly characterized as the kinematic region 

which involves large momentum transfers at high energies. Using ideas related 

to Feynman’s parton model, we derive a formula for the average multiplicity of 

an inclusive or semi-inclusive experiment in which at least one final-state 

particle is detected with a large transverse momentum, and we show how the 

average multiplicities in these experiments are related to average multiplicities 

in other high energy reactions. We then turn to a discussion of the relationship 

between the deep and Regge regions in 2 -. 2 hadronic amplitudes. An integral 

equation, based on t-channel iterations of two-particle irreducibIe kernels is 

derived. We show how these graphs generate Regge poles and how their tra- 

jectories are connected to the deep scattering Born term. Physical implications 

of our procedure are then discussed. Next, we generalize our approach to in- 

clude coupled channel problems. We then show how to include the effects of 

signature in the scheme, and we end with some speculations about the physical 

interpretation of Harari-Rosner duality diagrams and the dynamical origin of 

the Pomeron pole. 
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CHAPTER I 

INTRODUCTION 

One of the most prominent and general features of high energy hadron- 

hadron scattering is the fact that the transverse momenta of the final state par- 

ticles are severly limited. This observation applies both to elastic and in- 

elastic reactions, and holds with only minor modifications over a large range of 

energies. For example, a,hadron-hadron elastic cross section is typically five 

to ten orders of magnitude smaller at It I N 1 GeV then it is at 1 t / = 0. 

This kinematic region (high s, small it I) may be called the Regge region 

since hadronic events populating this region are often described by the exchange 

of Regge trajectories which correspond to singularities in the complex angular 

momentum plane. From a field-theoretic point of view, the origin of these 

singularities is not clear, but the common wisdom is that the trajectories which 

dominate the Regge region arise from “coherent” effects in which many differ- 

ent T-products must be added together to produce Regge behavior. The simplest 

example of this is summing the infinite set of ordinary ladder graphs in, say, 

(p3-theory to produce a moving Regge pole. 

While most hadronic events occupy the Regge region, an important few lie 

outside this domain. They are important because unlike the Regge dominated 

events, these deep events presumably do not require coherent contributions 

from many Feynman graphs. This region is called the deep region because the 

large momentum transfers involved probe small distances or impact parameters, 

and allow us to see more of the detailed structure of the hadrons. Of course, all 

these words are reminiscent of statements made about inelastic lepton-hadron 

scattering in the Bjorken limit, and indeed, many of the intuitions developed by 

physicists for that process can be applied to deep hadron-hadron scattering. 
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In this work, we want to investigate some aspects of the deep region in 

hadron-hadron scattering. We shall treat two rather different problems. In 

Chapter II, we derive a formula for the average multiplicity in an inclusive or 

semi-inclusive experiment in which at least one final-state hadron is detected 

with a large transverse momentum. The basis of the derivation is a parton 

model with direct parton-parton scattering, although the final result may well 

be more general. In Chapter III we turn to exclusive hadronic reactions - in 

particular, 2 -2 amplitudes - and discuss how the deep region is related to 

the Regge region. After a brief introduction (section IILA), we derive and 

examine an integral equation which Reggeizes deep scattering. This equation is 

based on t-channel iterations of an irreducible kernel and can be used to see how 

deep scattering joins smoothly onto the Regge region. Furthermore, the role 

played by coherence effects in near forward scattering are especially clear in 

this approach. All this is done in section III. B. In section III. C, we generalize 

the equation derived in section III. B to include coupled channel problems in which 

more than one kind of hadron is allowed to participate in the scattering ampli- 

tudes. We show that in order to preserve the factorization property of Regge 

pole residues we must, in general, introduce extra poles into the description of 

the amplitudes, the number of poles being proportional to the dimensionality of 

the relevant channel space. Chapter III ends with section III. D in which, after 

quick reviews of duality diagrams and the parton-interchange theory of deep 

scattering, we show how to include signature in our Reggeization scheme. We 

then proceed to discuss the relationship between duality diagrams and parton- 

interchange diagrams, as well as some ideas and speculations about the origin 

of the Pomeron pole. Finally, in Chapter IV, we present some conclusions 

along with a summary of what we have learned. 
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CHAPTER II 

MULTIPLICITIES IN DEEP HADRON-HADRON SCATTERING 

The ultimate goal of this section is to derive a formula which describes 

the average number of particles produced in a high-energy hadron-hadron col- 

lision when at least one particle is observed with a large transverse momentum. 

Our discussion will be based largely on ideas of the Feynman parton model and 

we shall draw heavily on the work which others have done in elaborating and 

applying these ideas. As we go along, the reader may well feel some discom- 

fort at the evident lack of rigour in our arguments. We therefore offer our 

apologies now and disclaim any responsibility for the tearing of hair and the 

rending of garments which may result from one’s participation in these pages. 

Those with weak hearts are advised to skip to Chapter III where they may rest 

peacefully in the bosom of mathematical formulae. 

Let us begin, then, with a review of some ideas about multiplicities in var- 

ious high energy processes. Specifically, we will need to discuss multiplicities 

in ordinary hadron-hadron scattering, e + - e- annihilation, and deep inelastic 

lepton-production. This is necessary because our formula for deep h-h (h is a 

hadron) multiplicities involves terms related to these other processes. Let us 

first turn to ordinary h-h multiplicities. 

It is a well-established phenomenological observation that in high energy 

h-h collisions final state particles generally have limited transverse m0menta.I’ ’ 

That is, the great majority of events in h-h interactions yield particles with 

IpIl 24 GeV. By ordinary h-h events, we mean just these events. Of course, 

the cutoff at -3 GeV is approximate only - say within a factor of two - and, in 

any case, may not be entirely energy independent. At the present time we do 

not wish to take a firm stand on the exact condition which distinguishes the 
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ordinary from the deep scattering regions. This will be discussed more fully 

in Chapter III (p. 57). For the time being, however, it will be sufficient to 

rely on the vague condition given above. We also note that since events which 

have a particle with large 1 pI i are so rare, it is probably not necessary from 

an experimental point of view to distinguish between the average multiplicity of 

ordinary h-h events, and the average multiplicity of all h-h collisions for a 

given pair of initial state particles. 

The result we seek for ordinary h-h scattering can be obtained from many 
. 

different sets of assumptions;’ however, to put the reader in the right frame of 

mind, we shall approach it from Feynman’s point of view. 3,495 Consider a h-h 

collision in the center of mass with the hadrons moving along the z-axis. At 

high energies, the hadron, which is an extended object, or rather, has a field 

(or fields) associated with it which have spatial extent, gets Lorentz contracted 

along its direction of motion. As s - ~0, the distribution of field energy in z 

becomes a h-function. Since the Fourier transform of a 6-function is a con- 

stant, we are led to expect a constant density of energy per unit interval in p,. 

Thus, the density of field quanta must be m dpZ/E. Now, since pI is limited 

for the final state particles in a h-h collision, we make the assumption that it is 

limited for the field quanta or constituents also. This is reasonable if one re- 

members that the Lorentz contraction takes place only in the direction of motion, 

SO the transverse degrees of freedom are unaffected. If we plot the distribution 

of constituents in momentum space for the two colliding hadrons, we get a pic- 

ture like that of Fig. (1). The horizontal axis, instead of p, is rapidity defined 

as y = 4 .P.n[ (E+p,) / (E - pz)] .’ The distribution for each hadron is flat in rapid- 

ity except near x = 0, Al, where x G 2p,/<s. We may therefore picture a fast 
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FIG. 1--Parton distribution immediately after an ordinary 
hadron-hadron collision. 
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moving hadron as a bag of field quanta, i, moving mostly in the same direction, 

and distributed more or less as dEi/E.. 1 

The next step in the scattering process is described by saying that the con- 

stituents from the two hadrons - called partons by Feynman - which are near 

x = 0 interact with each other to smooth out the fina parton distribution so it 

looks like Fig. (2). The hadrons interact through these “wee” partons, accord- 

ing to Feynman, either by direct scattering, or perhaps, predominately by 

parton exchange. Since the wee partons have small p, it is very easy for them 

to get confused and forget to which hadron they belong. This mixing up of wee 

constituents is the mechanism by which most hadronic reactions are supposed to 

take place. It is, of course, much more difficult for a very energetic parton 

from one hadron to get confused, since that would require a large change in its 

momentum. Another way of saying this is to say that only partons which are 

relatively close to each other in momentum space can directly interact. An 

energetic parton, therefore, has only second-hand information about the hadron 

to which it does not belong - it must wait for information to reach it by a series 

of close neighbor interactions. 

All of this, of course, sounds a lot like the behavior one might expect from 

a gas contained in an almost one dimensional cylinder. 6 In these terms, one 

says that the wee partons interact and come to equilibrium with the rest of the 

gas. But another, perhaps more convincing way of understanding why the parton 

density is uniform in rapidity, is that there is apparently no reason why we 

needed to choose the center of mass to formulate the original idea. Another 

frame boosted by an amount p, = x( Js/2), where x is some finite fraction would 

work just as weI1. Therefore, there is nothing to single out the center of mass 

frame, and even if the parton densities in the incident hadrons were different 
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FIG. 2--Final, average distribution of hadrons after an 
ordinary hadron-hadron collision. 
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to begin with, after the interaction they must be the same. Of course, at 

x = &l the distributions must go to zero by energy conservation, and these argu- 

ments do not shed any light on the behavior of the distributions in these hadron 

fragmentation regions. 

Before we can hope to relate these parton ideas to the description of h-h 

scattering, we need a mechanism for turning the partons into hadrons. Since, 

as we shall see below, partons have been endowed by their creator with certain 

(perhaps inalienable) point-like form factors, the partons, according to the 

orthodox view, cannot be ordinary hadrons. (Frankly, I don’t believe this.) 

Fortunately, we do not need a specific mechanism to get the result we seek. We 

only need to make the probably plausible assumption that the final hadron dis- 

tribution is proportional to final parton distribution. With this assumption, we 

find from Fig. (2) the well-known asymptotic multiplicity formula for h-h scat- 

tering 

<n> h = chins; S--c” (2-l) 

where ch measures the density of hadrons in the hadron plateau. 

Let us now take these ideas and try to apply them to e+e- annihilation pro- 

cesses. As long as one is proposing the idea that hadrons are made up of some 

kind of constituents, one may as well assume that the constituents are point-like 

(in some sense) in order to explain the &AC-MIT deep inelastic electroproduc- 

tion experiments. The standard parton description for efe- annihilation can 

then be stated as follows: 4,597 we assume that only processes which are lowest 

order in Q contribute. The electron-positron pair, therefore, annihilate into 

one time-like photon of mass Q2 which in turn decays into a parton-antiparton 

pair. As in the case of hadrons, we may think of the wave function of the spat 
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out parton getting contracted along its direction of motion. Arguments analo- 

gous to the ones presented above for the case of h-h scattering will then give a 
+- similar picture for the final hadron distribution in e e annihilation. With the 

replacement s - Q2, we may view Fig. (2) as the average final hadron distri- 

bution for the annihilation experiment. Of course, in this case the fragmenta- 

tion regions near x = il are parton fragmentation regions, not hadron frag- 

mentation regions. The asymptotic multiplicity formula for efe- annihilation is 

therefore 

2 
a> e+e- = Ceie- hQ ; Q2--. (2.2) 

We remark in passing that another way to understand the final hadron dis- 

tribution in this experiment is to say that the parton and antiparton each brems- 

strahlung particles, which fill up the rapidity gap between them. The distribu- 

tion is smoothed out by the interactions of each particle with its near neighbors. 

Before turning to deep h-h scattering we need to briefly discuss the multi- 

plicities expected in deep inelastic lepto-production for large v and Q2. The 

parton model for this process 5,7,8,9,10 pictures the virtual y (for electro- 

production) or W (for neutrinoproduction) knocking a parton out of the target 

hadron. For our purposes, it is convenient to analyze the situation in the Breit 

frame of the struck parton.8 In this frame we have a collection of partons mov- 

ing to the right and a space-like photon or W moving to the left. One of the 

partons is struck by the photon absorbing its momentum and thereby reversing 

the direction of its own momentum. In this frame the z-component of the initial 

momentum of the struck parton is p, = x(&Iv /JQ2) = JQ2/2, where Q2 = -qPqP 

and Mu = p P 
P 

q , qP being the photon’s (W’s) four-momentum and pP being the 

hadron’ s initial four -momentum. 
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The distribution of partons in momentum space immediately after the inter- 

action is shown in Fig. (3). On the left we have an isolated parton which, by 
f- arguments similar to those presented above for e e annihilation, we expect to 

cascade into a final parton distribution which is uniform in rapidity,and when it 

finally turns into hadrons has a density DC Ce+e- . On the right we have the rem- 

nants of the target hadron. Notice in particular (i) the hole in the distribution 

created by the absence of the struck parton, 11 and (ii) the fact that the parton 

distribution goes to zero at y = f!n[ (W - 1) JQ2], where w = l/x. This is re- 

quired by energy conservation since after the removal of the parton the energy 

left in the hadron is -(o - 1) JQ2 and the presence of a parton with energy 

greater than this would violate energy conservation. Notice also that we cannot 

consider the hole to be the presence of a negative energy antiparton, since if 

partons are fermions, the negative energy sea is filled, and if they are bosons, 

it is not clear how to apply this idea. 

Now, as we said before, we expect a parton plateau to develop from the 

isolated parton. The wee partons from this cascade will mix with the wee par- 

tons from the remainder of the target and, as in other such cases, will smooth 

out the parton distribution in the region of the origin. Upon reflection, we see 

that we could have performed this analysis in a number of other frames with 

origins anywhere between the hole and the final position of the struck parton. 

This means that the parton distribution cannot depend on the choice of frame and 

so must be uniform in rapidity in this region. Because of the implicit assump- 

tion of short range correlations, we do not expect the distribution of partons to 

the right of the hole to be significantly affected by all this, so the parton plateau 

there should stay pretty much the same. 
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FIG. 3--Parton distribution immediately after a deep inelastic 
lepton-hadron collision. 
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The final parton distribution, therefore, is shown in Fig. (4). In addition 

to the two plateaus(which will give hadron plateaus of heights Ce+e- and Ch) , 

there are three fragmentation regions (parton, hole and target) which stay finite 

as v, Q2-m, Assuming that the final hadron distribution resembles this par- 

ton distribution, the average multiplicity for large w and Q2 will be given by 

<n> Ill = Cefe- bQ2 + C,fn(w-1) . 

Having finished our review of the Feynman parton model and some of its 

previous applications, we now turn to the main task of this section: deriving a 

multiplicity formula for deep hadron-hadron scattering. 12 In what follows, we 

shall refer to the notion of direct par-ton-parton scattering. However, we do 

not believe that our results depend crucially on the nature or existence of such 

an interaction. The hard parton-parton scattering is used here merely as a 

device for producing partons with large transverse momenta. While this ap- 

proach seems close in spirit to that of Berman, Bjorken and Kogut, 9 our re- 

suits may also be consistent with a parton interchange theory such as that of 

Gunion, Brodsky and Blankenbecler 13 in which direct parton-parton scattering 

does not play a role. 

With these remarks in mind, let us begin by considering the inclusive pro- 

cess a + b - c + X where c has a large transverse momentum, p 
LC’ 

In the 

following, we shall always work in the center-of-mass of a and b, unless we 

specify otherwise. The picture we have in mind for the production of particles 

with large pI involves two stages. First, a high energy parton from a scatters 

off a high energy parton fromb, both receiving a large sideways kick. The 

parton distribution in phase space immediately after the scattering is shown in 

Fig. (5). 
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FIG. 4--Final distribution of hadrons after a deep inelastic 
lepton-hadron collision. 
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FIG. 5--Parton distribution immediately after deep hadron- 
hadron scattering. 
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Next, the two Partons which are each isolated in phase space separately 

evolve into hadrons in a way which is more or less independent of each other, 

as well as independent of the remaining pieces of a and b. At sufficiently high 

energies and momentum transfers, we expect that each such isolated parton 

will contribute - Cefe- J.n Ep to <II> for this reaction. Ep is the parton’s energy 

in the a+b center of mass. This result follows from the observation that these 

partons are isolated in phase space, and should produce final state particles 

just as the isolated partons in e+e- annihilation do. That is, we will have had- 

rons distributed, on the average, as dE/E in a cylinder in phase space pointing 

in the direction of the liberated parton plus, perhaps, a finite parton fragmen- 

tation region. A possible exception to this is when the parton-parton scatter- 

ing angle is small in the parton-parton center of mass. l4 (See below for a dis- 

cussion of this point.) These regions are shown in Fig. (6) where we display 

the average final hadron distribution for our deep scattering event. 

In addition to the efe- plateaus developed by the isolated partons, the re- 

maining pieces of a and b develop certain plateaus and fragmentation regions. 

Furthest from the origin we have the fragmentation regions of a and b. Moving 

in along the pli axis, we next encounter two plateau regions. Here we also ex- 

pect a distribution of hadrons like dE/E, but the coefficient in this case is Ch. 

Next, we have the hole fragmentation regions which result when the remaining 

partons try to heal the wound left in a and b by the removal of the two partons. 

Notice that these configurations (hadron fragmentation region, hadron plateau, 

hole fragment region) are exactly what appear in part of the lepto-production 

distributions (Fig. 4). Finally, we have two more plateaus of density Cx, as 

yet unknown (we shall return to this point later), and a finite overlap region at 

the origin where the tails of all the final hadron distributions come together. 
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FIG. 6--Final, average hadron distribution associated with deep 
hadron-hadron scattering events. 
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At sufficiently large s and PI c, the major contribution to the average multi- 

plicity of the reaction a + b - c + X comes from the six plateau regions, and is 

given by 

<n(s, plc5 EC)> deep = (Ce+e- + Cx)fnEE + 0(~-16E~)C~J!n 

(2.4) 

Notice that the right-hand side depends on plc only through EC. EC is the energy 

of c in the a+b center of mass, and the 0 function is included so that the term 

= Ch will not contribute when 4Ec) 4s. This, of course, is required by energy 

conservation. We have neglected terms which stay finite as s, pLc- ~0. These 

correction terms include the contribution to the multiplicity from the finite frag- 

mentation and overlap regions, as well as certain factors which multiply the 

arguments of the logs. Some of these factors come from averaging over the 

possible orientations of the undetected parton cylinder, and depend in detail on 

the parton-parton scattering amplitude and the parton distributions in a and b. 

The others arise when we write Ep in terms of EC, since EC = fpEp, where f 
P 

is some finite fraction. However, none of these complications change the 

asymptotic formula (2.4). 

This formula has several interesting features. When EC - <m 
1 

> (say, 

about 1 GeV), Eq. (2.4) gives in> - Chh s, and we recover the well-known ex- 

pression for the multiplicity in ordinary hadron-hadron scattering. On the other 

hand, when Ez is some finite fraction of s, and the scattering angle is greater 

than zero, we find <n> - (Ce+e- + Cx)!JnEz, and the multiplicity becomes 

essentially independent of the second term. Of course, if the scattered partons 

have essentially all of the incident hadrons’ energy, there is no plateau along 

p,, and the term a. Cx is absent. 
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There are two somewhat technical aspects of Eq. (2.4) and its derivation 

we would now like to discuss. First, as implied above, we note that if we detect 

a hadron with a large pI , we can be fairly certain that it is the most energetic 

hadron in its cylinder, and therefore has some fixed, finite fraction of its 

parent parton’s energy. The reason is that the probability of knocking a parton 

to a distant region of phase space falls rapidly with the parton’s energy. So, if 

we observe a widely scattered hadron with energy EC > > <ml >, it is unlikely 

that another hadron with energy > EC was produced by the same parton since the 

parton’s energy would then have had to have been extremely large. We can 

make this argument somewhat more quantitative as follows: suppose the prob- 

ability to produce a parton at large pI 0~ Ei”, where N is some fairly large 

number. On the average the kth hadron produced in the parton cylinder will 

have energy t$Ep = Eh, where Ce+e-Pnfp = -1. If we observe an energetic 

hadron with energy Eh, the probability that it is the kth hadron produced by a 

parton +N/E;O Therefore, if fp” << 1, we can be fairly certain that the had- 

ron we observe is the most energetic in the parton’s cylinder. 

Second, we note that the derivation of Eq. (2.4) is based on an average over 

configurations of final hadrons as pictured in Fig. (6). Let us now ask what 

specific dynamical mechanisms for the production of hadrons by isolated partons 

are consistent with this picture. We may roughly characterize various mech- 

anisms in terms of how the isolated partons finally communication with the rest 

of the scattering system. One possibility, which is obviously consistent with 

Fig. (6) is that the isolated partons form cylinders of hadrons to communicate 

with the wee partons in the center of mass of a + b. However, there are at least 

two other very plausible possibilities: (1) in the center of mass of the two 

scattered partons, a straight cylinder joining the partons may develop, or 
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(2) in the rest frame of the hole (i.e., the rest frame of the scattered parton 

before it was scattered), a straight cylinder may develop between the hole and 

the scattered parton. When pI c and s get large, however, both of these alter- 

natives also give the result (1). The reason is that for I p II > @ ( <ml > ), both 

alternative distributions become, when viewed in the center of mass of a and b, 

approximately straight cylinders pointing toward the origin, as in Fig. (6). 

Appreciable deviations from these asymptotes occur only when I pli 2 @(<ml > ). 

But, this is the region where the parton cylinders begin to overlap the hadron 

cylinders lying along the p ,, axis. These corrections can only affect Cx or the 

finite pionization region near the origin, and therefore both these possibilities 

will result in asymptotic multiplicities given by Eq. (2.4). Notice that we do 

not mean to imply that these differences are moot or untestable; in fact, we 

believe they are quite important. We only mean that they all result in the same 

asymptotic expression for <n> deep’ 
We would now like to discuss some limitations and possible corrections to 

Eq. (2.4). l4 First, our picture is not the correct one in the limit that the 

scattering angle of c - 0, even though p Ic gets large. In this limit, the cen- 

tral pionization region in Fig. (6) spreads out along the p ,, axis and forms an 

additional plateau which will significantly contribute to <n> of such events. As 

we shall see in Chapter III, the deep region may include values of pi and s such 

that in the scattering angle of c goes to zero asymptotically, so this is an impor- 

tant qualification to bear in mind. Second, there may be corrections to our 

forumla coming from events in which two partons scatter through a small angle 

in their center of mass. It is possible that such partons, if they communicate 

with the holes, will contribute Cefe- I!nP 
iP 

to <n> rather than C e+e- hE . If 
P 

such a mechanism exists, it will alter our expression for <n> 
deep in certain 
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kinematic regions. However, these corrections will become less important as 

the energy and scattering angle of the observed particle increase. 

Another interesting experiment to consider is the semi-inclusive process 

a + b - c + d + X where both c and d come out with large Ip,l in opposite hemi- 

spheres, each being produced by one of the isolated partons. From Fig. (6) we 

easily find that the multiplicity for this process is asymptotically given by 

a(s, EC, E )> d deep = (Cefe- + Cx) hEcEd + 0 (s-16Ei) Chfn 

+ 6 (s-16E3chfn (& - 1) 

where, again, we have neglected the terms which remain finite as s, EC and 

E -mO d Notice the similarity between this expression and expression (2.4) for 

the one particle inclusive case. However, in this experiment we can, on the 

average, deduce the energy of the partons which produce c and d if we know f 
P 

(or, equivalently, Ce+e-). While this knowledge does not strongly affect the 

asymptotic relation (2.5), we can get a firmer handle on the possible correc- 

tions from small angle parton-parton scattering if we know Ep and E , . Further- 
P 

more, it is important to know the parton energies if we wish to derive non- 

asymptotic relationships between the multiplicities in deep hadron-hadron scat- 

tering and multiplicities in other high energy reactions. Let us turn now to a 

brief discussion of such relations. 

We expect Eqs. (2.4) and (2.5) to be valid when clear hadronic and partonic 

plateaus in fn E have developed. In the absence of such plateaus, we cannot pre- 

dict the s or pI dependence of <n> since then the fragmentation region will play 

a major role, and their contributions to <n> depend in a more detailed way on 

- 20 - 



on specific (model-dependent) assumptions. However, we can try to relate 

a(s, EC, Ed) > to the multiplicities in other reactions. There are a number of 

detailed forms which such relations could take, but most simple options follow 

from one of four general arguments: 

(1). In e(v) - h scattering we remove a parton with energy Ep from the 

target hadron. We then have a hadron with a hole in it and a parton distant in 

momentum space. In whatever way the hole and liberated parton evolve in P-h 

scattering, they do the same thing in deep h-h scattering. If the results of 

Cahn, Cleymans and Colglazier3 are correct, this argument evaluated asymp- 

totically predicts Cx = C,+,-. 

(2). The hole turns into hadrons just as the parton does. This also implies 

c, = Ce+e-. 

(3). The hole does not significantly affect the final hadron multiplicity so 

that the final hadron distribution along the p,, axis looks as if no partons were 

removed. Then the p,, distribution contributes to <nz 
deep just the average 

multiplicity of an ordinary h-h reaction. Asymptotically this gives C x = Ch. 

(4). The hole and parton dispose of themselves in similar ways, but these 

contributions to a7deep simply add to the contributions coming from the origi- 

nal hadrons s holes. l4 This argument predicts Cx = Ch + Cece-, asymp- 

totically. 

All of these arguments are plausible. While each is based on a seemingly 

different notion about the way parton distributions overlap and turn into hadrons, 

more than one may be correct. For instance, if Ch = Ce+e-, possibilities (l), 

(2) and (3) may all be true. On the other hand, it is possible that Ch = Cefe- 

with, say, only one of these arguments correct, nonasymptotically. It would 

indeed be very interesting to know which of the relations that follow from these 
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options are satisfied, and over what ranges of s and pI . Tests of such expres- 

sions, as well as asymptotic determinations of Cx, Ch and Cefe- can yield 

much valuable information about the nature of partons and about the correct way 

to construct the amplitudes which describe the development of partons into final 

state hadrons. l5 

In this chapter we have presented a review of Feynman’s version of the 

parton model and its application to the problem of average particle distributions 

and multiplicities in e+e- annihilation experiments, deep inelastic lepto- 

production, and ordinary hadron-hadron scattering. We have tried to extend 

these ideas to deep hadron-hadron scattering, and we have derived asymptotic 

formulae for the average multiplicities to be expected in such experiments. 

Although our arguments have been somewhat loose and heuristic, they have been 

based on notions which have been developed and applied to a number of differ- 

ent processes. As we have tried to show, the beauty and utility of this ap- 

proach is its ability to correlate many a priori uncorrelated high energy pro- 

cesses by fairly simple, general arguments. 
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CHAPTER III 

REGGE POLES IN DEEP HADRON-HADRON SCATTERING 

A. Introduction 

Recently, a number of theories have been proposed to explain the structure 

of inclusive and exclusive differential cross sections at large momentum trans- 

fers. The connection of at least some of these theories with the usual notions 

of Regge theory is rather obscure. For example, it is not obvious how to relate 

Regge theory to a theory in which partons play a role in the deep region, either 

by being scattered or being exchanged. 

In this chapter, we will describe a general scheme which can connect 

theories of deep scattering with Regge theory for 2 - 2 amplitudes. Briefly, 

our approach consists of considering deep scattering amplitudes as Born terms 

and iterating them in the t-channel to build up moving Regge poles. We find 

that as Iti - 0 graphs involving more and more Born terms in the t-channel 

become increasingly important, while as It I - 00 the only graph which sur- 

vives is the original deep-scattering amplitude. As we shall show, this ap- 

proach unifies many of the intuitive features of a number of different theories: 

in particular, we see how the “hard” deep scattering interactions connect 

smoothly onto the “soft”, coherent structures which dominate the Regge region. 

The existence of such a connection, furthermore, means that it is not neces- 

sary (indeed, it is not allowable) to introduce two different components, hard 

and soft, to describe hadron-hadron scattering. A field theory with hard inter- 

actions will automatically generate the coherent structure which is necessary 

to describe near forward scattering. 

The chapter is organized as follows: in section B we derive and examine 

an integral equation (not unlike the Bethe-Salpeter equation) for the 2 - 2 
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amplitude which is obtained by summing graphs with various numbers of Born 

terms in the t-channel. Because section B is so long it is divided into five 

parts. In the first of these (subsection 1) we present a brief review of old- 

fashioned perturbation theory and the infinite momentum frame. In subsection 

2, we give a covarisnt derivation of the integral equations and recursion rela- 

tions on which we base the connection between the deep and Regge regions. 

Subsection 3 consists of a careful examination of these equations and what they 

imply for our Reggeization procedure. In subsection 4, we discuss some of 

the graphs which might be found in the Born term. This discussion illuminates 

the role played by various s and t-channel intermediate states in various kine- 

matic regions. Section B concludes with subsection 5 in which we present an 

alternate derivation of our integral equation using old-fashioned perturbation 

theory rather than covariant perturbation theory (as used in subsection 2). 

Turning to section C, we find a discussion of our Reggeization scheme for the 

case in which the scattering matrix has more than one (coupled) channel. 

Finally, in section D we show how to correctly incorporate signature into our 

problem. Furthermore, we apply our methods to the parton-interchange theory 

of deep scattering and end with some ideas about the relationship between 

parton-interchange diagrams and duality diagrams as well as some speculation 

about the dynamical origin of the Pomeron pole. 

B. The Basic Integral Equation 

1. Old Fashioned Perturbation Theory and the Infinite Momentum Frame. 

fn this section, we shall derive the integral equation which lies at the 

heart of our Reggeization procedure. Before beginning the actual derivation, 

however, it will be useful to review the simplest properties of the infinite 
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momentum frame (IMF) and its use in conjunction with old fashioned perturba- 

tion theory (OFPT). 

As is well known, covariant perturbation theory is simply related to old 

fashioned perturbation theory. In OFPT, when working to some order in the 

couplings, one calculates a number of time ordered diagrams and adds them 

together to get the covariant scattering amplitude. In covarisnt perturbation 

theory, on the other hand, the use of Feynman propagators automatically en- 

sures that all time orderings are included in the calculation of a single 

Feynman diagram. In a Feynmsn diagram with N vertices, there are in gen- 

eral N! different time orderings for the N vertices, each one of which must be 

calculated separately in OFPT. Cast in these terms, the advantage of covar- 

iant perturbation theory in most calculations is evident. 

There is a technique, however, which can restore the attractiveness of 

OFPT and give it a fighting chance for the affections of high energy theorists. 

This technique is the use of an infinite momentum frame. The usefulness of 

doing OFPT calculations in a special frame derives from the fact that the value 

of a given time ordered graph is not invariant. It is often possible to choose 

a frame in which only a few of the N! graphs which contribute to some Feynman 

diagram are non-zero. 

To illustrate the use of OFPT in the IMF, let us look at the crossed box 

diagram of Fig. (7). We wish to calculate this diagram in OFPT. In general. 

we must consider the 24 different time orderings of the four vertices, and in 

an arbitrary frame all of them may contribute. Being clever physicists, how- 

ever, we choose a frame in which all of the external particles are moving very 

fast to the right. Eventually, we shall let very fast approach c. We 
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FIG. 7--Sample Feynman diagram for illustration of 
old-fashioned perturbation theory in the 
infinite momentum frame. 
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parameterize the momenta in our frame as follows: 16 

r= y,r 
( 1’ 

0 
1 

p2i- k2 
k= xP+ 2x;,k 

1’ 
XP (3.1) 

The mass of each internal line is )A. Since the energy of each internal particle 

is positive, we must have 0 <x < 1 for sufficiently large P. The limit we are 

interested in is P - ~0 . Notice that in this limit p2 = rn: , as it should. When 

P - m , the other external mass-shell conditions become: 

( P + 
mf+2p*r 2 

(p + r)2 = 2P srpIsp 1 
= m2+2p*r -r2 2 

1 1 =m 3 

(P + q)2 = m;+2p.q-q 2 2 
1 =m 4 

(P + q + r)2 =mt+2p*q+2p’r-(qi +r1)2 = mi (3.2) 

Since ql, rl do not depend on P, this shows explicitly that pa r does not de- 

pend on P, either. In this frame the Mandelstam variables become 

2 u = -r 
1 

s = 2m4 -2mi+(qi +r1)2 (3.3) 
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where we have used the last equation in (3.2) in evaluating s. Adding together 

the three equations of (3.3) and using s + t + u = .Z rnf , we find the interesting 
i 1 

relation 

2q1 *ri = m2+m2 -m2 -m2 3 4 1 2 (3.4) 

Let us now move on from kinematics, and evaluate diagram Fig. (7). In 

OFPT, one conserves three-momentum at each vertex and calculates time 

ordered diagrams according to the following rules (for spiuless particles). 17 

(i) A factor (E - Ej + i l )-l for each intermediate state, j. E is the energy 

of the initial state, and Ej is the energy of the intermediate state. 

(ii) An overall factor -2ri6(E - E’) where E’ is the energy of the final 

state. 
1 (iii) For each internal line an integration - 

/ 

d3’ 2 where p. is the 
(233 2po 

energy associated with the line. 

(iv) For each vertex, a vertex function times (2Q3 63(lout - pin). These 

rules give the s-matrix element <f ISli > which is related to the invariant 

amplitude, &,by < f I S I i > = (2~)~ 64 (p, - pi) JX with the conventions 

Bjorken and Drell. 

We may now proceed to calculate some of the time orderings of Fig. (7). 

Let us first look at the time ordering shown in Fig. (8). Calculating accord- 

ing to the rules above, we find 

p2 + (kl + (l-x) 

x( l-x) (3.5) 
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where F = rnf - rnt - r: - 
p2+k; + (rl -k1J2 

l-x . The important thing to 

notice here is that there is a term 0~ P -2 coming from the middle energy de- 

nominator. Since the rest of the expression is independent of P (and finite), 

this time ordering will not contribute in the P- 03 limit. One can usually 

recognize such noncontributing graphs (at least in a spinless theory) l8 by ob- 

serving that they always have at least one line whose momentum is flowing the 

wrong way. In this case, it is the top horizontal line, as indicated by the 

arrow in Fig. (8). 

Continuing our analysis, we find that 20 of the 24 time orderings graciously 

vanish as P - m leaving the four time orderings shown in Fig. (9) with their 

energy denominators indicated by the dashed lines. To get the final covariant 

matrix element, we need only calculate these four time orderings and add them 

together. This is facilitated by the observation that the central energy denom- 

inator is the same in all four time orderings. The remaining pieces of each 

time ordering add together in a natural way, and the resultant expression for 

their sum is 

&= % 
d2kL dx 

2(27r)3 x2( l-x)2 
A 

where 

mi - $kl+(l-x)qL - xrl ,x) I -1 

2 - -1 
m3 - S(ki -ml ,a 

I i 
mt - qk,+(l-x)q,, x 1 -1 

(3.6) 

&kL,x) = 
k;+ /.L~ 

x( l-x) 

and A I rnf+rni - %kL,.x) - $kL+ (1 -x) qL- xrl , x) 
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FIG. 8--One of the 20 time orderings of Fig. 7 that 
vanish in the infinite momentum frame, 
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FIG. g--Time orderings of Fig. 7 that survive in the infinite 
momentum frame. 
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A is the central energy denominator which now appears in the numerator, and 

the four factors in the denominator are the energy differences across the four 

vertices. Notice that this expression for & does not depend on P, and so 

survives the P - ~0 limit. 

The equivalence of this result with the evaluation of the corresponding 

Feynman diagram can be demonstrated in a straight-forward way using a pro- 

cedure suggested by M. Schmidt. 19 We shall only outline the method here 

since we shall discuss it in detail for a similar problem later in this section. 

The technique consists of writing down the covariant Feynman expression 

and evaluating the dk2 integral in the IMF. The Feynman amplitude for Fig. (7) 

is 

- p2 + ic 
-1 

I [ 
(p+r-k)2 - ,u2 + ie 1 -1 

(3.7) 

With the parameterization of k in (3. l), we can make the transformation 

We now use(3.1) to write the propagators in (3.7) in terms of x, ki and k2. 

The dk2 integration can now be done using contour integrals. We find that all 

poles in the k2-plane are in the lower half plane unless 0 <x < 1. Then, the 

integral for this range of x gives us back the expression (3.5). 

2. Derivation of the Basic Equation 

Having become facile in the use of OFPT in the IMF, let us turn to the 

problem of deriving the basic integral equation that Reggeizes large-angle 
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scattering. In what follows, we shall present two derivations of the equation, 

The one presented in this subsection will start from a Feynman diagram, and 

will use the trick outlined above. The second (subsection 5) will use OFPT 

from the outset. The first derivation is the more elegant, but the second can 

provide valuable insight into the Reggization process within the context of 

parton models for large angle scattering. 

To begin, we recall that our approach is to iterate two particle scattering 

amplitudes in the t-channel, and sum over the number of iterations in order to 

build up a moving Regge pole. The type of amplitude over which we shall sum 

is shown in Fig. (10). At the top of the ladder is a Born term, B, followed by 

j iterations of a 2 - 2 scattering amplitude, K. K and B may or may not be 

the same. This figure represents a term Jdj. The final Reggeized scatter- 

ing amplitude is gotten by summing over j: 

It is convenient at this stage to derive a recursion relation between A. 
If1 

and ,,&.a The equation we want is shown in Fig. (11). It can be written as 
J 

dj+l (u, t; v2, ~1~; r2, (q+r)2 = /a [I’-l?12+ i c]-’ [(&q)2-M2 + iel-’ 

2 x K(u’,t; v ,L’ f2; P2, (f+q)2) JZZj(u,t; f2, (f+q) 2; r2, (q+q2) (3.10) 

2 
where v = p2, v’ 2 

= (P+-@~, u = (p-r)*, t = q2, u = (&r)2 and u’ = (~-1)~. 

Notice that we have changed the labellings of the momenta from our previous 

example. 
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2319AlO 

FIG. 10 --Graphicd illustration of amplitvde, A.. .l 
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q+r r 

$+r r JVj 

Jq + 1 = P 

x-=c 1 

f+q 

P P+9 K 

P P+q 
2319All 

FIG. 11--The recursion relation connecting 
CM. 

3+1 
with A.. 

J 
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At this point, we wish to introduce a dispersion relation for K in the vari- 

able u’. We can write 

K(u’,t’ N2, A2) = 
/ 

d o2 W(02, t, N2, A2) 
II’-cr 2 + ic 

(3.11) 

where we have set h2=Q2 and A’2 = (f+q)2. Also, the capital N2 and A2 in the 

arguments of K and W indicate dependence on both v 2 and v’ 2 ,and h2 and A’ 
2 

respectively. We shall use this convention from now on. The reason for 

choosing such a representation for K will become clearer as we go along. For 

the time being, we only want to make three remarks. First, one must keep an 

open mind about how the da2 contour is supposed to be performed in a2-plane. 

Naively, one expects that the discontinuities of the integral in (3.11) are given 

by the denominator, and so the do2 integral is performed by integrating along 

a line near the real a2-axis. However, because of the dependence of W on the 

off-shell variables I2 and 7~” , it may be necessary to deform the da 2 contour 

away from the real axis and pick up contributions from complex singularities. 20 

This is a way of incorporating possible diagrams in which the mass h2 or Al2 

can become sufficiently time-like and is allowed to freely decay to internal 

lines. We shall have more to say about this situation as we proceed. 

Second, in order to give the reader some idea of the forms one may expect 

W to take, we remark that for large lu’ I and It I, a (tu) graph in the parton 

interchange theory of Gunion, Brodsky and Blankenbecler 21 gives an expression 

for K like 

K’- f(t) (m2 - u!)-~ 

if all external particles are on the mass shell. m is some finite mass 
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parameter. The W that reproduces such a K has the form 

w -f(t) 
,Wl (m2- $j 

(n-l) 1 (3.12) 

n 

Of course, K does in general depend on the off-shell variables, A‘, but bearing 

in mind the possibility of complex singularities, this functional form for W is 

probably not a bad ansatz as we shall see later. 

The final comment we wish to make here is that in this and the next sections 

we shall, for simplicity, assume that there are singularities of K in u’ only for 

positive u’ when the external masses are on-shell. (Actually, when we use our 

ansatz to explicitly calculate the trajectories, we shall implicitly assume that 

this is also true when A2 goes off-shell. That this latter is a reasonable as- 

sumption for K will become clear when we examine some simple kernels in 

subsection 4.) This will have the consequence that all the amplitudes we shall 

deal with will be purely real. Furthermore, such a singularity structure for K 

will generate a singularity in Aj at positive u (or u if Jlj appears under an 

integral). In Regge language, the means that the trajectories we generate will 

not have a rotating phase part in their signature factors. That is, each trajec- 

tory will really represent a pair of strongly exchange degenerate trajectories. 

In section D, we will extend the discussion to kernels involving other singn- 

larities, when we examine the relation of our work to duality diagrams. 

With these remarks in mind, let us continue with the derivation of our re- 

cursion relation. Inserting (3.11) into (3. lo), we have 

~li~+~(u,t;N~,R~) = 13 dg2 [P2-M2+ie]-l [(&q)2-M2+ie]-1 [(P-Q2-02+ie]-’ 

W( 02, t; N2, A2) tiHj(;, t; A2, R2) (3.13) 
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Where R2 stands for the variables r2 and (q+r)2. 

We evaluate (3.13) by the trick outlined above. We choose an infinite mo- 

mentum frame and parameterize the momenta as follows: 

p= P+ ( v2 
zp’O,P 

) 

4= yLIL’O 
( i 

r = 
( 
xl? 

P J.‘O ,r 
i 

( 

P2+Q2 
I = yp++ Q,, YP 1 

(3.14) 

Again we have in mind the limit P- m . With this notation, 

u = (p-r)2 z v2+r2 -2p.r, t=q2~ds=(p+q+r)2=v2+(q+r)2+3p~q+3p~r. 

Since these are invariants they cannot depend on P. This shows explicitly that 

pm r and p * q are independent of P. The observant reader will immediately 

notice that this means that the two external masses r2 and (q+r)2 are space-like. 

This is a convenient choice for our problem, and will cause no difficulty since 

the final matrix element will be analytic in the external masses, and we will be 

able to continue q2 and (q+r)2 to stable physical masses. 

The next step is to transform the d4P integral in (3.13) and pick out the 

singularities in f2. Using (3.14)) we now introduce a dispersion relation for 

J( j similar to (3.11) which is for K. We write 

dj (u,t; A2,R2) = 
/ 

do2 
W.(p2, t; A2, R2) 

J _ 2 
u -p +ir 

(3.15) 

The remarks made below (3.11) apply here also - we must keep an open mind 

about the location of the path of integration in the p2-plane. 
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Now we wish to insert (3.15) into (3.13) and perform part of the d4Q fnte- 

gration. Using (3.14), we easily carry out the transformation 

We can expand the four propagators which now appear in (3.13) (because we 

have used (3.15)) and perform the de2 integral by locating their poles in Q2. 

Using (3.14)) we easily verify that the pole from the propagator in (3.15) is 

always in the lower halfQ2-plane. As for the other three propagators, we have 

1 [ = Q2-M2+ie 1 
C (Q+q)2 -M2+i< 1 [ = I2 -k 2Yp ’ q - 2q1 * Q1 + q2 - M2 + ie 1 

- q2 - (r2 + ic 1 [ Q2 
= (l- $)Q2+(1-y)y2- * - m2+ic] 

If (1 - f) > 0 all the poles from these factors also lie in the lower-half Q2- 

plane. Closing the contour in the upper half plane, we get zero. If 

(1 - 5) < 0 ( -0 <y < l), the propagator from the dispersion representation of 

K is in the upper half plane, and so we pick up a non-zero contribution for this 

range of y. Carrying out the dQ2 integration therefore gives 

Aj+l (u, t; N2, R2) = & bu2 do2 [ dTz:> [h2-M2+ ie]-’ 

[At2-M3+ieJ1 [G-p2+i;l_’ W(g2, t; N2, A2) Wj(p2, t; A2, R2) 

(3.16) 
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where now 

and 

with 

ii -M2 = Y [ u - s(Ql - (1-y) rl s Y) 1 
h2-M2=y - S’Ql 9 Y{ 

Al2 -M2 = y vf2 - %Ql + (1-y) q1 ,y) 1 9 

1 S(Q,,y) s yo 
2 2 

Ql + (1-y) M + yu2 . 1 

(3.17) 

S as defined here is similar to gas defined in (3.6), the difference being the 

appearance of the off-shell mass, 02, in the present case. 

It is instructive to rewrite (3.16) in a way that makes its connection with 

OFPT calculations more apparent. Using (3.17), we can write (3.16) as 

Jllj+l(u, t; N2,R2) = --& /da2 dp2 /: 2) [v2 - s(II.~l-j-~ 

[ 
Vf2 

-1 I[ 1 -1 
- S’Ql + (1-Y) q1 ,Y) u - S’(Q, - (l-y) rl ,y) W(a2,t; N2, A2) 

Wj(p2,t; A2,R2) . (3.18) 

where 

1 
SYQ, ,Y) q y(l-y) + (l-y) p2 + ya2 1 . 

To interpret this form we refer the reader to Fig. (12). If we set both W’s 

equal to d -function in (3.18), i.e., 

w( a2) wj(P2) - S(p2 - a2) S(/.t2 - p2) 
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The right-hand side would be exactly the OFPT expression for the crossed box 

diagram evaluated in our IMF. Notice that because of the judicious choice of 
2 2 space-like values for r and (q+r) only one time-ordering survives. The 

three factors in square brackets are just the three energy denominators which 

appear in this remaining diagram. Therefore, the right-hand side of (3.18) is 

the crossed box diagram evaluated in the IMF and convoluted with weight func- 

tions that measure the spectrum of the horizontal lines, as shown in Fig. (12). 

A few remarks are in order about equations (3.16) and (3.18). First, the 

reader will surely have noticed that we never considered possible singularities 

in the Q2-plane from the dependence of the weight functions, W and Wj on the off- 

shell masses h2 and hr2. The reason is that while there are such singularities 

in the off-shell amplitudes, K and dj, they do not appear in the imaginary 

parts, W and W.. 
I 

This was realized in another context by a number of smart 

men at Princeton when I was 13 years old. 20 If one continues the external 

masses A’: to large time-like values, one is in general required to deform the 

path of integration in the o2 (or p2) plane to avoid complex singularities in a2 

(p2) which appear in W (Wj). However, this does not introduce extra singulari- 

ties in the Q2-plane until after we perform the do2(dp2) integral. Then, of 

course, the singularities are in K(Mj), and not their imaginary parts. In sub- 

section 4, we will present an example of a kernel for which this sort of thing 

occurs, and we shall then present a graphical explanation of these statements. 

The equations (3.16) and (3.18) are exact recursion relations for the scatter- 

ing amplitudes which contain j t-channel iterations of an irreducible kernel. 

Now, there is evidently nothing stopping us from formally redoing the do2 integral 

(with the proper choice of the path of integration). Doing this in (3.1.6), and 
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s dC2dp2W(C2)Wj 

1319A12 

FIG. la--The recursion relation in terms of integrals over 
the spectral functions of the subamplitudes. 
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using (3.15), we have 

A~,~(u, t; N2, R2, = 1 
/ 

1 

2(27r)3 0 
dy d:tz2 [A2- M2+ ic]:’ [A’” - &I2 + ieI1 

W(c2, t; N2, A2) “tlj(u, t; A2, R2) (3.19a) 

which is also an exact recursion relation. Using (3.18)) we can also write this 

as 

Jllj+l(u, t; N2, R2) = 1 
1 

/ 

dyd2Q da2 

2(27T)3 0 Y2U-Y) 
[v2 - w,, Yq-’ 

d2- s(Q)- + U-Yhl 1 -1 
Y W(f12, t; N2, A2) A~(?, t; A2, R2) 

(3.19b) 

To perform the final (trivial) step in the derivation of our integral equation, 

we sum both sides of (3.19a) over j from zero to infinity. Doing this, we have 

c/M@, t; N2, R2) = B(u, t; N2, R2) + 1 
J 

1 

2(27r)3 0 

[ 
AT2 - Iv? +ir 1 -1 

W(02, t; N2, A2) A(;, t; A2, R2) (3.20) 

with &defined as in (3.9). This equation is depicted in Fig. (13). 

Because it is so useful, we wish to display this equation another way. Using 

(3.19b), we easily find 

~tt(u, t;N2, R2) = B(u, t; N2, R2) + 1 
1 I dyd’!$ d a2 

2(21,)3 0 Y2WY) 

VI2 - S’y- (1-Y) 919 Y) I -1 
W(a2 , t;N 2, A2) A(;, t; A2, R2) (3.21) 
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FIG. 13--The full integral equation. 
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3. The Reggeization Procedure 

These are the equations that lie at the heart of our Reggeization procedure. 

We would now like to analyze the behavior of the solutions given the Born term, 

B, and the kernel, K. Notice that both sides of equation (3.21) are evaluated at 

a fixed value of t. In principle, therefore, we need to know B and K at all values 

of t in order to determine Jld(t).22 However, since our approach is to Reggeize 

the deep scattering region, it is natural to begin by examining (3.21) for large 

Itl. 

Measurements of differential cross sections at large angles 23 indicate a 

power law behavior both in s and t. Matrix elements which describe large angle 

scattering must therefore reflect this behavior, and a number of theories of deep 

scattering 24 have been proposed to describe these gross properties. A simple 

expression which may be taken as an approximation to the results of some of 

these models is a form alluded to earlier: 

B = f(t) (p2 - u)-~ (3.22) 

As our notation indicates, we wish to regard such a function as a Born 

term. In fact, we will also use it for the function K. At this point, such a form 

may be regarded as a general and reasonably accurate ansatz based partly on 

phenomonology and partly on features which are common to a number of models. 

Later, however, especially in Section D, we will call upon the parton- 

interchange model 21 for a more specific interpretation of the Born term. 

In the present calculation, the expression (3.22) is intended to be purely 

real. Actually, we could have chosen any number of similar forms for B, some 

of which would have imaginary parts, and in certain 2 -. 2 amplitudes other forms 

for B may be more appropriate. But,as we have stated before, we wish to 
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confine ourselves in this and the next sections to the simplest possible cases. 

Furthermore, (3.22) is physically relevant since it is the Born term expected 

from the parton interchange theory for exotic reactions such as p-p elastic 

scattering where only a (tu) quark interchange graph is allowed. 

To begin Reggeizing the Born Term, (3.22), let us examine first the am- 

plitude Jtll in the series which sums to Jld. Using (3.19b), we have 

c+(u, t, N2, R2, = 
F(t) 

/ 

1 dyd2P da2 

2(27r)3(n-l)! 0 Y2U-Y) 

C VT2 -S’.e). +wY)ql’Y 1 
where we have used the fact that 

(3.23) 

K(u’, t; N2, A2) = f(t)(p2-~f)-n = 
/ 

do2w( a2, t; N2, a21 

U’ - Cr2+iE 

= (n-l1)! 
/ 

dg2f(t) &-‘](p2 _ g2) 

2 u’-u +iC 

and so 

w e2, t; N2, A2) = (n-1)L 
AL *[n-l1 (/p - g2). (3.24) 

The superscript on the o-function refers to the number of derivatives of 

the 6-function. For simplicity, we have assumed that n is an integer. (This 

result was mentioned ear1ier.m (3.12). We wish to examine (3.23) in the large 

iu I limit. To do this it is first convenient to Feynman parameterize the 

denominators . Using the well-known Feynman integral, we easily derive 
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the identity 

blD2Di]-’ = n(n+l) 1: dolda2da3 ~(~-cY~-c~~-cY~)cu~-~ 

3 

-(n+2) 
lD1 f 02D2 + 03D3 

by differentiation with respect to D3. Using this in (3.23)) we find after some 

simplification, 

v4~1(u,t) = n(n+;)f2(t) / Ml-9 n+l d28 d a2 ,$-d (c12 -(r2) 

2(2n) (n-l)! 1 

+ e2, + (1-y)2 a1cY2 q; - y( 1-y)cy3u+yo2 
3 

-(n+2) 

(3.25) 

with 

PI2 = (l-y) [ (01+02) Iv? + a!3pq - y(l-y) [~lv2+o12v’2]+t1-Y~2~3~l~~~~2tql+~l)2] 

pf2 is a mass parameter, which is independent of t = -qy and u. Incidentially , 

this form clearly demonstrates the analytic dependence of &l on the external 

masses, in particular -rp and -(ql +r1)2. Also, it is interesting to notice the 

expected symmetry under the interchange r 2 2 
1 

-. (q1+r1)2 and v M vv2. 

The next step is to perform the d21, and da2 integrals. The d2p, integration 

is easily carried out. The da2 integration is done by integrating by parts (n-l) 

times. The result of these two operations is 

A1(u, t) = q-l)n IT (2n) f2(t) I(& t) 
r2(n) 2(27r)3 

(3.26) 
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where 

/ 

00 
I(u,t) = dxdydadp 6(1-x-y-o-@) (xy)n-1 

0 
[pL!gt-xuj-2n 

and 

P2 = $2 +YP2 

We have defined x = (l-y) cr3, Q! = (l-y)oI, and p = (1-y)cr2. The y-integral 

may be extended to m , since as long as o, p, and x are positive, the region 

y > 1 cannot contribute because of the 6-function. 

To examine the leading behavior of Jttl for large IuI , we can use a 

Mellm transform technique. Actually, there are two problems to which we 

must address ourselves. We need to consider both the limits IuI - m with 

t/u - 0, and IuI - 00 with t/u fixed. The latter is the asymptotic fixed angle 

region. While we expect that the leading behavior in these limits will be simply 

related, it is not a priori obvious what that relation is. 

Let us proceed, then, by writing the integral in (3.26) in terms of its 

double Mellin transform in the variables -u and -t. 

a+i * 

/ 

b+im 
ds IuI -’ drltler G(s,r) (3.27) 

a-i* b-i- 

a (b) must be chosen so that the contour in the s (r) plane does not pass over any 

singularities of G. It is easy to see that I(u,t) is finite if IuI and/or ItI - 0, 

andI-Oif IuI and/or ItI -a, so we may choose both a and b just to the right 

of zero in their respective complex planes. Equation (3.27) can be inverted to 

obtain an expression for G(s,r) according to the formula 

I 
co 

m G(s,r) = dlul IuI ‘-’ o 
/ 

dltlltlr-’ I(u,t) 
0 

(3.28) 
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. . 

Because of the simple form of the integral in (3.26)) the 1111 and 1 tl integrations 

can be readily carried out, and we find 

r(s) I? (r) r (2n-s-r) 

I 

co G(s,r) = 
wm 

dxdydrrd/3 (xY)~-~-’ (c@)-~ 
0 

x 6( l-x-y-o! -p) (pZ)s+r-2n (3.29) 

To get this form, it is necessary that (3.28) exist. This translates into the 

conditions s <II and r < 1, which is consistent with Re s and Re r being to the 

right of zero, as we needed above, since n 2 1. 

To pick out the leading behavior of Al, we need to find the singularities 

of G in s and r. For simplicity, we shall set all the external masses equal to 

zero, and let p2 = M2. Then p2 = 2 ~1 , and it will be easy to examine the sfngu- 

larities of G. If we generalize to arbitrary, stable external masses and unequal 

internal masses, it becomes somewhat more complicated to analyze (3.28), but 

the singularity structure will not change since p2 is always finite and non-zero. 

If we introduce the representation for the o-function 

do eiwx 

into (3.28), we csn carry out the integrals over x, y, a! and p. To do this, we 

give w a small negative imaginary part, which will go to zero at the end of the 

calculation. Using 

dx ,A-1 e-i(W-ic)X = tE + iw)-A r(~) 
Jo 
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we have 

2 s+r-2n 
G(s,r) = @ ) I? (s)r (r) r (2n-s-r) 

r VW 
r 2(n-s) r 2( l-r) 

a3 

X 

/ 

dw (.$ + iw)-2b-s) + tl-deiw 

-00 

The last integral is easily done, 25 and the limit E - 0 presents no dfffi- 

culty. We finally have 

G(s,r) = 2n012)s+r-2n r2(n-s) r2(i-r) r(s) r(r) l?(2n-s-r1 
r(2n) r [2(n-s+l-r)] (3.30) 

Now we would like to discuss the singularities of G in s for fixed r. The 

singularities at the smallest value of s will give the leading contribution to M, 

at large lul . We start off, therefore, with r near zero, and increase s along 

the positive s-axis. Since n ) 1, the first singularity we hit is evidently a pole 

at n = s coming from r2(n-s), Let us expand G in s about s = n. Using the ex- 

pansion, 

w + E) = r(z) [I + E +tzjj+ 6+2); z # 0, -1, -2, . . . 

we find for s near n, 

G@, r) 2 2r@2)r-n r2(1-r)r(r)r(n)r(n-r1 
r(2n) r(2-2r) 

X 
I 

(n-s)-2 + (n-s)-l [2 W) + $0) + VQ-4 - 2 742-W - m”]] 

(3.31) 

There is therefore both a double pole and a single pole at s = n. To see 

what this formula implies for the asymptotic behavior of I in lul , we need only 

use (3.27) and perform the inverse Mellin transform in s. 
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Now, for large lu! , the s contour integral in (3.27) should be closed in 

the right-half plane so that lu I-’ = e -shIul will provide convergence to the 

integral. We can then let a go from zero to n + E , and we will explicitly pick up 

the poles at s = n which are the left-most singularities for s > 0. Now, it is 

easy to show using the Cauchy formula that 

1 
ziz 4 

dslulSs (n-s)-(m+l) = g Iu1 -’ In”luI (3.32) 

It is clear then that the leading behavior for IuI - (0 comes from these 

left-most singularities. The behavior of I(u, t) for large 1~1 may thus be written 

as 

I(u,t) = qt) IuI-“mnlul + Z,(t) IllI -n; IUI +m 

where the 5s are obtained by performing the r-integral of (3.27). The leading 

behavior of AI then follows from (3.26) and can be written as 

+(u,t) = f(t) RI(t) (-u)-” En(-u) + f(t) Ro(t) (-u)-~ (3.33) 

The appearance of a term mknlul is the major feature of interest here. 

This term begins a sum of ever increasing powers of ~llul which Reggeizes the 

large-angle Born term and turns the fixed pole in u into a moving pole that de- 

pends on t. But more about that later. For the moment we return to the expres- 

sion (3.33) and note that, strictly speaking, we have only shown that this is the 

correct asymptotic behavior of AI when IuI is the only parameter which goes 

to infinity; that is, when I t I is fixed (but not necessarily small). We would now 

like to examine the behavior of AI when 1 t I is allowed to grow, also. To do 

this we must go back to the exact expression for G (3.30) and examining the singu- 

larities of G in r as well as s. If we try to use (3.33) and examine the singularities 
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of the integrals which give the factors R(t) we will get the wrong numerical 

factors, since the expansion above (3.31) is not valid at the poles of I?(z). 

Examining (3.30), it is easy to see that the first singularities of G for 

positive r are poles at r = 1. We can expand this expression simultaneously 

about r = 1 and s = n. When we do this, we need to consider separately the two 

cases n = I and n > 1. It is s’traightforward to calculate the terms of interest 

exactly, but for our purposes it is sufficient to notice what the form of the lead- 

ing singularities is. Remembering that r(x) -xX-l for small x, we can simply 

count the order of the leading poles at r = 1 and s = n in the expression (3.30) 

for G. Using (3.26), (3.27) and (3.32), we can then translate this singularity 

structure into the asymptotic behavior of &I. Doing this, we easily find that 

for large IuI and Itl, 

[A1 tn(-u) h(-t) + A2[Pn(-u) + ti(-t)] + A~] ; n = 1 

= md%- [B#n(-u) + In(-t)] + B2] ; 
t-~~n(-t) 

n>l (3.34) 

where the Ai and Bi are independent of u snd t. The fact that the expression in 

large square brackets for the case n = 1 is symmetric in u and t follows from the 

symmetry of I(u, t) for n= 1, and has been personally verified by explicit calcu- 

lation. Notice also that for n > 1 the coefficients of Ln(-u) and b(-t) are equal. 

These expressions are valid asymptotic formulae when Iu I and It I are both 

large. in particular, when IuI - 00, (3.34) in valid for large 1 t I whether t/u - 0 

or not. We would also like to point out that unlike the large IuI behavior (3.33), 

the large It 1 , large IuI behavior (3.34) of &I is not easily obtained by direct 

inspection of (3 r 26) .thus underlining the utility of the Mellin transform technique. 
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Now, f2(t) is generally expected to fall for large It I - at the worst, 

f(t) = constant for a simple ladder graph with point couplings. Comparing the 

term .Ml with the Born term (3.22), we see that as 1 tl gets large, “1~1 falls 

with respect to alto by at least one power of It I (mod logs). This is fortunate, 

since the spirit of our approach is to assume that the Born term adequately de- 

scribes the deep scattering region, and so the other graphs in the theory should 

become negligible in this region. We shall return to (3.34) below when we dis- 

cuss the definition of the deep region, and the asymptotic behavior of the tra- 

jectory function o.(t), but for now let us continue building and summing ladder- 

like graphs. 

To convincingly establish that our sum will Reggeize, we must examine 

the leading behavior of A2 for Iu] - 00. Using (3.19b), (3.33) and the expres- 

sion for our kernel, we can obtain an expression for A2. In using (3.33) for 

Al, we are of course assuming that the important region of integration in 

(3.19b) is such that u is large so that the asymptotic formula for Al is appli- 

cable. In fact, it is also necessary that this condition be satisfied in generating 

Al from the two iterated Born terms, since the Born terms are intended to 

describe high energy (deep) scattering. We shall show below that this condition 

is fulfilled, but for the time being let us assume that no swindle is being per- 

petrated, and proceed. 

Since we expect to need Al(F) for large u, it will be convenient to examine 

only the leading term -lulnh Id. (T he reader may assume for simplicity that 

we are not now in the fixed angle region, so that the term -IiY(” tilt1 is not 

important. In the fixed angle region .M2 will be small with respect to the Born 

term, anyhow.) The nonleading terms in d1 will generate important contribu- 

tions to the sum; for instance, the term in ~tcl a 1 Gl -n will give a term in 
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A 2 -1~ I-“hlul which will h c mge o(t) and P(t) as ItI gets smaller and smaller. 

However, the structure of the theory is most easily seen by considering only the 

biggest term in each order of the iteration. 

The easiest way to see what will happen is to use the identity 

;! wTr.nm~,~ = om -- 
ml fJi Iul-’ 

We can then insert a term a (u - p ) 2 -’ for &Z* into the i teration equation which 
I 

gives JtJ2, and at the end of the calculation differentiate with respect to p to 

reproduce the log factor. Before we differentiate, however, it will be convenient 

to calculate the Mellin transform of our expression and differentiate that with 

respect to p. We shall see that the left-most singularity is again a pole at s = n, 

but now it is a third order pole. Inverting the transform, this gives rise to a 

To see in detail-how this comes about, let us use (3.19b) to calculate, the 

leading term of A2. Using our well-known kernel and the first term on the 

right hand side of (3.33) for “I”;, we find 

with 

m 
I(u,t; P) = I dxdydadpy”-’ xp-’ d(l-x-y-o-p) 

0 
- opt - xyu -(p+n) 1 

In deriving this form, we have again assumed that the masses of all external 

partic!es are zero, and the masses of all the internal particles are the same. 

For simpiicity we have also used (u - p2) as the argument or Al instead of u, 
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but this doesn’t affect the calculation of the leading terms. Now we want to 

double Mellin transform I as we did earlier in the calculation of Jlcl (3.28). 

This is easily done using the techniques described above, and we have 

G(s, r; p) = 27r(~~)~+r-~-~ l?(s) l?(r) lY(p+n-s-r) r2(1-r) r(n-s) r(p-sl 
r(p+n) r(2+n+p-2s-2r) (3.37) 

which miraculously is the same as (3.30) for p = n. Now, taking the derivative 

of G with respect to p, and taking p - n, we seek the left-most singularities in 

the s-plane in order to determine the asymptotic behavior of A2 for large lu I. 

Using the exciting properties of the well-known (! 7) poly-gamma functions, 26 

it is easy to derive the formula for the leading singularities of the m th deriva- 

tive of the gamma function evaluated near zero: 

rk;=*; x-o (3.38) 

With this formula, we easily find that the left-most singularity of (3.37) in s is 

a sum of poles at s = n, the most singular of which is a third order pole. This 

comes from the term we get when we take the derivative of r(p-s). 

We invert this singularity using (3.27) and (3.32), and we find for the lead- 

ing behavior of A2 as lul - =Q, 

JM 
f(t) R;(t) J.n2( -u) 

2 
= (-u)-” 

21 * (3.39) 

It is easy to see from (3.38), (3.35) and (3.32), that if we continue this pro- 

cess keeping only the leading terms in each order, we will have the sum 

* 

A= c j=. &j = Ti ’ 
m !I!LEd = f(t)(-u)Rl(t)-n (3 4o) 

j! . 
( -4 j=O 
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And, as promised,the theory Reggeizes with a(t) = RI(t) - n and p(t) = f(t) 

in this approximation. There are of course other lower lying contributions in 

each order and these will enter the sum to change the behavior of (Y and p. We 

can see this already happening in (3.33) where the second term on the right 

“renorrnalizes” the residue, P(t). In d2, this term gets promoted and has a 

leading dependence a ( -u)-~ h( -u). This new term is just what is needed to 

allow the renormalized /3(t) to be simply factored out of the term = h(-u) in the 

sum. as we did in (3.40). It is clear that the number of lower lying terms which 

get promoted to modify (Y and /3 quickly proliferates, and makes a detailed pre- 

diction of the t-dependence of (Y and p for all t difficult. But it is equally clear 

that the structure of the theory is as shown in (3.40). In fact, since there is a 

coupling constant, say g, associated with each appearance of the kernel, (3.40) 

is exactly the perturbation result in the limit of small g - that is, to each order 

in h(-u), (3.40) includes the minimum factors of g possible. It is also impor- 

tant to realize that regardless of the size of g, (Y and p are well approximated by 

a(t) z RI(t) - n 

(large It I) 

P(t) = f(t) [l + ROW] (3.41) 

for large Itl. The reason is that as t increases Jtt. 
5+1 

CC “llj, and so at large 

It I it is certainly sufficient to consider only dNo and Al. 

Let us now return to (3.34). From this equation, we can see how the effec- 

tive trajectory and residue approach their limits as t increases. For definite- 

ness, we shall consider the case n > 1. If n=l, the discussion is similar. To 

examine the behavior of the trajectory we can expand (3.40) in powers of t&u) 

and compare with (3.34) (or, equivalently, use (3.41) and evaluate (3.34) for 
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large Itl). Doing this we find 

a(t) = BlfW 
qy-n (large It I) (3.42) 

We see then that a(t) rises (or falls, depending on f(t)) away from its asymptotic 

value of -n at a rate given by the first term in (3.42). In the BBG parton ex- 

change model, 21 n and the behavior of f(t) are related to the electromagnetic 

form factors of the particles involved in the scattering, and so these form fac- 

tors determine the rate at which the trajectory approaches its asymptote. Fur- 

thermore, this model also predicts that f(t) has, at most a small imaginary 

part, and so in this order at least, a(t) is mostly real. 

Another important aspect of the large It I behavior of our theory involves 

the definition of the deep scattering region. The deep region should be the re- 

gion where coherent effects which build Regge poles become unimportant with 

respect to the Born term. Comparing (3.34) and the Born term, we see that the 

value of t where the deep region sets in depends upon u in the following way: 

In the BBG model, f(t) - (-t)-b, where b is a small number (not necessarily an 

integer) whose order of magnitude is one, and depends on the specific reaction. 

The deep scattering region, therefore, is neither a fixed angle region (t KU) 

nor a fixed t region, but sets in someplace in between. In the more complicated 

coupled channel case, the relation which determines the deep region is generally 

somewhat more complicated, but the essential characteristic remains the same. 

We promised the reader a few pages ago we would justify the use of, for 

example, the leading term of Al in the calculation of A 2. To do this we must 

show that the most important region in the calculation of A2( J[ j+l) 
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corresponds to large values of lul , the argument of Jlkl( dj) as lu I b m . 

From (3.17), we see that since 0 <y i 1 and u < 0, ICI 2 lyul over the entire 

range of the P 1 
integration, so it is sufficient to show that the important con- 

tributions come from regions when lyu I is large. Now, let us look at the ex- 

pression for I in (3.26). (We could just as well analyze (3.36), and the argu- 

ment would be the same.) We may ask, for what values of the variables x and 

y is the integrand largest? By inspection (or differentiation with respect to 

z = xy), we find that the integrand is largest when 

xylul -p2+ cq3ltl (3.43) 

Since x, y, CY and p are all between zero and one, the most stringent test of the 

size of u will come when the right-hand side of this relation is finite. (It cannot 

be zero because of the term p2.) The relation xy lu I = constant is a hyperbola 

inthex-yplane. Remembering that x, y E [O, I], we realize that over the 

entire length of the curve, except near one end point, ylul - m as lul - 03. 

The one region where this is not true is, of course, the segment which is very 

close to the point x = 1 where y -KS* This segment shrinks to a point as 

lul -00. Since the integrand does not diverge here, it is safe to say that Iii’1 is 

large in the most important region of integration in the recursion relation. In- 

deed, if the relation (3.43) is not satisfied, the integrand - 0 as lul - m. The 

fact that derivatives with respect to p appear in higher order recursion relations 

such as (3.36) need cause no worry once it is realized that those derivatives are 

merely a convenient way of including the factors of logs which appear in the 

integrand. It is clear that’the presence of these logs does not affect the validity 

of the argument presented here. Later in this section, we shall show that small 

values of y(y - lul -l/ 2, provide the most important contribution to the integral 
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as we approach the Regge region. In that case, it is a simple matter to show 

that the magnitude of energy variable appropriate to the kernel, u’ = (P-!)~, is 

also large in the region of interest. This is done by writing u’ in terms of u, u 

and y. This is, of course, required for a consistent theory. Finally, in section 

c, when we discuss the Reggeization problem in the coupled channel case, we 

shall refer again to our hyperbola, and show how the dominant region of integra- 

tion determines how Reggeization takes place when the kernel does not have the 

same fall-off in u as the amplitude, Aj, with which it is convoluted. 

4. Discussion of the Kernel 

It is instructive at this point to discuss the nature of the kernel and Born 

terms which appear in our integral equation. First, as we mentioned before, 

the blobs in Fig. (10) are supposed to be irreducible insertions in the two parti- 

cle propagator. This, of course, is to avoid the problem of double counting of 

Feynman graphs. We would now like to examine a few simple examples of the 

insertions that can contribute to the kernel. In doing so we shall gain some in- 

sight into the role played by various s-channel and t-channel intermediate states 

in the theory. 

In our discussion so far we have used a u-channel dispersion representation 

for K. Obviously, if we consider only simple ladder graphs (Fig.(14)) all of our 

results go through without complication and Reggeization proceeds apace. We 

can, of course, consider the same set of graphs by letting the kernel represent 

two horizontal propagators. Then, if we use the sum of a single propagator plus 

two simple propagators for the Born term we reproduce exactly the set of dia- 

grams as represented in Fig. (14). (In the next subsection we shall use OFPT 

directly to derive our equation for these simple ladders.) It is important to 

realize that this can be done, since in the context of the parton interchange theory 
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2319A14 

FIG. 14--Simple ladder graph. 

- 60 - 



of Gunion, Brodsky and Blankenbecler 21 the kernels at large ItI are box (or 

crossed box) diagrams with structure at the vertices, as in Fig. (15). The heavy 

lines here are hadrons, and the lighter, internal lines are quarks or cores. A 

proton, for example, may be thought of in this kinematic domain as a p quark 

plus a (pn) core or an n quark plus a (pp) core. 

Motivated by these considerations, we want to look carefully in this section 

at the diagrams of Figs. (16) and (17). It is of course, important to consider 

these diagrams independent of any particular model, but if one subscribes to 

the parton interchange theory these diagrams are especially germain. Figure 

(16) is the type of graph which is expected to be important in building the vertex 

structure as in Fig. (15). Figure (17) on the other hand, corresponds to the 

insertion of an (su) graph into the kernel which is certainly present in some pro- 

cesses, especially in backward scattering according to Gunion, Brodsky and 

Blankenbecler. 21 Let us turn first to a discussion of the vertex corrections, 

Fig. (16). 

We proceed to calculate this graph by interpreting it as a Feynman graph 

(actually, a sum of Feynman graphs which include all relevant structures in the 
- 

amplitude, .JZV ) and evaluating it in our now familiar infinite momentum frame. 

If we label the momenta as in Fig. (16), we can write this amplitude as 

A= 1 
2(27r)4 

d2Q * I ,y, dp2 F(Q2, (P-Q)~) 2 (g, t; Q2, (Q+s12) 

1 -1 [ Q2 m2 ie 1 -1 -1 
iC 

- + [ (Q+q)2 - m2 + is 1 
(3.44) 

where the vertex function, F, is 

F(Q2, (P-Q)~) = 1 
2(2Jn4 “I 

d2ki $$ dk2[k2-m2+ie]-1hk-Q)2-m2+ie]-1[(p-k)2-m2+ie]-1 

(3.45) 
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FIG. 15--(tu) parton interchange diagram. 
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. 

q+r r 

FIG. 16--Feynman diagram showing kernel which 
includes a vertex correction. 
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q+r r 

P+q 

FIG. 17--Feynman diagram showing kernel which 
has a non-zero third double spectral 
function. (su-spectral function.) 
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and our choice of frame dictates 

k= 
k2 + k; 

2zP , kL, 

Q = xP+ 
Q2 + P; 

2yp ,QLvyP 

For convenience, we have taken all masses equal. 

We now want to do the dk2 and dQ2 integrals. By arguments analogous to 

those presented in the derivation of our original equation we easily see that we 

get a non-zero contribution only when z,ye[O, l] . (Remember that r2 and (q+r)2 

are spacelike.) Now let us imagine that we have used a spectral representation 

like (3.15) for z in (3.44). As we discussed before, the weight function, 3, 

will not have any troublesome singularities in the Q2-plane. We may then analyze 

the positions of the singularities in Q2 and k2 by looking at the explicit propaga- 

tors in (3.44). Then, at the end of the calculation we do the spectral integral 

over 7 to get back z . With this procedure in mind, let us first suppose that 

z <y. Then, it is convenient to do the dk2 integration by closing the contour in 

the lower half plane. Doing this we pick up a contribution from the pole at 

k2 = m2 _ ic . (The other two poles are in the upper half plane.) We then per- 

form the dQ2 integration closing the contour in the upper half Q2-plane. This 

picks up the pole at (P-Q)~ - m2 + ie = 0. This contribution is shown in the time 

ordered graph of Fig. 18a) where the dashed lines indicate which particles are 

on the mass shell. Now, if z > y, we can close the k2 contour in the upper half 

plane. For z > y there is only one pole in this half plane, and we obtain a con- 

tribution from the pole at (p-k)2 - m2 + ie = 0. This time, when we do the dQ2 

integral we find that we must consider contributions from two poles in the 

- 65 - 



(a> (b) 

FIG. B--Time orderings which contribute to the Feynman diagram 
Fig. 16 in the infinite momentum frame. The dashed lines 
show which intermediate state particles are on their mass 
shells. 
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Q2-plane. Closing the contour in the upper half plane, we get contributions from 

the poles at (p-Q)2-m2+ie = 0 and (Q-k)2-m2+ie = 0. These contributions are 

shown graphically in Figs. (18b) and (18~). (Remember, incidentally, that the 

propagator from the spectral representation of I?? always has its pole in the 

lower half Q2-plane, and so we never surround this pole with our contour.) 

The first point we want to comment on here is that all these contributions 
n 

are contained in W in Eq. (3.11) with the cut in the ai plane restricted to the 

positive real axis. Graphs (18a) and (Mb) contribute to the pole at o2 = m2, 

while (1%) gives the cut in W starting at o2 = 4m2. Since these singularities 

are almost on the real axis, there is no reason to deform the da2 contour from 

its usual choice. Another way of understanding this is to realize that there is 

no contribution like Fig. (18d) in this diagram. This means that the off mass 

shell variable, h2, does not contribute any extra singularities of K in the Q2- 

plane which would introduce extra contributions to our integral equation had we 

not used the representation (3.11) for K. We emphasize again that these are 

two complementary ways of looking at the situation. If we do not introduce the 

dispersion representation (3.11) we, of course, need to calculate all the contri- 

butions of a specific graph, and some of them will, in general, be like Fig. (18d) 

(as we shall discuss shortly). However, once we introduce the dispersion rela- 

tion (3.11) we can include all possible contribution from a general graph by keep- 

ing an open mind about the specific location of the do2 contour. The appearance 

of extra off shell contributions like those in Fig. (18d) is equivalent to the re- 

quirement that the do2 contour be deformed from the real axis to include complex 
20 singularities. Therefore, as we stated before, our integral equation (3.20) or 

(3.21) is perfectly general with the understanding that the specific form of the 

da2 contour depends upon W. 
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We would now like to describe what this vertex correction can tell us about 

the important s- and t-channel intermediate states in various kinematic regions. 

In subsection 3, we showed that in the integral equation the biggest contribution 

in the Regge limit came from a region near a hyperbola described by equation 

(3.43). We argued before that over most of this region, I yu I - m as Iu I - m . 

A glance at the expression for I in (3.26), however, also shows that the most 

important part of this hyperbola is the domain in which x, y - 0 as lu I - a~. 

This is because the expression for I involves an integral over CY and p, and, 

because of the o-function, the allowed range of these integrals is maximized 

when x and y are both small. Therefore, the Regge region is dominated by the 

exchange of particles with small y. 

We may now ask which of the vertex correction orderings we expect to dom- 

inate in the Regge region. Since small y is most important here, we expect the 

time orderings with y < z will predominate. These are the graphs of Figs. (18b) 

and (18~). The picture of Regge behavior and its relation to deep scattering 

which emerges from these considerations is the following: the Regge region is 

dominated by the exchange of (light) particles with relatively small longitudinal 

momentum in the IMF (y near zero). If these particles are partons, we recover 

Feynman’s idea that Regge behavior arises from the exchange of wee partons. 27 

Notice, however, that the exchanged particles need not have point-like form fac- 

tors or weird quantum numbers - our formalism includes the possibility that 

they are ordinary hadrons. Notice also that in generating Regge poles we only 

need to exchange two wee particles. However, the more complicated j-plane 

singularities that arise from s-channel iterations of simple poles will clearly 

correspond to amplitudes in which there are more than two wee particles ex- 

changed. As we move away from the Regge region It I grows for fixed lu I, and, 
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as we see from (3.26)) it becomes more and more important for Q! and p to be 

small in order to get a sizable contribution to I. Since the o-function must be 

satisfied, regions of the y integration where y is not near zero become increas- 

ingly important, and it is no longer justifiable to consider only contributions to 1 

coming from small ye As far as the vertex correction graphs are concerned 

this means that the time ordering of Fig. (18a) becomes more and more impor- 

tant. In addition, when 1 tl is large all the amplitudes, Jltj, j > 0 are down by at 

least a factor it I -I from the Born term, as we have shown. Hence, the picture 

in the s-channel is that in each amplitude, Jttj, the Regge region is dominated 

by the many particle intermediate states as in Figs. (18b and c) - whatever 

particles there are want to live as long as possible. In addition, amplitudes 

&Cj with increasingly large values of j become important in order to build up the 

moving Regge trajectory. As It I increases, each dj gets larger and larger 

contributions from diagrams like Fig. (18a) - that is, the particles in the inter- 

mediate state pull back and live for shorter and shorter times. Furthermore, as 

It I increases, all the amplitudes, Aj for j > 0 become small in comparison with 
- 

the Born term by at least a factor of It I -l, until finally in the deep region only 

the Born term is important. To complete the picture, we remark that a Born 

term should probably have a small number of intermediate state particles in 

order to be consistent with our interpretation. An example of such a Born term 

is provided by the parton interchange theory. 21 

Now let us turn to a brief discussion of the graph shown in Fig. (17). Our 

purpose here is to present an example of a kernel which, when used in our for- 

mulae, has singularities in Q2 due to its dependence on A2, and which therefore 

requires a deformation of the path of integration in the a2-plane. The specific 

kernel which we shall discuss has a non-zero third double spectral function (su), 
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and therefore is not really in the spirit of this section. This is because the on- 

shell amplitude corresponding to this kernel has discontinuities not only for 

positive u but for negative u also. Therefore, amplitudes built up from this 

kernel will not necessarily be real, and this is a complication which we wish 

to avoid for now, and relegate to section D. However, at the time of this writ- 

ing, this reporter has not been able to think of a graph which has the disease 

we require, but which also has the discontinuities only for u > 0 ; hence, the 

present example. It is comforting to know, however, that for fixed t, u - m , 

the leading term of this graph is not as big as the leading term of the graph with 

the horizontal rungs uncrossed. 28 

We proceed, then, with our analysis by labeling the momenta as in Fig. (17). 

Taking all masses equal, introducing a spectral representation for x , and 

using the same frame as we used to discuss the vertex correction graph, we have 

for this diagram: 

A&? = 1 I d2Q1 dyd2 k1 dzdQ2 dk2 

4(2n)* izl lyl do2 p-m2+is]-I[(Q+q) -m2 + ie]-I 

[k2-m2+ie]’ [,Q+q+p-kJ2 -m2+ie]-’ Ep-kJ2-m2+ie]-’ [(k-QJ2-m2+ie] -1 

-1 
WP2 , t; A2, R2) (3.46) 

Examining the positions of the poles in Q2 and k2, we discover that the only range 

of y and z which contribute in our frame is 0 <y < z < 1. With this range of y and 

2, let us examine the dk2 integral. It is straight forward to see that two of the 

four propagators which have poles in the k2-plane have their poles in the upper 

half plane, while the other two have poles in the lower half plane. We choose to 

close the contour in the lower half plane, and we thus pick up the poles from the 

propagators [k2-m2+ie]-l and kk-QJ2-m2+ie]-‘. We now carry out the de2 
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fntegral over the two contributions which result from these two poles. In the 

first term (obtained from the pole at k2 = m2) there are five poles in the f2- 

plane, four of which are in the lower half plane (including the one from the spec- 

tral integral). Avoiding unnecessary emotional stress, we quietly close the d? 

contour in the upper half plane, picking up a contribution from the propagator 

[ (k-1) 2 2 -m + ie 1 -l. This contribution is shown graphically in Fig. (19a), where 

again the dashed lines denote which internal particles are on the mass shell. A 

similar analysis for the second term again reveals that four of the five poles in 

I2 are in the lower half plane. Closing the contour in the upper half f2-plane, 

we pick up a contribution from the pole generated by the propagator 

C (p-k)2-m2+ie -l. 1 This term is shown in Fig. (19b). 

We can now clearly see the kinds of terms which require a deformation of 

the spectral integral contour. Figure (19a) represents a contribution to the 

amplitude in which h2 has gotten sufficiently time-like to decay freely into the 

two particles which are on the mass shell, and therefore requires the existence 

of complex singularities in the c2-plane. Figure (19b), on the other hand, is 

just an ordinary contribution of the type we have seen before, and by itself could 

be treated by a path integration running along the real a2-axis. Notice that if 

we were interested in only the imaginary part of this diagram (for instance, if 

the top two external masses were photons and we were calculating WI or vW2), 

only the contribution (19b) would be relevant. The reason is that all the inter- 

mediate state particles are required to be on-shell for the imaginary part, and 

this cannot be the case for Fig. (19a). To put it more graphically, only (20b) 

and not (2Oa) contributes to the imaginary part of the full amplitude, since (2Oa) 

represents a discontinuity in the mass (q + r)2 and not in s = (p-~+-r)~. This 

analysis successfully accounts for Polkinghorne’s observation that in the 
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(b) 2319A19 

FIG. 19--Contributions to Fig. 17. The intermediate 
state particles that are on mass-shell are 
indicated by the dashed lines. 
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(b) 2319420 

FIG. 20--Possible contributions to the imaginary part 
of the Feynman diagram, Fig. 1’7. Figure 20a 
does not contribute for stable external particles. 
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covariant parton model calculation of vW2 the off-shell parton leg is space-like. 29 

However, our discussion shows that this would not, in general, be true if one 

undertook a calculation of the complete Compton amplitude. 

By carefully examining two Feynman graphs which can contribute to K, we 

have tried in this subsection to gain a better understanding of the physical inter- 

pretation, as well as the mathematical complexities, of our Reggeization proce- 

dure. We now want to return to the simplest realization of our theory - the 

basic ladder graphs. We present, in the next subsection, an alternate derivation 

of our integral equation for this case. 

5. Alternate Derivation Using OFPT 

To conclude this rather lengthy section then, let us proceed to outline the 

derivation of our basic integral equation, (3.20) or (3.21)) using old-fashioned 

perturbation theory in the infinite momentum frame directly. This derivation is 

somewhat more cumbersome than the one presented in subsection 2, and the 

extent to which the final equation is model independent is not readily apparent. 

Nevertheless, it is interesting to see how the equation emerges from this ap- 

proach. For simplicity, we shall only treat the case of simple ladder graphs, 

but it will be apparent that the procedure applies also to more complicated cases. 

Let us begin by turning to Fig. (21). This figure represents the amplitude 

Jlt j+l and consists of j + 2 rungs (one from the Born term). As in subsection 2, 

we choose our frame and external momenta such that (q+r)2 and r2 are space- 

like. We consider the limit P - ~0 and parameterize the external momenta as 

p= P+ (. v2 
5 I 0, p 

> 

q= yLl,o~ ( 1 
r = (v , rLI 0) 
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j +2 rungs j +2 rungs 

/ Iwxj+l 9 -Qj+l P+q ‘\, 231PAZ1 

FIG. 21--Only surviving time ordering for the old-fashioned per- 
turbation theory calculation of simple ladder graphs. 
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and we assume that the final state particle with momentum (p+q) has a mass v ,2 . 

The parameterizations of the internal momenta are indicated in Fig. (21). The 

factors of xi represent the fraction of longitudinal momentum carried by that line, 

and the Pi (or Ii + qlor l1 - rI) are the transverse momenta carried by the line. 

According to the OFPT rules given in subsection 1, we conserve 3 momentum at 

each vertex and place all the particles on their mass shells. The momentum 

vectors of all the internal lines are then easily written down. For example, the 

four-vector of the second from the bottom rung of the ladder is 

i 

m2+(.P, 
xj+l(l-xj) P + 

.+l - n.y 
ZX~+~(~-X~)P ’ ‘j+l-‘j’ xj+l(l-xj) ’ 1 

For simplicity, we set the mass of each internal line equal to m. 

With this parameterization of momenta, the only time ordering that survives 

in the P - m limit is the one shown in Fig. (21) which we now read as a time- 

ordered, rather than a Feynman diagram with time running from left to right. 

The fractions xi are all between 0 and 1 so that the z-component of momentum is 

positive for each internal line. To calculate the graph, we need expressions for 

the energy demoninators according to the rules of subsection 1. On the left side 

of the graph, we label the energy denominators by defining 2P times the energy 

difference to be Di with i running from 1 to j+l. D. 
3+1 

is calculated from the 

intermediate state which appears after the first vertex and Dl refers to the mter- 

mediate state just to the left of center (the so-called liberal state). Similarly, 

the energy denominators (times 2P) calculated from the right side of the graph 

are labeled by Ei. 2P times the central energy denominator we shall call A. 

If the coupling constant at the vertices is g, we can easily write down an 
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expression for the amplitude. It is 

Mj+l(u, t; N2, 
j+l ( 

if1 \ 

d2$dxi 

(xi) 1+2i ( 1-xi)DiEi 
A-l (3.47) 

It is convenient to represent the Di and Ei by a sum of energy differences across 

each vertex. Doing this we easily find 

D j+l = V2 - sCJ-j+l* “j+l) 

j 

Di =D j 2 i 2 1 

E j+l = 
VI2 - ‘(‘j+l + t1 - xj+l) 91) “j+l) 

Ei =E j+l + h j,i,l 
k=i 

k [m2 - s(Qk - xkQk+l + (lmxk) q1 ’ “kl] 

(3.48) 

where 

“k = xj+l xj - * * $ 

and 

S is, of course, the same kind of variable that appears in (3.6) as well as subse- 

quent formulae. Finally,we can write A in the form 

A = D1+u+r2-v2 1 + < [Qi-(Q1-rlJ2] (3.49) 
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Now, since the d2P, integrations cover an entire plane we are free to shift 

the origin of each integration. Therefore, define a new set of transverse vectors 

by 

Q; = Qj + x.Q. 
3 3+1 

and 

Qf - x~Q\+~ = Qi - xiQi+l (3.50) 

With this transformation, we can write 

j-l 
1 

xj+l i D = Ej + c 7 
k=i “k+l 

r()] j?fLl 

(3.51) 

where 

with 

Dj = A2 - S(Q;, xj) 

h2zx 
Q!fl + x.+~ m2 

j+l 
v2- 1 

1 -x j+l 

and 

A2 as defined here is exactly the off-mass shell variable defined in (3.1’7) with 

c2 = m2 and is the square of the four momentum flowing up the left side of the 

ladder just after the first vertex in Fig. (21). Now, notice that the right hand 

side of (3.51) is exactly what we would get for Di if we were to calculate the 

amplitude AC (instead of Jll. ) with an incoming mass A2 rather than v . 2 
3 3fl 

The 

transformation (3.50) also allows us to rewrite x E. in a way similar to (3.51) j+l i 
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only with the replacement 

2 2 u’ - A’ = x. v’ 2 (‘j+l + (1-x.+l)q,)2 + ‘i+l m2 
- 

3+1 1 - x. 
3+1 

As before, this is the same as hf2 as defined in (3.17) (with a2 = m2) and 

has an interpretation similar to the interpretation of h2. Finally, using (3.50) 

we can write for the central energy denominator 

“j+l A=x D +u+r2 j+l 1 1 
- h2 + 1 

w1 
- (Q;” .- r1j2] (3.52) 

where 

;= 
xj+l u - 

(Q.+l + (1 - x.+l)rj2 - x.+~ m2 
l-x j+l 

and, again, with a2 = m2 is the variable defined in (3.17). Using (3.51), and 

comparing (3.49) with the right hand side of (3.52), we recognize this as the 

central energy denominator calculated for the amplitude Aj with v2 - h2 and 

u - u. Therefore, if we define Q = Q j+l’ 
and y = x. J+l’ we may rewrite (3.47) as 

&j+l(u, t; N2, R2) = L3 
J 

d2 Qdv 

ww ~‘~t1-Y) Dj+l Ej+l 
dj(i, t; A2, R2) 

(3.53) 

Using the definitions of D. 
3+1 

and E j+l (3.48)s we easily see that (3.53) is a 

special case of (3.19b) with 

wta2, t; N2 A2) = 6(m2 - U2) 

as befits a kernel which consists of a simple pole at m2. To complete the OFPT 
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derivation of the integral equation, we need only sum both sides of (3.53) over 

j, and we will have reproduced (3.21) for the case of the simple ladder graphs. 

This procedure is clearly valid for a large class of kernels and in general 

will reproduce the integral equation derived in subsection 2. An interesting 

property of the OFPT derivation is that it provides yet another example of how 

clever Feynman diagrams are. Consider, for example, an OFPT derivation in 

which the kernel consists of the bottom two rungs of a ladder graph. In our 

usual frame, only one time ordering of the four vertices of this kernel will con- 

tribute (as in Fig. (21)). After calculating the diagram we are free to introduce 

a dispersion representation for the kernel. Strictly speaking, however, the 

weight function, W, which we should use for this kernel is not the weight function 

for the entire covariant sub-amplitude (with off-shell masses), but is the weight 

function appropriate to the single contributing time ordering. It is a testimony 

to the ingenuity of our integral equation that it automatically projects out the 

relevant piece of the weight function SO that it is allowable to insert a spectral 

representation for the complete covariant sub-amplitude. Of course, in the 

context of the derivation of subsection 2, this property is obvious, so maybe the 

lesson to be learned here is that there is often a great advantage in keeping ex- 

pressions covariant as long as possible. 

&I this section we have tried to indicate by a simple example, the connection 

between two alternate derivations of Eqs. (3.20) and (3.21). While the present 

derivation is not as simple and not as obviously general, it does cast the problem 

in a slightly different way, and so is useful in that respect. 

C. The Coupled Channel Case 

In the last section, we discussed at some length the problem of Reggeizing 

deep scattering in a world where there is only one kind of particle whose deep 
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elastic amplitude has only a right hand cut in u. (This is almost equivalent, in 

our case, to saying that there is only one nonzero double spectral function (t-u).) 

While this discussion yielded much physical insight, there are at least two addi- 

tional layers of complexity that must be added in order to make reasonable con- 

tact with the hadronic world. First, jt is well known that there is more than one 

kind of strongly interacting particle, and so a realistic theory must incorporate 

this feature of high energy phenomonology. Second, it has long been suspected 

that crossing symmetry and direct-channel unitarity may be important in hadron 

physics, and that would seem to imply the necessity of at least considering the 

existence of discontinuities at negative, as well as positive u. In this section we 

shall deal with the first of these complications and in the next section we shall 

discuss the second. (We shall, however, continue to work only with spinless 

particles.) 

The inclusion of more than one particle actually involves two kinds of gen- 

eralizations. Consider, for example, a world of N particles. If we restrict our- 

selves to a discussion only of elastic scattering in the s-channel, we need to in- 

corporate N2 coupled amplitudes into our formalism. Some sort of matrix 

method suggests itself, and that is what we shall discuss later in this section. 

In addition, however, we must now consider the problem of how Reggeization 

takes place when we convolute two sub-amplitudes which have different power 

law behaviors in u. This is the problem to which we turn first. We shall, of 

course, still continue to use kernels and Born terms which have discontinuities 

for positive u only. 

Suppose, therefore, that we wish to convolute an amplitude, 2 , whose 

asymptotic behavior for large Iu I is given by 

Qnk(k2-u) = h(t) (3.54) 2 = h(t) (ji2-u)-m 
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with a kernel, K , whose asymptotic form is 

K = f(t) (/A’ -u)” (3.55) 

in our integral equation (recursion relation) (3.19b). For convenience, we take 

m, n and k to be integers. We may use (3.12) which is the imaginary part of K 

in (3.19b),and we have 

dZ= f(t) WI 
2(27r)3(n-1)! 

dy ‘;it;y;) [v2-s(Q, BY)]’ 

+ (1-y)ql,y 1 -’ &n-l] (p2-a2) (p2 - i-i)-” (3.56) 

Using the identity above (3.25)) as well as (3.1’7), we easily derive the analogue 

of (3.25) for our present case: 

J$?= f(t)3h(t) 
2(2x) (n-l)! 

(27 m(m+l)i’ dy(l-y)m+l d2f da2 

&-11 (jLJ2) m-l dalda!2dry3 6(1-a!1-~1~-“~) a3 

-( m+2) 
X + Q,Z + (l-~)~ o!la2q; - y(l-y) ff3u + yo2 I (3.57) 

with pf2 defined as in (3.25). The d2QL and da2 integrals are done just as they 

were in section B, and we find for the present case 

z= d(t) h(t) t-1)’ 
2(27r)3 

( 8-k lY(n+m) ) 
l?(n)r(m) 1(uSt) (3.58) 

where 
co -( m+n) 

I(u, t) = 
/ 

dxdydodp b( l-x-y-a! -B) m-l yn-l x 

0 
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and, as before, we have defined x = (l-y) cy3, a = (1-y)ai, p = (l-y) a2, and 

P2 = Pf2 f YP2. 

We mw want to examine the leading terms of A? for large lu I. We do this, 

not surprisingly, by again using Mellin transforms. The double Mellin trans- 

form of I defined in (3.28) is easily calculated. In fact, we have already done 

this in (3.37) when we were examining the behavior of the second iterated matrix 

element, A2, in the last section. For ease of calculation, we again set all the 

external masses equal to zero and all the internal masses equal to cc. Then, we 

easily verify, 

G( s, r) = 2zQ.42)s+r-m-n r(s)r(r)r(m+n-s-r)r2(1-r)rIq-s)r(m-s) 
r( m+n) r( 2+m+n-2s -2r) (3.59) 

which is the same as (3.37) with p = m. With this formula, we can clearly 

examine the asymptotic behavior of utl in lul for all values of t, in particular 

in both the limits i -0and i fixed as lul - m. Since we have already done 

this for the problem of the last section, we will only consider the i - 0 limit 

here. That will be sufficient for the physical point we wish to make. 

To examine the large lul behavior of (3.58), in this limit, we put r near 

zero (but positive) and look in the s-plane, analyzing the singularities of G for 

positive s. The three cases to consider are n = m, n > m, and n cm. For the 

physical reasons discussed in the last section, we assume that n, m 2 1. Now, 

if n = m we have exactly the situation of section B. To review, in this case 

the first singularity which we run across in s is a pole at s = m. By applying the 

derivative +m to r(m-s) k times, we generate a (k+l) th order pole at s = m. 

But, since n = m the factor r(n-s) contributes another order to this pole, and we 

end up with a pole at s = m = n of order k+2. Mellin inverting this singularity 
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tells us that the leading behavior of zis 

“+?J - ( -u) -m Qnk+l( -u) ; (n=m) (3.60) 

and the theory Reggeizes, as discussed in detail in the last section. 

It is easy to see what happens if n # m. For n cm, the first singularity in 

s is a simple pole at s = n, and the leading behavior of zis given by 

2 - (-U)-n; (n cm) . 

On the other hand, if m <n, we have, after applying the derivatives 
(T 
2 to 

r(m-s) a pole of order (k+I) at s = m. Since this is now the first singularity of 

G in the s-plane for positive s, we have the asymptotic dependence, 

dz - ( -u) -“Qnk( -u) ; (m<n) . (3.62) 

Of course, in both the cases with n # m there are lower lying terms of the form 

(3.61) or (3.62), and the sum of these terms must approach (3.60) as n -. m. 

What is the physical interpretation of this result? Evidently, when n # m, 

the amplitude 2 does not seem to know that it is supposed to represent the con- 

volution of two sub-amplitudes, at least as far as the leading term is concerned. 

If n > m (n < m), the asymptotic behavior of 2 is the same as the asymptotic 

behavior of z (K) . Physically, the reason is that the faster the fall-off of the 

sub-amplitude, the more the z-component of momentum wants to flow through 

the other sub-amplitude. The momentum, therefore does not sample this sub- 

amplitude, and the leading behavior of & does not reflect its behavior. As the 

sub-amplitude falls off faster and faster it behaves more and more like an open 

circuit and shunts the momentum through the other rung. 
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We can understand this result from the following point of view. In the last 

section, we showed that the major contribution to our integral in the lul - * 

limit comes for the region near a hyperbola xylul = const. Looking at the ex- 

pression for I in (3.58), it is easy to see how the delicate balance in the flow of 

momentum which produces a log by allowing y to sample both amplitudes is up- 

set when m # n. When n > m (n cm), the integral prefers larger (smaller) values 

of y, thus destroying the symmetry in x and y and shifting the dominant region of 

integration away from the symmetry point of the hyperbola (x, y - lu I -l/2) to- 

ward larger (smaller) values of y. (Remember, that because of the form of the 

integral, when y samples both sub-ampIitudes it is smal1 - lu I -l/2 , and not 

Although we do not gain extra log factors when n # m, we must include such 

graphs in the calculation of the final Reggeized amplitude. Since, in a realistic 

case we will continue to generate amplitudes, A., ad infinitum, with all pos- 
.l-- 

sible combinations of kernels, the terms generated in a situation where n # m 

will eventually Reggeize, and will contribute to a(t) and P(t) higher order terms 

in the couplings associated with the kernels. 

Fortified by this discussion, we now face the task of developing the formalism 

necessary to handle problems with more than one kind of particle. The most con- 

venient way to do this is to discuss in detail an example with two particles. Cur 

example will be of complexity sufficient to reveal all the salient physical features, 

and the extension to the most general case will be obvious, 

Consider then, a world with two kinds of particles, 1 and 2. Since we limit 

our discussion to s-channel elastic amplitudes, we need to consider a total of 

four amplitudes, & op. The superscripts refer to the particles in the t-channel. 

The first superscript refers to the type of particle coming our of the bottom of the 
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amplitude, and the second superscript refers to the particles coming out of the 

top. Thus, & 21 is the amplitude for the s-channel process 1+2 - 1+2, etc. 

Notice that &lop is symmetric. For simplicity, we shall not discuss backward 

scattering in this section, but our formalism could easily be generalized to in- 

clude it. 

The particular example we want to consider is defined by specifying the 

Born terms which we also choose to be the kernels. They will be given by: 

K@ = Bayp = f”+t)@2-u)-n + hLYP(t)(C12-u)-m. (3.63) 

With the definition of the weight function as in (3.11)) we have 

wap f@(t) a[n-fl(02-P2) + !2% 6[“-11 (&2) - (3 ($4) 
(n-l)! (m-l)! . 

One particular case of physical interest corresponds to the choice f 22+12=h21 

=hll=O. The rest of the Born matrix elements are non-zero, and m> n. If 

particle 1 is a kf and 2 is a p, this example corresponds in the parton interchange 

theory to the case of k+-p coupled channels. The reason why we choose k+-p is 

that all four s-channel amplitudes are exotic, and we expect only (tu) graphs to 

contribute, leading to purely real amplitudes. Of course, in the real world, we 

must include other intermediate states, also, such as pions. This will have the 

effect of introducing imaginary parts to the purely real amplitudes which we will 

generate in present problem, and should help to build up a pomeron pole. This 

will be discussed further in the next section. 

Using the kernel given in (3.63)) let us calculate the second order matrix 

element, ,AdyP. For a given set of external particles, we must include contribu- 

tions when the t-channel intermediate state contains particles either of type 1 or 
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z 
of type 2. Using our standard recursion relation (3.19a), we may thesefore 

write, 

1 

0 

W@( a2, t; N2, A2) &;p(,, t; A2, R2) (3.65) 

Where my is the mass of the y th particle. Since we have two kinds of Born 

terms, we have a total of four contributions coming from (3.65), each one of 

which, in general, contributes to each of the four amplitudes under discussion. 

From the previous discussions of the section, and from (3.53), it is clear that 

each of these four terms can be written 

c n(-l)aI’(a-!-b) goY(t) g@(t) I(u, t; a,b, y) 
‘Y 2(2@31’(a)r(b) b a 

(3.66) 

with 

/ 

cc 

I&t; a,b,y) = dxdyda!dp 6(1-x-y-a!-@ x a-1 Yb-l -(a+b) 

0 

p2 is as defined below (3.58), but with m2 - m”y. Furthermore, it is understood 

that at the end of the calculation, one continues the external masses v2, 
2 2 v’ -m a!’ and r2, (c~+r)~ - rni. With the Born terms and kernel given by 

(3.63), a and b can take on the values m or n, and gn = f and gm = h. 

We first wish to examine the term a [f(t)] 2 (a = b = n). Therefore, let us 

now consider a problem with only one variety of Born term, and set hap= 0 . 

The u-dependence arising from A I for such a problem has been discussed in 

exhausting detail in the last section. We know that for large lu I, &I= (-u) -%( -u) . 

In this limit we may therefore write the matrix elements to second order in the 
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couplings as 

Jp = f”P(t)(,2-u)-n + c fLLY(t.)fYP(t) H(t;y)(n2 -u)-%+~ -u) (3.67) 
Y 

where H(t; y) is the coefficient of f2(-u)-n Iln(-u) with t-channel intermediate state 

particles of mass m . 
Y 

H may be exactly calculated from (3.66) using Mellin 

transform techniques or, may be evaluated using the formulae following (3.36). 

In any case, it is useful to recall that (mod logs) H(t) -t-l for large It I. 

Now, can we make anything simple out of (3.67) ? Before answering that 

question, we should remember that whatever solution we finally reach for our 

problem, it should incorporate the property of factorization of the Regge residues. 

This factorization is to be contrasted with the lack of factorization in the Born 

terms. There is no reason to suppose that just because, say f22=0, f 12 =o also. 

(In fact, the example we referred to earlier had f22=0, f”#O.) Now, if we tried 

to represent (3.67) with a single Regge pole, we would not be able to achieve the 

factorization property, in the residue since p ap(t) - fap(t) for large Itl. It is 

therefore necessary to introduce at least two trajectories which have a(t) -. -n 

as It I - 00 . If we write 

dfi@ = p,“qt, (-u) 

ff+w 

+ P(Y% t-w 

a -@I 

, (3.68) 

we can expand 

t-w 
a(t) = (-u) 

-ne(cr+n)h( -u) 
Z ( -u)-~( 1+ (a+n).en( -u)) 

for ff near -n , and identify terms in like powers of .en(-u) in (3.67) and (3.68). 

Doing this we find 

f %) = @;+t) + P(yP(,) (3.69) 
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and 

f”?(t) B@(t) fsp(t) = (a+(t) + n) P,“%) + (a-(t) + 4 P%) 

where we now consider the scalar function H to be a diagonal matrix, and matrix 

multiplication is implied on the left of the second equation. In addition to these 

equations, we have the factorization conditions on each of the residues: 

p(t) h22tt) = d2tw2 
z!z z!c + 

(3.70) 

which in our simple case of only two coupled channels can be written as 

Det[p*(t)] = 0. 

Expressions (3.69) and (3.70) comprise a set of ten bilinear equations in the ten 

~tnknowns, a,(t) and p:@(t). (Because of the symmetry requirements of the 

matrices, however, there are really only eight independent equations and eight 

unknowns.) Since the equations are symmetric under the interchange (+ - -), 

these equations uniquely determine the unknowns up to the arbitrary assignment 

of the (*) labels. 

To solve these equations conveniently, one can rewrite the second of Eqs. 

(3.69) by subtracting (o!++n)/?- from both sides. Pulling the term ((u++n)p+ to 

the left side, and then taking the determinant of both sides we find 

Det [Mf - (o,(t) + n)f] = 0 (3.71) 

where we have used the first of Eqs. (3.69), as well as (3.70). Notice that 

(3.71) holds for o-(t) as well as o!+(t) because of the (k) symmetry of the problem 

Hence, (3.71) is a second degree equation in the (Y’S and determines the 

eigen trajectories of our problem to this order in the couplings. The solutions 

are easily found, and can be conveniently expressed in the following form: 

o,(t) + n = $ (Tr[fH] -+ [ (Tr[fH])2- 4 Det[fH]] l/2) . (3.72) 
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Furthermore, from (3.69) we easily find 

p,(t) = rt [a+(t) - a-tt)l-1 [f H f - f(4+n)l (3.73) 

and using (3.72) we have a solution for the residues. 

There are a couple of interesting aspects to this solution. First, notice 

that since H-it/-l, a,(t) - -n as It I gets large. This, of course, is necessary 

to reproduce the Born terms. Second, if by chance we are dealing with a situa- 

tion where the Born term factorizes, that is, if 

fIIf22 - f”12 = 0 => Det[f] = 0 

then one of the trajectories decouples from the system. In the notation of (3.72) 

and (3.73) it is the (-) trajectory that decouples. Solving for cr+(t) in this case 

and using (3.73), we find 

P-tt) = Tr fH +] [fHf - fTr[fHj] 

where we have used Det [AB] = Det[A] Det[B] . Using the fact that H is a diagonal 

matrix, we easily find that if Det [f] = 0, then all the elements of P-(t) = 0, and 

so this trajectory decouples from the system. We see then that it is the simultan- 

eous requirements of factorization in the Regge residues and nonfactorization in 

the Born terms that forces us to have more than one trajectory. 

In the present problem of two coupled particles, we have used the first two 

terms in f.n(-u) to determine the trajectories and residues of the two leading 

trajectories to this order in the couplings. As we continue the iteration scheme 

in this example it will not be necessary to introduce more trajectories with 

(Y - -n. I have explicitly verified that this is true in the J!n2(-u) term. Of course, 

when we include terms which are of higher order in the couplings, they change 
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the expressions for cz* and pLt just as they did in the single channel case discussed 

in the last section. 

Suppose now that we want to treat a coupled channel problem with three par- 

ticles and one type of Born term. In that case, we would use a 3 X 3 matrix to 

describe the scattering amplitudes, and it would, in general, be necessary to 

introduce three trajectories. The total number of unlmowns in that case would 

be 30: three residue functions each of which is a 3 X 3 matrix, and 3 scalar 

trajectories. However, since we require each residue to be a symmetric matrix, 

there are really only 21 unknowns. In addition, each residue function has three 

factorization conditions associated with it, which further reduces the number of 

unknowns to 12. Now, we also require the amplitudes Jllrp to be symmetric 

matrices. That means that although each amplitude Aj represents nine equa- 

tions, only six of them are independent. Therefore, even in the case of three 

coupled particles all the required trajectories once again appear as distinct 

entities by the first iteration. This is easily seen to be a general feature of our 

system and applies to cases with any number of particles (including one). Of 

course, it may happen that some trajectories accidentally coincide even after the 

first iteration. In that case, higher order terms are required to separate them, 

but this is a situation familiar from degenerate perturbation theory in nonrelativ- 

istic quantum mechanics. In fact, this entire discussion is quite reminiscent of 

many problems encountered there, for instance the Zeeman splitting of energy 

levels in a weak magnetic field. 

An amusing way to see why two Regge trajectories are natural in a two 

particle coupled channel problem is to consider the following (classical) problem. 

Suppose I have a chain with N+l links. The links can be of two types, A and B. 

The probability that at a given junction the two adjacent links will be of different 
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types is P. If the first link in the chain is of type A, what is the probability that 

the last link will also be of type A? We want to know, therefore, the probability 

that the links will change types an even number of times. The probability that 

they will change B times regardless of order is 

N! 
Q! (N-Q)! $( 1-P)N-l . 

To get our answer, we want to sum over even values of P from zero to N. This 

is equivalent to performing the following sum over all I: 

; g e!y;-Q))I [P?l-P)N-l + (-P+(l-P)N-~] 

= + [1+ (I-2P)N 1 
Now, suppose the probability of having a chain with N+2 links is proportional to 

as in our case. (The Born term has two links and one junction.) Then, the total 

probability of having a link of type A at the far end of the chain if there is such a 

link at the near end, regardless of the number of links is 

= $ g(-u)g-n + $ g(I-2p)(-u)g(1-2P)-n (3.74) 

and we see the emergence of two terms which look like Regge trajectories. 

Notice that the second trajectory decouples if P = $ , which in this example is 

the factorization condition for the Born term. Furthermore, if P = $, the 
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trajectory associated with the decou$ed residue is independent of g and retains 

its asymptotic value of -n. This is exactly what happens in the two particle 

case we discussed earlier: from (3.72) we see that o-(t) = -n if Det f = 0. 

This simple example, then, clearly illustrates the basic structure of the coupled 

channel equations. 

Let us now turn to the more general problem in which the Born terms do 

not all have the same power fall-off in 1~1. There are several new features to 

consider here. First, we will want to see how the trajectories whose asymp- 

totic limit is -n contribute to processes whose Born term “(-u) -m. It is es- 

pecially important to consider such contributions in the deep region when 

m > n. Second, we must examine the nature of the cross terms in the iteration 

scheme and see how they modify the deep scattering behavior of the amplitudes. 

A problem of sufficient complexity to illustrate these points is the example 

of the coupled k+-p system described above. Let us consider, then, the contri- 

butions of the first iteration to the p-p elastic amplitude. With the choice of 

Born elements that are zero given below (3.64), we find that no cross terms 

a f h contribute to & 22 . m this order. Adding the two diagonal terms which 
22 contribute to &I to the p-p Born term, we find that as far as its dependence 

on t and u are concerned, Jtt 22 has the following asymptotic form to this order: 

22 
/g22 _ h 

wm [ 
1+ !?% (-q Q-N-U) 

I 

+ [f12(t)12fn(-u) 

(-t)(-u)” * 
(3.75) 
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where we have used the fact that H(t) - (-Q-l for large It I. (We have not kept 

track of the numerical factors in H(t) in (3.75), but they are of no consequence 

for this discussion.) In the first term we see the beginning of the Regge trajec- 

tory which goes to -m at large It I. Notice that there is only one trajectory here 

since in the present example there is only one non-zero element in the matrix h. 

To understand the second term, we refer to (2.73). Remembering that 

f22=0, the second term in the numerator is seen to be zero in the expression for 

22 
p* ’ and we have (asymptotically) 

pT2(t) = - pT2(t) = [a+(t) - cqt)yl (-t)-l [f12@)12 . 

Therefore, the second term on the right of (3.75) may be expressed asymptotically 

as, 

py(-ly+ + P2_2w a-= (-u)-~ py [I + (ly++n)J.n(-u) - 1 - (o-+n)b(-u)] 

= [f12(t)l 
2 

Qn( -u) 

(-w-u)” 

as advertised in (3.75) 0 The terms proportional to en”(-u) in the expansions of 

the two trajectories which approach -n therefore cancel in the amplitude &Z 
22 

. 

This cancellation can be traced to the vanishing of the second term in the numer- 
22 ator of (3.73) for p, , and is therefore due to the fact that f 22 = 0 . 

Another interesting aspect of (3.75) is that it indicates the existence of a 

consistency condition on our theory. Since the Born terms are, by definition, 
22 those terms which dominate in the deep region, all the terms generated in A1 , 

22 must be smaller than &lo in this region. In the last section we used this 

criterion to define the onset of the deep region. However, one’s intuition would 

certainly consider large fixed angles and Iu I - m as sufficient criteria for at 
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least part of the deep region. Suppose that for large It I f12(t) - (-t)-A, 

h22(t) - ( -t)-B. Then, for the Born term to dominate (3.75) in this region we 

require 

B+m < 2A+n+l. (3.76) 

Stated somewhat more clearly, the situation is this: suppose you give me a set 

of amplitudes which you claim describe large angle, high energy scattering. 

If your theory allows me to iterate these amplitudes in the t-channel and if your 

large angle scattering amplitudes do not satisfy a condition like (3.76)) then 

your theory is probably inconsistent. Of course, this reasoning does not apply 

to theories that do not allow t-channel iterations, for example, a field theory in 

which deep scattering is described by an infinite t-channel sum of some ir- 

reducible kernel. In that case, t-channel iterations of the deep amplitude would 

introduce double counting of graphs and would not be allowed. In the parton 

interchange theory, a two channel system involving particles whose electro- 

magnetic form factors behave differently at large ( -q2) always gives Born 

matrices which have a structure like that described below (3.64) for the kf-p 

system. If the form factors of the two particles fall off asymptotically as 

(-q2FC 
2-D . 

and(<) with C > D, the consistancy condition (3.76) becomes 

D<C<2D+l (3.77) 

If the k’ form factor is a monopole and the nucleon form factor a dipole, this 

condition is satisfied. However, (3.77) could easily be violated if one attempted 

to describe the deep scattering of particles which have D 5.5 and/or C 2 2.5; 

then somebody would be in trouble. The most reasonable conclusion in that case 

is simply that consitutent interchange does not describe the deep scattering of 

such systems. Inequalities similar to (3.76) can also be extracted from higher 
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order matrix elements, but in general they will be less tight because of the 

accumulation of factors of (-t)-I from the H matrix. 

Let us now briefly examine how the cross terms affect the amplitudes in 

the coupled channel case. In the present example, there will be cross terms 

contributing in second order to the transition amplitude, & 12 . On the basis 

of the previous discussions in this section, we easily find that to second order 

in the couplings the transition amplitude has terms of the form (mod constant 

factors, as in (3.75)) 

&12 _ 2 
( -4 

All the terms generated by Ai”, except the last, are obviously smaller than 

the Born term in the fixed angle region. For this to be true also for the last 

term, we require 

n< m+B+l (3.79) 

with B defined above (3.76). It is noteworthy that this is automatically satisfied 

in the parton interchange theory, since in order to get Born matrices with the 

appropriate zero elements it is necessary that m > n. Finally, we note that the 

second term in (3.78) is (-u) -n times a second order contribution to the residues 

which couple the trajectories that asymptotically approach (-n) to the transition 

amplitude. Similarly, the last term displays the lowest order contribution to the 

residues which couples the trajectory that goes to (-m) as It I gets large with the 

transition amplitude, &12. 

We have tried in this section to illustrate some of the new features which 

arise in the Reggeization of coupled channel problems. In general, it is clear 
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that in a problem with N particles, the number of trajectories generated is NM 

where M is the number of distinct types of Born terms. Of course, some of 

these trajectories may decouple from the system if some of the Born terms 

satisfy factorization. In what we have done so far, we have allowed Born ampli- 

tudes and kernels which have only right hand discontinuities in u. These generate 

purely real s-channel amplitudes. In the next section, we want to generalize 

these considerations to include sub-amplitudes with left hand discontinuities in 

u so that we can build up the imaginary parts of the scattering amplitudes re- 

quired by s-channel unitarity as well as high energy phenomenology. 

D. Signature, Duality Diagrams, and the Pomeron 

All the results which we have derived so far in this chapter have assumed 

that the Born term and kernel (and therefore the amplitudes built up by t-channel 

iteration) have had singularities in u only for positive u. In general, of course, 

this is an unrealistic assumption when dealing with high energy scattering pro- 

cesses. In this section, we wish to remedy this situation, and enlarge our for- 

malism to include singularities for u < 0 (s > 0). Ln doing so, we shall develop 

all the tools necessary in order to correctly include signature factors in Regge 

trajectories. We will also gain some insight into the nature of exchange de- 

generacy and the Pomeron pole, and we will discuss a possible relationship 

between the quarks used in the parton interchange theory 21 (current quarks) and 

the quarks used in the Harari-Rosner duality diagrams. 30 A specific, realistic 

example of coupled 2 - 2 hadron-hadron amplitudes using the ideas developed 

in this section will be discussed in detail elsewhere. 31 

Before deriving the results we need, it is useful to review the basic proper- 

ties of duality diagrams 30 as well as some aspects of the interchange theory. 21 

To begin, let us turn to Fig. (22), where we exhibit some duality diagrams for 
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FIG. 22--Some examples of the Harari-Rosner duality diagrams. 
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meson-meson, meson-baryon and baryon-antibaryon scattering. The external 

mesons are composed of quark-antiquark, and the external baryons (antibaryons) 

are composed of 3 quarks (antiquarks). These combinations are termed “non- 

exotic”. This implies that the non-exotic mesons must belong to the 1 or S re- 

presentations of SU(3), while the baryons must belong to the 1, fi or g repre- 

sentations. Any other combinations of quarks and antiquarks are termed “exotic”. 

Notice that this means, for example, that a particle constructed from qqG< is 

exotic even though it belongs, say, to an SU(3) octet. The same rules of exoti- 

city apply to the intermediate states in the duality diagrams. Therefore, for 

instance, both the s and t channels of Fig. (22b) are non-exotic, but only the t- 

channel of Fig. (22~) is non-exotic. 

The duality diagrams are generally interpreted in the spirit of two compo- 

nent duality as applying only to the non-pomeron part of the amplitude. A dia- 

gram which is planar and non-exotic in two channels is taken as a graphical re- 

presentation of the Regge-resonance duality between those two channels. More 

specifically, the rules for drawing the Harari-Rosner duality diagrams are: 

(i) Quarks do not change their identity in the graph and are represented by 

continuous lines. 

(ii) External baryons(qqq) are represented by three lines running in the 

same direction, and external mesons (qq are represented by two lines running 

in opposite directions. 

(iii) Both ends of a single line cannot belong to the same external particle. 

A “legal” duality diagram also obeys the rule 

(iv) Any B = f 1 intermediate state (B in Baryon number) can be cut by 

slicing through only three lines, and any B = 0 intermediate state can be cut by 

slicing through two lines. 
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There seems to be no obvious problem with these rules for M-M and M-B 

scattering, since, in general, we can draw legal, planar diagrams for non-exotic 

reactions as in Figs. (22a and b). For B-B scattering, we do not expect to be 

able to draw legal diagrams with non-exotic intermediate states since B = 2 

is exotic. We run into trouble, however, with B - B scattering, Fig (22~). Here, 

the s and t channels may not have exotic quantum numbers, but there seems to be 

no way to draw a legal diagram for this process which has non-exotic quantum 

numbers in both channels. This would appear to indicate the existence of im- 

portant exotic contributions to the imaginary part of the scattering amplitude, 

contrary to the first order assumption of absence of exotics and EXD (exchange 

degeneracy). We shall not directly deal with the B-gproblem here, but the 

interested reader can refer to the literature for extensive discussions. 32 

The duality property of the diagrams which are planar and non-exotic in two 

channels is, like most duality arguments, applicable only to the imaginary part 

of the amplitude. In Fig. (22d), we have drawn a diagram which is planar and 

non-exotic in the u and t channels. This represents the duality between the u- 

channel resonances and t-channel exchange contributions to the imaginary part 

of the amplitude at large u and small It I, but according to our rules is not a 

legal diagram in the s-t plane. This means that it does not represent any con- 

tributions to the imaginary part of the amplitude at large s and small It I. We 

therefore expect this diagram to be real at large s and small It I . Furthermore, 

it is a useful observation that s-t and u-t diagrams are the most important dia- 

grams for forward elastic scattering, while u-t and s-u diagrams are most im- 

portant for backward elastic scattering. 

The correlation of the inability to draw a legal, planar duality diagram with 

a vanishing non-diffractive imaginary part leads very simply to many predictions. 
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For instance, kin - k”p and k-p - p” A are predicted to be purely real at 

small It I . kfp - k+p, on the other hand has an imaginary part near t = 0, but 

this is supposed to come from Pomeron exchange. The imaginary parts of the 

ordinary Regge exchanges are predicted to cancel in this reaction. Many more 

similar prediction may be found in Refs. 30. 

The reader has undoubtedly noticed that we have been qualitatively discuss- 

ing duality diagrams, but have not described any specific calculational scheme 

associated with them. The interpretation of duality diagrams is not unambig- 

uous, and so it is not clear how to calculate them. This ambiguity is illustrated 

by the fact that the two authors who independently introduced duality diagrams 

take different approaches to them. 30 Harari does not present any rules of cal- 

culation for the diagrams, while Rosner does. In Rosner’s scheme, one adopts 

a Regge discription for the amplitude with factorizable residues. The couplings 

are then calculated by taking SU(3) traces, and duality conditions become con- 

straints on’trajectories and couplings. While this scheme involves more as- 

sumptions than the approach taken by Harari, it should yield a wider class of 

predictions. However, for our purposes, it is appropriate to adopt Harari’s 

philosophy, and consider duality diagrams as a simple visual mnemonic for 

keeping track of quarks. 

Before leaving this topic, we want to emphasize what is, for us, the most 

important aspect of duality diagrams. If you can’t draw a planar (St) duality 

diagram for a 2 - 2 hadronic amplitude, the normal Regge poles, excluding the 

Pomeron, which contribute to high energy, small It I scattering are predicted to 

be exchange degenerate. 

Now let us briefly review the parton interchange theory of deep hadron- 

hadron scattering. 21 In this theory, deep scattering is supposed to take place 
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by the interchange of constituents of the scattering hadrons. No direct scatter- 

ing between constituents is required. Only the “simplest” part of the hadrons’ 

wave functions are supposed to be important in the deep region, and this part is 

taken to be the amplitude for finding the smallest possible number of constituents 

in the hadron. These constituents are assumed to carry quark quantum numbers. 

More specifically, the interchange picture assumes a wave function for a hadron 

to be a quark and a “core”, the core representing the collective effects of the 

other constituents. A typical interchange diagram is shown in Fig. (15). The 

heavy lines are hadrons, the jagged lines are cores, and the light internal lines 

are quarks. The blobs at the vertices represent the wave function for finding 

the hadron in the state represented by the internal lines. This diagram happens 

to be a (tu) graph, since it is planar in the t and u channels. To get the complete 

amplitude, one must add together all allowed interchange diagrams. There are 

only a few such diagrams, however , since it is assumed that the amplitude for 

a hadron to be a quark and a core in this kinematic region is non-negligible only 

if the quark happens to be of a type given by the naive quark model. (Actually, 

these are current, rather than constituent quarks, but the statement about quark 

type is still correct.) 

The similarity between Fig. (15) and Fig. (22d) is clear. The exchanged 

objects in the two figures are not a priori the same, but the topologies of the 

graphs are the same. This is a general feature of the interchange theory - the 

topologies of the contributing interchange graphs for deep scattering are the 

same as the topologies of the duality diagrams which one can draw for the given 

reaction (according to the rules given on p. 99), and which are supposed to 

describe the non-diffractive part of the scattering in the Regge region. After 

we develop the tools we need, we will return to the question of the relationship 

between these two sets of diagrams. 
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To develop these tools, we turn now to the problem of generalizing our 

recursion relations, (3.19a) or (3.19b), to cases where the kernel or the Born 

term has discontinuities in u for u < 0 - or more exactly, where there are singn- 

larities in 9 for s > 0. In the context of the interchange theory, (st) graphs like 

Fig. (23) have singularities in s for s > 0, but no singularities in u for u > 0, 

while (su) graphs as shown in Fig. (24) have singularities both for s > 0 and u > 0. 

Of course, any theory of deep scattering may have terms with these singularities, 

so in general, it is important to consider this problem. Naturally, our results 

are not limited to the parton-interchange model, but are as general as our 

original recursion relations (3.19a) and (3.19b) are. 

Let us first consider convoluting an amplitude, Jtlj,which has only u-channel 

discontinuities (u > 0) with a kernel which has only s-channel singularities. 

Using the frame and parameterization of (3.14) and the labelings shown in Fig. 

(ll), we can introduce a dispersion relation for K in the variable ~‘=(p+,C+q)~, 

which is the s of the subamplitude, K. We can write 

K(s’,t; N2,A2) = 
/ 

dS2 W( a2, t; N2, A2) 

(p+P+q)2-c2+ie * 
(3.80) 

Of course, the comments we made in section B about the path of integra- 

tion in the complex c2-plane and the A?‘-dependence of K apply here also. 

Using (3.15) and (3.80) in (3. lo), we have 

dhf =- 
dy d2QI dP2 

j+l 2lyl dp2dp2 [J!2-M2+ie]-1 [(a+q)2-M2+ie]-1 

[ (P-r)2-p2+ie 
-1 I [ (p+Q+q)2 -f12+iC 1 -1 

Wj(P2) W( U2) (3.81) 
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2319A23 

FIG. 23--(st) par&m-i&w&we graph. 
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. 

2317A24 

FIG. 24--(su) parton-interchange graph. 
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where we have used the transformation below (3.15)) and have suppressed un; 

important dependences in the arguments of &, 
3+1 

and the W’s. As before, we now 

wish to perform the dp2 integration. Using (3.14)) we find after some algebra 

that if 1 + f > 0, all four propagators have poles in the lower half P’-plane and 

2 
so we can close the dp contour in the upper-half plane and we get zero. If, 

however, 1 + 1 < 0 
Y 

- -1 -Z y < 0, then the propagator from the dispersion rela- 

tion (3.80) has its pole in the upper-half 82-plane. Closing the contour around 

this pole (3.81) becomes, 

1 
I 

1 
dfz. =- 

dx d ir2 do2 d2f 
- - 3+1 2(27r)3 

0 (l-x)x 
3 [u2 y-q1 ,x)1-’ [Yf2 s(“L+x41 ,x]-l 

C 3 

-1 
s - S’(kL+xql - (l-x) rL, x) wj(P2) w(~2) (3.82) 

where we have set x = -y. S is defined in (3.17)) and S’ is defined below (3.18). 

Now, since d2PL is integrated over the entire plane, we can shift PI- l_L - xql. 

Doing this and redefining x = y, and we can rewrite (3.82) as 

Jltj+l(s, t; N2, R2) = -& Jdo2dp2 /: ;:k, [uf2 - S(P,,Y~-~ 

2 -1 
V - S(rn, + WYhl PY 1 [ -1 

s - S’(lI - (1-y) rL ,Y 1 w(a2, t;N2, A2)Wj(p2, t; A2, R2) 

(3.83) 

Comparing (3.83) with (3.18)) we see that they are the same with the substitutions 
2 u-s,u -u J . In terms of momenta this is just the well-known substitution 

formula for s-u crossing: p i -(pi-q). Therefore A. 
3+1 

in (3.83) is gotten from 

&j+l in (3.18) by s -u crossing. 
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It is easy to understand this result by considering an example in which the 

sub-amplitudes are simple poles in the appropriate variable. In Fig. (25a), we 

show the kernel with a simple pole at positive u, while (25b) shows the kernel 

with a pole for positive s. The arrows on the lines indicate which particles are 

entering and which are leaving the graph. We form an amplitude composed of 

two u-channel poles as in Fig. (26a) by simply joining two terms of type (25a) to 

each other. Similarly in Fig. (26b) we illustrate the result of combining an 

amplitude like (25b) with an anzplitude like (25a). The topology is, of course, 

dictated by the fact that we must join lines together so that the quantum number 

and momentum flow is continuous. The equality in Fig. (26b) follows by simply 

redrawing the graph and switching the positions of the top two vertices. We 

now clearly see that (26b) is related to (26a) by s -u crossing, and so we can 

understand the result (3.83). 

For our purposes it is convenient to categorize amplitudes according to 

whether they have discontinuities for positive u or positive 8. Such amplitudes 

will be referred to as u amplitudes and s amplitudes, respectively. Amplitudes 

possessing singularities both for positive s and positive u will be called su 

amplitudes. (In another language, these are the graphs with non-zero Mandelstam 

third double spectral functions.) For example, the (ut) parton interchange graph 

of Fig. (15) is a u amplitude, while Fig. (23) is an s amplitude and Fig. (24) an 

su amplitude. 

On the basis of the discussion in section B, and (3.83)) we can construct 

the following rules which express the topology of amplitudes obtained by 
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ci w a 
231 PA25 

FIG. 25--Simple amplitudes with (a) u-channel and (b) s-channel 
singularities (in this case poles). 
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(a) 

(b) 

FIG. Z6--Feynman diagrams resulting from the convolution of 
subamplitudes as in Fig. 25; (a) is the result of uxu 
and (b) is the result of s X u. 
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convoluting various sub-amplitudes in our iteration scheme: 

uxu=u 

sxu=s 

uxs=s 

sxs=u (3.84) 

The first equation in (3.84) follows from the discussion of section B, and the 

second is the result expressed in (3.83). The last two can be proved by deriving 

appropriate formulae similar to (3.83)) or the reader may simply convince him- 

self of their correctness by drawing diagrams as in Fig. (26). 

We now must discuss how to handle sub-amplitudes with non-zero third 

double spectral functions - the su amplitudes. We will briefly describe the 

method for coping with such graphs here. Sappose, then, that we wish to use 

an su amplitude for the lower blob in, say, Fig. (11). An example of such an in- 

sertion is the parton-interchange (su) diagram of Fig. (24). Such a graph has 

singularities for both positive s and positive u. It is convenient to introduce 

a double dispersion relation for this kind of amplitude: 

K(s,u) = 
/ 

do2dr2 W(c2,r2) 

[s-cr2+iej [u-r2+ie] ’ 

If, for instance, 

K = o.J2 - u)-~(/J~-s) -m 

then 

W= 

6[n-ilw2-72) 61b-J &2-,2 

(n-l)!(m-l)! ) l 

(3.85) 
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Inserting this expression in our convolution formula, for example, (3.10) we 

have 

da2dr2 [Pz-M’+ie]-‘[ (1+q)2-M2+ie (p+l+q)2-a2+ie ] [ 1-l 

[ (p-Q2- r2+iE 1 
-1 

W(a2, 7 2, Jtt 
j (3.86) 

where the u and s of the kernel are u’ = (~4)~ and s’ = (p+~!+q)~. On the basis of 

the discussions in this section and sectionB, we note the following: when we 
” 

do the de‘ integration (after performing the transformation following (3.15)), we 

find that there are two contributions to& j+1* The pole from the propagator 

[(p+i+q)2 - a2 + ie]-l is the only singularity in the upper half P2-plane for 

-1 < y < 0, while for 0 <y < 1, the pole from the propagator [(~--a)~- r2+ ie] -’ 

is the only one in the upper-half plane. Hence, after doing the de” integral there 

are two pieces that add together to make up Jlt j+l’ The first, coming from the 

region - 1 < y < 0 has the same topological character as if we had used only an 

s amplitude for the kernel, while the’ second (0 < y < 1) behaves as if the kernel 

were a u amplitude. Therefore, for the purposes of our convolution scheme, 

the su amplitude can be considered to be the sum of an s plus a u amplitude, or 

symbolically, 

SUXU=SXU+UXU=SfU 

suxs=sxs+uxs=u+s 

suxsu=sxsisxu+uxs!-uxu = s-i-u. (3.87) 

Naturally, the coefficients of the various contributions depend on the specific 

case, but their topological character is represented in (3.87). 
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In order to gain some insight into the significance of the topology of the 

amplitudes (as expressed in the rules (3.84) and (3.877, let us compare two 

simple examples of ladder graphs. In both examples, we use a perturbation 

approximation, keeping the minimum possible factors of the coupling constant, 

g to each order in ti s (or J!nu) e First, suppose that the kernel and Born term 

are simple u-channel poles. For small g, the j th iteration of this pole has a 

leading contribution 

&if- s;_ ghlj(-u) 
ii (-u) j! 

Summing one n, we have 

u@= c d&t -g(4p. 
j=O j 

We have neglected the t-dependence here since it is not important for this 

argument. 

This is a special case of (3.40) for simple ladders (neglecting t-dependence), 

and will be recognized, as we have emphasized before, as a sum of exchange 

degenerate trajectories: 

g(-u)g-l = g 2 c (-up-l + (-sp + 5 1 [ (-up - (-s)q 
(3.88) 

This strong exchange degeneracy is, of course, due to the fact that the convolu- 

tion of two u amplitudes always gives a u amplitude (see (3.84)). 

Now consider a case in which we again iterate simple poles, but this time 

the poles are s-channel poles; i.e., the Born term and kernel is 

K=+. 
p ,-sf ie 
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Following the previous discussion of this section, working in a perturbation 

approximation, and neglecting t-dependences, we find that the leading contribu- 

tion to the j th iteration is 

J 

I 
(c) !iif!du ; 

U j! 

j even 

j odd 

This behavior is also given by the equations (3.84). We can sum &Zj over j 

to get the full amplitude as follows: 

. . . . 

= 5 
I 
(&l + (Ls)-g-l + (-@g-l - (-u)-g-l] 

= 5 [I (+qg-l+ (-s)q - 5 (+)-g-l - (-s)-g-l] II (3.89) 

This amplitude is therefore given by a sum of two non-exchange degenerate 

Regge poles, one of positive signature and one of negative signature. In the 

simple case we have been considering, the two trajectories are displaced from 

each other by an amount 2g (at t = 0). Of course, this is only because we have 

ignored many of the features which are important in a realistic case, and the 
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exact dependence of the trajectories on t is much more complicated. Nonethe- 

less, the basic feature of (3.89), namely, the lack of exchange degeneracy, will 

clearly be unaffected by these complications. 

What is the significance of this in view of the parton interchange theory? 

In this theory, the (tu) graphs (Fig. (15)) have the topology associated with u 

amplitudes while the (st) graphs (Fig. (23)) are like s amplitudes. In a world 

with only one kind of sub-amplitude, the character of the full amplitude, & , is 

the same as the character of the Born term. A (tu) Born term gives rise to a 

pair of exchange degenerate Regge trajectories, while an (st) Born term gene- 

rates non-exchange degenerate poles. Duality diagrams, on the other hand, tell 

us whether in the Regge region the non-diffractive Regge poles are exchange de- 

generate, or not. With a given pair of initial state particles, the topology of the 

Born term and duality diagram is the same, and so we have a simple one-to-one 

correspondence between the predictions of duality diagrams, and the predictions 

of our iteration scheme. 

While it is interesting to see the close relationship between the topology of 

the Born term and the duality diagram in these simple, single channel cases, 

the real hadronic world is significantly more complicated. The most glaring 

shortcoming of the single channel case is that we evidently do not generate any- 

thing that corresponds to a Pomeron pole since a single channel treatment of, 

for example, proton-proton elastic scattering gives a purely real amplitude, 

even at t = 0. The way to cure this disease is to consider the more realistic 

coupled channel case. 

Let us look for a moment at p-p elastic scattering. In the first iterated 

amplitude, the intermediate t-channel state may consist of a p-p pair, but it 

may also be a x-T pair or a k-E pair, etc. The p-5 state will only contribute a 
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real piece to the total amplitude, but many of the other intermediate states will 

generate imaginary parts. The way in which these different channels mix to- 

gether to break the exact exchange degeneracy and to generate other poles is 

quite complicated, but we can gain some insight into the general nature of the 

process by the following considerations: as we approach the Regge region (say, 

fixed t, Iul --), our formulae show that the higher order iterations become 

more and more important. In the coupled channel case, this means that it is 

more and more likely that the original hadrons coming in at the bottom of the 

graph will forget what they are, since they have more chances of changing their 

identity. From the probability argument in section C, (above (3. ‘74)), we see 

that for very large N, the probability that after N rungs the first link is of the 

same type as the last link - t, regardless of the value of P. This indicates 

that in the kinematic region where large numbers of iterations are important 

(the Regge region), all the hadronic amplitudes will behave roughly the same. 

Qualitatively, this is what is expected from diffractive scattering. As lul -. m, 

the graphs with more rungs become more important and the hadrons tend to 

forget what they were. Similarly, when IuI - a, the Pomeron pole becomes 

more important relative to the non-diffractive trajectories. Therefore, we 

propose that the extent to which the Pomeron dominates the bulk of hadronic high 

energy scattering, is a rough measure of how much the original hadrons forgot 

what they were on their way up the t-channel ladder. 

A few remarks are certainly in order about this discussion. First, the 

relationship we have outlined between par-ton-interchange diagrams and duality 

diagrams may be interpreted as a relationship between current quarks and 

duality diagram quarks. The duality diagram quarks really contain contributions 

not only from the current quarks appearing in the interchange Born terms, but 
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also contain contributions from the quarks which comprise the numerous t- 

channel intermediate states that contribute to the entire amplitude in the Regge 

region. Second, we cannot (at this point, anyhow) claim to have explained many 

of the interesting properties of the Pomeron, for instance the nature of its tra- 

jectory near t = 0. This is because a detailed determination of trajectories at 

small It I is, from this point of view extremely complicated. Third, even if we 

could calculate the Pomeron, that would not be the whole story, since for such 

a high lying pole ((~(0) = 1) j-plane cuts arising from the iteration of the pole in 

the s-channel may be important and are presumably not contained in the set of 

graphs which we calculate. Finally, for a completely consistent interpretation, 

we must also examine backward scattering, and show that the intermediate states 

are such that the leading trajectory is significantly different from the leading 

trajectory in the forward direction - in particular, that it is not the Pomeron. 33 

Work on these points and speculations is in progress, and will be reported 

elsewhere. 31 
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

In this work, we have examined some aspects of the deep hadron-hadron 

scattering region. To conclude, we briefly list the major results which have 

been obtained: 

1. A simple and natural extension of the ideas of the Feynman parton 

model result in an asymptotic formula for the average multiplicities in inclusive 

or semi-inclusive hadron-hadron scattering experiments in which at least one 

particle is detected with a large transverse momentum. Furthermore, we have 

shown that it is possible to relate these multiplicities to the multiplicities ob- 

served in other high energy reactions, specifically efe- annihilation, deep in- 

elastic lepto-production, and ordinary (not associated with large transverse 

momenta) hadron-hadron collisions. 

2. An integral equation for hadron-hadron scattering amplitudes is derived. 

The kernel for the equation is taken to be a (Z-particle irreducible) deep scatter- 

ing amplitude for a 2 - 2 hadron-hadron scattering process. The integral equa- 

tion is then used to show how the deep scattering region is connected to the Regge 

region and how Regge poles are built up by t-channel iteration of the kernel. 

3. A number of simple cases are analyzed with the help of a Mellin trans- 

form technique. A few examples of possible kernels for the integral equation 

are discussed. They help to show more clearly how the deep and Regge regions 

are connected, and what the important s-channel and t-channel intermediate 

states are in the two domains. The connection of our approach with Feynman’s 

notions about wee partons is also elucidated. 

4. Our equation is generalized to allow us to discuss couple 

tering problems, and a two-channel problem is described in detai 
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trajectories generated by the t-channel iteration scheme turn out to be the eigen- 

values of a matrix equation. 

5. The integral equation is further generalized to include the effects of 

signature, since all the previous discussions were presented for amplitudes 

which are purely real. Simple rules are derived which express the phase of 

the amplitude obtained by tying two sub-amplitudes together in our iteration 

scheme. 

6. We apply our Reggeization scheme to the parton-interchange model of 

deep scattering, and find sn interesting correlation between parton-interchange 

diagrams and the Harari-Rosner duality diagrams. This correlation leads us 

to some interesting speculations on the nature and dynamical origin of the 

Pomeron pole. 

Aside from this summary, the only appropriate comment to make here 

about deep hadron-hadron scattering is that although this kinematic domain has 

not yet been extensively studied, early indications are that such studies will give 

us a much deeper understanding of the nature of hadronic interactions than we 

have now. 
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