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ABSTRACT 

The problem of the position of the zero of the electric form factor of 

3 He and the large size of the observed secondary maximum, which are not 

obtainable with realistic two body forces in the Faddeev equations is dis- 

cussed. Corrections to the single impulse approximation arising from 

vector dominance of the incident virtual photon are calculated. It is shown 

that such shadowing effects have neither the shape nor the magnitude to fit 

both the position of the zero and the size of the secondary maximum. The 

hyperspherical harmonic expansion for the trinucleon bound state wave 

function is reviewed. It is then argued that the same physical reasoning 

which can be used to support the two body boundary condition model of strong 

interactions can be used to predict a similar but explicitly three body effect 

for the three nucleon interaction. A three body boundary condition imposed 

on the lowest order hyperharmonic contribution to the three body bound state 

gives a good quantitative fit to the 3He electric form factor in the region q2 

greater than 10 FV2, when the position of the zero is fit by adjusting the 

boundary hyperradius. This result is shown not to be affected by the inclu- 

sion of S, D or other higher states.. It is also not affected by taking into 

account the long range tails of external OBE potentials. By way of extension, 

a similar fit is presented for the 4He form factor with similar results. We 

also discuss the possibilities for refinements of the model and its use in 

systems other than the trinucleon bound state. 
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CHAPTER I 

GENERAL INTRODUCTION 

I. 1 who Cares? 

Some time before this report was written the author was asked by an 

elementary particle theorist, “Does anyone really care about the three body 

problem these days?“.’ For the particle physicist the few body problem can 

provide a test of the way in which a strong interaction theory should relate 

asymptotic events such as meson producticn or resonance excitation and 

their role in the forces between two or more nucleons. The few nucleon 

problem, at its most refined, might give us a hint as to the structure of a 

renormalized theory involving these particles. The various theories of 

composite nucleon structure that are becoming prominent will have to 

account for the few nucleon forces in the same way that the electron theory 

of the atom gives molecular forces. Here nonpair behavior of the nucleon 

forces when three of them are brought together might be an important test 

of such theories as well as a test of how the usual ideas of elementary 

particle interactions build into potentials. 2 

Of course, for systems involving three or more nucleons a knowledge 

of the three body problem can have importance as part of the input of the 

theory. An example of this is the role of three body clusters in the structure 

of nuclear matter. Finally we believe, that unless the theory of elementary 

particles reduces the two and three body problem to one of nothing more than 

computational tedium, that it is a system with much physical interest in its 

own right and one that can give us insight into the problem of systems with 

few constituents, in general. 
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The specific problem that we shall consider here is that of the 3He 

electric form factor which is expected to be a reasonably good measure of 

the charge distribution in this nucleus. 4 The reason for considering this 

form factor is that it has recently been measured out to momentum transfers5 

of q2 = 20 F -2 . with some results that are rather puzzling in terms of calcula- 

tions performed with potentials that fit the two nucleon data. 6-9 Also this 

form factor is expected,by Siegert’s theorem, to be less complicated by 

exchange currents than the magnetic form factor. 

The next section of this chapter will discuss the measurement of the 

3 He electric form factor F3He 2 el (q ) and the difficulties that potential models 
n 

have in fitting the data at large qZ. The third section will contain an outline 

of the rest of the report. 
3 

I. 2 Theoretical Difficulties with Fey(q2) 

The development of the Faddeev equations has greatly increased interest 

in the three nucleon problem over the past decade. The reason for this is 

that these equations make it theoretically possible to compute three body 

scattering and rearrangement amplitudes along with bound state properties 

if the forces in the three body system are given by the two body pair forces. 

(Three body forces may be included if they are known.) Even in the case of 

three body S waves generated from two body S wave interactions these equa- 

tions are still two variable integral equations, 11 for the case of local 

potentials however, since the work of -born, 12 the Faddeev equations have 

started to become tractible. For the bound state case advances in electronic 

calculation have made elaborate variational computations possible. 
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‘These methods have been applied to computations of the 3He electric 

form factor by several authors using 9ealisticf’ two nucleon potentials. 6-9 

Where by “realistic” potentials we mean those potentials that provide good 

fits to the two nucleon phase shift sets below inelastic threshold as well as 

polarization data and the properties of the deuteron. These potentials tend 

to either have a soft core (Reid7) or a hard core (Hamada-Johnston) at 

r12=. 5 F. Another requirement is that for large distances they he 

compatible with the forms predicted by meson theory, in fact many of them, 

are derived this way in part. 

The experimental form5 of the form factor is a slightly depressed 

Gaussian for q2 2 8 F -2 followed by a sharp drop and apparent passage 

through zero at q2 -2 =11.6F . There is then a strong (assumed negative) 

secondary maximum with a peak absolute value of the form factor of about 

6 x 1O-3 reached at about q2 = 16.25 F-2. The kernels of the Faddeev 

equations involve the fully off-shell two body t-matrices; these differ for 

the various “realistic” two body potentials and it was honed that their fits 

to the three body data might distinguish among them. Unfortunately none of 

them fit the 3He electric form factor at large q2. They all tend to predict 

the position of the zero at too large q2 and the size of the secondary maximum 

they give is a factor of three to ten too small. Typical results are those 

shown for the truncated Reid potential as calculated by Harper, Kim and 

Tubis. 13 (This will also display the data in Fig. I. 1. ) Simple phenomeno- 

logical forms to simulate the effects of relativistic and three body corrections 

do little to remedy this. 
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“ l--A calculation of the 3He electric form factor with a truncated Reid 
potential compared with experiment. Figure taken from E. Harper, 
Y. E. Kim, and A.Tubis, Purdue preprint (1972). 
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I. 3 Synopsis of the Remainder of the Report 

The calculation of the form factor is based on the single impulse approx- 

imation. The virtual photon is assumed to be absorbed by one nucleon. The 

electric form factor could then be considered, for point nucleons, as the 

probability that states with virtual momenta 2/3 q exist in the nucleus. In 

Chapter II we consider the validity of this approximation. Possible double 

impulse contributions are considered which come from the propagation of the 

incident photon as a strongly interacting vector meson through the nucleus. 

These contributions to the form factor are shown to be too small to account 

for the large secondary maximum. Even if the position of the zero is forced 

the resultant secondary maximum is still too small. While if the double 

impulse shadowing contributions are adjusted in size to fit the size of the 

secondary maximum, the shape of the form factor at lower q2 is completely 

destroyed. This means that the 3He electric form factor will have to be 

explained in terms of the structure of the nucleus and not by distortion caused 

by the photon acting as a fourth strongly interacting particle. 

In Chapter III we give the expansion of the wave function in hyperspherical 

harmonics. In this method the Jacobi coordinates which describe the three 

body system in its center-of-mass: 

T =’ (f,-T2) 
4 

are combined into a six dimensional vector with one variable p to determine 

the scale and an angle Q6 defined on a five dimensional hyperspherical 
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surface where 

2 
P = v2+ t2 

It is shown that a rapidly convergent expansion of the wave function can be 

written in terms of functions of the hyperradius p and a set of hyperspherical 

harmonics with definite permutation symmetry properties. The wave func- 

tions are determined by a set of one variable differential equations with well 

defined boundary conditions for the case of the bound state. 

In the following chapter we describe the boundary condition model of 

strong interactions and give arguments that it should be extended in an 

e.vlicitly three body way to give a boundary condition in the lowest hyper- 

spherical wave functions. These arguments closely parallel those given for 

the two body version of this model and are based on both heuristic considera- 

tions of the opening of virtual channels at short distances and, more formal, 

arguments about the energy dependence of certain dispersion integrals. 

Chapter V gives our results. Working in the lowest order hyperharmonic, 

we impose an exterior boundary condition on the three nucleon bound state 

wave function. This is done in such a way as to take account of the trinucleon 

binding energy as an input parameter. The boundary hyperradius is then 

chosen to reproduce the experimental position of the zero in the 3 He electric 

form factor. The resultant form factor then is shown to give a good fit to 

the data for q2 greater than 10 F -2 . The goodness of this fit is unaltered 

when we take account of S’ and D waves by means of higher hyperharmonics 

or when we add external two body potentials which are nonsingularly attractive 

at the origin. 
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.We briefly extend our model to 4He and, also, the possibility of 

generalization to other cases is discussed. 

The final chapter contains a summary and analysis of our conclusions, 
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REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. R. A. Malfbet and J. A. Tjon, Phys. Letters 35B, 489 (1971). 

9. S. N. Yang and A. D. Jackson, Phys. Letters 36B, 1 (1971). 

10. A. J. F. Siegert, Phys. Rev. 52, 787 (1971). 

1 1. A. Ahmadzadeh and J. A. Tjon, Phys. Rev. 139, B1085 (1965). 

12. T. Gsborn, Report No. SLAC-79 (1967). 

13. E. Harper, Y. E. Kim and A. Tubis, Purdue preprint (1972). 

14. M. A. HenneUand L. M. Delves, Liverpool preprint (1971). 

“John Doe, ” private insult. 

G. Chew and S. Frautschi, Phys. Rev. 124, 264 (1961). 

H. A. Bethe in Annual Reviews of Nuclear Science (1971). 

L. I. Schiff, Phys. Rev. 133, B802 (1964). 

J. McCarthy, I. Sick, R. Whitney, and M. Yearian, Phys. Rev. 

Letters 25, 884 (1970). 

M. A. Kennelland L. M. Delves, Phys. Letters 34B, 195 (1971). 

J. A. Tjon, B. F. Gibson and J. S. O’Connell, Phys. Rev. Letters 

25, 540 (1970). 

-a- 



CHAPTER II 

THE SHADOWING OR STRONG INTERACTION CORRECTION 

II. 1 Vector Dominance in the Form Factor 

Blankenbecler and Gunion have noted that if we assume vector dominance 

for the interaction of a deuteron with a virtual photon, then the vector meson, 

which couples to the photon, can scatter strongly from one of the nucleons and 

be absorbed by the other. With the assumption that for the deuteron to remain 

bound each nucleon receives approximately equal momentum transfer, and 

assuming a simple phenomenological form for the momentum transfer depen- 

dence of the vector meson nuclear scattering amplitude, they are able to 

approximate the integrals involved in the calculation of this contribution to the 

electric and magnetic form factors of deuterium. 

With a further assumption on the relative strength of the t=0 p and w 

photoproduction amplitudes (see their paper for details, by this we mean 

their condition fI’f2), they obtain the normalization of the vector meson- 

nucleon scattering amplitude by requiring that this shadowing process account 

for the correction required to the value of the deuteron magnetic moment 

calculated using a Partovi wave function. They then note that the Partovi or 

other “good” wave functions may predict a deuteron electric form factor which 

is a bit too low in the region of momentum transfer; A22 24F 
-2 and which 

falls off somewhat too rapidly in this region. The suggestion is then made 

that a slight relaxation of their requirement fI’f2 can give a less rapidly 

falling form factor which could be in which could be in better agreement 

with experiment than is that calculated by the single impulse approximation. 
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They finally suggest that similar double and triple impulse diagrams in 

3’ He (Fig. 2) could be an explanation for the dip and tail in the 3He elastic 

form factor2 above. 

In Section II we will undertake to give an estimate of the size of such 

effects. Let us first make a few general remarks. First, we expect a 

substantial contribution to the 3 He magnetic form factor from mesonic ex- 

change currents and the like. (See, for example, the review article of Delves 

and Philips. 2, Therefore, we shall have no more to say about the magnetic 

form factor in this Chapter. Next, the single impulse approximation to the 

electric form factor; Fyf (A2), can be expressed as a product of a sum of 

single nucleon form factors and a body form factor FB(A 2 4 ), where A is the 

momentum transfer and FB(A2) is the Fourier transform of the square of the 

3 He wave function. 3 Now in the double impulse contribution; Fif(A2), in order 

to maintain a bound state each impulsed nucleon should receive a momentum 

transfer of about A/2. This is equivalent to keeping the two struck nucleons 

fixed and giving the third an impulse of -A/2. Therefore the body form factor 

that appears in F$A2) will be centered on F,(A2/4). As a consequence of 

this, in the tail region from A2 = 12F-2 , where A214 <_5Fe2 the wave function 

factor in Fi’(A2) is from a region where several phenomenological models and 

most “realistic” potentials give a good fit to the form factor. We thus expect 

F$A2) to be almost model independent and, in particular, to be independent 

of any high momentum transfer structure that might appear in the model we use. 

Our computation will be done with a Gaussian wave function 4,5 

40 12~ r239 r13) = .A exp -($ a:( rf2 + ri3 + ri3)) where the rij are the inter- 

nucleon distances and A and a! are constants, A being determined by the nor- 
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FIG. II. S-The vector meson scattering correction of Gunion and 
Blankenbecler in 3He. 
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malization condition that the integral of lq2 I over the two independent particle 

position vectors in a given coordinate system be unity. Since we are inter- 

ested in the magnitude of a correction, we will not include the spatially 

antisymmetric S’ state and the D state contributions to the 3 He wave function 

as the sum of these contributions is perhaps 10% of the total wave function 

normalization. 2 

In the next section possible criticisms of the Gunion-Blankenbecler 

contributions and further correction to Fyf(A2) are discussed. 

II. 2 Further Corrections 

Consider the Born terms of Fig. 2 (Fig. 3). If we had a wave function 

that was fully relativistic and included exactly many-body effects then, for 

example, that part of Fig. 3a to the left of the broken line would already be 

included in the Bethe-Salpeter iteration of the wave function. Thus the Born 

terms would be included in the single impulse approximation and should thus 

be subtracted off from the full vector scattering amplitude of Fig. 2 to avoid 

double counting. Indeed, the difference between the full vector meson scatter- 

ing amplitude and its Born terms includes such relativistic effects as pro- 

duction of resonances and multiparticle states along one of the nucleon lines, 

followed by their vector decay. 

However, the wave functions that we use are solutions of the 

Schroedinger equation with static nonrelativistic potentials that describe low 

energy nucleon-nucleon scattering. Ic this view, we look at the Born term for 

vector meson-nucleon scattering and the other diagrams that contribute to 

the full scattering amplitude as additional pieces in the form factor, which 

are not included in the potential generated wave function. Instead they are due 

- 13 - 



FIG. II. 3--The Born terms for the vector meson scattering correction in 3He. 
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to many-body and other relativistic effects (i.e., distortion of the 3He wave 

function by the vector meson field). This means that, depending on the details 

of the potential, there is, at most,some double-counting. To the extent that 

the potential contains nonrelativistic reductions of such effects as intermediate 

particle creation and absorption we may still have a degree of double-counting 

which, possibly, varies with energy. 

In the latter part of the next section we calculate the contribution of the 

Born terms (Fig. 3) F2 ePB(A2) to the electric form factor in the momentum 

transfer region A2 =8~ -2 to A2 = 26F-2 , again using a Gaussian wave 

function. We then multiply FIiB(A2) by a factor -f representing the double- 

counting. This factor is taken to be constant throughout the momentum trans- 

fer range and is expected to lie in the range zero to one. An upper limit for 

f is estimated from the data. Calculations of pion photoproduction from 

nucleon6 indicate that we should not be surprised if I FiD(A2) I>> f F$A2) i . 5 

II. 3 Details of the Calculation 

We will now explicitly compute the contributions to the elastic form factor 

of 3He of the diagrams in Fig. 2. The energy transfer for which the helium 

nucleus remains bound is given by A0 = A2/6M; thus for A%27F -2 we can 

take A2 =x2. Since we expect approximately half the incoming’momentum A 

to be transferred to each impacted nucleon we represent the momentum of the 

exchanged vector meson as s/2 - 7 where we integrate over all r but anti- 

cipate important contributions only when Iri is small. 

Next we give our approximation for the vertices (ignoring magnetic effects). 

The p-nucleon vertex is given by Gp(q2)FN where 7 N is the nucleon isospin 
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and the isovector form factor is 

Fv(q2j = gp 
1 

mi+ q2 
Gp(q2) (II. la) 

Here gp is the photon-vector meson vertex constant. Likewise for the 

w-nucleon vertex, Ga(q2) is defined by the isoscalar form factor 

F&s21 = g, l 
mi+q2 

Gw(q2) (II. lb) 

The vector meson-nucleon scattering 

energy independent and of the form5 

Aww(t) = 4 ?r a e -‘165A2 

-4pw(t) = 4 H b e -. 165A2 

APP(t) = 4 7r c e 
-s 165A2 

ampIitudes are assumed to be spin and 

(II. 2a) 

(IL 2b) 

(II. 2c) 

The results of Blankenbecler and Gunion are consistent with SU(3) D-coupling 

for the vector meson-nucleon scattering amplitudes. This gives b = 

1 *a 
andc = Ta . We combine this with their result a = -. I2F to get our 

vertices. Finally, the photon-vector meson vertices are given by gw = mi/27, 

mdg = mi/2y o 
P P 

From SU(3) y, =& yp and we take 7,2/4x = $ . ’ 

In all our computations we will ignore the p-w mass difference and take 

2 2 2 
mW 

= m =m 
P v 

= 14. 9F-2a 

Evaluating the isospin factors of the vector exchange matrix elements 

using the fully antisymmetric spin-isospin wave function of Schiff4 we obtain 
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the contribution of the double impulse diagram to the 3He electric form 

factor: 

where the Jacobi momenta are r a a 
r 

= - -4- + Y, T 
P 

= $ + F and FB(rr, qP) 

the body form factor is determined in terms of the wave function +(F,F) 

(expressed as a function of the Jacobi coordinates) as: 

We have chosen a Gaussian wave function which gives a good fit to the 

data out to A2 = 8Fe2. In this case (4.4) gives FB(Tr, rp) = exp -(qz/6D2) + 

(qi/8a2) with a2 = .14F-2 . FS and FV are taken from Ref. 8. The integral 

(4.3) can be evaluated if we approximate F s,v((+-6)2) = Fs,V(A2h. 

This yields 

eQ F2 = -4.4 x 1o-3 (l/( l+A2/14. 9+ l/ l+ - ( ( $ y)- exp (-.135A2) tn 
. 

5) 

d WenotethatsinceF2 =-4.4x10 -3 
, in practice we need not renormalize , 

the form factor to five F;‘(O) + F:‘(O) = 1. At A2 = 5FS2, F;‘(5) = -1.5 x lO-3 

compared with the Gaussian single impulse form factor of 10-l. By A2 = 10F -2 

we have F eQ -4 
2 = 7.9 x 10 which is about 120/o of the measured value of 

Fe1 
-3 

=6.5 x 10 . IFi’(A2) I then continues to fall off exponentially. It, 

therefore, cannot begin to explain the relatively flat tail in the data from 

A 2 = 14F -2 out to A 2 = 20F -2 where IFdl=6.5x 10 -3 . Infact, FT’(A2); 
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the single impulse contribution for the Gaussian is given by (see Table 1 for 

numerical values) : 

F;f(A2) = $ ($ F,(A2) + $ FV(A2)) exp (-6 A2/30) W 6) 

Rough estimates show that the triple impulse contribution; F$A2) is about 

IO% of FiP(A2) and due to the rapid fall off of the two vector meson-nucleon 

scat&rings present will fall off rapidly. Thus the corrections to the single 

impulse diagrams suggested by Blankenbecler and Gunion’ can explain neither 
n 

the tail nor the dip in the observed ‘He electric form factor. 

Next we estimate the effects due to the possible partial double-counting of 

the Born terms for intermediate vector meson exchange (Fig. 3). By taking 

a nonrelativistic limit for the nucleon spinors and the intermediate propagators 

we can derive the nucleon vector-meson scattering vertex in Born approxi- 

mation, The kinematics are chosen so as to agree with the computation of 

the first part of this section. Consider the diagram of Fig. 3a. Ignoring 

magnetic effects, the amplitude in the static limit for the absorption of an iso- 

scalar photon and the omission of a p is given by 

B1 2 
Ayp (A ) = u+(Pi) 

t-i(r$ + d) + MN) 
(PI + A)2 + M; 

u(P,) Fs(A2)GV($ + a) ‘N 

(II. 7) 

where pi is the four-momentum of the impacted nucleon, A is that of the 

photon, q, is that of the p and pi = pI + A-q 
P 

a With the approximation 

PlO 
= MN and using A0 = A2/6MN and pp = - MG we obtain 

A;$A2) = x; 2;; x lFs(A2Ev($ + x)FN (II. 8) 
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TABLE1 

Results of Our Cakulation of Fy', Fll and Ffm 

A2(F2) 

8 

10 

12 

14 

16 

18 

19 

20 

eP 
F1 

1.86X 1o-2 

7.69 x 1O-3 

2.73x 1o-3 

1.06x 10 -3 

4.14x 1o-4 

1.63 x 1O-4 

1.03x 1o-4 

6.47x lO-5 

FRe eQB 
2 F2 

-1.5x 10 -3 2.92 x 1o-2 

-5.3x 1o-4 1.52x 10 -2 

-3.6x 1O-4 8.36x 1O-3 

-2.4~10-~ 4.79 x lOA 

-1.6x 1O-4 2.84x 1O-3 

-1.2x 1o-4 1.78x 1O-3 

-9.4x 1o-5 1.38 x 1O-3 
-7.7x 10 -5 1.08 x 10 -3 
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with x I the spinor Part of the 3He wave function for the first nucleon. Similar 

expressions hold for the diagrams of Fig. 3b and for the scattering6 involving 

the other combinations of vector mesons. 

Equation (II. 8) no longer has any pI dependence therefore the Born term 

vector meson-nucleon scattering amplitude is effectively local. Also, the 

exponential form of the full nucleon vector meson scattering amplitude is re- 

placed by a rational function of A2. Therefore, we expect this term F2 eQB( A2) 

to fall off like FT’(A2/4) which is more slowly than Ft’(A2). The term (II. 8) 

diverges at A2 = 0. However, as in the case of photon bremsstrahhmg, 
9 

the 

divergence is cancelled by vertex and self interactions (here the binding energy 

of the 3He nucleus plays the same role as the finite energy resolution of the 

detector in bremsstrahlung in providing a cutoff which makes each term finite). 

The terms that cancel the divergence at A2 = 0 involve interactions with single 

nucleon line and thus fall off like Fyf(A2). So in the A2 region of interest they 

should bc only a few percent of the Born terms and we will ignore them. The 

expression for the Born term contribution to the electric form form factor is 

then of the form 

+M2 N ) .FS .(A2) -$ v(($ -d2)* 
, , 

mesons 

2MN x exp (-A2/72* ’ - 62/6a2)x 1/ (g,“, w * 5A2 
12 P. 9) 

The handling of the isospin is as in the case of the full scattering amplitude. 

As above we ignore the 6 dependence of Fv and Fss This gives an approximation 
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for FeQB ’ 2 (Ah 

FiQB(A2) = 

x - 3 Fs(A2)) * F”v (4 ) + 3 FV(A2) + 3 Fs(A2)) * FS ($) ( 

x exp (-A2/72 a2) (II. 10) 

eQ First we note that FT’f F2 - F2 eeB fits the data at A2 = 14Fe2. However, 

in this case F eQ eQB 
1 - F2 shows no dip near A2 = 12. In addition at A2 = 20, 

( 
FeQ _ FefB 2 

1 2 1 = low6 which is much too small. Therefore, corrections of 

eQB the form F2 if adjusted to fit the magnitude of the tail of the electric form 

factor, cannot fit its shape and, in addition, move the dip much too far in, 

Next let us try to adjust f so as to fit the dip, which for computational con- 

venience we take at A2 = 12F -2 . If we assume Fe$12) = 0, we get f F iD=FyQ( 12). 

eQ eQ This gives f = .338. We summarize our numerical results for Fl , F2 and 
eQB 

F2 in Table 1. With this crude attempt to fit the dip IF1 eQ- f FzDI is 

no greater than a few percent of 1 Fe’ I in the tail region from A2 = 14F-2 to 

A2 = 20F-2. Thus to avoid too drastic a dip in the form factor we have, at 

most, about one-third double-counting of the Born term. On the other hand, 

with, say, one third double-counting the calculated tail of the electric form 

factor is at least an order of magnitude too small. Our results are given in 

Fig. 1 for f = 1 and for f = 0.338. 

II. 4 Conclusions and Summary 

The corrections to the 3He electric form factor, calculated from phenomen- 

ological nonrelativistic nucleon pair potentials can be divided into two categories. 

The first is due to corrections to the internal dynamics of the three-body system. 
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This includes virtual elementary particle production resonance excitation etc. ; 

also included here are any explicit three-body effects that are present. All 

these effects occur in the isolated three nuclear system regardless of how we 

probe it. The other category we shall call electromagnetic corrections. These 

come about as the incident virtual photon can induce processes in the target 

nucleus which are not present in the isolated three-nucleon system. In fact, to 

the extent that. the (virtual) photon in hadronic electromagnetic interactions is 

dominated by vector meson poles, the wave function for 3He will be distorted 

by the presence of a fourth particle the interactions of which with the constituent 

nucleons are as strong as those among the nucleons themselves. Let us discuss 

the meaning of the results of our computation of the simplest electromagnetic 

effects, namely the shadowing effect discussed in Section II. 

In the region of interest A2 = 10F-2 to A2 = 20F -2 the electromagnetic 

correction is expected to have little dependence on the internal dynamics 

correction. The reason for this is that both the full scattering corrections 

and any Born term subtractions at momentum transfer A2 show a dependence 

on the square of the 3 He wave function which is strongest in a region near 

A2/4, which is less than 5F-2 here. In this region the 3He electric form 

factor is well described by a wave function calculated from phenomenological 

two nucleon potentials. Therefore we should be able to calculate the electro- 

magnetic corrections using a simple uncorrected 3 He wave function such as 

the Gaussian we have used. 

The contribution of processes similar to those described by Blankenbecler 

and Gunion for deuterium seem of insufficient magnitude to describe the 

structure of the 3He electric form factor in the region A2 = 10F-2 to 
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A2 = 20F-2. In addition, Fzp(A2) shows a too rapid fall off in A2 to fit the tail 

of the form factor. This fall off of at least one quarter as fast as the single 

impulse contribution (on a semi-log plot) can be seen from the details of our 

calculation to apply to double impulse corrections in general with reasonable 

assumptions about the behavior of the vertex functions included, therefore, 

it is unlikely that the inclusion of other processes similar in form to those 

generating F$A2) can explain the high momentum transfer behavior of the 

form factor which is the most salient feature of the results of McCarthy et al.2 -- 
eQ The possibility of double-counting the Born term of F2 led us to consider 

eQB 
F2 * 

eQ Indeed, it is much larger than F2 . But if we attempt to fit the tail of 

the electric form factor by it, we find that first, the shape is not right. 
eQI3 F2 falls off too rapidly and second, the correction term is so large in the 

region 10 Fm2 5 A2 s 14FS2 as to render the intermediate momentum transfer 

to behavior of the form factor completely incorrect. On the other hand, if 

we have about 34 percent double-counting, the subtraction of this percentage of 

FiQB gives a qualitatively reasonable fit to the diffraction minimum but yields 

much too small a form factor in the tail region with the wrong shape (even if 

eQB we assume F2 is the only contribution to the electric form factor here), 

This result is qualitatively similar to that of Ref. 6, which is not surprising as 

vector meson exchange can be used to generate a core. Therefore the most 

we can say for the Born term subtraction and electromagnetic corrections, in 

general, is that they may be important near the diffraction minimum. 

Our main conclusion is then that the large amplitude of the high momentum 

transfer (small distance) part of the 3He electric form factor and its constancy 

of shape will have to be explained by those features of the internal dynamics of 
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the two and three nucleon systems which generate the large momentum 

cdmponents in the 3He wave function and not in the nature of the interaction 

with the virtual photon. 
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CHAPTER III 

THE HYPERSPHERICAL EXPANSION 

Hf. 1 Introduction and Motivation 

We will now introduce the method of hyperspherical harmonics which will 

serve as the formal method we use to treat the three body problem in the rest 

of this report. The method will be presented in somewhat more generality than 

will actually be used in our calculations. This will allow the present chapter to 

serve as an introductory review which, to our knowledge, has not been provided 

in English. 

Our hyperspherical formulation was pioneered by Simonov andBadalyan 

and collaborators. l-3 The method has been modified and generalized by Fabre 

de la RipeHe (in French) is an excellent, detailed and lengthy development of 

the formalism. 

First we consider a system of two isolated interacting particles. In their 

center-of-mass, a motion of the two particles may be described by rotation, 

that is, an element of the group O(3) whose generators, here, are defined on a 

two-dimensional angular space and a dilitation of the distance r between them. 

The Casimir operator of O(3) is the angular part of the Laplacian in the 

three-dimensional center-of-mass system. The eigenfunctions of the Casimir 

operator are the angular parts of the harmonic polynomials 

pm = CM, P, y$--gx; w. 1) 

where 

cY+p+ y=L, 0 

AP(r) = 0 w. 2) 
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A is the laplacian and y’= (x1,x2,x3) 

r2 r x2 + x2 -I- x2 1 2 3 

and we define the angular variables by 

x1 = r sin e CO6 r#J 

x2=rsin0 sinf#~ (m. 3) 

x3 = r CO8 e 

then 

A= L dr2$+&r2-$sinB-&+ ’ d 

r2 dr 
- (nI.4) 

r2 sin 8 d#2 

and P(F) = rL fjLfo) u= 5) 

where Q is the two-dimensional solid angle defined by 0 and 9 and L indicates 

one of a set of possible harmonic functions. 

Defining -Aa = l/r2 L2(Q as the last two terms on the right side of (III. 4) 

we get inserting (III. 5) in (III. 4) and invoking (EL 2) 

L2(s2) f{LpJ = w.J+l) f{Lp) w 2 0) W. ‘5) 

In this simple example L2(a) is the square of the angular momentum 

operator and the f 
bl 

($2) can be taken as the spherical harmonics 

YLMV s @) M=-L, -L+l . . . L-l, L 

The YLM(O , $I) form a complete orthonormal set in {L, M) . 

In the mathematically (by this we mean we ignore angular momentum con- 

servation and cylindrical symmetry) general case we can write the two particle 

wave function as 
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the kinetic energy operator applied to $ becomes 

- Lo 3:(r) Y$2) 
r2 ) 

w. 8) 

with the reduced mass given by p = mlm2/(m1+m2). Therefore for states 

with L > 0 there is an effective repulsive potential(h2/2p)L(L+1)/r2. This has 

immediate physical consequences, in the scattering problem; states with fixed 

c.m. energy and L will be kinematically suppressed in the impact parameter 

region bL <L/<p> where <p> = 6 provided the interaction potentials are 

sufficiently smooth. Likewise, by the virial theorem for the virtual motion of 

the particles in a bound state. The largest L we expect to have a significant 

coefficient in the expansion (RI. ‘7) is given by 

where ER is the binding energy and R is a radius characteristic of the system. 

With the full potential V(y) we define; 

The three variable partial differential Schroedinger equation reduces to the 

coupled set of ordinary differential equations; 

LL’ %M’ 

cm. 9) 
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The observations that under the above conditions there exists an LmS for 

the system (IIf. 9) will reduce the set (III. 9) to a limited number of equations. 

Thus if Lmax is small we effect a considerable simplification in the problem. 

What this really says is the normalizations 

AL= 2 ImI@f(r)12r2dr 
MC-L ’ 

decrease rapidly for L > Lmsx. On the other hand, if V(F) has sufficiently 

complex behavior in Sz and sharp behavior near some r then since F a 
oP 

= h ar 

and $yy’ may not be small for L# L’ the product VLL, MNI’(r) @z’(r) may be 

large for L or L’ large compared with Lmax. This means that it is possible 

that a convergent calculation of the wave function or binding energy (for bound 

states) may require many more terms than actually appear in the final result. 

In the preceding paragraphs we have presented the familiar example of the 

angular momentum decomposition of the two body system in a rather abstract 

way and have not made the assumption that the Casimir operator corresponding 

to the angular part of the laplacisn is a constant of the motion. Despite this, 

we have noted that, under certain physical conditions, there are great benefits 

to be derived from this procedure. In the next section of this chapter we will 

do a similar analysis of the N-body wave function. First, let us note some of 

the geometrical and physical effects that we expect in the system of more than 

two particles. The dilation symmetry is one-dimensional and we can thus 

define one hyperradial variable which carries dilitations of the system the other 

variables constitute a hypersngle 52 . For three bodies the configurations 

described by S2contains the group of rotations O(3) and gives the global angular 

‘momentum L. L is limited in exactly the same way as for two bodies. In 

addition, we can deform the triangle formed by the three particles. This group 
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is given by SU( 2). 5 This means that the dilation free group of motion of three 

particles reduces to SU(3). 5 The second order Casimir operator of SU(3) is 

given by the angular part of the laplacian but as deformations are not sn external 

symmetry it is not conserved. Furthermore, for the scattering problem the 

system can undergo long range deformation (in momentum space) due to scatter- 

ing arbitrarily far from the center of mass. So we expect no further simplifica- 

tion including deformations symmetry in the angular part of the expansion of 

the part of the wave function. On the other hand, for a compact bound state 

of three identical particles we expect that states that are deformations out of an 

equilateral triangle will be harder tobind or that for systems with small sizes 

and binding energies the wave function should be dominated by an expression 

containing angular functions which have the lowest few eigenvalues of the hyper- 

angular part of the laplacian. 

III. 2 K-Harmonic Formulation 

In this section the hyperspherical formulation will be presented for the 

general case of N particles, although the actual harmonics will not be given. 

Jn the next section we will give the explicit construction of the Simonov’ K 

harmonics for three particles. 

Let the position vectors of the N particle be given byyi i = i, . . . N. We 

take out the center-of-mass motion and assume that all N particles have mass 

m then 

N 

c zi = 0 (III. 10) 

i=l 

III the c.m. the particle’s configuration is described by N-l combinations 

of the interparticle vectors; z - z. r (Y = 1, . . *, N-l. The ra will be 
i j’ a 
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combined into a 3N-3 dimensional Cartesian space with 

ei 5 (f[&j])i-3[++] , 

and the hyperradius p defined by 

3N-3 N P2 = c r; c (Yi)2, 
i=l i=l 

i= 1, . . . 3N-3 (III. 11) 

(III. 12) 

We will take p as our single scale variable. The c.m. kinetic energy in 

terms of our 3N-3 dimensional laplacian is 

h2 T= - 2m 

3N-3 

with V2 - 
c 

a2 
Q-- 

i=l -q 
(III. 13) 

Our goal in this section is to define hyperspherical coordinates and thus reduce 

the N-body dynamics to a set of coupled equations in the single variable P . 

This will be done by the expansion of the wave function in terms of a complete 

set of harmonic polynomials of ~5” (III. 13). 

Following Vile&n et al. 6 
-- we define our hyperangular variables as follows: 

take a node and associate an angle 6 with it 

Fig. III. 1 
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Let a line to the right be given by cos 6, one to the left by sin 6 (Fig. III. 1) 

then starting from the left assign an angle 0 I, e2, etc., to each node until 

there are 3N-3 end points (in filling the last line it may be desirable to skip 

alternate nodes as this will group the ei in groups of three corresponding to 

the vectors To (III. 11). Then i$ = p rk k 0 where _I_0 = sin 6 or k k 

cos Bk depending on whether it is to the left or right of node k. The product 

on k is over all nodes passed through in connecting the branch to the origin. 

We give two examples in Example 1: N=2 (Fig. I&2), we have 

5 52 

e1 

w 

43 

e2 

tl= PS~II~~ sine 

t2= PC08 el sine 

S= PC08 e 

Fig. III.2 

with 0 I = : - 9 this is just the usual expression for the components of a three- 

dimensional vector in spherical coordinates. Example 2: N=3, Fig. III.3 

Fig. IfI.3 

here the triplets ( I,, t2, t3) 

( sq, t5, 4,) are the Jacobi vectors 

r= r and y= F2 given in (I. 1) 

and (0 1’ r/2 - e,) and (Q,, X/B-e,) 

are the polar angles s2, and 52,. 
6 q 

Wehave ItI= psine and 

14= PCOS 8. 
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We will construct the laplacian in our hyperspherical variables in terms 

of the matrix g ab where 

3N-3 

de2 = x d4; = c gpp (dp)2 
i=l ~,e~+ 

+ gpi aPd’i + gij deide. 
I 

From the relationship 

(d(cos ei sin ej))2 + d(cos ei cos ej12 

= (-sin ei cos ej df$ + cOs.ei cos e d0S2 
1 I 

+ (-sin ei cos ej dOi - cos Bi sin 0 d6.)2 
j I 

= Sin2 f$(dei)2 + ~08' ei (d@j)2 + dOid& 
1 

(III. 14) 

We obtain gab as diagonal with g 
PP 

= 1 gkk = p 2ht where < is the product 

of the sin 0 i and cos 0 j connecting the origin to node k. For example: 

d.t2 = dp2 + p2(d00)2+ p2sin2 e. (de,)’ 

+ p2 cos2 e. (dp e2)2+ P2 sin2 e. sin2 e1 (de3)2 

+ p2 ~08~ e. sini! e2 (de4)2 

The range of the 0’s for a single covering of the hypersphere is given by: 

0 < 6 < 2~ if both lines from 0 terminates in end points 

0 <tJ < P if only the line on the right is free 

0 < 0 c r/2 if both lines lead to nodes 

The volume element is given by9 

dV = & dpdel . . . df33N-4 (In. 15) 
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where 

g e det gab = P 2 l (3N-4) ‘;-” h; 

k=O 

(III. 16) 

The laplacian is given for gab diagonal by 

Or, in this case using (LU. 16): 

3N-5 
v; 1 1 1 2 = 2 2 

p3N-4 ap 
p3N-4 

ap 
+ 

2 
c --lnhk& n.h. 2ej hi 
i*, JJ k+i i 

(HI. 17) 

We give (III. 15) and (III. 17) for N=2 and N=3 

N=2 dV=p2 Sill e. dpdBOdel 

as expected 

N=3 dv = p5 sin2 8 ~08’ e. sin e1 Sin e2 dpd edel de2 de3 de4 

= P5 sin’ 8 cos’ 0 d5-2 di-2 dpd8 
6 q 
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and with a regrouping of terms 

VL Ld p5++1 
p5 dp p2 

+ 2 sh2e - ( 
site1 gl 

a 1 
P2 0 sine -+ 

I ae, 8in2 8 1 2 ) ae,” 

+ ji cos2 ‘0 ( 
-- h1e2 ai, sin e2$&2 + sin2 e ’ 2 

a2 

3 > 

Writing, in general, (DI.17) as 

i a Vi= -- 
p3N-4 ap 

p3N-* 6 + r 
P2 

K2U2) (III. 18) 

where K2(Q), the second term in (lYL 18) is the hyperangular momentum operator, 

from (III. 17) we can write 

K2(S2) = 1 ? 

( sin f$cos ei ) 
sin 8: ~0~ ec A 0 ae, 

+ k2(i?,) k2(QL) +- 
co.2 8 de 

(HI. 19) 
0 0 

where c(s) is the number of nodes to the right (left) of the origin and 0 
R(L) 

is the 

hypersngle defined starting at the first node to the right (left) of the origin. 

This is illustrated above for the case N=3. 

It is clear that K2(fiR) and K2(nL) can in turn be expressed in the form 

(III. 19) and so on until we are down to K2(sZ F~) = - L2(n F~) the angular 

momentum operators of the vectors T,. The eigenfunctions are the Yf(fk&J 

with eigenvalues -L(L+l). If T& and Fa+l are joined at a node with angle 8 
P 
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we can look for eigenfunctions of 

K2( S-4 ,+ = ’ 1 d 

km2 8 ~08~ 8 d8 
P P p 

$&Y+1) LJLo,+l) 

sin2 e 
P 

cos 2e 
P 

in the form 

and so on until we reach the origin (0 o). This is the method derived by Delves 10 

and used by Fabre de la Ripe110 in his review article. 4 It has the advantages 

that completeness is manifest, the harmonics are expressed as simple products 

of functions of a single angle and the angular momentum of individual pairs is 

manifestly taken into account. On the other hand, the total angular momentum 

corresponding to rotations of the rigid system is not explicit and the properties 

of the harmonics under spatial permutation of two particles is complicated. In 

the next section we will give a development due to Simonov’ for the case N=3 

where these two defects are not present. 

Returning to (ID. 13) we see that the harmonic condition V'pKuK(fl) = 0 

gives that 

K2(f-i) u&P) = -K(K+3N-5) uK(fQ) K = 0, 1, 2, . . . (III. 20) 

for the eigenvalues of the harmonic functions of3N-4 angles. The kinetic energy 

operator, when applied to a state f(o) uK(fi), is given by 

?I2 T= - 2m Iti2 1 2 3N-4 a+/~+ 
-2m ,3N-4 dp 

iI2 
+2m K(K+3N-5! f(P) u,(fl$ 

P2 
(HI. 21) 
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thus, just as in the case N=2 the second term on the right of (IIf. 21) acts like 

an effective repulsive potential -l/p2 for K#O. 

Let us now assume that we have derived harmonics u 
IFI 

(Sr) with the follow- 

ing properties 

(1) [K] is a set of 3N-4 quantum numbers where K is the order of the 

harmonic polynomial pKuEK] . 

(2) These additional quantum numbers in [K] specify first the total orbital 

angular momentum L and also classify the u,(a) into representations 

of the permutation group of any two particles. This will allow trivial 

construction of states angular momentum J which are overall symmetric 

or antisymmetric under the interchange of two particles according to 

whether the particles be bosons or fermions. 

(This will be clearer later in the section.) 

(3) The %tW are orthonormal 

I “*[K]“[Kl dnt = *[K] , [K’l 
(III. 22) 

where 6cKI , cKq3E ;U unless the set [K] = [Kl in which case it equals unity 

anddR5 is dV/p - do where dV is given by (III. 15) and (III. 16). The number 

of independent K-harmonics is then given by6 

(n+K-3)! [n(n-3) + 2K(n-1) + 23 
(n-l) ! K! (III. 23) 

where n is the dimensionslity of the space we are working in (n=3N-3), N is the 

number of particles, and K is the eigenvalue from (III. 20). For N=2 n=3 and (III. 23) 

becomes (4K+2)/2 = 2K+l as it should be. For n=3 n=6 and (III. 23) is now 

(K+3) (K+2)2(K+1)/12 = l(K=O), 6(K=l), 20(K=2), etc. 

- 37 - 



We note that, in general, that the number of equations in the N=3 analogy 

to (Et.9) will increase quite rapidly with K as compared with the N=2 case. In 

fact, the number of independent harmonics with Kc Kmax is for N=2. 

(Km= f 1)’ and for N=3 

1 

[ 

5 4 3 2 360 6 Kmax + 57 Kmax + 300 Kmax + 825 Km= 

+ 894 Kmax + 360 
3 

Thus even for N=3, it is important that our wave functions have significant 

components only for small K and/or the sum of the two body pair potentials 

and any three body potentials has a simpIe hyperangular structure that alIows 

us to use symmetry properties of the interaction to reduce the number of 

coupled equations. For example, in the two body case the interaction term in 
MM’ 3 (III.9) becomes VLL, = MM, 6LL, V,(r) if V(T) depends only on lF[. 

We‘ now give the formal development of Schroedinger equation in hyper- 

spherical harmonics. Assume that we have a system by hyperspherical har- 

monics obeying conditions l-3 above. With the two particle potentials given by 

Vij i > j = Vij(T., zj) where 2 1 i(j) is the position (in the c. m.) of particle i(j) . 

Components of yi are linear combinations of the components of the 3N-3 dimen- 

sional vector ra so we can write in general. 

Vij = Vij(r) where we mean by this that V.. is some function of those 
4 

components of r which define zi and 2. 
I 

We have assumed here that Vij is 

local but have not assumed that it is central. In a similar manner we can define 

V.. 
& 

(r) a three-body force i < j <k and so on. 
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The N body Schroedinger equation is written 

(T+V-E) e(T)=0 

where 

‘b(p) = +( I;, f,, l ’ l 63,3) (III. 24) 

?i2 T= 2m 

and 

V(F) = c Vij@j + c ‘ijk(n + . . . 
i<l iqdr 

Ignoring, for now, spin and isospin we have, using the completeness of the 

eigenfunctions in (III. 20)) 

‘) ‘[K,“” (Ia. 25) 

In&ting (III. 25) into (III. 24) and using (IL 21) and (III. 22) we obtain the N-body 

equivalent of (III. 9) : 

E2 1 d P3N-4 3] -- 
- %i p3N-4 dp Q (0) + 

g (K+3N-5) ,/, 

P2 
[K16) - E ‘[Klb) 

(III. 26) 

where 

d’f”[K](‘&’ ‘(r) u[I&) (III. 27) 

We note that (III. 26) is a set of coupled second order ordinary differential 

equations. In fact letting + [K] b) = 9 [K](P) /p F the left hand side of 
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GEL 26) becomes 

d2d, +L* + 2mE2. -(K+%2 Q, (m26) 
P dp B2 P2 I 

. 

2mp L 

but the term inside the square brackets is just the operator that yields Bessel’s 

equation of order K + (3N-5)/Z in the variable x = (m/h)p . I.1 Furthermore 

if the potential V is made up of pair potentials of the form Vij(xi-xj) where 

Ixi-~~= mIxi-xjl ‘ij lxi-Xjl = 0 

then we can find unique solutions of (III. 26) with boundary conditions that (9) 

is finite at the origin and specific boundary conditions at P = 00 . This follows 

from the fact that 

lim 
p=oC 

P ‘[K] [K) (‘I = ’ 

and the assumption that 

lim P 
c 

‘=O” [K] 

v[K] , [Kq b) @ ki) (p) = ' 

and will be true as long as the sum 

is given by a finite number of terms such as in the case of a bound state. How- 

ever, the kernal for the N(> 2) body Lippmatm-Schwinger (L-S) equation is not 

compact. Therefore we cannot invert (lII.26) in the infinite dimensional (in K) 

case. Thus when the physical assumption of a finite size low energy bound 

state is made we invert an already truncated subset of (ILI. 26). The solution 

will then closely approximate a full solution to the LB S. equation. When this 

can be done we have no need to invoke coupled channel equations such as the 
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Faddeev equations for N=3 or their generalizations for N > 3 . 12’ l3 of course, 

for the full scattering problem, we can’t truncate the set (impose a finite set of 

boundary conditions on a hypersphere). (Note (IlI.4).) 

In the next section we will derive Simonov’s 1,3 set of hyperspherical har- 

monics for N=3 and give some results that have been obtained with model 

potentials. First let us briefly consider two models which are soluble and useful 

for large N. 4 

If there are N identical particles connected by harmonic oscillator forces 

-2 Vab=+A(q-%) 

we have, since in the c.m. frame N 9 aiI(ya)2= Za,b(za-s)2, that the 

potential (III. 24) is for this case 

v(r) = c Vij(r) = +A Np2 

i<j 

(III. 29) 

thus ‘h][Kj (‘) = *[@[Kg A Np2 and there is no coupling of states with different 

[K] in (III. 26). For a given K we can solve (Ill. 26) exactly. Let 

$lK](p) - $[,I(P)/P~~-~ then (IlI.26) is written as: 

d2’+[K,(P)/dP2 - $ 22 $I~,(P) f h2 d’~~] (p) 

- F A NP’$,(P) = 0 (III. 30) 

letting 2A = mz2 o 2 we get the solutions 

$; (xl = ; [ I r (nL+I) 
l/2 zv+1/2 e-x2/2 v 2 

L,C” ) (In. 31) 
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where x = p/x0, xi2 = JN y n=O, 1, . . . , OD 0 u=K+ F, L:(x) is a 

Laquerre polynomial and the eigenvalues of the energy are Ev n , = dN(n+ y)ha. 

All this is precisely like the two body harmonic oscillator if we normalize the 

strength of the interaction by letting o - JNo . This solubility coupled with 

the fact that for small displacements of the classical N body system from equili- 

brium the restoring forces are harmonic leads to the use of the solutions (III. 31) 

or some modification of them as the basis for a variational calculation in a 

hyperspherical formulation of the problem. 14 

Another exactly soluble N-body problem is the hyperspherical well4 

vg) = rm P > PO. Here again VIKl[Kg (P) = 8KK, V(P) = 0 P < PO. The 

equation for this case is (RI. 28) set equal to zero. The solutions are 

where v is again K+(3N-5)/2 and JGn/h 

the normalization is given by 1C:12j: 

p. is the nth zero of Jv(p) and C”, 

Pdpl Jv( ,/!!/hp)12 = 1. Fab&de 

la Ripelle” has suggested that the hyperspherical well might be a better de- 

scription of nuclear matter than the spherical box usually employed. Each new 

particle adds three degrees of freedom say ni, Pi, mi with ii its angular momen- 

tum mi the projection of Pi on the z axis and ni a principle quantum number such 

that the degree of the overall harmonic polynomial is increased by AK= 2ni + Pi. 

Because of spin and isospin we can use each set (ni,Pi,,mi) four times. The 

procedure is to fill up the well by ordering the energies E 
.v , n 

in order of increas- 

ing energy until all our A nucleons are used up. We can then calculate E/A the 

average kinetic energy per particle which is 25.47/ pi MeV/f 2 which is 88% of 

the energy in a spherical box’with the same density of matter. This takinginto 

account of high K-states means that it is energetically possible to have states 
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with considerable deformations from spherical symmetry and produces an 

ambiguity in nuclear matter calculations. 4 

III.3 The Case N=3, the Simonov Harmonics 

In this section we will explicitly construct hypershperical or K-harmonics 

for the three body system following the development of Simonovl for L=O and 

of Fustovalov and Simonov3 for L > 0. A few calculations with simple model 

potentials which show the rapid convergence of the expansion of the wave func- 

tion in K will be mentioned and finally a few general formulas of interest will be 

given. 

Our plan is to, first, construct K harmonics with L=O possessing definite 

permutation symmetry and then to define a differential operator which gives 

definite K and L when applied to the K=O K harmonics. For L=O then, K har- 

monics are scalar functions of the Jacobi coordinates 

T = @+ -F-J, ?jii= 4 (F1-F2) (III. 32) 

Thus we have K even, our work will be simplified if we reduce the six- 

dimensional real space to a three dimension complex one defined by a three 

vector 7. 

T= - 6 +ia, Y& T.&i (In. 33) 

The properties of zand z* under permutations; pii ri++rj,i, j = 1,2,3 are 

simple p.f2 z = Z*, p13 2 = Z* e -i2/3r 
’ p23 

z = =* eiW3 

p12 z*=z,p 13 
ze = z ,i2/3r p23 z* = ze-i2d3 

The line element is given by d( p2) = (d 3 )2 + (d T)2 

(III. 34) 

= d(zZ*) = d Z1 Zi + d 22 Z$ + dz3 z$ 
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this corresponds to a metric gii* = 1 in all other g’s = 0. From (9) we get the 

laplacian for terms of z and z*: 

A = a2 
ati at? 

(rn. 35) 

The S-wave harmonic polynomials are functions of the three complex scalars 
,, 

zz*= P , z = iy- q 2 2 v2 f 2iFii 2 -2 ,z*= % - ?) -2iF.T . Theangular 

part of the volume element is given by (III. 14) and (III. 15) as 

dR 6 = sin 2 0 cos2 13 de dfl( dR,l p 36) 

whereinFig. IlL3wetake .f=Psine r) =.Pcos 8. ForL=Owecaneliminate 

three of the five angles in (III. 36) by defining A and A with 

z2 Zig = p4 ~~ = p4(c0s2 28 + sina 28 COS~( T F)) 

p2 ~0~ 28 = iii2 -F2=Acosh (III. 37) 

then 

d-n, = r2AdAdA O<A<l, O<i\c2r (III. 38) 

From the preceding remarks it follows that the most general harmonic 

polynomial that we can write for L=O is of the form 

PK a$A, A) = c a,8r(z2)a(z*2)P(zz*)Y (III. 39) 

cu+p+ y=w2 
a,8*ylO 

Since the condition L=O reduces the angular space to a two dimensional one, we 

only need one quantum number; v in addition to K. “v” is defined so as to 

specify the permutation symmetry of the functions (III. 39) and is given by 

v= @ - P) (m. 40) 
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Applying p12 to (III. 39) we have for uv (symmetric 
k antisymmetric) uuder ‘12 

awQ 
= *a 

WY 
under p 123 we have from (III. 34) 

affPY 
= f apolr and 4rvi 1 exp 3 = (ICI. 41) 

Ol- 

v= $n n = 0, f 1, * 2, . . . etc. 

The condition A6 p K u i= 0 gives using (III. 35) and (III. 40) 

c 

3 

a+@+~= K/2 
aapy4 c~ptzz*)~ + y Q(+2-7) z2(z*Jy 

(,2)-l (z*2)P-l izz*p-l = 0 (Itl.42) 

The coefficients of the same term in (z . z*)~ (z*)2 (z)~ are set equal to zero 

yielding 

4a 
Wr + W+2)W- Y) a a-l,#?-1, y+2 = 0 (IL 43) 

Notethatify=-landa,,3Llwehave 

‘a-1 p-1 y=O * a-l, p-1 2 0 

Thus since (IL 43) relates terms with y - y + 2 we take a 
WY 

intermsofa 
@DO 

but then in terms of K and v we can express all the coefficients in (IlI.39) in 

terms of 

al/2 (K/2+ v), l/2 (K/2-v), 0 

K slnceaandpareintegralweget- f( VL 2 and it increases in steps of 

two. 
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From (m.43) we now have with IY = $ (K/~+v), p = i (K/2-v), 

K/2-v 
Kv 

PU K=c c (- l)Y’2 
4y/2f (r-r/2+1). . .a!(py/2+1). . . B 

-&y-2). . .2(K-y+2). . . K 
7=0,2, . . . 

x (z2,w12 (,+W2 * Y tzz 1 
(m. 45) 

where C is chosen such that / u*kukdn6 = SK,K, 8v,v. This series is 

summable and in terms of the variables A and h defined in (III.37) 

(A-J) = ,+ Aivi p:“‘,; 

z. (?- ,v,)(1-2A2) 

(rn.46) 

where pab (y) is a Jacobi polynomial C 

under p12i A 
-2T --&PI3 gives h --A 3 

and 2n P23i A + -A + 3 

therefore, recalling that K is even, we define the new orthornormal set, the 

functions with v 2 0 

vyK= K3 \I” -e2 t1+ P12)/2 uv (6 1 + gvo . 1) 
K v”J2 

= cos Av A’ Pvto 
+ (K/2-v) 

iT 1 v. 

V- WK- - l/2 (1 - P12)‘2 Ll; 

= sin hv A’ (=O if v=O) (m. 47) 

form a two dimensional representation of the permutation group if v # 3n. If 

v =3n, n=0,1,2,3, vv ’ K is fully symmetric under permutations and wk is fully 
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antisymmetric. Since W: = 0 and v=K/2, K/2-2 . . . 2 0 there are f + 1 

independent functions (lII. 46) for fixed K and the first fully antisymmetric one 

At this point we note that for L=O we have generated harmonics satisfying 

i - iii of the preceding section. We now look at the case L 2 0. The procedure 

is to take the functions P Kq I( A, A or v and w) of (III. 46 or 47) and apply to 

them a completely symmetric traceless tensor operator which is a polynomial 

in a/az and a/a z* and carries angular momentum L. Since a/iJz* commut,es 

with A 
5 ( 

see III.35) the resultant polynomials are still harmonic but now with 

angular momentum L instead of zero. Since the u& are functions of the .. .11~rs 

2 
z t Zig and zz* differentiation with respect to the spherical components 

(a/a zfO) (*) will leave us with a product of zaO or zio allowing the writing of 

the harmonics with L#O in terms of tensors formed from the spherical compo- 

nents of z and z*. Here we define the spherical components of a complex vector 

zby 

a+ = (al + i a,)/ fi 

a = _ -tar- i a211 fi (m. 48) 

a0 = a3 

The metric tensor’ g all is then g 00 = 1, g+- =g-+= -l=dg 
o+ = +o = -0 = o- 

g g g 

qzg * = 0 (note the last two). We remark that a* o carries mL= *l, 0 as, 

for example, in three dimensions j$(xl + ix2) =k iin e eig-+e, 9). 

Additionally, in the case L+K is odd we shall need pseudotensor operators. We 

define a pseudovector A from a by3 

(rn. 49) 
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and from this the differential operators a/aA,. Since, by parity alone, the 

product of two pseudovect.ors is a tensor. The pseudotensor operator can be 

formed from the tensor operator by multiplication by aAi. 

The futxtions that we seek will be eigenfunctions of the following operators 

K”, or the globa. a.nglular momentum, given by 

KS= (z & +z*@ (z g +z* & +4) -(Zz*)* (1II.50) 
. 

The ~&al. a.ngular i:iomenlum L2 with 

L=h/i[[z, &] + [z*, $1 (m. 51) 

M = the projection of L on some z-axis, 

W = Lz, (m. 52) 

v the operator that gives the permutation symmetry of the state. We saw above 

that for K=O, u=cy+ in general v = (number of z’s - number of z*‘s)/2 or 

v=L z--z* d d 
2 dz d7 (m. 53) 

Finally we can choose the fifth operator as 

Q= L’Z($ . L) - CijLiG ZiLj (m. 54) 

In general it is not difficult to find a set of harmonic polynomials which are 

eigenfunctions of (El. 50-III. 53). On the other hand, (lII. 54) has no clear physical 

contact. Pustavalov and Smorodinskii 16 have shown that for K 5 5 (or K 2 6 

for pseudotensors). The eigenfunctions of fl have the same spectrum as an 

operator 0. Where the eigenvalue o is half the difference of the number of a’s 

and the number of a*% in the term that acts on a harmonic with L=O to give one 

of the angular momentum L. This means the hyperspherical harmonics will be a 
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complete orthonormal set for K 5 5 (or 6 as above). For arbitrary’K 

Pustavalov and Simonov’ show that the functions specified by K, L, M, v and 

w are independent by demonstrating that the total number of states is 

(K+3) (K+2)2(K+1)/12 in accordance with (m.23) for n=6. 

The differential operator which generates harmonics of angular momentum 

L can be written as 

DLNo ( a, 3 *) = PL “,a, . . . a; a$ . . . (L terms) (m. 55) 

where 3,: is the derivative with respect to the component zg, N is the difference 

of the number of indices + and - in D and is clearly equal to -M, w is defined 

above and PL is an operator which renders au arbitrary tensor traceless and 

symmetric in all its indices (see (3)). Note that from (DI.34): 

p 
12 

DLNw = DLN-o 
P13D 

LNo = , 
,4dto/3 DLN-w 

and 

‘23 ’ 
LNo = e-4rio/3 DLN-w (Ilk 56) 

The DLNo can be written in the spherical coordinates P , A, h (or U’I e -iA 
) 

(m. 37) by using 

aa = gabtzb ‘1 + 3 A2) 

(m. 57) 

where 

2 a +LL- 
P2A au 

A* = A = r a A, a 
2 2 apap’,-ZaA 

(m. 58) 
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Whence with some manipulation 

DLNo, abed 
g g *-*g 

k= -L/2 m=O ’ 
I 

+- where M = -N (follows from g -+ 
=g = -1, g++ = g-- = 0 in (rn.59))and 

LNk 
Tbd. ..g is a symmetric traceless tensor with angular momentum = L. 

The pseudotensor operators given by 

abA* D 
LNw 3 DLN” 

A . 

where 

a ,,A=-g bc ActAIAi -A;) 

For the tensor case the K harmonics are given by 

u;rM= D L-Mu pv+o 
L+K 

where 

(m. 59) 

(m. 60) 

(m. 61) 

pv+o 
L+K = ’ L+K ‘+O(A,X) 

of (ID. 45) and from (EL 56) we can take o 2 0, o 5 L/2, by definition, and Y 

is again 0 5 v 5 K/2 where v+ o goes in units of two. 

In analogy with (llI.47) we have 

v ,o VKLm Q (1+P12)‘J2 v2;m (6v r. Hvo, 
O 42 

wyK)Lom Q -(l-P12)/J2i (l-Pl~uyK;som 
(III. 62) 

if v is a multiple of 3’2 the v are symmetric and the w antisymmetric under 

particle interchange otherwise v and w form a two dimensional representation 

of the permutation group. 
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For pseudotensors we have since P12Aa = -Aa, 

vtrg a (1+P12)/\/2 
(III. 63) 

vP3’2n 

We define 

Av ,w s DL-Mopv+o 
‘KLm A K+L+l (III. 64) 

as for uzLm in (IU.61). Then from @I. 46), (III.58) and (III-. 59) we can 

derive the K-harmonics of Pustavalov and Simonov 13 

Tensor case: 

K+L even 

I..=O, u=-K/2 . . . K/2 

$ = (K+2)/2r3)l12 H”n” 

J.,=l 4 = - (K-l) - y + 2 . . . y K odd 

5+1’2,0 UKlm = [;(K;)b3)]1” [” $3’) + H$-;‘sl)l 

where M = 1, 0, -1 zt&l = ,(*I , zb*’ , ,t*j 
+ 

iind v = [+ 1’2 

>2 O=l t=- syq2+,,.*. y v=+l 

$;k’ = Cj(y +(+4T2M1+s2) 

( 
K-2 +-2 - 

2. 
+ 4 + 2 

1 
T~MO~(~+~,~) 

n-l 

+ T2M-1 $5+2d) + K-2 
n-l 2 

+e+ 2 
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@ = 0: 5 = 0, 2, y I y even 

6~ 13 K-2,= odd 5 2 2 

+ T2Mo [I+)‘)+ (y++ Hit;“’ 

-( 
K-2 
2 +e+ 4 ) 1 H;[* 2, 

+ p+5+4) T2M-1 d%1’2)} 

The terms with -v are derived by letting z - z* and v’--, u *. 

Pseudotensor version: K+L = odd Lz 1 

&‘” = [3(F +5)(y+i+2j1’2 p-,+2, 2y2 

[; , ~]MH~t*” 

At+& 0 - 
UK2M - -;[ (y +t+Z)jy +t+4)]f12 

pi3 J+2)j-1’2x (%W2 $2) _ ~2MlhH;~lr2)) 
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Again to get v - v let z -. z*. 

The notation employed in the above harmonics is: 

n= (y -*),2 4)/z 

T2M1 = f2 (ZaZb - - ; gabz2) M=Ma+Mb 

T2M0 = p-2 
I( 

‘a% *+z z* 
2 ay + $ gd(zz*)} 

T2M-1 = 
p12 T 

2Ml 

_2M + 
T = 

_2Mi 

- p12 T 

and C is a normalization constant. 

The above haromincs which will be referred to collectively as (III. 65) 

with extensions for L > 2, form a complete set of independent hyperspherical 

harmonics which are orthogonal with respect to K, L, M, v and o for 

K 5 5 (K 5 6 for pseudotensors) with definite properties under permutation of 

the particles see (ILL 62) and (III. 63). Other than the troublesome question of 

the operator 0 or quantum number w for large K, 10 we have constructed a 

suitable basis for the hyperspherical part of three particles with equal mass 

obeying an SU(4) or SU(6) symmetry. 

III.4 The Development of the Wave Function 

In this section we will give the expansion of the three nucleon bound state 

wave function in terms of the Simonov harmonics of the preceding section. 
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A priori estimates for the convergence of the resultant series are given and 

finally the results of several authors on the relative weight of the various hyper- 

spherical harmonics in the wave function calculated with simple model potentials 

will be quoted. Along the way, .some general and useful formulas will be 

exhibited. 

The trinucleon bound state wave function has a total angular momentum 

J= +. As long as we are not interested in polarization measurements we will 

fixJz=$ Since there seems to be no three neutron bound state and certainly 

none with a binding energy near 8 MeV, the three nucleon bound state can be 

taken to have isospin T = $ (aT = 3/2 contribution of from . 001 to .Ol percent 

of the wave function normalization is expected’to arise from Coulomb forces). 18 

The three nucleon spinors can form states of S = !j or S - 4 the former couple 

to spatial S and P waves the latter to the P and D waves. The partial wave 

decomposition of the trinucleon ground state shows, in models, that the main 

contribution is from a spatially symmetric S-state. There is a mixed symmetry 

S state called the S’ which contributes, probably, from less than one to, at 

best, four percent of the wave function normalization. 18 The fully antisymmetric 

S state has K=6 or greater (see above) and thus is expected to be suppressed. 

The P states are due to the L-S force and are small. The D states are generated 

by the tensor force and are probably between four and twelve percent of the 

wave function. 18 

SorT We now consider the spin-isospin function 71/2Ms(T) and ~$2~~ con- 

structed from three spin (isospm) l/2 particles. 19 

For S or T=1/2 we take M = l/2 (MT = l/2 for 3He) then there are two 

spin functions which form atwo dimensional representation of the permutation 
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grow 

?i”‘l” = i I 
(I+>~-*+->I+>) I+> - 2 I+> I+> I-> 

z?i I 

7711 
-WT) = J; (l+>l->-I->1 +>) !+> 

HZ 
(III. 66) 

where I+> as a particle with spin (isospm) given by Sz(Tz) = + i and I-> one 
1’ 

with Sz(Tz) = - 2. Here PI2 V1 = 7,1’ and PU rl -1 = - 7-l (as in (JlI.47)). 

For S = 3/2 three is one set of fully symmetric spin function 

7)3 3 = I+> I+> I+> 
PH 

rl r 31 
55 

= & { 
(I+> I-+>+ I-> I+>) I+>+ 1+>1+>1-> (III. 67) 

The functions with MS = - l/2 and - 3/2 are given by interchanging + and - in 

(III.67). 

Since P is fully symmetric in the particle coordinates,the hyperspherical 

harmonics (III. 62) carry the spatial symmetry of the wave function. Writing 

tq, 7) = r p2 K,L,o,v, MJ=l,$?(p’ @?;J=l/2)S,T (%) c (HI. 68) 

where the @‘s are normalized by 

where [K] is the set of quantum numbers in (III. 68). We note that the e’s are 

fully antisymmetric under particle interchange. The X’s are then normalized by 

c 
CL, vsw I X;:(P) I2 PdP = 1 
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For the principle S-state we have 

1 
* :07J=l,2, S=1/2, T=1/2(a6) = &(‘6) J; ’ 

-1s 1T 1s 
1 1 ‘1 

-lT 
- 1 

Ti’z Ti’i- 
“$ ; “$ f 1 

I 

/ 
U= 4 n, n = 0, 1, 2, . . . / 

v =K/2; K/2-2 . . . . 2 0 

For L=O K is even and the leading terms are 

(m. 69, 

Note that there is no term between K=O and K=4 in (ILL 69). 

For the S’ state 

-1s -lT 1s 1T + v,w 1 
= KO, J=1/2, H/2, T=1/2 2 ‘“,(n,) ‘1 1 ‘1 1 - ?l 1 ‘1 1 

25 ZTi -iz 

- vyK&-Q 
-1s +lT 1s 

~ll~ll+~ll 
-lT 

? 1 
5’2 z’z BZ zz 

here v#;M 

the first terms are 

Y =K/2+ 2,... > 0 K even (III. 70) 

K=2 v=l / 

K=4 v=2... 

For the D-states: are fully symmetric. Since the ?T12’s form a 

mixed representation only wL2 and vg2 forming a mixed representation contri- 

bute to the D-wave part of the wave function which in terms of the v(w)’ 
K2% 
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is given by: 

(III. 71) 
by parity since K is even for L=O, K is always even. Thus K > 2 and v # 3/2n 

to get a mixed representation of the permutation group. The lowest states are 

K=2, v=l and K=4, u=2. 

The coupled equations that describe the functions XzL( p) are given by 

(HI. 26) and (III. 28): 

=2m Ti2 c 
K’L’v’ W’ 

L’ = 0, 2 here 

where we now have 

(HI. 72) 

(IH. 73) 

The V(T) in (III. 73), in general, includes tensor forces. 
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If 

(III. 74) 

then since the *‘s are completely antisymmetric we have 20 

‘Kh;Ik’L’ ’ o’“‘w’(~) = 3 j dS2, e$:;V12(ifi2, To, TV, S1, S2) 

(III. 75) 

To obtain estimates of the V lK] , [Kg (“‘,;d the partial waves X:z we 

follow the treatment of Badalyan and Simonov and appeal to the case of central 

potentials with L=O. Since lr12 1 = IJ2771 = $!pcos 6, from(lIf.46) we see 

that vk or wK ” is a polynomial in cos 0 and/or sin 6 with terms up to power K. 

Thus we can express V as a series; 

V(J2q) = c VK( P) cK/2(cos 26) (ILL 76) 
K=O,2... 

where Cn(x) is a Chebyshev polynomial (of the second type) with 

KA,(x) Cnr(X) dx = ; am, 

Equation (III. 76) implies that since V(r12) is expandable in terms of a single 

angular series then the moments V”‘” 
K;K should be given by a recursion formula 

0 ;v in terms of VOK . This is of the form 14 

&)‘I. 1 
‘K’,;;, = cc 

K”/2 K’/2 K/2 
V” V’ v > 

K, v 

m. 77) 
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where in terms of 3j symbols 

< K”/2 K’/2 K/2 
V” V’ 

v>= 

x K”/4 K”/4 
v”/2 v’/2 -v/2 

K’/4 K/4 2 
VI’/2 )> -v’/2 -v/2 (III. 78) 

we can take v” 2 v’ (by redundancy of the sum) and thus v = v” f v’ 

K= IK” - K’t; IK” -K’+4f;....IK’+K”I 

The V$ are given in terms of the VK(p) of (DI. 76) by: 

0;v 
‘OK 

v;o 
= vK;O = 

2(-lIK/4 - V /2 
‘K(p) ’ 1+2 CO6 1 v>o 

f v=o 

(III. 79) 

where we note that only the v:(S~~) contribute to (III. 79). (In fact, only transi- 

tions into symmetric spatial states survive, this is because we have, for 

simplicity, assumed all the pair potentials identical. E instead, we were to 

include isospm and spin dependent forces like p and w exchange. Then we could 

” ’ mix in the S’ state.) It will turn our that the VOK determine the magnitude of 

X L for large K in the trinuclear bound states. 

We consider separately the cases of P small and of p large. For small p 

most of the potentials employed in nuclear physics can be expanded as 

00 

V(r) = 
c 

an r/n1 ((-l)! = 1 here) 

n=-1 

where by taking moments: 

Q(p) = Vii/P + v; + v;p + gK P2/2! 

(III. 80) 

(III. 81) 
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and 

pK= an: I y G%K,2(x)(l+x)n’2 dx d0 

2 =a -1 ?; I ;, LFCp/,(x) dx JFO (III. 82) 

This yields for n even and n > K 

v”K = 0: As K increases we have 

PK W1/Kn+2 and in particular 

-1 1 
‘K “z but from (EI. 79) for p small 

we have at worst, 

Now for large P we let r = p &and invert (HI. 76) 

m CK,2($ - 1) V(r) r2 dr (III. 83) 

letting V(r) << r -3 as r u nm and taking r2/p2 << 1 VK(P) N ($ + l)/p3. But 

if the range of the potential is a then r 5 a, so, if P > > Ka/2 we have 

r/p<< 1 and ‘K( 6’) << V,fdK2 

For p <<Ka/2 we use 

(P>>Ka/2) 

C,(COs 9) = sin((n+l) $ysin $J 

and with X’cos $I we get: 

VKb) = 3 
II 

C@J sin # sin ((5 + l)$) V(pJ2 cos (e/2)). (Ef.84) 
0 
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The ‘integral receives contributions only from 4 5 l/K. Then from (III. 84) 

V,(p) N V,/k (p CC Ka/2). Finally, $8 is estimated as: 
, 

I 1 /K3’2 p << Ka/2 
vKs” - Veff x KO 

I 
K1/2 3 

a /P 
3-1 

K5/2 
p >> Ka/2 

F-85) 

From (Ill. 78) and (III. 79) we can obtain estimates for Vg: (p) in particular 

vg -v;o” . 

To obtain estimates of the size of the xi we write (III. 72) as an integral 

equation 

where the Green’s function G,@, p I, x) is given by 

GK@d"d = $,(XP<) s+2(XP,) (III.87) 

with 

p> =p’ ><p 
< 

=p><p’ 

I and K are modified Bessel functions and x2 =-2m/h2E =2m/h2 EB (EcO). 

Defining: 
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so f K - (Z</ z>lK+2 z, z’ << K and decreases strongly for z, z’ >> K, and 

(III. 86) becomes 

v,w 2m 
Qo 

xKL +7 p ’ dp ’ k+# ) KK+2 

2m ao = em J Ii2 0 
p’dp’ ‘K+2 (XP ) KK+2 (XP ) f& d’ ‘a x) F;@ ‘) (III. 88) 

Now assume that there exists a bound state with EB near EK, the energy 

for which (III. 88) (for some K) has a solution for FK = 0 then il xK Lll is 
9 

determined only by the requirement that the wave function be normalized. 

From the “centrifugal” barrier term (K+2)2/p 2 in (III. 72). We expect 

EBO > EBI >... >O 

For the trinucleon bound state there exists only one energy level. Let us 

assume that this is due to E BO and that the wave function is dominated by 

XX we will now show that this assumption is self-consistent. 

Assume that we have solved (III. 88) for xi with Fo= 0. Then, to first 

approximation, x kZo is given by 

,;dE R 
Ti 2 IK+2(xp ) KK+2(xp) dp’ p’ f&s P’ 9 xl v;,o,c~ ‘) x@ 1 

(III. 89) 

where R is the size of the three nucleon system. From our discussion in 

Section II if we take K+2 >>xR, then IK+2(xp) KK+2(~p) - 1/2(K+2) and the 

integral by our estimate for V; “0, above, is -Viixi l/K 3’2 l&+2) 
, 

where the l/(K+2) factor comes from integrating f@, p ‘, x) - (pypSKf2. 
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Thus overall: 

V 1 
xK “pxi (III. 90a) 

JPdp lx;12/lpdp lx;,12 - l/K7 (III. 90b) 

So the contribution of the K-harmonics for K > 0 falls off rapidly. (From (III. 89) 

when xR N 1 such as the trinucleon system (III. 90a) is, more accurately 

Xi- 
1 

K3’2(K+2)2 
x;., 

Before we quote numerical results from model calculations for the 

relative size of the x ’ 3 
K we will look at the formalism of the He electric 

form factor. 19 The charge density of 3He where the three nucleons are 

centered at y,, i= 1,2,3 is 

Pc(~l ~ii) = ~ 
i=l 

f (l+Ti3) $h(T-ii) +$(1-ri3) Ch(Gi) (III.91) 

Then 

Fel(s2) = ; il iJd3?$d3? eiT’ ” #* p,(?, Ti)$ (III. 92) 

Noting that between identical isospin wave functions 

F 
<I Ti31 >= 1 (for 3He) 

Ccl 11>=3 
i 

we obtain the contribution of the term in $+J) with identical isospin wave 

functions to the form factor is (FpI(q2) + i Fti,(q2)) Fl (q2) with: 
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where QiKl, @rK,] both belong to the S, S’ or D waves. The D and S states 

do not interfere as their spinor wave functions have S = 3/ 2 and S = l/2 

respectively and are thus orthogonal. The interference term is given by 

evaluating isospin matrix elements and is: - 4 P’$(s2) - Fil(s2W2(s2) with 

+ $3 v x{~‘~x [KI (m. 94) 

where small vK is completely symmetric and v WwWl are a mixed repre- 

sentation in the expression of the S’ state. 

The 3He electric form factor is thus 

F3He 2 el (9 ) = Fp,#12) + f FIl(s2) Fltq2) - ; Fp,,(q2, - F;l(s2) F2(s2) 

(III. 95a) 

likewise: 

F>ts2) = <Jq2) + 2Fzl(q2) F 1 (q2) - 5 FEl(s2) - Fp,,(s2, F2(q2) 

(III. 95b) 

Simonov and Badalyan have given Fl (q2) for the first few K-harmonics 

(x ioj2 J2P) - ti3 x ;ox;o J6(0) 

12 + (xoo) [ J2P) + J6W 
11 

(III. 96) 

where our normalization of x 2. ’ differs from theirs and a =J2/3 qp . 
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By explicit integration over dQ6 we have that for the lowest D-wave function 

Ff(q2) = I2 (m. 97) 

Badalyan (using our normalization) has evaluated GV ” using the lowest 
21 

contributing states : 

$“’ (s2) = 24&j* x~~CO) xio@ ) J4(0) 
a2 

F. 98) 

Using a square well she obtained that if FzI(q2) = 0 then, with a simple two 

body square well, for q2 - 8- 10 Fe2 we get F2/Fl - .3 or as in this case 

E3He 2 _ p 2 
el tq 1 - Felt9 ) ( -2F) F1 3 2 we get about a ten percent correction from 

S’S interference in the form factor. 

An interesting application of the K-harmonic analysis is the sum rule 

for the Coulomb energy of 3He of Fabre/de la Ripelle 22 the Coulomb energy 

is the limit as q -. 0 of 

EC(q) = & -e2{jpr d3ri d3rj p i(ri-r) p j(r-r.) L I G2(r) (ei7”iJ 
3 rij 

(III. 99) 

while FeI(q2) is given by (III. 92). We note that the pi’s give factors Ep(@(q2) 

and that 

$ EC(q) -i& e2i ( 
i?i. T.. 

p r-ri) p (r-rj) d3ri d3rj d3r Iq2(r) I e “Cos e-r ij 

iT.:q 
therefore if we can relate integrals over e lJ ,,J29-4 

iq. r3 
cos 8q to integrals 

over e = .i;lsTJ2/3 

of e 
ia. E. 

(and noting that Ec( 0) = 0 due to the rapid oscillation 

tl ) we can get a sum rule relating EC and Fe,(q2). 

Expansions of #, ei’* ‘, ei’. T in terms of K-harmonics and Bessel 

functions of qp and kp respectively enable us to do this. In fact, retaining 

- 65 - 



terms up to K=2 in J) for L=O Fabre de la Ripelle gets I 

AEc=E3 -E3 
cHe cH 

=$7F;($) F; ($) 

(FIy(q2) _ 3pe(92)) (zF:%e@2) ’ F’i: ep2)) _ 1 

@‘;(s’) 3F;ts2) 

- F-(q2) - F;(q2)/4F;(q2) 2F>(q2) * Fif(q2) dq 

(III. 100) 

with 

FV = &Fn; IS=E%Fn . 

Presumably, if we knew the charge form factors out to q2 large enough so 

that we could cut off the integral in (III. 100) with confidence that what we 

ignore is small then (III. 95) becomes model independent and we can insert 

the experimental data. The sum rule yields mc = .65 MeV compared with 

the experimental value of .764 MeV. The difference may be a result of 

charge dependent nuclear forces. However, the size of the secondary maxi- 

3 mum in the He electric form factor indicates a little caution. 

Finally, we quote some results in the contributions of the various 

K-harmonics to the normalization of the trinuclear wave function Dzyuba, 

Pustavalov, Rybachenko, Sadovoi and Efros 20 have considered eight different 

potentials with tensor forces and included K-harmonics up to K=4. They 

included three exponentials, four Yukawa’ s (one purely central) and a 

Gaussian with a square well. For five of these potentials they give percentage 

contributions to the normalization of the wave function from each of the 
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K-harmonics they included. They found: 

In all cases the @i term contributed between 93.35 and 95.67 per- 

cent of the normalization and was clearly dominant. The next contribution 

to the principle S state +:I i contributes a minimum of . 17 percent and a 

maximum of .375 percent and is thus quite small. The S’ state is suppressed 

compared to what is needed to account for the difference between the 3H and 

3He electric form factors (in Ref. 21, PS, N 1.7% to do this) and ranges from 

.02 percent up to .44 percent for the Gaussian with square well. Ps, is 

about 75 percent from K=2 and the rest from K=4. However, in one expo- 

nential potential the two contributions are much closer in size. The D-wave 

probability PD ranges from 3.977 percent to 6.327 percent. The contributions 

from K-l states is about one third that from K=2 states except for the Gaussian 

where it is half as big. 

We mention a variational calculation of Erens, Vissechers and 

Von Wageningen, using a slightly different hyperspherical basis and con- 

sidering only S-waves they obtain between 98.6 and 99.2 percent K=O in their 

wave function. However the convergence of the binding energy can requ.ire 

up to K=8 in the case of a potential with a hard core. This reflects the fact 

that, locally, terms with large K may be important for potentials with large 

slopes. 

In practice, it seems reasonable to assume that to a good approximation 

we need only retain the K=O contribution in the principle S states in any 

For the D-wave the K=2 terms a priori description of the wave function. 

should provide, at least, an estimate of their gross effects. 

In the next chapter we will consider the boundary condition model for 

two nucleon interactions and apply an extension of the idea to the three 
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nucleon system, suggested by our consideration of K-harmonics, in the 

‘following chapter. 

Notes 

In.l The idea that problems in an N-dimensional space can be simplified 

by representing vectors by one radial coordinate and N-l angular coordinates 

is not new. Two early attempts are: L. M. Delves, Nucl. Phys. 9, 392 

(1959) and F. T. Smith, Phys. Rev. 120, 1058 (1960). 

However, these attempts either do not explicitly separate states of 

definite permutation symmetry or are extremely complicated. Some more 

recent expansions are Werner Zichendraht, Ann. Phys. (N. Y. ) 35, 181 

(1965) and J. A. Castillo Alcaras and J. Lealferrelra, Revista Brasileira 

de Fisica 1, 63 (1971). 

III. 2 For the development, see Simonov papers 1 - 3. 

HI.3 A related example is found in variational calculations where a much 

larger number of terms is required to get a convergent binding energy than 

are important in the wave function, See Beiner and Fabrkde la RipeHe’ 

for a three body case in point. 

III.4 This is not totally true; in momentum space there are no deforma- 

tions of the configuration of the particles when they are in free motion. 

If interactions occur only when the system has a small hyperradius 

(hyperimpact parameter) the description might still be good. For short range 

forces this will be the region where at least two pairs are within the range 

of their pair potentials. The exterior-interior separation of Noyes tells 

us that the wave function outside of this interior can easily be solved if we 

know it in the interior. Thus the hyperspherical can provide a simple 
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description of the wave function in terms of a few hyperspherical harmonics 

and functions of the hyperradius in the interior and the interior exterior 

method used to solve the entire problem. See Smith and Delves in Note IV. 1 

and Refs. 7 and 8 for details. 
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CHAPTER IV 

THE THREE BODY B. C. M. 

In the last chapter we discussed one ingredient of our analysis of the 

trinucleon wave function; the K harmonic expansion. In this chapter we will 

discuss the other principle component of our model, the boundary condition 

model (h. c.m.). 

What we will do is to discuss the theoretical basis of this model for the 

two nucleon interaction, indicating some of the difficulties and ambiguities 

encountered in applying this model to systems of three or more nucleons. 

The external local potential to be used in conjunction with the two body b. c.m. 

will also be briefly discussed. Arguments parallel to those of Feshbach and 

Lomon will be advanced to show that there should exist an explicitly three 

nucleon b. c. m. These considerations will be applied to a calculation of the 

3 He electric form factor in Chapter V. 

The b. c. m. originated in the work of Breit and Bouriciusl who used it 

to provide a pseudopotential which could reproduce nucleon-nucleon ‘So effec- 

tive range parameters. Since then extensive work on the b. c. m. has been 

carried out by the school of Feshbach and Lomon. 2-6 The b. c. m. has been 

coupled with external energy independent potentials based on meson exchange 

to give a set of phase shifts and deuteron parameters which is competitive 

with results obtained with “realistic” local potentials. 596 

In the first section of this chapter we will describe the b. c. m. and give 

heuristic arguments for it which will also be used in the three nucleon case. 

The next section will briefly.outline the work of Feshbach and Lomon3 in 

relating the b. c. m. to certain parts of integrals appearing in the Mandelstam 

representation of Ahe scattering amplitude. The applicability of these ideas 

- 72 - 



to the three body case is discussed next. The final section of the chapter will 

be a short discussion of the local potentials to be used with the two body b. c. m.5 

IV. 1 The Boundary Condition Model 

It is well known that for large interparticle distances and low energies 

the nucleon-nucleon interaction may be described by energy independent local 

potentials. On .the other hand, for short distances and/or large energies 

this is no longer true. However, if we believe that for some ro the interaction 

is local and given by some model, the phase shifts can be calculated if we 

know fl(E) for each I in question; where (for spinless particles) 

q(G = g Pp@os 0) t$r)/r 

and 

rod Vf(r)/dr 
I 

/V&r) = f&E) +’ 1 

rO 

(i.e., rod $/dFI,,/$= fn). This is clear as the boundary conditions at rO 

and at = allow us to integrate the second order differential equation from r. 

to r to get a unique solution satisfying (IV. 1). Therefore, the logarithmic 

derivatives f&E) specify the problem and take into account all the asymptotic 

effects of the short distance behavior of the wave function. The b. c. m. is 

the further assumption that that the f&E) are independent of E at some ro. 

The usual hard core is an example of the b. c. m. with fl= * . In fact, the 

energy independence of the f&E) is closely linked with the vanishing of the 

wave function in the interior (r < ro). Hoenig and Lomon, 4 assuming that the 

partial wave potential Vti (E,r,rl) is local (-6(r-r’)) for r> ro+ E (E >O), 

subtract the once integrated Schrodinger equation at E from that at E + AE, 
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to obtain (uncoupled partial waves): 

ro+e 
+ $2 df,/dE = - dr Iup I2 

.aV,(E, r , z”) 
drdr’ u$r’)u,(r) dE 

For E below inelastic threshold and V@(E, r, r’ ) a two fragment pseudo- 

potential derived from an energy independent many body (nucleons, mesons, 

etc. ) potential V(‘;:,, -F,, . . . ?n), 7 it can be proved that BV(E, r, r’ )/aE is 

a negative semi-definite operator. In that case,’ both terms of the right side 
r +e 

of (IV. 2) are negative. If dfl/dE = 0 then we must have 
/ 

0 

0 
Ii+(r) I2 = 0, 

this implies uL (r) = 0 almost everywhere in the interior r < r. - E E--co . Since 

ul(rO+e) f- 0, generally, and u,(r) and BV/8E have no 6 function singulari- 

ties, then the condition that uk (r)= 0 r < ro-e implies that dfddE = 0. We 

can easily generalize these results to the case of coupled channels using the 

fact that dfd dE <- 0 which follows from causality of the S-matrix. 

Since there is a strong relation between the vanishing of the two nucleon 

wave function and the b. c. m., let us see what heuristic arguments we can 

give for the vanishing of u! (r) when r < r. and also to estimate ro. Consider 

two nucleons approaching each other. For low energies and large distances 

they interact via local energy independent potentials. By the uncertainty 

principle alone, when the nucleons approach each other they produce virtual 

states containing meson pairs. The condition that we have a pion pair is, 

using the relativistic limit v=c=l=h , 

An Ax= AE&x= 2/~, Ax= 1 . (IV. 3) 
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Therefore, the largest distance at which inelastic virtual channels enter is 

given by 

rl.2p, = 1 ; 1 -1 
rl =7jpcls (IV. 4) 

wherepn -1 is the pion mass and pLa the corresponding Compton wave length. 

(The creation and absorbtion of a single pion presumably is included in the 

potential, also virtual states of one pion can’t be created out of the vacuum 

by the uncertainty principle energy of the two nucleons. ) Physically the 

onset of inelasticity at short distances can be expected to rapidly diminish 

the incident channel amplitude in the interior due to the opening of inelastic 

channels. Assuming that the incident channel is destroyed over a short 

distance the integrals on the right side of (IV. 2) become small and dfe/dE 

is then also small so we approach the b. c. m. 3 1 -1 This means that ro=rl~~P?, = 

. 7F which is considerably larger than the core in models which assume that 

the short range repulsion is due to vector meson exchange. In these models 

(e. g. , Hamada-Johnstona) ro= .4 - .5F which is considerably smaller than 

the b.c.m. ro. 

At this point we should comment that the b. c. m. does not say that there 

is no hadronic matter when r is less than r o, but rather, that the incident 

channel is destroyed by the opening of competing ones. This means that 

scattering processes in which we are interested in the elastic phase shift, 

binding energy of a bound state, and the like are expected to be well described. 

This may well include electric form factors which are expected to be relatively 

insensitive to virtual meson pairs, at least for low q2, by Siegert’s’ theorem. 

On the other hand, magnetic form factors and matrix elements of the axial 

current could be quite sensitive to hadronic matter in the core region. For 

example, the neutron-proton four point weak interaction is usually considered 
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to be suppressed due to the presence of the core in the two nucleon inter- 

action. 10 The next diagram that contributes goes through a strange inter- 

mediate state and hence gives a rate that is proportional to sin4 Oc for parity 

nonallowed electromagnetic nuclear transitions, as these arise because the 

nuclear levels are not eigenstates of parity in the presence of weak inter- 

actions. Unfortunately these rates are well given by theory except for the 

factor sin4 Bc which seems not to be present. If there is considerable 

hadronic matter in the core which couples to the weak interaction, then the 

boundary matrix E E generalizes the ff of (IV. 1)) will contain parity violating 

components - Gw and there will be no sin4 Bc in the rate. 

Another case where there is ambiguity is in the predictions of magnetic 

form factors, for much the same reason, and we will not discuss these in 

our three body generalization of the b. c. m. Finally, the proof that dfe/dE = 0 

gives us a vanishing interior wave function is valid for the Schrcdinger equa- 

tion and not for the Bethe-Goldstone equation4 thus there may be an interior 

wave function in the off-shell case which occurs in systems of three or more 

strongly interacting particles. 11 Physically this arises because the off- 

shell nucleon contains virtual nucleon plus meson excitation states; these 

latter are just the states that compete with the two nucleon channel in the 

interior region. This considerably weakens the effect of the destruction of 

the normalization of the incident two nucleon channel in the interior, when the i 

nucleons are off-shell. Thus the b. c. m. becomes ambiguous here (see 

Chapter V). 

We end this section by mentioning a static equivalent to the b. c. m. which 

gives the same phase shift in a partial wave. Kim and Tubis 12 have shown 

that the partial wave phase shifts computed from the b. c. m. are the same as 
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those from a potential, 

V(r) = gfB(ro-r) + g;ro 6 (r-r()) 

gp >o g;! < 0 
(Iv. 5) 

in the limit: I gel , I giI - 00 with the condition: fe/ro= &$ + rag; - l/ro. 

This shows that the b. c. m. is the limit of a repulsive core with a strong 

singular attraction directly outside it. We can even make the attraction more 

singular by noting that since, u(ro) u u’ (ro) in the b. c. m. we can replace 

6 (r-ro) by a term proportional to 6 t (r-ro) in (IV. 5). We will look at the 

effects of these two types of singularities in the three body problem in the 

next chapter. 

IV. 2 Enerpv Dependence and Dispersive Properties of the B. C. M. 

The usual potentials that one takes in nonrelativistic potential scattering 

are energy independent. While for the b. c. m. the interior potential that 

produces an energy independent fe is V(r) + E. 3 As E increases this potential 

becomes strongly repulsive and obviously has a large energy dependence. 

The energy dependence of the amplitude and phase shift for the b. c. m. 

is markedly different than that of potential models. We follow the lead of 

Feshbach and Lomon3 here. The normalization of the amplitude in terms of 

the S-matrix and phase shift will be: 

A&s) = & (k2+M2)1’2 (Se-l) 

or (IV. 6) 

2 l/2 A&s) = + (k2 + M ) sin 6 &s). e 
is p) 

where s = k2. 
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At infinite E or s in potential scattering, A&s) -+ VP where Vm is the 

matrix element of the potential in momentum space in the &h partial wave. 

Here, we expect from the above, Ap -+ E and 6 &s) - -kro + const as 

k - =J, directly from the model,as the relation (IV. 6) is not well defined in 

this limit due to the oscillatory nature of sin 6&s). From the physical input 

to the b. c. m. however, it is expected that as s increases resonances are 

excited in the interior which in Ref. 3 are shown to lead energy dependence 

in fm like fm = a/(E-Eres ). With further increase in E it is possible to create 

states other than the incident two nucleon channel which can exist at r = * . 

The result of this is to shrink the r. at which incident wave is destroyed by 

competing states which do not exist asymptotically. Equivalently keeping 

the same r. _ 2 w 2 $l the fa ‘S acquire an energy dependence. In fact, with 

the condition for a dispersion relation to exist S, -+ 1 as s -c 03 we get 

f1 + 1 - -k-r0 tan kro and 6&k) - -C/s after having become negative with 

-kro for low k as k increased. 

For moderate k2 it can be proved from the Wigner condition (dfddE 2 0) 

that both ds@(s)/Bs and 8(Re A$/% are smaller for dfddE = 0 than for 

dfddE < 0 (the condition on Re Ap holds for s < 0 and Inn - 6 p(s) 1 < 7r/4 where 

n is the number of bound states). Since for models with short range repulsion 

aS,/aS or BRe Ad8s < 0 (as s increases) we have that a,(s) or Re A&S) varies 

more rapidly for the b. c. m. than for a potential model for the interior. 

Brayshaw 13 has shown that for lim A&s) /s < 00 an off-shell partial 
S--W 

wave b. c. m. t-matrix can be defined from (IV. 5) which has correct analyticity 

properties in the s plane. The pure b. c. m. t-matrix only has a right hand, 

or unitarity, cut extending from zero to infinity. This is in contrast to 

potential scattering where the partial wave amplitudes have a left hand cut 
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running from --IL: to - 00 (in the case of OPE potentials) corresponding to 

physical intermediate states (mesons) in the t channel or, more generally, 

to the singularities of the momentum space potential. 

We can now compare the b. c. m. with the Mandelstam representation 

(which for simplicity we take here for ?r - 1~ scattering quantum numbers); 

A(s,t) =; j-;dt$, ds’ ds’ , t’)/(s’-s) (Y-t) 

+ poles + single integrals (IV. 7) 

The strip approximation14 relates the s and t dependence of (IV. 7) to the 

inclusion of certain intermediate states in the double dispersion integral. The 

(Y strip arises from states with low t’ and large s’ . Clearly this is the 

structure of a single boson exchange diagram in the t channel. Chew and 

Frautschi 15 have shown that, in this case, the effective relativistic elastic 

potential is given by 

&ys, q = - 1 I- 
p(s’ , t) ds’ 

’ >16p2 (s’ - 5) 4/J2<t<16CL2 CrV. 8) 

Now the CY strip is formally the region so > lw2, 4p2<t’< 16~ 2 while the 

p strip is 4~~ < s’ < 16~~; t’ > 16~~. So this effective potential comes from 

the (Y strip and has as weak an energy dependence as possible (Fig. IV. la). 

Feshbach and Lemon’ argue that the difference between the iterated form of 

(IV. 8) and the amplitude arising from the box diagram (Fig. IV. lb) is not 

totally cancelled by the effects of higher order corrections. Since such 

diagrams have a cut starting at threshold (s = 4~~) in the s channel, it follows 

that they can contribute to the amplitude through the /3 strip. This will result 
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FIG. IV. l--(a) Potential like diagrams in the CY strip. 
(b) A diagram with some /3 strip contribution. 
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in a lpotentialll 

J 4P2 
t > 16~~ (Iv. 9) 

ast(s’, t) is defined as p (s’, t) - a(~‘, t) where A@‘, t) gives the iteration of 

VW and the cancellation effects above. v(B) has a rapid dependence on s 

and if, as the authors of Ref. 3 assume, u st (s’, t) is positive definite over 

the range of the variables in (IV. 9) then we have V@)(s,t) becomes more 

repulsive as s increases from 4~~ and then finally approaches zero from 

above. This is precisely the behavior of the b. c. m. modified to account for 

inelasticity at high energy. This means that dispersion theory can give us 

an idea of what sort of intermediate states contribute to the b. c. m. and also, 

the condition of two pion exchange predicts row i pi’, as before. 

Now let s = +4(k2 + M2) (k is the wave number). Then for nucleon-nucleon 

scattering we can write the partial wave dispersion relation for angular mo- 

mentum Q (no bound states): 

A,(k2) = ; 
I- 

0 Im A&v)dv I J cc2 
+- 

h&W’ 
(IV. 10) 

0 v-k2-ic T co v-k2 

Again, the p strip which we take as 0 < v < 3M2 in the integral on the right 

hand cut and as -v > 16~~ on the left hand cut, gives the correct behavior of 

6 &k2 ) for the b. c. m. This includes k2 + aproviding we can ignore hi(v) 

when k2 is large or, She(v) dv<JIm A&v)dv this gives 6 1- -C/v, v- 0 as 

expected. It is the B strip contribution to the integral over the right hand 

cut that gives the rapid variation in energy. In contrast, potential scattering 

achieves its energy variation from the left hand cut and its iterations. As 

t=-2k2(1-cos f?), the rapid variation of the potential with t ((Y strip) means 
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that on integrating over P&cos 0) d cos (0) to get Am, there will be rapid 

variation of Ai with k2 from the left hand cut, in the potential scattering case, 

but slow variation from the right hand cut. 

What we have done in this section is to compare the energy dependence 

of the b. c. m. amplitude and phase shifts with that arising from certain 

integrals in the Mandelstam representation. Their similarity is an argument 

for the b. c. m. for nucleon-nucleon scattering with r. = f pi’ but it is not 

a derivation. 

IV. 3 Extension to the Three Nucleon Problem 

In the previous sections we described the effective interaction when two 

nucleons were brought very near each other, In this section it will be argued 

that very similar, but explicitly, three body, behavior can be expected when 

three nucleons come near each other. The key to our analysis will be the 

K harmonic method of Chapter III. We assume that the physical system or 

that part of the physical system that we are considering has the properties 

outlined in Chapter III so that the wave function is dominated by the first few 

hyperspherical harmonics and, that for a given K the potentials V [Kl ,[K’l(‘) 
are limited to a few nearby values of K’ , The reason for this is, first, that 

we suppress states that do not, on the average, have all three particles in a 

relatively symmetric configuration. This means that the energy available 

for coupling to virtual states will depend on the scale p . Second, in each state 

of given K the Schrodinger equation (III. 72) formally corresponds to a two body 

interaction with “orbital” angular momentum L =K+3/2. In each partial wave 

the potentials can be expected to fall-off faster than l/p (by integrating two 

body Yukawas over dQ6 we can see this). This will allow us to take over 
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formal results for two body partial wave scattering from sections IV. 1 and 

IV. 2 

We immediately have that the relation between the condition df &dE = 0 

at p =p o and vanishing of x [K1(p) for p <PO - E holds provided 

aVLK1 ,IK,l/OE 2 0 for K’ coupled to K (where p. v Ix(p )I-’ 0 p-po Ef[K]+2)’ 

In Appendix IV. A we show that this is the case for a truncated series of K 

harmonics in the three body wave function. l6 

Now, following the lead of section IV. 1, we will give heuristic arguments 

that there exists a p. inside of which the low K wave functions are expected 

to vanish. Consider three nucleons in an equilateral triangle then the side of 

the triangle = p . Now from the arguments in section IV. 1 if p were as small 

as fpil then a core would be expected to develop because of the opening of 

competing channels due to the pair interaction along the legs. However, if 

one of the legs is fixed at a distance r 1 -1 
12 >XPcl, 2 and the third particle is 

brought in, there will be enough energy from the uncertainty principle to 

create virtual pion pairs due to the localization of the third particle relative 

to the other two. Physically this means that we should get a three body 

boundary condition at a hyperradius somewhat larger than i pi’ = .7F. 

We required the relativistic form of the uncertainty principle in order to 

obtain the two body boundary radius. The corresponding generalization in 

each K harmonic wave is not clear. An extreme view is that p corresponds 

to two particle degrees of freedom in the c. m. while r I2 corresponds to one. 

Then we have AE z-i? or p b 2 =2pT orpo~p~’ = 1.4F. Soweexpect 

PO - < 1.4 F. Later we will estimate p. in a different way. 

Since the individual K harmonics can not have a two body bound state, 

and we can define outgoing waves in p , we can use (III. 72) to postulate the 
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extistcnce of three body dispersion relations in the partial K waves 

AK(E) = + 1 
00 dvIm AK(v) du 1 J 

-u’ 
f- 

dv hK(u) 

v-E-is K v-E (Iv. 11) 
-03 

(see (IV. 10)) the value of v’ depends on the range of the potentials (for OPE 

pair potentials we get v’ = 2~9. This is derived in Appendix IV. B. ). If the 

scattering process is a+b+c --+ a’+b’+c’ then it is clear that, if we postulate 

a Mandelstam representation (with no two body bound states) that the two 

particle cuts with kii > 0 contribute to the right hand cut. While diagrams 

with physical states in a crossed channel E ‘+a+b+c e b’+c’ contribute to the 

left hand cut. l7 (See Appendix IV. B again. ) Again the three body b. c. m. 

has only the right hand cut and the partial K wave amplitudes have the same 

properties as the partial wave amplitudes for the two body b. c. m. described 

in section two of this chapter. 

The lowest order three body potential is simply the sum of the channel 

OPE’s c Vij(ri-rj) = V123 (5 ) (Fig. IV. 2a). This has a high threshold on 
i<j 

the right hand cut and correspondingly slow energy variation. Again we 

assume that the iteration of the equivalent potential from OPE in each of two 

channels is not the same as the iteration term Vij GO(E)V. 
Jk 

where GO(E) is the 

three particle free Green’s function (Fig. IV, 2b). Then Fig. IV, 2b will con- 

tain a piece that has V= 0 threshold in the right hand cut. Just as in section 

IV. 2 this leads to an energy dependence in a K wave amplitude similar to that 

of the three body b. c. m. Since the range r.-r. m pi1 andJ2p 2 ri-r., by 
1 J 1 

definition of p, we obtain 

J2p > ri-rj = pa1 =1.4F :. pO>lF (IV. 12) 
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FIG. IV. 2--(a) Diagrams that contribute to VOO~). 
(b) A diagram with energy dependence like the 

three body b. c. m. 
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Combining this with the estimate of p. from the uncertainty principle, we 

conclude that the arguments that led us to a two body b. c. m. also apply in 

the case of the lowest order hyperharmonic components of the three 

nucleon wave function, to suggest a three body b. c. m. with 1 F < p. < 1.4 F. 

We note that since <p 2>av = $ 2 <r > av for the three body wave function if 

PO = 1.4 F the core is at radius .82 F (or at .58 F if p. = 1 F). This compares 

with Rch = 1.68 F for the 3He body form factor, the core is thus seen to be 

well within the system. 

We should also repeat that our comments in section IV. 2 about the physi- 

cal meaning of the core region still hold for the three body b. c. m. However 

for the low K harmonic states our incident and final channel is three on-shell 

nucleons, we suppress terms where a pair and the third nucleon are far off 

shell. In the case of the three body bound state the off-shell behavior is 

symmetrized among the nucleons so it is of order EB in the 9ncident7* three 

nucleon state and is small compared to the nucleon mass. Therefore we 

don’t expect the ambiguities mentioned above to be important in the hyper- 

radial b. c. m. 

IV. 4 The External Potential in the B. C. M. 

In the discussion of the b. c. m. it has been mentioned that there is a 

long range local potential arising from the strip. The actual procedure for 

obtaining these forces from (IV. 8) is based on the work of Charap and Fubini. 18 

The values of the meson nucleon coupling constants are adjustable parameters 

in p(s,t) and hence in the potential. Lomon and Feshbach5 then take r, p , w, 

and I] mesons and compute a potential which turns out to be 

v = VT + vs + VW + VI1 f V& 
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vn= g2/12 01 /MN12 UiU2 
E 
ul.u2+612(1+3/~r+3/01r)2 Empr/r 

vp = 3/2 N2(u1u2) 1 +(l+2gv)2/12(mp/MN)2 

- l+--& ( 3 -m r 

P 
+----7j S12 E ‘/r 

(m r) P > 11 
(IV. 13) 

vw= 9/4 (Nf)2 1 + (l+2gv)2/12 (mw/IQ2 2Ul’ a2 - 

- 1+&+ ( 3 
W (mw02 ) 11 %2 E 

-mWr /r 

V,, = $/ 12 (m 

For VBr we refer to Ref. 3 . In (IV. 12) p=m?,, ui and ‘i are the spin and 

isospin spinors for nucleon i. S12 is the tensor operator: 

1 
Sl2 =z [ 

2 3(ul*r) (u2*r)-r al-u2 1 . The meson masses and the couplings 
2 

g , N2, N2 2 gvs and gs are regarded as free parameters although they 

should be consistent with experimental values determined from direct meson 

nucleon data (the meson masses can vary with the charge state as they do 

experimentally). The best fit to the S and P wave N-N phase shifts that 

Lomon and Feshbach obtain has N2 = .65, mp = 765.0 MeV, gv= 1.87, 

m w = 782.8 MeV, gs= 0.06, mn = 548.7 MeV, gt = 1 taken from experiment 

then pv ranges from 135 to 139 MeV depending on the reaction. Finally 

rO = .51373 /A,’ quite close to the expected value. These parameters give 

excellent fits to scattering in higher partial waves and polarization in N-N 

scattering at various energies. This hold provided the two pion potential 

includes such diagrams as IV. 3a and IV. 3b where a factor of A is inserted 
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(a) (b) 

FIG. IV. 3--(a) Single nucleon pair diagram in V 
(b) Double nucleon pair diagram in P’ 2a. 
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for each,Nfi pair in the intermediate s channel state. Lomon and Feshbach 

find the best fit is with h = .934 f 1. It is interesting to compare the value 

of r0 with that which best fits the low 1 phase shifts with no external 

potentials. For P waves and higher r0 = 1.32 F, 2 for the 1sO interaction 

=0 
= 1.32 exp (-. 03EB ) F or, if r. is constant, r. = 1.095 F. The reason for 

this is that the singular attraction in the b. c. m. moves out to compensate 

for the absence of the long range OPE potential. 

In fact, the two pion potential is ambiguous, for example, it may be 

necessary to include u meson exchange also there are phenomenological 

parameters present not derived from field theory. In the three body problem 

diagrams such as Fig. IV. 4a and IV. 4b should be comparable to the two pion 

potential terms but are explicitly three body effects. A final comment is that 

we should note that the potential V is attractive in the T=l , S=O state and Iess 

strong but repulsive in the T=O, S=l state for r 2 r,! This means that our 

results could be altered by our inability include the two body core in the K 

harmonic method (see Chapter V). (This attraction is lessened by decreasing 

the p contribution relative to the w in the potential. This is the case when 

the higher partial waves are fit with a exchange and the lower ones with 

successively heavier meson exchange. The reason for this is that the potential 

in this method is from the cz strip with no core effects from the p strip. ) 
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FIG. IV.4--(a) Diagram t@t can contribute three body forces of the order 
of Fig. 3a and Fig. 3b. 

(b) Three bodjr force via resonance excitation. 
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APPENDIX IV. A 

In this appendix we will investigate the energy dependence of the potential 

V123(r) defined in Chapter III. We will closely follow the development of 

Newton l6 for the two body case. First, assume that there are no two body 

bound states. Additionally assume that we can define a three body fragment 

channel by considering only a limited number of hyperharmonics. More 

precisely, we assume that we are in a physical situation such as three body 

bound states, clusters or the i.nterior of an interior-exterior separation. Then 

in a many body theory the total Hamiltonian H is written as 16 : 

H=HSN+HiN (IV. A- 1) 

where HbN - 0 as p -00 and H3N describes the channel composed of three 

nucleons. Next we define projection operators PQN and Pp such that: 

‘3N + ‘P = “l” 
(IV. A-2) 

where P 
P 

is a projection operator onto all channels except the three nucleon 

one and we have assumed no transitions to states of high K. PQN projects onto 

three nucleon states. Transition operators are defined as: 

‘3Np = ‘3N HbN ‘fl (IV. A-3) 

The channel Hamiltonians are: 

H3N = P3N I=QN 
(IV. A-4) 

HP = Pp HP 
P 

Define the Green’s functions with outgoing waves (in p ) as : 

@3N - H3N) G(g3N) = ‘3N 
(IV. A-5) 

‘$ -HP) Gp Gp) = Pp 
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Then since P3Npp = Pp PQN = 0 we have: 

G(E) 3 G3N(E) + G6 (E) = (E-H3N-Hp ) -1 (Iv. A-6) 

The full Green’s function g(E) z (E-H)-l is then: 

g = G+“(V3NB + vp 3Nk (IV. A-‘7a) 

and 

‘QNg = GsN + G3Nv3N&3 g (IV. A-7b) 

pp g = G Gp ‘@3Np3Ng (IV. A-7@ 

where we have used V3Np = V3N6P, say. Equations (IV. 5) and (IV. 7) can 

be combined to yield 

(‘3N - H3N - ‘3Np Gp 733N) ‘3Ng = ‘3N + ‘3NB G/3 (IV. A-8) 

This suggests that the total effective Hamiltonian for channel 3N is 

*re,N(&,j) = HsN +V3NpGp’Ep’ 793N (IV. A-9) 

whence the total Green’s function in this channel is (using IV. A-7) 

(~3N-=&‘&N = ‘3N (IV. A- 10) 

with 

!+N = ‘3Ng ‘3N = g3N@$ (IV.A-11) 

Thus from (IV.A-9) and (IV.A-11) we see that the energy dependence of the 

effective potential in 3N-3N scattering (in the lowest K harmonics) arises from 

virtual transitions to many body channels, p . Finally setting EQN = EP = E 

we have, using the outgoing wave boundary condition: 

S3N(E) = H3N + V,,6p(E-Hp) -1 
vf13N - i* ‘3Np a(E-H$ ‘63N 

(IV. A- 12) 
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The 9’ in (IV. A- 12) refers to a principle value not a projection operator. 

Since by hermiticity V3NB VP3N _ > 0 we get (for E below the threshold for 

channel B ) 8363N(E)/ BE 2 0. Since H 3N is the three nucleon kinetic energy 

we get our desired result as 8H3,/8E = 0. If there are two body bound states 

they give cuts in (IV. A- 12) starting when E = -EB where EB is the two body 

binding energy. However, the transition to these bound states is equivalent 

to being in a situation where we can not impose outgoing boundary conditions 

in p , but we assumed that these situations differ physically from those that 

we are considering here. 
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APPENDIX IV. B 

For potential scattering v’ is the position of the singularity in k2 of 

Voo ( k ) where : 

Voo(p 1 Oc / k2a J.$v )&p I2 Voo@) (IV. B- 1) 

but 

Voo(p ) a f dQ6 Vtr12) (IV. B-2) 

and 

V(r ,2) a / d3q/(q2+ u2) ei ’ 
.Y? 

l2 (IV. B-3) 

For OPE potentials using r12 = J2 p cos 0 and inserting (IV.B-3) in 

(IV. B-2) we get 

V,,(P) 0~ / d3dh2+ ~2, 
iq&p 

e 
cos 6 coS(q* r12) dS1 

6 

(IV. B-4) 

but letting $2 q= k (IV. B-4) gives: 

V,,(P) af J2(kp)/Ow)2 ;2dk 
k +2p2 

(IV. B-5) 

From (IV. B-5) we obtain the threshold if the left hand cut 

v' = 24 (IV. B-6) 

This estimate is for the longest range OPE pair potentials. 

- 94 - 



REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

G. Breit and W. G. Bouricius, Phys. Rev. 75, 1029 (1949). 

H. Feshbach and E. Lomon, Phys. Rev, 102, 891 (1956). 

H. Feshbach and E. Lomon, Ann. Phys. (N. Y. ) 29, 19 (1964). 

M. Hoenig and E. Lomon, Ann. Phys. (N. Y. ) 36, 393 (1966). 

E. Lomon and H. Feshbach, Ann. Phys. (N. Y.) 48, 94 (1968). 

E. Lomon and H. Feshbach, Rev. Mod. Phys. 39, 611 (1967). 

H. Feshbach, Ann. Phys. (N. Y. ) 5, 357 (1958). 

T. Hamada and I. D. Johnston, Nucl. Phys. 34, 382 (1962). 

A. J. F. Siegert, Phys. Rev. 52, 787 (1937). 

E. M. Henley, to be published. 

M. Hoenig, Phys. Rev. C3, 2118 (1971). 

Y. E. Kim and A. Tubis, Phys. Rev. C3, 693 (1970). 

D. D. Brayshaw, Phys. Rev. C3, 35 (197 1). 

M. Cini and S. Fubini, Ann. Phys. (N. Y. ) 3, 352 (1960). 

G. F. Chew and S. C. Frautschi, Phys. Rev. 124, 264 (1961). 

R. G. Newton, Scattering Theory of Waves and Particles (McGraw Hill, 

New York, 1966); Section 16.5. 

The general three body situation is very complex. See S. Mandelstam 

in Elementary Particle Physics, G. Takeda and A. Fuji, editors 

(W. A. Benjamin, New York, 1967). 

J. Charap and S. Fubini, Nuovo Cimento 14, 540 (1959). 

J. Binstock and R. Bryan, Phys. Rev. D4, 1341 (1971); 

F. Partovi and E. Lomon, Phys. Rev. D5, 1192 (1972); 

G. Schierholz, Nucl. Phys. B40, 335 (1972). 

- 95 - 



CHAPTER V 

RESULTS 

In this chapter the theoretical considerations of Chapter IV will be applied 

to the development of the bound state wave function in K harmonics. 

The plan of the chapter is to, first, discuss the lowest order approximation; 

that the wave function is entirely composed of the principle S state and that that 

state is given by the lowest (K = 0) hyperharmonic. A boundary condition will 

be imposed on this leading hyperharmonic and the resultant properties of the 

3 He electric form factor, in consequence of the variation of the input para- 

meters of the model, will be discussed. The inclusion of S’ and D waves will 

be considered and then the inclusion of external meson exchange potentials. 

After which comparisons will be made with other models. Finally, for dessert, 

we will give some possible extension to systems other than the trinucleon 

bound state. 

V. 1 The Pure Three Body Boundary Condition Model 

We consider only the L = 0, K = 0 fully spatially symmetric state. The 

trinucleon binding energy is a fixed input parameter EB = 8.5 MeV or equiv- 

alently x = m)EB = .636F-l. The equation for the wave function xi(p) 

becomes from (III. 72): 

d2 ’ 
--.3+- 1 dX”o 

dp2 P Q 
P>Po w. 1) 

Xi(P) =os P<P() 
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The solution to V. 1 which is regular at p = m is: 

X;(P) = CK2(xp) P>Po w. 2) 

Xi(P) = 0 P>Po 

Here pas the boundary hyperrsdius is a free parameter and x is fixed. 

For a given p. the fixing of x is obviously equivalent to the fixing of the 

logarhithmic derivative 

The normalization condition on xi(p) giVeS: 

c-2 = 
/ 

P&K~(xPI~ 2 

PO 

(V. 3) 

From (III. 95) the 3He electric form factor is simply: 

F3He 2 _ 2 
eP (4 ) - C /4(3Fs(s2) + Fv(s2)) BLl pdp~K2txP)12J2W/a2 

(V. 4) 

a =&$-qj3 

Fs and FV are calculated from the analytic expressions quoted by Gasiorowicz 

(although any fit to the data will work here). 
3He 2 In Fig. V. 1 lFee (q ) 1 is plotted for a range of po’s. The behavior of 

the form factor is reasonably close to a Gaussian for small q2; it shows a 

sharp passage through zero and then a large secondary maximum. At very 

high q2 this oscillary behavior continues with the maxima decreasing by about 
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FIG. V. l--The 3He electric form factor for the pure three body b. c. m. 
K=O state for a selection of pOfs. 
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one order of magnitude from peak to peak. As p. increases: 

(i) The position of the zero in q2 decreases. 

(ii) The size of the secondary maximum increases. 

(iii) The width of the secondary maximum increases. 

In Figure V. 2 we have plotted the two most striking features of the 

observed 3He electric form factor, from the point of view of the difficulties of 

two body potential models; the height of the secondary maximum and the position 

of zero against each other, as parametrized by 
2 

. The experimental 

pointistakenasqdip=11.6* .2F -2 and IF:~IIL 6.5 * .25x IO-~. l 

The position of this maximum is at about q2 = 16.25 F-2. However there is 

an ambiguity in the data reported by McCarthy et. al. 1 Their experimental 

points show a spoike at q2 = 14 Fw2 with magnitude 8 x 10m3. The data point 
2 

at q = 13 F -2 is consistent with this. McCarthy et. al. have chosen to 

de-emphasize these points as have most of the fits quoted in theoretical 

derivations of the form factor. We have dealt with this problem by extending 

the I F>e 1 max for the experimental point to include a range centered about 

8 x 10-3. (See note V. 1.) 

Figure V. 3 shows our fit to the data. We have adjusted the boundary 

hyperradius to fit the position of the experimental zero in q2. The charge 

radius is somewhat too small Rch = 1.55 F compared with the experimental 

value of Rch = 1.88& .5 F. 4 There is a “bulge” in the calculated form factor 
2 

near 4 = 4 to q2 = 8 F-2. With a maximum discrepancy from experiment of 

a factor of about 1.8. On the other hand, the basic shape over several orders 

of magnitude of the form factor is in rough agreement with the experimentally 

observed electric form factor. 
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FIG. V. S--The 3He electric form factor for K=O, po= 1.61 F vs. eXperim?nt. 
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In the region beyond the zero (in e. q2 >12 Fe20) the fit is remarkably 

good, being within the error brackets of all the points out to q2 = 20 F-2 

with the exception of those at q2 = 15 and q2 = 16 F -2 . The value of the peak 

js IF3$eimax=7.3x 10e3, which is reached at q2 = 15.75 FW2. This value 

is about fifteen percent higher than the fit of McCarthy et. al. ignoring the 

points near q2 = 14 F -2 
but it is lower than the value of the peak if they are 

included. 4 The boundary hyperradius for this fit is p. = 1.61 F. In short, the 

gross features of the 3He electric form factor are reproduced at least qualitatively 

by this lowest order model. 

Before considering corrections to the model we comment on the reason- 

ableness of the parameters involved. There is little dependence on the binding 

energy. This is a consequence of the large boundary hyperradius so that the 

oscillations of the Bessel function J a ) @ qp damps out the wave function 

except near the boundary hyperradius. This greatly suppresses dependence 

on the exponential tail in K2(xp). Doubling the binding energy produces less 

than a five percent change in any of the major features of the form factor. In 

fact, in several computer runs the binding energy was inadvertently increased 

by a factor of 89, the boundary hyperradius was moved out to 1.7 F and the 

height of the secondary meximum merely doubled! The boundary hyperradius 

p. = 1.61 F is not unreasonable when we recall that for the equilateral triangle 

configuration p is equal to the side of the triangle. The considerations of the 

last chapter precit p. between 1 and 1.4 F, in not too bad agreement with the 

above value. For the pure two body b. c. m. the boundary radius is 1.32 F 

(1.095 F for the ‘So state alone). (See Chapter IV. ) In the last chapter we 

saw that the boundary radius for the two body b.c.m. was reduced to near its 
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predicted value when external potentials were added so that the b. c. m. no 

longer had to try to account for the effects of long range potential tails. We 

expect a similar situation to hold for our model and we shall see in Section 3 

of the chapter that this is indeed the case. 

V. 2 The Inclusion of States with KS0 

It will be assumed that the dominant S state (symmetric) is well accounted 

for by the state with K , 0. In order to include S’ and D states we will assume 

that these states are dominated by the K = 2 components (note V. 2). 

Physically (assuming pair interactions) the S’ and the D states are gener- 

ated by the difference between the isosinglet and isotriplet force and the tensor 

force respectively. For the two body b. c. m. with no potentials, D waves are 

generated by rewriting the boundary matrix given by ro(d$/dr)/rO /$(ro) as 

a matrix with off-diagonal elements coupling different partial waves. 2 
Likewise, 

we can write for our three body b.c.m. 

pOdx [K](p) 
dp c 

P=o = cKo3 
‘[K][K] x @x3 (po) (V. 5) 

where [K] is the set K, L, ML, v, o I I . Equation (V. 5) can be further 

generalized by letting co depend on [K] . For the pure b. c.m. x i,(p) and 

x i,(p) are just free solutions of (IU. 72) for p>po and are zero elsewhere. 

Since we have fixed ED, the binding energy, under the assumption of K = 2 

dominance of the S’ and D waves, the matrix 7 
[Kl P @‘I 

is equivalent to the 

specification of the relative signs of the x 
El 

and their normalizations 
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Ps, PS, , and PDO The wave functions are given by: 

GO = csK2(xd 

1 
X20 = CS,K4(xd 

(V. 6) 

1 
X22 = C&&XP) 

Since the D waves are expected to be of longer range than the S waves 

we let pOD be different than p. to give this effect, then 

J’s,fm [ I 

-l/2 
cs = pdplK,(x~)l~ 

Cs, = &, i pWK4(xP) 12]-li2 w* 7) 

CD = & /- 

[ 

pdpIK&p)12 -1’2 
‘OD 1 

From (III, 98) we see that, since the S and D waves don’t interfere, the sign of 

CD is immaterial for the trinucleon electric form factors. If Cs is taken as 

positive then comparison of (El. 95) and (El. 98) along with the hermiticity 
3H 

requirement that the form factor be real and the experimental fact that FeP 

3He 
3 

is greater than than Fee for O<q21 8 fixes Cs, as real and positive. 

(Provided, of course, that this experimental difference is not primarily due to 

the violation of charge symmetry in the nuclear forces, which, in our approxi- 

mation, means that pop pODy Ps, Ps, and PD can differ between 3H and 3He 

by more than the effects of the coulomb interaction.) 
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The result of all of this is that the 3He electric form factor is given by: 

F3He(q2) = 
eP ($$Jq2) + F;(q2)) 

00 
X PQ IK2(;t~) 1 2) 

x {m8pdp/a2cJ2 (a) * J6(a))lK4(Xp) I 2 
PO 

xj kWa2 (J,(a) + J6 (a)) IK$(xP) I 2 - --$ (Fp,p (s2) - F> ts2)) 

PO 

x J 
m 

pdp IKE 1 2 
-l/2 

PO ) 1 
w. 8) x 24 b f *pdp/ a2 J,(a) K2(x~W4(xd 

PO 

asusual a= vi-- /3qp. 

In order to evaluate (V. 8) we need Ps, and PD. Unfortunately, these are 

not available from experiment in an unambiguous way. The reason for this is 

that the processes that naively measure these such as tritium fi decay, nucleon 

capture on deuterium, and the trinucleon magnetic charge radii are expected to 

be quite sensitive to magnetic exchange current contributions. 
4 

The S’ state 

probability presumably accounts for much of the difference between the 3H 

and the 3He form factors. However, a fit to this difference over a wide range 

in q2 requires a model or form for the various wave functions. 

One common assumption is that the S and S’ hyperradial wave functions 

are proportional as a function of p. 
5 Using this assumption or a weaker form 
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that the root mean square hyperradii are the same, we can derive Ps, in 

3H 
3 

terms of Rch and Rcfe (see appendix V. A). 

3 
_ R H 

2 

> 
2 

+ li2 _ 3Rzrton2) 
1+ w-VD 

qD = PS’ (V. 9) 

where p = <~~>,/<p~>~ . 

For PD = 0, Ps, = 1.18%. With /3 = 1 and PD= 10% we obtain Ps,= 1,27% and 

for p = 4, PD = lo%, we have Ps,= 2.2%. Thus it is likely that Ps,is between 

about 1.2 and 2.5%. In the literature there exist computations of P s, between 

.4 and 4%, however with PS, equal .4% it is unlikely that we could fit the 

difference between the 3H and the 3He electric form factors. While for 

pS’ = 4% we would require 6 = 8.4 which is again unlikely. 

Besides phenomenological wave functions where the S’ and D wave per- 

centages are fit to the data, the other method of determining these percentages 

has been to perform a calculation with some model nucleon-nucleon potential 

which, presumably, fjts the two nucleon data in all states to some degree of 
6 accuracy. These tend to give about 1 to 4 percent S’ and from 4 to 12 percent 

D waves in the trinucleon bound state although variational computations usually 

give considerably IessS’ (about .5%)7 than do direct solutions of the Faddeev 

equations (see note V. 3). 

We have evaluated (V. 8) for various combinations of Ps’, PD and p within 

the above ranges. Figure V. 4 shows the 3He electric form factor for p-4, 

pD = 10% and Ps, = 1.27%* Comparison with Figure V. 1 shous that the 

qualitative features of the form factor are unchanged from the S state only case. 

The size of the backward maximum is slightly increased by about five percent. 
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FIG. V.4--The same as Fig. 3 with S and D states included to lowest order. 
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The charge radius is within the experimental range (since the form factors now 

agree with experiment for q2< 1Fq2). However, the bulge at intermediate q2 

persists and is reduced by less than 10 percent. Adjustment of Ps, to 2.2% 

in accord with (V. 9) changed little except increasing the size of the secondary 

maximum to about 8 x 10 -3 e The boundary hyperradius is p. = 1.55 F for 

pS’ = 1.27% and p. = 1.53 F for Ps,= 2.2%. This variation in p. is as expected 

as the negative contribution of F2 in the form factor will, for fixed po, decrease 

the value of q2 at which the form factor is zero. At the same time while the 

negative contribution will increase the size of the secondary maximum, this 

increase will be tempered by the decrease of p. isee Fig. V. 2). 

For other reasonable values of Ps, and PD there is little quantitative and 

no qualitative difference in the form factor from the fit when only the principal 

S state is included, when p. is adjusted to give the experimentally observed 

position of the zero of the form factor in q2. Therefore, the quality of the fit 

in the pure b-c-m., or its generalizations with potentials in the large q2 region 

of the experimental range is not expected to be significantly altered by the in- 

clusion of S’ and D states. Neither should we expect to correct the difficulties 

of the model near q2 =4to8F -2. (We can trivially adjust the charge radius 

by including the S’ state.) Since the sensitivity to the S’ and D waves is not 

that great, on the level to which we are working, we need not worry about 

corrections to the assumption of K = 2 dominance of these states. In the follow- 

ing section where we introduce the external two body potentials into the cal- 

culation, the results of this section justify the retention of only the principal 

S state in order to obtain the qualitative features of the model. 
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V. 3 The Three Body B.C. M. with Potentials 

We remarked in Chapter IV that, for consistency , the short range behavior 

of a nucleon pair when the third particle is well removed should be given by the 

two body b. c. m. with external potentials. In terms of a limited set of K harmonics 

we can not take the two body b.c.m. directly into account. However, we can 

determine the effect of external two body potentials on the fit to the form factor 

given in Section V. 1. 

Using the results of Section V. 2 we will consider only the K = 0 principal 

S state. The Green’s function for this problem is from (III. 8). 

I +12(x~')K2tx~) P>P' 

go(P,P',x) = 
+12~~K2(x~') P'>P 

In the notation of Chapter III we can write: 

0 .2 cc 
X,,(P) = AK2(xp) - 2M/fi 

/ 
V,,(p') g,(w 'sxb'dp = 0 (V. 10) 

PO 
‘7 

P>Po P<Po 

The logarithmic derivative at p = p. is again fixed by the value of the binding 

energy, X2x 2/2M. A is simply a normalization constant chosen so that 

- ,odp Ix;(P) I2 = 1. And p. is fixed by the requirement that the position of 

the zero of the form factor in q2 be fit. For a given two body external potential, 

Voo(p) is computed by an integration over da 6 and (V. 10) is solved numerically. 
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The form factor is calculated just as in (V. 4): 

F3He 2 
et 

(q ) = + ( 3Fe(q2) + Fv(q2) 61p; ode IX ;&‘)I2 J2(a)/a2 (V. 11) 

with a - 2/3 qp again. -J-- 

The potentials used were the meson exchange potentials of Lomon and 

Feshbach’ quoted in Chapter IV. For the case of the principal S state the 

evaluation of the dot products o .c. T * T 12 1 u.u andr. 
2’ 1 2 

T between the com- 1 2 

pletely antisymmetric spin-isospin state *!$=I+ , T=z 1 defined in Chapter 111 is quite 

simple. Tl. 2 1 2 T *c *r = - 3, always, as the nucleons are in a relative S state. 

Since two nucleons have an equal probability of being in a spin or isospin 

singlet or triplet state in the principal S state of the tri-nucleon bound state, 

the expectation value of “iu2 or ~1. r2 alone is just : l/2 (1 + (-3)) = -1. 

By symmetry (see Chapter III), 

V,,(P) = - 3 
3 J 

d a6 VI2 7 ; &+;=2). 12’ 1’ 2 

The first potential to be included was that from one pion exchange (OPE). 

The form factor was virtually identical to that shown in Fig. V. 3. However, 

now, the boundary hyperradius moved in to p. = 1.46 F which is very close 

to the predicted range of the last chapter of from 1 to 1.41 F. This supports 

the contention that the boundary hyperradius is moved out to account for the 

long range effects of the potential tail when the potential is omitted. The 

charge radius remains about 1.6 F as in the three body b. c. m. for the K = 0 

state. Additionally, the coulomb energy of 3He for point nucleons is .836 MeV 

compared with the experimental value of .764 MeV and the result of 
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Fabre de la Ripelle 11 and most “realistic” potential models of .65 MeV. So 

far, we have showed that the addition of an attractive long range OPE potential 

does not destroy the quality of the fit to the secondary maximum. On the other 

hand, the bulge at intermediate q2 is not corrected. We have increased the 

strength of the OPE by a factor of three from that given in Ref. 8. The value 

of PO moves in a bit but otherwise the quantitative results for the form factor 

are only changed by a few percent. The ability of the boundary condition to 

reproduce the secondary maximum once the position of the zero of the form 

factor is fit is shown by reversing the sign of the OPE potential, again, there 

is no qualit.ative change in the resultant form factor. 

The short range one boson exchange (OPE) potential is given largely by 

p and w exchange. Using the rules given above for evaluating 7l * 72 al. a2, 

Ol’o2 and TV. TV, we find that (with mw = m ) the sum of the two vector 
P 

meson exchange potentials is attractive in the K=O three body state. (See 

Chapter IV for a discussion of this. ) This is a common feature of many models 

that impose hard cores. As we pointed out in Chapter IV, models based on 

fitting decreasing partial waves by meson exchange potentials serially, give 

a larger ratio of w to p , g which decreases the OBE attraction in the trinucleon 

bound state. 

When the p , w and r] exchange potentials are included there is a significant 

change in the “He electric form factor. The boundary hyperradius is increased 

to PO = 1.7 F and the value of the backward maximum goes to 1.14 x -2 10 

which is a factor of two greater than the experimental value. (See Fig. V. 5. ) 

As we noted above, the sum of p and w exchange is attractive in the K=O 

state. However, since we have not included short range repulsion, there is 

much too much attraction below r 12 = .7 F. To partially correct this we have 
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with YT,~,P,W exchange 

po= 1.7 F 

--- ~r,~,,o,w exchange 

0 4 8 I2 I6 20 24 28 

FIG. V. 5--The 3He electiic form factor with OBE two body potentials and 
a K=O three body b. c. m. 

(i) po= 1.7 F with no two body soft core. 
(ii)po=l.2 F, V12(r12)=0 whenr12 is less than .7 F. 
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set V12(rU) = 0 for r12 < .7 F. The form factor then shows a secondary 

peak equal to 6.3 x 10 -3 with p o = 1.2 F . The overall form factor is quite 

close to that for the pure three body b. c. m. in the K=O state. This result 

is not qualitatively changed when V12 is constant for r 12 less than .7 F when 

this constant is either + or - half the coefficient of the OPE potential in Voo. 

This supports the contention that once the highly singular attraction at short 

distances is removed, the backward maximum is well reproduced. We tried 

reversing the sign of the OBE potential with no short range cutoff and found 

that the charge radius was drastically increased to 2.49 F with p o = 1.8 F. 

However, by about q2 = 6 Fv2 the bulge at intermediate q2 was present and 

the backward maximum was again about 6 x 1 Ow3. It is, therefore, unlikely 

that further refinements to the external potentials will be able to correct the 

intermediate q2 behavior of the form factor. For this reason we have not 

pursued the question of two pion exchange potentials (which are ambiguous 

anyway) and a-meson (e-meson) exchange. We believe that these should be 

treated when we are able to include the full two body b. c. m. in our nucleon 

nucleon interaction. 

What we have shown is that potentials which are not singularly attractive 

for small internucleon distances do not change the qualitative features of our 

fit. Additionally, we don’ t expect any major effects from S’ and D waves, in 

accord with the results of the previous section. 

V.4 Comparisons with Other Models 

The difficulties that models using “realistic” potentials have in repro- 

ducing the 3He electric form factor have already been discussed. Although, 

it should be pointed out that these difficulties are limited to the region 

-2 q2z8F . For lower q2 these models give a quite satisfactory form factor. 
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This is in contrast to the three body b. c. m. where the difficulties are at 

medium q2 but the high q2 behavior is well reproduced. 

We will now compare our results with attempts, other than those using 

“realistic” two body potentials, to explain the form factor. The obvious 

starting point is the computation of Kim and Tubis 10 employing the pure two 

body b. c. m. in a solution of the Faddeev equations. They limited themselves 

to S wave two nucleon interactions and to the principle S state of the trinucleon 

bound state. Their computation made use of their off-shell partial wave 

b. c. m. t-matrix which assumes a strict hard core even for the off-shell two 

body interaction. With the ‘So boundary radius of 1.095 F and the boundary 

parameter fixed by the deuteron binding energy. They find a trinucleon binding 

energy of 12.69 MeV, however, the position of the zero of the form factor is 

at q2 = 6.5 Fs2 which is quite small. They then varied the boundary radius, 

keeping the deuteron binding energy fixed at its experimental value. With 

‘0 = .825 F they fit the position of the zero and obtained a secondary maximum 

of7x 10 -3 at q2 = 18 F-2. Their intermediate q2 form factor shows almost 

precisely the bulge that we found in our three body b. c. m. The binding energy 

was now increased to 16.73 MeV, about twice the experimental value. Of 

course, with r. reduced to ,825 F the fit of Feshbach and Lemon’ to the 

nucleon-nucleon phase shifts is destroyed. In our model we use the 3H binding 

energy as an input parameter (although there is a very weak dependence of the 

form factor on it) SO it is not problem, additionally, we are not constrained 

by the two body phase shifts. Kim and Tubis 12 are now attempting to solve 

the Faddeev equations with the full two body b. c. m. including meson exchange 

potentials. If they are successful in fitting the large q2 form factor and the 

binding energy, there would be little cause,to support our model from the 
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form factor alone. On the other hand, their approach and ours both show that 

a large core with boundary condition type strong attraction right outside is 

capable of generating enough diffraction to give the size of the secondary 

maximum. 

Hoenig and Lomon 13 have suggested that the two body b. c. m. is ambiguous 

for off-shell nucleons (see Chapter IV). Hoenig 14 has computed the triton 

form factor for a modified b. c. m. in which an interior wave function is also 

assumed with a boundary condition at ro-e . This will not couple, for on-shell 

scattering, across any radius with energy independent boundary parameters 

but will affect the off-shell t-matrix which appears in the Faddeev equations. 

Fixing the boundary radius and exterior logarithmic derivative to fit the 

nucleon-nucleon scattering data, Hoenig adjusts the interior derivative to fit 

the triton binding energy. The resultant form factor is considerably larger 

than experiment, by q2 ‘= 5 F -2 , the discrepancy is nearly a factor of 4. 

Hoenig does not give results for large q2 so we can not compare his results 

to ours in the region of the secondary maximum. We should point out, again, 

that in our model the off-shell behavior is primarily due to the trinucleon 

binding rather than configurations in which a pair and the third particle are 

each far off-shell. So this ambiguity in the b. c. m. does not occur in the pure 

three body b. c. m. (additionally, Hoenig’s model has unphysical poles on the 

physical sheet and thus has unacceptable analycity properties). 

An other class of models which is quite successful is the modification of 

phenomenological wave functions, 15 such as Gaussians, by short range corre- 

lations of a Jastrow type: 

fij = 1 - exp (- p2(rij)2) (V. 12) 
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Along with Gaussian basis functions this provides a two parameter fit to the 

data which is moderately successful. A fit to the low q2 data which has /3 

adjusted to fit the position of the zero of the form factor in q2 reproduces the 

high q2 form factor moderately well, the backward maximum being too low 

by a factor of 1.5 to 2. Khanna has also performed similar calculations with 

exponential forms for the basis functions and correlations. The results are 

qualitatively similar to the Gaussian case but not quite so good. 

Liml’ has calculated the 3He electric form factor with Gaussian basis 

functions and performing perturbations with the Gaussian Eikemeier- 

Hackenbroich 17 potential, finds agreement with the form factor. Provided a 

small amount of S’ state is admixed, the backward maximum is well fit. This 

is similar to the Gaussian fit of Samaranyake and Wilk. 18 

These calculations share with our model the property of relatively 

large anticorrelations in the nucleus. The range of the anticorrelations is 

considerably larger than in the “realistic*’ potential models. Furthermore, 

the Gaussian potentials have sharper attractive regions than the exponential 

tails of the OBE potentials. In this property there is a resemblance to the 

singular attraction at a large core radius of the various forms of the b. c. m. 

Khanna” has fit the form factors of several light nuclei with Gaussians and 

Jastrow type correlations. He finds that the value of /3 in (V. 12) decreases 

as A increases, this might be evidence for explicit many body effects such 

as the three body b. c. m. We believe that there is a good deal of similarity, 

on a descriptive level, between the physics of our three body b. c. m. and 

the method of introducing ant+orrelations into phenomenological wave 

functions. 
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An extremely interesting computation has recently been done by Brayshaw. 19 

Assuming that the K=O hyperspherical harmonic dominates the S state trinu- 

clean bound state wave function, he computes by performing a Bessel trans- 

form of the form factor FI (q2): 

(V. 13) 

a= &/3qp 

where FI (q2) is obtained from F 
3 
,y(q2) 

3 
and Fer(q2) with F2(q2) taken to 

account for the difference of the two over the experimentally measured range 

in q2. From xi0 (p) the effective three body potential Voo(p) is obtained by 

us ing : 

- ii 2/2M X:,(P) + (EB(xEO(~) =-Voo(~)~~o(~) 

(V. 14) 

Voo(p h for large P 9 shows the expected attractive behavior. It then becomes 

repulsive as p decreases. For p w 1 F there is strong singular attraction 

with a small attractive core into the origin. The singular attraction is 

required only when the zero in the form factor occurs for q2 less than 13.6 F -2 . 

The qualitative features of Voo(p) are unchanged by variations in the behavior 

of the 3He electric form factor for q2 -2 >20F . V,,(p) is given by 

s/r3 /do6 V12@ 12) so we may ask whether singular behavior of VI2 as a 

function of r12 can account for the attraction in V oo(~) at P *lF. We 

consider three cases: 

-V12(r12) = a 0 r12- (rO-E) 
( > 

8(r0-r12) (ae=c) 

-V12(r12) = 6(r12-r0) (V. 15b) 
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and 

-V12(r12) = C6’ (r12-rO) (V. 15c) 

Ou integration over dO6 we obtain for the three cases: 

-V,,(p) = 6/r C (V. 16a) 

-V,,(p) = 24/n C r (V. 16b) 

-v,,(p) = - 48/r C r,/Q 

c 

JL$? - ri/2p 2 

Li?&Y- 2 2’ 

0 > 

(V. 16~) 

where V,,(p) = 0 for p <r d <2 and C, in each case, has the appropriate 

dimensions so that Voo has the dimensions of an energy. Equations (V. 16a) 

and (V. 16b) are nonsingular at &Zp = ro, while (V. 16~) - r3/p 5/2 I/J- o 

which is a rather weak singularity. From the above it is unlikely that even a 

two body b. c. m. with the sharpest possible singularity can generate the sharp 

attraction in V,,(p). Also the singularity occurs in Voo(p) when p = ro/$2, 

bit if p o = 1 F then r. = 1.4 F which is much larger than the boundary radius 

expected in the b. c. m. with external potentials. 

Unfortunately Brayshaw’s inversion of the form factor leads to negative 

values for Ixio(p) I2 at small p . Brayshaw corrects this by introducing some 

interference with a K=4 state. This state has a probability of less than . 1%. 

The potential now has the usual attractive tail for large p , at p of about 2.8 F 

there is a small repulsive “blip” followed by a shallow attractive plateau. At 

p = .6 F there is a large but finite repulsive core. (Brayshaw assumes that 

for small p the potential is given by the centrifugal term in (III. 72).) This 
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behavior is not obtainable from finite two body potentials and would seem to 

support our contention that the backward maximum and position of the minimum 

in the 3He electric form factor arises from a strong central three body repul- 

sion with attraction immediately outside. Brayshaw’s result gives a maximum 

in the wave function xi,(p) at p = 1 F. This is similar to our model which 

cuts off the modified Bessel function K2(xo) at p = 1.2 F. If these results of 

Brayshaw’s hold as the only possibility, it would mean that the reasoning 

that led to our model contained abstractions that are too extreme. 

V. 5 Some Extensions to Other Systems 

The most natural extension of this model is to the 4He form factor. The 

same sort of reasoning that we used in Chapter IV predicts a four body b. c. m. 

for the A=4, K=O hyperspherical wave function. 

Let us, first, briefly review the experimental and theoretical situation 

with regard to this form factor. The 4He form factor is given by: 

F4He 2 
.- -c 

(q ) = i i$l i J d3r d3ri eiq’ ” ~/~p~(y,< )$ (V. 17) 

4 
(see (III. 91) and (ITI. 92) for notation). F He(q2) was measured out to 

q2=20 F-2 by Frosch, McCarthy, Rand and Yearian. 20 They found a zero at 

q2= 10 F-2 with a secondary maximum at q2= 16 F -2 ofmagnitude9.8k .8x10m3. 

The charge radius was about 1.7 F. This structure is remarkably similar to 

the 3He electric form factor. 

Khanna15 has used the same method he employed for 3He (see the above) 

for the 4He form factor. He is able to reproduce the form factor with the zero 
-2 atq2=10F , In the region of the backward maximum the fit is too low by a 

factor of about three. The calculation excludes virtual quadrupole excitations, 

etc. Khanna believes that these states (based on a simple model calculation) 
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can raise the secondary maximum to near its elcperimental value. This corre- 

sponds to including states with K greater than 0. Dzhibuti 21 and Mamas akhilov 

have given a solution to the Bethe-Goldstone equation with plane wave inter- 

mediate states and an oscillator basis for the inhomogeneous term. They 

find that with a Yukawa type interaction V(r) in a separable interaction 

V(r, r’) = i [V(r) A(??‘) +V(r) a(?)], they fit the binding energy. When two body 

correlations are included the position of the diffraction zero is fit and the 

size of the secondary maximum of the form factor is about 6 x 10 -3 . These 

results are qualitatively quite similar to Khanna’s. 15 On the other hand, 

Fink, Hebach, Schlitter and Ktimmel 22 have used several “realistic” potentials 

in the generalized Bethe-Goldstone equation with a shell model basis in a 

calculation of the 4He form factor. They find, for the Yale potential, that they 

reproduce the position of the zero and the low q2 form factor, but the size of 

the secondary maximum is a factor of 8 too small (a remarkable similarity 

to the use of “realistic” potentials in 3He). 

Turning to a generalized b. c. m. , we note that the 4He nucleus is the 

heaviest one that can exist in a spatially degenerate K=O state. For heavier 

nuclei the Pauli principle requires that higher K be included (see Chapter III). 

The ideas of Chapter IV which led us to the three body b. c. m. can be used to 

predict that the 4He form factor is given by a boundary on condition on the 

lowest order (K=O) four body hyperharmonic. 

The generalization of the Jacobi coordinates is given by: 

3 

(V. 18a) 

(V. 18b) 
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and 

(V. 18~) 

(- ri = 7. I - “cm> 

then 

2 2 2 2 P =77 1+v2+v3=r2 
1 + r2 2 + r2 3 + r2 

4 

= 2 $ @i - rjJ2 (V. 19) 

2 letting n2,+ ni = p3 we have q3 =p cos 8, p3=p sin 8. Theninthec.m., 

r4 = -(rI+r2+r3) or 

tlz4= J372 q.p cos(?j,-q) (V. 20) 

From the general considerations of Chapter III it follows that for the K=O 

hyperspherical harmonic the 4He form factor is given by: 

kHe 2 
(4 ) = Fs(q2) IO5 L/ 

al 
pdp Ixo(p)12 J,,2(a)/a7’2 (V. 2 1) 

0 

where a=mqp. The 4He binding energy is given by EB= 28 MeV. This, 

in turn, gives Kmax = R 7 2EBM/Ii = 3, which is twice Kmax of 3He. How- 

ever, since 4He is a closed shell nucleus, it is quite symmetric spatially, so 

we may be able to adequately describe the wave function by the K=O hyper- 

harmonic. 

If the nucleons are arranged in an equilateral tetrahedron then from (V. 19) 

p is m times the length of a side. From the arguments of Chapter IV and 

the preceding analysis of 3He we predicted that a three body boundary surface 

occurs when p3 - l-l. 4 F. When the fourth particle is added, again, virtual 

- 121 - 



pion production starts at a somewhat greater p , Cur estimate of Chapter IV 

3 -1 
becomes: p o 2 2 p, = 2. 1 F. (Any further particles would have to be 

added in single particle states with L>O so the argument can not be carried 

further. ) 

For the four body b. c. m. the K=O wave function is given by: 

x0(p) = C K7/2(~~! P'PO 

X,(P) = 0 P<P() 
(V.22) 

where C is given by the normalization condition: C2~p;pddK ,/2(XP)12= 1 

and x = /2MEB/h ‘. 

The 4He form factor is now 

F4He 2 
(q ) = C2Fs(q2! 105yT?i/$dp IK7,2(~~) ~2J7,z@l/a 7 /2 

PO 

(0 a= ; ClP (V. 23) 

4 
In Fig. V. 6 we have plotted F He 2 . (q ) given by (V. 23) for po= 2.3 F the 

agreement with experiment is quite good for q2 up to the position of the zero 

atq2=10.5 F -2 . For greater q2 the form factor is too small by a factor of 

about two. This is reasonably close to the result of Khanna 15 and presumably 

comes from ignoring components of the wave function with K# 0. Again we 

see that the simplest four body K=O b. c. m. provides a good qualitative fit to 

the form factor. The value of p. is close to its physically predicted value of 

less than 2.1 F and could, it is assumed, be decreased by the inclusion of 

OBE potential tails. 

Another possible extension, which is almost whimsical, is to the proton 

form factor itself. It is well known that baryon spectroscopy is well described 
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FIG. V. 6--The 4He form factor for a pure four body b. c. m. in the 
K=O state vs. experiment. 
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by a model in which the nucleons are made up of three fractionally charged 

quarks. Since the spin of the proton is 2 1 it follows that the spin of the quark 

is half-integral, provided that we assume the usual spin-statistics theorem 

holds. The lowest mass baryons seem to lie in a 56 (completely symmetric 

SU(6) state. Therefore, the spatial state should be antisymmetric. The 

difficulty with this is that an antisymmetric state must vanish at the origin 

thus the form factor should have a zero (of course, nothing tells us the 

position of the zero) but none has been observed. Also, it is difficult to 

conceive of the ground state of the system as being antisymmetric. We will 

not discuss the usual rr~uts” such as adding a core, parastatistics, etc. , but 

rather, address ourselves to the last point. 

The condition that a three particle system has an approximate ground 

state in some hyperspherical K component is J%$. fi2cR> 2 K. We saw in 

Chapter III that for K larger than this, it is difficult to support a bound state 

with radius as small as <R>. For a three quark system we have, additionally, 

Mp = 3M -E 
q B 

where Mp is the proton mass and Mq is the quark mass. The 

lowest fully antisymmetric wave function is one with K=6 (w,3, see Chapter IIt). 

With di> = .84 F this yields Mq > .7 GeV. Assuming this numerical condition, 

we have calculated the proton form factor fitting the low q2 data in a three 

body b. c. m. Our best fit was with a boundary hyperradius of 1.2 F (see 

Fig. V.7). The form factor is given by 

Fp(q2) = 8 C2 J,(a)+ g Jg@)+ Jlo@) -$ J,(a) IK8(xp) I2 

cv. 24) 

wherea=mqpandX =,/vi. 

Unfortunately there is a zero in our Fp(q2) at about q2=25 Fm2 whereas 

none is seen out to several hundred Fw2. On the other hand, if quarks exist 
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FIG. V. 7--The proton form factor vs. experiment in a pure three body 
b.c.m. with K=6 vs. experiment for q2 < 18 Fm2. 
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with so low a mass as .7 F, we do not know their dynamics in terms of 

particle exchange mechanisms (avoiding tachyons) which will allow them to be 

kept in. Johnson’s model 23 . is hard to understand by this mechanism. In 

this case, the b. c.m. may really be little more than a phenomenology for low 

q2. On the other hand, external potentials may allow us to drastically reduce 

o0 and thus move the diffraction zero in the form factor to larger q2. What 

this does show is that, out to 1 GeV/c2, we can fit the data with antisymmetric 

spatial wave functions. Indeed, if 7 ZME&i 62> N 6 and the potentials are 

W(6) dependent so as to be most attractive in the 56 state, there is no reason 

for this not to be the ground state. 

V.6 Note on Numerics, Etc. 

In this brief note we will mention the numerical techniques that we used 

to evaluate the form factors of the previous sections of this chapter. 

The numerical integrations were done by simple Gaussian quadrature 

which is expected to be rather rapidly convergent for nonsingular, reasonably 

smooth integrals. 24 The integrals for the three body b. c.m. are one 

dimensional integrals over a range from p0 to m, where p0 2 1 F. The integral 

involves J,($&?? q~/(sp)~ which undergoes damped oscillation for large p and 

KM(w) where since x N .64 F -1 , xp 2.64 thus the KM(w) are already falling 

off exponentially fast and effectively limit the integration to one over a finite 

range. For this reason a simple mapping of [ -1, l] lo [pO,m] is expected 

to give good numerical results with the points near the singularity at x=1 being 

exponentially damped in the integral (our mapping is 2oO/(l-x) = o). For the 

pure K=O b. c.m. an increase in the number of quadrature points from 6 to 10 

changed such features as the position of the minimum and the size of the 
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secondary maximum by only about 1%. The form factors, as plotted, were 

indistinguishable. The computations reported here for this case were carried 

out with the ten point quadratures. 

The calculation with external potentials is trickier. Kowever, since the 

Green’s function is effectively 0(o-p,)I,(xp> K2(xQ 6, > p<) and Voob) falls 

off rapidly for large p in the OBE case. The kernel of (V. 10) is compact and 

continuous. Thus the equation is Fredholm (we can clearly define a uniformly 

convergent set of kernels on a sequence of intervals [ oo, on] on +m. ). This 

means that we expect the integral equation for xoo O co) can be rewritten as a 

matrix equation for xiobi) h w ere the pi correspond to the quadrature points 

in the variable x. These pi are all that we need to evaluate the form factor 

numerically. The difficulty here is that the kernel has a discontinuous deriva- 

tive at p =p’. However, since xoo is relatively big, the kernel itself is not 

particularly large at o =p’. So that the function with continuous nth derivative, 

which the quadrature effectively replaces the kernel with, should be a reasonably 

good approximation (provided that we have a sufficient number of points for 

fixed o in any interval o 5 of which is weighted heavily in the integral). 

The form factors were calculated with both 10 and 12 point quadratures. 

If we compare the form factor for the same p. with our most singular potential, 

the OBE without core, the gross features such as the position of the zero and 

of the secondary maximum are changed by about 3% when the number of 

quadrature points is increased. The charge radius, Coulomb energy and size 

of the secondary maximum also show a similar change. This indicates 

sufficient convergence for our purpose. The only difficulty is in the value of 
3 

the form factor near the zero. However, here the slope of log Fe1 He(q2) 

becomes infinite so that a small change in the position of the zero can cause 
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a large change in the form factor. This is similarly reflected in the large 

experimental errors associated with this region as the finite energy resolution 

of the final and initial electrons7 and the large background will cause large 

errors in the form factor. So the region our quadrature method is subject to 

convergence problems in is also not amenable to precision in the experimental 

values of F3He 2 el (q ) and for exactly the same reason. Finally since the 

secondary maximum of the form factor is seen to be a smooth function of 

o. in the range considered (except possibly when the OBE potentials are 

reversed in sign with no core) we are well away from the situation where 

(V. 10) has a homogeneous solution. 
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APPENDIX V. A 

The charge radius is defined as: 

R; = -6 dFel(&ds2 1 2 
q =o 

(I’. A-l) 

From (III. 93) we have immediately (letting FEl=O) 

R2 3H 
ch 

= Rkfioton + -6 dFl/dq21 
( q2=o 

- 4 dF2/dj 2 
q =o > 

R;3He=Rzroton + l-6 d Fl/dq2 1 
(V. A-2) 

q2=o + 2 dF2/dq2( 2 
q =o 

Expanding the Bessel functions in (III. 98) and (III. 99) we obtain 

Fl(q2) = 1 - q2/6 ; 

F2(q2) = -q2/6 

(V. A-3) 

(Note that the contribution from the K=O, K=4 interference term 

J6 @)/a2 = 0 (q4) does not affect the charge radius.) In terms of states nor- 

malized by Ipdp 1x2(p) I = 1, (V. A-3) is written as 

Fl(q2) = 1 - q2/6 (; psIs+ p& + po1o ) 

F2(s2) = -s2/6 ’ 

where 

18 = 
$ 

lx~o~~12P~dp/~~x~o$~l~pQ 

(I’. A-4) 

(V. A-5) 
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and likewise for IS,, II,, and. ISS,. The assumption that the S and S waves 

are proportional as a function of p means: 

IS = IS’ = I SS,EI (-v. A-6) 

We let p = ID/I then from (In. 95) and the preceding we have: 

23H 
Rch 

= R2chProton + I/3 Ps+Ps, +P* -q&in) 
(V. A-7) 

R2 3He 
ch 

= R2 Proton 
Ch 

+ I/3 PS+Ps, + PP, + id-) 

Noting that Ps+Ps,+ PI, = 1, Ps+Ps,+ pPl, = 1 f (@-l)‘Pl,, the system (V. A-7) 

can be solved, 

R2 3He 
- ch 

_ R2 3H 
ch 

2R2 3He + R 2% 
ch ch 

_ 3 R2Proton 
= 2/i/4 dffs-ps,/(l+ U-1) p,,) 

ch 

(v. A-8) 

Since P s, is small, approximating Ps= I-P= and solving we get (V. 9). 
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Notes 

1. There is marked lack of enthusiasm in the literature for admitting 

the possibility of a doubly peaked secondary maximum. Nobody, including 

us, wants it and their analytic fits to the experimental points have ignored it. 

2. From Erens, Visschers and Van Wageningen 25 this may not be that 

good an assumption. However, since the normalizations of the S and D’ 

states amount to, perhaps, 10% of the total for the wave function, the contri- 

butions of states with K>2 to these are a correction to a correction and will 

be ignored. They can be included if the effects of the S and D states turn 

out to be large. 

3. Harper, Kim and Tubis 26 solve the Faddeev equations for a 

truncated Reid soft core potential and get Ps=89. 798, P,=8.56% and 

Ps, = 1.68%. Yang and Jackson’ using a variational technique with the same 

potential find Ps=90.56%, P,=8.92% and Ps,= .52%. It is a common feature 

of variational computations that they give less S than do direct solutions of 

the Faddeev equations but the reason for this is not understood. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

In this chapter we will first summarize our results and criticize our 

method. Then we will discuss possibilities for future work. 

The purpose of the second chapter was to investigate whether the single 

impulse approximation is valid for elastic electron 3He scattering for q2 > 10F -2 . 

Indications that Glauber type multiple impulse effects in the form factor fit 

the backward maximum would mean that these corrections would have to be 

carefully accounted for before we could distinguish between competing models 

of the nucleon nucleon force. The conclusion of Chapter II is that such cor- 

rections do not have either the correct magnitude or functional form (when their 

magnitude is adjustable) to correct the 3He electric form factor to the shape 

given by experiment. From Table II. 1 and the results of Harper, Kim and 

Tubis’ for the “realistic” Reid potential it can be seen by inspection that this 

statement is true for this potential as well as for the simple phenomenological 

fits to the low q2 form factor used in Chapter II. 

If shadowing corrections are not the explanation for the position of the 

zero in the 3He electric form factor, the structure of the region from q2 = 10 

to q2 = 20 FW2strongly suggests that there is considerably more diffractive 

behavior in the electric scattering than would be obtained with three nucleon 

wave functions calculated with “realistic” two body potentials. Diffraction is 

associated with peaks or depressions in the spatial wave function. Since the 

nucleus is expected to have a core with little wave function, the size of which 

is inversely proportional to the position of the q 2 of the zero in the form 

factor, we were led to a generalization of the two nucleon boundary condition 
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model with its large core. We argued that since in a hyperspherical basis 

the three nucleon system seems well described by a few hyperharmonics, the 

arguments that are put forth for the b.c.m. can be extended to give a similar 

three body effect in the lowest K harmonics. 

Using this model for the K = 0 state only, with no external potentials, and 

the boundary hyperradius as the only adjustable parameter, it was found that 

the size of the secondary maximum was fit when the position in q2 of the zero 

was. This good fit to the large q2 form factor was insensitive to the intro- 

duction of external two body potentials consistent with the b.c. m. (except for 

the case of potentials singularly attractive at the origin). In fact, the intro- 

duction of potentials moved the boundary hyperradius that gives the correct 

zero in the form factor to within its theoretically predicted range of between 

1 and 1.4 F. The quality of the large q2 fit was also insensitive to the inclusion 

of S’ and D states in the pure three body b.c.m.. Even when the S’ state was 

included so as to fit the charge radius, the calculated form factor was too 

large in the region around q2 = 4 to 8 F-2. The inclusion of some K = 4 

symmetric state was unable to remedy this. In Chapter V we noted that the 

three body b. c. m. is probably not a phenomenological representation of 

singular two body behavior. This means, since the three body b.c.m. seems 

to give a good representation or approximation of the small radius structure 

of the three nucleon bound state, that three body forces are important in 

this system. 

The difficulties that our model has at q2 below the position of the zero 

of the form factor may be an indication that the model is too extreme. The 

arguments given for the model in Chapter IV never actually derived the three 

body b.c.m.. Rather they suggested that the assymptotic three nucleon state 
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should vanish at fixed energy at small enough hyperradius but they never told 

us how complete or sharp this vanishing ought to be. Likewise, the dispersion 

integral argument really only tells us that we find certain contributions to the 

spectral function which lead to energy dependence of the amplitude similar to 

that of the b.c.m.. This view of the three body b.c.m. is supported by the 

recent work of Brayshaw discussed in Chapter V. Another possibility is that 

when the hard core behavior of the two body b.c. m. can be included in the 

model (which is impossible directly in a K harmonic expansion of the wave 

function) both the low and high q2 behavior of the 3He electric form factor can 

be fit simultaneously. 

An intriguing question is raised by our fit to the 4He form factor. In 

Chapter V this was considered favorable to the consistency of our model. HOW- 

ever, it should be noted that the four body b.c.m. fits the data when q2 is 

below the position of the zero of the form factor and is less successful for 

large q2 than the three body b.c.m. is in 3He. The reason for this is likely 

to be our prediction that higher hyperharmonics are relatively more important 

in 4He than in 3He, This means that interference terms in the 4He form factor, 

which are negative in order to increase the size of the secondary maximum, 

will move the position of the zero in from its position when they are not in- 

cluded. In other words, p. is too big when we omit the higher hyperharmonics. 

This, in turn, pulls down the low q2 form factor, although the large four body 

boundary hyperradius that we predict may make the external two body forces 

relatively less important. 

The most direct future extensions of the experimental work on the tri- 

nucleon form factors are measurement of the 3He magnetic form factor in the 

region of q2 greater than 12 F -2 , measurement of the electric, or both, form 

- 136 - 



factors of 3H in this region, and the determination of the 3He electric form 

factor beyond q2 = 20 F-2. One of the reasons that we have not discussed the 

3 He magnetic form factor is that is not measured in the region of q2 where 

our model is mostly likely to be good. 3 If it does show markedly similar be- 

havior to that of the electric form factor it would mean that either mesonic 

corrections were considerably smaller than has been expected or that, within 

the context of our model, the core region really does exclude hadronic matter. 

This last possibility is difficult to understand from the theoretical consider- 

ations of Chapter IV, although we repeat; our model really makes no pre- 

dictions about the magnetic form factor. 

When we subtract out the effects of the S’ state (F2(q2)) it is expected that 

any difference between the 3He and 3H electric form factors is due to charge 

assymmetry in the nuclear forces. Such assymmetry is probably present and 

may account for a difference of .8 F between the neutron neutron and proton 

proton S wave scattering lengths which is not explained by coulomb forces. If 

the two form factors were radically different for large q2 it would embarrass 

our model which predicts similar diffractive behavior in both (see Fig. V. 2). 

The three body b.c.m. predicts the existence of a second zero in the 3He 

electric form factor at q2 N N 33 Fm2 although this value is somewhat modified 

by the inclusion of states with K not equal to zero. The existence and position 

of this second zero as well as the size of the resulting tertiary maximum 

would be a good test of the claim that the three body b.c.m. is a good repre- 

sentation of the short distance behavior of the wave function. 

One direction of future theoretical work on the model is its use to describe 

systems other than the three nucleon bound state. In Chapter III it was noted 

that the hyperharmonic expansion is not convergent for positive total energy 
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because of two body pair interactions at large p. However, the work of 

Noyes shows that knowledge of the wave function in the region where the two 

body pair forces overlap (or, presumably, where three body forces are present) 

allows a simple calculation of the wave function in the space exterior to this. 

Furthermore, the physically observable long range behavior of the three body 

system is parametrizable in terms of functions of the Jacobi momenta which 

are related to the interior wave function by boundary conditions on the hyper- 

surfaces where the pair forces intersect. One way of parametrizing the in- 

terior in such an interior-exterior separation is by the K harmonic method 

(this has been discussed in the literature5). We could impose our three body 

b.c.m. on the interior wave function and thus use it in processes like nucleon 

deuteron scattering, n-d breakup, photodisintegration of 3He etc. This would 

also allow us to check the consistency of the boundary parameters with those 

we used in the fit of the trinucleon electric form factor. This method might 

also enable us to incorporate the two body b.c.m. into our model for the form 

factor which was an important difficulty in Chapter V. 

The work of Larsen and Mascheroni’ in applying the hyperspherical har- 

monic method to the calculation of the third virial coefficient of a quantum 

mechanical gas suggests that the method and hence our model could be used 

to compute three body correlation effects in nuclear matter. In particular, it 

could have effects on the binding energy and charge distribution of intermediate 

and heavy nuclei. (A definitive review of the nuclear matter problem has 

recently been given by Bethe. 2, 

One possibility for the future that we should not ignore is the use of the 

hyperharmonic partial wave dispersion relations of Chapter IV to discuss 
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three ‘body potentials. The input here would be the experimentally measured 

hadronic vertices, lifetimes and masses. 

While we have not fully succeeded in relating the rather puzzling structure 

of the trinucleon bound state to the observed properties of the strong inter- 

action, we believe that we have developed a model which has, in some approxi- 

mation, many of the features of the way in which it will ultimately be done. 
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