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ABSTRACT 

Absorptive effects are shown to be of utility in probing the nature of 

hadronic interactions and in testing models for multiple production. These 

effects result theoretically from the imposition of full s-channel unitarity 

upon model assumptions which do not possess it, and reflect the influence of 

small-scale (in configuration space) hadron dynamics. The globally smooth 

properties of hadronic production (scaling, Poisson multiplicities, etc. ) are 

the result of the innumerable competitive mechanisms involved in a complex 

many-body problem. The local dynamics is reflected in small effects in 

certain experimental distributions. These effects and others are illustrated 

in a heuristic parton model which establishes the connection between multi- 

and poly-peripheral production mechanisms, the eikonal approximation and 

the nature of strong absorption. The strong cuts which are required by uni- 

tarity arise from the interplay between large distance (Regge) and small 

distance (non-Regge) dynamics. The usual non-relativistic treatment of 

absorption is extended to the relativistic domain and the new features discussed. 

Divers mechanisms for hadronic production are then taken as Born terms to 

be unitarized by absorption and the experimental consequences explored. The 

large transverse momentum region is appreciably enhanced and relative 

momentum (and angular) correlations result. Comparison is made with 

experiment. 
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1NTRODUCTi ON 

Hadronlc interactions arc a source of 

continuing Inspiration and frustration to 

theoret?cians. One’s certain knowledge of purely 

hadronic processes Is slight and usually reduces to a 

few global experimental observations. These I ncl udc 

the boundedness of transverse spectra, approximate 

scaling or limiting fragmentation, and the relationship 

between energy dependences and quantum number symmetrfos. 

Models nearly always incorporate these global features 

from the beginnIng. 

Two-body and quasi-two-body reactions have 

received very detailed phenomenological treatment in 

both exchange and direct channel representations. One 

would like to utilize the knowledge gained from 

two-body reactions to build models for production 

amp1 I tudes. There are the global constraints on such a 

task mentioned above, and then the further constraint 

of s-channel unitarl ty in relating production 

amp1 Itudes to elastic scattering. The slmul taneous 

satisfaction of these conditions is a difficult matter. 

One way out, of course, Is to break the problem up into 

two components --into diffractive and non-diffactive 

contributions. This is particularly convenient in an 
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exchange picture, but can lead to great pathologies If 

one treats Pomeron and ordinary Reggeons on the same 

footing.’ This Is not to say that the study of 

pathology is unrewarding. An alternative Is the 

dual absorptive approach of Hararl and others: 

Diffractive scattering is geometrical, while ordinary 

exchanges are dual to direct channel resonance 

dynamics. a 

it is a truism that hadronlc 

Interactions involve composite structures of high 

complexI ty. Models vary as to the organization of that 

complexity --from fragmentation and parton models which 

emphasize the role of s-channel compost tes, to Regge 

poles which one believes to represent the exchange of 

t-channel composites with rising spectra. in contrast, 

eikonal models divorce the many-body complexity, for 

elastic scattering at least, from the asymptottc 

particles and, in effect, Invest it in a smooth medium 

with pleasing optical properties. 

in constructing models for production 

amplitudes one can take several points of view, 

resulting in multiperipheral or multi-Regge, 

diffractive fragmentation (fireball, jet, Nova,etc.) 

and dual models. The diffractive models sometimes have 

an added pionizatlon or “pulverization” component. We 
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will later add a model which might be called 

poly-peripheral In that successive multiperipheral 

chains of small multIplicIty occur iteratively in the 

s-channel. All of these models Involve strong 

simplifying assumptions of Incoherence and statistical 

independence in the form of factorization properties, 

lack of long-chain correlations and, in the case 

of the the diffractive fragmentation model, 

factorizat?on of the pomeron and subsequent independent 

decay of the heavy resonances produced. Such models 

can be constructed for particular exclusive channels 

but most are either applied only to inclusive reactions 

in which one or two particles are detected or are used 

to calculate global quantities such as mean 

mu1 tip1 Icl ty. 

ExperImental tests of the different dynamical 

assumptions involved In these models are difficult to 

come by. Global predictions are hard to test 

experimentally In the few regions which are model 

dependent, Scaling in the pionization region is an 

example. Correlations have thus been a subject of much 
3 

contemporary Interest. 

The formulation of the discussion of 

correlations is usually based on a direct transcription 

of the configuration space intuition developed in solid 
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state (or fluid) physics into the momentum space of 

multi-particle states. Y Wide separation, In the space 

of either problem, should, by common Inspiration, mean 

lack of dynamical connection. Models for hadronfc 

InteractIons nearly universally Incorporate the 

factorization properties which insure such momentum 

space behavtour. it shall be one of our major concerns 

to investigate the validity of this transcription and 

the factorization properties of the model constructions 

resulting from it. in this regard, we note that the 

(explicitly unitary) elkonal models dynamically 

connect disjoint regions of phase space. 

One of the major problems In studying 

dynamical effects by correlation tecniques is the 

necessity of separating those which are solely a result 

of conservation laws. One of the most restrictive 

constraints in inclusive reactions, for example, is 

energy-momentum conservation. The correlation function 

description taken from solid state physics (where 

momentum Is not conserved) does not eliminate these 

kinematfc correlations and it is difficult to separate 

those correlations which are due to dynamical 

assumptions from those which are not. For example, 

many sum rules based on conservation laws have been 

derived which are interpreted as tests of model 
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assumptions. These constraints are non-trivial only 

when applied to inclusive reactions. 5 

it would be even more useful to devise 

correlation functions which eliminate the trivial 

correlations due to the constraint on phase space 

Imposed by momentum conservation. Then the 

Introduction of a dynamical assertion would have more 

obvious consequences than that It satisfies momentum 

conservation. 

To this end, consider the exclusive process a 

+ b-> n identical final state particles. 
6 

Let the 

matrix element have the simple “peripheral phase space” 

form 

1.1 

The functton g(s) Is necessary to adjust the 

s-dependence of the total cross section to the desired 

form. The functions f give simple results in two 

cases. The first is pure phase space with f-constant. 

The second is the peripheral phase space above with 

the f’s strongly damping the transverse momenta (e.g. 

exponentIa1 or Gaussian). This form is invariant only 

under boosts along the collision axis. if P-P,+ P,,and 

s=P%, the exclusive cross section has the form 
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where ~z(~,y,z)=xf+ y%+ zLc-2XY -2XZ -2YZ . The total 

cross section Is 

O;+(S) = 0 ’ +i! (dQt--d% ,,pp: . 
n=o 

df 
h 

1.3 

where dp= d3p/((2Tra2E). 

To determine the normalization of r+O+, the 

integrals over phase space must be done. Suppose we 

require that smV+*+ =constant=c. In the case 

f=constant=a, the phase space integrals can be done 7 

rf al I masses are neglected: 

The requirement then is that 

1.5 

Summing the series determines the function g(s) and the 

constant a in terms of c and m. There may be many 
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solutions. In general, the choice of solution can be 

fixed by the s-dependence of the elastic cross section. 

We absorb the energy dependences into the kinematic 

factor, defining a new functionx(s). More interesting 

is the peripheral phase space function, where if we 

ignore the pz dependence and the masses (setting 

f(O)=a), the result is 

1.6 

1.7 

The simplest choice is a=l, g(s)=s, giving an elastic 

cross section which falls as l/s and a constant total 

cross section. Again this dependence may be absorbed 

into the new functionx(s). 

The k-particle inclusive cross section is 

Introducing our peripheral matrix element, 
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where C tconstant . Let P&=0 and define B=P-&,p; . 

Changing the dummy indices and putting F% F, we obtain 

Now define 

1.11 

This is a cross section normalized to the kinematic 

factor and total cross section corresponding to the 

phase space volume remaining when the k vectors p, . . ..P~ 

have been chosen-- that is, at energy’SI . We now use 

these new quantities to define correlation functions 



Al 1 higher correlation functions vanish, It is easy to 

write these functions in terms of the more commonly 

normalized functions pQ “‘(v,..Pa) where 

1.13 

The result for pPCzl in terms of p”’ and pCZJis 

where s,=(P-P, I2 

s,=(P-P,F 

s,& P-p, -p,F 

and A(s)=%(s) r&s). When p, and p&are in the 

1.15 

pionization region, where s,zs~s,~s, the factor in 

braces tends to vanish andp”‘l)is very nearly p (‘1. 

For p,and P, in opposite fragmentation re.~ions~(a’andp’x) 

are in general quite different--p b(z) van1 shes wh I 1 e 

p”)does not. 
8 



We now consider a model amplitude with a 

dynamical input which leads to a non-vanishIn,: 

correlation for some distr!butlons. l:!r1 te the 

amplitude for a simple two-fireball model in the 

center-of-mass with transverse momentum transfer EL 

as 

, so that 

1.17 

Now consider the two-particle inclusive distrIbutlon 

for two r 1 ght-movers: 

1.18 

The “4 i f f rat t i ve” r\xchange function B is thus independent 

of p,.pzso we can again extract cT(g)and write 



1.19 

AgaTn, the two-particle correlation $$~&anishes. 

There is no dependence upon $,.zz Induced by the 

diffractive exchange. 

The correlation pi”(fi,$)between right and left 

moving fragments , however, is a very dlffcrent story. 

We write 

1.20 

where ?-P-p, -9,. it is now difficult to extract rT(3) 

unless (ql, II ‘0, or the function 
P 

is cleverly chosen. 

We therefore write 

where # (s,(q*, [=OI=l and ?‘=(P-p,-q,): This 

implies that the two-particle correlation function 
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1.22 

is in general nonvanishing. There are thus non-trivial 

azimuthal correlations resul tinq from the assumption of 

a particular production mechanism. Here, the 

correlation will be largest when the particles do not 

have the same direction in transverse space. This 

negative transverse angle correlation has dynamical 

mean i ng. Anticipating, we note that if this 

distribution in (9, -p, IL is Fourier transformed into the 

conjugate impact parameter space, the correlation 

structure comes from the small distance 

hehav:our of the exchange mechanism. The larse-scale 

trehavlour is related to the smooth phase-space-like 

Part of the distribution with vanishing correlations. 

This statement will be shown to be more generally true. 

The small distance dynamics nlay be studimd by 

transverse momentum correlations If they are properly 

defined. 

I t has been common1 y be1 i eved 9 that the 

experimental two-particle azimuthal distributions are 

-iven hy “put-e” phase space. if this is strirtly true, 

any model which changes the peripheral phase space 

result of vanishing fb 6 
P 1 k>l) will he wrong--including 
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the one above. What is more 1 I kely true is that hadron 

dynamics makes only slight modifications in the phase 

space distributions globally even though the local 

(short distance) dynamics may be strong. This is a not 

unusual feature of very complicated many-body systems 

where numerous competing mechanisms produce smooth 

averages for certain quantities, but not (fortunately) 

for others. We shall see, from several points of view, 

how this might come about. 

The preceeding discussion is of course deeply 

connected with another constraint on production 

amp1 1 tudes-- the imposition of full s-channel 

uni tari ty. Much of this discussion will be phrased in 

the language of absorption in an impact parameter 

representation for production amp1 I tudcs. in the 

following sections we will explore, by means of simple 

example, the origin and necessity for strong absorption 

(or cuts). This discussion would equally well apply to 

two-body reactions, but the production of the single 

secondary in the 2 -->3 reaction is shown to open up 

kinematic degrees of freedom which allow more complete 

study of the small distance, or higher Fourier 

components, of the i nteract ion. The simple example is 

then extended to a parton model which allows us to 

establish the connection between eikonal behaviour and 
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the exchange mechanisms. The resulting cuts are of 

two different types. it is also possible to develop 

heuristically the relationship between longltudIna1 and 

transverse spectra. For a more detailed discussion of 

this connection we then return to the simple example 

for a discussion of kinematics and other matters. 

This is followed by an extension to the 

relativistic domain of the non-relativisi tic 

prescriptions for absorption. A number of possible 

circumstances and reactions are treated by use of the 

relativistic eikonal approximation. Impact parameter 

representations are discussed and spin effects 

cons1 dered. in the last sections we construct absorhed 

multiparticle production amplitudes of several types 

and compare with experiment. 
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J I. STRONG ABSORPTION 

We now wish to consider the general problem of 

unitarizing a given multiparticle amplitude, and in 

particular the formal possibility of strong absorption 

(strong cuts) in an absorptive prescription. The 

general belief IS that a given exclusive inelastic 

channel amplitude should have vanishing significance as 

a collision becomes more central due to the presence of 

more and more inelastic channels opening up. 

Care must be tanen in formulating this 

statement,however. One might expect that one should 

simply multiply a given Born term (a multiperipheral 

chain for example) by a function S(s,h) which vanishes 

at Ibl=O, forctng the given amplitude to vanish. We 

show, by means of an example, that the assumption of a 

given Born term as the production mechanism can lead to 

the necessity for an “over-absorptive” prescription, or 

a function S(s,b) which has finite value at b-0 and may 

even have changed sign. 

Suppose first the simple case in which there 

is but one mechanism for particle production, with a 

multiperipheral Born term “B” as in fig. 1.a. This 

term makes a contribution to the ,elastic eikonal 
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T-matrix, T:(b), as shown in fig lb, where there is an 

(a) 

Fig. 1 

(b) 

tmplied ei konal sum over all such Feynman graphs. if 

this is the only interaction, we have 

and we would then write the eikonal 

absorption-corrected amplitude in the usual way as 

2.1 

2.2 

.In an ideal world at least, T& is purely imaginary and 

with the impact parameter form usually attributed to 

the Pomeron)‘as in fig 2.a,b. 

b 
* b 

(a) (b) 

Fig. 2 

-16- 



In this case, the elastic S-matrix absorption factor 

will agree with what is expected by the usual argument; 

it vanishes at I’isI=O. 

However, suppose there is another possible 

mechanism for production into the same channel. For 

example, the new Born term “C” of fig. 3a. in general, 

C will be of shorter range than 5. 

H II 
(a> 

Fi?. 3 

(b) 

The contributions to T&, which come from both R and C, 

are more complicated, as shown. Jhis is now the 

Pomeron, since Trl must include the shadows of both 

production mechanisms. The absorbed single-particle 

production amplitude is now 

2.3 

The crucial point is that if we don’t know about C and 

assume only B as a Born term, the absorptive factor 

must change if it is to unitarize this truncated Born 

approx imation. That is, we want to know S ’ ( ~$1 such 
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that 

2.4 

There is no correct prescription for S’, given 

our lack of knowledge of all production mechanisms. 

Suppose, however, we assume we know T&as given, for 

example, by fig. 2(a). and then write 

2.5 

where the parameter X adjusts for all the competing 

mechani sms 1 ead i n,g to the same final state which we are 

ignoring when we use only B. At finite energies, there 

is no reason to believe that h is real (if we write TQL 

as pure imaginary) since there are many processes 

available which give an experimentally ohserved real 

part to T&. The relationship between ReX and Imhis 

almost certainly s-dependent, reflecting the changing 

magnitude of the real part of Td. This will turn out 

to have consequences for polarizations and other 

effects in absorbed inelastic reactions. The energy 

dependence is probably quite slow, perhaps logarithmic. 

There is, in general, no constraint on how larp,eXmay 

become. Phenomenological fits to two-body inelastic 
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reactions indicate that when strong cuts are required, h 

is about 2. 
11 

In general , X will be a function of b. 

The form chosen for absorption, we hasten to repeat, IS 

just a recipe, 1 Ike every other prescription, chosen 

for ease of calculation in what follows. 

The usual geometrical interpretation of 

absorption in, for example, an exchange model (single 

particle or Regge) is that the single exchange 

overweights the small impact parameter region and a 

sharper edge in configuration space is needed to 

sharpen the forward peak. The presence of other 

channels thus leads to a black disc from which 

scattering occurs. One must invent a cancelling shadow 

wave, out of phase with the incident wave and of the 

same modulus at b=O, with the disc region as source. 

in the overabsorptive case (X>l), the 

sharpening of the forward peak will in general be 

greater since the edge moves out in h and becomes 

sharper (see figure 4) in profile. The absorptive 

factor vanishes at b>O and at even smaller b, the 

prescription indicates that the shadow wave 

overcompensates. More precisely, there are two kinds 

of shadow-- those of B and C. The shadow wave of 

mechanism C interfers with the direct w?ve from 

mechanism 5 to produce more large angle scattering than 
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otherwlse. 

It is clear that where the absorptive effects 

are to be largest and have the greatest sensitivity to 

the dynamics is at small distances. It is just this 

fact that will allow tests of model assumptions. In 

the next section, the problem of small distance 

structure and the origin of strong cuts is illustrated 

in a revealing, but typically mechanistic, parton 

model. 

-2o- 
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Ji I. PARTON MODEL 

We now proceed to general ize the Born term 

discussion above to a parton construction analogous to 

that developed in Q.E.D. models. The use of field 

theory models has an honorable history in the study of 
II. 

Regge cuts. What little we know about these 

singularities has come from such analysis. in the 

parton model analysis we will show not only how the 

more common AFS and Mandr?ls tamli cuts artse from the 

kinematic overlap of large scale composite structures 

but also how new cuts can arise at the deeper dynamical 

level of small scale structures, Ther? will be 

sufficient freedom to adapt this heuristic approach to 

all of the production mechanisms mentioned above in a 

way which reveals their defects. The orisin of the 

eikonal approximation will be particularly interesting. 

Consider first the multiper!pheral diagram of 

figure 5, where the line lengths reprosent the 

longitudinal momenta (or fractions thereof) carried by 

the partons in the center of mass. A longitudinal 

boost moves the central region toward the slower 

particle. If we suppose that the virtual partons have 
I3 

a common rest frame lifetime r, , then the fast partons 

will have a center of mass time-dilated lifetime before 
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cascading, very large compared to that of a slow 

parton. if in addition the transverse momentum 

Fig. 5 

transfer at each point in the cascade is cut off at the 

usual characteristic value <k’,>=0.3-0.4 GeV , then 

the slower partons will step off a smaller transverse 

distance before decaying. We have also assumed damping 

in the longitudinal momentum transfer. 

if we consider the first few steps, we can use 

the I nf i ni te momentum “energy” denominator to estimate 

the transverse configuration space spread of the walk. 

For adjacent partons with longitudinal fractions xi and 

X* ,+I ’ the two-particle free Green’s function gives a 

dependence of 
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where < m,L>=< d+ KL>. The function K, falls 

exponentially for moderate and large values of its 

argument. Hence the partons carrying large fractions 

of the incident momentum are spread out in transverse 

configuration space. The density of longitudinal 

momentum per unit area is thus 1 I kely to be low. 

Forgetting about linking up the chain to the other 

external particle chain (which would only constrain the 

end) we thus have, for each hadron, a transverse random 

walk of decreasing step length. The step length 

depends upon the relative subenerqy of the adjacent 

par tons. 

This mathematical argument fails, of course, 

for the central or wee region but the essential 

features are clear. The wee region will be considered 

as beginning with longitudinal fractions of order l/C 

since this is the characteristic center of mass 

collision time with which the parton lifetime should be 

compared. The central region should probably not, and 

for this same reason, be regarded as identifiable with 

either incoming hadron. A simple way to rephrase this 

point is to say that the high energy incoming particles 

polarize the hadronic vacuum, which has a very quick 

relaxation time. The central region which exists only 

during the short collision time is the result of mutual 
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excitation by both particles. The random walk 

character is thus altered but primarily in the fast 

parton region. The wee walk doesn’t go very far and can 

thus maintain the Poisson character which can give 

logarithmic multiplicities. The first few fpst parton 

steps can be identified with the incoming particle but 

the walk must ultimately connect with another chain to 

produce scattering, so that the first large steps are 

constrained more. For this connection, as Feynman 14 

conjectures, the wee region is crucial. it will enter 

in another way, as we shall see. is 

The connected walk in the transverse plane can 

be redrawn as in figure 6. The high multiplicity wee 

Fig. 6 

region on the average of configurations like those in 

the figure, is a small part of the total scattering 

area. The density of transverse momentum in this 

region is high while the density of longitudinal 

momentum is relatively low. Depending upon the form 
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taken for the vertices, the whole scattering area may 

grow with s due mostly to the increasing size of the 

first steps. The high multiplicity wee region need not 

grow but more likely it scales up with s so that 

logarithmic or nearly logarithmic multiplicities may 

obtain. 

When the overlap is taken, the contribution of 

the single ladder to two-particle scattertng will have 

the Regge form if the diffuse large distance regions 

grow with s. The large scale fast parton structure is 

responsible for the exponential behaviour near t=O, 

while the small scale central region with its larse 

spatial gradients governs the more slowly fal1in.c large 

-t behaviour. Note that the coupling constant density 

in the wee region may play a vital role in determining 

the rate of growth with energy--an effect found in # 3 

and to which we shall return. 

This attractive picture is complicated by the 

necessity that fast partons eventually elaborate 

multiple chains. This will give rise to cuts or 

absorption. A simple example is shown in fi?ure 7 wtth 

some of the eikonal structures which may result when 

the contribution to two-particle scattering is found. 

One obtains a sequence of “Regge poles,” or a simple 

Regge-eikonal graph or a Mandelstam cut graph (the 
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Fig. 7 

latter may be seen by isolating a rung at each wide end 

of a ladder). The AFS cut generated by the Reggeon 

sequence with the elastic intermediate state is 

cancelled by the other graphs. Only the Mandelstam cut 

which is fully nonplanar and has the s-u double 

spectral function remains. Note that all of these 

structures result in our construction from the overlap 

of the diffuse, kinematically “free” lar,ge-scale ends 

of the chains. At small momentum transfers these cuts 

~111 probably have the relatively weak effects usually 

assigned to them. 

There is a further possibility, however. This 

is that the chains themselves may overlap, giving rise 

to entirely new structures which result not just in 

absorption but in strong absorption. This possibility 

is illustrated in fig. 8 . The analogy to the graphs 

chosen earlier to illustrate the nature of strong 

absorption is intended. 
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Fig. 8 

The most dramatic overlap occurs when a fast or 

intermediate parton from one chain overtakes the slow 

dense end of another chain, thus adding a large 

momentum and removing many wee partons from the central 

region of the second chain until a new cascade can 

occur . If, for example, a single multiperipheral chain 

distributes particles evenly in rapid1 ty, this 

mechanism will tend to remove particles from the 

central region and move them into the fragmentation 

regions. 

The possibility that a fast parton may scatter 

from the dense region of another chain also tends to 

broaden the transverse momentum distribution of this 

particle but without appreciably changing its 

longitudinal momentum distribution, since even in the 

wee region the density of longitudinal momentum is low. 

Fast particles in the final state will thus show 
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broader transverse momentum distributions. The 

possibility that a fast parton can rescatter, picking 

up a chatn of wees and then cascade decay, may also 

yield the leading pion effect (Yen and BergerIr6and 

produce the low missing mass enhancements observed in 

many reactions. 

All of these effects may be quite small in the 

total rates since the central region of each chain has 

small average contribution to the area and the density 

Of fast, long-l Ived, partons is low. The essential 

fact however, is that the effects increase at smaller 

total Impact parameter since more overlap 

configurations are available. This is illustrated in 

figure 9. 

Figi 9 

The parton configurations resulting when all 

of the possibilities above are taken into account will 

be very compl icated. If the leading partons maintain 

an identifiable role, then we have available an 

alternative interpretation. This is the continuum 
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average or eikonal view. We define the impact 

parameter as the transverse distance between the 

centers of mass, suitable defined, of the two clusters. 

We define the cluster c,m. position by 

where J,is the longitudinal fraction associated with 

the I th parton at ~,, in analogy with the natural 

infinite momentum variables. With strong damping of 

long1 tudinal momentum transfer, the center of mass of a 

cluster is very nearly the position of the fastest 

parton. 

Concentrating on these two particles , we can 

now “cut” all connections to multiperipheral chains, 

average over configurations and consider the fast 

partons as propagating in a medium. The dens1 ty of 

parton lines seen by each particle determines the 

scattering. At large impact parameters b (near the 

maximum allowed by the energy available to connect the 

chains), only configurations like those in figure 9 .b 

are involved. The medium seen by each particle is thus 

diffuse-- the average transverse and long1 tudinal 

momentum dens1 ties are small --and scattering is small, 

At smaller impact parameters, conf I gurations 

in which fast particles can pass through the dense 
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central, or small-scale, regions become available. The 

relative number of such configurations need not be 

large to have observable consequence. These reg ions 

have large transverse momentum densities and low 

longitudinal momentum dens1 ties. Larger values of 

transverse momentum may thus be transferred to the fast 

particle and small longitudinal momentum transferred 

(so that t=- A:and the scattering angle is small). The 

corrections to the eikonal approximation have the form 

of the spatial gradients b, and 12 . WI th strong 

damping on longitudinal momenta the gradients b, are 
I7 

always small. The transverse derivatives are small 

here, except at small impact parameters. Note that the 

first statement would not be true for a point-coupling d3 

model since there is no damping on longitudinal momenta 

down the chain. Two partons prefer to share equally in 

the incoming longitudinal momentum. One cannot deftne 

an eikonal path. 
I%, 19 

The parton construction is susceptible of a 

fragmentation interpretation in which an incoming right 

mov I ng parton dissociates into a set of right moving 

fast partons by cascading. The incoming and outgoing 

fast partons can then be considered as eikonally 

scattering in the residual “medium.” Each parton has 

some chance of undergoing larger’ scattering as before 
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but the general truth of the fragmentation 

interpretation rests on the wee regions being small and 

not causing major rearrangement of the distributions. 

Otherwise the final state particle mtght not have 

resulted from the free dtssociation, or cascade, of the 

incomlng particle. Instead it micht be part of the 

“med I urn” structure associated with the “diffractive” 

scattering of the Incoming particle. This possibility 

becomes greater as the momentum of the final state 

particle observed in the diffractively produced cluster 

becomes lower. These possibilities are illustrated in 

fig. 10 . 

J 
c-- 

-\ 

; 
I 
’ ./ I 

Fig. 10 

We can thus establish a relationship between 

those conditions which give rise to eikonal behaviour 

of elastic scattering and those configuration space 

regions which give rise not only to Regge behaviour but 

also the attending “kinematic” cuts. Roth are 

determined by the large scale*diffuse* behavfour. The 

connection is made explicit In the Regge-eikonal model 
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where exchanged towers are allowed to overlap in all 

possible ways. The dynamic cuts arising from the 

small-scale behaviour enter at the level of corrections 

to the etkonal in elastic scattering and lead to the 

necessity for stronq absorption in inelastic reactions. 

The parton construction makes clear these connections 

and indicates that the subtle relation between these 

two regimes will show up, not only in the transverse 

spectra but in the longitudinal as well. 
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IV. RE-BORN 

Now consider the kinematical properties of our 

two model Born terms. The simple multiperipheral graph 

of fig. 1.a may be interpreted as a Feynman diagram, of 

which our parton model is an example, or as a 

multi-Regge graph. in the latter case we can also use 

the parton model description to illustrate its further 

complex1 ty. Let the produced secondary have momentum 

9. We wish to study the relationship between this Born 

term and the more complicated and shorter range 

productton graph of fig. 3.a. as a function of the 

magnitude and spatial direction of q. Let the internal 

horizontal line of this graph carry momentum k. In the 

parton construction of graph “C” suppose q is in the 

pionitatton region and k is relatively large. As we 

saw earlier, at smaller impact parameters the fast 

parton with momentum k may spatially overlap the 

following chain. If we represent the vertical 

exchanges as parton Reggeon chains this overlap will 

modify the form of the residue, if it occurs, as is 

likely, in the diffuse large scale region of the second 

chain. Thus, at larger momentum transfers (smaller 

initial impact parameter) the presence of the second 

graph may change the t-dependence one would need to 
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ascribe to the upper exchange to make the simple 

multi-Regge graph alone describe the reaction. As will 

be seen, this may be equivalent to changing the Regge 

energy scale, so . There is an analogous effect on the 

longitudinal spectrum in that the longitudinal momentum 

of k may be transferred in part to the produced 

secondary thus depopulating the multi-Regge region of 

phase space and producing more fragmentation events. 

This effect will be relatively small if its possibility 

rests on the overlap of the fast intermediate parton 

with the small-scale central region of the second 

chain. This is one mechanism by which different 

kinematIca regions of production processes may be 

connected. The resulting correlations, by the above 

argument, will take the form of only small scale 

rearrangements of the longitudinal spectrum. As we 

shall see, the effect on the transverse spectrum wi 11 

be much more visible if the correct variables are used. 

We can also consider the fragmentation region, 

in which q has a relatively large longitudinal momentum 

(with fraction of the incident momentum greater, say, 

than l/=1. In thjs case one might wish to utilize a 

wave function and single Regge exchange description of 

the simple Born term. In the second graph, if k is 

large and in the same direction as q it will overlap 
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and tend to alter the description of the wavefunction. 

In particular, it may produce a leading particle 

effect, low mass enhancements, and resonant structure 

(see fig. 11). If k is fast in the ether direction it 

will alter the Regge residue at the lower vertex. 

Fig. 11 

In this connection, it is interesting to 

briefly review the logic of Henyey, Kane, Pumplin and 

Ross 
II 

in introducing a coherent inelastic” factor 

multiplying cut terms. The argument was that elastic 

scattering in the initial or final state of a reaction 

involving an ordinary inelastic exchange could 

“diffractively” produce inelastic or resonant 

intermediate states which had been neglected in 

constructing cut terms using only elastic unitarity. 

Representative graphs were of the Mandelstam type. 

Here we can see not only the origin of this possibility 

but also the possibility that the Regge structure 

itself may be altered in even more complex ways. In 

particular, the presence of a “diffractive” 
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Intermediate state may enhance the production of a 

slmilar flnal state at smaller impact parameters. This 

region is thus self-enhancing at all Impact parameters 

and is not just peripheral. It favors the low 

ml ss I ng-mass region. In the diffractive fragmentation 

models this vertex structure is put in by hand as l/ma 

or by using mz as the Regge energy scale. 20 

In addition to the Born graphs there are 

graphs in which elastic rescattering, built through 

eikonal summation of the contributions of the 

production (and other) graphs to elastic scattering, 

occurs. By our previous argument, neglect of the 

shorter range production mechanism results in the 

necessity for over-absorbing the simple graph. We can 

now see how this effect may depend (perhaps weakly) 

upon kinematic region. In what follows we shall 

usually assume that the lengitudinal degrees of freedom 

are not sufficiently altered by absorption to 

invalidate the impact parameter representations of 

subampli tudes and wave-functions used to calculate 

absorptive effects in the transverse momenta. This is 

probably a good approximation since it is relatively 

easy to construct amplitudes which modify longitudinal 

phase space sufficiently to fit the gross features of 

of production data. We note that multi-Regge models 
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al must be adjusted considerably in the low sub- energy 

regions to f I t the data. From our point of view, the 

kinematic degrees of freedom opened up by production 

allow simple tests of these sorts of assumptions within 

the Regge phi losophy. 



Y. ABSORPTION AND THE RELATIVISTIC EIKONAL 

We now need to consider how to absorb an 

arbitrary Born term to introduce ordinary absorptive 

effects. The above discussion will t.hen indicate how 

to over-absorb to account for other inelastic 

mechanisms. What is required is a relativistic 

generalization of the prescriptions of Sopkovich, a2 

a3 Pt Gottfried and Jackson, and others. One new feature is 

retardation, due to which an initial particle is able 

to act as the source of a field in which a final state 

particle can eikonally scatter. The kinematic and 

dynamic conditions under which such rescattering can 

occur and be described eikonally must also be 

considered. For example, some particles may have 

quantum numbers such that they do not couple to the 

force generating elastic rescattering. Or, if a 

particle dissociates during inelastic scattering, its 

fragments may or may not eikonally rescatter in a 

simple way. From the above discussion, a further 

desirable condition is that our resulting prescriptions 

not induce energy dependences which are too strong. 

Suppose that elastic scatterfng is represented 

by the eikonal summation of all s-channel crossed 
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ladder graphs involving elementary vector exchange. 

The resulting amp1 I tude, has the form isf(t) where, 

with A;= -t, 

5.1 

The phase is independent of the momenta in the external 

lines since if we exercise our freedom of path choice 

for small momentum transfers and choose to expand about 

5.2 

The (explicitly unitary) elastic S-matrix in b-space 

s 
-i X, (6) 

‘a =e 5.3 

then goes to one for large b and vanishes for b near 

zero. The corresponding T-matrix is central in 

b-space, pure imaginary, and does not change with 

energy (no shrinkage). Al 1 of this corresponds to the 
as 

exchange of a real j=l fixed pole in the t-channel. We 

would clearly not want to exchange this object more 
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than once. The vector exchange, which is used to 

represent all the exchanges contributing to elastic 

scattering, keeps track of the correct counting. 

The above analysis can be extended to the case 

of two particles interacting through the exchanges 

represented by the fields A and C. For example, A 

might be the pion field and C the vector field of the 

previous example. In the external field apprux(mation, 

the T-matrix for particle 1 scattering in the field 

V(x)=C(x) + aA may be written as a local functional 

T<V>=T<C(x)+aA(x)>. Jf- C and A commute, in the sense 

that the particle couples in the same way to C 

independently of the number of interactions with A, 

then we can use the usual functional methods to 
ah 

calculate the two-particle T-matrix. The analogue of 
27 

the Levy-Sucher form for this quantity is 

where g and g’ are the coup1 ings of the external 

particles to fields C and A, and the eikonal phase 

integrals are 
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5.5 

This represents the sum of all crossed s-channel 

ladders whose rungs are the quanta of A and C. if c 

represents vector exchange then X,wTll be independent 

of s while if A represents spln J<l ;Ic, will fall with 

s and the Born term of A will tend to dominate the high 

energy behaviour, Under certain conditions the 

expression for T Iz WI 11 simplify. Pick the momentum 

transfer, 26 , purely transverse and do the integral 

over A . Now, if the eikonal path can be defined as 

along the average of initial and final momenta as 

before, then 

5.6 

and similarly for X,. This choice of path makes the 

ei konal phase independent of z + and t -. All integrals 

then decouple except those over transverse variables. 

In particular, the numerator and denominator factors 

cancel, leaving a simple expression for T ,=: 
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5.7 

Projecting the lowest order contribution to the 

inelasttc final state, single A exchange, 

This is the result one would expect. It rests on the 

commuttvlty of the interactions and upon the 

simplification resulting from the particular 

identification of an eikonal path. The dlrection P=P;+pF 

for example, can be expected to give approximately 

the same phase integral as the sum of phase integrals 

for interactions crossing the inelastic exchange in all 

possible ways if P; 2 PG . This is just the 

condition that the ini,tial and final states have the 

same impact parameter representation. Another way of 

saying this is that the exchanges are uncorrelated in 

impact pa.rameter space. It is possible to be more 

careful and produce other expressions but to leading 

order in the eikonal expansion all are nearly 

equivalent. The differences usually occur at the same 

level as the first order corrections that is, down by 

b4ys. l 
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If the elastic and inelastic exchanges fail to 

commute, as would be the case for example In 

with an elastic interaction which couples only to 

charge, then simplification depends upon other factors. 

Suppose particle one enters an interaction in a state 

which couples elastically to a fteld I, changes state 

through an inelastic exhange of type A, and exits in a 

state which couples elasttcally to F. Let particle two 

couple to I’, A, and F’ in the same sequential way. 

Note that if I=I’ and F=F’ with IfF, the inelastic 

exchange will separate initial and final state 

interactions as In the non-relativistic case. 

With the same choice of eikonal path as 

before, the two-particle T-matrix, to lowest order in 

the inelastic exchange, is 

where we have chosen a center of mass frame where the 

momentum transfer is purely transverse and 



5.10 

The D’s represent propagation of the appropriate 

exchanges, including the couplings to the external 

lines. 

The integrals over longitudinal variables in 

this expression are still coupled. Suppose the 

inelastic exchange has relatively short range in z+and 

t -* If the phase integrals receive small contribution 

from this region or if the contribution of each of the 

four phase integrals over the region is approximately 

the same, then one can set z+cO and z, 10 in the phase 

integrals with only small error. The integration over 

the longitudlnal variables of the inelastic exchange 

may then be done independently, resulting in an impact 

parameter representation. If, in addition, the phase 

integrals are invariant under z++ -z+ , z-+ -z-, we 

can identify the relativistic version of the familiar 

Sopkovlch prescription: 

where 
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We should note that this symmetry will not In general 

be a property of the exchange mechanisms. If it is, 

thls implies that in reactions where only one factor S. 
u 

is different from one (e.g., ete-->6h), absorptive 

effects may be different from the Sopkovich 

‘/a prescription, S . 

It is easy to see how the nonrelativistic 

potentials, which involve only the relative coordinate 

z, are related to the phase integrals above. Cons I der %zz, 

above. in the center of mass where, say, P=(E,O,P), 

Q=(E,O,-PI, we can rescale and change varlahles: 

x 
rr' D,, (t,&) 5.13 

so if we define the “potential” 

5.14 

the connection is clear. 

All of the preceeding discussion can be 

generalized to the exchange of more compl lcated 

objects. In particular, the inelastic exchange may be 
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a multi-Regge chain. This will be consistent with the 

eikonal treatment if there are still identifiable 

leading particles which allow definition of an eikonal 

path. The energy independence of the vector exchange 

model for elastic rescattering makes the energy loss to 

the secondaries less relevent than otherwise, as long 

as it is not too great. 

In the treatment of particular exclusive 

production channels 1 t will usually be assumed that the 

exchanges which contribute to rescatterlng couple in 

the same way to all hadrons. Since we would also like 

to exploit our knowledge of two-particle reactions in 

building multlparticle amplitudes, we will usually 

assume that all absorptive effects between the 

particles involved in two-body subampli tudes are 

incorporated In those subampl i tudes. The parton model 

discussion indicates that absorptive effects, for 

example, between even next-to- nearest neighbors on a 

multt-Regge chain may be incorporated in the vertex 

structures (residues). Hence the dominant, 

experimentally accessible effects will be those due to 

absorption between particles widely separated in 

long1 tudi nal momentum. We now proceed to a more 

detailed discussion of these effects. 

The subampl i tudes uti 1 ized to construct 
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multiparticle amplitudes will be wrttten in the 

conventional impact parameter representation, where 

the radii involved may be dependent upon the particular 

subenergy. Spin coup1 ing factors can be deduced from 

the correspondence between the rotation functions, in a 

hellcity basis, and the appropriate Bessel functions a9 : 

where X is the hellclty difference in the initial 

state, /K that in the final state (A= X,-AI,, p=GXr>. 

The general amplitude for heliclty flip hX= IX -,-I 

will then be written in the form 

We would like to rewrite this in Fourier transform 

form. For AX-O, the result is trivial: 

5.16 

5.17 

For 8X “1, noting that J,(z)= -(d/dz)J,(z) allows us to 

write 
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4, (s,t) = -+ & f,b,b) 
3 

5.18 
b 

The spfn couplfng Is thus sensftlve to the dfrectfon of 

t as one would expect. Thfs form will be particularly 

useful In multlpartlcle amplitudes. If the absorpttve 

factor Is azlmuthally symmetric then It will not alter 

thfs spin structure ‘tit may not be atlmuthally 

symmetric). In multlparticle amplitudes however, 

overall absorptfon (that 1s In the total Impact 

parameter) will alter the effective spin coupling by 

preferring special dlrectlons of the sub- amplitude 

impact parameter. Higher order couplings may be 

written down from the Fourier representation of Jn. 

Different impact parameter dfstributions give 

very different t-dlstributlons. A few posslbllttres, 

all of wh,ich give a forward peak In t, are shown fn 

fig. 12. The radll may be energy dependent without 

loss of generality. Most model amp1 i tudes considered 

below will be constructed from ,Gaussfan subamplt tudes 

for calculatfonal convenience and since they are devoid 

of t-structure. More precise forms wi 11 be used to 

make comparfson wl th particular reactions. The elastic 

rescattertng will always utllfze a Gaussian T-matrix, 

except for a brief qualitative discussion of the 
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alternative forms for the real part of the elastic 

amplitude which is present at finite energies. The 

presence and location of zeros In t-distributions 

depends very sensi tlvely upon the precl se shape of the 
30 impact parameter amplitude. Also, since our prlmary 

Interest is in qualitative features and relative 

normaltzations, absolute normalizations will be 

consistently ignored. 

in constructing phenomenological absorbed two- 

particle amplftudes .it is often found that real and 

imaginary parts of the Input exchange must be absorbed 

with different strengths in order to fit experiment. 

Differences between helicity flip and non-flip 

amplitudes arise and polarization studies directly 

reflect this difficulty. The success of strong or weak 

cuts depends upon where they are applied. 
31 

Experimental strudles show, for example, that 

in -rrN scattering the imaginary part of the 

lsovector exchange (probably rho) non-flip amplitude 

requires strong absorption while the real part is 

weak1 y absorbed. There -are of course many ways In 

which this could happen. The most obvious Is that the 

complex t-dependent Regge phase In the Born term 
3a 

already Includes absorption. it is difficult to make a 

systematic statement of this possfbllity, however. A 

more attractive reason is that the absorption is 
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complex, correspondtng to a real part In the elastic 

amp1 t tude at machine energies. in our parametrization, 

with S(b)=l-iT(b) and T(b)=W(b), Xmay be complex at 

flnlte energies with, say, an imaginary part about 30% 

that of the real. if we write X =d+ip and take an 

input Born amplltude with equal real and imaginary 

parts (e.g., rho-exchange at t=O), Amp=A(b)e(l+i 1, then 

the output amplitude has the form 

Amp= A(b,@W-~,Wb)) + I (l-tX+,&?‘o)~ 

That is, the Imaginary part is much more strongly 

absorbed than the real part tf/>O. Consistent with 

our bound on 1x1, we may takeo(a1.5 and p=O.S so that 

the real part Is absorbed wi’th .strength 1.0, the 

Imaginary with strength 2.0, satisfying weak and strong 

cut prescriptions In the right places. One might 

expect the imaginary part ofh to depend upon b and s, 

perhaps vanishing as s-900. Absorptive cuts also tend 

to induce dips In t-distrlbutlons. An imaginary part 

will tend to fill these dips. These and other effects 

will also appear In the absorbed multiparticle 

amp1 i tudes, to which we now turn. 
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Vi. CONSTRUCTION OF MODELS 

As a first model, consider the absorbed multi- 

peripheral model for the production of N secondarles of 

fig. 13a (page62). A complete set of variables is the 

set of N+l subenergies and the N+l two-dimensIona 

vectors g; (which Is equivalent to N+l lengths and N 

angles, where the latter are analogous to the angles in 
33 Toller analysis). This decomposi tlon is Invariant 

under boosts normal to the transverse plane. The 

corresponding amplftude ts 

where c; Is the transverse momentum along gJ , Tj Is 

the two-particle subampll tude corresponding to momentum 

transfer kj and subenergy s;. Other functions f (b; ,bj ) 

can be introduced, for example, to account for 

non-nearest-neighbor absorptive effects. As we argued 

before, however, if realistjc parametrlzatlons of the Tj 

are used, some of these effects are already Included. 

Mote that If S(B)=constant, so that there Is no 

rescatteri ng, the integrals over 3 decouple and the 

usual random walk In transverse configuratlon space 

occurs since the dlrectlon of each spatlal vector ~j Is 
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then unconstrained. The effect of non-trivial S(B) ls 

to constraln the beginning and end of the walk, and 

hence the direction of each lntermedlate step. Other 

absorptive effects would constrain Internal points. 

The absorptlve factor Is chosen as 

S(B)= 1 -Xe -6’/zie.s~ 
This corresponds to a purely absorptive elastic 

scattering amplitude normalized as 

or 

so that 

- c&lp 
T(s,B)= 4lris e 

-Us, B\ 

5 2: rrQz 

dQ Rat 
d+- 

=TrR’e 

The two-particle subamplitudes are written as 

or 

6.2 

6.3 

6.4 

6.5 

6.6 

6.7 
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The normal izat ion l/R; %is chosen so that each random 

walk step has unit probabllity,independent of the 

associated radius--that is 

The step probability is then just the coefficient 

function of s.. I Regge behaviour, with 1 inear 

trajectories, would imply 

6.8 

6.9 

apart from (t-dependent) signature factors. 

Rewriting Equation 6.1, with the delta-function 

in parametric form and dropping explicit reference fo 

the energy dependences, one has 

where 

T, (3;) = I g$ 
isi~E 

e 
I T. (bi) I 

R;‘g 
= &- 3 

6.10 

6.11 

With the above choice of S(B) the integral over B can 

be done 
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6:12 

Then the integral over ? Itself gives 

6.13 

u+l 6.14 

p = RX+ ;& R;’ 

All of these quantities are quite simple in 

the Regge parametrization when all subampll tudes have a; 

=0 and a common slope of one, so that R;‘alnS; and 
WI 

z= ,+ &&~ 1-l 

P 53 =zLs 6.15 

Taking R p~ In s and noting that in the multi-Regge 

region flnyglns, the amp1 I tude becomes 

the amp1 T tude becomes 

If in addition lnSi= (In s)/(N+l) and <N+l>=ln s, 
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The multi-regge contribution is thus damped by 

absorption with the largest damping when the momentum 

transfers d; are aligned. The optimal variable for 

observing this effect is thus rt; . The contrlbutlon i 
to elastic scattering can be calculated. If o(&.O, 6 

violates the Frolssart bound unless the absorption 

parameter has the valueA=2.0, in which case the 

contrlbutlon of the multi-Regge region vanishes 

asymptotl call y, Note that the problem arises when the 

chain is stralght and of small length B (which IS 

conjugate to the large vector L& 1, so that the 

production Is dense in ‘configuration space.’ Absorption 

damps the effect of this region as we saw in the 
. - 

general parton discussion, redistributing the 

production into non-mu1 ti-Regge rcglons. in this 

connection note that the absorptive factor in the 

amplitude is a power series in l/ins. 

Returning to the general case of Equation,the 

distribution k/d&= is easily calculated. Def fning 

6.18 
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squaring the amplitude, and introducing 

one has 

6.19 

6.20 

where dp,(s;) is the residual phase space,and where it 

has been assumed that the damping in the transverse 

momenta is sufficient to allow one to perform these 

integrations independently of energy conservation. 

Monte Carlo calculations with exact phase space, 

presented below, show this to be a very good 

approximation at high energy. If one assumes (nearly) 

energy independent radii, with RF=ra, then the rest of 

the phase space integrals may be done. With $= a/r% 

= the result is 

where P =(N+l)r*/R? 

The large v “region is greatly modified by 
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absorption with more events in this kinematic region 

than if h “0. This vector is Gisily rewritten in terms 

of final state momenta, labeled according to ficr. 13a, 

as 

Note that if, as in the M-R. case, P 
“1, the overall 

slope of the distribution is a function of R’/(N+l) 

(el/lns) and hence decreases with increasing 

multiplicity. The slope in the absorptive factor 

behaves in the same fashion but is smaller by a factor 

of l/4. Larger values of vawill be found at hipher 

energjes. Calculation shows that the transverse 

momentum distributions, single and relative, of the 

secondaries are not significantly broadened by the 

absorption. 

The variable v1 is theoretically optimal but 

experimentally somewhat inacessible, particularly for 

higher multiplicities. it is therefore of interest to 

determine the effects upon other distributions. One 

proceeds, as above by introducing delta-functions in 

parametric form to free the phase space integrations. 

The distribution in the relative transverse momertum of 

the leading outgoing particles, d=i;-G=t, +j;NH, 1 s 



particularly convenient for experimental analysis, For 

N=l, the variables w and v are identical. We give the 

results in two cases. The first corresponds to the 

M-R. case in which the subamplitude radii are smaller 

than the overall radius-- that is r’=RI/(W+l). The 

other is characteristic of a purely geometric model 

with fixed tad1 1 and ra= Ra. 

Again ignoring the phase space constraints, 

the distributions in the relative transverse momentum 
4 of the leading particles, w , are 

dk 
dw’ 

- %o 

d%- 
-v a CN+t 

- 
IAWL 

e 
r= R’/(N,l) 

For N=l, the variables w and v are identical. The 

The effect of absorption on these distributions is 

striking. The general effect is to steepen the forward 

iw%ear zero) peak (and the v&I and broaden the larye wa 

(and va> region, The transverse momentum distrihution 

of a single leading particle has the form 

6.23 



6.24 

Both of these distributions are consistent with the 

experimental observation that the transverse momentum 

distributions, dominated by the first factor above, do 

not change appreciably with energy. in the case r*= Ra 

one expects RX= constant, while if rt= RL/(N+l) then 

one expects R’Lfm+l>g Ins. in both cases, the small 

transverse momentum regions do not change with S. The 

absorption distinguishes between these possibilities 

however-- the last expression yields mot-a large 

transverse momentum events as s increases. The latter 

will also be a characteristic of the polyperipheral 

model to be introduced below (and which will have 

equal radi I). it is also Interesting that leading 

particles WI 11 display broader transverse momentum 

distributions than the secondaries. 

The broadening of the transverse momentum 

distributions is not the only effect. The leading 

particle distributions should display breaks or 

shoulders at moderate values of P> in the reaction 
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described below this will come at about PfpO.25. The 

secondaries WI 11 not show this structure since they 

have been rescattered with great frequency and in 

random directions before emerging. 

A particularly clean experiment with which to 
34 

compare is the reaction %-P--~K-T?Q. The longitudinal 

distributions, shown in fig. 14, allow almost no 

ambiguity in discriminating leading particles. There 

is little p-contribution. The experimental 

distributions in vs the relative momentum between a 

pair of adjacent particles,and the individual particle 

transverse momenta, for incident pion energy of 16 GeV, 

are shown in figure 15. 

in fig. 16 we present the theoretical 

predictions for various absorption strengths. The 

curves were produced by Monte Carlo event generation, 

weighted by the amplitude of eqn. 6.13 ~1 th common radius 

R%8.0. This avoids any neglect of energy conservation 

that our analytic expressions might involve. 

Comparison indicated that the approximations in the 

latter are quite accurate. The results of the Monte 

Carlo generation were fsd into an analysis routine 

which produced nearly all possible longitudinal and 

angular distributions. in order to fit the 

corresponding experimental longitudinal distributions 

-61- 



-k 

(a) 

t I- I I I 
DI /\ I\ /\ t 

b2 I\ /\ - 
B-b, B-b, f 

; bN-l /, R 
bN . . . . . . . . . . . . . B-b,-, . B a 

- N 
b 

k 

5 
P2 

PN--I 
pN 
n 

(b) 

w 2005A4 

Fi.5. 13 

-62- 



d 
\ 
? 
Z 
w 
> 
W 

200 

100 

0 

40 

20 

0 

100 

0 

PL b-j 

“” I n 

PL (n) 

I I 

-3 -2 -I 0 I 2 3 

P, (GeV/c) 115013 

FIR. 14 

-53- 



IO r I I I 

Tp --rr--rr+n 

16 GeV 

0 0.5 1.0 1.5 2.0 2.5 

215014 

Fig. 15a 

-640 



0 0 *in
 

b b 

I?
 

6 
.P

 
b 

0 

0 

dc
 

d 
(n

-rr
+)

2 
(a

rb
itr

ar
y 

un
its

) 

- 
I 

I 
I 

I 
III

II 

I 
I 

I 
I 

llll
l 

I 
I 

I 
Ill

1 

0 



IO 

0.1 

: t 

0 
I I I 

0.5 
2 

“I 2150A6 

Fin, 15~ 



IO 

b w 

t 

t 

I I I 

0.5 

7T+2 1 

- 

1.0 

215OA7 

Fir. 15ci 

-67- 



m 
-1 

c 
3 

2.0 

I .o 

0.8 

0.6 

0.4 

0.2 

0 

2.0 

I .o 

0.8 

0.6 

0.4 

0.2 

0 

v2 (GeV/d2 

-58- 



- 
m 

.- 
c 3 
)r 

2.0 

I .o 

0.8 

0.6 

0.4 

0.2 

0 
is 0 I 2 3 4 5 L C .- 4 
;; 2.0 \ I - 

b “z I.0 !, 
I 

(b) 
D-0 -I 

0.8 -I 
-I 

0.6 -I 
- \ 

0.4 - \ 
- \ 

0.2 - ‘\ 
---- -4- 0 -2-, 

0 2 3 

w2 (GeV/d2 
5 

FiE. 17 



(albett roughly) it was necessary to modify phase 

space only slightly. Changing one of the momentum 

transfer Gausslans from k;lto-ti introduced sufficient 

energy dependence. The angular distributions were fit 

when the absorptive effects were introduced. These 

distributions wlll be discussed in greate’r detail 

below. 

The striking feature is the long tall of 

events at large vz. The simple theoretical 

parametrization used here should not be considered a 

fit to the data but the qualitative agreement is 

remarkable. The dotted line in flg. 16 is the 

distribution with no absorption (X”E-=O) while the 

dashed line is that with Xx1.5. The latter curve has a 

strong dl p at vSeO.Sa This dip is due to the 

particular form assumed for the absorptive factor and 

is a common feature of the usual absorptive 

prescri ptlon. These dips will not appear if there are 

sufficient incoherent contributions to the cross 

section (e.g. hellcity flip processes) to fill them. 

This effect can be studied by changing the enercy. 

Another possibility is that neglected real parts in the 

subamplitudes and ln the elastic rnscatterlng will fill 

the dips. bJe saw earlier how complex absorption may 

affect real and imaginary parts dlff?rently. It is 
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actually sufficient, however, to make just the 

absorption complex. The result of the choice ReA=0.5 

and Imh=l.5 (corresponding to ReT~/ImTA=0.3) is shown 

as the solid curve in fig. lfja. This curve is quite 

close to the data. 

it is common In multi-Regge fits to change the 

slopes of the residua with the t; to correspond to the 

experimental fact that two-particle amp11 tudes display 

much smaller t-slopes for large ItI than for small 

values of It!. From our point of view, part of this is 

due to absorptive (both rescattering and production 

shadow) effects at large momentum transfers. One mlz7;ht 

believe that the broadening of the v%-distribution 

could be accounted for by this effect alone but 

explicit computation, with no absorption and with sums 

of Gaussians (the tails of the two particle 

subamplitudes being of the form exp (2.5ti)) shows that 

this is not the case. The reason is that the tails 

average away in the relative transverse momentum 

distributions. Strong absorption weights particular 

relative orientations of the subamplitude momentum 

transfers and thus enhances the large ve region 

relative to the rest of the distribution. 

\de have computed the distributions for N=2, 

<lr+~+Tr+rr--rr+ p 1, with the same parameters as above. The 
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distributions are shown in fig. 16b. Monte Carlo 

computation time limits further extension fn 

multlpllcity. 

In the multiperlpheral model one has assumed 

that rescatterlng is elastic. At small impact 

parameters however one might believe that rescatterlng 

is likely to be accompanied by production. For 

contrast we take an extreme view of this posslblllty in 

constructing the eikonal model of fig. 13b. Pere, a 

production is an iterative process in the direct 

channel. The illustrated graph is elkonal in that it 

represents all Feynman (or Reggeon) graphs wl th all 

possible crossings of the vertical exchanges. The 

amplitude may be written as 

propagation of the outside particles between emissions. 

The energy factors associated with the couplings of the 

exchanges to the outside 1 ines are 1 ncludpd in the 

T-matrices. The quantity S(R) again represents 

absorption between the outside leading particles, 

reflecting elastic rescattering and the presence of 

-729 



competing inelastic mechanisms at small impact 

parameters. Note that this is basically a model for 

plonlzatlon . 

Since this model is not as familiar as the 

more common multiperlpheral models it is useful to 

consider some of its global features. Since more 

exchanges occur (2N) in this model than in the M.R. 

model (N+l), for a given multiplicity, one might 

expect, unless one has Pomeron everywhere, that the 

M.R. mechanism would have the leading energy behavlour. 

This may be wrong for (at least) two reasons. First, 

as we have seen, contributions of the M.R. region may 

be strongly damped by absorption. Second, it may be 

possible to arrange phases and coup1 lngs such that some 

polyperlpheral amplitudes will cancel some M.R. 

amp1 1 tudes. 

The subampli tudes and absorptive fqctor WI 11 

have the same form as in the previous model. All radi? 

are taken equal (ra= RI) since the distinction between 

geometrical and Regge choices is not as extreme as 

before. The transverse momentum conjugate to $ is just 
A4 
w-k-n. The vector $ is now independent (the set of N+l 

vectors <$,,bti> is then complete). For a given 

multiplicity N, the distribution in wXis given by 
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with the same neglect of energy conservation as above. 

This expression is strikingly similar to that of the 

M.R. model in the case ?=R%N+l) but quite different 

from the same model wl th ra=RS (where in alJ models R= 

may go like Ins). For fixed Rathe lteratlve model 

(like the first M.R.). predicts a broadening 

w%-distribution as N increases and also a stronger 

absorptive effect because of the extra factor of 

l/(N+2) in the absorptive slope. The latter reduces 

the number of events in the intermedlete w’region and 

enhances the large wC region. The dlstrlhution does 

not appear to be as broad as the Born terms would 

indicate, but it has a longer tall. These effects are 

all visible in the Monte Carlo predictions for the case 

N=2, shown in fig. 17a. The predictions of the 

multiperipheral model (with r*=R? for this 

distribution are shown in fig. 17b. 

The dlstrlbutlon in the transverse momentum of 

an outside (leading) particle in this model is 
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Again, this is very similar to the M.R. result when r* 

=R>(N+l) (equation 6.24). If RIls constant, the 

distribution broadens with increasing multlpllclty but 

the absorption enters with greater vlgour at hiTher 

multlpllcltles. I f RL*<N)* 1 ns, then the basic forward 

slope will not change, but the effect of absorption 

In general, one expects RX will change with N. 

to have a part which is independent of s and a part 

which grows with s. it this is the case and N goes 

approximately as Ins, then wl th no absorption, the 

forward peak will broaden with increasing s. However, 

absorption shrinks the peak by removing events from the 

moderate Pf region, in effect putting them into the 

larger transverse momentum region. 

In the absence of constrslnts, the 

multiperipheral model represents a random walk in 

transverse configuration space. The step length is 

el ther constant (rS=Racase), z varies with the local 

subenergy (as in our parton model). In contrast, the 

outside particles in the iterative production model 

undergo a random walk in transverse momentum space, in 

the absence of absorption. Absorption, which 

constrains walks in both spaces, forces models 

which appear very different to yield similar 

distributions. The close connection between the M.R. 
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mechanism (with ra 3S@(N+1) 1 and the polyper lpheral 

models might Imply that they should be treated equally 

in wrl tlng production amp1 I tudes. Indeed, wi th 

coup1 lngs sul tab1 y chosen, and using M.R. phase space, 

it IS possible to show that the graphs of fl?. 18 cance1.35 

We thus have two choices, consider both mechanisms on 

the same footing, taking such cancellations into 

account, or absorb either mechanism and ignore the 

other. The distributions resulting from the latter 

choice are comfortingly similar. All of this should 

have been expected from our Born graph arguments for 

strong absorption. The M.R. is a competing mechanism 

for the iterative Born term and vice versa. The 

cancellation of the two kinds of amplitudes which can 

occur in the multi-Regge region is responsible for the 

vanishing of the absorptive factor in the M.R. 

amplitude of equation 6.17 when the strong absorption 

parameter X reaches two. 

The absorptive damping of the multi-Re,qse 

region in these models makes it useful to construct a 

fragmentation model in which more dynamical welght can 

be given to other regions of phase space. In 

particular, the secondaries can share larger fractions 

of the longitudinal momentum of the incoming particle. 

The absorptive effects come from the etkonal 
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rescatterlng which becomes strongly absorptive at small 

total impact parameters, as discussed in connection 

wl th the parton model. 

Consider the case in which only one particle, 

of momentum P, fragments into N particles of 

longitudinal fractions yi and transverse conf lguratlon 

space ‘posi tlon xi. This will be described by a wave 

function y(<y; ,x; >I giving the amp11 tude for flndin,g 

this conf lguratlon. The center of mass of the r lght 

moving cluster will be defined as 

6.28 

so that the transverse center of mass is nearest the 

fastest partons. The position of each parton relative 

to the cluster c.m. is < =$;-“x, so that rY;T =O. The 

relative transverse momentum conjugate to F;-< is 

YjCiy$? . Let the undissoclating left-moving particle 

have &ordinate Y and define ?; =x,v. Suppose the 

incoming particle (bound state) scatters according to 

A(B) and that the final constl tuents scatter according 

to @ i(r;+B), independently of the energies (as in the 

vector exchange eikonal model). WI th the momentum 
4 

transfer A, pure1 y transverse, the general amplitude is 
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6.29 

There are a number of interesting cases to 

consider. There may be no lnltlal state scattering so 

that A(B)=1 (e.g.,#p-->ZnPp). Or there may be only 

A(B)=1 and @=l (diffraction dissociation with no 

rescatterlng). The spatial dependence of the wave 

function may be unknown but for this picture to be 

reasonable its spatial range should be less than that 

of the exchange mechanisms. What we would 1 Ike to 

determine are the experimental variables which most 

accurately probe the various dynamical mechanisms. 

To do this, let us for simplicity restrict N 

to be 2 and let \y =Y(r,-r,). Choose ?tr-r,so that, 

with the delta function, 7, =y=? and TX=-y,?. The 

conf lguratlon is as in fig. 19. 

Fig. 19 
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The amplitude has the form 

6.30 

where &Y~~-Y, 5% (Y, +Y& 31) is the relative momentum. 

Holding longitudinal variables fixed (the differential 

volume element being dp,), the distribution in the 

momentum transfer “a is 

. J gy 6.31 

if Iy(r) Ia=cf(y:) b’[r) , then we immediately have 

6.32 

so that the distribution in A is sensitive to all the 

scattering/as we would expect. This wTl1 hold even if \y 

is broad in confi,guration space unless the functions 8 

vary rapidly with transverse argument. 

The distribution in the variable%~ 

=$+Cl+y,$ is given by 
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For Y&L the integration over w tends to averege the 

effects of the dynamical mechanisms A, y, and Qz, so 

that the distribution in vi(the relative momentum of 

constituent one and the other particle), reflects most 

directly the effect of scattering between these 

particles. If y,=l), so that y, =l, then constituent one 

is the center of mass (by our definition) and the 

distribution also reflects the initial state scatterrng 

A. Y itself determines how likely it is that yz=O. 

if the wave function is very short range, then the 

v~distribrrtion also reflects the other interactions. 

The distribution in the relative momentum 

between the two cons t i tuents i s 

As one would expect, this distribution most clearly 

measures the wave function. ‘f w is very narrow in r, 

large values of P are possible. 
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The example above is somewhat trivial since 

the number of secondaries is small, but the same 

principles apply in the more complicated cases. 

Several general conclusions may be drawn. if the 

transverse size of the wave function is less than the 

range of the exchange mechanisms, the the slope of the 

distribution in p’should be less than the slope of the 

distribution in ha. Furthermore, when we compare the 

relative momentum distrihution of two right-movers with 

that of a right-mover and a left-mover ($1, the latter 

should be steeper and demonstrate absorptive breaks and 

a tail, as in the previous models. The rescattering 

effects within a right-moving cluster are so numerous 

and random in direction that no breaks or broadening 

should be apparent there. These effects are shown in 

fig, 20. 
ds 
db’ 

A’ 
Fig. 20 

. I 

1 
The break in the va distribution may be much sharper 

here than that predicted by the M.R. model. 
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VI I. AZIMUTHAL DISTRIRUTIONS AND THF GEOMETRY OF 

PRODUCTION 

We have thus far avo?ded treating the morq 

conventional approach to two-particle correlations in 

the form of azimuthal distributions. As mentioned in 

the introduction, it is necessary to separate the 

effects of momentum conservation, which implies that as 

soon as one selects a particle moving in a particular 

transverse direction, the second particle selected from 

the same event is most likely moving in some other 

direction. If9 I s the relative angle between the two 

transverse momentum vectors, the dlstrihution in # will 

tend to have an assymmetry with a peak at 4=~r. The 

occurence of dynamically induced correlations thus 

reduces to a question of the qusnti tative magnttude of 

the assymmetry. The small effects dlscussed above in 

which events with moderate values of relative 

transverse momentum are reduced in number while those 

with larger values are made more numerous will tend to 

increase the azimuthal assymmptry, but not 

dramatically. 

However , these distributions, and the 

Cartesian distributions introduced below, can be vpry 

useful and revealing. In particular, the point of view 
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associated with these distributions may allow a more 

direct geometrical interpretation, in the spirit of 

Yang and coworkers, of production mechanisms. 

We first call attention to the fact, 

elaborated below, that it is dffficul t to make any 

factorizable model for production produce azimuthal 

distributions with sufficient assymmetry to fit the 

data. This would be true even if these distributions 

were fit entirely by phase space. A factorizable model 

results in sufficient distortion of phase space to make 

this true. An example is the two-f ireball model of the 

introduction. The multi-Regge model also has this 

effect since the ordering of the chain implies that all 

final state momenta arc not cut off in the same way. 

This example will be returned to below. Note, however, 

that if sufficient M.R. configurations contribute then 

this effect may be reduced. The important point is 

that model assumptions must be made to cut off the 

transverse spectra. How this is done has a great 

influence on the resulting azimuthal distributions. 

Consider the 2-33 mu1 tiperipheral amp11 tude 

of equation 6.1. The notation is as in fig. 21a, 

where the geometry in transverse configuration space is 

shown in f lg. 21b. One can interpret this picture as the 

overlap of two extended hadrons with production 
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resulting from the overlap region. For exper imenta 1 

convenience one can parametrize the distributions in 

transverse momenta in the simple form 

7.1 

where z*and GLare the transverse momenta of the two 

leading f Inal state particles. Note that the simple 

multlperipheral model would have the parameter c=O. In 

comparing with experiment more precisely, the full 

absorptive results should be used. The 

phenomenological form is useful for locating model 

dependent assymmetr ies. 

The experimental results for the azimuthal 

distribution between leading boson and leading baryon 

in the reaction ~!~i++n’ir+t? at 16 GeV/c are shown in 

f lg. 22a. The dashed line is a best fit with c=O, 

demonstrating that the simple multiperipheral model is 

incapable of fitting the distribution. The dotted line 

is the absorptive model prediction. The radius of the rrrr 

subampli tude was taken as R %=6, that of the W-e 

subampli tude as Ra=ll, and that of the absorptlve 

factor as R=8. The latter were rough ftts to the Wp 

quasi-elastic and elastic t-distributions. The radius 
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is about what one would expect from a quark model. It 

is interesting to note that the bump near #=O is given 

by the absorptive prescrlption. There is a 

correspondingly striking effect upon the leading 

particle transverse momentum distributions. with this 

parametrization there should be a break in the 

transverse momentum spectrum of the leadlng nucleon at 

about P_L’ =0.25. This should be compared with the data 

of fig. 15c. 

One can also plot the data as Cartesian 

correlations. Choose a leading particle transverse 

momentum vector to fix the the x-axis. Then project 

the the transverse momentum of the produced secondary 

onto this and the orthoconal y-axis. The resul ti ng 

distributions are shown in fig. 22b. These are the 

projections of the radiation patterns shown in fig. 21~. 

The prediction of pure phase space for the -rre reaction 

is shown as the dotted line. Note that this 

demonstrates the negative azimuthal correlation due to 

momentum conservation, in shifting the x-distribution 

to the left. The solid curve is a rough fit with the 

phenomenological parametrization with a=4, b=12, and 

~6. The parameter c is related to the magnitude of 

the absorptive radius. It is interesting to note that 

it is of the same order as the other parameters. 
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The introduction of spin has very interesting 

consequences in this picture. To see this we consider 

the pair of reactions 

IQ + K’j+ 7.2 

where in the multiperfpheral model of f lg. 21a, there 

are contributions from both pion and omega exchange. 

In the latter case, we must couple two vectors to a 

pseudoscalar at the central vertex, We could proceed 

in configuration space where, as pointed out earlier 

the spin couplings are sensitive to the directions of 

the impact parameters and may be written as gradients 

in momentum space. It is easier here to proceed by 

writing down the only possible form. The spin 

coup1 I ngs will be taken to to be multiplicative (note 

that in Toller analysis the effect of m#O couplings is 

also multiplicative and does not appear in the 

exponentials). The simplest generalization of the 

phenomenological parametrization is 

He shall interpret the pion exchange 

contribution as transverse monopole radiation and that 

due to vector exchange as dipole radiation. These 

labels have more than mnemonic value as may be seen 
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from fig. 22c, where data from the two kaon reactions 

for events with invariant masses (subenergies) above 

the K’ and A resonance regions is presented. The 

effects of both monopole and dipole radiation are 

visible. A good fit, depending only slightly upon 

invariant masses, is obtained with a=6,h,=b,=lO, ~6, 

and g,/g, ~7.4. The important point is that the 

monopole and dipole contributions appear to have the 

same exponential dependence. The parameters vary over 

the mass ranges, most strongly in the resonance 

regions, but seem to approach asymptotic values at high 

subenergf es. The dipole term tends to dominate the KY 

resonance region, the relative weights changing as one 

moves though it. The azimuthal correlation analysis 

provides a clear and intuitive way of studying this 

region. 
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VI I I. CONCLUS I ON 

The general problem of constructing hadronic 

multlparticle amplitudes is as yet unsolved. Al though 

it is not a priori obvious, it would be extremely 

convenient if this task required only knowledge of the 

amp1 I tudes involved In two-body and quasi-two-body 

reactions --reactions which have been extensively 

studied and parametrized. This assumption under1 ies 

al 1 contemporary models for mu1 tiparticle amp1 I tudes,, 

but the complexity of the problem requires further 

strong assumptions about the way in which two-body 

singular1 ties are uti 1 ized. Because of factorization 

properties or similar statistical assumptions, these 

models produce average or global distributions which 

reflect primarl ly these statistical properties. It 

would be useful to consider how more detailed tests 

might be made and to consider how even the usual 

factorization assumptions may be incorrect at the local 

dynamical level at which they are imposed. 

An important constraint on the construction of 

multiparticle amplitudes is that of full n+m body 

unltarlty. In this connection, we have suygested that 

the choice of a particular Born term for production, 

built from two-body (perhaps off energy or angular 
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momentum shell) amp11 tudes, is not without hazards. / 

First, it may not incorporate initial and final state 

interactions (initial and final being defined by the 

Born term) or absorptive effects. The multiperipheral 

model is particularly vulnerable here. Even the 

possibility that the hadronic force is vector in 

character and that the impulse and not the time for 

rescattering is important makes momentum space 

factorization arguments suspect. Second, the assumed 

Born term may not incorporate all the production 

dynamics (particularly at small distances), leading the 

necessity for strong absorption, as discussed in 

section i I. 

This suggests that the existence of many-body 

degrees of freedom is an essential problem in 

production. The parton model construction introduced 

in section III indicates, albeit in heuristic fashion, 

how this may come about when considered from both Regge 

and eikonal points of view. New cuts appear in the 

former at the level of small distance (or large 

momentum) structure and corrections must be made in the 

eikonal treatment. The fact that the Regge view more 

properly treats the large configuration space or small 

momentum space dynamics whi le the eikonal connects 

regions far apart in momentum space and is more 
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intimately connected with s-channel unitari ty makes 

these approaches highly complementary, Absorption 

results. The small distance dynamics, leading to 

corrections to both pictures (for the elkonal, these 

are conf lguration space gradients), imp1 ies the 

necessity for strong absorption (for which we have only 

an ad hoc prescription), altering the original 

description of, for example, intermediate tramsverse 

momentum regions and emphasizing the role of the large 

momentum region. The preliminary ISR data suggest that 

this region is far richer dynamically than most had 

thought. 

The parton model construction indicates the 

general features of this problem but it is only in the 

model constructions that one can deduce the variables 

appropriate to testing specific local dynamical 

assumptions. The fact that absoption of very different 

mechanisms leads to very similar distributions in these 

new variables does not inspire confidence that any 

particularly simple choice of local dynamics is correct. 

The experimental evidence begins to suggest that one 

must look for clues in effects involving only a small 

percentage of the data. One suspects that it will be 

difficult to find definitive. evidence for any 

particular dynamical mechanism for production. There 

-95- 



is thus no conclusion, unless one is willing to accept 
36 

that of Samuel Beckett: 

Remember there is no triangle, however 
obtuse, but the circumference of some 
circle passes through its wretched 
vertices. 
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