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1. INTRODUCTION

This report describes a kinematic fitting program, FIT70, written as a
closed subroutine in FORTRAN IV (on IBM System 360/91). This was used
to perform the kinematic analysis of a large scale photoproduction experimentl
with the streamer chamber at the Stanford Linear Accelerator Center. The
purpose of the program is to adjust by minimizing a certain X2 the input data
consisting of mass and momentum for each track (and the full error-matrix)
associated with a vertex so that the fitted data satisfy the energy momentum
conservation. The resulting x 2 is also used as a test for the assumed mass
hypothesis.

The general formulation of kinematic fitting has been known for many
years. 2 The methods used in FIT70 are originally due to G. Ascoli and have
been adapted from ILLFIT, 3 the first version of which dates back more than
ten years. We describe some features:

1. 3-momentum fit.

The fitting is formulated in such a way that it is possible to ask only for
3-momentum conservation. To test for the visible momentum balance we
first do this 3-momentum fit for each constrained fit. A large X2 at this
stage implies the presence of missing neutrals. Furthermore remaining mass
hypotheses of the same class may be skipped as a time-saving device, since
the 3-momentum fit is insensitive to masses (apart from small energy-loss

corrections). For example, in the reaction,

w—-17Pp ,
with unknown photon energy this preliminary fit is a 2C fit requiring the trans-
verse momentum balance. This ﬁt.serves as a finer filter than, for instance,
testing mf/ of measured values.

On the other hand if the 3-momentum fit is good, then the solutions are
such that the subsequent fit including the energy constraint usually takes one
step to converge to the final values.

2. Alternate method of iteration.

The numerical difficulties in the conventional method of minimizing, such
as outright divergence or too-slow convergence, are all due to constraints,

If the constraints were linear, one step would lead to the final answers
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regardless of the starting values. When these difficulties arise, we take a
step in a different method of iteration, which is designed specifically to force
the constraints to vanish.

3. Negative discriminant in 4-missing variable case.

This problem arises in the case including one missing neutral and one
track with unmeasured momentum, as in the decay,

K .

One has to solve a quadratic equation for the unmeasured momentum (if the
particle has nonvanishing mass). Due to the measurement errors the associ-
ated discriminant may be negative. In this case a solution is forced by means
of a formal 1C fit with the vanishing of the discriminant as a constraint.

In Section II we give the mathematical formulation, which also serves to
introduce notations. In Section III the programs are described. And finally,
in Section IV we discuss how this program was used in the photoproduction

experiment and summarize results.



II. DESCRIPTION OF METHOD

A. Usual Mode of Iteration

We want to minimize a x2 with respect to variables, X, @i=1,...,NV),

subject to constraints, Fx(x)=0 (=1, ...,LC). Using Lagrange multipliers,
2“7\’ we have to find a minimum of the xz defined as,

LC
Z](x-x ) Gy(%57%; )+2Z o, Fy (®) (1)

where x are the measured values with the covariance matrix, G (We need

to know only the error matrix,

-1
Gij = < 68X, 6XJ >

as seen below.) We are thus led to the following system of NV+LC equations
to be solved for NV variables X, and LC multipliers o,

1 OF,

3 ox, ZG(X—X)+ZauaX =0 , (2a)
2

%%;\:Fx(x):O. | (b)

Because of the functions F?» the problem is not linear. We linearize F)\

and iterate as follows. Put

x =00 A, 3)
and take
F, (1) = F, () L2 (x°1d> Ax + 0(a%)” )

Ignoring terms like O(Ax)z, Egs. (2) become a linear system in Axi,

old m ol
wi Gy Gy ) uax d) 0, -1y 6)
4% [)Li’/
oF
1 kG ——ax?‘ (x°1d) Ax, + F)\(xom) =0 . (5b)

1
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The solutions are,

a, =H,"B , '
s (6)
_.,m _old
Ax, =X, - X —oszki , (7)
where
oF
_ A -1
B\ =%, CGij o ®)
i i
HMEEA. ox, ©)
i
and
oF
= F, (x old) , % - °1 7‘ . (10)

So that the new values of variables are, from Eqs. (3) and (7)

new _ _m
X, =X _aAEA . (11)

And the new value of x2 is from Eq. (1)

n
ew 2

2
a.E, G..a E .
X N VR Ty

a,H, o
AT AuTp

= a,B, (12)

not including the contribution, Zoz}\F)\(x) = O(Ax)z, which should finally vanish.
The amount xz will decrease because of this step is

old new
sx2 = ZahF}\(XOId) +x2 oy ) (13)

B. Speed of Convergence

Since the remaining part of y 2 is linear to begin with, it is sufficient to
make sure that the constraints are rapidly decreasing to zero in order to
prevent non- or too-slow convergence of the iteration scheme described

previously. For this purpose we introduce a testing function, which is like
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ay 2 for vanishing constraints,

2 U |
<F (X)> = F,.(X)<6F,0F > F (x 14
x) ;\( ) A%y M( ) (14)
Since
oF oF
_ m_ m _
<6F,0F > = %, <6%; 60X, >—-Ea 3 =H,, > (15)

the testing function becomes

2 -1

<F"(x)>=F,H, F 16

®)>=F\H Fy (16)
Let

2_new _ new, ..-1 new

<F™> = Fh(x )HM FH(X Y (17a)
2 old ol -1 ol

<F"> =F,\ d)Hyw Fu(x d) . (17b)

At the end of each iteration step we test if

<F2>new < <F2>Old . (18)

Otherwise we take a cut-step (described later) to avoid this bad iteration-step.
If the constraints are found to be decreasing, then we test the speed by de-
manding

<F2>new < € <F2>Old

, (19)
with € =0. 7 say.

C. Special Mode of Iteration

If the speed of convergence in the usual mode of iteration is too slow

(Eq. (19) is not satisfied), or cut-down procedures fail to cure the divergence
condition (Eq. (18) is not satisfied), then we take a step, which is designed to
force <F2> = 0 as described below. Demand

oF

2 A
axi

<F%> = -1

H, F =0 20
At (20)

Do} =

9
c>xi



Linearize as in Eq. (3) and (4),

BFA -1 oF
-é-)-(THM FIJ- + —'Eaxj AX] =0 . (21)
Since
oF oF :
A -1 _
0%, Hyy ox; =Gy » (22)
we obtain
-1
Axi = - E;\i H}\1u FM , (23)
so that
xew _old Ay 24)
i i i
The amount x2 will decrease because of this step is, by design,
ox2 = <F301 (25)
and we have
new old
x2 = 2aAF7\(x°1d) +x2  -sx2. (26)

D. Cut-Down Step

If an iteration step leads to an apparent divergence (< F2> increasing),
or to unphysical values of variables (negative momenta), then instead of the
full step Ax, we take a smaller step (for all variables)

eV - x(.)ld + A AX (27)
i i i
with A <1,
The new xz due to this cut-down step is
new old
2 2 old m 2
X =X + 2N A%, Gij (xj -xj )+A AxiGiijj . (28)
From Eq. (5)
old m, _ ol
AxiGij (xj —xj ) = 'AxiGijAXj+ aAF)\(x d) . (29)



And using Eqs. (10) and (12)

201d O].d)
AxiGiijj =% + za}\FX’(X ) - aAB)\ (30)

Thus Eq. (28) can be written

2new 2old ( 2old
X =¥ - 22\ x +a7\F>\ -a}\BA)

2( jold (31)
+ A7 \x + ZoszA - aAB7\>

E. Case of Fewer than 4 Missing Variables

We describe how the unmeasured variables, if any, are solved for and
the remaining constraints are obtained in the case involving 3 or fewer un-
known variables. The following cases considered are found to be sufficient
in practice. -

1. One missing momentum.

Let F be the total measured momentum,
F1 =3, s;p; cos )‘i cos ¢>i s
F,=2.8;p; cos A, sin ¢, (32)
Fgq= Zsipi sind, ,
where 8; = +1 (-1) for outgoing (incoming) particle. Consider three ortho-

normal vectors, éi such that 53 is antiparallel to the direction of the particle

with unknown momentum P (whose angles ¢ 2 and A, are measured). Explicitly

2
we have
e3 = - (cos 7\2 cos ¢2, cos 7\2 sin ¢>2, sin Aﬂ) s
62 = (sin ¢£’ -CcOS ¢£, 9) , (33)
e;=¢e, X eq

The momentum conservation reads

P.e +P2é

181 +Pge =F (34)

2

where Pi is magnitude of the momentum in each direction ;i . Or in matrix
notation

U..P.=F, , (35)



where we have defined
= (ej)i (36)
So that the missing momentum is
_ e |
and the remaining momentum constraints are
P, = (U_IF)l =0 ,
(38)

-1
P, = (U F),=

2. Two missing momenta.

Instead of Eq (33) take e2 and e to be unit vectors anuparallel to the

directions of two m1ss1ng momenta respectlvely and el = e2xe3/ le ><e s

Then we have for the missing momenta

-1
p, =(U "F), ,
!Zl 2
1 (39)
= (U F)3 .
and for the constraint
-1
P1= (U F)1= 0 (40)

3. Three missing momenta.
Instead of Eq. (33) take the unit vectors éi to be antiparallel to the di-

rections of missing momenta respectively. There is no momentum constraint.

4, One missing neutral.

The momentum of the neutral is
P =- s F (41)

so that the three unknown variables are

P =\/P2+P2+P2
n X y Z

-1 Pz
A =tan t 2 (42)

n \/P)2(+P§ ’

TS|
¢, =tan P /P,



F. Case of Four Missing Variables

We treat the problem including one neutral Py Ay and ¢, are unknown)
and a particle with unknown momentum P (the angles Aﬁ and ¢ 0 are measured).
We describe below how P is obtained. Once Py is known, the missing neutral
Py, can be obtained as in Section II.E. 4.

Let T be the total measured momentum as in Eq. (32) and € be the total

measured energy,

€= 28K - m. (43)
where 8, = +1 (-1) for outgoing (incoming) particle and mT=0 if there is no
target. The energy-momentum balance reads,

T+sp,+sD. =0,

il nn (44)

€ + s£E2+ snEn=0 .

Eliminating P, and En from the above equations, we obtain an equation for Py

as

—eE£+ bpﬂ +s@a= 0 (45)
where

_1l(=2__2__2 _2

a=g3 (‘ﬂ -€ —m£+mn), (46)

and b is the projection of 7 in the direction of f)} ,

b=T . u, . (47
If mﬂ=0, then from Eq. (45) we get
8,2
P ed - ‘ (48)

In general mzyfo, and Eq. (45) leads to a quadratic equation for Py

2,2 2 2 2 2
(e "-b") Py - Zsﬂab P, t (e my-a”) = 0 . (49)
Unless the discriminant,
D= a2 —mf(ez-bz) , (50)



is negative, we have two roots

p{? =B (L+V1-c/B%) ,

51)
@ _ /(D) (
pz ‘_C/pﬁ s
where
ae sﬁab
€2_b2
(52)
2 2 2
€ m, —a
C=__%
2 2

Because of measurement errors events with small values of D will
sometimes show negative values of D. The value for P obtained by simply
taking D=0, will violate energy momentum conservation. Hence we have to
readjust the measurements to satisfy the condition, D=0. We achieve this
by formally doing a 1C problem of minimizing x2 of Eq. (1) subject to the
constraint of vanishing D.

In this process we need the following partial derivatives: For measured
variables X, except A, and ¢ 2

OF

oD _ oD °Fy
5%, ~ oF X, (53)

i p i

where ‘aFu / axi are the usual partial derivatives given in Section II. G and
oD/ BF” are,

8D _ 2
3e = 2 (a+m£) € ,
oD 2
% _2a7rx+2b m2 cos 7\1 cos ¢£ ,
(54)

oD _ 2 .
F—zawy +2b m, cos )‘IZ sin ¢2 R

y
oD 2 .
ﬂ—z_zawz +2bm2 sin ?\2 o
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All partial derivatives with respect to unmeasured variables vanish. And we

have
—8—]2=2m2b (r.sin A, cos ¢, + 7_sinA sin¢,~m_cosh))
axﬁ ? X [ J y J L "z L7
(59)
oD 2m2b (T COSA, sin¢,-m_cos A, cos ¢,)
a¢l 1 X 2 Ly { (A

G. Derivatives of Constraints

We need derivatives of constraints with respect fo measured variables
xk,1 namely those with nonvanishing diagonal element in the error matrix
Gij . We assume that unmeasured variables Yy have been solved for as
described previously so that we do not have to distinguish. In particular,
for this purpose the error matrix is taken to be the full NV-by-NV matrix
with elements referring to Yy set to 0. |

Our choice of variables are for each particle,

1=1/p, X, = A and x,= ¢

3 (56)

Let (FM) = (e, F) be the total 4-momentum as in Eqs. (32) and (43) including
contributions from particles which had unmeasured variables. Also let P
be the 4-vector of a particle, multiplied by Sy = -1 if it is incoming. The

partial derivatives of energy and momentum are of the form

oOF; 1 52 oF oF
5%, - Ex, * %, 0 ox, 0
1 1 2 3
oF, P, o0F, PP, oF,
=%, K, B, T Py
1 1 2 b2, p2 3
Xy
(67)
oF; Py 0Fy PP, oF; .
ox, X, ° ox, ’ 9x, X’
1 1 2 /2 2 3
P +Py
oF P oF oF
4 Tz 4 52 2 4
ox; __X'I ’ axz_sk Px"'Py ©ooxg

- 11 -



The above is the final result if there are no missing variables. Otherwise
we have to take into account the constraint transformation and the implicit
dependence as described below.

Let

oF " oF,

—a-i-‘i-‘ =C,, %, 8)
where C is the inverse of the 3-by-3 matrix U of Eq. (35), trivially extended
to 4-by-4 to accommodate the energy component if necessary (MMD=4). As
described earlier, because of the way C is constructed, Eq. (58) with
p=1,...,LC, gives the explicit part, aFi/axi, of the derivative of the unused
constraints. (Strictly speaking this is not correct since the transformation
C is taken to be constant, which is allowed because we are iterating.) There
is an additional contribution through the implicit dependence, ayl/ axi.

The remaining part of the derivatives calculated above, i.e., Eq. (58)
with y=LC+1,...,MMD, satisfy

ol oxl oyl
. + =90 (59)
axi ay1 ayi
4
So that
3 oF, 171 oF
o/ [_1} Ty 60)
axi ay!Z axi
We have as a final result
1 1
oF oF 9F) oy
Yo A, A 1 (61)

where A=1,...,LC.

H. Fitted Error Matrix

Let X be fitted, Yy computed, and x;n measured variables. Then as dis~

cussed in Ref. 2 it is straightforward to obtain the following result for the

error matrix associated with the fitted variables,

-1 -1
Sx>=G L -G .H1E . 62
<0%;0%> = Gy~ G By (62)

-12 -



where as before G;jl is the error matrix for the measured variables and the

matrices E,. and H, have been defined by Eq. (8) and (9) respectively. Also

M Au
we have
<6x16y£ = <5xi6xj> Vﬂj , (63)
< 6y£6y£,> = Vﬂi < Gxidxj> Vij (64)
where Vﬁ is the matrix ay!l/axi of Eq. (60).

- 13 -



0. DESCRIPTION OF PROGRAM

A. A Bird's Eye View

For each mass hypothesis at a vertex the main program, FIT, is to be

called to obtain a fit. As shown in Fig. 1 FIT uses six subroutines,
BLOCK1,...,BLOCKS6, each carrying out distinct tasks (as summarized in
Table I), performs various tests based on the results, and controls the flow
of computations. An attempt was made to separate out, from the program,
"arithmetic' such as those involving vectors and matrices, so that the
problem of optimizing (in speed or space) can be attacked independently of
the program itself. Thus there are CALL's for external routines as listed
in Table II, some of which may easily be MACRO-CALL's to cause in-line
expansions.

A general pufpose MACRO processor4 is utilized in the original source.
This processor is designed to easily equip with a MACRO facility, a language
(such as FORTRAN, or SUMX Control Cards) lacking one. In particular the
declared dimensions are symbolic in this source, which after a pass through

this processor turns into an ordinary FORTRAN source.

B. BLOCKs

1. BLOCK1l (& Error return)

This is an input routine to be called once per fit. At entry the variables
in the COMMON block /CBLK1/ must be set as follows:

MMD: either 3 to demand 3-momentum conservation only;
or 4 to include energy conservation.

NOT4: zero to do 4-missing variable problem including one
neutral and a particle with unknown momentum; or
nonzero to disallow 0-constraint situation in any other
case.

NCALL: 1 to call for first (larger) root in the 4MV case; 2 to
call for second (smaller) root.

NP: total number of particles including neutral.

XMEAS(3NP): measured variables x;n such that for kth track,
XMEAS(3k-2)=1/p, XMEAS(3k-1)=A, and XMEAS(3k)=¢.
If 2 momentum is unmeasured, then XMEAS(3k-2)=0.

- 14 -



Cut-down

(Clear COMMON, NROOT=1,MARK =1)

LC=MMD-MV

|f MMD =3, skip, \
(1 MMD =4 then ]
ICHEAT=1,MMD=3,LC=LC-1 |

IWASCT>KI,

IWASCT = IWASCT +1
1ARECT = IARECT + 1

Xz (X;-X;29)- Clg. o x;01d
Adjust CHINEW, DCHI

(isischid)

MODE =1
ISNEAK=1

l

DFOLD <Cl4

m 3

$!

' [Finished ICHEAT step: |
%, [ICHEAT=0,MMD=4,LC=LC+1]

(oo Csie )

no
DEL>Clg DFOLD
yes no =1
MODE = 1 IF1>AG
ISNEAK =1 no
\ NROOT =1
IPUSH =2
LC=0

reject

(WARK=T)

Typical Values
Cly 70. K1, 50
Cl3 0.00 K13100
Cl, 0.01MeV
Clg 0.25
Clg 07

LIFA <Cly I
<6
MODE =MODE +1

NSTEPS >Kl4or

yes

@

Yes

\\ IWASCT >K]5+58 / .

(1eiests)

(isisct 2)

NSTEPS>Kly

=0

Done

| eLocke |

NSTEPS=NSTEPS+1

210182

FIG. 1--Subroutine fit. Values of parameters shown are from Exp. 13.
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TABLE I

BLOCKS
Block No. Purpose
1 Prepares input data
2 Calculates unknown variables and constraints
3 Computes derivatives of constraints and of
unknown variables
4 Takes one iteration step
5 Treats four missing variable problem
6 Calculates output error matrix and stretches

- 16 -




TABLE I

ODDS AND ENDS

Vector Manipulations

DADDJ(X, Y, Z, N)
DEQUJ(X, Y, N)
DEQUS(A, X, N)
DNEQUJ(X, Y, N)
DSCAL(X, Y, N)
DSMPYJ(A,X, Y, N)
DSUBJ(X, Y, Z, N)

DVECN(X, Y, Z)

Z(N) =X(N) +Y(N)
Y(N)=X(N)

X(N)=A

Y (N)=-X(N)
DSCAL=X(N)- Y(N)
Y(N)=A-X(N)
ZN)=X(N)-Y(N)
Z=XxY/1Xx Y|

Matrix Manipulations

DMMPY(A, B,C,N, M, L)

DMMPY1(A,B,C,N,M, L)
DMMPY2(A,B,C,N, M, L)
DMMPY3(A,B,C,N, M, L)

DMTINV(A, N)

DMTRN(A, B, N, M)

C(N, L)=A(N, M)- B(M, L)
C(N,L)=A(M, N)- B(M, L)=A"B
C(N, L)=A(N, M)- B(L, M)=AB *
C(N, L)=A(M, N)- B(L, M)=A 1 BT
A(N,N)=A_1(N,N) and
DMTINV=Det(A)

B(M, N)=A(N, M)=AT

Peculiar to FIT

DGETX(X, P)

DGETP(X, P)

Get X=(L/p 2, ¢) from P=(p,,p_,P,)

Vice versa

- 17 -




GINA (3NP, 3NP): bottom half (i>j) of error matrix Gi’jl. For

example, GINA(3k-2,3k-2)=<61/pé1/p>,
GINA (3k-1, 3k-1)=<6A6A>, and GINA(3k, 3k)=<6¢6¢>.
In particular <§¢6¢>=0 for neutral.
SN: -1 if first particle is incident; +1 otherwise.
TMASS: target mass; zero if none,
RMASS(NP): mass list.

BLOCK1 counts unmeasured variables (MV) by testing GINA (3k, 3k)=0

for a neutral particle (3 missing variables) and XMEAS(3k-2), 1/p=0 for

unknown momentum (1 missing). It zeroes elements of GINA corresponding

to missing variables. It also initializes the variables X (in /CBLK2/) to

XMEAS; missing variables are taken as zeroes except momentum, if it is
unknown, is set to 1.

Error-returns:
NRJCT=1; number of missing variables (MV) exceed MMD.
4; GINA is not positive-definite.
2. BLOCK2 (& Cut-down, & Error-return)
BLOCK2 first examines X to make sure that every momentum is positive,

otherwise does cut-down return. Then it solves for unknown variables (in the

case MV <3) using the 3-momentum conservation as described in Section II. E.
The total measured momenta are also calculated: If MMD=3, then

F=(Z PX, EPy, ZPZ) and C is the 3 by 3 matrix U—l of Section II. E; if MMD=4,

then F=( E,F) and C is a 4 by 4 matrix of the form

1
c=|--
0

————

1o
[uey

\_/

In any case constraints are obtained by requiring first LC=MMD-MV compo-
nents of (C)(F) to vanish,

Error-returns: :
NRJCT=6; two or more parallel missing momenta (U is singular).
7; negative momentum in first iteration step.

16; negative momentum in LC=0 case,.

- 18 -



3. BLOCK3 (& Error-return)
BLOCKS3 computes partial derivatives of constraints F

2 and of missing

variables y, as described in Section II.G. On return we have
NV —
oF,  oF, 8y£>

t BXi dyﬂ aXi

and
«~NV -

I /oy,
V=MV %
| i
Error-return:

NRJCT=5; MV by MV matrix an,/ayﬂ is singular (see Eq. (60)).

4., BLOCK4 (& Error-return)

This routine does one iteration step. Calculate LC-by-NV matrix ELI
defined by Eq. (8), HIN, inverse of LC-by-LC matrix H of Eq. (9), and LC

component vector B of Eq. (10). Then in the usual mode of iteration
(MODE=0) we have

ALFA = (HIN)(B) ,
and

X = XMEAS - (ALFA)(EL]) ,
as in Eqs. (6) and (11). Also take CHIOLD=CHINEW and calculate CHINEW
as in Eq. (12). The old value DFOLD of the testing function Eq. (17b) is
also computed for later application in FIT.

In the SNEAK mode of iteration (MODE#0), which is designed to force

< F2>=O as described in Section II.C, we have

X = XOLD - (ELI)* (HIN)(F)
as in Eq. (23) and the new value of xz is given by Eq. (26).
Error-return:
NRJCT=12; H is singular.
5. BLOCK5 (& Neg-disc, & Cut-down, & Error-return)

This routine treats the 4-missing variable problem as described in

Section II.F. There are in general two roots for the missing momentum P
(we assume mﬁ#O). BLOCKS is to be called twice with NCALL=1 and 2
respectively to get the first (larger) and second root for Py IPUSH is
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initially zero, is set to 1 in the negative-discriminant case, and to 2 (in FIT)
when a solution is found. Both calls, NCALL=1 and 2, will give the identical
answer in the latter case. More detail is shown in Fig. 2,

Error-return:

NRJCT=13; No good root,

14; No energy balance. This and test (V) in Section III.C.2 are
the only instances in the entire FIT package in which the energy scale is
needed. We assume it is MeV and the error is due to an energy imbalance
of more than 1 MeV,

6. BLOCKS6
The fitted error matrix GINB and stretches STR are calculated in this
routine as described in Section I.H.

C. FIT

This is the main control program to be called once (twice) per con-
strained (OC) hypothesis to obtain a fit. The input requirements have been
given in the description of BLOCK1. We sketch below what is done in FIT.
More details are shown in Fig. 1.

1. ICHEAT step.

If MMD=4 and the number of unknown variables (MV) is less than 3, then
we first do one successful step (during which ICHEAT=1) of the MMD=3 fit,
which requires only the visible momentum balance. Large y 2 leading to
reject 9 (see Test (ii) below) at this stage implies, of course, large missing
momentum (carried off by neutrals).

2. Iteration Control

The following tests are made, at the end of each iteration step in the

order listed:

(i) Make sure of nondivergence by demanding DEL < DFOLD, where
DEL=<F2"®V, DFOLD=<F219 of Egs. (172 andb). Otherwise take a
cut-down step.

(ii) Test x2 to see if it is not too large: X2 < 2 CI(1) for the first step,
in particular, ICHEAT step, and XZ < CI(1) for subsequent steps. Other-
wise reject 9.

(iii) Test for termination, DFOLD < CI(3). If not, either convergence

is too slow or we have to take another iteration step.
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If NMISSP(2) = MISSN, then
NMISSP (2) = NMISSP (1) and
NMISSP (1) = MISSN

1PUSH =1

NROOT = 0

IARECT =0
LC=1

(NCALL=2)

(pL=80) (PL=caseL)

=0
(NrooT 220

PL=BQ(1+ VDISQ )

{NCALL=1)

LIGHT =1
ROOT =PL

PL = CQ/PL

DISQ = AQ'- miCQ
Get 6D/6Fp
AQ=|6D/6¢|/2

and as in Eq. (55)

F(1)= DISQ

(1t LIGHT=1then PL =ROOT )

(% =1/PL, MV =3, MP=1)

Test Root

PL<10 es
no

(EL=(Sia+bR)/c Eq(45))

(EN<10"H222 (NROOT = NROOT- 1)
(Return )

210183

FIG. 2--Subroutine BLOCKS5.,
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(iv) Test speed of convergence, DEL < CI(6) DFOLD. If not, take a
step in SNEAK mode.

(v) Check the final solution to see constraints are actually zero,
z IF)\I < CI(4). Otherwise increment MODE and take a SNEAK step, unless
MODE > 5 or NSTEPS > KI(1) or IWASCT > KI(2)+5, in which case terminate.

3. SNEAK Mode of Iteration.

This is the special procedure designed to force constraints to vanish

(< F2> = 0) as described in Section II.C, which is invoked when

(i) tests (iii) and (iv) are not satisfied, meaning too-slow convergence,
or

(ii) too many cut steps are called for (because the iteration is diverging),
or

(iii) the final solution does not yet satisfy test (v) above.

4. Cut-down.

If BLOCK2 finds that the current iteration step will lead to negative
momenta, or if FIT detects the divergence condition (test (i) above), then the
cut-down steps as described in Section II. D are taken until the undesired
condition vanishes. If too many such steps are called for, i.e.,

IWASCT > KI(2)/2, (presumably because of nondecreasing <F2>), then
SNEAK mode is invoked. If this fails then eventually IWASCT > KI(2) leading
to reject 10. IARECT counts consecutive cut-steps taken during one iteration
step.

5. When everything fails so that the iteration counter NSTEP exceeds
KI(1) the fit is terminated via reject 11.
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IV. APPLICATION AND PERFORMANCE

The present version FIT 70 was used to perform the kinematic analysis
in the second photoproduction experimen‘c1 of Group D (Experiment 13) at the
Stanford Linear Accelerator Center (SLAC). In this experiment the 2-meter
streamer chamber with a pressurized hydrogen gas target was exposed to an
18 GeV bremsstrahlung beam. 640,000 pictures (in 3 views) were taken by
triggering the chamber for hadronic events,

Everits were measured using conventional hand-guided machines (SPVB
and NRI at SLAC) and were then processed through the geometry program
SY BIL As explained in Ref 5 the geometric reconstruction of events was
approached in a manner unlike those of the usual bubble chamber programs
(like THRESH or TVGP) because of the following aspects of the experimental
setup:

(i) The target tube (made of Mylar, 4 mil in thickness, 1/2" in diameter
and extending the whole visible length along the beam) made the vertex region
and some path length downstream invisible. Tracks associated with a given
vertex were fitted simultaneously together with the vertex coordinates from
the beginning.

(ii) The top set of magnet coils had no iron core (to let the cameras see
through) giving rise to a comparatively more complicated field in the chamber.
Rather than relying on a (piecewise) analytic expression for tracks in space,

the equation of motion for a charged particle,

du K* =
as —puxB

with momentum pu(X) through a magnetic field B (X), was integrated numeri-
cally (via a Runge-Kutta method). In each view reprojecting and comparing
with measurements the residuals were computed, the sum of squares of
which defined the y 2 to be minimized with respect to the track parameters
and vertex coordinates,

The resulting track parameters, (1/p, A, ¢) at the vertex for each track,
and the full error matrix including elements correlating different tracks were
then input to FIT.

From the programming point of view the kinematic analysis in this exper-

iment was particularly simple, because (i) the reactions analyzed were all

-23 -



one-vertex type, and (ii) Coulomb scatterings (in gas) were negligible so
that the error matrix of the least-square fit in SYBIL (accounting only for
measurement errors) was used directly without modifications.

Table IV gives a brief description of additional routines (except those
of the standard IBM support) used in this analysis. The input/output tape
formats were kept identical to those of the SYBIL-TEUTA system used in
the preceding experiment7 as described in Refs. 5 and 6, in order to mini-
mize effort in interfacing to then existing programs. Thus several routines
were taken intact from TEUTA disregarding much duplicity in COMMON
space. Also, to get results quickly little optimizing was done in the utility
routines such as those in Table II. In this application most of them were
in FORTRAN generating much overhead and furthermore the advantage of
dealing often with symmetric matrices were ignored.

A total of 39, 313 hadronic events were reconstructed by SYBIL at the
rate of 2.3 CPU sec/event. (The total CPU time amounted to 9 hours and
26 minutes.) The composition of different prong numbers is shown in
Table V. After applying small energy loss corrections due to the mylar tube,
which is negligible for particles with laboratory momenta (scaled to proton)
higher than 300 MeV, these events were input to FIT to test the mass hy-
potheses as listed in Table VI. A total of 193, 145 3C fits were made, not
counting those hypotheses which were skipped because of large missing
momenta, at the rate of 22 msec/fit (total CPU time of 73
minutes). As summarized in Table VII there were almost no cases (one
out of 2000) in which FIT failed to converge to a solution. In this run no
other possible rejects (see Table II) were found.

To take a closer look we have reprocessed a sample consisting of 300
5-prong events (each having at least one acceptable 3C fit) outputting (via
the subroutine LOOK, which otherwise is a dummy) a short summary record
for each fit to be SUMXed. In this run a total of 4500 fits were made, 3683
of which were rejected because of too large y 2 (greater than 70). The iter-
ation counter, NSTEP, the accumulative cut-step counter, IWASCT, and
MODE are displayed in Fig. 3. MODE, when ISNEAK=0, counts the num-
ber of step/s taken in the special mode of iteration designed to force the

constraints to vanish. This is invoked when Z| F)\' > 0.01 MeV. Otherwise
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TABLE III

ERROR CODES

Code Why Where
1 Too many missing variables BLOCK1
2 NOT4#0 in 4MV case FIT
3 No missing neutral in 4MV case FIT
4 Input error matrix not positive definite BLOCK1
5 Singular aFA/ByE BLOCK3
6 ?arallel missing momenta BLOCK2
7 Unmeasured momentum negative BLOCK2
9 x2 too large FIT

10 Too many cut-steps FIT
11 Too many iterations FIT
12 Singular Huv BLOCK4
13 No root in 4MV case BLOCKS5
14 No energy balance in 4MV case BLOCKS5
16 Negative momentum in OC case BLOCK2
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TABLE IV

ROUTINES USED IN EXP. 13 KINEMATICS

Name Type Additional Entries and Description

BLOCKA XF SELECT,ISTORE, IPRINT: Experiment dependent
Main Control; Prepares input such as nominal
beam parameters, energy loss corrections and in
conjunction with IDRIVE drives FIT and the rest.

DCLEV GF Calculates confidence level for given x2 and NDF.

DMASS GA Mass codes, characters, and values.

DPFR GF DRFP: Momentum from range and vice versa for
proton in mylar.

DTQ3 GF Quadratic interpolation.

DUMP GA DUMPF: Used for debugging purpose; F-entry
NOPes BALR in Caller.

ELOS XF Energy loss through mylar. (Contains experiment
dependent constants.)

FAREAD GA FAWRIT: FORTRAN array I/0.

ICHOPD GF Binary chops a table..

IDRIVE XA Event types and mass hypotheses for Exp. 13.

READL1 XF READ2,...,READ5, WRITE1l: Selected reading
(writing) for TEUTA output records.

SCRIB XF Printout.

BREAD TF Reading for TEUTA output tape.

BWRITE TF Same for writing.

ENDREP TF Generates run-report from summary-records.

ORDER TF Orders fit-record in mass and charge.

OUTPUT TF BTALLY: Prepares output record.

TOUT TF Writes fit-record.

WSOM TF Writes summary-record.

Type characterizes each routine as either in FORTRAN(F) or in
ASSEMBLER(A) and G for general purpose; X for Exp. 13
use; T meaning it is from TEUTA.

I
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TABLE V

EVENTS IN EXPERIMENT 13

Prong Number Events 2 3C-Events
3 21, 055 7, 304
5 15, 305 4,162
7 1,918 368
9 180 31
Other b 855

a. Correspond to different film samples;
5 prongs from all, whereas 3, 7 and 9
from 28/64 of all.

b. Mostly V-events from a sample of film,
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TABLE VI

MASS HYPOTHESES IN EXPERIMENT 13

o TYPE TABLE
TYPRG TP 500, T500
TP 30, 7200
TP 700, 7700
TP 200, 7200
TP 900, 7900
TYPND EQU *
% FIT TABLE FNR TYPE 500
ENMEZ SETA 5
SCNTRL SETA EMMDL+&PROD
T500 Fi 501 4 (GAMyP 4P 4yPIMyPIP,PIM,PIP)
Fi 502, (GAMPZPIPPIMP4PIM,PIP)
F i 502y {GAM 3P yPIPsPIMyPIP4PIM,P)
FWw o 504y (GAM 4P 4P yKMyKP 4PIM,PIP)
F i 5054 (GAMyP 4P 4PIMyKP,KM,PIP)
FU 5067(GAMyPyPyKM,PIP,PIM,KP)
FH 507,(G/—\M,P,P,PIM,PIP,KM,KD)
F¥ 508y (GAMyP 4KP yKM 4P 4PIM,PIP)
Fi 509, (GAM,P JKP4PIM,P,KM,PIP)
F Y 5104 {GAMyP 4PIPKMyP4PIM,KP)
Fi! 5114 (GAM 4P 4yPIP4PIM,P,KM,KP)
Fi 5123 {GAMyP yKP yKMyPIP4PIM,P)
Fi 51 3y (GAMyP 4KP4yPIMPIPKM,P)
Fu 5144 (GAMgP yPIPyKMyKP 4P IM,4P )
F¥! 5153 {GAM 4P PIPyPIM KPKM,P)
FU ’
3 FIT TABLE FOR TYPE 300
ANMEZ SETA 3
T300 i 3013 (GAM 4P 4P ,PIM,PIP)
Fi! AN2 3 (GAM4P4PIP4PINM,P)
Fy 3N 23y (GAM4F 4P 4 KMy KP)
Fi 3044 (GAM 4P 4KP KM 4P )
Fu N5y (GAM P 4P 4P 4P}
W '
3 FIT TABLE FOR TYPE 700
&ANMEZ SETA 7
T700 Fi TO1 9 (GAMyP 4P yPIMyPIPPIM4PIPyPIM,PIP)
Fil ' TO24 (CGAM P yPIPyPIMyP4PIMPIPPIM,PIP)
Fi TO 3y (GAMyP4yPIP4yPIM,PIP,PIM,P4PIM,PIP}
F4 TN4 9 (GAMyP gPIP yPIMyPIP 4PIMHPIP 4PIM,P)
Fi '
% FIT TABLE FOR TYPE 900
ANME Z SETA 9
1900 Fi 901y (GAMyP 4P 4PIMyPIPPIMyPIPPIMyPIP4PIM,PIP)
Fi 9024 (GAM4yP4PIP4PIM,P,PIM,PIPPIM,PIP,PIM,PIP)
Fi! 9N 2y (GAMgP yPIP4PIMyPIP yPIN4P4PIM,PIP4PIMyFPIP)
W 904y (GAM 4P yPIP4PIMyPIP,PIM,PIP4PIMyP,PIM,PIP)
Fi 905, (GAM 4P yPIP 4P IMyPIP 4PIM4PIP 4PIMyPIP,PLi,P)
Fl’j ]
o FIT TJABLE FOR TYPE 200
&CNTRL SETA AMMD4+&DECAY
ANMEZ SETA 2
T200 Fu 201, (KOyPIP,PIM)
Fi 202, (LDA 4P 4PIM)
Fu 20 34 (GAMYEPLEM)
F".".I [

2101 A4
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TABLE VI

FIT70 RUN
Reject Code Fits Remarks
0 21,220 y2< 702
9 171,828  y2 > 70
10 93 too many (>100) cut-steps
11 4 too many (> 50) iterations

a. Much larger than the final cutoff used in
post-kinematic analysis.
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(ISNEAK #0) it is set to one to take a step in the special mode in order to
speed up the convergence as described in Sections II.C and III.C. It is
seen from the figure that in this sample 16% of the successful fits required
cut-steps and 37% required the special mode of iteration, without which 4%
would not have converged.

Figure 4 shows the fraction (%) of total CPU time spent in each sub-
routine (only the control section names are given). This was obtained
(during the same 5-prong 3C fit run as above) by sampling (total 9982) the
Program-Status-Word (PSW) at the rate of one in about 10 msec through an
S'l‘]MER—E}ﬂ’I‘8 loop. From the figure we find that the vector and matrix
manipulations (Table II) account for 60% of the total CPU time. Optimizing

here will result in a substantial gain in time.
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FIG. 4--5-prong 3C fit run profile.
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Because it is carried out from a user's point of view (also without
much knowledge of how the system functions), our scheme is extremely
simple and more efficient. Typically, as in the run of Fig. 3, only

28 out of a total of 10,000 PSW's sampled did not belong to our load-
module, although this result depends somewhat on the environment.
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