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I. INTRODUCTION 

This report describes a kinematic fitting program, FIT70, written as a 
closed subroutine in FORTRAN IV (on IBM System 360/91). This was used 
to perform the kinematic analysis of a large scale photoproduction experiment’ 
with the streamer chamber at the Stanford Linear Accelerator Center. The 
purpose of the program is to adjust by minimizing a certain x 2 the input data 
consisting of mass and momentum for each track (and the full error-matrix) 
associated with a vertex so that the fitted data satisfy the energy momentum 
conservation. The resulting x 2 is also used as a test for the assumed mass 
hypothesis. 

The general formulation of kinematic fitting has been known for many 
2 years. The methods used in FIT70 are originally due to G. Ascoli and have 

been adapted from ILLFIT, 3 the first version of which dates back more than 
ten years. We describe some features: 

1. 3-momentum fit. 
The fitting is formulated in such a way that it is possible to ask only for 

3-momentum conservation. To test for the visible momentum balance we 
first do this 3-momentum fit for each constrained fit. A large x2 at this 
stage implies the presence of missing neutrals. Furthermore remaining mass 

hypotheses of the same class may be skipped as a time-saving device, since 
the 3-momentum fit is insensitive to masses (apart from small energy-loss 
corrections). For example, in the reaction, 

+- 
YP-nnP, 

with unknown photon energy this preliminary fit is a 2C fit requiring the trans- 
verse momentum balance. This fit serves as a finer filter than, for instance, 
testing m2 of measured values. 

Y 
On the other hand if the 3-momentum fit is good, then the solutions are 

such that the subsequent fit including the energy constraint usually takes one 
step to converge to the final values. 

2. Alternate method of iteration. 
The numerical difficulties in the conventional method of minimizing, such 

as outright divergence or too-slow convergence, are all due to constraints. 
If the constraints were linear, one step would lead to the final answers 
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regardless of the starting values. When these difficulties arise, we take a 

step in a different method of iteration, which is designed specifically to force 
the c onstraints to vanish. 

3. Negative discriminant in 4-missing variable case. 
This problem arises in the case including one missing neutral and one 

track with unmeasured momentum, as in the decay, 
0 -l--o K4-r~ . 

One has to solve a quadratic equation for the unmeasured momentum (if the 
particle has nonvanishing mass). Due to the measurement errors the associ- 
ated discriminant may be negative. In this case a solution is forced by means 
of a formal 1C fit with the vanishing of the discriminant as a constraint. 

In Section II we give the mathematical formulation, which also serves to 

introduce notations. In Section III the programs are described, And finally, 
in Section IV we discuss how this program was used in the photoproduction 
experiment and summarize results. 
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II. DESCRIPTION OF METHOD 

A. Usual Mode of Iteration 
We want to minimize a x 2 with respect to variables, xi (i=l, . . *, NV), 

subject to constraints, Fh(x)=O (h=l, . . . , LC). Using Lagrange multipliers, 

25, we have to find a minimum of the x 2 defined as, 

NV LC 
x 2 = c (xi-x:) Gij(xj-XT) + 2 c ohFh(x) , 

i,j h 
(1) 

m where x i are the measured values with the covariance matrix, G ij. (We need 
to know only the error matrix, 

as seen below. ) We are thus 

G? 
iJ 

= < bxy%xfp > 

led to the following system of NV+LC equations 

to be solved for NV variables xi and LC multipliers CY~, 

f g = c Gij(xj-x7) + c acL 2 = 0 , 
i j P i 

1 ax2 - - = Fh(x) = 0 . 2 acxYA 

Pa) 

(24 

Because of the functions Fh the problem is not linear. We linearize Fh 
and iterate as follows. Put 

old xi=x. + Ax. 
1 1 

and take 

aFA 01 I?#) = F,(xolT + &x $ 
i 

bi + o(Aq2 

(3) 

(4) 

Ignoring terms like O(&)2, Eqs. (2) become a linear system in Axi, 

NJ Gij Axj + G. .(x?“-x”, + a! ~ t&x”‘4 = 0 , i -” i ,dv (54 11 J i 

l-c aFA 01 4 -&x 
i 

4 Axi + Fh(xold) = 0 . 
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The solutions are, 

oh=H$BP , 

old Axi = xp - xi - 5 EAi ’ 

where 

aF?t -1 EA ERG.. , 
i j ‘1 

HW=EAz , 
i i 

and 
aF 

Bh = F,(xold) + (xfi”-x;ld) 2 . 
i 

So that the new values of variables are, from Eqs. (3) and (7) 
new m 

X. =x. 
1 1 

-a E 
A Ai l 

(6) 

(7) 

(8) 

(9) 

(11) 

And the new value of x 2 is from Eq. (1) 
new 

X2 =a!E G20E A hi ij 1-1 pj 

(12) 

not including the contribution, 2aAFA(x) = Ok, which should finally vanish. 
The amount x 2 will decrease because of this step is 

6X2= 2oAFA(xo14 + x 
2old 

- x2 
new 

. (13) 

B. Speed of Convergence 

Since the remaining part of x 2 is linear to begin with, it is sufficient to 
make sure that the constraints are rapidly decreasing to zero in order to 
prevent non- or too-slow convergence of the iteration scheme described 
previously. For this purpose we introduce a testing function, which is like 
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a x 2 for vanishing constraints, 

c F2(x)> E Fh(x) < dF$F/ Fc((x) 

Sine e 
aFA mmdFC, <6Fh6FP> = ““i <6xi 6xj > ax. =H* , 

J 

the testing function becomes 

<F2(x)> = F H -1 
A bFP 

Let 

<F2>new = Fh(xnew) H-l F (xnew) , 
*lJ 

<F2>‘ld = F,(x”ld) Hi; Flr(xold) . 

At the end of each iteration step we test if 

<F2pew < <F2,‘ld . 

(14) 

(15) 

(16) 

t1w 

(1W 

(18) 

Otherwise we take a cut-step (described later) to avoid this bad iteration-step. 
If the constraints are found to be decreasing, then we test the speed by de- 
manding 

<F2>new < e<F2>‘ld , (19) 

with E =0.7 say. 

C. Special Mode of Iteration 
If the speed of convergence in the usual mode of iteration is too slow 

(Eq. (19) is not satisfied), or cut-down procedures fail to cure the divergence 
condition (Eq. (18) is not satisfied), then we take a step, which is designed to 
force <F’> = 0 as described below. Demand 

1 a aF 
-- 
2 axi .F2>=s H-lF =0 

i hcl P 
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Linearize as in Eq. (3) and (4), 

Since 

we obtain 

so that 

ij ’ 

-1 
A’Xi=-EAiHuFP 9 

new 
X. = x”ld + & 

1 i i ’ 

(21) 

(22) 

(23) 

(24) 

The amount x2 will decrease because of this step is, by design, 

6X2 = <F2>‘ld . (25) 

and we have 
new 

x2 = 2 ,,F,(x”~ + x 
2old 

-6x2. (26) 

D. Cut-Down Step 
If an iteration step leads to an.apparent divergence (< F2> increasing), 

or to unphysical values of variables (negative momenta), then instead of the 
full step Axi we take a smaller step (for all variables) 

xnew 
i 

= xold 
i +MXi 

withh<l. 
The new x2 due to this cut-down step is 

new 
x2 =x2 

old old m + 2A Axi Gij (xj -xj ) +A2AxiGijAx. . J 

From Eq. (5) 

old m AxG.. (x. -xj ) = -AxiGijAxj+aAFA(x 01 . 
1 1J J 4 

(27) 

(28) 

(29) 
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And using Eqs. (10) and (12) 

2 old 
AxiGijAxj = X 01 + 2c5F$x 4 - @ABA 

Thus Eq. (28) can be written 

2 new 
X = X2 

old 
-2A x2 ( 

old 
+ ohFh - ohBh 

+ h2 X201d + 2 crhFh - aABh 

(30) 

(31) 

E. Case of Fewer than 4 Missing Variables 
We describe how the unmeasured variables, if any, are solved for and 

the remaining constraints are obtained in the case involving 3 or fewer un- 
known variables. The following cases considered are found to be sufficient 

in practice. 
1. One missing momentum. 
Let F be the total measured momentum, 

F1 = c sipi cos Ai cos Gi , 

F2 = Csipi cos Ai sin $i , (32) 

F3 = c sipi sin Ai , 

where si = +l (-1) for outgoing (incoming) particle. Consider three ortho- 

normal vectors, ei such that e3 is antiparallel to the direction of the particle 
with u&now-n momentum pm (whose angles 9, and AI are measured). Explicitly 

we have 

G3 = - (COS Al COS @,, cos Al sin +I, sin Al) , 

ii2 = (sin @,, -cos $,, 0 ) , 

G 
A A 

1 =e xe 2 3 l 

(33) 

The momentum conservation reads 

P1G1+P2G2+PsG =P (34) 

where Pi is magnitude of the momentum in each direction i. . Or in matrix 
1 

notation 
UijPj = Fi , (35) 
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where we have defined 

u.. 
1J E tej)i 

So that the missing momentum is 

pm = P3 = (U-1F)3 , 

and the remaining momentum constraints are 

PI = (U-lF)l = 0 , 

P2 = (U-1F)2 = 0 . 

(36) 

(37) 

(38) 

2. Two missing momenta. 
Instead of Eq. (33) take e2 and g3 to be unit vectors antiparallel to the 

directions of two missing momenta respectively and GJ, = e2 x e3/ 1g2xc3 1. 
Then we have for the missing momenta 

pQl = (U-lF), , 

9, = (U-lF), l 

(39) 

and for the constraint 

PI = (U-lF), = 0 (40) 

3. Three missing momenta. 
Instead of Eq. (33) take the unit vectors gi to be antiparallel to the di- 

rections of missing momenta respectively. There is no momentum constraint. 

4. One missing neutral. 
The momentum of the neutral is 

Fn = - snP 

so that the three unknown variables are 

Pn=vPg+P;+P; ; 

(41) 

(4% 

en = tan-l Py/Px . 
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F. Case of Four Missing Variables 
We treat the problem including one neutral (p,, An and Gn are unknown) 

and a particle with unknown momentum pn (the angles A1 and 9, are measured). 
We describe below how p1 is obtained. Once p1 is known, the missing neutral 
Fn can be obtained as in Set tion II. E .4. 

Let -?; be the total measured momentum as in Eq. (32) and E be the total 

measured energy, 
E = CsiEi-mT , (43) 

where si = i-l (-1) for outgoing (incoming) particle and mT=O if there is no 
target. The energy-momentum balance reads, 

?-+ s&+ snj$= 0 , 

E + spEe+ snEn=O . 

Eliminating p, and En from the above equations, we obtain an equation for pm 
as 

-eE1+bpl+sla=O (45) 

where 
1 a z- 
2 ( 

-g2-E2 (46) 

and b is the projection of ?i’in the direction of pl, 

b&u,. (47) 

If mn= 0, then from Eq. (45) we get 
sa P 

pQ=cb l 
(48) 

In general ml#O, and Eq. (45) leads to a quadratic equation for pa, 

(6 2-b2) p; - 2 sQ ab pm + (E 2mf-a2) = 0 . (49) 

Unless the discriminant, 

D = a2 -mi(e2-b2) , (50) 

-9 - 



is negative, we have two roots 

(l)=B(l+ PQ 7 l-C/B ) , 

PQ t2) = (ypll) , 
where 

scab 
BE--- 

c2-b2 

e2m2-a2 
CE Q 

,2-b2 ’ 

(51) 

(52) 

Because of measurement errors events with small values of D will 
sometimes show negative values of D. The value for pn obtained by simply 
taking D=O, will violate energy momentum conservation. Hence we have to 
readjust the measurements to satisfy the condition, D=O. We achieve this 
by formally doing a 1C problem of minimizing x2 of Eq. (1) subject to the 
constraint of vanishing D. 

In this process we need the following partial derivatives: For measured 
variables xi except Ai and @m 

dD ’ dD 5 
“xi=- 

aFP axi 

where aFP/Bxi are the usual partial derivatives given in Section II. G and 
8D/aFP are, 

aD -=-2(a+mp2)e , aE 

aD - = 2a7rx+2b rnf cos A1 cos r#~, anx , 

aD -=2any+2bmicos A1 sin en , an 
Y 

(53) 

(54) 

e=2aaZ +2bmfsin AI D a7rz 
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All partial derivatives with respect to unmeasured variables vanish. 

have 
aD - = 2rni b (rxsin A1 cos 9, + sysin At sin $n - rITz cos AI) 
axQ 

dD -= 
a@Q 

2mfb (~rr~cos IQ sin en - ay cos AQ cos @,) . 

And we 

, 

(55) 

G. Derivatives of Constraints 
We need derivatives of constraints with respect to measured variables 

xk namely those with nonvanishing diagonal element in the error matrix 
G-l. ij We assume that unmeasured variables yQ have been solved for as 
described previously so that we do not have to distinguish. In particular, 
for this purpose the error matrix is taken to be the full NV-by-NV matrix 
with elements referring to yQ set to 0. 

Our choice of variables are for each particle, 

x1= l/P, x2 = A and x3 = $ (56) 

Let (Fcl) = (e,F) be the total 4-momentum as in Eqs. (32) and (43) including 
contributions from particles which had unmeasured variables. Also let P 

cc 
be the 4-vector of a particle, multiplied by sk = -1 if it is incoming. The 
partial derivatives of energy and momentum are of the form 

aF1 1 F2 -=--- 
ax1 E x1 ’ 

aF2 px -=-- 
ax1 x1 9 

aF3 
2 

xiy=-xl ’ 

aF4 pz -=-- 
axI x1 9 

aF1 
q=o , 

aF2 XmpZ -=- 
ax2 J--- 

, 
P;+ P2 

Y 

aF1 

ax3=O ’ 

aF2 

ax3 = -py ’ 

8F3 . 
Y Z aF3 -=- 

“X2 
F- 

, 
PE+P2 

Eq=px ’ 

Y 

(57) 
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The above is the final result if there are no missing variables. Otherwise 
we have to take into account the constraint transformation and the implicit 
dependence as described below. 

Let 

aFv 
pv axi (58) 

where C is the inverse of the 3-by-3 matrix U of Eq. (35), trivially extended 
to 4-by-4 to accommodate the energy component if necessary (MMD=4). As 
described earlier, because of the way C is constructed, Eq. (58) with 
p=l , . . . , LC, gives the explicit part, dFi/axi, of the derivative of the unused 
constraints. (Strictly speaking this is not correct since the transformation 
C is taken to be constant, which is allowed because we are iterating.) There 
is an additional contribution through the implicit dependence, dyQ/“xi. 

The remaining part of the derivatives calculated above, i. e., Eq. (58) 
with p=LC+l, . . . , MMD, satisfy 

8F; a$ aYe’ 
-- 
axi + 1ayi=O 

“YQ 

(59) 

So that 

axi 

We have as a final result 

2 
i 

where A=l, . . 0, LC. 

H. Fitted Error Matrix 

aF; 

=3q+ 
aFt ayQ 

q axi 

(60) 

(6 1) 

nl 

Let xi be fitted, yQ computed, and XT measured variables. Then as dis- 
cussed in Ref. 2 it is straightforward to obtain the following result for the 
error matrix associated with the fitted variables, 

<6xi6xj> = G? - 
11 

G .H-lE 
h hcl xi (62) 

- 12 - 



where as before is the error matrix for the measured variables and the 
13 

matrices E Ai andH 
* 

have been defined by Eq. (8) and (9) respectively. Also 

we have 
< sxpyn> = < 6Xi6Xj> v . 

QJ 
, 

< 6YQ6YQ,> = VQi < 6Xi6Xj> Vij 

where Vti is the matrix ayQ/axi of Eq. (60). 

(63) 

(64) 
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III. DESCRIPTION OF PROGRAM 

A. A Bird’s Eye View 
For each mass hypothesis at a vertex the main program, FIT, is to be 

called to obtain a fit. As shown in Fig. 1 FIT uses six subroutines, 
BLOCKl, 0 o 0, BLOCK6, each carrying out distinct tasks (as summarized in 

Table I), performs various tests based on the results, and controls the flow 
of computations. An attempt was made to separate out, from the program, 
“arithmetic” such as those involving vectors and matrices, so that the 
problem of optimizing (in speed or space) can be attacked independently of 
the program itself. Thus there are CALL’s for external routines as listed 
in Table II, some of which may easily be MACRO-CALL’s to cause in-line 
expansions. 

A general purpose MACRO processor4 is utilized in the original source. 
This processor is designed to easily equip with a MACRO facility, a language 
(such as FORTRAN, or SUMX Control Cards) lacking one. In particular the 
declared dimensions are symbolic in this source, which after a pass through 
this processor turns into an ordinary FORTRAN source. 

B. BLOCKS 
1. BLOCK1 (& Error return) 
This is an input routine to be called once per fit. At entry the variables 

in the COMMON block /CBLKl/ must be set as follows: 

MMD: 

NOT4: 

either 3 to demand 3-momentum conservation only; 
or 4 to include energy conservation. 
zero to do 4-missing variable problem including one 
neutral and a particle with unknown momentum; or 
nonzero to disallow O-constraint situation in any other 
case. 

NCALL: 1 to call for first (larger) root in the 4MV case; 2 to 
call for second (smaller) root. 

NP: total number of particles including neutral. 
XMEAS(3NP): measured variables xy such that for kth track, 

XMEAS(3k-2)=1/p, XMEAS(3k-l)=h, and XMEAS(3k)=$. 
If a momentum is unmeasured, then XMEAS(3k-2)=0. 

- 14 - 



ClcarCOMMON.NR00f=l,MARK=1 

pLik,j-* 

I 
LC-MMD-MV 

I 

cl; 0.01 K1;lOO / 
GIL 0.01 MeV I 

1 Cl; 0.25 I 
Cl; 0.7 

FIG. l--Subroutine fit. Values of parameters shown are from Exp. 13. 
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TABLE I 

BLOCKS 

Block No. 

1 

2 

3 

4 

5 

6 

Purpose 

Prepares input data 

Calculates unknown variables and constraints 

Computes derivatives of constraints and of 
unknown variables 

Takes one iteration step 

Treats four missing variable problem 

Calculates output error matrix and stretches 
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TABLE II 

ODDS AND ENDS 

DADDJ(X, Y, 2, N) 

DEQUJPL Y, N) 

DEQUW, X, N) 

DNEQUJ(X, Y, N) 

DSCAL(X, Y, N) 

DSMPYJ(A, X, Y, N) 

DSUBJ(X, Y, Z, N) 

DVEC N(X, Y, Z) 

DMMPY(A,B,C,N,M,L) 

DMMPYl(A,B,C,N,M,L) 

DMMPYB(A, B, C, N, M, L) 

DMMPYS(A,B,C,N,M,L) 

DMTINV(A, N) 

DMTRN(A, B, N, M) 

DGETX(X, P) 

DGETP(X, P) 

Vector Manipulations 

2 ( N) =X(N) +Y (N) 

Y(N) =X(N) 

X(N)=A 

Y(N)= -X(N) 

DSCAL=X(N) . Y(N) 

Y(N)=A.X(N) 

Z(N)=WN) -Y(N) 

zxx Ty I xx 91 

Matrix Manipulations 

C(N, L)=A(N, M).B(M, L) 

C(N, L)=A(M, N).B(M, L)=ATB 

C (N, L)=A(N, M). B(L, M)=ABT 

C(N, L)=A(M, N). B(L, M)=ATBT 

A(N, N)=A-‘(N, N) and 

DMTINV=Det(A) 

B(M, N)=A(N, M)=AT 

Peculiar to FIT 

Get X=(1/p , A, $4 from P=(Px, py, P,) 

Vice versa 
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GINA(SNP, 3NP): bottom half (ilj) of error matrix Gr.l. For 
11 

example, GINA(3k-2,3k-2)=< 6 l/p 6 l/p>, 
GINA(Sk-1,3k-l)=< 6hsh>, and GINA(3k, 3k)=<6$6+. 
In particular <6$6+=0 for neutral. 

SN: -1 if first particle is incident; +l otherwise. 

TMASS: target mass; zero if none. 

RMASS(NP) : mass list. 

BLOCK1 counts unmeasured variables @IV) by testing GINA(3k, 3k)=O 
for a neutral particle (3 missing variables) and XMEAS(3k-2), l/p=0 for 
unknown momentum (1 missing). It zeroes elements of GINA corresponding 

to missing variables. It also initializes the variables X (in /CBLKB/) to 
XMEAS; missing variables are taken as zeroes except momentum, if it is 
unknown, is set to 1. 

Error -returns: 
NRJCT=l; number of missing variables @IV) exceed MMD. 

4; GINA is not positive-definite. 

2. BLOCK2 (& Cut-down, & Error-return) 
BLOCK2 first examines X to make sure that every momentum is positive, 

otherwise does cut-down return. Then it solves for unknown variables (in the 
case MV < 3) using the 3-momentum conservation as described in Section II. E. - 
The total measured momenta are also calculated: If MMD=3, then 

F=(CPx, CPy, CP,) and C is the 3 by 3 matrix U-l of Section II. E; if MMD=4, 
then FE ( E, F) and C is a 4 by 4 matrix of the form 

II 0 
C= 

( > 
--:---- 
0 : u- 1 l 

In any case constraints are obtained by requiring first LC=MMD-MV compo- 
nents of (C)(F) to vanish. 

Error -returns: 
NRJCT=6; two or more parallel missing momenta (U is singular). 

7; negative momentum in first iteration step. 

16 ; negative momentum in LC=O case. 
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3. BLOCK3 (& Error-return) 
BLOCK3 computes partial derivatives of constraints Fh and of missing 

variables yQ as described in Section II. G. On return we have 
-NV- 

and 

Error-return: 
NRJCT=5; MV by MV matrix aFpJ”yQ is singular (see Eq. (60)). 
4. BLOCK4 (& Error-return) 
This routine does one iteration step. Calculate LC-by-NV matrix ELI 

defined by Eq. (8), HIN, inverse of LC -by-LC matrix H of Eq. (9), and LC 
component vector B of Eq. (10). Then in the usual mode of iteration 
(MODE=O) we have 

ALFA = (HIN)(B) , 
and 

X = XMEAS - (ALFA)(ELI) , 

as in Eqs. (6) and (11). Also take CHIOLD=CHINEW and calculate CHINEW 
as in Eq. (12). The old value DFOLD of the testing function Eq. (17b) is 
also computed for later application in FIT. 

In the SNEAK mode of iteration (MODE#O), which is designed to force 
< F2>= 0 as described in Section II. C, we have 

X = XOLD - (ELBT (HIN)(F) 

as in Eq. (23) and the new value of x 2 is given by Eq. (26). 
Error -return: 
NRJCT=12; H is singular. 

5. BLOCK5 (& Neg-disc, & Cut-down, & Error-return) 
This routine treats the 4-missing variable problem as described in 

Section II. F. There are in general two roots for the missing momentum pQ 
(we assume mQ#O). BLOCK5 is to be called twice with NCALL=l and 2 
respectively to get the first (larger) and second root for pQ. IPUSH is 
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initially zero, is set to 1 in the negative-discriminant case, and to 2 (in FIT) 
when a solution is found. Both calls, NCALL=l and 2, will give the identical 
answer in the latter case. More detail is shown in Fig. 2. 

Error-return: 
NRJCT=l3; No good root. 

14; No energy balance. This and test (V) in Section III. C. 2 are 
the only instances in the entire FIT package in which the energy scale is 
needed. We assume it is MeV and the error is due to an energy imbalance 
of more than 1 MeV. 

6. BLOCK6 
The fitted error matrix GINB and stretches STR are calculated in this 

routine as described in Section II. H. 

C. FIT 
This is the main control program to be called once (twice) per con- 

strained (OC) hypothesis to obtain a fit, The input requirements have been 
given in the description of BLOCKl. We sketch below what is done in FIT. 
More details are shown in Fig. 1. 

1. IC HEAT step. 
If MMD=4 and the number of unknown variables (MV) is less than 3, then 

we first do one successful step (during which ICHEAT=l) of the MMD=3 fit, 
which requires only the visible momentum balance. Large x 2 leading to 
reject 9 (see Test (ii) below) at this stage implies, of course, large missing 
momentum (carried off by neutrals). 

2. Iteration Control 
The following tests are made, at the end of each iteration step in the 

order listed: 
(i) Make sure of nondivergence by demanding DEL < DFOLD, where 

DEL = <F2pew , DFOLD= <F > 2 Old of Eqs. (17a and b) . Otherwise take a 

cut-down step. 
(ii) Test x 2 to see if it is not too large: x 2 < 2 CI(1) for the first step, 

in particular, ICHEAT step, and x 2 < CI(1) for subsequent steps. Other- 
wise reject 9. 

(iii) Test for termination, DFOLD < CI(3). If not, either convergence 
is too slow or we have to take another iteration step, 
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If NHISSP(P)= HISSN, then 
NHISSP (2) = NHISSP(l)and 
NHISSP(1) = MISSN 

I 
CQ = G-b2 

I 
ICOI < lo-‘ 

1 I 
AQ=(n’-~*-m~+m~)/2 

I 
IPUSH =’ - 

1 

I 
\ I 

I 

I (NCA~L=I) 

Return \ 1 

FIG. 2--Subroutine BLOCK5. 
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(iv) Test speed of convergence, DEL < CI(6) DFOLD. If not, take a 
step in SNEAK mode. 

(v) Check the final solution to see constraints are actually zero, 
C I Fh I < CI(4). Otherwise increment MODE and take a SNEAK step, unless 
MODE > 5 or NSTEPS > KI(l) or IWASCT > KI(2)+5, in which case terminate. 

3. SNEAK Mode of Iteration. 
This is the special procedure designed to force constraints to vanish 

(< F2> = 0) as described in Section II. C, which is invoked when 
(i) tests (iii) and (iv) are not satisfied, meaning too-slow convergence, 

or 
(ii) too many cut steps are called for (because the iteration is diverging), 

or 
(iii) the final solution does not yet satisfy test (v) above. 

4. Cut-down. 
If BLOCK2 finds that the current iteration step will lead to negative 

momenta, or if FIT detects the divergence condition (test (i) above), then the 
cut-down steps as described in Section II. D are taken until the undesired 
condition vanishes. If too many such steps are called for, i.e., 
IWASCT > KI(2)/2, (presumably because of nondecreasing <F2>), then 
SNEAK mode is invoked. If this fails then eventually IWASCT > KI(2) leading 
to reject 10. IARECT counts consecutive cut-steps taken during one iteration 
step. 

5. When everything fails so that the iteration counter NSTEP exceeds 
KI(l) the fit is terminated via reject 11. 
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IV. APPLICATION AND PERFORMANCE 

The present version FIT 70 was used to perform the kinematic analysis 
in the second photoproduction experiment’ of Group D (Experiment 13) at the 

Stanford Linear Accelerator Center (&AC). In this experiment the 2-meter 
streamer chamber with a pressurized hydrogen gas target was exposed to an 
18 GeV bremsstrahlung beam. 640,000 pictures (in 3 views) were taken by 
triggering the chamber for hadronic events. 

Events were measured using conventional hand-guided machines (SPVB 
and NRI at SLAC) and were then processed through the geometry program 
SYBIL.’ As explained in Ref. 5 the geometric reconstruction of events was 
approached in a manner unlike those of the usual bubble chamber programs 
(like THRESH or TVGP) because of the following aspects of the experimental 
setup: 

(i) The target tube (made of Mylar, 4 mil in thickness, l/2!’ in diameter 
and extending the whole visible length along the beam) made the vertex region 
and some path length downstream invisible. Tracks associated with a given 
vertex were fitted simultaneously together with the vertex coordinates from 
the beginning. 

(ii) The top set of magnet coils had no iron core (to let the cameras see 
through) giving rise to a comparatively more complicated field in the chamber. 
Rather than relying on a (piecewise) analytic expression for tracks in space, 
the equation of motion for a charged particle, 

A 
du K^ -= 
ds ylxljl 

with momentum p;(r) through a magnetic field g(F), was integrated numeri- 
cally (via a Runge-Kutta method). In each view reprojecting and comparing 
with measurements the residuals were computed, the sumof squares of 
which defined the x 2 to be minimized with respect to the track parameters 
and vertex coordinates. 

The resulting track parameters, (l/p, h, +) at the vertex for each track, 
and the full error matrix including elements correlating different tracks were 
then input to FIT, 

From the programming point of view the kinematic analysis in this exper- 
iment was particularly simple, because (i) the reactions analyzed were all 
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one-vertex type, and (ii) Coulomb scatterings (in gas) were negligible so 
that the error matrix of the least-square fit in SYBIL (accounting only for 
measurement errors) was used directly without modifications. 

Table IV gives a brief description of additional routines (except those 
of the standard IBM support) used in this analysis. The input/output tape 
formats were kept identical to those of the SYBIL-TEUTA system used in 
the preceding experiment7 as described in Refs. 5 and 6, in order to mini- 
mize effort in interfacing to then existing programs, Thus several routines 
were taken intact from TE.UTA disregarding much duplicity in COMMON 
space. Also, to get results quickly little optimizing was done in the utility 
routines such as those in Table II. In this application most of them were 
in FORTRAN generating much overhead and furthermore the advantage of 
dealing often with symmetric matrices were ignored. 

A total of 39,313 hadronic events were reconstructed by SYBIL at the 
rate of 2.3 CPU set/event. (The total CPU time amounted to 9 hours and 
26 minutes. ) The composition of different prong numbers is shown in 
Table V. After applying small energy loss corrections due to the mylar tube, 
which is negligible for particles with laboratory momenta (scaled to proton) 
higher than 300 MeV, these events were input to FlT to test the mass hy- 
potheses as listed in Table VI. A total of 193,145 3C fits were made, not 
counting those hypotheses which were skipped because of large missing 
momenta, at the rate of 22 msec/fit (total CPU time of 73 
minutes). As summarized in Table VII there were almost no cases (one 
out of 2000) in which FIT failed to converge to a solution. In this run no 
other possible rejects (see Table IlI) were found. 

To take a closer look we have reprocessed a sample consisting of 300 
5-prong events (each having at least one acceptable 3C fit) outputting (via 
the subroutine LOOK, which otherwise is a dummy) a short summary record 
for each fit to be SUMXed. In this run a total of 4500 fits were made, 3683 
of which were rejected because of too large x 2 (greater than 70). The iter- 

ation counter, NSTEP, the accumulative cut-step counter, IWASCT, and 
MODE are displayed in Fig. 3. MODE, when ISNEAK=O, counts the num- 
ber of steps taken in the special mode of iteration designed to force the 
constraints to vanish. This is invoked when C I Fhl > 0.01 MeV. Otherwise 
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1 

2 

3 

4 

5 

6 

7 

9 

10 

11 

12 

13 

14 

16 

Too many missing variables 

NOT4#0 in 4MV case 

No missing neutral in 4MV case 

Input error matrix not positive definite 

Singular aF,/ayQ 

Parallel missing momenta 

TABLE III 

ERROR CODES 

Code WhY Where 

Unmeasured momentum negative 

x2 too large 

Too many cut-steps 

Too many iterations 

Singular H 
CLV 

No root in 4MV case 

No energy balance in 4MV case 

Negative momentum in OC case 

BLOCK1 

FIT 

FIT 

BLOCK1 

BLOCK3 

BLOCK2 

BLOCK2 

FIT 

FIT 

FIT 

BLOCK4 

BLOCK5 

BLOCK5 

BLOCK2 
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TABLE IV 

ROUTINES USED IN EXP. 13 KINEMATICS 

Name Tne Additional Entries and Description 

BLOCKA XF 

DC LEV 
DMASS 
DPFR 

GF 
GA 
GF 

DTQ3 
DUMP 

GF 
GA 

ELOS XF 

FAREAD 
ICHOPD 
IDRIVE 
READ1 

GA 
GF 
XA 
XF 

SCRIB 
BREAD 
BWRITE 
ENDREP 
ORDER 
OUTPUT 
TOUT 
WSOM 

XF 
TF 
TF 
TF 
TF 
TF 
TF 
TF 

SELECT, ISTORE, IPRINT: Experiment dependent 
Main Control; Prepares input such as nominal 
beam parameters, energy loss corrections and in 
conjunction with IDRIVE drives FIT and the rest. 
Calculates confidence level for given x2 and NDF. 
Mass codes, characters, and values. 
DRFP: Momentum from range and vice versa for 
proton in mylar. 
Quadratic interpolation. 
DUMPF: Used for debugging purpose; F-entry 
NOPes BALR in Caller. 
Energy loss through mylar. (Contains experiment 
dependent constants. ) 
FAWRIT: FORTRAN array I/O. 
Binary chops a table., 
Event types and mass hypotheses for Exp. 13. 
READB, . . . , READ5, WRITEl: Selected reading 
(writing) for TEUTA output records. 
Printout. 
Reading for TEUTA output tape. 
Same for writing. 
Generates run-report from summary-records. 
Orders fit-record in mass and charge. 
BTALLY: Prepares output record. 
Writes fit-record. 
Writes summary-record. 

Type characterizes each routine as either in FORTRAN(F) or in 
ASSEMBLER(A) and G for general purpose; X for Exp. 13 
use; T meaning it is from TEUTA. 
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TABLE V 

EVENTS IN EXPERIMENT 13 

r 

Prong Number Events a 3C -Events 

3 21,055 7,304 

5 15,305 4,162 

7 1,918 368 

31 

Other b 855 

a. Correspond to different film samples; 
5 prongs from all, whereas 3, 7 and 9 
from 28/64 of all. 

b. Mostly V-events from a sample of film. 
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TABLE VI 

MASS HYPOTHESES IN EXPERIMENT 13 

9: 

NPHG 

TYPV D 
.I_ et. 
P I\! i.1 E z 
?CNTRL 
T500 

::< 
RNMEZ 
T31)0 

P, N M E Z 
T700 

:: 
RCN TRL 
P,NMEZ 
T200 

TYPF TABLE 
TP 500, T500 
TP 3nn, TZOO 
TP 7nc), T700 
TP 200, T200 
TP 9nn, T900 
EOU 9; 
FIT IABLE FnR TYPE 509 
SETA 5 
SETA 8MYD4+8PRUD 
Fl-J 5nl,(GAM,P,P,PIM,PIP,PIM,PIP) 
F b! 5f’2,(GAK,P,PIP,PIM,P,PIP) 
Fb! 503, (GAM,P,PIP,PIM,PIP,PIV,F’) 
F !;i 504, (GAM,P,P,KM,KP,PIM,PIP) 
F !21 5~5,(GAY,P,P,PIM,KP,K~l,PIP) 
F \d 5t’h,(GAM,P,P,KM,PIP,PIti,KP) 
F !*i 507, (GAM,P,P,PIM,PIP,KM,KPl 
FW 5fl8, (GAM,P,KP,KM,P,PIM,PIP 1 
F !>I 509,(GAM,P,KP,PIM,P,KY,PIP) 
F Id 510, (GAM,P,PIP,KM,P,PIM,KP) 
Ft! 511,(GAM,P,PIP,PIM,P,KW,KP) 
F W 51.2, (GAM,P,KP,KM,PIP,PIM,P) 
F LO -1 513,(GAM,P,KP,PIK,PIP,KM,P) 
F !:’ 514, (GAM,P,PIP,KM,KP,PIM,P) 
F !,I 51.5, (GAM,P,PIP,PiM,KP,KM,P 1 
F W 
FIT TABLE FAR TYPE 300 
SETA 3 
F1.l 73 3cl.T (GAM,P,P,PIiq,PIP 1 
F I.! 307, (GAM,P,PIP,PIV,P 1 
F b! ~~~,(GAM,F,P,KM,KP) 
F PI 304, (GAM,P ,KP ,KM,P ) 
F b! 305, (GAM,P,P,P,P 1 
F i;’ 
FI T TABLE Fh TYPE 700 
SE TA 7 
F W 7~l,(GAM,P,P,PIM,PIP,PI~~,PIP,PIM,PIP) 
Fb! 7n2, (GAM,P,PIP,PIM,P,PI~~,PIP,PI~JI,?IP 1 
F !,I 703, (GAM,P,PIP,PIM,DIP,PIM,P,PIM,PIP) 
F bJ 7n4,(GAM,P,PI?,PIM,PIP,PI+l,PIP,PIf~,P~ 
F \:I 
FI T TABLE F;IR TYPE 900 
SETA 9 
F I4 9~lr~GAM,P,P,PIM,PIP~PIP,PIMIPIP,PIf~,PIP,PI~~,PIP~ 
F b! ~~)~,(GAM,P,PIP,PIM,P,PI~J~,PIP,PIM,PIP,PIM,PIP) 
Fb! 903, (GAM,P,PIP,PIM,PIP,PIf~, P,PIM,PIP,PIM,PIP) 
F ‘;i 994, (GAM,P,PIP,PI~,PIP,PI~.l,PIP,PIM,PIP~ 
F !:’ 905,~GA~,P,PIP,PIM,PIP,PI~~,PIP,PI!~,PIP,PI~~i,Pl 
F b! 
FIT TABLE FbR TYPE 200 
SE TA 8MMD4+80ECAY 
SETA 2 
F !fi! 2nl,(KO,PIP,PIM) 
Fb! 202, (LDA,P,PIM 1 
F kJ 203, (GAM,EP,EM) 
F t ! , 

21 01 A4 
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TABLE VII 

FIT70 RUN 

Reject Code Fits Remarks 1 
0 21,220 x2 < 70 a 

9 171,828 x2 > 70 

93 too many (> 100) cut-steps 

11 4 too many (> 50) iterations 

a. Much larger than the final cutoff used in 
post-kinematic analysis. 
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7 
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/ 
2 

q ALL(4500); 

NSTEPS 

3 4 5 6 7 8 9 10 11 1 

0 NRJCT =O (817) 

IWASCT MODE 
1 

0 12 3 4 5 6 7 6 910111213 0 12 123 

FIG. 3--Number of steps in S-prong 3C fits. 
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(ISNEAKf 0) it is set to one to take a step in the special mode in order to 
speed up the convergence as described in Sections II. C and III. C . It is 
seen from the figure that in this sample 16% of the successful fits required 
cut-steps and 37% required the special mode of iteration, without which 4% 
would not have converged. 

Figure 4 shows the fraction @) of total CPU time spent in each sub- 
routine (only the control section names are given). This was obtained 
(during the same 5-prong 3C fit run as above) by sampling (total 9982) the 
Program-Status-Word (PSW) at the rate of one in about 10 msec through an 
STIMER-Em8 loop. From the figure we find that the vector and matrix 
manipulations (Table II) account for 60% of the total CPU time. Optimizing 
here will result in a substantial gain in time. 
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OIFFtRENT CDNTRUL SECT IIINS 

266 4 
259 X 
252 X 
245 X 
23t3 X 
231 X 
224 X 
217 X 
21c X 
203 X 
1Y6 X 
189 X 
182 X 
175 X 
168 X 
161 X 
154 X 
147 X 
140 X 
133 X 
126 X 
119 X 
1.12 X 
105 X 

98 x 2 
91 x x 
84 x x 
77 x 3x 
7c x xx 3 
63 3 x xx X 5 
56 x x xx X X 
49 X x xx 2 X X 
42 X x xx X X X 
35 2 6X2 x xx X X X 
20 X xxx x 5xx5 4 X X X 
21 x4 xxx x3xxxx4 x x 3 X h x 
14 bXX XXX1 xxxxxxx x x x X x x 

7 1 xxx4 14XXXX4XXXXXXX2CX1012C03202X5 X xcox x 3 4 
SIGN 

2 
CON- 131 353 6127921 2 4 1 b 26 
TENT 1 3C84 144908437633682 51 12 32 245 7 6 0 1 3 4 

.0C0@C~~C447400~4703Y295532~6413~31737736416~00~0C09462~9~080500~ 
OCCC3C CC2531C0C1o1521~3537~30G~~000001G00~10030~002004~100101~~~ 

CHAN 11111111112222222222333~33333344444444444555555555566666 
NOS. 12345h7&7ClL34567~9Cl234567~9Cl234567~9Cl2~4567~YOlZ3~5678YOlZ3~ 

RCLCCCCCBBBBBTBFDDDDDDDDDDDIDMBDDDEISBBEODTWDAFSVIII I I I I I I IPII I I  
ELOBRBBOLLLLLELIGASSVMMMMMMDMALCRTLCCRWNR~OSUDACEHHHHHHHHHHRHHHH 
AOOLLLLNOOOOOSOTEDCMEMMMMTTRAIOLFQOHRERDDTUOMDRACCCCCCCCCCCGCCCC 
DCKKKKKSCCCCCTC TDAPCPPPPIRISNCEP3SOIAIREPTMPJEL LLLLLNECSFMEEUU 
1K 2345TKKKKKRK XJLY YYYYNNVS KV PBDTERU AA ASEESACOSCCFROA 

1 12345T6 J 123V E A D EPT DR TCRXQMOMQVHI RPT 
CONTENTS ALL CIiAN.= lCCO.OC NNFPREHHRTCOMTB 

2 TLHZTHKS L 
21 OIAS 

FIG. 4--5-prong 3C fit run profile. 
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