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ABSTRACT 

This report explores the application of the infinite momentum limit to quantum 

electrodynamics. Our major goal is the systematic development of an approximate 

ultrarelativistic theory of QED which provides a simple description of extremely 

high energy phenomena. 

We interpret the infinite-momentum frame as a change of coordinate system 

to a new 11 time” axis 7 = 1 (t+z), and a new llspaceff 
fi axis 2 =c 

2- (t-z), leaving 

the I’ transverse” variables x and y unchanged. Using this basis it is not difficult 

to prove that there exists a subgroup of the full Poincare group which is isomorphic 

to the Galilean group in two dimensions. Working with.this isomorphism and tradi- 

tional nonrelativistic quantum mechanics in two dimensions, the fully relativistic 

theory of QED is developed from the infinite-momentum point of view. In order to 

study high energy processes, we next include an external field in the formalism 

and obtain the high energy limit of the scattering operator describing the scattering 

of electrons and photons off the external field. A vivid physical picture emerges 

for these processes which proves to be a realization of Feynman’s parton ideas. 

We apply our physical picture to electron scatt.ering, bremsstrahlung, pair 

production and Delbriick scattering. Electroproduction of ~1 pairs and 7r pairs are 

also discussed as potential models for scaling in the deep inelastic region. On a 

more speculative level, we question whether the popular Regge-eikonal approximation 

scheme presents a compelling picture of diffraction ,scattering. The investigation 

leads to a negative conclusion and a detailed calculation is presented to substantiate 

this point. 
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I. Introduction 

The infinite-momentum frame has found application in several branches of 

high energy physics. Perhaps its most famous contribution has appeared in current 
.l algebra where Fubini and others used it as a tool to construct sum rules. How- 

ever, it has become apparent in the intervening years that the limit itself is of 

considerable importance and worth more attention. Weinberg2, for example, 

has pointed out that the infinite-momentum limit of old-fashioned perturbation 

theory diagrams in h$3 field theory exist and possess certain simple and interesting 

features. Susskind3, and later Bardakci and Halpern4, have approached the problem 

more systematically and discussed relativistic kinematics and equations of motion 

from this new point of view. All of these workers have been impressed with the 

fact that dynamics at infinite-momentum possesses a rigorous nonrelativistic 

interpretation and is, in many ways, simpler and more familiar to deal with than 

the traditional manifestly covariant presentation of relativistic dynamics. 

In this thesis we shall explore these questions within the framework of quantum 

electrodynamics. Cur major goal will be to develop an approximate ultrarelativistic 

theory of QED which provides a simple description of extremely high energy pheno- 

mena. It is enlightening to contrast this approach to the more familiar non- 

relativistic (low energy)limit of field theories. For example, the nonrelativistic 

limit of quantum electrodynamics affords tremendous computational simplifications 

and intuitive insights into low energy electrodynamic processes. We will argue 

here that our ultrarelativistic theory also clarifies the structure and behavior of 

quantum electrodynamics processes in the opposite limit of extreme energies. 

In Chapter I we shall review the structure of the Poincare Group at infinite- 

momentum. We will interpret the infinite-momentum frame as a change of 
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coordinate system to a new It time!’ axis 7 = - h (t+z), and new If space” axis 

iY=;z (t - z). Thus our approach will avoid limiting procedures and approximations. 

We shall see that there exists a subgroup of the full Poincare Group which is iso- 

morphic to the Galilean group in two dimensions. Working with this isomorphism 

and traditional nonrelativistic quantum mechanics in two ‘dimensions, we then develop 

the fully relativistic theory of QED from the infinite-momentum point of view. Here 

-!- (t+z), a lightlike variable, is treated as the (7 tirne~~ axis, and I = ’ 
r=J2 Jz G-z), 

another lightlike variable, is treated as a ~space” axis. In order to study high 

energy scattering processes, we next include an external field in our formalism. 

We then obtain the high energy limit of the scattering operator describing the scat- 

tering of electrons and photons off the external field. A vivid physical picture 

emerges for these processes which allows us to view the scattering event in two 

stages. First, when two electromagnetic particles having large relative momenta 

exchange a fixed amount of momentum, the interaction can be viewed as occurring 

between the bare quanta which compose the incoming and outgoing scattering states. 

Furthermore, the interaction between these constituents is simply a relativistic 

generalization of the eikonal amplitude familiar from nonrelativistic scattering 

processes. This physical picture is, of course, a particular realization of 

Feynman’s parton ideas. 5 

In Chapter III we turn to a program of computing the high energy limits of 

scattering amplitudes in QED. We will use perturbation theory to express the in- 

coming and outgoing physical states in terms of bare constituents, but calculate 

the interaction of the constituents with the external field to all orders in the bare 

charge. We consider electron scattering, bremsstrahlung, pair production and 

Delbriick scattering. All of these amplitudes prove to be simple because of the 

two dimensional nonrelativistic structure of infinite-momentum dynamics. 



Electroproduction of 1-1 pairs and r pairs are also discussed as potential models 

for scaling in the deep inelastic region. 

In Chapter IV we turn to a more speculative program of application. We inter- 

pret QED as a model of strong interactions, i. e. the bare charge is no longer con- 

sidered small and it is no longer sensible to work to low order in perturbation 

theory. Cur initial problem is to determine the most likely physical state of an 

energetic electron incident on an external field. We argue, in fact, that fixing 

the order of perturbation theory at 2n, the most probable physical state of the 

electron consists of a bare electron and ne+ -e- pairs ;as presented in Figure 14. 

This physical state develops as the electron approaches the external field. The 

most likely interaction between the constituents and the external field is realized 

when the slowest pair on the chain picks up eikonal phases. A striking dilemna 

occurs now when one attempts to sum over n, the number of pairs in the physical 

state: the resulting scattering amplitude leads to a cross-section which violates 

the Froissart bound. It has been suggested that s-channel unitarity be restored by 

iterating the single chain graphs. In our physical picture this means we should 

include more than one chain of eS- e- constituents in the physical electron state. 

If we then treat these chains as independent entities and recalculate the scattering 

amplitude we no longer violate the Froissart bound, but obtain a cross-section 

which grows as the square of the logarithm of the incident energy. This is a popular 

result often referred to as the Regge-eikonal approximation. 6 However, we will 

argue on the basis of our physical picture that treating the chains as independent 

is a poor approximation. We substantiate this claim with a detailed calculation and 

are led to conclude that field theory’s predictions for the high energy limits of 

scattering amplitude in strongly interacting theories is more elaborate than the 
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Regge-eikonal formalism. We conclude with a discussio:n of the physical content 

which should appear in a more realistic treatment of this, ferocious problem. 

II. Heuristic QED in the Infinite-Momentum Frame 

A. A Short Review 

The claim was presented in the Introduction that infinite-momentum dynamics 

possesses a deep nonrelativistic character. This point c:an be demonstrated by a 

simple group theoretic analysis of the Poincare algebra. The question we wish to 

address ourselves to in more detail, however, is whether this property of infinite- 

momentum is actually useful, i. e. can one, guided just by experience with non- 

relativistic quantum mechanics and the infinite-momentum presentation of the 

Poincare group, develop a fully relativistic field theory such as QED in a trans- 

parent fashion ? 

To begin, we review our systematic treatment of relativistic kinematics in the 

infinite-momentum frame. 7 We regard the infinite momentum frame as the 

reference frame obtained by choosing new space-time coordinates (7, x, y, 3) related 

to the usual coordinates (t,x, y, z) by 

7 = J- (t+z) 
$z (11.1) 

Thus the r- and 9 -axes of the new frame lie on the light cone. The infinite- 

momentum frame is not a Lorentz frame, but is, in a certain sense, the limit of 

a Lorentz reference frame moving in the - z direction with nearly the speed of 
0 l-2 3 light. Let 5? = (9 ,a , x ,fi ) = (7,x, y, z) be the coordinates of a space-time point 
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in the ordinary coordinate system, x j.l- 0 12 3 - (x ,x ,x ,x ) := (~,x,y,z) be the new 

coordinates of the same point. Then 

where 

#=c$ ^xv , 
2-B 

i 

0 0 2-i 

O l O  

cPv= 

O 
0 0 1 0 

2-i 0 0 1 4-i 

For the purposes of this review, we use careted symbols for vectors and 

tensors in the ordinary coordinate system, uncareted symbols for vectors and 

tensors in the new coordinate system. In particular, we shall use g 
I.cv 

for the 

metric tensor in the new coordinate system: 

We take for the ordinary metric tensor go0 = 1, @,I = e,, = e33 = -1. Then 

i 
0 0 0 1 

0 -1 0 0 
= 

LV 

0 0 -1 0 

1 0 0 0 ) . 

(11.2) 

(11.3) 

(11.4) 

(II.5) 

\ / 

We use g 
PV 

to lower indices, so that a0 = a3, a3 = a0 ; this may seem confusing, 

but it has important consequences. For instance, the wave operator 

apap= 2aoa3 - alal - d2a2 is only first order in a, = a/a T . 

Let us consider the generators of the Poincar6 group in the new notation, 

Our conventions for the Poinca& algebra in the ordinary notation are 
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(II. 6) 

The generators of rotations and boosts are, respectively, Bij = Eijk Jk and 

iii0 = Ki . Using the matrix Cpv to transform from the usual notation to the 

new notation, we obtain 

PC1 = (P0,P1,P2,P3) = (rl,P1,P2,H) 

and 

where 

BI=L (K1 
Jz 

+ J2) 

B2=l (K2 
ti 

- J1) 

s1 =-L- (IQ 
.A 

- J2) 

(11 l 7) 

(II. 9) 

s2=l (K2 
di’ 

+ J1) . 
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The commutation relations among these generato:rs are, of course, given 

by (2.6) without the hats. The commutation relations among the operators 

H, P’, P2, ?I, J3, B1., B2 are particularly interesting. They are the same as 

the commutation relations among the symmetry operators of non-relativistic 

quantum mechanics in two dimensions with 

H ----t hamiltonian , 

TT -. momentum , 

q - mass , 

J3 - angular momentum , 

Bl and B2 - generators of (Galilean) boosts in the x and y 

directions, respectively. 

Indeed, we have 

[H,sT] = [I&V] = FT,17] = [J3,H]=[J3,?] =[s,V] = 0 

[ J3, Pk] = ickll Pd [ J3, Bk] = i Ckf Be 

[B~,H]= -i Pk [Bk, P’] = -i d ij 9 , 

(II . 10) 

where Cl2 = - C21 = 1, cl1 = c22 = 0 . The commutation relations (2.10) are 

the result of an isomorphism between the subgroup of the PoincslrG group generated 

by p’, J3, and s and the Galilean symmetry group of non-relativistic quantum 

mechanics in two dimensions. This isomorphism expresses the nonrelativistic 

structure for quantum mechanics in the infinite momentum frame. 394 

It is easy to verify that the subgroup of the Poincare group generated by P’, 

p2, n, J3, Bl, and B2 leaves the planes 7 = const. invariant. We can, therefore, 

refer to these operators as *‘kinematic” symmetry operators. 
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The operator K3 which generates z boosts will play an important role when 

we discuss infinite-momentum QED in the presence of an. external field. It is 

easy to compute that our operators simple scale under Llorentz boosts in the z 

direction: iwK 3 -iwK3 
e rle = eWq 

iwK 3-4 -iwK 
e ‘T e 

3=2T 

iwK 3 -iwK 
e He 3= emw II 

iWK 3 -iwK 
e J3 e 3= J3 

iwK 3-4 -iwK 
e Be 3=ewg 

iwK 
e 3xe =eBWz 

-iwK3 

(II Sl) 

These simple relations comprise one of the major practical advantages of the 

infinite-momentum frame variables. 

Consider now the operators S1 and S2 in connection with our non-relativistic 

analogy. We find that S1 and S2 commute with each other and with the hamiltonian 

H. Thus they play the role of the “dyna.micall symmetry operators sometimes 

encountered in non-relativistic quantum mechanics. 8 The operators SI, S2 

form a vector g under rotations: [J3, Sl] = i eM Sm . The commutation relations 

of swith ‘7, ST, and 5 are 

[i$,‘I] = -i Pk [%,P1]= -idke H 

(II. 12) 

[Sk, Bm] = -ieM J3 + idke K3 . 
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B. Heuristic QED at Infinite Momentum 

Armed with the nonrelativistic analogy expressed in (11.10) we turn now to an 

informal development of infinite-momentum QED. We begin with the mass shell 

P- 2 condition for a free electron, pPp - m , or 27 H -p2 = m2. If we make the usual 
*** 

identification p - i0 
P ICC 

we arrive at the equation of motion for the free electron 

field (the Klein-Gordon equation): 

iso’YP(x) = ST (g2 + “2, e/(x) , 

where l/q is the integral operator 

(11.13) 

(11.14) 

and plays the role of (mass) -1 in the nonrelativistic analogy. As we will see, it 

suffices to let w(x) have only two components. The two components are postulated 

to satisfy the equal-7 anticommutation relations 

Free photons are described by the two transverse components k(x) of the 

electromagnetic potential. As in the formal development7, we use the infinite- 

momentum gauge, A’= A3 = 0. The equal-r commutation relations satisfied by 

A(x) are a 

_ T-T ’ = Sjk iA(x-x1) _ T-T’ 

(11.15) 

(11.16) 
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The free photon Hamiltonian is 

Hy= ; dg dz Ak(x) t2 Ak(x) . 

Using the commutation relations (II. 16), this Hamiltonian leads to the expected 

equation of motion, 

1 AkW 3 H,,, I= L rJ 
ia0 Ak(x) = $j $ Ak(x, . (11.18) 

The natural two component spinors w(s) and polarization vectors z,(h) in this 

description are 

w(+1/2) = ; 
0 

:(+l) = 2 -1’2(1, i) 

w(-l/2) = 1” 
0 

&(-1) = 2 -1’2(1,-i), 
(11.19) 

where the arguments s, h refer to the infinite-momentum helicity discussed in the 

formal development. Using these wave functions, the Fourier expansion of the 

fields It/, A take the form’ 

@ lx) = W)B3~d$~a$ c { fi w(s) evip ’ x b(p, s) + fi w(-s) e+ip ’ x d’(p, s)} , (II.26) 
S 

&xl = W) -31dgls T(g(h)eBip’ Xa(p,A) +g(h)* e+ip’ x at(p,h)) . (11.21) 

The operator b’ (P, s), d’(p, s), and J(p, s) are creation operators for electrons, 

positrons, and photons respectively. They satisfy the commutation relations 

f q~, s), btcp’, 0) = Sss,(2r)3 277 a(77 -7’) 82(t-g’) 

d@, s), db, ~‘1 > = Sss,(W3 27 6(rl- 9’) a2(~- E,‘, (11.22) 

[ a(~&), atcp’, V 1 = ~&W3 2”fl WI -17’) s2g- p:‘, . 
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The electrodynamic interaction can be introduced into this formalism by 

writing the free electron wave equation in the form 
10 

iaoI& = (m- ig. E) Y& (m+$ PI* 2 

then making the gauge-ihvariant substitution pP-+ p - e A . 
IJ P 

Then, using the 

gauge choice A3 = 0, the wave equation with interactions becomes 

(11.23) 

SOW = eA09+ (m- ig.[E- eAJ)& (m+i,g. k-e&])* (11.24) 

The dependent variable A0 is eliminated with the help of Maxwell’s equations, 

#F 
w 

= apa A 
P v 

-aV#A,=J,. Choosing V= 3 and recalling that A3 = 0, we 

find that -a,(a,A, -lJ-LL) = J3. From the formal development’, we find that 

J3=Jo=eat@. Therefore 

” 

2 TU 
where l/y is the integral operator 

(11.25) 

Now the equation of motion for I& reads 
3 1 

Wo# =W ” -t %lJI a+ 
“r) 

t&f: E.&+(rn-ia.[,P-e?]) $ (m+ig.Q-e$])* 
(11.27) 

Ig- sl w-,~J) l 
(11.26) 

Finally, from Eys. (II. 5),(II. 17), and the Heisenberg relation [iH,w] = a,w, we 

can conjecture that the Hamiltonian for the theory is 

(11.28) 

=ho+hI (11.29) 

with ho= HeEO. 
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The matrix elements of H are very simple when taken between the “infinite- 

momentum helic ity I’ states created by the operators bt(p, s), dt(p, s), at(p, A). 

The matrix elements are easily calculated using the expansions (11.20) and (11.21) 

of the fields: 

1) Single photon emission (Fig. la); 

<e-W, s’) tiq, h)lHI e-tp, s)> 

= (2~)3g(~out-17in) ‘2tpout-~in)[2~‘~ 
i/2 

L2f 
l/2 eJis’)?(~‘, P) .:*@I w(s) , c 

(II.30) 

where 

Wr(S’)$P’, P) ’ c*(A) w(s) 

= wfs’) 1 r) q’n. f*(h) - ,“*:*w PTp g-’ g 

- CJ-.p' [27ps. s*(h) - Y $ im g * $*(A) ‘I [ r-l - ?rll)w(s) . (11.31) 

In Table I, we list all of the possible matrix elements w’j * c*w.ll * - 

The matrix elements for other processes involving two fermions and one 

photon can be obtained by the usual substitution rules. For instance, the matrix 

element for y - e-e+ is 

@-(P’, s’) e+(p, s)lHI ?W, A)> 

= (a~)3 ‘(‘lout-9in) ‘2t~out-vin P ) [27-#‘2 [27l’] 1’2 

X e wT(sl) j(p’, *rb - p) * $“(-A) w(-s) *r 
2) Instantaneous electron exchange (Fig. lb): 

< -( e p4, s4) ?4p3A3) IHI e-(pl’ sl) Y(p2, h2)> 

(11.32) 

(11.33) 
:. 

X e2 wt(s4)~-~(h2) [Zs,]-l :y* f*(h3) w(sl) . 
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The spinor product is very simple: 

wt(s4) g- ghz) [w J-‘z. :*(A~) wq 

I/“() 
if all the particles are right handed 
or if all the particles are left handed 

= 
0 otherwise (11.34) 

3) Instantaneous scalar photon exchange (Fig. lc) : 

( -7 e p3’ s3) e-(p4, s,) 1HI e-(pl, sl) e-(p2, s2)) 
l/2 2 

e tvo)-2s 
s1s3s,2s4 

+ contribution from crossed diagram . (11.35) 

The veteran field theorist, armed with this information, will be able to con- 

struct the rules for old-fashioned perturbation diagrams by whatever formal 

methods suit his taste: 

1) A factor (Hf - H + i6) -1 for each intermediate state ; 

2) An overall factor -2ri 6(Hf - Hi) ; 

3) For each internal line, a sum over spins and an integration 

tW-3sd!, (k&Q ; 

4) For each vertex, 

a) a factor (2x)3 a(~,,~ - ?in) ‘(,Pout - ,Pin) ’ 

b) a factor [2rj) l/2 for each fermion line entering or leaving the vertex 

(the factors [27)]1’2 associated with each internal fermion line have the 

effect of removing the factor l/(277) from the phase space integral), 

c) a simple matrix element (e.g. , ew, t- J q e*w) . 
“!S 

5) These rules give the S-matrix elemen tf2 <flSli> . One obtains the differential 

cross section from the S-matrix in the convlentional fashion. 
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This “derivation” of infinite-momentum perturbation theory rules is not 

meant to be a complete alternative to a more thorough and systematic discussion 

of field theory. In fact, this discussion relies on certain guesses which are, 

however, straightforwardly answered in the more conventional treatment of the 

problem. The real motivation for the present discussion comes from strong 

interactions. Here we do not know the equations of motion, so a conventional 

approach is of no help. However, the infinite-momentum discussion here is so 

transparent that it might be easier and more compelling to insert guesses con- 

cerning strong interaction dynamics into its structure than into the conventional 

formalism. This scheme has, in fact, been considered with some interesting 

results. l3 

C. High-Energy Scattering from an EZvternal Potential 

The reformulation of QED described above was motivated in part by a desire 

to develop limiting theories to describe high-energy scattering. We next turn to 

such a theory to describe the scattering of high-energy electrons and photons in a 

prescribed external electromagnetic potential aF(x). The results of this section 

can be derived using the full arsenal of canonical formalism with an external 

potential included in the Lagrangian. However; the same results can be obtained 

by extending the heuristic discussion above. ln the spirit of our general approach 

to these problems, we will consider the heuristic derivation here. 

Begin by introducing the potential a& into the electron wave equation (11.27) 

according to the gauge-invariant substitution p - p - ea . P P PI Then the equation of 

motion reads 
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(ia, - eAo - ea,)# = [m - ig. (,p - eft - eg)] ’ 
2(rl- ea3) [:m + ig* tg - e& - e$)- a. (11.36) 

Here [q- ea3]-l is the integral operator 

(11.37) 

Now, just as in Section B , we can eliminate the dependent variable A0 using 

Maxwell’s equations and find the Hamiltonian H which gives i [H,tJr] = a,@ . 

The result is 

H(T) = 

3 ) [m + ig* Q- e&- e$J* (11.38) 

It will be convenient to imagine writing H in the form H(T) = Ho(~) + V(T), where 

Ho(~) is given by (11.38) with aP = 0 and 

V(T) = H(T) - Ho(~) . (11.39) 

Thus Ho is the full Hamiltonian for quantum electrodynamics with no external 

potential, and V gives the additional effect of the potential. 

Now let us look at the scattering matrix in the interaction picture with V as the 

interaction Hamiltonian. Define the interaction picture fields by 

w,+&Y) = e@t+iHotO)T) @(%T-,+ eW?t-iHotO)T) 
(11.40) 

&h x2) = expt+i Hotoh) &to, xT’2) ew(-i RIO(o) 7) , 

and let V+T) be given by QI.38) and (11.39) with @fix) and &.(x) substituted for a(x) 

and A(x). Then it is a familiar exercise to show that the scattering matrix can be 

written in the form 
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Sfi= <$I exp(-iJcbVI(7))Ii) , (11.41) 

where T indicates T-ordering and If) and Ii> are appropriate eigenshtes of 

Ho( 0) (which may be evaluated in perturbation theory). 

We are interested in the high energy limit of Sfi as 77i , nf -00. To study 

this limit we let Ii0 > and If, ) 

energy states Ii > = e 
- ioK 

be fixed states and calculate Sfi between the high 

Ii,) and If) = e -iwK3 Ifo), where K 3 is the generator 

of Lorentz boosts in the z direction. Thus we want to calculate 

‘fi = <fOle wK3 T \exp (-is& VI(T))} esiwK3 1 i. 

= ( folT (exp(-i& eiwK3 VI(T) ebK3)}lio 

in the limit w---a. 

We recall from the full canonical theory that the boost operator K3 is given by 

and that the fields transform very simply under boosts: 14 

e 
iwK3 

@(T+Y) e -ioK = ew/2 # te-‘” 
I 7, E, &) 

e 
iwK3 

&(T, 3, g) esiwK3 = &(e-OT, ff, e”& . 

(14.42) 

(11.43) 

(11.44) 

It is thus easy to calculate the-effect of the boost operator on VI(~). The term 

eao@ ‘r @  remains finite in the limit w - og and the rest of the terms are of order 

e -O ; we indeed find that 

iwK 
e 3vI(T) e -ioK = l$dg e”ea0(T,S,2) t&ie-UT,& eW$) t&e-“T,& eU$‘) + o(e-W) 

= s $dg eaO(T, x,, e -a$) #~(emuT,g,~) I&I(e-wT,~~~) + o(e-W) 

(11.45) 
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Upon going to the limit the operators are all evaluated at 7 = 0, so the T-ordering 

can be ignored. (This may be checked by examining the power series expansion. ) 

Thus we obtain as w -00 

‘fi = <folFlio) + WBW) 

= <f(IFli>+ O(e-“, , 
(11.46) 

where 

IF’= exp (-ij&$d,g eaO(T+ 0) @:(o+,>X) @,fo,@) 

= exp (11.47) 

and 

X(g) = eJd T a0tTs s, 0) (11.48) 

This (formally) closed expression for the limiting form of the scattering 
15 

operator is in fact the eikonal approximation, and also establishes a connection 

with parton ideas. The initial state Ii> is an eigenstate of HO' the Hamiltonian 

for quantum electrodynamics with no external field. Thus it is a “dressed” 

electron, photon, or whatever. Imagine expanding Ii> in terms of the %aretf 

quanta associated with the fields sl/(O,g,g), $(0,&g) at time T= 0: 

Ii> = +Jdg 6% q g (cp,%h) atcq,?, 310) f  - l - 

+J%[ 3dpz J E$ ts2 h(W-+ s132’772’ s2) (11.50) 

x b’tp+ sl) “r 
d (p2~772, s2) lo>+ -0. . 

Here, for example, h(gl,Tl, sl;E2,%2, 2 s ) is the amplitude for the state Ii) to 

contain a bare electron with momentum&,ql and spin sl, and a bare positron 

with momentum p ,y2 and spin s2 S 
-2 



-18- 

We also imagine the final scattering state If) to be expanded in terms of 

bare quanta (“partons”) in the same way. If we know all the amplitudes g, h, etc., 

we can then evaluate S . by moving OF to the right past all of the parton creation fl 

operators until F acts on the vacuum state IO). That is, we write 

IF b t 0 0 0 a’lO> = IFb’iF-’ 000 fFa$.F-l LFIO) . (IL51) 

We note that IF is invariant under $-translations, and thus commutes with the 

momentum operator T. Since IO > is the only state with T= 0, we conclude that 

P’IO) = IO>- (Th is result can be formally assured by considering the operators 

in p(x) to be normal-ordered.) The effect of iE’ on the creation operators I- t b , d , 

a’ is easily calculated using the equal-7 commutation relations (II,@. We find 

first that 

IF d?,g,xwl = e -iX(E) qJ(O,q,& . 

Upon Fourier-transforming this re!a.tion we obtain the convolution integral 

IFbT(g,q;s) IF-l = 
/ 

-$ b$;’ ,rlrs) F(f-@ > 

where 

F(z) = [$ e-$‘s e-‘X(3 . 

(11.52) 

(11.53) 

(11.54) 

Thus when a high energy bare electron passes through the potential at position 

5, the only effect of the potential is to multiply the electron wave function by an 

eikonal phase factor exp(-ix($). (Note that the phase X@ is simply the integral 

of the potential along the trajectory of the electron. ) The momentum component 

^/~of the bare electron and its infinite momentum helicity s are conserved in the 

process, and no pairs are created. 

The effect of F on the positron creation operators is equally simple. In 

passing through the potential each bare positron receives the opposite phase: 

IF d’(E,q; s) IF-l = d2!- 
s 

&p’,? ; s) 
(27r)2 * 

F (P’ - P) Cr L”’ (11.55) 
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where 

Fc($ = J’dg e-‘s’ 4 e+ix(g) . (11.56) 

Finally, we find that the bare photons are unaffected by the potential: 

F a’(p,q 3 IF 
-1 

= &p;X) . !?I 57) 

After we have moved F to the right past all of the parton creation operators, 

we are left with an expansion of the state IE’li) in terms of parton states (similar 

to the expansion (II.50 ) of Ii)). A ssuming that the expansion of the final state 

If > is also known, it is then a simple matter to compute the overlap Sfi of If) 

with IFli). 

Of course we do not in fact know the amplitudes involved in the expansions 

of the states Ii> and If> in terms of bare particle states. In the examples treated 

in the next section we are forced to use approximate amplitudes calculated from 

perturbation theory. What we wish to emphasize here is the physical picture 

that emerges from the present discussion: 

1) The scattering of high energy physical particles from the external potential 

is not simple. For example, it is not described by a single eikonal phase, 

2) The physical particles can be viewed as being composed of certain con- 

stituent particles (called partons in the language of Feynman). In the 

present case the partons are the ‘“bare” quanta created by the fields Q? 

and& atr= 0. 

3) The scattering of high energy partons from the potential g simple. 

4) The interaction of the partons among themselves is complicated, but 

at high energies these interactions are slowed down by relativistic time 

dilation. Therefore no parton-parton interactions take place during the 

finite time interval during which the partons interact with the external 

field. 
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Thus the scattering of high energy particles from the external field occurs 

in three steps. First the partons in the initial state interact among themselves 

during the infinite time interval -OO<T < 0. Then each individual parton scatters 

in a simple way from the external potential. Finally, the partons again interact 

among themselves during the infinite time interval 0 < T< eo. 

III. Applications 

In this chapter we calculate the high energy limits of the cross sections for 

several interesting scattering processes. AS we have seen, the contribution to 

the high energy limit of the S-matrix from the scattering of the individual partons 

off the external field can be calculated exactly. However, the interactions among 

the Partons in the initial and final states do not simplify in the high energy limit. 

Thus we include these interactions onlv to a finite order in oerturbation theory. 

Nevertheless, the required calculations in perturbation theory are quite easy 

because of the simple form of the matrix elements of the Hamiltonian in the 

infinite momentum frame. 

we begin with a short discussion of the methods involved in the calculations, 

then proceed to the calculation of cross sections for electron scattering with 

second order vertex corrections, bremsstrahlung, pair production, Blbruck 

scattering, and electroproduction of p-pairs in an external field. 

A. Calculational Methods 

In all of our applications we must compute the ampbtudes involved in the 

expansions (11.50 ) of the initial and final states in terms of bare particle states. 

To do this, we recall the definition of the unitary evolution operator U(T’, T) = 

exp(ihOT’) exp(-i[ho + hI][T’ - T] ) exp(-ihoT), where ho is the free particle 

Hamiltonian and ho + hI is the full Hamiltonain for quantum electrodynamics 
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with no external potential. The final physical scattering state I f(b)> consisting 

of outgoing particles with momenta and helicities labeled by ‘b’ is related to the 

corresponding bare particle state I b) by f( b)l = (b(U(oo, 0). Similarly, the 

physical initial state Ii(a)> is related to the corresponding bare particle state 

la) by /i(a)) = U(O,-m)la> . Th us the high energy limit of the scattering matrix, 

Eq. (‘II.46 ), can be written as 

<b\S(a) = <f(b)lIFli(a)) = < b/U(ao, 0) IF U(0, -m)ja> , (111.1) 

We need the expansion (11.50 ) of 1 f(b)) in terms of bare particle states 

In> : <f(b)] = G<blU(m, O)l n) <nl. The amplitudes (Ib(U(m, O)(n) can be 

calculated to a finite order in perturbation theory using the familiar perturbation 

expansion of U(clJ , 0) : 

(f(b)1 = (bl+ C <blhIln) Hf - kn+ ie <nl 
n 

+ c (blh,lm> H -i +iC <mlhIn) ’ <nI + , . . , (111*2) 
m,n f m Hf- Hn+ie 

where Hf is the energy of the final state and hoI m> = H,,lm) . 

Similarly, the initial state can be written as 

Ii(a), = Cln)(“\u(O, -aIla) = la) +~l”>H;H~+i~ <nIsIa)+ * * * 
n 

However, since the initial state in our examples is alw,ays a one particle state, 

it is convenient to factor the wave function renormalization constant fia out of 
16 this expansion : 

Ii(a)) = & 
f 

Ia>+ x’ln) & <nlhda) 
n i n 

+ C’ Cf In) H tH (nlhIlm> &- <mlhIla) + . . . (1*1’3) . 
n m i n i m t 

If la) is, say, a one electron state then the sums c ’ exclude one electron 

states; the ie terms in the energy denominators are then irrelevant. Since U(0. -a) 
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is umcary, the renormalization constant & can be determined from the require- 

ment 

<i(a)(i(a’)> = <ala’> . (IIL4) 

Let us return now to the formula {III.~ ) for (blSla>. It will prove convenient 

to explicitly separate the uninteresting “no scattering” term (bla) from <blSla> 

before doing any calculations. This can be accomplished by noting that 

<bbJP, 0) 1 UP, --)/a> = <blUtm, -m)la> is the S-matrix for quantum electro- 

dynamics with no external potential, which is simply <blU(w, -w)Ia> = <bla> if Ia) is 

a (stable) one particle state. Thus 

<blSla) = (bla> + <@J(w, 0) [F - l]U(O, -w)la> 

It is, of course, only the second term in (III.5 ) which is related to cross 

. (111.5) 

sections. With the normalization conventions used in this paper, the exact re- 

lationship is 

. . . 
(2x)3 2qN 

where the transition amplitude <blXla> is defined by 

(@J(m, 0) [F - I] W, -w)la) = (2~) W-I,-  T,$ <b(S@ l 

(IIL6) 

(111.7) 

B. Electron Scattering 

We wish to calculate the amplitude 

Sfi - afi = <e-(p’ , s’)lU(w, 0) [IF - l] U(O,- o)le-(p, s)) (I-II.8) 

for high energy electron scattering off an external field. We will calculate the 

amplitude to second order in the structure of the physical electron. Using the 

expansion ( 111.3) for (e-IU(w, 0) and U(O,-w)le-> and keeping terms to order e2 

we find with the help of (II.53 ) that 
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X 
J(S~Q(P~, P' - P2) . $P2W$ w?sI)J(P - P2’ P) . $*(h2) w(s) 

i 

(III. 9) 

[H(P’) - H@’ - I’,) - Q(P2)] [H(P) - H(p - p,) - w(p,)] j 

Here H(p) = (p2 + m2)/277 is the free electron Hamiltonian, w(p) = p2/27j is the - 
free photon Hamiltonian, and Z2 is the electron wave function renormalization 

constant (to be calculated to order e2). The two terms in Eq. (111.9) are 

represented by T-ordered diagrams in Fig. 2a and 2b. The figures also clarify 

the kinematic notation chosen here. The black dots in the diagrams refer to the 

eikonal factor [F(;’ -2) - (2r)2,62(l’ -Lp)] . 

In order to discuss the general form of the scattering amplitude, let us 

write (III.9 ) in the abbreviated form 

Sfi - ‘fi = (2’) ‘(7 - 7’) 271 [‘F(3) - (‘al2 S2($] +) Wg’a; rp,q) w(s) (II1.10) 

where 8 = ptcG - rJ”. One important result which we notice immediately is that 

the second order vertex correction does not destroy the proportionality between 

the scattering amplitude and the eikonal factor that one finds if the electron 

structure is neglected a1together.I However, it should be pointed out that if the 

scattering amplitude were calculated to fourth order in the structure of the 

electron, a diagram like Fig. 3 would appear and this proportionality would be 

lost.12 

The effects of the electron structure are contained in the factor wtMw. It 

will come as no surprise that the four matrix elements of M are simply related 

to two invariant form factors I? I, ,(qz), It is instructive to derive this relation 
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using the invariance principles which appear naturally in the infinite momentum 

frame. Using Eq. (III.10 ) and the table of matrix elements, Table I, then we 

can easily verify that w t Mw is invariant under the following symmetry operations: 

1) Lorentz z-boosts : momenta transform according to (7,~) -(eWT,E), 

helicities remain unchanged. 

2) “Galilean boosts”: momenta transform according to (~,l$ - (77,~ +v u), 

helicities remain unchanged. 

3) Rotations in the (x1, x2)-plane. 

4) “Parity”: momenta transform according to (7, pl, p2) - (77, pl, - p’), 

helicities are reversed. 

For q # 0, the four matrices 1 , g, .g, qXcr = q102 LF - q2a1, oz are linearly independent. 

Thus M can be written in the form 

M(p’,p) = a II + b q. u+ cqxc++ dcrz . * m Y - 
(III.11) 

The coefficients a, b, c, d will then be functions of p’ and p, or, equivalently, of 

.q(=rl’), g’ +cp, 0, = tan-‘(q2/q1), and s2. But the invariance of wtMw under 

Lorentz z-boosts implies that the coefficients are independent of 7; invariance 

under “Galilean boosts” implies that they are independent of ,p’ + &; and rotational 

invariance implies that they are independent of Q q’ 
Thus each coefficient is a 

function of q2 only. Finally, invariance of w’Mw under the “parity” operation 
n 

implies that c(q2)=-c(q2) and d(z2) = -d(q2); hence c = d = 0. The remaining 
H m v 

form factors a and b are functions of q2; but since 77 = 0, m q 
s2 qpq I-t 

= 277qHq - z2 = -q2 rz 

Therefore the expansion of M takes the form 

WP’, P) = a(q2) I + b(q2) q . c Y n 

(111.12) 

(111.13) 
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This analysis can be compared to the general analysis of electron scattering 

from a weak external field which concludes that the S-matrix, calculated to first 

order in the external potential and all orders in the structure of the electron, 

‘takes the form 

Sfi - tjfi = -i 
/ 

d4x eaP(x) elq ’ x 

y’ F,(q2) + &aCIV gv F,(s2) > U(P, s) . 

In the high energy limit, Eq. ( 111.14) becomes 

Sfi - lSfi = -27ri 6(r) ’ - 7) 

??(p’, s’) y” Fl(q2) + & uoV q, F2(q2)} VP, s) . 

When this result is converted to the notation used in this paper, it reads 

Sfi - tjfi = (2n) t?(q’-q) 217 [-is% X(g) exp(-ip* :)I 

x w’(s’) (F,(q2) 1 + & F2(s2) c&y, w(s). \ 

(111.14) 

(111.15) 

Comparison of this result with (III.10 ) and (III.13 ) shows that the form factor 

a(q2) can be identified with Fl(q2) and b(q2) can be identified with [i/(2m)]F2(q2). 

Thus our result is 

Sfi - ‘fi = (2’) ‘(?‘-‘I) 2~ [F(s - (2~)~ a2(9)3 

Fl(q2) II + +m F2(s2i 9,’ ,” w(s). 
(IIL16) 

Apparently the amplitude for scattering with no change in helicity is proportional 

to F,(q’), whereas the helicity flip amplitudes are proportional to F2(q2). For 

instance 

( 1 1 Sfi s’=2, s=z 1 = ‘fi + (2~) ‘(rl’ - r7) ‘71CF(~) - (2’)2 fi2(~)] Fl(42) (111.17) 

( 1 1 Sfi s’= -z,s=;z )= (2798(?7’ -7)) 217 [F’s, - (2~)~ “2(g)] s F,(s2), (111.18) 

where q, = 2 -1’2(qI f iq2), 
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We are now in a position to return to Eq. (III.9) in order to calculate the 

electron form factors. We begine with the helicity flip amplitude and the form 

factor F2. It is convenient to choose a coordinate system (by transforming the 

coordinates with a “Galilean boost” if necessary) so that 

Pi-l = (77, -g’,W, P” = (q,,‘,.), sc1=(0 2p’ 0) ‘e’ - 
Then the energy denominators in (III.9 ) become 

H(P’) - H(P’ - P,) -NP,) = - $j [ 
C,p2 - p,PY2 +P2m2 

PC1 - PI 3 

H(P) - H(P - P,) - NP,) = - $j 
(,p2 +P,p’)2 +P2m2 1 W-P) ’ 

(111.19) 

where 

The numerator factor in the helicity flip amplitude is trivially calculated with 

the aid of Table I: 

(III.2 0) 

If we insert these results (III.19 ) and (III.20) back into (111.9) and use (III.18 ) 

to identify F2(q2) we find 19 

2 1 
F2(z2) = 9 s 

Gw 0 
dpP2(1-P)$d$2 x [(& + P2 [$&m2])” - 82(;2*$2]-1- 

(III.21) 
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The integrals are elementary and we find without difficulty 

We recognize this equation as a familiar expression for the second order con 

tribution ot F2(q 2 20 ). Letting q2 - 0, we obtain L 

F2P) = 2 

(111.22) 

which is the famous anomalous magnetic moment of the electron. 

Before turning to consider the form factor Fl(q2), we shall point out the 

calculational advantages that the formulation of infinite momentum perturbation 

theory used here has over others that have appeared in the literature. 21 First, 

no high energy approximation has to be used to extract the important pieces of 

the energy denominators and vertices. This occurs because of the simple scaling 

behavior our kinematic variables have under boosts in the z-direction. Secondly, 

the electrodynamic vertices between infimce momentum helicity states are so 

simple that traces can be altogether avoided. 

We now turn our attention to the helicity nonflip amplitude and the form 

factor Fl. Using Table I, we calculate the numerator factor in the amplitude 

(111.9): 

C w’(+l/2) j * E w wfj * E * w(+l/Z) 
VA2 

w * c - 

p2+ PI+- Q+ = -- P& + p’_ + P& 

72 7?-7?2 ) (- r12 -‘-I- 73 

(111.23) 

= [2q2 p2(i-p)2]-1{(~~ - pP,2)(1+(1-P)2) + m2P4 

(111.24) 

- Wg’ “,p2, pzdo - 4, 
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where we have used the fact that 2k+p- = k. g -i,k x E. 

If we substitute the expressions ( 111.24) and (In.lg ) for the numerator and 

energy denominators in (111.9) and use (III.17 ) to identify Fl(q2), we find 

Fltz2) = Z2(1 + It%)), 

where 

I(g22) = $JolWJd~B-l[(&- +P2g2)(l+(l-$) + m2p4] 

X 

[i [ 
l$ + p2 m2 + ; z2] i” - p2g2. 92 -1 1 

(III.2 5) 

(III.26) 

In t 111.26) we have used the fact that the term in the numerator proportional to 

p2x q will not contribute to the integral. I, 

The integral defining I(q’) diverges as p-0 and as$i -00. However 

these divergences are cancelled by corresponding divergences in Z2, just as in 

conventional treatments of the second order vertex. If we calculate Z2 to order 

(Y using 

(111.27) 

we find easily that 

z2 = (l+I(o))-l . 

Thus F,(q2), calculated to order (Y, is * 

(111.28) 

Fl(s2) = (1 -+W)-l (1 + IQ2)) 

= 1 + (IQ2) - I(O)) 
(111.29) 

The integral defining I(~2)renormalized = I(g2) - I(0) is now better defined: the 

P-integral converges for fixed g2 and the ,p2 -integral converges for fixed P. HOLY- 

ever, the integral still has the familiar infrared divergence coming from the 

region near /3 = 0, $2= 0. In an explicit evaluation of F,(q’), this infrared divergence 

could be eliminated by inserting a small photon mass in the energy denominators. 
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Before proceeding to the next example, we should point out that the use of 

i the eikonal approximation in (III.8 ) is self-consistent, even though Fig. 2b 

includes a loop. This is true because the loop integrals are well behaved in the 

region p x 1, where the electron in the intermediate state is no longer a “right 

mover. ” If the integrals had diverged at the endpoint p = 1, the claim that 

Eq. (111.8) closely approximates the effect of external field on the physical 

particle would have been unjustified. 

C. Bremsstrahlung 

In this section we shall calculate the helicity amplitudes for the experimentally 

interesting process of bremsstrahlung off an external field. The .matrix element 

of interest is then, 

‘fi = < etp’, s’)y(k,A ) I U(% O)(IF-1) U(0, -c0) I e(p, s) > . (III.3 0) 

If we insert our expression for the physical states from Section 1II.A accurate 

to terms of order e, we readily find 

(111.31) 

The terms in this expression can be visualized with the aid of Fig. 4a and b 

respectively. 

In order to discuss bremsstrahlung conveniently we choose a coordinate 

system with its z-axis along the direction of the outgoing photon. The energy 

denominators in Eq. (1X.31) become, 
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‘k 
I-UP’) + o(k) - B(P’ + k) = m (;I2 + m2) 

‘k 
H(P) -w(k) - H(p-k) =-w (g2+m2) . 

Finally, if we choose definite helicities for the incoming and outgoing particles 

we obtain, with the aid of Table 1, the infinite momentum helicity amplitudes 

for bremsstrahlung, 

sfi = (27q6(7~+-77~) 2[7w]’ ~(~‘-1l)-(2x)~6~(~~‘-~) 1 eWs-+ CA) 

W-: 277 4&l) = - 
‘k I p1 + 2p- pV2+m2 p +m2 i P :* 

(111.32) 

M(+;,-1) = 277’ pi P+ - 
‘k p_12 + m2 + 2 p -tm2 I w 

M($-*-i,l) =Jz im - ’ 
i p12+m2 w *r 

M&--$,-l) = 0 , 

These results should prove useful in detailed calculations with specified external 

fields. For cases in which the external field can be treated perturbatively, one 

can easily show that Eqs. (III.S)lead to the high energy limit of the Bethe-Heitler 

formula. 

‘D. Pair Production 

We wish to calculate the scattering amplitude 
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‘fi = < e (Pl9 sl) e+(P2, s2) I U(-, 0) [IF-U] U(0, - 00 ) I y(k, A) > . (111.33) 

Proceeding along familiar lines, we insert perturbation expansions of the physical 

states accurate to first order in e and find 

X IQ-z~;J) Fc(p2 + E -9 - tW4~2(pl-p)62(p2 + p-k) , v #V r?. ,,!. 11’ *.r 1 
(111.34) 

which can be visualized with the aid of Fig. 5. 

If we now choose the z-axis along the direction of the photon and calculate 

helicity amplitudes, we find 

‘fi = (2T)b (~k’~1-~2) 2 771772 
[ 1 

+ e (2n) -2 
di WA-+ sl, s2) 

(111.35) 
x F(,ql-$ Fc (p2 +:I - (2r)462(P1-,9)62,p2 ‘E’] 9 *)* 

where 

M(l+,-$) = 

M(l- -&,-$) = 0 , 

It is interesting to convert the momentum integration in (I.U.35) to an inte- 

gration in coordinate space in.order to appreciate the two-dimensional Galilean 
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invariance group which manifests itself in the infinite momentum frame. To 

begin, we drop the special requirement that the transverse momentum k, of the 

photon be zero and return to the energy denominator in (111.34): 

This is a rather messy function of the momentum p of the electron and the .hr 
momentum (k-p) of the positron in the intermediate state. m ,ka As is usual with two 

body problems in “non-relativistic” quantum mechanics, it pays to change vari- 

ables to the total .momentum, k, of the two particles and their relative momentum. h- 
Since 7 plays the role of particle mass in the nonrelativistic analogy, the rela- 

tive momentum is 

where 

7 = 7?p2/P11+772) 

is the ‘I reduced mass” of the pair. When written as a function of k and q, the ea. al% 
energy denominator is independent of k: inn 

~(k,77k)-H~,771)-H~-,P,172) = -(2!)-l[z2+m2] 

(111.36) 

(IIL37) 

(In non-relativistic terms, this is minus the “internal energy” of the pair. ) 

Similarly, the vertex matrix element wtj C* w in (111.34) is a function of the rela- r,. 
tive momentum q only. After a little algebra we obtain the explicit form, 
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ewt(sl)L(~)ll;P-k,-‘12).~(h)w(-s2) _ t 
W&s qk )- H(P, ‘11)’ HC;f -E, 712) = w Is,) 3 (y?y ‘12) w- s,)3) , 

q-i{2 X9) aZ+irnze 2 -1 (z2+m ) , 

(III.38) 

where q x%? = (q2, -$). I* 

Using these results, we can write (111.34) as a coordinate- space integral. 

Let 3, & be the coordinates of the electron and positron respectively in the 

Fourier expansions (II. 54 ) and ( II.55 ) of the eikonal factors, and define 

= coordinate of the center of lfmass’t of 
the pair 

(111.39) 
,; = 21-s = relative coordinate. 

Then we find 

[ 

-iX(3fi) +iX(Z$ 
e e 

where 

It is interesting to interpret the various factors in (111.49). First, 

E (A) exp (ik,‘F$ is the wave function of the initial bare photon. Multiplying this L+w 

) 
-1 

I 
(IIL40) 

by $j(;) tells us the composition of the physical photon in terms of its consti- 
22 

tuents, which, to first order, are an electron and a positron. Hence we might 
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refer to (3(r). %(A) exp (ik.FJ as the first order approximation to the wave function 

of the physical photon. The I1 internaltl wave function s(z) satisfies a two- 

dimensional Schroedinger equation with a point source, 

The solution of this equation which vanishes as I r I - 00 is simply related to the 

modified Bessel function K. : 

Ko(m I 5.1) . 

The next factor in Eq. (III.40), the eikonal phase factor, tells us how the 

constituents of the physical photon interact with the external field. Finally, the 

factors w’(s1) exp(- iup 3) and w(- s2) esp(- iE2. s) are the wave functions of the 

final electron and positr.on (calculated to zeroth order). Evaluation of the S- 

matrix is completed by integrating over the coordinates 21 and.;2 of the electron 

and positron and multiplying by (2 ?I ) times an n-conserving delta function and by 

a fermion normalization factor (2771)i (271~)~ . 

E. Delbruck Scattering 

Let us turn our attention now to the problem of photon scattering off an external 

field. We shall see that our scattering theory gives a clear and concise derivation 

of the amplitude for this process. 

The matrix element we wish to calculate is 

S fi - 6fi = <Y(P',h') ] W,O)[E=-l]U(O,-oo)] y(p,h) > . (111.41) 
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If we insert the expansion of the physical photon state into (111.41) and calculate 

to order e2, we find 

Sfi- hfi = e2(27r) -4 
W/‘-r]) 1 “lj-d~ld$ c 

s1’ s2 

t X w+(sl)i(Pp-P2)*f(A)w(-s2)w (-s2)j (-Pa,Pi)*e*(A’)w(sl) 

(111.42) 

x 

where 

P2 = Q-I?l~“-nl) Pi = (up’-Ei,q-Vl) 

This formula is visualized, and its kinematics are defined, in the T- ordered 

diagram Fig. 6. 

We are now faced with two related problems. First, the integrand in (III.42) 

is a very messy function of the independent momenta ~1 and zi* Second, the 

momentum integration is divergent: if the integrals are cut off in an arbitrary 

non-covariant fashion, the result will depend on the cutoff parameter. The remedy 

is simple. Since Sfi is invariant under the Galilean symmetry group discussed in Section 

1I.A and Section 1II.B it will be to our advantage to use integration variables which 

are invariant under this group. 
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We choose ts make use of four Galilean-invariant momenta z, q, P,, and Q. -,I_ 
The momenta r and q are defined so that the momentum transfer from the external 

potential to the electron in the intermediate state is r + q and the momentum -.r ,:. 
transfer to the positron is r - q: *- ^, 

(III.43) 

.pi -%=z-q. ,?1 

The momenta L and Q are defined so that the “relative momentum’1 of the electron- 
)Y 

positron pair is 

the interaction: 

r;. 

a-Q before the interaction with the external field, and 1 + Q after 
._I ;  

2 3 “+%=iJ --- , ,h [ 1 9 n2 

where 77 = qlq2/q is the “reduced mass” of the pair. We will 

integration variables instead of $1 and pi. The momentum f is, 

(111.44) 

use q and Q as L c 

of course, fixed 

by the external momenta: 2~ = p’ -p. We find with a little algebra that Q is given ,.,i I., ?a. 
in terms of z, and q by ‘-ml 

where we have defined 

(111.45) 

(III.46) o! = 77pl - 
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When this change of variables has been made, the scattering matrix takes 

the form 

S fi- ‘fi = e2t27f411 6(T ‘-T) 

where 

Fc($-g)- (2Q46(r+96(f-q) MA(s,,~; A, A’) 1 
(111.47) 

MA{:, $3, A’) = jda f&, c 
0 Y2 

w+(sl)J(Pl, -P2)‘$(A) w(-s2) w+(- s2)j (-PipPi )’ $*(h’)wtsl) (111.48) 

W(P) - H(q) - H(p2) -’ 1 [ NP’) - H(Pi ) - H(P2) 1 8 

Eq. ( 111.47) has the attractive prcperty that the integrand of the q-integration w 
decomposes into two factors: one describing the interaction with the external 

field, and a second, called the photon impact factor by Cheng and Wu 
23 , describing 

the composition of the physical photon as a bare pair. 

A technical complication arises because the impact factor M depends on 

a cutoff A in the &- integration. However, we will see that the cutoff does not 

affect the scattering amplitude, and therefore has no physical significance. 

It is quite easy to write down the explicit form of MA using the variables 

iand Q,=i (;+q)-or,. The energy denominators are .w 

W(P) - H(P~) - H(p2) = - (25)-l [ f-$$+m2] = -[27jo~(l-o)j-~[($-~)2+m~] 

W(P’)-H(Pi)-H(p2) = -(211)-l [(i+G?j2+m2] = -[2,u(l-o]-’ [(i+GJ2+m2] . 
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By making use of the Galilean invariance of the numerator factors wtj w, we can m 
write them in terms of 1 and 2 immediately: I IV 

Thus MA takes the form 

where 

Let us consider the helicity flip case first. Reading from Table I, we find 

n(p., $A - 1) -1 = -Whorls) V.+-Q+)(e++Q+) = -277 -2 [a(1 - CY$‘[P+J.+ - Q+Q+] . (111.51) 

Thus 

1 A 
M*(q,r,+l,-1) = -8 / da cu(l- a) n m-v 0 

E+c&)2+ m2 1 -’ . 

(111.52) ’ 
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The helicity non-flip amplitude is also quite simple. Reading from 

Table I, we find 

n($$+L+U 
(III. 53) 

The term proportional t”& X CJ can be dropped since it will not contribute to MA . 

Thus we obtain 

M (q, r;+ 1, + 1) = 2 
w my 

(111.54) 

As mentioned earlier, the impact factors MA given in (111.52) and (111.54) 

depend on the cutoff parameter A used to avoid the logarithmic divergence in the 

L- integration. However, we can verify that the cutoff does not affect the scattering ,. *. 

amplitude in the limit A-+ 00 by writing MA in the form 

The term %Adefined by (111.55) is evidently finite in the limit h--+W If we use 

the simple observation that 

F(r +c$ F& -2)’ t2Q462(~+$62t:_$ = 0 9 . ” 1 

(111.55) 

we see that the cutoff dependent part of MA(q, r;A,A’), namely MA(z,,:;A,A’), does @an 
not contribute to the scattering amplitude (111.47) and therefore has no special 

significance. 
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In addition, we may note that because of its definition !%A(s_,z;h,h’) is zero 

at q = ,r. ./.. * It is also zero at q = -r, II c , . (Indeed, it is an even function of q, as can v 
be verified by making the change of variables o --+(l - CX) in (111.52) and (111.54). ) 

Thus the scattering amplitude (III.47) remains finite even if the eikonal factors 

are singular at q = f r, as they are in the case that Ap(x) is a static Coulomb w 
potential. The renormalized impact factors &(p,$;h ,h’) are identical (aside 

from a factor -e4(2n)-3) to the impact factors for the photon found by other 
23 techniques by Cheng and Wu. 

F. Electroproduction of 1-1 Pairs ; Scaling 

We wish to discuss here a “model” calculation which, hopefully, has im- 

portant features in common with electron-nucleon inelastic scattering. We ’ 

imagine the process pictured in Figs. 7a and 7b: a virtual photon, produced by 

the scattered electron, creates a pair of muons which diffract through an external 

field (e. g. a nucleus). In the spirit of inelastic electron-nucleon scattering we put 

eikonal phases only on the members of the pair and treat all particles as distin- 

guishable. 

One purpose of the model is to investigate the scaling property recently dis- 

covered in electron-nucleon scattering. 24 To do this, we assume that only the 

final electron is observed and construct the cross section da/dQ2du, where Q2 

is the four-momentum transfer from the electron line and v is the energy transfer. 

We then ask whether the diffractive mechanism envisioned here leads to scale 
25 

invariant expressions for the form factors CJ T and us in the limit Q2--+ (=o . 
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To begin, we construct the scattering amplitude corresponding to Figs. 7a 

and 7b: 

Sfi = e2(27r) 6(q-q’-q1-7j2) 
[ 
2~2nq2n1217~ 2 

I I 
dsli 

G7 

X 
z~w+(s’),j. (P’S P)’ e*(h) w(s) wt(,l);i(Pi 9 -Ph)*L(N w(- s2) 

tWq) (H(P) - H(P’) - o(q)) + mqT2as, , & 9- s 1 2 

where 
(111.56) 

The first term in braces in (111.56) corresponds to exchange of transverse photons 

(Fig. 7a); the second term corresponds to the exchange of a If scalar photon” 

(Fig. 7b). The function HP(p) refers to the free muon Hamiltonian (z2+ p2)/2t7, 

where ~1 is the muon mass. 

Before proceeding further, it is convenient (as usual) to change variables in 

the momentum integration from ,Pi to k, where k$ is the If relative momentum” of lw 
the virtual p- pair: 

(111.57) 

where 

(111.58) 
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It is also convenient to let - Q2 stand for the square of the 4-momentum trans- 

ferred from the electron line: 

-Q2 = (P -P’)’ (P -P’), . (111.59) 

In terms of these variables, the energy denominators in (111.56) have the simple 

forms 

H(P) - Wp’) - o(q) = -&2/(271,) , 

(III.6 0) 

H(P)-H(P’)-H~(Pi)-HI-l(P~ = -$- - 
77q 2 2 

q 2q17j2~+~ ) ’ 

The numerator functions w’j.$*w w’i $,w can be read from Table I, and are 

also simple functions of 5. 

We are now prepared to write out Sfi in a form suitable for calculating the 

cross section. Let us choose the z-axis in the direction of the beam, so p = 0, * 
and consider S fi for the choice of spins s = s’ = s 1 = *, s2 = - 8 . Then when we 

substitute the expressions from Table I and Eq. (111.60) into (111.56) we obtain 

‘fi = t2’r) I3 (17-q ‘-771’772) [ 27 277 r2712772 4 -2e2 

I( ) “II, 
~!~,9~,) 9 

where 

L 

(111.61) 

CY~,-~)F~(I~~- (1-o&t- &)-(27V462(Pl- 04,-$a2(r2- (l-o)?%,+ k) 1 7 

(111.62) 
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and 

(111.63) 

-p:, [l - o]k- + (~(1 - a) Q2 a(1 - ry)Q2 + ~1 2 -1 1 . 

The three terms in f@ arise from exchange of a right handed photon, a left handed 

photon, and a ‘1 scalar photon It respectively. 

The physics of the amplitude %(pl,p2) is more apparent if we write it as a 

Fourier transform by inserting the expansions of the eikonal factors into (111.62). 

The resulting structure of E(E~,;~), and its physical interpretation will be familiar 

from the discussion of pair production by real photons in Section 1II.D. We find 

M’,PlYP2) = S dfld,x2 e 
- igl-il e- it2-52 

M&?&J 

(111.64) 

where s = $hl~ + 71~s ) and f(z) is the Fourier transform ofF($). Explicit 

evaluation gives the wave function of the virtual muon pair, f(r), in terms of 

modified Bessel functions K. and K1: 

f(z) = (2n)-2 dk e x6 m ik’r T,(k) +‘& +T&j = f,(z) + f,(z) + fs($ , (III.65) 
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f&) = & (+Pl) Q[~(~-Q)Q~+P~]’ $Kl([a(l-“‘Q2+r2]$r) 

“1” :Kl([o(l-~)Q2+~2]1 r) 

1 
f&j = FT cu(l- a)Q2 K. . 

We will see in the sequel that, for our purposes, this expression for f(s) is not 

as formidable as it seems. 

With a useable expression for Sfi now at hand, we are ready to construct 

the cross section da integrated over the unobserved momenta of the muon pair. 

Using (111.61) in Eq. (111.6) we obtain 

du = dE,’ dn ’ 

Since M($,E~) is simpler than %(~~,t~), we write the ,pl, Jo- integral as 

= J dr I f(r) I “sdp [2 -2 ~0s (X(b+i;r) - X(b-+))I 

Assuming that the potential has cylindrical symmetry about the z-axis, we can 

replace I f(r) I 2 by I f,(r) I 2 + I fL(r) I 2 + I f (r) I 2 in (111.68), since the various s ,, 

cross terms will vanish when the integration over the angle of r is performed. 

Thus the cross section separates into a part due to the exchange of a If transverse 

(111.66) 

(111.67) 

(111.68) 
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photon” , dvT = daR + daL, and a part due to the exchange of a ‘I scalar photon”, 

daS. If we substitute the expressions for I fR I 2, I fL12, and I fS I 2 obtained 

from (III.66) into (III.68) and (111.67) and interchange the roles of a! and (l- Q) in 

duL, we obtain 

do = daT + dus 

= dp’ dq’ 4e4(2 

(111.69) 

This expression gives the cross section in the high energy limit discussed 

in Section II i. e. in the limit q , q ‘-oc with q/q f and Q2 fixed. It remains now 

to evaluate da in the limit Q2+ 00. To take this limit we have only to note that the 

modified Bessel functions appearing in (III.69) are large only for small values of 

their arguments, so that the main contribution to the A-integral comes from the 

region ,p2 < cr(1 - cy)Q2+ /.L E 
2 -1 
3 . 

Physically, this means that for large Q2 the transverse separation r between 

the muons as they pass through the external potential is small, If the separation 

were zero the two muons would receive exactly opposite eikonal phases; thus for 

small r the net phase received by the muon pair is proportional not to X but to VX . 

Mathematically, this means that the Q2 -co limit of do can be obtained by 
26 

substituting for the b-integral in (111.69) its limiting form as r-0. This 

limiting form is easily evaluated: 



-46- 

J I d,b 2 -2 cos X($ + +,r) ( 

(In the last step we have used the assumed cylindrical symmetry of X(b).) 

Once the limiting form (111.70) of the &-integral has been substituted 

(111.69), the s-integral can be evaluated using the formula2’ 

(111.70) : 

into 

2 xs-l = 2s-3 i 1 l-74 s) 2 f($ s + J)r($- s- J) 
f(s) l 

This leads to 

da = dg’dq $e4(2rr) 

x[&[(+)~+~]I/ ido ” + ldo[+]2j . (111.71) 
CL+ - a)Q2+ p2 

Evaluating the o-integrals in the limit Q 2 --coo, we find 

da = duT + dus 

- ds,’ dq ’ (III. 72 ) 
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We recall that this is the cross section for the choice of spins s = s’ = 3 , 

s =+., s ’ 1 2 
=+ It is not difficult to see that the choice s = s’ = 9 , s1 = -2, 

s2 = +& leads to the same cross section. Each of the other six possible choices 

for the spins of the final particles gives a cross section duS = 0 and a cross 

section duT which is small compared to the cross section in (111.72) as Q2- oo.28 

Thus the limiting cross section for s = 4 (or s = -i ), summed over final spins, 

is two times the cross section in (111.72). 

In order to make contact with standard notation and identify the form factors 

uT(Q2 I v), us(Q2, v), let us define 

i E = lab energy of the incident electron = 2--[q + H(p)] 

E’ = lab energy of the scattered electron = 2-’ [?I’ + HO] 

v=E-E’ . 

(IIL73) 

Apparently in the high energy limit 

r] =2’E, 77’~ &, q 
q 

=2&J. (111.74) 

We recall also the definition of Q2: 

2 

Q2 = - (P- P’)?P- P’), = -2qq(H(p) -H(p’)) +;I2 = -$ gf2 + -&, m2 . (111.75) 

Thus in the high energy limit, and neglecting m2 compared to Q2, we can replace 

_p12 bY 

p12 = g Q2. 
(# 

(111.76) 
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When we make these replacements we find for the cross section summed 

over final spins, 

da daT d% 
dQ2dv 

=-+- 
dQ2dV dQ2dV 

Using (111.77) we can extract the form factors us and uT 29 : 

ustQ2, dQ2) - s -+ & J-2 [P?d” 

It is interesting to compare the behavior of us and aT in the present model 

with the famous scaling behavior of the same form factors for deep inelastic 

electron-nucleon scattering. 30 In this model, us(Q2, v/Q2) is scale invariant: 

for large v and Q2, Q2us is a function of (v/Q2) only. However, the factor 

log(Q2/p2) spoils the scaling behavior of aT. 31 

In the somewhat hypothetical limit of an external field which varies in space 

slowly compared the lepton Compton-wavelength (l/X[pXI<< p -I), the formula 

(111.71 ) for os/oT is valid for all Q2. The direct evaluation is shown 

in Fig. 8 ; we see that us/oT is never larger than 0.26. 

It is not clear what direct connection these calculations have with respect to 

hadron electroproduction. While there appears to be a diffractive mechanism 
32 

(III.77) 

(111.78) 

operating in both cases, the details (e.g. ,‘ the scaling behavior of oT) are different. 

However it may be that some features of the process, such as the importance of 

small transverse distances (Ax)’ 5 QW2 at large Q2 are common to both. 
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G. Electroproduction of 7~ Pairs 

While the calculation discussed in the previous section did not yield scaling, 

it has the attractive property of predicting a small number (< 0.26) for the ratio 

u /a s ,I., This result can be traced to the fact that the constituents of the photon 

(muons) has spin &. To display this fact explicitly we consider the process of 

electroproduction of r’s (spin zero) off an external field. 

Our first task is to develop the infinite-momentum version of QED for spin 

zero bosons. By arguments analogous to those of Chapter II, it is easy to obtain 

the Hamiltonian which governs such a physical system: 

(111.79) 

We are interested, in particular, in the two graphs shown in Figure (7). The upper 

line in the graphs is familiar since we know how the electron couples to both the 

transverse and scalar photons. We can read off from (III. 79) the matrix elements 

for the pair production of spin zero bosons from a transverse photon: 

a) (111.80) 

and the matrix element for an electron to create a pair of spin zero bosons through 

instantaneous photon exchange : 
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(b) (2nB6(17-9’-lli-~~)62(p-p’-pi--~! e2~s1sdG7 
(T$q’) 

(77 ’ + ‘71’ J2 2 
(III. 81) 

The final ingredient in the calculation is the limiting form of the S-matrix describing 

the scattering of the energetic constituents (n+n- ) off the external field. The details 

of the argument follow those of Chapter II, and one can easily find that the same 

answer emerges: each 7r receives an eikonal phase exp(- ie ./aO(T, x, $ )dT) as it 

passes through the external field. This result is very plausible since the eikonal 

formula depends only on the charge density of the constituents and not on their more 

detailed properties. 

With these preliminaries done we can record the S-matrix element for Figure (7): 

‘fi = e2(2n)6 (q-7jf -n2’q3) J2r12rl’ 

[H(P)-H(P’)-H1l (pi)-Hn (Pi)]-’ b(&-Ei)Fc,2-P2() - (2n)46 @ ‘l-I’i )6(&)2-,!$)] (1”82) 
L 

where the kinematics are defined as in Section (9. The pion current term can be 

written much more simply in terms of k, the 11 relative momentum11 of the pair, 

(III. 83) 
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If we choose s =s’ = 4 the numerator in the term corresponding to Figure (7a) 

can be worked out with the help of Table I, 

“T w+(h)$~l, p)*s*(Mw(&^k=e (A) = - ,I t(:-q ‘) p:k+- & p;k- (III.84) 

Furthermore, if we define the variable 

o! = ‘ll/‘1rl (III. 85) 

and do the manipulations which led from (III.58) to (IlI.62) in Section (F) we &t&n, 

S fi = e2(277)6 (77-71’-11~-9~) d&G 
] 

(111.86) 

It will prove convenient to write this expression in the form appearing in Section (F). 

We have 

S G, hp3) (m 87) 

where 

(~q3F~(.~- (l-o)%+&) - (2a)4s &oc$&6 (,2- fl-o)CJ+& 1 
(111.88) 
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and 

TT (k) = ~R+k) +TykJ +?pk) = JG) t +p:k+ +p;k- + t% - dQ2) 

+ a(l-a)Q2 + m2 
(IIL 89) 

lr 

The interpretation of the various terms is the same as in Section (F). We observe 

that the f7, Is differ from the fPts of Section (F) only in their Q! dependence. In fact, 

(IIL90) 

Analogous steps which led from (III.67) to (111.72) in Section (F) give the transverse 

and scalar differential cross-section, 

(III.91) 

We can identify the form factors uS(Q 2, 5) and oT(Q2, 5) from these expressions 
Q Q 

in the usual way 

(III.92) 
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Taking the ratio of these quantities and letting Q2 >> rnz we have 

IL 1% (Q2/mz) 

cT 2 (IIL 93) 

In this model uT scales, but US grows logarithmically with Q2. This is just the 

opposite behavior of the P electroproduction model. It is clear from (III.92 ) that 

this difference stems from the different longitudinal momentum distributions of 

the constituents (I.c’s or A’S) in the physical electron. Although neither model 

scales, the first (spin & constituents) is more appealing since the ratio aS/cT 

was, at least, a small number. 

IV. Applications in Strong Interactions 

A. Description of the Approach 

We now turn to a more speculative program of applications. We are interested, 

in particular, in attempting to obtain predictions relevant to strong interaction 

phenomena from our field theory model. The motivation for using field theory as 

a framework for such a discussion is the fact that, unlike other available theories, 

it respects the basic principles of unitarity, analyticity and crossing which one 

would like a llsolutionfl of strong interactions to possess. However; since per- 

turbation theory is the only calculational technique at ones disposal, it is difficult 

to see how one can obtain predictions from field theory which do not rely on the 

unrealistic assumption of weak coupling. One particular way out has been, of course, 

to sum infinite sets of Feynman diagrams. This procedure is, in general, difficult 

to defend for two reasons. First, one can question whether one possesses the 

physically most important set of diagrams; and second, a mathematical justifi- 

cation for the summing procedures (which are usually approximate in nature) is 

lacking. 
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Regardless of the difficulties inherent in this program, it is certainly a 

worthwhile task, in light of the absence of a competing fundamental theory of strong 

interactions, to attempt to obtain some insights from field theory. Whether one 

can obtain detailed and reliable predictions is another much more difficult question 

we will be addressing in the subsequent chapters, Many of the processes we will 

consider have been discussed in a different light by H. Cheng and T. T. Wu. 32 

We will obtain several of their results in a more understandable and physical con- 

text; but, more importantly, we will also argue that some of their recent pre- 

dictions concerning total cross-sections at asymptotic energies are based on an 

unrealistic set of approximations which omit many crucial characteristics of strong 

interactions. 

Since the calculations to be presented are rather technical and tedious, it 

behooves us to dwell at some length on their physical features before proceeding 

further. We consider an energetic electron scattering off an external field. We 

relax our calculational procedure of working only to finite order in the number of 

bare constituents that make up the physical electron and ask for that set of graphs 

which give the dominant contribution to the scattering amplitude. It should come as 

no surprise that the graphs are similar in general structure to those considered in 

multiperipheral models. In fact, we argue that, fixing the order of perturbation 

theory at 2n, the most probable physicai state of the electron consists of a bare 

electronand n e+- e- pairs as presented in Figure 04). This diagram is a slight 

variation on the more familiar t-channel ladder graphs in $3 models of Regge poles. 

A distinctive kinematic feature of these graphs is the longitudinal momentum dis- 

tribution of the pairs down the chain: each pair on the chain has (on the average) 
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a fixed fraction r of the longirudinal momentum of the pair just above it. Thus, 

as is common in multiperipheral models, the longitudina,l momentum distribution 

of the e+ - e- pairs is a constant function of log q (;=: rapidity), 

This physical state develops as the electron approaches the external field. 

The most likely interaction between the constituents and the external field is realized 

when the slowest pair on the chain picks up eikonal phases. The last step in the 

elastic scattering process is the reconstruction of the outgoing electron. This, 

naturally, occurs through the same machinery that developed the initial physical 

state. Thus, the entire scattering process can be diagrammed as in Figure 04). 

A striking dilemna occurs now when one attempts to sum over n, the number 

of pairs in the physical state: the resulting scattering amplitude leads to a cross- 

section which violates the Froissart bound. The physics responsible for such an 

effect is actually very simple. Consider Figure (14) again and view it from the 

t-channel. If the e+- e- pairs were absent and the two photons coming off the 

electron belonged to the external field, the scattering amplitude would be negative 

and proportional to the c. m. energy of the collision. In the usual way, this leads to 

a constant cross-section. New imagine putting the e+- e- pairs back into the diagram. 

They provide a mechanism whereby the 2 photons can attract one another and tend 

to bind. Invoking the familiar Regge argument, this binding in the t-channel implies 

a stronger energy dependence of the scattering amplitude in the s-channel. In more 

detail, we will find that the scattering amplitude, as represented in the complex 
lln 2 angular momentum plane, possesses a cut which extends to J = 1 + r2 Q! . 

It has been suggested that s-channel unitarity be restored by iterating the single 

chain graphs. The motivation for such a suggestion comes from the eikonal formula 

(11.47). This simplest eikonal formula occurs from the iteration of single photons 
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in the s-channel. One might guess (and we will prove this in detail) that if a more 

complicated t-channel structure is iterated in the s-channel, a similar eikonal 

scattering amplitudes emerges. However, now the eikonal phase X is associated 

with the single chain diagrams instead of single photon exchange. Since the scat- 

tering amplitude for single chain exchange is purely absorptive, the associated 

phase X is negative and could serve to damp out the absurdly large single chain 

amplitude. This is indeed what happens: the result of the s-channel iteration 

procedure is a scattering amplitude which saturates but does not violate the 

Froissart bound. 

Our physical picture sheds considerable light on the implicit assumptions con- 

tained in this procedure. First, we will see that these unitarity corrections occur 

when more than one chain of e+ -e- pairs occur in the physical electron state. So, 

a typical contribution to the scattering might be a diagram as shown in Figure (18). 

A suspicious assumption of the iteration scheme is that the various multiperipheral 

chains do not communicate with one another during the scattering process. However, 

according to our physical picture, the chains scatter simultaneously off the external 

field, and hence are nearby in real space-time. There is also considerable overlap 

between the various chains in momentum space, i. e. electrons and positrons from 

different chains often occur with small relative subenergies. Hence, it would be 

very odd to suppose that they would not interact and link up their respective chains. 

Naive considerations such as these lead us to suspect that it is unrealistic to treat 

the chains as independent. 

A detailed calculation to confirm this belief is carried out in Section E. There 

we consider, in a somewhat simpler model than QED, a set of graphs which lie 
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outside the proposed iteration scheme. We find that these graphs as depicted in 

Figure (20) grow even faster with energy than the single chain amplitude. On the 

basis of this work we are led toconclude that the popular Regge-eikonal formalisms 

are too naive to be considered indicative of field theory’s predictions for diffraction 

scattering. We conjecture that more effort is needed to sift out the general features 

a more reasonable and physically appealing picture of diffraction scattering should 

possess before attempting more detailed perturbation theory calculations. 

B. Single Chain 

In this section we wish to emphasize some of the physical features and important 

formulas for the multiperipheral process shown in Figures (9-14). These processes 

have been considered in the literature, so we relegate our explicit and lengthy cal- 

culations of the associated scattering amplitudes to the Appendices. The reader 

is, however, advised to familiarize himself with some of the main features of these 

calculations before venturing on. 

We will also find it slightly more convenient for these applications to modify 

our perturbation theory rules somewhat. These rules are, aside from certain 

normalization changes, simply those which follow from the formal field theoretic 

development. We shall associate the following factors with the parts of a certain 

-r-ordered diagram: 

(i) wave functions u(p, s) , U(p, s), Ec(p, s), u,(p, s), and eh(p) for the ex- 

ternal lines ; 

(.ii) (ld + m) = 5 u(p, s) Z(p, s) for electron propagators; 

(-b + m) = -G u,(p, 6) ii,(p, s) for positron propagators; 

Che A (p)’ eA(p)’ for photon propagators; 
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(iii) e’yP for each vertex in Fig. la. 

e 2P vl 6, 63 2 . . . Yp...Yv . . . for each vertex in Fig. lb, where 77, 
7)0 

is the total n transferred across the vertex 

e2YvYoyp + for each vertex in Fig. lc; 
r! 

(iv) a factor (2793 6( vout- qm) G(P~~~-P~) for each vertex; 
. 

69 a factor (Hf-H+ ie) -’ for each intermediate state; 

(vi) 
-3 

an integration (2~) dp *ill 
/d 

2t7 and a sum over spins for each internal. 

line ; 

(vii) an eikonal phase factor for a chosen intermediate state. 

Let us now return to the multiperipheral diagrams of Figure 14. Cur physical 

picture sllows us to look at these scattering processes in three parts. First, 

the incoming physical electron dissociates into a state of bare constituents 
+ which in this case are e - e- pairs. The scattering ampilitude receives its 

dominant (leading logarithm of energy) contribution from multiperipheral 

chains which are stronglv ordered. i. e. the ratios of the longitudinal 

momenta of successive virtual photons down the chain are small. So, to good ap- 

proximation the physical electron consists of a chain of e+-e- pairs whose Iongi- 

tudinal momentum decreases the further down the chain we move. The chain of 

constituents next scatters off the external field when the slowest e+-e- pair picks 

up eikonal phases (Fig. 14). Finally, the scattered state of constituents recombines 

into the outgoing physical electron. 

According to (C. 10) of Appendix C, the scattering amplitude (forward direction) 

for this process reads, 

s(l chain) 
(11) = -t2%2q) 8(‘i’-77’) C M(77/qmin) -1 1 w-u 
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where 

M( 11’7 
1 

mix? =$- s -q f* (P, 1) f (A 1) 
(279 

and rl refers to the incident electron and the functions f and C are derived in 

Appendix D . The minus sign in (IV.1 ) indicates that the scattering is pure 

absorption. The scattering amplitude can be understood more clearly by trans- 

forming it to the complex angular momentum plane. As discussed in Appendix 

C , the Mellin transform of (IV.2 ) reads, 

M(J) =L f*(P, 1) f (p, 1) 
1 

x2 J -(%)” C(P) 1 (IV.3) 

which possesses a cut over that range of J where the denominator, J - $ 
( 1 

2 
cm?, , 

can vanish. That range is, in fact, from J = 0 to J = 117r(w2/32. As derived in 

Appendix C this implies that the energy dependence of the S matrix element reads, 

l+Lg 

(IV.4) 

This result has been obtained by Frolov et al., 5 
-- and disagrees slightly with the 

cut claimed by Cheng and Wu. 4 We see that (IV.4) violates the Froissart bound 

no matter how small Q! is. In effect, the multiperipheral chain has provided a 

mechanism whereby the two photons coming off the through-going electron line tend 

to attract one another. This effect elevates the energy dependence of the S matrix 

from q , characteristic of spin one photons, to q 1 +(11niy2/32) . 

It is this violation of the Froissart bound which has caused several authors 

to consider diagrams of iterations of the multiperipheral chains as a possible 

mechanism for softening the energy dependence of (Tv.4). The success of this 

scheme relies upon the observation that such diagrams have alternating signs 
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and hence tend to cancel when summed. This behavior is similar in character 

to the simpler and more familiar s -channel iteration procedures used in eikonal 

approximations. We will see in the next section that such g-channel iterations 

can be easily computed and understood from our infinite momentum point of view. 

c. TWO-CHAIN DIAGRAMS 

In this section we will look in detail at the diagram in Fig. 15. The incident 

electron emits two photons which break up into two pairs which scatter simul- 

taneously in the external field before they each coalesce back into photons which 

subsequently land on the outgoing electron. In addition to the particular T- 

ordered graph drawn in Fig.15 there is a graph for each other allowable -r-ordering 

of the vertices. The crucial point, however, is that although a particular -r-ordered 

graph is complicated, the sum of all the graphs is simple.. 

To see this consider Fig.16 which shows a particular r-ordered diagram which 

contributes to the incident physical electron state. Each vertical line in the figure 

denotes a certain intermediate state and energy denominator. In addition to just 

this T-ordered diagram, there are diagrams for each of the 5 other permutations 

of the vertices (1234). There are two points concerning these diagrams we must 

make. First, to leading order in TIP, the vertices on the through-going electron 

line do not distinguish between the order of, emission of the various photons. This 

is so because the rl’s of all the photons are predominantly small compared to VP, 

and the photons couple to the electron line through Y” which behaves like 

U(P, s) Y0 u(P, S) = 2L@7sss = 2 np ass (TV* 5) 
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Secondly, the infinite momentum energy of the through-going electron can be 

ignored in the energy denominators for each diagram. Using this simplifica- 

tion we will write down the energy denominator factors for each diagram. 

(1234) 

(1324) 

(3124) 

(1342) 

(3142) 

(3412) 

The sum is computed efficiently if we combine the first three terms, then the ’ 

second three terms and sum the results to obtain, 

p(k) [H(P3)+H(P4)]} -’ (MI.) [H(pl)+H(p2)] ] -I (IV. 7) 

This important factorization property means that the two bare pairs in the 

physical state are independent of one another (in the region of phase space which 

gives the dominant contribution to the scattering amplitude). Using the ideas in 

this example, it is not difficult to construct an inductive proof of the factorization 

property for any strongly-ordered multi-chain graph. 24 In fact, QED experts will 

recognize this factorization property as simply a slight variation on an argument 

familiar from bremsstrahlung and infrared problems. 
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We now return to Fig. 15, and write the scattering amplitude, 

e4 s+- ___ 
* WI9 

~(IIp-17pTl / M(l)(P’-P-q) 2’16(77’-77) - -’ 

d~‘dkldl$d~4drlk 
1 
dvldV’ (2V)-2 t2qk j-2 (27,)-2 (2V41w2 

1 

?i(P’S’)Y’u (p’s’)~(p’s’)y”u( P ,S ) 

y”(~4+m)Y3(-~3+m)Yot-~2+m)Y3 I[ F(p4-PI) Fc’p3-p2) -(2’)2@,-e,)@3-p2)] _ 

where 
k2-Ic1 = 2’ -lpp’+_p 

-p2 = kl-_P1 = P-p-$ -p3 = _k2-p4 = P’--p’-_p4 

and where we have identified the scattering amplitude for the “inner” loop and 

have used (A. 13). The factor of $- occurs because when we sum over the . 

permutations of the vertices we effectively double count individual diagrams. 

We can further simplify (IV. 8) by noting that the n’ integration is done by the 

6 function coming from the inner loop. Finally, identifying the scattering 

amplitude for the “outer” loop, 

AL 
PI2 

M(l) (p’-p. q 
- -’ d 

M(‘)(Pr -P-p’+p; n 
- - - - 

d W.9) 

This convolution integral can be factored by transforming to s-space. Define, 

(Iv.10) 
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Then, 

s = 2 vpt29 6 t VP- ‘IpI) s 
& ew-mx 1 
- z 1 M(%s vp’ 1 2 (IV.11) 

which shows the beginnings of the expected “eikonalization.” 

Using the same techniques we can obtain the scattering amplitude for the 

diagrams indicated in Fig. 17. The result is, using the notation of Appendix A 

and B, 

s = 2 v,m 6 t 17p-‘Ip’) J Q.2 - M (1) 
W2 

(IJ’-P_‘?~) M (2) (p’-P-p’+p; n I - d 

(IV.12) 

s = 2rlptw 6(‘lp-‘7p’) J 
& eit?-% M(~)(~ q ,t2) - -’ d 

In this case, when summing over the permutations of the vertices, there is no 

overcounting of diagrams. 

Continuing the argument to contain all two chain diagrams, as indicated in 

Fig. 18, we conclude that the scattering amplitude for this class of diagrams 

reads, 

S(2chaq = Wp(279 6(11,-q,,) f 
& ew-g ‘E _ 

1 
1 2. P) 

+ M(2) @ ’ ‘7p) + * * * I[ M(l) (5, VP)+ . . .] 

(IV. 13) 

Identifying M as in Appendix C, we have 

s( 2 chain) +i(p’-I?).5 1 1 2 
= Qp(2n) a( VP- 

2’ . M(l chain)(s, ‘lp ) 

(Iv. 14) 
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D. THE REGGE-EIKONAL FORMULA - A CRITICISM 

The arguments presented in the previous section generalize straight- 

forwardly to diagrams which contain N chains scattering off an external field. 

Again, after summing over all -r-ordered diagrams, the chains become in- 

dependent (in that region of phase space which contributes the leading log to the 

scattering amplitude), and the amplitude reads, 

s(N)(p*-p~ = 2vp(2n)a( qp-qp,) 
J 

dx_ ei(?‘-?)*? .$- [ Mtlchain) 1 N . tx_, VP) 
(IV.15) 

Summing over N, we find 

S(p’-p) = -2 qp(2q 6( VP- 77,‘) 
J 

& ei(P’-g ‘5 

M(l chain)(x, VP) 

1 
(IV.16) 

which is the Regge-eikonal form 

(IV.16) has been investigated 
‘I 

L J 

for the scattering amplitude. 

in detail for QED and hG3 field theories .35 

The calculation for x c$” is particularly simple, and using the techniques of this 

paper or otherwise, it is easy to find that, 
X2 

no(O)-1 - - 
M(lchain)(r, vp) - - log’ ‘7 

2~~‘P) 11% Tip 
e 

P 
(IV.17) 

where o!(O) and o’(0) are, respectively, the intercept and slope of the leading 

Regge trajectory. In the forward direction then,(IV.17) receives significant con- 

tributions only from ] x I< 0 (log np) , and leads to an elastic cross section which 

saturates, but does not violate, the Froissart bound. In QED one finds that 
M( 1 chain) 

(x7 Qj P 
lln ossesses a fixed cut at J = 1 + - 32 o2 which is modulated 

by a complicated function of x which behaves like e -+d So, as 

in the case of AGO, although M(l chain) taken alone violates the Froissart bound, 
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the Ftigge-eikonal formula leads to a cross section which increases only as 

log2 VP. It is this phenomena which has led several authors to take the Regge- . 

eikonal formula very seriously. 

However, from the point of view of the physical picture developed in this 

paper it is not even clear that the Regge-eikonal scheme is at all reasonable. 

In particular, (IV.17) assumes that the chains never interact among themselves. 

However, we have seen that the chains all scatter simultaneously off the external 

field, so they are really overlapping and crowded together in real space-time. 

So, even if the photons linking the pairs together were given a large mass 

(short range), such photons could easily propagate between two chains and link 

them up. The simplest example of such a process is shown in Fig. lg . This 

is an interference effect between a two-chain and a one-chain diagram. These will 

be studied in considerable detail in the next section. 

E. INTERFERENCE EFFECTS 

We wish to consider the simplest type of interference graphs in some detail. 

These are the 2 chain-l chain graphs, an example of which is drawn in Fig. 20. 

As in previous sections we are content to calculate only the leading logarithms 

of each diagram. In this approximation the photons forming the right hand chain 

in Fig. 20 are strongly ordered in the usual sense. This fact then allows us to 

formally sum over the subsections indicated by letters A, B, and C in Fig. 20 

and replace them by their Regge form. This fact is stated pictorially in Fig. 21 

where we have a Reggeon, defined diagrammatically in Fig. 22, interacting with 

an elementary particle (massive photon) through the exchange of another elementary 

particle. Just as in the calculation of the single chain, this exchange gives rise to 

an attractive potential between the particle and the Reggeon. Figure 21 has the 
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advantage of showing that this class of interference terms reduces to a quasi- 

two body calculation, and should, in principle, be solvable. 

Although the single chain gives a fixed Regge cut in QED, there is no 

reason to restrict our considerations to just this case. We will, in fact, de- 

velop a formalism in which we can insert an input Reggeon (pole or cut) into 

Fig.21 , and then deduce some characteristics (energy dependence, at least) 

of the output Reggeon. In particular we will see cases in which Fig. 21 generates 

a scattering amplitude which grows faster with energy than the scattering ampli- 

tude corresponding to a single Regge exchange. Our method of analysis consists 

of several steps: first, write an integral equation which sums up diagrams of 

Fig. 21 ; second, specialize to the forward direction and obtain a simpler 

(Fredholm) integral equation; third, use variational principles to obtain lower 

bounds on the highest eigenvalue of the kernel; finally, relate the bound on the 

eigenvalue to a lower bound on the energy dependence of the scattering amplitude. 

We begin the analysis by writing the,S-matrix in a more convenient form. 

We define a function W which is related to the S-matrix by the removal of the 

photon legs 1,2,3, and 4 shown in Fig. 21 . So, 

(IV.18) 
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, 

The f and 1, integrals can be done, giving 

s = Pww w7-1’) 

where 

rl 
k (I&-&/) k@-El) yf- 

min > 

(IV.19) 

(Iv.20) 

The function W now represents the propagation and interaction of the 

Reggeon and elementary particle in the t-channel. We can write an integral , 

equation for W in terms of the Reggeon, the photon propagator and the inter- 

action between them. The integral equation is represented pictorially in Fig. 23 . 

If we represent the Reggeon by the function R(_k, q/qmm), the integral equation 

becomes, 

‘I .- %zl!* Vmin = S(P-P ) - -1 l + 
(p_21+ A2) 

F(h,-&, 4-k) R@-$ ~/WW1, h_-pl) x 

w h_, &Q-P, p. --FL ( - -7 rl min > 

(IV.21) 

where the function F describes the possible momentum dependence in the coupling 

between the Reggeon and photon. By iterating (IV.21) one can verify that it indeed 

sums the diagrams of Fig. 20, Instead of discussing this integral equation in its 
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full generality we will specialize to a rather naive model in which F is momentum 

independent and R is a simple pole. The real situation in QED will be discussed 

at the end of this section. 

With these simplifications the integral equation now reads, 

+ 

(IV.22) 

where ,O is the trajectory function of the input Reggeon. W is, of course, different 

from zero only for )l/nmin > 1. It will suffice for the purposes at hand to consider 

the somewhat simpler integral equation for the function, 

+- 
min 

o! 
q (IV.23) 
min 

T satisfies the integral equation, 

Care must be taken in writing the order of the first two arguments in ‘I, because 

this ordering reflects the exchange character of the interaction between the Reggeon 

and elementary particle. This integral equation becomes much simpler if we introduce 

Mellin transforms. Recall the definition of the transform, 
00 

T(&P, P;J) = - - / 
V&I-J, IJ;Y) Y 

-J-I dy 

0 
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and its inverse, 

T(A-P,P:Y) = &- -we / 
T(A-P@) yJ dJ _ _ 

C 

where the contour is chosen to the right of all the singularities of T(b-e, p;J) , 

It is an easy exercise to obtain the integral equation for the transforms, 

e4 s ‘4.k x2 
WI3 _ [(_~~-h)~+ x2 -J [p;+ x2] [J-PQ-Q~)] 

T(& &&J-) 

Consider this equation in the forward (h=O) direction. The driving term 

then depends only upon ~“1. T will inherit this symmetry, so the angular integral 

in the homogeneous term can be done. If we carry out this integral and define, 

the integral equation becomes, 

T(t;J) = 0 
[J-P(t); ; t+A2] T(t’ ;J) 

This one dimensional integral equation can be written with a 

if we simply define, 

and note that 

W(t;J) = J+(t) /-- @- T(t;J) 

(IV.26) 
symmetric kernel 

(IV.27) 

e4 
W(t;J) = 4-2;~ + 4(2q2 o 

r 

/ t’ \ 
KS(t,t’) W(t’;Jl d (*I (IV.2 8) 



-7o- 

Since KS(t, t’) is a symmetric, real, square-integrable kernel, it must have a 

discrete spectrum of real eigenvalues. It will become evident shortly that if 

we can obtain the highest eigenvalue of K s, then we will have found the leading 

energy dependence of the set of graphs of interest. Actually, we will be content 

to obtain a rather weak lower bound on the highest eigenvalue of KS and thereby 

obtain a lower bound on the energy dependence of the amplitude. 

In order to see explicitly the connection between the eigenvalue problem and 

the energy dependence of the scattering amplitude we go back to (IV.19) and write 

it in terms of W(t;J). From (IV.19) and (lV.2O)we have 

S = (279(2?‘)5( ‘I-‘?‘) .d$ kt I&-&J) T + 
min 

7 min 

Then, introducing Mellin transforms and specializing to the forward direction, 

we have using (IV.27) 

S = (279(%‘) 6(1 -‘I’) M 

where, for large 9/~min, 

where the contour C lies to the right of all the singularities of the integrand. 

Consider the integral equation for W and write it schematically, 

W=B+gKSW 

(IV.30) 

(IV.31) 

(IV.32) 

(IV.33) 
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where g = e4 
4(2~)~ - 

(VI. 16) has the formal solution 

W = (1-gK$ B 

which may be written under appropriate circumstances as a series, 

W(W) = nco w@) (t;J) = nzo (g KS)(n) B 

(IV.34) 

(IV.35) 

The nth approximate of W(t:J) is given by 

W(n)(t;J) = gn 
// 

. . : dtl. . .dt, KS(t,tl) Ks(tl, t2). . .KS(tn-l, tn)B(tn) 

(IV.36) 

Since KS is a Fredholm kernel it has a discrete spectral decomposition, 
36 

KS(t, t’) = E 
n=l 

/q,(t) $p’) (IV.37) 

where pn and fn(t) are respectively the nth eigenvalue and eigenfunction of KS. 

If we then approximate W (n)(t;J) by withholding only the highest eigenvalue (pl) 

of KS, (IV.36) becomes, 

wyt;J) - g”P; (4 fpl / 
dt’ f&t’;J) B(t’) (IV.38) 

where we have indicated explicitly that the eigenvalues and eigenfunctions can 

depend upon J . If we now introduce the Mellin transform of M 

we have from (IV.38) that its nth approximate is, 

(rv.39) 

M(n)(J) --gnp; (J) dt 
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Therefore, summing over n, M(J) = E M@)(J) = 
n=O 

(IV.41) 

So, it is clear that M(J) will develop a pole at J=Jo where 

1 - gpl(Jo) = 0 (IV.42) 

By doing a simple variational calculation to obtain a lower bound on pl(Jo), we can 

obtain estimates of the location of the solution Jo of (IV.42). 

Recall the Rayleigh-Reitz variational principle 

eigenvalue of KS is given-by 

P1=sup 
(W, 9 KS(L t’) f(t’)) 

fCL2 

which states that the largest 

(IV.43) 

where f(t) is any square integrable function. So, if we choose f(t) at random,we 

can be sure that (N-43) will give a lower bound on pl. We choose, 

f(t) = h ’ &j@ JiF emat 

where rtarr is a parameter which must be chosen such that f(t) is normalized to 

unity. From (IV.29) and (w.44)) we compute 

tf,K$ = $- 

By changing the integration variables to t+=t+t’ and t =t-t’, it is not difficult to 

reduce (IV.45) to a one dimensional integral, 

(f,K& =& e 
$ aA 

CQ 

2ah2 f eey y-l dy 

(a A2/2) 

(IV.44) 

(IV.45) 

(IV.46) 
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The relation between ‘ta1l and J is given in this approach by the normalization 

condition, 

(f,f) = 1 = l ~4 (IV.47) 

We suppose for illustration that the trajectory is linear, p(t) = Po-P,t . Then, 

(f,f) = (J-PO) l2 + (J-P, + P,A2) 2 
PaA ) (2 ah2)2 

+p1x2 6 
(2aAT3 

(IV.48) 

Two extreme cases of (IV.46) and (IV.48) are quite simple and illustrate clearly . 
the mechanism at work. First consider (aA 2, >>l. Then 

(f,f)” 
J-P, 

2(a A’) 
= 1 (IV.49) 

Thus, 

‘+J) I 2 
>b J-P, 

Inserting this inequality into (IV.42)) we find that M(J) develops a pole at 

Jo >Po+2g2 (IV.50) 

which is further to the right on the complex J-plane than the input Reggeon pole 

which is located at J = PO. We cannot take this example too seriously, however, 

because it corresponds to strong coupling. However, we can consider another 

case which is closer to QED. Imagine that (a A2) is small and p,=O . Then, 

(f,K&) =A 
2ah2 

, (f,f) = 
2t J-Q 
(2 aA2)2 

so, 

which means, according to (IV.42) , that 
2 

in this weak coupling case. 
Jo ? 4) + $- 

(IV.51) 

(IV.53) 
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These two very crude examples serve to illustrate the point that it is not 

difficult to find t channel exchanges which lead to stronger energy dependences 

than simple chains. The relation, however, of these model calculations to 

QED is more delicate. As we saw in Section B, the chain diagrams in QED 

generate a Regge cut, which we have written as a linear superposition of poles. 

In principle, we can treat this case because our integral equation is also linear. 

Another difference between QED and the model calculation is that the coupling 

between the Regge cut and the photon is actually momentum dependent. This 

fact could change the character of the integral equation, but it does not change 

the fact that the exchanged photons in Fig. 21 tend to bind the t-channel system. 

So, although the spectrum of KS(t, t’) may no longer be discrete, diagrams like 

Fig. 21 could still possess a stonger energ dependence than the simple chain. 

Potentially more interesting than the 2 chain-l chain diagrams considered 

here are the 2 chain-2 chain diagrams. We can give these a pictorial repre- 

sentation shown in Fig. 24, and recognize that they are iterated Mandelstam 

cut diagrams. Such diagrams have been considered in the literature and it 

has been conjectured that they generate Regge poles, although this point has not 

been verified. 37 

F. CONCLUSIONS AND DISCUSSION 

Guided by a clear physical picture, we have accumulated evidence that 

graphs more complicated than simple multiperipheral chains might play a 

substantial role in diffraction scattering. One might now take the diagrams of 

Fig. 20 and use them as the input of the s-channel iteration procedure described 

in Section D. Since these diagrams have a stronger energy dependence than the 

single multiperipheral chains, they certainly give a significant contribution to 
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the S-matrix. We cannot, however, claim that they contribute significantly to 

the total cross section since this quantity depends upon the range of the graphs 

in the transverse Ix, 1 plane (which we have not determined) as well as their 

energy dependence. More importantly, however, we have argued that the 

s-channel iteration scheme is not a physically convincing procedure. So, we 

do not take this proposal seriously. It appears that present field theoretic 

approaches to diffraction scattering lack a compelling mechanism to enforce 

s-channel unitarity. Until this deep problem is understood more clearly, 

detailed perturbation theory calculations will not resolve additional really 

interesting and important questions in this field. 

The results of this investigation suffer from the technical limitation in any leading 

logarithm calculation. It has been argued 38 that leading logarithm calculations 

are only accurate when the couplings of the particles are small enough. However, 

the spirit of this investigation is to obtain results which do not rely upon the size 

of coupling constants. It is the unspoken hope of this investigation that although 

the leading logarithm approach is not perfectly accurate, it remains indicative 

of the truth if the coupling constants become fairly large. One might argue, for 

example, that it would certainly be bizarre if the energy dependence of the in- 

terference terms decreased relative to the single multiperipheral chain as the 

coupling constant increased? One might also question the usefulness of perturba- 

tion theory in this entire program. We saw in Section B that the Single InUlti- 

peripheral chain violates the Froissart bound by a power of the energy. The 

s-channel iteration procedure then reduced the energy dependence of the scatter- 

ing amplitude until it just saturated the bound. However, the success of this 

procedure relied upon the detailed cancellation among graphs, each of which was 

absurdly large. One might now ask whether this feat was profound or accidental. 

For example, are there other graphs which further reduce the energy dependence 
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of the final result? 

We have emphasized our space-time picture of high energy scattering 

throughout this paper. In particular we have argued in Section E that it is not - 

unlikely for two particles in the physical state of the projectile to possess small 

relative subenergy and to propagate near one another. These conditions are, 

however, the ideal ones in which the particles are likely to interact significantly 

te. g., resonant). This is a problem which exists (and is often ignored) even 

in multiperipheral models in which only one chain of constituents is allowed. 

However, this effect can reach extreme proportions for physical particle 

states consisting of more than one chain of constituents. For example, e+e- 

2airs on different chains are likely to overlap in bothmomentum and configuration 

space. These pairs will certainly interact and their respective chains might 

often be linked up in the process, A simple example of such a possibility is 

shown in Fig. 25 . Unfortunately, perturbation theory is not an efficient tool 

for computing these effects. Perhaps the effective field technique from 

statistical physics provides a better calculational and conceptual framework for 

this problem. Anyway, in light of the complexity of Section E, more 

theoretical effort is needed in deciding questions of this general nature than 

in the calculations of minute details of diagrams which just happen to be exactly 

computable. 
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APPENDIX A. SINGLE LOOP 

In this Appendix we will illustrate our calculational methods by extracting 

the leading energy dependence of the simplest graph in the class to be considered. 

According to our perturbation theory there are four diagrams (Fig. 9). However, 

if we recall that the infinite momentum polarization vectors satisfy 

(A. 1) 

it is easy to see that the four diagrams can be combined into one (Fig. 10). Now, 

however, instead of associating a factor x*c *(p)’ c $p’y with each internal 

photon we make the association with -gflV . Throughout this paper this 

simplification of our perturbation theory rules will be tacitly understood. 

Now it is straightforward to write down the amplitude for this diagram. 

Since this diagram has been studied previously in the literature by Cheng and 

wu3y and others”: we will try to use notation as similar to theirs as possible. 

Using the kinematics indicated in Fig. 12, 

s(1) = e4 

(W9 
*( 77p- $, ) fis&ld&d qkl dolt2ri)-2(2~kl)-2(2~l)-2(2~2)-2 

D-UP) --H(P) -w$) 3-l [H(P) --H(P) -H@~)-H(P~) ] -’ [H(P’) -H@ 1) -a,, 3-l 

[HP ‘1 -H(P’) -H(p3) -H<p3 3 -l z, U(PW) Y Y.l@‘, s’) ;(I& s’) YOU (P, s) 
, 

‘@$ QyHu tp* s) tr[ ti~+:~Y”t$4+m)yc (-d3+m)~o(-lij2+m)~fl 
-j 
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where 

Since we are involved in a leading log calculation, we should treat the external 

field perturbatively. Through fourth order the possible diagrams are listed in 

Fig. lla and b. However, the diagrams in Fig.llaprove to be larger than those in 

Fig.llbby a factor of log VP, so we will limit our attention to them, Now 

expanding the eikonal factor in (A. 2) and withholding only the appropriate terms, 

[F@‘-p)F(1?4-~l)Fc(E3-E2)-(2dG @ ‘-@ a&-$$ @3-?2)1 = 

Substituting this into (A. 2) we have, 

[H(p) -H(P) -o(kl) ] -’ [H(P) -H (p) -H (p,) -H$,) 1-l [H(P’) -H(p’) -w(k2) 1-l 

b-W=‘) -H@‘) -He31 -H(P4> 1 -l s~s,qP’s’)y’Tu@‘, s’) qp’s’)yOu(p, s)ii(p, s)ycLu(P, S) , 

tr[(dl+ ni)Y0~4+m)r,(-ld3+m)Y0t-Id2+m)Y~ ] 
1 

2 

[@4-?1) 2+ x”] [ @,Q-,p2) 2+ A2 3 - 
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Yz4-&dq 

1 1 

2 
N is +x 

2 
] [$3z2g2+ A2l 

- S&-j$ s ds 
h2+ A23 [(R4-)ys) 2+ x2 3 i 

(A- 4) 

It is not difficult to infer from (A. 4) that the region flk< < VP of phase space 
1 

gives the dominant contribution to the scattering amplitude. Furthermore, in 

this region of phase space the sum over the indices cand preceive their dominant 

contributions from the values cr= p = 0 (upper indices!). This fact can be 

checked in detail, and can be understood fron the observation that Y” scales 

like q undejr z boosts (favoring large q in the through-going electron line), and 

9 scales like H under z boosts (favoring small rl for the virtual photons). And 

lastly we can neglect H(P) and H(p’) in all the energy denominators since they 

’ are O(- 
rlP 

). These observations lead to simplifications of many factors in Sfi: 

ii@, s) YOuP, s) = 2Jp17 ass “, 2qP %s 

d+ A2 
H(P)-H(p)-o(kI) x -“(k,, = - -L2rl 

kl 
2 2 2 

,P2+” 
2 

HP) -H(P) -H(P1) -H(p3 z - H@)-H@~) = - 
,Pl+m _ 277 

1 
2rl 

2 

It will prove convenient to scale the q dependence out of the integrand, so 

introduce the dimensionless variables CY and p, 

(A. 5) 

where 
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1 
s 

1 
2 scE3-IZ2) d% 

1 
[~2+A2][(e4-jyg2+~21 j 

(A. 6) 

This expression becomes considerably more transparent if we change integration 

variables e First choose a frame such that 

P’ = -,p 

and define new integration variables q and %I, 

kl = Np+s , 24 = Np’+lygN 

Furthermore, if we introduce a function 

e4 WE’;q_, s,‘F----- 
3270 

4 
tr [&Q+m) Y’ (P -d~+$l+m) y3t$l+d-dv+m) y” Ml+P d+m) y 3 ] 

[(1-P)~~+P(~l-~+~l)2+m2] [Cl-P,cP_~-~~+~l)~C~~-4-p1)2+m21 



- 81- 

the scattering amplitude can be written in the form, 

s(l) = (2ne4~27)pd~Tlp-llp,~dss' I 
dq dq’ da 

N - - 
PO2 tw2 u 

[(PJ-g2+h2] -l [(PJ+g)2+h2]-1 

[ (pqN1) 2+ A2 1 -1 
[ 

-1 p+g> 2+ A2 

1 K(E’ $9 $1 (A. 8) 

We see from this expression that the function K describes the composition of the 

virtual photon as a bare pair, and predicts how effectively such a system scatters 

off an external field. This function has been obtained and simplified previously 
33 by Frolov et. al. , and Cheng and WU.~~ -- Our analysis agrees with theirs, and 

after a lengthy Feynman parameter calculation we find, 

(A. 9) 
in the forward direction. 

We want only to observe at this time that K does not depend upon (Y. 

Hence, the scattering amplitude apparently diverges logarithmically. However, 

an improved analysis of this process (our method, for instance, interchanges 

limits and integrations freely) shows that the CY integral should be cutoff at 

the point where the virtual photon is becoming “wee. ” Such a procedure is 

physically sensible since the pair intermediate state is no longer long-lived 

once the photon’s longitudinal momentum falls to order unity. Thus, 

s da!+ S 1 

CY 
77 
“min 

7lP 

(A. 10) 

The scattering amplitude depends logarithmically on the energy of the incident 

electron, 
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S(l) = - W-4 ~plog~p6t~p-~p,) ass, 

-1 
(lyJ’,2+ x2 1 [ 1 -1 K(,P’ ;z, 2) (A. 11) 

For later analysis it will prove useful to define 

M(l) = -e4 log q 6 S x dg [(P’-gi2+q1 [(E’+c$+ q1 [(p’gy2+ ^“I-’ 
p s’s (27$2 (2732 - 

<y+g;‘, 2+ A2 1 
-1 

WE’:%, 2’) 

and write, 

s(l) = 277 9 (27~) 6(q -7) P P’ )M@) 

(A. 12) 

(A. 13) 
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APPENDIX B. SINGLE CHAIN 

We wish to study the multiperipheral diagrams in Fig. 13 and indicate the 

arguments necessary to obtain the amplitude for a chain of N e+e- pairs in 

Fig. 14. In placing the eikonal vertices on just the second pair in Fig. 13 we have 

anticipated the fact that the external field will be treated perturbatively as in 

the previous section, and only the leading behavior of the diagram will be 

found. According to our perturbation theory rules the amplitude for Fig. 13a reads, 

(2) e8 
‘a =-- (W l3 

‘(‘p- ?1,‘) 
/ 

e&&d?, 1 d-/)1(2 q$ -2(27?l) -2(27?2) -2(27?) -2 

[H(P) -HtP) - “(kl)]-l [W’) -HO -W+ -H@Z)rl[H(P’) -H(p) -(kz)]-’ [H(P) -H(p) -H(p3) -H@4) 1-l 

-1 
%3$5dx8d7k 

3 
d?,(2~k3)-‘(215)-2(?~~)-2 [H(P)-H(P) -H(P~)-H(P~Fu@~)] 

kW) -WP) --.H(P~) 3~2, -H@i$ -WP~) 1-l [W’) -H(p) -H@d -H(p4> -w(k4) 1-l 

[H(P’) -H(p) -H(p4) -H@2, -H@8) -H(P+ ]-‘tr [I$+m) Y”ti8+m)ya (-$+m) YO(-&+m)yp ] 

[ F@5-,,5) Fc&7-~&(2~2 do&j&) d$,-&$] (B* 1) 

The overall minus sign occurs because photon 3 attaches to an electron line 

while photon 4 attaches to a positron. Clearly S@) is in general untractable. 

However, as we expect on the basis of the analysis of the previous Appendix, 
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s(2) receives its dominant rl dependence from that region of phase space where 

This means, in the language of multiperipheral models, that only strongly- 

ordered diagrams contribute to the calculation, Furthermore, in this region 

of phase space we can set 

/J=v=p=u=o ( upper indices!) 

and approximate the energy denominators, 

HP) -WP) - w(kl) x -&Q 

HP) -H(P) -H(P4> -4~~) 3.~~) -~-VP& = -H&j -WQ , etc. 

The amplitude simplifies to read, 

s(Q = - e8 
(2d3 

dhp-7,‘) s %ldgld”kl dql(2’lk ) -2(2 711) -2(2v2) -2(zrll -2 
1 

[ u(““]-‘[u(k2)] -’ [H&)+H$2)]-1 ptP3)+H@4)]-1 

dk,3$5dz8d77k drl Wk I -2(27?,) -2(2116) -2 [wck3j 1-;wCn~1-1bW3,)+H@6~ 1 
35 3 

-1 

[ 

-1 
uP7)+wP8) 1 c tr dS+m) Y”(Idg+m)Y3(-d7+m)Yo(46+m) Y3 1 

(B. 2) 
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Treating the eikonal perturbatively and introducing integration variables for 

the “lower” loop as we did for Fig.5, 

i3 = Np+$ Es = -p’+E5-s_” 

we can identify a factor of -K coming from the lower loop 

-2 
-- 26 (VP- qp’$%&ldtl,l drll e(q-71, 

1 
)6&l-$ )t2’k 

3 
)-2(27,)-2(2q2) 

1 

(2n)-‘@(kl) ]-1[~(k2)]-1[H@l)+H@2)]-1 [H@3)+I-I(p4)]-1s~s,~(P’, S’) You (p, s)ii’@, s)r”u (P, s) , 

tr[($,rn) ~~($~+rn)y~(-ld~+m)Y~(-#~+m)Y~] F qd$’ [(~‘-~‘)2+~2 ] 
-1 

[(pl+q)2+A2 j' rtpl-q”)2+~2 3-l [(P?+qtfj2+A2 3 
-1 

KE’;$;‘, s,“> (B* 3) 

where the 0 functions enforce the fact that all the n’s in the diagram must be 

positive. If we now change variables in the ‘*upper** loop in the usual way, 

and add in Figs.lgb, C, d and compare to Fig. lla, we can recognize a factor 

K(,P’;c& q*) emerging for the ‘*upper** loop. Finally, N 
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s(2)=-(4w4)71p ~(7)P-7?P,) ~s’sJ~2 -3 z2g ; Ql-a) e@!-y) 

Ktg’;s Ft’) K(~‘;$‘, s,“> (B-4) 

The integrations over the Y) -fractions of the photons must be cutoff from below 

in the same way as done in the single loop diagram, 

S 
1 da -S odh 

r (Be 5) 
a A 

77 min 77 min 
77 

P 77P 

We have done enough analysis now to see that the scattering amplitude with 

N e+e- loops must be given by, 

sty = -t47e4~p8cap-~p,~ Qys ;I 1% 7” 1 + 
min 

ItN+l) (p,‘) (B.6) 

where 

K(_P’;bl,Q K(g’;&,k3) * - * K(~‘&N-~,kN) iB.7) 

The crucial factors of logNqp and N! arise as they did for the 2-100~ diagram. 
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In particular, the amplitude receives a factor from the N strongly-ordered 

photons of, 

1 

s 
dxl 

x1 

kg . . . 

x2 

xN-l s 
77 min 

qP 

%J 
XN 

2 $ logN(> ) u3.8) 
min 

In the next Appendix we will see that we can sum all the SIN) in the forward direction. 
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APPENDIX C. BRANCH CUT (m=A=O) 

We wish to study S (N) in the forward direction. For g*=Np=O, we have 

SQQ=O)= -(47&I) 77pE(r7,-r7,,)& l%N(rlp)I~+l+~o) (C* 1) 

where 

and we have defined, 

We can solve for I(N) explicitly, and sum the amplitudes S PI in the case 

m=h-0. (However, A must be held non-zero in the first and last propagators 

on the chain in order to avoid a spurious i&a-red divergence.) We might argue, 

instead of setting m=h= 0, that we are integrating only over that part of phase 
2 2 2 space for which k >>m , A . In that case we will obtain here at least a lower 

bound on the ‘lreal” scattering amplitude. 

Recall from Appendix B that when m=O, 

where 

Wk19k2) = 
x(1-x)+y(l-y) -5x(1-x)y(l-y) 

x(l-x)k;+Y(l-Y~k; 

and we have averaged over the free angle &*&, already. Substituting this 
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into (C . 1) , we have, 

N-l 
1 

l 

i2d2N 

dk,.** -N-l dk 

It will prove convenient to scale the -2 (momentuq’ dimension out of B. To do 

this we change variables, 

and note that, 

then, 

I I k =Ke 5 Ke (N = -1 ,.., 

5 8 
B(Ke 

61 
,Ke 2, = K-2B(e 51 , e 2, 

N-l 
1 1 ,‘#l+ (N) 

-- 
(27ijN u2 21 A2 

N+ --jp 

(C-4) 

Notice that, 

x(l-x)+Y(l-Y)-5x(l-x)Ytl-Y) 
x(1-x)exp F(rl-r2)] +y(l-y)eq[ -(61-t2J] zc(51-5’ 

is a function only of the difference ( tl- r2). We should, therefore, change 

integration variables, 
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1 1’ -- 

l 

(27QN K2 
(C.5) 

The resulting convolution integral is factored upon introducing Fourier transforms, 

Then, 

N-l 

2 

[ 1 &?-J N-1 d’lld’lN (C-6) 

Introducing the function 

3rl 
e 

(e21+Y2)2 

We can write finally, 

N-l 
1 -$(&I m/3)1 

N-l 

(271jNk2 

(C-7) 

tc * 8) 
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The properties of the functions f andC are derived in Appendix D. Prom 

( D. 4,6,10) , we have 

f(/%Y> = y -( l+w f(/.& 1) 

f(P,l) +q+ ’ +(;-+ +($+!+, z-T) 3 i0 

+-J) = lln 
273 ’ 

3 
E’(0) = 0, E’*(o)= - LL$ 

( 
7r2 12 - -& 

1 (C. 9) 

Having calculated I WI we can return to the scattering amplitude and note 

that c” S(N) 
N=l 

is just an exponential series, 

(C. 10) 

If we imagine letting q-+09, we can evaluate the leading part of the integral 

straightforwardly, 

2ci 2- 
St1 chain)E -(4e4)9 . 

P 
d(q ( 1 -77 

P P’ 
)e T cto)logr)p -!iE f*(p i)f(p, 1) 

/ w-o2 ’ 

2a 2 
e (I[ T Qfl) -c to)] 1% vp 

(C. 11) 
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St1 chain)~ -(4?re4 77 6 (7j - 77 
(F ) 2 QO)log r/P 

)e . 
P P P’ 

f*(% w-h 1) / dB e 

-; ($ ) 2 ME” (O)i log VP * p2 

(2f12A2 
J ’ 

s(l chain)% -t4m4 fO,l 2 
$ (1* 

1 

- &~p-~p,) 

i) 

B v/p) 
l+(%j2 E(0) 

$2.12) - 
J-Gp 

I -- 
The factor log 2, 

P is indicative of the square root character of the branch 

cut responsible for S (1 chain). We see also that the branch cut extends to 
117r 2 J=l+ ( $)2E(0)=l+ 32 01 , which shows that the single chain multiperipheral 

diagrams summed alone violate the Froissart bound. 

In preparation for a subsequent discussion, consider in more detail the 

structure of this cut singularity in the J-plane. Rewrite (C. lo), 

s(l chain) 
= -P$ (2 qp) 6( ‘1~-3,) 

where 

(C-13) 
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The o-function simply states the trivial fact that the S-matrix is different 

from unity only when VP > Vmin. To discuss the behavior of the scattering 

amplitude from the complex angular momentum point of view, we turn to the 

Mellin transform of M(J). We easily compute from (C. 13) that 

M(J) = f*(& l)f(P, 1 

Therefore, M(J) possesses a cut over that range of J for which there is 

a solution to the equation 

J= (y)2e(B) 

We recall from Appendix D that c”Go) is an even, positive function with a 

maximum at p=O, and decreases monotonically to zero as B increases. 
117r 2 Therefore, the cut extends from Jmin=O to Jmax=($-)2C”(~)=x ci . 

The discontinuity of M(J) across the cut is, 

Disc M(J) = - *(/j, l)f(p, 1) d [J-l+9 2@?)j 

(C * 15) 

(C .16) 

(C. 17) 

Since the high energy behavior of the scattering amplitude is controlled 

by the behavior of Disc M(J) near Jmax, we shall obtain the right hand side 

of (C. 17) explicitly in this region. To do this it suffices to solve (C. 16) for fl 

in terms of J near the endpoint /? =O. (C. 16) reads, to second order in fl, 
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.- 

J = (+j” E”(0,p2] 

so, 
\i 

J -J 
P = 

max 

D 

where 

Finally, for J less than but near Jm,, 

r 

Disc M(J) =” - f*tp, wtp9 1, 

(C .18) 

where we have substituted the numerical value f(0, l)= 3 . (C. 18) shows the 

square root character of the cut. Furthermore, it is easy to take (C. 18) and 

invert the Mellin transform 

I 
J 

WY) = + 
max 

yJDisc M(J) dJ 

0 

and rederive (C. 12). 
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APPENDIX D PROPERTIES OF f AND C 

In order to complete the discussion of the branch cut we should simplify 

the functions 

c(o = 
I 

dxdy x(1-x)+y(l-y)-5x(1-x)y(l-y) 

+t x(1-x)e +y(l-y)e -I 

0.1, 

(Da 2) 

which were introduced in Appendix C. 

Consider the function f(a,p) first. It is easy to see that the function’s 

dependence on p can be scaled out. If we define a new integration variable y, 

Le” = 
B y 

we can rewrite (D. 1) as, 

f(cg ) = 8-(1+ia)f(cY, 1) 

f(a, 1) = 

Furthermore, f(q 1) can be identified as Beta function if we change variables 

in the integrand to, 
1 u=- 

y2+l 

then, 1 lia __ --+- 1 

du u 2 2 (l-u) 2 
ic4 
2 
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which is just, 

Our determination of the character of the branch cut relied upon the 

nonvanishing of f(0, 1) . In fact, 

f(O,l) = f-( ;) r( 5) = $ 

Now we turn to the function C(t). We wish to compute its Fourier 

transform, 

Using the transform, 

(D. 3) 

P 5) 

(D- 6) 

we have, 

(D.7) 
, 

GP,= * 
2 cash(+) 

/&-dy(~(l+), '+i ' [ y(l-,y)]- ' -ic+ 

P 

[ 1 x(1-x) 
-if’5 

[ 1 
’ _ ij 

y(l-y) - 2 2 -5 [x(lBx)]++i g [y(l-y)] i - i f 1 (D.8) 

which we recognize as the sum of products of Beta functions, So, 
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2 cosh( ;/3) ( r(3+i@) f (l-$3) 

-5 1 r(z+ii)]2[r(g-i$]2 ) 
i 

r(3+ip) r(3-$9) 

f (3-i&f (l+ip) 

Furthermore, if we use various gamma function identities such as the 

tlReflection formula”, (D. 9) can be written in the final form, 

(D- 9) 

(D. 10) 



-98- 

APPENDIX E: EIKONAL APPROXIMATION 

It is the purpose of this short appendix to shed more light on the limiting form 

of the S-matrix derived in the text. We consider the simpler problem of the high 

energy scattering of a bare Dirac particle off an external field. We will see that 

the eikonal approximation emerges again, but we will also withhold the correction 

terms to this leading approximation. These corrections, which are of kinematic 

origin, are at most proportional to the reciprocal of the incident particle’s energy. 

Consider a bare Dirac particle in an external field act(x): 

(ia,-ea,)$ = [m-ig*(E-ea_)] 2(giea ) 
3[ 

m+iZa($J-e91 $ 

(E.2) 

Let us assume that the incoming electron is very energetic, so that we can write, 

where ?I is very large and $!‘I’ varies slowly with a” . Then the integral in (E.2) 

receives its leading contribution from the neighborhood 3 M 6. To see this write 

(E.2) in the form 

(E-4) 
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where 

Expansing F(?- ,E, 2 ;.$ ) in a Taylor series around 3 = 5, 

(E-5) 

(E.6) 

and substituting this expansion into (E.4), we find that 1 1 & # (x) can be written 

as a power series in the factor q -1 , 

where we have used the identity 

2in! 
J Eb9Z e 

-Kl 
n -iq$dz = .n ;+l 

lq 

(E-7) 

(E-8) 

to extract powers of q. For the purposes of illustration let us restrict our con- 

siderations to the first term in (E.7). Then (E-1) becomes, 

iao@ = eao$ + C m - io. (p- ea) N N I[ m + i,o. (p- ea W.9) 
277 

where 7 is now just a kinematic (c number) variable. Some additional spinology 

allows us to write, 

(E.lO) 



-lOO- 

where 

BZ = ala2 - L12a1 

We recognize (E.lO) as the Pauli-SchrBdinger equation in 2 dimensions for a spin 3 

particle of mass q and gyromagnetic ratio 2. 

This final equation of motion also motivates the appearance of the eikonal phase 

found more formally in the text. Simply letting q - 00, (E.9) becomes, 

i8,@ = eao* (E.11) 

which admits the eikonal solution 

One might also withhold the leading corrections to the eikonal formula in order to 

study the range of validity of this popular approximation. 
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TABLE I 

MATRIX ELEMENTS FOR PHOTON EMISSION 
p = 2-w 1 

St (P * iP2) , q = P-P' 

S S’ A 

l/2 l/2 1 

l/2 l/2 -1 

l/2 -l/2 1 

l/2 -l/2 -1 

-l/2 l/2 1 

-l/2 l/2 -1 

-l/2 -l/2 1 

-l/2 -l/2 -1 

JWJP', P) * t*(h) w(s) 

(4-hq) - (Py'.') 

ts+hql - (P+h) 

-2-1/2 im 77q/tm~) 

0 
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