INELASTIC ELECTRON SCATTERING AT LARGE ANGLES

GUTHRIE MILLER
STANFORD LINEAR ACCELERATOR CENTER STANFORD UNIVERSITY
Stanford, California 94305

PREPARED FOR THE U.S. ATOMIC ENERGY COMMISSION UNDER CONTRACT NO. AT(04-3)-515

Abstract

Rlectron-proton scattering cross sections have been measured at electron scattering angles of $18^{\circ}, 26^{\circ}$, and 34° for incident electron energies up to 18 GeV . This data extends in four momentum transfer squared (q^{2}) from 1 Gevz to 20 geve and in missing mass squared (${ }^{2}$) up to 25 gev2. Using previously reported data at 60 and 100 , a separation of the two inelastic fory factors has been made in the deep inelastic region ($W^{2}>4$ Gevz) for q^{2} from 1.5 to 8 Gevz. The transverse form factor is found to dominate in agreement with the expectations of various "parton" theories for spin $1 / 2$ partons). Ceterminaticn of the inelastic form factor ${ }_{2}$ allowed an investigation of the question of "scaling" i.e. that $\nu=F\left(\nu / q^{2}\right)$ in the deep inelastic large q^{2} region.

ACKNCWLEDGMENTS

Credit for the success of this experiment goes to the physicists of the SLAC-MIT collaboration, consisting of Elliott Bloom, David Ccward, Herbert DeStaebler, Jurgen Drees, Charles Jordan, Luke Mo and Richard Taylor from SLAC Group A and Jerome Friedman, George Hartmann and Henry Kendall from MIT. Martin Breidenbach and Leslie Cottrell made many useful contributions of their expertise. I would like to thank Erofessor W. K. H. Panofsky for serving as my thesis adviser and spcnsor in Group A and enabling me to participate in this endeavor. of course the sLAC electron scattering experiments really began with the planning and construction of the accelerator and the spectrometer facility itself. The existence of SLAC is due to the efforts of a great many people, but especially to frofessor Panofsky. Despite his role as laboratory director, to me Pief remains first an exemplary experimental physicist. I've benefited greatly as a physicist from close association with various members of the groue, in particular elliott Bloom, during the initial stages of the experiment and Charles Jordan during the analysis.

Thanks are due to Richard Early for many well-designed computer programs, especially for his numerical solution of the diffusion equation lat the instigation of Hobey Destaobler) which injected a healthy dose of fact into an increasingly philosophical debate over radiative corrections which was raging at the time. Thanks also to suny sund for

ACKNCWLEDGMENTS

help with programming. Einally, I would like to thank Anna Laura Berg for her typing of the manuscript.
Chapter 1 Introduction 1
Chapter 2 Description of the Experiment 6
Chapter 3 Apparatus12
3.2 target 16
3.3 Material in the Beam Path 18
3.4 spectrometer 20
3.5 Particle Detectors 30
3.6 Electronics 36
3.7 Data Recording 40
Chapter 4 Analysis of Data 42
Chapter 5 Results 54
Appendix A Radiative Correcticns
A.I Radiation cf soft photons 77
A.II Quantum Mechanical
Badiative Corrections 85
A.II Energy Straggling in the Target 95
A.IV Multiple Photon Radiation 104
A.V Radiative Correction Formulas 115
A.VI Elastic Eak Radiative Corrections 127
Appendix B Electron Scattering
Cross section formulas 133
References 140

Scattering experiments invclving a weakly interacting probe particle are extremely fruitful because of the ease with which the experimental results can be interpreted. When the bombarding particle scatters because of a single interaction process the experiment directly measures the probability of transferring a quantum of energy and momentum to the target material. Constituent particles in the target are revealed in the data $k y$ causing the energy transfer to be a function of the magnitude of the momentum transfer.

In the scattering of bigh energy electrons from target nuclei with charge 7 , the interaction strength is of the order $Z \alpha$, with $\alpha=" 1 / 137 "$. The electron in addition is interacting with the canipresent photon field and produces radiated photons with a prokability on the order of $2 \alpha / \pi \log \left(q^{2} / \pi^{2}\right)$, where q^{2} is the four momentum transfer squared and m is the electron mass. For high energy electron scattering from hydrogen the measured cross section can be corrected for the effects of its coupling to the radiation field and otherwise the parameter α appears to be sufficiently small so that the dominant process is the exchange of a single photor.

The process of elastic electron - proton scattering is studied by examining the "elastic peak" in the electron scattering cross section that occurs for the energy transfer ν equal to $q^{2} /(29)$, where M is the proton mass. Elastic scattering can be parameterized by two form factors which
are functions of the monentum transfer q^{2}. Measurements of elastic electron - proton scattering for high energies begun by Hofstadter and collabcrators at Stanford and continued up to momentum transfers of 25 Geva at SLACin have shown that the form factors of the proton's charge and electromagnetic currents are rapidly and smoothly falling with increasing momentum transfer. If we interpret the form factor as the fourier transtorm of a spacial density of charge or current, this means the proton's charge is not concentrated at a point tut rather evenly extended over a small region (radius of the order of $10^{-13} \mathrm{~cm}$).

This picture of the proton as an extended structure is in keeping with basic noticns of its composite nature -- for example of it being composed of a cloud of interacting "bare" protons and pions. However it may be advantageous to think of the proton as being composed of other constituents (quarks perhaps) in the saff way that low temperature He^{4} is best thought of as a system of weakly interacting phonons and rotons, rather than as a system of rather strongly intoracting Helium atoms. However in the case of liquid Helium the phonons and rotons are plainly evident when slow neutrons are scattered from the liquid. The neutron Helium atom interaction is effectively weak so the excitation spectrum can be directly measured. An example of the actual experimental dataz is shown in Figure 1. The excitation of phonons is characterized by the linear

I.g.I
dependence of ν on $q, v=g c$ where c is the velocity of sound (240 $\mathrm{m} / \mathrm{sec})$. Fcr higher q , rotons are excited with $\nu=\Delta+\left(q-q_{0}\right)^{2 /(2 \mu)}$.

From the data presented here on inelastic electron proton scattering no such clear cut evidence for quark like constituents of the proton is present. That is, there is no definite quasi - elastic peak (or line) in the inelastic cross section data as a function of g and ν. Howerever certain aspects of the data are very suggestive of some sort of interpretation in terms of constituents which seem to be pointlike. This is called "scaling" and refers to the fact that for large q^{2} and v, the inclastic form factors ν^{2}, and $2 M$ are a function only of the ratio of q^{2} to ν. scaling comes about naturally if the proton were composed of pointlike constituents with mass m, since the cross section would be concentrated along a line with $q^{2} / \nu=2 m$, being spread out somewhat by internal motion within the protcn.

The possibility exists that diffraction processes are aasking a quasi - elastic peak. The question can really only be resolved experimentally either by measurements of electron - neutron inelastic scattering or by direct measurement of the diffractive channels in electron - proton inelastic scattering.

This is a report of inelastic electron scattering measurements conducted at SLAC in November 1968 using the

SLAC 8 GeV spectrometer at angles of 18,26 , and 34 degrees. Previously, measurements were made at 60 and 1003,4 where scaling was first observed. Measurements also have been previously repcrted frcti 1.50 15. In all cases the data covers a range of energies with the initial energy limited by the maximuf accelerator energy and the secndary energy down to about 20% of its maximum (elastic peak) value. The discovery of scaling has prompted a large number of intecesting theoretical works too numerous to attempt to list here. one may optimistically hope that someone may gain some insight from this to a soluble theory of strong interactions.

The experiment consisted of the scattering of electrons of energy E from target frctons into the small solid angle and momentum range accepted by the spectrometer, which is set at an angle θ and energy F^{\prime}. The measured cross section, which will be dencted by $d \sigma_{R A D}{ }^{\prime} \Omega{ }^{\prime}$, to distinguisb it from the radiatively corrected cross section is defined by the following formula.

$$
\begin{equation*}
\frac{\mathrm{d} \sigma_{\mathrm{RAD}}}{\mathrm{~d} \Omega \mathrm{dE} E^{\prime}}\left(E, E^{\prime}, \theta\right)=\frac{N}{\mathrm{~N}_{\mathrm{in}} \mathrm{n}\left(\Delta \Omega \Delta \mathrm{E}^{\prime}\right)} \tag{1}
\end{equation*}
$$

where N is the number of scattered electrons for $N_{i n}$ incident electrons, n is the number of target protons per c疐2 and ($\left.\Delta, 2 \Delta^{*}\right)$ is the spectrometer acceptance.

The radiatively corrected cross section is by definition the cross section for the scattering process calculated to lowest crder in α. This quantity is proportional to the electromagnetic current tensor of the proton ${ }_{\mu \nu}$ (see appendix B), where ${ }_{\mu \nu}$ summarizes the electromagnetic structure cf the proton. The tensor $H_{\mu \nu}$ can be reduced to two scalar guantities (form factors) W and W_{2}, which are functions of two variables usually taken to be $q^{2}=q_{\mu} q_{\mu}$ and $\nu=-p_{\mu} q_{\mu} / M$, where q_{μ} is the four momentum transfer, p_{μ} is the four mamentum of the target proton, and M is the proton mass, 9383 GeV . other important kinematic parameters are the missing masse $\mathrm{n}^{2}=-\left(\mathrm{P}_{\mu}+q_{\mu}\right)^{2}$ which is slightly more convenient than ν, and the quantities x and ω.

These are expressed in teras of E, E^{\prime}, and θ as follows:

$$
\begin{aligned}
q^{2} & =4 E E^{\prime} \sin ^{2} \theta / 2 \\
\nu & =E-E^{\prime} \\
\mathrm{w}^{2} & =\mathrm{M}^{2}+2 \mathrm{M} \nu-\mathrm{q}^{2} \\
\mathrm{x} & =\mathrm{q}^{2} /(2 \mathrm{M} \nu) \\
\omega & =1 / \mathrm{x}
\end{aligned}
$$

The experiment was cesigned to allow the separate determination of the two form factors over a large kinematic range. This is accomplished by measuring the cross section at two or more angles at the same values of q^{2} and \boldsymbol{y}^{2}. The position of a measured pcint can be conveniently plotted on the $W^{?}$. q^{2} plane as shown in Fig. 2. All the measurements at one angle span a triangular region in q^{2}, w^{2} space. Eack measured line with E and θ constant would be a straight line on such a plot. The intercepts of this line with the $q^{2}=0$ axis and the line $=M$ are given by

$$
\begin{align*}
\mathrm{W}_{\max }^{2} & =\mathrm{M}^{2}+2 \mathrm{ME} \\
q_{\max }^{2} & =\frac{4 \mathrm{E}^{2} \sin ^{2} \theta / 2}{1+\frac{2 \mathrm{E}}{\mathrm{M}} \sin ^{2} \theta / 2} \tag{3}
\end{align*}
$$

Fig. 2

The curve $x=$ constant would $k \in a$ straight line passing through the point $q^{2}=0, W^{2}=M^{2}$.

For the three lowest energy 18 -degree lines the data points are closely spaced. In the kinematic region $W<2$ Gev, the cross section shows resonant structure as a function of missing mass, so for these lines the spectrometer settings were cuerlapped and events within the spectrometer acceptance were binned in missing wass in order to obtain a continuous missing mass spectrum of the cross section. Outside of the resonance region the variation of the cross section over the spectrometer acceptance is not significant and the entire acceptance was used, yielding a single cross section for each setting.

The cross section was measured for the three angles 18, 26 , and 34 degrees -- for E and E values throughout the range shown in Fig. 3. This is due to the necessity for making radiative corrections, which require knowledge of the entire behavior of the measured cross section as a function of E and E for a given angle The radiative correction procedure yields the corrected cross section for all the measured E, E points at that angle.

The measured cross section, in addition to being a function of E, E, and θ, depends somewhat on the nature and amount of material before and after the point of scattering. Efforts were made to minimize tbe total radiation lengths of material in the path of the incident and scattered

Fig. 3
electrons; in fact, most of the material consisted of the small amount of target hydrogen itself. Because of the electron's small mass it can radiate a considerable fraction of its total energy during ccllisions with the atoms in a material.

Background electrons were detected that were not the result of scattering frof the liquid hydrogen. These were due to scattering in the walls of the target cell or in the window on the scattering chamber (the only material besides the target hydrogen within view of the spectrometer), and also due to processes creating electron-positron pairs. The former is taken into account by measuring the cross section for scattering from an empty target cell lammy target measurement, and subtracting it. Pair creation processes, mainly $\pi_{0} \longrightarrow \gamma e^{+} e^{-}$, were taken into account by measuring the cross section for detecting positrons in the spectrometer, subtracting the dump target background from this, and subtracting the result which was assumed equal to the electron background origirating from such charge-symmetric processes. The positron background was only significant for E, small compared to E. However, dumpy target runs were usually made for each spectrometer setting. were usually made for each spectroneter setting-
3.1 Beam

The Stanford Iinear Accelerator is a 2-mile-long assembly of disk-loaded copper waveguides.s Disk loading destroys the symmetry of the waveguide structure to translation alcng its axis and allows transmission of waves with axial electric field baving a phase velocity near the velocity of light. Flectrons are injected at one end in short bunches, cocupying 50 of phase interval relative to the traveling rf wave and are accelerated by microwave power $(2856 \mathrm{MHz})$ supplied by 245 klystron amplifier tubes positioned along the accelerator at 40-foot intervals. The klystrons are operated in two modes, "accelerate" and "standby", to achieve energy control, with eack klystron capable of contributing roughly 90 MeV to the electron bean energy. In this experiment the accelerator beam energies ranged from 4.5 GeV to 18 GeV .

A high-power modulator supplies each klystron with 2.5microsecond long $250-k \nabla$ fulses with a maximum current of 260 A. The repetition is 360 pulses/sec Electrons are accelerated for only 1.6 microseconds during each pulse. A phencmenon known as leam kreakup limited the peak beam current in the accelerator to 55 mA .

The beam pulses from the accelerator structure are channeled into the varicus experimental areas in the beam switchyard. The beam into the spectrometer area is first deflected a small amount (0.50) by pulsed magnets, then bent

Fig. 4

120 in a series of bending magrets and passed through a set of high-power momentum-defining slits. The slits were typically set to pass a 1% range in momentum. The mean momentur of the beam is defined by the beam switchyard to an accuracy of $\pm 0.2 \%$. The switchyard beam-transport syster is made achromatic by a second 120 bend with a quadrupole placed midway between. The quadrupole focuses the dispersed momenta which are then recombined in the second set of bending magnets.

Quadrupoles and steering magnets allowed focusing and aligning the bear on the target. This was done with the aid of 3 fluorescent $2 n S$ screens, two mounted at distances of 53 feet and 10 feet in front of the target, and the third a distance of 5 feet behind the target. The screens in front of the target were retractably mounted inside the beall vacuum system and were norally out of the beam path except for alignment checks. The third screen behind the target was permanently mounted in the air. Typically the beam was focused to have the shape of an ellipse with height 0.3 cm and width 0.6 cm . The last quadrupole had an aperture of 3 in. and was located a distance of 332 ft before the target. This limited the angular divergence of the beam to less than ± 0.4 mr. The directicn of the beam was known to ± 0.3 mr by reading the position of the beam spot on the fluorescent screen.

The maximu current through the switchyard energy slits was about 30 ma, or coughly 3×1011 electrons per pulse. This maximum-intensity beam was required only for runs at high secondary energy and large q^{2}, where the cross section was very small. otherwise, the beam current had to be decreased to limit the counting rates in the fastest counting electrcnics circuits.

A lucite block mounted on the end of a photomultiplier tube was placed in the vicinity of the target. This served as a cerenkov detector respending to the instantaneous flux of bean-produced particles and was used to monitor the celative constancy of the beam current. The accelerator was "tuned" to provide a flat top current pulse as much as possible, in order to ainimize the instantaneous particle rates.

The primary incident $\mathrm{team-charge}$ monitors were a pair of toroidal transformers (tcroids) with the electron beam forming the primary winding. 7 These devices were internally calibrated by a single turn of wire carrying a precisely determined charge to simulate the beam. previous experiments have involved extensive checking cf one of the toroids used with a Faraday cup, which has shown no disagreement at the 1\% level. Several comparisons of the toroids with the Faraday cup were made during the experiment as checks. The incident beam charge measured by the two toroids always agreed to within 0.5 .

3.2 Target

The electrons were scattered from liquid hydrogen contained in a $7.026-c a d i a n e t e r$ circular-cylindrical cell with 0.003 -inch aluminum walls. The cylinder axis was vertical and the beam rassed through the cell along a aiameter. An identical empty target cell was mounted below the full target and used to measure the scattering coming from the target walls (dumm target measurement).

The beam deposited roughly 2 Mev per incident electron in the target hydrogen. At maximum current and repetition rate this is an average fower of 36 watts. In earlier electron-scattering experiments at SLAC this had caused a reduction of the target density, either due to boiling of the hydrogen around the beam path or to formation of a cylindrical shock wave along the beam path during the 1.6 μ sec duration of the pulse. To prevent the former, the hydrogen in the target was forced to circulate around a ring by a small motor-driven fan. The target hydrogen, maintained at atout 1 atm cverfressure, was driven through the scattering cell and up through a heat exchanger. A large reservoir of liquid hydrogen absorbed the heat from the heat exchange and gave the system thermal stability.

Before the data takinc began the circulating target was tested to see if the target density was reduced at high beau

Fig. 5
intensities. It was checked that the calculated cross section was independent of beall current, spot size, and beam pulse length. As an aditional check on the target density the $S L A C$ 1.6-GeV spectrcmeter was used to measure the cross section for detecting protons from elastic scattering at fixed proton momentum and angle. The only variation expected in this cross section after correction for counting rate effects is due to a reduction in the target density caused by beam heating. The cross section was measured at lon current for every initial energy to provide normalization. No significant target density reduction was observed with the 1.6 Gev spectrometer used in this way and no target density correction was made.

The hydrogen was in a two-phase system, liquid in equilibrium with vapor so the hpdrogen density is determined by temperature. The temperature was measured ky measuring the hydrogen vapor pressure in a small bulh placed in good thermal contact with the target hydrogen. The average temperature was 20.60 K . However, deposition of energy by the beam and refilling of the hydrogen reservoir caused short-term temperature variaticns on the crder of 10 K . This causes a 1.7% uncertainty in the liquid hydrogen density.

3. 3 Material in the Beam Eath

Pecause of the electron's small mass, the acceleration caused by collisions with the atoms of a material can cause the electron to radiate a large fraction of its total energy. The probability of an energy loss occurring by this process (bremsstrahlung) depends on the amount of material measured in radiation lengths. The radiation length is defined by Equ. A.III. 7 . Energy degeneration can also be caused by radiation cocurring during the large-angle scattering. The details of the radiation problem are discussed in the appendix. However, in an approximate sense, a scattering with acmentum transfer q^{2} from the electron is equivalent as far as radiation is concerned to passage of the electron through $t / 2$ radiation length of material before the scattering, which takes place with no radiation, and passage through a further $t / 2$ radiation length. t is called the ecuivalent radiator and is given by formula A.I. 16. This equivalence is exact only for the limiting case of soft photens.

Por $\mathrm{q}^{2}=1 \mathrm{gev}^{2}$, the equivalent radiator is 0.066 . The total radiation length cf waterial in the team path was small compared with this number. Assuming the scattering takes place at the center of the target in an average sense, that is, including half the target hydrogen before and half after, the total radiatcr before was 0.0052 r. 1 . and the radiator after was 0.0126 r .1 . For the target bydrogen the radiation lengtb was taken to be 847 cm .

The biggest contributors to the total radiator were first 0.0102 r. from the target hydrogen and aluminum target cell windows. 0.0078 r.l. from the aluminum spectrometer spectrometer entrance window, and 0.0018 r. 1. from 21 inches of air alcog the path of the scattered electron.

3.4 Spectrometer

The SLAC 8-GeV spectromet as shown schematically in Fig. 7 consists of two $t \in n d i n g$ magets and three quadrupole magnets. The spectrometer was designed to allow determination of the momentum of particles coming from the target from a knowledge of the vertical position at a plane of the particle's trajectcry after passage through the spectrometers magnetic elements. An array of narrow, horizontally oriented scintillation detectors (hodoscope) covered the momentum measuring plane. similarly, the spectrometer allowed determination of the horizontal scattering angle of a particle from the target with the use of a single array of vertically oriented hodoscofe counters at the horizontal angle-measuring plane. The monentum hodoscope was 11.938 cm across in the vertical direction divided into 40 bins by the counters. The momentum hodoscope plane was tilted at an angle of 14.70 with respect to the spectrometer horizontal flane. Variations in the

MAGNET ARRANGEMENT, 8-BeV/c SPECTROMETER.
Fig. 7
vertical angle at the target had no effect on the particle's vertical position at the acmentum hodoscope ($\left.\phi_{0} f o c u s\right)$. The theta hodoscope was 68.5 cm wide in the horizontal direction and was divided into 54 bins. Variaticns in a particle's horizontal coordinate at the target were focused out at the theta hodoscope.

Both bending magnets bent vertically (each 150). The entire spectrometer, including the shielding around the particle detectcr area, some 750 tons total veight, was mounted on rails and pivoted around the position of the target. There was a system of taut wire position sensors that allowed monitoring the position of each of the magnetic elements. An online computer program converted the measured wire displacements to relative novements of the magnets, and compared with tolerances established for the g-GeV spectrometer. This check was done after every movement of the spectrometer to a different angle and the displacements of the magnets cbserved were always within tolerance.

The current versus field curve of each magnet had been measured using NMR, varying the currents in a standard degaussing cycle. only the bending magnets showed appreciable saturation. The central momentum of the spectrometer was set by setting the currents in the magnets using the standard degaussing cycle. The magnet currents were monitored ky reading the voltage across precision shunt resistors in series with the magnets. The actual task of
adjusting the power supflies was handled by an online computer program that continuously monitored the shunt voltages and changed the fower supply output currents until the desired shunt voltages were obtained.

The spectrometer was designed assuming ideal wagnetic elements and calculating the transformation of particle rays by the spectrometer to second crder in the deviation from the central ray. In the standard central- ray coordinate system notation $9 \mathrm{x}_{0}, \mathrm{y}_{0}, \theta_{0}, \phi_{0}, \delta_{0}$ are the coordinates of the ray at the target and $x, y, \theta, \phi, \delta$ are the coordinates at a definite z position following the last magnetic element, for instance, at the momentur hodoscope position. The transformation $c f$ the initial ray at the target to the final ray was calculated to second order in the small quantities $x_{0}, y_{0}, \theta_{0} \cdot \phi_{0} \cdot \delta_{0}$.

The actual performance of the spectrometer was measured in a series cf optics tests conducted in November, 1967. This resulted in very small correction factors to be applied to the magnet current settings to achieve the desired central ray and the desired quadrupole focusing. The transport coefficients were determined from these measurements, and it was found necessary to change the effective field strengths of the three ideal quadrupoles in the first- and second-order model in order to reproduce exactly the measured results for the coefficients (x|x $)_{0}$, $\left(x \mid \theta_{0}\right)$, and $\left(y \mid \delta_{0}\right) .10$ Also, these coefficients were found to
be slightly energy dependent. The measured theta dispersion $\left(x \mid \theta_{0}\right)$ changed $k y 1.2 \%$ frct 3 GeV to 8 GeV. The measured momentum dispersion $\left(y \mid \delta_{0}\right)$ changed $\mathrm{by}-1.8$ from 3 GeV to 8 GeV.

For the calculation of the acceptance, a first- and second-order model was assumed that reproduced identically the reasured values of $\left(x \mid x_{0}\right),\left(x \mid \theta_{0}\right)$, and $\left(y \mid \delta_{0}\right)$ at 8 Gev. The parameters of the model are given in Table 1 , and the resulting transfort coefficients in Table 2 .

The 8-GeV spectroxeter was used in the elastic electron-proton scattering experiment of kirk et al.11 However, the spectrometer was modified afterwards by the installation of lead afertures to more sharply define the acceptance and to simplify the acceptance calculations. Thus, as far as the acceptance is concerned, the earlier elastic measurements were independent. Blastic cross sections were measured tc compare with previous measurements as a check against a noraalizaticn error.

The acceptance was calculated in two different ways to check the program mechanics using the same model of the spectrometer as a starting point in each case. In one method rays were randomiy generated with a uniform distribution in $x_{0}, \theta_{0}, \phi_{0}, \delta_{0}$ space and transported through the spectrometer. A check was made at each of the limiting apertures to see that the ray could successfully pass. Successful events were placed in hodoscope counter bins,

TABLE 1

Model of 8 GeV Spectrometer, $\mathrm{P}=8.008 \mathrm{GeV}$

- drift from target 1 m
- spectrometer entrance window
- drift 1.2995 m
- quadrupole Q81 ($1.026 \mathrm{~m}, \mathrm{a}=13.97 \mathrm{~cm}, 7.551 \mathrm{~kg}$, vertically defocusing)
- drift .352 m
- aperture 1 (circular, $\sqrt{\mathrm{x}^{2}+(\mathrm{y}+.24)^{2}}<13.02$)
- drift . 6165 m
- quadrupole Q82 ($1.336 \mathrm{~m}, \mathrm{a}=19.3675 \mathrm{~cm},-10.823 \mathrm{~kg}$, vertically focusing)
-drift .9610 m
. $1 / 2$ bending magnet $\mathrm{B} 81\left(1.8135 \mathrm{~m}, 7.5^{\circ}, 19.267 \mathrm{~kg}\right.$, vertical bend)
- aperture ($-19.21 \mathrm{~cm}<\mathrm{y}<34.47 \mathrm{~cm}$)
- $1 / 2$ bending magnet B81
- drift .3863 m
- aperture 2 (octogon, $\left.|y|<16.5 \mathrm{~cm},|x<14.5 \mathrm{~cm}| y<,24.6 \mathrm{~cm}\left(1-\frac{|\mathrm{x}|}{18.2 \mathrm{~cm}}\right)\right)$
- drift . 5387 m
- bending magnet $\mathrm{B} 82\left(3.627 \mathrm{~m}, 7.5^{\circ}, 19.267 \mathrm{~kg}\right.$, vertical bend)
- drift 1.003 m
- quadrupole Q83 ($1.336 \mathrm{~m}, \mathrm{a}=19.3675 \mathrm{~cm},-7.319 \mathrm{~kg}$, vertically focusing)
- drift 4.197 m
- theta hodoscope $(-34.29 \mathrm{~cm} \quad \mathrm{x}<34.29 \mathrm{~cm}, 54$ bins $)$
- drift . 555 m
. phodoscope $\left(-5.969 \mathrm{~cm}<\mathrm{y}<5.969 \mathrm{~cm}, 40\right.$ bins, tilted 14.7°)

TABLE 2

8 GeV Spectrometer Transport Coefficients

> x at theta hodoscope
> y, ϕ at momentum hodoscope
> $\mathrm{x}_{0}, \theta_{0}, \phi_{0},{ }_{0}$ at target
> $\mathrm{y}_{0}=0$

Which resulted in a distritution of events proportional tc the acceptance of each rin. The total acceptance of the spectrometer was limited by lead masks bounding the hodoscopes.

The second method of calculating the acceptance worked with individual p, θ hodcscofe bins, where such a bin is a small region in the 5 -dimersional ray space with the x coordinate at the theta hodcscope in the range Δx, and the y coordinate at the momentum hodoscope in the range Δy. y_{0} was taken as zero and x_{0} was given a fixed value which was averaged over in the final step. Thus, rays in a particular p, θ hodoscope bin have essentially one degree of freedom which can be taken as ϕ_{0}. The situation is illustrated in Fig. 8. The limiting values of ϕ_{0} for the bin were found by a trial-and-error procedure, where ϕ_{0} was varied while checking the ray at all the limiting apertures. The acceptance of the bin was calculated using the formula

$$
\Delta x \Delta y \int_{\phi_{0 \min }}^{\phi_{0 \max }} \frac{\partial\left(\delta_{0}, \theta_{0}\right)}{\partial(y, x)} d \phi_{0}
$$

The Jacobian is a known function of $x, y, x_{0}, y_{0}, \phi_{0}$, given by

$$
\frac{1}{\frac{\partial y}{\partial \delta_{0}} \frac{\partial x}{\partial \theta_{0}}-\frac{\partial y}{\partial \theta_{0}} \frac{\partial x}{\partial \delta_{0}}}
$$

$$
\begin{aligned}
& x_{0}=0 \\
& y_{0}=0
\end{aligned}
$$

Fig. 8
where the derivatives are calculated using first- and second-order transport cofficients.

The second method of calculating acceptances had the advantage over the Monte carlo method for accurate calculation of the very small acceptance of a hodoscope bin, since to achieve the necessary large number of monte carlo successes in each bin was very time consuming. The two methods agreed to 0.6% for the total acceptance with no bin-by-bin deviaticn discernitle within the monte carlo statistical error of 3%. The result for the total acceptance of the spectrometer was $(\Delta p / p) \Delta \Omega=25.40 \times 10^{-6}$ sr. and for the acceptance of the restricted hodosccpe, p bins 5 through 36 and bins 4 through 51 , the result was $(\Delta p / p) \Delta s^{-}=21.64 \times 10^{-6}$ sr. The momentum range accepted by the restricted hodoscope was roughly $\Delta p / p= \pm 1.57 \%$ and the theta range was roughly $\Delta \theta_{0}= \pm 6.88 \mathrm{mr}$. The momentum resolution of the hodoscope was $\Delta \mathrm{p} / \mathrm{p}=+.05 \%$ and the theta resolution was $\Delta \theta= \pm .15 \mathrm{mr}$.

3. 5 Particle Detectors

The primary task of the particle detection system was to detect electrons with high efficiency and to discriminate with a large rejection factor the non-electron background, consisting mostly of picns. This was accomplished using a total absorption shower counter (TA counter), a threshold

Fig. 9
gas Cerenkov counter, and a systeu of three scintillation counters used to count the number of particles produced in a 1-r. 1 . lead sheet (the $d E / d x$ counter).

Two large multi-segmented scintillaticn counters covering the entire acceftance front and rear trigger counters) were used for tiaing purposes. The trigger counter signals, when in coincidence with the cerenkov signal in the fast logic circuitry, was one definition of a likely electron event.

The two arrays of hodcscope scintillation counters (55 theta and 41 momentam counters) provided nomentum and angular resolution. For most of the experiment this resolntion was not used except to define the spectrometer acceptance. Normally, all events with p bin in the range 5 to 36 and θ bin in the range 4 to 51 were added together to yield a single number for the cross section. The hodoscope counters and the trigger counters were the sate as used in the elastic electron scattering experiment of kirk et al. ${ }^{1}$ The ta courter consisted of 16 one-r.1. sheets of lead interleaved with 16 1-inch thick slabs of plexiglas in a sandwich arrangement. An incident high-energy electron produced a cascade electromagnetic sbower in the lead containing many fast electrons and positrons which make Cerenkov light in the flexiglas. Each sheet of plexiglas was viewed by four RCA 6346A photomultiplier tubes, which had their high voltages set for equal output from each tube
for a standard light source placed in good optical contact with the center of the flexiglas sheet.

The anoae signals frci all the photomultiplier tubes were linearly added. This combined ta output produced an approximately Gaussian pulse-height distribution for electrons. The most frotable TA pulse height was proportional to the energy cf the incident electron. At 2 Gev, the most probable pulse height for an electron was 85 channels above fedestal (zero) and the Gaussian sigma was approximately 10 channels. Fions produced a feak about 16 channels above fedestal corresponding to the pion making light along a single fast particle track in each sheet of plexiglas. An exponential tail extended to higher channel numbers and corresponds to the pion interacting in the material of the counter, producing aditional fast particles. At a momentum of 2 Gev about 3 of all pions produced ta pulse-heights greater than 55 channels above pedestal.

The cerenkcv counter contained Freon gas ($\mathrm{CCl}_{2} \mathrm{~F}_{2}$) at an absolute pressure of 456 maHg . High-energy electrons produce cerenke light in a narrow cone about their direction of motion. This light was collected and focused onto the face of a photomutiplier tube by a large low-mass parabolic mirror (made of aluminum-coated polyethylene) covering the rear aperture of the counter. The photcmultiplier tube(RCA (70133) had a high photocathode
quantum efficiency of apprcximately 30 .
The number of cerenkov light photons produced is a function of the velocity $c f$ the particle,

$$
N=N_{\max } \frac{n^{2} v^{2}-1}{\left(n^{2}-1\right) v^{2}}
$$

where $N_{\max }$ is the number of photons produced when $v \longrightarrow 1$ and n is the index of refraction of the medium. Assuming 100 ${ }^{\text {m }}$ light collection, and a 45 -inch path length, a high-energy electron was calculated to produce an average of 100 photons at the photomultiplier tute face and an average of 30 photoelectrons. There is a threshold for production of cerenkov light at $v=1 / n$. For fions this was calculated to be a momentum cf 3.7 Gev. The cerenkov threshold for fions was measured to be $3.3 \mathrm{G} \in \mathrm{V}$.

At a spectrometer meafntum of 2 Gev, the Cerenkov counter efficiency for detecting pions was found to be roughly 1%, while its electron detection efficiency was close to 100%. It appears that the mechanism responsible for pion detection below cerenkov threshold is the production of a fast secondary electron which then accompanies the pion through the Cerenkov counter. This occurs in material somewhere in front of the counter, probably in the lead aperture-defining masks.

The $d E / d x$ counter system discriminated against pions by requiring initiation of an electron shower in a one-r.l.
thick lead sheet. Particles produced at small angles in the initial radiatcr accomaried the incident particle through three scintillators wakinc light pulses profortional tc ionization energy loss (dE/dx). A bigh-energy particle that did not interact in the initial radiator made a light pulse distribution in each scintillator corresponding to the Landau distribution 12 of $d E / d x$ losses for a single minimum ionizing fast particle. An electron with rather high probability $(0.7$ to 0.9$)$ preduced additional particles in the initial radiator and caused larger-than-minimum ionizing pulse heights in each of the three scintillators. An electron event was required to have a large pulse height in all three scintillators. Inasmuch as the Landan tails of the pulse height distributions produced by a pion in the three scintillators were completely independent, having three scintillators insteat of one would cube the pion rejection of the system.

The $d e / d x$ system was placed in front of the $T A$ counter. There was some correlation between signals in the two counters for pions, since if a pion interacted in the initial radiator it had greater probability of producing a large TA pulse beight. For example, a sample of 11300 fions at 2 Gev momentum were detected in the $T A$ with probability $p_{1} \cong 0.03$ and in the $d E / d x$ system with probability $p_{2} \cong 0.03$. Twenty pions, $c r 0.2 \%$ had both the $T A$ and $d E / d x$ requirements, which implies a correlation $C=5$ 贯, were C is
defined by the equation.

$$
p_{12}=p_{1} p_{2}(1-C)+p_{1} C
$$

The electron detection efficiency of the dejdx was not corcelated with that of the $T A$, since whether or not the electron interacted in the initial radiator its total energy ended up in the shower counter and hence it produced the same TA pulse height.

3. 6 Electuonics

The primary fast detector signals were phototube anode pulses coming from the TA counter, the cerenkov counter, and the front and rear trigger connters. The TA counter contained 64 photomultiplicr tubes, the cerenkov counter a single tube, and the trigger counters each contained 5 tubes. The anode pulses were carried separately cn low-loss coaxial cables from the spectrometer to the experimenters control room (counting hcuse) which contained all the counting electronics and the crline computer.

The 64 TA counter photcmultiplier tube signal pulses were linearly added to produce a single signal pulse, fed into discriminator D 14 , as shown in Fig. 10. The pulses from the five-segmented trigger counters were separately channeled into discriminators (c1-10) and the output pulses combined in logical ob circuits to produce a single front

Fig. 10
trigger pulse (CR1) and a single rear trigger pulse (ok2). The discriminators D14, D28 (Cerenkov counter), and D1-10 had $12-\mathrm{nsec}$ outfut pulse lergths.

A likely electron event (event) was defined on the basis of fast logic performed on the output from the discriminators [14, D28, OE1 and 0月2. An event gate pulse resulted if there cccurred either a D14 pulse or a coincidence between D28 and (0F1 and 0R2) -- (C5). This event gate pulse was fanned out to discriminator coincidence-discriminator (DCD) units receiving input from the hodoscope counters. The event gate pulse acted as a strobe to interrogate the state of the hodoscope counter discriminators and varicus discriminators in the fast electronics (electroñics ilags). Other important information about the event was the digitized pulse height of the signals from the $I A$ counter, the cerenkov counter, and the three dE/dx scintillaticn counters. A 50-nsec pulse was generated by an event and served as a coincidence gate for the signal pulses coning from these counters in linear gate and stretcher units (IGS) that preceded the analog-todigital converters.

A latch-type flip-flcp (rapid kill flip-flop) was set by the event pulse and reset immediately before the next beam pulse was due to arrive. The event fulse also set an interrupt flag in the computer which caused the computer to read-in the event information waiting in the buffers. The
total event information was stored in 1224 -bit words, and it included the following: 55 theta-hodoscope counter bits, 41 momentum counter hodoscope bits, pulse-height channel numbers for the $T A, C e r e r k c v$, and three $d E / d x$ counters, and various electronics flag kits. The total number of events was recorded on a scaler. However, not all of these events triggered a readout if more than one event occurred per beaw pulse.

The fastest counting rate was in the front trigger counter discriminator and was normally kept below about 2 MHz by limiting the incident beam current. High counting rates, corresponding to large cross sections were obtained at low \mathbb{E}. Here, typically, the Cerenkov counter (028) rate was a factor of 10 less than the front trigger and the shower counter (D14) rate was less than the cerenkov rate. The event rate was kept below about 0.3 per pulse by limiting the k eam current. At this average rate, roughly 85\% of the events trigger a ccmputer readout of all event information.

The pulse height frcil the TA counter for an incident electron is proportional to the energy of the electron. The D14 discriminator threshcld was set high enough to avoid triggers from very small ta pulses which were probably pions. At $\mathrm{E}^{\prime}=1 \mathrm{GeV}$, scme electrons produced pulses less than this threshold. Fowever, these would cause a C5 coincidence and not be lost. The event logic was chosen to
avoid a large numer cfevent triggers caused ky the pion background at low E.

3.7 Data Recording

All the information necessary to analyze the data was written on magnetic tafe. Ihis included the status of individual counters and fulse beight information for each event trigger, the energy, spectrometer momentum and angle for the run, the target tyfe, the scaler and beam monitor readings before and after the iun, the spectrometer magnet shunt voltages, and typed-in comments about the run. Essentially all the information content of the experiment was recorded on the data tape ard the experiment was "played back" many times in the course of the offline analysis.

An online SDS-9300 ccmfuter performed the data-logging Eunction as its highest-fricrity task. An event trigger set a high-priority interrupt flag in tbe computer causing the program to branch to a subrontire that read the buffered event information into the computer core. The event information was placed in 12 24-bit words which were combined into blocks of 360 words to be written on magnetic tape. The event-logging cperation was done rapidly enough to be completed in the time available between machine pulses (3 msec). For the remainder of the time the computer program was in a loop, servicing lower-priority interrupts
as time allowed.
The event trigger also set an interrupt to branch to an analysis program. This program was quite sophisticated but the sampling fraction was cnly 25% for the highest event rates. Cross sections were calculated for various definitions of a good electron event and histograms were built up, showing distritutions of the $T A$ cerenkov and dE/dx counter pulse heights for various samples of events. and particle distribution across the hodoscope counters. A scope unit and line printer allowed display of selected program information during the run and at the end of the run a large amount of informaticn about the run was dumped out in a fixed format on the line printer.

Most of the control cf the experiment was channeled through the computer, for example, starting and stopping of runs and setting the spectropeter magnets. The scope display system allowed the experimenter to immediately inform himself of the status of any of the computercontrolled functions.

The data tapes were read and analyzed on an IBM-360-91 computer. The analyses consisted of two stages; in the first, the cross section for scattering from hydrogen defined by formula 2.1 (radiated cross section) was computed from the information on the tapes. This cross section includes effects of higher-order electromagnetic processes, e. G., photon radiation. The second stage is the radiative correction which is done, angle by angle, using all the measured cross sections at a particular angle.

A cun is defined as an accumulation of eyent data caused by passage of in incident beam electrons through the target, for a particular initial beamenergy \quad, spectrometer central angle , spectroneter energy c', and target type. The yield of electrons for a run was obtained from the number of evente satisfying certain requirements food electrons) based on the electron-discriminating properties of the counters. Three definitions of a good electron event were used with successively greater rejection of nonelectron particles but also with successively decreasing electron detection efficiency.

Definition $a:$ The $T A$ counter $p u l s e$ height, that is, the $A D C$ channel number, was reguired to be greater than a certain value (TA cut). For a pure sample of electrons, the TA pulse-height distributicn was Gaussian with mean and variance $\left(\sigma^{2}\right)$ proportional to the electron energy. The TA
cut was placed 2.8σ below the position of the mean (peak) of the electron distribution, sc approximately 99 of the electrons produced a pulse in the $T A$ larger than the cut. The number of fions contaminating the yield was estimated from the number of events baving $T A$ pulse height in a sall window 1σ wide immediately relow the position of the ta cut. Approximately 1 有 of the total number of electrons were expected to hav \in pulse heights in this range, and the rest were assumed to be ficns. The number of pions with pulsc height greater than the $T A$ cut was calculated from the number of pions observed in the 1σ window by assuming the pion pulse height had a falling exponential form. Calculation of the fion contamination in this way mainly served as a quartitative check that the pion contamination was small. The correction was generally less than 1%, and the largest full target correction was 4%.

A correction was made for the inefficiency introduced by the ta cut which was ncainally 1%. This was done for all runs with good statistics (greater than 100 good electron events) by fitting the observed electron peak in the ta pulse-height distributicn with a Gassian and using this analytic form to calculate the number of electrons falling below the TA cut. It was found possible to make fits to a Gaussian that were satisfactory in a chi-squared sense. Also, it was checked that the calculated qield was quite indefendent of the $T A$ cut, \in ven for inefficiency corrections
as large as 30%.

Definition $b:$ In additicn to the $T A$ cut, events were reguired to have cererkoy counter pulses larger than a minimum level (Cerenkov cut). The cut was such that 97\% of a pure electron sample produced pulse heights greater than the cut. The yield was corrected for the 3% inefficiency introduced.

Definition c : In addition tc the requirements of b, the minimum pulse height fram the de/dx scintillation counters had to he larger than a certain value (de/dx cut) The distribution of minimum dF/dx pulse height for an electron sample showed a prominent feak corresponding to a single East electron passing through the three scintillators, and less distinct secondary Eeaks at approximately $2,3,4$ times the pulse beight of the first peak, evidently corresponding to the creation in the initial radiator of adaitional particles. The defdx cut was flaced in the first valley of the minimum $d E / d x$ pulse teight distribution. The efficiency of the $0 p / d x$ system used in this way, for a pute electron sample was $0.606,0.741$ and 0.799 at secondary electron energies of 1,2 , and 3 eev. It as found possible to fit the de/dx efficiency as a function of E by a polynomial of order 2 in $1 / \mathrm{F}^{\prime}$. The three parameters of the fit can be taken as the values of the efficiency at 1, 2, and 3 Gev as
given.
The dE/dx efficiency was considered uncertain by 1.5 , so yields calculated on the rasis of Definition chave this additional error added linearly.

All good electron events were required to have the front-rear trigger counter coincidence circuit (c1) flag set. Also the event was recuired to show a hodoscope bit pattern corresfonding tc the particle passing unambiguously through the range of momentum counters $5-36$ and the range of theta counters 4-51. corrections were made for c1 inefficiency (typically 1 to 2) , and for ambiguous or undecipherable hodoscope patterns (typically 7\%).

The total spectroneter acceptance defined by the hodoscope was $(\Delta p / p) \Delta I=21.64 \times 10^{-6} \mathrm{sr}$. The cross section was also calculated for each run, ignoring the hodoscope information and using the calculated total acceptance of the trigger counters, $25.40 \times 10^{-6} \mathrm{~s}$. The yield for this cross section did not require an ambiguous code correction and for kinematic regions where the cross section was slowly varying over the spectromet acceptance, which was the usual case, these two cross sections were found to agree typically to 1\%。

The yield was corrected for computer deadtime, that is, events not logged on tafe, by multiplying by the ratio of the number of events recorded on a scaler to the numer of events actually found on the data tafe. This correction was
less than 20% and is considered well known since it just 'represents an unbaised samfling fraction.

For each line the definition of a good electron a, b, or c was chosen on the rasis of agreerent between the three yields. The least restrictive requirement was freferred in order to maximize the number of good events and hence the statistical accuracy. However, the foint on a line where two yields began to disagree because of pion contamination was the point where the more restrictive requirement began to be used.

For each run a cross section was calculated using the foraula,

$$
\frac{\mathrm{d}^{-}}{\mathrm{d} \Omega \mathrm{dE}^{\prime}}=\frac{\mathrm{N}}{\mathrm{~N}_{\mathrm{in}} \mathrm{n}(\Delta \mathrm{p} \Delta \Omega)}
$$

where N is the corrected electron yield, $\Delta p \Delta \Omega$ is the acceptance, n is the rumber of protons/cme in the target hydrogen, and $N_{i n}$ is the nurber of incident electrons for the run.

For the three lowest erergy 180 lines only, the data were taken with spectrofeter settings overlapped to produce a continuous cross secticn spectrum in the resonance region. In this case the spectucteter acceptance was divided into missing mass bins using the p and θ hodoscopes, and the cross section was calculated for each bin. The bins were set up with an E^{\prime} widt at the central angle of 0.002 times the
secondary elastic scattering energy at that angle. This bin width is larger than the resclution of the spectrometer and was selected in order to decrease the statistical errors while still adequately resclving the resonance missing mass structure. The missing energy bins were constructed to be symmetrical in θ about the spectrometer central angle.

For some of the runs an acceptance correction was necessary because 2 aluainum $N M$ probes in the spectrometer bending magnets were accidentally left projecting into the active aperture of the spectroneter. The effect of these probes was measured and found to be small but energy dependent. This energy dependence was fit by a form a $+\mathrm{b} / \mathrm{E}^{2}$. The $1 / \mathrm{Fi}^{2}$ term is attributed to multiple scattering of electrons outside the angular acceptance in the aluminum of the probes. This correction was 4.5\% at $E^{\prime}=2 \mathrm{GeV}$ and 3.3 at $E^{\prime}=4 \mathrm{GeV}$. For cross sections with a probe correction the errcr is increased by 1.5 added linearly.

The final teasured cross section for scattering from hydrogen was calculated ficm the full target cross section, subtracting the dumm target cross section and the reversed spectrometer polarity cross section fositron cross section), and adding the positron dumpy cross section. Generally, the dumm cross section was measured at every setting, but the positron and fositron dummy cross sections were insignificant except at the lowest E points. The
largest positron background occurred for the highest energy 180 line. For this line (E $=18 \mathrm{GeV})$ at $\mathrm{E}^{\prime}=2 \mathrm{GeV}$ the reversed polarity cross section was 27% of the full target cross section, at $E=2.5 G \in V$ this percentage was 11% and at $E=3 \mathrm{GeV}$ it was 6 .

The ratio of duma to full target cross section was usually in the range 10 to 20 . This roughly agrees ith What we would expect if the high gg^{2} virtual photons were absorbed independently by the nucleons in the aluminum and Mylar that constituted the dumy target and if the neutron cross section were some fraction of the froton cross section The ratio of protons/car along the beam path of the dummy target to that fcr the full target was 0.09 wile the ratio of nucleons/cm was 0.17 . Thus we would expect a dumay to full ratio in the range 0.09 to 0.17 .

The final measured crcss section is the cross section for scattering from a proton allowing radiation of photons. and it depends somewhat on the radiation length of the target and other material before and after the point of scattering. The second stage of the data analysis required all the measured cross sections at a single angle as input and yielded radiatively corrected cross sections, which are the (theoretical) cross sections for the electron scattering process calculated to first order in α, that is, corrected for the known effect of higher crder in α processes. These include radiative processes occurring before and after the
scattering as well as radiation during the scattering and electrodynamic correcticns to the electron-photon vertex and the photon propagator.

The radiative correction formulas are discussed in detail in the Appendix. The relation of the radiatively corrected cross section to the measured cross section is given by formula A.V. 5 of the Appendix. The integrals in this formula require kncwledge of the corfected cross section along a line of constant E and a line of constant E ' in the E, e^{\prime} flane (for fixed θ) so values for the integration must be supplied by interpolating and extrapolating the already corrected cross section from the E,E points where the cross section is actually measured. The corrected cross secticn values when interpolated and extrapolated throughout the triangle according to the particular scheme chosen, have the froperty of satisfying Eq. A. $V .5$ for the E, values of every measured point.

There werf two main difficulties in making the radiative correction. Cne is that the cross sections were not determined at a sufficiently dense set of E, points particularly in the rescnance region, so that different reasonable methods of interfclation or extrapolation of the cross section within the triangle could produce at some points a considerable variation in the result. The sensitivity to the method of interpolation-extrapolation was investigated and only those data points for which the
corrected cross section was independent of the method to within one-half of the errcr bar were included in the final results.

The second difficulty is due to the approximate nature of Eq. A.V. 5 in the first place. The radiative tail from inelastic hadronic transitions is only approximated in terms of the two one-dimensional integrals over the corrected cross section. More accurately it is expressed as a twodimensional integral irvclving the two form factors $W_{1}\left(G^{2}, W^{2}\right)$ and $W_{2}\left(q^{2} \cdot W^{2}\right)$ in a different combination from $W_{2}+2 \tan ^{2}(9 / 2) W_{1}$ in which they appear in the cross section. The peaking apfroximation reduces the twodimensional integral to two cne-dimensional integrals and what can be called the factorization approximation allows the integrand in these integrals to be expressed in terms of the cross section. The validity of tbe peakingfactorization approximation has been tested for different models of W_{1} and W_{2}, and on this basis the particular form for the equivalent radiators used (formula A.V.7) was selected. The peaking-factorization approximation is only valid to the order of 10 票, so Eq. A.V. 5 can be used only as long as the error introduced in this way is tolerable.

There are also theoretical uncertainties about the effect of multifle phcton radiation. However, these uncertainties are parameterized the limiting soft-photon energy k_{1} appearing in $A .7 .5$ and defined by formula $A . V .9$.

For photon energy below k_{1}, multiple photon effects are taken into account, assuring the photons are soft and have no effect on the electron from which they are eaitted. For photon energies above k_{1} all multiple processes are neglected and orly single photon radiation is allowed. By varying k_{1} by replacing the $1 / 3$ appearing in formula $A \cdot v .9$ by other fractions from 0.2 to 0.8 the sensitivity to multiple photon effects was tested. The corrected cross sections generally changed very little and at most by 2 to 3% 。

There are also theoretical uncertainties about the effect of radiation frat the proton and the final hadronic state. For the case of radiation frcm elastic scattering, this effect can be estimated and it results in about a 15 畀 increase in the radiative tail at the points with highest momentum transfer to the proton. However, wost of the radiative tail comes frca hadronic transitions with low momentum transfer so this uncertainty is thought to be smaller than or compararle to that introduced by the peaking-factorizaticn approximation.

The radiative correction increased the error of the measured cross secticn due to uncertainties in the subtracted radiative tails. Formula A.V. 5 can ke written as follows:

$$
\begin{equation*}
\frac{d^{-}}{d \Omega d E^{t}}=C\left[\frac{d^{d} R A D}{d S d E^{t}}-\text { ELASTIC TAIL-INEALSTIC TAILS }\right] \tag{1}
\end{equation*}
$$

The error'was calculated using the formula,

$$
\begin{equation*}
\delta\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega \mathrm{~d} \mathrm{E}^{\prime}}\right)^{2}=\mathrm{C}^{2}\left[\delta\left(\frac{\mathrm{~d} \sigma_{\mathrm{RAD}}}{\mathrm{~d} \Omega \mathrm{dE}^{\prime}}\right)^{2}+\delta(\text { ELASTIC TAIL })^{2}+\delta(\text { INELASTIC TAILS })^{2}\right] \tag{2}
\end{equation*}
$$

The elastic tail was assigned a 3% uncertainty and the inelastic tails given $k y$ the two integrals in $A . V .5$ a 10 uncertainty. The formula 2 for the error reglects the correlation betreen the first terms in Eq. (1) and the subtracted integrals, so it is correct only for large values of the parameter ΔE^{\prime} in $A . V .5$. For the purposes of error propagation ΔE^{\prime} was tak \in to be the interval between measured points along a lire. For 180 this is tasically 0.5 Gev, except for the three continuous spectra where it is $0.002 \times E_{\text {ELASTIC }}^{\prime}$ - For 260 and 340 it is 0.25 Gev. The actual radiatively corrected cross section was not dependent on the choice of ΔE^{\prime} for sufficiently small ΔE^{\prime}. For example, the last point on the 260 , 18 gev line changed by 0.2% as ΔE was changed ty a factor of 4 from 1.1 MeV to 4.5 Mev.

For larger angles the radiative correction bscame slightly smaller. For 180 , the largest radiative correction occurred for $E=17$ GeV, $E^{\prime}=2$ Gev. At this pcint the elastic tail was 18 罗 of the $\pi \in a s u r e d$ cross section and the total radiative correction factor was 0.54 . The error bar was increased by a factor 1.21 ty the radiative corrections.

At 260 the largest radiative correction, at $\mathbb{E}=18$ GeV, $E^{\prime}=1.75 \mathrm{GeV}$ was 0.70 with the elastic tail 11% of the measured cross section. The error was amplified ty a factor 1.23. At 340 the largest correction was 0.78 at $E=15$ GeV, $E^{\prime}=1.5 \mathrm{GeV}$ with the error amplified by a factor 1.15. At that point the elastic tail was 11% of the measured cross section.

The inelastic electroproton cross section data have certain qualitative features that allow the definition of three separate kinematic regimes in the $q^{2-} W^{2}$ plane. These regimes are characterized by three types of behavior that can be thought of as analogous to the behavior of the cross section for electron scattering from an atom. First, there are resonance bumps in the cross section at fixed values of missing mass which seem tc be the result of transitions of the proton to quasi-discrete higher energy excited states. These bumps are evident only for \mathcal{K}^{2} Gey. The form factors for these transiticns are decreasing rapidly with q^{z} like the elastic form factors. 13 second, for large g^{2} and の >2 Gev there is a smooth continum cross section which is analogous to the cross section for the process of knocking out orbital electrons frcm an atcm. If effects caused by the identity of the incident electrons with the atomic electrons are ignored, the continuam cross section from the single ionization frocess would be given by a sum of contributions from the individual electrons in the atom. each with W_{1} and W_{2} given by E. 17 . Since the electron is pointlike, $G^{2}{ }^{2}=G^{\prime} M^{2}=1$. Going over to the variables $x=q^{2} /(2 M \nu)$ and ν. where M is the mass of the atom, we would have

$$
\mathrm{W}_{1}=\mathrm{Z} \frac{1}{2 \mathrm{M}} \delta(\mathrm{x}-\mathrm{m} / \mathrm{M})
$$

$$
\begin{equation*}
\mathrm{W}_{2}=\mathrm{Zx} / \nu \quad \delta(\mathrm{x}-\mathrm{m} / \mathrm{M}) \tag{1}
\end{equation*}
$$

Where is the electron mass and Z is the number of electrons in the atom.

The electron-proton continuum cross section for $q^{2}>1$ Gev2 has this type of behavior in that νW_{2} and $q^{2} / \nu \mathcal{H}_{1}$ appear to $b \in$ the same function cf a single variable q^{2} / ν, albeit not a delta functicn. This is the principal result of the SLAC inelastic election scattering experiments and is referred to as scaling.

The third type of bebavicr occurs for high energies $\nu>5$ Gev and siall $\mathrm{c}^{2} \ll 1 \mathrm{Gevz}$, that is, near the photoproduction region. There diffraction production processes seem to dominate. The term diffraction here is used to describe processes analogous to the pair production processes that dominate phctopreduction trom an atom at high energies. In the case of electron scattering from an atom for $q^{2} \rightarrow 0$, single electron ionization is not possible since the energy transter to the atomic electron, given by $\nu=q^{2} / 2 m$, must be zerc. As q^{2} increases, the probability of diffraction-type processes rapidiy decreases relative tc ionization processes, and the atom begins tc look like a collection of independent electrons. The diffractive character of the data in the photoproduction region is evidenced by the apparent approach of σ_{T} to a constant for
large ν.
Diffraction behavicr of σ_{T} disagrees with scaling behavior, i.e. if νW_{2} is a function of q^{2} / ν, then σ_{T} is falling like $1 / \nu$ for small q^{2}, so the two regimes can logically be separated. Similarly, resonance behavior is not a special case of scaling behavior, that is, resonance bumps do not occur at a fixed value of g^{2} / ν.

The large angle data exist principally in the deep inelastic region, namely, w >2 Gev and gr >1 Gevz, where the scaling behavior first observed at smaller angles? would be expected. The structure functions σ_{T} and σ_{S} defined by B. 10 were separately deterained at crossover points in this region where cross secticn cata existed from 3 or more angles at the same values of q^{2} and w^{2}. The cross section divided by T as a function of is fit to $\sigma_{T}+\epsilon \sigma_{S}$. Figure 11 shows plots of do/d』dev/ versus ϵ for the 3 cross-over points. The acted straight lines correspond to 1 standard deviation changes of σ_{T} and σ_{S} uf and down from the best fit values. The best fit to the data in each case is a straight line centered between the two dotted lines. The solid curve is a global fit to all the large angle data that will be discussed in detail later. It corresponds to a constant ratio of $\sigma_{S} / \sigma_{T}=\mathrm{R}=0.15$. The data indicate that R is small in the deep inelastic regicn and consistent with the value 0.15.

Fig. 11
we expect on very general grounds that scaling holds in the limit $g^{2}, \quad W-\rightarrow \infty$. Assuming a small value of R, the quantity $\nu^{\prime} \boldsymbol{H}_{2}$ extracted frca the large-angle data for >1.8 Gev was found to roughly fall on a unversal curve as a function of a single variable $x=q^{2} /(2 M \nu)$. It was found that the universality of W_{2} could be improved, particularly for smaller values, y y anctrer choice of the scaling variable than the quantity x. This ne variable is $x^{*}=q^{2} /\left(q^{2}+H^{2}+a-M^{2}\right)$ with $a \cong M^{2}$. The quantity a was allowed to vary and it was found that $\nu^{\prime}{ }_{2}{ }^{1} R=.15$ for the large-angle data with $w>1.8 \mathrm{GeV}$ was most uriversal for $a=0.96$ Gevz. Linearizing the dependence of νN_{2} on a for sinall variations in a, the chi-squared error matrix gave the error in a to be $\pm 0.08 \mathrm{GeV}^{2}$.

Plots of all the large-angle data for $\quad>1.8$ Gey versus x are shown in Fig. 12 , The solid curve is a fit to the data for the case $B=0.15$ and for comparison the same curve is plotted for $B=0$ and $R=0.3$ as well. Statistically the νW_{2} data for $B=0.15$ is perfectiy consistent with a single universal curve depending on x^{*}. The chi-squared for the fit was 119 for three parameters and 186 data points. only 7 ci the 186 points were more than 2 standard deviations from the fit. Since νH_{2} seems to have a simple threshold \quad ehavior at $x^{\prime}=1$, the fitting function was chosen to te a folyncaial in (1-x) with as few terms as possible. The fit shown was ottained with three terms a

cubic term, a fourth-order term, and a fifth-order term, as follows:

$$
\begin{gather*}
\nu \mathrm{W}_{2}=\mathrm{P}\left(1-\mathrm{x}^{\prime}\right)=\mathrm{C}_{3}\left(1-\mathrm{x}^{\prime}\right)^{3}+\mathrm{C}_{4}\left(1-\mathrm{x}^{\prime}\right)^{4}+\mathrm{C}_{5}\left(1-\mathrm{x}^{\prime}\right)^{5} \\
\mathrm{C}_{3}=.557 \\
\mathrm{C}_{4}=2.1978 \\
\mathrm{C}_{5}=-2.5954 \tag{2}
\end{gather*}
$$

The cross section is given ty

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega \mathrm{dE}}=\frac{\alpha^{2}}{4 \mathrm{E}^{2}} \frac{\cos ^{2} \theta / 2}{\sin ^{4} \theta / 2}\left(1+\frac{2 \tan ^{2} \theta / 2\left(1+\nu^{2} / \mathrm{q}^{2}\right)}{1.15}\right) \frac{\mathrm{P}\left(1-\mathrm{x}^{\prime}\right)}{\nu} \tag{3}
\end{equation*}
$$

This fit obtained from the large-angle data also represents very well the 60 and 100 cross section data in the deep inelastic region $q^{2}>1 G e V^{2}, W>1.8 G \epsilon V$ over the range of the fit $0.8>x>0.1$. For the 11460 points in this kinematic region the total chi-squared was 114. For the 132100 points the chi-squared mas 91.

Figure 13 shows the defendence of νW_{2} on for constant $\omega=(2 M \nu) / q^{2}$. The sclid curve is the fit to the universal curve $p\left(1-x^{1}\right)$. The point $g^{2}=1$ Gevz is indicated on each graph. The main difference between the contours $x=$ constant and $x^{\prime \prime}=$ constant comes in the region of low w^{\prime} where there are resonances. Along an x contour the resonances appear to average out, while along ar x contour the resonances are cocsistently high. For high the difference between x and x, aisappears. Scaling in the

variable x holds only for $>3 \mathrm{GeV}$; for lower W the tails from the resonance regicn seem to make the data high relative to the $W \rightarrow \infty$ linit. For $q^{2}<1 G e V^{2}, ~ \nu W_{2}$ seems to fall below the aspmptctic limit. To the accuracy of the present data, the aspmptotic scaling limit seemes to be reached for $w>3 \mathrm{GeV}$ and $\mathrm{q}^{2}>1$ Gevz.

If we evaluate the universal curve fit given by $P\left(1-x^{\prime}\right)$ in the resonance region we oktain the interesting result shown in Fig. 14. The universal curve seems to go through the average value of the rescnances and the elastic peak, although the elastic peak is not shown on these graphs. Comparison with the 6 and 10 degree data shows the same strixing behavior, that the universal curve as a function of x ' seems to pass in an $a v \in r a g e$ sense through the resonances and the elastic peak. Blocm and Gilmanit discuss the significance of this.

From an empirical standpoint the x contour is significant in that it allows a better determination of the $\mathrm{q}^{2} \longrightarrow \infty \quad \nu \mathrm{~W}_{2}$ scaling function $f r \mathrm{~cm}$ the data at finite q^{2}. $\quad \nu \mathrm{W}_{2}$ can be fit as a universal function of x only for >3 Gev. The universal curve is then cbtained only in the range of x from 0.1 to $0 . \in$. This curve is shown in Fig. 15 along with the universal curve obtained by fitting ν_{2} to a functicn of x^{\prime} for $w>1 . \varepsilon$ Gev. The universal curve obtained from the x^{\prime} fit extends over the range of x from 0.1 to 0.8.

Fig. 14
ω

Fig. 15

A method was used to interpolate the cross sections from each angle within the $q^{2}-W^{2}$ triangle that depends on the universal (x^{\prime}) behavicr of νW_{2} in the deep inelastic refion and surstantially reduced the error bars, refining the determination of R. Essentially νW_{2} was averaged for constant x^{\prime}. To cbtain the cross section at a particular point $q^{2} x^{\prime}$ first interfclated cross sections were obtained for that same value of x, along each line. A line corresponds to cne of the initial energies for a particular angle. Then, assuming a small value of $F, \nu{ }_{2}$ was calculated from the interpclated cross sections from each line, and these values were averaged. Finally, using the assumed value of B , the average $\nu \mathrm{H}_{2}$ was used to calculate the interpolated cross section. only data in the deep inelastic region $W>1.8 G \in V$ and $q^{2}>1$ Geve were used in this procedure. statistically ν_{2} appeared to be fluctuating as expected about its mean value in the ayeraging process.

Typical flots using interfolated data are shown in Fig. 16. Again, the sclid curve represents the global universal curve fit given ty Eq. (3). The errcr bars are greatly reduced but the chi-squared distribution for the straight-line fits was quite good, which indicates that the error bars of the interfclated cross sections are not toc small. Twenty separations of σ_{T} and σ_{S} were made using interpolated data. For these twenty fits the quantity

$$
\times 10^{\circ} \Delta 26^{\circ}
$$

$$
\text { - } 18^{\circ} \quad 034^{\circ}
$$

Fig. 16
$\left(X^{2-n_{D}}\right) / \sqrt{2 n} \mathrm{D}$ was always less than 0.7. ${ }^{n} \mathrm{D}$ is the number of degrees of freedom of the fit and a standard chi-squared distribution has mean ${ }_{D}$ and variance $2 n^{n}$

This interfolation procedure depends on ar assumed \quad a value, but investigation showed this to have a small effect on the outcome for an assumed f in the range 0 to 0.5 .

The ratio of σ_{S} to σ_{T} is always small. Taking into account systematic ecrors it is felt that $B=\sigma_{S} / \sigma_{T}$ is in the range .05 tc 0.3 in the deep inelastic region whe data are not accurate enough to indicate any kinematic dependence and an adequate fit is to constant value of f a f ar 0.15 .

The separated values ct σ_{T} and S are sumarized in Figs. 17 and 18. Figure 17 shows c_{T} and σ_{S} for constant $g^{2}=1.5,4$, and 8 Gev2 as a function of \boldsymbol{N}^{2} or ν. At $\mathrm{g}^{2}=0$, i.e., photoproduction, σ_{S} is zero and σ_{T} falls from about $140 \mu \mathrm{~b}$ at $\mathrm{H}=2 \mathrm{GeV}$ tc abcut $120 \mu \mathrm{~b}$ at $=4 \mathrm{GeV}$. The solid curve isfrom universal curve fit given by formula 2 of this chapter, which assumes $F=0.15$.

These measurements show σ_{T} and σ_{S} do not conform to the usual behavior cf strong interaction total cross sections as functions of energy. At $q^{2}=3$ Gevz σ_{T} is increasing with energy guite far outside of the resonance region. These conclusions are not affected by other definitions of the virtual photon total absorftion cross sections. for example. by using the definitions given in formula B. 12.

Fig. 17

Fig. 18

Figure 18 shows the defendence of σ_{T} and σ_{S} on q^{2} for constant W. The low groints represent measurements at 1.50 done earlier by the SIAC-MIT collaboration. 15 No separation was possible, but at this small angle ϵ is near 1. so the cross section is proportional to $\sigma_{T}+\sigma_{S}$. Again, the solid curve is from the global universal curve fit which assumes $R=0.15$. On such a log-log plot the slope of the σ_{T} curve indicates that it is falling like $1 / \mathrm{q}$ at the highest $\mathrm{q}^{2}, \mathrm{q}^{2}=10 \mathrm{Gev}^{2}$.

The most interesting result of the large angle measurements is the determination of the universal curve over the region $0.1<x<0.8$. Figure 19 shows $\log \left(\nu{ }_{2}\right)$ plotted against $\log (1-x$ ') under assumption of different values of ${ }^{2} . \quad \nu W_{2}$ is consistent with a simple (1-x') ${ }^{3}$ threshold dependence near $x^{\prime}=1$. On the basis of a field theoretic parton model, Yan and n rellis predicted that the universal curve would have a threshold dependence given by $(1-x)^{p}$, where $p+1$ is the inverse fower of q characterizing the $q^{2} \longrightarrow \infty$ betavior of the elastic form factor, i.e., $G_{M} \longrightarrow(1 / q) p+1$.

This type of behavior cf the deep inelastic continum has very interesting consequences. If we assume that the elastic scattering is given by the usual dipole form, then as $q^{2} \rightarrow \infty$,

$$
\left.\nu \mathrm{W}_{2}\right|_{\text {ELASTIC }} \rightarrow(2.793)^{2} \mathrm{q}^{2}\left(\frac{.71}{\mathrm{q}^{2}}\right)^{4} \delta\left(\mathrm{~W}^{2}-\mathrm{M}^{2}\right)
$$

Fig. 19

It appears that the resonances show a similar q^{2} dependence to that of the elastic peak, so that

$$
\left.\nu \mathrm{W}_{2}\right|_{\text {RESONANCE }} \sim \frac{1}{q^{6}} \delta\left(\mathrm{w}^{2}-\mathrm{m}_{\mathrm{j}}^{2}\right)
$$

If we assure a $(1-x)^{3}$ threshold dependence of the universal curve, we have in addition

$$
\left.\nu \mathrm{W}_{2}\right|_{\text {CONTINUUM }} \rightarrow \mathrm{C}_{3}\left(\frac{\mathrm{w}^{2}}{\mathrm{q}^{2}}\right)^{3}
$$

Thus, the elastic peak, rescnances, and the inelastic continum may all be asymptotically falling with the same power of q^{2} and the continum tackground seems rot to have a much slower falloff with g^{2} than either the resonances or the elastic peak.

From a thecretical standfint, certain moments of the universal curve are particularly interesting. In the parton theories 17 the following integrals appear:

$$
\begin{align*}
& \int_{0}^{1} F(x) d x=\overline{\sum_{i}} \lambda_{i}^{2} \overline{x_{i}} \\
& \int_{0}^{1} F(x) \frac{d x}{x}=\overline{\sum_{i}^{\prime}} \lambda_{i}^{-} \overline{2} \tag{3}
\end{align*}
$$

Where $F(x)$ is the asymptctic ω_{2} curve, λ_{i} is the charge of the $i-t h$ parton, and x_{i} is its fractional longituginal
momentum in the infinite momentum frame. If only integral charges are allowed, the second integral represents the average number of charged fartons and hence must be greater than 1.

Figure 20 shows the behavior of νH_{2} at constant q^{2} for $q^{2}=1.5,4$, and $8 \mathrm{Gev}^{2}$. The solid curve is $\mathrm{f}\left(1-\mathrm{x}^{2}\right)$ given by formula 2. The data for $q^{2}=1.5 \mathrm{Gev}^{2}$ was used to evaluate numerically the integrals (3) over the partial range $x=0.1$ to 1. The results were

$$
\begin{aligned}
& \left.\int_{.1}^{1} \nu W_{2} d x\right|_{q=1.5} ^{2}=.156 \pm 2 \% \\
& \int_{.1}^{1} \nu W_{2} \frac{d x}{x}_{{ }_{q q}=1.5}^{2}=.563 \pm 2 \%
\end{aligned}
$$

The errors reflect cnly the variation in $\nu{ }_{2}$ caused by varying 8 from 0 tc 0.3 . The statistical error is quite small and the overall systematic error of $\pm 5 \%$ is not included. Extending the range of the data by means of the fit to the cross section given ty formula (3), these integrals were evaluated at $q^{2}=4 \mathrm{Gevz}$ and $\mathrm{q}^{2}=8 \mathrm{Ge} \mathrm{V}^{2}$. The results are summarized in the fcllowing table. Again the errors show only the variation in $\nu \mathcal{W}_{2}$ caused by varying R from 0 to 0.3.

Fig. 20

The small value of the quantity $\overline{\sum_{i} \lambda_{i}^{2}}$ coming from x in the range 0.1 to 1 does rot necessarily imply existence of fractional charges since it is not at all clear that the contribution coming from $x=0$ to 0.1 is even finite. This will be finite if, and cnly if, ν H $_{2} \sim x^{\alpha}$, as $x \longrightarrow 0$, with $\alpha>0$. The whole matter is obscured by the possibility of a substantial contribution frct diffractive processes in the small x region, which shculd not be included in the parton sum rule. There is certainly a diffractive component at small q^{2}, and bow much of this remains at higher q^{2} to mask a possible quasi-elastic peak is perhaps the most interesting question at this time.

In table 3 are listed all the large angle cross sections with $w>1.8$ Gev. The data are listed line by line, starting with 180 , then 260 and 34°. The disposition of the data points in the kinematic $q^{2-W^{2}}$ plane is clarified by referring to Fig. 2.

TABLE 3

Since photons have zero mass, the total energy of a photon can be arbitrarly small. As the photon energy goes to zero the effect of the radiation process on the source currents also goes to zero. That is, the motion of the charged particles involved is independent of the process of photon radiation if the photons are sufficiently soft. In that case the probability to radiate a photon with momentum k_{i} and polarization ϵ_{i}, to first order in α, is given by,

$$
\begin{equation*}
\overline{\mathrm{n}}_{\mathrm{i}}=\left|\int \mathrm{j}_{\mu}(\mathrm{x}) \epsilon_{\mathrm{i} \mu} \mathrm{e}^{\mathrm{ik} \mathrm{i}_{\mathrm{i}} \mathrm{x}} \mathrm{~d}^{4} \mathrm{x}\right|^{2} \tag{1}
\end{equation*}
$$

Where $j_{\mu}(x)$ is the current represented by all the charged particles, and it is assumed to be a fixed function of x, not affected by the radiation frocess. For exafple consider an electron undergoing a collision which occurs in a very short time interval τ around $t=0$. Then for times large compared to τ_{r}.

$$
j_{\mu}(\mathrm{x})= \begin{cases}\mathrm{e}(\underset{m}{v}, \mathrm{i}) \delta(\underset{m}{\mathrm{r}}-\mathrm{v} \mathrm{t}), & \mathrm{t}<0 \tag{2}\\ \mathrm{e}\left(\mathrm{v}^{\prime}, \text { i) } \delta\left(\underset{\sim}{r}-{\underset{v}{\prime}}_{\prime} \mathrm{t}\right),\right. & \mathrm{t}>0\end{cases}
$$

Veglecting the contribution to the integral from times on the order of τ, we get,

$$
\begin{equation*}
\int j_{\mu}(x) \epsilon_{i_{\mu}} e^{i k_{i} x} d^{4} x=-i e\left(\frac{p_{\mu}}{\left(p k_{i}\right)}-\frac{p_{\mu}^{\prime}}{\left(p^{\prime} k_{i}\right)}\right) \epsilon_{i \mu} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{\mathrm{n}}_{\mathrm{i}}=\mathrm{e}^{2}\left|\left(\frac{\mathrm{p}_{\mu}}{(\mathrm{pk})}-\frac{\mathrm{p}_{\mu}^{\prime}}{\left(\mathrm{p}^{\prime} \mathrm{k}\right)}\right)\left(\frac{\mathrm{p}_{\nu}}{(\mathrm{pk})}-\frac{\mathrm{p}_{\nu}^{\prime}}{\left(\mathrm{p}^{\prime} \mathrm{k}\right)}\right) \epsilon_{\mathrm{i} \mu \mathrm{i} \nu}{ }_{\mathrm{i} \nu}\right| \tag{4}
\end{equation*}
$$

The sum over polarizations can be done using the following rule. We imagine taking the limit $k z \rightarrow 0$ later on.

$$
\begin{equation*}
\sum_{\lambda} \epsilon_{\lambda \mu} \epsilon_{\lambda \nu}=\delta_{\mu \nu}-\frac{\mathrm{k}_{\mu} \mathrm{k}_{\nu}}{\mathrm{k}^{2}} \tag{5}
\end{equation*}
$$

Thus we arrive at the following well known expression for the probability of radiatirg a soft photon with momentum k.

$$
\begin{equation*}
\overline{\mathrm{n}}_{\mathrm{i}}=\mathrm{e}^{2},\left|\frac{\mathrm{p}_{\mu}}{(\mathrm{pk})}-\frac{\mathrm{p}_{\mu}^{\prime}}{\left(\mathrm{p}^{\prime} \mathrm{k}\right)}\right|^{2} \tag{6}
\end{equation*}
$$

In fact always wore than \quad ne photon is radiated. The problem of photon radiation from a fixed source can be solved exactly ${ }^{18}$. The result is the familiar poisson distribution formula. The probability to emit n_{1} photons into mode $1, n_{2}$ photons into mode $2, \ldots n_{i}$ photons into mode i is found to be,

$$
\begin{equation*}
P_{\left\{n_{i}\right\}}=\left(\exp -\sum_{i} \bar{n}_{i}\right) \prod_{i} \frac{\left(\bar{n}_{i}\right)^{n_{i}}}{n_{i}!} \tag{7}
\end{equation*}
$$

Notice that $P_{\left\{n_{i}\right\}}$ is correctly normalized.

$$
\begin{align*}
\sum_{n_{1}, n_{2} \ldots=0}^{\infty} P_{\left\{n_{i}\right\}} & =\exp \left(-\sum_{i} \bar{n}_{i}\right) \sum_{n_{1}, n_{2} \ldots=0}^{\infty} \prod_{i} \frac{\left(\bar{n}_{i}\right)^{n_{i}}}{n_{i}!} \\
& =\exp \left(-\sum_{i} \bar{n}_{i}\right) \prod_{i} \exp \bar{n}_{i} \\
& =\exp \left(-\sum_{i} \bar{n}_{i}\right) \exp \left(\sum_{i} \bar{n}_{i}\right) \\
& =1 \tag{8}
\end{align*}
$$

We are interested in the probability that the total energy of all photons eaitted is in the interval ω to $\omega+d \omega$. First define a quantity $\overline{\mathrm{n}}(\omega)$ by the equation

$$
\begin{equation*}
\int \bar{u}(\omega) \mathrm{d} \omega=\sum_{i} \bar{n}_{i} \tag{9}
\end{equation*}
$$

That is, $\bar{n}(\omega) d \omega$ is just \bar{n}_{i} summed over all modes having energy in the interval $d \omega$.

The sum of the prokabilities $\mathrm{P}_{\left\{n_{i}\right\}}$ for all $\left\{n_{i}\right\}$ gives 1 as has been shown.

$$
\begin{align*}
1 & =\exp \left(-\sum_{i} \bar{n}_{i}\right) \exp \left(\sum_{i} \bar{n}_{i}\right) \\
& =\exp \left(-\sum_{i} \bar{n}_{i}\right)\left[1+\sum_{i} \bar{n}_{i}+\frac{1}{2} \sum_{i, j} \bar{n}_{i} \bar{n}_{j}+\cdots\right] \tag{10}
\end{align*}
$$

A general term of this series is of the form

$$
\begin{equation*}
\exp \left(-\sum_{i} \bar{n}_{i}\right) \frac{1}{n!} \sum_{i_{1}, i_{2} \ldots i_{n}} \bar{n}_{i_{1}} \bar{n}_{i_{2}} \ldots \bar{n}_{i_{n}} \tag{11}
\end{equation*}
$$

This is the probability to radiate n photons. If we require that the total energy radiated be ω we must eraluate

$$
\begin{equation*}
\frac{1}{n!} \sum_{i_{1}, i_{2} \ldots i_{n}} \bar{n}_{i_{1}} \bar{n}_{i_{2}} \ldots \bar{n}_{i_{n}} \tag{12}
\end{equation*}
$$

such that $\omega_{\mathrm{i}_{1}}+\omega_{\mathrm{i}_{2}}+\ldots \omega_{\mathrm{i}_{\mathrm{n}}}=\omega$.
In terms of $\bar{n}(\omega)$ this is given by
$\frac{1}{n!} \int_{0}^{\omega} d \omega_{1} \overline{\mathrm{n}}\left(\omega_{1}\right) \int_{0}^{\omega-\omega_{1}} d \omega_{2} \overline{\mathrm{n}}\left(\omega_{2}\right) \cdots \int_{0}^{\omega-\omega_{1}-\cdots-\omega_{n-2}} d \omega_{n-1} \overline{\mathrm{n}}\left(\omega_{n-1}\right) \bar{n}\left(\omega-\omega_{1}-\ldots-\omega_{n-1}\right)$

So the problem is solved cnce we determine the form of $\bar{n}(\omega)$ and do the integrals (13).

In the case of an electron scattering from momentum p to momentum p^{\prime}, we have $k y$ definition, /

$$
\begin{equation*}
\int \overline{\mathrm{n}}(\omega) \mathrm{d} \omega=\sum_{\mathrm{i}} \overline{\mathrm{n}}_{\mathrm{i}}=\int \frac{\mathrm{d}^{3} \mathrm{k}}{(2 \pi)^{3} 2 \omega} e^{2}\left|\frac{\mathrm{p}_{\mu}}{(\mathrm{pk})}-\frac{\mathrm{p}_{\mu}^{\prime}}{\left(\mathrm{p}^{\prime} \mathrm{k}\right)}\right|^{2} \tag{14}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\overline{\mathrm{n}}(\omega)=\frac{\alpha}{\pi} \int \frac{\mathrm{kd} \Omega_{\mathrm{k}}}{4 \pi}\left|\frac{\mathrm{p}_{\mu}}{(\mathrm{pk})}-\frac{\mathrm{p}_{\mu}^{\prime}}{\left(\mathrm{p}^{\prime} \mathrm{k}\right)}\right|^{2} \tag{15}
\end{equation*}
$$

This integration can be done exactly giving,

$$
\overline{\mathrm{n}}(\omega)=\mathrm{t} / \omega
$$

$$
\begin{align*}
& \text { AEPENDIX A.I -- FADIATION OF SOFT PHOTONS } \\
& t=\frac{2 \alpha}{\pi} \frac{-\left(p p^{\prime}\right)}{\sqrt{\left(p p^{\prime}\right)^{2}-\mathrm{m}^{4}}}\left[\log \left(\frac{-(\mathrm{pp})+\sqrt{\left(\mathrm{pp}^{\prime}\right)^{2}-\mathrm{m}^{4}}}{\mathrm{~m}^{2}}\right)-1\right] \tag{16}
\end{align*}
$$

t will be referred to from now on as the equivalent radiator associated with the scattering process.

In the more general case where several charged particles are involved in a collision process, with particle i having charge z_{i} and directicn θ_{i} (+ for incoming, - for outgoing), t is given by

$$
\begin{equation*}
\mathrm{t}=\sum_{\mathrm{i}, \mathrm{j}} \frac{\alpha}{\pi} \int \frac{\mathrm{kd} \Omega_{\mathrm{k}}}{4 \pi} \mathrm{z}_{\mathrm{i}} \mathrm{Z}_{\mathrm{j}} \theta_{\mathrm{i}} \theta_{\mathrm{j}} \frac{\left(\mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}}\right)}{\left(\mathrm{p}_{\mathrm{i}} \mathrm{k}\right)\left(\mathrm{p}_{\mathrm{j}} \mathrm{k}\right)} \tag{17}
\end{equation*}
$$

The assumption is imflicitly made that the collision time τ is short compared with a characteristic time of the radiation process $1 / \omega$. This is necessary so that the simple form of $j_{\mu}(x)$ used will ke valid.

Using the ceneral form of $\bar{n}(\omega)$ we can proceed to equluate the integral (13). It is necessary to introduce a limiting soft pboton energy ϵ to obtain convergence.

$$
\begin{align*}
& \frac{1}{n!} \int_{\omega>\omega_{i}>\epsilon} t \frac{d \omega_{1}}{\omega_{1}} t \frac{d \omega_{2}}{\omega_{2}} \ldots t \frac{d \omega_{n-1}}{\omega_{n-1}} \frac{t}{\omega_{n}} \\
= & \frac{t}{\omega} \frac{t^{n-1}}{n!} \int_{1>x_{i}>\epsilon / \omega} \frac{d x_{1}}{x_{1}} \frac{d x_{2}}{x_{2}} \ldots \frac{d x_{n-1}}{x_{n-1}} \frac{1}{x_{n}} \tag{18}
\end{align*}
$$

Where

$$
\begin{aligned}
& \omega=\omega_{1}+\omega_{2}+\ldots+\omega_{n} \\
& 1=x_{1}+x_{2}+\ldots+x_{n}
\end{aligned}
$$

There are n main contributions to this integral. when one denominator x_{i} is almost 1 and all the other x^{\prime} s are small. Each of the n contrikuticns is approximately equal to

$$
\begin{equation*}
\frac{t}{\omega} \frac{t^{n-1}}{n!}\left[\int_{\epsilon}^{1} \frac{d x}{x}\right]^{n-1}=\frac{1}{n} \frac{t}{\omega} \frac{(t \log \omega / \epsilon)^{n-1}}{(n-1)!} \tag{19}
\end{equation*}
$$

Thus the probability for radiating a total energy ω is,

$$
\begin{align*}
P(\omega) & =\exp \left(-\sum_{i} \stackrel{\rightharpoonup}{n}_{i}\right)\left(1+t \log \omega / \epsilon+\frac{1}{2!}(t \log \omega / \epsilon)^{2}+\ldots\right) t / \omega \\
& =\exp \left(-\sum_{i} \bar{n}_{i}\right) \exp (t \log \omega /=) t / \omega \tag{20}
\end{align*}
$$

This probability must be normalized i.e.

$$
\begin{equation*}
\int_{0}^{\omega_{\max }} \mathrm{P}(\omega) \mathrm{d} \omega=1 \tag{21}
\end{equation*}
$$

strictly speaking there is no reason why $\omega_{\max }$ should be anything but ∞. However we will take it to be some finite quantity to obtain a finite result. The normalization condition determines exp $\left(-\sum_{i} \Pi_{i}\right)$ in terms of the auxillary quantities ϵ, and $\omega_{\max }$ *

$$
\begin{equation*}
\exp \left(-\sum_{i} \bar{n}_{i}\right)=\exp \left(-t \log \frac{\omega_{\max }}{\epsilon}\right) \tag{22}
\end{equation*}
$$

So that we have.

$$
\int_{0}^{\omega_{\max }} \mathrm{P}(\omega) \mathrm{d} \omega=\int_{0}^{\omega_{\max }} \frac{t}{\omega}\left(\frac{\omega}{\omega_{\max }}\right)^{t} \mathrm{~d} \omega=1
$$

The result for $E(\omega)$ is now independent of ϵ so we can imagine taking the limit $\epsilon \rightarrow 0$, at this point. F now depends only on what we choose $\omega_{\max }$ to be .

$$
\begin{equation*}
P(\omega)=\frac{t}{\omega}\left(\frac{\omega}{\omega_{\max }}\right)^{\mathrm{t}}=\frac{\mathrm{t} \omega^{\mathrm{t}-1}}{\omega_{\max }^{\mathrm{t}}} \tag{23}
\end{equation*}
$$

Since $\omega_{\max }$ is pocrly defined in this theoretical framework where the currents are imagined to be independent fixed functions, certain dcubts are cast on the solution, particularly since if $\omega_{\max }-$, $E(\omega) \rightarrow 0$. However the effect of $\omega_{\max }$ is just a normalizaticn factor and the shape of $p(\omega)$ is determined to be ω^{t-1} independently of the choice of $\omega_{\max }$ * This is what is probably corcecty calculated here, namely the shape of the function $E(\omega)$ for small ω.

To check the approximation involved in evaluating the integral

$$
\begin{equation*}
\frac{1}{n!} \int \frac{d x_{1}}{x_{1}} \frac{d x_{2}}{x_{2}} \ldots \frac{d x_{n-1}}{x_{n-1}} \frac{1}{x_{n}} \cong \frac{1}{(n-1)!}(\log \omega / \epsilon)^{n-1} \tag{24}
\end{equation*}
$$

we can do the integration exactly for small values of n.

ARPENDIX A.I --- FALIATION OF SOFT PHOTONS

	$n=1$	1
$n=2$	$\log \omega / \epsilon$	
	$n=3$	$\frac{1}{2}(\log \omega / \epsilon)^{2}-.822$

The result of the frevious section is that any scattering process invclving charged particles causes the radiation of photons. For small radiation energy loses ω. the cross section is

$$
\begin{equation*}
\mathrm{d} \sigma=\sigma_{0}^{\mathrm{t}} \frac{\mathrm{t}}{\omega}\left(\frac{\omega}{\omega_{\max }}\right)^{\mathrm{t}} \mathrm{~d} \omega \tag{1}
\end{equation*}
$$

Where σ_{0}^{\prime} is the cross section for the process without radiation, t is given by formula I. 17 , and $\omega_{\max }$ is the maximum photon energy, introduced as a cutoff in the probability normalizaticn integral I. 21 . The justification for a finite $\omega_{\max }$ is that because of the quantum nature of the scattering particles, the maximum photon energy is limited to be on the crder of the energies of these particles, and clearly canot be infinite because of conservation of energy.

The problen remaining is to calculate $\omega_{\max }$ and to find the electrodynamic corrections to the cross section. That is, if the cross section σ_{0} were calculable frow a complete theory, certain correcticns due to higher order quantur electrodynamics would have to be made, and it is customary to remove these "radiative" effects before presenting the data for the cress section $\sigma_{0} \quad \sigma_{0}^{\prime}$ is the cross section calculated to higher order than first in α.

Prom (1), the cross section allowing radiation of photons with any tctal energy less than k_{1}, which is small
compared with the energies of the particles, is

$$
\begin{equation*}
\sigma\left(\mathrm{k}_{1}\right)=\int_{0}^{\mathrm{k}_{1}} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \omega} \mathrm{~d} \omega=\sigma_{0}^{\prime}\left(\frac{\mathrm{k}_{1}}{\omega_{\max }}\right)^{\mathrm{t}}=\sigma_{0}^{\prime}\left(1+\mathrm{t} \log \frac{\mathrm{k}_{1}}{\omega_{\max }}+\ldots\right) \tag{2}
\end{equation*}
$$

If we make a calculation of this quantity taking into account higher order electrodynamic processes, we can identify $\omega_{\max }$ and find the radiative corrections by comparing lowest crder teras in α.

Consider electron scattering. There are three tppes of radiative corrections. Ccrrections to the photon-electron (or target particle) vertex, corrections to the photon propagator, and correcticns due to the exchange of more than one photon. We will discuss only the first two beginning with the photon propagator.

For the photon propagator the result is 19,20 ,

$$
\begin{gather*}
\frac{1}{q^{2}-i \epsilon} \longrightarrow D\left(q^{2}\right) \\
D\left(q^{2}\right)=\frac{1}{q^{2}-i \epsilon}+\int_{4 m}^{\infty} d M^{2} \frac{a\left(M^{2}\right)}{q^{2}+M^{2}-i \epsilon}+\ldots \tag{3}
\end{gather*}
$$

with

$$
a\left(M^{2}\right)=\frac{\alpha}{3 \pi} \frac{1}{M^{2}} \sqrt{1-\left(\frac{2 m}{M}\right)^{2}}\left(1+\frac{2 m^{2}}{M^{2}}\right)
$$

When $q^{2 \gg} m^{2}, D\left(q^{2}\right)$ takes the fariliar form

$$
\begin{equation*}
D\left(q^{2}\right) \cong \frac{1}{q^{2}}\left(1+\frac{\alpha}{\pi}\left(\frac{1}{3} \log \frac{q^{2}}{m^{2}}-\frac{5}{9}\right)\right) \tag{4}
\end{equation*}
$$

So the photon propagator contributes the following correction to the cross section at high q^{2}.

$$
\begin{equation*}
1+\frac{2 \alpha}{\pi}\left(\frac{1}{3} \log \frac{q^{2}}{m^{2}}-\frac{5}{9}\right) \tag{5}
\end{equation*}
$$

The electron-photon $v \in r t e x$ for $p^{2=-m^{2}}$ and $p^{2=-m^{2}}$, is summarized by an electric and magnetic form factor, F_{1} and $\mathrm{F}_{2}{ }^{19,20}$.

$$
\begin{equation*}
\gamma_{\mu} \longrightarrow \mathrm{F}_{1}\left(\mathrm{q}^{2}\right) \gamma_{\mu}+\frac{\mu^{\prime}}{2 \mathrm{~m}} \mathrm{~F}_{2}\left(\mathrm{q}^{2}\right) \gamma_{\mu \nu} \mathrm{q}_{\nu} \tag{6}
\end{equation*}
$$

Where

$$
\begin{aligned}
F_{1}\left(q^{2}\right) & =1-q^{2} \int_{2 m}^{\infty} \frac{d M \phi_{1}(M)}{q^{2}+M^{2}-i \epsilon}+\ldots \\
\phi_{1}(M) & =\frac{\alpha}{\pi} \frac{1}{M} \frac{1}{\sqrt{1-\left(\frac{2 m}{M}\right)^{2}}}\left[\left(1-\frac{2 m^{2}}{M^{2}}\right) \log \frac{M^{2}-4 m^{2}}{\lambda^{2}}-\frac{3}{2}+\left(\frac{2 m}{M}\right)^{2}\right] \\
F_{2}\left(q^{2}\right) & =\int_{2 m}^{\infty} \frac{d M \phi_{2}(M)}{q^{2}+M^{2}-i \epsilon}+\ldots \\
\phi_{2}(M) & =\frac{(2 m)^{2}}{M} \frac{1}{\sqrt{1-\left(\frac{2 m}{M}\right)^{2}}} \\
\mu^{\prime} & =\frac{\alpha}{2 \pi}
\end{aligned}
$$

λ is a small "photon mass" which must be introduced to

AREENDIX A.II-- QUANTUM MECHANICAL RADIATIVE COREECTIONS
prevent an infared divergence.
For $q^{2} \gg m^{2}$ the magnetic form factor is negligible and the non-logarithmic correction terms in F_{1} give

$$
\begin{equation*}
-\frac{\alpha}{\pi} q^{2} \int_{2 m}^{\infty} \frac{d M}{M} \frac{1}{\sqrt{1-\left(\frac{2 m}{M}\right)^{2}}} \frac{-\frac{3}{2}+\left(\frac{2 m}{M}\right)^{2}}{q^{2}+M^{2}} \cong \frac{\alpha}{\pi}\left(\frac{3}{4} \log \frac{q^{2}}{m^{2}}-1\right) \tag{7}
\end{equation*}
$$

In the log term it is convient to go over to a new integration varible x, defined $E y(M / 2 \mathbb{m}) 2=1 /\left(1-x^{2}\right)$.

$$
\begin{align*}
& -\frac{\alpha}{\pi} q^{2} \int_{2 m}^{\infty} \frac{d M}{M} \frac{1}{\sqrt{1-\left(\frac{2 m}{M}\right)^{2}}} \frac{1-\frac{2 m^{2}}{M^{2}}}{q^{2}+M^{2}} \log \frac{M^{2}-4 m^{2}}{\lambda^{2}} \\
= & -\frac{\alpha}{\pi} \int_{0}^{1} \frac{d x}{1-x^{2}+\frac{4 m^{2}}{q^{2}}} \frac{1+x^{2}}{2} \log \frac{x^{2}}{\left(\frac{\lambda}{2 m}\right)^{2}\left(1-x^{2}\right)} \tag{8}
\end{align*}
$$

The λ dependent part can be separated giving,

$$
-\frac{\alpha}{\pi} \int_{0}^{1} \frac{d x}{1-x^{2}+\frac{4 m^{2}}{q^{2}}} \frac{1+x^{2}}{2} \log \frac{4 m^{2} x^{2}}{1-x^{2}}+\frac{\alpha}{\pi} \log \lambda^{2} \int_{0}^{1} \frac{d x}{1-x^{2}+\frac{4 m^{2}}{q^{2}}}\left(\frac{1+x^{2}}{2}\right)
$$

The first term can be further reduced to,

$$
-\frac{\alpha}{\pi}\left(1+\frac{2 m^{2}}{q^{2}}\right) \int_{0}^{1} \frac{d x}{1-x^{2}+\frac{4 m^{2}}{q^{2}}} \log \frac{4 m^{2} x^{2}}{1-x^{2}}+\frac{\alpha}{2 \pi} \log m^{2}+\frac{\alpha}{2 \pi} \int_{0}^{1} d x \log \frac{4 x^{2}}{1-x^{2}(10)}
$$

The last integral is zerc.

$$
\begin{equation*}
\int_{0}^{1} d x \log \frac{4 x^{2}}{1-x^{2}}=0 \tag{11}
\end{equation*}
$$

Thus we are left with the following expression for F_{1},

$$
\begin{align*}
& \mathrm{F}_{1}\left(\mathrm{q}^{2}\right)=1-\frac{\alpha}{\pi} q^{2} \int_{2 m}^{\infty} \frac{\mathrm{dM}}{M\left(q^{2}+\mathrm{M}^{2}\right)} \frac{1}{\sqrt{1-\left(\frac{2 m}{\mathrm{M}}\right)^{2}}\left(-\frac{3}{2}+\left(\frac{2 \mathrm{~m}}{\mathrm{M}}\right)^{2}\right)} \\
& -\frac{\alpha}{\pi}\left(1+\frac{2 \mathrm{~m}^{2}}{q^{2}}\right) \int_{0}^{1} \frac{d x}{1-x^{2}+\frac{4 m^{2}}{q^{2}}} \log \frac{4 m^{2} x^{2}}{1-x^{2}}+\frac{\alpha}{2 \pi} \log m^{2}+\frac{\alpha}{\pi} \log \lambda^{2} \int_{0}^{1} \frac{d x}{1-x^{2}+\frac{4 m^{2}}{q^{2}}} \frac{1+x^{2}}{2} \tag{12}
\end{align*}
$$

In calculating correcticns to the electron-photon vertex we cannot ignore radiation of soft photons from the external electron lines. The frobability of radiation of a soft photon of energy k is t / k dk with + given by 1.17. If soft photons of any energy up to k_{1} are allowed we must integrate this probability from 0 to k_{1}. An infared divergence occurs at $k=0$ unless the photon is given a small mass λ. Considering only radiation from the electron lines, and not from the target particle, or interference the one with the other, we have 21

$$
\begin{align*}
& \frac{\alpha}{\pi} \int_{0}^{k_{1}} \frac{\mathrm{kd} \Omega_{\mathrm{k}}}{4 \pi}\left|\frac{\mathrm{p}_{\mu}}{(\mathrm{pk})}-\frac{\mathrm{p}_{\mu}^{\prime}}{\left(\mathrm{p}^{\prime} \mathrm{k}\right)}\right|^{2} \\
& \quad=\frac{\alpha}{\pi}\left\{\left(\mathrm{pp}^{\prime}\right) \int_{0}^{1} \frac{\mathrm{dx}}{\mathrm{P}_{\mathrm{x}}^{2}}\left[\log \frac{\mathrm{k}_{1}^{2}}{\mathrm{E}_{\mathrm{x}}^{2}}-2 \mathrm{G}(\mathrm{x})\right]-\log \frac{\mathrm{k}_{1}^{2}}{\mathrm{EE}^{\prime}}+\mathrm{G}(1)+\mathrm{G}(-1)\right. \\
& \left.\quad+\left(\mathrm{pp}{ }^{\prime}\right) \int_{0}^{1} \frac{d \mathrm{x}}{\mathrm{P}_{\mathrm{x}}^{2}} \log \left(-\mathrm{P}_{\mathrm{x}}^{2}\right)-\log \mathrm{m}^{2}+\log \lambda^{2} \frac{\mathrm{q}^{2}}{4} \int_{0}^{1} \frac{d \mathrm{x}}{\mathrm{P}_{\mathrm{x}}^{2}}\left(1+\mathrm{x}^{2}\right)\right\} \tag{13}
\end{align*}
$$

with

$$
\begin{aligned}
& P_{x}=\frac{1}{2}(1+x) p+\frac{1}{2}(1-x) p^{\prime} \\
& P_{x}^{2}=-m^{2}-q^{2} / 4\left(1-x^{2}\right)
\end{aligned}
$$

$$
G(x)=\frac{E_{x}-\mid p_{x}}{2\left|p_{x}\right|} \log \frac{E_{x}+\left|p_{x_{x}}\right|}{E_{x}-\left|p_{x}\right|}+\log \frac{E_{x}+\left|p_{x}\right|}{2 E_{x}}
$$

t is defined by equation I. 16 , but it can also be written as

$$
\begin{align*}
t & =-\frac{\alpha}{\pi} \sum_{i_{, j}} Z_{i} Z_{j} \theta_{i} \theta_{j}\left(p_{i} p_{j}\right) \int_{0}^{1} \frac{d x}{\left(P_{x}^{2}\right)_{i, j}} \tag{14}\\
p_{i} & =p, p^{\prime}
\end{align*}
$$

Thus the probability to radiate a photon with energy less than k_{1} is

$$
\begin{equation*}
\mathrm{t} \log \mathrm{k}_{1}+\text { TERMS INDEPENDENT OF } \mathrm{k}_{1} \tag{15}
\end{equation*}
$$

At high energies, the terms invclving G are negliginle and

$$
\begin{gather*}
\frac{\alpha}{\pi}\left[\left(p p^{\prime}\right) \int_{0}^{1} \frac{d x}{P_{x}^{2}} \log E_{x}^{2}-\log E E^{\prime}\right] \cong t \log \sqrt{E E^{\prime}} \\
t \tag{16}\\
\cong \frac{2 \alpha}{\pi}\left(\log \frac{q^{2}}{m^{2}}-1\right)
\end{gather*}
$$

Now we combine the probability of photon radiation with the form factor correcticns. In the cross section the electric form factor corrections given in (12) are doubled since the amptitude is squared. The total correcticn to the cross section ccming from the electron-photon vertex can be written as

APPENDIX A. II--- quantum mechanical radiative corgections

$$
\begin{align*}
& \frac{2 \alpha}{\pi} q^{2} \int_{2 m}^{\infty} \frac{d M}{M\left(q^{2}+M^{2}\right)} \frac{1}{\sqrt{1-\left(\frac{2 m}{M}\right)^{2}}\left(\frac{3}{2}-\left(\frac{2 m}{M}\right)^{2}\right)} \\
& +t \log k_{1}-\frac{\alpha}{\pi}\left\{\left(p p^{\prime}\right) \int_{0}^{1} \frac{d x}{p_{x}^{2}}\left[\log E_{x}^{2}+2 G(x)\right]-G(1)-G(-1)-\log E E^{\prime}\right\} \\
& +\frac{\alpha}{\pi}\left\{\left(p p^{\prime}\right) \int_{0}^{1} \frac{d x}{P_{x}^{2}} \log \left(-P_{x}^{2}\right)-\log m^{2}-\left(1+\frac{2 m^{2}}{q^{2}}\right) \int_{0}^{1} \frac{2 d x}{1-x^{2}+\frac{4 m^{2}}{2}} \log \frac{4 m^{2} x^{2}}{1-x^{2}}\right. \\
& \left.\quad+\log m^{2}+\log \lambda^{2} \frac{q^{2}}{4} \int_{0}^{1} \frac{d x}{P_{x}^{2}}\left(1+x^{2}\right)+\log \lambda^{2} \int_{0}^{1} \frac{d x}{1-x^{2}+\frac{4 m^{2}}{2}}\left(1+x^{2}\right)\right\} \tag{17}
\end{align*}
$$

The $\log \lambda$ terms cancel exactly. The first integral in the last bracket can be written as

$$
\begin{aligned}
& \frac{-q^{2}-2 m^{2}}{2} \int_{0}^{1} \frac{d x}{-\frac{q^{2}}{4}\left(1-x^{2}\right)-m^{2}} \log \left(\frac{q^{2}}{4}\left(1-x^{2}\right)+m^{2}\right) \\
& \quad=\left(1+\frac{2 m^{2}}{q^{2}}\right) \int_{0}^{1} \frac{2 d x}{1-x^{2}+\frac{4 m^{2}}{q^{2}}} \log \left[\frac{q^{2}}{4}\left(1-x^{2}\right)+m^{2}\right]
\end{aligned}
$$

This when combined with the second integral in the last $\left(1+\frac{2 m^{2}}{q^{2}} \int_{0}^{1} \frac{2 d x}{1-x^{2}+\frac{4 m^{2}}{q^{2}}} \log \left[\frac{\frac{q^{2}}{m^{2}\left(1-x^{2}\right)+1}}{\frac{4 x^{2}}{1-x^{2}}}\right]=2 q^{2}\left(1+\frac{2 m^{2}}{q^{2}} \int_{2 m}^{\infty} \frac{d M}{m \sqrt{1-\left(\frac{2 m}{M}\right)^{2}}} \frac{\log \frac{m^{2}\left(\frac{q^{2}}{M^{2}}+1\right)}{q^{2}-4 m^{2}}}{q^{2}+M^{2}}\right.\right.$

As $q^{2} /\left(4 \mathrm{~m}^{2}\right) \rightarrow \infty$ this integral $\rightarrow 0$, also when q^{2-0}. At this point it is convient to call the corrections that depend only on q^{2}, corrections tc the electron's form factor. They represent the increase in the electron's effective interaction at small distances. The remaining terms of (17) go into $\omega_{\max }$ as defined $\mathrm{Ly}(2)$. The result is,

$$
\mathrm{F}_{1}^{2}\left(\mathrm{q}^{2}\right)=1+\frac{2 \alpha}{\pi} q^{2} \int_{2 \mathrm{~m}}^{\infty} \frac{\mathrm{dM}}{\mathrm{M} \sqrt{1-\left(\frac{2 m}{\mathrm{M}}\right)^{2}}}\left[\frac{\frac{3}{2}-\left(\frac{2 \mathrm{~m}}{\mathrm{M}}\right)^{2}-\left(1+\frac{2 \mathrm{~m}^{2}}{q^{2}}\right) \log \frac{\mathrm{M}^{2}-4 \mathrm{~m}^{2}}{\mathrm{~m}^{2}\left(\frac{q^{2}}{\mathrm{M}^{2}}+1\right)}}{q^{2}+\mathrm{M}^{2}}\right]
$$

$$
\mathrm{t} \log \frac{\mathrm{k}_{1}}{\omega_{\max }}=\mathrm{t} \log \mathrm{k}_{1}
$$

$$
-\frac{\alpha}{\pi} \frac{q^{2}+2 m^{2}}{2} \int_{0}^{1} \frac{d x}{\frac{q^{2}}{4}\left(1-x^{2}\right)+m^{2}}\left[\log E_{x}^{2}+\frac{E_{x}-\left|p_{x}\right|}{\left|p_{x}\right|} \log \frac{E_{x}+\left|p_{x}\right|}{E_{x}-\left|p_{x}\right|}+2 \log \frac{E_{x}+\left|p_{x}\right|}{2 E_{x}}\right]
$$

$$
\begin{equation*}
+\frac{\alpha}{\pi}\left[\frac{E-P}{2 P} \log \frac{E+P}{E-P}+\log \frac{E+P}{2 E}+\frac{E^{\prime}-P^{\prime}}{2 p^{\prime}} \log \frac{E^{\prime}+P^{\prime}}{E^{\prime}-P^{\prime}}+\log \frac{E^{\prime}+P^{\prime}}{2 E^{\prime}}+\log E E^{\prime}\right] \tag{19}
\end{equation*}
$$

where t is given by equation I. 16 and

$$
\begin{gathered}
E_{x}=\frac{1}{2}(1+x) E+\frac{1}{2}(1-x) E^{\prime} \\
\left|p_{x}\right|=\sqrt{E_{x}^{2}-m^{2}-\frac{q^{2}}{4}\left(1-x^{2}\right)}
\end{gathered}
$$

When $q^{2} /\left(4 q^{2}\right) \gg 1$ this greatly simplifies, giving

$$
\begin{align*}
\mathrm{F}_{1}^{2}\left(\mathrm{q}^{2}\right) & \cong 1+\frac{2 \alpha}{\pi}\left(\frac{3}{4} \log \frac{q^{2}}{\mathrm{~m}^{2}}-1\right) \\
\mathrm{t} \log \frac{\mathrm{k}_{1}}{\omega_{\max }} & \cong \frac{2 \alpha}{\pi}\left(\log \frac{q^{2}}{\mathrm{~m}^{2}}-1\right) \log \frac{\mathrm{k}_{1}}{\sqrt{\mathrm{EE}^{1}}} \tag{20}
\end{align*}
$$

Gormula (19) is an exact result, with no assumptions about the magnitude of the energies or neglect of the electron mass.

Using (5) and (20) for the radiative corrections coming from the photon propagator and the electron-photon vertex, we have the following result for higb q^{2} electron scattering allowing for radiation of scft photons with energy less than k_{1}. including only the corrections to lowest order in α,

$$
\begin{align*}
\sigma\left(\mathrm{k}_{1}\right)= & \left.\sigma_{0}\left(1+\frac{2 \alpha}{\pi} / \frac{1}{3} \log \frac{q^{2}}{\mathrm{~m}^{2}}-\frac{5}{9}\right)+\frac{2 \alpha}{\pi}\left(\frac{3}{4} \log \frac{q^{2}}{\mathrm{~m}^{2}}-1\right)\right) \\
& \times\left(1+\frac{2 \alpha}{\pi}\left(\log \frac{q^{2}}{\mathrm{~m}^{2}}-1\right) \log \frac{\mathrm{k}_{1}}{\sqrt{E E^{\prime}}}\right) \tag{21}
\end{align*}
$$

The first correction factor, which depends only on q^{2} and not on the frame in which energies are measured is Iumped together with σ_{0} to give σ_{0}^{i}. The second factor when compared with equation (2) allows the identification of $\sqrt{E E^{\top}}$ with $\omega_{\max }$.

Now using the results of I with $\omega_{\max }=\sqrt{E E}$ we obtain the following expression for the cross section for high g^{2} electron scattering (frof a heavy target particle so that

APRENDIX A. II--- GUANTUM GECHANICAL BADIATIVE CORBECTIONS
radiation involving the target particle is negligible,i.e. $q^{2} \ll M_{t}{ }^{2}$, with a total small amount of energy ω radiated,

$$
\begin{equation*}
\mathrm{d} \sigma=\sigma_{0}^{\prime} \frac{\mathrm{t}}{\omega}\left(\frac{\omega}{\mathrm{E}}\right)^{\mathrm{t} / 2}\left(\frac{\omega}{\mathrm{E}^{\prime}}\right)^{\mathrm{t} / 2} \mathrm{~d} \omega \tag{22}
\end{equation*}
$$

Integrating this from 0 to k_{1} we obtain

$$
\begin{equation*}
\sigma\left(\mathrm{k}_{1}\right)=\int_{0}^{\mathrm{k}_{1}} \mathrm{~d} \sigma=\sigma_{0}^{\mathrm{t}}\left(\frac{\mathrm{k}_{1}}{\mathrm{E}}\right)^{\mathrm{t} / 2}\left(\frac{\mathrm{k}_{1}}{\mathrm{E}^{\mathrm{t}}}\right)^{\mathrm{t} / 2} \tag{23}
\end{equation*}
$$

As the incident and scattered electrons travel through the material of the target, they lose energy by the processes of bremsstralung and ionization. There is also the possibility of a change in the direction of the electrons momemtum, but at high energies this is small. The deflection is mainly caused by elastic scattering from the atoms of the material. The mean square angle of elastic scattering after a particle passes through 1 radiation length of material is apprcximately given by,

$$
\begin{equation*}
\bar{\theta}^{2}=\frac{2 \pi}{\alpha} \frac{\mathrm{~m}^{2}}{\mathrm{p}^{2} \mathrm{v}^{2}} \tag{1}
\end{equation*}
$$

Neglecting this small change in angle, the electron's kinetic equation is the following,

$$
\begin{equation*}
\frac{\partial \pi(E, t)}{\partial t}=-\pi(E, t) \int_{0}^{E} w\left(E, E^{\prime}\right) d E^{\prime}+\int_{E}^{\infty} \pi\left(E^{\prime}, t\right) w\left(E^{\prime}, E\right) d E^{\prime} \tag{2}
\end{equation*}
$$

Where $\pi(\mathbb{E}, \mathrm{t}) \mathrm{d} E$ is the probability that the electron has energy in $d E$ at thickness t and $w\left(E, E^{\prime}\right) d t$ is the probability that the electron loses energy $E-E^{\prime}$ in thickness at. Bremsstralung is the main cause of large energy loses. Using the Thomas-rermi model for the elastic form factor of the dom, under the conditicns.

$$
\frac{\mathrm{EE}^{\prime}}{\mathrm{m}\left(\mathrm{E}-\mathrm{E}^{\prime}\right)} \gg 137 \mathrm{Z}^{-1 / 3}
$$

$\mathrm{E} \gg 137 \mathrm{mZ}^{-1 / 3}$
the cross section is 22 .
$\mathrm{d} \sigma_{\mathrm{ELAS}}=4 \alpha Z^{2} r_{0}^{2} \frac{d E^{\prime}}{E-E^{\prime}}\left\{\left(1+\left(\frac{\mathrm{E}^{\prime}}{\mathrm{E}}\right)^{2}-\frac{2}{3} \frac{\mathrm{E}^{\prime}}{\mathrm{E}}\right)\left(\log \left(191 \mathrm{Z}^{-1 / 3}-1.2(\alpha \mathrm{Z})^{2}\right)+\frac{1}{9} \frac{\mathrm{E}^{\prime}}{\mathrm{E}}\right\}\right.$

In energy units, $r_{0}=\alpha / m$ with m the electron masse whe cross section for bremsstralung along with inelastic excitation of the atom is.

$$
\begin{equation*}
d \sigma_{\mathrm{INELAS}}=4 \alpha Z r_{0}^{2} \frac{\mathrm{dE}}{\mathrm{E}-\mathrm{E}^{\prime}}\left\{\left(1+\left(\frac{\mathrm{E}^{\prime}}{\mathrm{E}}\right)^{2}-\frac{2}{3} \frac{\mathrm{E}^{\prime}}{\mathrm{E}}\right) \log \left(1440 \mathrm{Z}^{-2 / 3}\right)+\frac{1}{9} \frac{\mathrm{E}^{\prime}}{\mathrm{E}}\right\} \tag{4}
\end{equation*}
$$

Thus the total Erobahility, for energy loss E-E due to bremsstralung in a thickness dt radiation lengths is given by

$$
\begin{equation*}
w\left(E, E^{\prime}\right) d t=\frac{d t}{E-E^{\prime}}\left(1+\left(\frac{E^{\prime}}{E}\right)^{2}-\frac{E^{\prime}}{E}\left(\frac{2}{3}-a\right)\right) \tag{5}
\end{equation*}
$$

with

$$
\begin{gather*}
a=\frac{1}{9} \frac{Z+1}{Z+\zeta} \frac{1}{\log \left(191 \mathrm{Z}^{-1 / 3}\right)-1.2(\alpha \mathrm{Z})^{2}} \\
\zeta=\frac{\log \left(1440 \mathrm{Z}^{-2 / 3}\right)}{\log \left(191 \mathrm{Z}^{-1 / 3}\right)-1.2(\alpha \mathrm{Z})^{2}} \tag{6}
\end{gather*}
$$

The radiation $1 \in n g t h$ is defined by

$$
\frac{1}{x_{0}}=4 N \alpha r_{0}^{2} Z(Z+\zeta)\left[\log \left(191 Z^{-1 / 3}\right)-1.2(\alpha Z)^{2}\right]
$$

N is the number of atoms fer cme.
Energy loss can alsc cocur because of ionization of the target atoms. For large energy loses, the process of ionization is the same as elastic scattering from the electrons of the atcm, since the atomic binding energy of the electrons can be neglected. The cross section for electron-electron scattering with energy loss $E-E$ is given by 18,

$$
\begin{equation*}
d r=\frac{2 \pi r_{0}^{2}}{v^{2}(x-1)} \frac{d \Delta}{\Delta^{2}(1-\Delta)^{2}}\left\{1-\left(3-\left(\frac{x-1}{x}\right)^{2}\right) \Delta(1-\Delta)+\left(\frac{x-1}{x}\right)^{2} \Delta^{2}(1-\Delta)^{2}\right\} \tag{8}
\end{equation*}
$$

where

$$
\begin{aligned}
& \Delta=\frac{\mathrm{E}-\mathrm{E}^{\prime}}{\mathrm{E}-\mathrm{m}} \\
& \mathrm{x}=\frac{\mathrm{E}}{\mathrm{~m}}
\end{aligned}
$$

For high energy E and stall energy loss.

$$
\begin{equation*}
\mathrm{d} \sigma=\frac{2 \pi \alpha^{2}}{\mathrm{~m}} \frac{\mathrm{~d} \epsilon}{\epsilon^{2}} \tag{9}
\end{equation*}
$$

with

$$
\epsilon=E-E^{\prime}
$$

So for ϵ moh greater than the binding energy of an electron in the atom, the frobability of an energy loss E-E' in thickness dt radiation lengths due to ionization is,

$$
\begin{equation*}
w\left(E, E^{\prime}\right) d t=w(\epsilon) d t=\frac{\xi d t}{\epsilon^{2}} \tag{10}
\end{equation*}
$$

with

$$
\xi=\frac{2 \pi \mathrm{NZ}^{2}}{\mathrm{~m}} \mathrm{X}_{0}=\mathrm{m} \frac{\pi}{2 \alpha(\mathrm{Z}+\zeta)\left[\log \left(191 \mathrm{Z}^{-1 / 3}\right)-1.2(\alpha \mathrm{Z})^{2}\right]}
$$

In order to solve equation (2) at high energies compared with the energies of atomic binding, it is not necessary to know the exact form of $w(\epsilon)$ for small ϵ. It turns out that it is sufficient to know the following integral relation ${ }^{2 z}$.

$$
\begin{equation*}
\int_{0}^{\delta} \mathrm{w}(\epsilon) \epsilon \mathrm{d} \epsilon=\xi \ln \delta / \epsilon^{\prime} \tag{11}
\end{equation*}
$$

with

$$
\epsilon^{\prime}=2.718 \mathrm{~m} \frac{\mathrm{I}^{2}}{2 \mathrm{E}^{2}}
$$

and I a certain ionization fotential of the ator, here taken to be

$$
\mathrm{I}=13.5 \mathrm{eV} \times \mathrm{Z}
$$

The complete expressicn for the energy loss probability including bremsstralung and ionization is the following.

$$
\begin{equation*}
\mathrm{w}\left(\mathrm{E}, \mathrm{E}^{\prime}\right) \mathrm{dt}=\frac{\mathrm{dt}}{\mathrm{E}-\mathrm{E}^{\prime}}\left[1+\left(\frac{\mathrm{E}^{\prime}}{\mathrm{E}}\right)^{2}-\frac{\mathrm{E}^{\prime}}{\mathrm{E}}\left(\frac{2}{3}-\mathrm{a}\right)\right]+\frac{\xi \mathrm{dt}}{\left(\mathrm{E}-E^{\prime}\right)^{2}} \tag{12}
\end{equation*}
$$

and the knowledge of w for small values of the argument necessary to solve the equation (2) is summarized by,

$$
\begin{equation*}
\int_{E-\delta}^{E}\left(E-E^{\prime}\right) w\left(E, E^{\prime}\right) d E^{\prime}=\xi \log \delta / \epsilon^{\prime}+(4 / 3+a) \delta \tag{13}
\end{equation*}
$$

A solution of (2) for the initial condition that at $t=0, \pi(E)=\delta\left(E_{0}-E\right)$, and $w(E, E *)$ given by (12) and (13) has been obtained by R. Early using numerical methods23, 24 . For thicknesses up to. 1 radiation length, energies in the range 1 to $20 \mathrm{G} \in \mathrm{V}$ and \mathbb{Z} up to 30 , the numerical solution can be adequately represented by the following analytical form.

$$
\begin{equation*}
\pi\left(E_{0}, E, t\right)=w\left(E_{0 c}, E\right) t \frac{\left(\log \frac{E_{0 c}}{E}\right)^{b t}}{\Gamma(1+b t)}\left[1+b t P\left(\frac{E_{0 c}-E}{E_{0 c}}\right)\right] \tag{14}
\end{equation*}
$$

Where,

$$
\begin{aligned}
E_{0 c} & =E_{0}-\Delta_{0} \\
b & =4 / 3+a
\end{aligned}
$$

$$
P(x)=x(.53875+x(-2.1938+.9634 x))
$$

The first factor is the correct single scattering probability. As $t \rightarrow 0$ the straggling probability must be just W(E,E)t. The cther factors are corrections for multiple processes. The log and gamma functions are suggested by analogy with the case when $w(E, E)=b /(E \log (E / E))$, which is exactly soluble. In this case the solution is

$$
\begin{equation*}
\left.\pi\left(\mathrm{E}_{0}, \mathrm{E}, \mathrm{t}\right)=\frac{\mathrm{bt}}{\mathrm{E}_{0}}, \log \frac{\mathrm{E}_{0}}{\mathrm{E}}\right) \quad \frac{1}{\Gamma(1+\mathrm{bt})} \tag{15}
\end{equation*}
$$

So the effect of multiple processes is the factor $\left(\log \left(E_{0} / E\right)\right)^{b t} / \Gamma(1+b t)$. The last factor of (14) is the additional multifle process correction necessary when is used for the single scattering energy loss probability. Part of the effect of ionization energy losses is just to shift down the energy ar amount

$$
\begin{equation*}
\Delta_{0}=\xi t\left(\log \xi / \epsilon^{\prime}+.37\right) \tag{16}
\end{equation*}
$$

This is a well known expression for the most probable ionization energy loss 12 . This energy shift is not particularly important experimentally since the absolute
energy is usually not kncwn that precisely. The important quantity, $E_{0 c}^{-E}$ is what is normally best known in an experimental situation. Sc henceforth the subscript c will be dropped.

Disregarding ionization, this solution is accurate to a fraction of a $\mathrm{f} \in \mathrm{rcent}$ for t up to 1 , 7 up to 30 and $\mathrm{E}_{0}-\mathrm{E}_{\mathrm{o}}$ as small as 2 percent of E_{0}. For energies in the Gev range, the effect of ionizaticn loss is mostly small except for f near F_{0}. The ionization lcss correction is cf order $\xi / b \in$. When this quantity is less than 10 percent the analytic form given by (14) is accurate to 1 or 2 percent. For smaller thicknesses than 1 the accuracy is better. When the energy loss is small, , not to somall, so that the ionization effects can be neglected, a useful approximate form of is the following,

$$
\begin{equation*}
\pi\left(E_{0}, E, t\right)=\frac{b t}{E_{0}-E}\left(\frac{E_{0}-E}{E_{0}}\right)^{b t} \frac{1}{\Gamma(1+b t)} \tag{17}
\end{equation*}
$$

This is also the limit of (15) for $E \rightarrow E_{0}=$
Energy losses in the target material produce a "radiative tail" to a scattering process. consider the process ep \quad e P_{j} where the firal proton state P_{j} has mass M_{j}, with only the scattered electron detected in solid angle d Ω and energy interval de. Eecause of target energy loses, the cross section as a function of E_{o} has a tail extending down from the "elastic peak".

$$
\begin{equation*}
\mathrm{E}_{\mathrm{ELAS}}^{\prime}=\frac{\mathrm{E}-\left(\mathrm{M}_{\mathrm{j}}^{2}-\mathrm{M}^{2}\right) / 2 \mathrm{M}}{\eta} \tag{18}
\end{equation*}
$$

where

$$
\eta=1+\frac{2 \mathrm{E}}{\mathrm{M}} \sin ^{2} \theta / 2
$$

The radiative tail is given by

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega \mathrm{dE}}\left(\mathrm{E}, \mathrm{E}^{\prime}, \theta\right)=\int_{\mathrm{E}_{\min }}^{\mathrm{E}} \pi\left(\mathrm{E}, \mathrm{E}_{1}, \mathrm{t}_{\mathrm{b}}\right) \frac{\mathrm{d} \sigma_{0}}{\mathrm{~d} \Omega}\left(\mathrm{E}_{1}, \theta\right) \pi\left(\mathrm{E}_{1}^{\prime}, \mathrm{E}^{\prime}, \mathrm{t}_{\mathrm{a}}\right) \mathrm{dE} \mathrm{E}_{1} \tag{19}
\end{equation*}
$$

with $d \sigma_{\sigma} d \Omega$ the kasic scattering cross section, and

$$
\begin{align*}
& E_{1}^{\prime}=\frac{E_{1}-\left(M_{j}^{2}-M^{2}\right) / 2 M}{\eta_{1}} \\
& E^{\prime}=\frac{E_{\min }-\left(M_{j}^{2}-M^{2}\right) / 2 M}{\eta_{\min }} \tag{20}
\end{align*}
$$

Let us introduce the notation

$$
\begin{align*}
& \Delta \mathrm{E}=\mathrm{E}-\mathrm{E}_{\min } \\
& \Delta \mathrm{E}^{\prime}=\frac{\mathrm{E}-\left(\mathrm{M}_{j}^{2}-\mathrm{M}^{2}\right) / 2 \mathrm{M}}{\eta}-\mathrm{E}^{\prime}=\frac{\Delta \mathrm{E}}{\eta \eta^{\prime}} \tag{21}
\end{align*}
$$

with

$$
\quad \eta^{\prime}=\frac{1}{1-\frac{2 E^{\prime}}{M} \sin ^{2} \theta / 2}
$$

Substituting into the integral the approximate form of π for small bremsstralung energy loses given by (17), and assuming that the basic cross secticn dcesn't vary appreciably over the range of the integration, we get the following expression for the radiatipe tail.

$$
\begin{align*}
\frac{d \sigma}{d \Omega E^{\prime}} & =\frac{d \sigma_{0}}{d \Omega} \int_{\frac{\omega}{\Delta E}+\frac{\omega^{\prime}}{\Delta E^{\prime}}=1} \frac{b t_{b}}{\omega}\left(\frac{\omega}{E}\right)^{b t_{b}} \frac{1}{\Gamma\left(1+b t_{b}\right)} \frac{b t_{a}}{\omega^{\prime}}\left(\frac{\omega^{\prime}}{E^{\prime}}\right)^{b t_{a}} \frac{1}{\Gamma\left(1+b t_{a}\right)} d \omega \\
& =\frac{d \sigma_{0}}{d \Omega} \frac{b\left(t_{b}+t_{a}\right)}{\Delta E^{\prime}}\left(\frac{\Delta E}{E}\right)^{b t_{b}}\left(\frac{\Delta E^{\prime}}{E^{\prime}}\right)^{b t_{a}} \frac{1}{\Gamma\left(1+b\left(t_{b}+t_{a}\right)\right)} \tag{22}
\end{align*}
$$

If we integrate this from the "elastic peak" E " down a swall Δ^{\prime}, we obtain,

$$
\begin{equation*}
\int_{\Delta E^{\prime}} d E^{\prime} \frac{d \sigma}{d \Omega d E^{\prime}}=\frac{d \sigma_{0}}{d \Omega}\left(\frac{\Delta E}{E}\right)^{b t_{b}}\left(\frac{\Delta E^{\prime}}{E^{\prime}}\right)^{b t_{a}} \frac{1}{\Gamma\left(1+b\left(t_{b}+t_{a}\right)\right)} \tag{23}
\end{equation*}
$$

Consider the process $\in P \rightarrow E_{j}$ where the final proton state j has mass M_{j} and may consist of several particles. Actually this process with nc photons radiated never occurs. The cross section for the same process but with an arbitrary number of photons radiated and only the scattered electron detected is what is meant $k y$ the radiative tail. The measured cross section is the sum of radiative tails for all possible final froton states j.

Say the scattered electron is detected in solid angle d and energy de'. The missing mass w is defined by

$$
\begin{equation*}
\mathrm{w}^{2}=-\left(\mathrm{P}+\mathrm{p}-\mathrm{p}^{\prime}\right)^{2} \tag{1}
\end{equation*}
$$

Where p is the four-momentum of the target proton, p the four momentum of the incoming electron, and F the four momentum of the scattered electron. The missing mass is always greater than the rass of the proton final state M_{j}. the difference being made up by the energy of all the radiated photons. For a given inelastic process involving the proton, say $M \rightarrow M_{j}$, the $n i s s i n g$ mass w determines the total energy of all radiated photons.

The cross section for the process without radiation can be written as

$$
\begin{equation*}
d \sigma_{0}^{\prime}=\frac{\left|A^{\prime}\right|^{2}}{J} \frac{d^{3} p^{\prime}}{(2 \pi)^{3} 2 E^{\prime}} 2 \pi \delta\left(\left(P+p-p^{\prime}\right)^{2}+M_{j}^{2}\right)=\frac{\left|A^{\prime}\right|^{2}}{J} \frac{E^{\prime}}{8 \pi^{2}} \frac{d \Omega}{2 M \eta} \tag{2}
\end{equation*}
$$

Where $\left|A^{\prime}\right|^{2}$ is the probability and J the flux. As usual the prime indicates that higher order q d dependent electrodynamic corrections to the probability are made. With radiation of n soft photons the cross section is
$d \sigma=\frac{\left|A^{\prime}\right|^{2}}{J} \frac{d^{3} p^{\prime}}{(2 \pi)^{3} 2 E^{\prime}} \frac{d^{3} k_{1}}{(2 \pi)^{3} 2 \omega_{1}} \ldots \cdot \frac{d^{3} k_{n}}{(2 \pi)^{3} 2 \omega_{n}} \bar{n}_{k_{1}} \cdots \bar{n}_{k_{n}} 2 \pi \delta\left(\left(P+p-p^{\prime}-k\right)^{2}+M_{j}^{2}\right)$

In the special Lorentz frame denoted by subscript s. where $p-p+p^{\prime}$ has zero space components, the delta function argument is

$$
\begin{equation*}
-\mathrm{w}^{2}+2 \mathrm{~W} \omega_{\mathrm{s}}+\mathrm{M}_{\mathrm{j}}^{2}+\mathrm{k}^{2} \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
& \omega_{\mathrm{s}}=\omega_{\mathrm{s}_{1}}+\ldots \omega_{\mathrm{s}_{\mathrm{n}}} \\
& \mathrm{k}^{2}=\left(\mathrm{k}_{1}+\ldots \mathrm{k}_{\mathrm{n}}\right)^{2}
\end{aligned}
$$

Assuring most of the energy-momentum is concentrated in a single photon we can neglect k^{2}. Then, working in the special frame, the delta furction restricts only the total energy of all the radiated photons, and this energy must be

$$
\begin{equation*}
\omega_{\mathrm{S}}=\frac{\mathrm{w}^{2}-\mathrm{M}_{j}^{2}}{2 \mathrm{~W}} \tag{5}
\end{equation*}
$$

Bepeating the arguments of I, we sum the cross sections (3) integrated cver the momenta of all undetected photons for $n=0,1,2, \ldots$ and arrive at the following result for the cross section with an arbitrary number of photons radiated

$$
\begin{equation*}
d \sigma=\frac{|A|^{2}}{J} \frac{d^{3} p^{\prime}}{(2 \pi)^{3} 2 E^{\prime}} \int \frac{t}{\omega_{S}}\left(\frac{\omega_{S}}{\sqrt{E_{S} E_{S}^{\prime}}}\right)^{t} 2 \pi \delta\left(-W^{2}+2 W \omega_{S}+M_{j}^{2}\right) d \omega_{S} \tag{6}
\end{equation*}
$$

To get this result, the $\omega_{\max }$ of I is taken to be $\sqrt{E_{s} \mathrm{E}_{\mathrm{s}}}$ by the arguments of II.

Doing the integraticn, and expressing the result in terms of the cross secticn for scattering without radiation, (2),

$$
\begin{align*}
& d-=\frac{A^{\prime \prime}{ }^{2}}{J} \frac{E^{\prime} d E^{\prime} d S^{\prime}}{16 \pi^{2} W} \frac{t}{\omega_{S}}\left(\frac{\omega_{S}}{\sqrt{E_{S} E_{S}^{\prime}}}\right)^{t} \\
& d \sigma=d r_{0}^{\prime} d E^{\prime} \frac{t M \eta}{\omega_{S} W}\left(\frac{\omega_{S}}{\sqrt{E_{S} E_{S}^{\prime}}}\right)^{t} \tag{7}
\end{align*}
$$

Expressing energies in the special frame in terms of lab frame quantities, we have.

$$
\begin{align*}
& \omega_{S}=\frac{M \eta \omega^{\prime}}{W}=\frac{M \omega}{\eta^{\prime} W} \\
& E_{S}=\frac{M E}{W \eta^{\prime}} \\
& E_{S}^{\prime}=\frac{M \eta E^{\prime}}{W} \tag{8}
\end{align*}
$$

where

$$
\begin{align*}
& \eta=1+\frac{2 \mathrm{E}}{\mathrm{M}} \sin ^{2} \theta / 2 \\
& \eta^{\prime}=\frac{1}{1-\frac{2 \mathrm{E}^{\prime}}{\mathrm{M}} \sin ^{2} \theta / 2} \\
& \omega=\mathrm{E}-\left(\mathrm{E}^{\prime}+\left(\mathrm{M}_{\mathrm{j}}^{2}-\mathrm{M}^{2}\right) / 2 \mathrm{M}\right) \eta^{\prime} \\
& \omega^{\prime}=\frac{\mathrm{E}-\left(\mathrm{M}_{\mathrm{j}}^{2}-\mathrm{M}^{2}\right) / 2 \mathrm{M}}{\eta}-\mathrm{E}^{\prime} \tag{9}
\end{align*}
$$

So in the lab frame, the cross section for electron scattering ep $\quad \in P_{j}$, allowing arbitrary radiation, but with $贝^{2}=n_{j}^{2}$ so the photons are soft is given by.

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega \mathrm{dE}}=\frac{\mathrm{d} \sigma_{0}^{1}}{\mathrm{~d} \Omega} \frac{\mathrm{t}}{\omega^{\mathrm{t}}}\left(\frac{\omega}{\mathrm{E}}\right)^{\mathrm{t} / 2}\left(\frac{\omega^{\prime}}{\mathrm{E}^{\mathrm{t}}}\right)^{\mathrm{t} / 2} \tag{10}
\end{equation*}
$$

If the target has a finite thickness we must take into account energy loss processes occuring in the target before and after the scattering. using the known stragging probability $\pi(E, E, t) \quad w \in$ must evaluate the following convolution integral.

$$
\begin{equation*}
\int \pi\left(E, E_{1}, t_{b}\right) \frac{d \sigma}{d \Omega d E^{\prime}}\left(E_{1}, E_{1}^{\prime}, \theta\right) \pi\left(E_{1}^{\prime}, E^{\prime}, t_{a}\right) d E_{1} d E_{1}^{\prime} \tag{11}
\end{equation*}
$$

The region of integration is the shaded triangular area shown in the diagram. It is bounded above by the contour $W 2=M_{j}{ }^{2}$ which is the dotted line in the figure.

The integral (11) can ke done exactly if we use the soft photon form of the straggling function, given by III. 15. The result for the soft photon radiative tail from the process $e p \rightarrow \in P_{j}$ is $t h \in n$,

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega \mathrm{~d} E^{\prime}}=\frac{\mathrm{d} \sigma_{0}^{\prime}}{\mathrm{d} \Omega} \frac{\mathrm{t}+\mathrm{bt} \mathrm{t}_{\mathrm{b}}+\mathrm{bt}}{\omega^{\prime}}\left(\frac{\omega}{\mathrm{E}}\right)^{\mathrm{t} / 2+\mathrm{bt}} \mathrm{t}_{\mathrm{b}}\left(\frac{\omega^{\prime}}{E^{\prime}}\right)^{\mathrm{t} / 2+\mathrm{b} t_{\mathrm{a}}} \frac{\Gamma(1+\mathrm{t})}{\Gamma\left(1+\mathrm{bt} t_{\mathrm{b}}+\mathrm{bt} t_{a}+\mathrm{t}\right)} \tag{12}
\end{equation*}
$$

It is interesting tc compare this result with a calculation to lowest crder in α, that is, allowing only a single radiated photon. The one photon radiative tail for small photon energy is

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega \mathrm{dE}}=\frac{\mathrm{d} \sigma_{0}^{\prime}}{\mathrm{d} \Omega} \frac{\mathrm{t}+\mathrm{b} \mathrm{t}_{\mathrm{b}}+\mathrm{bt}}{\mathrm{a}}{ }_{\omega^{\prime}} \tag{13}
\end{equation*}
$$

So the effect of multifle photon radiation is to multiply the one photen result by a factor approximately equal to

$$
\begin{equation*}
\left(\frac{\omega}{\mathrm{E}}\right)^{\mathrm{t} / 2+\mathrm{b} t_{\mathrm{b}}}\left(\frac{\omega^{\prime}}{\mathrm{E}^{\prime}}\right)^{\mathrm{t} / 2+b t_{\mathrm{a}}} \frac{1}{\Gamma\left(1+b t_{b}+b t_{\mathrm{a}}\right)} \tag{14}
\end{equation*}
$$

We can apply the foregcing arguments to the case where the basic process itself involyes the radiation of a single photon, i.e. We imagine the final state P_{j} includes a single photon. The cross section for scattering with one hard photon radiated, allowing arbitrary soft radiation is the following, where k is the total energy of the soft photons and is small.

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega \mathrm{dE}}=\frac{\mathrm{d} \sigma_{1}^{\prime}}{\mathrm{d} \Omega \mathrm{dE}} \int_{0}^{\mathrm{k}} \frac{\mathrm{t}}{\omega}\left(\frac{\omega}{\sqrt{E E^{\prime}}}\right)^{\mathrm{t}} \mathrm{~d} \omega=\frac{\mathrm{d} \sigma_{1}^{\prime}}{\mathrm{d} \Omega \mathrm{dE}}\left(\frac{\mathrm{k}}{\mathrm{E}}\right)^{\mathrm{t} / 2}\left(\frac{\mathrm{k}}{\mathrm{E}^{\prime}}\right)^{\mathrm{t} / 2} \tag{15}
\end{equation*}
$$

$d \sigma_{1}^{\prime} / \lambda \Omega \mathrm{dE}^{\prime}$ is the cross section for the process ep-ep ${ }_{j} \gamma$ calculated to lowest crder in α, but with higher order in α small distance corrections to the photon propagator and vertex functions.

As long as k is sufficiently small so that the secondary photens are actually soft, (15) is a correct calculation of a part of the measured radiative tail, namely the cross secticn for all the times when the total radiation consists of only 1 hard photon and the remainder soft, with total energy less than k. Including energy straggling in
the target, the result for this part of the radiative tail is,

$$
\begin{array}{r}
\quad \frac{d \sigma}{d \Omega d E^{\prime}}\left(E, E^{\prime}, \theta\right)=\left\{\frac{d \sigma_{1}^{\prime}}{d \Omega d E^{\prime}}\left(E, E^{\prime}, \theta\right)+w(E, E-\omega) t_{b} \frac{d \sigma_{0}^{\prime}}{d \Omega}(E-\omega, \theta) \eta^{\prime 2}\right. \\
\left.+\frac{d \sigma_{0}^{\prime}}{d \Omega}(E, \theta) w\left(E^{\prime}+\omega^{\prime}, E^{\prime}\right) t_{a}\right\}\left(\frac{k}{E}\right)^{t / 2+b t_{b}}\left(\frac{k}{E^{\prime}}\right)^{t / 2+b t_{a}} \frac{1}{\Gamma\left(1+b t_{b}+b t_{a}\right)} \tag{16}
\end{array}
$$

Where $w\left(R, P^{\prime}\right) t$ is the protability for energy straggling in the target calculated to lowest craer in α, given by formula III. 12, and $d \sigma_{0}^{*} d \Omega$ is the cross section for the process $e p \rightarrow$ $e P_{j}$ without radiation.

In order to rigorously calculate the radiative tail including multiple photcr effects is is necessary to go further and, using the well defined rules of quantum electrodynamics, attempt to calculate the processes where two or more hard photons are radiated. It doesn't seen likely that these protabilities can be estimated by simple arguments since the photcns, being hard, have an important effect on the electron and the situation is conflicated.

Hovever it does seem likely that multiple hard photon processes are not very probable, this for the simple reason that is small and the fhcton energy cannot become small since we are excluding soft fhotons which can be taken into account. We might expect the radiation of an additional hard photon to be of order $t+b t_{b}+b t_{a}$ less probable than the cne photon process.

If we neglect entirely all multiple hard photon radiation we get the formula (16) for the radiative tail from the process ep EP_{j}. The quantity k is arbitrary, being the limiting soft photon energy when all the photons are soft the result (12) can be put into the form of (16) if k is replaced by its maximum possible value for radiation in the initial direction in the first factor and its maximum possible value for radiation in the final direction in the second factor. All the photons are soft when $\frac{1}{}{ }^{2}$ is near M ${ }^{2}$. Otherwise we expect k should be a small fraction of E, E in order for the soft photon arguments to hold. As k goes to zero, the cross section given by (16) also goes to zero, which means physically that soft photon radiation al ways occurs.

The result (16) is unsatisfactory in that it depends on k which is not determined. However this dependence on k is quite small. \quad expect that the correct answer can be put in the form (16) with sone k that a fairly small fraction of the energies E and E. A r ascnable guess for the actual radiative tail would be formula (16) with $\left(\frac{k}{E}\right)^{t / 2+b t_{b}}\left(\frac{k}{E^{1}}\right)^{t / 2+b t_{a}}-$ $\left(\frac{k}{E}\right)^{t / 2+b t_{b}}\left(\frac{k^{\prime}}{E^{\prime}}\right)^{t / 2+b t_{a}}$

$$
\begin{align*}
& \mathrm{k}=\min \left(\frac{1}{3} E, \omega\right) \\
& \mathrm{k}^{\prime}=\min \left(\frac{1}{3} E^{\prime}, \omega^{\prime}\right) \tag{17}
\end{align*}
$$

The fracticn $1 / 3$ is quite arbitrary and the variation of the result with this fraction is a measure of our ignorance of the actual size of multiple hard photon effects.

It is interesting to consider the case of target energy losses only, that $i s, t \ll t_{b}, t_{a}$. The radiative tail is then known exactly using tbe known form of the straggling finction $\pi\left(E, E^{\prime}, t\right)$ given by III. 14.

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega \mathrm{dE}}=\int \pi\left(\mathrm{E}, \mathrm{E}_{1}, \mathrm{t}_{\mathrm{b}}\right) \frac{\mathrm{d} \sigma_{0}^{\prime}}{\mathrm{d} \Omega}\left(\mathrm{E}_{1}, \theta\right) \pi\left(\mathrm{E}_{1}^{\prime}, \mathrm{E}^{\prime}, \mathrm{t}_{\mathrm{a}}\right) \mathrm{dE} \mathrm{E}_{1} \tag{18}
\end{equation*}
$$

We choose $t_{b}=t_{a}$. If we ccapare this with the radiative tail calculated by formula (16), we can find the effective soft photon limiting energy in this case. The effective soft photon energy k is defined so that the result of formula (16) agrees with the result of the integration (18) with W(E,E') given by IIT. 5.

$$
\begin{align*}
& \int \pi\left(E, E_{1}, t_{b}\right) \frac{d \sigma_{0}}{d \Omega}\left(E_{1}, \theta\right) \pi\left(E_{1}^{\prime}, E^{\prime}, t_{a}\right) d E_{1}=\left(\frac{k}{\sqrt{E E^{\prime}}}\right)^{b t_{b}+b t_{a}} \frac{1}{\Gamma\left(1+b t_{b}+b t_{a}\right)} \\
& \quad \times\left\{t_{b} w(E, E-\omega) \eta^{\prime} \frac{d \sigma_{0}}{d \Omega}(E-\omega, \theta)+t_{a} w\left(E^{\prime}+\omega^{\prime}, E^{\prime}\right) \frac{d \sigma_{0}}{d \Omega}(E, \theta)\right\} \tag{19}
\end{align*}
$$

The effective k defined in this way is found to be quite independent of t_{b} and t_{a} as Figure A. 1 shows. The Figure is a plot of $k / \sqrt{E E}$ versus $\sqrt{\omega \omega^{\prime}} / \sqrt{E E}$, for various choices of $t_{b}=t_{a}$. Tre cross section is for elastic
scattering, er -eP. However, as Figure A. 1 shows, k depends on how rapidly the cross section is varying. The graphs compare the k obtained when the cross section is given by the Rosenbluth formula, with the usual dipole form factors. and with the form factors taken to be $G_{E}\left(q^{2}\right)=1$, and ${ }^{G} M^{\left(q^{2}\right)}=2.793$.

Fig. A. 1

The measured cross section for the scattering of electrons of energy E from target protons intc solid angle d Ω and energy dE will $k \in$ denoted by $d \sigma_{\text {RAD }} / d \Omega E^{\prime}$. The corrected cross section is by definition the cross section for the hadronic process calculated to lowest crder in α, that is, assuming the exchange of a single photon with the lowest order expressions for the photon propagator and electron-photon vertex $u s \in d$. The corrected cross section will be denoted by $d \sigma / d \Omega d E^{\prime}$.
part of the measured cross section consists of radiative tail frcm elastic ep scattering. The formula used for the elastic radiative tail was the following.

$$
\begin{gather*}
\frac{d r_{E L A S ~ R A D}}{d \Omega d E^{\prime}}\left(E, E^{\prime},\right)=\left\{\frac{d \sigma_{1}^{\prime}}{d s d E^{\prime}}\left(E, E^{\prime},:\right) \frac{t}{t_{E L}}\right. \\
\left.+t_{b} w(E, E-\omega) \eta^{\prime} \frac{d \sigma_{0}^{\prime}}{d \Omega}(E-\omega, \theta)+t_{a} w\left(E^{\prime}+\omega^{\prime}, E^{\prime}\right) \frac{d \sigma_{0}^{\prime}}{d \Omega}(E, \theta)\right\} \frac{\left(\frac{k}{\sqrt{E E^{\prime}}}\right)^{t+b t_{b}+b t_{a}}}{\Gamma\left(1+b t_{b}+b t_{a}\right)} \tag{1}
\end{gather*}
$$

d σ_{1}^{\prime} dude' is the cross secticn for bremsstralung during elastic scattering, calculated to lowest order in α, but with higher order in α correcticns to the photon propagator and electron-photon vertex. It is given by the formula $B .5$ of mo and rsai, reference 24 , with the modified proton elastic form factors F and 6 , of 3.5 as follows.

$$
F\left(q^{2}\right)=\frac{4\left(G_{E}^{2}\left(q^{2}\right)+\frac{q^{2}}{4 M^{2}} G_{M^{2}}^{2}\left(q^{2}\right)\right.}{1+\frac{q^{2}}{4 M^{2}}}\left(1+\delta^{\prime}\left(q^{2}\right)\right)
$$

$$
\begin{equation*}
\mathrm{G}\left(\mathrm{q}^{2}\right)=4 \mathrm{G}_{\mathrm{M}}^{2}\left(q^{2}\right)\left\{1+\delta^{\prime}\left(q^{2}\right)\right\} \tag{2}
\end{equation*}
$$

$\delta^{\prime}\left(q^{2}\right)$ represents the q^{2} dependent electrodynamic correction.

$$
\delta^{\prime}\left(q^{2}\right)=\frac{2 \alpha}{\pi}\left(\frac{13}{12} \log \frac{q^{2}}{m^{2}}-\frac{14}{9}\right)
$$

G_{E} and G_{M} were determined $k y$ a fit to all availiable slat elastic ep data, taken with both the 8 and 20 gev spectrometers and analyzed assuming the scaling law, $G_{M}=2.793 G_{E}$. Figure $A .2$ is a graph of G_{E} obtained from the six parameter fit, which summarizes the cross section data over the range of q from 0 to 5 Gev .
dc ${ }_{0} / \mathrm{dr}$. is the corrected electron proton elastic cross section given by the usual Rosenbluth formula, but with electrodynamic corrections.

$$
\begin{align*}
& \frac{d \sigma_{0}^{1}}{\mathrm{~d} \Omega}(\mathrm{E}, \theta)=\frac{\alpha^{2}}{4 \mathrm{E}^{2}} \frac{\cos ^{2} \frac{\theta}{2}}{\sin ^{4} \frac{\theta}{2}}\left[\frac{2 \mathrm{M} \mathrm{G}}{\mathrm{E}} \mathrm{C}^{2}\left(\mathrm{q}^{2}\right)+\frac{\mathrm{q}^{2}}{4 \mathrm{M}^{2}} \mathrm{G}_{\mathrm{M}^{2}}^{\left(\mathrm{q}^{2}\right)}\right. \\
& 1+\mathrm{q}^{2} / 4 \mathrm{M}^{2} \tag{3}
\end{align*}
$$

$t_{E L}$ is the equivalent radiator for radiation coming from the electron lines alone, as given by I. 16 . t is the total equivalent radiator defined by 1.17 with the integration preformed as in IT. 14. Both tel and tare calculated at $E-\omega, E^{\prime}, \theta$ instead of E, E^{\prime}, θ since this gives the q^{2} which is most important in the large angle

Fig. A. 2
breasstralung process. That is, this is the most probable momentum transfer to the proton. This factor $t / t E L$ is an attempt to estimate the extra hard radiation coming from the proton. W(E,E)t is the first order probability to lose energy $E-E$, in target thickness t radiation lengths as given in III. As usval $b=4 / 3+a$ with a given by III.6. t_{b} and t_{a} are the thicknesses of material fefore and after the point of scattering, measured in radiation lengths. k is the soft photon limiting energy as defined by equation (19) of IV. other kinematic quantities are defined as follows.

$$
\begin{align*}
& n=1+\frac{2 \mathrm{E}}{\mathrm{M}} \sin ^{2} \cdot / 2 \\
& \eta^{\prime}=\frac{1}{1-\frac{2 \mathrm{E}^{\prime}}{\mathrm{M}} \sin ^{2} \theta / 2} \\
& \omega=\mathrm{E}-\eta^{\prime} \mathrm{E}^{\prime} \\
& \omega^{\prime}=\frac{\mathrm{E}}{\eta}-\mathrm{E}^{\prime} \tag{4}
\end{align*}
$$

It is possible to check formula (1) experimentally to some extent. This is done in the most straightforward way in the region arove fion treshold, that is for the missing mass 0 less than the proton wass plus one pion mass. In that kinematic region the entire measured cross section consists of elastic radiative tail. Also all the photons are soft so the theoretical uncertainties about the soft
photon limiting energy k are not important. cross sections of this kind with fairly suall errors were measured at 6 and 10 degrees . Eigure A. 3 shows a comparison of the cross section predicted by formula (1), averaged over the spectrometer acceptance, with the observed cross section. The observed cross section for scattering from hydrogen is the full target minus the $\in \mathbb{E} \boldsymbol{f} \boldsymbol{f}$ target background.

The figure shows several different types of data points since points above and kelow the elastic peak are ploted together, that is, the aksissca is actually $\left|\omega^{\prime}\right|$. as can be seen there is a wing $c n$ the distribution extending a considerable distance above the elastic peak. In lieu of having a detailed model of the spectometer and initial beam that would allow calculation of the complete shape of the elastic peak including this high energy wing it was decided that the most correct expediency would be to assume a symmetrical low energy wing and to subtract it from the measured cross section. The difference between the solid dots and the $x^{\prime} s$ is the effect of this subtraction.

Two spectrmeter settings with half overlafping energy acceptance where used to obtain the full target cross section. The empty target cross section amounts to approximately ten per cent of the full, and it is obtained from a single spectrometer setting. In additicn a smooth pclyncmial fit is made tc tre empty target crose section.
$\underline{-}$

Fig. A. 3

An important source cf error in this comparison is the uncertainty in the missirg energy ω^{\prime}. This is a small error as long as the elastic $p \in a k$ is centered around $\omega^{\prime}=0$. Finally there is always the error caused by ignorance of the elastic cross section itself, which amounts to several per cent.

In the deef inelastic, which is the region of main interest, it was possible to place an upper limit on the elastic radiative tail ty experimental measurement. For small E (W large), the radiative tail from elastic scattering predcminates, the remainder of the cross section being non-radiative (cnly soft radiation) and the sum of radiative tails from inelastic transistions $e P \rightarrow \in P_{j}$ with M_{j} less than W. Figure $A .4$ shows the elastic tail from formula (1) (averaged over spectrineter acceptance) compared to the measured inelastic cross secticn spectrum for $E=4.5$ Gev and $\theta=6$ degrees. The x 's are the elastic tail plus the inelastic cross section $d \sigma / \partial \Omega E^{\prime}\left(E, E^{\prime}, \theta\right)$ obtained from a fit given in reference 15. The circles are the measured cross sections which have negligible statistical error bars. However there may be quite large systematic errcrs at small E as indicated. The difference between the circles and the *'s is the sum of radiative tails frow inelastic transistions.

Unfortunately with the limited accuracy of the availiable data, it is imposible to experimentally justify

Fig. A. 4
foruula (1) or more generally the treataent of higher crder effects given here. These comparisons are meant as rough checks that the results are reasonable.

The formala used to radiatively correct the measured inelastic cross section was the following.

$$
\begin{aligned}
\frac{d \sigma}{d \Omega d E^{\prime}}\left(E, E^{\prime}, \theta\right)= & \frac{1}{\left(\frac{\Delta E}{E}\right)^{t / 2+b t_{b}}\left(\frac{\Delta E^{\prime}}{E^{\prime}}\right)^{t / 2+b t_{a}} \frac{1+\delta^{\prime}\left(q^{2}\right)}{\Gamma\left(1+b t_{b}+b t_{a}\right)}} \\
& \times\left\{\begin{array}{l}
\frac{d \sigma_{R A D}}{d \Omega d E^{\prime}}\left(E, E^{\prime}, \theta\right)-\frac{d \sigma_{E L A S R A D}}{d \Omega d E^{\prime}}\left(E, E^{\prime}, \theta\right)
\end{array}\right.
\end{aligned}
$$

$$
-\int_{E^{\prime}+\Delta E^{\prime}}^{E_{\max }^{\prime}} d E_{1}^{\prime}\left(\frac{v_{1}}{E_{1}^{\prime}-E^{\prime}}+t_{a} w\left(E_{1}^{\prime}, E^{\prime}\right)\right) \frac{d \sigma}{d \Omega d E^{\prime}}\left(E, E_{1}^{\prime}, \theta\right)\left(\frac{k_{1}}{E}\right)^{t / 2+b t_{b}} k_{1}^{\prime}{\left.\frac{E^{\prime}}{t / 2+b t_{a}}\right)^{t} \frac{1+\delta^{\prime}\left(q_{1}^{2}\right)}{\Gamma\left(1+b t_{b}+b t_{a}\right)}}_{\}}^{\}}
$$

The two integrals involve the already corrected cross section and represent the radiative tails from inelastic production of higher mass states of the proton. End and $E_{\text {min }}$ are the energies at fion threshold along the path of integration.

$$
\begin{gathered}
\mathrm{E}_{\min }=\left(\mathrm{E}^{\mathrm{t}}+\mathrm{m}_{\pi}+\mathrm{m}_{\pi}^{2} / 2 \mathrm{M}\right) \eta^{\prime} \\
\mathrm{E}_{\max }^{\prime}=\left(\mathrm{E}-\mathrm{m}_{\pi}-\mathrm{m}_{\pi}^{2} / 2 \mathrm{M}\right) / \eta
\end{gathered}
$$

$$
\begin{equation*}
\Delta \mathrm{E}=\eta \eta^{\prime} \Delta \mathrm{E}^{\prime} \tag{6}
\end{equation*}
$$

It is only an approximation that the radiative tail can be expressed only in teras of the corrected cross section at two foints $E-\omega, E^{\prime}, \theta$ and $E, E^{*}+\omega^{*} \theta$ instead of as an integral involving the two inelastic form factors individually. However this so called "peaking-factorization" approximation causes an error of order ten per cent in the calculated radiative tail, which is tclerable in this case. v_{b} and v_{a} play the role of equivalent radiators for the hard photon bremsstralung process. They are not well defined theoretically ard the peaking-factorization approximation is valid by virtue of being tested numerically by comparing it to formula B. 5 of Mo-Tsai. of course to do this one must know the inelastic form factors beforehand - so at best one can find equivalent radiators v_{b} and v_{a} that work well for "reasonable" tehavior cf the form factors, but mathematically the peaking-factorization approximation is by usual standards, quite tad.

The following peaking-factorization
aperoximation equivalent radiators were used.

$$
\begin{align*}
& v_{b}=\frac{t}{2}\left[\frac{E_{1}}{E}-.2\left(1-\frac{E_{1}}{E}\right)+.7\left(1-\frac{E_{1}}{E}\right)^{2}\right] \\
& v_{a}=\frac{t}{2}\left[\frac{E^{\prime}}{E_{1}^{\prime}}-.2\left(1-\frac{E^{\prime}}{E_{1}^{\prime}}\right)+.7\left(1-\frac{E^{\prime}}{E_{1}^{\prime}}\right)^{2}\right] \tag{7}
\end{align*}
$$

The equivalent radiator t in the exponent of the soft photon factor and above in Equ. 7 is taken to be,

$$
\begin{equation*}
\mathrm{t}=\frac{2 \alpha}{\pi}\left(\log \frac{\mathrm{q}^{2}}{\mathrm{~m}^{2}}-1\right) \tag{8}
\end{equation*}
$$

The soft photon limiting energies are defined as follows

$$
\begin{align*}
& \mathrm{k}_{1}=\min \left(\frac{1}{3} \mathrm{E}, \omega_{1}^{\prime}\right. \\
& \mathrm{k}_{1}^{\prime}=\min \left(\frac{1}{3} \mathrm{E}^{\prime}, \omega_{1}^{\prime}\right) \tag{9}
\end{align*}
$$

For the E integral $\omega_{1}=E-E_{1}, \quad \omega_{1}^{\prime}=\omega^{\prime} / \eta \eta^{\prime}$. For the E^{\prime} integral $\quad \omega_{1}^{\prime}=E_{1}^{\prime-E^{\prime}}, \omega_{1}=\eta \eta^{\prime} \omega^{\prime}$. The resulting corrected cross section must not be sensitive to the choice $1 / 3$ above since this fraction is uncertain in the range say. 2 to. 8 .

The q2is in formula (5) are defined as follows.

$$
\begin{align*}
q^{2} & =4 E E^{\prime} \sin ^{2} \theta / 2 \\
q_{1}^{2} & =4 E_{1} E^{\prime} \sin ^{2} \theta / 2 \\
q_{1}^{2} & =4 E E_{1}^{\prime} \sin ^{2} \theta / 2 \tag{10}
\end{align*}
$$

ΔE, is arbitrary as lcng as it is sufficiently small sc that the cross section $d \sigma / d \Omega \mathrm{dE}$ does not vary appreciably over this range of energies. More precisely $d \sigma / d \Omega d E$ is defined as the limit of the above expression (5) for $\Delta \mathrm{E}^{\mathrm{r}} \boldsymbol{0}$. Assuming the cross section is measured only for a certain number of lines or spectra $(E, \theta$ constant, E, varying), the corrected cross section must be interpolated and extrapolated from the weasured lines in order to do the first integraticn in formula (5). The precise relationshif of the corrected cross section to the measured cross section is that the corrected cross section when interpolatedextrapolated according to the scheme chosen, satisfies equation (5) alcng the measured lines. The final answer can be quite sensitive to the method of interpolationextrapolation used.

The technique of radiatively correcting the measured elastic electron－proton crose section is rather different than in the inelastic case althougr the physics of the higher order electromagnetic processes is entirely the same． The measured cross secticn $d \sigma_{R A D} / d \Omega E^{3}$ is obtained in the regicn of the elastic peak，that is，\cong M．From the measured cross section it is desired to obtain the radiatively corrected cross section $d \sigma_{0} / d \Omega$ ，that is，the cross section for the frccess ep－－ep calculated to lowest order in α ．In this kinematic region no radiated photon can have a large energy so the theoretical uncertainties about multiple hard photon radiaticn are absent．If $⿴ 囗 十$ is less than the proton mass plus one pion mass，no inelastic processes are possible except photon radiation．

The situation is comflicated because the resolution of the spectrometer measuring E and θ ，and the initial beam definition in energy and spacial and angular extent have an important effect cn the measured cross section．The radiated elastic electron－froton cross section is given by

$$
\begin{align*}
\frac{\mathrm{d} \sigma_{\mathrm{RAD}}}{\mathrm{~d} \Omega \mathrm{dE}}\left(\mathrm{E}, \mathrm{E}^{\prime}, \theta\right)= & \int_{\eta^{\prime} \mathrm{E}^{\prime}}^{\mathrm{E}} \frac{\frac{\mathrm{t}}{2}+\mathrm{b} t_{\mathrm{b}}}{\mathrm{E}-\mathrm{E}_{1}} \frac{\left(\left(\mathrm{E}-\mathrm{E}_{1}\right) / \mathrm{E}_{1}\right)^{\mathrm{t} / 2+\mathrm{bt}} \mathrm{~b}}{\Gamma\left(1+\mathrm{bt} \mathrm{~b}_{\mathrm{b}}\right)} \\
& \times \frac{\mathrm{d} \sigma_{0}}{\mathrm{~d} \Omega}\left(\mathrm{E}_{1}, \theta\right)\left(1+\delta^{\prime}\right) \frac{\frac{t}{2}+b t_{a}}{\left(\mathrm{E}_{1} / \eta_{1}\right)-\mathrm{E}^{\prime}} \frac{\left.\left[\left(\mathrm{E}_{1} / \eta_{1}\right)-\mathrm{E}^{\prime}\right) / \mathrm{E}^{\prime}\right]^{t / 2}+\mathrm{bt} t_{a}}{\Gamma\left(1+\mathrm{bt} \mathrm{a}^{\prime}\right)} \tag{1}
\end{align*}
$$

Where t is the total equivalent radiator，t_{b} and t_{a} are the radiation lengths of material before and after the point of
scattering, $b i \leq 4 / 3+a$, with a defined by Eq. A.III. 6 and (' is the correction due to quantum mechanical effects not involving radiation. As usual, the kinematic quantities η, η^{\prime} are defined as fcllows:

$$
\begin{aligned}
\eta & =1+\frac{2 \mathrm{E}}{\mathrm{M}} \sin ^{2} \theta / 2 \\
\eta_{1} & =1+\frac{2 \mathrm{E}_{1}}{\mathrm{M}} \sin ^{2} \theta / 2 \\
\eta^{\prime} & =\frac{1}{1-\frac{2 \mathrm{E}^{\prime}}{\mathrm{M}} \sin ^{2} \theta / 2}
\end{aligned}
$$

When E is sufficiently near the elastic peak E / η so that the cross section ${ }_{0} / d_{s}$ dces not vary appreciably over the range of integration, Eq. 1 reduces to
$\frac{\left.\mathrm{d} \sigma_{\mathrm{RAD}}^{\mathrm{d} \Omega \mathrm{dE}}\left(\mathrm{E}, \mathrm{E}^{\prime}, \theta\right)=\frac{\mathrm{d} \sigma_{0}}{\mathrm{~d} \Omega}(\mathrm{E}, \theta) \frac{1+\delta^{\prime}}{\Gamma(1+\mathrm{bt}} \mathrm{b}^{+\mathrm{bt}} \mathrm{a}_{\mathrm{a}}\right)}{\mathrm{t}+\mathrm{bt}_{\mathrm{b}}+\mathrm{bt}} \omega_{\mathrm{a}}\left(\frac{\omega}{\mathrm{E}}\right)^{\mathrm{t} / 2+\mathrm{bt}} \mathrm{b}_{\mathrm{b}}\left(\frac{\omega^{\prime}}{\mathrm{E}^{\prime}}\right)^{\mathrm{t} / 2+\mathrm{bt}} \mathrm{a}_{\mathrm{a}}$
where $\omega=E-\eta^{\prime} E^{\prime}, \omega^{\prime}=E / \eta-E^{\prime}$.
Tsai has calculated the radiative corrections to elastic electron scattering to lowest order in α including corrections to the proton (or charge z) photon vertex, two photon exchange and radiation involving the proton for charge z). This correction is defined by the following equation:

$$
\int_{E / \eta-\omega^{\prime}}^{\mathrm{E} / \eta} \frac{\mathrm{d} \sigma_{\mathrm{RAD}}}{\mathrm{~d} \Omega \mathrm{dE}^{\mathrm{t}}}\left(\mathrm{E}, \mathrm{E}^{\prime}, \theta\right) \mathrm{dE}=\frac{\mathrm{d} \sigma_{0}}{\mathrm{~d} \Omega}(\mathrm{E}, \theta)\left(1+\delta\left(\omega^{\prime}\right)\right)
$$

Tsai's expression for δ is given by Eg. IT. 6 of Ref. 24. Substituting expressicn (2) for do $\sigma_{\text {RAD }}$ dade', in the case when $t_{b}=t_{a}=0$ and dropeing higher order terms in α. we find that

$$
\begin{equation*}
\delta=\delta^{\prime}+\mathrm{t} \log \sqrt{\eta} \frac{\omega^{\prime}}{\mathrm{E}^{\prime}} \tag{4}
\end{equation*}
$$

He use Eq. 4 to define δ^{\prime}. In the case when radiation from the target particle is nct significant, that is, when 7 and z^{2} terms in Mo-Tsai, II. 6 can be dropped, we haye the approximate result that

$$
\delta^{\prime}=\frac{2 \alpha}{\pi}\left(\frac{13}{12} \log \frac{q^{2}}{m^{2}}-\frac{14}{9}\right)
$$

Also, it is seen that the dependence of δ on the energy interval ω^{\prime} is determined cy the total equivalent radiator t

$$
\frac{\mathrm{d} \delta}{\mathrm{~d} \omega^{\prime}}=\frac{\mathrm{t}}{\omega^{\prime}}
$$

In practice this allows t to be obtained from Mo-Tsai formula II. 6.

Given the physics of the ideal process summarized by formula 1, there remains the problem ofextacting the corrected cross section from the data. There are many schemes for dcing this, the most straightforward forward
being to calculate the exfected yields on a counter-bycounter (or counter bin) tasis from a detailed model of the initial beam and the spectroneter using formala 1 , and compare with the measurement. This method has the advantage that it does not confuse the real apparatus-related problems involved in the measurement. The disadvantage is that the Monte Carlo computer calculaticns are rather time consuming.

Figure $A .5$ shows a coparison of the calculated with the observed flastic cross section spectrum in missing energy. Events within the spectrometer acceptance are binned according to their missing energy ω^{\prime}. The data points (with error tars) represent the cross section for each bin, that is, $N /\left(\Delta \Omega N_{\text {in }} n\right)$, where N is the number of electrons scattered from hydrccen into the rin for in incident electrons, $\Delta \Omega$ is the solid angle of the bin and n is the number of target protons fer cman. The sclid curve is that same quantity, calculated using formula 1 tor the cross section.

Formula 1 involves folding the elastic cross section With a probability distribution for radiaticn before and after. This was accomplished in the Monte Carlo program by generating soft photon radiation energy losses with the proper distribution, and iorization losses as well. If B is uniformly distributed in $(0,1)$, then the quantity $\quad \epsilon=E F^{1 /\left(t / 2+b t_{b}\right)}$ will be distributed like $\left(t / 2+b t_{b}\right) / \epsilon(\epsilon / E)^{t / 2+b t_{b}}$, which is the distribution of soft
photon energy losses befcre scattering for an equivalent radiator t and a real radiator t_{b} -

The distribution of energy losses due to ionization bas the approximate form $\xi^{t}{ }_{b} / \epsilon$ for $\epsilon>\Delta_{0}$, where Δ_{0} is given by III. 15 and ξ by III. 10. This is simulated by $\Delta_{0}+E /\left(E^{-}\right.$ $\left.\xi t_{b}\right) / \xi t_{b} \mathrm{E}+1$) for R a randca nomber uniformiy aistributed in $(0,1)$.

For the example shown in Figure A.5, $E=9.999 \mathrm{GeV}$, $\theta=12.5^{\circ} \quad\left(q^{2}=3.784 \mathrm{GE} \mathrm{V}^{2}\right)$. The generated spectrum assumed the elastic form factors were given a fit to Slac data shown in figure $A .2$. The ratio of the sum of all bins from experiment to that of theory is 1.037 ± 0.032.

1508в17

Fig. A. 5

The radiatively corrected cross section for a proton at rest to scatter a high-energy electron from initial momentum p_{μ} to final momentum p_{μ}^{\prime} in the range $d^{3} p$, can ke written as follows:

$$
\begin{equation*}
\mathrm{d} \sigma=\frac{\mathrm{j}_{\mu \nu} 4 \pi^{2} \alpha W_{\mu \nu}}{\mathrm{q}^{4}} \frac{\mathrm{~d}^{3} \mathrm{p}^{\prime}}{(2 \pi)^{3}} \tag{1}
\end{equation*}
$$

where $q_{\mu}=p_{\mu}-p_{\mu}$ and $j_{\mu \nu}$ and $4 \pi^{2} \alpha{ }_{\mu \nu}$ are the averaged electromagnetic currents represented by the electron and hadronic system, for exafyle,

$$
4 \pi^{2} \alpha \mathrm{~W}_{\mu \nu}=\frac{\mathrm{E}_{\mathrm{p}}}{\mathrm{M}} \frac{1}{2} \sum_{\text {spin }} \mathrm{J}\left\langle\mathrm{P}^{\mid J_{\mu}}(\mathrm{x}) \mathrm{J}_{\nu}(0) \mid \mathrm{P}\right\rangle \mathrm{e}^{\mathrm{iqx}} \mathrm{~d}^{4} \mathrm{x}
$$

In the laboratory syster $j_{\mu \nu}$ takes the following form:

$$
j_{\mu \nu}=\frac{e^{2} q^{2}}{2 E E^{1}(1-\epsilon)}\left[\begin{array}{cccc}
2 \epsilon \frac{\nu^{2}}{2} & 0 & 0 & \frac{2 i \epsilon \nu}{q^{2}} \sqrt{q^{2}+\nu^{2}} \tag{2}\\
0 & 1+\epsilon & 0 & i \sqrt{2 \epsilon(1+\epsilon)} \\
0 & 0 & 1-\epsilon & 0 \\
\frac{2 i \epsilon \nu}{q^{2}} \sqrt{q^{2}+\nu^{2}} & i \sqrt{2 \epsilon(1+\epsilon)} & 0 & -2 \epsilon\left(1+\frac{\nu^{2}}{q^{2}}\right)
\end{array}\right]
$$

Where the momentum transfer is along the 1 -axis and the
scattering takes place in the $1-2$ plane.

$$
q^{2}=q_{\mu} q_{\mu}=4 E E^{\prime} \sin ^{2} \frac{\theta}{2}
$$

$$
\nu=q_{0}=E-E^{\prime}
$$

$$
\begin{equation*}
\epsilon=\frac{1}{1+2 \tan ^{2} \frac{\theta}{2}\left(1+\frac{\nu^{2}}{q^{2}}\right)} \tag{3}
\end{equation*}
$$

The quantity ϵ lies in the range 0 to 1 and is the longitudinal-transverse polarization ratio of the source of virtual photons provided $k y$ the scattering electron.
$4 \pi^{2} \alpha W_{\mu \nu}$ is the electromagnetic current tensor of the proton system. ${ }_{\mu}{ }_{\mu \nu}$ is a function of the proton momentum P_{μ}
 $W_{\mu \nu}$ can be written in the general form. 25

$$
\begin{equation*}
W_{\mu \nu}=W_{1}\left(\delta_{\mu \nu}-\frac{q_{\mu} q_{\nu}}{2}\right)+\frac{W_{2}}{\mathrm{M}^{2}}\left(\mathrm{P}_{\mu}-\frac{\mathrm{Pq}^{2}}{\mathrm{q}^{2}} \mathrm{q}_{\mu}\right)\left(\mathrm{P}_{\nu}-\frac{\mathrm{Pq}}{q^{2}} q_{\nu}\right) \tag{4}
\end{equation*}
$$

where W_{1} and W_{2} are functions of the invariants q^{2} and ν.
In the laboratory system the proton electromagnetic current $W_{\mu \nu}$ looks as follows:

$$
W_{\mu \nu}=\left[\begin{array}{cccc}
\frac{\nu^{2}}{q^{2}} W_{L} & 0 & 0 & \frac{i \nu \sqrt{q^{2}+\nu^{2}}}{q^{2}} W_{L} \tag{5}\\
0 & W_{T} & 0 & 0 \\
0 & 0 & W_{T} & 0 \\
\frac{i \nu \sqrt{q^{2}+\nu^{2}}}{q^{2}} W_{L} & 0 & 0 & -\left(1+\frac{\nu^{2}}{q^{2}}\right)^{W_{L}}
\end{array}\right]
$$

where,

$$
\mathrm{W}_{\mathrm{L}}=\mathrm{W}_{2}\left(l_{1}+\frac{v^{2}}{\mathrm{q}^{2}}\right)-\mathrm{W}_{1}, \quad \mathrm{~W}_{\mathrm{T}}=\mathrm{W}_{1}
$$

The differential cross section for detecting the scattered electron in sclid angle $d \Omega$ and energy range dE' is the following:

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega \mathrm{dE}}=\frac{\alpha^{2} \mathrm{E}^{\prime}}{\mathrm{Eq}^{2}} \frac{2}{1-\epsilon}\left(\mathrm{W}_{\mathrm{T}}+\epsilon \mathrm{W}_{\mathrm{L}}\right) \tag{6}
\end{equation*}
$$

This is commonly written as

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega \mathrm{dE}^{\prime}}=\frac{\alpha^{2}}{4 \mathrm{E}^{2}} \frac{\cos ^{2} \frac{\theta}{2}}{\sin ^{4} \frac{\theta}{2}}\left(\mathrm{~W}_{2}+2 \tan ^{2} \frac{\theta}{2} \mathrm{~W}_{1}\right) \tag{7}
\end{equation*}
$$

The quantity R is defined as the ratio of the probability for longitudinal photon absorption to that for transverse photons.

$$
\begin{equation*}
\mathrm{R}=\frac{\mathrm{W}_{\mathrm{L}}}{\mathrm{~W}_{\mathrm{T}}}=\frac{\mathrm{q}^{2}}{\nu^{2}} \frac{\mathrm{~W}_{11}}{\mathrm{~W}_{22}} \tag{8}
\end{equation*}
$$

Where the second equality reters to the tensor ${ }_{\mu \nu}$, given above. As $q^{2} \rightarrow 0, W_{11} / W_{22}$ has a finite limit, since it is the ratio of current components for a static proton; thus $R \quad 0$ as $q^{2}-0$.

In the limit of $\mathrm{q}^{2} \rightarrow 0,4 \pi^{2} \alpha{ }_{\mu \nu} \epsilon_{\mu} \epsilon_{\nu} /(2 \nu)$ is the cross section for absorbing a real photon with polarization ϵ_{μ} and energy ν. The total photo-absorftion cross section is

$$
\begin{equation*}
\sigma_{\gamma \mathrm{p}}=\frac{4 \pi^{2} \alpha \mathrm{~W}_{\mathrm{T}}}{\nu} \tag{9}
\end{equation*}
$$

Handz6 expresses the cross section in terms of total absorption cross sections for transverse and scalar virtual photons.

$$
\begin{equation*}
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega \mathrm{~d} E^{1}}=\Gamma\left(\sigma_{\mathrm{T}}+\epsilon \sigma_{\mathrm{S}}\right) \tag{10}
\end{equation*}
$$

where

$$
\sigma_{\mathrm{T}}=\frac{4 \pi^{2} \alpha}{\mathrm{~K}} \mathrm{~W}_{\mathrm{T}}
$$

$$
\begin{equation*}
\sigma_{\mathrm{S}}=\frac{4 \pi^{2} \alpha}{\mathrm{~K}} \mathrm{~W}_{\mathrm{L}} \tag{11}
\end{equation*}
$$

Γ is the flux of virtual fhotons and k their effective momentum

$$
\begin{align*}
& \Gamma=\frac{\alpha}{4 \pi^{2}} \frac{2 \mathrm{Eq}^{\prime} \mathrm{K}}{\mathrm{Eq}^{2}(1-\epsilon)} \\
& \mathrm{K}=\frac{\mathrm{W}^{2}-\mathrm{M}^{2}}{2 \mathrm{M}} \tag{12}
\end{align*}
$$

Another natural definition of these cross sections is the following:

$$
\begin{gather*}
\sigma_{\mathrm{T}}^{\prime}=\frac{4 \pi^{2} \alpha \mathrm{~W}_{\mathrm{T}}}{\sqrt{\mathrm{q}^{2}+\nu^{2}}} \\
\sigma_{\mathrm{S}}^{\prime}=\frac{4 \pi^{2} \alpha \mathrm{~W}_{\mathrm{L}}}{\sqrt{\mathrm{q}^{2}+\nu^{2}}} \tag{13}
\end{gather*}
$$

with the virtual photon flux given $k y$,

$$
\begin{equation*}
\Gamma^{\prime}=\frac{\alpha}{4 \pi^{2}} \frac{2 E^{\prime} \sqrt{q^{2}+\nu^{2}}}{E q^{2}(1-\epsilon)} \tag{14}
\end{equation*}
$$

For convenience in the description of resonance production, Bjcrken and walecka have introduced the form factors f_{+}. F_{-}, and f_{c} for the electroproduction of a final stato with definite mass M_{j}. 27 The electron scattering
cross section is given by

$$
\begin{align*}
\frac{d \sigma}{d \Omega \bar{d} E^{4}}= & \frac{\alpha^{2}}{4 E^{2}} \frac{\cos ^{2} \theta / 2}{\sin ^{4} \theta / 2}\left(\frac{q^{4}}{q^{*}}\left|f_{c}\right|^{2}+\left(\frac{q^{2}}{2 q^{2}}+\frac{M_{j}^{2}}{M^{2}} \tan ^{2} \theta / 2\right)\right. \\
& \left.\times\left(\left|f_{+}\right|^{2}+\left|f_{-}\right|^{2}\right)\right) 2 M \delta\left(w^{2}-M_{j}^{2}\right) \tag{15}
\end{align*}
$$

where W is the mass of the final state $W^{2}=M 2+2 M \nu-q^{2}$ and a* is the momentum of the photon in the isobar rest frame.

$$
\begin{equation*}
q^{*^{2}}=q^{2}+\frac{\left(M_{j}^{2}-M^{2}-q^{2}\right)^{2}}{4 M_{j}^{2}} \tag{16}
\end{equation*}
$$

The transformation between these different structure tunctions is given by the fcllowing:

$$
\begin{align*}
& \mathrm{W}_{1}=\frac{\mathrm{K}}{4 \pi^{2} \alpha} \sigma_{\mathrm{T}}=\frac{\mathrm{W}^{2}}{\mathrm{M}}\left(\left|\mathrm{f}_{+}{ }^{2}+\left|\mathrm{f}_{-}\right|^{2}\right) \delta\left(\mathrm{W}^{2}-\mathrm{M}_{\mathrm{j}}^{2}\right)\right. \\
& \mathrm{W}_{2}=\frac{\mathrm{K}}{4 \pi^{2} \alpha} \frac{\sigma_{\mathrm{T}}+\sigma_{\mathrm{S}}}{1+\nu^{2} / \mathrm{q}^{2}}=\frac{1}{1+\nu^{2} / \mathrm{q}^{2}} \frac{\mathrm{~W}^{2}}{\mathrm{M}}\left(\left|\mathrm{f}_{+}\right|^{2}+\left|\mathrm{f}_{-}\right|^{2}+\frac{2 \mathrm{~W}^{2}}{\mathrm{M}^{2}} \frac{1}{1+\nu^{2} / \mathrm{q}^{2}}\left|\mathrm{f}_{\mathrm{c}}\right|^{2}\right) \delta\left(\mathrm{W}^{2}-\mathrm{M}_{\mathrm{j}}^{2}\right) \tag{17}\\
& \sigma_{\mathrm{T}}=\frac{4 \pi^{2} \alpha}{\mathrm{~K}} \mathrm{~W}_{1}=\frac{4 \pi^{2} \alpha \mathrm{~W}^{2}}{\mathrm{MK}}\left(\left|\mathrm{f}_{+}\right|^{2}+\left|\mathrm{f}_{-}\right|^{2}\right) \delta\left(\mathrm{W}^{2}-\mathrm{M}_{\mathrm{j}}^{2}\right) \\
& \sigma_{\mathrm{S}}=\frac{4 \pi^{2} \alpha}{\mathrm{~K}}\left(\left(1+\frac{\nu^{2}}{\mathrm{q}^{2}}\right) \mathrm{W}_{2}-\mathrm{W}_{1}\right)=\frac{4 \pi^{2} \alpha \mathrm{~W}^{2}}{\mathrm{MK}} \frac{2 \mathrm{~W}^{2}}{\mathrm{M}^{2}} \frac{1}{1+\frac{\nu^{2}}{2}}\left|\mathrm{f}_{\mathrm{c}}\right|^{2} \delta\left(\mathrm{~W}^{2}-\mathrm{M}_{\mathrm{j}}^{2}\right) \quad(18) \tag{18}
\end{align*}
$$

$$
\begin{align*}
& \text { In the special case of elastic scattering } \\
& \left(\tau \equiv v^{2 / q^{2}=} q^{2} /\left(4 \mathrm{M}^{2}\right)\right), \\
& \mathrm{W}_{1}=2 \mathrm{M} \tau \mathrm{G}_{\mathrm{M}}^{2} \delta\left(\mathrm{~W}^{2}-\mathrm{M}^{2}\right) \\
& \mathrm{W}_{2}=2 \mathrm{M} \frac{\mathrm{G}_{\mathrm{E}}^{2}+\tau \mathrm{G}_{\mathrm{M}}^{2}}{1+\tau} \delta\left(\mathrm{W}^{2}-\mathrm{M}^{2}\right) \tag{19}\\
& \sigma_{\mathrm{T}}=\frac{4 \pi^{2} \alpha}{\mathrm{~K}} 2 \mathrm{M} \tau \mathrm{G}_{\mathrm{M}}^{2} \delta\left(\mathrm{~W}^{2}-\mathrm{M}^{2}\right) \\
& \sigma_{\mathrm{S}}=\frac{4 \pi^{2} \alpha}{\mathrm{~K}} 2 \mathrm{M} \mathrm{G} \mathrm{G}_{\mathrm{E}}^{2} \delta\left(\mathrm{~W}^{2}-\mathrm{M}^{2}\right) \tag{20}\\
& \mid f_{+}^{2}+\mathrm{f}_{-}^{2}=2 \tau \mathrm{G}_{\mathrm{M}}^{2} \\
& \mathrm{If}_{\mathrm{c}}^{2}=(1+\tau) \mathrm{G}_{\mathrm{E}}^{2} \tag{21}
\end{align*}
$$

1. see for example Electron Scattering and Nuclear and
 Benjamin, 1963
2. J. L. Yarnel1, G. E. Amold, E. J. Bendt, and E. C. Kerr, Fhys. Eev. 113, 1379 (1959)
3. E. D. Bloom, D. H. Coward, H. Destaebler, J. Drees, G. Miller, I. W. Mo, R. E. Taylor, M. Breidenbach, J. I. Friedman, G. C. Hartmann, and H. W. Kendall. Phys. Bev. Letters 23. 930 (1969)
4. M. Breidenbach, J.I. Friedman, H. W. Kendall, F. D. Bloom, D. H. Coward. H. Destaebler, J. Drees, L. W. Mo and G. E. Taylor, Phys. Rev. Letters 23 , 935 (1969)
5. The Stanford Two-mile Accelarator, edited by R. B. Neal. W. A. Benjauir, 1968
6. ibid, page 217
7. R. S. Larsen and D. Horelick, A Precisicn motoidal Charge Monitor for SLAC. Eroceeding of the Symposium on Beam Intensity Measurement, Daresbury Nuclear Physice Iaboratory, 1968
8. Luke Mo and C. Peck, Feport No. SLAC TN-65-29, Stanford Linear Accelerator Center (1965)
9. K. L. Brown, "A First- and Second-order Matrix Theory for the Design of Eean Transport Systems and Charged Particle Spectrometers", Report No. SIAC-75, Stanford Linear Accelerator Certer (1957)
10. D. Coward and G. C. Eartmann, SLAC Gronp A internal publication, August 1968
11. P. N. Kirk et al, "Elastic Electron-Proton Scattering at Large Four Momentua Transfer", (to be published)
12. L. D. Landau, "On the Energy Loss of Fast Particles by Ionization" Ccllected papers, edited by D. Ter Haar, Pergamon Eress, 1965
13. M. I. Breidentach, FrD Thesis, Report No. MIT-2098635. Massachusetts Institute of Technology (1970)
14. E. D. Blcom and F. J. Gilman, Report No. SLAC-PuB779. Stanford Linear Accelerator Center (1970)
15. E. D. Bloom, B. I. Cottrell, D. H. Coward, H. Destaebler, Jr., J. Erees, G. Miller, L. M. Mo, R. E. Taylor, J. I. Friedman, Ge C. Hartmann, and H. W. Kendall, Report No. SLAC-puB-653. Stanford Linear Accelerator Center (1969)
16. S. D. Drell and Turg-Mow Yan, Phys. Rev. Letters 24. 181 (1970)
17. R. P. Fegnman (unfutlished)
S. D. Drell, D. J. Levy and T. M. Yan, Phys. Rev. Letters 22, 744 (1969) J. D. Bjorken and E. A. Paschos. Phys. Rev. 185. 1975 (1969)
18. A. I. Akhiezer and V. E. Berestetskii, Quantum Electrodynamics, second edition, Interscience Publishers, 1965, Section 30 - Emission of Photons of Long Wavelength and Section 36.1-Electron-Electron Scattering
19. J. S. Schwinger, Earticles and_Sources, Gordon and Breach, 1969, Chapter 2-Electrodynamics
20. V. B. Berestetskii, Soviet Physics Uspekbi, 5, 7 , (1962), Section 4-Electromagnetic structure of Particles
21. D. R. Yennie, S. C. Frautschi and H. Surarannals of Physics, 13, 379 (1961). Appendix C
22. O. I. Dovzhenko and A. A. Pomanskii, Cosmic Rays, Volume 26, edited by D. V. Skobelvisyn, Consultants Bureau, New York, 1965
23. R. A. Rarly, SLAC Group A internal publication, December 1969
24. L. W. Mo and Y. S. Tsai, Reviews of Modern Physics, 41. 205 (1969)
25. S. D. Drell and J. D. malecka, Ann. of Phys. 28, 18 (1964)
26. L. N. Hand, PhD Thesis, Stanford University physics Department (1961)
27. J. D. Bjorken and J. D. walecka, Ann. of phys. 38, 35 (1966)
