
CHAPTER 3 

DATA ANALYSIS 

3.1 Overview 

Data were taken in experiment El54 in October and November of 1995. The deep 

inelastic data were taken at the beam energy of 48.3 GeV and at three nominal beam 

currents: 3 - lOlo, 5 - lOlo, and 9 - 10” electrons per pulse. Nine polarized target cells 

and four reference cells were used through the course of the experiment. The typical 

electron rate was 0.5 electrons per pulse in the 2.75” spectrometer and varied from 

0.07 to 0.2 electrons per pulse in the 5.5” spectrometer. The data were collected in 

runs which were each typically 200,000 spills long (or approximately half an hour). 

The data set consisted of more than 1800 runs that included asymmetry data (in 

parallel and perpendicular target polarization configurations), reference cell runs to 

determine the dilution factor, runs with the magnet polarity reversed to measure the 

charge symmetric backgrounds, and miscellaneous calibration and test runs. About 

_ 1.4 TBytes of data were stored on magnetic t.apes. After all cuts, about 100 million 

deep inelastic events were used in the analysis. 

The analysis was done in two steps. First, the raw data tapes were analyzed 

and the Data Summary Tapes (DSTs) were produced. The DST tapes contained 

the information about the Cherenkov hits, shower clusters, and tracks found in 

each spectrometer, as well as beam information. The DST production took seven 

weeks on four DEC Alpha 600 5/266 computers. A separate program was used to 

process the DST tapes and place electron events in 2 and Q2 bins for each beam 

helicity. The summary files produced in this process were used to calculate the 

physics asymmetries and structure functions. 
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The analysis was done independently by two groups based at SLAC and Caltech’. 

The results of both groups agree to a very high degree, and for the publications we 

have chosen to average the results of two groups. We will primarily present the 

analysis and results obtained at Caltech, and describe the main differences with the 

SLAC analysis. After first describing the analysis of the raw data, our attention will 

be turned to the DST analysis and physics results. 

3.2 Coordinate system 

In the following discussion, we will use the “analysis” coordinate system that 

is related to the central trajectory in the spectrometer. This is a natural system 

since trajectories of all particles in the detector hut are roughly symmetric around 

the central ray. The i axis of the analysis frame coincides with the central ray in 

the detector hut which is pitched up by & = 0.81” (2.65”) and offset down by 

nycr = 104.9 cm (114.3 cm) in the 2.75” (5.5”) spectrometer relative to the regular 

“spectrometer” system (cf. Section 2.6.2). Th e rotation is around the ? axis, so it is 

the same in both frames. The origin of the is chosen in such a way that the target 

is at z = 0 in the new frame. Hence, the transformation from the spectrometer to 

t,he analysis frame is given by 

X 

0 ( 

1 0 
Y = 0 cos c#I,, -sin+ 

C3*l) z 
analysis 0 sin &, c:siJ ( :).pec+ (+r) * 

Two coordinate systems are illustrated in Fig. 3.1. 

3.3 C herenkov analysis 

In E154, each of the four Cherenkov counters was equipped with a Flash ADC 

(FADC) t o d’g’t’ 1 1 ize the phototube pulses. The four channels of the FADC, running 

‘The “off-site” analysis based at Caltech was a collaborative effort of physicists from Caltech, 
UMass, Princeton, Syracuse University, and Temple University. 
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Spectrometer 

Analysis 
frame 

Fig. 3.1. The “spectrometer” and “analysis” coordinate systems. The prisms denote the 
dipole magnets. 

with internal clock frequency of 250 MHz, were interleaved to produce effective time 

bins of 1 nsec. An example of the waveform recorded by a Flash ADC is shown in 

Fig. 3.2. The primary purpose of the Cherenkov code was to single out separate 

phototube pulses and determine their time and amplitude (or total charge) which 

is proportional to the total number of photoelectrons emitted from the cathode of 

the phototube. 

A brief outline of the algorithm follows. First, we calculate the time derivative of 

the waveform and find all local maxima. Then, we determine the flat background for 

the waveform in the regions sufficiently far from all pulses and subtract it from the 

waveform. For each pulse found, we determine the pulse height (later to be related 

to the number of photoelectrons) and integrate the pulse to find the total charge. 

Corrections are made, if necessary, to account for saturated pulses (pulses higher 

than FADC range of 255 bits (about 2 V) are truncated to 255 bits), truncated pulses 

(that are late in the spill so the full charge is not recorded), and overlaps. The time 
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Fig. 3.2. A typical event (spill) in the Cherenkov detector recorded by a Flash ADC. 

of the pulse is determined by the time at the half height. The average signal shape, 

scaled by the height of the processed pulse, is used to separate overlapping pulses. 

The time resolution of the Cherenkov FADCs was found to be x 1.3 ns (see 

. Fig. 3.3, left). Th is is quite below par for the Hamamatsu R1584-01 phototubes, 

and is explained by the time jitter of the FADC clock. The clocks of each F,4DC, 

running at 250 MHz, were not synchronized. This produced a random jitter of 

4 nsec and contributed M 4/a = 1.2 nsec2 to the time resolution. The solu- 

tion,[l131 implemented in the Caltech analysis3, was to use TDCs clocked at 1 GHz 

to synchronize the FADCs. The resolution improved to x 0.8 nsec (Fig. 3.3, right)! 

reducing the accidental background in tracking and thus helping to reduce the pion 

contamination. 

The algorithm was found to be reasonably robust with an intrinsic dead time of 

less than 5 nsec. A typical response of a Cherenkov counter to electrons and pions is 

shown in Fig. 3.4. The response to electrons (the average number of photoelectrons) 

2We here loos el y use the RMS of the uniform distribution that is given by 4/m for a fixed 
width of’4. 

3The problem was solved too late to be implemented in the SLAC DST production 
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Fig. 3.3. Time resolution for a FADC alone (left), and for a FADC with TDC synchro- 
nization (right). 

Table 3.1. Average Cherenkov response to electrons, 

1 Tank ( 2Cl 2C2 5Cl 5C2 1 
# of photoelectrons 5.7 5.1 6.2 5.0 
c v2pe 16.8 14.1 12.1 13.6 

of all counters is summarized in Table 3.1.[lr4] Th e relation between the Cherenkov 

peak voltage and number of photoelectrons is given by 

V peak = &2,,(tank)J’E , (3.2) 

where coefficients CvZpe are also given in Table 3.1. 

The Cherenkov efficiency for electrons was found to be M 95%[“51 and was 

limited by the intrinsic pulse height cutoff of the algorithm (4-6 FADC units) and 

Cherenkov dead time. Efficiency for a typical Cherenkov cut used in the analysis 

(see Section 3.7.3.2) is about 90%. 
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Fig. 3.4. Typical Cherenkov response to electrons (open) and pions (hatched). 

3.4 Shower analysis 

3.4.1 Introduction 

The shower code is one of the major parts of the raw analysis that was different 

from the one used in the SLAC DST production. The shower counters provide 

electron identification via energy, E/p, and shower profile (shape, neural net) cuts. 

The cluster information is the basis for the tracking algorithm (see Section 3.5); 

in addition, the shower position resolution directly affects momentum and angular 

resolution. The shower analysis meets certain challenges in the high rate environ- 

ment of El54 due to the overlaps of the electron and pion clusters (Fig. 3.5). 

Such overlaps create rate-dependent biases in energy and position reconstruction 

and calorimeter-based electron identification, and thus have a potential to alter 

experimental asymmetries. It is important t,o have an analysis algorit,hm that is 

robust in the high rate environment; it is also necessary to study and correct for 

any possible rate dependence. 

The code benefited greatly from the experience with the existing SLAC code.[l16] 

At the same time, it was an entirely new code, and therefore provided an important 



106 

l 2.75' 

0 5.5O 

Q 
1 - 

% 09 - N * _ 
E 

% 
0.8 - 

0.6 
1 

0 
’ 0 

t c 

Fig. 3.5. Number of overlaps per electron cluster versus momentum of the electron in 2.75’ 
(closed circles) and 5.5” (open circles) spectrometers for the typical running conditions (run 
3366, beam current of 5 - 10” electrons/spill). A sharp rise at low momenta corresponds 
to increasing pion production rate. 
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cross-check of the existing algorithm. In addition, the spatial and timing resolutions 

were improved, and biases in the cluster position and energy reconstruction were 

eliminated. Also, as an alternative to the neural network used in the SLAC analysis, 

a particle identification (ID) method based on the information about the lateral 

shower profile was developed (the “shape cut”). The clustering algorithm and the 

shape analysis will be discussed in the following pages. 

In this Section, we follow the definitions adopted in the SLAC shower code.11’6J’fl 

An elementary cell is a signal induced by one particle in one block. Each cell is 

characterized by its time and energy. We record times of both leading (LE) and 

trailing edges (TE) of the photomultiplier pulses. Cell time is determined by its LE 

time. Cell energy is determined by the difference between TE and LE times as will 

be discussed below. Energies of all cells in one block always add up to the total 

energy deposited in that block in one spill. If a block does not have any TDC hits 

within one spill, we create one cell which carries full energy deposited in the block; 

the time of such a cell is undefined. A cell with a definite time is required to have 

a LE, but it does not always have a TE (misses of TE happen less than 1% of the 

time). A cluster is a collection of cells with common time that are grouped according 

to the set of rules to be discussed below. 

3.4.2 Clustering algorithm 

3.4.2.1 5 x 5 clusters 

Contrary to the standard SLAC analysis which employs the cellular automa- 

ton11181 technique, we have chosen a simpler and faster method sometimes referred 

to as “vector approach ” 11181 As a first step, after the data from the TDCs and ADCs . 

are copied into the local common blocks, we search the 10 x 20 shower array for the 

local energy maxima (“central blocks”) that pass the following criteria: 

1. There is at least 1 TDC hit in the central block: 
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2. The sum over 9 blocks around the central block 

c 
Ei > Ecut = CmPmin( row>. 

3x3 

The first requirement ensures that the cluster candidate has timing information. 

Electron energy deposition in the central block is always higher than the TDC 

threshold; the lack of a timing hit signals either a DAQ failure or an event affected 

by an overlap. Such clusters cannot be used in the further analysis. The second 

requirement provides a simple and effective pion rejection at the very early stage of 

the analysis. The value pm;” (row) is determined by the lowest momentum of electrons 

that hit the particular block after passing through the spectrometer. This value is 

in principle different for every row (and is increasing from top to bottom of the 

calorimeter). In practice the value of 9 GeV was used for every block. The constant 

c cut was chosen to be 0.7, safely below any reasonable E/p cut value4. Thus, most 

pions that deposit energy of less than 6.3 GeV are cut before the main clustering 

and tracking started, significantly reducing the precessing time. 

Having found the central block, we share its energy among its cells. The cluster 

is started with the highest energy cell of the central block. We add to the cluster 

cells from the surrounding 5 x 5 matrix that 

l among 8 blocks closest to the center and 

1. Are in time with the central block, or 

2. Have no TDC hits 

l among the outer 16 blocks and 

1. Are in time with the central block, or 

2. Have no TDC hits and no other cluster nearby 

4For the dedicated pion DST production, this value was lowered to 0.05. 
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Fig. 3.6. The pulse height as a function of the difference between the leading and trailing 
edge times for different discriminator levels. The error bars represent the RMS of the 
distribution. 

The time window is set to be /AtI < 5 nsec. 

3.4.2.2 Energy sharing 

When two or more particles hit one block, energies are added in the ADC. 

To separate them, we use the correlation between the pulse height and the time 

difference between the leading (LE) and trailing edges (TE) of the pulse (Fig. 3.6). 

For all pairs of leading and trailing edges (cells), we calculate the expected energy 
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e; = f(tTE - tc”) and error cri. We then minimize 

with a constraint 

c Ei = Got , (3.4) 

where Etot is the full energy deposit in the block, and solve for cell energies E;. The 

benefit of such an approach is obvious. For any TDC level, the dynamical range 

for the energy sharing is limited; from Fig. 3.6 one can see that the meaningful 

information can only be extracted if the ratio of the pulse height to threshold 

E/&n-es _ < 4. Electron pulses are often much higher than that, especially for the low 

thresholds 5. Pion pulses, on the contrary, are predominantly small. Thus, combining 

the pion and electron information reduces the error in electron energy determination. 

This is important to minimize the rate dependence associated with the E/p cut. 

3.4.2.3 Cluster time and position 

An energy-weighted average used by SLAC analysis 

x= c blocks Ici E; 

c blocks E; 
w4 

is known[“gl to give a biased estimate of the cluster position due to the relatively 

coarse transverse segmentation of the calorimeter. It results in a bias towards the 

coordinate of the central block, as could be clearly seen in Fig. 3.7 which shows 

the difference between the cluster position and the position of an associated track 

for the SLAG code. The position offset is as large as 1 cm, and maximizes when 

electrons hit the boundary of the block (ztr - q-, = 532 mm). Alternatively, we 

5The values of the discriminator thresholds are summarized in Table 3.2. Note the thresholds 
were set in mV, and the spread of thresholds in GeV corresponds to the spread of calibration 
constants. 
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Fig. 3.7. Performance of the SLAC shower code. (top) Shower position resolution. (bottom) 
Cluster spatial offset versus the position of the track relative to the center of the cent,ral 
block. All numbers are in mm. 
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Fig. 3.8. Cluster position versus the ratio of energies in the side and central blocks. Error 
bars represent the RMS of the distribution. 

‘(5.5”), and in y direction the resolution is 7.5 mm (2.75”) and 7.9 mm (5.5”). 

This is to be compared to crz = 9.7 mm and oy = 9.3 mm for the SLAC code 

(see Fig. 3.7, top). Th e improvement in the position resolution results in a better 

angular and momentum resolution (see Section 3.5). Note that the resolution was 

determined by comparing the coordinate of the shower cluster with the coordinate 

of the electron track at the z position of the shower counter. The tracking spatial 

resolution without cluster constraints (i.e. for class 3 tracks used to determine the 

resolution) is expected to be 4 - 5 mm at the shower counter, so the actual position 

resolution of the clustering might be even better than the numbers quoted above. 

The wings of the distribut.ion are due to effects of accidental and correlated (delta 

rays) backgrounds in tracking. Figure 3.10 shows the distribution of the electron 

clusters in the calorimeter and the difference between the track position and the 

cluster position plotted versus the position of the track. Notice that there are no 

significant biases in either z or y direction (cf. Fig. 3.7, bottom). 



114 

.;-i 

\ u 
40 -20 0 20 40 

Sp2 elec x(trk)-x(sh) 

700 61 

600 

500 I 
400 

B b I 
300 k P a I 

200 

100 

n 
” 

40 -20 0 20 40 
Sp5 elec x(trk)-x(sh) 

2500 

2000 

1500 

0 

800 

700 

40 -20 0 20 40 
Sp2 elec y(trk)-y(sh) 

t -“I 69.8 __. 

40 -20 0 20 40 
Sp5 elec y(trk)-y(sh) 

Fig. 3.9. The position resolution for electrons in 2.75” (top) and 5.5” (bottom) calorimeters. 
The fit is Gaussian with quadratic background. All numbers are in mm. 
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Fig. 3.11. Time resolution (in ns) for electrons in 2.75” (left) and 5.5” (right) calorimeters. 
The fit is gaussian. 

The time of the cluster was determined by averaging TDC times of all blocks 

for which the energy deposited was at least 10% of the central block energy: 

(3.7) 

where a(t;) is the time uncertainty for each block. The energy cut minimized the 

effect of timing jitter for the small pulses. Another potential problem with using 

blocks with small energy deposit is that they are usually on the tails of the shower 

and the effective z position of the particles in the shower tail is significantly deeper 

than the core of the shower. The light from the shower tails reaches the phototube 

earlier than the light from the core (since the shower develops with the speed of 

light in the vacuum c whereas the light propagation speed is c/n with the index 

of refraction n = 1.62. The energy cut minimizes this effect so no correction is 

necessary. 

The time resolution of both calorimeters is shown in Fig. 3.11. With the tech- 

nique described above we achieved the resolution of E 0.7 nsec (for electrons). 

compared to M 0.9 nsec for the SLAC code. 
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3.4.2.4 Shower shape 

The differences in the transverse profiles of the showers produced by electrons 

and pions (to which we will loosely refer as electron or pion “shapes”) are frequently 

used to separate the particles in the electromagnetic calorimeter. While the electrons 

develop electromagnetic showers, the pions undergo the strong interactions that 

lead to the hadronic showers, wider and less symmetric than electromagnetic ones. 

Charged pions may also convert to the neutral pions via the charge exchange n-p + 

non, where the r” decays instantly into two photons. In that case the shower is 

electromagnetic and its profile is almost indistinguishable from the electron shower. 

However, even in this case (and in case of the hadronic showers), pions rarely deposit 

their full energy in the electromagnetic form, and a simple E/p cut can be used to 

separate them from electrons. 

The standard measure of the electromagnetic shower cross section is the scaling 

variable referred to as the Moliere radius R,[“‘l; for ASP(F2) lead glass used in our 

calorimeters R, z 5 cm. For electromagnetic showers, 90% and 95% of the shower 

energy are contained in the cylinders with radii R, and 2R, respectively. A simple 

approximation of the lateral shower profile is a single-exponential formlllsl 

A(R) = A(O)exp(-R/fro) , (3.8) 

where R is the transverse shower dimension and Ro = 0.25& is the damping 

constant. A more realistic model is a double-exponential shapel’*‘l 

A(R) = Al exp( -R/RI) + A2 exp( -R/&t) , Gw 

where the first exponent describes the narrow shower core, and the second corre- 

spondsto a longer tail of soft electrons and photons. For a finite calorimeter block of 

size 2s, one can calculate the energy deposited from the shower centered at (x0, yo): 

E=EoS_:S_:dsdya(J(~-so)*+(y-YO)*) , (3.10) 
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Table 3.4. Parameters of the shower shape in Eq. (3.11). 

s (mm) h 7- RI (mm) R2 (mm> P 
34.0 0.872 0.3 4.0 19.0 2.9 

where a(R) is a normalized shower profile of Equations (3.8) or (3.9) and Es is the 

total cluster energy. The resulting distribution is fitted to the following functional 

form: 

E 
h { [l - exp(-s/RI) cosh(d/&)]+ 

E = S(x - 20, Y - Yo) = 
r[l - exp(--S/&) cosh(d/&)] } IdI 2 s 

h { sinh(s/Rr ) exp( -d/RI)+ (3.11) 

r sinh(s/Rz) exp( -d/Rz) } IdI > s , 

where 

d = (1~ - G#’ + Iy - yol~)l” , (3.12) 

(5, y) is the center of a given block, and (x0, yo) is the shower position. The electron 

shower profile is shown in Fig. 3.12. The parameters of Eq. (3.11) are given in 

Table 3.4. The pion hadronic showers are wider on average (Fig. 3.12), and the 

individual pion clusters are much less symmetric than the electron ones. 

3.4.2.5 Iterating the cluster shape 

The energy sharing using the LE and TE information is not always perfect. First 

of all, it has a limited dynamic range. Pions with energy deposit below threshold 

are not detected by TDCs. Secondly, if electron energy deposit in one block is much 

bigger than the threshold, the time information is not reliable and leads to large 

errors in energy sharing. The latter effect is potentially more important: if the energy 

of the cluster is underestimated due to energy sharing, the event may not pass the 

E/p cut (typically, E/p > 0.8 cut is a part of electron definition). Another important 

factor is the cluster position bias due to overlaps that translabes into the error in 
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momentum reconstruction. All these effects are rate-dependent and thus can bias 

the measured asymmetry. 

In order to further reduce the rate-dependent effects in the cluster energy and 

position reconstruction, we developed an iterative procedure using the typical elec- 

tron shape of Eq. (3.11)6. It works in two steps. First, we calculate the cluster 

position (~0, ys) using Eq. (3.6) and the initial estimate of the cluster energy 

E(o) = EC 
S(& - ~o,Yc - Yo) ’ 

(3.13) 

where E, and (x,, y,) are the energy and position of the central cell. We then 

calculate 
_ E(0)S(2j - 

> 

2 
20, Yi - Yo) - Eback (3.14) 

ui 

where the sum is over all cell in the cluster. Here E/O) is the initial energy of each 

cell determined as described in Section 3.4.2.2. Eback = 50 MeV is the average 

background noise, and 6; is the uncertainty of the block energy given by 

a; = a2 + ( bE; + c& > 2 + c$hare , (3.15) 

where gshare is the uncertainty in energy sharing. A fit to the data yields a = 0.15 

GeV, b = 0, and c = 0.2. 

Minimizing x2, we find a new estimate of energy E = Et’) and position (~0, yo)(‘) 

(1) (we linearize the problem by treating AZ = x0 - rr’ as a perturbation). The 

energies of each cell E; are allowed to vary within their uncertainties. The cell is 

“frozen” (i.e. its energy is fixed) if change in its energy exceeds the uncertainty. The 

x2 minimization is repeated with new cell energies E,(‘). The iterations converge if 

one of the following conditions is met: 

l Cluster position does not change 

61t is not used for special pion DST production 
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l All cells are frozen 

l Number of iterations exceeds 10 

The convergence is typically achieved in l-2 iterations. Cluster position (XI;“‘, yc’) 

and its uncertainty are copied to the output common block and used in tracking. 

After a track has been associated with the cluster, the electron coordinates at 

the shower counter are determined quite accurately. We can now fix the cluster 

position (~0, ys) in Eq. (3.14) to be the track position at the shower counter, and 

minimize shape residuals varying only the cluster energy E. 

3.4.2.6 Energy measurement 

Three energy variables and corresponding uncertainties are reported by the 

shower code and are written to DSTs: 

l Es: Sum of cells in 3 x 3 matrix around the central block. 

l Ed: Sum of four most energetic blocks in the cluster (the central block, the 

most energetic blocks in 2 and y directions, and 1 diagonal block). The sum is 

scaled by a factor of 1.05 to normalize it to Es. 

l El: energy determined in iterative process (after tracking). 

The ratios El/ Es and Ed/ Eg and their momentum dependence are shown in Fig. 3.13. 

Es is a basic energy definition and is used for shower calibration. The advantage of 

Ed and El over Eg is reduced sensitivity to overlaps. Ed samples a smaller number 

of blocks than ES and therefore the pileup probability for Ed is lower. The drawback 

is that E4 is an approximation that is reasonably good up to energies of M 30 GeV. 

At higher energies, the shower broadens and energy deposit into other blocks of 

the 3 x 3 matrix becomes increasingly important. This is evident from Fig. 3.13: 
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the ratio &/Es deviates significantly from 1 starting at p x 30 GeV. The iterated 

energy El does not exhibit such a behavior (Fig. 3.13). 

The shower counter blocks were calibrated using a sample of electrons identified 

by a high threshold cut in the Cherenkovs. Low rate runs (empty reference cell runs 

at M 1. lOlo electrons/pulse beam current) were used to minimize the rate-dependent 

effects. The calibration constants were adjusted interatively until the mean of the 

Gaussian fitted to the distribution of the ratios Eg/p reached unity for every block. 

This method could not be directly applied to the the blocks on the edges of the 

calorimeter and blocks with low phototube gain. For the edge blocks, we used the 

ratio Ed/p which is less sensitive to the leakage of the shower outside the detector. 

We also used a clean sample of muons and pions that do not produce a shower in 

the calorimeter. Such particles leave a single Cherenkov track in one shower block, 

and are seen as a monochromatic line with E = 0.92 f 0.15 GeV in our calorimeter. 

. Figure 3.14 shows the ratio E/p for electrons in both spectrometers. Left plots 

correspond to Eg energy, and right plots are for El energy. The energy resolution 

is comparable to that of the SLAC code. In Fig. 3.15 we show the ratio El/p in 

the 2.75” calorimeter for four special cases: clusters with no overlaps (top left), 

clusters with an overlap in any of the blocks (top right), clusters in overlaps in 

the central block (bottom left), and clusters with the central block on the edge of 

the calorimeter. No significant degradation of energy resolution and no significant 

bias is observed for either case. Fig. 3.16 shows the same plots for the low x (2.75” 

spectrometer, 9 < p < 12 GeV). Ag ain, energy determination is reasonably stable. 

3.4.3 Shape cut 

The difference between pion and electron shapes (Fig. 3.12) can be used to 

separate electrons from pions using only shower counter information. The SLAC 

analysis uses the algorithm based on a multi-layered neural network.[1’8J211 A set of 

input parameters (discriminating variables), e. g. energy deposited in each clust,er 
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block, cluster position, etc., combined in a non-linear fashion, identifies the event. 

Due to its non-linear nature, the properties of the network highly depend on the 

environment (rate, pion to electron ratio, etc.) and the event sample on which the 

network is “trained” (i.e. the way the relative weights of the input parameters are 

determined). Thus, the neural network efficiency is potentially rate dependent,[‘21J221 

especially at low momentum where the rate of pion-electron overlaps is high. The 

overall efficiency is about 90% at low z,[1211 and increases with momentum. 

We discriminate between electron and pion showers by calculating the deviation 

from the electron shower shape x 

x = & 
J 

c (~3 - &Wi - $0,~ - yo) - &,k)* i 
(3.16) 

where the summation is over all cluster blocks, except for four most energetic ones 

used in the definition of Ed. The electrons are identified by the requirement x 5 

0.045. The distribution of the variable x for electrons and pions is shown in Fig. 3.li. 

The efficiency was defined as a ratio of events that passed the cut to the total number 

of events. The electron and pion efficiencies are shown in Fig. 3.18. The electrons 

were selected by requiring a track with Cherenkov pulses in both tanks higher than 

4.5 photoelectrons and a good match with the shower cluster. The pions were defined 

as class 2 (no Cherenkov signals and a good match with a shower cluster) tracks. 

Open circles in Fig. 3.18 show the efficiencies for the electron and pion samples that 

included the additional cut E/p > 0.8. 

Several observations can be made. First, the pion rejection power of the x cut is 

about 1O:l. However, for the pions that have E/p > 0.8, it is at best 2:1, comparable 

to the SLAC neural network performance under the same conditions.[‘*l] The reason 

is that pions usually deposit large amount of energy if they undergo a charge 

exchange 7-p + Ton. The r” decays instantly into two photons and develops an 

electromagnetic shower; such a cluster is almost indistinguishable from an electron 



128 

18000 

16000 

14000 

12QOO 

10000 

8ooo 

2Qoo 

0 

t c 

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 

x 

Fig. 3.17. Distribution of the shower shape variable x for electrons (open) and pions 
(hatched). 

cluster. Since the shape or neural net cut is optional and is usually applied in addition 

to the E/p cut, it is the latter rejection power that is relevant for the background 

analysis. 

Electron efficiency ranges from 92% to 95% at low x (depending on the run)? 

and slowly increases with momentum. It is comparable, if not slightly higher, than 

the neural network efficiency. 11*11 The variations with the run conditions are smaller 

than quoted for the SLAC code 11*11 that implies smaller rate dependence7. The 

reason for a sharp drop at about 30 GeV is use of the variable E4 in Eq. (3.16). As 

was shown above (Fig. 3.13), it deviates significantly from the true cluster energy 

7The rate dependence of the overall shower efficiency, including the shape cut, was studied by 
Piotr Zyla[lz3] and was found to be small (see Section 3.6). 
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starting at about 30 GeV, and the shape function E&5(x; - 20, y; - yo) systematically 

underestimates true cell energy. The situation is improved, indeed, if other energy 

variables, El or Es are used in Eq. (3.16) (Fig. 3.19). This effect was discovered too 

late to be applied to the DST production code. Instead, we turn off the shape cut 

for p > 30 GeV where pion contamination is negligible (see Section 3.7.3.2). 

3.5 Tracking code 

3.5.1 Introduction 

The tracking code combines information from the hodoscopes, Cherenkov coun- 

ters, and the shower counter to reconstruct charged particle tracks in the spec- 

trometer. The standard electron definit,ions for the asymmetry analysis rely on t,he 
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tracking information. The momentum of an electron track is used to Cal&late the 

kinematics (X and Q2) of the event. Thus, tracking is an important component of the 

physics analysis. In this note, we will describe the algorithm and its implementation, 

and discuss the efficiency and rate dependence. 

3.5.2 Tracking algorithm 

3.5.2.1 Track classes 

In the following, we will often refer to the track class , i.e. a particular combi- 

nation of detector systems used to fit a track. We recognize 4 track classes: 

1. A shower cluster, at least one Cherenkov hit, and at least a minimum number 

(see below) of hodoscope hits. 

2. A shower cluster and hodoscope hits; no Cherenkov hit is found within the time 

window. 

3. At least one Cherenkov hit and hodoscope hits. No shower clust’er is found 

within time and space limits. 

4. Hodoscope hits only. 

The track classes are exclusive, i.e. one track cannot be a member of two classes. 

Tracks of class 1 are electron candidates, and class 2 tracks are most probably pions. 

Tracks of class 3 are used primarily for the calibration of the shower counter (when 

cluster information is deliberately removed from tracking to eliminate biases), they 

are never used in the asymmetry analysis’. Class 4 tracks are used for diagnostic 

purposes. 

8Class 3 tracks could be identified as real particles, for example, muons or pions with momentum 
above the Cherenkov threshold (12 GeV for muons and 19 GeV for pions in 2.75’ spectromet,er) 
that deposit a small amount of energy into the calorimeter and are therefore undetected. In the 
high rate environment of E154, however, most of such tracks are random coincidences. 
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3.5.2.2 Initialization 

The tracking subroutines are called every spill for each spectrometer. As a first 

step, we copy information from the Cherenkov, hodoscope, and shower counter 

common blocks into the local data banks. For every detector hit, we calculate the 

target time 

7; = t; - .z;/c ) (3.17) 

where z; is the z position of each detector and t; is the actual time of the hit. By 

convention, the z position for the Cherenkov hits is taken in the center of the mirror, 

the z position of a hodoscope finger is in its geometrical center, and the z position 

of the shower cluster is associated with the center of gravity of the electron shower 

which is located approximately 5 radiation length deep.[‘24] 

Each hit is characterized by its time r, and the time resolution a(r). Hodoscope 

and shower hits also have the coordinate information. For the shower hit, we keep 

(z, y) positions of the cluster and the position uncertainties (o,,c~~). For the ho- 

doscope hits, we calculate the coordinate 

u = x cos 0, + y sin 0, , (3.18) 

where 0 5 0, 2 7r is the angle between the longest side of the finger and the rj 

axis (counting counterclockwise) ‘. The direction II is perpendicular to the finger 

direction; thus, u is the coordinate measured by the finger. The finger resolution 

D(U) = to/&!?, h w ere w is the finger width. The hodoscope planes are grouped in 

“packages” - the front hodoscope package (HlU, H2V, H3X, H4Y, H5Y, and H6X in 

the 2.75” spectrometer and HlU, H2X, H3Y, and H4V in the 5.5” spectrometer) and 

the back hodoscope package (H7X, H8Y, H9Y, and HlOX in the 2.75” spectrometer 

and H5U, H6X, H7Y, H8V in the 5.5” spectrometer). 

‘The finger tilt in (5, 2) plane is not important numerically and is ignored 
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3.5.2.3 Optics cuts 

One of the main strengths of the El54 tracking code is the use of optics cuts 

to reduce the combinatorial background in the hodoscopes, important in the high 

background rate environment. We employ the following strategy. The search for 

track candidates starts with the shower cluster. For charged particles originating 

from the target, the direction of the momentum is strongly correlated with the 

impact point at the shower counter. This can be clearly seen in Fig. 3.20. The 

correlation is strongest in i direction, where the effect of the magnetic field is small. 

In fact, the main reason for a non-zero width of the i distribution in the 5.5” 

spectrometer is the finite target length since there is almost no vertical component 

to the magnetic field. Even in the 2.75” spectrometer the correlation is strong. The 

correlation is not so strong in the $ direction in both spectrometers; the peculiar 

shape of the $ distributions is due to the reverse-bend optics of the spectrometers. 

Clearly, the optics cuts are strongest at the top of the spectrometer, i.e. at low 

momentum. The random background, that is thought to be caused by low-energy 

photons and neutrons, is roughly (within a factor of two) uniform across the face of 

the hodoscopes. Thus, the optics information enhances the signal/noise ratio in the 

search region of the hodoscopes. 

The cut is implemented in the following way. The maps Omin(Zsh): Omax(xsh), 

@min(ysh), and @max(Ysh) are g enerated using a Monte Carlo program. Here ($) E 0 

and (2) - cf, are track slopes, and min and max denote the minimum and maximum 

slopes for a particle scattered at the target and with a coordinate at the shower 

counter (&h, y&). We take into account the spatial resolution of the shower counter 

by increasing the slope range: 

0 min = min (@min(xsh -f cL~(~c,h))) 

0 - max (@max(&h f CLa(Gh))) max - (3.19) 
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and analogously in c direction. The “confidence level” factor CL was chosen to be 5 

to optimize efficiency . lo Now for every hodoscope plane we determine the range of 

allowed coordinates: 

Umin = min(ul,uz,Ug,Uq)-Cx.W 

u max = max(ur,U2,Us,Uq)+ Cx *W, (3.20) 

where CX = 3 is a factor that allows for the finite hodoscope resolution and w is 

the hodoscope width (the combination of these two factors makes the search area 

bigger by one finger in each direction). Finally, the combinations ~1, ~2, 213, and 2~4 

are 

u1 = Xmin COS 8, + Ymin sin 8, 

U2 = Xmin COS 8, + ymax sin 8, 

u3 = xrnax COS 8, + ymin sin 8, 

u4 = Xmax COS 8~ + Ymax sin 014 1 

(3.21) 

where 8, is defined in Eq. (3.18). C orners of the region allowed by optics are 

zmin = [‘,h - CLa(~:sh)] + AZOmin 

2 max = [xsh + &+,h)] + A,&lmax (3.22) 

Ymin = [Ysh - CLo(Ysh)] $ Az~p,i, 

Y max = [Ysh + &0(&h)] + AzQmax , 

where A.z = (Zh,,d - Z&). 

“This factor also reflects a non-gaussian shape of the calorimeter resolution due to multiple 
scattering and bremsstrahlung in the spectrometer. 
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3.5.2.4 Track candidates 

We will discuss the algorithm for the first two track classes. Algorithm for classes 

3 and 4, that do not include clusters, is a simple extension of the main algorithm 

and will be discussed later. 

We loop first over the shower clusters that are identified as electrons by the 

shower particle ID algorithm (neural net for SLAC analysis and shape cut for 

Caltech), and then over all remaining clusters. For every cluster, we look for time 

coincidence with a Cherenkov signals. We first select Cherenkov hits that are within 

a time window 

A’ = Tsh - Tch = CT ’ &‘(r,h) + a2(rch) (3.23) 

from the shower cluster. Here r is the “target” time (see Eq. (3.17)), and o(r&,) and 

O(r&,) are shower time and 

Among all selected hits, we 

that minimize x2 

Cherenkov resolutions. Factor CT is typically set to 3. 

pick two (or one, if hits from only one tank are found) 

where the summation includes the shower cluster and Cherenkov hits from each 

tank. The average time (7) is given as usual by 

(3.25) 

This average time and its uncertainty 

a2((T)) = )-; 1;02(Ti) (3.26) 

are used to define the time window for the hodoscope hits. If no Cherenkov hits 

are found to match the cluster, the track is a class 2 candidate; time (7) and its 

uncertainty are then taken from the shower cluster. 
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3.5.2.5 Hodoscope mini-clusters 

After the Cherenkov and shower cluster match is found, we select the hodoscope 

hits that pass the optics cuts and are sufficiently close in time to the average time 

(7) to be with the window (7) f AT, where 

AT = C,.J a*(@)) + o*(Thi,,d) . (3.27) 

The next step is to arrange the hits within a hodoscope package (front and rear) 

into local clusters. The idea is to eliminate combinations of fingers that cannot 

geometrically belong to one track. To reduce the pattern recognition problem to 

two dimensions, we first project all fingers onto a common plane (taken at the z 

position of the last plane of the package). We use a stereographic projection along 

the line connecting the center of a given finger and the shower cluster: 

z’ - 2 
z, + ~;=~c+(5sh-Z,)- 

Zsh - z 

yc + 3: = yc + (ysh - yc)& 
s 

(3.28) 

z -2 
w + d=w+(w,h-w)- 

c&h - 2 * 

Here (x,, yc) is the position of the finger center, z is the finger z position, and z’ is 

the position of the plane of projection. Note that the finger width 20 is also modified; 

the shower width ?&-, is given by 

%h = 3(4&h)\ cos6uI -t o(ysh)ISin&I) . (3.29) 

Now the problem is reduced to selecting sets of overlapping rectangles (fingers). 

This is done iteratively. We first find all crossings among all hit fingers in the first 

two planes of the package. Crossed fingers are replaced by a rectangle that represents 

the area common to both fingers. This is shown in Fig. 3.21. For simplicity, we make 

the resulting box parallel to the i - $ axes. Every such finger overlap makes a new 
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Fig. 3.21. Possible two-finger mini-clusters. 

hodoscope mini-cluster. We then loop over fingers in the next plane of the package 

and look for fingers that cross either an existing cluster, or a finger in the first 

two planes. In the former case, the finger is added to the existing mini-cluster, in 

the latter, a new mini-cluster is created. The procedure is repeated until all possible 

mini-clusters are found. Examples of hodoscope mini-clusters are shown in Fig. 3.22. 

3.5.2.6 Fitting 

The track candidates are formed from the shower clusters, Cherenkov hits, 

and all combinations of hodoscope mini-clusters. All tracks are straight in the 

detector hut, so for every track we calculate 5 parameters: line intercepts and slopes 

(x0,0, yo, a), and track time at the target 70. This is done by minimizing 

( (50 + GO) COS 8, + (yo + z;@) sin 8, - U; 2 
x2 = c 

i (+4> ) +Iy (s)’ * (3.30) 

The first sum in Eq. (3.30) includes the hodoscope hits and the shower cluster (for 

the latter we have two entries: u z z and u G y). The second sum also includes 

Cherenkov hits. The resulting system of linear equations can be factorized into the 
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Fig. 3.22. Three mini-clusters are formed from five hit fingers. Cluster (1) consists of fingers 
(4 and (4 1 (2) of (4, (4, and (e), and (3) of(b), (c), (d), and (e). 

space and time parts. The time of the track TO is then readily found as an average of 

all hits, weighted by the uncertainty I. In order to increase performance, we in 

fact first do the fitting in the time domain only, remove all hits with times ‘T; outside 

the XL, cut (see next section), and then repeat the fit in both space and time. 

The detector time ri needs to be corrected for the time of the light propagation 

from the point where the track crosses the detector (hodoscope finger or Cherenkov 

mirror) to the phototube. For the hodoscopes, it is the time of light propagation 

inside the finger. By convention, the time offsets for the hodoscope fingers are 

calculated for a track that passes through the geometrical center of the finger, 

so such tracks need no propagation time correction. Therefore, the correction is 

proportional to the distance from the finger center to the track: 

A %d = i [-(x0 $ zc@ - 5,) sin 8, + (y0 $ &a - yc) cos &] , (3.31) 

where (z,, y,,z,) is the geometrical center of the finger. The correction is positive 

(the track passed later than 7;) if the track position is closer to the phototube than 
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t,he finger center. The constant v is the effective light propagation speed along the 

finger. It is a phenomenological constant that reflects the geometry of the fingers 

and peculiarities of the light collection, and is unique to every plane. It ranges from 

135 mm/ns to 213 mm/ns”. 

For the Cherenkov detectors, we correct for the light propagation from the mirror 

to the phototube. The time offsets for the Cherenkov counters correspond to the 

geometrical center of the mirror. Thus, the correction is related to the di$erence 

between the distance from the track position at the mirror to the phototube and 

the distance from the mirror center to the phototube: 

A7hod = f 
[ 4 (20 + z,o - xp)2 + (yo + 2,~ - yp)2 + (znl - zp)2- 

i( 2, - qJ2 + (Y7n - Yp)2 + (&n - zJ2 
1 

, (3.32) 

where (xm, ym, zm) is the center of the mirror, (xP, yP, zP) are the phototube positions, 

and c is the speed of light. We neglect mirror curvature and yaw. 

3.5.2.7 Selecting the best track candidate 

After the track parameters are found, we calculate the time and spatial residuals 

for every hodoscope and Cherenkov hit, and find the hit with the worst 

2 x? = 

( 

(20 + d) COS 0, + (y0 + z;@) sin 19, - u; 
z 

+;> 
) + (z)’ . (3.33) 

For the Cherenkovs, there is indeed no spatial residual. We set the limit J&,, = 8 

for the fit in the time domain and xi,, = 16 for the combined space-time fit. If 

XL ’ XL& the worst hit is removed from the track candidate unless 

l The number of hits in the hodoscope package drops below the threshold. The 

minimum number of hits was set to 4 for the front hodoscope package in 2.75” 

“Note that the physical light propagation speed for Bicron BC404 is 190 mm/ns that corresponds 
to the refractive index of 1.58. 
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spectrometer and to 3 for the back package in 2.75” and for both packages in 

5.5” spectrometer. This number is half the expected average number of hits 

per package if the hodoscopes are 100% efficient (except the back hodoscope 

package of 2.75” spectrometer where the expected average number of hits is 5). 

l One of the sums 

Cl cos&I , Cl sin O,I 
planeS PhES 

drops below the threshold of 0.5 for one of the hodoscope packages. This 

requirement assures that both i and 6 projections are determined. 

If one of the conditions above is met, the entire track candidate is dropped. Other- 

wise, the worst hit is removed and the fit is repeated. The fitting converges if either 

all hits are within $,,,, limit, or the candidate is dropped. Out of all successful 

track candidates (combinations of hodoscope mini-clusters), we pick one with the 

best total x2 per degree of freedom. 

If the track is fitted successfully, the hits are marked to prevent them from being 

used on another track12. 

3.5.2.8 Class 3 and 4 tracks 

The algorithm for class 3 and 4 tracks (that do not include a shower cluster) 

is an extension of the general algorithm discussed above. First, the spill is divided 

into 6 nsec time intervals. Let r. denote the center of an interval. We find the 

time slice with the most Cherenkov and hodoscope hits within f9 nsec around rc 

(preference is always given to the intervals with most Cherenkov hits). Then, a 

“fake” shower clust,er is created with time 70, time uncertainty g/CT nsec (CT is the 

time “confidence level factor” of Eq. (3.27)), and infinite position resolution. From 

12For Caltech DST production. we disabled marking of Cherenkov hits and reduced rat,e 
dependence by about 0.5%. 
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this point, the algorithm proceeds exactly as described above for classes 1 and 2 

with the following trivial modifications: 

l The minimum and maximum track slopes are used to define the stereographic 

projection in Eq. (3.29). 

l The “fake” shower cluster is not used in fitting. 

The search for class 3 and 4 tracks stops when track candidates in all time slices are 

exhausted. 

3.5.3 Performance 

Typically, an electron track in the 2.75” spectrometer is constructed of 16-17 

hits (including all detectors, Fig. 3.23). Th e average number of hits per hodoscope 

package is found to be close to the expectation (8 for the front package and 5 for the 

rear package) that implies that the hodoscope inefficiency is not big. We estimate the 

tracking efficiency by comparing the number of shower clusters with the number of 

associated tracks. The inefficiency, defined as the ratio ( Nclusters - Ntracks)/Nclusters, is 

shown in Fig. 3.24 for all clusters (top left), and for electron clusters. The low energy 

clusters are mostly pions, and the tracking efficiency for them is low. This is mostly 

_ due to the fact that the resolution (both spatial and time) of the shower counter is 

worse for pions than it is for electrons, and hence the initial cuts (optics and time) 

are not as efficient as for electrons. The electron efficiency is better than 90%, even 

after the E/p cuts. To identify the electron clusters in Fig. 3.24, we require a time 

coincidence among the cluster and two Cherenkov hits with the peak voltage greater 

than 50. This sample is still somewhat contaminated by random coincidences of pion 

clusters with Cherenkov hits,.so the values of inefficiencies in Fig. 3.24 are upper 

limits of true electron inefficiencies. 

An independent determination of the tracking efficiencies was based on a Monte 

Carlo technique. Electron tracks, generated using the optics model of the spectrom- 



20000 

17500 

15000 

12500 

7500 

5000 

2500 

0 

E . .._ ~::$ __.___. :I,::::::::::::: .__._ :I 

x 10 

P 1400 
* 
; 1200 

loo0 

: . 

III, III, 

0 10 20 
Hits/track30 

.............. I.. .. ........... . ................ i.. ............ 

........... j_ .............. j .............. 

.... ... . . ..... 

I I I I I I I I I 

0 5 
Fr% hod. t&track 

...... . ............ . ............ . ........................ .: .. 
*‘- ......... i .. ...... ._i__ ..... .; .. ......... ; .. ......... ; .. ......... : .. 

800 

600 

400 

200 

0 

-......I . . . . . . . . . . . . . ~..__._____..1_..__.__... .  i .._._._... :.. 

-...... / . I . . . . . . . . . . . . . . . . . . . . . . . . . . .._ ;._. 

-......: i . . . . . . . . . . . . . . . . . . . . . . . . . . .._.._.. I.. 

II III ,,I I,, I,, 

2 4 6 8 10 
Hod plane 

F. 7 

25000 ; .................. .i 

2(J()o(j j ................. 

15000 i ................. 

loo00 

CJ)(Jo 

~ 

; .................. 

; ................. 

0 i li ..- . . . . . . . . . . . . . . . .._._. _. 

M -m 1.1 l lm IL 

I / ..__... 

1 i .-... . i ..___.._._ 

0 5 10 15 
Back hod. hits/track 

Fig. 3.23. Distribution of hits per track (top left), hits per hodoscope plane (top right), and 
distributions of track hits in the front (bottom left) and back (bottom right) hodoscope 
packages. All plots are for electrons in the 2.75’ spectrometer. 



144 

c 1 

.g 0.9 

j 0.8 
0.7 

0.6 
0.5 
0.4 

0.3 
0.2 
0.1 

0 

2 0.2 
.K 0.18 
4 0.16 
-E 0.14 

0.12 

0.1 
0.08 . . . . . . . . . . . . . ..1.................~..................~........ 0 
0.06 

00; . . .._.____._...................... I 

0.04 
0.02 

0 L”““” ’ “’ “’ fl 
10 20 30 

E,,,4&eV) 

0.2 

0.18 

0.16 
0.14 
0.12 

0.1 

0.08 
0.06 

0.04 
0.02 

0 

............. ..!................,..................~ ....... 

-. ............. l 2.75’ j . . j ..... ....... d.. j.. ... /. 
................. 

..... 
0 5.5 i -...............~.................~..................! ....... 

-...............i.................r..................~ ....... 
l 

;.a.. ......... . ................. j..................: : 0 .... 

0.2 
0.18 

0.16 
0.14 

0.12 

0.1 
0.08 

0.06 
0.04 

0.02 
0 

. . . . . . . . . i 

Es,,4&eV) 

Fig. 3.24. Tracking inefficiency determined by the data (see text) for all clusters (top 
left) and for electron clusters (top right). Additional cuts are applied to electron tracks: 
0.8 < E/p (bottom left) and 0.8 < E/p < 1.25 (bottom right). Data are for ruin 3366 
(beam current of 5 - 10” electrons/spill). 



145 

Fig. 3.25. Tracking inefficiencies for two spectrometers determined by the Monte Carlo 
method. 

eter, were “seeded” among the real data and then reconstructed by the standard 

analysis code. The resolution and dead-time effects were taken into account. The 

efficiency was determined as the ratio of the number of reconstructed tracks with 

0.8 5 E/p 5 1.25 to the number of seeded tracks (see Fig. 3.25). It is consistent 

with the efficiencies determined by the data. The effect of the optics cuts described 

in Section 3.5.2.3 is demonstrated in Fig. 3.26. The tracking efficiency significantly 

decreases (by up to 5% in 2.75” spectrometer) when the optics cuts are turned 

off. Roughly the same decrease in efficiency was found when the local hodoscope 

clustering was turned off. Both effects is due to random coincidences in hodoscopes 

and are strongly rate dependent. 

The largest contributions to inefficiency for 2.75” spectrometer are (on average): 

l Momentum and energy resolution (in E/p cut): M 2.5%; 

l Hodoscope dead time: x 2% 

l Algorithm (cuts): E 2% 

l Hodoscope random coincidences: x 1% 
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Fig. 3.26. Monte Carlo tracking inefficiencies for codes with and without optics cuts. 

Contributions from the rate dependent sources (hodoscope dead time and random 

coincidences) are not large. The largest momentum dependence of inefficiency is due 

to E/p cuts; inefficiency increases with momentum as the resolution is degraded. 

The rate dependence of tracking was studied by Piotr Zyla.l’231 The contributions 

to the rate-dependent inefficiency from the hodoscope noise was found to be within 

2% for every target (consistent with the estimates above). It was also found that 

the momentum determination is robust against the rate changes, much more than 

_ the energy determined by the shower counter (see Fig. 3.27). 

3.5.4 Resolution 

The tracking resolutions were determined by Monte Carlo (see above). Tracking 

timing resolution is E 0.25 - 0.3 nsec in both spectrometers (Fig. 3.28). Fig. 3.29 

shows the spatial resolution in both spectrometers at the z position of the shower 

counter for electrons13. The spatial resolution for class 3 tracks (that do not use 

shower clusters) is shown in Fig. 3.30. It is significantly worse than that of class 1 and 

2 tracks, and is in fact comparable to the position resolution of the shower counter 

13All plots in this section are for Caltech analysis. 
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Fig. 3.27. Rate dependence of momentum and energy reconstruction. Plotted are the 
relative changes in momentum (open circles) and energy (closed circles) versus Bjorken 5 
in 2.75” spectrometer when the detector rate is doubled. Courtesy of Piotr Zyla.[1231 
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Fig. 3.28. Tracking time resolution in 2.75” (left) and 5.5” (right) spectrometers. 
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alone (see Section 3.4). The shape of the distribution is clearly not Gaussian. Its 

core reflects the finite size of the hodoscope fingers, and the tails are due to random 

background in the hodoscopes. 

The resolutions of the reconstructed momenta and scattering angles are shown 

in Fig. 3.31 (f or original, i.e. before cell the Picard setting of Ql). The average 

momentum resolution is 2.4% in the 2.75” spectrometer and 2.7% in the 5.5” spec- 

trometer (weighted by acceptance). The average angular resolution is x 0.4 mrad 

in both spectrometers. The momentum dependence of the momentum resolution 

is shown in Fig. 3.32. For the original quadrupole setting (pre-Picard runs), the 

resolution degrades rapidly at low momentum in the 2.75” spect,rometer. This is due 

to strong quadrupole focusing that results in almost ambiguous optics in the upper 

part of the spectrometer. The angular resolution in the bend plane (g(4)) also shows 

very strong momentum dependence. On the contrary, the angular resolution in the 

non-bend plane (cr( 0)) is almost constant with momentum. 

The parameterizations for the momentum and angular resolution are given by 

a(p)= 
P 

a(p)= 
P 

a(p)= 
P 

O(P) -= 
P 

a(p)= 
P 

a(P) -= 
P 

0.013 
(fi - 7.58)2 

+ (0.93 * 10-sJ?)2 ) Caltech, 2.75”, pre-Picard 

d 0.0112 + (0.81 . 10-31j)2 , Caltech, 2.75”, Picard (3.34) 

0.0152 + (1.01 . 10-3fi)2 , Caltech, 5.5” 

J 0.013 
(f5 - 7.54)2 

+ (0.98. 10-31;)2 , SLAC, 2.75”, pre-Picard 

J 0.0112 + (0.89. 10-3j)2 , SLAC, 2.75”, Picard (3.35) 

4 0.0152 + (1.14 . 10-3j)2 , SLAC, 5.5” 

where fi = Ep, and p, is .the central momentum of the spectrometer (all momenta 

are in GeV). 
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The angular resolution in the bend plane is given by 

44) = 
0.037 

(j - 7.58)2 
+ 0.194 * 1o-3 ) 2.75”) pre-Picard 

44) = 
0.002 

(fi _ 7.58),,71 , 2.75”, Picard . (3.36) 

The angular resolution in 5.5” spectrometer is independent of momentum. The 

difference between SLAC and Caltech values is negligible. 

3.6 Efficiency and rate dependence 

In E154, we measure asymmetry between cross sections in two different helicity 

states (see Section 1.2.1). The polarization direction of the target was reversed six 

times during the experiment. On another hand, the beam helicity was flipped every 
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pulse according to a pseudo-random pattern. Due to such rapid helicity changes, 

spectrometer acceptance and slow changes in efficiency average out between two 

polarization states and can be ignored. The average efficiency factorizes in Equations 

(1.10) and (l.ll), and is cancelled. Thus, unlike experiments which measure absolute 

cross sections, the overall efficiency is not particularly important for El54 as long 

as it does not significantly impact statistics of the experiment. 

The efficiency of each detector system, relative to other detectors in the spec- 

trometer, was estimated by using the tracking code. For instance, when the efficiency 

of the Cherenkovs for electrons was studied, class 2 tracks with shower energy E > 9 

GeV and E/p > 0.8 were selected. Efficiency was defined as the ratio of number of 

time coincidences between such tracks and Cherenkov signals to the total number of 

selected tracks. For a typical Cherenkov cut used in the analysis that required hits 

in both tanks in coincidence with one of them higher than 2.5 photoelectrons (see 

Section 3.7.3.2), the efficiency was about 90%. The intrinsic efficiency of the total 

absorption shower counter should in principle be very close to 100% (excluding dead 

blocks and similar hardware problems) at small rates (see below for the discussion 

of the rate dependence). The efficiency of the shower electron ID cut, such as x 

cut (see Section 3.4) or neural network cut used in SLAC analysis11211 is typically 

- M 90 - 95%. Tracking efficiency, determined as described in Section 3.5, was also on 

the order 90 - 95%. Overall, the electron reconstruction efficiency is estima,ted to 

be 70 - 80%. Unfortunately, there is insufficient redundancy in the detector system 

to determine this number more precisely. 

The rate dependence of the efficiency is potentially a much more important 

effect. Suppose, the reconstruction efficiency depends (linearly) on the electron rate: 

c=crJ(l-Piv)) (3.37) 

where e is electron efficiency, p is a small linearity coefficient, and N is rate (in 

arbitrary units). The measured rate for each helicity is then 
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(3.38) 

where indices L(R) d enote the helicity state. It is easy to show that in this case the 

measured asymmetry will be biased: 

A meas - NL - NR 
= NL+NR 

z A0 - p(N)& . (3.39) 

Here A0 = $&$ is the true asymmetry, the average electron rate is (N) = 

l/2( Ni + Nt), and all higher order terms (in ,D and Ao) have been dropped. Thus, 

the measured asymmetry will be biased by an amount proportional to the rate 

dependence of the efficiency. 

The rate dependence of the reconstruction efficiency was studied1’2sl using a 

Monte Carlo technique dubbed “pulse ficti~n”‘~. The idea is to analyze two con- 

secutive spills in one spectrometer, and then merge them on the level of raw data 

taking into account dead time, etc. Thus, the merged pulse will appear as taken at 

“double rate”. The ratio of the number of electrons in merged pulses to the sum of 

the number of electrons in the original pulses determined the product cy G p(N). 

Since electron efficiency depends primarily on the environmental rate (i.e. the total 

rate in the detectors and not, only the electron rate), the individual coefficients &her, 

ah&,, and o&w were determined for Cherenkovs, hodoscope, and the shower counter 

by merging raw data from individual detectors. The rate dependence correction to 

the measured asymmetry is given similarly to Eq. (3.39) by 

AA rate E A0 _ A”““” = 
Qw‘&r + QhodoAhodo + %hw.%hw , (3.40) 

where &her, Ah&, and Ashw are asymmetries in rates for individual detectors. The 

coefficients o; E ,&( Ni) f or every detector and the coefficient atot (determined by . 

merging all detectors at the same time) are shown in Fig. 3.33 for all polarized 

14The name was inspired by a popular. as of time of analysis, motion picture. 
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3He cells.l’2sl There is an obvious correlation of the rate dependence to the overall 

rate in the spectrometers. The runs taken at the high beam current of M 9 . lOlo 

electrons/spill (target cells Dave, Riker, Bob, SMC, and Generals) show a stronger 

rate dependence than the runs at the intermediate current of x 5.10” electrons/spill 

(target cells Hermes, Prelims, and Chance), or the low current of 3 . 10” elec- 

trons/spill (target cell Picard). The rate dependence was also sensitive to the beam 

quality that was improving over the course of the experiment, and to the target 

window thickness. There is an apparent jump in the rate dependence in the 5.5” 

spectrometer for target Chance. This target had the thickest windows, and unlike 

the 2.75” spectrometer, the acceptance of the 5.5” spectrometer was fixed. Note also 

that crtot is usually somewhat higher than the sum of rate dependences for individual 

detectors. This is due to subtle correlations that exist in tracking. If we assume that. 

the rate asymmetries in the individual detectors are uncorrelated (which is a good 

approximation since the detectors are sensitive to different types of the background), 

these correlations should be ignored in Eq. (3.40). 

The rate dependence was typically 6 - 8% in the 2.75” spectrometer and 3 - 5% 

in the 5.5” spectrometer, and showed mild dependence on electron momentum.[‘2sl 

3.7 DST analysis 

The Data Summary Tapes contained pre-processed information about the Che- 

renkov hits, shower clusters, and tracks in the spectrometers, as well as information 

about the beam charge, position, helicity etc. A typical size of a DST file for one 

run was about 130 Mbytes - more than factor of six reduction in size compared 

to the raw data tapes. The main advantage of using DST tapes was the processing 

speed. Contrary to the raw data analysis, the DST analysis code was not CPU- 

intensive, and the speed was limited only by the I/O throughput. Thus, the entire 

data set of El54 could be analyzed in less than three days. The analysis speed 
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a,: history for 2.750 

Fig. 3.33. Rate dependence’coefficients Q (see text) for the 2.75’ (top) and 5.5’ (bottom) 
spectrometers. 
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offered great flexibility in studying detector performance, effects of electron cuts: 

pion contamination, and other systematic effects. 

For each run, the DST analysis code counted events satisfying certain electron 

(or pion) definitions, and placed them in appropriate z and Q” bins for each beam 

helicity. The summary files produces for each run were then used by a separate 

program to calculate physics asymmetries. 

3.7.1 Kinematics 

The kinematics of each event is determined by tracking. The scattering angle of 

an electron is given by 

o=Jz (3.41) 

where 80 = -2.75”(+5.5”), and 8 and C$ are scattering angles in non-bend and bend 

planes respectively. Track momentum p determines the scattered electron energy E’. 

The kinematic variables are calculated as follows: 

Q2 = 4EE’sin’19/2 

Q" 
X 

= 2M(E - E’) 

W2 = M2+Q2q. 

(3.42) 

The beam energy is E and M is the proton mass. 

3.7.2 Run selection 

The polarized data taking started with run 1329 on October 9, 1995 (target 

Dave) and ended with run 3785 on November 20, 1995. The total of 1467 polarized 

3He runs we re written to tape. Only 956 of them were used for the asymmetry 

analysis. Below, we describe runs that did not satisfy the selection criteria. Some of 

the cuts apply to the reference cell runs as well (cuts not related to polarization or 

beam asymmetries). 
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Fig. 3.34. Distribution of target polarization measurements. Only runs with polarization 
above 25% (dashed line) are included in the asymmetry analysis. 

3.7.2.1 Target polarization 

Only runs with the target polarization higher than 25% were used in the asym- 

metry analysis. Most of the runs that failed the cut were taken either during the 

spin-up of the target or in in special target tests, and polarization was not very stable. 

The distribution of the target polarization measurements is shown in Fig. 3.34. The 

target polarization cut eliminated 190 runs. If included, these runs, however, would 

have a negligible impact on overall statistics of E154. 
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3.7.2.2 Beam and hardware problems 

Certain runs, identified as “bad” by a shift crew and marked in the log book, were 

actually written to tape. Such runs were removed from the data sample. The beam 

problems listed in log books included test runs (when the beam or spectrometer 

configuration was not normal), runs with frequent beam trips and/or poor beam 

quality, runs affected by hardware failures or hardware changes, and runs affected 

DAQ or control software problems. We also removed runs that were shorter than 

30,000 spills (a typical run size was 200,000 spills). 270 runs have been eliminated. 

3.7.2.3 Charge and beam position asymmetry 

The raw asymmetries measured in our experiments are small, typically, on the 

order of 10T4 - 10m3. In order to minimize systematic effects, it is important to 

keep beam-related asymmetries to the minimum. The rate dependence of electron 

efficiency was typically on the order of 10% (see Section 3.6), so the beam charge 

asymmetry has to be below low3 in order to keep asymmetry bias below 10s4 for 

every run. The distribution and history of beam charge asymmetry is shown in 

Fig. 3.35. We have cut runs with charge asymmetry IAc-,argeI = 1(&L - QR)/(QL + 

QR)[ > 5 . 10b4. A total of 34 runs have been eliminated. 

Another potential source of systematic biases in measured raw asymmetry is 

asymmetry in beam position. Due to the variation of the target cell window thick- 

ness, spectrometer rate depends on the relative positions of the beam and the target 

cell,l’l~ as was determined by moving an empty reference cell vertically through the 

beam. This dependence is illustrated in Fig. 3.36. The distribution of beam position 

asymmetries is shown in Fig. 3.37.11251 

For asymmetry analysis, we select runs with position asymmetries l(xL)-(rR)l 2 

0.004 mm, and I(yL) - (YR)\ 5 0.005 mm. Here (XL(R)) is the average beam positsion 
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Fig. 3.35. Distribution (top) and history (bottom) of beam charge asymmetry versus El54 
run number. The applied cut is shown as a dashed line. 
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Fig. 3.36. Dependence of the electron rate in the 2.75’ spectrometer on the relative beam 
position. Overlaid is a quadratic fit. Courtesy of Piotr Zyla. 

160 

140 

120 

100 

80 

60 

40 

20 

0 

...... _:_. .. .I .... 

: 

....... . ..... . .... 

............. I.. .. 

....... i.. ... : .... 

I 

. . . . . . . . . . . . . . . . . . . . . . 

I 

i... :... . . . . i... 
1 
j... .i... .i... 

140 

120 

100 

80 

60 

40 

20 

0 
-0.005 0 0.005 

xL-xR (mm) 
-0.01 -0.005 0 0.00s 0.01 

yL-yR (-1 

.; . . . . . . . . . . . . . . . I I 1 ii n i 

Fig. 3.37. Difference between average over run beam positions for left and right helicities. 
Cut values are shown by dashed lines. 



162 

for “left” (“right”) electrons in 2. The cut eliminates 33 polarized runs. It ensures 

that the position-dependent bias to the raw asymmetry does not exceed 0.5 . 10m4. 

3.7.2.4 Polarization bit 

The polarization state of the beam was sent to the Data Acquisition System 

via four physically distinct pathways: the PMON line, Mach line, Pockels Cell High 

Voltage Line and the Veto Bits. Each measurement delivered a two-bit combination, 

where the combination '01' referred to positive helicity photons and ‘10’ meant that 

the photons incident on the photocathode were of negative helicity. Combination 

‘00’ in the PMON meant that the beam is unpolarized, and ‘11’ marked an error 

condition. During E142, reading of the Veto module was found to fail at high 

rates[‘26l that caused a bias in the asymmetry analysis. The problem was solved 

prior to E154. 

The electron helicity was governed by a pseudo-random bit generator at the 

electron source. The seed of the generator can be determined by measuring the 

polarization state of 33 consecutive spills. lg21 After the seed is determined, the 

polarization state of any subsequent spill can be predicted if the sequence number 

of the spill is known. Such a sequence number was provided by the PMON module. 

The predictor code thus provided a fifth determination of the spill helicity state. 

All methods typically agreed to z 10e5 levellg~ (the failure rate can only be 

tested to z 5 . 10m6 level for a given run since the typical run size is 200,000 

spills). However, 18 runs were found to have a failure rate of more than 10. 10-4,1g21 

i.e. comparable to the raw asymmetry. These runs have been excluded from the 

asymmetry analysis. In addition, for 35 runs in the range 2454 through 2494, the 

Veto signal was in error. is21 Those runs are included in the asymmetry analysis and 

the polarization state is determined by other four measurements. 
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3.7.3 Event selection 

3.7.3.1 Beam cut 

The purpose of the beam cut was to get rid of spills with beam properties very 

different from the average, for these may potentially bias the measured electron 

asymmetry. Such a cut should be reasonably mild, on another hand, as tight cuts 

have lower efficiency and may adversely affect the electron asymmetry if a particular 

beam parameter has large left-right asymmetry. We applied a cut of 4a to the 

following beam quantities: 

1. Beam charge. 

2. Good spill ADC. 

3. Bad spill ADC. 

4. Beam width at the wire array in 2. 

5. Beam width at the wire array in y. 

6. Beam position at the wire array in z. 

7. Beam position at the wire array in y. 

8. Beam position at the TWBPM in 2. 

9. Beam position at the TWBPM in y. 

The distributions of bad spill ADCs and beam position in y before and after the 

cut are shown in Fig. 3.38. The number of spills rejected by each cut is given in 

Fig. 3.39. 

Cuts (I), (3), and (7) are most important. We believe this is justified. Big 

fluctuations in the incident charge could introduce fluctuation in electron rate due 
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Fig. 3.38. Distribution of two quantities used in the beam cut before (top) and after 
(bottom) the cut. Bad spill ADC is shown on the left and the beam position at the wire 
array in y is on the right. The tails of both distributions are smaller after the cut. 

to rate dependence. The dependence of electron rate on the beam position has been 

observed (see Fig. 3.36) and is not insignificant. The bad spill ADC, positioned in 

the alcove, has historically been an indicator of overall beam quality. 

In addition to the 40 cut, we selected only spills with 0.5 5 Q < 12 (in units of 

10” electrons: cut # 0 in Fig. 3.39). Th is mainly gets rid of the “witness” pulses used 

for accelerator tuning. We also require the match of all four hardware polarization 

signals (PMON, Mach Line, Scaler, and Veto: cut # -1 in Fig. 3.39)i5. 

We calculated the mean and RMS of every value used in the cut every 1056 spills 

(32 cycles of the random number generator for the polarization bits). These values 

15For runs between 2440 and 2495, the Veto module is believed to have been malfunctioning[“q. 
so we are using a three-fold coincidence. 
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Fig. 3.39. Number of spills rejected by each beam cut. See text for explanation of cut 
numbers. 

are then applied to the next 1056 spills. Thus, the cut is “sliding”, it follows slow 

changes in the beam quantities. On anot.her hand, short beam trips and random 

“flyers” that last less than M 9 set are rejected. 

3.7.3.2 Electron selection 

For systematic studies, we implemented 52 electron definitions and 14 pion 

definitions. The main definition for the asymmetry analysis was chosen to maximize 

efficiency (statistics), minimize pion contamination, and minimize rate dependence. 

The electron definition, found as a best compromise among the criteria above and 

denoted as “definition 33”, is defined by the following set of cuts: 

1. Class 1 track with both Cherenkov in coincidence; 

2. Acceptance cut passed; 

3. 8 GeV < p < 48.3 GeV; 
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4. Q* > 1 GeV*, W* 2 8 GeV*; 

5. One of the Cherenkov signals greater than 2.5 photoelectrons (“AND-OR” cut) 

6. E > 7.5 GeV; 

7. E/p 2 0.8; 

8. Shower shape x 5 0.045 for p < 30 GeV (see Eq. (3.16)); 

9. No DAQ failures for the spill in the given spectrometer. 

The acceptance cut (2) is defined by 

where 19 and 4 are the horizontal and vertical scattering angles at the target lim- 

ited by 19,,, = 0.006(0.013), +min = -0.031(-0.028), and dmax = 0.005(0.01) for 

2.75”(5.5”) p t s ec rometer (all angles are relative to the central spectromet,er angle 

and are in rad). The relation between the Cherenkov peak voltage and number of 

photoelectrons in cut (5) is given in Section 3.3. 

The main differences with the SLAC analysis are in cuts (5), (7) and (8). The 

differences between the shower shape x cut and neural network cut used at SLAC 

(cut (8)) are discussed in Section 3.4. The “AND-OR” cut (5) was found to have a 

smaller rate dependence by about 1%11’41 compared to the “AND” cut used at SLAC 

(which required both Cherenkov hits to be higher than 25 FADC units). It also had 

a slightly higher efficiency (by about 2.5%) than the “AND” cut with a comparable 

pion rejection power. In addition to the E/p 2 0.8 cut (7), SLAC analysis required 

a cut on high side of the peak E/p 5 1.2. This cut was found to have a significant 

rate dependence1”4l (about 2%, or more than a factor of two higher than low E/p 

cut) without compensating gain in the pion rejection. 
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3.8 Asymmetry analysis 

Summary files produced for each run in the DST analysis were used to extract 

the raw experimental asymmetries Ar and A’,““: 

(3.44) 

where N(x)/Q is the number of events in each helicity state passing the analysis 

cuts normalized to the incident charge. The expression for A’,“” is analogous to 

Eq. (3.44). The Bjorken z and four momentum transfer squared Q” of an event were 

determined from the momentum and scattering angle of reconstructed electrons. 

The statistical error, in the limit of small A;l,w (the raw electron asymmetries are 

on the order of 10e3) is given by 

&WIQz)Jfi + PWQ"P 
a(Ail"w) = (N(x)/Q)‘fi + (N(z)/Q)Q’ ’ 

(3.45) 

The raw experimental asymmetries in Eq. (3.44) must be corrected before they 

can be used in Eq. (1.23) and Eq. (1.24) t o calculate the spin-dependent struc- 

ture functions. First, we account for the fact that the target and beam were not 

completely polarized, and that the detected electrons can be scattered from the 

unpolarized materials in the target such as glass cell end windows. The correction 

is applied by multiplying the raw asymmetries by a factor l/(fPbP,) (cf. Eq. (1.10) 

and Eq. (1.11)). S econd, some events that passed our cuts are not the true DIS 

events whose asymmetry we are interested in. Furthermore, the data sample is 

contaminated to a small degree by pions misidentified as electrons. In addition, 

a certain portion of electrons came from the charge symmetric processes (such as 

7r” + e+e-y, y + e + - e etc.). Such events should be subtracted from the data, 

sample. The raw asymmetries are also corrected for rate dependence of asymmetries 

as discussed in Section 3.6 and radiative effects. Finally, a small correction is a.pplied 

to account for a parity-violating asymmetry coming from the interference of the y 
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and 2’ exchange amplitudes. Combining all corrections, the physics asymmetry that 

can be used to calculate the polarized structure functions takes the form: 

Adw - AFw + AArate - Pb AEW 
- 

f pbpt 
+ AARC , (3.46) 

where A’,“_” is the raw asymmetry (with backgrounds subtracted), AArate is the 

rate dependence correction of Eq. (3.40), AEW is the electro-weak parity-violating 

asymmetry, AARC is the additive radiative correction, f, Pb, and Pt are the 3He 

dilution factor, beam, and target polarizations, respectively. 

We will discuss the corrections mentioned above in the following Sections. 

3.9 Background subtraction 

The sample of events that passed our electron cuts is not purely electrons coming 

from the DIS events. First, charged hadrons (pions, and to a much lesser degree 

kaons) and muons could be misidentified as electrons. Moreover, a certain portion 

of elect,rons we detected came from the charge symmetric processes (such as charge 

symmetric decays and pair production). These events dilute the DIS sample, and 

could even distort the asymmetry if the production processes have significant spin 

dependence. Let T/e and A, denote the fraction of misidentified hadrons (relative 

to the number of all electrons) and pion asymmetry, respectively. Similarly, let 

e+/e- and A,+ denote the fraction of electrons from the charge symmetric processes 

and their asymmetry. The asymmetry of purely DIS events is then given by (2 

dependence omit ted) 

A’,a_-= ’ 
A 

1 - e+/e- 
‘a%” - (T/e)AT _ (e+/e-)A 

1 - n/e e+ * 1 (3.47) 

We will discuss each background separately. 
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3.9.1 Pion background 

3.9.1.1 Pion contamination 

The number of negatively charged hadrons (referred to as 7r- hereafter) in 

the electron data sample was estimated by comparing the E/p spectrum of well- 

identified pions and the E/p distribution of the events passing our cuts. As an 

example, we will take the electron “definition 2”, that requires 2 Cherenkov signals 

in coincidence higher than 1.5 photoelectrons, E/p > 0.8, and does not use the 

shower shape cut. Pions can be identified requiring a veto in both Cherenkovs with 

a negligible electron contamination. The E/p spectrum of events satisfying definition 

2 at low Ejp is dominated by pions. Matching two spectra at low E/p (where both 

spectra have a peak due to pions that do not shower), we can estimate the size of a 

pion tail leaking under the electron E/p peak (see Fig. 3.40). The pion contamination 

r/e is given by the ratio of the number of pions to the number of electrons with 

E/p > 0.8. The same procedure was applied to the electron definitions that do use 

the shower shape x cut, but the statistical uncertainty was bigger in those cases. 

The pion contamination for the worst case, target Dave (data were taken at 

“high” current of 9 . lOlo electrons per spill) , is plotted in Fig. 3.41 for definition 

33. Even for this target, it does not exceed 10%. The average pion contamina- 

tion at low 5 in the 2.75” spectrometer was 2.8% and smaller at higher values of 

2. Two independent methods were employed to check the estimates of the pjon 

contaminaiton[12q and were found to yield similar results. The error on r/e is 

dominated by systematics (estimated as a discrepancy between different methods 

used to determine the contamination) and is taken to be 50% of the value of r/e. 

3.9.1.2 Pion asymmetry 

Pion asymmetry was measured using the DST tapes produced in the dedicated 

production (in which we included class 2 tracks and lifted the energy cut-off in 
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Fig. 3.40. Pion contamination in the 2.75’ spectrometer at z = 0.0152. Error is statistical. 
See text for discussion. 

clustering (see Section 3.4.2). The pion asymmetry A[ (divided by the dilution 

factor and beam and target polarizations) for both negatively and positively charged 

pions is shown in Fig. 3.42. This is perhaps the largest data sample on asymmetry in 

the inclusive hadron photo-production. The asymmetry is approximately three times 

smaller than the electron asymmetry and is not consistent with zero. It is interesting 

to note that the 7riT+ asymmetry is almost a factor of two bigger (in absolute value) 

than the 7rTT- asymmetry. 

3.9.2 Charge symmetric background 

The event rate of electrons originating in the charge symmetric processes was 

measured by reversing the polarity of the spectrometer magnets. The positron 
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Fig. 3.41. Pion contamination in the 2.75’ (solid circles) and 5.5” (open circles) spectrom- 
eters versus Bjorken z for electron definition 33, target Dave. Error is statistical. 

component of the background was measured and assumed equal to the electron 

component of the charge symmetric background. 

A total of 81 positron runs (with the longitudinally polarized target) with target 

cell Picard was used to determine the ratio e+/e- and the asymmetry A,+. The 

extracted “positron contamination” e+/e- is shown in Fig. 3.43 and the positron 

- asymmetry (divided by the dilution factor and beam and target polarizations) is 

shown in Fig. 3.44. 

The positron rate was also measured with the empty and full reference cells. 

It is believed that the main source of the charge symmetric background is photo- 

production (or electro-production with Q2 z 0) via processes yp + #p, TO -+ 

e+e-y and y + e + - etc. The rate of real (or almost real) photons depends on the e 

radiatio’n length (thickness) of the target and the rate of the photon conversion is 

approximately linear with it, hence the positron rate increases as a second (or even 

higher) power of the target thickness. Since the electron rate is to the zeroth order 
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Fig. 3.44. Positron asymmetry measured in 2.75’ (top) and 5.5’ (bottom) spectrometers as 
a function of 2. The x2 for the asymmetry being consistent with zero is given for reference. 
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proportional to the target thickness, the ratio e+/e- is expected to be different for 

different target pressures and geometries. The variation of about 20?& was observed 

with different empty reference cells, and about 10% with full reference cells. Since the 

positron runs were not taken with every polarized cell, we assign a 20% systematic 

error to the ratio e+/e-. 

The positron asymmetry is found to be consistent with zero, albeit with large 

uncertainty. It is also consistent within errors with both 7r- and 7r+ asymmetries. For 

the electron asymmetry correction, we assume the positron asymmetry A,+ = 0 and 

use the statistical errors.on the measurement to estimate the systematic uncertainty 

on gy due to the charge symmetric backgrounds. This uncertainty dominates the 

systematic error on g; in the lowest J: (CC = 0.017) where the e+/e- ratio is the 

biggest (see Section 4.2). This error could be significantly decreased if a theoretical 

guidance regarding the physics of the charge-symmetric backgrounds was available. 

For instance, if the dominant mechanism for the creation of the ese- pairs is 

the photo-production (either direct or via the r” decay), the same process that 

dominates the pion production, it seems feasible (on the basis of isospin symmetry) 

that the positron asymmetry is bound by 7r- and rrr+ asymmetries. If we used 

such a bound, the systematic uncertainty in the lowest z would have decreased 

bY x 40%. On another hand, if we averaged the positron data over all 2 (relying on 

an assumption that the kinematic dependence of the asymmetry is not very strong), 

the systematic error at z = 0.017 would have decreased by E 30%. Lacking the 

theoretical guidance, we have taken a conservative approach and subtracted the 

charge-symmetric background bin-by-bin. 

3.10 Dilution Factor 

In order to extract the physics asymmetries Aihys and AThY” for 3He, we should 

correct. for events that have originated from scattering off the unpolarized material 

in the target. The ratio 
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f 
number of electrons scattered off 3He = 

total of number of events 
(3.48) 

is called a dilution factor. This factor is roughly l/2 where the rest of the events 

come from the glass end windows and a small amount of nitrogen in the target. The 

dilution factor can be calculated using measured unpolarized cross sections, and 

knowing the composition of the target. [1281 The dilution factor can also be measured 

with the reference cells by varying 3He pressure. Both methods are discussed below. 

3.10.1 Theoretical dilution factor 

The theoretical expression for the dilution factor is given by 

fh Q2> = RHe(x,Q2) 

RH&,Q2)+ RN(x,Q') + &lhQ2) 
(3.49) 

where RH~,N,~~ are the rates of scattering off 3He, N2, and glass. These are given by 

E(x,Q2)= (2; F:(x,Q2) + (4--%)F,"(x, Q”))f~c ~EMC(&,X)W Li , (3.50) 

where A; and 2; are the atomic weight and number of each target component, 

F2 is the unpolarized structure function, [r2’] fnc is the unpolarized multiplicative 

radiative correction, and fEMo is the EMC factor [74] that takes into account effects 

of nuclear binding and motion. The atomic density and the length of the material i 

are n2; and L;. 

For the calculation, we use F2 parameterization from Ref. [lag], and param- 

eterizations of the EMC effect from Ref. [130,131]. The parameters of the target 

model are given in Ref. [132] ( see also Section 2.5). On average, 53% of all events 

are coming from scattering off 3He, 43% off glass, and the remaining 4% off N2. 

The biggest systematic error is due to the uncertainty in radiative corrections, that 

corresponds to uncertainty and variations of the target model, and ranges from 5% 

at low x to 0.7 at mid-z. Uncertainties in window thickness and F2 each contribute 

z 1% to the error on dilution factor. 
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3.10.2 Experimental dilution factor 

An important feature of our experiment is the ability to measure the dilution 

factor experimentally using the reference cells. Reference cells are targets with 

geometry similar to that of the polarized 3He targets, but that could have a variable 

3He pressure. To the extent that the geometries of the reference and polarized target 

cells are exactly the same, the dilution factor can be measured as 

f(x Q") = Rfud? &"I - Rempty(~, &"I > R 7 (3.51) 
polarized 

where &~~,empty,polarized are scattering rates from the full and empty reference cells 

and polarized 3He target, respectively. In reality, we extract the dilution factor by 

measuring the slope of event rate versus 3He pressure and comparing it to the 

scattering rate from the polarized cell: 

(3.52) 

where Pref and Ppolarized are the reference and polarized cell pressure, and Lref and 

L polarized are the lengths of the reference and polarized cells. The scattering rates are 

corrected for rate dependence, and for charge symmetric and hadronic backgrounds. 

3.10.3 Dilution factor results 

The comparison of the theoretical and experimental dilution factor from target 

cell Picard is shown in Fig. 3.45. The agreement is generally very good. The experi- 

mental results are limited by statistics, especially at high x in the 5.5” spectrometer. 

For the asymmetry analysis, we use the theoretical values. For each target cell, we 

add in quadrature the average disagreement between two methods (on average, less 

than 1%) to the error on the theoretically calculated dilution factor. The average 

error on dilution factor, weighted by statistical error on All is 5.1%.1’2sl 
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Fig. 3.45. Comparison of the theoretically calculated (open circles) and experimentally de- 
termined (closed circles) dilution factor for the 2.75” (left) and 5.5’ (right) spectrometers. 

3.11 Radiative correct ions 

The structure functions gy(x,Q2) and gF(2,Q2) are defined in the Born limit, 

i.e., for a single virtual photon exchange in the deep inelastic regime. However, ex- 

perimentally observed lepton-nucleon scattering includes contributions from higher 

order processes as well as from elastic, quasielastic, and inelastic tails. In addition, 

electrons may lose energy before or after scattering due to bremsstrahlung or ion- 

ization in external material (target cell entrance and exit windows and side walls). 

These processes modify the measured asymmetry in Eq. (l.lO), so corrections have 

to be applied in order to extract Born asymmetries. 

The radiative corrections are traditionally divided into “intemd’ and “ezter- 

nar’. The internal effects are those occurring at the 3He nucleus where the inelastic 

scattering occurs. The electrons are off-shell between the emission of the photon 

and the nuclear scattering. The external effects are those which modify the electron 

energy before or after the DIS event, hence, the electrons are on-shell. 



178 

3.11.1 Internal radiative correction 

In addition to the single-photon exchange, the experimentally observed lepton- 

nucleon scattering cross sections include contributions from higher order processes. 

At any (ZDIS, Q&>, th ere is radiative leakage from other kinematic points (Z 2 ZDrs, 

Q2 < &;I? for radiation before, and Q2 > Q&s for radiation after scattering), 

referred to as elastic, quasielastic, and inelastic tails. Since the asymmetries of 

the tails are not a priori identical to the deep-inelastic Born asymmetries, the 

measured asymmetry must be corrected. The formalism for calculating the radiat’ive 

corrections (RC) to spin-dependent DIS has been developed by Kukhto, Shumeiko, 

and Akushevichl’3al and implemented in their Fortran code POLRAD 1.5.[‘34] An 

independent code was developed by Linda Stuart 113’1 based on the formalism of 

Ref. [133] and produced identical results. 

At any kinematic point (2, Q2), the measured asymmetries are given by 

A mea.5 = Ag 
Bornv + AatdS 

OBornV + Otails ’ 

where 

(3.53) 

are the contributions from the elastic, quasielastic, resonance, and DIS radiative 

tails, respectively. The correction due to higher-order processes V is given by 

v = JZR+ 6 R vert + 6’ + Sh vat vat * (3.55) 

Here gAR is the correction due to soft photon emission (where the infra-red di- 

vergence is cancelled by a similar contribution to DIS taill’3sl), gvert is the lepton 

vertex correction, bt,, is the lepton vacuum polarization, and &, is the hadronic 

vacuum polarization. The soft photon and virtual corrections to the cross section are 

insensitive to the helicity state; these contributions factorize in Eq. (3.53). Thus: the 

radiative corrections come entirely from the difference between the Born asymmetry 
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Table 3.5. Contributions to the measured polarized and unpolarized cross sections at 
2 = 0.017 from radiative tails, virtual and external corrections (relative to the Born cross 
section). 

Elastic Quasielastic DIS Resonance Virtual External 
Unpolarized 0.12 0.20 0.30 0.06 0.11 -0.02 
Polarized 0.11 -0.01 0.02 0.04 0.11 -0.02 

and asymmetries of the radiative tails. We will now discuss the contributions from 

each of the tails. 

With the emission of a hard photon by the incident electron before scattering, 

the energy and Q2 of the event are lowered. Since the form factors of the nucleons 

in 3He are roughly proportional to l/Q4 at high Q2, the probability of scattering 

quasielastically is enhanced. The asymmetry of the quasielastic scattering, express- 

2 ible in terms of products of form factors GEGM and GM, [13’1 is different from the DIS 

asymmetry. Radiative effects thus mix in this asymmetry with the DIS asymmetry 

in which we are interested. The magnitude of this contribution increases as we move 

to lower 2 and Q2, Details of the nuclear structure of 3He are important in the 

evaluation of this cont,ribution. Predictions for the S, S’, and D percentages of t,he 

3He wave fun ction (see Section 1.6) are used to determine the relative contributions 

from the quasielastic asymmetries of the protons and neutrons in 3He. The correction 

due to the elastic scattering off the 3He nucleus is small for the El54 kinematics. 

The relative contributions of elastic and quasielastic tails to the unpolarized and 

polarized cross sections are summarized in Table 3.5. 

The inelastic tail contribution arises similarly to the processes discussed above. 

Electrons detected in the spectrometers that undergo hard photon emission before 

the scattering have their energy E’ overestimated. Similarly, bremsstrahlung after 

the scattering results in underestimation of the scattered electron energy E’. In 

both cases, the event is assigned a lower value of Bjorken z (and higher value of 
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Q”). Therefore, DIS asymmetries from higher 2, as well as asymmetries from the 

resonance region W2 < 4 GeV2 are mixed into the asymmetry measured at lower X. 

3.11.2 External radiative correction 

Before and after the DIS event, electrons may lose energy by bremsstrahlung 

and, to much smaller extent, by ionization in interactions with other target nuclei. 

Similar to internal effects, these interactions mix the asymmetry at a given kinematic 

point XDrs, Q&,) with asymmetries from a broad region z > ZJJIs. Thus, the mea- 

sured (uncorrected) asymmetries are given in terms of convolutions of polarized and 

unpolarized cross sections and electron straggling probabilities over this kinematic 

range. The external radiative corrections are calculated using the formalism of MO 

and Tsai .[138l 

The external radiative effects depend on the thickness of the material traversed 

by the electrons before and after the DIS interaction. The dominant source of exter- 

nal radiative corrections are the side walls of the target through which the electrons 

pass at very shallow angles. The target NMR pickup coils were modified prior to 

E154, and one of the major contributions to the external radiative corrections, 

important for E142,11221 was eliminated. Overall, the effect of external radiative 

corrections to the measured asymmetries is very small. 

3.11.3 Calculating the correction 

Equation (3.53) can be re-written in terms of the convolution of the Born DIS 

cross section and the internal (external) bremsstrahlung probabilities (with the 

helicity indices suppressed): 

omeas(E,,, E’) = gBorn(E~, E’) + 
J 

dco$+n(co/Eo, E’)~Bor”(~O~ E’) + 

J 
d~$o,t(&, E’/+Born(Eo, d 7 (3.56) 

where E. and E’ are the initial and final electron energies, and $i, and $out are the 

straggling probabilities before and after the scattering, respectively. Evaluation of 
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the integrals in Eq. (3.56) requires knowledge of the unpolarized and polarized cross 

sections over the large phase space, including the DIS region, which is precisely 

what we are trying to extract. Thus, we cannot solve it analytically; instead, an 

iterative technique is employed. We define the radiative correction to the measured 

asymmetry by 

AARC z ~Born _ A”““” (3.57) 

A smooth parameterization to the measured g~“(~)/F~e is used to calculate the 

initial estimate of ABorn, then at every i-th iteration we take ABorn = Af!‘3_or” + AAy?I. 

The process typically converges after 3-4 iterations. 

3.11.4 Radiative correction and experimental Errors 

It is obvious from the discussions above, that the experimental uncertainties on 

AARC are correlated to those on A”“““. Not only is this true at every experimental 

point, but the convolutions in Eq. (3.56) 1 a so introduce point-to-point correlations. 

This makes the propagation of errors through the radiative corrections a rather 

complicated issue. We identify three types of experimental errors on ABorn: 

0 Statistical error 0 stat( ABorn): propagated statistical error on A”“““; 

l Systematic error gsyst( ABorn ): propagated systematic error on A”‘“” due to 

sources other than RC; and 

l Errors on Atail and unpolarized cross sections - true RC systematic error 

cqc(ABorn) - to be added in quadrature to other systematic errors. 

The statistical errors on A”““” are uncorrelated from point to point, and we assume 

systematic errors to be 100% correlated from point to point. Then, for a given 

experimental point i, the propagated errors are given by 

~~tat(ABor”) = cztat (A. > ( yeaS 1 + yAtc) 2 + C ~~~at(A~as) ( yAtc) 2 (3.58) 
z j#i 3 
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usyst (A;“‘“) = gsyst ( Ameas) ( 1 + 

In practice, the partial derivatives are evaluated numerically by varying the value of 

Ayeas for every point independently within its statistical and systematic uncertain- 

ties. In order to include point-to-point correlations into the error on the integrals of 

g; and g;, the full correlation matrix is constructed. The off-diagonal elements of 

the correlation matrix are typically small. 

In the absence of the off-diagonal elements, the uncertainty on the Born asym- 

metry is bigger t,han the error on the measured asymmetry by a factor 

(3.60) 

The factor f can be viewed as a “dilution factor” that accounts for the fact that 

the ra.diative tails are really backgrounds to our measurement. This dilution factor 

is given by the ratio of the unpolarized cross sections 

f = 
ameas 

- ata’*s 7 Omeas (3.61) 

where the “tails” include contributions from the elastic, quasi-elastic, resonance, 

and parts of the DIS tails. Due to the infra-red divergence,l1361 the definition of the 

DIS tail is ambiguous. 113’1 We only include those points in z that are more than two 

bins away from the z of the measurement, beyond the range of a typical variation of 

gr.l’3sl The “dilution factor” method of calculating the error on the Born asymmetry 

agrees with the method of Equations (3.58) and (3.59), and for practical purposes 

was adopted for the published results. 

The systematic uncertainty on the radiative corrections is estimated by vary- 

ing the input models of unpolarized and polarized cross sections (form factors for 

elastic and quasielastic scattering, nuclear corrections in 3He unpolarized structure 

functions, models of the resonance region, contributions from g2, and possible Q2 
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Table 3.6. Systematic errors of the radiative corrections for the 2.75' and 5.5’ spectrom- 
eters (x 100). 

2 bin F2 1 gr reson. 1 Q” dep. 1 g2 1 Gz$ 1 Pauli I Elast 
2.75” spectrometer 

0.017 0.018 0.025 0.031 0.019 0.017 0.006 0.004 
0.025 0.049 0.022 0.011 0.015 0.007 0.004 0.003 
0.035 0.030 0.020 0.003 0.010 0.003 0.002 0.002 
0.049 0.010 0.018 0.000 0.007 0.001 0.001 0.001 
0.078 0.006 0.015 0.000 0.004 0.000 0.000 0.000 

t 0.123 1 I 0.013 I 1 0.014 I I 0.000 I I 0.002 I I 0.000 I I 0.000 I I 0.000 
0.173 0.001 0.015 0.000 0.003 0.000 0.000 0.000 
0.241 0.000 0.018 0.000 0.003 0.000 0.000 0.000 
0.340 0.001 0.026 0.000 0.005 0.000 0.000 0.000 
0.423 0.000 0.045 0.000 0.007 0.000 0.000 0.000 

5.5” spectrometer 

dependencei of the ratio gr/Fr below Q2 = 1 GeV2) and the target model (for ex- 

ternal corrections). The contributions from the various sources for two spectrometers 

are given in Table 3.6.1 13’1 The radiative corrections for AI~[~~‘] and their errorsl’3gl 

are given in Table 3.7. 

Note that traditionally the “radiative dilution factor” was calculated assuming 

that only the elastic and quasi-elastic tails are backgrounds to the DIS measure- 

ment.113q The uncertainty in the DIS asymmetries was included into the overall 

systematic error by varying the shape of the function used to parameterize the 

measured asymmetries. l14q This approach is inconsistent, subjective, and generally 

leads to incorrect results. First, the resonance and DIS tails have to be treated as 
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Table 3.7. Radiative corrections (x 100): the effect on the propagated errors, and the 
systematic errors of the radiative corrections. 

5 bin 1 AAHC 1 u (ABorn) /o (Ameas) 1 Syst. 
2.75” spectrometer 
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backgrounds and such events have to be subtracted from the data sample. Second, 

the variations of the functional form used to fit the measured data, deemed to 

test any possible “model dependence” of the radiative corrections, only change 

the relative weights of the data points. Many functional forms with acceptable 

x2 differ from one another by an amount comparable to the statistical errors of 

the data. This amount depends on the choice of the functional forms, and is very 

subjective. Varying the form of the fit is equivalent to varying the input values of the 

measured asymmetries by some fraction of their statistical errors. Thus, the variation 

of the Born asymmetries due to different fits used in the radiative corrections is 

already included into the statistical error crstat(ABorn). Including this variation into 

the systematic error ~nc ( ABorn ) introduces unphysical correlations of the statistical 

and systematic errors, ‘and in case of El54 increases the uncertainty o.Rc(A~O~~) by 

about factor of two. The model dependence may appear, however, when the data are 

estrupoluted outside the kinematic range of the measurement. Thus, the uncertainty 

due to extrapolation of the data into the low Q2 region is included in the systematic 

error. 

3.12 Rate dependence and electroweak corrections 

The rate dependence to All is calculated as described in Section 3.6. The detector 

asymmetries (electron asymmetry diluted by the pion and noise hits) were typically 

(3 - 5) . 10m4 in the Cherenkov detectors, (1 - 4) . 10m4 in the hodoscopes, and 

(1 -4).10T3 in the shower counter. The rate dependence coefficients a; determined by 

pulse fiction actually place the upper limit on the true rate dependence. The “true” 

rate dependence is proportional to the derivative of the efficiency with respect to 

rate. Pulse fiction measures the finite difference of efficiencies at normal and double 

rate. Since the second derivative of efficiency versus rate is normally negative (i.e. 

has the same sign as the first derivative), the coefficients Q; found by pulse fiction 
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are somewhat overestimated. So we treat the pulse fiction results as upper limits 

and apply only half of AArate as a correction to the raw asymmetries, and use the 

full value of AArate as a systematic error. This error ranges from 4% of All at low z 

to 8% at high 2. 

The electroweak parity-violating asymmetry arises from the interference of the 

y and 2’ exchange amplitudes. It is given by1201 

AEW - UR - =L 2 1 - (1 - Y>” = = 
BR + OL Q( a1 +y + (1 - y)” 

> ’ 
(3.62) 

where cry and cry are cross sections for left and right electrons, and y is the fractional 

energy transfer from the electron to hadrons. For an isoscalar target, neglecting 

strange sea, one has 

and 

a2 M (3.63) 

The factors in the equation are the Fermi constant GF, the fine structure constant 

o, and the Weinberg angle 0~. The electroweak asymmetry is not sensitive to the 

polarization of the target, and it is suppressed by the reversals of the target spin. 

The correction is the biggest at high Q2 (and high XC> and reaches 10% of All (it is 

however much smaller than the statistical error on All). We use 20% of the correction 

as the associated systematic uncertainty. 

3.13 Final asymmetry results 

The corrected physics asymmetries Aphys, calculated for every run according to 

Eq. (3.46), were weighted by the statistical error and averaged. The results for two 

spectrometers are given in Table 3.8. 



Table 3.8. Final results on 3He asymmetries AlI and Al. 

x bin (4 (Q2> 
CGeV2j 

Ali f stat. f syst. Al f stat. f syst. 

0.014 - 0.02 0.017 
0.02 - 0.03 0.025 
0.03 - 0.04 0.035 
0.04 - 0.06 0.049 
0.06 - 0.10 0.078 
0.10 - 0.15 0.122 
0.15 - 0.20 0.173 
0.20 - 0.30 0.241 
0.30 - 0.40 0.340 
0.40 - 0.50 0.423 

2.75” spectrometer 
1.21 -0.0140 f 0.0041 f 0.0036 
1.59 -0.0174 f 0.0030 f 0.0025 
2.05 -0.0164 f 0.0031 f 0.0018 
2.57 -0.0136 f 0.0025 f 0.0011 
3.32 -0.0107 f 0.0023 f 0.0009 
4.09 -0.0080 f 0.0027 f 0.0007 
4.63 -0.0102 f 0.0034 f 0.0008 
5.09 -0.0085 f 0.0034 f 0.0007 
5.51 -0.0030 f 0.0058 f 0.0005 
5.82 0.0035 f 0.0137 f 0.0007 

0.0052 f 0.0125 f 0.0017 
-0.0021 f 0.0094 f 0.0013 
-0.0187 f 0.0100 f 0.0019 

0.0142 f 0.0080 f 0.0015 
0.0083 f 0.0075 f 0.0013 
0.0101 f 0.0095 f 0.0022 
0.0013 f 0.0123 f 0.0022 

-0.0097 f 0.0121 f 0.0020 
0.0357 f 0.0200 f 0.0038 
0.0043 f 0.0443 f 0.0008 

0.04 - 0.06 0.057 4.03 
0.06 - 0.10 0.084 5.47 
0.10 - 0.15 0.123 7.23 
0.15 - 0.20 0.172 8.94 
0.20 - 0.30 0.242 10.71 
0.30 - 0.40 0.342 12.55 
0.40 - 0.50 0.442 13.83 
0.50 - 0.70 0.564 15.00 

5.5” spectrometer 
0.0126 f 0.0256 f 0.0027 

-0.0222 f 0.0035 f 0.0022 
-0.0219 f 0.0026 f 0.0017 
-0.0153 f 0.0033 f 0.0012 
-0.0161 f 0.0033 f 0.0013 
-0.0089 f 0.0051 f 0.0018 
-0.0132 f 0.0079 f 0.0013 
-0.0010 f 0.0113 f 0.0008 

0.1669 f 0.1219 f 0.0151 
0.0294 f 0.0163 f 0.0026 
0.0052 f 0.0124 f 0.0025 
0.0043 f 0.0154 f 0.0033 
0.0137 f 0.0153 f 0.0034 

-0.0106 f 0.0237 f 0.0022 
-0.0092 f 0.0365 f 0.0015 
-0.0036 rk’ 0.0519 f 0.0035 



CHAPTER 4 

NEUTRON SPIN STRUCTURE FUNCTIONS 

4.1 From asymmetries to the structure functions 

4.1.1 Structure functions and photon-nucleon asymmetries 

The fully-corrected asymmetries in Table 3.8 are ready to be used to calculate 

the quantities of interest: the spin dependent structure functions and the virtual 

photon-nucleon asymmetries. At this time it is also logical to compare the results of 

two independent analyses. While the raw asymmetries could have been somewhat 

different in the SLAC and Caltech analyses (due to different contamination and 

corrections), the final asymmetries All and A 1 must be identical within allowed 

statistical fluctuations, if both analyses are correct. For completeness, we will here 

list the main differences between two analyses: 

l Raw analysis 

The DST production had started earlier at SLAC, and certain ideas were not 

implemented. The most important one was the FADC synchronization using the 

TDC information (see Section 3.3). The shower code described in Section 3.4 

was used only in the Caltech analysis; the SLAC code is described in Ref. [116]. 

The tracking used by both analyses is described in Section 3.5 with very minor 

improvements not implemented in the SLAC version. The Caltech analysis 

stored only class 1 tracks on the DST tapes while at SLAC tracks of classes 1, 

2, and 3 were kept (only class 1 tracks were used as electron candidates). 

l Run selection 

Both analyses used the same set of runs, as described in Section 3.7.2. 
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l DST analysis 

Both codes were very similar at the level of the DST analysis. The main differ- 

ence was in the beam cut, which was very generous for the SLAC analysis[141] 

and somewhat more restrictive at Caltech (see Section 3.7.3.1). 

l Electron selection 

The two analyses differed in the definition of electrons (cf Section 3.7.3.2). For 

completeness, we list below the definition adopted by the SLAC group:[‘41] 

1. Class 1 track with both Cherenkovs in coincidence; 

2. Acceptance cut passed; 

3. 8 GeV< p < 48.3 GeV; 

4. 1 GeV2 5 Q” 5 25 GeV’, W2 > 8 GeV2; 

5. Peak voltage in both Cherenkov tanks 2 25 (in FADC units); 

6. 0.8 5 E/p 5 1.2; 

7. Neural Network 2 -0.98.[121] 

l Background subtraction and corrections to the raw asymmetries 

The estimates of the pion contamination were quite different in the two analyses 

(cf. Sect,ion 3.9.1.1). The SLAC group estimated a less than 1% pion contam- 

ination using an indirect technique of scaling the n+/e+ ratio by the ratio of 

the n-/r+ production cross sections and the measured es/e- rates[142] (a more 

sophisticated method, similar to the one described in Section 3.9.1.1, has been 

applied to the SLAC analysis data[143] and gives bigger estimates of the pion 

contamination, consistent with our analysis). The pion contamination was only 

measured for runs with the target cell Picard (the only time interval when the 

polarized “positron” runs were taken), and the SLAC group assumed that the 

contamination was constant with time. Fortunately, the pion contamination 
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was at most 5 - 10% for the highest rate runs (see Section 3.9.1.1), so the 

error associated with such an assumption is not big. The background from the 

charge-symmetric processes was independent of the analysis cuts, and estimates 

of the background rates by both groups agree. The rate dependence correction 

was only applied to the Caltech data and was neglected by the SLAC group. 

The comparison between the two sets of asymmetries is shown in Fig. 4.1. The 

agreement is as good as it could be, since the majority of the selected events is 

common. The differences between the two results are consistent with statistical 

fluctuations if E 10 - 15% of the events in the two samples are different. For the 

publications, we have chosen to average two results (straight average), and we have 

taken the larger statistical error. The averaged asymmetries are given in Table 4.1. 

The averaged asymmetries Ali and Al were used to calculate the spin dependent 

structure functions g; and gg and the photon-nucleon asymmetries A; and A;. Since 

the experimental asymmetries are given for 3He, we first calculate Ali and Al for 

the neutron (cf. Eq. (1.89)): 

1 
ATi = a ( A;I~‘(W + F;)~EMc - 2A$@‘,P 

> 
, (4.1) 

where p,+,) is the neutron (proton) polarization in 3He (see Section 1.6), f~Mc is the 

EMC effect factor,[74] and I?$P) is the unpolarized st’ructure function of the neutron 

(proton) (we assume that the ratio of the longitudinal to transverse cross sections 

R(z, Q”) is the same for proton and neutron 17’l). We use the fit to the world data on 

91 ‘[l”J2] to calculate the proton asymmetry Ai. The contribution of g2p is calculated 

using the Wandzura-Wilczek I361 twist-2 expression (see Eq. (1.47)) and the fit to gy 

mentioned above. The expression for A”, is similar to Eq. (4.1). 

We use Equations (1.23) and (1.24) to calculate the spin dependent structure 

functions g; and g; of the neutron. The neutron virtual asymmetries A; and At 

are given by Equations (1.25) and (1.26). The structure functions and the phot,on- 
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Fig. 4.1. The comparison between asymmetries All (top) and Al (bottom) given by the 
SLAC (open circles) and Caltech (closed circles) analyses. 



Table 4.1. Averaged results of the two analyses on 3He asymmetries Ali and Al. 

x bin (4 (Q2) 
(GeV2) 

Ali f stat. f syst. Al f stat. f syst. 

2.75" spectrometer 
0.014 - 0.02 0.017 1.21 -0.0133 f 0.0041 f 0.0036 0.0058 f 0.0126 f 0.0018 
0.02 - 0.03 0.025 1.59 -0.0169 f 0.0030 f 0.0025 0.0000 f 0.0094 f 0.0013 
0.03 - 0.04 0.035 2.05 -0.0154 f 0.0031 f 0.0018 -0.0163 f 0.0100 f 0.0018 
0.04 - 0.06 0.049 2.57 -0.0143 f 0.0025 f 0.0012 0.0144 f 0.0080 f 0.0015 
0.06 - 0.10 0.078 3.32 -0.0103 f 0.0023 f 0.0009 0.0072 f 0.0075 f 0.0013 
0.10 - 0.15 0.122 4.09 -0.0085 f 0.0027 f 0.0007 0.0120 f 0.0095 f 0.0022 
0.15 - 0.20 0.173 4.63 -0.0089 f 0.0034 f 0.0008 -0.0014 f 0.0125 f 0.0022 
0.20 - 0.30 0.241 5.09 -0.0080 f 0.0034 f 0.0007 -0.0121 f 0.0127 f 0.0021 
0.30 - 0.40 0.340 5.51 -0.0022 * 0.0060 f 0.0005 0.0247 f 0.0210 f 0.0035 
0.40 - 0.50 0.423 5.82 0.0044 f 0.0137 f 0.0007 0.0036 f 0.0443 f 0.0007 

0.04 - 0.06 
0.06 - 0.10 
0.10 - 0.15 
0.15 - 0.20 
0.20 - 0.30 
0.30 - 0.40 
0.40 - 0.50 
0.50 - 0.70 

0.057 4.03 
0.084 5.47 
0.123 7:23 
0.172 8.94 
0.242 10.71 
0.342 12.55 
0.442 13.83 
0.564 15.00 

5.5" spectrometer 
0.0120 f 0.0260 f 0.0027 

-0.0224 f 0.0035 f 0.0022 
-0.0226 f 0.0027 f 0.0018 
-0.0168 f 0.0034 f 0.0013 
-0.0168 f 0.0034 f 0.0013 
-0.0123 f 0.0053 f 0.0019 
-0.0102 f 0.0084 f 0.0012 

0.0003 f 0.0119 f 0.0008 

0.1582 f 0.1219 f 0.0146 
0.0274 f 0.0165 f 0.0025 
0.0023 f 0.0126 f 0.0025 
0.0082 f 0.0157 f 0.0033 
0.0182 f 0.0158 f 0.0035 

-0.0171 f 0.0246 f 0.0024 
-0.0245 f 0.0383 f 0.0020 
-0.0024 f 0.0548 f 0.0034 
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Table 4.2. The spin dependent structure function gy and the photon-nucleon asymmetry 
A;. 

(4 (Q2) WV') g; f stat. f syst. A; f stat. f syst. 
2.75” spectrometer 

0.017 1.21 -0.351 f 0.115 f 0.104 -0.058 f 0.019 AI 0.017 
0.024 1.59 -0.374 f 0.071 f 0.062 -0.080 f 0.015 dz 0.014 
0.035 2.05 -0.290 f 0.061 f 0.037 -0.078 f 0.018 f 0.011 
0.049 2.57 -0.212 zt 0.041 f 0.021 -0.089 f 0.016 f 0.010 
0.078 3.32 -0.119 f 0.031 f 0.013 -0.078 f 0.019 f 0.009 
0.123 4.09 -0.075 f 0.030 f 0.009 -0.089 f 0.031 f 0.011 
0.173 4.63 -0.070 f 0.033 f 0.009 -0.100 f 0.053 f 0:014 
0.241 5.09 -0.053 f 0.028 f 0.007 -0.078 f 0.077 f 0.018 
0.340 5.51 0.001 f 0.036 f 0.004 -0.166 f 0.206 f 0.051 
0.423 5.82 0.027 f 0.059 f 0.007 0.166 f 0.606 ho.038 

5.5” spectrometer 
0.057 4.03 0.224 f 0.285 f 0.035 0.045 f 0.120 f 0.012 
0.084 5.47 -0.152 f 0.029 f 0.019 -0.104 f 0.018 f 0.013 
0.123 7.23 -0.117 It 0.017 f 0.012 -0.110 f 0.015 f 0.012 
0.172 8.94 -0.059 f 0.016 f 0.007 -0.090 f 0.023 f 0.011 
0.242 10.71 -0.040 f 0.012 f 0.005 -0.118 f 0.030 f 0.016 
0.342 12.55 -0.019 f 0.012 f 0.005 -0.057 zt 0.068 f 0.022 
0.442 13.83 -0.009 f 0.012 f 0.002 -0.013 f 0.146 f 0.018 
0.564 15.00 0.003 f 0.008 f 0.001 0.100 f 0.294 IL 0.032 

nucleon asymmetries are given for the two spectrometers in Table 4.2 and Table 4.3. 

The structure function xgy is plotted in Fig. 4.2, and xgi is shown in Fig. 4.3. 

4.1.2 Traditional Q2 evolution 

Since the QCD sum rules are defined at a fixed four-momentum transfer, one 

needs to evolve the data from the Q” of the measurement (which is given along 

the line Q2 = Q2(x), see Fig. 2.10) to a constant value, usually taken to be the 

average Q2. The average Q” for El54 (weighted by statistics of Ali) is x 5 GeV2. 

Traditionally, experiments have been using the fact that the data, albeit of the 

limited precision to be conclusive, are consistent with the assumption that for Q’ > 

1 GeV2 the ratio of the polarized to the unpolarized structure functions gl/FI, or 
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Fig. 4.2. The structure function zgy measured in the 2.75’ (closed circles) and 5.5’ (open 
circles) spectrometers. The 5.5’ data points are slightly offset in z for clarity. The shaded 
area represents one standard deviation systematic errors. 
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Fig. 4.3. The structure function zg; measured in the 2.75” and 5.5” spectrometers. The 
shaded area represents one standard deviation systematic errors. 
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Table 4.3. The spin dependent structure function g; and the photon-nucleon asymmetry 
A;. 

(4 (Q2) (GeV2> 9; f stat. f syst. 
2.75” spectrometer 

A; f stat. f syst. 

0.017 1.21 7.167 f li.312 f 2.169 0.033 f 0.074 f 0.010 
0.024 1.59 0.154 f 7.232 f 0.980 -0.002 f 0.056 f 0.007 
0.035 2.05 -7.870 f 4.890 f 0.958 -0.106 f 0.064 f 0.013 
0.049 2.57 4.605 f 2.504 f 0.543 0.099 f 0.056 f 0.012 
0.078 3.32 1.318 f 1.331 310.245 0.058 f 0.065 f 0.012 
0.123 4.09 1.223 f 0.953 f 0.237 0.127 f 0.106 f 0.026 
0.173 4.63 -0.080 f 0.810 f 0.145 -0.033 f 0.179 f 0.033 
0.241 5.09 -0.486 f 0.515 f 0.105 -0.251 f 0.241 f 0.049 
0.340 5.51 0.541 f 0.466 f 0.145 0.635 f 0.550 f 0.126 
0.423 5.82 0.040 f 0.580 f 0.018 0.162 f 1.414 f 0.040 

0.057 4.03 
0.084 5.47 
0.123 7.23 
0.172 8.94 
0.242 10.71 
0.342 12.55 
0.442 13.83 
0.564 15.00 

5.5” spectrometer 
41.007 f 31.640 f 4.458 

4.077 f 2.403 f 0.434 
0.231 f 1.003 f 0.196 
0.398 f 0.723 f 0.153 
0.477 f 0.407 f 0.098 

-0.216 f 0.311 f 0.039 
-0.155 f 0.239 f 0.030 
-0.008 f 0.132 f 0.009 

0.945 f 0.727 f 0.103 
0.161 f 0.099 f 0.018 
0.009 f 0.080 f 0.016 
0.052 f 0.112 f 0.024 
0.145 f 0.136 f 0.031 

-0.205 f 0.273 310.032 
-0.360 310.532 f 0.047 
-0.036 f 0.953 f 0.058 

the virtual photon-nucleon asymmetry A1 are independent of Q” for any given value 

- of~.[~q Although the assumption contradicts a perturbative QCD analysis (a,s will 

be discussed in Chapter 5), it could be a reasonable approximation if the range of Q2 

is not very big and/or if the error due to the approximation is significantly smaller 

than the uncertainty on the data. We will follow the traditional approach and evolve 

the data to Q” = 5 GeV2 assuming the scaling ( Q2-independence) of 9:/F’;“. We will 

carry out the Next-to-Leading order perturbative QCD analysis of the polarized DIS 

data in the next chapter and return to the question of Q2 evolution. 
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Fig. 4.4. The structure function g;” evaluated at Q2 = 5 GeV2. Overlaid is a fit to the 
.data. The shaded area represents one standard deviation systematic errors. 

4.1.3 Combining data from two spectrometers 

The structure function gy was evolved to the average Q” = 5 GeV’ assuming 

the scaling of 9:/F,“, and the values of g1 from the two spectrometers were averaged 

at Q2 = 5 GeV2 in the common 2 bins (weighted by the statistical error of g; 

at 5 GeV’). The average Bjorken (x) and (Q”) for each bin were also weighted 

by the statistical error of gr. The average values for the structure function gy and 

the asymmetry A; are given in Table 4.4. The structure function g;, evaluated at 

5 GeV2, is shown in Fig. 4.4. 

4.2 Systematic errors 

Many of the systematic uncertainties that affected the determination of the 

structure functions were mentioned in the previous sections. The contributions from 
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Table 4.4. Results on A; and gy at the measured Q2, along with gr evaluated at Q2 = 5 (GeV)2 assuming that the ratio gr/Fr 

scales with Q2. The data of two spectrometers have been averaged. 
x bin (4 AQ;) g; f stat. f syst. A; f stat. f syst. gy f stat. f syst. 

e 2 (Q2 = 5 GeV2) 
0.014 - 0.02 0.017 1.2 -0.351 f 0.115 f 0.104 -0.058 f 0.019 f 0.017 -0.497 f 0.163 f 0.148 
0.02 - 0.03 0.024 1.6 -0.374 f 0.071 f 0.063 -0.080 f 0.015 f 0.014 -0.481 f 0.092 f 0.081 
0.03 - 0.04 0.035 2.0 -0.290 f 0.061 f 0.039 -0.078 f 0.018 f 0.011 -0.345 f 0.073 f 0.046 
0.04 - 0.06 0.049 2.6 -0.204 f 0.040 f 0.022 -0.086 f 0.016 f 0.010 -0.228 f 0.045 f 0.024 
0.06 - 0.10 0.081 4.4 -0.137 f 0.021 f 0.016 -0.092 f 0.013 f 0.011 -0.139 f 0.022 f 0.016 
0.10 - 0.15 0.123 6.6 -0.108 f 0.015 f 0.011 -0.106 f 0.014 f 0.012 -0.105 f 0.014 f 0.011 
0.15 - 0.20 0.173 8.2 -0.061 f 0.014 f 0.007 -0.092 3.z 0.021 f 0.011 -0.060 f 0.014 f 0.007 
0.20 - 0.30 0.242 9.8 -0.042 f 0.011 f 0.005 -0.112 f 0.028 f 0.016 -0.043 f 0.011 f 0.005 
0.30 - 0.40 0.342 11.7 -0.017 f 0.011 f 0.004 -0.068 f 0.065 f 0.021 -0.018 f 0.013 f 0.005 
0.40 - 0.50 0.441 13.3 -0.007 f 0.011 f 0.002 -0.003 f 0.142 f 0.017 -0.009 f 0.014 f 0.002 
0.50 - 0.70 0.564 15.0 0.003 f 0.008 f 0.001 0.100 f 0.294 f 0.032 0.005 f 0.012 f 0.001 
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the various sources to the systematic error on g;(x) and on the integral in the 

measured range are summarized in Table 4.5. 

The biggest contributions to the error on the integral in the measured range 

come from the scale uncertainties: dilution factor (relative error is approximately 

independent of x) and the target polarization. The biggest uncertainty at the lowest 

z = 0.017 is due to the asymmetry in the charge-symmetric processes. This error 

could potentially be reduced if some theoretical guidance (regarding the kinematic 

dependence of the asymmetry or its relation to the well measured pion asymmetry) 

was available (see Section 3.9.2). 

4.3 Discussion of the results 

The El54 data on g; give the most precise determination of the spin-dependent 

structure function of the neutron to date. Our results are compared with the data 

from the previous SLAC experiments E142[‘] and E143[10J’] in Fig. 4.5. The agree- 

ment among the data sets is very good. The El54 data extends the measurement of 

gy to lower values of x and improves the precision by about factor of 2. Our results 

are compared to the data of the SMC experiment at CERN[12>lq in Fig. 4.6. The 

two data sets are complementary at low 5 since the SMC data extends to x c 0.003, 

albeit with large uncertainties. 

The most striking feature of the El54 data is the behavior of the structure 

function at low 2. Not only does it not converge to zero as x becomes smaller, but 

the behavior is very divergent (see Fig. 4.4). This is even more evident if the data 

are plotted on a log-log scale (Fig. 4.7). The data below x = 0.1 can be accurately 

fitted with a gy w x-O.* power law. The low x power of the global fit (see Fig. 4.4) is 

-0.7 f 0.1, or several standard deviations away from the naive Regge expectation’ 

‘To actually estimate the statistical significance of the results one needs to take into account 
the correlations between the parameters of the fit. We will return to this question in Section 4.4.3. 



Table 4.5. Contributions to the systematic error on gF for every 2 bin and on the integral over the measured range. 

Contribution (4 Integral 
0.017 0.024 0.035 0.049 0.081 0.123 0.173 0.242 0.342 0.441 0.564 

pb 0.0177 0.0171 0.0113 0.0070 0.0044 0.0033 0.0019 0.0014 0.0007 0.0004 0.0000 0.0012 
r" 0.0328 0.0436 0.0316 0.0291 0.0209 0.0173 0.0130 0.0094 0.0081 0.0077 0.0061 0.0054 0.0036 0.0037 0.0026 0.0029 0.0013 0.0011 0.0007 0.0017 0.0001 0.0004 0.0024 0.0023 

F2 0.0088 0.0074 0.0051 0.0039 0.0022 0.0018 0.0010 0.0008 0.0004 0.0003 0.0002 0.0007 
R 0.0196 0.0182 0.0131 0.0070 0.0030 0.0017 0.0006 0.0002 0.0000 0.0000 0.0001 0.0008 
E’ 0.0105 0.0100 0.0071 0.0047 0.0032 0.0026 0.0019 0.0019 0.0009 0.0005 0.0009 0.0008 
Pn 0.0116 0.0112 0.0080 0.0053 0.0032 0.0024 0.0014 0.0010 0.0004 0.0002 0.0001 0.0008 
PP 0.0041 0.0038 0.0035 0.0032 0.0028 0.0026 0.0024 0.0021 0.0016 0.0012 0.0007 0.0011 
57; 0.0282 0.0221 0.0078 0.0047 0.0027 0.0015 0.0015 0.0010 0.0005 0.0004 0.0004 0.0004 
RC 0.0189 0.0163 0.0083 0.0046 0.0034 0.0028 0.0022 0.0004 0.0004 0.0006 0.0005 0.0011 
Rate 0.0376 0.0261 0.0153 0.0084 0.0032 0.0015 0.0011 0.0007 0.0006 0.0002 0.0001 0.0012 
AT 0.0049 0.0031 0.0014 0.0008 0.0004 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 
de 0.0056 0.0067 0.0031 0.0011 0.0008 0.0004 0.0001 0.0000 0.0000 0.0000 0.0000 0.0002 
A,+ 0.1208 0.0469 0.0231 0.0063 0.0066 0.0021 0.0008 0.0007 0.0037 0.0000 0.0000 0.0011 
e+/e- 0.0238 0.0098 0.0024 0.0005 0.0004 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 
EW 0.0010 0.0008 0.0006 0.0006 0.0006 0.0005 0.0005 0.0004 0.0003 0.0003 0.0002 0.0002 
Total 0.1476 0.0809 0.0459 0.0242 0.0162 0.0110 0.0072 0.0054 0.0047 0.0025 0.0014 0.0045 
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Fig. 4.5. The El54 results on the structure function sgy (closed circles) compared to the 
El42 (open triangles) and El43 ( o p en circles) data. The El42 and El43 data points are 
slightly offset in x for clarity. The shaded area represents one sigma systematic errors of 
E154. 

0.06 , I 
t 

xg; 
0.04 1 Q2=5GeV2 

/ il 

0.02 - o SMC 

0 

-0.06 , I 

10 -3 10” 10 -I 1 

X 
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shaded are represents one standard deviation systematic errors. 
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Fig. 4.7. The absolute value of structure function g;” is plotted on a log-log scale. The low 
‘CC data points of El54 are fitted with a power-law function g1 N x-0.8. 

a! = 0. Such a divergent behavior makes the extrapolation to x = 0 problematic, as 

will be discussed in the following Section. 

4.4 Integrals 
4.4.1 Data range 

The integral of gy in the data range was obtained by summing the values of the 

structure function in every bin multiplied by the width of the bin. The statistical 

errors are uncorrelated from bin to bin, and are added in quadrature. Most of the 

systematic errors are largely correlated bin-to-bin and therefore are added linearly. 

The uncorrelated errors (errors on positron asymmetry, pion asymmetry, and gy) 

are added in quadrature. The final result for the integral in the data range is 

J 

0.7 

dx g;(x) = -0.0360 f 0.0039 zt 0.0045, (4.2) 
0.0135 

where the first, uncertainty is statistical, and the second is systematic. 
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4.4.2 High x extrapolation 

The kinematic range of any experiment is limited, and the data need to be 

extrapolated to 2 = 0 and x = 1 in order to compute the full integral of gl and test 

the sum rules. The extrapolation to 2 = 1 is straightforward. The quark-counting 

rules predict (see Section 1.4.1) the leading twist contribution of the structure 

function to fall off as g1 w (1 - x)” (or even faster due to the Q2 evolution) as 2 + 1. 

The higher-twist contributions may have a slower dependence (see Section 1.3.2.2), 

but it is the leading twist contribution that we are interested in. We assume the 

(1 - x)” dependence of g; at high 2 and use the value of g; in the last bin to set the 

scale. The contribution to the integral from the unmeasured high z region is then 

s 

1 

dx g;(x) = (0.15 f 0.42 f 0.04) . 1O-3 , (4.3) 
0.7 

where the first uncertainty is statistical, and the second is systematic, 

4.4.3 Low z extrapolation 

A much more important contribution comes from the unmeasured low-x region. 

While the high-z extrapolation is well justified theoretically and the contribution 

to the integral is negligible, the extrapolation to x = 0 is much less certain. As 

was discussed in Section 1.5, the theoretical models vary widely in this region. The 

traditional approach, taken by all spin structure experiments prior to E154, was 

to assume the convergent Regge behavior g1 N xba where the Regge intercept 

cr is associated with the trajectory of the al meson and is bound between -0.5 

and 0.[65*6sl This assumption was consistent with the El42 neutron data,lgl and the 

El43 proton[l’] and deuteron[“] data (which was limited to x > 0.03), but just 

barely agreed with the high energy SMC proton data.[r2] The Regge theory does not 

explicitly specify the kinematic domain in which the prediction of the asymptotic 

behavior is applicable (see Section 1.5). The approach adopted by the experimental 
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collaborationslg-l ‘1 was to fit the data with the Regge-type function gi N xma, cy < 0 

below 5 = 0.1 (that corresponds to fi > 6 GeV cutoff at Q” x 5 GeV2, and the 

total yp cross sections are successfully described in that kinematic range by Regge 

theory1641). This function does not apparently fit the El54 neutron data. Fitting the 

g; data with a g; = const form (i.e. saturating the upper limit on the al intercept) 

results in a x 2 = 24 for 4 degrees of freedom (where only uncorrelated errors are 

taken into account). This x2 corresponds to the confidence level of 0.8.10W4; inclusion 

of the point-to-point correlated errors increases the confidence level to 0.4 + 10m3. 

However, one may still fit the three lowest z points (X < 0.04) to a constant with a 

reasonable x2 = 1.7 for 2 degrees of freedom. Since the Regge prediction is not very 

specific, we may not a priori discard the possibility that the convergent behavior 

sets in at this, or even lower value of Z. 

Lacking a satisfactory description of the low z data by a conventional theory, we 

shall resort to other phenomenological fits to the data. Several possible functional 

forms have been discussed in Section 1.5. To illustrate the possible spread among 

models divergent at low 5, we fit the data to the Pomeron-Pomeron cut form167@l 

91” w 1/(zln2 CC), and to the generic power law g; w CC-~ with cu being a free 

parameter. The Pomeron-Pomeron form fits reasonably well the four lowest x points 

(X 5 0.06). To fit the power-law form we use the five lowest 2 points (X 5 0.1). In 

addition, a “global” parameterization of the form 

g; = cz-“(1 - sy (44 
that does not require a low-a: cutoff, could be used to extrapolate the data to x = 0. 

All eleven data points are used to obtain the parameters of the “global” fit (Fig. 4.4). 

The results of the fits are listed in Table 4.6 together with the integral from the 

unmeasured low z region and the resulting integral over the full z range2. Three 

‘For the multi-parameter fits, the parameter correlation matrix was used to calculate the error 
on the integrals. 



204 

0.5 

. SLAC El54 . SLAC El54 

0 CERNSMC 0 CERNSMC 

- - - - - - Regge fit g, = Const Regge fit g, = Const 

- Power f¶t g, = Chos - Power f¶t g, = Chos 

...... Pomeron cut fit ...... Pomeron cut fit 

Fig. 4.8. Three representative fits to the low 2 data of E154. Also included are the low-z 
‘data of SMC (open circles). 

representative fits are shown in Fig. 4.8 for which the low-x power was fixed at 0.8, 

the average of the “global” and free power fit. 

The spread of the possible contributions from the low x region is very big even 

for moderately convergent models. Note that the free-power fit gives a value of the 

exponent cy that is very close to unity, in fact, CI > 1 is consistent with the data 

within statistical or systematic errors. Since the integral diverges if Q > 1, we do 

not quote any uncertainty; the integral is simply less than 1 standard deviation from 

infinity. This is not very satisfactory; clearly, precise high energy data are needed 

to determine the behavior of the structure functions at low x. 

4.5 Sum rules 

Given the spread of the models at low 2, we feel that the evaluation of the 

Ellis-Jaffe sum rule is not possible at present. Relatively large values of the neutron 



Table 4.6. Results of the fits to the low z data of E154. The first uncertainty is statistical and the second is systematic. 

~ Fit points Parameters sym dx 9; s; dx ST- 
g; = c 3 C = -0.41 f 0.05 f 0.06 -0.0055 f 0.0007 f0.0008 -0.0414 f 0.0044 f 0.0057 
gr = C/(x In2 2) 4 C = -0.125 f 0.014 f 0.016 -0.0291 f 0.0032 f 0.0036 -0.0649 f 0.0062 f 0.0085 
g; = cx-a 5 c = -0.014 f 0.007 f 0.004 -0.14 foo f co -0.17 

a = 0.92 f 0.16 f 0.09 
g; = cx-“( 1 - x)0 11 c = -0.034 f 0.021 f 0.011 -0.031 f 0.022 f 0.013 -0.067 f 0.024 f 0.017 

cr = 0.70 f0.18 f 0.10 
b = 3.2 f 1.6 f 0.7 
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spin structure function g;Z at low x question the validity of a naive application 

of the Regge theory to the present-day spin structure experiments. It would seem 

unnatural if the situation was any better with the proton and deuteron structure 

functions: most likely, the experiments have not yet reached the kinematic range 

and precision required to see the true asymptotic behavior at low x. A possible 

interpretation of our data is that the neutron structure function (or at least its 

derivative with respect to x) is dominated by the sea quark and gluon contributions, 

which in fact could produce very divergent behavior at low z17’l (we will return to 

this question in Chapter 5). Consequently, we do not quote a number for the quark 

helicity contribution AX = Au + Ad + As. 

Figures 4.9 and 4.10 show the values of the Ellis-Jaffe and Bjorken integrals 

integrated from a given x,in value to 1. The integral over the data range of the 

neutron structure function exceeds the Ellis-Jaffe prediction by about factor of two? 

and the Bjorken sum rule is almost saturated by the integral over the measured 

range. 

Even if the neutron and proton integrals diverge, the Bjorken sum rule could 

still be evaluated from the present data. The difference (gy - g:)(x) is a purely 

non-singlet, valence quark distribution (if one assumed Aii = Ad) and is expected 

to behave much softer at low x than its singlet counterpart.[711 The difference (gy - 

g:)(x) is plotted versus x in Fig. 4.11. We take E143l”l and SMCl121 data to evaluate 

the contribution from the proton structure function. The difference of two structure 

functions indeed shows a more convergent behavior; fitting a free power-law function 

(gf - gy) = Cx-@ to the first five points (x 5 O.l), we get 

C = 0.120 f 0.036 (stat.) f 0.005 (syst.) 

CY c 0.52 f 0.10 (stat.) Z!Z 0.04 (syst.) . (4.5) 

The contributions to the integral are 
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Fig. 4.9. The spin dependent structure function g;(z) of the neutron integrated from Z,in 
to 1 and plotted versus x,i,. The statistical and systematic errors have been added in 
quadrature. The errors in the plot are strongly correlated from point to point. 
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Fig. 4.10. The difference between the spin dependent structure functions gr of the proton 
and neutron integrated from 5,;” to 1 and plotted versus X,in* El54 data was used to 
evaluate ‘g;, and a fit to the El43 and SMC data was used for gy. The sta.tistical and 
systematic errors have been added in quadrature. The errors in the plot are strongly 
correlated from point to point. 
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Fig. 4.11. The difference between the spin dependent structure functions zgr of the proton 
and neutron. El54 data was used to evaluate g;, and a fit to the El43 and SMC data was 
used for gf. 

s 

0.7 

ds (gy - g;“) = 0.1583 k 0.0052 (stat.) f 0.0103 (syst.) 
0.0135 

s 

0.0135 

dz (gr - gy) = 0.0321 f 0.0130 (stat.) f 0.0071 (syst.) (4.6) 
0 

s 

1 
dz (gy -9;) = 0.0017 f 0.0003 (stat.) f 0.0001 (syst.) , 

0.7 

and the full integral is 

s 

1 

dz (gy - gy) = 0.192 -+ 0.016 (stat.) f 0.018 (syst.) (4.7) 
0 

in a reasonable agreement with the prediction I’p+ = 0.181 f 0.003 evaluated at 

Q2 = 5 GeV’ to O(&) with crs(Mz) = 0.118 f 0.003.[20] This result is quite robust 

against possible variations in the low 2 behavior: even if we assumed “Regge” behav- 

ior (gy-g;) N const at low x, the full integral would be I?‘+ = 0.170f0.006f0.011, 

consistent within uncertainties with the value in Eq. (4.7). 



CHAPTER 5 

NEXT-TO-LEADING ORDER QCD ANALYSIS OF THE 
POLARIZED DEEP INELASTIC SCATTERING DATA 

5.1 Introduction 

For more than two decades since the pioneering experiments in the late 1970’s at 

SLAC,[6~rl deep inelastic scattering (DIS) of p o arized 1 leptons off polarized targets 

has provided information about the internal spin structure of the proton and neu- 

tron. Recent progress in both experiment and theory has made polarized DIS into a 

powerful tool for QCD phenomenology. On the theoretical side, a full calculation of 

the Next-to-Leading Order (NLO) spin-dependent anomalous dimensions has been 

recently completed. 13q This provides for a perturbative QCD (pQCD) analysis of 

polarized DIS analogous to the treatment of the unpolarized data.l’44-‘461 At the 

same time, improvement in the precision of the experimental data and increased 

kinematic coverage has made such an analysis increasingly more meaningful. 

The data reported in this dissertation is the newest addition to the world data 

on the spin-dependent structure functions. They are the most precise up to date 

determination of the neutron structure function gy. The kinematic range of the 

measurement was extended compared to the previous SLAC experiments[g-“l to 

0.014 5 J: 5 0.7 in the Bjorken variable and 1 GeV2 5 Q2 2 17 GeV2 in the four- 

momentum transfer. Two independent spectrometers used in El54 also provided for 

a possibility to study the Q2 dependence of the structure function g;. The kinematic 

coverage of the polarized DIS experiments is illustrated in Fig. 5.1. Although, as we 

mentioned in Section 4.1.2, the present data are consistent with the assumption 

that the asymmetry A1 (or the ratio gr/Fi) is independent of Q2, information on 
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Fig. 5.1. Kinematic coverage of the present polarized DIS experiments. 

the evolution of asymmetries can be extracted from the data in the framework of a 

consistent pQCD analysis. 

As was discussed in Section 4.4.3, the relatively large values of g; at low x show 

an apparent disagreement with a traditional Regge behavior that could be attributed 

to a large contribution to g; from the singlet quark distribution. This implies the 

importance of the dynamics of polarized quark and gluon distributions, and in 

particular, a possibly sizable Q2 dependence of the experimental asymmetries. It is 

therefore important to perform a consistent NLO analysis of the available data that 

would take into account theoretical and experimental uncertainties, both statistical 

and systematic. Among the analyses performed so far,163*8s*14rl only Ref. [63] gives a 

detailed treatment of errors involved in extraction of the first moments of polarized 

parton distributions; however, the effect of experimental systematic uncertainties 

was underestimated. The analyses of Ref. [63,86,147] had been done before the El54 
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results became available, and it is interesting to see what additional information can 

be extracted from the new data. 

In this Chapter, while paying a careful attention to the theoretical and experi- 

mental errors involved in the analysis, we will: 

1. Discuss the results on the Next-to-Leading Order perturbative QCD analysis 

of the world data on polarized deep inelastic scattering; 

2. Estimate the Q” dependence of the experimental asymmetries; 

3. Discuss additional constraints that can be placed on the low IZ: extrapolation of 

the experimental data; 

4. Extract the first moments of the polarized parton distributions and structure 

functions. 

5.2 Formalism 

In the following, we will follow the notation introduced in Section 1.3. The 

helicity-dependent distribution functions of the quarks and antiquarks will be de- 

noted as &J(X) and So, respectively. The total polarized distribut,ion of the quarks 

of flavor q will be denoted as Aq(z) E cSq(x)+Sij(z). The polarized gluon distribution 

is AG(2). Whenever the explicit 2 dependence is not specified, we will imply the first 

moment of a polarized distribution, i.e. Aq - &r dz Aq(x) and AG - Jo1 dx AG(x). 

In the QCD-improved parton model, the polarized structure function gi(r) of 

the nucleon is related to the polarized quark, antiquark, and gluon distributions 

Wd, ~~(4, and AGb-9 via the factorization theorem114sl 

with the convolution @  defined as 

(C 8 q) (x, Q”) = 1’ $C (;, as) q(%, Q”). 5 (5.2) 

The sum is over all active quark flavors Nj. 
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The first moments of the structure functions of the proton and neutron gy and 

g; allow one to test the fundamental Bjorken sum rulel26l and determine the helicity 

contents of the proton. The information on the 2 and Q2 dependence gives insight 

into the perturbative and non-perturbative dynamics of quarks and gluons inside the 

nucleon. Coefficient functions Cq,~(x, as) correspond to the hard scattering photon- 

quark(gluon) cross sections and are also referred to as Wilson coefficients. They are 

calculated in perturbative QCD as an expansion in powers of the strong coupling 

constant os: 

C(z,as) = C(O)(z) + as(Q2) (l) 2~ c (x) + a** . (5.3) 

In the leading order, C,$“’ = S(1 - X) and Cg’ = 0 according to the simple partonic 

picture (i.e. gluons carry no net electric charge and do not couple directly to 

the photons, so the structure functions depend only on quark contributions, cf. 

Eq. (1.48)). Th e o arized NLO coefficient functions C, p 1 (‘I and C’,’ in the modified 

‘minimal subtraction (MS) renormalization and factorization schemes are given in 

Ref. [37]. In th e o f 11 owing, we will follow the conventional approach186J451 and use 

the fixed-flavor scheme and set Nf = 3 in Eq. (5.1). This is justified since the Q” 

of the experiments is relatively low and even above the pair-creation threshold the 

heavy quarks (charm and bottom) contribute very little to the structure function 

gi. The heavy quark contributions will be included in the two-loop running of ,s[‘O] 

dQ2) 1 p1 ln (ln(Q'/A&~~) -- 
47r = Poln(Q2&,) PO3 

(In(Q2/Afi) ,) 2 
(5.4) 

where the coefficients of the QCD beta function are ,& = 11 - 2f/3 and ,& = 

102 - 38f/3. Th e number of active flavors f in as(Q’) is determined by the number 

of quarks with m,2 2 Q2, At,) are determined by the matching condition at the 

quark threshold cxs(mi,f.) = as(mi,f + 1). F or consistency with the evolution of 

the unpolarized distributions, we takel’45l 

p (3,4,5) = 248, 200, 131 MeV (5.5) 
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with m, = 1.5 GeV and mb = 4.5 GeV that corresponds to ok = 0.109 or 

crs(5 GeV2) = 0.237. We include the uncertainty associated with the value of cxs as 

will be discussed below. The parton distributions in Eq. (5.1) are those of the proton. 

The neutron structure function is obtained by the isospin interchange u e d, and 

the deuteron structure function is defined as 

$7: = (1/2)(g~ + $)(I - 1.54 7 V-6) 

where the D-state probability Wg = 0.05 f 0.01.[14g] 

The Q2 evolution of the parton densities is governed by the DGLAP equa- 

tions[41-431 

Q” d&2 
w(Q2> -&,(4 = 2n I';, @ &is, rl = fl 

d 
and Q'-Q (5.7) 

where the index NS stands for the the non-singlet quark distributions: valence (n = 

1) Auv(x, Q’) = bu - SU, Adv(x, Q”) = bd - 62, and the SU(3)s,,,, non-singlet 

combinations (77 = -1) Aqs(x,Q”) = Au(x,Q2) - Ad(x,Q2) and Aqs(x,Q2) = 

Au(x, Q”) + Ad(x, Q2) - 2As(x, Q2). The SU(3)s,,,, singlet distribution is AX = 

Au(x, Q2)+Ad(x! Q2)+As(x, Q”). The splitting functions P& and P;j are calculated 

perturbatively 

P(z,as) = P(O)(x) + -;y2) p(‘)(x) + . . . (5.8) 

with the leading order functions given in Eq. (1.58)) and the next-to-leading order ex- 

pressions recently obtained in Ref. [37]. Note that in the leading order, the evolution 
(O)q=-1 of both types of non-singlet distributions is the same: PNs 

and the differences only appear in the next-to-leading order. Starting with a param- 

eterization of the parton densities at some initial scale Qi, the distributions at any 
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value of Q’ > Qi are obtained using the solutions of the NLO DGLAP equations in 

the Mellin n-moment space[3g~‘5~ with the n-th moment defined by 

.f( )=J 

1 

n dz Pf(z). 
0 

In Mellin space, the DGLAP evolution is controlled by the matrix of anomalous 

dimensions that are related to the n-th moments of the splitting functions. We use 

the convention of Ref. [150] for the anomalous dimensions 

(5.10) 

with r!:)(n) = -4 Ji da: 9-l p,‘j”‘(~) and r,(:)(n) = -8Ji da: x~-~~$)(z). The com- 

plete set of the LO and NLO anomalous dimensions can be found in Appendix B. 

The parton densities evolved in Mellin space are inverted back to Bjorken 2 space 

using the prescription of Ref. [150] (see Appendix B). 

One of the primary uncertainties in the interpretation of the deep inelastic 

scattering data at the next-to-leading order is the relative freedom in defining the 

hard scattering cross sections Cj:A and the singlet quark density AX in Eq. (5.1), 

known as the factorization scheme dependence. [3g@1v621 The factorization theorem 

states that at some scale Q 2, the DIS cross section can be separated into the 

hard part that can be calculated in perturbation theory, and soft non-perturbative 

quantities sensitive to the nucleon wavefunction, the parton distribution functions. 

Such separation is a priori arbitrary; since the hard-scattering cross sections Cs,~ 

are calculated perturbatively and need to be renormalized, one defines them by 

specifying an explicit renormalization procedure (factorization scheme)[3g’6211. In the 

polarized case, the situation is further complicated by the freedom of a definition 

‘In DIS, the dep endence on the renormalization procedure comes in two places. The factorizo- 
tion scheme applies to renormalization of the hard-scattering cross sections in Eq. (5.1). There is 
also a genuine renormalization scheme that defines the way the strong coupling is renormalized 
in Eq. (5.7). The two renormalization procedures do not have to be the same. However, one most 
often chooses the same schemes, such as MS in both cases. 
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of the y5 matrix and the Levi-Civita tensor in n # 4 dimensions[611 in dimensional 

regularization. [151] The choice of scale at which the factorization theorem is applied 

(a factorization scale) is also a priori arbitrary[‘521; so in a complete calculation 

one always specifies a particular factorization scheme, and chooses a scale (in DIS 

one typically uses Q2 as a factorization scale, as we did in Eq. (5.1)). Additional 

uncertainty comes from the lack of knowledge of the higher order corrections, and 

is conventionally referred to as a renormalization scale dependence (i.e. dependence 

of the results on a choice of the scale for the coupling constant in Eq. (5.3)). Several 

prescriptions for setting the renormalization scale exist.[‘531 Typically, one chooses 

Q” to be the renormalization scale and the uncertainty is estimated by varying the 

scale. 

Given the anomalous dimensions and Wilson coefficients in one fact,orization 

scheme, any other factorization scheme can be constructed by a transformation[3gl 

r%n> + ri%n> + %%dn) 
T/j’(n) -+ -&f)(n) + 2 [z(n), #‘)(n)lij + %Zij(n) 

and C(‘)(n) + C(‘)(n) - Z,,(n) P P 

C/j’(n) + C:)(n) - Z,,(n) , 

(5.11) 

(5.12) 

where Z(n) is an arbitrary 2 x 2 scheme transformation matrix. The NLO anomalous 

dimensions and coefficient functions are given in Ref. [37] in the MS scheme with the 

definition of the y5 matrix following Ref. [151]. The specific feature of this scheme is 

that the first moment of the gluon coefficient function vanishes Cg)(n = 1) = 0, and 

the gluon density does not contribute to the integral of 91. This has been a matter 

of debateP6-5s?slI with several authors advocating the scheme change by which the 

axial anomaly contribution -(&Q2)/47r) C, e:AG is included into the integral of 

gl. This implies that for the first moment of the gluon coefficient function 

Cjj’(n = 1) = -jV, . (5.13) 
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An attractive feature of such a scheme is that the total quark helicity in this case is 

redefined as 

(5.14) 

and is independent of Q2 even beyond the leading order. It could also resurrect the 

intuitive Quark-Parton model expectation AX z 0.6 - 0.7 and explain the violation 

of the EllislJaffe sum rule if the product crs( Q2)AG( Q2) turned out to be layge.[56-5sl 

The product crs(Q2)AG( Q’) is independent of Q2 in the leading order since 

its anomalous dimension expansion starts at order cy~.11541 This implies that as QS 

decreases logarithmically with Q2, AG grows as 1/os(Q2). This growth is compen- 

sated by the increasing (with opposite sign) orbital angular momentum contribution 

(~,)l~~~‘~~l in order to satisfy the proton angular momentum sum rule 

;AE + AG + (L) = ;. (5.15) 

Another consequence is that the ambiguity in the definition of the total quark helicity 

in Eq. (5.14) d oes not vanish at infinite Q2, or in other words, the quark helicity can 

only be defined up to a Q2-independent (in the leading order) constant. However, one 

does not lose the predictive power of perturbative QCD: as long as the factorization 

and renormalization schemes are used consistently, NLO predictions can be made 

for the spin dependent structure functions and other hadronic processes involving 

spin degrees of freedom (once the parton distributions are determined in one scheme 

and at one scale). 

A transformation from the MS scheme of t’Hooft and Veltman[1511 to the so- 

called Adler-Bardeen (AB hereafter) scheme that satisfies Eq. (5.13) was constructed 

in Ref. [63]. Th e inverse Mellin transform Z(X) of matrix Z(n) in Equations (5.11) 

and (5.12) was taken to be independent of 2, the first momentsof the matrix elements 

were fixed by the conservation of the non-singlet axial current (Z,,(n = 1) = 0) and 
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Table 5.1. NLO initial unpolarized parton distributions at Qi = 0.34 GeV2.1’451 

uv(x,Q;) = 0.988x- 0.457(1 - r)3.380(1 + 1.58~~1~ + 2.58~ + 18.1~~‘~) 
d”(x, Q;) = 0.182~-~~~~~(1 - x)4.113(1 + 2.51~~~‘~ + 25.0~ + 11.4~~‘~) 
&(x, Q;) = 0.545~-O.~~(l - x)8.33(1 + 2.65s) 
G(x, Sit> = 26.2x0.‘(1 - x)~.’ 

by Eq. (5.13), and the lower entries of the matrix were taken to be zero. Hence, the 

transformation matrix is 

(5.16) 

This scheme is the minimal modification of MS since it preserves the low and high 

x behavior of the coefficient functions and anomalous dimensions, and thus the 

asymptotic behavior of parton distributions is not modified. In order to demonstrate 

the effects of the factorization scheme dependence, we perform our calculations in 

both MS and AB schemes. 

5.3 Fits 

Following the ansatz of Ref. [86], we parameterize the polarized parton distri- 

bution at the low initial scale Qi = 0.34 GeV2 as follows: 

Af( x, Q;) = Apa’ (1 - x)?f(x, Qi) 9 (5.17) 

where Af = Auv, Ad v, AQ, AG are the polarized valence, sea, and gluon distribu- 

tions (see below for the definition of AQ), and f(x, Qi) are the unpolarized parton 

distributions from Ref. [145] (Table 5.1). 

Since the inclusive deep inelastic scattering does not provide sufficient informa- 

tion about the flavor separation of the polarized sea, we assume isospin symmetry 

Ju = &j= - (5.18) 
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Under this assumption, the sea quark contribution to the polarized structure func- 

tions of the proton and neutron is the same: 

p sea 
g1 = 93” sea = (5/9)C, El [1/2(&i + 62) + l/5&] . (5.19) 

Thus, the inclusive DIS does not probe the light and strange sea independently2, 

and the only sensitivity to the difference between SU, Sd, and 65 comes from the 

difference in the evolution of the two types of non-singlet distributions (q = &l in 

Eq. (5.7)). However, if one started with the equal sea distributions (SU = bd = SS) at 

Qi = 0.34 GeV’, at Q’ = 100 GeV2 and x = 0.001 the difference between the light 

and strange sea distributions would only be z 2% (and smaller at higher x), beyond 

the reach of the present-day experiments. Hence, we will parameterize a particular 

combination of the sea quark distributions that appears in Eq. (5.19): 

AQ = l/2(& + 62) + l/5&. (5.20) 

Furthermore, we assume the x dependence of the polarized strange and light sea to 

be the same and fix the normalization of the strange sea by 

*s = x JCL + sd A, 
3 2 = 1 + x,/5 AC?, (5.21) 

with the SU(3)s,,,, symmetry breaking parameter X, varying between 1 and 0 

(where the latter choice corresponds to the unpolarized strange sea). 

The positivity constraint, 

Pf(x)l I f(x) (5.22) 

enforced (within uncertainties) at the initial scale Qi holds at all scales Q” > Qi; it 

leads to constraints CXY~ 2 0 and Pr 2 0. In addition, we assume the helicity retention 

properties of the parton distributions 14’1 (see Section 1.4.1) that constrain3 ,Bf = 0. 

21nformation on the flavor separation of the polarized sea could be obtained from the semi- 
inclusive reactions, i.e. when a hadron that carries the struck quark is observed in the final state. 

3We have checked that the data are consistent with this assumption. 
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Table 5.2. Fitted values of the free parameters in Eq. (5.17) in MS and AB schemes. Also 
quoted are the statistical, systematic, and theoretical errors. 

Ad 

AQ 

AG 

ad 

MS 
Value Stat. Svst. Theory 

-0.7 4 +0.14 +0.05 +0.05 
-0.21 -0.07 -1.28 

-0.0 1 +0.02 +0.01 +0.01 
-0.05 -0.02 -0.35 

1.3 +1.1 +0.7 +0.2 
-0.7 -0.5 -1.3 

0.64 +0.06 +0.03 +0.36 
-0.07 -0.05 -0.06 

0.25 +0.16 +0.07 +0.75 
-0.11 -0.04 -0.03 

0.99 ‘gg t;:;; $0.97 
-0.11 

0.01 $0.19 +0.13 +0.55 
-0.01 -0.01 -0.01 

0.7 +0.4 +0.3 +0.1 
-0.5 -0.3 -0.6 

AB 
Value Stat. Syst. Theory 

0.96 +‘.07 $0.03 +0.96 
0.06 -0.05 -0.09 

-0.82 ‘;:;; ‘;:;; +0.31 
-1.21 

-0.03 +g; tg: +0.03 
-0.06 

0.1 +2.3 +1.7 +0.1 
-1.1 -1.1 -0.6 

0.54 :;:“,z ‘;:;; +0.56 
-0.05 

0.40 $0.20 +0.07 +0.53 
-0.12 -0.13 -0.34 

0.00 f0.17 
+0.17 +o.oo 

0.00 -0.00 -0.00 

0.0 
+0.7 +1.0 +1.0 
-0.0 -0.0 -0.0 

The remaining eight coefficients are determined by the fit to the available data on the 

spin dependent structure function g, p’n’d of the proton, neutron, and deuteron with 

Q’ > 0.95 GeV2. We determine the structure functions at the experimental values 

of Q2 using the quoted results for gi/Fi. The unpolarized structure function Fi is 

obtained from the recent parameterization of F~(x, Q2) from NMCl12q and the fit to 

the data on R(x,Q2), th e ratio of longitudinal to transverse photoabsorption cross 

sections, from SLAC.17’l Th e weight of each point is determined by the statistical 

error. The multi-parameter fit is performed using MINUIT from the CERN program 

library.l156l The best fit coefficients are listed in Table 5.2 and the x2 contributions 

from various experiments are listed in Table 5.3. 
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Table 5.3. Contributions to the total x2 from each experiment. 

Exp. El42 E143-p E143-d SMC-p SMC-d El54 total 
Source PI 110,771 [IL771 I121 P31 Chapter 4 
Points 32 40 34 12 12 18 149 
x2 (MS) 24.6 45.5 33.7 11.0 15.9 9.8 140.4 
x2 (AB) 24.6 48.6 31.9 11.3 16.5 9.4 142.3 

5.4 Error analysis 

5.4.1 Experimental errors 

The statistical errors on the parameters of the fit could in principle be extracted 

from the correlation matrix returned by the fitting program.Ils6] However, the esti- 

mates provided by MINUIT should be taken with some caution: the x2 distribution 

around the minimum in the parameter space is quite shallow (the precision of the 

data is still limited), and the correlation matrix returned by the program is not 

always accurate. In addition, the correlation matrix in the parameter space is not 

very practical if one wants to calculate the errors on the structure functions, or 

uncertainty in the Q” evolution, Moreover, it is not trivial to include the systematic 

errors into the x2 formalism.115’l 

Instead of relying on MINUIT estimates, we use the standard error propagation 

technique. The statistical errors on the parameters of the fit as well as on the 

extracted parton densities Sq, &, and AG can be calculated by adding in quadrature 

statistical contributions from experimental points. The weight of every point is 

obtained by varying the point within its statistical error and calculating the change 

in the parton density. This is equivalent to taking a derivative of the quantity 

in question with respect to the value of gr at every experimental point by finite 

differences4; thus 

4Lf. Section 3.11 where such a technique was applied to the radiative corrections 
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(5.23) 

where j is, for instance, a parton density, and the sum is over all experimental points 

s;* 

One has to keep in mind the fact that the standard error propagation similar to 

Eq. (5.23) is limited to the case when the errors on each point are small compared 

to the ratio of the second and first derivatives (a”Aj/a”gf)/(aAj/agf) (so that 

the Taylor expansion that leads to this formula converges fast).12’] If this is not the 

case, the higher order derivatives have to be taken into account. The RMS of such 

distribution may not be a good measure of the uncertainty and one has to define the 

error in terms of a probability interval. We define C+ and U- errors in such a way 

that the probability is 34% that the value A j is within intervals [j- a-(A j); (A j)] 

and [(Aj); Aj + g+(Aj)] (where (Aj) is th e value of the maximum likelihood5 of 

_ the distribution of A j. The distributions of the quantities A j (for instance, a parton 

density, or a value of g1 at some particular z and Q’) is obtained by randomizing 

every experimental point independently according to a Gaussian distribution with 

mean of the measured value of g; and variance of &t(g;) and repeating the NLO fit. 

A typical “statistical” sample consists of 800 fits. The distribution of first moments 

of the polarized parton densities is shown in Fig. 5.2. 

The systematic errors for every point are usually dominated by the normalization 

errors (target and beam polarizations, dilution factor, etc.). Thus the systematic 

errors are to a large extent correlated point to point within one experimenP. We 

therefore assume 100% correlated systematic errors for any given experiment and 

add systematic contributions within one experiment linearly. The propagated sys- 

5Note that for asy mmetric distributions (Af) may not coincide with the mean of the 
distribution. 

‘This includes both proton and deuteron data taken in a single experiment, such as El43 and 
SMC. 
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Fig. 5.2. Distributions of the first moments of the polarized parton densities obtained in 
the MS scheme by randomizing the input values of g1 as described in the text. 
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tematic errors of each experiment are then added quadratically to obtain the sys- 

tematic errors on parton densities. Within our “Monte Carlo” framework, it means 

that one random variable (with normal Gaussian distribution) that represents the 

fraction of the systematic error is generated for every experiment, and all points are 

shifted by that fraction. 

5.4.2 Theoretical errors 

The biggest source of theoretical uncertainty is the error on the value of cus. 

We estimate it by repeating the fits7 with crs(A@) varied in the range allowed by 

the unpolarized DIS experiments12q crs(Mi) = 0.108 - 0.116. The scale uncertainty 

is included in the error on os. We also vary current quark masses in the range 

m, = 1 - 2 GeV and rnb = 4 - 5 GeV. The sensitivity to the shape of the initial 

distributions and the value of the starting scale Qi is estimated by repeating the 

fit with initial unpolarized distributions taken from Ref. [144] at Qg = 1 GeV2. 

The effect of the SUM,,, breaking is estimated by varying the parameter A, from 

1 to 0. Possible higher twist effects are neglected since they are expected to drop 

as l/W21s51 and the cut W2 > 4 GeV2 has been applied to all the data with the 

majority of them exceeding W2 > 8 GeV*. 

5.5 Results and discussion 

Results for the structure functions of the proton and neutron gy and gT at 5 GeV’ 

are compared to the experimental data in Fig. 5.3. They are compared to the fits 

from Ref. [63,86] in Fig. 5.4. While the low x behavior of our parameterization is 

similar to that of Ref. [63,86], our fit is somewhat better constrained at high Z. It 

is interesting to note that all analyses predict that the proton structure function 

crosses zero between 5 = 0.001 and x = 0.01 (at Q2 = 5 GeV2). This is due to the 

7We also relax the positivity constraints Eq. (5.22). 



224 

sea and gluon contributions that start to dominate at sufficiently low 2. Since the 

neutron structure function g; is large and negative, the deuteron structure function 

gi is expected to cross zero near 2 = 0.01. If this is true, the effect could potentially 

be observed by E155.[481 

The values of the first moments of parton distributions, as well as the first 

moments of structure functions at Q2 = 5 GeV2, are given in Table 5.4. We observe 

that the first moments of the valence quark distributions are determined fairly well 

and the moments of the sea quarks and gluons are only qualitatively constrained. 

One may note an apparent M 1.90 disagreement of Aqs with the value extracted 

from the neutron beta-decayf2’l Aqs = gA = 1.2601 kO.0025. This is due to the fact 

that the calculation is done in NLO and thus the higher order corrections to the 

Bjorken sum rule are not taken into account. The corrections can be as big as 5%1281 

at the weighted world average Q2 z 5 GeV2 and they would bring Aqs in better 

agreement with the beta decay data. For consistency with the NLO approximation, 

we do not include this correction; it has no effect on the physical observable gl. 

The contribution of the experimental systematic errors to the errors on the 

first moments of the parton distributions is comparable to the statistical contri- 

bution. Due to that, the full error on the first moment of the gluon distribution 

AG is bigger than quoted in Ref. [63] despite the fact that the new data from 

El54 were added. This illustrates the importance of the experimental systematic 

errors which were (incorrectly) assumed to be uncorrelated from point to point 

in Ref. [63]. The gluon distribution is constrained entirely by the evolution of the 

polarized structure functions, and no single experiment covers significantly broad 

kinematic range. Therefore, changes in relative normalization of the experiments 

(i.e. systematic errors) smear out evolution effects and impair the determination of 

the gluon polarization density. The theoretical uncertainty is also quite large; it could 

potentially be reduced if the simultaneous analysis of the unpolarized and polarized 
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Fig. 5.3. The structure functions (top) zgf and (bottom) zg; at Q2 = 5 GeV2. El43, 
SMC, and El54 data have been evolved to Q2 = 5 GeV2 using a procedure described in 
the text. The result of the MS fit is shown by the solid line and the hatched area represents 
the tota! error of the fit. 
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Fig. 5.4. The results of our fit for the structure functions (a) xg; and (b) xgy are compared 
to the parameterizations of Ref. [63,86] at Q2 = 5 GeV2. The AB parameterization of 
Ref. [63,158] is shown as dashed lines, and the “standard” NLO set of Ref. [86,159] is 
shown by dot-dashed lines. The result of our MS fit is shown by the solid line and the 
hatched area represents the total error of the fit. 
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Table 5.4. First moments of the polarized parton distributions and structure functions of 
the proton, neutron, and deuteron in MS and AB schemes evaluated at Q2 = 5 GeV2. 
Errors are statistical, systematic, and theoretical. 

T MS AB 
Value Stat. Syst. Theory Value Stat. Svst . Theory 

0.69 

-0.40 

-0.02 

1.6 

1.09 

0.30 

0.22 

0.115 

-0.054 

0.028 

0.169 

+0.02 
-0.02 

+0.05 
-0.04 

+0.14 
-0.01 

+0.04 
-0.04 

+0.03 
-0.03 

+0.07 
-0.00 

+0.01 
-0.02 

+0.01 
-0.01 

+o.oo 
-0.03 

+0.7 +0.3 +0.1 
-0.7 -0.6 -0.6 

+0.03 +0.06 +0.06 
-0.02 -0.05 -0.01 

+o.ot5 +0.06 +0.23 
-0.05 -0.04 -0.01 

+0.05 +0.04 
-0.06 -0.05 

+0.006 +0.008 
-0.006 -0.008 

+0.005 +0.005 
-0.007 -0.006 

+0.005 +0.005 
-0.006 -0.005 

+0.005 +0.009 
-0.004 -0.008 

+0.01 
-0.01 

$0.009 
-0.001 

+0.002 
-0.001 

+0.005 
-0.001 

+0.007 
-0.001 

0.74 

-0.33 

-0.03 

0.4 

1.07 

0.41 

0.26 

0.114 

-0.051 

0.029 

0.165 

+0.02 
-0.03 

+0.02 
-0.03 

+0.03 
-0.04 

+0.03 
-0.05 

$0.02 
-0.02 

+0.01 
-0.01 

+1.0 +0.9 
-0.6 -0.6 

+0.03 +0.05 
-0.02 -0.06 

+0.05 +0.02 
-0.08 -0.06 

-I-o.07 +0.06 
-0.07 -0.06 

+0.005 +0.008 
-0.006 -0.011 

+0.005 +0.006 
-0.007 -0.007 

+0.005 +0.006 
-0.006 -0.007 

+0.004 
-0.004 

+0.007 
-0.009 

+0.07 
-0.01 

+0.01 
-0.03 

+0.01 
-0.01 

+1.1 
-0.1 

+0.10 
-0.01 

+0.03 
-0.01 

+0.05 
-0.02 

+0.001 
-0.003 

+0.001 
-0.012 

+0.001 
-0.007 

+0.013 
-0.001 
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data was performed (including cys as one of the parameters). The uncertainties on 

the values of AX are larger than originally estimated [3018q due to the uncertainty in 

the evolution effects and low-2 extrapolation embedded in our analysis. 

The results of the fits in both MS and AB schemes are consistent within errors. 

The fits are significantly less stable in the AB scheme. Note that the values of the 

singlet axial charge (ua = AX in MS scheme and as = AX - NfcrsAG/(2~) in AB 

scheme) are almost exactly the same in two schemes. 

Using the parameterization of the parton distributions, one can obtain the 

polarized structure function (Eq. (5.1)) and evolve the experimental data points 

to a common (Q*) using the formula: 

g;xp(2;, (Q”)) = gpxp(zi, Qf) - A&xi, Qf, (Q*>> 

with 

A&z;, Qi”, (Q*)) = &xi, Qf> - $(si? (Q")) 7 

(5.24) 

(5.25) 

where gFxp(z;, Q’) is the structure function measured at the experimental kinematics, 

and g:” is the fitted value. The errors on grxp(2;, (Q”)) have three sources: 

~2(g;xp(~i, (Q”))) = g2(gYp)stat. + g2(g;xp)syst. + ~*(g&vol. , (5.26) 

where statistical and systematic uncertainties should take into account the corre- 

lation between gFxp(z;, Qf) and g:“, and the evolution uncertainty includes only 

uncorrelated experimental uncertainties as well as theoretical uncertainties added 

in quadrature. Table 5.5 lists the El54 data points evolved to the common (Q2) = 

5 GeV* using this procedure. For comparison, we have included the values of g; (5 GeV*) 

obtained assuming that the ratio gr/Fr is independent of Q*, as has been tradition- 

ally done (cf. Table 4.4). The difference between the NLO QCD evolution and the 

naive assumption is comparable to the precision of the present-day experiments and 

cannot be neglected. 
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Table 5.5. El54 results on g;” evolved to (Q2) = 5 GeV2 assuming gr/Fr is independent 
of Q2 and according to Eq. (5.24). Errors were propagated as described in the text. 

Xi Qf &(xi, Q;) - Fr&‘:,,$;” g;(x;, 5 GeV2) 
GeV2 fstat.fsyst. fstat.fsyst.Aevol. 

2.75” spectrometer 
0.017 1.21 -0.497 f 0.163 III 0.147 -0.419 f 0.115 f 0.104 f 0.014 
0.024 1.59 -0.481 f 0.092 f 0.079 -0.409 f 0.071 f 0.062 f 0.006 
0.035 2.05 -0.345 f 0.073 f 0.044 -0.304 f 0.061 f 0.037 k 0.005 
0.049 2.57 -0.237 f 0.046 f 0.024 -0.215 f 0.041 f 0.021 f 0.004 
0.078 3.32 -0.127 f 0.033 f 0.014 -0.117 f 0.031 f 0.013 f 0.002 
0.123 4.09 -0.077 f 0.031 f 0.009 -0.073 f 0.030 f 0.009 f 0.001 
0.173 4.63 -0.071 f 0.033 f 0.009 -0.069 f 0.033 f 0.009 f 0.001 
0.241 5.09 -0.053 f 0.028 f 0.007 -0.053 f 0.028 2 0.007 f 0.000 
0.340 5.51 0.002 f 0.037 f 0.004 0.001 f 0.036 f 0.004 f 0.000 
0.423 5.82 0.028 f 0.061 f 0.008 0.027 f 0.059 f 0.007 f 0.000 

0.057 4.03 
0.084 5.47 
0.123 7.23 
0.172 8.94 
0.242 10.71 
0.342 12.55 
0.442 13.83 
0.564 15.00 

5.5” Spectrometer 
0.233 f 0.297 f 0.037 0.224 f 0.285 f 0.035 f 0.001 

-0.150 f 0.029 f 0.019 -0.152 f 0.029 f 0.019 f 0.001 
-0.113 f 0.016 f 0.012 -0.121 f 0.017 f 0.012 f 0.002 
-0.058 f 0.015 f 0.007 -0.065 f 0.016 f 0.007 f 0.003 
-0.041 f 0.012 f 0.005 -0.047 f 0.012 f 0.005 f 0.003 
-0.021 f 0.013 f 0.005 -0.023 f 0.012 f 0.005 f 0.001 
-0.011 f 0.014 f 0.003 -0.011 f 0.012 f 0.002 f 0.001 

0.005 f 0.012 f 0.002 0.004 f 0.008 f 0.001 f 0.000 

The Q” dependence of the ratio gr/Fr for the proton and neutron is shown for 

several x bins in Fig. 5.5. For the neutron, the evolution if gy is slower than that of 

FF. Therefore, assuming scaling of gy/F;“, one typically overestimates the absolute 

value of gy(x, (Q’)) at 1 ow x (where Q? < (Q2)), and underestimates it at high x 

(where Q” > (Q”)). Th e t wo effects approximately cancel for the integral over t.he 

measured range in case of E154. However, the shape of the structure function at low 

z affects the extrapolation to x = 0 (the effective low z power decreases, see below). 

The effect of the perturbative evolution is qualitatively the same for the proton. 

The data on gy at Q2 = 5 GeV2 averaged bet,ween two spectrometers are given 

in Table 5.6. For the integral of the neutron structure function in the measured 
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Fig. 5.5. Evolution of the ratios gl/Fl for proton (left) and neutron (right). Plotted is 
the difference j$(x,Q’, - R(x, 5 GeV2). MS fit is shown in solid and the hatched area 
represents the total (experimental and theoretical) uncertainty. 
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Table 5.6. El54 results on g; evolved to Q2 = 5 GeV2 according to the NLO DGLAP 
equations. The data of the two spectrometers have been averaged. 

X g;(x, 5 GeVL) f stat. f syst. f evol. 
0.017 -0.419 f 0.115 f 0.104 f 0.014 
0.024 -0.409 f 0.071 f 0.062 f 0.006 
0.035 -0.304 f 0.061 f 0.037 f 0.005 
0.049 -0.206 f 0.041 f 0.021 f 0.004 
0.081 -0.136 f 0.021 f 0.016 f 0.001 
0.123 -0.109 f 0.015 f 0.011 f 0.002 
0.172 -0.066 f 0.014 f 0.007 f 0.003 
0.242 -0.048 f 0.011 f 0.005 f 0.003 
0.342 -0.021 f 0.011 f 0.005 f 0.001 
0.441 -0.009 f 0.012 f 0.002 f 0.001 
0.564 0.004 f 0.008 f 0.001 f 0.000 

range, we obtain 

s 0.0135 0.7 dx g;(x) = -0.035 f 0.003 f 0.005 f 0.001 ) (5.27) 

where the first error is statistical, the second is systematic, and the third is due to 

the uncertainty in the evolution. This value agrees well with the originally quoted 

number (cf Eq. (4.2)). 

5.6 Low x extrapolation updated 

It is interesting to note that the low-x behavior of the valence distributions is 

reasonably convergent (Auv(x) N x”.18~~:~~ and Ad”(x) N x-0~43t~:~~ as x + O)? 

and is consistent with the Regge predictionsI65l at low Q2 R Qi = 0.34 GeV2. In 

the singlet sector, the data seem to prefer small values of CXQ, and the uncertainties 

on CYQ and 0~ are large. The reason for that is that the data are not yet sensitive 

enough to the true asymptotic behavior of the sea and gluon distributions at low 

x. The parameters aQ and oG should be viewed as effective powers obtained in the 

range x 25 0.005 - 0.1 ( compared to the unpolarized case where the measurements 

extend down to x z 10m5). At higher Q” = Q& > 1 GeV’ > Qi, the perturbative 
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Table 5.7. Results of the fits to the low 2 data of E154, evolved to Q2 = 5 GeV’ according 
to Eq. (5.24). The first uncertainty is statistical, the second is systematic, and the third 
is due to evolution. 

Fit g; = c g; = cx-* 
Points 3 5 

c -0.36 f 0.04 f 0.06 f 0.01 -0.018 f 0.008 f 0.001 f 0.001 
Q 0.81 f 0.15 f 0.06 f 0.01 

J:.0135 dx g; -0.005 f 0.001 f 0.001 f 0.000 -0.042 f 0.063 f 0.016 f 0.004 
s, dx 91” -0.040 f 0.004 f 0.006 f 0.001 -0.077 f 0.063 f 0.021 zk 0.005 

evolution leads to a divergent behavior of the valence distributions and amplifies 

the divergent behavior of the sea and gluon distributions,1711 which is evident in the 

neutron structure function below x = 0.1 (see Chapter 4). The low x behavior of the 

singlet distributions is to a large extent decoupled from the distributions at the low 

initial scale; it is determined primarily by evolution. This makes the data at high 

Q” even less sensitive to the initial shape of the sea and gluon distributions. 

It is interesting to compare the low x extrapolation done with the El54 data 

evolved according to the NLO DGLAP equations with the results presented in 

Section 4.4.3 (where the data have been evolved to Q” = 5 GeV2 assuming the 

scaling of g;/F,“). Results of the two fits are summarized in Table 5.7: the “Regge” 

- fit gy = const, and a “free power” fit. Again, although the behavior of the free-power 

fit is now slightly softer and it is (barely) integrable within one standard deviation. 

two fits give quite different values of the total integral of the neutron structure 

function. 

One should note that the convergent behavior of the structure functions at low 

x and high Q” would be incompatible with the pQCD predictions.1’60~‘611 In fact, 

at next-to-leading order, the polarized parton distributions, and therefore gl, are 

expected to rise faster than any power of log(l/x) (but slower than any power of 

x) even if the initial distributions at low scale are convergent. At sufficiency low 



233 

x (and/or high enough Q2), the singlet distributions start to dominate, and both 

proton and neutron structure functions have the same asymptotic behavior. This can 

be seen in Fig. 5.6 where we plotted the structure functions of proton and neutron at 

Q” = 5 GeV2 and x = 10s4 -10-l. In addition to the MS parameterization discussed 

in this Chapter, we show the behavior of the structure functions for the cases where 

we fix the low x power of all polarized distributions to 0 or 1 at the initial scale 

Q2 = 0.34 GeV2. Evidently, th e asymptotic behavior for both proton and neutron 

is the same in all cases (Fig. 5.6, top); the structure functions are insensitive to the 

shape of the initial distributions below x = 0.001. The initial distributions, however, 

dictate at what values of x and Q2 the low z behavior sets in. Thus, for the neutron, 

the region is between x = 0.01 (for soft initial distributions) and x = 0.1 (for our 

fit), but for the proton the asymptotic behavior sets in near x = 10s4 (Fig. 5.6, 

bottom). Therefore, extrapolating the present proton data (limited to x > 0.005) at 

moderate Q” could be problematic. 

To evaluate the integrals of the neutron and proton structure functions, we 

evolve the El54 neutron data and the El43 proton datall’l to Q’ = 5 GeV2 

according to the procedure discussed above. The contributions to the integrals over 

the range measured by these experiments are summarized in Table 5.8. Using the 

- MS parameterization of Table 5.2, we have also evaluated the contributions to the 

first moments of g; and gf from unmeasured regions (high and low x) and obtained 

for the Bjorken sum 

’ I’7(5 GeV2) = 
s 

dx (gy - gy) = 0.172 f O.O04(stat.) f O.OlO(syst.) f O.O07(evol.) 
0 

(5.28) 

in agreement with the O(c~~)l~~l prediction 0.186 evaluated with crs(Mg) = 0.109. 

This number agrees very well with the value in Table 5.4 obtained by direct inte- 

gration of the parton densities. The result is fairly insensitive to the details of the 

low-x extrapolation which for the difference [gr - ST-1 (x) is determined by the valence 
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Fig. 5.6. The low z behavior of the structure functions gf and gr (top) and zgy and xgy 
(bottom) for different choices of the initial parton distributions. The result of the MS fit 
(Table 5.2) are plotted in solid, and parameterizations with constrained low 2 behavior 
Af - const and Af N 5 are shown as dashed and dotted lines, respectively. 
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Table 5.8. Integrals of the proton and neutron polarized structure functions evaluated at 
Q2 = 5GeV2. Th e rs error is statistical, the second is systematic, and third is due to fi t 
evolution. 

EI54 (ST-> El43 (d) 
xmin 0.014 0.029 
Xmax 0.7 0.8 
s XlZlZiX -0.035 It 0.003 f 0.005 f 0.001 0.113 f 0.003 f 0.007 f 0.001 

Xmln 

Kmin + s’ xmax -0.018 f 0.002 f 0.002 f 0.005 0.005 f 0.003 * 0.002 f 0.009 
1 

0 -0.053 f 0.004 f 0.007 f 0.006 0.119 f 0.005 & 0.009 f 0.010 

quark distributions, and is well constrained by the data. The low x behavior in the 

non-singlet polarized sector is also relatively insensitive to the higher-order correc- 

tions.[1621 On the other hand, the low-x extrapolation of the proton and neutron 

integrals alone still relies on the assumption that the asymptotic behavior of sea 

quark and gluon distributions can be determined from the present data, and that 

the effects of higher-order resummations are small. These assumptions, and therefore 

evaluation of the t,otal quark helicity AX, are on potentially weaker grounds. Precise 

higher energy data on the polarized structure functions of both proton and neutron 

are required to determine this quantity. 



CHAPTER 6 

CONCLUSIONSAND OUTLOOK 

Spin-dependent deep inelastic scattering still remains one of the most fascinating 

fields of particle physics. New experimental data, such as the results presented in 

this dissertation, increase our knowledge and understanding of the structure of the 

proton and neutron. At the same time, as we get a closer look into the structure and 

dynamics of quarks and gluons inside the nucleon, new questions arise, some of our 

naive expectations fall, and our uncertainty grows. The results of this experiment’ 

is one example of such evolzltion of knowledge that probably is inevitable, as was 

postulated seventy years ago by Heisenberg. 

The results of the experiment El54 at SLAC, described in this dissertation. is 

the most precise determination of the spin dependent structure function gy of the 

neutron. Compared to the previous SLAC spin structure experiments, the kinematic 

coverage was significantly increased. The increased beam energy allowed us to extend 

the measurements to lower values of Bjorken variable 5 and to increase the four- 

momentum transfer Q2, providing for a possibility to constrain the evolution of 

the polarized parton distributions. Thus, not only the information about the quark 

contribution to the structure functions can be obtained from the present data, but 

also first constraints on the gluon helicity distribution are emerging. 

At the same time, the data presented us with some surprises. We have observed 

relatively large values of gy at low 5, and the behavior of the structure funct,ion seems 

to be quite divergent. This apparently disagrees with predictions of the conventional 

Regge theory, and poses certain problems for extrapolating the data to z = 0 in 

order to evaluate the first moment of gy and test the Ellis-Jaffe sum rule. While 
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such a behavior is qualitatively understood in perturbative QCD, firm quantitative 

predictions are not yet available. 

In order to reduce the ambiguity in the interpretation of the results, we have 

performed a Next-to-Leading Order QCD analysis of the world data on polarized 

deep inelastic scattering. Careful attention has been paid to the uncertainties in- 

volved, both experimental and theoretical. We find that the data constrain the 

first moments of the polarized valence quark distributions; the polarized gluon and 

sea quark distributions can only be qualitatively constrained. We determine the 

Q” dependence of the ratio gi/Fi for the proton and neutron and find that it is 

significant compared to the present experimental errors. Assuming the validity of 

the NLO approximation, we determine the first moments of the spin dependent 

structure functions of the proton and neutron, and find agreement with the Bjorken 

sum rule. However, for an unambiguous determination of the total quark helicity 

‘and the polarized gluon distribution, data at the higher energies are needed. 

The spin structure program will continue, and is likely to bring us more exciting 

discoveries about the internal structure of the nucleon. At SLAC, the experiment 

E155l48l will utilize the 50 GeV electron beam and the same detector system as 

El54 (with an addition of another spectrometer arm at 10.5” relative to the beam 

line). Using ammonia and ‘LiD targets similar to the targets used in E143, the 

experimenters will measure the spin dependent structure functions of the proton 

and deuteron over the same z range as E154, and with increased (due to the new 

spectrometer) Q2 coverage. This precision data, especially on the deuteron structure 

function, will be of great use for understanding the nucleon spin structure at low Z. 

In Europe, the HERMES experiment lsei at DESY is continuing to collect data. 

The first preliminary results from the 1995 run with the polarized 3He target on 

the neutron spin structure function were released last summer, and are expected to 

be published soon. The studies of the semi-inclusive reactions (in which the flavor 
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of the leading hadron is tagged) allow one to probe directly the valence and sea 

quark distributions inside the nucleon. The future of HERMES looks very promising, 

and it should continue to run into the next century. The SMC experimentll**lq at 

CERN has finished taking data in 1996. The results of the 1995 deuteron run will be 

published soon, and the proton 1996 results are expected to be released this year. 

In the 21st century, the style of the spin structure experiments will change. The 

HERMES experiment is likely to be the last in the generation of the “traditional” 

inclusive lepton-nucleon DIS experiments. A lot of attention has been devoted 

recently to the problem of polarizing proton beams. Such beams are planned for 

the RHIC collider at BNL, for the UNK at Serpukhov, Russia, and are proposed for 

the Fermilab Main Injector and HERA at DESY. Having polarized protons in the 

HERA ring would be particularly interesting since one would be able to extend the 

kinematic range of the polarized deep-inelastic scattering experiments to 2 M 10m5 

&nd Q” x lo4 GeV*, similar to the unpolarized scattering. A complementary DIS 

fixed target program would be possible at the Next Linear Collider (NLC). This 

would allow for precise determination of the behavior of the spin structure functions 

at low 2. A perturbative QCD analysis of such data, similar to the NLO analysis 

described in Chapter 5, would determine the spin dependent parton distributions, 

including that of the gluon, with a precision comparable to the present unpolarized 

analyses. At the proton machines, the studies of the nuclear spin structure are 

planned by measuring the single- and double-spin asymmetries in the Drell-Yan 

muon pair production pp + p+p-X that at low energies (UNK and Fermilab fixed 

target experiments) are sensitive to the polarization of the sea quarks, and at higher 

energies probe the gluon helicity distributions. Another good measure of the gluon 

polarization is the asymmetry in the hard photon production which probes t,he 

process g*q + qy. The asymmetry in the open charm lepto- or photo-production is 
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also sensitive to the gluon polarization. Such experiments are proposed at SLAC 

and CERN. 

There is still a lot to learn about the internal spin structure of the nucleon. 

Future experimental program promises to be very exciting, and the aut.hor will 

follow the developments in the field with great interest. 



APPENDIX A 

LIGHT-CONE PERTURBATION THEORY 

One of- the most convenient frameworks to explore the properties of hadronic 

structure at large momentum transfers is the time-ordered perturbation theory, or, 

equivalently, perturbation theory on the light cone with time variable r = t + 

.z/c.[~~*~~ Let us define 

p* E p” f p3 
(A4 

and 

PP = (P+,P-A). (A.2) 

The mass-shell condition is, obviously, 

p+p- -pi” = p* = m*. (A4 

The light-cone energy p- > 0 and then p+ > 0; therefore, there are no vacuum- 

creation graphs (Fig. A.l). The Fock expansion constructed on the vacuum state 

provides a complete relativistic many-particle basis; for a hadronic wave function 

we can write 

1%) = c l+h(G, hi, h>, (*4.4) 
n 

where I4 = lw?)> lqw> * * * for baryons (In) = la(r), jqqg) . . . for mesons), and 

$J~(x;, Icli, X;) is a Lorenz-frame independent wave function for a state with n on- 
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Fig. A.l. Vacuum creation graphs vanish in light-cone perturbation theory. 

mass-shell constituents, and X is the polarization index. The 4-momentum for each 

constituent has been parameterized as 

kl” E (k’, k;, 6,;) = (xc;p+, (A-5) 

Momentum conservation requires 
71 7-l 

c 
2; = 1 c is& = 0. (A.6) 

i=l i=l 

Moreover, since p+ > 0 and ktf > 0, xi > 0. 

The Feynman rules for light-cone perturbation theory can be found in Ref. [46]. 

We will repeat some of the particularly important ones: 

1. Assign a momentum kp to each line so that 

(4 k+ and $1 are conserved at each vertex 

(b) k* = m2, or k- = (ii + m*)/k+. 

2. Include a factor t9(ks)/k+ f or each fermion, anti-fermion, or scalar. For vector 

bosons, assign the factor d,,0(k+)/k+ where d,, is the (gauge-dependent,) 

polarization sum. In the Feynman gauge d,, = -gP,, . In the axial gauge 

(7 . A = 0 where q is an arbitrary fixed 4-vector) 
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r7PklJ + %kP = -Q/w + 7-k (A? 

where q. c = Ice c = 0. The light-cone gauge where u = (0,2, Gl) is particularly 

convenient. 

3. The gluon(photon)-fermion vertices are 

4. For each intermediate state there is a factor 

Zinc Ic- - c’interrn Ic- + ” 
(A.9) 

where the summation is over the light-cone energies of the incoming and in- 

termediate particles. This factor is a measure of virtuality of the intermediate 

state (although each particle is assumed on-shell). Thus, for a Fock stat’e with 

one of the constituents having x w 1, the denominator becomes 

1 rv a ii+m* --)oo 
l-x > 9 (A.10) 

and the state is said to be far off-shell. 

5. Integrate s dk+ J d2iL/167r3 f or each independent k and sum over internal spins 

and polarizations. 

The distribution functions Gp/~(x, X, Q) can be calculated from the overlaps of 

the light-cone wave functions 

&/~(x,kQ) = x/"'" nd2/&;dxil$;(xi, iii, XJ*S(x - xq) , (A.ll) 
n 

where the summation is over all relevant Fock states. The asymptotic behavior of 

the light-cone wave functions is obtained by iterating the interaction kernel.14q Thus, 

for qij mesonic states the.diagram of Fig. A.2 yields: 

d~‘(xc, ;.L, = i2 / d*W(x, k y, t;)G(y, I;, C1 (1 - 4, (A4.12) 
M* - 6 
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Fig. A.2. Calculation of the mesonic light-cone wave function. The second term is the 
instantaneous part of the gluon propagator. 

where the integration represents the transition from the initial configuration with 

quark momentum k. = (yp+, (E + m*)/yp+, I;) and is of order Q,. The end-point 

x N 1 behavior of the mesonic distribution amplitude is then 

G&x:) - (1 - x>*- (A.13) 

‘Similarly, the leading end-point behavior of the quark distribution function cS’~~~(XC) 

for the proton is computed from the diagram of Fig. A.3: 

G/PW - (1 - 4”. (*4.14) 

The contribution of Fig. A.4 is suppressed by two orders of (1 - x). It is interesting 

to note that the diagram of Fig. A.3 only contributes if the spectator quarks with 

momenta y2 and ys have opposite helicities. I401 At high x it translates into the 

requirement that the helicity of the struck quark be aligned with the proton helicity. 

If it is anti-aligned, the leading behavior is 

Gu&) N (1 - 4”. (A.15) 

This fact illustrates the helicity retention property of the gauge interactions. Equa- 

tions (A113), (A.14), and (A.15) are the manifestation of the quark counting rules.14q 
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Xl 

52 

x3 

Fig. A.3. The leading contribution to the proton distribution function G,,, at z rv 1. +, 
- , and I denote the current components. The quark propagator is instantaneous. 

Fig. A.4. (1 - x)5 contribution to the proton distribution function. 



APPENDIX B 

NEXT-TO-LEADING ORDER EVOLUTION OF PARTON 
DISTRIBUTIONS 

The solution of the DGLAP equations in the Mellin n-moment space is signif- 

icantly simplified. A key feature of the Mellin transform is that the moment of a 

convolution of two functions is given simply by the product of two moments: if 

the moment is given by 

s 

1 

C(n) - dz ix”-‘C(s) = f(n)g(n) . (B.4 
0 

Thus, complicated integro-differential DGLAP equations are reduced to simple lin- 

ear equations (or a system of equations in the singlet sector). One typically evolves 

the parton distributions and calculates the moments of the structure functions in 

the Mellin space, and then inverts the structure functions into the Bjorken CC space. 

Thus, only one (numerical) integration is required. In Mellin space, the structure 

- functions are given by (cf. Eq. (5.1)) 

where 

C,(n,w) = 1 + 
QS(Q*) (1) 

GJT c, (4 +*** 

CG(n,%) = 
dQ*> (1) 

zn cG b) + * * * Fw 

and the NLO spin dependent Wilson coefficients in MS scheme are given by13q 

cil) = CF -$?(n) -t sl(n) Sl(n) •t i - .(,‘+ 1) 1 9 
+-$+&+--- 

n+1 2 1 
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(B-5) 

Here CF = 413 and Tf = Nf/2 are Casimir invariants for the quark representation 

of SU(3)fi,,,, (Nf = 3 is the number of active flavors). The factors Sk(n) will be 

given below. 

Note that in MS scheme the first moment of the gluon coefficient function 

vanishes Cg’(n = 1) = 0, the first moment of the quark Wilson coefficient is 

Ci”( n = 1) = 3CF/2, and the first moments of the spin-dependent structure 

functions are simply given by 

I’,(Q2) = i c ei (1 - as,2’) Aq(Q2) . 
Q 

P.6) 

The total gluon density does not couple to the first moment of the structure function 

gr in MS scheme. A transformation to other schemes, in which the gluon contributes 

to the first moment of g1 (such as Adler-Bardeen scheme), are given in Chapter 5. 

The Q” evolution of the parton densities is governed by the the anomalous 

dimensions[lsol which in NLO are defined as 

(B.7) 

where we suppressed the n-dependence. The non-singlet (NS) densities evolve ac- 

cording to[3g9150] 

A&s(Q2) = 

where Qg is the input scale (Qg = 0.34 GeV’ in our case). The distribution AqLT+’ 

corresponds to the polarized valence quark distributions AUV(Z, Q”) = 6~ - SU 

and Adv(z, Q”) = 6d - dd, and AqJ&+’ corresponds to the sum,,,, non-singlet 
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combinations Aqs(s, Q”) = Au(z, Q”) - Ad(z, Q”) and Aqs(s, Q”) = Au(z, Q”) + 

Ad@, Q2)-2A+, Q”) (th t a is opposite to the situation with the unpolarized parton 

distributionsI”‘1). 

The NLO evolution in the flavor singlet sector 

(B.lO) 

where AX = Au + Ad + As, is given by13gJ5el 

r(Q") = 
{ (-;;;;) x-'(2po) [p- 2;. as(Q8-y(Q2) p-7p- 

crs( Q;) as( Q") as( Q") (xt -x-)'(2po) - 
47r - 4n (m(Q;)) ) 2Po y-l: A-] 

(B.ll) 

The miscellaneous quantities are 

Y = 7 (1) _ EL 
BOY 

(0) (B.12) 

p* = *X+-X- l ( y(O) - x,lt) (B.13) 

1 
A* = - 2 7;;’ + rg f ($A - ygq2 + 4r;“d rg; ) (B.14) 

where X* are the eigenvalues of the leading order anomalous dimension matrix yjy’, 

and I[ is the identity matrix. 

In all equations above, the strong coupling constant is defined by the two-loop 

expressionl20l 

4Q2) 1 p1 ln (14Q2/Aff,,> -- 
4r = Pdn(Q2/Aff)) PO3 (ln(Q'&)) 2 

(B.15) 

where the coefficients of the QCD beta function are /3o = 11 - 2f/3 and pi = 

102 - 38f /3. Th e number of active flavors f in ~ys(Q’) is determined by the number 
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of quarks with rni 2 Q2. The QCD parameters A(f) are determined by the matching 

condition at the quark threshold 

c&n;, f) = %(7-g, f + 1) * (B.16) 

Thus, the derivative of cus is discontinuous across the quark threshold in this ap- 

proach. Since the coefficients p depend on the number of active flavors f, the 

evolution is done in steps: for rnz < Q2 < rni we first evolve the parton densities 

with f = 3 to the charm threshold, and then from the charm threshold to Q2 (we 

would go first to rni if Q2 > mi). 

In all equations above, the leading order (LO) results could be obtained by 

dropping higher order terms (pi, y(l), C,‘fA). 

Given the moments of the structure function g1 (n), the structure function in the 

Bjorken z space is obtained by the inverse Mellin transform 

gl(x) = 1 
J 

‘+lmdn, “c-“gl(n) , 
27d c-im 

(B.17) 

where c is the real number that has to be chosen in such a way that Jo1 dz z?‘gl (xC).[~~~] 

Thus, c has to lie to the right of the rightmost singularity nmax of gi (n) in the complex 

n space. The contour of integration Co in Eq. (B.17) is shown in Fig. B.1. Also shown 

is a deformed contour Ci that yields the same result since all singularities for the 

structure functions (denoted by crosses in Fig. B.l) are on the real axis. Converting 

to the integration over a real variable, we get, 

(B.18) 

We take c = 2.1 and 4 = 1.9, and the limit of integration in Eq. (B.18) is 10. These 

parameters have been found to give stable results for 2 > 10s4. We approximate the 

integral in Eq. (B.18) by the 24-point Gauss-Legendre quadrature formula using a 

CERN program library routine RGQUAD.1’641 
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Fig. B.l. The integration contours used for the inverse Mellin transform in Equations 
(B.17) and (B.18). The singularities of the structure function g1 are denoted by crosses 
on the real axis. 

The LO spin-dependent anomalous dimensions are given by[43] 

y(O)(n) 1 = - - 99 4Cj7 [ 2Sl(n) n(n+l) 3 I 2 

7,$(n) = -8Tj 
n-l 

n(n + 1) 

yg,(n) = -4cF 
nS2 

n(n + 1) 
(B.19) 

where we take Nj = 3 for the number of active flavors. The Casimir invariant for the 

adjoint representation of SU( 3)ffavor CA = 3. Note that ytk(n) = r::)(n) = y;:‘(n), 

where the q::)(n) is the spin-averaged anomalous dimension. Thus, in the leading 

order, the moments of the polarized and unpolarized non-singlet distributions evolve 

identically, and the ratio gr/Fr is almost independent of Q2 at high 2 where the non- 

singlet densities dominate. For the first n = 1 moment we have r$t’( 1) = 7$?( 1) = 0 

as a consequence of helicity conservation at the quark-gluon vertex, so the first 

moments of the quark distributions are conserved in the leading order. 
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The spin-dependent NLO anomalous dimensions in the non-singlet sector yzs(n) 

are the same as in the spin-averaged case. In the MS scheme, they are given by13’l 

yti’(n) = G 
16Sl(n)(2n + 1) 

n2(n + 1)” 
+ 24Sz(n) + 64S(n, 7) - 8Sh(n/2, q) - 3+ 

16 2Sl(n) - & > &92(n) - w-44 7)) - 

83n3$n2 - 1 + 2q(2n2 + 2n + 1) 
n3(n + 1)” 1 + 

CFCA ’ 
n(n + 1) > 

@52(n) - SW2,d) - 

f&(n) - 32S(n, 7) + 4Si(n/2,q) - y- 

i(151n4 + 236n3 + 88n2 + 3n + 18) - 8q(2n2 + 2n + 1) 
n3(n + 1)” 1 + 

CFT~ 1 . (B.20) 

Note that for q = -1, the first moment of the non-singlet anomalous dimension 

vanishes (YNS (l) “=-‘(n = 1) = O), th ere ore the matrix elements Aqs and Aqs are f 

independent of Q2 (the the flavor non-singlet axial current is conserved). 

The NLO flavor singlet anomalous dimensions in the MS scheme are given by13q 

+yn) = &p=-yn) + 16(7pqn4 + 2n3 + 2n2 + Ein + 2 
99 n3(n + 1)” 7 (B.21) 

where TNs (‘I “=-l(n) are given by Eq. (B.20). 0th er elements of the two-loop anoma- 

lous dimension matrix are 

‘~$(n) = 8c~Tj 2n[n711) (s2(n) - S:(n)) + 4n2yn-+11)Sl(n)- 

5n5 + 5n4 - 10n3 - n2 + 3n - 2 
n3(n + 1)” 1 + 

16c~Tf nyn,llj (-S2b-4 + SW2, -1) + S:(n)) - 

4 
n(n + 1)” 

s1 (n) _ n5 + n4 -nlfl ‘+“;;I - 7n - 21 (B.22) 

r&)(n) = 32c~Tf 
5n2 + 12n + 4 

- n+2 Sl(4 + gn(n + Q’ 3n(n + 1) 
+ 1 + 
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4c; 2 
[ 

.(“,‘+21, (S2(n) + $(n)) - 23f?(+:;: 253n)+ 

9n5 + 30n4 + 24n3 - 7n2 - 16n - 4 
n3(n + 1)” 1 + 

~CACF n;2n+:1, (---S2(4 + SW& -1) - Sfb)) + 

76n5 + 271n4 + 254n3 + 41n2 + 72n + 36 
9n3(n + 1)” 1 (B.23) 

ygA(n) = 8c~Tj 
n6 + 3n5 + 5n4 + n3 - 8n2 + 2n + 4 

n3(n + 1)” 1 + 
32c~Tj --g&(n) + 

3n4 + 6n3 + 16n2 + 13n - 3 
9n2(n + 1)” 1 + 

4c; -Sk(n/2, -1) - 4Sl(n)Si(n/2, -1) + 8S(n, -l)+ 

8 
n(n + 1) 

Sg(n/2, -l)+ 

267n4 + 134n3 + 67n2 + 144n + 72 
9n2(n + 1)” S1 (n)- (B-24) 

48n6 + 144n5 + 469n4 + 698n3 + 7n2 + 258n + 144 
9n3(n + 1)” 1 

- The finite sums Sk(n), SL(n/2, q), and S( n, q) used in the expressions above are 

defined as[86J50] 

Sk(n) 3 2 $ (B.25) 
j=l 

Sk(n/2,q) E 2”-lk ’ +3!-)’ 
j=l 

= ;(l + $sk (;) + f(l - +!%c (y) (B.26) 

where G(n) E $ (y) - q!~ (i), Liz(z) = - J: dz ln(1 - z)/z is the Dilogarithm 

function, and q = fl for the non-singlet anomalous dimensions 7;; ‘=*‘(n), and 
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7 = -1 for the flavor singlet anomalous dimensions rl;“. 

The analytical continuations of the finite sums for complex n, required for the 

inverse Mellin transform, are given by[1501 

Sl(n) = "/E t $(n t 1) , YE = 0.577216 (B.28) 

S(n) = ((2) - $‘(n t 1) , ((2) = 7r2/6 (B.29) 

L%(n) = C(3) t $'(n t 1) , ((3) = 1.202057 . (B.30) 

The functions $tk)(n) = d("+') In I'(n)/dn(k+l) can be sufficiently accurately ex- 

pressed by the following asymptotic sums valid for Re n 2 10[150]: 

1Clb) M In(n) - & - & •t & - -J- 
256n6 

?/I’ !z 

For Re n < 10, a recursion relation is used: 

$ck)(n $1) = $tk)(n) + (-)k ‘! . nk+l 

(B.31) 

(B.32) 

5 
6n12 * 

(B.33) 

(B.34) 

Furthermore, the integral in Eq. (B.27) involving the Dilogarithm can be approxi- 

mated by[r5q 

s 

1 
dx x7L-l Li2(s) 1.010 0.846 1.155 1.074 0.550 -x-- 

1+x ntl 
-$--- 
nt2 nt3 nt4 

+- (B.35) 
0 n-l-5' 

The evolution and fitting code was optimized for speed. The most time-consu- 

ming part was evaluation of the anomalous dimensions. Fortunately, since we are 

not varying the strong coupling constant in the fit, it only has to be done once 

for every point n used in the integration (the points in the quadrature formula are 

fixed). The matrices used in the singlet evolution (Eq. (B.ll)) are calculat’ed once 

for every number of flavors f. The moments of the initial parton distributions are 

calculated every time a parameter of the fit changes. One fit with 8 free parameters 
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(149 data points in the range 0.005 5 x < 0.75 and 0.95 GeV2 < Q” 5 58 GeV’) 

typically t,akes 3-4 min on a DEC Alpha 600 5/266 computer (that corresponds to 

800-1000 iterations in MINUIT115sl). 

We tested our code against the parameterizations of Ref. [86]. Using the “stan- 

dard” NLO parameterization at initial Qi = 0.34 GeV2, we evolved the GRSVl”l 

partons to Q2 = 100 GeV2 and compared with the output of the code provided by 

one of the authors.115’l The comparison is shown in Fig. B.2; two codes are in perfect 

agreement. In addition, we directly integrated the leading order DGLAP equations 

in Bjorken space evolving the structure functions by small steps in Q2,[83s41 and 

found that the direct technique gave results very close to the Mellin evolution code. 
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Fig. B.2. The parton distributions evolved from Qi = 0.34 GeV’ to Q2 = 100 GeV2 are 
compared to the output of the GRSV code.[86y15q 



APPENDIX C 

RESULTS OF THE CALTECH ANALYSIS 

The results for the structure functions and the photon-nucleon asymmetries, 

averaged between the two analyses, were given Chapter 4. For completeness, we will 

summarize here the results of the Caltech analysis. 

Table C.l. The spin dependent structure function gy and the photon-nucleon asymmetry 

(4 (Q2> WV21 9; f stat. f syst. A; k stat. f syst. 
2.75” spectrometer 

0.017 1.21 -0.371 f 0.115 f 0.105 -0.061 f 0.019 f 0.017 
0.024 1.59 -0.387 f 0.071 f 0.062 -0.082 f 0.015 f 0.014 
0.035 2.05 -0.310 f 0.061 f 0.038 -0.083 f 0.018 f 0.012 
0.049 2.57 -0.201 * 0.041 f 0.021 -0.084 f 0.016 f 0.009 
0.078 3.32 -0.123 f 0.031 f 0.013 -0.081 f 0.019 f 0.010 
0.123 4.09 -0.070 f 0.030 f 0.009 -0.081 f 0.031 f 0.010 
0.173 4.63 -0.082 f 0.033 f 0.009 -0.123 f 0.052 f 0.016 
0.241 5.09 -0.057 f 0.027 f 0.007 -0.096 f 0.075 f 0.019 
0.340 5.51 -0.001 f 0.035 f 0.004 -0.256 f 0.197 f 0.071 
0.423 5.82 0.024 f 0.059 f 0.006 0.133 f 0.606 f 0.034 

0.057 4.03 0.234 f b.280 f 0.036 0.047 f 0.118 f 0.012 
0.084 5.47 -0.149 f 0.029 f 0.019 -0.103 f 0.017 f 0.013 
0.123 7.23 -0.112 f 0.016 f 0.012 -0.107 f 0.015 f 0.012 
0.172 8.94 -0.053 f 0.015 f 0.007 -0.079 f 0.023 f 0.010 
0.242 10.71 -0.039 f 0.011 f 0.005 -0.109 f 0.030 f 0.015 
0.342 12.55 -0.011 f 0.012 f 0.004 -0.031 f 0.065 f 0.021 
0.442 13.83 -0.012 f 0.011 f 0.003 -0.091 f 0.139 f 0.020 
0.564 15.00 0.002 f 0.008 f 0.001 0.083 f 0.279 f 0.031 

5.5” snectrometer 
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Table C.2. The spin dependent structure function gg and the photon-nucleon asymmetry 
A;. 

(4 (Q2) (GeV2) 9; f stat. f syst. A; f stat. f syst. 
2.75" spectrometer 

0.017 1.21 6.523 f 15.214 f 2.145 0.030 f 0.074 f 0.010 
0.024 1.59 -1.479 f 7.232 f 0.993 -0.015 f 0.056 f 0.008 
0.035 2.05 -9.065 zk 4.890 f 1.042 -0.122 f 0.064 f 0.014 
0.049 2.57 4.559 f 2.504 f 0.540 0.098 f 0.056 f 0.012 
0.078 3.32 1.520 f 1.330 f 0.254 0.068 f 0.065 f 0.013 
0.123 4.09 1.033 f 0.952 f 0.229 0.107 f 0.106 f 0.026 
0.173 4.63 0.097 f 0.794 f 0.145 0.003 f 0.176 f 0.032 
0.241 5.09 -0.388 f 0.490 f 0.097 -0.207 f 0.229 f 0.046 
0.340 5.51 0.787 f 0.442 f 0.197 0.919 f 0.522 f 0.161 
0.423 5.82 0.050 f 0.580 f 0.020 0.177 f 1.414 f 0.041 

0.057 4.03 
5.5" spectrometer 

43.265 f 31.639 f 4.648 0.997 f 0.727 f 0.107 
0.084 5.47 4.362 f 2.377 f 0.455 0.173 31 0.098 f 0.018 
0.123 7.23 0.459 f 0.987 f 0.199 0.028 f 0.079 f 0.016 
0.172 8.94 0.214 f 0.711 f 0.150 0.025 f 0.110 f 0.023 
0.242 10.71 0.362 f 0.396 f 0.094 0.107 f 0.132 f 0.030 
0.342 12.55 -0.136 f 0.299 f 0.032 -0.128 f 0.263 f 0.028 
0.442 13.83 -0.059 f 0.228 f 0.014 -0.157 f 0.506 f 0.029 
0.564 15.00 -0.011 f 0.125 f 0.009 -0.062 f 0.904 f 0.059 



Table C.3. Results on A: and gr at the measured Q2, along with g: evaluated at Q2 = 5 (GeV)2 assuming 
scales with Q2. The data of two spectrometers have been averaged. 

x bin (4 (Q2> g; f stat. f syst. A; f stat. f syst. g; f stat. 
GeV2 (Q” = 

0.014 - 0.02 0.017 1.2 -0.371 f 0.115 f 0.105 -0.061 f 0.019 f 0.017 -0.524 f 0.163 
0.02 - 0.03 0.024 1.6 
0.03 - 0.04 0.035 2.0 
0.04 - 0.06 0.049 2.6 
0.06 - 0.10 0.081 4.5 
0.10 - 0.15 0.123 6.6 
0.15 - 0.20 0.173 8.2 
0.20 - 0.30 0.242 9.8 
0.30 - 0.40 0.342 11.7 
0.40 - 0.50 0.441 13.4 
0.50 - 0.70 0.564 15.0 

-0.387 f 0.071 f 0.064 
-0.310 f 0.061 f 0.040 
-0.192 f 0.040 f 0.021 
-0.137 f 0.021 f 0.016 
-0.103 f 0.014 f 0.011 
-0.058 f 0.014 f 0.007 
-0.041 f 0.011 f 0.005 
-0.010 f 0.011 f 0.004 
-0.011 f 0.011 f 0.002 

0.002 f 0.008 f 0.001 

-0.082 f 0.015 f 0.014 
-0.083 f 0.018 f 0.012 
-0.082 f 0.016 f 0.009 
-0.093 f 0.013 f 0.011 
-0.102 f 0.014 f 0.011 
-0.086 f 0.021 f 0.011 
-0.107 f 0.027 f 0.016 
-0.054 f 0.062 f 0.021 
-0.080 f 0.136 f 0.019 

0.083 f 0.279 f 0.031 

-0.499 f 0.092 
-0.369 f 0.073 
-0.215 f 0.045 
-0.140 f 0.021 
-0.101 f 0.014 
-0.057 f 0.014 
-0.042 f 0.011 
-0.011 f 0.012 
-0.013 f 0.013 

0.004 f 0.011 
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