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ABSTRACT 

Some two-dimensional finite element electromagnetic field solvers are described 
and tested. For TE and TM modes in homogeneous cylindrical waveguides and 
monopole modes in homogeneous axisymmetric structures, the solvers find approx- 
imate solutions to a weak formulation of the wave equation. Second-order isopara- 
metric lagrangian triangular elements represent the field. 

For multipole modes in axisymmetric structures, the solver finds approximate 

solutions to a weak form of the curl-curl formulation of Maxwell’s equations. Second- 

order triangular edge elements represent the radial (p) and axial (z) components of 
the field, while a second-order lagrangian basis represents the azimuthal (4) com- 
ponent of the field weighted by the radius p. A reduced set of basis functions is 

employed for elements touching the axis. 
With this basis the spurious modes of the curl-curl formulation have zero fre- 

quency, so spurious modes are easily distinguished from non-static physical modes. 

Tests on an annular ring, a pillbox and a sphere indicate the solutions converge 
rapidly as the mesh is refined. Computed eigenvalues with relative errors of less 
than a few parts per million are obtained. 

Boundary conditions for symmetric, periodic and symmetric-periodic structures 

are discussed and included in the field solver. Boundary conditions for structures 

with inversion symmetry are also discussed. Special corner elements are described 

and employed to improve the accuracy of cylindrical waveguide and monopole modes 
with singular fields at sharp corners. 

The field solver is applied to three problems: (1) cross-field amplifier slow-wave 

circuits, (2) a detuned disk-loaded waveguide linear accelerator structure and (3) 

a 90” overmoded waveguide bend. The detuned accelerator structure is a critical 

application of this high accuracy field solver. To maintain low long-range wakefields, 

tight design and manufacturing tolerances are required. 
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PREFACE 

This dissertation is a summary of my work in the Accelerator Theory and Special 

Projects Group at the Stanford Linear Accelerator Center (SLAC). It concentrates 

on my work on finite element methods for computing electromagnetic modes in 
microwave cavities and waveguides. 

Several applications of these methods to the design of microwave components are 
discussed. These are not intended to be complete discussions of such components, 

and it should be noted that the development of these components was a collabo- 

rative effort. My contribution, which mainly involved computing fields in various 
structures, was only a small part of the design effort. The discussions include some 

results from my collaborators. 

The motivation for this work on finite element methods and its applications 
can be best understood by reviewing my history at SLAC. As will become apparent 
below, my entire graduate career has involved the numerical simulation of Maxwell’s 

equations. 

My first quarter at SLAC was spent with Prof. Elliot Bloom. He gave me the 
task of computing the signals from a beam position monitor given the position of 
the beam. With help from others in the TPC group, Gary Godfrey in particular, 

I employed a simple electrostatic finite-difference model to solve this problem. Not 

only was this an introduction to numerical solutions of partial differential equations, 
but it was also an introduction to the problems concerning the solution of large 

matrix problems. I used an iterative technique, SOR, to solve the matrix equations. 
Trying different size meshes and increasing the number of iterations raised the big 

question which would later be the focus of my work at SLAC: how well have I solved 

the problem? The answer at this time, unfortunately, was not well enough. 

The following quarter I started working with Prof. Roger Miller, my future thesis 

advisor, on porting a klystron simulation code to the local IBM mainframe. SLAC 

has an active program working on RF power sources for the Next Linear Collider 

(NLC). This work got me interested in microwave power sources, and eventually 
lead to work on cross-field amplifiers (CFAs). Originally my interest in these devices 

concerned the interaction between the electron beam and the fields, but it turned 

out other problems would have to be solved first. 

The anode circuit in the prototype SLAC CFA is a periodic structure, so much 

of the design and measurement effort concentrated on the dispersion diagram of 

this structure. To understand the modes and the dispersion diagram of the anode 
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circuit I wrote a finite difference eigenmode field solver for periodic two-dimensional 

structures. My motivation for doing so was that the popular field solvers at this time 

did not have quasi-periodic boundary conditions. This program, called QUAP, was 

my first success. With the help of my advisor Prof. Miller, Prof. Joseph Feinstein 

and Terry Lee, I used QUAP to understand the modes of the CFA and to interpret 
measurements of test structures which had previously been misunderstood. 

The field calculations were so helpful in understanding the measurements of the 
test structure that I was soon asked to design a better CFA structure. At this point 

it became apparent that while QUAP was useful for understanding the qualitative 

behavior of the structure, it was not very good quantitatively. QUAP could compute 
the dispersion diagram with about 1% accuracy, but better accuracy was desired. 

A few attempts were made to improve the accuracy of QUAP. Some progress was 
made experimenting with iterative matrix solvers to handle finer meshes, but the 

improvement was insufficient, and QUAP was eventually abandoned. 

My subsequent attempts to accurately model CFA structures were along two 
4 directions. First, with the help of Kwok Ko, I added quasi-periodic boundary con- 

ditions to the three-dimensional finite difference code ARGUS. The CFA structures 
were modelled on a CRAY supercomputer in order to accomodate very large meshes. 

The code was particularly useful as a tool to model the three-dimensional behav- 
ior of CFA structures, and it was particularly valuable for realistic simulations of 

the waveguide coupled structures. However, despite the use of large meshes with 

almost one million unknowns, the accuracy was still insufficient to obtain directly 

the design parameters to much better than 1%. 

At the same time I was pursuing a second approach: use the finite element 

method instead of the finite differences to discretize the equations. I had recognized 

that much of my difficulty with QUAP and ARGUS was due to the inability of the 

finite difference mesh to closely model the true boundary of the structure. I felt the 

finite element method was an answer to this problem, and I proceeded to write a 

finite element field solver, again with quasi-periodic boundary conditions in order 
to model the periodic CFA circuits. 

I started with a two-dimensional version as a test. Bill Hermannsfeldt was 

at first dismayed that I was writing “yet another program” to solve Maxwell’s 

equations, although I believe he later saw some utility in this effort. Regardless, 
the name YAP has been stuck to this finite element work ever since. 

Within a few months I had written a mesh generator and a field solver which 

could solve for the modes of simple waveguides and cavities with very high accuracy 
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- much better than was necessary for the design of the CFA. Applications of the 

solver to the CJ?A, however, produced results which, while an improvement over the 

finite difference calculations, were not as fantastically accurate as the simple cavity 
calculations. This was due to the presence of sharp corners in the CFA model, and 
after another month of work the program was modified to give sharp corners special 

treatment. Much of the accuracy was recovered. Excellent accuracy was obtained 
without supercomputers. 

Now it was time to consider a three-dimensional finite element field solver and 
related problems, such as matching the periodic CFA structure to input and output 
waveguides. I felt confident that with the exceptional accuracy I had achieved in 

two dimensions, I could get reasonable accuracy in three dimensions, and perhaps 
still avoid having to use supercomputers. Unfortunately, around the same time 

SLAC decided to stop pursuing CFAs as a power source for the NLC, and thus I 
looked for other thesis research. 

Prof. Miller suggested I become involved in the NLC accelerator structure effort 
by adding to YAP the ability to compute modes in &symmetric structures. This 
was fairly straightforward to do for m = 0 modes, and tests on simple cavities and 

waveguides showed impressive accuracy. Tests on the SLAC disk loaded waveguide 
accelerator structure also demonstrated the accuracy of the code. 

With the advent of detuned accelerator structures at SLAC, I was asked to 
extend YAP to compute dipole (m = 1) modes, and subsequently design a detuned 

accelerator structure. The success of the detuned accelerator structure depends 
greatly on the accuracy with which the wakefields of the excited modes can be 
made to cancel by the time the next bunch arrives. Thus this problem uniquely 
requires the accuracy YAP can provide. 

Solving for m = 1 modes was much more difficult than I expected due to the 
presence of spurious modes. However, once I solved the problem I finally felt I was 

part of the state of the art in field solving. Furthermore, it is an experience which 

will be valuable if I ever pursue three-dimensional field solvers. 

In collaboration with Juwen Wang, the axisymmetric portion of the detuned 
accelerator structure was designed. Upon presenting the design, my department 
head, Prof. Ron Ruth, smiled and announced to the group that if the design was 

wrong, my Ph.D. would be revoked. To this day I’m not sure if he’s kidding, but 

I have since taken solace in the fact that YAP can compute structures better than 

anyone can build them. 

Prof. Norman Kroll encouraged me to apply YAP to the design of a 90” over- 
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moded waveguide bend, a problem for which YAP was once again uniquely suited, 
this time because of YAP’s ability to handle non-integral m. In collaboration with 

Prof. Kroll and Chris Nantista, a few designs for overmoded waveguide bends were 
developed. 

Now a word on the organization of this dissertation. Since the application 
of the finite element method to electromagnetic field solvers is relatively new to 

SLAC, I have chosen to include a brief introduction to the finite element method. 

Furthermore, since periodicity is a symmetry I’ve employed in most of my design 
calculations, the first chapter includes a discussion of the exploitation of symmetries 

in field solvers. .I have noted with pleasure that some popular field solvers have 
recently added quasi-periodic boundaries to their repertoire. The reader will find 

additional symmetries in the first chapter. 
Given the history of my work at SLAC, I hope the reader will understand that 

among the applications of YAP I discuss, the CFA results are only qualitative, and 

definite design details can be found only for the detuned accelerator structure and 

the 90” overmoded waveguide bends. Finally, I hope the reader will appreciate 

what I consider the truly original component of this work: the ability to accurately 
compute m # 0 modes of axisymmetric structures via the finite element method. 
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waveguide test as the mesh is refined. The dashed line is the 
exact result obtained analytically. The solid line is a fit to the 
adjusted eigenvalues. 

Figure 2.16: Polar coordinates near a sharp corner. 

Figure 2.17: The master element (a) for the seven node special corner 

element. Three lines of constant u (b) and constant v (c) on the 
master element are shown. Lines of constant v intersect at the 

sharp corner, node 3. The coordinate u corresponds to a distance 

from the sharp corner, while the coordinate v corresponds to 
an angle around the sharp corner. The basis functions for the 

special corner element are written in (u, V) coordinates. 

Figure 2.18: Ridged waveguide test problem. Symmetry reduces the problem 

by one-half. 

Figure 2.19: Relative error of the computed eigenvalue k2 versus mesh 

refinement for the lowest TE mode of the ridged waveguide test 

problem. 
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Figure 3.1: The region fi for circular waveguide with radius a treated as 

a periodic structure with length 1. The .z-p (a) and s-y (b) 

cross-sections are shown. The dashed lines are quasi-periodic 

boundaries. 

Figure 3.2: The region !? (a) for a sphere with radius a. The dashed line 
is a symmetry plane. A coarse finite element mesh (b) for the 

sphere. 

Figure 3.3: Relative error of the computed eigenvalues k2 for the 

TEllo mode of a sphere (solid line) and the cutoff TEor mode 
of circular waveguide (dashed line). 

Figure 3.4: Relative error of the computed eigenvalues k2 for the 
TMrro mode of a sphere (solid line) and the cutoff TM01 mode 

of circular waveguide (dashed line). 

Figure 4.1: Vector fields Vi (a) tangential to side i, reciprocal vector 

fields Ri (b) normal to side i, local basis functions Ni (c) 
representing i& and local vector basis functions Ni (d) 

representing Et. The triangles represent the vector field in the 

plane of the page: the size of the triangle is proportional to the 
magnitude of the field and the triangle points in the direction of 

the field. 

Figure 4.2: A global vector basis function comprising one local vector basis 

function on each of two elements. The field tangential to the 

element boundary is continuous while the field normal to the 

boundary is discontinuous. 

Figure 4.3: Quadratic local b asis functions: Nr through Ne represent E+, 

N7 through Nr2 represent Et. 

Figure 4.4: The region R for an annular ring with inner radius a, outer 

radius b and length 1. The ZJ, (a) and z-y (b) cross-sections are 

shown. 

Figure 4.5: A course mesh (two elements) and four refined meshes for the 

annular ring problem. Each mesh covers the shaded region 0. 
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Figure 4.6: 

Figure 4.7: 

Figure 4.8: 

Figure 4.9: 

Field plots of the 10 lowest m = 1 modes of an annular ring. The 

#-component of the fields is imaginary. The size of the circles 

are proportional to the +-component of the field at the center 
of the circle. A cross in the circle indicates the #-component is 
negative. The triangles indicate the size and direction of the z 
and p components of the field. 

Relative error of the computed eigenvalues for the m = 1 modes 
of an annular ring as the mesh is refined. The computed fields 

are (a) E and (b) H. 

Frequency k = w/c versus azimuthal symmetry number m for 
(a) four TM modes and (b) four TE modes. 

Relative error of the computed eigenvalue k2 versus the 

azimuthal symmetry number m. The top two figures show the 
TM mode errors, the bottom two figures show the TE mode 
errors. The mesh consists of 512 quadratic elements. 

Figure 4.10: Local basis functions for the m = 1 problem for a linear element 
touching the axis. The bottom edge or node is on axis. The 
vectors (triangles) represent Et and the circles represent &,. 

Figure 4.11: Local basis functions for the m = 1 problem for a quadratic 
element touching the axis. The bottom edge or node is on axis. 
The vectors (triangles) represent Et and the circles represent 84. 

Figure 4.12: The region CI for a pillbox with radius a and length 1. The .z-g (a) 
and z-y (b) cross-sections are shown. 

Figure 4.13: A course mesh (two elements) and four refined meshes for the 

pillbox problem. Each mesh covers the shaded region R. 

Figure 4.14: Field plots of the 10 lowest m = 1 modes of the pillbox. The 

&component of the fields is imaginary. 

Figure 4.15: Relative error of the computed eigenvalues for the m = 1 modes 

of a pillbox as the mesh is refined. The computed fields are (a) E 

and (b) H. 
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Figure 4.16: Field plots of the 10 lowest m = 2 modes of the pillbox. The 75 
$-component of the fields is imaginary. 

Figure 4.17: Relative error of the computed eigenvalues for the m = 2 modes 76 
of a pillbox as the mesh is refined. The computed fields are (a) E 

and (b) H. 

Figure 4.18: Field plots of the 10 lowest m = 10 modes of the pillbox. The 77 
&component of the fields is imaginary. 

Figure 4.19: Relative error of the computed eigenvalues for the m = 10 modes 78 
of a pillbox as the mesh is refined. The computed fields are (a) E 

and (b) H. 

Figure 4.20: Frequency k = w/c versus azimuthal symmetry number m for 80 
(a) four TM modes and (b) four TE modes. 

Figure 4.21: Relative error of the computed eigenvalue k2 versus the 81 

azimuthal symmetry number m. The top two figures show the 

TE mode errors, the bottom two figures show the TM mode 

errors. 

Figure 4.22: The region R for a sphere with radius a. The dashed boundary 83 

is a symmetry plane. 

. . Figure 4.23: A course mesh (one element) and five refined meshes for the 83 

sphere problem. Each mesh covers the shaded region R. 

Figure 4.24: Field plots of the 10 lowest m = 1 modes of the sphere. The 85 
&component of the fields is imaginary. 

Figure 4.25: Relative error of the computed eigenvalues for the m = 1 modes 86 
of a sphere as the mesh is refined. The computed fields are (a) E 

and (b) H. 

Figure 4.26: Local basis functions for the m = 0 problem for a linear element 
touching the axis. The bottom edge or node is on axis. The 

vectors (triangles) represent Et. There are no basis functions 

for J!&. 
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Figure 4.27: 

Figure 4.28: 

Figure 4.29: 

Figure 5.1: 

Figure 5.2: 

Figure 5.3: 

Figure 5.4: 

Figure 5.5: 

Figure 5.6: 

Figure 5.7: 

Local basis functions for the m = 0 problem for a quadratic 

element touching the axis. The bottom edge or node is on axis. 
The vectors (triangles) represent Et and the circles represent 24. 

Field plots of the 10 lowest m = 0 modes of the pillbox. The 
&component of the fields is imaginary. 

Relative error of the computed eigenvalues for the m = 0 modes 
of a pillbox as the mesh is refined. The computed fields are (a) E 

and (b) H. 

The prototype SLAC backward wave cross-field amplifier. The 
RF wave propagates clockwise, while the electrons travel 

counter-clockwise. 

Schematic diagram of a cross-field amplifier in the z-y plane. 

The direction of the static electric and magnetic fields are shown. 
The electron drift velocity v is also shown for two locations in 

the electron sheath. 

Schematic diagram of a straight cross-field amplifier. The dotted 
lines at the anode indicate the simplified model assumes the 

anode is smooth. 

Planar non-relativistic Brillouin flow: (a) space charge density p, 
(b) electron velocity w/c, (c) electric field E, and (d) electric 

potential V(y). 

Operating point for the SLAC CFA. The Hull cutoff voltage V, 

and Buneman-Hartree threshold voltage VBH delimit the three 

regions where the CFA is expected to (1) conduct, (2) amplify 

or (3) insulate. The curves are obtained from the planar non- 
relativistic Brillouin model. 

One wavelength of the electric field of a single space harmonic 

of the RF travelling wave: (a) RF field, (b) static field and 
(c) combined field. 

Comparison of computed and measured dispersion diagrams for 
a slow-wave circuit. 
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Figure 5.8: Computed eigenvalue k2 versus mesh refinement for the 135” 106 
mode of a hole and slot circuit for the SLAC CFA. Finite 
difference and various finite element methods are shown. 
The dashed line is the extrapolation of the quadratic FEM 
calculations with special corner elements to zero node spacing. 

Figure 5.9: Dispersion curves for (a) a slow-wave circuit and (b) a smooth 108 
waveguide. The operating point and both dispersion curves are 

shown in (c). The dashed line in (c) is the smooth waveguide. 

Figure 5.10: Waveguide coupled slow-wave circuits. The guides are coupled 109 
(a) every cell, (b) every other cell and (c) every third cell. 

Figure 5.11: Dispersion diagrams of multiple cell slow-wave circuits. 111 

Diagrams (a) and (b) t reat the uncoupled structure as a periodic 
structure with a period twice and three times the length of 

the original cell. The dashed lines are the dispersion curves 

of the waveguide. Diagram (c) is the dispersion diagram of the 
structure coupled every third cell. 

Figure 6.1: Disk loaded waveguide in the Z-P plane. 114 

Figure 6.2: Two coarse meshes for cells of the disk loaded waveguide. The 115 

meshes are composed of quadratic triangular elements. Mesh 

(a) is for the first cell of the structure and mesh (b) is for the 
last cell of the structure. 

Figure 6.3: The cell diameter 2b ( in cm) which yields synchronism with 116 

the beam (~4 = c). The dots are the 206 cells of the detuned 

accelerator structure. The rightmost dot is the first (input) cell 

and the leftmost dot is the last (output) cell. 

Figure 6.4: The logarithmic derivative -b/fdf,/ab with 2b determined 116 

from the synchronism condition. The dots are the 206 cells of 

the detuned accelerator structure. 

Figure 6.5: The lowest synchronous dipole mode frequency fr (in GHz). The 118 

cell diameter 2b is determined from the synchronism condition. 

The open circles are the dimensions at which fr was computed. 

The dots are the 206 cells of the detuned accelerator structure. 
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Figure 7.4: 

Group velocity %/c for the lowest synchronous dipole mode. The 
cell diameter 2b is determined from the synchronism condition. 

The open circles are the dimensions at which fl was computed. 
The dots are the 206 cells of the detuned accelerator structure. 

Dispersion diagram for the two lowest dipole modes of three 
different cells of the structure. The dashed line is the first (input) 
cell, the dotted line is the middle cell and the solid line is the 

last (output) cell. The dot-dash line is the velocity of light line. 

Dispersion diagram for the dipole modes of three different cells of 

the structure. The dashed line is the first (input) cell, the dotted 
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The dot-dash line is the velocity of light line. 
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Outer geometry (a) and cross-section (b) of the bend. The cross- 
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Chapter 1 
Maxwell’s Equations and Symmetry 

in Microwave Structures 

This chapter presents a mathematical statement of the microwave cavity eigen- 
mode problem. In many structures this problem cannot be solved analytically, but 
accurate approximate solutions can be obtained using, for example, the algorithms 
described in chapters 2-4. The first section reviews Maxwell’s equations in a closed 
cavity with perfectly conducting walls. Further discussions of Maxwell’s equations 

applied to microwave structures can be found, for example, in [l] and [2]. Electro- 
magnetic quantities are expressed using the guassian system of units. The second 
section discusses some symmetries of microwave structures. These symmetries re- 

duce the size of the eigenmode problem by using appropriate boundary conditions. 

1.1. Maxwell’s Equations in Source-Free Linear Media 

Let the region s1 represent the interior of a microwave structure, and let the 

interior be source-free, so there are no electric charges or currents in the region 52. 
Furthermore, assume that the materials inside the structure behave linearly with 
respect to the electromagnetic fields. Then Maxwell’s equations in the region fi in 
the frequency domain are 

VxE=- zwB and VxH = -ED in a, 

O-D”=0 and V.B=OCinQ, 

(l.la) 

(l.lb) 

with linear constitutive equations 

D = CE and B = pH in R. (l.lc) 

The electric permittivity E and magnetic permeability p are rank 2 tensors 
(3 x 3 matrices) which may depend on the position x inside the region R, and 

they may also depend on the frequency w. Note that for w # 0, equations (l.lb) 
follows from (l.la). Materials are often isotropic, in which case the material prop- 

erties can be replaced by scalars E and p. If the region 0 is empty (a vacuum) then 

e=landp=l. 

The boundary of the region 0 is I’. Let G be the unit vector normal to the 

boundary and directed outward, as shown in figure 1.1. The boundary l? may 

include a variety of types of boundaries. Let rrnetd represent the metal walls of 
the structure, and for now let the entire boundary I’ be lYrne,d. Other types of 

boundaries will be introduced in the following section. Metals usually conduct well 
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Figure 1.1: A generalized microwave structure. The interior of the microwave structure 
is R, the boundary (metal walls) of the structure is I?, and 5 is the outward unit normal 

vector at the boundary. 

enough to be approximated as perfect conductors. The boundary condition at a 

perfectly conducting metal wall is 

rixE = 0 on rmetal. (1.2) 

Another boundary condition, 

ii - B = 0 on l&al, (l-3) 

can be derived from boundary condition (1.2) and Maxwell’s equations (l.l), as- 
suming there is no static magnetic field. 

Equations (1.1) are in the frequency domain. The fields in the time domain are 

obtained from the fields in the frequency domain by using the appropriate fourier 
transformation. For example, consider an undriven cavity with a discrete set of 
normal modes. If the jth mode has frequency wj, and the fields of the jth mode 
are Dj, Ej, Bj and Hj, then the fields in the time domain are 

D(x,t) = !Re { E Dj(x)e-““j’}, 
j=l 

(1.4a) 

E(x,t) = Se { 5 Ej (x)eSiwjt}, (1.4b) 
j=l 

B(x,~) = Re { 2 Bj(x)e-““j’J (1.4c) 
j=l 

and H(x,t) = Re 5 Hj(x)e-iYj’}. 
j=l 

(1.4d) 

Note that the fields in the frequency domain may be complex. Other transforma- 

tions may be appropriate, especially if the mode spectrum is continuous or if the 

structure is driven by some source. 
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1.1.1. Eigenmode Problems 

Consider the problem of finding the normal modes of a cavity. Let D, E, 
B and H represent the fields of a normal mode and let w be the frequency of 
the mode. Combining Maxwell’s equations (1.1) and the boundary condition (1.2) 

yields the following eigenmode problem: given the region G and its material prop- 
erties e and ~1, find the eigenmode fields D , E, B and H, and the corresponding 
frequencies w such that 

VxE = EB and VxH = -ED in n, 

V. D”= 0 and V. B = 0 ’ in 0, 

(1.5a) 

(1.5b) 

D = EE and B = PH in R (1.5c) 

and fi xE = 0 on rmetd. (1.5d) 

;- 
j’ 

The eigenvalue is w and the fields D, E, B and H are time-independent field 
amplitudes. 

An alternative formulation of the eigenmode problem combines the two curl 
equations (1.5a) and reduces the problem to a single vector field. The formulation 
using the electric field E is: given the region St and its material properties E and p, 
find the eigenmode fields E and the corresponding eigenvalues w2/c2 such that 

W2 
Vx(p-rVxE) = FEE in R, (l.Sa) 

V s (EE) = 0 in R 

and fi xE = 0 on rrnetd. 

(1.6b) 

(1.6~) 

The formulation using the magnetic field H is: given the region 52 and its material 

properties E and ~1, find the eigenmode fields H and the corresponding eigenval- 

ues w2/c2 such that 

Vx(e-%‘xH) 
W2 

=-p H in@ 

V . (pH) = 0 in 52 

and frx(e-‘ VxH) = 0 on rmetd. 

(1.7a) 

(1.7b) 

(1.7c) 

Both of these formulations are called curl-curl formulations. 

If the material inside the structure is isotropic and homogeneous then the per- 

mittivity and permeability are constant scalars E and p. For such cases the vector 

identity Vx (Vx A) = V(V . A) - V2A can be used to obtain the wave equation 
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formulation of the eigenmode problem. Note that in Cartesian coordinates, the ith 

component of V2A is just V2Ai. However, this is not true in other coordinate 

systems. Instead, the vector identity above defines V2A. 

The wave equation formulation for the electric field E is: given the region fi 
and constant scalar material properties e and p, find the eigenmode fields E and 
the corresponding eigenvalues w2/c2 such that 

W2 
V2E = --ep7E in 0, (1.8a) 

V.E=O in52 (1.8b) 

and 6 xE = 0 on rrnetd. (1.8~) 

Similarly, the eigenmode problem for the magnetic field H is: given the region C2 

and constant scalar material properties E and p, find the eigenmode fields H and 

the corresponding eigenvalues w2/c2 such that 

V2H = 
W2 

--ETCH in 0, (1.9a) 

V-H=0 in52 

and hx(VxH) = 0 on rmetd. 

(1.9b) 

(1.9c) 

A pair of boundary conditions equivalent to (1.9c) is H,, = 0 and 8Ht/dn = 0 

on rmetd- 

1.2. Structure Symmetries 

Symmetries of the microwave structure can reduce the size of the problem. 

Reduced problems take less time and space to solve numerically. Alternatively, 
a finer mesh can be used with the reduced problem to obtain a more accurate 

solution. The symmetries described in the following sections can be exploited using 
appropriate boundary conditions while leaving the formulation for the interior of 

the structure unchanged. Other symmetries, such as cylindrical symmetry, lead 

to different formulations for the interior as well as different boundary conditions. 

Formulations for cylindrical symmetry are discussed in chapters 3 and 4. Further 

discussion of the use of symmetry to simplify calculations can be found, for example, 

in [3]. 
The connection between Maxwell’s equations and a symmetry is that Maxwell’s 

equations, including the boundaries and any material properties, are invariant un- 

der the symmetry operator. Then fields can be found which are simultaneously 
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eigenmodes of both Maxwell’s equations and the symmetry operator. These eigen- 

modes have one eigenvalue for Maxwell’s equations and a separate eigenvalue for the 

symmetry operator. In the language of quantum mechanics, Maxwell’s equations 
(thought of as an operator) and the symmetry operator commute, so the operators 
are simultaneously diagonalizable. The size of the problem is reduced by constrain- 
ing the solutions of Maxwell’s equations to be eigenmodes of the symmetry operator 
with a particular eigenvalue. 

Details of the procedure for obtaining boundary conditions are given below for 

reflection symmetry about a plane. Sections on other symmetries follow, and these 

sections focus on the aspects of a symmetry which differ from the previous cases. 
Example formulations which take advantage of the symmetries will be presented, 
but without any proof that they are equivalent to the original formulation. However, 
the variational formulations introduced in later chapters will indicate which bound- 
ary conditions are necessary to make the original and reduced formulations of the 

problem equivalent. All of the examples are based on the curl-curl formulation (1.6) 
for the electric field E. 

1.2.1. Reflection Symmetry About a Plane 

Consider a structure which has reflection symmetry about a plane P, called the 

symmetry plane. The symmetry plane is defined by the equation xT@ = p,, where 
fi is a unit vector normal to the plane P and lpOl is its distance from the origin. An 
example is shown in figure 1.2a. 

Let $ be the reflection operator about the symmetry plane P. The reflection 
operator P can act on various types of objects. @ acting on a point x yields the 

point 

*x = P(x - fipo) + fiPlJ = (I - 2siqx - @PO) + ep*, (1.10) 

where P = (I - 2fifiT) is the reflection matrix and I is the identity matrix. The 
reflection operator acting on a vector field E is the vector field @E. Evaluating the 

,. 
reflected vector field PE at a point x gives the vector 

(fiE)(x) = P E(l+‘x). (1.11) 

Finally, the reflection operator p acting on a pseudovector field H is 6H. The 

magnetic field H must be transformed as a pseudovector instead of a vector in order 

to leave Maxwell’s equations unchanged. Evaluating the reflected pseudovector field 

at the point x gives the pseudovector 

@H)(x) = -P H(l?x). (1.12) 
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(a> w 
Figure 1.2: (a) A structure with symmetry plane P. The shaded region is the interior 0, 

and the normal to the symmetry plane is 6. (b) The region over which Maxwell’s equations 
must be solved is reduced to R, for a symmetric structure. The symmetry boundary is lYsym. 

The minus sign is present for pseudovectors because the determinant of the reflection 
matrix P is -1. 

Consider an eigenmode of P with eigenvalue p. Denoting one of the fields (E 
or H, for example) of the eigenmode by A, then PA = pA. Reflecting the mode 

twice gives the original mode, so 

P(PA) = P(pA) = p2A = A. (1.13) 

Thus p2 = 1, and the eigenvalues of P are p = f 1. 

Let rsym be the portion of the symmetry plane P in the structure interior 0. 

The surface rsym will be a boundary of the reduced problem. Notice that 

PX = x for x E rsym. (1.14) 

Then 

@E)(x) = P E(P-lx) = P E(x) = pE(x) 

@‘H)(x) = -P H(P-lx) = -P H(x) = pH(x) 
for x E rsym (1.15) 

and thus 

PE = pE and - PH = pH on Isym. (1.16) 

Consider the action of the reflection matrix P on a vector A. Let A, = fi . A be 

the component of A normal to the symmetry plane P, and let At = (I - PfiT)A be 
the portion of A tangential to the symmetry plane P. Then 

(PA), = At and (PA), = -A,. 

6 
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That is, P reverses the normal component of the vector, but leaves the tangential 

component of the vector unchanged. Applying this to equation (1.16) yields 

Et = St, E, = -pE,, Ht = -pHt and H, =pH, on Fsym. (1.18) 

The case p = -1 corresponds to a perfectly conducting boundary with boundary 
conditions 

perfectly conducting : Et = 0 and B, = 0 on Fsym, (1.19) 

and the case p = 1 corresponds to a perfectly insulating boundary with boundary 

conditions 

perfectly insulating : D, = 0 and Ht = 0 on FSym. (1.20) 

The conditions on the component of the field normal to Fsym are applied to D and B 
since D, and. B, are continuous across any interface. The fields Et and Ht are 
continuous across the symmetry plane, but the fields .E, and H,, are not necessarily 
continuous. Like the boundary condition at perfectly conducting walls, the two 

boundary conditions at the symmetry plane are not independent. For example, 
given a solution to Maxwell’s equations and the boundary condition Ht = 0, then 

the other boundary condition D, = 0 can be derived if time-varying fields are 

assumed. 
Many field solvers call the perfectly conducting case a metal boundary condition 

and reserve the words symmetry boundary to mean only the perfectly insulating 
case. While this is reasonable for calculating the fields in an RF structure, some 

post-processing calculations, such as power loss due to the finite conductivity of 

the metal walls, need to distinguish between a real metal wall and the perfectly 

conducting case of a symmetry plane. 
Here is a formulation for the eigenmode problem in a symmetric structure. The 

problem is reduced to a region Rr which is half of the original structure, as depicted 

in figure 1.2b. The formulation for the perfectly conducting (p = -1) case is: given 

the region 0, and its material properties c: and ~1, find the eigenmode fields E and 

the corresponding eigenvalues w2/c2 such that 

W2 
VX(~-~VXE) = GEE in R,, (1.21a) 

V . (EE) = 0 in f12, 

and GxE = 0 on Frnetd and Fsym. 

(1.21b) 

(1.21c) 
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Figure 1.3: (a) A t t s rut ure with two symmetry planes, PI and Pz. (b) The region over 

which Maxwell’s equations must be solved is reduced to fl,. The symmetry boundaries 

me rsym-l and rsym-2. 

The formulation for the perfectly insulating (p = 1) case is: given the region 52, and 
its material properties E and p, find the eigenmode fields E and the corresponding 

eigenvalues w2/c2 such that 

W2 
Vx(p-‘VxE) = TeE in Q2,, (1.22a) 

V - (eE) = 0 in R,, (1.22b) 

fixE = 0 on Imetal (1.22c) 

and fix(~-~(VxE)) = 0 on Isym. (1.22d) 

For a non-static mode, the boundary condition (1.22d) is the same as GxH = 0 

on rsym- 

Some structures have more than one symmetry plane, in which case there is 

a symmetry operator for each symmetry plane. If the symmetry planes are per- 
pendicular to each other then the symmetry operators commute and modes can be 
found which are simultaneously eigenmodes for all of the symmetry operators and of 

Maxwell’s equations. An example with two symmetry planes is shown in figure 1.3. 

Let l? sP(cond) be the symmetry planes for which the perfectly conducting (p = 1) 

case is chosen, and let rsym(ins) be the symmetry planes for which the perfectly in- 

sulating (p = -1) case is chosen. Then a formulation for the eigenmode problem is: 

given the region 0, and its material properties E and 1-1, find the eigenmode fields E 

and the corresfionding eigenvalues w2/c2 such that 

W2 
Vx(pwlVxE) = SeE in Sz,, (1.23a) 

V - (EE) = 0 in C!,, (1.23b) 

ihE = 0 on rmetd and rsym(cond) (1.23~) 

and iix(p-~(VXE)) = 0 on rsym(ins). (1.23d) 
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Figure 1.4: (a) A t t s rut ure with reflection symmetry about a point. (b) A 2d structure 

which is symmetric about its center x,. The shaded region is the interior R. (c) The region 

over which Maxwell’s equations must be solved is reduced to R, for a symmetric structure. 
The symmetry boundaries are r’~ and rB. 

Reflection symmetry about a plane may be combined with another type of symme- 
try, for example periodic symmetry. The guiding rule is that both symmetries can 
be used as long the corresponding symmetry operators commute. 

1.2.2. Inversion Symmetry 

Consider a structure with reflection symmetry about a point x0, the center of 
the structure. This is called inversion symmetry. An example of such a structure 
is shown in figure 1.4. Let I’ be the reflection operator about the center. The 

reflection operator acting on a point x gives the point 

i)x= -1(x - x,) +x0 = --x + 2x0. (1.24) 

The reflection operator acting on a vector field E and a pseudovector field H gives 

(@E)(x) = -E(+-lx) and @H)(x) = H(I?‘x). (1.25) 

Let s2, be half of the interior 0 of the structure, and let the symmetry boundaries 

rA, l?B and possibly the center x0 be the portion of the boundary of R, which is 

in R. The boundaries rA and rB are chosen such that the symmetry operator fi 

maps rA to rB and vice versa. An example is shown in figure 1.4~. Note that the 

boundaries IA and rB are not required to be planes. 

As in the case of reflection symmetry about a plane, reflecting an eigenmode 

of @ twice gives the original mode (see equation (1.13))) so the eigenvalues of e 
are p = fl. The boundary conditions for the boundaries rA and rB are just the 

eigenvalue equation applied at the boundaries, 

(*E)(x) = -E(+-lx) = pE(x) and (pH)(x) = H($-lx) = pH(x). (1.26) 
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Figure 1.5: An example of a finite difference mesh exploiting symmetry about a center x0. 

A special case occurs at the center x0 since fix, = x0. At the center -E(x,) = 

pE(x,) and H(xo) = pH(x,), so 

E(x,) = 0 if p = 1, (1.27a) 

H(x,)=O ifp=-1. (1.27b) 

A formulation for the p = fl case is: given the region R, and its material properties 
E and p, find the eigenmode fields E and the corresponding eigenvalues w2/c2 such 

that 

W2 
Vx(pSIVxE) = ---peE in 0, (1.28a) 

V . (eE) = 0 in 0, (1.28b) 

fixE = 0 on l&d, (1.28~) 

fixE = I -phXE(px for X c rA 

and iix(p-‘(V~~))~~ = pfi~(~-~(V~E))l+~ 

(1.28d) 

for X E rA. (1.28e) 

A digression on implementation will help illustrate the non-local nature of this 

boundary condition. To exploit this symmetry in a field solver, the fields at points 
on one boundary, say x E rA, are constrained to be the same as the fields at the 

corresponding points on the other boundary, l?x E rB, multiplied by a factor fp. 

This is easily accomplished if the mesh, or discretization, of the problem has the 

same inversion symmetry as the structure. Numerous examples of the finite element 

method are presented in later chapters, so consider a finite difference example here. 

A portion of a finite difference mesh is shown in figure 1.5. The shaded region is in Q, 

and the dotted and dashed lines are the boundaries rA and rB, respectively. The 

fields are computed for nodes (filled circles) in the region C& and on the boundary rB. 

Whenever a field at a point x outside of Q2, or I’B is required by the finite difference 

operator, the field at the point l?x (which is in s1, or I’,) muItiplied by fp is used 
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b. ./ 

instead. For example, dark gray lines indicate the field values necessary for a 5- 

point finite difference operator at nodes a and f in figure 1.5. The field at node d 
is the field at node f times fp, while the field at point i is the field at node a 
times fp. Note that the symmetry of the finite difference matrix M is preserved 
since M,f = Mfa. 

1.2.3. Periodic Structures 

A periodic structure has a symmetry operator I?. which rigidly moves the struc- 

ture by one period. The symmetry operator R acting on a point x can be written 

generally as 

itx=Rx+xo, (1.29) 

where the matrix R is an orthogonal matrix. That is, RTR = I. A common 
symmetry operation for periodic structures is translation by a cell length 1 along 

an axis, say i. In this case x0 = 18 and R = I. Thus Rx = x + 1% However, as 

indicated by the examples in figure 1.6, the general form of the operator R allows 
more than translations. The symmetry operation can include a rotation as shown in 
figure 1.6b, and it can include a reflection as shown in figure 1.6~. A combination of 

translation and rotation describes helical structures, such as the example shown in 
figure 1.6d. These are all periodic structures and, as will be shown below, the modes 
of a periodic structure can be found by modelling a single period of the structure 

and using a boundary condition called the quasi-periodic boundary condition. 

Periodicity differs from the previous symmetry operators in that R2 is not the 

identity operator, so the eigenvalues of the symmetry operator are not simply fl. 
A generalization of Floquet’s theorem gives the eigenvalues for the symmetry oper- 

A 
ator R of a periodic structure. 

Let A represent one of the fields, perhaps E or H, of a mode which is a solution 

to the eigenmode problem in the periodic structure. The field A is complex and 
represents a wave propagating along the structure. The real field A(x,t) can be 

obtained from the complex field A(x) using 

A(x,t) = ZI?e {A(x)e-‘wt}. (1.30) 

The eigenvalues of the symmetry operator R are complex numbers o. The eigen- 

value relates the complex field in one cell with the complex field in the following cell. 

If the eigenvalue has lo] > 1 or IcyI < 1 then the mode is geometrically growing or 

damping along the structure. Formulations for these evanescent modes are typically 
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Figure 1.6: Some examples of periodic structures. The dashed lines delimit one period, 
or cell, of the structure. The arrows indicate the action of the symmetry operations: (a) 
translation, (b) rotation and (c) glide reflection. The symmetry operation for a helical 
structure (d) is a combination of translation and rotation. 

non-symmetric or not positive semi-definite. This work focuses on symmetric for- 

mulations with real eigenvalues, so evanescent modes will not be considered further 

here. 
If lcrl = 1 then the eigenvalue is Q: = e + for some real phase advance $. These 

modes are travelling waves in the periodic structure, and are the modes of interest 
in this work. 

To exploit this symmetry the solutions are restricted to be eigenmodes of the 
. 

symmetry operator R with a particular eigenvalue eai$. In other words, a phase 
advance $ is selected and the vector field E must satisfy 

E&C) = RE(x)eid (1.31) 

and the pseudovector field H must satisfy 

H(I%x) = IfrRH(x)e’$, (1.32) 

where the sign is the determinant of the matrix R. The sign is positive for all of 
the examples of figure 1.6 except for the glide reflection example in figure 1.6~. For 

glide reflection the sign is negative. 
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Figure 1.7: One cell of the periodic structure of figure 1.6a. l?left and rright are the 

quasi-periodic boundaries. 

Let the region $21 be the interior of one period, or cell, of the periodic structure. 

The portion of the cell boundary in the interior R comprises the quasi-periodic 
boundaries l?left and rright. The symmetry operator R acting on the boundary l?left 
is the boundary Iright. An example is shown in figure 1.7. Notice that the normal 
vectors at the quasi-periodic boundaries are related by 

I n. = -R filX vx E heft. (1.33) 

There is no unique choice for the cell and its boundaries. The boundaries l?left and 

r right are usually chosen to be planes, but they are allowed to be curved surfaces as 
shown in the example. 

Here is a formulation for the eigenmode problem reduced to one cell s2r of 
the periodic structure. Given the region 01, its material properties E and p and 

a phase advance $, find the complex eigenmode fields E and the corresponding 
eigenvalues w2/c2 such that 

W2 
VX(~-~VXE) = C2~E in al, (1.34a) 

V. (eE) = 0 in RI, (1.34b) 

tixE = 0 on rrnetd, (1.34c) 

iixE I h = ~RfixElj+ for x E Ileft, (1.34d) 

and fix(pS1(VxE))lfiX = -Rhx(p-‘(VxE))lxeid for x E rleft. (1.34e) 

The sign in (1.34d) is -IRI. The last two conditions are the quasi-periodic boundary 

conditions for this formulation. In words, the portion of the fields E and H tangen- 
tial to I’+t are the same as the corresponding tangential fields on rleft multiplied 

by the phase factor e”ti. Note that condition (1.34e) combined with the curl-curl 

equation (1.34a) implies 

ri*D I iix= -ii . D x,iti 
I for x E rleft. (1.35) 
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Figure 1.8: (a) A symmetric periodic structure. The action of operator fi is indicated by 
the arrow. The dashed lines are symmetry planes. (b) The region over which Maxwell’s 

equations must be solved is reduced to 01~. The symmetry boundaries are rsym-left 

and rsym-right . 

A lattice-like structure with two or three directions of periodicity can be handled 
similarly. There will be two or three independent rigid motions &. For each 

A 
operator Ri there is a pair of quasi-periodic boundaries and a phase advance. The 
quasi-periodic boundaries are l?left-; and Fright-i and the phase advance is $i. 

1.2.4. Symmetric Periodic Structures 

Now consider a structure with two non-commuting symmetry planes. In other 

words, the structure is both periodic and symmetric. An example is shown in 

figure 1.8. Let i?‘~ be the reflection operator about a symmetry plane rsym-left (see 
equation (l.lO)), A and let PR be the reflection operator about a symmetry plane 

r sym-right . The subscripts refer to the left and right sides of the half-cell Ri,. The 
A ..,. 

rigid motion operator R = PRPL moves the structure or field right one period (see 
equation (1.29)). 

If the two symmetry planes are parallel, then the rigid motion l% is a translation. 

Otherwise, the two planes must intersect, and fi is a rotation about the line of 

intersection. Note that the matrix R has determinant IR/ = 1, so this rigid motion 

is never a reflection. 

According to Floquet’s theorem, the fields can be decomposed into modes with 

phase advance +. Following a technique described in [4], consider the electric field 

E of a mode with phase advance $J satisfying E&C) = RE(x)e’$. The complex 
conjugate of the mode has the opposite phase advance, 

E*(h) = (RE(x)e’d)* = RE*(x)eWi+. (1.36) 

$LE is the mode reflected about the symmetry plane rsym-left, and it also has the 
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opposite phase advance, 

(i)~E)(.k.x) = R(pLE)(x)esids (1.37) 

Assuming E is a non-degenerate mode, equations (1.36) and (1.37) indicate that 
E* and @LE are the same mode. Let 

E* = dLE (1.38) 

for some complex number Q. Conjugating equation (1.38) and substituting for E* 
with equation (1.38) gives 

,. ,. ,. 
E = a*PLE* = a*PL(aPLE) = a*&;E = (cr12E (1.39) 

which implies Ial = 1. Without loss of generality choose cy = 1. A different cy would 
just multiply the mode by an overall phase factor. 

At the symmetry plane rsym-left, @LX = x so 

E*(x) = (PLE)(x) = PL E(pLx) = PL E(x) QX E rsym-left. (1.40) 

Let En be the component of E normal to I’sym-left and let Et be the portion of E 
tangential to rsymmleft. Then the above conditions are Ez = -E, and Ef = Et, or 

$Re.&=O and SmEt=O Vx E Lym-left. (1.41) 

In other words, E, is imaginary and Et is real on rsym-left. 

At the other symmetry plane rsymmright, x = @Rx = &@Lx. Replacing x with 
l?~x in equation (1.36) and using equation (1.38) gives 

E*(X) = E*(fiIj~x) = RE*(eLx)e-“+ = R(PLE)(@,x)e-“$ 

= RPLE(If$,x)e-“4 = RPLE(x)e-‘4 Qx E r sym-right * 
(1.42) 

RPL is. the reflection matrix PR about the symmetry plane rSP-+ht, so let E, 

be the component of E normal to rsym+ht and Et be the vector tangential to 

r sym-right * Then the above conditions are Ei = -E,,e-‘* and E; = Etevi$, or 

Se {E,e -‘@i”> = 0 and Qm {Ete-i$/2} = 0 vx E r sym-right * (1.43) 

In other words, E, 0; ieitij2 and Et 0: eiG/2 on rsymMright. 

15 



The eigenmode problem reduced to one half cell S21, is: given the region 01,., 
material properties E and ~1 and the phase advance $J, find the eigenmode fields E 

and the corresponding eigenvalues w2/c2 such that 

W2 
VX(~-‘VXE) = TEE in RI,., (1.44a) 

V - (EE) = 0 in s21,, (1.44b) 

iixE = 0 on rmetal, (1.44c) 

3-n {iixE} = 0 on rsym-left, (1.44d) 

SZe {Gx(pSIVxE)} = 0 on rsym-left, (1.44e) 

sm-i GxE I?-‘*/~ = 0 on rsymmright > (1.44f) 

and 8e i?i X ( pSIV xE) e-i$/2} = 0 1 on rsym-right. W%) 

i. 
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Chapter 2 
Planar Structures and an Introduction 

to the Finite Element Method 

A simple microwave structure to solve is a cylindrical waveguide containing 
uniform isotropic media. The cross-section fi of the waveguide may be an arbitrary 
shape as shown in figure 2.1. The cross-section must be constant over the length 

of the waveguide and the material properties E and ,u are assumed to be scalar 
constants in the waveguide. 

In the first section below Maxwell’s equations for the TE and TM modes are 

reduced to a two dimensional scalar eigenmode problem. The second section intro- 
duces an equivalent variational formulation of the eigenmode problem, and in the 
third section the problem is further reduced to a finite element formulation which 

can be solved numerically on a computer. The final section discusses the deleterious 
effects of sharp corners and a technique to improve the calculations. 

More details on the finite element method can be found, for example, in [5]--[7]. 

2.1. Maxwell’s Equations 

Maxwell’s equations in a cylindrical waveguide containing uniform isotropic me- 
dia are discussed, for example, in [I] (ch. 8). S e p aration of variables leads to fields 

with an assumed z dependence eikzz, where z is the coordinate along the length 

of the waveguide. The modes of a cylindrical waveguide split naturally into three 
types: TM, TE and TEM modes. The TEM modes will not be considered here. 

The fields of a TM mode can be derived from the single field component E,, while 
the fields of a TE mode can be obtained from Hz alone. For TM modes, Hz = 0, 
while for TE modes, E, = 0. The z-component of the wave equation (1.8) can be 

written as 

Vf.& = (Icz - +$)E, = -r2& in fi (24 

where 0: = a2/ax2 + d2/ay2. The z dependence eikzz has been factored out, so the 

field Ex(x, y) is independent of z. The eigenvalue r2 corresponds to the mode’s cutoff 

frequency. Equation (2.1) along with appropriate boundary conditions constitutes 
an eigenmode problem for the TM modes. A similar equation for the magnetic 

field Hz is the foundation for the corresponding TE eigenmode problem. 

The boundary condition tixE = 0 on a metal wall becomes E, = 0. The 

corresponding boundary condition (1.9c) for the magnetic field becomes ti . VH, = 

dH,/bn = 0. Boundary conditions for the symmetries described in section 1.2 can 
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Figure 2.1: A cylindrical waveguide with arbitrary cross-section. The cross-section is shown 
at right. 

be deduced from the corresponding 3d problem or they can be derived ab initio for 
the 2d problem. The reduction of the quasi-periodic boundary conditions from 3d 

to 2d is illustrated here. The component of iixE in the x-y plane, 

(iixE)t = hyE, - $vx,E, = (iixri) E,, (2.2) 
f< 

is useful since ii~ii can be factored out of the vector boundary conditions on E 
to obtain scalar boundary conditions on E,. Recall relation (1.33) between the 
normal vectors on the quasi-periodic boundaries, 6 - I = 

Rx 
-RiiIx for x E I’left. The 

symmetry operation does not involve z so (RE)z = E,. Using the identity 

RT((Rii)xE) = IRI iix(RE), 

the quasi-periodic boundary condition (1.34d) 

(2.3) 

multiplied by RT becomes 

(2.5) 
For the other quasi-periodic boundary condition use the z-component of the relation 

Eix(VxE) = V(kE)-(tiV)E, h w ere the differentiation acts only on E and not fi. 

The quasi-periodic boundary condition (1.34e) 

tix(~xE)l~~ = -Rtix(VxE)lxei$ (2.6) 

becomes 

(f-(ii-E) - (fi.V)E,)lk, = -(f--(IE) - (i.V)Ez)lxe’ti. (2.7) 
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Relation (1.35) between the fields normal to the two quasi-periodic boundaries elim- 

inates the fi. E terms, so the quasi-periodic boundary condition becomes 

(;i. v)E,I..~ = -(fi - V)E,lxe”d. (2.8) 

The formulation for TM modes is: given the region fi and possibly phase ad- 
vances $J or $i (if periodicity is exploited), find the eigenmode fields E, and the 
corresponding eigenvalues r2 such that 

VFEz + 72E, = 0 in fi, 

E, = 0 on Letal and ~sym(cond)7 

fi.VE, = O On rsym(ins)7 

E, lLjx = E,I~ e’$j for x E rleft+, 

fi. VE,Ik..x = --ii a VE,(~ ei4i for x E rleft-j, 

%-n E, = 0 on Lym-left, 
Se {(ii - V)E,} = 0 on Lym-left, 

%rn {E, e -+j2} = 0 On rsymmtight 

and Zf?e { (ti . 0) E, ewitii2} = 0 on &ym-r;ght. 

(2.9a) 

(2.9b) 

(2.9c) 

(2.9d) 

(2.9e) 

(2.9f) 

‘(2.9fd 

(2.9h) 

(2.9i) 

This formulation does not include inversion symmetry since an equivalent 180” ro- 

tation may be used instead. The 2d problem may have two independent peri- 
A A 

odicities Rr and R2, hence there may be two pairs of quasi-periodic boundaries, 
I ,. 

RI: IL-1 -+ rright-l and R2: b-2 -+ rri&-2, with phase advances $1 and $2 re- 

spectively. Many symmetry boundary conditions are included in the formulation 

but real structures will not use them all at once. For example, a problem which 

exploits two periodicities and a symmetry plane simultaneously would represent an 

unphysical problem. 

A formulation for the TE modes is: given the region !? and possibly phase 

advances $J or $j (if periodicity is exploited), find the eigenmode fields Hz and the 
corresponding eigenvalues r2 such that 

Vf Hz + r2Hz = 0 in S??, (2.10a) 

fi.VH, = 0 on Letal and rsym(cond)7 (2.10b) 

Hz = 0 on rsym(ins), (2.1Oc) 

4 itjx = Hzlx ei$j for x E l&-j, (2.10d) 
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ii - VH, it x = -ti. VHzl e’+j I for x E I&t+, j X 
(2.10e) 

Sm Hz = 0 on &,-left, (2.1Of) 

!Re {(ii - V)&} = 0 on Gym-left, (2.m) 

9m (Hz e -i”2} = 0 On rspmtight (2.10h) 

and Re { (fi. V) Hz e--i$‘2} = 0 on I&+#. (2.1Oi) 

This formulation treats Hz as a scalar field similar to E,. This formulation does not 
treat Hz as a pseudoscalar field, which means the electric field computed from Hz 
will transform under symmetry operations like a pseudovector instead of a vector. 

This reversal of transformation properties is benign since the formulation does not 

include any source charges or currents. A field solver which exploits symmetries 

and includes sources will have to transform fields appropriately to match the trans- 

formation properties of the (scalar) charge and the (vector) current. 

2.2. Variational Formulation 

A variational formulation can be obtained from the above formulations by multi- 

plying the wave equation by a test function and then integrating over the domain fi. 

Integration by parts using the vector identity V * (vVU) = vV2u + Vu. Vu reduces 
the integral to a form which is symmetric. A variational formulation for TM modes 

which is equivalent to (2.9) is: given the region R and possibly phase advances 

$J or $j (if periodicity is exploited), find the eigenmode fields E, E L/E and the 

corresponding eigenvalues r2 such that for all test functions F, E UE 

Re fi J 
VF; . VE, - y2F;E, dR = 0 

where the space 2.4~ of test and trial functions is 

UE = {Ez E 3-I@) : 

J% = 0 on Letd and rsym(cond), 

(2.11a) 

4 itjx = E,lxeidj VX E l&t, (2.11b) 

and 

53rn E, = 0 on rsym-ldt, 

Sm {E, e -i+/2} = 0 on l?sym-right} 

7-l@) = {E,: h -+ @ : 

Ifi VEf . VE, + EXE, do exists and is finite}. 
(2.11c) 

A solution of (2.9) is also a solution of this variational formulation. Conversely, a 

solution of this variational formulation is a solution of (2.9) provided that the fields 
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are sufficiently differentiable. In particular, formulation (2.9) requires the existence 
of the second derivative V2E,. The variational formulation only requires that the 

first derivative VE, be integrable in the sense indicated by (2.11~). The formula- 
tion (2.9) is called a strong formulation and the variational formulation (2.11) is 
called a weak formulation because the conditions on the differentiability of the fields 
are stronger in (2.9) than in (2.11). 

Only some of the boundary conditions which appeared in the strong formula- 
tion are listed in the definition (2.11b) .of the function space UE. The boundary 
conditions listed in (2.11b) are called essential boundary conditions. The boundary 
conditions not listed in (2.11b) are called natural boundary conditions because any 
solution to the variational formulation naturally satisfies these boundary conditions 
without any additional constraints. The natural boundary conditions are typically 
the conditions which involve field derivatives at the boundaries. The Neumann 
boundary condition (Ei . V)E, = 0 is a typical example. The Dirichlet boundary 

condition E, = 0 is a typical example of an essential boundary condition. 

The corresponding variational formulation for the TE modes is: given the re- 
gion fi and possibly phase advances II, or +j (if periodicity is exploited), find the 

eigenmode fields Hz E UH and the corresponding eigenvalues r2 such that for all 
test fUnCtiOnS G, E UH 

Re J ii 
VG; - VH, - y2G;Hz dfl = 0 

where the space UH of test and trial functions is 

UH = { Hz E ‘FI@) : 

Hz = 0 on rsym(ins), 

(2.12a) 

~~1~ x = HzIxei$j vx E rleft, 
j 

(2.12b) 

r. 
i: 

3:m Hz = 0 on Lym-left, 

Sm (Hz e -i*‘2} = 0 on rsymeright}. 

The Hilbert space Xl(h) is the same as (2.11~). This variational formulation is 

equivalent to (2.10). 

2.3. Finite Element Method 

The function space UE is an infinite dimensional space. Restricting the problem 

to a finite dimensional subspace Uk C UE gives a formulation of the eigenmode 

problem called the Galerkin formulation. For the TM modes the Galerkin formu- 
lation is: given the region !? and possibly phase advances $ or +i (if periodicity is 
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exploited), find the eigenmode fields E,” E U$ and the corresponding eigenvalues 7: 
such that for all test functions F,” E 24; 

Re J A OFF. VE,h - +yiF,h*E,h dR = 0. (2.13) 

There are many possibilities for the subspace i!&. Choosing a good space it& means 
the approximate eigenfields E,h obtained from the Gale&in formulation are close 

to the true eigenfields E, obtained from the variational formulation. Likewise, the 
approximate eigenvalues 7: will be close to the true eigenvalues r2 if the space 24; 

is chosen well. 

The Gale&in formulation reduces to a problem involving matrices of finite or- 
der. Let the linearly independent set of functions { Nr , . . . , NM} be a basis for the 
space Z.&. Then any function E,h E Uk is a unique linear combination of the basis 

functions, 

E,h(x, Y) = 5 uiN(x, y), (2.14) 
i=l 

where the coefficients ui are real. A basis function Ni may be complex, particu- 
larly if the problem includes quasi-periodic or symmetric quasi-periodic boundaries. 
Decomposing the fields Ei and F,” of (2.13) into linear combinations of the basis 

functions gives 

se kv(gviNi)* *V($“.iNj) -7’( ~viNi)*C~u’N’) dR 

$5 

(2.15) 

ViUj Re 
i=l j=l {J ~ VN,* - VNj - 7iNrNj da} = O* 

Equation (2.13) must be true for any test field F,” E U,$, so (2.15) must be true for 

any Vi. The variables vi are independent, so 

M 

3 {J 
!Re 

‘= i=l 
VN;* * VNj - 7iN;*Nj dR Uj 

(2.16) 

= E (Aij - 7lBij) Uj = 0 for all i = l,... ,M. 
j=l 

The notation 

Aij = !Re J ~ VN,* * VNj dR and Bij = %e JA N;*Nj dR (2.17) 

has been introduced. Equation (2.16) is written concisely in matrix notation as 

Au-$Bu=O (2.18) 
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Figure 2.2: Two finite element meshes for the arbitrary cylindrical waveguide in figure 2.1. 
Mesh (a) is composed of linear elements. Mesh (b) is composed of quadratic elements. 

where the components of matrices A and B are given by (2.17) and the vector 
of field coefficients is u = (~1, . . . , UM) T. Thus the Gale&in formulation of the 
eigenmode problem reduces to the generalized algebraic eigenvalue problem (2.18) 

for the eigenvectors u and the corresponding eigenvalues 7:. 

Notice that the matrices A and B are symmetric. The symmetry of the matrices 
reflects the self-adjoint nature of the eigenmode problem. 

Matrix A is non-negative definite and matrix B is positive definite, so the eigen- 
values 7: are real and non-negative. The TE mode formulation often has a zero 
frequency mode which corresponds to a static constant magnetic field in the struc- 
ture. The TM mode formulation is positive definite unless a rare combination of 
boundary conditions is chosen (e.g., all symmetry boundaries) to make the problem 

look like a TE mode problem. In either case there are at most only a few zero 
eigenvalues. The remaining eigenvalues are positive. 

The finite element method provides, among other things, a scheme for choosing 
subspaces L& for the Galerkin formulation of the problem. 

2.3.1. Elements 

In the finite element method the region fi is partitioned into a mesh of non- 
overlapping elements 0, as shown in figure 2.2. The elements fl, are simple shapes, 

typically triangles or quadrilaterals, which cover a region fib. The work described 
in this thesis uses only triangular elements. Note that fib is often only an ap- 
proximation to the region fi. For example, the approximate nature of the mesh in 

figure 2.2a is obvious because the mesh looks very different from fi in figure 2.lb. 
Careful scrutiny will reveal that the mesh in figure 2.2b is also only an approxima- 

tion to 6. 

The finite element method prescribes basis functions for the Galerkin formula- 

tion which are simple functions on each element. These simple functions are called 
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local basis functions and are typically low order polynomials. The domain of a local 

basis function N;” is just the eth element. 

The local basis functions are assembled into the global basis functions Ni E UE 
which are zero everywhere except on a single element (08 in figure 2.2b, for example) 
or a pair of elements which share a side (Qr and Rz, for example) or a set of elements 

which share a corner (&, Rg, &j and 07, for example). The support (the domain 
over which the function is non-zero) of a global basis function Ni consists of at most 
a few elements. Elsewhere Ni = 0. Examples of global basis functions are shown in 
figures 2.5 and 2.8 in the following sections. 

The finite element method also suggests a scheme for computing the matrices A 

and B. The integration for the matrix components (2.17) can be split into a sum 
of integrals over each element, 

Aij=CRek VN,**VNjdfl 
e e 

J 
and Bij = C Re N;*Nj dR. 

e Qe 

(2.19) 

A global basis function Ni on 0, is either zero or it is one of the local basis functions 
for element e, say NF. The (global) in d ex i for the global basis function is not the 

same as the (local) index 2^ for the corresponding local basis function on element e. 
This is demonstrated in an example on the following page, where element matrices 

are accumulated to global matrices. 

Consider a pair of global basis functions, Ni and Nj. Equation (2.19) indicates 
that the components Aij and Bij can be non-zero only if the two global basis 

functions N; and Nj have an element in common. Since the support of Ni consists 

of at most a few elements, there are a limited number of basis functions Nj which 
share an element with Ni. This implies that there are few non-zero entries in the 

ith row of the matrices A and B, so the matrices A and B are sparse matrices. 

For a given i and j few elements, if any, will have a non-zero contribution to the 

sum in (2.19), so computing A;j and Bij by summing the contributions to (2.19) 

over every element in the mesh is not the most practical method to compute A 
and B. It is more efficient to first compute the non-zero terms of (2.19) in the form 

of element matrices. The element matrices Ae and Be are 

A$=Sie R 
I 

VN;* . “Nj” dfi 
e 

and B; = Se 
J f-e 

N;e*N; dS-2. 
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There are separate element matrices for each element of the mesh. The order of an 

element matrix is the number of local basis functions in the element, SO the element 

matrices are small. The element matrices are also dense, so little computational 
effort is spent computing zero. The element matrices are also symmetric. 

The element matrices A” and Be are easily assembled into the matrices A 
and B. The components of the small dense matrices Ae and Be are scattered to 
the appropriate components of the large sparse matrices A and B. This is done for 
each element of the mesh. 

As an example, suppose the 8th element (i.e., e = 8) of a mesh has 3 local basis 

functions. The elements matrices A8 and B8 are dense symmetric 3 x 3 matrices. 

Suppose further that global basis i = 23 is local basis 2^ = 1 on the 8th element, 
and that global basis j = 27 is local basis j = 2 on the 8th element. Then one 

step of the assembly procedure for the 8th element would be the accumulation of 
the element matrix component A& to the global matrix component A23,27. Similar 

steps accumulate the remaining components of A8 to A, and then the components 
of B8 to B. 

One further optimization should be mentioned. When the fields are complex 

there are typically pairs of basis functions which are identical except for a complex 
phase factor. One basis function of the pair will be purely real, while the other basis 

function of the pair will be purely imaginary. The presence of these pairs arose from 
the desire to factor the coefficients Vi and uj outside of the Re operator in (2.15), 

and thus simplify the form of the matrices and their components. Instead of a pair 
of basis functions with one real coefficient each, a single real basis function with one 
complex coefficient could be used instead. 

The field solver should compute the element matrices (2.20) for real basis func- 

tions only. The components of the element matrices which involve imaginary or 

complex basis functions are easily computed from the components involving only 

real basis functions. Only multiplication by a complex factor is involved. For this 

reason, the basis functions described in the remainder of this thesis are real, and 

complex basis functions will not be mentioned further. 

2.3.2. Linear Diangle Elements 

Figure 2.2a is a mesh composed of linear triangle elements. Each element is a 

linear map of the master element 6 as shown in figure 2.3. The master element 6 

provides a common domain for all triangular elements. The utility of having a single 

master element for all triangular elements will become apparent later, particularly 
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Figure 2.3: The element transformation X, maps the master element fi to the eth ele- 
ment R,. The map xe is linear. 

when quadratic triangle elements are discussed. 

Let x,: fi --f 0, be the linear map for the eth element. In terms of components 

the map is, 
X 0 Y 

= xe(r,s) = z T) 
(; I’3 

. 
, 

(2.21) 

While fi is the same for all triangle elements, different elements have different do- 
mains 52, and thus different maps x,. Coordinates x and y are global coordinates 
representing a point in fi, while coordinates T and s are local coordinates represent- 
ing a point in the master element 6. The local coordinates are defined in figure 2.3. 

Local basis functions & are defined on 6 and mapped (using xe) to IR,. The 

three local basis functions are 

Nl = r, 82 = s and fis = t, (2.22) 

where t = 1 - T - s. Each of the local basis functions is a linear polynomial in T 
and s. The local basis function N; is 1 at corner 2^ and 0 at the other two corners, 
as shown in, figure 2.4. 

In figure 2.4, the size of the circles is proportional to the magnitude of the basis 

function at the center of the circle. They can be considered arrows directed out 
of the page, since the basis functions are a basis for the field E,, which is normal 

to the page. These basis functions are all positive, but later figures will have both 

negative and positive fields. A cross through the circle indicates the field at the 

center of the circle is negative. 

The local basis functions on Qe are simply 

N;(x, Y) = &(x,‘(x, Y)). (2.23) 

Notice that N.(x, y) is a function of the global coordinates while N;(r, s) is a function 

of the local coordinates. 
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Figure 2.4: Local basis functions & for the linear triangle element. The size of the circles 
are proportional to the magnitude of the basis function at the center of the circles. 

It is convenient to integrate over fi instead of 0, when computing the element 

matrices. This is easily accomplished by including the Jacobian J, of the element 
transformation x,. Hence 

where 

A; = !Re 
J Re 

ON:* - VNF dR = Re 8 03: - Vi$ Je dr ds 
J 

and Bi= !Re 
J Re 

Nz*NF dR = Se 
/ 

iTi*@ Je dr ds, 
(2.24) 

B 

(2.25) 

The gradients Ofif and Vfij above are still with respect to the global coordinates 

x and y. A simple application of the chain rule yields the gradient in terms of the 
local coordinates r and s on the master element 6, 

(2.26) 

Derivatives like &/8x are derivatives of xL1, which can be computed on 6 from 

derivatives of xe using 

(2.27) 

The map x, can be written in terms of the local basis functions 8. and the 

corners of the element x;. The map is 

xe(r, s) = $ x;&(r, s). 
i=l 

(2.28) 

27 



Figure 2.5: A global basis function composed of linear elements. The basis function is 
associated with the field at the common corner. The size of the circles are proportional to 
the magnitude of the basis function at the center of the circles. 

This element is called an isoparametric element because the element transforma- 

tion xe can be written in terms of the local basis functions Ni. In other words, the 
element transformation and the field have the same parametrization. 

The local basis functions have the property that 6&r;, s;) = ~7%) where (r;, SF) 
are the local coordinates of node 2^. A polynomial basis with this property is called 
a lagrangian basis. 

Figure 2.5 shows a global basis function constructed from one local basis function 

on each element surrounding a corner., The global basis function is 1 at the common 
corner and zero at all other corners. Hence the global basis function is associated 

with the field at the common corner: the coefficient for this global basis function is 

just the field at the common corner. The global basis function is zero on any other 
element not shown in figure 2.5. That is, the global basis function is zero on any 

element not touching the common corner. 

Notice that the global basis function is continuous across the element bound- 

aries. This occurs for two reasons. First, a common element boundary is defined 
solely by the two corners shared by the two adjacent elements. The location of 

other corners do not affect the common boundary or its parametrization. Second, 

the local basis functions are linear on each element, and thus they are also linear 

on the shared boundary. The local basis functions agree at the two shared corners, 

thus they agree along the entire shared boundary. This may seem like a trivial 

point for linear elements, but a similar argument applies to the quadratic elements, 

where continuity of the global basis functions is not as obvious. 
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Figure 2.6: The element transformation Xe maps the master element 6 to the eth ele- 

ment R,. The map X, is quadratic. 

The corners of the linear triangle element are also called the nodes of the element 
because global basis functions are associated with the field at the corners of the 
element. That is, if xi is the ith node (corner) of a mesh composed of linear triangle 
elements, and u is the coefficient vector for a field E,h E Lfk then E,h(xi) = ui. For 

the quadratic triangle element discussed later there are basis functions associated 
with the field at the midside points of the triangle. Hence the quadratic element 
has midside nodes in addition to corner nodes. In chapter 4 some basis functions 
are associated with the field tangential to the sides of the elements. These can also 

be considered nodes of the element. 

2.3.3. Quadratic ZYiangle Elements 

Quadratic triangle elements are similar to linear triangle elements in that a 
quadratic triangle element is also based on a map ze from a master element fi to 
the element domain R,. The master element is the same, but the map may be 
quadratic instead of just linear. This allows an element R, to have curved sides as 

shown in figure 2.6. 

There are six local basis functions for this element. Each of the basis functions 

is associated with the field at one of six nodes. In this work the three corner nodes 

are labelled first in counter-clockwise order, just like the linear element. Then the 
three midside nodes are labelled starting with side 1, again in counter-clockwise 

order. The basis functions are 

@I = r(2r - 1)) fi2 = ~(2s - I), iqz = t(2t - 1)) 

& = 47’s, ii& = 4st and &, = ht. 
(2.29) 

The basis functions are quadratic in r and s. The set of basis functions forms a 

complete basis for the space of quadratic polynomials. That is, any function u(r, s) 
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Figure 2.7: Local basis functions i?; for the quadratic triangle element. The size of the 
circles are proportional to the magnitude of the basis function at the center of the circles. 
A cross in the circle indicates the basis function is negative. 

of the form 

(2.30) 

can be written as a unique linear combination of the basis functions 

u(r, s) = 5 u&(r, s). 
i=l 

(2.31) 

Local basis 3; is 1 at node 2^ and 0 at all other nodes. Thus this is a lagrangian 

basis. Plots of the local basis functions are shown in figure 2.7. 

This element is isoparametric just like the linear element. That is, the map xe 
can be written in terms of the local basis functions fi; and the nodes x; of the 

element, 

x,(r, s) = 5 x&r, s). (2.32) 
E=l 

Two examples of global basis functions are shown in figure 2.8. As in the linear 

element case, the global basis functions are continuous across element boundaries. 

Note, however, that the component of the derivative normal to the boundary is not 

continuous. This is the case for both linear and quadratic global basis functions. 
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Figure 2.8: Two global basis functions composed of quadratic elements. The left basis 
function is associated with the field at a corner node, while the right basis function is 
associated with the field at a midside node. The size of the circles are proportional to the 
magnitude of the basis function at the center of the circles. A cross in the circle indicates 
the basis function is negative. 

The condition (2.1 lc) demands that the field be continuous across any boundary, 
but it does not demand that the derivatives be continuous across any boundary. 

The integrals (2.20) for the element matrices Ae and Be are transformed to 
integrals (2.24) over the master element fi in order to simplify the domain of in- 

tegration. While this transformation may seem to be only an added complication 
when the map x, is linear, the simplification of the integration domain is very help- 

ful when the element domain R, has curved boundaries (and thus x, is non-linear). 

At this point the integration could still be carried out analytically for Be, but the 
integrand for Ae is not simply a polynomial in r and s, so Ae is difficult to obtain 

analytically. To circumvent this difficulty numerical integration is used instead. 

A list of integration rules for the triangular domain fi is given in [6] (ch. 3). 

The weights and points for the 12-point quadrature formula used in this work are 
listed in table 2.1. The approximate integral is 

J Sf’dQ 2 ~~f(ri,si,ti)Wi. 
i=l 

(2.33) 

Additional accuracy was obtained by subdividing the domain fi into four similar 

triangles. A number of test cases showed that this numerical integration scheme is 

more than sufficient for the problems solved here. Numerical integration was used 

for all element matrices for both the linear and quadratic elements. 
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i I Wi 
1 0.050844906370207 
2 0.050844906370207 
3 0.050844906370207 

4 0.116786275726379 
5 0.116786275726379 
6 0.116786275726379 
7 0.082851075618374 
8 0.082851075618374 
9 0.082851075618374 
10 0.082851075618374 
11 0.082851075618374 
12 1 0.082851075618374 0.310352451033785 0.636502499121399 0.053145049844816 

fi 
0.873821971016996 
0.063089014491502 
0.063089014491502 
0.501426509658179 
0.249286745170911 
0.249286745170910 
0.636502499121399 
0.636502499121399 
0.053145049844816 
0.053145049844816 
0.310352451033785 

si ti 

0.063089014491502 0.063089014491502 
0.873821971016996 0.063089014491502 
0.063089014491502 0.873821971016996 
0.249286745170910 0.249286745170911 
0.501426509658179 0.249286745170910 
0.249286745170911 0.501426509658179 
0.310352451033785 0.053145049844816 
0.053145049844816 0.310352451033785 
0.636502499121399 0.310352451033785 
0.310352451033785 0.636502499121399 
0.053145049844816 0.636502499121399 

Table 2.1: Weights and points for a 1Zpoint scheme for numerical integration over the 

domain & The first two weights are repeated three times for the three permutations of 
the corresponding triangular coordinates. The last weight is repeated six times for the six 
permutations of its triangular coordinates. 

Figure 2.9: Two parallel plates separated by distance d treated as a periodic structure with 
period L. 

2.3.4. Tests on Parallel Plates 

The first test of these finite element formulations is on a pair of parallel plates 
spaced 1 cm apart. The plates are treated as a periodic structure with period 

L = 1 cm in order to test the implementation of quasi-periodic boundary conditions 

as well as the implementation of the finite element method. The test problem is 

illustrated in figure 2.9. 

The finite element program is called YAP. Comparisons will be made with a 

simple finite difference program called QUAP. QUAP uses the usual five-point dif- 
ference operator on a uniform grid to discretize and subsequently solve the wave 

equation. Later tests will compare YAP with the established field solvers SUPER- 

FISH[8], URMEL[9] and URMEL-T[lO]. 
Figures 2.10 and 2.11 show the results of calculations for various mesh sizes and 

various field solvers. The computed mode is the lowest frequency mode with phase 

advance + = 135”. The field Hz is uniform along y. Analytically the solution is 

Hz(x) y) = HOeikzx = Hoei*xJL (2.34) 

32 



5.7 

"g 5.65 
e 
11 5.6 

3 
3 5.55 - 
T 
fl 5.5 

22 
tie 5.45 

5.4 

X linear FEM (YAP) 
0 quadratic FEM (YAP) 
0 finite difference (QUAP) 

0.05 0.2 0.25 

Figure 2.10: Computed eigenvalue k2 for the parallel plate test as the mesh is refined. 
Results from three different algorithms are shown. The dashed line is the exact result 
obtained analytically. 
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Figure 2.11: Relative error of the computed eigenvalue k2 for the parallel plate test as the 

mesh is refined. Results from three different algorithms are shown. The curves for the 
finite difference and linear finite element algorithms coincide. 

so the eigenvalue is k2 = w2/c2 = 5.5516525cmW2. The dashed line in figure 2.10 

corresponds to this analytically computed eigenvalue. 

Figure 2.10 shows the computed eigenvalues converging smoothly toward the 
correct eigenvalue as the mesh is refined. The coarse meshes have widely separated 

nodes and thus appear at the right side of the graph. The coarsest meshes yield the 

largest errors due to the coarse discretization of the problem. 

The node spacing decreases as the mesh is refined, so fine meshes appear at the 
left side of the graph. The eigenvalues obtained from a fine mesh are more accurate 
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than the eigenvalues obtained from a coarse mesh. Ideally the exact eigenvhe is 

obtained when the node spacing becomes zero. Zero node spacing corresponds to an 

infinitely refined mesh. Of coarse, zero node spacing is never achieved in practice. In 
this work the limiting factor was storage space (computer memory). If storage space 

was not limited, one would eventually encounter numerical round-off problems while 
solving the generalized eigenvalue problem. This occurs when the matrices become 
sufficiently large and ill-conditioned. This work used double precision arithmetic to 
avoid such problems, and no indication of round-off problems has been found. 

The smooth convergence toward the correct eigenvalue shown in figure 2.10 is 

not surprising since the problem has a simple rectangular boundary which a uniform 
mesh can model well. The two finite element algorithms overestimate the eigenvalue 
while the finite difference method underestimates the eigenvalue. In other words, 
the finite element methods approach the correct eigenvalue from above, while the 

finite difference method approaches the eigenvalue from below. It can be shown 

that the finite element methods will always overestimate the eigenvalue of a mode. 

The magnitude of the discretization error for the linear finite element method 
and the 5-point finite difference method is nearly the same. This can be seen clearly 
in figure 2.11 where the relative error, (lc2 - k&;,,)/k&x,, is plotted on a log-log 
scale. The relative error for the finite element method using quadratic elements is 
much smaller than the other two algorithms. Furthermore, the rate at which the 

quadratic finite element method converges is superior to the rate at which the linear 

finite element and the 5-point finite difference methods converge. The eigenvalue 
error for the linear finite element and 5-point finite difference methods is S(h2), 

where h is the size of the elements or the spacing between nodes. The eigenvalue 

error for the quadratic finite element method is Q(h4). 

For quadratic elements the node spacing h corresponds to half of the element 
size due to the presence of the midside nodes. Hence, for a given node spacing h in 

figures 2.10 and 2.11, the number of unknowns in the finite difference and the two 

finite element algorithms is identical. 

2.3.5. Tests on a Circular Waveguide 

A more stringent test of a field solver is a circular waveguide. Figure 2.12a 

shows the cross-section for a circular waveguide with radius a. In the tests below, 
the radius of the circular waveguide was chosen to be a = 0.9 cm. 

Like many real-life problems, the cross-section of the circular waveguide is not 

/ rectangular. This will present a problem for finite difference algorithms which insist 
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2.12: The region 6 (a) and a finite difference mesh (b) for a circular waveguide 
a. The finite difference mesh was generated for the program QUAP. 

with 

on using a regular grid. An example of such a grid for QUAP is shown in figure 2.12b. 
The grid boundary is the thick line while the desired circular boundary is the thin 
line. The grid only coarsely approximates the circular domain of the problem. 

URMEL is another finite difference field solver. For problems with a rectangu- 

lar domain URMEL and QUAP give identical results. For this problem, however, 
URMEL generates a better grid than QUAP by including an occasional right trian- 
gular element next to the boundary. URMEL also allows a non-uniform grid, but 
this feature was not employed in the tests below. 

URMEL-T is also considered a finite difference field solver. It uses a grid based 
on triangles and a dual grid composed of hexagons. These grids can approximate a 

circular domain well. 

Figures 2.13 and 2.14 show calculations of the TElr mode of the circular waveg- 

uide. The analytically computed eigenvalue is Ic = &/u where ji 1 is the location 1 
of the first maximum of the bessel function 51(x), Numerically the analytic eigen- 
value is lc2 = 4.185132984 cm- 2. This exact eigenvalue is represented by the dashed 

line in figure 2.13. 

In figure 2.13 notice the erratic behavior exhibited by the two finite difference 

codes QUAP and URMEL. As the mesh is refined the computed eigenvalue does 

not necessarily become more accurate. In many cases the computed eigenvalue be- 
comes less accurate for a refined mesh. This test demonstrates the difficulty these 

codes have modelling problems with curved boundaries. The replacement of the 
desired circular boundary with an approximate stair-step boundary dominates the 

discretization error of the problem. This boundary-induced error fluctuates unpre- 

dictably as the node spacing is reduced. This not only makes it difficult to decide 

which result (or mesh) is better, it also makes extrapolation of the calculations to 

zero node spacing difficult. 
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Figure 2.13: Computed eigenvalue k2 for the circular waveguide test as the mesh is re- 
fined. Results from five different algorithms are shown. The dashed line is the exact result 

obtained analytically. 
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Figure 2.14: Relative error of the computed eigenvalue k2 for the circular waveguide test 
as the mesh is refined. Results from five different algorithms are shown. 

This example also indicates that caution must be exercised when verifying the 

accuracy of a finite difference code on this type of problem. If a test calculation 

is performed on just one mesh then the results could easily be misleading. For 
example, if the only eigenvalue computed with QUAP was the eigenvalue computed 

using the finest mesh in figures 2.13 and 2.14 then one might believe that QUAP 

was the best of the five codes tested. But when a variety of meshes are used then 
it becomes apparent that this is not true. QUAP should have the worst accuracy 

of the five codes tested. 

Likewise, URMEL on the coarsest mesh tested looks good. Further tests using 
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different meshes indicate the impressive accuracy obtained using the coarse mesh 

was merely coincidence. 

Similarly, when verifying measurement data the engineer or scientist using a field 
solver may feel an urge to adjust the finite difference mesh in order to make it “bet- 
ter” correspond to the actual structure. This usually means the mesh is adjusted 
until the measured frequency and the calculated frequency agree, although the user 

may conjure other criteria to rationalize his or her adjustments. In fact, one such 
rationalization will be used below. Figure 2.13 indicates that the eigenvalues can 
easily be adjusted by a few percent. The code’s mythical accuracy is perpetuated 

when the user reports the “nearly perfect” results to his or her colleagues. 
For this problem the error of the QUAP calculations is correlated with the area 

enclosed by the finite difference mesh. If the calculations are scaled such that the 
area of the mesh is correct then the adjusted eigenvalues ~~j are 

A kLj = k2- 
7ra2 

(2.35) 

where Ic2 is the eigenvalue computed by QUAP using a mesh with area A. The 
adjusted eigenvalues are relatively predictable as the mesh is refined. This is shown 
in figure 2.15. The dashed line is the analytically computed eigenvalue and the solid 
line is a fit to the area-adjusted eigenvalues. The dependence of the discretization 

error on node spacing h looks like O(h), which is worse than the O( h2) error observed 

in the parallel plate test. Extrapolation of the adjusted eigenvalues to zero node 
spacing gives an improved estimate of the eigenvalue. While area normalization is 
useful for this test problem it is probably not useful for any problems more complex 

than this. 
The eigenvalues computed by URMEL-T are unusual in that the eigenvalues for 

the two degenerate modes are separated. The two eigenvalues are at the ends of the 
error bars in figure 2.13. In figures 2.13 and 2.14 the arithmetic average of the two 

eigenvalues computed by URMEL-T is plotted. While the individual modes are a 

little unpredictable as the average node spacing is reduced, the average eigenvalue 

seems to converge smoothly toward the correct eigenvalue as the mesh is refined. 

The two finite element methods (YAP) converge smoothly to the desired solu- 
tion. Furthermore, the eigenvalues for the two degenerate modes are nearly iden- 

tical. The accuracy obtained using linear elements is similar to URMEL-T, while 

the accuracy obtained using quadratic elements is superior. Figure 2.14 illustrates 

that, as in the parallel plate test, the error using linear elements is O(h2) and the 

error using quadratic elements is O(h4). In addition, extrapolation of the computed 
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eigenvalues to zero node spacing may be used to obtained an improved estimate of 
the eigenvalue. 

2.4. Sharp Corners 

Some microwave structures have sharp (convex) corners. Structures may also 

be modelled with sharp corners when the radius of curvature of the corner is much 
smaller than the element size or node spacing. 

Consider the field Hz of a TE mode near the sharp corner depicted in figure 2.16. 

The field near the corner can be expanded in a power series in polar coordinates, 

H,(p, 4) = a0 + al cos(x~/~)~“‘~ + a2 cos(r4/P)P2”” + * * -9 (2.36) 

where p is the distance from the corner, p is the corner angle and $J is the angle 

from one wall, 0 5 4 5 ,0. The field I3, for a TM mode has a similar expansion 

near the sharp corner, 

E,(p, 4) = al sin(7r4/p)p”lp + a2 sin(7r4/P)p2x’P + - - -. (2.37) 

Notice in both cases that the power series satisfies the boundary conditions at the 

metal walls near the corner. 

The derivatives of the field are singular at the corner. Singular derivatives 

are not approximated well by linear or quadratic elements, which means problems 

containing sharp corners are more difficult to solve than problems with smooth 

boundaries. This difficulty is illustrated in a ridged waveguide example following 
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Figure 2.16: Polar coordinates near a sharp corner. 

the introduction of a special corner element which improves the accuracy of the 
solution, 

2.4.1. Special Corner Elements 

Figure 2.17a shows the master element for a seven node special corner element 
for use with quadratic elements. Node 3 is the corner node. The map from the 

master element fi to the corner element R, is quadratic and is completely specified 
by the coordinates of the first six nodes of the element using equation (2.32). The 

seven basis functions for the special corner element are 

N = 7fyua - 1)(1 - V)(l - 2v)/(2* - 1) 

N2 = ~~(2%~ - 1)(2v - 1)~/(2~ - 1) 

N3 = (1 - 25P)(l- u”) 

N4 = zP(2V - 1)4V(l - V)/(2” - 1) (2.38) 

N5 = 4V(l - ua)v(2v - 1)/(2Q - 1) 

N(j = 45P(l - uQ)(l - V)(l - 2v)/(2a - 1) 

N7 = 4”u*(l - ua)4v(l - ZJ)/(~~ - 1) 

where a! = T/P and the coordinates u and v are 

u=r+s r = u(1 - V) 

v = s/(r + s) s = 2121. 
(2.39) 

The coordinates u and v are illustrated in figure 2.17b. The coordinate u corre- 
sponds to the distance from the corner and the coordinate v corresponds to the 

angle relative to one wall. In this work the mesh generator found all of the sharp 

corners in the mesh and computed the corner angle ,O for each sharp corner. This 

information was made available to the field solver so that each element touching a 

corner could be a special corner element with the appropriate cx = m/p. 

Note that only elements adjacent to a corner are affected. All other elements 

are still the usual quadratic element described earlier in this chapter. The special 
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Figure 2.17: The master element (a) for the seven node special corner element. Three lines 
of constant u (b) and constant v (c) on the master element are shown. Lines of constant v 
intersect at the sharp corner, node 3. The coordinate u corresponds to a distance from the 
sharp corner, while the coordinate v corresponds to an angle around the sharp corner. The 
basis functions for the special corner element are written in (u, v) coordinates. 
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Figure 2.18: Ridged waveguide test problem. Symmetry reduces the problem by one-half. 

corner elements are constructed to match with normal quadratic elements on the 

edge opposite the corner. The special corner element should be adjacent to only 
one sharp corner, thus the corner angle ,0 is uniquely defined for the element. 

The 1Zpoint integration scheme described earlier has poor numerical accuracy 

when used for special corner elements. This is due to the singular derivative at 
the corner. An adaptive numerical integration scheme is used instead to obtain 

the element matrices Ae and Be. While this adaptive scheme takes much more 

computer time, only the few corner elements in the mesh require this scheme. The 

remaining elements can be integrated using the 12-point scheme. 

2.4.2. Tests on a Ridged Waveguide 

As a test case consider the ridged waveguide shown in figure 2.18. The waveguide 

is 1.0 cm wide and 0.5 cm high. The ridge is 0.5 cm wide and 0.25 cm high. There 

are two sharp corners in this problem. However, exploiting the symmetry of this 

structure reduces the problem so that it contains a single sharp corner. 

Figure 2.19 shows the results from three different algorithms for the lowest 
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Figure 2.19: Relative error of the computed eigenvalue k2 versus mesh refinement 
lowest TE mode of the ridged waveguide test problem. 

‘I. 

for the 

TE mode of the ridged waveguide. Extrapolation of the YAP results which employed 
special corner elements to an infinitely refined mesh yields the eigenvalue k2 = 

5.06016 cm -2. This is the “exact” eigenvalue used to compute the relative error in 

figure 2.19. 

For this structure the behavior of URMEL and YAP without special corner 
elements is similar. YAP is only a factor of two more accurate than URMEL. For 

both of these case the dependence of the error on mesh size is 0( h4i3). This is 

worse than the S(h2) error exhibited by URMEL for the parallel plate test, and it 

is much worse than the 0( h4) error exhibited by YAP in the previous two tests. 

Figure 2.19 agrees with the theoretical prediction for structures with sharp 
corners. The error is expected to be O(h2”lP) where p > ;ry is the sharpest corner 

in the structure. For the ridged waveguide /3 = 37r/2. Notice that the sharpness of 
the corner affects the convergence. An infinitely thin plate has corner angle /3 = 27r 

and thus the convergence rate of the field solver would be only O(h) 

The special corner elements improve the accuracy of YAP dramatically. How- 

ever, while the dependence of the error on mesh size is improved to c7(h2), it is still 

short of the O(h4) error observed earlier. An improved corner element may be used 

to recover the O(h4) error if desired. 

Special treatment for sharp corners is discussed in [7]. They include special 

basis functions for the singular fields at the corner which cover multiple elements 

and extend to some fixed distance T, from the corner. The special basis functions 

are not defined in terms of the elements, so there is no assembly process for these 

basis functions. The treatment of the special corner basis functions is different in 
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this work. The special corner basis functions are defined locally on the elements 

and are assembled into global basis functions surrounding the corner. Related work 
is described in [ll]. This technique conforms nicely with the finite element method. 

An alternative to special corner elements is a technique called adaptive mesh 
refinement. This technique uses only ordinary elements, but the mesh is locally 
refined near the sharp corner since most of the error occurs there. The field solution 
is significantly improved using a modest number of additional elements near the 
corner, and algorithms are available to indicate the degree of refinement required 

near a sharp corner. This technique also conforms nicely with the finite element 

method. 
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Chapter 3 
Axisymmetric Structures: TM0 and TEo Modes 

Many interesting microwave structures are axisymmetric. In particular, accel- 
erator structures made from disk loaded waveguide are ax&symmetric. The gain 
cavities and drift tube of a klystron are also typically axisymmetric. 

The eigenmode equations can be written in the cylindrical coordinates p, 4 

and z. The azimuthal symmetry of the structure implies that the fields of a mode 
have azimuthal dependence eim+ for some integer m. In this chapter an algorithm 
for computing the monopole (m = 0) modes is presented. The following chapter 
considers modes with azimuthal index m # 0. 

3.1. Wave Equation in Cylindrical Coordinates 

Consider the wave equation formulation (1.8) written in cylindrical coordinates. 
Using the definition V2E = V(V . E) - Vx(VxE) and the representation of div, 
grad and curl in cylindrical coordinates, the wave equations for the three field 

components EP, E+ and E, are 

V2E, _ 3 - - W2 

P2 
f2 5 + qEp = 0, 

E4 V2Ed - p2 + 
2 aE, 

7w + q&p = 0 

(3.la) 

(3.lb) 

and 
W2 

V2E, + ep~E4 = 0, (3.lc) 

where the laplacian V2 acting on a scalar field E in cylindrical coordinates is 

V2E 
1 a2E + d2E +-- - 

p2 aq9 a22 - P-2) 
Notice that the field components Ep and E4 are coupled in the first two wave 

equations. 

Now assume the azimuthal dependence of the fields is eim4 for some chosen m. 
This reduces the problem from a three dimensional domain to a two dimensional 
domain in the z-p plane. Then the wave equations for the three field components 

are 1 

and VFE, 
m2 W2 

- -@ + w@ = 0, 

(3.3a) 

(3.3b) 

(3.3c) 
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where Vf denotes the z-p portion of the laplacian, 

0,2E (3.4) 
In the three wave equations of (3.3) the azimuthal dependence eim+ has been fac- 
tored out, so the three field components Ep, E$ and E, depend on z and p only. 

Cylindrical symmetry implies that the unit vectors ii normal to the boundaries 
are of the form ti = 2n, + hp. The normal vectors have no azimuthal component. 
Then the boundary condition iixE = 0 at perfectly conditions walls becomes 

E+ = 0 and Eznp - Ep, = 0 on Lletal. P-5) 

Notice that the boundary condition connects the field components E, and Ep. Also, 
for m # 0, the wave equations of (3.3) for EP and Ed are coupled. All three 
components of the field are coupled. The problem is not easily reduced to a single 

field component. 
When m = 0 the three wave equations are uncoupled. While the boundary 

condition still couples E, and Ep, the azimuthal electric field E# can be found 
independently of E, and E,,. Solutions can be obtained for the field E+ with E, = 
Ep = 0. These solutions are the TEo modes, where the subscript 0 denotes m = 0. 

According to Maxwell’s curl equations, the TEo modes will have magnetic field H 
in the z-p plane and the azimuthal magnetic field will be Hd = 0. 

Let fi be the cross-section of the structure in the z-p plane. That is, spinning 

the region fi about the axis sweeps out the interior R of the microwave structure. 

The strong formulation for the TEo modes is: given the region fi, constant scalar 
material properties e and ,Q, and possibly a phase advance $, find the eigenmode 

fields E,+ and the corresponding eigenvalues w2 /c2 such that 

E4 w2 
VfE4 - - + qx~E+ = 0 

P2 
in R, 

Ep = 0 on rmetal and ~sym(cond)~ 

G * Vt E4 = 0 on rsym(ins), 

EdIh = E41xeiti for x E rleft, 

ii - VtE41aT = 4. VtEdI, ei$ for x E l?left, 

%-n E4 = 0 on Gym-left, 

Re {(fi + Vt)E+} = 0 on Lym-left, 

Sm (E4 emi*12} = 0 on I’sym-right 

and %e {(G . ‘7,) E+ ewitii2} = 0 on rsym-right, 

(3.6a) 

(3.6b) 

(3.6~) 

(3.6d) 

(3.6e) 

(3.6f) 

Wg) 

(3.6h) 

(3.6i) 
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where VtE+ denotes the z-p components of the gradient of the scalar field E+ 

(3.7) 

Boundary conditions for exploiting various symmetries are included. Note that the 
symmetry planes are necessarily planes of constant z, so ti = f5 for rsym, rsymmldt 

and l? srm-right. The corresponding boundary conditions become 

- = 0 on JGp(ins)7 

sj$$ - = 0 on rspeleft 
8Z 

and Re -,-i$P a& 
DZ 

= 0 On rsym&ght. 

The divergence of the electric field is 

V.Ez;+(-) 

(3.8a) 

(3.8b) 

(3.8~) 

tw 
so the field automatically satisfies the zero-divergence condition in formulation (1.8). 

The wave equation formulation (1.9) for the magnetic field H can be treated 
similarly. Assuming the fields are constant with respect to 4, the wave equation 

and boundary conditions for the azimuthal field Hb are independent of the fields Hz 
and HP. Solutions for H4 with Hz = HP = 0 yield the TM0 modes. These modes 
have electric field in the z-p plane and no azimuthal electric field E+. 

The strong formulation for the TM0 modes is: given the region 6, constant 
scalar material properties E and /.L, and possibly a phase advance $J, find the eigen- 

mode fields H+ and the corresponding eigenvalues w2/c2 such that 

fi - vt f-f+ = 0 On rmetd and ~sym(cond), 

H$ = O On rsym(ins)7 

Hbiax = ~~~~~~~ for x E rleft, 

ii - VtH4ik = ---fi. VtHdI, ei$ for x E l?left, 

Sm H4 = 0 on I’sym-left, 

Re { (fi - Vt)Hd} = 0 on rsym-left, 

%rn {H+ ewi$/‘) = 0 on rsyrn+,ht 

and %e { (6 . Vt) Hd eBi$j2} = 0 on rsym-right. 

(3.10a) 

(3.10b) 

(3.1Oc) 

(3.10d) 

(3.10e) 

(3.1Of) 

ww 

(3.10h) 

(3.1Oi) 
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Concerning field transformation properties, the magnetic field Hd is treated as a 
scalar field in this formulation, not as a pseudoscalar field. This is just like the elec- 

tric field E+ in the TEo mode formulation (3.6) a b ove. The only difference between 
the two formulations is that the boundary conditions for perfectly conducting and 

perfectly insulating surfaces are exchanged. 

3.2. Variational Formulation 

Multiplying (3.6a) by a test function F$ and a weight p and then integrating 
over the domain fi leads to a variational formulation. Integrating by parts yields the 
following symmetric variational formulation for the TEo modes: given the region fi, 
constant scalar material properties E and p, and possibly a phase advance $, find 
the eigenmode fields E+ E UE and the corresponding eigenvalues w2/c2 such that 

for all test functions F,$ E i!,fE 

32e I n 

where the space UE of test and trial functions is 

uE= {E@i#i): 

Ed = 0 on rmetd and &n(cond), 

~41~ = E41xei$ vx E rleft, 

Sm E+ = 0 on rsym-left, 

(3.11a) 

(3.11b) 

Qrn(E4e -i+/2} = 0 on rsymWright} 

and 
T-l,(fi)= {Eg:kC: 

I i=l PVLE;?LE~~+~ d 4 iE*E dSZ exists and is finite}. 
(3.11c) 

The notation VlE4 denotes the gradient of the scalar field E+ treating z and p as 

ordinary Cartesian coordinates instead of cylindrical coordinates, 

(3.12) 

This gradient is different from VtE+ in (3.7). Th is variational formulation for the 
TEo modes is equivalent to the strong formulation (3.6) provided the fields are 

sufficiently smooth. Condition (3.11~) implies E+ = 0 at p = 0. This can be 

considered a boundary condition for the axis. 

The corresponding variational formulation for TM0 modes is: given the region fi, 

constant scalar material properties E and ,u, and possibly a phase advance $, find 
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the eigenmode fields H+ E l4~ and the corresponding eigenvalues w2/c2 such that 

for all test functions G4 E UE 

where the space of test and trial functions is 

UH = {H+ E ti@) : 

(3.13b) 

and 

Hg5 = O On rsym(ins)7 

H,+ih = Hbixeiu” vx E rleft, 

%m H+ = 0 on Gym-left, 

%rn {H#, esi*j2) = 0 on ~SP-tight} 

7-@) = {H,& + @: n&l;H,dI- 
J 

+ Ifi pV’HG* VlHd + :HzH+ dR exists and is finite}. 
(3.13c) 

Notice the presence of two integrals in (3.13a). The first integral is a line integral 

over the perfectly counducting boundaries rrnetd of the problem. This integral is 
the boundary term from the integration by parts. In the TEo mode formulation 

this boundary term vanished, but in the TM0 mode formulation the boundary term 
remains. The integrand includes the factor n,,, the radial component of the unit 

vector normal to the metal wall. The second integral is the same as integral (3.11a) 
for the TEo mode variational formulation. 

3.3. Finite Element Formulation 

The finite element formulation of the eigenmode problem is constructed in 

a manner similar to the planar eigenmode problem of the previous chapter. A 

Galerkin formulation of the TEo mode problem is constructed by restricting the 

variational formulation to a finite dimensional subspace Z.& c UE spanned by a lin- 
early independent set of basis functions Nr, . . . , NM. The field E$ E L/j is expressed 
as a linear combination of the basis functions, 

J$(z, p) = 5 uilvi(z, P>- 
i=l 

(3.14) 
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The problem reduces to a generalized algebraic eigenvalue problem 

wi Au - E,U~BU = 0 (3.15) 

2 with eigenvectors u and eigenvalues Xh = E~W~/C . 2 The components of the matrices 
A and B are 

Aij = Se 
I i=t 

pV’NT* V’Nj + ‘N:Nj dS2 
P 

(3.16a) 

and Bij = Se J n pN;*Nj dR. (3.16b) 

The matrices A and B are symmetric and positive definite, so the eigenvalues Xh are 
real and positive. A good set of basis functions will provide approximate eigenval- 

ues XI, and approximate eigenmode fields E$ which are close to the true eigenvalues 
X = epw2/c2 and eigenmodes Ed of the problem. 

The Galerkin formulation for the TM0 mode problem is the same as the TEe 
mode formulation except the basis functions span a finite dimensional subspace 
Uk c Ux and the components of the matrix A are 

(3.17) 

The matrix A is still symmetric and positive definite. 
The triangle elements described in section 2.3 can be used for this problem. 

This work used mainly the quadratic elements of section 2.3.3. As in the planar 

problem, the large sparse matrices A and B were constructed by computing small 

dense element matrices Ae and B” and then assembling the element matrices into 
the global matrices A and B. 

The m = 0 calculations are only slightly more complicated than the cylindrical 
waveguide calculations. The m = 0 calculations have additional terms and factors 
to integrate when constructing the element matrices, and in TM0 mode calculations 

the elements next to metal walls need to include the line integral in Ae. 

3.4. Tests 

Consider two test problems. The first test problem is the cutoff mode of circular 
waveguide. The waveguide has radius a and is treated as a periodic structure 

with period 2 as shown in figure 3.1. The cutoff eigenvalue for the TEol mode 

is lc2 = 14.68197064/a2, and the cutoff eigenvalue for the TM01 mode is k2 = 

5.783185964/a 2. In this work the cutoff modes are easily obtained by choosing the 

phase advance to be II, = 0. That is, the fields are required to have period 1 just 
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Figure 3.1: The region 6 for circular waveguide with radius a treated as a periodic 

structure with length 1. The z-p (a) and z-y (b) cross-sections are shown. The dashed lines 

are quasi-periodic boundaries. 
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3.2: The region fi (a) for 

Z 

a sphere with radius a. The dashed line is a symmetry 

plane. A coarse finite element mesh (b) for the sphere. 

like the model of the structure. The lowest mode will have fields which are uniform 
along z. Notice that the domain fi for the circular waveguide is rectangular in the 

z-p plane. 

The second test problem is a sphere with radius a as shown in figure 3.2a. The 

domain fi is not rectangular, so this is expected to be a more stringent test of 

the field solvers. The frequency of the TErro mode is k2 = 20.19072856/a2, and 

the frequency of the TMrro mode is k2 = 7.527929583/a2. The modes of a sphere 
are discussed further in section 4.4.3. In particular, note that the third index of a 

spherical mode is the azimuthal index m. Figure 3.2b shows a coarse finite element 
mesh for a sphere composed of quadratic triangle elements. 

The lowest TE modes for both test problems with a = 1 cm were computed 

using YAP, which employs the finite element method with quadratic elements. The 

relative error of the eigenvalues k2 are shown in figure 3.3. In both cases the program 

converges smoothly toward the correct eigenvalue as the mesh is refined. The error 
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Figure 3.3: Relative error of the computed eigenvalues k* for the TElls mode of 
(solid line) and the cutoff TEal mode of circular waveguide (dashed line). 
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Figure 3.4: Relative error of the computed eigenvalues k* for the TM110 mode of 
(solid line) and the cutoff TMsl mode of circular waveguide (dashed line). 

a sphere 

a sphere 

is U( h*), where h corresponds to the size of the elements. This is the same error 

observed with YAP on planar waveguide problems. 

The lowest TM modes were also computed using a number of field solvers. The 

relative error of the eigenvalues k2 are shown in figure 3.4. The circular cylindrical 

waveguide TM01 cutoff mode problem is easily solved since the domain is rect- 

angular. Calculations performed by YAP and URMEL for this problem converge 

smoothly toward the correct eigenvalue. The relative eigenvalue error is O(h2) for 

URMEL and U( h4) for YAP. 
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Both URMEL and URMEL-T have difficulty computing the TMrro mode of 
a sphere. This is understood for URMEL because the domain was required to fit 

on a regular grid, and thus the boundary of the grid does not approximate the 
circle well. The difficulty URMEL-T has with a sphere is less well understood. The 
domain of the grid looks very much like a circle, but the code does not converge 
smoothly as the mesh is refined. This could be due to the presence of bad triangles 
in the mesh constructed by URMEL-T. Triangles which contain a large interior 

angle (approaching 180”) tend to reduce the accuracy of the solutions. One might 
have expected that URMEL-T should behave like SUPERFISH since both programs 

are considered finite difference codes based a regular mesh composed of triangles. 

Unfortunately, figure 3.4 shows this is not the case. 
For the sphere problem both of the field solvers SUPERFISH and YAP converge 

smoothly toward the correct eigenvalue as the mesh is refined. The eigenvalue error 
is 0(h2) for SUPERFISH and O(h4) for YAP. In both cases extrapolation to zero 
element size h can be employed to obtain a better estimate for the eigenvalue. It 

also gives the user extra confidence in the result he or she has obtained. 
The finite element method using quadratic elements (YAP) is very accurate. 

The coarsest mesh used for the sphere problem is the seven element mesh shown 

in figure 3.2b. The relative accuracy of the eigenvalue computed using this coarse 
mesh is already better than 0.1%. For the most refined meshes the error is less than 

10-7, or 0.1 ppm. 

3.5. Sharp Corners 

Sharp corners in the domain fi of the problem are detrimental to the accuracy of 
the field solver, for the same reasons sharp corners deteriorated the accuracy of the 

waveguide solutions. The field Ed or H,p will have a singular derivative at the sharp 

corner. The field near the sharp corner is similar to the planar case. The same field 

expansions (2.36) and (2.37) apply to Hd and Ed, respectively, so the special corner 

elements developed for the planar waveguide problem can be used to enhance the 

accuracy of the finite element solution for ax&symmetric m = 0 problems. 

51 



Chapter 4 
Axisymmetric Structures: m # 0 Modes 

In axisymmetric structures the modes with m # 0 are often needed. For exam- 

ple, the dipole modes are useful for calculating the transverse wakefield in accelera- 
tor structures. A related example is a beam position monitor based on measurement 
of the beam-induced dipole fields of a cavity. This chapter describes a finite element 
formulation for calculating the m # 0 modes of an axisymmetric structure. 

4.1. Maxwell’s Equations 

Unlike the m = 0 case, when m # 0 there is no separation of the fields between 

TE and TM modes. Furthermore, the problem requires at least two field compo- 
nents, so it is not a scalar problem. There are many possible formulations for this 

problem. For example, URMEL uses a finite difference formulation of the wave 
equation reduced to two field components: either (EP, E,) or (B,,, B,). 

The finite element formulations of this chapter are based on the curl-curl for- 

mulations (1.6) and (1.7) of the eigenmode problem. For now consider an arbitrary 
structure in three dimensions and allow all of the boundary conditions described in 
section 1.2. The reduction of axisymmetric problems to two dimensions will occur 
in the next section. The formulation for the electric field E is: given the region ‘0, 
its material properties E and p, and possibly phase advances ?I, or +j (if periodicity 

is exploited) or an inversion eigenvalue p (if inversion symmetry is exploited), find 

the eigenmode fields E and the corresponding eigenvalues w2/c2 such that 

W2 
Vx(p-‘VxE) = --pE in s2, 

GxE = 0 on rmetal and ~sym(cond)~ 

&x(P-‘VXE) = 0 on ‘I’sym(ins), 

GxE- = I 
iu(a-%‘~E)~;~ 

-pGxEIX tJx E IA, 

= piiX(j.clvXE)lx vX E rA, 

i+ixE I g,x = FRj iixEiX e”‘j VX E rleft-j, 

Gx(~-~VXE~~~.~ = -Rj hX(/.LSIVXE)lx t/x E hft-j, 

Si { iixE} = 0 on ISym-left, 

!Jk {hx(p-‘VxE)} = 0 on I’sP-left, 

Sm { tixE ,-i$/2} = 0 on I’sym-right, 

and Re {tix(~-~VxE) eSiti12} = 0 on rSym-right. 

(4.la) 

(4.lb) 

(4.lc) 

(4.id) 

(4.le) 

(4.lf) 

Wd 

(4.lh) 

(4.li) 

(4.13 

(4.lk) 
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The formulation for the magnetic field H is similar. This formulation is called a 

strong formulation because it requires that some second derivatives of the field exist. 

In particular, V x ( pvlV xE) is required. The variational formulation will have less 

demanding requirements on the differentiability of the fields, SO the variational 
formulation is called a weak formulation. 

Notice that the condition V a (cE) = 0 of formulation (1.6) is not present in 

this formulation. As a consequence of this omission, this formulation has two sets 
of solutions: physical modes with V . (EE) = 0 and non-physical (spurious) modes 

with V * (tzE) # 0. If the eigenvalue w2/c2 of a mode is non-zero then the mode is 
physical since (4.la) and the vector identity V . (VX A) = 0 give 

V. (EE) = V . ($Vx(p-‘VxE)) = 0. (4.2) 
Therefore, all of the spurious modes have eigenvalue w2/c2 = 0. This is unfortunate 

if static physical modes need to be calculated since they will be mixed with all of the 
non-physical modes, but in many cases the problem has no static physical modes or 
the static physical modes are not the modes of interest. Then the desired physical 
modes are easily identified by their non-zero eigenvalues. 

4.2. Variational Formulation 

The variational formulation is obtained from the strong formulation multiplied 
by a test function F and then integrating over the domain S-2. Integrating by parts 

using the vector identity V. ((VxE)xF) = F. (Vx(VxE)) - (VxE) . (VxF) 

yields a symmetric variational formulation. The variational formulation equivalent 
to (4.1) is: given the region 52, its material properties E and ~1, and possibly phase 
advances $ or $~j or an inversion eigenvalue p, find the eigenmode fields E E UE 

and the corresponding eigenvalues w2/c2 such that for all test functions F E UE, 

Se 
J 
n(V~F*). /.J-~(VXE) - $F*. eEdR = 0 

where the space UE of test and trial functions is 

i?dE = { E E Kxrl(S-9 : 

ii XE = 0 on rmetal and rsym(cond)7 

iixE px = -pfixEl I h E rA, 

lixE I kjx = Fl3.j iixE(x e’+j VX E rleft-j Y 

Sm {EixE) = 0 on I’sym-le.t and 

(4.3a) 

(4.3b) 

Sm {fixEe- +12} = 0 On rsymsright > 
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and 
7-lcurl(f-i) = {E: s1+ C3 : 

J 
(VxE*) * (VXE) +E* -Ed&? exists and is finite 

(4.3c) 
. 

cl 1 

The space 7-&(52) is a Hilbert space. 

Now consider an axisymmetric problem. The problem can be written in cylin- 

drical coordinates p, + and z with field components EP, E+ and E,. The solutions 
in cylindrical coordinates can be decomposed into modes with azimuthal depen- 

dence eimd. Choose an m and restrict the solutions to have azimuthal depen- 

dence eim+. Factor the azimuthal dependence out of the field components so EP, 
E+ and E, depend on z and p only, and let fi be the z-p cross-section of the prob- 
lem. Then the reduced formulation for the electric field E is: given the region fi, 
its material properties e and CL, and possibly a phase advance $, find the eigen- 

mode fields E E tiE and the corresponding eigenvalues w2/c2 such that for all test 

functions F E fin, 

Re 
J( 
n (VxF*) . /?(VxE) - gF* - eE) 27rpdpdz = 0 

where the space UE of test and trial functions is 

& = 1 E E ?&,,I( h) : 

fiXE = 0 on rmetd and &ym(cond), 

(4.4a) 

(4.4b) 

and 

iixE I itx = ~RiixEIXei~ Vx E ITleft, 

S;m {iixE} = 0 on I’sym-left and 

Sm {ii xE e-i4/2} = 0 on l?sym-right > 

‘FI,rl(fi) = {E: fi + C3 : 

(VxE*) a (VxE) + E* . E) 2apdpdz exists and is finite}. 
(4.4c) 

Notice that multiple quasi-periodic boundary conditions are excluded from this 

formulation. An axisymmetric problem can have at most one periodicity, and the 

corresponding symmetry operator must be a translation along the z-axis. Also note 

that inversion symmetry is not included in this formulation since there is always a 

plane reflection symmetry which can be used instead. Finally, boundary conditions 

for fields on the axis are given implicitly in (4.4~). The axis boundary conditions 

are discussed further in section 4.4. 
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In terms of the field components, 

.I 

(4.5) 

= V’xEt + TX (mEt - V’,!?d) , 

where fi+ = -ipEb, Et = SE, + /jEP and 01 = 28 + 68. Some insight can be 
gained by considering a problem with no media (vacuum). Then equation (4.4a) 
becomes 

!Re 
J 

- 
6 

p(&. xFt)*- (VL xEt) + i(mFt - VlFb)*- (mEt - V’E$) 

- C&F;- Et + $k;- fi+) dpdz = 0. 
(4.6) 

4.3. Finite Element Formulation 

The finite element formulation is the variational formulation restricted to a finite 
dimensional subspace L$ c tiE with basis functions which are relatively simple 

functions on each element covering fi. The choice of basis functions is particularly 

important for this formulation because of the presence of spurious modes[l2]. A 
poor choice of basis functions will allow the spurious modes to have eigenvalue 

w2/c2 # 0. Obtaining distinct physical and spurious solutions becomes very difficult 
if not impossible. 

For local basis functions to be useful in the finite element method they must 
be easily assembled into global basis functions which are in the space tiE of trial 
and test functions. In particular, condition (4.4~) requires that the component of E 

tangential to any interface is continuous across the interface. Notice that there is 

no corresponding condition on the continuity of the component of E normal to an 
interface. For the interface at the boundary between two elements, the continuity of 

E# across element boundaries is accomplished as in the scalar finite elements of the 

previous chapters. The adjacent elements share the nodes on the common boundary 
and thus ensure that the global basis function is continuous. The continuity of the 

portion of Et which is tangential to the element boundary requires more work. It 
will be necessary to construct vector basis functions which are normal to all but one 

side of the element. There will be one or more “nodes” which specify the component 
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of Et which is tangential to the element boundary. Adjacent elements will share this 

“node” in order to construct a global basis function which satisfies condition (4.4~). 

The local basis functions described below were inspired by the covariant pro- 

jection elements[l3]-[17] of C rowley and the work of Nedelec[lS]. The vector basis 
functions for Et are a basis for the polynomial space R” described by Nedelec and 
are also similar to the elements described in [19]. Other edge elements are described 

in [20]-[22]. Th is and the modelling of E4 instead of Ed by lagrange-type basis func- 

tions leads to a finite element formulation without spurious mode problems. 
A set of linear basis functions is described first. A quadratic basis follows. The 

elements are triangular elements. Let fi be the master element and ze : fi + IR, 
be the map from the master element to the eth element R,. The elements are 
typical linear or quadratic elements, so the map xe is simply a linear or quadratic 
coordinate transformation. These elements were illustrated earlier in figures 2.3 

and 2.6. 

4.3.1. Linear Edge Elements 

The basis functions representing the field fi4 are the usual lagrange-type linear 
basis functions, 

Nl = T, N2 = s and N3 = t, (4-V 

where t = 1 - T - s. The basis functions representing the field Et are more complex. 

Use the derivatives of the element transformation 2, to obtain vector fields V; which 

have the property that Vi is tangential to side i, 

v1= 

The vector fields Vi 

-(Vz+V3), V2=-2 and V3=$. (4.8) 

are directed in the counterclockwise direction along side i as 

shown in figure 4.la. The reciprocal vector fields Ri are normal to side i, 
1 

-X 
RI = -(Rz + R3), R2 = 4 FGvV3) and R3 = 4. Tv2:v3J. P-9) . 2x 

The reciprocal.vector field Ri is directed into the element along side i as shown in 

figure 4.lb. The reciprocal vectors can also be written as 

RI = (g, $-), R2 = (g, $) and R3 = (g, $), (4.10) 

which states that the reciprocal vectors are derivatives of z;‘, the inverse of the 

element transformation. Now a set of local vector basis functions representing the 
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R2 

N2 

R3 

N3 

Figure 4.1: Vector fields Vi (a) tangential to side i, reciprocal vector fields Ri (b) normal 

to side i, local basis functions Ni (c) representing 84 and local vector basis functions Ni (d) 

representing El. The triangles represent the vector field in the plane of the page: the size 

of the triangle is proportional to the magnitude of the field and the triangle points in the 

direction of the field. 
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Figure 4.2: A global vector basis function comprising one local vector basis function on 

each of two elements. The field tangential to the element boundary is continuous while the 
field normal to the boundary is discontinuous. 

field Et are constructed, 

N4 = L1 =TR~-sR~, 

N5=L2=sR1-tR3 (4.11) 

and N6 = L3 = tR2 - rR1. 

The local vector basis functions are easily assembled into global basis functions 
because they are normal to all but one side of the element. In particular, the basis 

functions satisfy Li * Vj = Sij on side j of the element. Consider two elements 

which are adjacent to each other. The tangents Vj on the common side differ only 
by a minus sign when computed in one element or the other. The local vector basis 

functions are directed in the counterclockwise direction as shown in figure 4.ld. 
However, to construct a global basis function for Et spanning two elements, the 

local basis function must be reversed in one of the elements. This will ensure that 

the component of Et tangential to the element boundary is continuous. An example 

is shown in figure 4.2. 

4.3.2. Quadratic Edge Elements 

The local basis functions for the quadratic element are similarly split between 

,!?4 and Et. The local basis functions for &d are the quadratic lagrange-type basis 

functions: 
Nl = r(2r - 1) N2 = ~(2s - 1) N3 = t(2t - 1) 

N4 = 41-s N5 = 4st N6 = 4rt. 
(4.12) 

There are 8 local vector basis functions representing Et. They are based on the 

linear local vector basis functions Ll, L2 and L3. The local vector basis functions 
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- 
Nl 

N5 

N2 N4 

N13 N14 

Figure 4.3: Quadratic local basis functions: Nl through Ns represent fib, NT through 

Nlz represent Et. 
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are: 
N7 = rL1 Nlo = tL2 Nr3 = -2sL3 

N8 = sL1 Nll = tL3 N14 = -2tL1. (4.13) 

Ng = sL2 N12 = rL3 

The first six vector basis functions, N7 to N12, have non-zero tangent&l field on 

one side of the element. This field must match the tangential field of the adjacent 

element, if there is one, in order to construct valid global basis functions. The last 

two vector basis functions, N13 and N14, have no tangential field on the element 
sides. Each of the local vector basis functions N13 and N14 by themselves consti- 
tute valid global basis functions, thus they are internal degrees of freedom for the 

element. 

4.3.3. Tests on an Annular Ring 

As a test case consider the annular ring shown in figure 4.4. Let a and b be the 

inner and outer radii of the ring, respectively, and let 1 be the length of the ring. 

The annular ring problem can be solved analytically by treating it as a section of 
cylindrical (coaxial) waveguide which is shorted at z = 0 and z = 1. The cross- 
section of the cylindrical waveguide is shown in figure 4.4b. The characteristic 
equation for the cutoff wavenumbers 7m for the TM, modes is 

Jm(7ma>Ym(7mb) - Ym(7ma)Jm(7mb) = 0, (4.14) 

and the cutoff wavenumbers 7; for the TE, modes satisfy 

JiArh>Z(7LA - YiJ7h)JX7hA = 0. (4.15) 

Let 7m,n be the nth solution of equation (4.14) and let 7& be the nth solution 

of equation (4.15). Some approximate numerical values for the cutoff wavenumbers 
for the case a = l/2, b = 1 and various m are listed in table 4.1. These values were 

obtained by finding the roots of the characteristic equations numerically and are 

correct to the given number of digits. Note that the m = 0 case is included despite 
the fact that the scalar formulations of the previous chapter are more efficient for 

m = 0 problems than the vector curl-curl formulation of this chapter. The vector 

curl-curl formulation is able to perform the m = 0 calculations so it will be tested. 

Let p represent the number of half-wavelengths of field variation along the 

length 1 of the waveguide, the frequencies of the TM modes in the annular ring 

are 
TM,,, : k2 = 7b,, + (p7r/q2 p = 0,1,2,... (4.16) 
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2 

w 
Figure 4.4: The region IR for an annular ring with inner radius a, outer radius b and 

length 1. The z-p (a) and r-y (b) cross-sections are shown. 

I azimuthal symmetry number m 
I 0 I 1 I 2 I 10 

7i 6.2460618392 6.3931567616 6.8138428531 14.5023698787 
12.5468714280 12.6246990207 12.8555318452 18.8240366105 
18.8364150845 18.8889298510 19.0457045399 23.5722353177 
25.1228463711 25.1624056202 25.2807623390 28.8469395663 

7: 0 1.3546720103 2.6812042867 11.7688573622 
6.3931567616 6.5649423823 7.0625816160 16.3031605700 

12.6246990207 12.7064223371 12.9494113826 19.6682488849 
18.8889298510 18.9426593061 19.1031584966 23.8402201120 
25.1624056202 25.2024870403 25.3224312292 28.9613713372 

Table 4.1: Some numerical values for the cutoff wavenumbers 7m,n (for TM, modes) 

and 7L,, (for TE, modes) of an annular ring with a = l/2 and b = 1. 

and the frequencies of the TE modes are 

TE mnp : k2 = 7/L,, + (PK/Z)~ p= 1,2,3 ,... . (4.17) 

Note that the TEM modes of the waveguide are labelled here as the TEoo case, 

which has cutoff wavenumber 7b,o = 0. 

Figure 4.5 shows five finite element meshes used for the test calculations on 

an annular ring. The radii are a = l/2 and b = 1, and the length is I = l/2. 
The coarsest mesh consists of only two elements and the finest mesh consists of 

512 elements. The tests are performed with quadratic elements. 

Fields plots of the lowest 10 modes with m = 1 are presented in figure 4.6. 

The plots were constructed from fields calculated using the finest mesh shown in 

figure 4.5 which contains 512 quadratic elements. The electric and magnetic fields 
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:; 

Figure 4.5: A course mesh (two elements) and four refined meshes for the annular ring 
problem. Each mesh covers the shaded region R. 

were obtained from two separate calculations. The calculated eigenvalues and the 
corresponding relative errors for these modes are listed in table 4.2. 

One may ask which field is better to use in order to obtain the most accurate 

answer. For most of the modes the accuracy is the same order of magnitude between 
the two field calculations, with some modes more accurately calculated using the 

electric field and a few modes more accurately calculated using the magnetic field. 
However, a few of the lowest modes (TM 110, TErrr and TMr2o) are calculated 

with more than an order of magnitude better accuracy by using the electric field 
formulation instead of the magnetic field formulation. The reason for this can be 

found in the nature of the vector basis functions. The elements model field variation 

perpendicular to the field better than field variation along the field. For example, 

the TM120 mode has field E, (EP = 0) and the field is uniform along z. The field 
variation occurs with p which is perpendicular to the field. The magnetic field 

cannot be uniform along the direction of the magnetic field due to the boundary 
conditions at the walls. For example, look at Hz along the top of the magnetic 

field plot for the TM121 mode. It is sinusoidal (one half period), not uniform. Also 

notice that HP also has one half period of variation with p. This situation is similar 

to the electric field of the TM111 mode, so the accuracies of the two calculations are 

the same. 

Concerning individual modes, one field (the electric field, for example) of the 

mode is mostly azimuthal while the other field (in this example the magnetic field) 
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Figure 4.6: Field plots of the 10 lowest m = 1 modes of an annular ring. The $-component 
of the fields is imaginary. The size of the circles are proportional to the &component of the 

field at the center of the circle. A cross in the circle indicates the &component is negative. 

The triangles indicate the size and direction of the z and p components of the field. 
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relative 
mode I 

relative 
CrIalytic G error kfi error 

‘J%Io 40.872453 40.872449 -1x10-7 40.872533 2 x 1O-6 
TElll 41.313554 41.313557 8 x~O-~ 41.313633 2 x lO-'j 
TM111 80.350871 80.351173 4 x10-6 80.351967 lx 1O-5 
TJhl 82.576886 82.578057 1 x 10-5 82.577194 4 x 1O-6 
TM120 159.383025 159.383102 5 x 10-7 159.388130 3 x 1O-5 
T&n 159.748807 159.749047 2 x 10-6 159.753861 3 x 1O-5 
TM112 198.786124 198.789456 2 x 10-5 198.799964 7 x 1O-5 
TM121 198.861443 198.864440 2 x 10-5 198.876238 7 x 1O-5 
‘J=nl 200.931586 200.946598 7 x 10-5 200.934637 2 x 1O-5 
TEm 201.012139 201.027047 7 x1o-5 201.015726 2 x 1O-5 

Table 4.2: Comparison between E and H calculations for the 10 lowest m = 1 modes of 

an annular ring with a = l/2, b = 1 and 1 = l/2. The mesh consists of 512 quadratic 

triangular elements. 
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Figure 4.7: Relative error of the computed eigenvalues for the m = 1 modes of an annular 

ring as the mesh is refined. The computed fields are (a) E and (b) H. 
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has very little azimuthal field. The field calculations which are mostly E+ or H+ 

are consistently less accurate than their counterparts which are mostly Ht or Et, 

respectively. For the best accuracy choose the field which has the smallest azimuthal 

component. 
The convergence of the eigenvalues as the mesh is refined is shown in figure 4.7. 

The eigenvalue error is O( h4) w h ere h is the size of the elements. This is the 
expected error for quadratic elements. Note that the convergence of the electric 

field calculations for the lowest mode, TMlro, is unusual in the sense that the exact 
eigenvalue is approached from below as the mesh is refined. This is indicated by the 

negative error listed in table 4.2. Usually the eigenvalue is overestimated, so the 

relative error (Ic2 - IC&,,t)/A&,,t is positive and the computed eigenvalues decrease 

toward the exact eigenvalue as the mesh is refined. But the eigenvalue for the 
TM110 mode is always underestimated and increases toward the exact eigenvalue as 

the mesh is refined. 

The spurious modes expected at w2/c2 = 0 had computed eigenvalues w2/c2 M 

lo-l3 for coarse meshes and w2/c2 = lo-l2 for the finest mesh. The separation 

between the physical and spurious modes is excellent since the spurious eigenvalues 
are many orders of magnitude smaller than the physical eigenvalues. 

Figure 4.8 shows the mode frequencies as a function of the azimuthal symmetry 

number m. The TE, and TM, modes are plotted separately for clarity. Each 

curve is labelled by a radial mode index n and an axial index p. The points on the 
curves are the frequencies of the TE,,, and TM,,, modes, with n and p fixed. 

Notice that points at m = 0.5, m = 1.5 and m = 2.5 are included in figure 4.8. 
The requirement that m be an integer is. obtained from the demand that the field 

be single-valued: E(p, 4, z) = E(p, q5 + 2 7rn, z). Hence non-integral m are not modes 
of a truly axisymmetric structure. 

However, some structures are partially axisymmetric in the following sense: 

the boundaries are a surface of revolution between two planes of constant 4. The 

revolution sweeps only a part of a circle, 41 5 4 < 42. Since the field expansion in 
azimuthal harmonics is intended to be valid over only a limited range of 4, there 

is no requirement that the field be single valued between 4 and 4 + 27rn, and thus 

modes with non-integral m may occur. Chapter 7 describes an application of modes 

with non-integral m to the design of a 90” waveguide bend. 

The dependence on m of the relative error of the computed eigenvalues is plot- 

ted in figure 4.9. The eigenvalues were computed using the finest mesh shown in 

figure 4.5. The relative error of a particular mode does not grow quickly for large m. 
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(b) 
Figure 4.8: Frequency Ic = w/c versus azimuthal symmetry number m for (a) four TM modes 

and (b) four TE modes. 

Hence the field solver may be used effectively for any m, including non-integral m. 

The dip in the TE,rr curve in figure 4.9c is related to an anomalous change 

in sign of the error. The error is negative for m = 0 and passes through zero near 

m = 0.5. For m 2 0.5 the error is positive, as expected. The TM,10 mode error 

in figure 4.9a has similar anomalous behavior. For m < 2.8 the error is negative, 

while for m > 2.8 the error is positive. 

The small bump at m = 0.5 for the TMmrz mode is due to the accidental 

degeneracy of this mode with the TM,21 mode at m = 0.5. 

4.4. Axis Elements 

Elements which touch the axis are restricted so that the global basis functions 
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Figure 4.9: Relative error of the computed eigenvalue k * versus the azimuthal symmetry 

number m. The top two figures show the TM mode errors, the bottom two figures show 
the TE mode errors. The mesh consists of 512 quadratic elements. 
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satisfy condition (4.4~). In terms of the field components I?4 and Et, the integral 

J ii~(Vx&)*- (VxEt) 
+ @Et - V’fi,+)*+ (mEt - 

1 - 
- VbYj) + PE;. Et + ;I+ E,+ dp dz: 

(4.18) 

must exist and be finite for any basis function E E ?&(fi). The terms which may 
cause difficulty are those weighted by l/p. The two terms will be integrable and 
finite if linear combinations of the basis functions described earlier are used with 
the following constraints on axis (p = 0): 

I& = 0 (4.19a) 

and 

mEt - V’,!& = 0. (4.19b) 

If an element has an edge on axis then the z-component of the second constraint 
is mE, = 0 since aS+/dz = 0 is obtained from the first constraint. This leads to the 

condition E, = 0 if m # 0. The same condition on E, is obtained from demanding 
continuity (in the three dimensional sense) of the field near the axis. When m = fl 

the p-component of the second constraint is fEp = G’#+/ap = -iE,+, which also 
agrees with the constraints obtained from demanding continuity of the field near 
the axis. For other m the constraints (4.19) are not the same as those obtained 

from demanding continuity near the axis. For example, demanding continuity near 

the axis requires EP = 0 and Ed = 0 on axis whenever m # fl. 

4.4.1. Axis Elements for m # 0 

Consider first a linear element with an edge, say edge 3, on axis. The task is 

to construct basis functions which are linear combinations of the six original basis 

functions (4.7) and (4.11) and which satisfy the constraints (4.19). The constraint 

E+ = 0 eliminates IV1 and N3 and the constraint E, = 0 eliminates N6. For the 

constraint mEP = al?d/ap notice 

N4 
as 

= rR3.= T-, 
aP 

N5 = -tR3 = -(l - r)$ and 7 = $ (4.20) 

on the axis (s = 0). The only combination satisfying the constraint is mEt = 

N4 - N5 with I!?4 = N2. Noting that N4 - N5 = R3, the single basis function for 
a linear element with an edge on axis is 

Nidge = (;R3, s). 

68 



edge Nl Nnode 
2 

Nnode 
3 

Figure 4.10: Local basis functions for the m = 1 problem for a linear element touching 

the axis. The bottom edge or node is on axis. The vectors (triangles) represent El and the 
circles represent 26. 

The notation for the basis function is (Et, 24). The superscript indicates the basis 
function is for an element with an edge (edge 3) on axis. An example is shown in 
figure 4.10. 

Next consider a linear element with only a node, say node 2, on axis. The 

constraint &+ = 0 eliminates N2. Since only the node is on axis it is not necessary 
to have E, = 0 at the node on axis. In other words, & = 0 at a single point 
(node 2) does not imply that the derivative dl?d/dz = 0 there. However, it is still 

necessary that mEt - V’k+ = 0 at the node on axis. The basis function N6 = L3 
by itself satisfies the two constraints since it has no Et on axis and no ,??+, so this 

will be one basis function for a linear element with a node on axis. For the other 
basis functions notice that 

N4=L1=-R2=-V-r, N5=L2=R1=V1t, 1.4 04-b\ 

at the node on 

these four basis 

V’Nr = V’r and V’N3 = V’t 
\‘f.LL) 

axis. Two node-on-axis basis functions can be constructed from 

functions. The three basis functions for the linear element with a 

node on axis are 

Nyde = (-;Lr,r), Nyde = (iL2, t) and N;Ode = (L3,O). (4.23) 

The superscript indicates the basis functions are for an element with exactly one 

node (node 2) on axis. These local basis functions are plotted in figure 4.10. 
In order to construct valid global basis functions from the on-axis local ba- 

sis functions, the coefficients for the special local basis functions Nydge, Nyode 

and Nsode are associated with the nodes next to (not on) the axis. This obvi- 

ously matches the scalar field kd. It also matches the component of Et which is 

tangential to the element boundaries. 
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edge Nl 

Figure 4.11: Local basis functions for the m = 1 problem for a quadratic element touching 

the axis. The bottom edge or node is on axis. The vectors (triangles) represent Et and the 
circles represent 234. 
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t. . . 

0 

Figure 4.12: The region 5I for a pillbox with radius a and length 1. The 2-p (a) and 2-y (b) 

cross-sections are shown. 

azimuthal symmetry number m 
0 1 2 10 

7; 2.4048255577 3.8317059702 5.1356223018 14.4755006866 
5.5200781103 7.0155866698 8.4172441404 18.4334636670 
8.6537279129 10.1734681351 11.6198411721 22.0469853647 

11.7915344390 13.3236919363 14.7959517824 25.5094505542 
7: 1.8411837813 3.0542369282 11.7708766750 

3.8317059702 5.3314427735 6.7061331942 16.4478527485 
7.0155866698 8.5363163663 9.9694678231 20.2230314127 

10.1734681351 11.7060049026 13.1703708560 23.7607158603 

Table 4.3: Some numerical values for the cutoff wavenumbers ym,n (for TM, modes) 

and y& (for TE, modes) of circular waveguide with radius a = 1. 

Quadratic elements which touch the axis are constructed in the same manner. 

For an element with an edge (edge 3) on axis there are 6 local basis functions: 

N1 = (0, s2) NJ = (tR3, st) N5 = (sL2,O) 

N2 = (;R3p) 
(4.24) 

N4 = (sLl,O) N6 = (-2sL3,O). 

’ An element with exactly one node (node 2) on axis has 11 local basis functions: 

Nl = (0, r(2r - 1) + rs) 

N2 = (O,t(2t - 1) + st) 
N5 = ( ;L2, st) 

Ng = (rL3,0) 
N6 = (G,O) 

N3,= (0,4rt) 
Nlo = (-2sL3,O) (4.25) 

N7 = (tL2A 

N4 = (ELI, rs) 
Nll = (-2tL1,O). 

Na = (%,O> 

Examples of these basis functions are shown in figure 4.11. 

4.4.2. Tests on a Pillbox 

As a test case consider a pillbox with length 1 and radius a shown in figure 4.12a. 

This problem can be solved analytically by treating it as a section of cylindrical 
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2 
0 I 

Figure 4.13: A course mesh (two elements) and four refined meshes for the pillbox problem. 
Each mesh covers the shaded region 0. 

waveguide shorted at the two planes z = 0 and z = 1. The cross section of the cylin- 
drical waveguide is circular as shown in figure 4.12b. The characteristic equation 
for the cutoff wavenumbers 7m for the TM, modes is 

&n(rr&> = 0, (4.26) 

and the characteristic equation for the cutoff wavenumbers 7h of the TE, modes 

is 

JL(7ka) = 0. (4.27) 

Let 7m,n be the nth solution of (4.26) and let 7k,n be the nth solution of (4.27). 
Some approximate numerical values for the cutoff wavenumbers for the case a = 1 

and various m are listed in table 4.3. The wavenumbers were obtained by finding the 

roots of the characteristic equation numerically and are correct to the given number 

of digits. The m = 0 column is included for completeness only. The axis elements 
described in the previous section are not suitable for m = 0 calculations. Similar 

axis elements suitable for m = 0 problems are described later in section 4.4.4. 

Let p represent the number of half-wavelengths of field variation along the 
length 1 of the waveguide. The frequencies of the TM modes in the pillbox are 

TM,,, : k2 = 7;,, +(p7r/Z)2 p=o,1,2,... 

and the frequencies of the TE modes are 

TE mnp : k2 = 7’;,, + (PTT/Z)~ p = 1,2,3,. . . . 

(4.28) 

(4.29) 
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I$ ‘0000000000’ ------------ 4 *~O(gQO(7J~O(g~. 

E TM121 H 

Figure 4.14: Field plots of the 10 lowest m = 1 modes of the pillbox. The &component of 
the fields is imaginary. 
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mode kLmJytic 6 
T&II 13.259562 13.259697 
TM110 14.681971 14.681979 
TM111 24.551575 24.551897 
TEnl 38.293886 38.297254 
TEm 42.868375 42.870229 
TMno 49.218456 49.218593 
TM112 54.160388 54.163750 
TM121 59.088061 59.089844 
TEnz 67.902700 67.915516 
TEnl 82.738302 82.766452 3 x 10-4 82.741628 4 x 1O-5 

Table 4.4: Relative error of the computed eigenvalues for the 10 lowest m = 1 modes of a 
pillbox with a = 1 and 1 = 1 and using a fine mesh (512 quadratic elements). 

relative 
error 

1 x 1o-5 
6 x 1O-7 
1 x 1o-5 
9 x 10-5 
4 x 10-5 
3 x 10-6 
6 x 1O-5 
3 x 10-5 
2 x 1o-4 

relative 
@I error 

13.259680 9 x 1O-6 
14.682331 2 x 1O-5 
24.552431 3 x 1O-5 
38.294658 2 x 1O-5 
42.870595 5 x 1O-5 
49.225959 2 x 1o-4 
54.165748 1 x 1O-4 
59.099110 2 x 1o-4 
67.908651 9 x W5 

-6 n TM110 
10 

0 T&l1 

t. i....t 
0.05 0.1 0.2 0.5 

Node spacing 

(4 
Figure 4.15: Relative error of the computed 

as the mesh is refined. The computed fields 
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Figure 4.16: Field plots of the 10 lowest m = 2 modes of the pillbox. The &component of 
the fields is imaginary. 

75 



relative relative 
mode kLlytic kk error @I error 

T&11 19.197968 19.198095 7 x 10-6 19.198081 6 x 1O-6 

TM210 26.374616 26.374807 7 x 10-6 26.374869 1 x 1O-5 
TM211 36.244221 36.244688 1 x 10-5 36.245058 2 x 1O-5 
T&m 48.806781 48.807983 2 x 10-5 48.808468 3 x 1O-5 
TEm 54.841827 54.844857 6 x 1O-5 54.843164 2 x 1O-5 
TM212 65.853034 65.856041 5 x 1o-5 65.857933 7 x 1O-5 
TM220 70.849999 70.851913 3 x 10-5 70.855221 7 x 1O-5 
TM221 80.719603 80.723149 4 x 10-5 80.729151 1 x 1O-4 
TEm 84.450640 84.463415 2 x 10-4 84.456630 7 x 1O-5 
T&l3 98.154803 98.162068 7 x 10-5 98.168826 1 x 1O-4 

Table 4.5: Relative error of the computed eigenvalues for the 10 lowest m = 2 modes of a 
pillbox with a = 1 and 1 = 1 and using a fine mesh (512 quadratic elements). 
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Figure 4.17: Relative error of the computed eigenvalues for the m = 2 modes of a pillbox 

as the mesh is refined. The computed fields are (a) E and (b) H. 
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Figure 4.18: Field plots of the 10 lowest m = 10 modes of the pillbox. The &component 
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mode 

TElo,l,l 
T&0,1,2 
TMlo,l,o 
TMlo,l,l 
TE10,1,3 
TMlo,l,2 
TElo,2,1 
T&0,1,4 
TMlo,l,3 
T&0.2.2 

cilytic % 
148.4231 148.4251 
178.0320 178.0399 
209.5401 209.5430 
219.4097 219.4147 
227.3800 227.4039 
249.0185 249.0351 
280.4015 280.4429 
296.4672 296.5288 
298.3666 298.4253 

~ 310.0103 310.0966 

Table 4.6: Relative error of the computed eigenvalues for the 10 lowest m = 10 modes of a 
pillbox with a = 1 and 1 = 1 and using a fine mesh (512 quadratic elements). 

relative 
error 

1 x 10-5 
4 x 10-5 
1 x 10-5 
2 x 10-5 
1 x 10-4 
7 x 10-5 
1 x 10-4 
2 x 10-4 
2 x 10-4 
3 x 1o-4 

Q ~lO,l,O 
OTE 10,1,2 

OTElO,l,l 

0.05 0.1 0.2 
Node spacing 

(4 

0.5 

-1 
10 

N,": 

148.4250 
178.0395 
209.5515 
219.4255 
227.4120 
249.0523 
280.4108 
296.5851 
298.4468 
310.0435 

relative 
error 

1 x 10-5 
4 x 10-5 
5 x 10-5 
7 x 10-5 
1 x 10-4 
1 x 1o-4 
3 x 10-5 
4 x 10-4 
3 x 1o-4 
1 x 1o-4 

DTE10,2,2 

* 7%0,1,3 

rTJ&o,1,4 
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(b) 
Figure 4.19: Relative error of the computed eigenvalues for the m = 10 modes of a pillbox 

as the mesh is refined. The computed fields are (a) E and (b) H. 
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The lowest 10 modes with m = 1 are plotted in figure 4.14. The plots were 

constructed using the finest mesh of figure 4.13 which contains 512 quadratic trian- 

gular elements. The electric and magnetic fields were obtained from two separate 
calculations. The calculated eigenvalues and the corresponding relative errors for 
these modes are listed in table 4.4. In general the errors are typically higher than 
the annular ring case by about a factor of 4. The electric field calculations for the 

TMl,o modes are surprisingly good compared to the other calculations. This is 
similar to results from the annular ring test since the TMl,,u modes have field E, 
which is uniform in z. However, the electric field calculations for the TElll mode 
might be expected to have similar accuracy since its field EP is nearly uniform in p. 
This is not the case. The TElll mode calculated using the electric field is an order 
of magnitude worse than the corresponding TM110 calculation. The best accuracy 

seems correlated with zero electric field on the axis, which indicates the axis ele- 
ments may be inadequate. The convergence of the finite element formulation as the 

mesh is refined is shown in figure 4.15. As in the annular ring case, the convergence 

of the magnetic field formulation is smoother than the electric field formulation for 
coarse meshes. However, for both field calculations the error is O(/L~.~). This is 
not as good as the annular ring case, where the error was 0(h4). This is another 
indication that the near-axis basis functions could be improved to deliver the same 
accuracy as the off-axis basis functions. 

The separation between spurious and physical modes is still extremely good. 
The eigenvalues of the spurious modes are w2/c2 < 10-l’. 

Figures 4.16 and 4.18 are plots of the m = 2 and m = 10 modes, respectively. 

The fields were computed using the finest mesh shown in figure 4.13. The field 

plots show no field on axis for these modes, as expected. The field on axis is not 

exactly zero, however. It is very small in fine mesh calculations, but for coarse mesh 
calculations the field on axis can become sufficiently large to be noticed in the field 

plots. The computed eigenvalues and their relative errors are listed in tables 4.5 
and 4.6. Figures 4.17 and 4.19 show the convergence of the m = 2 and m = 10 mode 
calculations as the mesh is refined. The convergence is similar to the m = 1 mode 

calculations shown in figure 4.15. The error of the computed eigenvalue is typically 

U&3.8) to O(h3.g), h h w ic is close to the theoretically expected O(h4) error. 

Figure 4.20 shows the mode frequencies as a function of the azimuthal symmetry 

number m. The TE, and TM, modes are plotted separately for clarity. Each curve 

is labelled by a radial mode index n and an axial index p. Except for the TEo modes, 

the points on the curves are the frequencies of the TE,,, and TM,,, modes, with 
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Figure 4.20: Frequency k = w/c versus azimuthal symmetry number m for (a) four 

TM modes and (b) four TE modes. 

n and p fixed. 

Traditional labelling of the TEo modes does not lead to a smooth curve in 

figure 4.20. A smooth curve is obtained if the m = 0 point of the TE,, curve 
is the frequency of the TEo,,,-~,~ mode. Hence the TE,r, curves do not include 

a point at m = 0. Comparison of the field plots of the TE,,, modes in figures 

4.28 (m = 0), 4.14 (m = 1) and 4.16 ( m = 2) yields further evidence that this 

arrangement of the TEo modes is appropriate. 

The dependence on m of the relative error of the computed eigenvalues is plotted 

in figure 4.21. The eigenvalues were computed using the finest mesh shown in 

figure 4.13. For m > 2 the relative error is increasing slowly as m increases. This 

is due to the field variations being confined to a small portion of the pillbox for 

large m, as shown in the m = 10 field plots in figure 4.18. The relative error for 
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the m = 1 mode is typically significantly higher than the m = 2 mode, which is 
probably due to the presence of field on axis. 

Two exceptions to this rule are the electric field calculations of the TM110 and 
TM120 modes. These calculations are significantly better than the TM210 and TM220 

mode calculations. In these four calculations there is no field on axis and there is no 
variation of the field E = SZ,(p) along the field direction i. Contrast this with the 
electric field calculations of the TM,11 and TMm12 modes. The relative error of the 
m = 1 calculation is the same or higher as the m = 2 calculation. This correlates 
with field on axis and variation of the field along the direction of the field. 

The computed m = 9 modes of a pillbox are discussed in the last section of this 
chapter. Many m = 0 modes are much more accurate than the corresponding m = 1 
modes. The best accuracy is obtained in modes with no field variation along the 
direction of the field. Modes with field on axis, such as the electric field calculation 
of the TM010 mode, still have dramatically improved accuracy over their m = 1 
counterparts. Comparing the magnetic field calculations of the TM0 modes shows 
a correlation between poor improvement in accuracy from m = 1 to m = 0 with 

non-zero BH4/dz. 

4.4.3. Tests on a Sphere 

As another test case consider a sphere with radius a as shown in figure 4.22. 
This will be an important test of how well the method handles curved boundaries. 

Using spherical coordinates T, 19 and 4, the modes of a sphere can be found analyti- 
cally in terms of the spherical harmonic functions Ylm(O, 4) and the spherical bessel 
functions jl(kT). The modes separate into two distinct sets: the TE (magnetic mul- 

tipole) modes which have no radial electric field and the TM (electric multipole) 
modes which have no radial magnetic field. 

The characteristic equation for the wavenumber kl = w/c of the TE modes is 

Nv-4 = 0 1 = 1,2,. . . . 

The characteristic equation for the TM modes is 

(4.30) 

$jl(kjz))l =0 Z=l,2,.... (4.31) 
ZC=Cl 

Note that the characteristic equation is indexed by I and not m. For each solu- 

tion kl of one of the characteristic equations there are 22 + 1 degenerate modes. The 

azimuthal symmetry numbers m of the modes are -2, -1 + 1,. . . , I - 1 and 1. Con- 

versely, for a given m the modes will have index I 2 Irnj. This corresponds to the 

82 



P 

a . . . . . . ;:::::, , .1. :, :...:.;. ., ~_~.~.~.... :::. ..:.j :.:.;.,.:.. :.,.j : .:.:.:.: .. .‘.‘.‘. .2:.: ‘.:.I.: 

l!iizL 

,.: ::..:.,.; :::F:.:.:. ‘.:: ::.. ;:::.:.:.:.,-:.: : ::;: ..,.,.;,: 5; ‘. .‘.‘.‘.:.‘~: .,.,.,.. l.,I,. : ., ::.:. : &I&;+:; :::::,. .~... .,~ ,.,..... .;:.:: :.:: ‘y’,’ ::: ...,. ,.~. .:, :: : ‘.‘.‘.~.~.‘.~. ., .., ;,..., . . ./.‘.~.‘.‘.~. :.:., :: ._ ,. . . .;; :;.: ‘,:.::: ., . . ., 
0 “’ “““’ 

:. ::. .‘. ..‘., 
z 

0 a 
Figure 4.22: The region R for a sphere 
with radius a. The dashed boundary is a 
symmetry plane. 

1 h,n Y,rl 
1 4.4934094579 2.7437072700 

7.7252518369 6.1167642645 
9.3166156286 

2 5.7634591969 3.8702385802 
9.0950113305 7.4430870540 

3 6.9879320005 4.9734203508 
8.7217505135 

4 8.1825614526 6.0619493630 
9.9675472302 

5 9.3558121110 7.1402273640 
6 8.2108419780 
7 9.2754634855 

Table 4.7: Some approximate numerical 
values for the wavenumbers kl,, (for TE 
modes) and k&,, (for TM modes) of a 
sphere with radius a = 1. 

Figure 4.23: A course mesh (one element) and five refined meshes for the sphere problem. 
Each mesh covers the shaded region R. 
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field solver’s situation. That is, the field solver finds modes which are constrained 
to have the azimuthal symmetry number m specified by the user. Also note that 

I = 0 is not allowed since the spherical bessel function ju is not a satisfactory so- 
lution at the origin. Hence the first m = 0 mode will have 1 = 1, not 1 = 0. Let 

kl,, be the nth solution of (4.30) and let ki,, be the nth solution of (4.31). Some 
approximate numerical values for the case a = 1 and low 1 are listed in table 4.7. 
The wavenumbers were obtained by finding the roots of the characteristic equation 
numerically and are correct to the given number of digits. The table includes all of 
the solutions kl < 10. The frequencies of the modes are 

TE,l, : k2 = k& and TM,r, : k2 = k’;,+. (4.32) 

The lowest 10 modes with m = 1 are plotted in figure 4.24. The plots were 

constructed using the fifth mesh of figure 4.23 which contains 256 quadratic trian- 
gular elements. The electric and magnetic fields were obtained from two separate 
calculations. The eigenvalues calculated using 1024 quadratic elements and the cor- 

responding relative errors are listed in table 4.8. The errors are similar in magnitude 

to the pillbox test, and the dependence of the error on mesh size is 0(h3.‘), just like 
the pillbox. The error dependence on mesh size is shown in figure 4.25. Tests on a 
sphere for m # 1 show similar results. The electric field calculations for a sphere do 
not have a significant advantage over the magnetic field calculations. This behavior 

is unlike the pillbox test. 

4.4.4. Axis Elements for m = 0 

For completeness, a set of axis elements suitable for m = 0 calculations will be 
listed here. It should be noted, however, that for m = 0 problems the formulations 

of chapter 3 are more efficient than the formulations in this chapter. 

The constraints on m = 0 axis elements are the same as on the m # 0 axis 

elements. Linear combinations of the basis functions of section 4.3 which satisfy 
the constraints (4.19a) and (4.19b) are desired. For m = 0 these constraints reduce 

to 
A?$$ = 0 and V’IE~ = 0 on axis. (4.33) 

Notice that there are no constraints on Et. Continuity of the field demands EP = 0 

on axis, but this is not a requirement in this formulation. 

Consider first a linear element with edge 3 on axis. The constraint &p = 0 

eliminates Nr and N3. Since VlN2 = Vls # 0 on the axis, the second constraint 

eliminates N2. Thus, the field &+ is identically zero over the entire element. 
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mode 

TM111 
TM121 
TElll 
TM131 
T&21 
TM141 
TM211 
T&31 
TM151 

-0 

k‘ analytic 

7.527930 
14.978747 
20.190729 
24.734910 
33.217462 
36.747230 
37.414805 
48.831194 
50.982847 

TM221 t 55.399545 --- 

k; 
7.527935 

14.978759 
20.190759 
24.734943 
33.217664 
36.747308 
37.415089 
48.831872 
50.983037 
55.399939 

relative 
error 

8 x 1O-7 
8 x 1O-7 
2 x 10-6 
1 x 10-6 
6 x 1O-6 
2 x 10-6 
8 x 1O-6 
1 x 10-5 
4 x 10-6 
7 x 10-6 

k,z, 
7.527932 

14.978781 
20.190792 
24.735072 
33.217578 
36.747745 
37.414948 
48.831466 

1 50.984171 
~ 55.400238 

relative 
error 

4 x 10-7 
2 x 10-6 
3 x 10-6 
7 x 10-6 
4 x 10-6 
1 x 10-5 
4 x 10-6 
6 x lO+j 
3 x 10-5 
1 x 10-5 

Table 4.8: Relative error of the computed eigenvalues for the 10 lowest m = 1 modes of a 
sphere with a = 1 and using a fine mesh (1024 quadratic elements). 
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Figure 4.25: Relative error of the computed eigenvalues for the m = 1 modes of a sphere 

as the mesh is refined. The computed fields are (a) E and (b) H. 

86 



edge N, edge N2 

Figure 4.26: Local basis functions for the m = 0 problem for a linear element touching 
the axis. The bottom edge or node is on axis. The vectors (triangles) represent Et. There 
are no basis functions for k$. 

Similarly, a linear element with only node 2 on axis has no basis functions 
for 3?+. The first constraint eliminates N2, while the second constraint eliminates 
Nr and N3. 

Both types of axis elements have only three basis functions. These are the usual 

linear basis functions for Et, 

edge /node 
3 = Ll, 

Nyke/node = ~~ and qdgebode = Lo- (4.34) 

These basis functions are plotted in figure 4.26. 
A quadratic element with edge 3 on axis has one basis function, 

Nl 
edge = s2, (4.35) 

for ,I!?+ which satisfies the constraints (4.33). There is a full complement of 8 basis 

functions, N2 through Ng, for Et. 

A quadratic element with only node 2 on axis has three basis functions, 

4 node = r(2r - 1) + TS N2node = t(2t - 1) + st and Nrde = 4rt, (4.36) 

for Ed. Again, there is a full complement of 8 basis functions, N4 through Nrr, 

for Et. The basis functions for the two quadratic m = 0 axis elements are shown in 

figure 4.27. 
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Figure 4.27: Local basis functions for the m = 0 problem for a quadratic element touching 
the axis. The bottom edge or node is on axis. The vectors (triangles) represent Et and the 

circles represent I?,. 
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The basis functions for Et and ~~ are independent of each other. If the magnetic 
permeability p and the electric permittivity E are diagonal then the equations for 
Et and A??4 are uncoupled when m = 0. The integral equation (4.4a), or similarly 

equation (4.6), splits into two separate integral equations, 

Re 27r ~ 
J 

W2 p(V’xFt)*. /$(V’xEt) - -pF; . qEt dpdz = 0 (4.37a) 

and !Re 27r I ‘VLF; * /pg& - w21 -* 
fi2p 

-@+ - q,& dpda = 0, (4.3713) 

where pt and et are the transverse portions of the permeability and permittivity 
matrices, and ,~4 and E+ are the $-components of the constitutive matrices. 

The TEu modes have Et = 0, while the TM0 modes have 8, = 0. Hence 
the problem is reduced to only TEo modes if only kb is computed. Likewise, the 
problem is reduced to only TM0 modes if only Et is computed. Magnetic field 
calculations can be separated similarly. The TEu modes are computed using only 

Ht, while the TM0 modes are computed using only fi4. 
The m = 0 modes of a pillbox were computed as a test case. Figure 4.28 shows 

the field patterns of the lowest 10 modes computed using the finest mesh of fig- 

ure 4.13. None of the modes have noticeable EP or HP on axis. The fields JY4 and 
H+ are automatically zero on axis. The electric and magnetic fields were obtained 
from separate calculations. The calculated eigenvalues and the corresponding rela- 

tive errors are listed in table 4.9. The convergence of the eigenvalues as the mesh 
is refined is shown in figure 4.29. The error is 0(h4), where h is the element size. 
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relative relative 
mode kLd tic G error kH error 

TMolo 5.783186 5.783187 1 x 1O-7 5.783197 2 x 1O-6 
TMolI 15.652790 15.652808 1 x 1O-6 15.653264 3 x 1O-5 
TEoll 24.551575 24.553544 8 x 1O-5 24.551642 3 x 1O-6 
TM020 30.471262 30.471277 5 x 1O-7 30.472366 4 x 1O-5 
TM021 40.340867 40.341104 6 x 1O-6 40.347125 2 x 1O-4 
TMo12 45.261604 45.262002 9 x 1O-6 45.265379 8 x 1O-5 
TEo12 54.160388 54.170944 2 x 1O-4 54.161366 2 x 1O-5 
TE021 59.088061 59.103211 3 x 1O-4 59.088647 1 x 1O-5 
TMoz2 69.949680 69.951961 3 x 1O-5 69.976447 4 x 1O-4 
TMosO 74.887007 74.887140 2 x 1O-6 74.901008 2 x 1O-4 

Table 4.9: Relative error of the computed eigenvalues for the 10 lowest m = 0 modes of a 
pillbox with a = 1 and 1 = 1 and using a fine mesh (512 quadratic elements). 

-1 _ 
10 i 

22 -2 _ 
$10 : 

I 
bn 

'@ -3 _ 
210 i 

2 

8 
u 

% 10 
-4 

F. 'I.,.' 
0.05 0.1 0.2 0.5 

10 

1o-6 & 
I+!/ 

0 TEOll 

0 TM011 

v 
n TM010 

-1 

Node spacing 

(4 

0.05 0.1 0.2 

Node spacing 

(b) 

O.! 

Figure 4.29: Relative error of the computed eigenvalues for the m = 0 modes of a pillbox 

as the mesh is refined. The computed fields are (a) E and (b) H. 
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Chapter 5 
Cross-Field Amplifier 

The field solver can be applied to the design of slow-wave circuits for cross-field 
amplifiers (CFAs) and magnetrons. A review of the mechanism by which the RF 

wave is amplified is given in [23]. A portion of this theory is reviewed in the first 
two sections below. 

A diagram of a CFA is shown in figure 5.1. This CFA is a prototype which was 

built and tested at SLAC. An RF wave enters the input and is amplified as it passes 
clockwise through the interaction region. The amplified RF wave is extracted at the 
output. The sever section allows electrons to drift between the input and output 
cells while inhibiting the RF wave from propagating from the output cell back to 
the input cell. Such isolation is necessary to avoid making an oscillator instead of 
an amplifier. 

The corrugation of the anode creates a slow-wave circuit through which the RF 

propagates. The circuit is called a slow-wave circuit because the phase velocity uP 
of the wave is less than the speed of light. 

Some slow-wave circuits can be modelled fairly well as two-dimensional struc- 
tures with fields that are uniform with respect to the third dimension z. Indeed, 
CFAs and magnetrons are conceptually two-dimensional devices. The third dimen- 
sion mainly enters as a complication which must be dealt with in real devices, 

usually in a manner which minimizes or avoids the effect of the third dimension. 

Only moderate accuracy is required for the initial two-dimensional design of the 

slow-wave circuit. Accurate three-dimensional field solutions will be required at a 

later stage of the design process. In both cases, it is helpful if the field solver can 

exploit the periodicity of this structure. Examples of two-dimensional and three- 

dimensional field calculations for various slow-wave circuits are given in section 5.4. 
The examples illustrate the deficiency of existing finite difference codes when de- 

signing structures and the gains which may be made if better algorithms (e.g., finite 
element methods) are employed. 

In order to’ facilitate the application of the equations in this chapter to real 

CFAs, a notation is employed to distinguish between MKSA and cgs-gaussian forms 

of the equations. The equations are written using the cgs-gaussian system of units. 

However, dropping the factors in brackets will yield equations suitable for the MKSA 

system of units. Note that EO = 1 in the cgs-gaussian system, while in the MKSA 

system EO Z 8.854 x lo-l2 F/m. This notation is the same as that employed in 
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input- output 
Figure 5.1: The prototype SLAC backward wave cross-field amplifier. The RF wave prop- 

agates clockwise, while the electrons travel counter-clockwise. 

chapter 8 of Jackson. 

5.1. DC Fields and the Brillouin Flow Model 

A diagram of a portion of a typical cross-field amplifier is shown in figure 5.2. 
The interaction region is the space between the anode and the cathode. A slow- 

wave structure is incorporated into the anode. This particular slow-wave structure 

is called a hole and slot circuit, which is the structure used in the one CFA built 

at SLAC. This CFA will be used as an example in this chapter. Selected design 
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I r 

Figure 5.2: Schematic diagram of a cross-field amplifier in the z-y plane. The direction 
of the static electric and magnetic fields are shown. The electron drift velocity v is also 
shown for two locations in the electron sheath. 

parameters for this CFA are listed in table 5.1. 

A voltage V is applied across the interaction region, and the corresponding 
static electric field E pulls electrons toward the anode. A static magnetic field B 
perpendicular to the plane of figure 5.2 is also applied. For convenience B, > 0 
will be assumed. The magnetic field B is perpendicular to E, hence this is called a 
crossed-field device, and the name cross-field amplifier follows. 

Electrons leaving the cathode do not travel straight to the anode. Instead, in the 
absence of space charge and other RF fields, the magnetic field causes the electrons 
to follow cycloidal trajectories. If the voltage V does not exceed I!, (defined below) 

then the electrons do not reach the anode. The electrons are confined to an electron 

sheath next to the cathode, and the anode and cathode are magnetically insulated 

from each other. 
A simple model of the beam in the CFA is the Brillouin flow model. This model 

assumes the RF fields are small, which is the situation the CFA or magnetron must 
start from. A non-relativistic version of the model will be reviewed here. Curvature 
will be neglected as well, so Cartesian coordinates x and y will be used instead 

of polar coordinates p and 4. The cathode and anode are at y = 0 and y = d, 

respectively. This is shown in figure 5.3. 

The electrons drift along the interaction region due to the ExB drift. Laminar 
flow is assumed in the Brillouin flow model. The electrons travel parallel to the 

anode and cathode with velocity 

v(y) = -h(y). (5.1) 
The flow is assumed to be independent of x. That is, the effect of the anode slots 
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cathode 
x 

Figure 5.3: Schematic diagram of a straight cross-field amplifier. The dotted lines at the 

anode indicate the simplified model assumes the anode is smooth. 

r Frequency f 11.424 GHz 
DC magnetic field B, 5kG 
Anode voltage V 120 kV 
Anode-cathode gap d 0.3175 cm 
Phase velocity up/c 0.248 
Phase advance per cell $J 225" 
Cell length L at anode 0.4064 cm 
Anode radius T, 5.8217 cm 
Cell length L/T, 4" 
Planar non-relativistic laminar model 

220 kV 
0.32 

102 kV 

Hull cutoff voltage V, 
Electron sheath size h/d 
Buneman-Hartree 

threshold voltage V&J 

Table 5.1: Selected SLAC Backward Wave CFA Parameters. 

and the RF fields on the electron flow are neglected. The electrons in figure 5.2 

move in the -i direction (the 4 direction in polar coordinates) since E, < 0 and 

B, > 0. 
The equilibrium drift velocity is obtained by balancing the electric and magnetic 

forces, 
J%(Y) 

V(Y) = +I~. (5.2) L 
Note that the radial electric field E, is modified by the space charge in the elec- 
tron sheath. The electric field is reduced near the cathode, so the beam near the 
cathode drifts slower than the beam in the middle of the interaction region. This is 

indicated by the relative size of the two arrows representing v in figures 5.2 and 5.3. 
The current in the electron sheath also contributes to the magnetic field, but this 

contribution is neglected in this model. The magnetic field B, is assumed to be 
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uniform. 

Assuming the electrons leave the cathode with negligible kinetic energy, then 
conservation of energy gives 

(5.3) 

where the electric potential V(y) is 

V(Y) = - J,” Eybl)dy’, (5.4) 
and e and m are the charge and rest mass of the electron, respectively. Combining 

equations (5.2) and (5.3) yields the electron velocity 

V(Y) = 1 I@& 
[I - -y = w,y c m (5.5) 

where W, is the cyclotron frequency, 

WC = [I 
1 IelBy c m 

Then, from (5.3), the potential inside the electron sheath is 

(5.6) 

1 mw,2y2 V(Y) = ij le, * (5.7) 
The corresponding electric field is 

2 
-- E!/(Y) - 5f” (5.8) 

and the corresponding charge density is 

1 
P 

mw,2 
= G “O lel [I- ’ (5.9) 

Notice that the charge density is uniform in the electron sheath, and that the electric 

field rises linearly from zero at the cathode to its maximum value at the edge of the 
electron sheath. This is shown in figure 5.4 for the parameters listed in table 5.1. 

For a given-magnetic field B,, the Hull cutoff voltage V, is defined as the anode 
voltage below which electrons do not reach the anode. If the electron sheath fills 

the entire interaction region, 0 5 y 5 d, then the anode voltage V = V(d) is the 

Hull cutoff voltage V,. From (5.7) the Hull cutoff voltage is 

1 mw2d2 1 1 je(Bzd2 
vc=21,[= --pj m . [ 1 (5.10)’ 
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0.2 0.4 0.6 0.8 1 
Y/d 
(4 

Figure 5.4: Planar non-relativistic Brillouin flow: (a) space charge density p, (b) electron 
velocity ‘u/c, (c) electric field E, and (d) electric potential V(y). 

When the anode voltage V is less than the Hull cutoff voltage there is a gap between 

the electron sheath and the anode. In the gap there is no charge, so the electric 
field E, is constant, 

E, = mdh 
I4 

for h < y 5 d, (5.11) 

where h is the width of the electron sheath. The anode voltage V is 

V=*(d-;) = [-$]@$(d-;) =F(l-$). (5.12) 

This can be solved for the width h of the electron sheath as a function of anode 

voltage V and the applied magnetic field B,, 

where 

(5.13) 

(5.14) 



is the Hull cutoff magnetic field. If the magnetic field B, is larger than the Hull 

cutoff magnetic field BH (for a given anode voltage V) then the anode and cathode 

are magnetically insulated from each other. 
When the anode voltage V is fixed, then the Hull cutoff magnetic field BH is 

the appropriate cutoff to consider. The magnetic field should be B, > BH. If the 
magnetic field B, is fixed instead, then the Hull cutoff voltage V, is the appropriate 
cutoff to consider. An anode voltage V < V, is desired. 

5.2. Interaction with the RF Field 

The input RF induces a travelling wave in the slow-wave circuit. The electrons 
interact with this travelling wave, amplifying the wave as it propagates toward the 
output. Treating the slow-wave circuit as a periodic structure, the travelling wave 

has a phase advance 1c, per cell, and thus the wave in the interaction region can be 
written as a sum of space harmonics. For the planar structure, 

00 
B, = c B,, cosh(rcyny)eikz’z, (5.15a) 

n=-cm 

+nBzn sinh(rcy,y)eikznz and 

Ey=$;F L [ 1 $+2m B,, cosh(ny,~)eikznz, 
7x=--00 

(5.15b) 

(5.15c) 

where k,, = ($ + 2m)/L is th e propagation constant for the nth space harmonic 
along the slow-wave structure, and Q,, = dw is the corresponding decay 
constant. The space harmonics are large near the anode and decay to small fields 

near the cathode. 
The space harmonic expansion above is written in terms of the magnetic field 

amplitudes B,, because the field solver computes the magnetic field B,. The fields 

E, and Ey are derived from the computed B,. However, the electrons are affected 
by the RF electric field more than they are by the RF magnetic field in this CFA, 

and the PIC simulations described later also describe the travelling wave by its 

electric field, so an expansion in terms of electric field amplitudes E,, is useful, 

B, = +] 5 5 2 cosh(nyny)eikz”z, 
n=-w 

E, = E Ez,sinh(nyny)eikEnz and 
n=-0c 

E, = O" kdLn 4 c cosh(&,&eikzrLz. 
n=-cm %n 

(5.16b) 

(5.16~) 
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Figure 5.5: Operating point for the SLAC CFA. The Hull cutoff voltage V, and Buneman- 
Hartree threshold voltage V& delimit the three regions where the CFA is expected to 
(1) conduct, (2) amplify or (3) insulate. The curves are obtained from the planar non- 

relativistic Brillouin model. 

When the RF field is small only one space harmonic affects the electron sheath 
strongly. The effect of the other space harmonics tends to cancel when averaged over 
many cycles. However, when the RF field becomes large additional space harmonics 
may become important. An example of this will be mentioned later. 

In order for the nth space harmonic of the travelling wave to interact strongly 
with an electron, the space harmonic must be synchronous with the electron drift- 
ing in the CFA. That is, the electron should be travelling with speed TJ near v~, 
where up = wlkzn is the phase velocity of the nth space harmonic. The fastest 
electrons are at the edge of the electron sheath nearest the anode. The Buneman- 

Hartree threshold voltage VBH is the anode voltage at which the speed v(h) of the 
fastest electrons equals the phase velocity up of the desired space harmonic. At this 
threshold the electrons at the edge of the sheath barely keep up with the travelling 

wave. The remaining electrons are slower, and thus lag behind the wave and do not 

interact strongly with the wave. 

Prom (5.5), h = J w w, at the Buneman-Hartree threshold. Plugging this height 

into (5.12) yields the Buneman-Hartree threshold voltage 

VBH = B,v,d - =v2. 
44 p 

The CFA is operated with VBH < V < V,. 
Figure 5.5 shows the operating point in the V-B, plane for the SLAC CFA. 

The figure labels the region V > V, where the CFA is conducting, and the region 
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V < VBH where the CFA is insulating. The two curves are obtained from the planar 
non-relativistic Brillouin flow model. Between the two curves is the region where 
the CFA is expected to amplify the incoming RF. This region is discussed further 
below. The operating point is about 20% above VBH, which is typical for CFAs and 
magnetrons. 

Figure 5.6a shows the electric field for one period of the synchronous space 
harmonic of the travelling wave in the SLAC CFA. Note that other space harmonics 
of the travelling wave are omitted from the field plot. For comparison, figure 5.6b 

shows the static electric field and figure 5.6~ shows the combined field when the 

magnitude of the electric field of the space harmonic is 2/3 of the DC electric field 
at the anode. When the RF electric field is this large, the peak RF magnetic field 
is only 0.025 Tesla. This is small compared to the DC magnetic field of 0.5 Tesla, so 
the RF magnetic field will be neglected when considering the effect of the RF field 
on the particles. 

The amplification mechanism in the CFA can be understood by following the 
trajectories of four electrons labelled A, B, C and D in figure 5.6. The four electrons 
are near the edge, or beyond the edge, of the electron sheath. They are drifting 
to the left with a speed close to the phase velocity vp of the space harmonic of the 
travelling wave. 

Consider electrons B and D. Electron B experiences a decelerating electric field, 
and thus does work on the RF field. That is, the amplitude of the RF field is being 
increased at the expense of the electron’s energy. Since the particle is synchronous 
with the wave, the particle experiences this field for a long time. Also note that 
the E x B drift has a small vertical component which pushes the particle toward the 

anode. As the particle drifts toward the anode the magnitude of the decelerating 

RF field increases, which further increases the interaction between the electron and 

the RF field. 

Electron D is at the opposite RF phase relative to electron B, thus electron D 

is accelerated by the RF field. That is, energy is transferred from the RF field to 
the electron. This transfer of energy is limited by the small vertical component of 
the E x B drift.’ This component pushes the electron toward the cathode, where the 

magnitude of the RF field is smaller, and thus the interaction between the electron 
and the field is reduced. 

Electron D may be pushed into the middle of the sheath, where the reduced 
static electric field implies a reduced drift velocity, and thus the electron will no 

longer be synchronous with the travelling wave. As the electron loses synchronism 
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Figure 5.6: One wavelength of the electric field of a single space harmonic of the RF 
trayelling wave: (a) RF field, (b) static field and (c) combined field. 

with the travelling wave, the interaction between the electron and the wave is greatly 
reduced. This electron may appear later at a phase corresponding to electron B 

due to phase focussing, which will be discussed shortly. 

Electron D may also be pushed into the cathode proper, which removes the 

electron from the interaction region, and no further interaction between this electron 
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and the RF wave occurs. If the electron strikes the cathode within a certain energy 

range, then the cathode will emit secondary electrons. Low energy electrons scatter 

few of the cathode’s electrons, while high energy electrons scatter many of the 
cathode’s electrons, but these are buried so deep in the cathode that the scattered 
electrons are stopped in the cathode and do not escape. 

This leads to a short digression on the creation of electron sheaths in CFAs 
and magnetrons. In the SLAC CFA secondary emission is the mechanism which 
creates the electron sheath. Some electrons, such as those near electron D, are 
accelerated into the cathode. Most of the electrons striking the cathode have an 
energy in the range which generates multiple secondary electrons. Thus, there is a 

gain mechanism which rapidly builds the electron sheath from a few electrons. The 
original few electrons are obtained, for example, from field emission. 

Many CFAs and magnetrons use a thermionic cathode instead of a secondary 
emission cathode. A hot cathode emits electrons due to thermionic emission, and 

it is these electrons which constitute the electronic sheath. 

Now consider electrons A and C. At electron A the RF electric field opposes 
the DC electric field, so the drift velocity of electron A is reduced slightly below the 
phase velocity of the space harmonic and the velocity of electron B. This means the 
electron A will lag behind the travelling wave, changing its phase with respect to 

the RF until the electron is near electron B in figure 5.6. 

Likewise, at electron C the RF electric field enhances the DC electric field, so 

the drift velocity of electron C is increased slightly above the velocity of electron B 

and the phase velocity of the space harmonic. Electron C will change phase with 

respect to the travelling wave, catching up to electron B. 

Both electrons A and C are focussed toward the phase of RF where electron B 
resides. This is called phase focussing. Also notice that electrons A and C have 

a small vertical component of E x B drift velocity which pushes them toward the 

anode, just like electron B is pushed toward the anode. 

The combination of electron selection and phase focussing leads to amplifica- 

tion of the travelling wave. Electrons which take energy from the RF field, such 

as electron D, are removed from the interaction region, while other electrons are 
focussed into a phase relative to the RF where they give their energy to the RF 

field. These electrons maintain synchronism with the travelling wave as they drift 
toward the anode, so a spoke composed of electrons forms at a phase near elec- 

tron B. The spoke travels with the RF field and extends from the cathode to the 

anode. Electrons in the spoke are drifting from the electron sheath to the anode, 
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converting their potential energy into energy in the travelling wave. 

i. j 

5.3. Simulations of the Electron-Circuit Interaction 

The simple model of the CFA above is qualitatively correct, but quantitative 
results of the electron-circuit interaction have only been obtained through the use 
of particle-in-cell (PIC) simulations of the interaction region. The PIC simulations 

for the SLAC CFA are described in [24] and [25]. The simulations model only the 
interaction region, not the whole slow-wave circuit. Instead, eigenmodes of the 
slow-wave circuit were computed separately using, for example, the finite element 

field solver of this work. Then selected RF parameters of the travelling wave modes 
were incorporated into the PIC simulation, as will be described below. 

An integral number of wavelengths of the space harmonics are included in the 
simulation. If 0 2 z < 2 is the simulation region and k,, is the propagation constant 
for the synchronous space harmonic, then k,,Z = 27rp for some integer p is required. 

If a second space harmonic (the mth harmonic) is included in the simulation then 

k,d = 27rp’ for some integer p’ is also required. Periodic boundary conditions 
are employed at the ends of the simulation. Some simulations modelled the RF 
field as a single space harmonic, while others modelled the RF field with two space 
harmonics. 

As in any PIC simulation, for each time step the momentum of each particle is 

modified according to the electric and magnetic fields experienced by the particle. 

The particles are pushed according to their momentum, and the field is advanced 
according to Maxwell’s equations. 

The advancement of the field from one time step to the next requires knowledge 

of the interaction between the electrons and the fields of the slow-wave circuit. The 
simulations employ boundary conditions at the anode which mimic the slow-wave 

structure. At y = d the tangential electric field is forced to be a travelling wave. 
This travelling wave corresponds to one or two space harmonics of the RF wave. 

To update the amplitude and phase of the RF wave, the work by the the electrons 

on the field is computed by 
P= 

J oE,f-Jdfl, (5.18) 

where E,.f is the electric field of the travelling wave, J is the current density, and fl 

is the simulation region. The power P is the power delivered to the RF field in the 

simulation region. The field E,f is considered a complex field with the imaginary 

component differing from the real component by one quarter of a cycle. Hence 

the power P has both real and imaginary components. The real part represents a 
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change in the amplitude of the wave, while the imaginary part represents a change 

in the phase of the wave. 

The relation between the power P and the change of the field amplitude and 
phase is described by the impedance 2 of the slow-wave circuit. The power flow 
through the circuit is 

P v2 _ EZn =J 
rf 22 2k$Z’ 

(5.19) 

where V, = Ezn/k,n is a voltage obtained from the space harmonic electric field am- 
plitude E,, . Other definitions for the impedance 2 are possible, but this definition 

is convenient because it relates power flow through the circuit to the synchronous 
space harmonic field amplitude. The final product of the CFA is supposed to be 
power flowing out the output waveguide. The power flow through the circuit is also 
obtained from 

where U is the energy stored in the RF wave in the simulation region and q is the 
group velocity of the RF wave. From the last two equations, 

P=Z I v, av, -=--- 
%z at’ 

or aJ%n ek p -- 
at = @E,, 1’ 

(5.21) 

(5.22) 

5.4. Tests on a Hole and Slot Circuit 

In addition to designing slow-wave circuits with the appropriate phase velocity, 

the eigenmode field solver can be used to compute the RF parameters of the slow- 
wave circuit for use in the PIC simulation. These parameters include the group 

velocity V~ and the impedance 2. 

Figure 5.7 shows the measured dispersion curve for the prototype SLAC CFA. 
Dispersion curves computed by two finite difference programs are also shown. The 

finite difference program QUAP models the planar structure in two dimensions, 

while the finite difference field solver ARGUS models the planar structure in three 

dimensions. The version of ARGUS used here was modified to include quasi-periodic 

boundaries, and thus handle periodic structures. 

The agreement between the two finite difference calculations is accidental. The 

two methods are not expected to agree so well. The difference between the ARGUS 
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Figure 5.7: Comparison of computed and measured dispersion diagrams for a slow-wave 
circuit. 

calculations and measurement, however, is significant. Two-dimensional simulations 
of straight and curved structures show that the effect of curvature in this problem is 
very small, so the discrepancy between the dispersion curves is due to discretization 
errors in the computer model. In particular, the finite difference mesh does not 

model the boundary of the structure well. Reduction of the discretization error 

to levels comparable to dimensional tolerances requires a very fine finite difference 
mesh. Such problems require very fast computers with hundreds of megabytes of 

core memory. Alternatively, a field solver with a mesh which models the three- 

dimensional structure well (e.g., a finite element mesh) could compute the modes 

of the slow-wave circuit with much better accuracy and perhaps on only a modest 
computer. 

Both finite difference and finite element field solvers have been employed to solve 
the planar hole and slot structure in two dimensions. This slow-wave structure is 

similar to the structure shown in figure 5.3. Figure 5.8 shows calculations of the 

lowest travelling wave mode at a phase advance $ = 135”. 

Dispersion diagrams are conventionally drawn for phase advances 0 5 1c, 5 7r, or 

0’ 5 1c, < 180”. Any other phase advance can be obtained from the symmetry of the 

dispersion diagram. For example, the mode with II, = 135” includes a $ = -225” 

space harmonic. Simply reversing the direction of propagation (i.e., conjugating 
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Figure 5.8: Computed eigenvalue k2 versus mesh refinement for the 135’ mode of a hole 
and slot circuit for the SLAC CFA. Finite difference and various finite element methods 
are shown. The dashed line is the extrapolation of the quadratic FEM calculations with 
special corner elements to zero node spacing. 

the complex field) gi ves the mode with the desired synchronous space harmonic 

at $ = 225”. 
The finite difference calculations suffer from errors much more than the finite 

element calculations, Compared to the linear finite element example, much of the 
finite difference error is due to the inability of the finite difference mesh to conform 

to the geometry. Such errors are detrimental because the group velocity of the 

structure is small near the operating point on the dispersion diagram. An error in 

the frequency at a desired phase advance corresponds to a large error in the phase 

advance and phase velocity at the drive frequency. 

Even the finite element methods have some difficulty because the design model 
for the hole and slot structure has sharp corners in it. Sharp corners deteriorate the 

accuracy of the field solvers. However, the utility of the quadratic finite element 

field solver with special corner elements is apparent in figure 5.8. 

The effect of curvature should also be included in the model. This is easily 

included in the finite element simulation, while in the finite difference simulations 

much additional work is required. However, for this slow-wave circuit the curvature 

is small. Finite element method calculations show that the II, = 135” frequency in 
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the curved structure is only 0.07% higher than the planar structure. 

5.5. Other Slow-Wave Circuits 

The PIC simulations described earlier found problems with the prototype SLAC 
CFA design. When the amplitude of the RF travelling wave becomes sufficiently 
large, the electrons accelerated into the cathode are so energetic that the scattered 
electrons do not escape the cathode. That is, the secondary emission ratio at high 
energies is insufficient to maintain the electron sheath. This problem has been 

attributed to the presence of the fundamental -135” space harmonic. The fields 
of the fundamental space harmonic are much larger at the cathode than the fields 

of the synchronous space harmonic. Thus, the fundamental harmonic may have a 
larger effect on the electrons near the cathode than the synchronous harmonic. 

Consider two solutions to this problem. First, the synchronous harmonic and 
the fundamental harmonic can be made the same harmonic by using a slow-wave 

circuit with a different period and phase advance. This yields a forward wave 
structure, where the electron sheath and the travelling wave propagate in the same 
direction. The prototype CFA is a backward wave device. Simulations show that 
the RF field threshold at which the electron sheath is no longer maintained by 
secondary emission is lower in the backward wave device than in the corresponding 
forward wave device. 

Backward wave devices have the convenient property that the electron sheath 
velocity is never synchronous with the r-mode as the anode voltage is applied to 
the CFA. As the anode voltage is increased from zero to the operating voltage, the 
drift speed of the electrons starts from zero and increases to the operating phase 

velocity. In the forward wave device, the drift speed must sweep through the phase 

velocity of the n-mode, which is a mode particularly susceptible to oscillation. These 
oscillations can be avoided in the forward wave device by having only a short rise 

time on the anode voltage. Then the T-mode oscillation will not have time to build. 

Even when a forward wave device is employed, there is still a limit to the RF 

fields. Instead of electrons being slammed back into the cathode with the help of 

other space harmonics, the forward wave device strips the electron sheath from the 

cathode, leaving no electrons in the interaction region to regenerate the sheath via 

secondary emission. 

Since the amplitude of the RF field is limited, a tapered impedance structure is 

desired. Near the input, where the RF power is low, the impedance is high. Near 

the output, where high RF power is expected, the impedance is low. The RF fields 
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Figure 5.9: Dispersion curves for (a) a slow-wave circuit and (b) a smooth waveguide. The 

operating point and both dispersion curves are shown in (c). The dashed line in (c) is the 
smooth waveguide. 
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Figure 5.10: Waveguide coupled slow-wave circuits. The guides are coupled (a) every cell, 
(b) every other cell and (c) every third cell. 

can be kept roughly constant throughout the device. 

In order to vary the impedance over a wide range, the slow-wave circuit is 
coupled to a waveguide as shown in figure 5.10a. Near the input the waveguide is 

narrow, so only a little RF power is propagated in the waveguide. This implies an 
impedance comparable to the uncoupled slow-wave circuit. Near the output the 
waveguide is wide. Most of the RF power is propagated in the waveguide. Only 
a little RF power is propagated in the interaction region portion of the slow-wave 
circuit. This implies a very low impedance. 

Coupling the slow-wave circuit to the waveguide is not trivial because the phase 
velocity of a smooth waveguide is necessarily above the speed of light, c, while the 
phase velocity of the desired slow-wave circuit is much less than c. In order for 

the slow-wave circuit to couple well to the waveguide, the dispersion curves of the 
slow-wave circuit and the waveguide should cross near the desired operating point. 
As shown in figure 5.9c, this is not likely. 

One possible solution to this coupling problem is to couple to another slow-wave 

guide instead of to a smooth waveguide. The phase velocities of the two structures 

can be made identical at the operating point. 

Another solution, which will be discussed in some detail here, is to couple the 

slow-wave circuit to the waveguide at only every other cell, or every third cell. 
Examples of such structures are shown in figures 5.10b and 5.10~. The period of 

these structures is double or triple the period of the uncoupled structure. One 
period of these structures will be called a supercell. Only one hole of the two or 

three holes in a supercell are coupled to the waveguide. 

Dispersion curves for the slow-wave circuit interpreted as a two slot or three 

slot circuit are shown in figures 5.11a and 5.11b. The supercells are composed of 

repetitions of the single hole-and-slot cell and the corresponding length of guide. 
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The solid lines are the slow-wave circuit dispersion curves, while the dashed lines 

are the waveguide dispersion curves. The curves are identical to figure 5.9c, except 

that the horizontal axis has been scaled and then folded back upon itself two or 
three times. The number of folds is the number of cells in the supercell. 

The operating mode, which formerly had phase advance $, now has phase ad- 
vance 2$ or 3$. This means the phase velocity of the operating mode can now 
be greater than c, while the synchronous space harmonic still has the same phase 
velocity uP < c. 

Now consider the operating mode with phase advance II, = 135” across one cell 
of the slow wave structure. Across two cells the phase advance is 11, = 270” = -90”. 
At the same frequency the waveguide could have a mode at T,LJ = -45”. Over two 
cells the phase advance is II, = -9O”, the same phase advance seen in two cells of 

the slow wave structure. If the slow-wave circuit is coupled to the waveguide at 
every other cell, then the dispersion diagrams cross at this frequency and phase 
advance, as shown in figure 5.11a. The operating mode in the slow-wave circuit can 

be coupled well to the waveguide. 

The dispersion diagram of the coupled structure is not identical to the dispersion 
diagrams of the uncoupled slow-wave circuit and waveguide. In the coupled circuit 
the dispersion curves avoid crossing one another. This can be seen comparing 

figure 5.11b with figure 5.11~. The slow-wave circuit couples to the waveguide at 
points where the dispersion curves in figure 5.11b cross. The amount of coupling 
is related to the distance separating the dispersion curves at the corresponding 
point in figure 5.11~. Large separation corresponds to large coupling, while small 
separation corresponds to small coupling. 

A potential difficulty with coupled structures is the presence of additional com- 

peting modes. In the uncoupled backward wave CFA, only one mode is ever syn- 

chronous with the electron sheath, so only one mode needs to be considered. As 

mentioned earlier, the 7r mode is a concern in forward wave CFAs. In coupled 

structures there are many modes synchronous with the electron sheath and with a 

frequency near the operating frequency. These modes potentially interfere with the 
operating mode, so the interaction of all of these modes with the electron sheath 
must be considered in the design of a coupled CFA circuit. 

Competing modes also limit the height h of the slow-wave circuit. A large 

height is desired to obtain as much power as possible, but as the height increases 

modes with one or more wavelengths of vertical field variation have a frequency 

which is close to the operating frequency. Thus these modes will compete with the 
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Figure 5.11: Dispersion diagrams of multiple cell slow-wave circuits. Diagrams (a) and (b) 
treat the uncoupled structure as a periodic structure with a period twice and three times 

the length of the original cell. The dashed lines are the dispersion curves of the waveguide. 

Diagram (c) is the dispersion diagram of the structure coupled every third cell. 
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operating mode if the height of the slow-wave circuit is too large. Three-dimensional 

field solvers can be used to compute these competing modes, as well as to verify the 
vertical uniformity of the field in the operating mode. 
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Chapter 6 
X-band Accelerator Structure 

In collaboration[26] with Juwen Wang, the field solver YAP was used as an in- 
tegral part of the design procedure for the detuned accelerator structure for SLAC’s 
Next Linear Collider (NLC) program[27]. The design procedure and some results 
are described in this chapter. 

6.1. Accelerating Mode 

The operating frequency of the accelerator is chosen to be f = 11.424GHz, 
which is 4 times the frequency of the SLAC linac. The phase advance per cell is 
chosen to be $ = 2x/3. 

The phase advance is chosen to be a simple fraction of 7r so that standing 
wave test structures can be built which are only a few cells long. In this case one 

wavelength of the accelerating mode is exactly three cells of the structure. Assuming 
the cells have a symmetry plane or are nearly symmetric, then a short standing wave 
structure consisting of some multiple of la cells and shorted at symmetry planes 
at both ends will have a standing wave mode which corresponds to two travelling 
wave modes with phase advance $ = 2~/3 propagating in opposite directions. 

A 7r/2 phase advance is often chosen for travelling wave structures, particularly 
if a large bandwidth is desired. For this accelerator structure $J = 2x/3 is chosen 
because the accelerating gradient for a given input power is better at + = 27r/3 
than at the common phase advance $J = r/2. 

The travelling wave which accelerates the beam must be synchronous with the 

beam. That is, the phase velocity 214 of the travelling wave must be the same as 

the velocity v of the beam. For the NLC the electron and positron beams are 

ultrarelativistic, so the beam velocity is the speed of light, c, and the synchronism 

condition is vd = c. 

Given the desired operating frequency f, phase advance $ and phase velocity c 
of the travelling wave, then the length, or period L, of the cells of the accelerator 

structure is fixed at L = c $/2rf = 0.8748 cm 

Synchronism with the beam is a constraint on the remaining dimensions of a 

cell. The remaining dimensions are the disk aperture 2a, the cell diameter 2b and 

the disk thickness t. As shown in figure 6.1, the inner edge of the disks are round 
with full radius, not flat. The RF parameters of a cell can be computed by treating 

the cell as part of a periodic structure. Let f,,(2a, 2b,t) be the accelerating mode 
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Figure 6.1: Disk loaded waveguide in the z-p plane. 

frequency at 4 = 2~/3. Then the synchronism constraint is 

fo(2a, 2b, t) = f = 11.424 GHz. (6-l) 

This can be considered an implicit formula for 2b(2a, t) for the cells of the accelerator 
structure. That is, given the parameters 2u and t of a cell, solve (6.1) for 2b. 

The finite element field solver YAP was used to compute the accelerating mode 

frequency f. for various cell dimensions covering the range 

0.7493 cm < 2u 2 1.1684 cm 

and 0.1016 cm < t 5 0.2540 cm. 

The range of cell diameters was 

2.0828 cm 2 2b 5 2.3622 cm, 

although the range of 2b was not covered uniformly. As indicated below, cell di- 
ameters 2b were chosen such that f,, was within about 200 MHz of the drive fre- 

quency 11.424 GHz. 

For a given set of dimensions (2~2, 2b and t), meshes for one cell of a periodic 
structure were constructed using triangular elements. Two cases are shown in fig- 

ure 6.2. Notice that the size of the elements is far from uniform. There are more 

elements near the disk edges in order to model the boundary and the fields better. 

The bottom of the mesh is the axis, and the right and left sides of the mesh are 

quasi-periodic boundaries. The number of elements and the topology of the meshes 
are independent of the cell parameters, so the mesh depends smoothly on the cell 

dimensions. Then the discretization error can be considered a systematic error when 

comparing two cells with slightly different dimensions. 

The accelerating mode frequency f. was calculated by YAP using four succes- 

sively refined meshes composed of quadratic elements. The calculations converged 
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Figure 6.2: Two coarse meshes for cells of the disk loaded waveguide. The meshes are 
composed of quadratic triangular elements. Mesh (a) is for the first cell of the structure 

and mesh (b) is for the last cell of the structure. 

smoothly as the mesh was refined, although the error appeared to be 0(h3.3) in- 
stead of O(h*). Th is is probably due to the non-uniform nature of the mesh. 

The estimated relative accuracy of the frequency calculation for the finest mesh is 

- 10S6. Further accuracy was obtained by extrapolating the four calculations to 
zero element size (an infinitely refined mesh). Conservative error estimates for the 
extrapolated f. range from 5 kHz for large t cases to 30 kHz for small t cases. 

The calculations were fit to the polynomial 

fo(2a, 2b, t) = & 5 5 fijk(2b)‘(2u)jtk- 
i=-1 j=O k=O 

(6.2) 

Notice that the leading dependence of the frequency on the cell diameter 2b is 

fo(2u,2b,t) = 2 +--- (6.3) 

where K is a constant depending on 2u and t. This is similar to the frequency of a 
pillbox model of the cell. Only 165 calculations with 1 f. - 11.424 GHzI < 150 MHz 
were included in the least squares fit for the 45 parameters. The polynomial ap- 
proximates the calculations with residual errors < 80 kHz. The polynomial can be 

used to solve (6.1) for the cell diameter 2b with an error - 1 pm. This error is 

comparable to the skin depth in copper at the operating frequency and about an 
order of magnitude smaller than available machining tolerances. A contour plot 

of 2b(2u, t) is shown in figure 6.3. 

The logarithmic derivative -b/f t3fo/ab is plotted in figure 6.4. If the cell were 

a simple pillbox with no aperture connecting the cells, then the expected derivative 
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Figure 6.3: The cell diameter 2b (in cm) which yields synchronism with the beam (~0 = c). 
The dots are the 206 cells of the detuned accelerator structure. The rightmost dot is the 

first (input) cell and the leftmost dot is the last (output) cell. 
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Figure 6.4: The logarithmic derivative -b/f afo/ab with 2b determined from the synchro- 
nism condition. The dots are the 206 cells of the detuned accelerator structure. 

would be unity. This simple model gives the logarithmic derivative within 20% of 

the correct answer. 

The error in the estimate of 2b can be obtained from the estimated error of the 

frequency f0 using the derivative t?fJab. Since the residual frequency error of the 

polynomial fit is 80 kHz and only a moderate number of points were used in the 

fit, the maximum error of the fit should be less than 200 kHz. The discretization 
error may add a systematic frequency error less than 30 kHz. This indicates the 

error estimate for 2b as computed by the polynomial fit is 0.4 pm. This is an order 

of magnitude smaller than machining tolerances. In fact, the skin depth for pure 

copper at 11.424 GHz is 
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which is larger than the estimated error for b. If the cell diameter 2b must be known 
to better than a micron then the finite conductivity of the walls must be taken into 
account. 

6.2. Dipole Modes 

In order to reduce the effect of wakefields it is useful to detune or spread out 
the frequencies of the undesired modes[28]. A g aussian distribution of the modes 
leads to very good cancellation of the wakefield effects. The wakefield decoheres in 
a time comparable to the reciprocal of the width of the frequency distribution of 
the modes. 

The largest contribution to the wakefield comes from the lowest band of dipole 
modes. Higher dipole modes have less effect and can be effectively detuned by 
varying the disk thickness t along the structure such that the distribution of thick- 
nesses is nearly gaussian[29]. The disk thickness t has little effect on the lowest 

dipole mode, so the aperture diameter 2u is varied along the structure such that 
the distribution of lowest synchronous dipole mode frequencies fl is nearly gaus- 

Sian. While the synchronous dipole mode frequencies of the cells are not the same 
as the dipole mode frequencies of the structure, the distributions of the frequencies 
are similar according to equivalent coupled-circuit models of the structure[30). 

A gaussian distribution with rms width 20 = 0.7GHz provides decoherence 

of the wakefield effects by the time the following bunch arrives 1.4ns later. To 
obtain good cancellation of wakefield effects over the whole bunch train, perhaps 
90 bunches, it is necessary to have a good distribution of modes. Beam dynamics 

simulations[31] for the NLC indicate the tolerance for systematic relative frequency 

errors is approximately 10 -*, hence accurate calculations of fl are important for 

the design of detuned accelerator structures. 

The lowest synchronous dipole mode frequency fl was calculated using YAP. 

The cell diameter 2b was fixed using the beam synchronism constraint (6.1), so 

two parameters remain for the dipole mode calculations: 2u and t. Frequencies at 
two phase advances $J close to the synchronous phase and 0.02 radians apart were 

computed for 15 cells. Calculations on three successively refined meshes were ex- 
trapolated to zero mesh size, with conservative error estimates ranging from 120 kHz 

for large t cases to 400 kHz for small t cases. Then the lowest synchronous dipole 

mode frequency and phase advance were obtained using linear interpolation. An 

estimate of the group velocity of the lowest synchronous dipole mode was also ob- 

tained by computing the differences of the frequencies at the two phase advances. 
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Figure 6.5: The lowest synchronous dipole mode frequency fi (in GHz). The cell diame- 
ter 2b is determined from the synchronism condition. The open circles are the dimensions 
at which fi was computed. The dots are the 206 cells of the detuned accelerator structure. 
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Figure 6.6: Group velocity VJ/C for the lowest synchronous dipole mode. The cell diame- 
ter 2b is determined from the synchronism condition. The open circles are the dimensions 

at which fi was computed. The dots are the 206 cells of the detuned accelerator structure. 

The frequencies were fit to a polynomial quadratic in 2u and t. The estimated error 

of the fit is 600 kHz. The fit is shown in figure 6.5 and is expected to be good only 

near the region encompassed by the 15 calculated points. A similar fit for the group 
velocity is shown in figure 6.6. The calculated points are shown as open circles in 

the two figures. 

The gaussian distributions for t and fl for 206 cells were truncated at f2a. The 

range of the disk thickness t was chosen to be 0.1 cm to 0.2 cm. This is sufficient to 

specify t for all cells. The relative range of fl was chosen to be 10.1%. With this 

information only one free parameter for the whole structure remains. In practice 

the parameter was the aperture diameter 2u of the first cell, but the average lowest 

synchronous dipole mode frequency is also a viable free parameter. In either case 
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the free parameter determines fi for each cell. Given fl and t for a cell the aper- 
ture diameter 2u was found using the quadratic polynomial approximation to the 

lowest synchronous dipole mode frequency. Then the cell diameter 2b was obtained 
from 2u, t and the synchronism constraint (6.1). Note that cell-to-cell variation of 
the transverse kick factor, which represents the strength of the transverse wakefield, 
has not been included in this design procedure. 

6.3. Structure RF Parameters 

RF parameters like the shunt impedance, quality factor Q, group velocity % and 
peak surface field to accelerating gradient ratio E,,,,/&,, were computed for the 
accelerating mode by SUPERFISH for a few of the cells. While the code calculates 
RF parameters for periodic structures, the calculations are still valid locally for 
the detuned structure since the cell dimensions vary slowly. A polynomial fit was 
used to obtain the RF parameters for the remaining cells. The filling time of the 

structure was computed from 

J 

1.8m dz 
Tf=o - 

%A& 
VW 

The free parameter (e.g., the aperture diameter 2u of the first cell) of the structure 
was varied to achieve Tf = 100 nsec. The corresponding cell dimensions are plotted 
in the contour plots like figures 6.3 and 6.5. 

Dispersion curves for the two lowest dipole modes of three cells (first, middle 

and last) of the structure were computed using YAP and are shown in figure 6.7. 
All modes up to 50 GHz are shown in figure 6.8. 

The accelerating gradient along the length of the structure was computed[32] 

by first finding the attenuation r(z) along the structure, 

(6.6) 

where w = 27rf0 is the angular frequency. Then the power flow P(z) in the structure 

is 
P(Z) = Pine-2T(‘) (6.7) 

and the accelerating gradient is 

where r(z) is the shunt impedance per unit length. The gradient is shown in fig- 

ure 6.9 along with gradients for a conventional constant gradient structure and a 
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Figure 6.7: Dispersion diagram for the two lowest dipole modes of three different cells of 
the structure. The dashed line is the first (input) cell, the dotted line is the middle cell 
and the solid line is the last (output) cell. The dot-dash line is the velocity of light line. 

constant impedance structure. All three structures in figure 6.9 have the same 

attenuation constant 7. 
It is noteworthy that the peak surface field Es,max on the disk edges varies 

little along the structure as shown in figure 6.10. The first cell has a thin disk 
and large aperture, so ES,max/E,C is high (2 3) but E,,, is small due to the low 
shunt impedance and high group velocity. For the last cell the situation is just the 
opposite. Other RF parameters are listed in table 6.1. 
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Figure 6.8: Dispersion diagram for the dipole modes of three different cells of the struct 
The dashed line is the first (input) cell, the dotted line is the middle cell and the solid 
is the last (output) cell. The dot-dash line is the velocity of light line. 
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Figure 6.9: Accelerating gradient along the length of the structure for 100MW input power 
and various structure types. 
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Figure 6.10: Peak surface gradient along the length of the detuned accelerator structure 
for 100MW input power. 
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Section length 1.8m 
Phase advance per ceII 2~/3 radians 
Iris aperture: 

radius 5.72-3.91 mm 
normalized radius 0.218X-0.149A 

Group velocity O.lZc-0.03~ 
Filling time 100 ns 
Unloaded time constant 207-186 ns 
Attenuation constant 0.517 nepers 
Shunt impedance 67.5-88.0 MR/m 
Elastance 853-946 V/PC/m 
For 50 MV/m average gradient: 

Peak input power/(l.8 m) 48.1 MW/m 
Peak power per feed 86.5 MW 
Average power dissipation 

for 250 ns pulses, 180 pps 1.4 kW/m 

Table 6.1: Structure RF parameters. 

‘_ 
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Chapter 7 

90” Overmoded Circular Waveguide Bend 

Some designs for the Next Linear Collider (NLC) transmit power from the source 
(a klystron or the output of a pulse compressor) to the accelerator structure in the 
TEor mode of overmoded circular waveguide in order to have small transmission 
loss. The waveguide run from the source to the accelerator includes some 90” bends. 

Ideally these bends would be loss-less. 

In collaboration[33] with Norman Kroll and Chris Nantista, a design algorithm 
and some results for one type of overmoded waveguide bend were found. A curved 
section of waveguide connects two straight sections as shown in figure 7.la. The 

curvature in the bend is constant so the waveguide follows a 90” arc with radius of 
curvature pc between the two straight sections. The cross-section of the waveguide is 

uniform throughout the curved section, but the cross-section is not simply a circle. 

The cross-section and radius of curvature pc will be chosen so that the incoming 
wave propagates through the curved section with negligible mode conversion. This 
is the principal form of loss considered here. Reflection and wall losses are only 

considered heuristically. The straight sections are adiabatic tapers from and to 

circular waveguide. 

7.1. Modes in Curved Guide 

A curved guide can be treated as a portion of a cylindrically symmetric struc- 

ture. For the 90” bend the structure starts at $ = 0 and ends at 4 = 7r/2. The fields 
in the waveguide can be decomposed into modes with azimuthal dependence eim+. 

In the axisymmetric waveguide paradigm the waves propagate along 4 with propa- 
gation constant m. Compare this with the phase e ‘P* for waves propagating along 2 

with propagation constant /3 in straight waveguides. The curved guide does not 

close on itself so there is no requirement that m be an integer. 

The finite element field solver YAP is capable of computing the frequencies of 

the modes of a&symmetric structures for any real m. Non-integral m is allowed. 
YAP was used to compute dispersion diagrams for curved guide with various cross- 

sections. One such dispersion diagram is shown in figure 7.2. A dispersion diagram 

for curved guide looks similar to dispersion diagrams for straight guide. However, 
the simple dispersion formula w2/c2 = kz + p2 f or a straight waveguide containing 

no media does not apply to curved guide. This can be seen best in figure 7.2, where 
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Figure 7.1: Outer geometry (a) and cross-section 

dashed line is a symmetry plane. 
(b) of the bend. The cross-section’s 

m2 /pz (cmV2) 

Figure 7.2: Dispersion diagram of the curved guide for the first design listed in table 7.1. 
The dashed Iine is the drive frequency 11.424GHz. The dotted line corresponds to the 
speed of light along the center of the guide. 

the dispersion curves are not parallel lines. A power series of the form 

g = rc,2 + a~(;)~ + c~~(;)~ +. . . (7.1) 

approximates the dispersion curves well. The cutoff kz and the coefficients oi de- 
pend on pc and on the cross-section CI of the guide. When pc is large then oq 2 1 

and the cutoffs kz are approximately the same between straight and curved guide 

with the same cross-section. 

7.2. Scattering at the Interface 

There is potentially some reflection at the interface between the straight waveg- 

uide and the curved waveguide. A generalized scattering matrix S; for the propa- 
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gating modes in the straight and curved guides can be constructed. 
As an example, the scattering matrix for the straight-to-curved interface in 

an overmoded rectangular H-plane waveguide bend was computed using a mode- 
matching method. Only TE,o modes were considered so the fields are uniform ver- 
tically. In the straight guide propagating along y the modes are E, cx sin(27rnz/w) 
where 0 5 x < w is the horizontal domain of the waveguide. In the curved guide 

the modes involve Bessel functions. They are IT, cx AJm(kp) + BYm(kp) where 

pc - w/2 2 p 5 pc + w/2 and k = w/c is the drive frequency. Note that m is real 
for propagating modes and imaginary for evanescent modes. 

The boundary conditions E, = 0 at p = pc f w/2 yield a characteristic equation 
for the propagation constants m. Solutions were obtained by numerically integrating 
Bessel’s equations and using a shooting method to match the boundary conditions. 

This yielded numerical values for m2 for both propagating (m2 > 0) and evanescent 
(m2 < 0) modes. The field E, for each mode was obtained similarly. 

The normalized generalized scattering matrix Si was computed for an example 

with w/X = 1.36 and pc/X = 3.87, where A is the free space wavelength. There are 
two propagating modes in the guides. Using 14 modes for the field expansion on 

each side of the interface, the computed scattering matrix for the interface is 

i 

4.10-5@ 8.10-4L=2p 0.982 0.190 
s. = 8.10-4@ 8.10-4/-12f -0.190 0.982 

1 0.982 -0.190 3.10-*&0 8.lO-4L-4p 1 V-2) 
0.190 0.982 8.lO-4&f 6.lO-4m 

where [as1 , ~2, ~1, w2]T is the incoming wave vector. The wave amplitudes usn 

and ucn are for the modes in the straight and curved guides, respectively. 

Notice that the reflection amplitude is less than 10m3. If one assumes the reflec- 

tions are similar for bends with different cross-sections but similar curvature, then 

reflection at the straight-to-curved interface can be neglected. The reflected power 
will be negligible as long as resonances are avoided. The principal concern, then, is 

mode conversion. 

7.3. Around the Bend 

The scattering matrix Sb for a bend over angle &, can be easily computed 

given Si for the straight-to-curved interface and the propagation constants ml 

and rn2 for the two propagating modes in the curved guide. The example above 

has ml = 22.85 and mz = 16.18. The next mode is evanescent with mg = i11.38. 
The transmission coefficient ~2f,lf for the (straight guide) fundamental mode for 
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various bend angles &, was computed. This is shown in figure 7.3. At &, = 

W(ml - m2) = 0.941 the transmission is nearly perfect. At this bend angle the two 
propagating waves in the curved guide arrive at the output end of the bend with 
the same relative phases they had at the input end of the bend. The propagating 
field at the output is the same as at the input except for an overall phase, so waves 
are faithfully transmitted through the bend with no mode conversion. 

1 

0.99 

0.98 

.+ 0.97 
1 
i? 0.96 

0.95 

0.94 

0.93 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 
& (radians) 

Figure 7.3: ‘Ikansmission of the fundamental mode through a rectangular waveguide 
over angle &,. Loss is due to conversion into higher modes. 

bend 

The evanescent waves at the interfaces have decayed sufficiently in the curved 
guide so that they can be neglected in the transmission calculations for $b = 0.941. 

This example leads to the principal design criterion for this type of overmoded 
waveguide bend: the phases erni+b must be identical for all modes propagating in 

the curved guide. In addition, evanescent modes should be sufficiently above cutoff 

so that they decay well over the length of the bend, and thus can be neglected. 

7.4. 90” Bend Design 

Designs for a 90” bend with a cross-section as shown in figure 7.lb were com- 
puted. The phases e mi?r/2 for the five lowest propagating modes excited by the 

incoming wave can be fixed relative to each other by adjusting the four parame- 
ters: d, pc, I and w. Propagating modes not excited by the incoming wave (due to 

symmetry) are neglected. Dispersion diagrams were computed using YAP and the 

bend parameters were adjusted so that the phases were the same. This corresponds 

to the propagation constants m; differing from one another by multiples of 4. The 

cutoff (m = 0) frequencies of higher order modes were computed in order to discard 
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90” Overmoded Waveguide Bends 

t. 
P 

d(cm) 1 (cm) w (cm) pc (cm) ml m2 77~ m4 m5 fc6 @HZ) 
4.372 0.986 0.465 31.786 72.873 60.873 56.873 52.873 28.874 11.536 
4.275 0.971 0.611 36.655 83.867 67.867 63.867 59.867 23.868 11.819 
4.358 1.054 0.593 38.754 89.034 73.034 69.034 65.034 25.033 11.579 
3.940 0.765 0.476 23.891 53.870 41.870 37.870 33.870 9.871 12.726 
4.157 0.904 0.622 33.894 77.212 61.212 57.212 53.212 17.213 12.163 

Table 7.1: Dimensions and propagation constants for various bend designs. The cutoff 
frequency for the sixth mode is also listed. 
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Figure 7.4: Electric field patterns for the five propagating modes of the first design in 
table 7.1. 

designs with more than five propagating modes at 11.424 GHz. Table 7.1 lists the 
parameters for five solutions. It also lists the propagation constants for the five 

lowest modes and the cutoff frequency fd for the sixth lowest mode. 

The cross-section in figure 7.1 and the dispersion diagrams in figure 7.2 corre- 

spond to the first design in table 7.1. The field patterns for the propagating modes 
are shown in figure 7.4. At cutoff the field patterns for the modes in curved guide 

are similar to the corresponding modes in straight guide, but for large m the second 
and third modes are mixed. This is evident in the field plots and in the disper- 

sion diagram, where it appears that the second and third curves are repelling each 
other. These modes arise, with the introduction of the septa, from the TEzl and 
TE31 modes of circular guide. The incoming wave is similar to the fourth mode, 

which is a TEur-like mode. 

The cutoff frequency for the sixth mode of the first design appears close to cutoff. 

The estimated propagation constant using the straight guide formula is mg Z i10.7 

and the decay amplitude over the length of the waveguide is eirn6*12 = 5 x 10e8. 
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This decay is satisfactory. 

7.5. Further Work 

Further designs can be found, perhaps with smaller radii of curvature and 
shorter septa so that the bend will have smaller wall losses and be easier to manu- 
facture. 

A variation of the YAP field solver wilI compute the evanescent modes in curved 
guide. With these modes a mode-matching algorithm can be employed to calculate 
the scattering matrix Si for the straight-to-curved guide interface, and then verify 
that reflections are negligible and that the design criterion is appropriate. 

Calculation of the wall losses through the bend and mode-conversion losses (due 
to manufacturing errors) also requires knowledge of Si in order to obtain the mode 
amplitudes in the bend as well as the evanescent fields near the interface. 
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Chapter 8 
Conclusion 

The finite element method has been successfully applied to the electromagnetic 

eigenmode problem in axisymmetric structures. Very accurate frequencies are now 

available for the multipole modes of z&symmetric structures. 
Similar finite element methods can and should be applied to three-dimensional 

problems. Also, these finite elements should be applied to other electromagnetic 
problems, such as the driven (inhomogenous) cavity problems, time domain simu- 
lations, and scattering matrix problems. 
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Appendix A 
Implementation of YAP 

The finite element formulations described in this thesis have been implemented 
in a set of codes collectively called YAP. There is a set of codes on the SLAC 
IBM/VM mainframe which implement the planar and m = 0 formulations. There 
is a separate set of codes on a NeXTstation which implement the m # 0 formulation. 
The two sets of codes have different input formats which are not compatible with 
each other. 

A note of caution to the potential YAP user: while this implementation is 
excellent for delivering accurate mode frequencies, it is still far from an ideal field 
solver. There are few post-processing capabilities, generating input files is tedious, 
and the algebraic eigenvalue solver is not optimal. The user of this implementation 
has my sympathy, because it is not user friendly. It is not easy. You have been 

warned! It is my sincere hope that this implementation is not final, and that more 

convenient implementations will arise. 

A.l. Planar and Monopole Formulations 

The two programs which constitute YAP on the IBM/VM mainframe are writ- 
ten in C. The first program is a mesh generator. The second program is the field 
solver. The relationship between these two programs and selected files and input 
parameters is shown in figure A.l. 

A.l.l. Mesh Generator and Boundary Model Input Format 

The mesh generator is called mgl. It constructs a mesh composed of quadratic 
triangular elements given a boundary model and a desired element size. The actual 
size of the elements in the output mesh is, of course, only approximately the desired 

element size. 
The boundary model specifies the geometry and physical dimensions of the 

problem. The boundary model specifies if the structure is planar or axisymmetric. 

It does not specify anything concerning electromagnetic fields. 
In the boundary model, the interior of the structure is covered by one or more 

regions~ In principle, different physical properties (e.g., dielectric constant) could be 
associated with different regions. However, at this time YAP only employs regions 

for computational reasons: different element sizes can be specified for different 

regions. 
Each region is bounded by one or more closed curves called loops. A region 

has one outer loop and zero or more inner loops. Inner loops are used to describe 
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Finite element mesh: 
mgl.yap2h 

f Mode parameters: ’ 
TEYTM, phase 

advance, symmetry 

v 
Field solver: 4 

y2d 

Eigenvalue solver 
, parameters, including 

Graphics parameters 

Textual output, 
including frequencies: 

y2. out 

Graphics output: 
y2.seq4010 
y2.imgn300 

Figure A.l: Relationship between programs, files and input parameters for the YAP im- 
plementation of the planar and m = 0 formulations. Programs and files are on the left, 

input parameters are on the right. 

holes in a region. A loop is an ordered list of curve segments called halfedges. Each 

halfedge represents the portion of the loop between two points called nodes. The 

halfedges of an outer loop are listed in counterclockwise order, while the halfedges 

of an inner loop are listed in clockwise order. 

Curve segments are also called edges. In this boundary model an edge is an 

object with two sides. If the edge is a boundary between two regions, then the 

edge is composed of two halfedges, one from each of the two adjacent regions. 

Other edges are composed of a single halfedge (from the adjacent region) and a 

boundary specification. The boundary specification may be a metal boundary, an 

axis boundary, a symmetry boundary or a periodic boundary. A curve segment 

between two nodes may be either a straight line or an arc of a circle. 
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boundMode 

nodeList 

heList 

edgeList 

bndtype 

boundary 

CurVParam 
direct 

loopList 

i boundMode nodeList 
I boundMode heList 
I boundMode edgeList 
1 boundMode loopList 
1 boundMode regionList 
I boundMode defDimStat 
I boundMode spaceDesc 
: NODES 
I nodeList INTEGER length length 
I nodeList defDimStat 
: HALFEDGES 
I heList INTEGER INTEGER INTEGER 
: EDGES 
I edgeList INTEGER boundary boundary 
I edgeList INTEGER boundary boundary curvparam 
I edgeList defDimStat 
: METAL 
1 SYMMETRY 
I PERIODIC 
I AXIS 
: INTEGER 
I bndtype 
I bndtype ( INTEGER 1 
I bndtype ( INTEGER INTEGER ) 
: CIRCLE ( direct length length ) 
: DIRECTCW 
I DIRECTCCW 
: LOOPS 
I loopList INTEGER INTEGER INTEGER 

regionList : REGIONS 
I regionList INTEGER INTEGER 

spaceDesc : XY I PLANAR 
1 RZ I AXISYMMETRIC I CYLINDRICAL 

defDimStat : DIMENSION dimension 
dimension : MILS 

1 INCHES 
I MILLIMETERS I MM 
1 CENTIMETERS 1 CM 
1 METERS 

length : real 
I real dimension 

real : REAL 
1 INTEGER 

Figure A.2: Boundary model grammar in a format similar to the format for the YAW 
parser generator. Uppercase words are terminal symbols. Except for INTEGER and REAL, 

the terminal symbols are literal. 
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The first line of the boundary model file is always a title line. The remaining 

lines follow the grammar listed in figure A.2. Selected parts of the grammar are 
described in detail below. An example of a boundary model is shown in figure A.3. 

Comments are allowed in the boundary model. Comments start with “/*” and 
end with “*/“, and they may span multiple lines. 

The first token in figure A.2 represents the entire boundary model: 
boundMode : 

I boundMode nodeList 
I boundMode heList 
I boundMode edgeList 
I boundMode loopList 
I boundMode regionList 
I boundMode defDimStat 
I boundMode spaceDesc 

The boundary model is composed of node lists, halfedge lists, edge lists, loop lists 

and region lists. It may also include statements specifying the default units for node 
coordinates and the geometry: planar or axisymmetric. There is no fixed order for 
these lists and statements. There must be at least one of each type of list. There 

may be more than one of a type of list. 
A region list is: 

regionList : REGIONS 
I regionList INTEGER INTEGER 

The keyword REGIONS is followed by pairs of integers: one pair for each region in 
the list. The first integer is a unique region index assigned by the user. The second 
integer is the index of the outer loop of the region. The inner loops of the region 

are found by following a linked list of loops. The example in figure A.3 has two 

regions, labelled 1 and 2. 
A loop list is: 

loopList : LOOPS 
I loopList INTEGER INTEGER INTEGER 

The keyword LOOPS is followed by triplets of integers: one triplet per loop in the list. 

The first integer is a unique loop index assigned by the user. The second integer is 

any index of a halfedge in the loop. Other halfedges in the loop can be found by 
following the linked list of halfedges. 

The third integer of a loop specification is the index of the next loop of the 
region. Recall that a region with one or more holes requires at least two loops: an 

outer loop and one or more inner loops. The purpose of this index is to form linked 

lists of loops: one for each region. The head of a linked list is the outer loop of a 

region. The remaining loops of a linked list are inner loops. The order of the inner 

loops is not important. The last loop in the linked list points to the outer loop. 
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c 

If a region, has only one loop then the next loop of the region is the same as the 

first loop of the region. That is, the first and third integers of the triplet will be 

identical. This is what occurs in the two regions of the example in figure A.3. Each 

of the two regions in the example has only one loop. 
A halfedge list is: 

heList : HALFEDGES 
1 heList INTEGER INTEGER INTEGER 

The keyword HALFEDGES is followed by triplets of integers: one triplet per halfedge. 
The first integer is a unique halfedge index assigned by the user. The second integer 

is the index of the node from which the halfedge starts. Recall that halfedges 
represent curve segments between two nodes, and that loops, and hence halfedges, 
are traversed counterclockwise for outer loops and clockwise for inner loops. Only 
the starting node of the halfedge is specified. The ending node of a halfedge is the 
starting node of the next halfedge of the loop. The third integer is the index of the 
next halfedge in the loop. The purpose of the third index is to form linked lists of 

halfedges: one list per loop. The order of halfedges in the linked list is important. 
In the example in figure A.3, there are 10 halfedges: 6 in the first loop and 4 in the 
second loop. 

A node list is: 
nodeList : NODES 

1 nodeList INTEGER length length 
1 nodeList defDimStat 

The keyword NODES is followed by triplets: one triplet per node. The first component 
of the triplet is an integer. It is a unique node index assigned by the user. The last 
two components are the coordinates of the node: either z followed by y or z followed 
by p. Each component may include units (e.g., INCHES). If no unit is specified then 

the default unit is assumed. This default unit may be changed in the middle of the 

list, between triplets. The example in figure A.3 has 8 nodes. 
An edge list is: 

edgeList : EDGES 
I edgeList INTEGER boundary boundary 
I edgeList INTEGER boundary boundary curvParam 
I edgeList defDimStat 

The keyword EDGES is followed by edges. Each edge starts with an unique integer 
index assigned by the user, followed by two side specifications: one for each side 

of the edge. The first side specification is the left side of the edge, the second side 

specification is the right side of the edge. Left and right are only important when 
the edge has an optional curve or if the edge is a periodic boundary. The side 

specification may be the index of a halfedge. It may also be one of the boundary 
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conditions described below. There are 9 edges in the example in figure A.3. 

Each edge optionally has a curve specification. If there is no curve specification 
for the edge, then the edge is a straight line between the start and end nodes. The 

only alternative curve specification available at this time is an arc of a circle between 
the start and end nodes. A curve specification has the form 

CurVParam : CIRCLE ( direct length length 1 
direct : cw 

I ccw 

That is, it is the keyword CIRCLE followed by a triplet in parenthesis. The last 
two components of the triplet are the center of the circle. The first component is 

one of the keywords CW or CCW, indicating the circle is to be traversed clockwise or 
counterclockwise between the start and end nodes of the edge. Four of the edges in 
the example in figure A.3 have curve specifications. 

Note that the halfedges associated with an edge determine the start and end 

nodes of the edge. The start node of the edge is the start node of the left halfedge 
or the end node of the right halfedge. 

A boundary specification is: 
bndtype : METAL 

I SYMMETRY 
1 PERIODIC 
I AXIS 

boundary : INTEGER 
I bndtype 
1 bndtype ( INTEGER ) 
I bndtype ( INTEGER INTEGER ) 

There are four types of boundaries. A boundary specification starts with one of the 

keywords METAL, SYMMETRY,PERIODIC or AXIS. 
Metal and symmetry boundaries optionally have a positive integer index. This 

index is enclosed in parenthesis. The index for metal boundaries has no practical 

effect in this implementation, but an electrostatic field solver would find distinctions 
between metal boundaries useful. The metal boundaries in the example in figure A.3 

are divided into two groups: one for the cathode and one for the anode. 

The index for symmetry boundaries is used to assign the boundary to distinct 

symmetry planes. Up to four different symmetry planes, labelled 1 through 4, are 

allowed. Symmetry plane 1 is the default. Note that the symmetry boundary does 

not specify the symmetry of the fields in the field solver. It only specifies that the 
structure itself is symmetric and that this boundary is on a symmetry plane. 

Periodic boundaries are followed by two integers in parenthesis. The first integer 

is the index of the edge one period away from this edge. Note the edge one period 
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away must also refer to this edge in a similar manner, The second integer is a flag 

holding two bits of information. The default flag is 0. Up to two periodicities are 
allowed, hence the boundary model can represent a two-dimensional lattice. Add 1 
to the flag if this periodic boundary belongs to the second periodicity instead of 
the first periodicity. The second bit of information indicates the direction of the 
periodicity’s rigid motion. Of two edges one period away from each other, the first 
edge is mapped to the second by the rigid motion. The second edge is mapped to 

the first by the inverse of the rigid motion. Add 2 to the flag if this edge is the 

second edge. 

The programs say the second edge is on the “positive” side of the periodic 

boundary. The corresponding first edge is on the “negative” side of the periodic 
boundary. In terms of the notation used in this thesis, the second edge is on the 
“right” periodic boundary, while the first edge is on the “left” periodic boundary. 

Note that the halfedge associated with the edge determines the start and end 
nodes of the edge. The start node of the edge is the start node of the left hslfedge 
or the end node of the right halfedge. The rigid motion maps the start node of 
the first edge to the start node of the second edge, and the end node of the first 
edge to the end node of the second edge. Careless ordering of the halfedge and the 
periodic boundary in the edge will lead to an undesired reflection in the rigid motion. 
The example in figure A.3 shows the common ordering for periodic boundaries. In 

edge 2 the periodic boundary is the right side of the edge, while in edge 9 the 
periodic boundary is the left side of the edge. 

A default unit specification is: 

defDimStat : DIMENSION dimension 
dimension : MILS 

t INCHES 
I MILLIMETERS I MM 
i CENTIMETERS I CM 
I METERS 

Specifying the default unit affects the interpretation of the coordinates which appear 

later in the file. It does not affect coordinates appearing before the default unit 
specification. Note that the default unit is overridden for a coordinate if a unit is 

specified for that coordinate. Initially the default unit is centimeters. The mesh 
generator converts coordinates to centimeters and internally stores the coordinates 

in centimeters. The second line of example in figure A.3 sets the default unit to 

mils. 
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CFA hole+slot circuit w/exaggerated curvature 
DIMENSION MILS 
NODES /* (node number) (x coordinate) (y coordinate) */ 
1 -79.87 -4.00 
2 79.87 -4.00 
3 92.35 120.38 
4 35.00 124.34 
5 -35.00 124.34 
6 -92.35 120.38 
7 35.00 188.22 
8 -35.00 188.22 
HALFEDGES /* (halfedge number) (start node) (next halfedge of loop) */ 

1 1 2 /* Interaction region. */ 
22 3 
33 4 
44 5 
55 6 
66 1 
7 5 8 /* Hole and slot. */ 
84 9 
9 7 10 

108 7 
EDGES /* (edge number) (left halfedge/bound) (right halfedge/bound) */ 

1 1 METAL(l) CIRCLE(CW 0.0 -800.0) 
2 2 PERIODIC(9 2) 
3 3 METAL(2) CIRCLE(CCW 0.0 -800.0) 
4 47 
5 5 METAL(2) CIRCLE(CCW 0.0 -800.0) 
6 10 METAL(2) 
7 8 METAL(2) 
8 9 METAL(2) CIRCLE(CCW 0.0 240.0) 
9 PERIODIC(2 0) 6 

LOOPS /* (loop number) (a halfedge) (next loop of region) */ 
111 
2 9 2 

REGIONS /* (region number) (outer loop) */ 
1 1 /* Interaction region. */ 
2 2 /* Hole and slot. */ 

Figure A.3: An example of a boundary model. The three figures show the nodes (left), 
halfedges (middle), loops and regions (right). The halfedge arrows point to the next 

halfedgeoftheloop. 
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A geometry specification is: 
spaceDesc : XY I PLANAR 

1 RZ I AXISYMMETRIC I CYLINDRICAL 

The default geometry is planar. The only alternative is axisymmetric, which may be 
specified by including any of the three keywords RZ, AXISYMMETRIC or CYLINDRICAL 
in the boundary model file. 

To run the mesh generator, type the command 

mgl boundary-model-file element-size 

where boundaq-model-file is the filename of the boundary model. The filetype is 

mg. The parameter element-size gives the desired element size in centimeters. If 
element-size is zero, then the mesh generator prompts for the element size along 
each edge and in each region of the boundary model. Hence the mesh may be 
made finer in some regions and coarser in others. The output mesh is mgl . yap2h. 
Additional output files provide diagnostic listings and some graphics which may be 
used to check the boundary model and the mesh. 

In brief, the mesh generation algorithm first generates a mesh of linear trian- 

gular elements. Midside nodes are added to the elements to generate a quadratic 
triangular mesh. Care is taken with element sides on curved boundaries to ensure 
the midside node is on the curved boundary. 

The linear triangular mesh generation algorithm[38] first approximates the edges 

of the boundary model by a series of nodes connected by line segments. Each line 
segment corresponds to a side of one element of the finite element mesh. The mesh 

is built region by region. -For each region a list of nodes is constructed in the 
interior of the region. The spacing between the nodes is approximately the desired 

element size. The algorithm for constructing the interior node list is described 

below. The elements are constructed by starting with a line segment on the region 
boundary. The interior and boundary nodes are searched to find a good third 

corner for a linear triangular element. The other two corners of the triangle are 

the two boundary nodes at the ends of the line segment on the boundary. This 

element is removed from the region, and the process is repeated with another line 

segment on the boundary of the reduced region. This repeats until the whole region 
has been triangulated. There are, of course, many cases to handle. For example, 

removing a triangular element from the region occassionally splits the region into 

two subregions. Then the triangulation of one subregion continues. When this 
subregion is done then triangulation starts on the second subregion. 

The interior nodes of a region are generated on horizontal (constant y or p) lines 
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title 

nodes elements qp-nodes-l qp-nodes-2 corner-elements flags 

il x1 Yl fl 
i2 x2 Y2 f2 

1 

nodes 
. . . . . . . . . . . . 

il nl,l n2,1 n3,1 n4,1 n5,l n6,l Sl,l S2,l S3,l 
i2 n1,2 n2,2 n3,2 n4,2 n5,2 n6,2 s1,2 s2,2 s3,2 

1 

elements 
. . . . . . . . . . . . . 

nR1 nL1 

nR2 nL2 

i 1 

qp-1 nodes 
. . 

nR1 m 
nR2 x2 

i 1 

qp-2 nodes 
. 
. 

el 01 
e2 P2 

? 

sharp corner elements 
. . . . . . 

Figure A.4: Format of the finite element mesh file mgl .yap2h. 

between the top and bottom limits of the region. The spacing between these lines is 
approximately the desired element size. The intersections between each horizontal 
line and the boundary (as approximated by line segments) is found. A list of 
horizontal line segments is built. The list represents the portion of the horizontal 
lines in the interior of the region. For each horizontal line segment, interior nodes are 
placed equidistantly between the left and right ends of the segment. The horizontal 
spacing of the nodes is approximately the desired element size. 

A.1.2. Finite Element Mesh File Format 

The format of the file mgl . yap2h is shown in figure A.4. The first line of the 

file is the title line. The following line lists the number of nodes, the number of 

elements, the number of nodes on the right side of the first periodic boundary, the 
number of nodes on the right side of the second periodic boundary, the number 
of elements touching a sharp corner and a flag. The flag is 1 if the structure is 
axisymmetric. 

The list of nodes follows. For each node, a node index i, the two coordinates x 

and y, and a node flag j are listed. The node coordinates are in centimeters. The 
flag is hexadecimal and indicates which boundary, if any, the node lies on. The flags 

are listed in table A.l. Note that flags may lie on more than one boundary. 
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Table A.l: Node boun 

boundary 
metal boundary 
right side of first periodic boundary 
right side of second periodic boundary 
axis boundary 
first symmetry boundary 
second symmetry boundary 
third symmetry boundary 
fourth svmmetrv boundarv 

try flags in mgl .yap2h. 

flag boundary 
-1 metal boundary 
-2 right side of first periodic boundary 
-3 right side of second periodic boundary 
-4 axis boundary 
-5 first symmetry boundary 
-6 second symmetry boundary 
-7 third symmetry boundary 
-8 fourth symmetry boundary 
-9 left side of first periodic boundary 

-10 left side of second periodic boundary 

Table A.2: Side boundary flags in mgl .yap2h. 

Following the list of nodes is the list of elements. For each element an element 
index i, six node indices nl through n(j, and three boundary/side indices sr through 
s3 are listed. If an element side is adjacent to another element, then the bound- 
ary/side index for the side is the (positive) index of the adjacent element. If a side is 

on the boundary then the boundary/side index is a negative number indicating the 

appropriate boundary condition. These negative numbers are listed in table A.2. 

Following the list of elements is a list of pairs of node indices for the two periodic 
boundaries. The first node index nR is a node on the right periodic boundary and 

the second node index nL is the corresponding node on the left periodic boundary. 

The nodes on the first periodic boundary are listed first, followed by the nodes 
on the second periodic boundary. These lists will be empty if the structure is not 

periodic. 

Following the periodic boundary node lists is a list of elements touching sharp 

corners. For each element touching a sharp corner the element index e and the 

angle ,B of the associated sharp corner is listed. This list will be missing if there are 
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e=<target> target eigenvalue (cmS2> (default is 0). 
i=<fn> specifies input filename. 
k=<plotflag> plot flag (hexadecimal). 

0x8000 graphics output for IMAGEY (default is Tek 4010). 
0x0008 time snapshots of complex field. 
0x0004 real field. 
0x0002 elements of mesh. 
0x0001 boundary of mesh. 

l=<listflag> listing flag (hexadecimal). 
0x8000 mesh size parameters. 
0x0020 execution times of field solver. 
0x0010 nearest eigenvalue estimate. 
0x0008 high eigenvalue estimate. 
0x0004 sparse matrices (with encoded b.c. ‘s) . 
0x0002 equation numbers <-> node index. 
0x0001 number of equations. 

m=<modeflag> mode/boundary flag (hexadecimal). 
0x8000 force use of complex field solver. 
0x4000 suppress use of corner elements. 
0x2000 suppress all field-solving. 
0x1000 use conjugate gradient matrix solver (default ma28). 
0x0010 symmetry plane 4 is dirichlet (0). 
0x0008 symmetry plane 3 is dirichlet (0). 
0x0004 symmetry plane 2 is dirichlet (0). 
0x0002 symmetry plane 1 is dirichlet (0). 
0x0001 solve for TE mode (TM is default). 

p=<phasel> phase advance of 1st quasi-periodic boundary (degrees). 
q=<phase2> phase advance of 2nd quasi-periodic boundary (degrees). 
t=<nitol> numerical integration tolerance for corners (default le-4). 
w=<phases> list of phases “omega tee I’ for time snapshots of complex 

fields. The list is comma delimited with no spaces between 
the phases, and may contain up to 8 phases (degrees). 

Figure A.5: Command line options for field solver y2d, from the online help file. 

no sharp corners in the structure. 

A.1.3. Field Solver 

The finite element field solver is called y2d. The field solver reads a mesh 
file like mgl . yap2h and obtains all other parameters from the command line. The 

parameters are listed in figure A.5. The command line 

y2d i=mgl 1=8039 k=8 m=4000 p=l20.0 w=O,45,90,135 

is an example invoking the field solver. Note that the flags for the desired options are 

added together. The listing flag 1=8039 indicates the user wants the output listing 

to include mesh size parameters, execution times, nearest eigenvalue estimate, high 

eigenvalue estimate and the number of equations. The flag indicates the user does 

not want, for example, a listing of the sparse matrices. 

Given the desired mode type (TE vs TM) and boundary conditions, the field 
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solver loops over the nodes of the mesh, assigning an index to each node whose 

global basis function is appropriate for the problem. For example, a node on a 

metal boundary of a TM mode problem would not be assigned a global basis function 
index. Special indices are assigned to nodes without their own global basis function. 
Note that some of these nodes involve quasi-periodic boundary conditions, and the 
special indices reflect this. 

The number of global basis functions M is known after this process. The coeffi- 
cients of the global basis functions in the solution will be complex if complex fields 

are needed. 
The global matrices A and B of order M are initialized. These matrices are 

stored as symmetric sparse matrices. The components of the stored matrices are 
real. A flag stored with each component of the matrices indicates the quasi-periodic 
phase factor associated with the component, if any. This allows the phase advances 
to be changed easily when computing dispersion diagrams of periodic structures: 
it is not necessary to compute the matrices A and B from scratch for each phase 

advance. 
The field solver loops over the elements of the problem, computing the two 

element matrices A” and Be, and accumulating the dense element matrices to the 
appropriate components of the sparse global matrices. 

For a given phase advance, the field solver finds an eigenvector x and eigen- 
value X of the generalized algebraic eigenvalue problem Ax = XBx using a shifted 
inverse power method. This is an iterative method. Starting from a trial vector xi, 
the eigenvalue solver computes xi+1 by solving 

(A - J;B)xi+l = Bxi, (A4 
where x is the target eigenvalue. The vectors xi converge to the eigenvector x with 
eigenvalue X closest to the target eigenvalue x. 

Two methods are available to solve the matrix equation at each iteration step. 

One method uses the unsymmetric sparse matrix solver ma28, which is a direct 

method producing a sparse LU factorization for the sparse matrix A - XB. The 

other method uses a conjugate gradient matrix solver, which is an iterative method. 

Both methods work well. The conjugate gradient matrix solver requires less memory 
space, however, so it is used when the matrices become very large. 

A.2. MuItipoIe Mode Formulation 

There are a number of programs which constitute YAP on the NeXTstation. 

Some of the programs are written in Objective-C. Others are written in C++. 
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A.2.1. Mesh Format and Refinement 

There is no mesh generation program in YAP on the NeXTstation. Instead, 

there are programs which refine a finite element mesh. One program, refineAll, 
splits each element of a mesh into four smaller elements. This is called h-refinement. 
Another program, pRefine, converts linear elements to quadratic elements. This 
is called p-refinement. In both programs, care is taken to follow curved boundaries 
well. 

Starting with a coarse mesh, file .lO, composed of linear elements, a series 

of successively refined meshes, file . qn, composed of quadratic elements can be 
constructed. This is illustrated in figure A.6. Examples of unix commands to 
accomplish this are also listed. Notice that the two refinement programs read a 

mesh from the standard input and write a refined mesh to the standard output. 

The finite element mesh files for the programs on the NeXTstation are incompat- 
ible with the programs on VM. A third program, genYaplth, converts a quadratic 

mesh file to a format suitable for the programs on the IBM/VM mainframe. This 

is shown in figure A.7. 

The programs refineAll, pRefine and genYap2h are written in Objective-C, 
which is an object-oriented extension of C. 

The grammar for a finite element mesh file is listed in figure A.8 in a format 
similar to the format required by the parser generator YACC. Selected portions of 
this grammar will be described below. Two examples of finite element meshes are 

listed in figure A.9. 

The first token in figure A.8 represents the entire mesh: 
mesh : 

I mesh title 
1 mesh defaultunit 
I mesh geometryType 
1 mesh nodeList 
I mesh elementList 
I mesh curveList 

A mesh has three types of lists: node lists, element lists and curve lists. It may also 

have a title, default unit, or geometry statements. There is no fixed order for these 
lists and statements. A mesh must have at least a node list and an element list. 

A node list is: 
nodeList : NODES 

1 nodeList aLength aLength 

The keyword nodes is followed by pairs of node coordinates: first the z coordinate 

and then the p coordinate. For planar structures the x coordinate is first, followed 
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Linear mesh: 
file.10 W p-refinement: 

pRefine W Quadratic mesh: 

h-refinement: 
file.qO 

ref ineAl 

Linear mesh: 
file.11 Y p-refinement: 

pRef ine W Quadratic mesh: 

h-refinement: 
file.ql 

refineAl 

r--~ Linear mesh: I I 
I file.12 p-refinement: 

pRefine W Quadratic mesh: 

h-refinement: 
file.q2 

Linear mesh: 
file.13 W p-refinement: 

pRefine W Quadratic mesh: 
. file.q3 

I 1 

. 

. 

pRefine <file.10 >file.qO 
refineAl <file.10 >file.ll 

pRefine <file.11 >file.ql 
refineAl <file.11 >file.l2 

pRefine <file.12 >file.q2 

Figure A.6: Construction of a series of successively refined quadratic meshes from a single 

coarse mesh of linear elements. Sample command lines are given below the flow diagram. 

by the y coordinate. Each coordinate may include a unit. If no unit is specified, 

the default unit is assumed. 
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Quadratic mesh: + Convert: 
file.qn 

__+ Quadratic mesh: 
genYap2h : file.yap2h 

genYap2h <file.qn Bfile.yap2h 

Figure A.7: Conversion of a quadratic finite element mesh for the NeXTstation (multipole) 
suite of programs to a quadratic finite element mesh for the IBM/VM (monopole and 
planar) programs. A sample command is given below the flow diagram. 

An element list is: 
elementList : ELEMENTS 

I elementList anElement 
anElement : LINTRI INTEGER INTEGER INTEGER 

sideInfo sideInfo sideInfo 
I QUADTRI INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER 

sideInfo sideInfo sideInfo 

The keyword elements is followed by a list of elements. A linear triangular element 
starts with the keyword 1inTri and a quadratic triangular element starts with 

the keyword quadTri. Following this keyword is a list of node indices: 3 for the 
linear element and 6 for the quadratic element. The nodes of the mesh are labelled 
sequentially starting with 1. The elements and curves of the mesh are labelled 
similarly. Following the node indices are 3 side specifications: one for each side of 

the triangular elements. The order of the node indices and side specifications is 
important. The order is shown in figures 2.3 and 2.6. 

The pillbox example in figure A.9 has 4 nodes and 2 elements. The sphere 
example has 3 nodes and 1 element. The elements are linear triangular elements. 

A side specification describes the boundary condition or element adjacent to the 

side. It optionally describes the curve which the side follows. This curve is used for 

mesh refinement only. It is not used in finite element calculations. The grammar 
for a side specification is: 

sideInf o : sideInfoSimple 
I sideInfoSimple sideCurveSpec 

sideInfoSimple : INTEGER INTEGER 
I boundaryType; 

If the side is adjacent to another element, then the side specification is the index 

of the adjacent element followed by the index of the adjacent side in the adjacent 

element. Two examples of this adjacent element side specification appear in the 

pillbox example in figure A.9. If the the side is on a boundary then a boundary 

specification is given: 
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mesh 

nodeList 

elementList 

anElement 

sideInfo 

sideInfoSimple 

boundaryType 

metalBoundary 

: 
I mesh title 
1 mesh defaultunit 
I mesh geometryType 
1 mesh nodeList 
I mesh elementList 
I mesh curveList 
: NODES 
1 nodeList aLength aLength 
: ELEMENTS 
1 elementList anElement 
: LINTRI INTEGER INTEGER INTEGER 

sideInfo sideInfo sideInfo 
1 UUADTRI INTEGER INTEGER INTEGER INTEGER INTEGER INTEGER 

sideInfo sideInfo sideInfo 
: sideInfoSimple 
1 SideInfoSimple sideCurveSpec 
: INTEGER INTEGER 
I boundaryType; 
: metalBoundary 
I AXIS 
I periodicBoundary 
I SymmetryBoundary; 
: METAL 
I METAL ( INTEGER ) 

PeriodicBoundary : PERIODIC ( INTEGER INTEGER PM 1 
I PERIODIC ( INTEGER INTEGER INTEGER PM ) 

SymmetryBoundary : SYMMETRY 

sideCurveSpec 

curveList 

aCurve 
pointList 

weightList 

knotList 

title 
defaultunit 
lengthunit 
aLength 

real 

geometryType 

1 SYMMETRY ( INTEGER ) 
I SYMMETRY ( PM ) 
I SYMMETRY ( INTEGER PM ) 
: CURVE ( real real INTEGER ) 
I CURVE ( real real aCurve ) 
: CURVES 
I curveList aCurve 
: NURBS INTEGER pointList weightList knotList 
: POINTS 
I pointList aLength aLength 
: WEIGHTS 
I weightList real 
: KNOTS 
I knotList real 
: TITLE QUOTEDSTRING 
: DIMENSION lengthunit 
: CM 1 METER 1 INCH I MIL 
: real 
I real lengthunit 
* REAL 
; INTEGER 
: AXISYMMETRIC I CARTESIAN 

Figure A.8: Mesh grammar in a format similar to the format for the YACC parser generator. 

Uppercase words are terminal symbols. Except for INTEGER, REAL, PM and QUOTEDSTRING, 

the terminal symbols are literal. 
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title "lcm by lcm pillbox" 
dimension cm 
axisymmetric 
nodes /* z rho */ 
0.0 0.0 
1.0 0.0 
0.0 1.0 
1.0 1.0 
elements 
1inTri 2 3 1 2 I metal axis 
1inTri 3 2 4 1 I metal metal 

title "sphere r=lcm" 
dimension cm 
axisymmetric 
nodes /* z rho */ 

0.0 0.0 
1.0 0.0 
0.0 1.0 

elements 
1inTri 2 3 1 metal curve(0.0 1.0 1) symmetry axis 
curves 
/* nurbs degree points weights knots */ 
nurbs 2 points 1.0 0.0 1.0 1.0 0.0 1.0 weights 1 0.707106781 I knots 0 0 1 1 

Figure A.9: Two examples of linear finite element meshes. The top example is a pillbox. 
The bottom example is a sphere. 

boundaryType : metalBoundary 
1 AXIS 
I periodicBoundary 
I SymmetryBoundary; 

metalBoundary : METAL 
I METAL ( INTEGER ) 

periodicBoundary : PERIODIC ( INTEGER INTEGER PM ) 
1 PERIODIC ( INTEGER INTEGER INTEGER PM ) 

SymmetryBoundary : SYMMETRY 
I SYMMETRY ( INTEGER ) 
I SYMMETRY ( PM ) 
I SYMMETRY ( INTEGER PM ) 

The boundary specification is a keyword METAL, AXIS, PERIODIC or SYMMETRY. A 
metal boundary may be followed by an optional index in parenthesis, although this 

index is not used in the code at the moment. 

A periodic boundary is followed by the element index and side index of the 

element side, which is mapped onto this side by the periodicity’s rigid motion or 

its inverse. The first index in parenthesis is the element index, the second index in 

parenthesis is the side index. If there are only three items in parenthesis, then the 

third item is a + or a -. One side of the cell should be +, while the other side of the 
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cell should be -. The rigid motion maps the - boundary to the + boundary. This 

case assumes the boundary belongs to the first periodicity. When there are four 
items in parenthesis, the third item is 0 or 1, indicating the periodicity to which 
this periodic boundary belongs. The fourth item is + or -, as described above. 

A symmetry boundary may be followed by an integer between 0 and 3 to indicate 
which symmetry plane the boundary lies on. The default symmetry plane is 0: the 
first symmetry plane. 

A+or- in a symmetry boundary specification indicates the boundary is part of 
a symmetric periodic boundary. One symmetry plane is + while the other symmetry 
plane is -. 

A side specification allows an optional side curve specification: 
sideCurveSpec : CURVE ( real real INTEGER 1 

I CURVE ( real real aCurve ) 

The keyword curve is followed by the starting and ending parameter of a curve. 
These are the first two numbers in the parenthesis. The curve is specified by an 
index of a curve in the curve list. This is the third number in the parenthesis. A 

side curve specification can be seen in the sphere example in figure A.9. The curve 
may also be listed directly in side curve specification. 

A curve list is: 
curveList : CURVES 

I curveList aCurve 
aCurve : NURBS INTEGER pointList weightList knotList 
pointList : POINTS 

I pointList aLength aLength 
weightList : WEIGHTS 

I ueightList real 
knotList : KNOTS 

I knotList real 

The keyword curves is followed by a list of curves. The only curve available at tl his 

time is a non-uniform rational B-spline, or nurbs. A nurbs curve has the flexibility 

to represent any conic section. The sphere example in figure A.9 shows such a curve. 

More information on nurbs curves can be found, for example, in [39]. 

The mesh file may be checked using a program checkMesh written in C++. 

This program can generate a plot of the mesh or its boundary. This is illustrated 
in figure A.lO. The options for this program are also listed in the figure. 

A.2.2. Field Solver 

The relationship between the field solving codes and selected files and input 

parameters is shown in figure A.ll. One program, axiMnz, constructs the ma- 

trices A and B for the multipole mode problem and generates field plots given a 
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Mesh: 9 

fi.le.ln Check and plot: + Mesh plot: 
file.qn 

- checkMesh file. eps 

checkMesh -gfile.eps file.qn 

Usage: checkMesh [opts] [input-mesh-file] 
-B : do not plot interior edges 
-b : list boundaries present 
-e : calculate extent * .c 
-g <file> : draw mesh to postscript file 
-0 <file> : regurgitate input mesh to file 
-p <number> : draw field points - specify max along any axis 

Figure A.lO: Check and plot of a mesh. A sample command is given below the 5ow 
diagram, and the command options are listed below that. 

solution eigenvector. The other program, ma28Ges, solves the generalized alge- 

braic eigenvalue problem. Both programs are written in C++, although the ma28 
code on which the eigenvalue solver is based is in FORTRAN. 

The program axiMnz constructs the matrices in a manner similar to y2d de- 
scribed earlier. However, there are two types of sparse symmetric matrices involved: 

quasi-periodic matrices and symmetric quasi-periodic matrices. These matrices 
store components as real numbers and have flags to represent quasi-periodic fat- 
tors. Hence dispersion diagrams can be computed without recomputing the matrices 

from scratch. 

The program writes the sparse symmetric matrices A and B to an output file. 

This file is read by ma28Ges. The options to axiMnz are listed in figure A.12. 

Notice the user is allowed to model either E or H, and that the user must specify 

the azimuthal symmetry number m. The quasi-periodic phase advance + is not 

specified in this program. 

The program ma28Ges reads the matrix file generated by axiMnz and solves 

the generalized algebraic eigenvalue problem. The method is similar to y2d de- 
scribed earlier. However, ma28Ges uses a block shifted inverse power method, 

so it can find ‘more than one eigenvalue and eigenvector simultaneously. The trial 

vectors converge to the eigenvectors with eigenvalue closest to the specified target 

eigenvalue. The iterations continue until a specified number of modes have a resid- 

ual error smaller than the specified limit. The options for ma28Ges are listed in 

figure A.13. The examples in the same figure demand 3 good modes with residual 

error less than lo- 25. There are 6 trial vectors in the example, hence 3 of the trial 
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Quadratic mesh: 

Construct matrices: 
axiMnz 

matrix 

sm I Graphics 
parameters 

Generate field plots: 
axiMnz 

Field plot: 
sm.eps 

Figure A.ll: Relationship between programs, files and input parameters for the YAP 
implementation of the multipole mode formulation. Programs and files are on the left, 
input parameters are on the right. 

vectors are expected to be poor at the end of the calculation. These extra trial 

vectors are typically included in the calculation to improve the convergence rate of 
the iterative eigenvalue solver. 

The program ma28Ges factorizes a matrix in order to solve the eigenvalue 

problem. Much of the time consumed by the ma28 matrix solver is spent building 

a factorization pattern. The factorization pattern for the matrix may be written 

to a file and saved for later use, The same factorization pattern may be used for 
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axiMnz -m2 -Mmatrix -fl file.qn 
axiMnz -m2 -fl -ssl -gsl.eps file.qn 

Usage: axiMnz [opts] [input-mesh-file1 
-b <file> : basis index/flag output file 
-f <flags> : flags for field and symmetries 

1 : model electric field (default is magnetic) 
2 : sym plane 0 is dirichlet - tangential field is zero 
4 : sym plane 1 is dirichlet - tangential field is zero 
8 : use sym-qp matrix if possible 

-G : basis index/flag output is in genM format (obsolete) 
-g <file> : graphics output file 
-M <file> : matrix output file 
-m <number> : azimuthal symmetry number (default m=l> 
-P <phase> : plot phase in radians (default 0) 
-p <integer> : max field points along any axis 
-s <file> : solution input file 
-v : only plot rho-z vector field 
-2 : only plot phi field 

Figure A.12: A sample command and command options for the program axiMnz. The 
firstcommandexample generates a matrix,while the second example generates afield plot 
from a solution vector. 

ma28Ges -iMatrix -M50 -rle-25 -ffp -Erun -n6 -g3 -e1.5 
ma28Ges -iMatrix -M50 -rle-25 -Ffp -Eru.n -n6 -g3 -e3.5 

Usage: ma28Ges [opts] 
-C : force matrices to be complex 
-d <file> : specify diagnostics output file 
-E <file> : specify eigenvector output file 
-e <eigenvalue> : specify target eigenvalue 
-F <file> : specify factorization pattern input file 
-f <file> : specify factorization pattern output file 
-g <modes> : specify number of good modes 
-i <file> : specify matrix input file 
-M <iterations> : specify max iterations 
-n <modes> : specify number of modes 
-p <phase> : specify matrix phase (in radians) 
-R <residual> : specify desired solve precision 
-r <residual> : specify desired residual 
-7 : matrix is in 'amniTest7' format 

Figure A.13: A sample command and command options for the program ma28Ges. The 
first command writes a factorization pattern fp, while second command reads the factor- 
ization pattern fp. 

various target eigenvalues, various phase advances, various m and various node 

coordinates in the mesh. Reusing the previously computed factorization pattern 
can yield tremendous savings in computational time when doing design studies or 

dispersion diagrams. The sample commands in figure A.13 demonstrate saving and 
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reusing a factorization pattern. Notice that a new target eigenvahre was chosen for 

the second sample command. 

The eigenvector output file run includes all of the computed eigenvectors, not 
just the good ones. Using a text or stream editor, individual good eigenvectors can 
be extracted from run into separate files, say sl, ~2, etc. The. eigenvalue and phase 
advance is stored in the same file as the eigenvector. 

Once a solution vector has been obtained, the program axiMnz can be run 
again to generate field plots. A sample command is shown in figure A.12. 

i! 

c:. 
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