
4.3 Collective Effects 

A detailed study of lost-particle backgrounds in the detector was also carried out to 
simulate the detector backgrounds due to beam-gas interactions at PEP-II. All devices i - are found to be well within acceptable limits for both average radiation damage and 
average occupancy, having typical safety factors relative to conservative limits of more 
than 20 for a five-year operating life. We have also examined the effects of the radiative 
Bhabha process and find it gives acceptably low backgrounds. 

4.3 COLLECTIVE EFFECTS 

In Chapter 3 we discussed the alternatives that might be considered in the design of a 
high-luminosity B factory, and indicated the reasons for the choices we have made for 
PEP-II. The lattice design presented in Section 4.1 is based on these choices. Having 
fixed these parameters, it is necessary to investigate the influence of the various intensity- 
dependent effects on the actual performance of the accelerator. 

The main parameters we must achieve in PEP-II include: 
. 

. 

Beam energies of 9 GeV (HER) and 3.1 GeV (LER) 
Beam currents of 0.99 A (HER) and 2.14 A (LER) 
Bunch length of 1 cm 
Beam emittances of approximately 50 mnrad (HER) and 66 nmrad (LER) 
Beam energy spread of @Z I 1 x 10-s 

In terms of collective effects, the dominant issue is the relatively high beam current 
that must be supported in each ring. As was discussed briefly in Chapter 3, and as will be 
covered in more detail in Section 4.4, this constraint is associated mainly with the fact 
that the beam-beam tune shift parameter is taken to be a design limit, which means that 
the high luminosity must come mainly from the. combined benefits of low beta functions 
and high currents. 

A beam circulating in a storage ring interacts -with its surroundings 
electromagnetically by inducing image currents in the walls of the vacuum chamber and 
other “visible” structures, such as beam position monitor (BPM) electrodes, kickers, RP 
cavities, bellows, valves, etc. This interaction leads, in turn, to time-varying 
electromagnetic fields that act on the beam and can give rise to instabilities. In most 
electron-positron colliders, single-bunch effects are the primary concern. The current 
threshold for these effects is’ defined by the ring impedance at high frequencies, 
f> 8 GHz, which correspond to wavelengths A comparable to or less than the bunch 
length, say, il I 4oe. 

The issues with which we must deal for PEP-II fall into the broad categories of 
single-bunch and multibunch phenomena. Single-bunch phenomena include: 

l Longitudinal and transverse single-bunch instabilities 
l Beam loss from intrabeam (Touschek) scattering 
l Beam loss from beam-beam (Bhabha) scattering 
l Higher-order-mode (HOM) heating 

143 



COLLIDER DESIGN 

Beam-gas scattering, though actually a single-particle effect, can be included.in this 
. - category, as can the phenomenon of ion trapping in the electron beam. 

For the PEP-II, however, the main concern is from coupled-bunch instabilities, where 
different bunches “communicate” through the narrow-band (high-Q) ring impedances. 
That is, wakefields deposited in various high-Q resonant objects can influence the motion 
of following bunches and can cause the motion to become unstable if the beam currents 
are too high. To effectively couple the bunch motion, HOMs must have a damping time 
r = ~Q/cD longer than the bunch spacing S&Z. For modes with Q I 100, this restricts the 
frequenciesf I 8 GHz. The frequency limit is lower for smaller Q. This effect is one of 
the most serious issues for the PEP-II design. 

For PEP-II, we have opted for a situation in which the nominal beam currents of 
0.99 A in the HER and 2.14 A in the LER are distributed in many (1658) bunches. Our 
reasoning is as follows: The multibunch instabilities are mainly driven by the total beam 
current, with little regard to how it is distributed in the ring. That is, once the bunch 
separation is small enough for bunches to fully see wakefields left by preceding bunches, 
the growth rates are independent of the details of the bunch pattern. Thus, if a high beam 
current is needed, coupled-bunch instabilities become almost unavoidable. If we choose 
a relatively small number of bunches to make up the high current, we do little to improve 
the situation with regard to coupled-bunch instabilities and simply make the single-bunch 
phenomena harder to manage--’ m effect requiring the accelerator designers to wage a 
two-front war. (This usually translates into impedance requirements for the ring that are 

- difficult to meet.) It is true, of course, that the bandwidth requirement of a feedback 
system to deal with coupled-bunch motion is eased if the bunch spacing increases. 
However, we do not feel that this is a major limitation (see Section 5.6 for details), and it 
should not dominate the design decisions. 

Given our decision to utilize many bunches, the parameters of the single bunches 
(emittances, bunch length, intensity) are not unusual-they are in the parameter regime in 
which PEP and many other colliders have run successfully for many years. This, in turn, 
means that heroic efforts at impedance reduction are not required to avoid problems with 
single-bunch effects. 

4.3.1 Single-Bunch Issues 

In this section, we focus on the issues of single-bunch instability thresholds, beam 
lifetime, and heating of the chamber due to parasitic HOM losses. We also discuss the 
issue of ion trapping and the means available to avoid or eliminate it. Before beginning, 
we digress briefly to define the beam impedances that drive the various instabilities. 

4.3.1.1 Impedances. Beam instabilities can occur in either the longitudinal or transverse 
phase planes. Longitudinal instabilities are driven by voltages induced via interactions of 
the beam with-its environment. The strength of the interaction can be characterized by 
the ring impedance Z,,(o), in ohms, which is defined by 

VII(~) = -a(~) b(w) (4-3) 
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where Vll(o) is the longitudinal voltage induced in the beam per turn arising from a 
i - modulation of the beam current Ib(o) at some particular angular frequency 0. 

Transverse instabilities arise from the transverse dipole wakefield, which gives a 
force that increases linearly with transverse distance from the electromagnetic center of 
the vacuum chamber and is antisymmetric in sign about that center. The transverse 
impedance (in mm) is defined by 

I 2xR 
-i &( 0,s) a!s 

Z,(o) = O (4-4) 
eMb@) 

where F’ is the transverse force, integrated over one turn, experienced by a charge e 
having transverse displacement A. Explicitly, F-L is given by 

FL = eg(E, + B,.) + e?(E, - B,) (4-5) 

In a typical storage ring, the impedance seen by the beam can be loosely characterized 
as being either broadband or narrow-band. Sharp discontinuities in the vacuum chamber 
act as local sources of wakefields. These fields have a short time duration, which means 
that they include many frequency components, and we refer to the corresponding 

- impedance as broadband. 
The main contribution to the narrow-band impedance comes from the RF cavities. 

The approach we have adopted for PEP-II, using a small number of damped RF cavities, 
serves to substantially reduce the narrow-band impedance. Calculations and 
measurements with a prototype low-power cavity (see Section 5.5) have confumed that 
the strongest HOMs of the damped cavities can be reduced to Q I 70 without degradation 
of the fundamental mode. For the impedance estimates we use results of the code 
URMJZL from Corlett [1992], which are in good agreement with the measured HOM 
spectrum [Byrd, 19931 given in Table 4-23. 

The narrow-band longitudinal impedance of a cavity for low frequencies w c o,, 
maybe described as the sum over the modes 

Z(W)=i 
(0 - om) +‘i (c13n/2Qm) + (o + &) +‘i (%/2Q,,J 1 (4-6) 

For high frequencies u > urnax, a broadband high-frequency tail should be added. We 
can express the overall impedance as a series expansion over I% 

(4-7) 

where the fust term describes an inductive impedance, the second term represents the 
resistive-wall impedance, the third term corresponds to a constant resistivity, and the last 
describes the high-frequency impedance tail of the RF cavities. This part of the 
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Table 4-23. Monopole modes below cutoff. 

Q 

0.1694 113.2 30000 
0.107 44.97 28 
0.000 0.006 246 
0.03 1 7.68 66 
0.027 6.57 907 
0.025 5.06 178 
0.000 0.06 295 
0.023 3.52 233 
0.000 0.01 201 
0.008 1.21 500 

impedance rolls off as 0-1’2, in accordance with simulations and the Dome-Lawson 
analytic result for a pillbox cavity with attached beam tubes. 

The “shunt impedance” of a mode, R,, gives the peak value of Re Z(w) at the 
resonance. The loss factor of a mode is related to WQ by 

ke = !2E 
0 2Q (4-8) 

The total loss factor is given by a convolution of the impedance with the bunch spectrum 
Pm: 

k tot (4-9) 

According to TBCI, a reentrant RF cavity with the dimensions shown in Fig. 5-93 has a 
loss factor kg = 0.515 V/PC. 

The parameter Z,,, can be defined by comparing the total loss calculated from 
Eqs. 4-6 to 4-8 with that given by TBCI. The parameter w,, is somewhat arbitrary, in 
the sense that results are not sensitive to its value. Forf,, = 1260 MHz, &,, = 5.31 Wz. 

RF Cavity. The wakefield of a cavity with an impedance of the type given by 
Eqs. 4-6 and 4-7 reproduces the wakefield of a cavity given by TBCI, Fig. 4-71. Indeed, 
an impedance of this form is actually a general expression that satisfies the conditions of 
causality and has the correct analytic properties. 
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Fig. 4-71. Wakefild of PEP-II RF cavity calculated with TBCZ. 

The low-frequency limit o <x o, of the narrow-band impedance (Eq. 4-6) is inductive; 
that is, as o + 0, 

where 

(The sum in Eq. 4-l 1 should not include the fundamental mode of the cavity.) Note that 
the ratio (Zln)e in this limit is independent of frequency and often is used as a single 
parameter describing the impedance. In our case, (Z/n), = 9.3 rnQ for one RF cavity. 

At high frequencies, the narrow-band impedance is capacitive. It rolls off as ~-2 and 
is thus small compared with the high-frequency tail given by Eq. 4-7, which is the 
quantity relevant for single-bunch stability: 

y=(l+i)g. (4-12) 

With Z,, and (Un) as given above, this can be written as 

$Q=(l + i)(f#-&-r (4-13) 
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where beff = 4.96 cm. At the bunch frequencies W/C = l/o,, this is very close to the 
SPEAR-scaling relationship 

1.68 
(4- 14) 

where b is taken as an effective beam-pipe radius. 
The impedance of the cavities (Eq. 4-12) rolls off as n-312 and is thus small at high 

frequencies. Other components of the impedance, such as the resistive-wall impedance 

an)= 
n (4-15) 

where 6 is the skin depth, and the inductive impedance of the ring, Z/n = -iLJ$, roll off 
more slowly and may become important in this high-frequency limit. 

Resistive Wall. The PEP-II beam pipe is copper with a roughly elliptical cross section 
having half-axes of dimension 4.5 x 2.5 cm in the arcs (total length 6 x 243.2 m) and 
round stainless-steel pipe with radius 4.6 cm in the straight sections (total length 
6 x 123.4 m). The average resistive-wall impedance is [J. Corlett, 19921 

0 z nRW=(l-i)F 

The change in conductivity going from copper to stainless steel produces some additional 
impedance that can be described as a change of the beam-pipe radius by a skin depth of 
the stainless-steel pipe, &. This results in an impedance 

which is negligibly small. 
At the bunch frequencies n = R/q = 3.5 x 104, the resistive-wall impedance is larger 

than the total impedance of 10 RF cavities by a factor of 1.5, whereas at the bunch 
spacing frequencies n = +/q = 120, it is smaller by a factor of 5.5 x 10-3. Because 
Eq. 4-16 scales as cr,t’2, we might expect that SPEAR-scaling will not be valid for the 
short PEP-II bunches. 

The rest of the impedance comes from the many small impedance-generating 
elements of the ring. A list of some of these elements is given in Table 4-24 for a half- 
sextant of the ring. 

Miscellaneous Elements. The stainless-steel vacuum pipe’in the straight sections is 
connected by two tapers per sextant, or 12 tapers per ring, to the octagonal copper tubes 
in the arcs. The beam pipe is separated from the vacuum DIP chamber by a slotted 5- 
mm-thick screen. There are six rows of longitudinal slots in the wall with 10 slots per 
meter, each slot 9 cm long and 0.2 cm wide. The total number of slots in the HER is 
about 60,000. Each cell has a shielded bellows at each quadrupole. There are also two 
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Table 4-24. Average number of the impedance-generating 
elements in a half-sextant (l/12) of the high-energy ring. 

Component Number of items 

Flanges 60 

BPMs 12 

Vacuum ports 24 

Bellows 24 

Valves 1 

Tapers 1 

Slots of DIP screen 3ooo 

vacuum ports per cell at each quadrupole for the lumped vacuum pumps. A 4-button 
design has been chosen for the BPM, with a button diameter of 1 cm and a l-mm groove 
around each button. There are 18 valves in the HER (two valves per sextant at the ends 
of the arc sections, two valves in each RF section, and two valves in the interaction 
region). For the impedance estimate, flanges are taken simply as shallow grooves. 
Additional impedance-generating elements, not included in Table 4-24, include three 
kickers for the feedback system, several collimators, the injection port, and the various 
masks in the IR. Some special elements such as diagnostic devices, which are not 
considered at the present time, may be added later. These will not have a noticeable 
effect on the total impedance. Details on the vacuum chamber hardware may be found in 
Section 5.2. We note here that special efforts have been made in designing elements of 
the vacuum system to have minimum impedance by using shielded bellows, by tapering 
all shape transitions, by screening the vacuum ports and the pumps, etc. 

The impedance of the ring may be estimated as the sum of the impedances of the 
individual elements. (Any cross-talk between elements tends to decrease the total 
impedance, making such an estimate conservative.) Most of these elements are 
discontinuities having resonant frequencies much higher than the frequencies within the 
bunch spectrum. They give rise, therefore, to a predominantly inductive impedance. 
This was confirmed by calculating wakefields of these elements with the code TBCI. For 
example, the wakefield of a shielded bellows, modeled as several shallow tapers, made up 
from a synchrotron mask and sliding contacts, is shown in Fig. 4-72. The wakefield of a 
CQ = 1 cm bunch behaves like the derivative of the bunch density, as is typical for an 
inductive impedance. The maximum value of the wakefield, Wmax, is related to the 
inductance L of the bellows by 

W max=- 
c$m 

V-18) 
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Fig. 4-72. Wakefild of PEP-II shielded bellows caZa&ed with TBCZ. 

TBCI gives W,,, = 0.0121 cm-l, which correspond to an inductance L = 0.05 cm per 
bellows. Additional impedance is generated by the slots between the sliding fingers of 
the bellows. The impedance of a rectangular slot having a width w has been found 
analytically [Kurennoy, 19911 to be 

%) -=Li!Lw3. 
n 34z2Rb2 

(4-19) 

The total contribution of the 24 slots per bellows, averaged over the azimuth of b, 2.5 c 
b c 4.5 cm, is L = 6 x 10-3 cm. The total inductance of a bellows is 5.6 x 10-S cm, or 

L n -i3Ok = ( ) -i 1.4 x 1w2 Sz (4-20) 

for 288 bellows in the ring. 
For purely inductive elements, the loss factor is zero. Indeed, the loss factor of a 

bellows given by TBCI is small, kp = 2.2 x 10-s V/pC per bellows, and strongly depends 
on the bunch length. We take this loss into account as a constant resistance that would 
give the same loss 

RQ - Gee - - kg = 67.4 SUring 
2iz 

I 
I 

I 

I 

I 

I 

I 

I 
! 
I 
! 

The loss factor of a hole is a second-order effect (proportional to ~5 and completely 
negligible). Measurements of the loss factor of a 6-in. PEP valve gave kl = 0.006 V/PC, 

150 



4.3 Collective Effects 

1 

I 
L. 

I 

which corresponds to R, = 8.5 fi per ring. The loss at PEP-II may be higher by fl due to 
its shorter bunch length. We can similarly estimate the impedance of the vacuum ports, 
shielded by ten 14 x 0.2 cm slots, giving z/n = 5 x 10-s !A for 24 ports in the ring.) 

The DIP screen slots can be modeled in the same way, giving a total contribution per 
ring of 242 = -i 0.03 0. 

For an impedance estimate, a flange can be modeled as a shallow cavity with inner 
and outer radii a, b, where b - a << a. For small gaps, g << a, the inductance [Bane, 19881 
is 

(4-22) 

If we take a = 3 cm for the inner radius, b = a + 0.1 cm for the outer radius, and a cavity 
gap of 0.25 mm, then z/n = -il. 1 x 10-3 !A for one ring. TBCI gives the loss factor for 
such a cavity as kp = 2.46 x 10-s V/PC. The total contribution of the 576 flanges in one 
ring is kp = 0.018 V/PC. 

The impedance of a taper scales with the angle as 128/lc. The angle of the taper 
should be small compared with the ratio oplb. We chose 10” tapers. Modeling the 
transitions between straight sections and arcs together as a pair of tapers (the first a taper 
out, the second a taper in) has also been considered. This approach gives a more realistic 
result than simply adding the losses of two tapers independently. The loss of a pair of 
tapers calculated for the azimuthally symmetric pair and then multiplied by the azimuthal 
filling factor 4.5/(4.5 + 2.5) = 0.643 is kp = 2.0 x 10-S V/PC. That gives kp = 0.125 V/PC 
for 12 tapers in a ring, corresponding to RQ = 29.5 Sz. The s-dependence of the wakefield 
corresponds to that of an inductive impedance and is similar to the wakefield of a bellows 
with W,, = 0.348 V/PC. The inductance of the 12 tapers is L = 11.46 cm and gives 

h z(n) 1 1 -=1.2x10% n 

Some elements of the ring, such as feedback kickers and BPMs, have low-Q 
resonances at high frequencies, of the order of 10 GHz, that give an inductive tail at the 
bunch frequencies. Measurements of the beam impedance of a button electrode [Jacob 
et al., 19891 show resonances as summarized in Table 4-25. The low-frequency limit 
given by these modes, calculated from Eq. 4-l 1, is 

(4-23) 

which gives (Z/n) = 1.9 x 10-7 Q per button. For 144 four-button BPMs, the total 
impedance is (Z./n)o = 1.1 x 10-4 a. The peak impedance at the resonance frequency of 
3.3 GHz is Z/n = 2.47 x 10” n per button, or Z/n = 1.42 x 10-s n per ring. This is 
completely negligible in comparison with, say, the resistive-wall impedance, which is 
z/n = 1.36 x 10-Z Sz at the bunch frequency w = clot or n = R/or. Hence, the resonant 
contribution of the BPMs can be neglected. The impedance of the BPMs, therefore, may 
be described as purely inductive. The inductance could alternatively be estimated by 
considering a number of holes with a diameter w = 1 mm equal to the diameter of the 
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Table 4-25. Resonances of a button 
electrode. 

f Q 
GHz) (2) 

3.3 17 0.06 
16.2 470 0.72 
18.3 110 0.46 

BPM gap and a total surface area equal to the surface area of the gap. Impedance of such 
a hole is 

$Q=-i(s)k) (4-24) 

giving (Z/n) = -i 1.3 x lo-4 s1 for 144 BPMs. We take this more conservative estimate 
for the contribution to the total impedance budget. 

The total loss factor of the 144 BPMs in the ring due to the resonant modes is 
_ kr = 0.20 V/PC. It should be mentioned that the contribution of the original PEP BPMs to 

the loss factor was found to be below the accuracy of the measurements. 
The impedance of the three kickers for the longitudinal feedback system can be 

described [Corlett, 19921 as a Q = 7 resonance atf= 16.2 GHz, with a shunt impedance 
of R = 170 LL Other modes have parameters given by the sum of the resonant modes 
listed in Table 4-26. The total loss factor of the feedback system is kp = 2.15 V/PC, and, 
for comparison, the low-frequency limit is (Un) = 3.4 x 10-s R. 

Coherent synchrotron radiation may produce at its maximum value a noticeable 
impedance: 

(2/n~ = 300 ($j = 0.04 Sz (4-25) 

Table 426. HOM modes of the PEP-II 
longitudinal feedback kickers. 

f R/Q 
GHz) (Q) 

2.6 9.3 
3.1 2.2 
3.3 3.5 
5.0 1.8 
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However, the threshold frequency is very high 
I i 

(~)&=($)($$3%37 

and the effect is suppressed exponentially. 
The lR within +80 cm from the IP has been described as a three-dimensional system 

of tapers and the impedance has been estimated using TBCI with proper azimuthal 
averaging. The wakefield found by TBCI corresponds to an inductive impedance with 
W = 0.62 V/PC, giving an inductance of L = 2 cm and an impedance of z/n = 1.8 x 
lr;t3”n. The loss factor of this portion of the IR is kp = 0.059 V/PC or R, = 12.5 $2. 

The impedance of crotches and the injection port must be similar to the impedance of 
the septa in the SLC damping rings; these have been investigated with MAFIA by Bane 
[ 19881 and shown to give an inductive impedance with L = 2 cm. 

Fabrication errors and misalignments of the sections of the vacuum pipe can give 
additional impedance. For example, the misalignment A of two adjacent sections of beam 
pipe with a radius b results in a real impedance (&-,h)(A/b) and a reactive impedance with 
inductance L = 6A2/b. Five hundred joints with A = 1 mm and b = 5 cm give an 
additional inductance of L = 6 cm, or (Zln)~ = 0.005 Q. Tilting of the slots in the DIP 
screen by an angle 8 with respect with the beam plane increases the impedance of a slot 
of length 1 and width w by a factor of [ 1 + (UW)~. This defines the tolerance of the tilt 

_ angle 8 < w/Z 5: 22 mrad, which does not give substantial fabrication problems. 
The total impedance of the ring is the sum of the impedance of the cavities (Eqs. 4-6 

ahd 4-7), the resistive wall (Eq. 4-16), the constant resistance R, representing losses in 
the mostly inductive components, and the inductive impedance -i(Z/n),. Contributions of 
the individual elements to the total inductive impedance (Z/n), are given in Table 4-27. 

-. : With a “contingency” Z(n)/n = 0.024 Q for the collimators, the total inductive 

I 
impedance is Z(n)/n = 0.10 R. 

The total longitudinal wake function can be calculated from the longitudinal 
impedance. It is shown in Fig. 4-73. 

I Transverse Impedance. The transverse impedance may be estimated as 

It rolls off with frequency faster than does the longitudinal impedance and is maximum at 
frequencies close to the cutoff frequency o = c/b. 

4.3.1.2 Longitudinal Microwave Instability. The first instability we consider is the 
longitudinal microwave instability, sometimes referred to as turbulent bunch lengthening. 
This instability, which has been seen in numerous proton and electron storage rings, is 
not a “fatal” instability, in the sense that it does not lead to beam loss. Instead, the 
instability causes an increase in both the bunch length and the momentum spread of a 
bunched beam. Its threshold (peak) current is given by 
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Table 4-27. The PEP-II inductive impedance budget. 

Component Impedance 
a> 

BPMs 1.3 x 10-S 
Vacuum ports 5x10-5 
Bellows 1.4 x 10-2 
Flanges 1x10-3 
Valves 6x 10-3 

Tapers 1.6 x 10-2 
DIP screen 3x10-2 
Feedback system 3.5 x 10-3 
Interaction region 2x lo-3 
Injection, crotches 3.6 x 10-3 

Total 0.076 

400 

e? 7379A207 

Fig. 4-73. Total longitudinal wakefild for PEP-II HER. 
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i - (4-27) 

where IZ;,/n I,, is the effective broadband impedance of the ring and 77 = a: - l/r2 is the 
phase-slip factor. 

The average bunch current of the LER, 1.3 mA, corresponds to a 113-A peak current 
for a Gaussian bunch with bp = 1 cm. For the LER parameters, a = 1.31 x 10-3, 
qJ = @/p)m = 8 x lp, and E = 3.1 GeV, stability requires 1% I I 0.144 S2. 

The effective impedance in Eq. 4-27 is defined as the impedance averaged over the 
bunch spectrum. For short bunches, for which the spectrum is wide compared with the 
frequency range of the impedance, the relevant parameter is 

(4-28) 

The main contribution to this integral comes from low frequencies, which are 
irrelevant to single-bunch stability. Therefore, to properly estimate the effective 
impedance for single-bunch stability, the integration should be performed starting with 

I - 
the harmonic number n, corresponding to a wavelength comparable to or smaller than 

- the bunch length. Figure 4-74 depicts IZ/nleff and a plot of Re Z(n)ln vs Im Z/n for 
I different values of n,. In the left column, n, = 300 and the value of the effective 

impedance is of the order of 2 &2. 
1 

The middle column is for n, = 3500, which 
corresponds to including a maximum wavelength equal to the RF wavelength. The right 

I column in Fig. 4-74 corresponds to a maximum wavelength of 200,. This limit already 
.L- gives acceptable effective impedance. The Zn at high frequencies is always within the 

1 area of stability allowed by Landau damping. A calculation with n, = 10500 (or 200~) 
gives IZ(n)/n I = 0.185 Q. It agrees well with the SPEAR-scaling [Chao and Gareyte, 
19761 estimate of 

I 

()( I 
z q, 1.68 

nob 
(4-29) 

with (Z/n), = 2.4 D for the beam pipe radius b = 4.6 cm. This appears consistent with 
PEP bunch lengthening measurements, which can be described with SPEAR scaling and 
the parameter (Un)o = 3 Q. However, SPEAR scaling, which can be expected in the 
situation when the impedance is dominated by the RF cavities, i.e., for long bunches, may 
be invalid for shorter bunches, as was mentioned above. Figure 4-75 shows the 
dependence of the effective impedance on the bunch length. 

To estimate the growth from the longitudinal microwave instability, we must assume 
a value for the broadband impedance of the ring. For the PEP-II HER, this value- 
usually dominated by the RF system in a high-energy storage ring-is expected to be 
lower than the value of IZ%z I, = 3 R obtained from measurements at PEP [Rivkin, 19871. 

The equivalent broadband contribution to the impedance seen by the beam can be 
estimated, for a given RF system, following the approach of Zisman et al. [1986]. 
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Fig. 4-74. (Upper) Plot of real vs imaginary impedance of PEP-II for various 
assumptions about n = ur’w (Lower) Plot of absolute due of Z/n for various 
values of low-frequency cutoffn. 

Basically, this involves estimating the frequency shift that would be induced in a long 
beam bunch by the aggregate of the many cavity HOMs, and then determining the 
strength of a Q = 1 broadband resonator that would produce the same effect. That is, we 
take 

(4-30) 

where R,, oR, and Q are the shunt impedance, resonant angular frequency, and quality 
factor, respectively, of the jth HOM, and a,-, is the particle (angular) revolution frequency. 
With this approach, we find that the present PEP RP system contributes an equivalent 
broadband component of IZn I = 0.026 Ckell. Applying the same prescription to the 

. PEP-II RF cavity (described in Section 5.5) yields an equivalent broadband contribution 
of LZn I = 0.01 R for the first few trapped modes. 
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Fig. 4-75. Plots of the absolute value of z/n (lej? column), the real part of Z/n 
(center column) and the imaginury part of ZJn (right column) vs bunch length. 
The upper row corresponds to a high cutofffrequency (wavelengths of the order of 
the bunch length); the lower row corresponds to a very low cutofffrequency. 

A more significant gain is made by producing the required voltage and providing the 
required power to the beam (to replenish the losses to synchrotron radiation) with many 
fewer RP cells than the 120 used now at PEP. In the design described in Section 5.5, the 
voltage is provided by only 20 Rl? cells in the HER or 10 cells in the LER. This decrease 
in the number of cells reduces, by about a factor of six, the broadband impedance in the 
ring that stems from the RP system (estimated in PEP to be about two-thirds of the total). 
Thus, we expect to reduce the RF contribution to the broadband impedance to about 
0.3 a. Clearly, however, the broadband impedance from the other components in the 
beam path (valves, bellows, BPMs, etc.) must contribute to the total seen by the beam, 
and there will be additionai hardware in the PEP-II rings (for example, feedback kickers) 
that will have an effect. 

The PEP chamber has a broadband impedance of about 1 R, and it is prudent, for 
now, to take the larger value to account for those impedance-producing components that 
have not been considered yet. With this in mind, for simulations with ZAP, which uses 
the SPEAR scaling approach (Eq. 4-28), we have adopted a total broadband impedance 
Izlnlo = 1.5 R (half that of PEP), which is consistent with the calculated Izlnl,~ = 0.18 S2 
for the average beam pipe radius of 3.3 cm. As we will see, even this fairly conservative 
assumption does not lead to any difficulties in the parameter regime in which the PEP-II 
rings are designed to operate. 
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To maintain bunch lengths in both rings that are short compared with the small $ 
i - value of 1.5 cm in the LER, we adopt an RF voltage in the HER of 18.5 MV. As shown 

in Fig. 4-76a, this voltage gives an rms bunch length of 0, = 1 cm at the required single- 
bunch current of 0.6 mA. For the LER (see Fig. 4-76b), a l-cm bunch at the design 

. current of 1.3 mA can be obtained with a voltage of 5.9 MV. 
The expected bunch lengthening beyond threshold is shown in Fig. 4-77a for the 

HER, based on the threshold formula given in Eq. 4-27. We remain well below the 
threshold at the required single-bunch current of 0.6 mA. The situation for the LER is 
shown in Fig. 4-77b; again we are well below threshold at the nominal 1.3 mA/bunch 
value. The curves in Figs. 4-77a and 4-77b are based on the so-called SPEAR-scaling 
ansatz, mentioned earlier. It is worth noting here that we have estimated the natural 
momentum spread of the low-energy beam to be 8 x 10-4. This relatively large value is 
associated with the significant amounts of “extra” synchrotron radiation (generated in the 
wigglers) needed to achieve the proper emittance and to preserve the ability to reach 
equal damping decrement if need be. 

Because the collider must be able to accommodate some energy variability, we have 
also considered the effects of moderate changes from the nominal operating energies of 
9 GeV (HER) and 3.1 GeV (LER). In Fig. 4-78, we show the energy dependence of the 
microwave threshold current at the specified operating voltages for the two rings. The 
steepness of these curves is mainly due to the increase in natural momentum spread with 
energy (see Eq. 4-27). The dependence of the threshold current on voltage is shown for 

- several different energies in Figs. 4-79a (HER) and 4-79b (LER). The preference for 
higher voltage is a consequence of the decrease in effective impedance as the bunch 
length decreases. 

In our calculations we have ignored the effect of potential-well distortion, which-for 
short bunches-is predicted to reduce the bunch length; this effect is expected to be 
minor. 

From these estimates, we conclude that there are no problems associated with the 
longitudinal microwave instability, provided the low-frequency broadband impedance of 
each ring can be kept at or below 1.5 &2. 

4.3.1.3 Transverse Mode-Coupling Instability. Because the ring is large, we must also 
consider the transverse mode-coupling instability, which is known [Z&man et al., 19881 
to limit the single-bunch current in PEP. This instability arises when the imaginary part 
of the transverse impedance 2, couples the frequency of the M = 0 and m = -1 
synchrotron sidebands. For long bunches, the threshold is expected to scale as 

(4-3 1) 

where v, is the synchrotron tune, fll is the beta function at the location of the impedance, 
and R is the average ring radius. Although the transverse impedance is expected to 
decrease for very short bunches [Zisman 1990a], we are operating in a regime where the 
mode-coupling threshold is more or less independent of bunch length. For the impedance 
presently expected for the HER, a simple scaling from measured PEP data based on 
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Fig. 4-76. Plot of (a) HER and (b) LER bunch lengths as a function of RF 
vokzge. A I-cm bunch requires VW = 18.5 MV in the HER and VW = 5.9 hW in 
the LER. 
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Fig. 4-77. Plot of (a) HER and (b) LER bunch lengths as a function of current, 
showing the onset of bunch lengthening. Even above threshold, the bunch length 
increases only slowly with current. 
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Fig. 4-78. Plot of the microwave threshold current in (a) the HER and (b) the L&R 
as a function of energy, for VW = 18.5 i?fV (HER) and VW = 5.9 Mv (L&R). The 
required single-bunch currents of 0.6 mA (HER) and 1.3 mA (LER) are below the 
instability threshold in this energy range. 
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Fig. 4-79. Plot of the microwave threshold current in (a) the HER and (b) the LER 
as a function of RF voltuge, for several beam energies. For the HER, the threshold 
current is well beyond the required 0.6 mA. For the L&R, the threshold current 
approaches the required operating value of 1.3 mA only for the lowest voltuge. 
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. 

* - 
Eq. 4-31, shown in Table 4-28, suggests that the transverse mode-coupling threshold 
should be somewhat higher for PEP-II than for PEP, even though both the HER and LER 
will have a lower beam energy than did PEP. The scaled threshold value for the LER, 
about 10 mA/bunch, is well beyond the required single-bunch current of 1.3 mA and 
should pose no problem. 

To estimate the transverse mode-coupling threshold in each ring more reliably, we 
used the code MOSES [Chin, 19881. Initially, we considered a Q = 1 resonator 
impedance having a cutoff frequency of 1 GHz and a transverse impedance of 0.5 Mam. 
The calculations take into account the effect of bunch lengthening at high currents, which 
is ignored in the simple scaling arguments presented in Table 4-28. The threshold 
currents, corresponding to the crossing of the mode m = 0 and mode m = -1 frequencies, 
are 37 mA for the HER (Fig. 4-80a) and 8.8 mA for the LER (Fig. 4-80b), in good 
agreement with the scaling estimates. 

Because the RF cavities are no longer expected to be the dominant impedance source, 
we have also considered the situation in which the transverse impedance comes mainly 
from the arc vacuum chamber hardware. In this case, the cutoff frequency for 2, 
increases to 1.9 GHz, and the strength of the impedance (weighted by the fraction of the 
circumference that consists of arc chambers, roughly 70%) increases to about 1.3 Mam. 
For these parameters, MOSES predicts the transverse thresholds to be 6.5 mA for the 
HER and 2.2 mA for the LER. 

Table 4-28. Scaling comparison for transverse mode-coupling threshold 

Low-energy 
fig PEP 

High-energy 
ring 

E [GeV] 3.1 14.5 9.0 

PL [ml . 20 87 20 

R [ml 350 350 350 

v, w21 3.7 4.6 5.3 

2~ [P 0.5 0.8 0.5 

Relative factola 1.2 1 5.0 

Observed [mA] - 8.5 - 

Evs aFactor = - 
Z&R 
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Fig. 4-80. Cakulution of transverse mode-coupling instiili@ threshold for (a) the 
HER, assuming ZL = 0.5 ML@m and (b) the LJ?R, assuming Zl= 0.5 Mum. The 
instability sets in when the m = 0 and m = -1 frequencies merge. This calculation 
represents a limit&on in the horizontal plane; the vertical limitation is lower (see 
text). 
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To put these results in context, we note that the maximum allowable single-bunch 
_ - current in the PEP-II rings is 1.8 mA, corresponding to 3 A in 1658 bunches. Thus, the 

transverse mode-coupling instability is not expected to limit the performance of PEP-II. 
Although the RF cavities are not the dominant contributors to the transverse 

impedance, it is still best to “hide” them in a low-beta region of the ring. This should be 
more easily accomplished in the PEP-II HER than in PEP, because the total length of RF 
structure will be considerably shorter. Indeed, it would be possible, in principle, to adapt 
the focusing of the RF straight sections to permit very low beta functions in both planes. 

4.3.1.4 Intrabeam Scattering. Although we are considering beams of fairly high 
energy, the requirements for relatively short bunches and relatively high peak currents 
make emittance growth from intrabeam scattering (IBS) a possible concern. IBS 
collisions occur because, in the bunch rest frame, not all particles are moving in the same 
direction. In general, the temperatures in the transverse phase planes (x and y) are higher 
than in the longitudinal plane. This results in small-angle multiple scattering occurring 
mainly in such a way as to transfer momentum from the transverse to the longitudinal 
plane. However, in dispersive regions of the lattice, this momentum change results in the 
excitation of a betatron oscillation and thus gives rise to an increase in horizontal 
emittance. 

To be sure this is not a concern, we performed calculations on each of the rings at the 
lowest energy now being considered: 7 GeV for the HER and 2.5 GeV for the LER. In 

- the HER case, our estimates indicate that no growth is expected. In the LER case, the 
lower beam energy enhances the IBS growth rates, and the single-bunch current is higher 
than for the high-energy beam, so we might expect an observable growth. However, in 
the LER these aspects are compensated by the larger transverse emittance values. Thus, 
even here we predict no emittance growth from it&abeam scattering. 

43.1.5 Beam and Luminosity Lifetime. For a high-energy electron beam, there are ’ 
four main processes that lead to beam loss: Touschek and gas scattering for the single 
beams, and Bhabha (e+e- + e+e-) and radiative Bhabha (e+eT -+ e+e-y) interactions for 
the beams in collision. For single beams at PEP-II, the fast of these effects is not 
generally important, but the second one is. For the colliding beams, the radiative Bhabha 
interactions dominate the luminosity lifetime. Lifetimes presented in this section are 
quoted as mean (that is, l/e) values. 

Touschek Scattering. The Touschek scattering mechanism is related to the IBS 
mechanism described above. The main difference is that we are concerned now with 
large-angle, single-scattering events that change the scattered particle’s momentum 
sufficiently to make it fall outside the momentum acceptance of the accelerator. 

The limit on the tolerable momentum deviation from the design value can come from 
several sources. There is a longitudinal limit from the potential well (“RF bucket”) 
provided by the RF system. Particles deviating in momentum from the nominal value by 
more than this amount do not undergo stable synchrotron oscillations and are lost. There 
can also be a transverse limit on momentum acceptance, arising from the excitation of a 
betatron oscillation when the Touschek scattering event takes place in a dispersive region 
of the lattice. For large momentum deviations (&I” = several percent), the resultant 
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betatron oscillation can either hit the vacuum chamber wall elsewhere in the lattice 
(physical aperture limit) or exceed the dynamic aperture of the machine. Because the 
lifetime for Touschek scattering increases approximately as (&/p)s, where (M/p) is the 
limiting momentum acceptance value, there is the potential for a strong degradation if the 
acceptance is too low. 

For detector background reasons;we envision the possibility of installing collimators 
in the arcs that would restrict the particle amplitudes to about 100, motion. To see how 
this affects the various lifetimes, ZAP has been modified to include this possibility. 

The RF voltage in the HER, selected to be 18.5 MV so as to produce short beam 
bunches, actually provides too large an acceptance (Ap/p = 1%) compared with the 
estimated limitation from the physical aperture (Ap/p = 0.7%). This is not beneficial to 
the lifetime, since it results in a higher bunch density and thus a higher collision 
probability; this is the price we must pay to obtain short bunches. Fortunately, the 
Touschek lifetime is not a major concern in this parameter regime, as shown in 
Fig. 4-81a. At 9 GeV, a Touschek lifetime of 870 hours is predicted for the HER based 
on the physical aperture limit. If a 100 limit is applied, the Touschek lifetime is still 188 
hours. 

In the LER, the physical momentum acceptance limit, A@’ = 1.3%, is the same as 
that of the RF bucket. Although the energy is lower than in the HER, the large 
acceptance makes the Touschek lifetime about 270 hours, and thus not of,concem. With 
a 100 aperture restriction, the lifetime becomes 65 hours, which is still quite comfortable. 
We see (Fig. 4-81b) that a 100 aperture becomes quite noticeable at the lower energies, 
where the lifetime drops to below 10 hours. 

Gas Scattering. Gas scattering involves collisions with residual gas nuclei present in 
the vacuum chamber. Such collisions can be either elastic or inelastic (bremsstrahlung). 
In the former case, particle loss results from the excitation of a betatron oscillation that 
exceeds the physical or dynamic aperture of the ring; in the latter case, the loss results 
from a momentum change that exceeds the momentum acceptance of the ring (see 
discussion above). 

The HER must accommodate 0.99 A of circulating beam to reach a luminosity of 
3 x -1033 cm-2 s-1. This high beam current will give a large desorbed-gas load, and 
substantial pumping speed is needed to maintain a background gas pressure below 
10 nTorr in the ring. The PEP-II vacuum system is designed to produce a pressure of less 
than 5 nTorr under these conditions, so we base our lifetime estimates on this value (N2 
equivalent). 

For the HER (see Fig. 4-82a), the estimated lifetime from gas scattering-dominated 
by the bremsstrahlung process -is 6 hours at a pressure of 5 nTorr. This beam loss 
process is much more severe in its effects than the Touschek scattering process; therefore, 
we have placed great emphasis (see Section 5.2) on a vacuum system design capable of 
maintaining a good pressure in the presence of a large gas load from .synchrotron- 
radiation desorption. It is worth noting here that our lifetime estimates are somewhat 
pessimistic in that they are based on a fixed gas pressure. In reality the pressure will 
decrease as the beam current decreases, making the lifetimes longer than the values 
quoted here. 
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Fig. 4-81. Plot of Touschek lifetime as a function of beam energy in (a) the HER 
and (b) the LBR. The solid line corresponds to taking the physical aperture of the 
vacuum chamber as the transverse limitation; the dashed line assumes a 1 Oa 
aperture restriction in the injection straight section. 

For the LER at a gas pressure of 6 nTorr (N2 equivalent), the lifetime is roughly 
equally matched between elastic scattering and bremsstrahlung losses (see Fig. 4-82b); 
the overall beam lifetime is 2.7 hours. Even for the LER, special care must be taken in 
the design of the vacuum chamber; this topic is discussed in Section 5.2. 

Lzuninosity Lifetime. A potentially important contribution to beam lifetime is the loss 
of particles due to interactions between the individual particles in the two beams. In 
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Fig. 4-82. Plot of gas-scattering lifetime as a function of beam energy for (a) the 
HER and (b) the LBR. For the elastic scattering (solid line), an aperture 
restriction of 100 was taken in each pkne, with the vertical obeing calculated with 
the fully coupled vertical emittance. An average pressure of 5 nTorr (N2 
equivalent) was assumed for the HER and 6 nTorr for the LER. 
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particular, we consider the loss of particles due to e+e- + e+e- and e+e- +. e+e-y 
- interactions that scatter beam particles outside the accelerator acceptance. 

If the e+e- cross section leading to loss of a particle from beam i is oi, then the loss 
rate depends on the luminosity according to 

$$ (t) = -Oi 5?(t) (4-32) 

Each beam may consist of a number of bunches (not including gaps), nbi with a number 
of particles per bunch, Nbi(t). The subscript b is used to indicate that this is a quantity for 
a single bunch, and the subscript i refers to the beam (i = +,-). The total number of 
particles in a given beam is Ni = ?ZbiNbi . We introduce the notation No,i z N,(O), and we 
also use ge, = Z(O) to denote quantities evaluated at t = 0. 

To determine the beam and luminosity lifetimes for the processes of interest, we need 
to know how the luminosity depends on the beam currents. This dependence is 
determined to some extent by the operation of the storage ring. We adopt here a 
conservative model that assumes that the bunch sizes do not vary with time. Then the 
luminosity is given by 

Nb+(t)Nb-(%bifi (4-33) 

I 
1, The ozt and c& in this equation are the transverse rms spot sizes at the interaction point 

(IP). All time-dependent terms are explicitly indicated. It is assumed that the bunches 

I 
are distributed such that all bunches meet opposing bunches at the IP (that is, bunches 
meet bunches and gaps meet gaps), hence nb+f+ = n6f- is the bunch collision frequency. 

L. Here, fi is the revolution frequency for beam i. We also assume that any modifications 

I 
to the above formula from considerations such as finite bunch lengths and nonzero 
crossing angles are time independent. 

Equations 4-32 and 4-33 lead to two coupled differential equations in. the beam 
currents: 

dN + = -kts..,hL dt 

dN_ - = -ktsiVJL dt 

k 20 
= No,+No,- 

(4-34) 

(4-35) 
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The solution is 
- l-r 

N+(t) = No,+ - eGt- r 

(4-36) 
N,(t) = No,- 1-r 

1 - re-Gt 

where 

-o($-$) 
and 

No,+ TV- 
’ = No,-a+ 

The l/e beam lifetimes are given by 

7, =kln [e+r(l-e)] 

(4-37) 

(4-38) 

(4-39) 

r=-$ln[+(l-e+re)] 

The time-dependence of the luminosity is 

2 
(4-40) 

We define the luminosity lifetime r to be the time it takes the luminosity to reach l/e of 
its initial value: 

.r=&ln(f[(l-r)2+2r/e+(l - r) J(1 - r)2 + 4rpl) (4-41) 

The more important mechanism of the two Bhabha processes considered here is loss 
due to bremsstrahlung (e+e- + e+e-*/) of a photon, which can change the energy of a 
beam particle suffkiently to put it outside the energy acceptance of the accelerator. An 
excellent approximation for the cross section. to lose a particle from beam i due to 
bremsstrahlung is [Altarelli and Buccella, 19641 
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i - 

I 

In this expression, ken i is the minimum energy of a radiated photon that causes loss of a 
particle from beam i. Thus, kmi,, i /Ei can be taken as the fractional energy aperture of the 
machine for beam i. This cross section depends slowly on the energy aperture and on 
E c.m.* 

Table 4-29 shows the bremsstrahlung beam loss cross section for PEP-II calculated 
according to Eq. 4-42. The fractional energy aperture is limited by the transverse 
aperture rather than by the RF voltage-we have used a value corresponding to ten times 
the rms energy spread of the beam. 

We note that the large circumference of the PEP-II rings (2200 m) helps to produce a 
comfortably large 1uminosity lifetime from this source. Even if future upgrades result in 
a higher luminosity, we do not have a problem. For example, suppose we anticipate a 
luminosity of 1 x 1O34 cnr 2 s- 1. As a “worst case,” suppose further that this gain is 
achieved at the same beam currents as in our nominal design, either by reaching higher 
tune shifts or by focusing more strongly. In this case, the luminosity lifetime is inversely 
proportional to the luminosity, so 12.6 hours at 3 x 1033 cm-2 s-t becomes 3.8 hours at 
1 x 1O34 cm-2 s- 1. This would still be acceptable, although it would then be comparable 
to the beam-gas luminosity decay rate. 

Another loss mechanism, typically not as important as the bremsstrahlung considered 
above, is the loss due to Bhabha (e+e- + e+e-) scattering at sufficiently large angles to 
escape the acceptance of the machine. To a good approximation for the small angles and 
high energies that we consider, the cross section to lose a particle from beam i is 

OBhabha i 
. 

(4-43) 

1 Table 4-29. Bremsstrahlung lum-inosity lifetime d&d&ion. 

Parameter 

Fractional energy aperture 

High-energy Low-energy 
Symbol ring ring 

fE 0.006 1 0.008 1 

Min. energy in brems. integral wev] 

Brems. cross section for particle loss [cm21 

Bremsstrahlung beam lifetime [hr] 

k min 
ae+q 

TBr i 

55.1 25.1 

3.0 x 10-Z 2.8 x 10-25 

14.8 34.4 

Bremsstrahlung luminosity lifetime [hr] TBr 12.6 
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where Oei, ay;i is the minimum horizontal or vertical scattering angle in the laboratory 
frame leading to particle loss, and j = (-,+). - Cross sections in units of GeV-2 may be 
converted to cm2 by multiplying by 3.89 x 10-28 GeV2 cm2. 

Table 4-30 summarizes the calculation for the PEP-II design. For the minimum 
angles, we have made our usual assumption that the limiting aperture is 100 (using the 
uncoupled horizontal and the fully coupled vertical beam sizes). Because the Bhabha 
cross section to lose a beam particle is substantially smaller than the cross section in our 
earlier bremsstrahlung loss example, this is not a significant lifetime consideration. 

We conclude that the luminosity lifetime from e+e- + e+e- and e+e- + e+e-ywill not 
be a significant limitation for PEP-II at a luminosity of 5? = 3 x 1033 cm-2 s-r. Even at a 
luminosity of 1 x 1G4 cm- 2 s- l, the large circumference (and hence large number of 
particles per unit of beam current) of the PEP-II rings ensures that these sources of beam 
loss will not seriously degrade the lifetime. 

4.3.1.6 Higher-Order-Mode Losses. A complete specification of the thermal loading in 
the vacuum chamber must take into account the localized heating of beamline 
components due to the absorption of power generated by the beam in the form of HOM 
losses. We estimate the HOM power as 

-. 

PHOM = 1.6 X 10-l’ Nblkl [kW] (4-44) 

- where Nb is the number of particles per bunch, I (in A) is the total current, and kp (in 
V/PC) is the loss factor for the ring due to its impedance. For the PEP-II design 
parameters, the HOM power in the HER is given by meifets, 199Oa] 

PHOM = 4.3 kp [kW] (4-45) 

The equivalent value for the LER is 

PHOM = 20 kg [kW] (4-46) 

Tuble 4-30. Bhubhu luminosity lifetime calculation. 

Parameter 
High-energy Low-energy 

Symbol ring fig 

Minimum angle in Bhabha integral [rad] 8 minx 3.17 x 10-3 4.22 x 10-3 

Minimum angle in Bhabha integral [rad] 

Bhabha cross section for beam loss [cm21 

8 * -Y 1.12 x 10-2 1.49 x 10-Z 

G+e- 1.73 x 10-B 8.16 x 10-2s 

Bhabha beam lifetime [hr] ZBh i 26000 12000 
. 

Bhabha luminosity lifetime [hr] TBh 10064 

_. 
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. 

The loss factor is defmed as 

(4-47) 

Based on the impedance values estimated here, the total loss factor of the LER with 
10 RF cavities is k, = 11.2 V/PC. Of this, the RF cavities give 5.15 V/PC, the ring 
components give 3.25 V/PC, and the resistive wall gives 2.8 V/PC. 

The HOM power deposition in the LER is then found from Eq. 4-46 to be P = 
225 kW. For the HER there are 10 additional RF cavities that contribute an additional 
loss factor of 5.15 V/PC. The HOM power for the HER is then P = 70 kW. To be 
conservative, we double these PHOM values in determining RF parameters, that is, we use 
PHoM = 150 kW for the HER and P,oM = 450 kW in the LER. The total HOM loss in 
the lR from both beams is P = 1.2 kW. This is very small compared with the power 
deposited by the synchrotron radiation (about 75 kw). 

We estimate the ohmic losses (power deposition per unit length) from a beam with kB 
bunches in the ring as 

(4-48) 

For the beryllium pipe at the lP, cr = 3.1 x 105 Q-1 cm-* and b = 2.5 cm. For the two 
beams with parameters kB = 1658,fo = 136 kHz, Nb = 2.75 x 1010 (HER) and 5.91 x 1010 
(LER), we find dP/dz = 0.70 W/cm. 

The estimate shows also that the HOM power will be absorbed mostly outside of the 
interaction region. The wakefields generated outside of, but absorbed within, the lR 
deposit very little energy because the average loss factor per unit length outside of the lR 
(excluding RF cavities) is much smaller than that of the IR. This contribution may be 
dominated by the wakefields generated at the crotches far away from the lP. 

Energy deposition could be enhanced substantially if there were trapped modes in the 
lR, provided their wavelengths were multiples of the bunch spacing. We have tried to 
find the trapped modes in a structure that reproduces the real lR structure within ti5 cm 
from the lP and then is continued with straight pipes, using the code MAFIA. We failed 
to find any trapped modes [Ko, 19901. This is not surprising in an open structure such as 
the PEP-II lR. 

4.3.1.7 Ion Clearing. The trapping of positively charged ions produced by collisions 
between electrons of the beam and background gas molecules has degraded the 
performance of many electron storage rings. The production rate for the total ring is 
1.3 x 109 ions per turn at an average pressure of 5 nTorr. The linear theory of ion 
trapping is quite simple. When an electron beam bunch passes near an ion, the ion 
experiences a restoring force toward the beam axis. This force results in a change in the 
transverse velocity of the ion. Between bunch passages, the transverse velocity produces 
a change in the transverse position of the ion. This pattern is repeated for each passage of 
an electron bunch. 
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To estimate the ion motion, it is useful to consider [Villevald, 19931 the transverse 
charge density of the electron beam as a Gaussian profile with rms width and height a, 
and cry, respectively. The equation of vertical motion for an ion in the electron bunch 
may be written as 

y+& =o 

where 

(4-49) 

(4-50) 

with T the peak current of the bunch, c the speed of light, IP = m//e = 3.1 x lo7 A the 
Budker current of a proton, and A the ion mass number. The bunch cross section varies 
around the ring, but, for purposes of estimation, we can take a, = 0. lzm, o,, = 0.02 cm, 
an ion mass of 20, and a peak current 130 A. These parameters give I$, = 4 x 108 rad/s. 
The bunch length z-urd the &.ch spacing At are 30 ps and 4.2 ns, respectively. Since 
both the quantities $2, z and C&z At are much less than one radian, we can neglect the 
bunch structure of the beam and describe the ion motion as occurring in the potential well 
of a continuous electron beam. - Figure 4-83 shows the depth of the potential well for a 

c 
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Fig. 4-83. Depth of potential well for a singly charged ion in the HER straight 
section. 
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singly charged ion along the straight section lattice cell. The average transverse ion 
motion can be obtained from Eq. 4-49 by replacing the peak current in Eq. 4-50 by the 
average current Z = 0.99 A. The ion effectively sees a continuous electron beam and 
oscillates with an average frequency of.S2, = 3.3 x 107 rad/s. The same analysis applied 
to the horizontal ion motion gives fix = 1.5 x 107 radk. For a continuous bunched beam 
in the HER, ions will be trapped unless measures are taken to remove them. 

The best known approach to avoiding ion trapping is to leave a gap in the electron 
bunch train. This gap need be only a few percent of the total ring circumference, so that 
only a small increase in the single-bunch current is necessary to achieve the same 
luminosity obtained for the continuous bunch train. An ion will be linearly unstable 
whenever the gap satisfies the following condition: 

where TO is the revolution period and AT is the gap length. For To = 7.3 ps, the phase 
advance of ion oscillation during the passage of the bunch train is given by QJTo - AT) 
= 170 rad and stability is sensitive to small parameter variations. For a particular 

/ 
I combination of current, beam cross section, and ion mass, the ion would perform nearly 

an exact number of half-integer oscillations during the passage of the bunch train. This 
would result in violation of the instability condition, Eq. 4-51. Therefore there will be 
locations along the ring where ions can be trapped (see Fig. 4-84). The typical width of 
each of these zones is of the order of a few centimeters. These locations shift along the 
beam orbit as the current decays and/or the beam cross section changes. The ratio of the 

! 
total length of stability zones to the ring circumference has been calculated as a function 
of gap length from Eq. 4-51 and is plotted in Fig. 4-85, which shows the percentage of L. io’ns trapped in stability zones as a function of gap length for various ion masses (for the 

I 
average current in the HER of 0.99 A). The design length of the HER gap is 88 bunches 
or 5% of the ring circumference. This choice gives a total length of the transverse 

I 

stability zones of the order of 18% of the circumference for a typical ion mass number of 
A = 20; a longer gap doesn’t change this percentage drastically. 

The majority of the ions are expected to leave the stable zones due to longitudinal 
motion caused by variation of the depth of the beam potential well with azimuth (due to 
variation of the transverse beam sizes a, and oy, as shown in Fig. 4-83) and, for nonzero 
transverse amplitude, due to the cross-field force. A time of the order of 2-3 revolution 
periods is enough for the ion to drift from the stability zone and become transversely 
unstable. 

A worst case would occur when an ion is both transversely and longitudinally stable 
and the zone of stability coincides with the minimum of the beam potential well, that is, 
when ions are generated at the QD location (see Fig. 4-83). The typical width of the 
stability zone near the minimum of the beam potential well varies from w = 18 cm for 
hydrogen (A = 2) to w = 85 cm for carbon dioxide (A = 44). Ions will accumulate in these 
zones from one turn to another. The frequencies of the trapped ions should be within the 
frequency range 
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Fig. 4-84. (a) Stile zones for ion trapping, plotted as a function of ion frequency. 
(b) Frequencies for different masses at QF and QD locations. 

Q&Y A 2 =- sz XVY Qqy To (4-52) 

For heavy ions, A = 44, and a gap length AT/r = 0.05, we find &MT >> 1 and ACM2 very 
small, about 3 x 10-s. 

The number of accumulated ions in a stable zone is limited by two effects that change 
the ion frequency: the space charge of the trapped ions and the amplitude dependence of 
the frequency R. The space-charge effect produces a frequency shift Eq. 4-52 when the 
ion linear density is 

(4-53) 

where N, = 4.5 x 1013 is the total number of electrons in the HER. Therefore, the number 
of ions trapped in this stable zone is WAN:’ ions. The total number of the stability zones 
coinciding with the bottom of the beam potential well cannot exceed the number of lattice 
cells in the HER: II,~ = 144, so the maximum number of trapped ions is 
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Fig. 4-85. Percentage of circumference thut gives stable ion motion as a function 
of the length of the ion-clearing gap. 

Nt’ = His’ wnceu (4-54) 

For hydrogen Nt’ = 1.3 x 108 and for carbon dioxide Ntf = 1.3.x 1010. 
The accumulation of these ions is a relatively slow process, taking 103~104 turns. 

During this time, the number of trapped ions will also decrease due to fluctuations of the 
beam current and transverse beam size. In reality, the number of trapped ions is also less 
than that given by Eq. 4-54 because the straight-section cells, dispersion-suppressor cells, 
and arc cells are not all identical. We see that the number of trapped hydrogen ions is 
much lower than the total number of ions produced during the revolution period of the 
HER, Ni = 1.3 x 109. However, the number of trapped heavy ions (A = 44) is significant. 

There is an additional reduction in the number of trapped ions due to the dependence 
of the ion frequency on ion amplitude ur For example, 

(4-55) 

An amplitude a,,/~~,~ = 0.22 corresponds to a frequency shift A!X2 = 3 x 10-3. Such a 
shift reduces the total number of stable ions by an order of magnitude, making their effect 
small compared with that of single-turn ions. The maximum betatron tune shift generated 
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by trapped heavy ions is 

(4-56) 

For a beam current Z= 0.99 A in the HER, By = 2500 cm, y= 1.8 x 104 (the relativistic 
factor), and beam sizes at the QD locations of & = 0.07 cm, z,, = 0.022 cm, the tune shift 
is 0.04 and the betatron tune spread due to the trapped ions is of the order of sv’,’ = 0.03. 
In reality, the effect is even larger, because the distribution function of trapped ions is 
expected to be narrower than the distribution function of the electron beam (see 
Fig. 4-86) [Tavares, 19921, which increases the tune shift by a factor of two. However, 
only a small number of electrons, about 0.25%, experience a tune shift of this magnitude 
(which is still less than the tune shift given by the beam-beam interaction). 

In considering the effects of unstable ions, it is convenient to divide them into two 
groups. The first group we refer to as “single-turn” ions, that is, ions accumulated during 
the passage of the previous bunch train. The total number of single-turn ions is 

Ni=Ne += 1.3~ 10’ 
i 

(4-57) 
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Fig. 4-86. Calcula&ed disb-ibution of tmpped ions compared with beam 
dimensions. . 
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where Zi = 0.25 s is the total ionization time. These ions cannot be removed by lumped 
clearing electrodes. Single-turn ions produce a betatron tune spread from bunch to 
bunch. Indeed, there are no single-turn ions at the head of the bunch train, whereas the 
number of single-turn ions for the last bunch of the tram is given by Eq. 4-57. The 
bunch-to-bunch betatron tune spread is given by 

(4-58) 

for the HER current of Z = 0.99 A and (pyj = 1.5 x 103 cm the beta function averaged over 
the ring circumference. This tune spread IS unavoidable even with clearing electrodes. 

The second category of unstable ions involves “many-turn” ions, that is, ions 
generated and trapped during many previous turns. During the time of the gap passage, 
these ions reach large amplitudes, so we need to consider nonlinear theory in analyzing 
their behavior. Generally speaking, the amplitude dependence of the ion oscillation 
frequency may result in nonlinear resonances. The resonance condition is 

kQx,y = ncy, (4-59) 

where w, is the revolution frequency and k and n are integers. For QKy = 3 x 107 rad/s, 
o, = 8.6 x 105 rad/s, and k = 1, the order of the resonance is n = 35. Resonances of such 

- high order are suppressed strongly. Therefore, a linearly unstable ion remains unstable at 
large amplitudes. This statement has been confirmed by computer simulations in which it 
was shown that the betatron tune shift due to many-turn ions is 

A+Av 4 y l-q 

where Av, is the tune shift due to single-turn ions, given by Eq. 4-58, and the parameter 
4 is proportional to the atomic number A 

qz 
a. Anm# 

$ AT2 e&I 
= 6.8 x @A (4-6 1) 

with Z = 0.99 A and Z, = 377 d (the impedance of free space). The tune-shift value 
obtained from Eq. 4-60 is small in comparison with the shift due to single-turn ions for 
our design current. 

The nonlinear field of the single-turn ion cloud results in a betatron tune spread given 
bY 

&=avY 
y at; 

=3Ey e 
’ 32 ymec2 f 

&2(s) &is 
a2 

C 

(4-62) 

With &,, = 1.93 x 10-g mrad, Ey the electric field of the ion cloud (for the cloud of single- 
turn ions, a3Eyiay3 = -2 kV/cm ), and C the ring circumference, we find Sy, = -0.002. 
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Figure 4-87 shows the horizontal and vertical “bunch-to-bunch” betatron tune spread 
induced by single-turn ions as a function of HER current. Although these ions cannot be 
removed by lumped clearing electrodes, this is not necessary because the tune spread 
from them is well below the corresponding value due to the beam-beam interaction. 

The betatron tune spread due to the trapped heavy ions (Eq, 4-56) is of the order of 
the beam-beam tune shift. Hence, ion clearing might be necessary near the horizontally 
defocusing quadrupoles in the arcs and straight sections. 

A closely related possible problem in PEP-II is that of cross-talk between the DIPS 
and the beam, a phenomenon observed at CESR. The effect at CESR is believed to be 
related to the penetration of the electrostatic field through the slots of the screen [Sagan 
and Welch, 19921. Such an effect scales with the slot width w and the thickness of the 
screen as w2etiw. Simulations with POISSON (see Fig. 4-88) show that, for PEP-II 
parameters, the field at the beam is reduced to 0.012 V/cm-a negligible amount-with 
5.5 kV on the DIPS. 

0.0125 
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m 

0.0025 

1 2 3- 

1 (4 

Fig. 4-87. Betutron tune spread due to trapped ions. 
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Fig. 4-88. Calculated electric field in beam chamber due to high-voltage on DIPS. 
A voltage of 5.5 kV in the pump chamber produces an electric field of only 0.012 
V/cm at the beam location. 

4.3.2 Coupled-Bunch Instabilities 

As mentioned earlier, wakefields in high-Q resonant structures in a storage ring cause 
different beam bunches to interact. In general, such high-Q resonances result from the 
HOMs of the RF cavities. For certain values of relative phase between bunches, the 
coupled-bunch motion can grow and become unstable, leading to beam loss. In addition 
to the relative phase between bunches, the instabilities are characterized by their motion 
in longitudinal (synchrotron) phase space. Longitudinally, the a = 0 mode 
(corresponding to no motion) cannot be unstable, so the lowest longitudinal instabilities 
are characterized by a = 1 (dipole) synchrotron motion. In the transverse case, the a = 0 
motion can also become unstable (referred to as “rigid-dipole” motion). 

In the case of PEP-II, we require a relatively large number of RF cells, both to 
generate the voltage needed to produce the short bunches and to replace the beam power 
lost to synchrotron radiation each turn. Combined with the required very high average 
beam currents, the substantial RF system can produce extremely rapid growth of coupled- 
bunch instabilities. In the cases studied here, the most severe growth comes from the 
lowest modes, that is, a = 1 longitudinally and a = 0 transversely. 

We have estimated the growth rates for both longitudinal and transverse instabilities 
for typical PEP-II parameters, that is, 1746 bunches having a total current .of 0.99 A 
(HER) or 2.14 A (LER). This bunch number, which ignores the gap for clearing ions, is 
necessary for calculations performed with ZAP in the frequency domain. 

Two different cases, based on the cavity design described in Section 5.5, were 
studied: 

Case A: Undamped cavities; 20 cells (HER) or 10 cells (LER) 
Case B: As in A, but with HOMs damped to Q = 70; 20 cells (HER) or 10 cells 

(LEN 
In Case A, we examined the behavior of a standard PEP-II cavity with no HOM 

damping. This cavity has a high shunt impedance for the fundamental while having , 
reasonable values for the HOMs. Case B represents what happens when the higher-order 
RF modes of the single-cell system are heavily de-Qed by external means, such as the 
waveguides described in Section 5.5. 

Predictions of longitudinal growth times (for the fastest-growing mode) for both RF 
scenarios considered are summarized in Tables 4-31 and 4-32. The undamped cavity 
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Table 4-31. Longitudinal coupled-bunch growth times 
for the PEP-II HER (9 GeV; 7~ = 18.4 ms) at a beam 
current of 0.99 A. 

(A) Undamped 

Ta=l 0.06 ms 
7a=2 2.0 ms 

(B) Damped to Q = 70 

%=I 
z a=2 

7.7 ms 
363 ms 

(Case A) gives a = 1 growth times’below 0.1 ms. Substantial de-Qing (Case B) does help 
slow down the growth considerably, to times on the order of 8 ms. Note that the 
feedback system power required to counteract these instabilities will scale as the square 
of the growth rate, so the change associated with damping the cavity HOMs is very 
significant. 

-_ 

Although not shown in Tables 4-31 and 4-32, we have also observed that the 
fundamental mode of the RF system is capable of causing instability for selected coupled- 
bunch normal modes. This problem is handled via feedback on the cavity itself, as 
described in Sections 5.5 and 5.6. Transverse results, summarized in Tables 4-33 and 
4-34, are similar to those for the longitudinal case. Here, too, we find for Case A that the 
two lowest synchrotron modes, a = 0 and a = 1, have growth times much shorter than the 
radiation damping time. We again note the benefits of substantial de-Qing (Case B) in 
slowing down the growth rates to more manageable levels. For Case A, it is the RF 
HOMs that dominate the predicted instability growth times for both a = 0 and a = 1 

Table 4-32. Longitudinal coupled-bunch growth times 
for the PEP-II LER (3.1 GeV; z-E = 19.8 ms) at a beam 
current of 2.14 A. 

(A) Undamped 

za=l 
z a=2 0.03 ms 

1mS 

(B) Damped to Q = 70 
z a=1 3.8 ms 
za=2 18Oms 
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Table 4-33. Transverse coupled-bunch growth times for 
the PEP-II HER (9 GeV; 2, = 37.2 ms) at a beam 
current of 0.99 A. 

(A) Undamped 
z a=0 0.20 ms 2a=1 3.2 ms 

(B) Damped to Q = 70 

za=O za=l 4.5 ms 
122.0 rns 

synchrotron modes. For Case B, however, the growth of the instability is driven 
exclusively by the resistive-wall impedance for a = 0 modes (though the cavity HOMs 
still dominate the growth time for the a = 1 modes). Thus, the transverse feedback 
system power requirements are determined by the resistive-wall instability, as discussed 
in Section 5.6.2. 

Although the feedback system design (Section 5.6) is based on detailed simulations of 
the multibunch growth rates, the simple estimates made here already justify the effort that 
has gone into designing an effective HOM damping system for the RF cavities (described 
in Section 5.5). 

-. 

Table 4-34. Transverse coupled-bunch growth times for 
the PEP-II L.ER (3.1 GeV; 2; = 40.3 ms) at a beam 
current of 2.14 A. 

(A) Undamped 

2a=0 0.1 ms 
z a=1 1.4ms 

(B) Damped to Q = 70 

2a=0 2a=1 1.1 ms 
21.4 ms 

1 
1 183 



COLLIDER DESIGN 

4.3.3 Summary of Findings 

Total beam current limitations in both rings will depend upon the ability of the vacuum 
system to maintain an acceptable pressure, about 5 nTorr, in the presence of l-2 A of 
circulating beam. Neither bunch lengthening and widening due to the longitudinal 
microwave instability (which places a limit on the allowable broadband impedance), nor 
current limitations arising from the transverse mode-coupling instability are predicted to 
be constraints in the multibunch scenario considered here. 

We have seen here that the performance of both high- and low-energy rings is likely 
to be limited mainly by coupled-bunch instabilities. Our choice of specially designed 
single-cell RF cavities helps to reduce the longitudinal HOM impedance by permitting 
the voltage to be produced with relatively few cells and by permitting the cavity HOMs to 
be effectively damped. Feedback systems able to deal with the remaining growth have 
been designed; they are described in Section 5.6. 

4.4 BEAM-BEAM ISSUES 

As discussed in Chapter 3, the desire to achieve high luminosity leads one naturally to 
specify high currents and/or small beam sizes. These tend to make the beam-beam 
interaction stronger, which, in turn, may lead to beam blowup, coherent oscillations, or 
fast particle losses that could defeat the purpose of the initial specification. 

-. 

If the beam-beam interaction is sufficiently weak, the beams behave as if there were 
no collisions, and the performance is controlled by the single-beam parameters of the two 
rings. This condition implies a relative simplicity in the operation of the collider, because 
the two beams are effectively decoupled. The price one must pay for this simplicity is 
that, in order to achieve a specified luminosity, the weakness of the beam-beam 
interaction must be compensated by using large beam currents distributed over many 
bunches, or over few bunches with a large beam emittance. Either of these approaches 
can become a problem for other aspects of the design, such as the vacuum system or RF 
system, and can also lead to various kinds of beam instabilities. 

If the beam-beam interaction is significant, the dynamical beam parameters generally 
deviate from their nominal values. A strong beam-beam interaction naturally tends to 
imply a high luminosity, but it entails the potential for the problems mentioned above. In 
addition, the operation becomes relatively more complicated because the two beams are 
effectively coupled. 

Obviously, the desired luminosity performance of the collider implies specifications 
on the dynamical quantities. The nominal quantities, on the other hand, imply 
specifications on the individual rings. If the beam-beam dynamics were well understood, 
it would be possible to translate specifications from dynamical to nominal quantities, and 
then to proceed to the design of the two rings individually. Unfortunately, our 
understanding is incomplete. This is particularly true for asymmetric colliders, which 
involve the additional complication of having two separate rings. Furthermore, all beam- 
beam simulation tools in existence take nominal parameters as input and produce 
dynamical quantities as output. Therefore, the understanding obtained from beam-beam 
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-. 

If the beam-beam interaction is sufficiently weak, the beams behave as if there were 
no collisions, and the performance is controlled by the single-beam parameters of the two 
rings. This condition implies a relative simplicity in the operation of the collider, because 
the two beams are effectively decoupled. The price one must pay for this simplicity is 
that, in order to achieve a specified luminosity, the weakness of the beam-beam 
interaction must be compensated by using large beam currents distributed over many 
bunches, or over few bunches with a large beam emittance. Either of these approaches 
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deviate from their nominal values. A strong beam-beam interaction naturally tends to 
imply a high luminosity, but it entails the potential for the problems mentioned above. In 
addition, the operation becomes relatively more complicated because the two beams are 
effectively coupled. 

Obviously, the desired luminosity performance of the collider implies specifications 
on the dynamical quantities. The nominal quantities, on the other hand, imply 
specifications on the individual rings. If the beam-beam dynamics were well understood, 
it would be possible to translate specifications from dynamical to nominal quantities, and 
then to proceed to the design of the two rings individually. Unfortunately, our 
understanding is incomplete. This is particularly true for asymmetric colliders, which 
involve the additional complication of having two separate rings. Furthermore, all beam- 
beam simulation tools in existence take nominal parameters as input and produce 
dynamical quantities as output. Therefore, the understanding obtained from beam-beam 
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simulations proceeds, in some sense, “in reverse.” In practice, therefore, the only way to 
arrive at a specification of nominal beam parameters is to proceed by iterations. 

The basic strategy we adopt for PEP-II is to choose values for the nominal quantities 
(including the beam-beam.parameters 50) to achieve a certain (nominal) luminosity, and 
then to verify by simulations that the dynamical behavior is close to nominal. If the 
dynamical results are substantially different from the nominal expectations, we change 
the nominal parameters and try again until an acceptable solution is found. 

As mentioned earlier in this report, the key figure-of-merit for PEP-II (or any other 
particle “factory”) is high integrated luminosity. This implies that a proper design must 
have good operational reliability and high average luminosity. This last requirement 
implies high peak luminosity, long beam lifetime, and the capability for rapid injection; 
the first two requirements are almost always in conflict. 

The bulk of the beam-beam studies carried out to date, which are summarized here, 
have set a priority on demonstrating the feasibility of attaining or exceeding a short-time- 
average luminosity of 3 x 10s3 cm- 2 s- l. In this section, we present one set of parameters 
that strikes a balance between the conflicting requirements mentioned above. This 
solution is not necessarily unique or optimal, but it is an existence proof that such a value 
for the luminosity is an achievable goal. The short-time-average luminosity is 
determined by the dynamics of the beam core, while the beam lifetime is determined by 
the long-time dynamics of the tails of the beam. Since high peak luminosity is a 
necessary (but not sufficient) condition for good average luminosity, we have mainly 
focused our efforts on the dynamics of the beam core. Preliminary results from studies of 
beam-tail distributions (see Section 4.4.5) indicate acceptable beam lifetimes. 

A complete set of beam-beam studies would need to address a large number of issues, 
such as those arising from the energy and lattice asymmetries, multibunch coherent 
effects, magnet nonlinearities, multiple parasitic collisions, injection transients, and beam 
lifetime calculations. Such a task is beyond the reach of any single tool available today, 
so one must necessarily resort to various approximations; the studies summarized here are 
no exception. For this reason we cannot, in general, interpret our results quantitatively. 
However, we do believe that qualitative comparisons between results for different 
parameter values provide us with valid guidance with regard to desirable or undesirable 
changes in these parameters. This philosophy underlies the interpretation of our bearn- 
beam studies, particularly multiparticle simulations. 

In summary, although substantial work remains to be done, we are confident that the 
solution we propose here will lead to a productive B factory, and we further expect that 
improved solutions can be found by modest modifications of various parameters. 

4.4.1 Nominal and Dynamical Beam Quantities 

In the absence of the beam-beam interaction, the beam parameters are determined by the 
lattice, the energy, and the RF parameters of each ring. In particular, this is true of the 
emittances and therefore the beam sizes at the interaction point (IP). From these one can 
compute the beam-beam parameters and the resultant luminosity in the limit that the 
beam-beam interaction does not change them; the quantities calculated in this limit are 
referred to here as nominal and are indicated by a subscript 0. As an example of our 
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notation, the nominal vertical beam size at the P, o&+ and beam-beam pameter go,,+ 
of the positron beam, and the nominal luminosity 20 are given by 

o;;l,+ =Gx (4-63a) 

by,+ = 
mW$+ 

27v+b& (ok- + o&,- ) 
(4-63b) 

where /?? + and a,,+ are the vertical beta function at the P and the nominal emittance of , 
the positron beam, the N* are the numbers of particles per bunch, ro is the classical 
electron radius, and fc is the bunch collision frequency. We assume here that the bunches I 
collide head-on, that they have elliptical Gaussian transverse profdes with common axes, 
and that they have lengths comparable to or smaller than their transverse beta functions. 
In this case, the so-called “hourglass” reduction effect is small Furman, 1991a]. There i 
are-three more beam-beam parameters, whose expressions are obtained from the above by 

- the replacements x t) y and/or + f) -. If the bunches are evenly spaced by a distance SB, 

the bunch collision frequency is, in the relativistic limit, fC = c/s& where c is the speed of ! 

light. 
Once the beams are brought into collision, the emittances inevitably deviate from 

their nominal values and, as a result, so do all quantities involving the beam sizes, 
including the beam-beam tune shift and the luminosity. These are the dynamical 
quantities, denoted without the subscript 0; the dynamical quantities corresponding to 
those in Eqs. 4-63 above are given by 

4+ = l&gT (4&a) 

(4-64b) 

(4-64c) 
. \ 

In this discussion, we assume that the beam-beam interaction does not induce coherent 
oscillations or a relative displacement of the closed orbits at the IP. This is discussed in 

. greater detail when we describe our simulation results in Section 4.4.4. 
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4.4.2 Transparency Symmetry 

The fact that an asymmetric collider necessarily consists of two rings enlarges the beam 
dynamics parameter space considerably relative to a single-ring, symmetric collider. The 
bunches in the two rings see different RF systems, different lattice functions, and 
different magnetic fields. Even the simplest beam-beam dynamics study requires, at a 
minimum, the specification of the following quantities: 

Two values for the number of particles per bunch, N+ 
Six beam sizes (two transverse and one longitudinal for each beam) 
Four beta functions at the IP (one vertical and one horizontal for each beam) 
Six tunes 
Two sets of damping decrements 

In general, the four beam-beam parameters are different, as can be seen from Eq. 4-63. 
Because no asymmetric e+e-colliders exist at present, and because the consequences 

of the beam-beam interaction are not completely understood for intense beams, it has 
been argued [Garren, 1989; Chin, 1989, 19901 that a cautious approach would be to 
require that the beam dynamics of an asymmetric collider resemble as closely as possible 
the dynamics of a symmetric one. In this way, the design can draw upon the valuable 
experience gained from single-ring colliders. This is the so-called “transparency 
symmetry” condition; it is reached by imposing constraints on the parameters of the two 
rings according to the following: 

(i) Pairwise equality of nominal beam-beam parameters: {ox,+ = &,- and 
toy,+ = toy,- 

-. (ii) Pairwise equality of nominal beam sizes: oiX,+ = o& _ and criy + = , , oiy _ , 
I (iii) Equality of damping decrements of the two rings 

(iv) Equality of the tune modulation amplitudes due to synchrotron oscillations: 
tm %&,y)+ = (on vs&,yL with op the bunch length and v, the synchrotron 
tune 

These conditions have been.arrived at by a combination of analytic arguments and by 
trial and error in simulations. It has been shown that, in certain cases, the predicted 
performance is better when the above conditions are satisfied than when they are badly 
violated [Chin, 1989, 19901. From the theoretical perspective, however, the status of this 
transparency symmetry is not completely settled: It has been argued, from general 
principles, that the global beam-beam limit (understood to mean maximum integrated 
luminosity at a fixed overall cost) in an asymmetric collider can only be reached under 
asymmetric conditions [Tennyson, 19901. However, it is possible that this beam-beam 
limit can be achieved only at the price of relinquishing too much flexibility and therefore 
operational reliability, or of undesirably tight tolerances. Furthermore, it is not known at 
present how different the luminosity at the beam-beam limit would be compared with 
what could be achieved in a given transparent-symmetric design. On the other hand, by 
demanding that the dynamics of the two beams be identical, a single-particle Hamiltonian 
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i 
analysis in the linear-lattice approximation leads to a more restrictive set of transparency 
conditions than those above [Kiishnagopal and Siemann, 199Ob]. This analysis implies 
that the tunes, emittances, beta functions, beam-beam parameters, and bunch lengths of 
the two beams must be pairwise equal. The only freedom left over is a trade-off between 
energy and bunch current such that (NY)+ = (N9-. 

In any case, the design of PEP-II must strike a compromise among competing 
requirements from different areas of the design. This compromise requires 
accommodating certain constraints, such as those arising from single-particle nonlinear 
dynamics, synchrotron radiation masking, etc., that affect an idealized optimization of the 
beam-beam interaction. As a result of this compromise, the present design of PEP-II 
satisfies exactly only conditions (i) and (ii) above. However, as will be discussed later in 
this section, we have also carried out studies in which condition (i) is violated men and 
Furman, 1993a]. These studies show that the dynamics behaves smoothly as the nominal 
beam-beam parameters move away from. equality. The PEP-II design allows enough 
flexibility to accommodate such a departure from condition (i), within a certain range, 
should further research indicate the need. For now, however, .we have adopted the 
approximate transparency symmetry as a prudent starting point in the design. 

An important practical implication of the constraints above is that they reduce 
considerably the parameter space and hence simplify the design. A mathematical 
advantage of transparency symmetry is that the luminosity can be very simply and 
conveniently ‘expressed in terms of a single beam-beam parameter. First, we note that 

_ condition (ii) above implies that there is a single nominal beam-aspect ratio r, 

(4-65) 

-. and that the expression for the nominal luminosity simplifies to 

By combining 
Furman, 1991b] 

ito= NJ-fc 
4zu& Oiy 

(4-66) 

conditions (i) and (ii), we have [Garren, 1989; Chin, 1990; 

K,- I$*,- (EI)- 
p’=By:+=(E& 

x,+ 
(4-67) 

where Z = total beam current (assuming no gaps). One also finds that there is a single , 
beta-function ratio (rather than two) and a single nominal emittance ratio: 

(4-68) 

188 



4.4 Beam-Beam Issues 

so that the beam-size ratio becomes 

r=m 

The nominal beam-beam tune shift parameters are related to rp and r, by 

SOY 
d- 

‘P ‘P -= -=- 

5 
r& r ox 

and the nominal luminosity is 

(4-69) 

(4-70) 

(4-7 1) 

where the subscript +,- means that the expression in parentheses can be taken from either 
beam, because of Eq. 4-67. The constant K is 

K= 1 
2eromc2 

= 2.17 x 1034 [cm-2s-11. 
(4-72) 

cm [ 1 GeV.A 

where mc2 is the rest energy of the electron and e is its charge. Therefore, if we express 
the energy E in GeV, the current Zin A, and the beta function in cm, we obtain 

20 = 2.17 x 1O34 (1 + r)i$,, [cm-2 s-l] (4-73) 
+,- 

Note that &,, cannot be varied independently of the other parameters, since it is related to 
them through Eqs. 4-69 and 4-70. It is also worth commenting that Eq. 4r73 can be 
rewritten, if desired, in terms of horizontal, rather than vertical, parameters by making the 
replacements y + x and r + l/r. 

In contrast, the nominal aspect ratio r, the beta function ratio rp, and the nominal 
emittance ratio r& are free parameters, except that they are related by Eq. 4-69. 

If, in addition to the transparency symmetry condition (i), we impose the extra 
requirement that all four beam-beam parameters should be equal, that is 

50x,+ = by,+ = &x,-- = &lyr = {l-j 

as we will in our simulations presented below, then one finds the additional equality 
r = rp = r, or, explicitly, 
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The formula for the luminosity reads the same as the previous case, Eq. 4-73, except that 
now the beam-beam parameter carries no index y. i _ - 

4.4.3 Physics of the Simulation Codes 

For our simulations, we employ two distinct codes (one by H. Yokoya and another, called 
“TRS,” by Tennyson [1989]) that are similar, but not identical. Each of these codes 
represents a beam bunch by a collection of many (we ‘have used up to 256) 
“superparticles.” Initially, these superparticles have a Gaussian distribution in phase 
space. At the IP, the rms beam sizes ox and cry are calculated from the superparticle 
distribution at every turn. Although the shape of the distribution deviates, from Gaussian 
as time progresses, for the purposes of computing the beam-beam kick, it is a good 
approximation (for the range of parameters of interest to us) to retain the Gaussian shape, 
albeit with time-dependent ox and cry. From these distributions, the beam-beam force on 
each superparticle of the opposing bunch is computed by means of the well-known 
expression for the transverse electric field in terms of the complex error function passetti 
and Erskine, 19801. Deviations from a Gaussian shape are monitored; if the dynamic 

-- 

distribution were to differ substantially from Gaussian, one would have reason to doubt 
the results, owing to the lack of self-consistency. The importance of allowing for, and 
consistently treating, non-Gaussian distributions has been emphasized [Krishnagopal and 
Siemann, 19911. At present, it appears that such an extension implies a significant 

- complication in the tracking codes and a major increase in the computer time needed. 
This work remains to be carried out in the future to confm that, in this parameter 
regime, our present predictions are not significantly modified. 

Each beam is transported through the rest of the machine by a linear matrix; that is, 
no lattice nonlinearities are considered. Synchrotron radiation and damping are included 
and are represented by localized kicks. The RF system is also represented by a localized 
kick. Typically, the beams are tracked for three to five damping times to verify that an 
equilibrium situation has been reached. (For the specific set of parameters studied here, 
we have verified that five damping times is long enough to yield stable results and that 
three damping times is often adequate.) 

The electromagnetic fields produced by relativistic particles are Lorentz-contracted 
into a thin disk perpendicular to the direction of motion. As a consequence, the force on 
a single particle due to the opposing bunch is, to a good approximation, strictly 
transverse; longitudinal forces can be neglected. (Indeed, the integrated longitudinal 
force is exactly zero in the case when the beta function is constant during the collision.) 
What cannot be neglected, however, is the fact that the opposing bunch has a finite 
longitudinal extent. 

Near the IP, the vertical beta function is small and the betatron phase of a particle 
changes rapidly. Consequently, the net force due to the opposing bunch (that is, the 
beam-beam interaction) is distributed over a wide range of betatron phase. Because most 
beam-beam limiting phenomena are resonant in nature, this feature, called phase 
averaging, is important and must be incorporated into beam-beam calculations and 
simulations [Krishnagopal and Siemann, 1990a]. 

. 
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Phase averaging thus emphasizes the importance of the longitudinal extent of the 
A . - beam-beam interaction. A Hamiltonian analysis that includes this feature predicts 

resonance strengths that are smaller than those calculated by models in which the beam- 
beam interaction is approximated by a single kick (impulse approximation). This also 
implies that resonance overlap, and the stochastic motion that results from it, set in at 
higher currents than would be estimated in the impulse approximation. 

In the simulation results presented here, we allow for phase averaging by dividing the 
bunch longitudinally into several slices. Typically, five slices are used, although spot- 
checks with nine slices have sometimes been made. Both codes distribute the slices 
evenly along the length of the bunch and symmetrically about its center. However, the 
slices farthest away from the center are located in different places in the two codes. In 
Yokoya’s code, the outermost slices are located at a distance s = +2cre from the bunch 
center, regardless of the number of slices. In TRS, the corresponding outermost distance 
is s = It[l+ (n - 3)/12]crp, where n is the total number of slices. Thus, the two codes have 
identical slicing algorithms only when 15 slices are used; for fewer slices, TRS code 
concentrates the slices closer to the center of the bunch than does Yokoya’s code. As the 
bunches pass through each other during the collision, the beta functions seen by the 
different slices are different, since the slices collide at points away from the IP. In the 
neighborhood of the IP, we take the s-dependence of the beta functions to correspond to 
that of a drift. 

Besides the distinctions discussed above, the codes also differ in technical details 
- having to do with the way certain quantities are averaged from turn to turn in order to 

smooth out statistical fluctuations associated with the relatively small number of 
super-particles. 

-. 

The lattice design described in Section 4.1 has head-on collisions at the IP, with 
magnetic separation of the beams. However, the beams go into their own vacuum pipes 
only after traveling about 3 m away from the IP; as a result, they experience several 
grazing collisions on their way into and out of the IP. There are four such “parasitic” 
crossings on either side of the IP. These parasitic crossings couple the dynamics of all 
bunches, so a completely faithful simulation of the PEP-II beam-beam dynamics would 
require 1658 bunches per ring, along with a gap equivalent to 88 bunches. Since this is 
an impractical requirement for any present-day simulation, we make two simplifying 
approximations: (i) We consider only the first parasitic crossing on either side of the IP 
and (ii) we use only one bunch per ring, which is “reused” (so that this bunch collides 
three times per tum- two parasitic crossings plus the main collision at the IP-with the 
same partner in the other beam). 

The first approximation is quite reasonable, since, as discussed in more detail below, 
the effect of the first parasitic crossing overwhelms all the others. The second 

: approximation rests on the sensible assumption that, in reality (or in a faithful 
simulation), the particle distributions are not expected to differ much from bunch to 
bunch, especially when the bunches interact at a distance, as is the case at the parasitic 
crossings. 

Given the complicated process that is being simulated, it is natural to test the 
predictions of the simulation codes against known experimental results. As an example, 
we have studied the particular PEP configuration summarized in Table 4-35 with 
Yokoya’s code. We find that the luminosity prediction agrees with the measured value to 
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Table 4-35. PEP parameters used in simulation 
compari&on.a 

Betatron tunes 
Horizontal 
Vertical 

Beta functions at IP 
Horizontal [m] 
Vertical [m] 

Dispersion at IP 
Horizontal [m] 

Emittances 
Horizontal [nmrad] 
Vertical [nrnrad] 

Synchrotron tune 
Beam current [mA] 
Nominal beam-beam parameter, 50 

Horizontal 
Vertical 

Luminosity 
Nominal [cm-z s-l] 
Observed [cm-z s-l] 
Simulation [cm-2 s-l] 

21.2962 
18.2049 

1.342 
0.053 

o.ooo49 

99.6 
3.96 

0.043 
18.85 

0.04653 
0.04653 

5.07 x 1031 
4.80 x 103’ 
4.34 x 1031 

a Data from E. Bloom and M. Donald. 

within 10%. In fact, the simulation result is actually slightly pessimistic, since it is 10% 
below the observed luminosity. We also predict from the simulations that there will be 
no saturation of the dynamic beam-beam tune-shift parameter 5 up to a beam current of 
30 mA-again in agreement with experimental observations. Calculations for other PEP 
configurations yield more or less equivalent agreement with the observed luminosities. 

We have also tested TRS for the case of PEP, for a different configuration from that 
above, including the effect of the parasitic crossings in the arcs. The comparison with 
experiment is summarized in Fig. 4-89. In this comparison, too, we find reasonable 
agreement with experiment. Again, we note that the code tends to underestimate the 
luminosity. 

Insofar bs the simulation results in both cases are consistent in trend with the actual 
PEP observations, we feel that the predictions derived from these codes are reasonable 
guides for the design of PEP-II. Implied in this statement is the assumption that there is 
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Fig. 4-89. Plot of observed luminosity at PEP and the simulation results from 
TRS. The tune values used in the simulation were slightly different from those 
used in the experiment itselfi preliminary results show thut the agreement improves 
when the tunes are the same. 

no new physics that enters into the beam-beam interaction due to the asymmetric 
collisions. At the present time, we have every reason to believe that this assumption is 
valid. 

4.4.4 Beam Dynamics Studies 

The primary parameters that determine the strength of the beam-beam interaction are the 
four nominal beam-beam parameters, 50X& and <uy,*. If these are small enough, and if the 
working point of the ring is not too close to the integer tunes, 50 is equal to the nominal 
tune spread induced by the beam-beam interaction. We adopt, as a starting point, the 
fully symmetric condition 

5 ox,+ = 5oy,+ = {ox,-- = SOY,- = 0.03 (4-75) 

The specification of 50 = 0.03 is intended to be conservative, insofar as existing 
machines have already achieved substantially higher values of 50 [Rice, 1989, 1990; 
Seeman, 19851. As mentioned, this strategy of setting the beam-beam interaction to be 
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reasonably weak has the desirable consequence that the beam behavior will be close to 
nominal. This has the advantage of preserving operational flexibility, because the closer 
to nominal the beam-beam dynamics is, the more controllable is the machine 
performance. (Clearly, in an operating collider, the machine parameters will be adjusted 
to maximize the luminosity. The idea here is not to limit the machine performance, but 
rather to leave room for subsequent improvements.) 

As mentioned earlier in this section, most of our beam-beam studies carried out to 
date have set a priority on demonstrating the feasibility of attaining or exceeding a 
dynamical luminosity value of 3 x 1033 cm-2 s-1. We have studied first the short-time- 
average luminosity, which is determined by the dynamics of the beam core. This is 
studied quite effectively with “weak-strong” and “strong-strong” simulations involving a 
few hundred macroparticles per bunch tracked for several damping times, neglecting all 
lattice nonlinearities. Previous experiments and simulations for CESR [Jackson and 
Siemann, 19901 provide justification for the linear-lattice approximation since they show 
that magnet nonlinearities do not affect the core dynamics significantly once a good 
working point is adopted. On the other hand, the dynamics of the beam tails, relevant to 
beam lifetime, might be expected to be more sensitive to nonlinearities. 

Specifically, the focus of our simulations has been to try to answer the following 
questions: 

. 

. 

. 

-. . 

. 

. How sensitive is the dynamics to changes in the asymmetry of the design? 

Can a region of the tune plane be found such that the dynamics is close to nominal 
(that is, relatively small beam blowup)? 
Is the orbit separation between the two beams at the parasitic collisions large 
enough? 
Is the value of 0.03 for the beam-beam parameter conservative enough? How does 
the dynamics behave for 5= 0.05? 
How do the beams behave during the first few damping times following injection? 
How do they behave after injection is complete but the beams are still separated by 
the injection orbit bump? 

Our basic strategy is first to choose nominal parameters and then to verify that the 
beam-beam interaction does not cause significant deviations from them. If the beam 
dynamics is substantially different from nominal (for example, if beam blowup is too 
large or beam lifetime too short), we change the nominal parameters and try again until 
an acceptable solution is found. In more detail, this strategy is divided into several steps: 

(i) Set nominal parameters. 
3 x 10s3 cm-2 

Our design goal is a nominal luminosity of 5?0= 
s-1. From this requirement and other considerations, a complete set of 

parameters for both rings can be derived (see Appendix A). For the purposes of this 
section, however, we show only an abbreviated list in Table 4-36. Further, because the 
collider design has evolved in parallel with the simulation study, some of the final 
parameters in Appendix A differ slightly from those in this section. The parameters 
indicated in Table 4-36, however, are the values used in the simulation study. 

In Table 4-36, E is the beam energy, SB is the bunch spacing, and fc is the bunch 
collision frequency at the IP (fc = C/SB); VRF, &F, and & are the RF voltage, frequency, 
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Table 4-36. Main PEP-II parameters used in the bear&beam simulation studies. 

20 [cm-2 s-l] 
C [ml 
E [GeV] 
SB [ml 

fc w-1 
VRF WV 
fiw w-w 
es Weal 
a 
VS 
0~ b-4 
0s 
Na 
WI 
Eox [-rW 
ay b-n=4 
Px’ [ml 
g b-4 
4x lwl 
$y lid 
5 [~msl 
5 b-d 

LER (e+) HER (e-) 
3 x 1033 

2199.32 2199.32 
3.1 9.0 

1.26 
238.000 

9.5 18.5 
476.000 476.000 

170.6 168.7 
1.5 x 10-s 2.41 x 10-s 

0.050 0.052 
1.0 1.0 

1.00 x 10-s 0.616 x 10-s 
5.630 x 10’0 2.586 x 1010 

2.147 0.986 
61.27 45.95 
2.45 1 1.838 
0.375 0.500 
0.015 0.020 
151.6 151.6 
6.063 6.063 
5,014 5,014 . 

-5,014 5,014 

aThese values for N do not take into account the existence of the ion-clearing gap, 
that is, they assume 1746 equally spaced bunches. 

and synchronous phase, respectively; a is the momentum compaction factor; v, is the 
synchrotron tune; 01 is the rms bunch length; and 5, zy are the horizontal and vertical 
damping times, respectively. The other parameters are the emittances E, beta functions /I, 
and nominal rms beam sizes 00 at the IP. 

The parameter values in Table 4-36 are consistent with Eq. 4-75 and our stated 
luminosity goal, as can be easily verified. The values do not, however, correspond 
exactly to the requirements of transparency symmetry, on account of the difference in the 
amplitudes of the tune modulation: . 
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OPVS 
( 1 s:+ 

= 1.33 x 10-3, opvs 

( I a’- 
=1.04X 10-s 

(4-76) 
op vs 

t-1 a’+ 
= 3.33 x 10-2, OPVS 

( 1 a’- 
=2.60x 10-2 

(ii) Select a working point. Usually, only the primary collisions at the IP are 
considered in this step. The choice of tunes can be made quite effectively with “weak- 
strong” beam-beam simulations, in which the high-energy beam is forced to remain 
undisturbed while the low-energy beam is studied dynamically. (For PEP-II, we are 
confident that this approximation is reasonable, because more realistic “strong-strong” 
simulations show that there is little or no beam blowup for the high-energy beam in our 
design.) This more approximate type of simulation has the advantages that it is relatively 
fast and that the effects of resonances, such as synchrotron sidebands, are clearly seen 
(thus allowing, in principle, a theoretical understanding of the underlying beam 
dynamics). The main figure-of-merit that we use in this study is the beam blowup factor 
of the low-energy beam. 

A tune scan is presented in Fig. 4-90, which shows the vertical and horizontal beam 
blowup factors of the low-energy beam for each working point scanned [Tennyson, 
1991b] (the tunes shown are the “bare lattice” tunes). This tune scan was actually carried .- _ out for an earlier design, called APIARY 6.3D, and it does include the effect of the 
parasitic collisions. From the limited perspective of the beam-beam studies presented in 
this section, the APIARY 6.3D design differs from the present design basically in two 
ways: (a) the beta functions at the IP of the high-energy ring in the current design are 2/3 
as large as they were in APIARY 6.3D and (b) the normalized separation between the 

-. beam orbits at the first parasitic crossing, &a~~,+, is -55% larger in the current design 
than it was in APIARY 6.3D. The beam-beam parameters and nominal luminosity are 
the same in the two designs, and the synchrotron tunes are almost the same. Since the 
parasitic collisions were shown to be weak relative to the IP collisions for APIARY 6.3D 
Eden and Furman, 1992a, 1992b; Chin, 1991a; Tennyson, 1991a], and they are even 
weaker in the current design, as shown below, the tune scan in Fig. 4-90 is still relevant 
for the current design. Figure 4-91 shows the same portion of the tune plane, with 
resonance lines through sixth order. The beam-beam interaction causes a tune spread 
because particles of different betatron amplitude experience different tune shifts. This 
causes the beam to have a characteristic “footprint” (see Fig. 4-92) that extends 
diagonally upward from the working point. 

For the beam-beam simulations, we have adopted, as suggested by the results in 
Fig. 4-90, a working point with fractional tunes v, = 0.64 and vy = 0.57 (both beams). 
Several existing colliders operate in this region of the tune plane, just above the half- 
integer [Rice, 1989,199O; Seeman, 19851, which has the advantage of reduced sensitivity 
to closed-orbit errors. As our results (presented below) show, this working point is quite 
acceptable, and we are confident that an optimal working point can be found close to our 
current choice. Because of the asymmetry of the machine design, it is possible that the 
optimal working point will be different for the two rings; an optimization study along 
these lines will be carried out in the near future. 
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-. 
0.52 

0.51 

1.28 1.18 1.12 1.21 1.16 
/ ///I 
4.224 1.17 1.25 1.28 1.28 

0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.66 0.69 0.70 

Horizontal tune 

Fig. 4-90. Low-energy beam blowup factors (cdoo) for various working points for 
the earlier PEP-II design APIARY 6.30, including parasitic collisions. The 
numbers in each box are the vertical and horizontal blowup factors at that 
particular working point. The shading in each box is indicative of the blowup: the 
darker the shading, the larger the vertical blowup. The cross-hatched boxes 
indicate horizontal blowup >20%. 
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0.8 

0.6 

0.7 0.8 0.9 1.0 

Horizontal tune 

. Fig. 4-91. Tune plot with even-order resonance lines through sixth order. This is 
the same portion of the tune plane as in the previous figure. 

We will refer again to results for the earlier designs APIARY 6.3D @%-man, 19911 
and APIARY 7.5 [Eden and Furman, 19921 in other subsections below. From the beam- 
beam perspective, there are only two differences between the present and previous 
designs: the beta functions of the HER are now smaller than before, and the normalized 
beam separation at the first parasitic collision is larger. The beam currents and 
emittances are adjusted such that the beam-beam parameters and nominal luminosity 
remain unchanged. A comparison is presented in Table 4-37. 

(iii) Verify the behavior of the beam-beam interaction. The next step is to check that 
. the beam-beam interaction remains reasonably weak in the fully coupled beam-beam 

calculations. This is done with “strong-strong” simulations, in which both beams are 
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0.65 

0.55 0.60 
Horizontal tune 

0.65 

Fig. 4-92. Tune plot and beam footprint. The tune plane shows the working point 
(cross) and the beam footprint caused by the beam-beam tune spread. The lines in 
the footprint correspond to particles with amplitudes with constant a, or con&rat 

_ ar at 0, I, 2,3,4,5,6,8 and IOa The particle closest to the working point has the 
largest amplitude, lOa, and 100,. The particle furthest away is at the center of the 
bunch and is labeled (0,O). 

allowed to vary dynamically according to their mutual beam-beam interaction. During 
the initial stage, the study is done with only the primary collisions at the IP. This type of 
simulation is time consuming, but it is necessary because it is the only way to compute 
-dynamical quantities, such as actual beam blowup and luminosity, and because it can 
reveal coherent oscillations, closed-orbit distortion, and particle losses. As a check on the 
robustness of our chosen parameters and working point, we have considered values of 50 
much higher than the nominal value of 0.03 in the simulations. This is shown in 
Fig. 4-93, which gives the calculated blowup factors of all four beam sizes vs 50, and 
Fig. 4-94, showing the corresponding luminosities. In both Figs. 4-93 and 4-94, we 
maintain the equality of all four 40 values (which are varied by simply increasing the 
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Table 4-37. Comparison between the current &sign and two earlier versions. 

Current design APIARY 7.5 
LEB HEB LEB HEB 

Y?o [cm-2 s-l] 3 x 1033 3x1033 
5 OX 0.03 0.03 
5OY 0.03 0.03 
S: [ml 0.375 0.50 0.375 0.75 
Py* [ml 0.015 0.02 0.015 0.03 
GL WI 152 186 
Gy WI 6.1 7.4 
Z WI 2.1 1.0 2.1 1.5 
d[=la 3.5 3.5 
&00x a 11.8 14.3 9.6 14.4 

APIARY 6.3D 
LEB HEB 

3 x 1033 
0.03 
0.03 

0.375 0.75 
0.015 0.03 

186 
7.4 

2.1 1.5 
2.8 

7.6 11.5 

ad is the beam separation at the first parasitic collision, and aYmx is the separation normalized to 
the local horizontal beam size. 

number of particles per bunch): In general, the two codes predict reasonably similar 
dynamical behavior. (The discrepancy at large 50 is probably related to the different 
ways the two codes handle coherent oscillations, which are significant at such extreme 

-. parameter values.) 
Because the various beam sizes change differently, the dynamical beam-beam 

parameters also become different from each other. This means that the transparency 
symmetry is inherently broken by the dynamics, although not to a great extent., 

(iv) Verify that the results are maintained when parasitic crossings are included. 
Although the beams collide head-on at the IP, the bunches experience grazing collisions 
on their way into and out of the region within about +3 m of the IP, where both beams 
travel in a common pipe. We must assess the effect of these parasitic crossings on the 
performance. This is done with strong-strong simulations. Parasitic crossings have a 
potentially detrimental effect on beam blowup, because they induce odd-order resonances 
and horizontal-vertical coupling. Taken together, these effects make it harder to fmd an 
optimum working point in the tune plane. 

There are four parasitic crossings symmetrically located on either side of the IP. All 
of them occur in the horizontal plane. For the purposes of studying the beam-beam 
dynamics, the first parasitic crossing (that is, the one closest to the IP on either side) 
overwhelms the others on account of the relatively small separation, together with the 
large vertical beta function. The strength of the long-range beam-beam kick at this first 
parasitic crossing is much greater than those of all the remaining crossings combined. 
This fact, discussed in more detail below, justifies our considering only this first parasitic 
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Fig. 4-93. Beam blowup factors vs $0 (IP collisions only). These are the results 
for the dynamical beam size over nominal beam size for both beams, from both 
simulation codes: (a) Yokoya’s and (b) TM. The parameter 50 is increased by 
increasing the number of particles per bunch in both beams, with fixed nominal 
emittance. 
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Fig. 4-94. Luminosity vs 50 corresponding to the blown-up beam sizes in Fig. 4-93 
(IP collisions only). 

-. crossing in our present calculations. Table 4-38 shows the relevant parameters for the 
primary and the first parasitic crossing for PEP-II. 

In Table 4-38, AS is the distance from the IP to the parasitic crossing point along the 
beam trajectory; 27&v, and 27rAv, are the phase advances from the IP to the parasitic 
crossing; d is the (horizontal) separation between the two closed orbits at the parasitic 
crossing; and &crcX is a measure of the extent of the overlap between the two bunches at 
the parasitic crossing point. The nominal emittances and number of particles per bunch 
are listed in Table 4-36. The parasitic crossings induce a tune shift and an amplitude- 
dependent tune spread in the particles due to the mutual interaction of the two bunches. It 
can be shown that the incoherent beam-beam parameters of a particle at the center of the 
positron bunch from a single parasitic interaction point are, to lowest-order 
approximation, given by [Tennyson, 199 1 a] 

&,+ = _ r0N- &+ (PC) 

21ty,d2 

(4-77) 

(PC) by,+ = + roN- a,+ 
21Cy,d2 - 
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Table 4-38. PEP-II nominal parameters at the IP and first parasitic crossing. 
i 

As [cm] a 
drmmla 

LER (e+) 
63 

3.50 

HER (e-) 

IP First PC IP First PC 
Av, a 0 0.1645 0 0.1432 
Av,? 0 0.2462 0 0.2449 
Bx [ml 0.375 1.43 0.500 1.29 
Py b-4 0.015 26.46 0.020 19.85 
cl, 0 -1.68 0 -1.26 
ay 0 -41.99 0 -3 1.49 
00~ iM-4 151.6 296.3 151.6 243.8 
ooy WI 6.063 254.6 6.063 191.0 
00~’ b-=4 0.404 0.404 0.303 0.303 
oby/ [=a4 0.404 0.404 0.303 0.303 
&00x 0 11.81 0 14.35 
5 ox 0.03 -0.000224 0.03 -0.000152 
5OY 0.03 +0.004133 0.03 +0.002326 
5 Ox,tot b 0.0296 0.0297 
5 oy,tot b 0.0383 0.0347 

aThe first PC occurs at a distance As and at a phase advance Av from the IP. At this 
point the nominal orbits are separated horizontally by a distance d. 

bThe total nominal beam-beam parameter is defined to be b,t,,t E &$$’ + 2&$). 

with the corresponding expressions for the electron bunch obtained by exchanging the 
indices + and - in Eq. 4-77. Here &y are the beta functions at the parasitic crossing 
location. The negative sign in the expression for $yi arises from the fact that the 
horizontal force is a decreasing function of separation at the parasitic crossing. Using the 
numerical values for the parameters given in Table 4-38, we obtain 

P-3 
to.%,+ = -0.00022, g,? = -0.00015 

by,+ = (PC1 +0.0041, {@T) = +0.0023 

which shows that the first parasitic crossings together contribute a vertical tune shift of 
approximately 0.008 to the nominal IP tune shift of 0.03 in the positron beam. The 
remaining parasitic crossings contribute negligibly to the tune shifts. 
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A tune shift by itself is not detrimental, since it can be compensated by a shift in the 
working point. However, as mentioned above, the amplitude dependence causes a tune 
spread, which is more problematic. This spread, which can be calculated by appropriate 
numerical integration rennyson, 1991a; Siemann, 19931, causes a distortion of the beam 
footprint, as shown in Fig. 4-95. Such a distortion makes it more difficult to find a good 
working point; for our present simulation purposes, we have maintained the original 
working point, v, = 0.64, vy = 0.57. 

As implied by the above, the parasitic crossings produce horizontal-vertical coupling 
that can cause beam blowup. Obviously if the separation d were large enough, all effects 
of the parasitic crossings would disappear altogether. To assess this effect, we have 
carried out simulations in which we vary the separation d and keep all other parameters 

-. 

0.70 

0.65 

3 0.60 .o r 
>” 

0.60 
Horizontal tune 

0.65 

Fig. 4-93. Beam footprint of the LEB, including the effect of the parasitic 
crossings. The large-amplitude distortion of the foorprint produced by the long- 
range collision is apparent (see Fig. 4-92 for a comparison). The lines in the 
footprint correspond to particles with constant amplitude (vertical and horizontal) 
atO1234568andlOcx 9YY?99Y 
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fixed. Figure 4-96 shows the beam blowup factors vs d&h,+ for 50 = 0.03, obtained with 
TBS. Figure 4-97 shows the vertical beam blowup factors for the LEB from both codes 
for 50 = 0.03 and 0.05. Figure 4-98 shows the corresponding luminosity vs d/(Tox,+ for 50 
= 0.03 and 0.05. This larger value of 50 is obtained by increasing the number of particles 
per bunch by a factor of 513, at fixed nominal emittance. 

The lack of smoothness in the blowup curves as d/00,+ increases, particularly for 50 = 
0.05, is almost certainly due to resonance effects. Indeed, as d varies, the cores of the two 
beams sample different areas of the tune plane on account of the d-dependence of the 
long-range beam-beam parameter, Eq. 4-77. This effect can be compensated by 
appropriate changes of the bare-lattice working points of the two beams. Simulations with 
such tune-compensation have been carried out, and they indeed show smoother blowup 
curves [Eden and Furman, 1993b]. 

As mentioned above, there are four parasitic collisions on either side of the IP. 
Table 4-39 summarizes the relevant parameters for all collisions, including the IP. In this 
table, s is the distance from the IP where the collision takes place and d is the separation 
between the beam orbits at that location (in all cases the separation is purely horizontal). 
The nominal beam-beam parameters 50 of a particle at the center of the bunch are 
computed according to Eq. 4-77. 

3 

02 
% - 
9 
4 P 
E 
8 
*1 

0 

50 = 0.03 

0 %,+/~ox,+ 
l ~y,+hly,+ 
m e,-Jb~~,- 
0 ~Y,-hY,- 

Nominal 

Fig. 4-96. Beam blowup factors vs d/qx,+ for both beams obtained with TRS for 
50 = 0.03. The nominal beam separation at the @m.Gtic collision, indicated by the 
arrow, corresponds to d&h,+ = 11.8. 
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Fig. 4-97. Vertical beam blowup factor for the low-energy (positron) beam vs 
dIoox,,+ for (a) 50 = 0.03 and (b) (0 = 0.05. The nominal beam separation at the 
parasitic crossing, indicated by the wow, corresponds to #cm;+ = 11.8. The 
remaining three beam sizes are not shown because they exhibit blowup (or 
contraction) factors of 10% or less in all cases, except at very low values of dio~,,. 

206 



4.4 Beam-Beam Issues 

1.5 

1.0 
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Fig. 4-98. Luminosity vs d/aox,+ for (a) 50 = 0.03 and (b) 50 = 0.05, corresponding 
to the blown-up beam sizes shown in Fig. 4-97. Note that, for 50 = 0.05, the 
nominal value of the luminosity is 8.3 x 1g3 cnr2 d. . 
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Table 4-39. Parameters at the IP and all four parasitic crossings. 

i - LER (e+) 

s W d (n-W d/00X 5 OX 5OY 

0.0 (IF) 0.0 0.0 +0.030000 +0.030000 
0.63 3.498 11.8 -0.000224 +0.004133 
1.26 17.65 1 33.2 -0.000028 +0.000648 
1.89 39.114 39.3 -0.000020 +0.000167 
2.52 71.879 38.4 -0.000021 +0.000026 

0.0 (IP) 0.0 0.0 +0.030000 +0.030000 
0.63 3.498 14.3 -0.000152 +0.002326 
1.26 17.651 43.0 -0.000017 +0.000365 
1.89 39.114 60.3 -0.ooooO9 +0.000139 
2.52 71.879 73.3 -0.OOOOO6 +0.000053 

-. 

The simulation studies presented above indicate that the effect of the parasitic 
collisions on beam blowup becomes negligible compared with that from the IP when the 
relative separation d/00,,+ is Z 7. Because the parasitic collisions beyond the first have 
UYQ+ 2 33.2, we are confident that their contribution to beam blowup is insignificant. 
(To account for the combined beam-beam tune shifts of the additional parasitic crossings, 
a small adjustment of the working point may be needed.) 

It is likely that the only significant effect of the parasitic collisions beyond the first 
would be to excite a coherent dipole mode in the beams. However, because the combined 
beam-beam tune shifts of these additional parasitic crossings are small, this coherent 
dipole mode is likely to be insignificant except when the working point is very close to an 
integer or half-integer, a situation that wilI be avoided. 

4.4.5 Beam Tail Simulations 

The beam-beam problem is usually studied in two regimes: the core particles and the tail 
particles. The two regimes are very different in terms of their physics issues and their 
effects on machine performance. From an operational point of view, the core particles 
determine the luminosity, whereas the tail particles determine the lifetime and influence 
detector backgrounds (both aspects being critical. to successful operation). 

Compared with the core-particle problem, the tail problem has not been well studied, 
either with analytical calculations or simulations. The reason for the lack of simulation 
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i - 

0 a 0 a 

Fig. 4-99. Beam distributions from simulation: (a) without synchrotron motion; 
(b) with synchrotron motion; (c) with synchrotron motion andpamsitic crossings. 
The horizontal and vertical axes scales are AxIt& and AyIq-$ , where A = m is 
the amplitude. 

- With parasitic crossings 
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Fig. Cl 00. Fig. Cl 00. Vertical beam distribution with and without parasitic crossings for the Vertical beam distribution with and without parasitic crossings for the 
low-energy beam. low-energy beam. 
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. 

results is that particles are rarely in the tail. Even though the number of particles moving 
into the tail is large enough to degrade the beam lifetime, it is not large enough to provide 
a tail distribution with satisfactory statistical accuracy in a typical beam-beam simulation 
with a few hundred superparticles. That is, a simulation with a huge number of particle- 
turns would be required to give a single tail distribution, which prevents this problem 
from being studied systematically by standard beam-beam codes. 

To avoid this limitation, a new simulation code has been developed by Irwin [ 19921. 
Instead of tracking billions of particle-turns in the core, we concentrate on the particles 
that are evolving into the tail. To do this, an imaginary boundary is drawn in normalized 
amplitude space to separate about 100 particles (out of 1000 particles) moving in the tail. 
Then, we continue tracking the particles and randomly save the coordinates of particles 
that are above the boundary, until 1000 particle coordinates have been saved. 
Meanwhile, the coordinate information for any particles that move up across the 
boundary is also saved. At this point, we track 1000 particles outside the boundary. 
During the tracking, any particle that drops below the boundary will be reinserted above 
it by using new coordinates from the crossing information saved previously. After 
sufficient tracking time (a few damping times), a second boundary (at larger amplitudes) 
is created and 100 particles outside the second boundary are evolved into 1000 particles. 
This process can be repeated a few times to keep tracking particles that are going into the 
tail. Each time we increase the boundary amplitude, we gain a factor of 10 for the 
number of particles in the tail. 

The results of the Irwin code have been compared with the results of conventional 
tracking for 6 billion particle-turns. Excellent agreement has been achieved, using only 
2% of the particle-turns of the conventional tracking code. This indicates that the new 
simulation code is a very powerful tool for studying beam-tail distributions. 

The code features six-dimensional phase-space tracking, one interaction point .with 
asymmetric beam parameters, a linear arc transport with energy-dependent phase advance 
and beta functions, parasitic crossings, and a multiple-slice beam-beam kick at the 
interaction point. It has been developed to meet the requirements of PEP-II performance 
studies. 

Figure 4-99 shows the results of a simulation for the PEP-II LER in which the strong 
bunch is segmented into five slices. An equivalent of about 70 billion particle-turns was 
simulated. The results show that synchrotron motion is important in the beam-tail 
distribution. The parasitic crossings do not appear to affect the distribution very much. 
However, they do change the large amplitude tail by a small amount, which has an impact 
on lifetime. Figure 4-100 compares the beam distributions in the vertical plane with and 
without parasitic crossings. The distributions split at large amplitudes. Based on these 
data, the lifetime can be estimated: For a two-hour lifetime, a 16.50, physical aperture in 
the vertical plane is required without parasitic crossings, and a 220, physical aperture is 
required with parasitic crossings. (For comparison, we note that the dynamic aperture of 
the LER exceeds 350 in the vertical plane, as shown in Section 4.1.3.3.) 

More work will be carried out to check various effects, such as different working 
points and lattice nonhnearities. Our goal is to identify possible problems, rather than to 
predict the actual operational performance of PEP-II. 
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size reaches its peak value (about 11 times the nominal storage ring beam size) very 
quickly, within approximately 300 turns; the beam blowup then damps gradually in the 
following few radiation damping times. No particle loss was found in the simulation. 

The simulations show that the horizontal beam size also blows up, to about three 
times the nominal stored-beam value, but much more slowly (roughly one radiation 
damping time). A detailed investigation of the time evolution of the horizontal phase- 
space distribution shows that the injected beam is sheared into an elongated shape, and 
eventually spreads out over a circular annulus in horizontal phase space, due to horizontal 
kicks from the other beam. This leads to a rapid damping of the horizontal baricentroid 
motion even though the particle amplitudes themselves have not yet been significantly 
damped. The process would likely be enhanced if the amplitude-dependent tune shifts 
due to lattice nonlinearities were taken into account. 

Although the resultant performance of the horizontal injection scheme in the 
APIARY 6.3D design would have been acceptable, we have explored two alternative 
injection schemes in an attempt to seek a solution that entails less blowup of the injected 
beam. One such scheme is to inject beams vertically instead of horizontally. Obviously, 
this scheme prevents the injected beam from approaching the other beam at the first 
parasitic crossing more closely than the nominal separation distance between the two 
stored-beam orbits. Another scheme is horizontal injection, but with vertical separation 
at both the IP and the first parasitic crossing (produced by a bumped orbit during the 
injection process). Simulation results for both of these schemes show substantial 
reduction of the blowup of the injected beam sizes. No particle loss was found in either 
case. 

Based on these results, we adopted a vertical injection scheme for the intermediate 
design, APIARY 7.5. Because the two beams cannot get any closer at the parasitic 
collision point than the nominal (stored-beam) separation distance, the beam-beam kick is 
weaker on average than during steady-state colliding-beam operation. However, the 
parasitic beam-beam interaction, being a collision of the two beams at large amplitude in 
phase space, still tends to shear the injected beam into an elongated shape in vertical 
phase space. The process is accelerated as the coherent vertical oscillation of the injected 
beam damps away, because the distance between the -two beams gets shorter on average. 
This behavior, schematically illustrated in Fig. 4-101, is a peculiar point that contrasts 
with the horizontal injection case (in which the parasitic beam-beam interaction becomes 
weaker as the horizontal coherent oscillation of the injected beam damps away), 
Obviously, the parasitic beam-beam interaction in both cases approaches the same 
strength in the steady state. 

Although the present design has a substantially larger beam separation at the first 
parasitic collision, and smaller long-range beam-beam parameters for the LEB compared 
with our earlier designs, we have retained the vertical injection scheme. In this way, we 
are certain to avoid potentially adverse effects from close encounters of the beams at the 
parasitic crossing points during injection. 

The main storage ring and injection parameters of the present design are listed in 
Table 4-40; the numbers in square brackets are the values of the corresponding 
parameters at the time of injection. As in previous simulations, we consider only the first 
parasitic crossing (that closest to the IP) on either side, because it overwhelms the others. 

1 
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HER 

smearing A A 
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Figure 4-101. Schematic illustration of the parasitic beam-beam interaction 
during the vertical injectiun process. 

A bunch with 20% of the nominal single-bunch current is injected into the LER with a 
vertical displacement 22siy from the stored-beam orbit, where oIY is the nominal (stored- 
beam) vertical beam size of the LER at the injection point. We assume that the phase 
advance between the injection point and the first parasitic crossing point is 2ir times an 
integer. The fractional tunes of the working point are taken as v, = 0.64 and 
vy = 0.57 for both beams. 

Figure 4-102 shows the rmssizes of the injected beam, in units of the nominal stored- 
beam sizes, versus the turn number after injection. The evolution of the baricentroid 
motion of the injected beam is shown in Fig. 4-103. The largest turn number, 20000, 
corresponds to about four radiation damping times. We see that the vertical beam size 
reaches its peak value of -3crc,, very quickly, within approximately 1000 turns. The beam 
blowup then damps out gradually in the following few radiation damping times. 
Horizontally, the injected beam converges monotonically toward its equilibrium size due 
to radiation damping. At an early stage of the simulation, the injected beam is sheared 
into an elongated shape. This elongated shape closes to a circular annulus after 
approximately 8000 turns, that is, roughly two damping times. Accordingly, the vertical 
baricentroid position settles down at the origin as shown in Fig. 4-103. No particle loss 
from the 200 superparticles was found during the simulation. The high-energy beam 
sizes, which are not plotted here, show practically no change from their nominal values. 
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Table 4-40. PEP-II parameters used in the injec&n simulation studies 
of the LER. Parameters in brackets are those of the tijected beam at the 
time of injection; the other values correspond to the nominul stored 
beams. 

LER (e+) HER (e-) 
3.1 9.0 

2200 2200 
5014 5040 

[0.246] 0.565 
1.0 1.0 

61.3 [8.24] 45.9 
2.45 18.241 1.84 

3.50 

-. 

IP First PC IP First PC 
0.375 1.43 0.50 1.29 
0.015 26.46 0.02 19.85 

152 [56] 296 [log] 152 244 
6.06 [ll.l] 255 [467] 6.06 191 

0 11.8 [25.2] 0 14.4 
10 10 
36 36 

We conclude from these results that the vertical injection scheme is quite comfortable 
in terms of the beam-beam dynamics. It leads to very little beam blowup and to no 
particle losses (to the extent that these simulations are able to predict). 

4.4.6.2 Simulations with Displaced Beams at Full Current. In this section, we 
summarize simulation results corresponding to the state reached after injection is 
complete but the beams are still separated. If the beams are slowly brought into collision 
in step (4) of the injection process, the results presented in this section also allow a rough 
understanding of what would happen during this beam-collapsing process. One implicit 
assumption that is necessary for the relevance of these simulations to the beam-collapsing 
process is that the time scale for switching off the orbit bumps is longer than a few 
damping times. If the beam-collapsing process is fast (on the order of one damping time 
or less), our simulations are probably relevant only to the static situation existing before 
step (4) is taken. We are also assuming that multibunch coherent beam-beam instabilities 
are not excited in the separated state or during the beam-collapsing process. 

. 
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Figure 4-102. Time evolution of the injected beam sizes of the L&B, in units of the 
nominal stored-beam sizes, during the vertical injection process. 

The results below are in the form of beam blowup, a/crc, plotted versus dx/oox or 
dy /tact for horizontal or vertical separation, respectively, where ~0~ and cre are the 
nominal, steady-state, rms beam sizes at the IP, and d, or dy is the orbit separation at the 
IP in either case. In the horizontal separation case, we varied d, while keeping dy fixed, 
and vice versa for the vertical case. We assume that the beam separation is implemented 
by a closed-orbit bump that is symmetric about the IP and whose elements (orbit bump 
magnets) are outside the region encompassing the IP and the first parasitic collision 
points (however, see the discussion below). Since there are no focusing elements 
between the IP and the first parasitic collisions, the closed orbits inside this region are 
parallel-displaced from the nominal orbits. As a result, the orbit separation at each 
parasitic collision is related to that at the IP by simple geometry as follows: 

Horizontal separation case: 

i 

4p = 4 (a!,, = 0, fuced) 
dpcl = &+d, (a!,.=O, fixed) w-79) 
dpa = do-d, (d,=O,fmed) 
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Figure 4-103. Time evolution of the baricentroidpositions of the injected low- 
energy beam, in units of the nominal stored-beam sizes, during the vertical 
injection processes. 

Vertical separation case: 
drp = dy (d, = 0, futed) 
&cl = dy (d, = 4, fmed) (4-80) 
dpa = d,, (d, = 4, futed) 

where do is the nominal orbit separation at the frost parasitic collision (& = 3.5 mm). 
Parasitic collisions beyond the first were not considered, even though the horizontal- 
separation alternative would almost certainly demand that they be included in a faithful 
simulation. The simulation was run with the code TRS at the working point (0.64,0.57). 

In the horizontal-separation alternative, Eq. 4-79 shows that, as the beams are 
displaced, one of the parasitic collisions (called PC2) gets stronger while the other one 
(PCl) gets weaker. The collision at the IP also gets weaker. As one can see in 
Fig. 4-104, beam blowup is not significant provided the separation at the IP is such that 
dx/oox 5 5-10. In this regime, the parasitic collisions are still well separated (for an XP 
separation dx /qx = 5, the parasitic collision separations are dpc+ox,+ = 9.25 and 
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Fig. 4104. Beam blowup as a function of horizontal beam separation at the IP. As 
the beam separation at the IP increases, the separation at one of the parasitic 
collisions (called PCI) increases, while the separation at the other (PC2) decreases. 
The arrow indicates the separation at which there is a head-on collision at PC2. 

dpc+ox,+ = 14.4; the nominal head-on case has & = 0 and dpC2/00x,+ = dpcllaox,+ = 
11.8). However, as one might expect, when the IP separation is so large that the beams 
collide head-on at the PC2 location (indicated by the arrow labeled “dpc2 = 0” in the 
plot), the beam blowup is very large and the simulations also show particle loss. As the 
beams are further separated, they eventually become so far apart that there are effectively 
no beam-beam collisions (the last point in the plot, at the unrealistically large separation 
dx /aox = 46.2, is such that dp&crox,+ = 11.8 and dp&ooK+ = 35.4, and one sees that, 
indeed, there is no beam blowup). 

In the vertical-separation case, as implied by Eq. 4-80, the beams are always more 
separated than nominal. The results are shown in Fig. 4-105. The LEB blowup becomes 
substantial (-75%) when dJooy L 1, and it does not come ba&down to nominal (that is, 
unity) until the separation is Cycroy I 10-12, corresponding to 4 L 00x/2. 

The simulations above assume that only the fust parasitic collisions and the IP come 
into play. However, the traditional (and simplest) closed-orbit bump is implemented by 
means of two kicking elements of opposite sign, separated by a distance such that the 
intervening phase advance is 
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Fig. 4-105. Beam blowup as a function of vertical beam separation. As the beam 
separation at the ZP increases, so does the separation at both PCs. The arrow 
indicates the point at which the verticQ1 se-n equals the nominal horizontal 
beam size. 

Ap = lc/2,3nY2,5ti2,. . . (4-8 1) 

The PEP-II lattice is such that even the first option, Ap = 7~12, implies that the bump 
elements must be located at a distance 22.5 m from the IP. This is true for both rings, 
whether the separation is vertical or horizontal. This means that all four parasitic 
collisions on either side of the IP would be encompassed by such an orbit bump. Of 
course, it is, in principle, possible to separate beams by means of a more elaborate orbit 
bump, or a bump that is not closed. Either alternative entails complications. 

Thus, if the beams are separated horizontally, the simulations above indicate that the 
closed-orbit bump must be tightly constrained by the lattice functions and phase advances 
of all the parasitic collision locations, while there is no such constraint in the vertical- 
separation case. If an orbit bump encompassing only the IP and the first parasitic 
collisions could be designed, a horizontal separation 3 d dJqx d 10 would seem to be 
adequate. (If d&ox L 3, the bump would probably not be very effective, and if d&ox 2 
10, the adverse effects of the parasitic collisions could become quite severe.) 
Realistically, the orbit bump must encompass all parasitic collisions; therefore, care must 

t 
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be taken in its design so that the beams do not come too close to each other at any 
parasitic collision point in the separated state. 

The conclusion is that vertical separation is favored over horizontal on account of the 
diminished adverse effects from the parasitic collisions: When the beams are vertically 
separated, the dynamics is essentially determined by the main collision at the IP. All 
parasitic collisions, especially the “outer” ones, have negligible effect. A vertical 
separation Q!,, L (l-2)crcX is probably adequate for smooth injection. Note that, as a 
practical matter, it is c& that determines the scale for the falloff of the beam blowup, 
whether the separation is horizontal or vertical. This implies that the orbit separation 
must be at least a few times 00~ in magnitude (whether it is vertical or horizontal) for it to 
be effective. This conclusion is consistent with PEP [Chin, 1991b] and CESR pilling, 
19931 experience. 

The horizontal-separation alternative does have the advantage that the simulations 
show no significant beam blowup when the beams are slowly brought into collision. In 
the vertical-separation case, on the other hand, the simulations show beam blowup of 
-75% in the vertical dimension when the beam centers approach to within a distance 
dy = (l-2)@,,. With the large PEP-II beam-stay-clear specifications, this temporary beam 
blowup is not a concern. 

Based upon these results, a vertical injection scheme with a vertical orbit bump has 
been adopted for PEP-II. 

4.4.7 Discussion 

4.4.7.1 Effects of the Primary Parasitic Collisions: the d/o0 Rule. Our simulation 
results show that, if only the IP were considered, the PEP-II design would show behavior 
quite close to nominal from the beam-beam perspective, implying that the design is 
conservative in this sense. Limited tune scans, within the approximations embodied by 
our simulation methods, show that there is plenty of room to operate in the tune plane. 
Indeed, Fig. 4-94 shows that nominal behavior for the luminosity would persist up to 
values of & significantly larger than 0.03 for the working point chosen. However, the 
parasitic crossings cause a preferential blowup in the vertical size of the low-energy beam 
that tends to limit the range of parameters for which nominal behavior prevails. Even so, 
Fig. 4-98a shows that the effect of the parasitic collisions is to reduce the luminosity by 
only -5% from its design value for b = 0.03. For the higher value of 50 = 0.05, shown in 
Fig. 4-98b, the luminosity degradation from its nominal value, Z?O = 8.33 x 1033 cm-2 s-l, 
is more significant, although its absolute dynamical value, J? 5 7 x 1033 cm-2 s-1, is more 
than twice the PEP-II design goal. 

Another way to achieve the higher-than-nominal value 50 = 0.05 is to decrease the 
emittances by a factor of 3/5 at fixed bunch current. The resultant nominal luminosity in 
this case is a factor of 5/3 larger, that is, 20 = 5 x 1033 cm-2 s-t. The beam sizes are a 
factor of @ smaller, and the normalized parasitic separation is thus &crcX,+ = m x 
11.8 = 15.2. A simulation for this case is shown in Fig. 4-106; the beam blowup reduces 
the luminosity to a dynamical value 2 5 4 x 1033 cm-2 s-1. 

By comparing the two cases at & = 0.05, Figs. 4-97b and 4-106, one can see that the 
first one is more “effective” in increasing the luminosity from its nominal value of 
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Fig. 4-106. Beam blowup fcrctors vs d/u&,+ for 50 = 0.05. This value of 50 is 
achieved by decreasing the nominal emit&races by a factor of 3/S atjked bunch 
current. The corresponding nominal luminosity is 5 x 1033 cmm2 s-1. The beam 
blowup reduces it to a dynamical value Y 2 4 xl@3 cm-2 s-1. 

3 x 1033 cm-2 s-1, while the second is “safer.” The greater effectiveness of the first 
method is due to the fact that 5!! depends quadratically on N but only linearly on a-1. 
The second method is safer in the sense that the actual value of d/aos+, which is 15.2 in 
this case, is further away from the onset of significant blowup (d/ooX,+ = 9) than in the 
first case, for which the actual separation value is 11.8. 

All simulation cases show that, if the parasitic collision separation is sufficiently 
small, there is an onset of substantial beam blowup. This means that a local beam-beam 
limit has been reached. By examining all of our simulation cases summarixed in this 
report and all previous studies [Chin, 1991a; Tennyson, 1991a, 1991b; Eden and Furman, 
1992a, 1992b, 1993a, 1993b], we can state an approximate rule-of-thumb for this beam- 
beam limit, the “d/o0 rule “: 

l for 50 = 0.03, the onset of significant beam blowup occurs when &a+ 5 7 
l for &J = 0.05, the onset occurs when d/so,,+ 5 9 
Obviously, this rule has been obtained within the context of our approximations and 

is thus of limited validity. In particular, it is valid only at a good working point. 
Nevertheless, it is consistent with similar results obtained from simulations for the 

i 

I 
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DA@NE collider miscari, 19921, and is in rough agreement with the experience for 
minimum pretzel separation in existing machines such as CESR [Rice, 19901 and LEP 
[Goddard, 19921. (In these last two cases, the constraint on d/m pertains more to beam 
lifetime than to core blowup, however.) We take this rule as a qualitatively valid guide 
for comparative assessments. 

The two previous designs, APIARY 6.3D and APIARY 7.5, had nominal values 
d/ooX,+ = 7.6 and 9.6, respectively, while the current design has &Q.+ = 11.8. (We 
always use the beam size of the LEB for normalization purposes, because it is larger than 
the beam size of the HEB at the frost parasitic crossing point and therefore gives a lower 
value for tic& Thus, the PEP-II design is quite safe in this respect-the large value for 
d/00%+ ensures that the parasitic collisions are effectively weak so that the dynamics of 
the beam core is dominated by the primary collision at the IP. 

4.4.7.2 Larger Bunch Spacing. It is possible to weaken the parasitic collisions even 
more by operating PEP-II with a larger bunch spacing. In this case, the natural 
divergence of the closed orbits provides larger beam separation at the parasitic collisions. 
For example, one can increase the bunch spacing sg by 50%, from 1.26 m to 1.89 m, by 
filling every third RF bucket rather than every second bucket (the RF wavelength is 
Am = 63 cm). In this case, the first parasitic collision occurs at a distance As = 94.5 cm 
from the IP instead of 63 cm. In order to maintain 40 and 20 at their original values of 
0.03 and 3 x 1033 cm-2 s-t, respectively, we require that the number of particles per 

- bunch and nominal emittances of both beams be increased by 50%. The total beam 
current remains unchanged but the beam separation at the new parasitic crossing point is 
d = 10.1 mm instead of 3.5 mm. Because of intervening focusing elements, u!&,+ is not 
the same as before: The new value is d/oh,+ = 20.1 instead of 11.8, which implies a 
much weaker parasitic collision. Simulations for the previous designs APIARY 6.3D and 
APIARY 7.5 [Eden and Furman, 1992a, 1992b] show that the beam blowup is slightly 
less for the sB =1.89 m case than for the sB =1.26 m case at the nominal value of &cr&+. 
What is more important is that the “comfort factoi’ is significantly larger, since the value 
of 20.1 for u!&b+ is much larger than the rule-of-thumb threshold value of 7.. Although 
we have not carried out these simulations for the current design, it is clear that the same 
conclusion about the beam blowup would be valid. 

If the bunches are injected every third bucket but the emittances and bunch currents 
have their nominal values instead of being 50% larger, then the first parasitic collision is 
such that &R~+ = 24.6 and therefore it is truly negligible. In this case, the beam-beam 
parameter at the IP is still & = 0.03, but the luminosity is 20 = 2 x 1033 cm-2 s-t. This 
operating configuration could be used as a comfortable initial stage in the commissioning 
of the machine. Table 4-41 shows a comparison of the nominal case with the two ahWiVeS with sB = 1.89 m. 

4.4.7.3 Unequal Beam-Beam Parameters. As mentioned earlier, the transparency 
symmetry in the PEP-II design is not obeyed exactly by the damping decrements or the 
synchrotron tunes. We have therefore felt motivated to explore consequences of breaking 
the symmetry in the beam-beam parameters as well. To this end, we carried out 
simulations [Eden and Furman, 1993a] for the two previous designs, APIARY 6.3D and 
APIARY 7.5, for unequal beam-beam parameters in two cases: 
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Table 4-41. Comparison of primary parameters for thenominul case with two 
options with larger bunch spacing. 

Nominal spacing 

LEB HEB 
SB [ml 1.26 
YO [cm-z s-l] 3x1033 
50 0.03 
N [ lO’u] 5.6 2.6 
IEN 2.1 1.0 
ax b-4 61 46 
Q,, [nrnrad] 2.5 1.8 

’ db=l 3.5 
&00x 11.8 14.3 

SB = 1.89 
larger N 

LEB HEB 
1.89 

3 x 1033 
0.03 

8.4 3.9 
2.1 1.0 
92 69 
3.7 2.8 

10.1 
20.1 20.4 

SB = 1.89 
nominal N 

LEB HBB 
1.89 

2x 1033 

0.03 
5.6 2.6 
1.4 0.66 
61 46 
2.5 1.8 

10.1 
24.6 24.8 

- 

-. 

Approach A: we set &+ = &I~,+ = &+ and bx,- = {or,- = 5~ with c$+ # b 
Approach B: we set &,+ = &-=- 50~ and sDy,+ = eoY,- = to,, with bx # &,, 

In both cases, we maintained the pair-wise equality of the rmsbeam sixes at the IP and 
kept the luminosity fixed at its nominal value, Jet = 3 x 1033 cm-2 s-1. Other constraints 
were in effect. In Approach B, the transparency-symmetry constraint on the beam-beam 
parameters is respected, as explained in Section 4.4.2, but this is not the case in 
Approach A. The simulation results showed that: 

l In both approaches, only the vertical beam blowup is significant, and this blowup 
behaves smoothly as the beam-beam parameters move away from full equality 

l In Approach A, the dynamics favors (that is, beam blowup is less for) &+ = 0.024, 
50-z 0.04 over & = b = 0.03 

l In Approach B, the dynamics favors {u,, = 0.023, bx = 0.04 over bx = go,, = 0.03 
In both cases, the dynamical value of the luminosity is slightly increased from the 

values corresponding to go&+ = &,,+ f c&- = to,,,- = 0.03. We have every reason to 
believe that qualitatively similar results apply to the current design. We conjecture that, 
if the beam-beam parameters were chosen according to the preference expressed by the 
dynamics, the operation of the machine would perhaps be smoother and more reliable. 
Of course, there are implications for other areas of the design associated with these 
changes. Table 4-42 shows values for selected parameters of PEP-II in two examples 
with unequal beam-beam parameters. Both sets are within the operational reach of the 
machine. We note that, in both examples, the total current of the LEB is higher than the 
nominal value. 
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Table 4-42. Two examples of modi@ed sets of basic parameters based on different 
choices for the nominal beam-beam parameters, compared with the nominal 
speci@ation. The nominal luminosity is Y 0 = 3 xl@3 cm-2 s-l for all three cases. 

Nominal 
LEB HEB 

5 ox 0.03 0.03 
<OY 0.03 0.03 
00x WI 152 
ooy luml 6.06 
r 5 0~/00~ 0.04 

acJ.ox 11.8 14.3 
I [Al 2.1 1.0 

Approach A 
LEB HEB 
0.025 0.04 
0.025 0.04 

144 
5.75 
0.04 

12.4 15.1 
2.8 0.74 

Approach B 
LEB HEB 
0.04 0.04 

0.025 0.025 
141 
9.0 

0.06 
12.7 15.5 
2.5 1.2 

4.4.7.4 Painvise-Equal Beta Functions. As mentioned in Section 4.4.2, a single-particle 
Hamiltonian analysis leads to a more restrictive set of transparency conditions than those 
we have adopted [Krishnagopal and Siemann, 1990b]. Motivated by this analysis, we 
have gone through the exercise of running one simulation case for a modified PEP-II 
design that satisfies this more restricted symmetry. In this particular example, we have 
set the beam-beam parameters and the nominal luminosity to their PEP-II nominal values 
of 0.03 and 3 x 1033 cm-2 s-1, respectively, and we have chosen the beta functions at the 
IP to be pi,+ = /?z,- = 50 cm and /.I;,+ =$,- = 2 cm. An immediate consequence of going 
to-this configuration is that the total current in the LEB increases to 2.9 A (which is still 
within the PEP-II design specification). Table 4-43 shows other basic parameters for this 
modified case, and Fig. 4-107 shows the results for the beam blowup as a function of the 
beam separation at the first parasitic collision. 

In this case, one sees that the beam blowup curves behave symmetrically and tend to 
rise more gently as the parasitic separation decreases than in the nominal case (Fig. 4-96). 
However, for the nominal value of the separation, the simulation results for both cases 
show that the dynamical value of the luminosity is within a few percent of 3 x 
1033 cm-2 s-r. 

4.4.7.5 Other Alternatives Studied. In the same spirit of examining departures from the 
nominal parameters, we also studied the two earlier designs. Specifically, we looked at 
(a) mani K,+ and j3;,+ larger than nominal and (b) making UJ,+ smaller than nominal. 
The object of both changes was to try to bring transparency condition (iv) closer to being 
satisfied. Simulations for both cases indicated slightly better luminosity performance. 
The penalty in case (a) is an increase in the LEB current, and in case (b) an increase in the 
required RF voltage and a change in the momentum compaction factor. 

4.4.7.6 Simulation Parameters. As mentioned in Section 4.4.3, in all the simulation 
results with TRS presented above we used five damping times and 256 superparticles, 
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Table 4-43. Modified main PEP-IIpammeters used in a beam-beam 
simuktion with painvise-equal beta functions. 

LER (e+) HER (e-) 
Se0 [cm-2 s-l] 3 x 1033 
5 ox 0.03 0.03 
6Y 0.03 0.03 
VX 0.64 0.64 
Vr 0.57 0.57 
VS 0.052 0.052 
a km1 1.0 1.0 
me 1.00x 10-3 0.616 x 10-J 
Na 7.507 x 1010 2.586 x 1010 
WI 2.862 0.986 
Px* b-4 0.5 0.5 
I$ [ml 0.02 0.02 
gx WI 175 175 
oiy lrm 7 7 

-. 

#00x 
5 ox 
5OY 

Parameters at the first parasitic collision 
12.4 12.4 

-0.0002 -0.0002 
+0.003 +0.003 

aThese values for N do not take into account the existence of the ion-clearing gap. 

and represented thick-lens beam-beam effects by using five slices. In order to save 
computer time, in some cases (typically tune scans) we used fewer superparticles or ran 
the simulation for only three damping times. In general, for 50 = 0.03, the results are 
qualitatively the same. As an example of these kinds of comparisons, we present below a 
spot-check with more superparticles. Figure 4-108 shows results with 256 and with 1024 
superparticles for the vertical blowup of the LEB, for the nominal design case. The curve 
with 256 superparticles is taken from Fig. 4-96. One can see that there is essentially no 
difference in the two cases. 

4.4.8 Conclusions 

Our results show that, without the parasitic crossings, the beam dynamics performance of 
the machine is quite close to nominal, up to values of 50 substantially higher than the 
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Fig. 4-107. Beam blowup factors vs d/c&,+ for a beam-beam simuktion (using 
TRS) with painvise-equal beta functions. This should be compared with the 
nominal case, shown in Fig. 4-96. 

design specification of 0.03. The parasitic crossings introduce a horizontal-vertical 
coupling due to the large value of the vertical beta function. This has the effect of 
increasing the vertical size of the low-energy beam, with a corresponding lowering of the 
lumjnosity. However, because the other three transverse beam sizes are not changed 
much, the luminosity degrades no more than 5% from its nominal value for 50 = 0.03. 
For 50 = 0.05, the relative degradation is larger, of the order of 15%; however, since the 
nominal luminosity is larger in this case (90 = 8.3 x 1033 cm-2 s-l), the absolute value of 
the luminosity is about 7 x 1033 cm-2 s-1, which exceeds the PEP-II design specification. 

The calculated results for the value of &J = 0.05 were achieved by increasing the ’ 
bunch currents by a factor of 5/3 from the nominal values at fixed emittance. Another 
way of achieving 50 = 0.05 is to decrease the emittances by a factor of 3/5 at fured bunch 
current. In this case, because of the reduced beam size, the parasitic collisions have an 
increased normalized separation, namely d/oox,+ = 15.2 instead of a nominal value of I 
11.8. The expected luminosity in this case is Y?u = 5 x 1033 cm-2 s-t, but the beam 
blowup leads to a dynamical value of S! 5 4 x 1033 cm2 s-1. This second mode of 
operation with 50 = 0.05 is somewhat more easily accomplished than the frrst as a result 
of the lower beam-current requirements and the larger parasitic collision separation. 
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Fig. 4-108. Comparison of simuladion results with TRS for 256 vs 1024 
superpa&cles per bunch. The vertical blowup factor of the L.EB is plotted vs 
d/o&,,+ for the nominal design case. The curve with 256 supeqnuticles is tuken 
from Fig. 4-96. 

Our simulations for luminosity performance, based on studies of the dynamics of the 
beam core, suggest a simple rule-of-thumb for the effective weakness of the parasitic 
collisions: Once a good working point has been found, the parasitic collisions are 
effectively weak when d&oz+ 2 7 for 50 = 0.03 (or &k+ 2 9 for 50 = 0.05). Obviously, 
a prudent approach dictates choosing a design value for d/oox,+ larger than 7; all our 
evidence to date confirms that the nominal separation value of 11.8 for PEP-II will be 
quite comfortable. 

The influence of parasitic crossings beyond the first one is quite weak. (To take 
account of these collisions may require a very small adjustment of the working point.) 
They may induce a coherent dipole oscillation in the beams, but this instability should be 
easily avoided by a suitable choice of working point. 

In general, from the perspective of beam-beam dynamics, we conclude that the energy 
asymmetry of PEP-II presents no qualitatively new problems compared with those arising 
in single-ring colliders. 

Although our studies show completely acceptable luminosity performance of the 
nominal design, we have explored to some extent how this performance varies as some 
parameters take on values that are different from, but close to, nominal. Obviously these 
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changes would have implications for other areas of the design, or for the operation of the 
machine. Three such variations are: 

, 

l Increase the bunch spacing from 2& = 1.26 m to 3;1~ = 1.89 m, with a 
concomitant increase in emittances and bunch currents, so that the total beam 
current, nominal beam-beam parameters, and nominal luminosity remain 
unchanged 

l Adopt unequal beam-beam parameters according to two approaches: (A) make the 
beam-beam parameters of the LEB different from those of the HEB, but keep the 
horizontal and vertical parameters equal for each beam; (B) make the beam-beam 
parameters equal in the two beams, but horizontal parameters different from 
vertical 

l Set the beta functions at the IP pairwise equal 
Because the luminosity performance is already quite close to nominal, these alternatives 
do not improve the performance more than a few percent for &J = 0.03. Thus, the 
advantage of making these changes may only be in further weakening the effect of the 
parasitic collisions compared with the nominal design. 

1. 

Beam-beam simulations of the injection process show that the vertical injection 
scheme with vertical beam displacement is quite comfortable, since it induces a 
temporary beam blowup of only a factor of three, which is easily accommodated within - 

I 
_ the physical aperture. 

The lifetime is an important issue that we are just begirming to study. This is the 
most difficult and expensive part of beam-beam simulations. Preliminary results show 

t 
I 

that, in the absence of machine nonlinearities, the beam lifetime is comfortably long. 
(Thus far, we have not included magnet nonlinearities in the simulation studies.) Because 

-. magnet nonlinearities aremore important at the tails of the beam than at the core, they are 

1 
unlikely to affect the luminosity performance of PEP-II. However, their influence on the 
beam lifetimes may be significant and should be estimated. 

Based on our results, and the possibilities for improvement described above, we are 

I 
convinced that the PEP-II design with a luminosity of 3 x 1033 cm-2 s’t is quite 
comfortable. While important issues remain to be studied in more detail, such as beam 
lifetimes, optimal choice of working point, and effects of magnet nonlinearities on beam 

I 
dynamics performance, we are confident that our solution will meet and has margin to 
exceed its luminosity goals. 
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