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CHAPTER I

INTRODUCTION

The work described here attacks two problems: the lack of agreement on the
nature of certain aspects of nonnumeric computer processing, and the educational
bottleneck resulting from the large numbers of people who know little about com-
puters but who wish to see how they might be used in their work.

The first problem is a generic problem in the nature of nonnumeric processing.
The essence of numeric calculations and operations has been known for some time,
and the advent of high speed digital computers has solidified these concepts. Almost
all general purpose digital computers have facilities for doing arithmetic, and
depending on the size and cost of the machine, these facilities can be quite elaborate.
This should not be surprising since the first uses to which digital computers were
put were almost exclusively numerical calculations.

The notion that a general purpose digital computer can be a very general
symbol manipulator began to grow from the early days of computing and is now
an accepted notion throughout most of the computing community. As yet, however,
there has been very little agreement on what constitutes general symbolic manipu-
lation, i.e., nonnumeric calculation. This lack of agreement can be seen at the
hardware level by the fact that there has been no unanimous introduction of pieces
of hardware td do nonnumeric processing, as opposed, for example, to the
existence of adders for numeric processing. On the software level, the great
variety of "list processing’’ languages such as LISP (McCarthy [1962]), SNOBOL
(Griswold [1968]), and L6 (Knowlton [1966]), and "associative' languages like
LEAP (Feldman [1969]) and ASP (Lang [1968]) indicates that there are certainly

divergent opinions on the nature of nonnumeric processing. One of the purposes



of this work, then, is to try to shed some light on a representation and subsequent
manipulation of nonnumeric data.

The second problem with which this work deals is related to the fact that
computers can be very useful tools in many areas, including both mathematical
sciences and nonscientific fields such as history, government, sociology,
law, efc.

The phenomenal growth of accessibility to computers and the number of
people anxious to use computers have caused quite a bottleneck in the facilities
for training these people. Introductory programming courses in universities
and colleges are ali:nost always overcrowded as students in the physical sciences
and, more and more often now, the social sciences realize that computers might
be able to help them in their own fields.

These immense numbers of people, who are eager and should learn how to
use and how not to use computers in their own work, require that new methods
of teaching and learning these skills be explored. The traditional university
course, for example, lasting from at least several weeks to a quarter or se-
mester is quickly becoming inadequate to serve the volume of people eager to
acquire the knowledge of some programming language which might be useful to
them. The length of time which is required for the computer novice to learn
many of the computer languages and systems, with their increasing generality
and complexity, is usually more than he and his instructor wish to spend.

Kemeny and Kurtz at Dartmouth have attempted to alleviate this problem by
designing and implementing an interactive computer language and system called
BASIC (Kemeny [1967]). The simplicity of the system and ease with which the
language canbe learned are evidenced by the fact that a very short formal lecture

session is usually all that is necessary for the novice to begin writing programs



that are useful to him. The interactive nature of the system allows the novice to
use the system at his leisure and to search for answers to questions which occur
to him about the system by experimentation. The great utility of this approach
to the training and teaching problem is attested to by the great number of BASIC
systems which have been adopted by many computation centers and the wide sup-
port and use these systems are receiving from their users.

There are a number of problems for which the BASIC language and system is
inadequate, but for these problems there are more general and more complex
languages and systems which the novice can learn and use. However, for a
great many common everyday problems, BASIC is entirely adequate, and the
ease with which it can be so used bears strong evidence that BASIC's approach
to the computer education bottleneck is a good one,

This work, then, is an attempt to combine partial solutions to these two
problems: to shed further light on the nature of one aspect of nonnumeric proces-
sing, and to aid in reducing the educational bottleneck in that area.

The vehicle for this study is the design and fest implementation of a non-
numeric data processing capability suitable for inclusion with a BASIC system.

It is felt that such an addition would greatly enhance the already great appeal of
BASIC to those nonscientific users who already view BASIC as a useful tool for
the solutions of their numeric problems.

In trying to follow one of the rules fvor the development of BASIC, which was
to find those few primitives which were not only basic and useful, but also of high
pedagogic value, it was decided that the majority of current nonnumeric list-
processing languages were too much data-structure oriented rather than problem-
solving oriented. Hence, while these languages contain almost all the basic
primitives for list processing, they are too difficult to use and of too little pedagogic

value for those novice users for whom the nonnumeric capability is intended.
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As different in format and applicability as the existing nonnumeric lan-
guages are, there is a common motive that runs through all of them. In one
form or another, all of these languages emphasize the relationships between
data as opposed to emphasizing the data themselves. In II;L (IPL [1961}) and
LISP (McCarthy {1962]), for example, the sublist concept and associated mecha—
nisms for creating, manipulating, and destroying such sublists deals with the
relationships between not only atoms of data but also between other relationships.
Much the same can be said for the pointer structuring capabilities in ALGOL W
(Bauer [1969]) and in L6 (Knowlton [1966]), the basis for which was Wirth and
Hoare's records and references (Wirth [1966]) and Ross's plex processing
(Ross [1961]). It certainly appears that the ability to specify relationships
which exist among data and to manipulate these relationships-are at the heart of
nonnumeric processing.

Having ascertained the centrality of the concept of relationship specification
and manjpulation to nonnumeric processing, we turn to finding those few primi-
tives which are basic, uSeful, and of high pedagogic value. More explicitly, when
considering nonnumeric processing and the relationship concept, the problem is
to focus on some hopefully small subset of all possible relationships in order to
simplify both the language and the concepts involved in teaching. To this end, I
have chosen one type of relationship, the hierarchical relationship. Webster
(Webster [1964“) defines "hierarchy' as "the arrangement of objects, elements,
or values in a graduated series.' Notice that the emphasis is on the arrangement
of the objects rather than the objects themselves. The graduated nature of a
hierarchy as defined, as well as the intuitive feelings of what constitutes a
hierarchy,implies the true generality of this relationship: it exists or can easily
be made to exist among data in a great many different kinds of data bases. In

addition, two relationships canbe different in their meaning but still be hierarchical.



AB

BC

Ch

In other words, R AB

having different semantic content depending on the data A, B, and C. For example,

and RBC can both be hierarchical relationships but

A could describe a professor, B could describe his secretary, and C could describe
her salary. The exact nature of the relationships is somewhat subjective and

might be interpreted slightly differently by different users once the data A, B,

and C are known; nonetheless, both relationships are hierarchical, and this fact

is all that should be required for the user to specify, query, and manipulate the
relationships and the data. More will be said about this and more examples will

be given in later chapters.

Having limited the type of relationship, it remains to determine how to specify
that this relationship exists or does not exist between data, how to query the data
base in terms of the relationships which do or do not exist, and how to manipulate
these relationships and so indirectly the &ata. The manner in which these operations
should be specified should be simple and of high pedagogic and mnemonic value in
order that the goals achieved in BASIC can be achieved here as well. Once these
goals are met, the resulting system will be able to serve as both a data manage-
ment system and an information retrieval system which is easy to use and easy

to learn. The following chapters discuss and explain one way that this can be done.



CHAPTER II

THE NATURE AND ADDRESSING OF THE DATA STRUCTURE

A. The Data Structure

The data structure type first chosen to represent the hierarchical relationships
discussed in the previous section was a multirooted muitibranching tree with the
arcs of the tree oriented away from the roots (see Fig. 1a}. The nodes of the tree
contain the data items and a directed path from node X to node Y in the tree indi-
cates that node X is in a hierarchically superior relationship to node Y. Stated
differently, node Y is within the hierarchical context of node X. If no directed
path exists between node X and a node Z, then no hierarchical relationship exists
between node X and node Z. Notice that node X and node Y do not have to be
adjacent to one another, i.e., other nodes may exist along the path from node X
to node Y.

For reasons of generality, the multirooted multibranching tree data structure
was extended slightly to directed acyclic graphs. This data structure can be
conveniently visualized as a multirooted multibranching tree, some of whose
branches might have grown together (see Fig. 1b). The nodes of the directed
acyclic graph still contain the data items, and what was said previously about
the existence or nonexistence of a hierarchical relationship between two nodes

still holds.

B. The Data Item

As. previously noted, each node of the graph contains a data item. A data
item is any semantically meaningful label or set of labels the user chooses.
Syntactically,

<label >: := < identifier >|< number >

<data item> : := <label>|< label> <data item>

-6 -



//)2\)‘\_ v/

Y

Directed multirooted multibranching tree
(2)

Directed acyclic graph

(b) 1594 A1

FIG. 1

-7



where the syntactic classes <identifier> and <number> are as defined in the
Algol 60 report (Revised Report 1963). Duplicate lébels may occur within a data
item.

In some complex retrieval systems, there is a syntactic distinction made
between the semantically different concepts of a category of some kind and a
particular instance of that category when referring to data items at nodes in a
data structure. For example, '"University" can be thought of as a category of
which "Stanford" and "Texas' are instances. The system does not distinguish
between labels which can denote categories and labels which can denote instances.
The distinction between the concepts of category and instance is fairly easy to
make for professionals in the computer field. However, for the potential user
of this system, these concepts and their distinction may appear to be somewhat
arbitrary and beside-the~point, complicating rather than simplifying the use of
the system. For this reason, there is no syntactic distinction made between
category and instance within data items in this system, and whatever semantic
distinction exists between the labels which make up a data item can remain com-

pletely within the mind of the user.

Examples
Stanford Lawyer Jones
Stanford University Doctor Lawyer Jones
27 salary
age 27 salary 375.60 dollars per month

C. The Range

One of the basic concepts in this system is the manner whereby a subset of

the set of all nodes in the graph, called a range, is referenced. Most of the



primitives operate on one or more subsets of nodes, or ranges, and each refer-
ence to a range is accomplished according to a common set of rules. There is
a general principle, the Principle of Greater Specification, which applies when
specifying a range. This principle states that when more information is given
to specify a range, the cardinality of the range, i.e., the number of nodes ref-
erenced, cannot increase because of the added information; more usually, the
cardinality decreases. Simply stated, the more carefully a set of nodes is de-
scribed, the fewer nodes one is describing since only those nodes which satisfy
all the descriptions are included in the range. As the different methods for
referencing a range are discussed, it will be shown how the Principle of Greater
Specification applies. I will also be seen that each method is a special case of
following methods.
1. Method I

The simplest way of specifying a range is by evoking a label. The set of nodes
which constitutes the range is then all those nodes in the graph which have the
evoked label among the labels which make up the data item for that node.

Examples (see Fig. 2)

Evoked Label Node numbers in range
Student {18, 22, 23}

Provost {11, 16, 17}

Miller {15, 16}

University {2, 3}

History ¢

Moses {17}

The nodes in any range always form an unordered set.



Communication [9]
Department

Professor [13]
Parker

Note:

Bracketed numbers beside each node

Caltech [1] Stanford Um‘versity[z] Texas Um'versity[B] : m[4J

7\

are for identification purposes only
and are not part of the data item at

the node.

Law School[] School of Humamties[J Admmistrahon[] School of Engineering[sj
and Sciences
Computer Science[m] Provost Lyman[ll]
Department
[1 6] Mechanical [12]
Assoc. Provost Engineering
Miller Department
Chajirman [14] Professor [15] . [17] Electrical[zq
Professor Miller Assoc. Provost Engineering
Forsythe Moses Pepartment
Secretary [19]
Grace
Mickelson
Student Hardy (22 Student Laurell23]
Student [1 8] Secretary [2 1] ’
Sheldon Carla West
Becker _"_ salary $40027]
Salary Classiﬂed[zﬂ Salary[25] Wife[zs]
330053 Susan
I594A2

FIG. 2--A Personnel file.




2, Method II

Another way of specifying a range is by evoking one or more labels. The set

of nodes which constitutes the range is then the intersection of all those sets of

nodes (ranges) which would arise if each evoked label were evoked alone. The

evoked labels can be in any order,

If only one label is evoked, it is seen that

this method of specifying a range is identical with Method 1.

Examples (see Fig. 2)
Evoked Labels

Professor Miller
Provost Miller

Assoc. Provost Miller
Engineering Department
Chairman Miller

School of Humanities and
Administration Sciences

Miller Professor
Student Sheldon Becker
Student Sheldon

Student Becker
Sheldon Becker

Student

Sheldon

Becker

Notice that the Principle of Greater Specification holds here.

Node numbers in range

{15}

The evoked

label "Student" specifies a range consisting of three nodes (see Fig. 2); upon

greater specification, "Student Hardy'' for example, the range is reduced to one

node.

- 11 -



There is an addition to Method II which can be used when the range which the
user wishes to specify consists of a set of nodes whiéh have precisely the set of
labels the user evokes, and in precisely the same order., In the usual case, the
range consists of the set of nodes which have at least the set of labels the user
evokes, and in any order. The word "just" occurring before the evoked labels
has pedagogic value in making it clear to the user that only those nodes are sought
which contain precisely the evoked set of labels. '"Precisely” or "exactly might

also be used.

Examples (see Fig. 2)

Evocation Node numbers in range
just Student g

just Student Hardy {22}

Student Hardy {22}

3. Method I

A more complex and more powerful method of specifying a range is by
hierarchical context. As was stated at the beginning of this chapter, since the
data base is a directed acyclic graph, between any two nodes in the graph exactly
one of the following two relationships holds:

(1) there is no directed path between the two nodes

(2) there are one or more directed paths between the two nodes.
Node Y is said to be within the hierarchical context of node X if one or more
directed paths exist from node X to node Y. If no directed path exists between
node X and node Y, then neither node is within the hierarchical context of the
other node. Since the graph is acyclic, node X may never be within its own

hierarchical context.

- 12 -



Let the symbol "> indicate that the hierarchical relationship holds, i.e.,
X >Y means that node Y is within the hierarchical context of node X. X } Y means

that node Y is not within the hierarchical context of node X.

Examples (see Fig. 2)
8] > [20]
6 * [5]
(8] > [22]
[20] > [22]
o] ¥ [23]
[6] > f1e]
[7] # Q9]
1> [7]
The hierarchical relation is nonreflexive, antisymmetric, and tre_lnsitive.
The third method of range specification is accomplished by specifying two
ranges in order aécording to Method II. The range thus specified consists of all
those nodes in the first range which are within the hierarchical context of any
node in the second range. More precisely, if Rl and R2 are the two ranges
initially specified, then the range R within the hierarchical context of Rl with
respect to R2 is defined by:
R= {yly € Bl)\g‘ﬁ"xeRz 2 X >y}
In the preceding chapter, it was stressed that simplicity for the user be a
primary goal. Reviewing the second method of specifying ranges, it can be seen
that the data base is being addressed directly in terms of labels which the user

has placed there (the ways in which this placement occurs will be described in the

next chapter). Sincetheselabels are purely the user's invention, they are semantically

- 13 -



meaningful to him. By allowing him to use these labels to address the data base,
simplicity for him is thereby furthered.

Continuing in this spirit, the following manner of evoking ranges to be
specified by Method III is suggested:

R 1 within R2

where Rl and ]R2 are evocations of the two ranges by Method II, in order. The
word "within' is used as a delimiter, suggesting the hierarchical contextual
relationship. Depending on how the user visualizes the data base, delimiters

such as "in! or "under' might be used.

Examples (see Fig. 2)

Evocation Node numbers in range
Student within Computer Science {18}

Student within Department {18, 22, 23,t
Professor within Stanford {13, 14, 15}
Professor within Humanities School {13, 14, 15}
Professor within Communication {13}
Professor within Administration [/

Miller within Stanford {15, 16}
Miller within Administration {16}
Professor Miller within Administration g

Provost within Administration {11, 16, 17}
Provost within Provost {16, 17}

A natural and useful extension of specifying ranges by context is to specify
a set of nodes not within a given context. More precisely, if Rl and R2 are the

two ranges initially specified, then the range R not within the hierarchical context

- 14 -



of Rl with respect to R o is defined by:
R = {y,ye Ry AVX€R,, X ¥ y}

The most natural extension for evoking ranges specified in this manner

is to use "not within' as the delimiter between the evocation of ranges Ry and R 9

Examples (see Fig. 2)

Evocation Node numbers in range
Student not within Computer Science {22, 28}

Student not within Department i

Professor not within Stanford g

Miller not within Administration {15}

Professor Miller not within

Administration {15}
Provost not within Administration [
Provost not within Provost {11}

4, Method IV

As Method II is a generalization of Method I, so Method IV is a generalization
of Method III. In the preceding method, a first set of nodes is chosen by specifying
a second set of nodes as context; the second set of nodes modifies the first set.
Method IV allows a third context to be specified for the second set, a fourth context
to be specified for the third set, etc.

In the general case, n ranges Rl’ g1 ter Rn in order are specified by

Method II; n > 2. The ranges are associated in the following manner:
(Rys (Rgs - (R 95 (R 35 Rp))==)

Method III is first fdpplied to the ordered pair of ranges Rn— and Rn. The

1
result of this application is a range, call it Rn—l . Method III is then applied

’
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to the ordered pair of ranges Rn__2 and Rn—l,n’ resulting in a range Rn—2, n-1,n°

Method II is continually reapplied to successive pairs of ranges until it is finally

applied to the ordered pair of ranges R1 and R2 3 . The result of this

.o,n~1,n
final application is either null or a subset of the range specified by Rl’ a range
specified by successive hierarchical contexts. Notice that for n = 2, Method IV
becomes Method T, and for the degenerate case of n= 1, Method II.

The natural extension for evoking ranges by successive hierarchical context
is to evoke the n ranges by Method II, each evocation delimited by "within'' or

"mot within'':

Rydy pRpdy g Rg-——d ; R

where R, is the evocation of the ith range by Method II and d,_; ; is either
"within' or 'mot within."
Examples (see Fig. 2)

Evocation Node numbers in range

Secretary within Miller within

Administration {21}
Secretary within Miller within

Computer Science {19, 21}
Secretary within Miller not within

Administration ' {19, 21}
Secretary within Miller not within

Computer Science {21}
Student within Mechanical Engineering

not within Humanities within Stanford {22, 23}

- 16 -



Notice that the Principle of Greater Specification holds here. Also notice
that the data base is still being addressed in terms of labels which are semantically
meaningful to the user and in a manner which is very suggestive of the relationships

which the user visualizes as holding between his data.

D. Total Range Specification

Since Method IV is a generalization of all the preceding methods, and the
distinction between the methods will often not be needed, the combination of all
the methods, i.e., Method IV, will henceforth be called the specificétion of a
range by hierarchical context. Observe, however, that the contexts which are
given are always hierarchically superior to the nodes which are being specified.

In terms of visualization of the data base as drawn, for example, in Fig. 2, the
contexts are always "above'' the nodes which are being specified. Often, it is
useful to be able to further qualify the nodes to be specified by looking at those
nodes ''below’! the nodes which are being specified, i.e., those nodes which are
hierarchically inferior to the nodes being specified.

To specify a range then, a set of nodes is first specified by hierarchical
context. If it is not desired to further qualify the nodes so chosen by hierarchical
context, then this set of nodes is the range. If it is desired to further qualify the
nodes thus chosen by hierarchical context by éhecking for some condition or
conditions which might exist in nodes hierarchically inferior to the nodes chosen
by hierarchical context, this specification, to be described shortly and to be
called specification by subtree context, is then given. It should be noted that
specification by subtree context is specification by predicate, a well known method
of naming sets. Specification by subtree context asks whether or not some condition
holds within the subtrees of those nodes chosen by hierarchical context. Every

node chosen by hierarchical context whose subtree meets the condition (or
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conditions) named by the subtree context specification is retained in the range;
all nodes which do not meet the condition (or conditions) named are discarded

from the range.

E. Subtree Context Specification

Three conditions have been chosen to be used in the subtree context speci-
fication. One condition checks for the existence of a node (specified by Method IV)
within the sﬁbtree. | A second condition, which is a partial generalization of the
first, checks for the existence of a given number of nodes (specified by Method 1V)
within the subtree. The third condition checks for the existence of a node, one
of whose labels is numeric and the value of which is compared to a given number,
within the subtree.

Within the subtree context specification, any of the three conditions can be
evoked, or any combination of the three conditions separated by the logical con-
nectives AND and @R can be evoked. The unary logical operation NOT is built
into the conditions and need not be explicitly provided.

The evocation of a range, therefore, consists of a specification by hierarchical
context optionally followed by a specification by subtree context. If the latter is
present, the hierarchical and subtree specifications are separated by the delimiter
"wherever."

In BNF:

<range> ::= <hierarchical context specification> |

<hierarchical context specification>
wherever -subtree context specification>
1. Condition I
As stated previously, Condition I allows the user to check for the exis-

tence of a particular node, or hierarchical configuration of nodes, one of
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which must be within the subtree of the node chosen by hierarchical context.
Method IV is used to specify a set N of nodes. Every node which is specified by
hierarchical context and which has within its proper subtree (i.e., hierarchically
inferior to it) at least one node in N is retained in the range. Every node which is
specified by hierarchical context but which does not have within its proper subtree
at least one node in N is not considered to be in the range.

What is required for Condition I, then, is a specification of a temporary
range N by Method IV, the nodes of which are then sought within the subtrees of
the nodes specified by hierarchical context. If the latter set of nodes is called
M, then the range is given by:

R={xlxeMA9'yeN9x >y}

In the evocation of a range using any of the three conditions (which all use
Method IV to specify the set N), it is necessary to make clear to the user that a
condition is sought, the result of which is essentially 'yes' or "no", i.e., a
predicate. To this end, the word "is" is inserted before the first occurrence of
the word "within" in the Method IV specification used in the subtree context condi-
tion. Observe that since Method II is a degenerate form of Method IV not involving
the use of thé word ""within, ' the above word insertion is not always able to be
done. (See the third and last example below. )

Examples (see Fig. 2)

Evocation Node numbers in range

Department within Humanities

wherever Secretary Mickelson

is within Professor Miller {10}
Provost wherever Carla West

is within Provost {11, 16}
Provost wherever Carla West {11, 16}

- 19 -



Assoc. Provost wherever Carla West

is within Provost {16}

Department within Stanford wherever

Secretary is within Department {10}
Department within Stanford wherever
Secretary {10}

-Ranges including the negation of Condition I can alsc be specified. In this case,
every node which is specified by hierarchical context and which does not have
within its proper subtree at least one node in N is retained in the range. Every
node which is specified by hierarchical context which has within its proper subtree
at least one node i.n N is not considered to be in the range. More formally:

R= {x|xeM/\VyeN, X ¥ y}

The evocation of a range using this form of Condition I is accomplished by
inserting the words ''is not' before the first occurrence of the word "within" in
the Method IV specification in the subtree context condition. The meaning of the
word '"not!" following "is' essentially has the meaning it is not the case that ..."
and should not be confused with the use of the word "not" first described in the
discussion of Method TII. For example, in the first example below,

N= {21} - subtree context
M = {9, 10} - hierarchical context

Examples (see Fig. 2)

Evocation Node numbers in range

Department within Humanities
' wherever Secretary West is not
within Professor within
Department {9}

Department within St_anford

wherever Secretary is not
within Department 19, 12, 20}
- 20 -



2. Condition II

Condition II allows the user to check for the existence of a given number of
nodes of a certain specification (by Method IV again) within the subtrees of those
nodes specified by hierarchical context. What is required then is a temporary
range N specified by Method IV, a relational operator P(e.g., =, #,>), and a
number, . Every node in M(i.e., those nodes specified by hjerafchical context)
which has within its subtree a number of nodes in N which stand in the given
relation P to the given number g is retained in the range. Any node in M which
does not have within its subtree a number of nodes in N which stands in the given
relation to the given number is not considered to be in the raL.nge. More formally,
if C is the set cardinality operator, P is the given relational operator, and q is
the given number, then

R = {xlxeMAVy eN, x>y A C(N) Pq}

The evocation requires some word which denotes that a cardinality is being
considered. The word "count' has been chosen both because of its inherent
semantic content and because of its use in one of the primitives which is explained
in the next chapter.

Examples (see Fig. 2)

Evocation Node numbers in range

Department wherever count

student < 3 {9, 10, 12, 20}
Department wherever count student
within Department = 2 {12}
3. Condition I
Condition OI allows the user to check for the existence of . node, at least

one of whose labels is numeric and the value of which stands in a given relation
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P to a given number g. This condition can be used, for example, to check the
values of ages or salaries in a personnel file.

As with the first two conditions, a temporary range N is specified by Method
IV. Every node in M (i.e., those nodes specified by hierarchical context) which
has within its subtree a node in N which has at least one label which is numeric
and whose value stands in the given relation P to the given number gq is retained
in the range. If a node has more than one numeric label, only the first will be
considered. Any node in M which does not have within its subtree a node in N
which has at least one label whichis numeric and whose value stands in the given
relation P to the given number q is not considered to be in the range. More
formally, if V is the value operator, i.e., a function whose argument is a numeric
label and whose value is the value of the label, and if U is a predicate whose
argument is a label and whose value is true if and only if the label is numeric,
then the range R is defined by

R= {xlxeMA@yeNa (x>y A Fley 3(U() A V(D) Pq))}
Examples (see Fig. 2)

Evocation Node numbers in range

Student within Stanford wherever
Salary > 250 {22, 23}

Student within Stanford wherever
Salary > 350.25 {23}

School wherever Salary within
Professor > 1000 d

School wherever Salary within
Student > 300 {8}
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F. Conclusion

It can now be seen that there are many ways to specify a range, and that the
Principle of Greater Specification applies within each of the methods and conditions
as well as over all of them. The user need only specify as little context as is
‘required to choose those nodes toward which he wishes to draw attention. Greater
specification can only reduce the number of nodes towards which he is drawing
attention. In addition the data base is being addressed by labels which have semantic
content to the user, in conjunction with English language words and forms which
appear to have high semantic content with respect to the data base attention
focusing which occurs.

Thus far, no attempt has been made to explain how ranges are used once
they have been specified. The next chapter explains the use of the primitives
which build and manipulate the data base. These primitives operate on ranges

as specified by the rules explained in this chapter.
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CHAPTER 11

DESCRIPTION OF THE PRIMITIVES

The preceding chapter described methods whereby a range, i.e., a set of
nodes in the data base, may be specified. Specifying a range simply focuses
attention on a particular set of nodes; no nodes are added or deleted from the
data base nor are any connections between nodes altered. In this chapter, a set
of primitives for adding and deleting nodes and altering connections between
nodes will be explained. Which nodes are affected by the primitives is determined
by specifying as many ranges as each primitive requires.

It was seen in the preceding chapter that attention is focused on a set of nodes
by citing labels which the user has specified and therefore have semantic content
for him along with English words which are highly suggestive of the relationships
which exist among the user's data. Continuing in this vein of making the language
and system easy for the user to learn and use, it will be seen that each primitive
is easily identifiable by an English keyword which is highly suggestive of the
effect the primitive has on the data base. Table 1 lists the primitives by their
keyword and gives the use of each.

The primitives are, of course, not absolutely primitive. There is a continuum
of primitiveness, and a choice of what part of the continuum from which to choose
any system's primitives must be made. The choice depends on the use to which
the primitives will be put. If the primitives are too primitive, too many steps
will be necessary to do any useful work. On the other hand, if the primitives
are too general, the control over the structure being ‘manipulated by the primitives
will not be fine enough. These considerations have been taken into account when
choosing the point along the continuum from which the primitives given in Table

1 were taken.
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PRIMITIVE

CREATE
LABEL
UNLABEL
WRITE
COUNT
PUT

COPY

SEVER

DELETE

SAVE

RESTORE

TABLE 1

THE PRIMITIVES

USE

Creates new nodes in the data base

Addgs labels to nodes in the data base
Removes labels from nodes in the data base
Writes part of the data base

Counts nodes in the data base

Builds relatioﬁsmps in the data base

Copies nodes and relationships and builds
relationships in the data base

Destroys relationships in the data base

Destroys nodes and relationships in the
data base

Saves part of the data base in secondary
storage

Restores part of the data base from
secondary storage
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A. CREATE

The CREATE primitive adds a new node to the data base by giving the set of
labels which the data item at the new node will contain. At least one label mus¢
be given, and the labels occur within the new data item in the order in which they
are given. The syntax for the CREATE primitive is:

<create primitive>::= CREATE <data items>
<data items> ::= <data item> | <data items> and <data item>

Notice that more than one data item may be created with one use of the CREATE
primitive by separating the labels of the data items to be created by the word
"and." The user may visualize the new nodes which are created as existing
unattached as new roots of the graph in the data base. No connections are made
or altered nor are any already existing nodes within the data base altered.

By this time the reader should observe that cerﬁain words are held in reserve
status and recognized by the system as special delimiters. A complete list of
these resefved words is given in Table 2. It is often the case that a user may
want one or more of these words to occur as a label within one or more data items.
Surrounding any word or set of words within a <data item> with quote marks
causes the system not to freat any words within the quote marks as reserved words.
In this way, any word may be included as a label within a data item.

Examples

CREATE Stanford University

CREATE MIT and Caltech

CREATE "A node containing all these words including the word create"
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ABOVE
AND

AS
BEFORE
BELOW
C@PY
C@UNT
CREATE
DELETE
FROM
INTQ@

IS

JUST

TABLE 2

RESERVED WORD LIST

LABEL
NOT
ONLY
DR

PUT
REST@RE
SAVE
SEVER
TS
VALUE
WHEREVER
WITHIN
WRITE

UNLABEL

See also Table 3 for the reserved words of BASIC.

All of the above words when not enclosed in quotes

should be considered delimiters, including an ''end

of line" character which denotes the end of a command.
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B. LABEL

The LABEL primitive allows the user to add new labels {o already existing
nodes. What is required is the specification of a set of nodes to which the labels
will be added and the new set of labels. The set of nodes to which the labels will
be added is given by specifying a range as described in the preceding chapter.
The syntax for the LABEL primitive is:

<label primitive > : := LABEL <range> as <data item>

The <data item> is the set of new labels. These new labels are added after
the last label which existed at the node before the label primitive was evoked.
The new set of labels is appended to every set of labels at all the nodes specified
by the range.

If it is desired to insert a new set of labels at some point in the existing
data item other than after the last label in the data item, the following alternative
syntactic construction may be used:

<label primitive> : := LABEL <range> as <data item>
before <label>

The new set of labels given by the <data item> will be inserted before the
already occurring <label> in all the nodes specified by the <range> . If the
already occurring <label> occurs more than once within some node in the
< range> , the new set of labels given by the ;data item> will be inserted before
the first occurrence of the <label> . If the <label> does not already occur
within some node in the <range> , the new set of labels is added at the end of the

existing set of labels at that node, as in the previous construction.
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Example (see Fig. 2)
Evocation:

LABEL Miller within Stanford as William before Miller

Effect:
Assoc. Provost[16]
William Miller
e [15] (
Professor William
Miller
Evocation:

LABEL Engineering Department as Electrical

Effect:
/ Mechanical Engineering [12]
[2 o] Department Electrical
Electrical
Engineering /
Department Electrical

C. UNLABEL

The UNLABEL primitive allows the user to remove labels from existing nodes.
As in the LABEL primitive, a set of nodes, specified by a range, along with the
set of labels to be removed must be evoked. The syntax for this primitive is:

<unlabel primitive>::= UNLABEL <range> as <data item>

All the nodes in the <range> are first identified, then all the labels in the
<data item> are removed from each of these nodes. The labels in the <data item>
are removed one by one and do not have to occur in the same order as they occur

within the nodes inthe <range> . Labels in the <data item> which do not already
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exist at some node in the <range> cannot, of course, be removed. In addition,
the last label cannot be removed from a node, thereby leaving a nuil data item.
Observe that to completely relabel a node, the new labels should first be added
using the LABEL primitive, then the old labels removed by using the UNLABEL
primitive. If a label to be removed occurs more than once at some node in the
<range> , only the first occurrence of that label will be removed. However, if
a label to be removed occurs twice for example, within some node in the <range>,
and that label occurs twice in the set of labels to be removed, then both occurrences
will be removed.

Example (See Fig. 2)

Evocation:

UNLABEL Sheldon Becker as Student
Effect: | l

Sheldon Becker [1 8]

Evocation:

UNLABEL Secretary within Computer Science as Secretary

Effect: ’
G‘rrace[lgj| \ l

Mickelson Carla West[2 1]

|

UNLABEL Electrical Engineering Department as Department Engineering

Evocation:

Effect:

Electrical[2 0]

N
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Evocation:
UNLABEL Salary Classified as Salary Classified

Effect: Illegal

The preceding three primitives add new unattached nodes to the data base and
add and delete labels from the data items at nodes specified by a range, respectively.
The data base is altered by the use of these primitives at the data item level: no
relationships between data are altered.

The following two primitives are useful for query purposes only. The data
base is not altered in any way by the use of these primitives. Rather, an immediate

response is typed out at the terminal.

D. COUNT
The COUNT primitive informs the user of the number of nodes in a given
range, i.e., the cardinality of the range. The data base is not altered in any
way by the use of this primitive.
The syntax for this primitive is:
<count primitive> : := COUNT <range>
Example (see Fig. 2)
Evocation:
COUNT Student within Stanford
Response: 3
Evocation:
COUNT Department within Stanford wherever Professor is within Department
Response: 2 |
Evocation:
COUNT Professor within Engineering School

Response: 0
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E. WRITE
The WRITE primitive causes a part of the data base to be printed in an outline
format with proper indentations to denote the various hierarchical levels. For
each node, the labels in the data item at the node are printed in the order in which
they occur within the data item.
The syntax of the first form of the WRITE primitive is:
<write primitive> : := WRITE <range>
Every node in the <range>, with all the subtrees of each node properly
indented, is printed. The subtrees at each level are printed in an arbitrary order.
If there are no nodes in the specified range, then an indication of this fact is
printed.
Example (see Fig. 2)
Evocation:
WRITE Department within Humanities
Response:
Communication Department
Professor Parker
Computer Science Department
Student Sheldon Becker
Professor Miller
Secretary Grace Mickelson
Secretary Carla West
Salary Classified
Chairman Professor Forsythe’
Evocation:
WRITE Professor within Electrical Engineering

Response:

Null range

If the data base has the form of a tree, then an outline, as demonstrated

above, with no duplications within the outline, would always result from the use
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of the WRITE primitive. However, since the data base has the form of a directed
acyclic graph, unnecessary printing of duplicate subtrees could result in
response to one evocation of the WRITE primitive. To alleviate this unnecessary
printing, only the root node of any subtree which would be printed the second or
subsequent time in response to a single evocation of the WRITE primitive, along

with an indication that the entire subtree has already been output, will be printed.

Example (see Fig. 2)
Evocation:

WRITE Miller
Response:

Professor Miller
Secretary Grace Mickelson
Secretary Carla West
Salary Classified
Assoc. Provost Miller
Secretary Carla West <occurs above>

Evocation:
WRITE School of Engineering

Response:

School of Engineering
Electrical Engineering Department
Student Hardy
Salary $300.53
Wife Susan
Mechanical Engineering Department
Student Hardy <occurs above>
Student Laurel
Salary $400
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Evocation:
WRITE Provost
Response:
Provost Lyman
Assoc. Provost Moses
Assoc., Provost Miller
Secretary Carla West
Salary Classified
Assoc. Provost Moses <occurs above>
Assoc. Provost Miller <occurs above>
It is sometimes desirable to print only the nodes in the range without their
subtrees. The syntax of this second form of the WRITE primitive is:

<write primitive> : :=WRITE only <range>

Example (see Fig. 2)

Evocation:
WRITE only University
Response:

Texas University
Stanford University

Evocation:
WRITE only Student within Stanford
Response:
Student Laurel
Student Hardy
Student Sheldon Becker
Thus far, the primitives which have been introduced do not alter the relation~

ships between data. The following four primitives build and destroy the hierar-

chical relationships between data.
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F. PUT

The PUT primitive builds hierarchical relationships between existing nodes.
Two ranges are specified, and every node in the first range is made to be one
level hierarchically inferior to every node in the second range, subject to two
restrictions. 'Thus, if there are n nodes in the first range, and m nodes in the
second range, then n X m hierarchical relationships are formed if none of the
restrictions are violated. The restrictions are:

1) No more than 1 direct (i.e., one level) hierarchical relationship may

exist between any two nodes. That is, the following situation may not

occur: [}

}

However, the following is legal: ,e®

2) No node may be hierarchically inferior (or superior) to itself. That is,

the following situations may not occur: e )
(. O

For every possible pair of nodes in the first and second ranges, respectively,
a direct hierarchical relationship is built so long as none of the restrictions are
violated. Under no conditions are any existing relationships altered in any way.
The syntax for the PUT primitive is:

<put primitive> : := PUT <range> 1 intp <range> 5

As suggested by the syntax, except when the restrictions would be violated,
a direct (one level) hierarchical relationship is built from every node in <range> 5

to every node in <range>,.
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Example (see Fig. 2)

Evocation:

PUT Student within Engineering into Law School

Effect:

yd
Law School[sJ

e \/

Student Laurel ] Student Hardy[‘?'z]

/ o\

Evocation:

PUT Secretary into Provost Miller

Effect:
) [L6]
Professor Miller[15] ASSOC_- Provost
l Miller
!
Secretary [19] >< [2 1]
Grace Mickelson Secretary Carla West

A shorthand combination of the CREATE and PUT primitives is useful

while building data bases. H <range > is specified by Method II of the preceding

chapter, i.e., without any hierarchical or subtree context, and if that range is

null, then a node having the given set of labels will first be implicitly CREATE'd

and 2 message output to the user that this creation has occurred. The PUT

operation will then proceed as described.

Example (see Fig. 2)

Evocation:

PUT Student Henry Bauer into Computer Science

Response:

Student Henry Bauer Created
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Effect:

Computer Science Department O]

/ ‘ Student Henry[ ]\

Bauer

G. COPY

It is sometimes desirable to be able to copy part of the data base so that
further processing may be done on the copy without disturbing the original. The
COPY primitive gives the user this capability. This primitive has three syntactic
forms, the first of which is:

<copy primitive> : := COPY <range>

A copy of each node in the <range>, along with its entire subtree complete
with all the relationships which exist there, is made. These copied nodes, with
their subtrees, are left unattached as roots in the data base. The original nodes
and their subtrees are not altered in any way.

Example (see Fig. 2)

Evocation:

COPY Provost Miller

Effect:
. 28
Provgsti Lyman [ : Assoc. Prlovost Mlller[ J
/ [16]\ Secretary Carla West[29]
Assoc. Provost I'Y[
Miller
. Salary Cl:a.ssified"[Boz|
Secretary [21]
Carla West

Salary ClassifiedE?'ﬁl:l
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Evocation:

COPY Professor within Computer Science within Stanford

Effect: [ ]
29
[ J Chairman[zs] Plﬁflssor
Computer Science Professor er
Department Forsythe
/ [30]
Chairman k4] 5] Sgczetary
Professor Professor Miller race
F Mickelson
orsythe [3 1]
Secretary
Carla West
Student [18] Secretary [19]
Sheldon Grace Salary [32]
Becker Mickelson Classified
Se‘cretary[z 1]

Carla West

Salary Classified[24]

The second form of the COPY primitive allows the user to make a copy and
PUT the copy somewhere into the hierarchy. More specifically, two <range>'s
are specified. A copy of each node in the first range (along with its subtree and

all connections intact) is made and PUT into the hierarchy for each node in the

second <range> . That is, as many copies of the first range are made as there
are nodes in the second range into which the copies are PUT. This second form
of the COPY primitive is thus a shorthand combination of (possibly) several appli-
cations of the first form of the COPY primitive and PUT primitive operating on

the copy.
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The syntax is:
<copy primitive>::= COPY <range» to <range>
Example (see Fig. 2)
Evocation:

COPY Student within Computer Science to Department within School
of Engineering

Effect:

/
Computer Science Department [10] Electrical[2 0] Mechanical 2]
Engineering Engineering
Department Department

/ Student Sheldon Becker [18] \ / /

Student Sheldon[2 8] Student[zg]
Becker Sheldon Becker

The third variation of the COPY primitive is, in reality, an addition which
can be made to the first two forms. As suggested by the form of the WRITE
primitive which allows the user to write out only the root nodes of certain subtrees
by including the keyword "only' in the evocation of the primitive, only root nodes
of specified subtrees can be copied, and in addition entered into the hierarchy if
desired. The syntax of this variation of the first two forms of the COPY primitive
is:

<copy primitive>::= COPY only r<range>

COPY only <range> to <range>

t

<copy primitive>::

In the first case, only the nodes specified by the <range>, without their
subtrees, are copied and the copies are left unattached as roots in the data base.
In the second case, as many copies of the nodes specified by the first <range>

(without their subtrees) as there are nodes in the second <range> are made and
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the copies are PUT into the nodes in the second <range>. In both cases there
is no alteration of any kind made to the original nodes or their subtrees.
Example (see Fig. 2)
Evocation:
COPY only Provost Miller

Effect: ’

Assoc. Provost [16] Assoc. Provost'-jzs:I
Miller Miller

N o

Secrefary Carla West

|

Salarv Clas sified[24]

Evocation:

COPY only Professor within Computer Science Department within

Stanford
Effect:
P [1 ] Chairman[zs] Professorl?'g]
Computér Science Department Professor Miller
Forsythe

. [14]
Chairman [15]
Professor Forsythe Professor Miller

Studemt[ls:|
Sheldon Becker

Secretary Carla West[2 1]

Salary Classiﬂed[%]
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Evocation:

COPY only Student within Computer Science to Department within
School of Engineering

Effect: Same as a preceding example with "only" omitted, since all
students within Computer Science have no subtrees.
The preceding two primitives, PUT and COPY, build new relationships
between data and, in the latter case, implicitly create new data. The following
two primitives, SEVER and DELETE, destroy relationships between data, and,

in the latter case, destroys data as well.

H. SEVER

The SEVER primitive destroys relationships between data but never data
itself. As with the DELETE primitive to follow, the SEVER primitive has two
forms. In both forms, at least one range is specified. In the first form, all
nodes in the specified range are made to have no nodes hierarchically superior
to them; that is, those nodes are SEVER'ed from the tree and become roots of the
tree. The subtrees of the nodes which are so cut off from above are left undisturbed
unless some of the nodes within them are also being severed. The syntax of this

form is:

<gever primitive> ::= SEVER <range>

After this primitive has been evoked, all nodes in the specified <range> are
roots of the tree, there being no nodes in the data base within which they exist.

Example (see Fig. 2)

Evocation;

SEVER Computer Science within Stanford
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Effect:

 Computer Science[m]
Depariment

\

[16] Pfofessor[15]
Assoc. Provost Miller

Miller 7 ]
\ Secretary[2 1]
Carla West

Observe that node [10] is now a root of the tree. Yet, a node in its subtree,

School of ﬁumanities [6]
and Sciences

V4 /

Communication Department[g]

i.e., node [21] remains attached to node [16]. Recall that no relationships within
the subtree of a severed node are alteréd.
Evocation:

SEVER Student within Engineering Department within Stanford

Effect:
[2 O] [1 2] Student[2 2] Student [ 2 3]
Electrical Mechanical Hardy Laurel
Engineering Engineering
Department Department /
Evocation:

SEVER Carla West

Effect:
[15] Assoc. [1-6] Secretary[z 1]
Professor Miller Provost Carla West
Miller
[19]
Secretary Salary Classified 23

Grace Mickelson

In the first form of the SEVER primitive, all nodes in the range were com-~
pletely severed from the tree; that is, all of the relationships which connected

these nodes immediately from above the nodes were severed. The second form
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of the SEVER primitive allows the user to selectively sever some of the relation-
ships which connect the nodes immediately from above the nodes. The selection
is accomplished by specifying a second range. Those connections immediately
above a node in the first range are severed which causes that node to be within
any node in the second range. Thus, nodes in the first range are severed from
nodes in the second range. The syntax for this form is thus:
<sever primitive>::= SEVER <range> from <range>
Example (see Fig. 2)
Evocation:

SEVER Carla West from Assoc. Provost Miller

Effect:
(15] Assoc. ‘Provost e}
Professor Miller :
| Miller
Secretary [19] [2 1]
Grace Mickelson Secretary Carla West

Notice that only that relationship which causes node [21] to be within node
(16] is broken.
Evocation:
SEVER Carla West from Stanford

Effect: Same as a previous example whose evocation was:
SEVER Carla West

since all connections immediately above node [21)

cause node [21J to be within node [2]
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Evocation:

SEVER Student within Computer Science from Electrical
Engineering Department

Effect: No effect since none of the connections above node [18] (the 1st

range) causes node [18] to be within any node of the second range.

A unifying concept which may lessen any difficulty in understanding the dis-
tincition between the two forms of the SEVER primitive is the following. Think
of the first form of the SEVER primitive as having a second range which specifies
all the roots of the tree. The first form is thus a special shorthand version of
the second form, since any node in the tree is either a root of the {ree or is

hierarchically inferior to some root of the tree.

i. DELETE
The DELETE primitive has two forms, precisely analogous to the SEVER
primitive. The syntax of these forms is:
<delete primitive>: := DELETE <range>

<delete primitive>::= DELETE <range>, from <range>,

As with the two forms of the SEVER primitive, the first form of the DELETE
primitive is merely a2 shorthand version of the second form with an implicit range
which specifies all the roots of the tree. Thus, in the action of this primitive,
some node is being deleted from a set of nodes.

If a2 node x is in the first range and its position in the data base is such that
x is also within the second range, then node x is a candidate for deletion. In
order to understand the manner in which the DELETE primitive operates, several
simplifying assumptions concerning the configuration of the data base near node
x will first be made. As the operation of the DELETE primitive becomes clearer,

these assumptions will be removed.



Consider first the simplifying assumption that node x together with its subtree
is a complete unit, sharing its information with the rest of the data base only
through, at most, node x (if x is a root, the information is not shared at all).
More specifically, every node within the subtree of x is not within the subtree
of any other nodes except other nodes within x's subtree or nodes hierarchically
superior to x. Examples of such nodes x from Fig. 2 include [8], (2], (1], [22],
and [21], but not [6] or [10] or [15] or [12] or [20).

Now assume that all connections immediately superior to x cause x to be
within the‘ second range in an evocation of the DELETE primitive. The action of
the DELETE primitive will then cause the node x and every node within the subtree
of x to be erased from the data base.

Example (see Fig. 2)

Evocation:

DELETE School of Engineering from Stanford

Effect:

Stanford University[z]

l \
Law School[s] / School of Humanit:ies[e:l

. Administration 7]
and Sciences 1

[

Evocation:
~

DELETE Student within Engineering Department from
School of Engineering

Effect:
School of Engineering[SJ
Electrical[z 0] \ Mechanical [12}
Engineering Engineering
Department Department
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Now remove the most recent simplification and assume that not all connections
immediately superior to x cause x to be within the second range in an evocation of
the DELETE primitive. This means that x and its subtree contain information
relévant to some other nodes in the data base besides the nodes from which x is
to be deleted. It would thus be incorrect to erase x and its subtree from the data
base; rather, only the connections between x and the nodes from which x is to be
deleted should be erased. In this case, the DELETE primitive is seen to operate
precisely as the SEVER primitive.

Example (see Fig. 2)

Evocation: 7

DELETE Carla West from Professor Miller

Effect: /
Professé‘ Miller [15] Assoc. Provost Miller fLe]
Secretary Grace [19] Secretary Carla Wesi:[zl:|
Mickelson

Salary Classified[24]

Now remove the original simplification and assume that the subtree of x is
not a cotrflplete unit and that information within x's subtree is shared with the rest
of the data base through nodes other than x. More specifically, there exist nodes
within the subtree of x which are within the subtree of nodes other than those within
x's subtree or nodes hierarchically superior to x. Examples of such nodes x from
Fig. 2 include [6], [10], [15], [12], and [20]. As before, it would be incorrect to
erase those nodes (and their subtrees) within x's subtree which share common
information with other parts of the data base, i.e., those nodes (and their subtrees)

which are within the subtree of nodes other than those within x's subtree or nodes
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hierarchically superior to x. So, as before, only the connections between these
common nodes and the rest of x's subtree is erased.

Example (see Fig. 2)

Evocation: V

DELETE Provost Lyman from Administration within Stanford

. Effect:
Admin\istration[ﬂ,
N
Professor Miller (13]
/ [i9 Secretary Carla West[21J
Secretary Grace |

Mickelson Salary Classified[24]

Evocation:

DELETE Student from Mechanical Engineering

Effect:
/ [20) Mechanical Engineerin (2]
Electricalt S g
Engineering D
Department

Student Hardy[zzl

The heart of any data base system is the ability of the user to create adata base, save

it away somewhere (the user should not have to worry about where) and go away

to do something else. At some later time, the user should be able to fetch his

data base, query it or modify it, and save it away again for still further processing.
As background to any implementation, therefore, there should be a file system.
The following two primitives allow the user to interface with the file system in as

easy and simple 2 manner as should be possible for him.
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J. SAVE

The SAVE primitive allows the user to save parts of his data base in quantities
of complete units as discussed in the preceding explanation of the DELETE primi-
tive. The syntax for this primitive is:

<save primitive> ::= SAVE <range>

The effect of an evocation of this primitive is to cause each node in the range
with its entire subtree (nodes and connections) to be removed from the data base
(just as with the DELETE primitive) but saved in such a way so that the structure
which has been removed from the data base can be returned to the data base at
some future time in precisely the same form in whiéh it wag saved.

The only restriction which applies to the use of this primitive is that the
{sub) tree being saved must be a complete unit and cannot share its information
with other parts of the data base except through its root node. Thus, each node
and its subtree which is being saved must satisfy both simplifications mentioned
in the explanation of the DELETE primitive. If part of the data base to be saved
shares its information with other parts of the data base, the part to be saved

must first be COPY'ed and then saved.

K. RESTORE

The RESTORE primitive restores nodes and their subtrees to the data base
in precisely the form in which they were saved. This primitive has two forms,
the second of which is a shorthand form for restoration and placement within the
hierarchy. The syntax of the first form is:

<restore primitive> : := RESTORE <range>

The <range> in the use of this primitive must be a range specified by Method

I of the preceding chapter. Thus, there may be no hierarchical context of any

kind in the specification of this range. The set of saved nodes is searched and
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the saved nodes having at least the set of labels as that specified in the <range>
are removed (with their subtrees) from the saved area and restored to the working
data base as separate trees with the root nodes of the saved subtrees becoming
roots in the data base.

The second form of this primitive is:

<restore primitive> ::= RESTORE <range> to <range>

The first <range> must satisfy the same requirements as before and the
same action occurs as before in the saved area. However, once the nodes are
removed from the saved area, the action of this primitive is equivalent to an
evocation of

PUT <range> within <range>

where the first <range> is the set of nodes just removed from the saved area,
and the second <range> is the same as the second <range> in the evocation of the

second form of the RESTORE primitive.

L. Conclusion

This chapter has described a set of primitives for creating, manipulating,
querying, and destroying relationships and data within the data base. It should
be observed that no arithmetic processing nor any programming structure is
possible within the framework of primitiﬁes discussed thus far. The next chapter
describes the design of a programming system in which TAXL and a language
such as BASIC are incorporated to yield a system in which both numeric and
nonnumeric data processing capabilities are available both independently and in

a manner in which the numeric and nonnumeric data bases may interact.
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CHAPTER IV

THE TAXL/BASIC SYSTEM

The range specification mechanism and its use in the evocation of the data
base primitives presented thus far yields a system in which commands are inter-
preted as they enter the system and are executed immediately. In addition, no
arithmetic capabilities have been introduced thus far. As was pointed out in the
introduction, the BASIC programming language and system (Kemeny [1967]),
designed by Kemeny and Kurtz at Dartmouth, provides an excellent easy-to-learn-
and-use interactive computer system for arithmetic processing. Rather than
design an arithmetic capability which would be included in TAXL, a design for
merging a version of BASIC and TAXL will be given. The version of BASIC
most nearly like that which will be discussed here is that version written at
Hewlett-Packard, a system quite similar to the Dartmouth system. The reader
is expected to be familiar with some BASIC system in the discussion which
follows.

The degree of interaction available in this version of BASIC, as in most
versions of BASIC, is different from the immediate interpretation and execution
of the TAXL commands considered thus far. This difference should be well
understood. The key to determining the degree of interaction of an on-line com-
puter system is the specification of the daté. which is being manipulated.

Presumably, the data which the user would ultimately want to manipulate
is the tree data base itself, along with the values of certain arithmetic variables
and arrays. If the system recognizes commands to manipulate that collection of
data, then that degree of interaction should be considered the strongest. Instead,

if the system recognizes commands to manipulate commands which manipulate the

- 50 -



data base in question, then the degree of interaction is less strong. The Hewlett-
Packard BASIC system is of this second kind. The data which is immediately
manipulated by HP BASIC commands as they are entered via a teletype is a
program buffer which contains commands which will manipulate the values of
arithmetic variables and arrays when the program is executed. The commands
found in the program buffer which, when executed, cause the values of variables
and arrays to be manipulated and hereafter called BASIC commands, cannot be
entered and executed directly as are the TAXL commands. It appears, then,
that TAXL commands, as discussed thus far, are only executable directly as
they are entered into the system, and that BASIC commands are only executable
indirectly after they have been entered in a program buffer.

I feel that both degrees of interaction should be available for both TAXL and
BASIC commands. That is, TAXL commands should be able to be put into a
program buffer for later execution and certain BASIC commands should be able
to be directly executable as they are entered into the system. In keeping with the
spirit of this work, the distinction between which degree of interaction the user
desires as he types commands into the system should be clear and straightforward.

It should be remembered that every TAXL command, as well as every BASIC
command, begins with some English keyword which strongly suggests the action
the execution of that command will have.r Which degree of interaction the user
desires for each command he enters into the system can be indicated by him by
the presence or absence of an integer number preceding the English keyword which
actually begins the command. Thus the following holds for both TAXL and BASIC
commands. If an integer number is not present preceding the English keyword,
the command will be interpreted and immediately executed. If an integer number

is present preceding the English keyword, the command will not be immediately
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executed but will be entered into a program buffer with a sequence number equal

to the value of the integer number which preceded the command.

A. Syntax Analysis

In the latter case, the question of when the syntactic structure of the command
is checked is open to debate, While this is basically a question of implementation,
the answer will affect the learning behavior of the naive user. Since one of the
design goals of the language is ease and speed of learning the language, the question
should be considered here, Kemeny and Kurtz felt that the syntactic structure of
the commands should be checked immediately to see if a syntactic error occurred inthe
command. This philosophy has been followed in HP BASIC, as in most BASIC
implementations. The authors of some APL systems (Falkoff [19 68]) follow a
different philosophy. Their belief is that the command'should be entered into the
program buffer without its syntactic structure being checked, and not until the
execution of the command is about to commence will the user be notified if a
syntactic error has indeed occurred.

Psychological studies on learning and training behavior (Wolfle [1951]) indicate
that immediate feedback speeds the learning process. Since one of the requirements
of this system is that it be easily learned, immediate feedback of syntactic errors,
wherever possible, seems preferable to delayed feedback. If the user is not
informed of a syntactic error which occurs in a command as it is entered info the
system, he may mistakenly feel that since the system has accepted the command,
the command is correct. It is af precisely this moment, when the user's attention
is more focused on the one command in question than at any other time in the
program's formation, that the user should be informed if a syntactic error exists
within the command. This concept is not too unlike programmed readers in which

the reader must successfully answer a question before he can proceed. By the
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time the user has given the command to begin execution of the commands in the
program buffer, his attention will usually be more focused on the program as a
whole and on its semantic structure rather than its syntactic correctness. To be
informed of a syntactic error during the execution of the program would be more
of a hindrance to clear thought than a help.

The conclusion of the preceding paragraph seems to be true only when the
goal of the user is to learn the syntax of the language. Once this has been accom-
plished and the goal of the user is to write useful and logically complex programs,
the facility of sketching out logical sections of program without having to be con-
cerned with their syntactic correctness at that time seems to be important, Thus,
the goal of the user should be a consideration in deciding whether the syntactic
structure of a command is to be checked at command entry or at command execution.
Since one of the goals of the current implementation is to facilitate learning of the
language rather than writing large programs, the syntactic structure of a command
is checked at command entry.

From an implementer's point of view, a translation from the command's
external form to an internal format which is easier to execute and a syntactic check
of the command can be accomplished at the same time. Rather than do the trans-
lation every time the command is encountered during program execution, it is
more reasonable to do the translation once at command entry into the program
buffer. Because a syntactic check may be performed during command transiation
with 2 minimum of extra effort, a syntactic check at command entry time is quite

desirable,

B. Command Classification

A summary of BASIC and TAXL commands will now be given (see Table

3). Each command is placed in one of three categories whichgives that command's
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TABLE 3

COMMAND CLASSIFICATION

TAXL/BASIC Command Classification Use

CREATE BOTH Creates new nodes

LABEL BOTH Adds labels to nodes

UNLABEL BOTH Removes labels from nodes

WRITE BOTH Writes part of the data base

COUNT BOTH Counts nodes in the data base

PUT BOTH Builds relationships in the data base

COPY BOTH Copies nodes and relationships and
builds relationships in the data base

SEVER BOTH Destroys relationships in the data base

DELETE BOTH Destroys nodes and relationships in the
data base

SAVE BOTH Saves part of the data base in secondary
storage

RESTORE BOTH Restores part of the data base from

| secondary storage

READ BOTH Reads numeric data from data block

DATA BOTH Enters numeric data into a data block

PRINT BOTH Types values of variables and arrays

LET BOTH Computes and assigns values to variables

DEF BOTH Defines an arithmetic function

DIM BOTH Declares dimensions of arrays

MAT--- BOTH The 2-dimensional array instructions

GJ TG PROGRAM  Transfers control

IF PROGRAM Conditional transfer

FOR PROGRAM Sets up and operates a loop

NEXT PROGRAM Closes a loop

FOREACH PROGRAM Sets up and operates a loop to sedquence

' through nodes in a range

GOSUB PROGRAM Transfers to a subroutine

RETURN PROGRAM Returns from a subroutine

STOP PROGRAM Stops a program

LIST SBS Lists commands in the program buffer

CLEAR SBS Removes commands from the program buffer

RUN SBS Initiates execution of commands in the

- 54 -

program buffer



permitted degree of interaction. Some commands will be restricted to less than
the highest degree of interaction. Commands classified by the sign PROGRAM
are only allowed to be entered into the program buffer for later execution,and so
must always be preceded by an integer number when entered into the system.
Commands which control program flow would make no sense if they were executed
immediately upon entry fo the system since they require a program to give them
meaning. Other commands, the numeric data and data base manipulation commands,
classified by the sign BOTH, may be executed immediately upon entry to the
system or may be entered into the program buffer for later execution. Hence,
these commands may have BOTH degrees of interaction with respect to the
system.

A further set of commands will now be introduced which manipulate the pro-
gram buffer. These are classified by the sign SBS (statement-by-statement)
indicating that these commands must be entered into the system to be executed
immediately and cannot be entered into the program buffer for later execution.
Systems such as LISP 1.5 and most assembly languages allow such program
manipulation commands to be programmable. However, this somewhat advanced
concept is not essential for TAXL/BASIC.

Entry of a command into the program buffer is implicit and is indicated
by preceding the command by an integer number. The command then has
a sequence number equal to the value of the integer number. I a command
is entered into the program buffer with a sequence number equal to the
sequence number of a command already in the buffer, the new command

replaces the old command.

- 55 —



LIST - Classification: SBS

The LIST command has three syntactic forms.

<list command> ::= LIST
<list command> ::= LIST <integer number>
<list command> ::= LIST <integer number> / <integer number >

The first form causes the listing of all commands in the program buffer,
along with the sequence number of each, arranged in ascending numerical order.
Commands may be entered into the program buffer in any order but will always
be listed in ascending sequence order. The second form causes only the listing
of the command in the program buffer having the given sequence number, if such
a command exists within the buffer. The third form causes the listing, in
ascending numerical sequence order, of all the commands having a sequence
number whose value is equal to or greater than the first integer number given

and is equal to or less than the second integer number given.

CLEAR - Classification: SBS
The CLEAR command removes commands from the program buffer, and has

three syntactic forms, analogous to the LIST command:

fi

<¢clear command> CLEAR

It

<clear command> CLEAR <integer number>

CLEAR <integer number > / < integer number>

<clear command>

The first form causes the erasing of all commands in the program buifer.
The second form causes only the erasing of the command in the program buffer
having the given sequence number, if such a command exists. The third form
causes the erasing of all the commands in the program buffer having sequence

numbers whose values lie between (and including) the given integer numbers.
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RUN - Classification: SBS
The RUN command causes the program in the program buffer to begin
execution. This command has two forms:
<run command> ::= RUN

<run command> ::= RUN <integer number>

The first form causes the execution of the program in the program huffer tc
begin with the command having the algebraically smallest sequence number. The
second form causes the execution of the program in the program buffer to begin
with the command having a sequence number equal to the value of the given integer
number. If no such command exists, the user is notified.

Commands in the program buffer are normally executed in ascending numerical
sequence unless this sequence is altered by the execution of a command having the
classification PRGGRAM. The program stops executing either when a STOP com-
mand is executed, when control is transferred to a nonexisting command, or when
the next command to be executed should be the command with the next highest se-
quence number and no such command exists. In any case, the user is notified

where (by sequence number) the execution of the program is terminated.

C. Interface Between TAXL and BASIC

The commands of both TAXL and BASIC have now been presented, The control
commands of BASIC have been adopted to properly organize program flow, and
several commands for manipulating the program buffer have been given. Thus
far, however, the only interface between TAXL and BASIC is at the program level.
Commands from both languages may be evoked interchangeably for immediate
execution and commands from bothlanguages may occur in the program buffer.

What is needed to make the system more useful is an interface at the data level.

- 57 -



The data for TAXL are the numeric and nonnumeric labels at nodes and
the hierarchical relationships of the directed acyclic graph data base, while
the data for BASIC are the numeric values of variables and array elements.
Some BASIC systems include a limited string processing capability; however,
such a capability varies so widely in the relatively few BASIC systems (e.g.,
Stanford [1968]) which possess one that this work will not concern itself with
such a capability.

Recall now the kind of user for whom this system is intended. The main
emphasis of his use of this system will be in handling nonnumeric data, the
operations for which are available from the TAXL primitives and data base.
The reasons for including BASIC are the presence of the programming control
commands and the arithmetic processing capabilities which BASIC possesses.
At the data level, BASIC operates only on numeric data. Thus, if an interface
between BASIC and TAXL is to be made at the data level, it must be at the nu-
meric data level. Recalling that labels at the nodes in TAXL's data base can
be numeric, it becomes clearer that the data interface must exist at the numeric
level, the only data type which the two systems have in common. The interface
must thus concern itself with the convenient retrieval of numeric values from
TAXL's numeric labels which can then be used in computation and assignment
in BASIC commands, and also in the conversion and placing of the values of
BASIC variables into TAXL’S data base in the form of numeric labels. In ad-
dition, since the COUNT primitive in TAXL results in a number being output,
the value thus obtained should also be able to be used in computation and assign-
ment within BASIC.

The discussion of this data interface will now proceed in four steps: the
extension of the use of one form of the subtree context specification for referencing

values, a solution to the problem of whether an identifier which occurs in a
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TAXL/BASIC command is a BASIC variable or a TAXL label, the introduction
of a VALUE operator and an extension of the use of the COUNT primitive, and
the introduction of 2 new sequencing statement pair, analogous to BASIC's FOR-
NEXT sequencing pair, for sequencing through the nodes in a range.

Recall that in Condition III of the subtree context specification of ranges, the
values of numeric labels were compared with given numbers. The values were
retrieved by evoking a range and consiﬂering the values of any numeric labels
which occurred in any of the data items of the nodes in that range. This same
mechanism can now be used outside the subtree context specification of ranges,
particularly in arithmetic expressions in LET statements of BASIC. Use of this
mechanism in a BASIC construct, which retrieves more than one value, is not
aliowed and will be considered a semantic error. Admittedly, a construct which
would allow the assignment or computation on a vector of values would be useful;
however, this somewhat advanced concept would not add to the simplicity of the
language. Since extensions and complications in other areas of the language
would have to be made in order for this construct to have consistent application
throughout the language, and since there will be alternate methods of performing
the same computation, this construct is, therefore, not allowed.

Examples (see Fig. 2)

Evocation:

LET S = Salary within Laurel
Effect: The BASIC variable S is assigned the value 400
Evocation:

LET S = Salary within Stanford

Effect: Illegal, since the range yields more than one value.
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Since there is no keyword which indicates that a value is being retrieved
from the tree, confusion can arise over whether an identifier is a BASIC variable
or a TAXL label.

For example, in the command

LET S=X
is X a BASIC variable whose value is to be assigned to S, or is X a TAXL label
being used to reference a range consisting of one node with a numeric label, the
value of which is to be assigned to S? This problem is solved by requiring that
at any given moment, the set of BASiC variables and the set of active (not in the
saved area) TAXL labels be disjoint. TAXL labels are created by evocations of
the CREATE primitive (or by implicit creation in evocations of the PUT primitive),
and are destroyed by evocations of the DELETE primitive. Once an identifier which
was used as 2 TAXL label no longer occurs in the tree, it may be used as a BASIC
variable. BASIC variables are created implicitly by their first occurrence on
the left-hand side of LET statements; prior to this creation, their value is
undefined and cannot be used. BASIC variables may be destroyed by their use
on the left-hand side of a LET statement having an empty right-hand side. For
example,

LET X =
destroys X as a BASIC variable and allows its subsequent use as a TAXL label.

With the mechanism described thus far, values may be retrieved from the
TAXL data base and used in BASIC contexts. In order to allow the values of
BASIC variables to be placed in the TAXL tree or removed from it, an operator
which, when applied to a2 BASIC variable, returns its value is needed. This
operation is automatic when a BASIC variable is used in any arithmetic context.

However, in TAXL's LABEL or UNLABEL commands, for example, evoked
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labels stand for themselves. In such a context, to force evaiuation of the BASIC
variable name to obtain its value which is then to be put into or removed from the
label set of some node in the tree, the VALUE operator must be used.
Example (see Fig. 2)
Evocation:
LET S = Salary within Student Hardy within Engineering
Effect: The BASIC variable § is assigned the value 300.53
Evocation: -
UNLABEL salary within Student Hardy as value S

Effect:

Student Harcbf[zz]

/g

Salary $ Wife Susan[%]

Notice in the latter example, that a label S does not occur within any node
in the specified range, and thus the VALUE operator must be used in order to
remove the numeric label 300,53, the value of S, from the node.

The COUNT construct, which appears in the subtree context specification of
ranges and is also a TAXL primitive, is extended only in the sense of where the
construct can occur; it may now occur within any BASIC numeric expression
and yields the number of nodes in the épeciﬁed range.

Example (see Fig. 2)

Evacation:

LET N = COUNT Salary within Stanford

Effect: The BASIC variable N is given the value 3
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FOREACH, NEXT - Classification: PROGRAM

The FOREACH and NEXT statements are loop control statements very similar
to the FOR and NEXT statements of BASIC. Recall that the FOR statement causes
a BASIC control variable to take on successive arithmetic values over a set of
statements. Every reference to the control variable within the set of statements
delimited by the FOR and NEXT statement has the value which is the current
value of the control variable. The FOR statement gives the initial value, the
final value, and the increment for the control variable. The execution of the NEXT
statement causes the control variable to take on its next value and execution resumes
following the FOR statement. When the control variable has taken on all of its
prescribed values, execution resumes following the NEXT statement.

The syntax of the FOREACH statement is:

<foreach statement> : := FOREACH <range>

Recall that every <range>' must begin with a data item consisting of one or
more labels. This data item then becomes the control data item which will take
on successive values over the set of statements delimited by the FOREACH state-
ment and its paired NEXT statement. The values which ﬁhe control data item will
take on are the nodes in the data base specified by the <range>. Every reference
to the control data item within the set of statements within the FOREACH loop has
the value which is the current value of the control data item, i.e., a node in the
<range>. The execution of the NEXT statement causes the control data item to
take on its next value and execution resumes following the FOREACH statement.
When the control data item has taken on the value of all the nodes in the <range>,
execution resumes following the NEXT sfatement. Because the nodes in a range

are unordered, the control data item assumes its values in an arbitrary order.
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The syntax of this version of the NEXT statement is:

<next statement> ::= NEXT <data item>

The rules for nesting of FOREACH statements follow the rules for nesting
of FOR statements.

Examples (see Fig. 2)

Problem: increase the salaries of all secretaries in the School of

Humanities and Sciences by 10 percent.

Program:

FOREACH Salary within Secretary within Humanities School
LET S = Salary

UNLABEL Salary as value S

LET §S=8+.1*S

LABEL Salary as value S

NEXT Salary

D. Responses Following the Execution of Commands

Everyone who has ever worked at a terminal using a system which has com-
mands which are executed immediately upon entry to the system (having classification
SBS in TAXL/BASIC) occasionally has the feeling that the command last entered
might not have been executed at all or might have been executed incorrectly. This
phenomenon occurs particularly among novice computer users, the intended users
of TAXL/BASIC. Often, as seen by direct observation, quite a bit of output might
be requested by the novice user to assure hirﬂself that the command in question
was indeed executed correctly. It has also been observed that almost any short
response by the system after the execution of any command in SBS mode informing
the user that everything is all right' and that the system 'understood' and
executed his command properly gives the user added confidence and almost com-

pletely obviates his need for the assurance output mentioned above.
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Commands which inherently cause output at the terminal, PRINT, WRITE,
and LIST, obviously need no assurance oufput. Commands being executed in
PROGRAM mode, other than PRINT and WRITE, should have no assurance output
because of the possible volume of such output and subsequent slowing of execution.
Attention can thus be turned to commands being entered into the system for im-
mediate execution,

If a syntax error occurs in the command, then proper notification of this
fact is sufficient to convince the user that thg system is paying attention to him.,
If there are no syntax errors, then execution of the command will commence,
and if there are no semantic errors which occur while the command is being
executed, then output as simple as

OK
is enough to assure the user that everything is in fact okay. Semantic errors
such as null ranges in TAXL commands, illegal tree structuring arising from an
improper use of the PUT command, illegal [abel manipulation in the UNLABEL
command, BASIC variables without values occurring in an arithmetic expression,
illegal sequence numbers occurring in the RUN, LIST, or CLEAR commands,
and others shouid be reported to the user as clearly as possible and the QK

message should be suppressed.

E. Conclusion

In this chapter, a design for the amalgamation of some variant of 2 BASIC
system as suggested by Kemeny and Kurtz, and the TAXL language as described
in preceding chapters, has been described and given the name TAXL/BASIC. The
implementation of BASIC systems has been documented elsewhere. A subseguent
chapter will describe a test implementation of TAXL/BASIC, with just enough of

BASIC included to test the feasibility of such a system.
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CHAPTERYV

AN IMPLEMENTATION AND ITS ANALYSIS

This chapter describes a data structure and some algorithms used to imple-
ment a partial TAXL/BASIC system. Since implementations of BASIC systems
have been described elsewhere (Braden [1968]), only the TAXL data structure
and algorithms will be discussed here. The implementation is written in LISP 1.5
and is currently operating under the Stanford Campus Facility ORVYL time-
sharing monitor. '

Because of the nature of interpreted LISP 1.5, the fact that TAXL/BASIC
is written as an interpreter itself, and the time required fo do the extensive page
swapping which time-shared LISP requires, the current TAXL/BASIC system is
too slow and too expensive for large scale operation. In addition, the central
purpose of this work was to develop a user-system interface rather than a large
operating system. Thus, the internal data structure and subsequent algorithms
were not designed with speed and efficiency in mind. If a large scale implementa-
tion of TAXL/BASIC is attempted, it is suggested that the current implementation
be studied to see what is required, and that at least the algorithms, if not the
data structure itself, should be redesigned. A full implementation of the current -
data structure and algorithms, even if written in machine language, would probably
fail to give adequate service in terms of response time and cost once the data
structure exceeds the size which can be contained in primary storage.

In order to follow the listing of the interpreter in Appendix I, the reader must
be familiar with LISP 1.5 (McCarthy [1962]), and with property list manipulation
and list-structure alteration operations in particular, For those readers not so
interested in the fine details, an outline flowchart of the interpreter is given in

Appendix II. Initial entry to the interpreter is at A with the RUN FLAG reset,
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The flowchart describes the logical flow of control and does not exactly parallel
the programmed interpreter given in Appendix 1. Most of the semantic error
checking is absent from the flowchart, as are some of the various forms of some

of the primitives.

A. ¥Node and Dictionary Formats

The format for a node in the data base is given in Fig. 3. Thus, what is
given at a node is a list of the labels that make up the data item at the node, a
list of pointers to all immediately hierarchically superior nodes, and a list of
pointers to all immediately hierarchically inferior nodes.

The format for the property list of an atom which is used as a label in the
data base is given in Fig. 4. The atom USES indicates a following list of pointers
to all nodes within which the atom in question is used as a label. The essential
structure is that of a dictionary. For every label which occurs in the data base,

there is an entry in the dictionary ;giving all uses of that label within the data

base.

Most of the computation time required for the execution of a primitive is
consumed in the computation of ranges. Hence, refihements in this computation
or modifications in the data structure allowing such refinements will decrease
the execution time significantly. Since the object of this study is not the design
of such refinements, the algorithm presented for the computation of ranges was
chosen for its programming simplicity. Once lists of the nodes in as many ranges
as are required for the execution of a primitive are obtained, the execution of the
primitive is fairly straightforward, as shown in the flowcharts in Appendix I.

More will be said about computation time later in this chapter.



B. The Computation of Ranges

The computation of a range by Method II of the chapter discussing the evoca-
tion of ranges is essentially a set intersection operation. Suppose the range
Secretary Carla West
is to be computed. The property list of the atom label "Secretary" contains a
list of pointers to all uses of this label, as do the property lists of the atom labels
"Carla' and "West.' The intersection of these lists is, by definition, a list of
nodes which incorporates the range. A straightforward intersection of unordered
sets as programmed in the current implementation given in Appendix I is the
easiest to program but has a computation time on the order of the product of the
number of elements in the sets. The computation time can be reduced to the
order of the sum of the number of elements in the sets by ordering the sets ac-
cording to any arbitrary but well defined ordering.

The computation of a range specified by hierarchical context is a more com-
plicated operation. Given two lists of pointers to a set of nodes X and a set of
nodes Y, it must be determined for which xeX,

X within Y
is true. Those x's for which the above is true are retained in the range; those
x's for which it is not true are not retained in the range.

There are two principal ways of détermining which nodes xeX are within some
node yeY. One method is to start at each x, and by following the chain of father
pointers beginning at node x, check each node encountered on the path from node
x to the roots of the tree. If one of the nodes encountered is a y node, then the
search can be terminated since it has been ascertained that x is within Y. If no
y node is encountered on any path, then x is not within Y. Since all nodes on all
paths must be checked, the case in which x is not within Y involves the maximum
number of checks.
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Another method for determining which x is within some set of nodes Y is to
start at each node y€Y, in turn, and by following the chain of son pointers begin-
ning at node y, check each node encountered on the path from y to the leaves of
the tree. If one of the nodes encountered is an xeX, then this x is an x which is
within Y. However, the searéh cannot be terminated since there may be an x'eX
which is hiérarchically inferior to y, and hierarchically inferior to all nodes in
Y only through the node x. Thus, if the search were terminated upon encountering
x, it would never be ascertained that, in fact, x' is within Y.

Thus, in the general casé, it is more advantageous to search from the x's
upwards along the father chains than from the y's downward along the son chains.
In addition, there will usually be more sons than fathers if the entire data base is
considered, implying that to search downward would entail searching along many
more paths than searching upwards.

In order to analyze guantitatively the implementation of the range finding
mechanism, the maximum number of nodes accessed in order to determine which
x's are within Y will be used as a measure of the computation required. As
mentioned previously, the case in which x is not within Y involves the maximum
number of node accesses since every node on every path from each x upward to
the roots of the data base must be accessed.

Assume first that the data base has t:he. form of a true tree rather than an
acyclic directed graph. Effectively, this means that each node has, at most, one
father. Thus, assigning level 0 to each root node and defining the level of a node
to be numerically one greater than the level of its father, each node has precisely
one well defined level. With this formulation, n node accesses are required to

traverse the path from a node x at level n upward to a root.
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The assumption that the data base has the form of a tree will now be removed.
Thus, there may exist a node z at level m, mc<n which has two fathers, where z

is the first encountered node above x for which this is true.

Indeed, node z may bhe at level m, with respect to one path from a root and
at level m, with respect to the other path. Thus, node x may be at two levels at
once, depending on which path through node z is being considered.

Let ny be the level of node x with respect to the path which makes node z at
level m,, and let n, be the level of node x with respect to the path which makes

node z at level m,. Thus,

and n, - my is the number of node accesses to traverse from node x upward to
node z. From node z, m, -+ m2 node accesses are required to traverse both paths
from node z upward to a root.

Total: (nl-m1)+m +m,=n, +m,=n,+m

1 2 1 2 2 1
Now generalize the preceding case and assume that node z has p fathers,

p > 1. Thus, node z may be at as many as p levels m cen, mp. Therefore,

1772
node x may be at as many as p levels n, Ny, oo np, where node x is at level ny
with respect to the path which causes node z to be a level m,, 1£i<p.
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As before,

and n, - m, is the number of node accesses to traverse from node x upward to
node z. From node z, m, + m,, + ...+ mp node accesses are required to traverse
the p paths from node z upwards to fhe roots.

Total:

n-m)+tm, +m,+... +m_=n.+m., + + ...+ . + .
(1 1) 1 2 P i 1 mZ ml—l My + +mp

where n, is the number of node accesses required to traverse from node x upward
to node z and thence to a root by the ith father path from node z, and

m1+m2+... +mi_1+mi+1+... +1’I1p

is the number of node accesses required to traverse from node z upward to the
roots by the p-1 remaining father paths from node z.
The above total may be rewritten as

(n, -my) +my +my +...+m 1<i<p

p

where n; - m, is the number of node accesses required to traverse from node x
upward to node z, and

m1+m2+...+mp

is the number of node accesses required to traverse from node z upward to the
roots along the p father paths from node z.

None, all, or some of these p paths from node z might themselves split
further at levels closer to the roots. If the jth path, 1<j<p, so splits, then rn].
is not the true number of node accesses from node z along this path to a root, but
must be computed by the above treatment, recursively.

In the worst case, the superstructure from node x upward toward the data

base roots forms a tree. Assuming that the average upward branching factor is
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b, b>1, and there are L levels from node x up to the roots (counting the roots
as level zero), then the maximum number of nodes fo traverse is the number of
nodes in this tree. Including node x, the number of nodes is given by

b-1

b-1

The specification of ranges hy subtree context proceeds in much the same
manner, with the nodes specified by hierarchicai context used where the roots
of the tree were used in the previous discussion. In one variant, the number of
nodes obtained are counted and compared to the result of some numeric computa-
tion. In another variant, the labels in the nodes so obtained are individually
checked to see if they are numeric, and if so, their value is compared to the
result of some numeric computation. Nodes specified by hierarchical context
having subtrees obeying the required conditicns are included in the range, as

described in a preceding chapter.

C. Reducing Range Computation Time

The method which has been considered in analyzing the range finding mecha-
nism consists of a traverse upward to the roots of the data base. In this method,
the search is terminated when a root of the data base is encountered. In addition,
a downward search along the son chain toward the leaves of the data base, as
described previously, might be more efficient in certain particular cases. In
such situations, the user should be able to take advantage of his particular data
structuring to reduce the amount of computation required to determine a range.
The following mechanism allows the user to specify whether anupward or downward
searchis to be made, and atthe same time, to specify a terminating conditionfor an

upward search other than the occurrence of a root or a terminating condition for
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a downward search other than a leaf. The mechanism can only be used in con-
junction with specifying a range by hierarchical context or subtree context re-
quiring that searching be done.

The first form allows the user to denote that the usual upward search is to
be performed and to specify a terminating condition other than the occurrence of
a reoot. The terminating search condilion is a set of nodes T specified by Method
II. Thus, when searching for a range

x within y below T

the search upward is terminated successfully by an occurrence of a y node and

terminated unsuccessfully by an occurrence of a root or a member of the termina-

ting set T. To imply to the user that the search is carried on only below (and
including) the nodes which are in the set T, the delimiter "below” is used to
separate the end of the range specification by Method IV and the specification of
the set T.

A portion of a data base shown in Fig. 5 demonstrates how this feature can
be useci to advantage. The range evoked by

Professor within Reading Committee within Student Y
is identical to the range evoked by

Professor within Reading Committee within Student ¥ below Department.

In the former case, however, it is not determined that Professors Wand X
are not included in the range until all the paths from Professors W and X upward
to the roots of the data base have been traversed. In the later case, the search
is terminated upon encountering the node Computer Science Department. This
early termination can save quite a bit of computation, particularly if the portion

of the data base shown in Fig. 5 occurs many levels down from the roots.
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Computer Science Department

Professor W Professor X
Student Y Student Z
Reading Committee Reading Committee

T

Professor A Professor B Professor C

FIG. 5--A portion of a data base demonstrating the utility of below and above
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The second form all(-)ws the user to denote that a downward search is to be
performed and to specify a terminating condition other than the occurrence of
a leaf. As suggested by the previous construction, a terminating set T of nodes,
specified by Method II is separated from the end of the range specification by
Method IV by the delimiter "above, ! or equivalently so as not to introduce another
reserved word, the delimifer pair "not below."

Example (see Fig. 5)

Professor within Computer Science not below Student

An analysis of the implementation will now be made. The amount of memory

required for a data base implemented in this way will be considered, as well as

the factors that affect the time required to access the data base.

D. Memory Usage

In order to gain some sort of perspective on the amount of memory required
to contain a complete data base, a formulation of data base requirements will be
made. A fairly representative data base configuration will then be described and
the amount of memory required to represent this hypothetical data base will be
computed. Throughout the formulation and computation, Figs. 3 and 4 should be
consulted.

Assume that throughout the data base there is an average branching factor
s(s>1). That is, on an average, each node has s sons. Let L be the number of
levels of the tree, numbering the level of the root nodes as zero. Then the number
of nodes in the tree is given by

L+1
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If we let
m, = the number of labels at node i
fi = the number of fathers at node i

8 = the number of sons of node i,

then the amount of storage required to represent node i in this implementation
(see Fig. 3) is given by

Labels: 8 + 38 m,

Fathers: 8 +8 fi

Sons: 8 8

TOTAL: 8(2 + m, + fi + si)

Note that 8 bytes are required to store a pair of pointers. Thus, for the nodal
structure of the data base, the total amount of storage is given by
N
8 iz=:1(2 +m +1 +5)

Now consider the possible dictionary structures. Each label which occurs
anywhere within the data base has a dictionary entry. As seen in Fig. 4, there
is a list of pointers associated with this entry to every node in the data base in
which that label occurs. Thus, there are as many pointers out of the dictionary

as there are (not necessarily distinct) labels at nodes in the data base, given in

this formulation by

N
™y
i=1 ’

Since eight bytes are required to store a pair of pointers in the current imple-

mentation, the amount of storage required for the pointers is given by
N
8 Z m,
=1
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The only other significant contribution to memory utilization arises from the
storage of the labels themselves. Since each label occurs only once in the dic-
tionary, independently of its usage within the nodal structure, the amount of
storage required for these labels depends upon the number of distinct labels. At
a minimum, these can be only one distinct label which occurs as the only label
at every node in the data base. Theoretically, there is no maximum number of
distinct labels since the number of labels occurring at any node is not limited.
However, since we have assumed that there are m, labels at node i, then a maxi-
mum will be achieved by further assuming that all the labels across the data base

are different. Thus, the maximum total number of distinct labels is given by
N
3 m,
=1 !

Assuming an average of q characters per label, the amount of storage required

for the labels themselves is given by

N
qQ, m
i=1
Thus, there are three constitutents of memory usage:
N
Nodal structure: 8). 2+ m, + £ +s,))
i=1
N
Dictionary pointers: 8 E m, .
i=1
N
Label storage: qz m,
i=1
N N
TOTAL: 81;(2 tm +f+s) +(q+8)i§1 m,
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A hypothetical data base will now be described. The parameters of this data
base are not completely random but are based on a small sample of data bases
built by students learning to use TAXL (see the conclusion of this chapter).

Assume that the data base has an average depth of seven levels and that each
node has an average of four sons, i.e.,

L=6ands=si =4
and, therefore, the number of nodes in the data base is

7
_4 -1
N~-T4-—_—1—-v54:61

Now assume that each node has an average of three labels and two fathers,

m =3, f=2, ands, =4
1 1 1

Thus, the storage requirements for an average node are given by
Labels: 8 + 8(3) = 32 bytes
Fathers: 8 + 8(2) = 24 bytes
Sons: 8(4) = 32 bytes
TOTAL: 88 bytes/node
Hence, to represent the nodal structure of the data base requires
88 bytes/node - 5461 nodes = 480, 568 bytes

The amount of storage required for the dictionary pointers is

5461
8 Y. 3 = 131,064 bytes
i=1

As indicated in the formulation, the maximum total number of distinct labels

could be calculated as

5461
3. 3=16,383 labels
i=1

However, a more realistic estimate can be made by the following assumptions.
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It will be assumed that at each level there is a common label which serves
as an attribute, and that at every node at that level, there are two other labels,
the set of which are disjoint across the level and the entire data base. These
two other labels at each node serve as a value for the common attribute. Thus,
since there are four sons for each node, at level i, there are

2x4l+1
distinct labels, counting the root level as level zero. Therefore, over seven
levels, there are

6 .
> (2 x4'+1) = 10,926
i=0

distinct labels and hence
6 x 10,926 = 65,556 bytes
required to store all the labels in the data base, It is assumed that these are
an average of six characters per label.
Table 4 summarizes the storage requirements of this hypothetical data base

and gives the percentage of storage required for each data base component.

E. Access Time

In the discussion of the time required to compute the range x within y, the
particular configuration of the data base and the manner in which both the nodes,
named by x and the ncdes named by y, are distributed throughout the configuration
are the most important factors to consider. Because the particular distribution
of x's and y's are such an important consideration, to hypothesize a particular
data configuration and then analyze this particular configuration as before would
not accurately enough characterize access time in general. However, there are

several important observations which can be made.
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TABLE 4

STORAGE REQUIREMENTS FOR A HYPOTHETICAL DATA BASE

Node Structure
Dictionary Pointers

Labels

TOTAL

Bytes
480, 568

131, 064

65, 556

677,188

3 labels per node

2 fathers per node

4 sons per node

6 characters per label

7 levels

- 81 -

Percentage

of Total

71.0

19.4

9.6

100.0



As described previously, in the computation of the range

X within Y |
the maximum time required occurs when there are no nodes xeX within any nodes
ye€Y. In this case, a search has to be performed beginning at each node x along
the chain of father pointers to the roots of the data base, At each node z encountered
along a path toward the roots, an identity test must be made to see if z is identical
with any of the nodes yeY. If we take the fotal number of comparisons for identity
as a measure of access time, then it can be seen that the number of nodes yeY
times the total number of nodes along the path(s) from a particular x'eX to the
data base roots characterizes the maximum access time required to determine
if x' belongs in the range. Since this computation must be performed for each
xeX, the maximum number of comparisons required to determine the range

X within Y
is given by

Y. C(Y)P(x) = C(Y) 3 P(x)
xeX XeX

where C is the cardinality operator and P(x) is the total number of nodes encountered
along all paths from a node x along the chain of father pointers to the roots of the
data base (see Section B of this chapter).

There are two other factors, mentioned briefly earlier in this chapter, which
contribute to access time. Both of these factors arise in the computation of the
sets X and Y.

As described in Chapter II, the sets X and Y are specified by Method II. Thus,
in order to specify the set X, n labels X1y X, « - X are specified and the set X
is comprised of all those nodes in the data base which have at least the n labels

mentioned above. A parallel argument can be made for the set Y. The contribution
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to access time thus arises from:
1) finding each of the n labels in the dicfionary
2) forming the intersection of the n sets of pointers, the ith set being
associated with the label X; and pointing to all those nodes in the data base
which contain X, as a label.

In the current implementation, the operation of finding each of the n labels
Xis Koy +nny X is performed automatically by the LISP system. This should be
accomplished by a hash addressing scheme.

The USE-lists associated with each dictionary entry are unordered in the
current implementation, and hence each of the n-1 intersections which must be
performed requires a number of operations proportional to the product of the
number of pointers which occur in the sets to be intersected.

If the hashing function used to find the appropriate entries in tﬁe dictionary
is a good one, the time required to find the n labels which constitute the set X
is proportional to n. Assuming that m labels constitute the set Y, the time
required to look up the n + m labels is given by k(n+m), where k is some constant
dependent on the hashing function.

As explained previously the time required to perform the n-1 intersections

which define the set X and the m~1 intersections which define the set Y is given by
2 2
(n- DK +(m-1)K

where KX is the average number of pointers associated with each of the n labels
which constitute the set X, and Ky is the average number of pointers associated
with each of the m labels which constitute the set Y.

Thus the total access time is given by

k(n+m) + (n- 1) K2 + (m - 1)K2 + C(Y) D P(x).
x y XEeX
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F. Operation Time

Once all the ranges required for a given command have been computed, the
time required to complete the operation called for by the given command generally
depends only on the cardinality of the range(s) upon which the command will operate.
For all those commands which require only one range, the time required to com-
f)lete the operation is proportional to the number of nodes in that range. For
those commands which require two ranges, the time required is proportional to
the product of the number of nodes in each range. It should be noted that the
operation time for all those commands which require additional tree searching
for their operation, i.e., WRITE and DELETE, are influenced by the subtree
structure below the nodes in the computed range(s). Also, the operation of the
SAVE and RESTORE commands depends on the structure and extent of the sec-

ondary storage dictionary.

G. System Measures

In Table 5 measures of significant TAXL system functions in the current
implementation are summarized. The formulae given in the table show the nature
of the dependence of the system's functions upon the parameters involved. Pro-
portionality factors are not given. Except for the memory utilization, all of the
systems functions give a measure of access time in terms of the cardinalities,
denoted by the operator C, of certain sets which are involved in the particular
system function. Such sets include sets of nodes, sets of labels, sets of fathers
at a node, and sets of sons at a node.

The measures for memory utilization and the time to compute X within Y
have been derived previously in this chapter. Since the USE-lists are un-
ordered in the current implementation, the time required to perform the

intersection of two such lists is proportional to the product of their cardinalities.
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TABLE 5

SYSTEM MEASURES
N N

Memory Utilization 812=:1 (2 +m, + 1§ +5) +(q+8) 1:21 m,
Time to perform intersection of

USE-lists W and Z C(W) - C(Z)
Time to compute X within Y (the

sets X and Y are already defined) C(Y) Z;( P(x)

X€

Time to add a label to a node in the :

data base CONSTANT
Time to remove a label 1 from a

node ¢ in the data base mq + 1u

Time to add a node g to the
data base

Time to remove a node ¢ from the

C(new fathers (q))

data base C(sons (fathers (q))) + C(fathers (sons (qQ)))

N: number of nodes in the data base

m,: number of labels at node i

fi: number of fathers of node i

8; number of sons of node i
q: average number of characters per label

C:  cardinality operator

P(x):  tofal number of ancestors of node x

1 number of uses of the label 1 in the data base
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In order to add a label to a node in the data base the following operations
must be performed:

1) Add a node pointer to the USE-list associated with the label.

2) Add a dictionary pointer to the label list at the node.
Since the USE-list is unordered, the node pointer may be added to the front of the
USE-list, an operation not depending on the cardinalities of any sets. Since the
usual option for adding a label to a node requires that the label be added at the
end of the label list, the label list at the node must be searched to find its end.
However, if the label list is stored in reverse order, the new label can be added
to the front of the list, an operation not dependng on the cardinality of the label
list. Thus, the time required to add a label to a node is a constant.

In order to remove a label 1 from a node q in the data base, the following
operations must be performed:

1) Remove the node pointer from the USE-list associated with the label.

2) Remove the dictionary pointer from the label list at the node.
Since the USE-list must be searched in order to remove the node pointer, time
proportional to lu’ the number of uses of the label 1 in the data base (i.e., the
cardinality of the USE-list), is required. In addition, since the label list at the
node must be searched for the dictionary pointer, time proportional to mq, the
number of labels at node g is also required.“ Thus, in order to remove a label
from a node in the data base, time proportional to mq + 1u is required.

In order to add a node q to the data base, the following operations are required:

1) Add the new father pointers to the father list of q.

2) Add a pointer to q to the son list of each new father of q.
Since the father and son lists at nodes are unordered, the new father pointers

may be added to the front of the father list of g, requiring time proportional to
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the number of new fathers of q. Thus, the total time required is proportional
to C(new fathers (q)).

In order to remove a node q from the data base, the following operations
must be performed:

1) Remove the son pointers to g from each of the fathers of q.

2) Remove the father pointers to q from each of the sons of q.

The father and son lists must, therefore, be searched for the pointers to be
removed, and this operation must be performed for each father and son of g.
Thus, the time required to remove the son pointers to ¢ from the fathers of q
is proportional to

C(sons (fathers (q)))
In a similar manner, the time required to remove the father pointers to q from
each of the Soﬁs of g is proportional to

C(fathers (sons (q)))
Thus, the total time required to remove a node q from the data base is proportional
to the sum of the two cardinalities given above.

A useful refinement to make in the implementation is to keep the USE-list
ordered. The system function measurement which would be improved by this
refinement would be the time required té perform the intersection of two USE-lists.
Since the lists would be ordered, the time required would be proportional to the
sum of the cardinalities of the lists rather than the product. However, the time
required to add a label to the data base would increase since the node pointer
could no longer be added to the front of the USE-list but would have to be added
at its appropriate place in the ordered list. Thus, the time required to add a
label 1 to the data base would depend on 1u’ the cardinality of the USE-list of 1.

1t is felt that this refinement would be a useful addition to the implementation,
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since USE-lists are intersected for almost every range definition. The operation
occurs much more frequently than the addition of a label to the data base.

A better refinement would be to keep the USE-lists not only ordered, but
ordered in the form of a balanced tree (Knuth [1970]). The advantages of
storing a USE-list of cardinality n in this fashion arise from the fact that the
time required to insert a new element, to delete an old element, and to find the
smallest element in such a tree, each requires time proportional to logzn. (The

algorithms for performing these functions will appear in The Art of Computer

Programming, Volume 3, by D. E. Knuth).

Thus, labels may be added and deleted from the data base with a logarithmic
dependence on 111 rather than a linear dependence. The additional storage required
for structuring the USE-lists in this fashion affects only the multiplicative constant
in the formula for the dictionary pointer storage, the formula for which would

now be

since one father and two sons pointers would be required for each entry.
Addit'ional refinements, and possibly the best refinements in the representa-
tion and algorithms for addressing and manipulating the nodal structure, might
well be in the direction of hash, or scatter storage techniques (Morris [1968)).
In fhe LEAP system (Feldman [1969]), a hash addressing scheme based on a hash
of two elements of an bbject—attribute-value triple provides a convenient and useful
method for the retrieval of information concerning the user-defined relationships
among a universe of items.
Hash coding is the simulafion of an associative memory, and since TAXL

is an associative semantic processor, it is felt that research into new methods
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of using hash coding techniques might well uncover more efficient ways of imple-

menting a system such as TAXL.

H. Conclusion

A test implementation and analysis of a limited TAXL/BASIC system has
been described. Several comments can be made concerning the analysis.

The factor of eight which appears in the formula for fotal memory usage arises
from the fact that in the version of LISP 1.5, in which the TAXL interpreter is
written, eight bytes are required to store one LISP element (a pair of pointers).
This factor can be reduced by writing TAXL in some other list processing language
system (Hansen [1969]) or by using special data structures designed for TAXL in
particular, and embedded in some assembly language system.

Otherwise, it can be seen that the total memory usage depends linearly on
the number of nodes in the data base, as well as on the number of labels at those
nodes and on the interconnections between those nodes. Upon considering the
formula for access time, it can be seen that the access time depends linearly on
each of the cardinalities of the sets X and Y and on the depth and number of paths
to the roots of each xeX.

Operation time for various of the primitives could be decreased by imposing
an order on the lists of fathers and sons at the nodes in the data base. The
ordering of the labels is defined by the user, and hence an internal ordering could
not be imposed on them without complicating the algorithms which manipulate the
labels. An ordering imposed on the fathers and sons would allow a faster retrieval
of specific fathers or sons. However, the time required to insert new fathers
and sons into an ordered list would consume more time than if the list were not

ordered.
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On the basis of clagsroom utilization, the feasibility of su.ch a system, as
described in this erk, from the user’s point of view with respect to the goals
discussed in the introduction has been ascertained as affirmative. On two sepa-
rate occasions, lectures were given to the type of potential user of TAXL/BASIC
as described in the introduction to this work. One such group was composéd of
students enrolled in a graduate course in communications. Their only previous
computer experience was a limited introduction to terminal processing via a
BASIC system. The other group was composed of summer school students and
teachers enrolled in an introductory course for computing in the humanities and
social sciences. Their only previous cdmputer experience was a four-week ex-
posure to Algol W with no terminal processing. Even though the two groups were
at different levels in their educational experiences and their limited computer
experiences were of a different nature, their ability to grasp and learn how to use
the TAXL/BASIC system was fairly uniform. After only two hours of classroom
lecture and ten minutes of terminal usage instruction (which included log-on, log-
off, and other non-TAXL/BASIC procedures), almost all the students, working
in groups of two or three, were able to use the system with a fairly high degree
of assurance in at least an experimental mode to answer most of their remaining
questions.

The students were asked to build and manipulate data bases which would be
of interest to them in their work. Political cross affiliations between members
of the United States Senate and House of Representatives, a bartender's guide of
ingredients for different drinks, and an inventory of an army supply depot were
some of the examples for which the students found TAXL/BASIC useful and

interesting.
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From this preliminary survey of the utility of TAXL,/BASIC with respect to
its intended goals, it appears that the system meets its intended requirements.
Experimentation with more economical, more complete systems able to handle

larger data bases is required before more complete results can be obtained.
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CHAPTER VI

FUTURE WORK AND SUMMARY

Throughout the course of this work, several topics have arisen which tend to
complement the present state of the work as described in this paper.

In order to better test how easily the system can be learned and used by com-
puter novices, a well written user's manual could be compiled with its prospective
audience well in mind. Graduated exercises on which the student could work while
using TAXL/BASIC at a terminal could be provided.

The interface between TAXL and BASIC could be made more complete. By
defining a good string manipulation facility for BASIC, this string manipuiatién
facility could be interfaced with TAXL's label structure. As mentioned previously
entire 1-dimensional arrays of numeric values could be retrieved from a range,
each of whose nodes contain numeric labels. In addition, the LABEL and UNLABEL
commands could be extended so that with one command evocation, the set of numeric
labels, whose values reside in a 1-dimensional BASIC array, could be added to or
removed from a range of nodes in the TAXL data base. Finally, a good external
encoding for the data base could be designed and the READ and DATA statements
of BASIC could be extended to allow the reading of portions of the TAXL data base.

Currently, the TAXL addressing structure is semantic and associative. The
range specification mechanism could be expanded by -a,llowing syntactic addressing.
Thus, constructs such as SON OF ... and FATHER OF ... and compounds of
these would be allowed, V

A facility for labeling arcs, which might stand for attributes whose values
could be found as the labels at ’the nodes which terminate the arcs, could be intro-

duced. This might allow a more concise and more easily manipulable data
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representation in those cases in which there are many attribute-value pairs
describing a hierarchically superior node. Multiple arcs between two nodes
could alsc be introduced.

Currently, intersections and unions of ranges may be specified by the suc-
cessive application of several of the primitives operating on the ranges, the
intersections or unions of which are being sought. An explicit facility for speci-
fying intersections and unions of ranges would be useful in those contexts where
they are required frequently.

By allowing a dy;lamic macro facility, the user could define his own primitives
as successive applications of the TAXL primitives or other user defined primitives.
The macro could have the form of a tree which the user can create in the data
base. The root node of this tree could contain the keyword which would cause
the tree to be scanned and evaluated when a command beginning with the same
keyword is evoked. The macro tree would be required to have a certain form so
that in scanning the tree in some predetermined order, the system could fill in
the templates occuring in the macro tree with the range specifications occurring
in the calling command and initiate execution of the commands found in the tree
in a proper order.

The suggestions made in the concluding sections of the previous chapter con-
cerning memory utilization, access tiﬁe, and operation time could be carefully
worked out to improve the speed and efficiency of the TAXI, system.

In summary, this paper has presented an easy to learn and use data manage-
ment and manipulation system for computer novices.

Chapter I outlined the need for such systems and suggested the uses to which

they could be put.
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Chapter II discussed the format of the data base and the mechanism for
addressing such a data base in semantic and associative terms.

Chapter III introduced eleven primitives for constructing, destroying, and
otherwise manipulating and querying the data base. The primitives are designed
to operate on portions of the data base addressed by the range mechanism dis-
cussed in the second chapter. TIn this way, fhe addressing mechanism and the
operational primitives are clearly separated.

In Chapter IV, the design of a system in which TAXL and a numeric processing
system possessing logical programming capabilities was introduced. Additional
primitives for managing the programming structure were introduced.

Chapter V discussed a current implementation of TAXL and gave measures
of memory utilization and access time in terms of natural parameters of the
system.

The current chapter outlined possible future work and summarized this paper,
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APPENDIX I

LISTING OF THE INTERPRETER

VERBUSINIL)

CSET

CSET
CSET
CSET
LSET
CS5ET
CSET
CSET
CSET
CSET
CSET
LSET
CSeT
CSET
CSET
CS5ET
CSET
CSET

CSET
CSET
£seT
CSET
CHET
C3eT
C3ET
CSET
CSET
C3SET
CSET
CseET
CSET
CSET
CHeET
CSET
Csev
CSET
CSET
CSET
CSET
CSET
CSET

(OPSP ( (+ &« 3) {—- o+ 3) (% o 4) (/ « 4) (NEG « 4) (%% , 5)
(SUB . 61 )}

(STAK NIL)

(OUTP NIL})

(AXP NIL)

{CHK NIL}

(RELS {EQ NEW GR GE LS LE)}

(RUN NIL}

(SYNTAX NIL)

(sB8S Ty

{5LB SuB}

(LINE NIL)

(LINES WNIL)

(THISLINE NIL)

(UNEQ NIL)

{ISNF NIL)

(NLRG $3$$NULL RANGES)

{QUOT $58"%)

(CLIM ($$$CARRIAGE KETURNS NOT IN WHEREVER IS INTJ wWiTHIN
UNCER TG FRGM AS BY ANC BEFORE EQ NEQ GR GE LS LE))

{ONLF NILI

(CELT NIL)

{IMPROLIM $$$IMPROPER DelLIMITER «as $)

{IAE $$SILLEGAL ARITHMETIC EXPKESSICAS)

(AVCS $$SARITHMETIC VAKIABLE CANNUOT HAVE A SUBSCRIPT... %)

{AIMS $3S5ARKAY TUENTIFIEK MUST HAVE A SUBSCRIPT... $)

(LNMI $SSLINE NUMBER MUST BE INTEGERS)

(NCTN (NUT IND) )

(PLTF NIL)

(ELSL NIL)

{OK 0K}

(NXTw NIL}

(INTU CINTO WITHIN UNDER TC))

(CFLG NIL)

{KFLG NIL)

{whCREVER WHEREVER}

LAPVAL APVAL)

{PVAL PVAL)

(LSES LseSs)

{XTUP NILI

(PUMS NIL)

(UMRK $B3SLUARRIAGE RETURNS)

(BYAS (BY AS}}

UVEFINE (H
(MAIN (LAMBDA NIL {PRLG (X) .
Ml (CUNU (CHK (PRULGZ (PRUGZ (PRINL SBS) (PRINL SYNTAX})(PRINT RUN)))}

(CCND {RUN (CUND ({LOR THISLINE) (PROGZ
(LSETo TRISLINE {LLR THISLINE))
(CS5ETw LINE (CUAR THISLINE))))
(T (STPP NILd)))
(T (TREAD 0) 1))

M2 (COULNT 50600GC) (CSETW NXTw (TREED)) {(CSETQ KFLG NIL)

(SETC X (FTCHI)
(CCAD ({NUMBERP X) (PRCG NIL
(COND ({NOCTIFEXP KIIUMESS (QUUTE $$SLINE NUMBER MUST Bt INTEGERS)
bLANK NIL)))
(CCND (LEGQ NXTw cMrK) (PRUG2 (LINESRCH X NIL)
(BEGIN (QUOTE MAIN) NIL)J))
(CSET@ SYNTAX T) (CSETQ 585 Nit}

- 97 -



qé%SETG LINE {CUNS X NIL)) {DETQ X (FTCH)) )

(co
{{tw X (QUOTE DELETE)) (UELE T))
(tew X {QWUOTE SEVER)) (DelE NiL})
{{EQ X {QUOTE CUPY)}) (PUCP NIL))
{{Eu X (QUOTE PUT}) (PUCP T)3
({E< » {WLOTE AKITE)I (WRITHI
(B X (QUUTE LABELI) (MAKE T))
((Ew X (QUUTE UNLABEL Y (MARE NIL))
t{Ece X (QUOTE CCUNTII (CULTY)
(LEQ X (QUOTE CREATE)) (CRETH)
((EQ X (QUOTE LET)) (LEFT)

(CAND INOT sS8S) (EQ X (QULCTE GGI) ) (PROG2 (GUTU)
(CONUD (RUN (GO M2)} (T NILIIN)
((AND SB8S (EQ X (QUCTE LISTIY) (LIS
(LAND SBS (BEw X (QUOTE CLEARII)I(CSETQ KFLG {CSETW LINES NIL)I)
CLAND Ses5 (eQ X (QUCTE RUNILE) (PRGG2 (RNN) (G0 M2

((EQ 2 (QLUTE STUPY} (CCAD (RUN (STPP T3i))

{CEw X (QUUTE SHOWUI) (SHUWU (TREAD NIL)))

{leg X {(QUUTE TRACE)Y (TRACE {TREAD NIL)I}

((Eq X (QLUTEZ UNTRACEDX) {UNTRACE (TREAD NIL)IJ)
(EQ X {(WUUTE PRINTI)I) (PRYNIJ)

{
{(Ew X (QUGTL XTOP)) (PRINT {CCR (QUOTE xTOPI})))
(T (MESS (QUUTE $3s1LLEGAL COMMAND... %) X NiL)))
{COND (SYNTAX (PrUGZ (PRUGZ {CSETW SYNTAX NIL) (CSETQ S8S T))
(LINESRCH (CAR LINE) Tid))
{CGNO ((AND KFLG 585) (PRINT CK} })
{GC M1>
VEFINE (¢
CITM (LAMBOA NIL (PRUG (Y L LT NcwF)
(CSETS UNIQ NIL)
(CUND ((MEMB NXTw DLIM) (MESSCPI}
(CEQ NXTw {(QUUTE UNIQUELY)) (CSETQ UNIQ (FTCH)I)))
I1 (SeETu L (CONE ({ATOM (SETW LT (FTCHI}) (APPEND L (CONS LT NILDY))
(T (APPEND L LTJ21})
(CUNU ({MEMB NXTW ULIM) (SETQ LT LI} (T (6C fli)}
(CONG (SYNTAX (RETURN NIL)})
I (SETQ NEwF (DR NEWF ¥J)
[SET ¥ (NIKUS {CAK LT) 1)
{COND ((MEMB (CAR LT) {(CCR LT)) (SETQ L (EFFACE (CAR LT) L))}
COSETG LT {COR LTY)) (6C 12))
(SETC L (CCNS L NILJ)
(COCND {LAND PUTF (UR NEAF Y} (NOT CFLGH) (CREATE L NILJ)
(T (RETURN L)}
(CSETWY XTOP (CUNS L XTGP}
[COND {RUN (RETULRN L))}
(MESSN L NIL) [(PRINT (QUUTE $$% CREATEDS))
(RETLRN L>
UEFINE (!
(NINUS (L AMBOA (X)
(CUND C(CR CHFLG (GET X USES)) NIL)
(LAND PLTE (NOT {(GET X LSESH)) T
{T (MESS (UUUTE $$3NOT IN USE... $) X T>
DEFINE ((
{ITMS (LAMBDA NiL (PRCG {(RESH
I (SETW RES (COGN> (ITM) RES))
(CLND ((EG NXTW (QUOTE ANL) ) (PROG2 (FTCh) (GO 1))
{RETURN RES?
DEFINE ({
(FTCH tLAMBUA NIL (PRCG (TcMP)
(SETQ TEMP NXTw)
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(CSETQ NXTW (CCND ((CCND (RUN (NULL LINE}) (T (EOLI)) EMKKI(T
(PROG (A B D)

(CunD ( (NOT (ATOM (SETG A (TREED))I))
(CCND (AXP (RETURN AJ) (T
(MESS (QUUTE $$SLISTS NOT ALLUWEDS) BLANK NIL)I) )1
((AND (NUMBERP A) (NOT (FIXP A2}
(CONC ((SETQ C (MEMBER A NUMS)) (RETURN D)
{T (PROG2 (CSETQ NUMS (CUNS A NuMS) )
(RETURN A)J}}))
({NGT (£EQ (CAR (SETQ B (EXPLODE A))) QUUT))
{RETUKN A4Jj}
C (SETQ 8 (CER B} (GO LS M)
L2 (COND L (COND (RUN (NULL LINE)) (T {EOQOLJ}}
(MESS {QULCTE $$SMISSING QUOTES) BLANK NILJ))
((AND (NUMBEKP (SETQ A (TREED))) (NOT (FIXP A)))
(PRUGZ (CUND ((SETQ B (MEMBER A NuM3J)
(SETG C (CUNS B D))
{T (PRGG2 (CSETQG NUMS (COUNS A NuMS))
(SETQ U (CONS A Olidi}
(GG L2)))
( (ATCM A ) (SETG B (EXPLOCE A)))
(AXP (RETURN A))
(T (MESS (JUOTE $3$LISTS NUT ALLOWEDS) BLANK NILE))
(COND € (EQ (CAR B) QUAT) (RETURN OJ) )1}
L4 (COND ((Ew (CAR B) JULGT) (RETURN(APPENDL U {(MKATGM)} )
(RLIT {LAR B))
(CCND( (SETQ o (CCR B)) {(GU L4})))
(SETQ L (APPENDL D (MKATOM}))
(GG L2)
L5 (RLIT (CAR B))
{COND € (NULL (SETW 8 (LOR BI)Y{SETQ D {(APPENUL D (MKATCM) })}
({EQ (CAR B) QUUT J{RETURN{APPENDL D {(MKATOM)))})
LT (Gu LS5k
(Gu L2} )
{CCND (SYNTAX (CGND ({OR AXP (ATCM TEMP)) (APPENDL L INE TEMP})
(T (LSETQ LIN:E (APPEND LINE
{APPENDL (CUN3 wUUT TEMP) QUGTIII )
(RETURN TEMP>
DEFINE ({
(TREEC (LAMBUA NIL (PRUG (X)
(RETURN (CUNC (RUN (PRCOGZ (PRUGZ {(SETQ X (CAR LINE))
(CSeTe LINE (CDR LINE)) X))
(T (TREAD NIL>
DQEFINE (I
{RANGE (LAMBUA (FLG) (PRUG (RNGE)
{CCNC CINULL FLG)
(CONT (LEQ NXTW whEREVER) (SETW KNGE (WHEREPRT XTOP)}i
(T (PRUGZ (SETw RNGE (INPTI}
(CCNU ((cd NXTW WHEREVEK]
{SETQ RNGE (WHEKREPKT KNGE}})
(T NILY)ID))
({NUMBERP FLOG) (SETw RNGE (INPTI) )
(RETURN RNGE>
DEFINE (U
{WRIT {(LAMBOA NIL (PRJG (X3}
(CEETG CANLF NIL?
{CCND ({tw NXTw (QUUOTE CNLYJ )} {PKOGZ (CSETW CONLF T) (FTCHI )
(COND ({eQ NXTw EMRK} (ScTQG X XTOP))
(ENULL (SETQ X {RANGE NIL)) ) (MES> NLRG BLANK T)1})
(CONDCINOT(EQ NXTW £MRK)J}  (MESS IMPRULIM NKTW NILIJI
(COAND (SYNTAX (RETURN NiLJ))D
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T ELSL NIL) )
D ((NULL X} (RETURN (PRINT (QUOTE $$$NOTHING TU WRITES$S)I}))
0 (X (LEVEL {CLNS (CAR X} NIL) 24
(T (RETUKN NIL)}})
{SETQ X (COR X)) (GO wW>
UEFINE ({
(LEVEL (LAMBDA (Q SPJ (PROL (X)
A (COND ((NULL Q) (RETURN NIL)))
(TTAB SP) (SETC X (CRLAR Q)1
B (PRINL (CAR X))
{COND ((SETQ X (COR X)) (PROGz (PRINL BLANK) (GO B1)))
{COND ({MEMB (CAR Q) ELSL)Y {(PROG2 (PRINT (QUOTE
$$% <OUCCURS ABOVE>S))
(PRUG2 (SETY @ (CUR Q) (GO A)Y )
(TERPRI) (CSETw ELSL (CCNS {CAR Q) ELSL))
(COnD [UNLF (RETURN NILJ)})
{LEVEL (CDUR (CAR Q1)) (PLUS 5P 3))
(SETg Q (CDr Q)
{GU A>
VEFINE {H{ :
(CREATE (LAMBCA (X FAT) (PROG (Y -Z)
(SETW Z (CENSYM1 {(QUOTE FATH)))
(CSET Z {CUND (FAT (CINS FAT NIL}) (T NILM))
{RPLACD X (CUNS Z NIL))
(SETWw ¥ {LarR X))
CL (CEFLIST (LIST #LIST (LAR Y} (CCNS X {(GET (CAR Y) USES))I} LSES)
{CUND ((SETQ ¥ (CDKR Y)i (GO Clid)
(RETURN X>
DEFINE ({
(NCMN (LAMBDA {(X) (PROG (¥ RES LSEL JSEZ)
[SET« Y (SETG X (CAR X))}
{SETQ RES (GET (LAR X} USES))
N1 (COND ((SETw X (CDR XJ}) (SETJ USE2 NIL))
{UNIC (G0 N3))-
(T (RETURN RESIN)
(SETQ USEL {GET (CAR X) LSESY)
N2 (CCNC ((MEME (CAR USEL) RESI(SETQ USEZ (CUONS (CAR USEL) USE2)1))
{CCND ({3ETw LSELl (COk USEL}) {0l NZIDI
(3ETQ KES USE2) (GO Ni)
N3 {(CCNU (RES (SETQ USEZ (CAAR RES)))
{1 (RETURN USELl)}}
Ne (COND (IMEMB (CAK USEZL) Y) NIL)
(T (GL N511)
{CCND (tSETQ uUSt2 (CDR JSE2) ) (GO N4t}
(SETY USEL (CGNS (CAR RES) USELN)
NS (SETSQ RES {CLR RES)) (GC N3>
JEFINE ((
{PUCP {LAMBLA (FLG) {(PRUG {RNGL1 RNGZI
(CEND ({EQ NXTwW EMRK) (MESSCPI))
(CSETa PUTF FLG) (CSETWG CALF NILD
{CCRD (LEw NXTW {(WQUUTE GNLY D
{CCNO (PUTKF (MESS IMPRUOLIM NXTw NilL))
(T (PRUGZ2 (FTCH) (LSETQ CONLF T3)))))
{SETQ RNGLl (RANGES NIL))
(CUND ((MEMB AXTw INTO)} (FTCH))
((AND (WNGT PUTF) (EG NXTw EMRK}) {(PROGZ
{3ETw ki (CORS XTUP NIL)) (GU PLY))
(T (PRGGZ (MESSGP)Y  (RETURN NIL)ID)
{SETQY RNGZ2 (RANGES NILJ)
Pl {CUND ((NOT (EG NXTW cMikK)) (MESS IMPROLIM NXTW NIL))I
{COND (SYNTAX (PROG2 (CSETW PUTF NIL} (RETURN NILI I

{Cfc
(CCN
h (CCA
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(CCIT (QUGTE PUTL) RNGL RNGZ) (CSETQ PUTF NIL>
VEFINE ((

(MEMB (LAMBDA (X L) {(PROG NIL
M (COND {(INULL L) (RETURN NiL2)
((Eq X (CAR L)} (RETURN X)})
(SETQ L (COR L} (GO #M>
UEFIME (!
{MENMBER (LAMBDA (X L} (PRUG NIL
M (CGND CUNULL L} (RETURN NIL))
(LEQUAL X (CAR L)) {RETURN (CAR L1}J)))
{SETQ L (CLUR L)) (GO M>
vEFENE ({
(PUTL (LAMBCA (TBPL WHRE) (PRLG (T8CM Q CARQ)
{SETG TBCM TBPL)
P2 (CUNU ((NULL TBCM) (RETURN WHRE)))
(SETQ TBPL (CAR THLM)) (SETC QW wHRE)
PlL (SETw CARQ {(CAR Q))
{CCND ((NCT PUTF) (PRUGZ [CSETQ ELSL NIL)
{SETGQ TBPL {COPY TuPL NILII))
{{EW ¥BPL CAKW) {(PROGZ ICOND {SBS{PREGZ [PRINL (QUOTE

$$ONIDE CANNUGT BE PLACED IN ITSELF... $P)I{MESSN CARG TIIH)UIGOD Q2)11
(LISIN CARG TBPLY(PRCGZICCND (S5BS{PRLG. (PROGZIMESSN CARQ NILJ
(PRINL (QUOTE $3%3% IS ALKeADY IN $))1) (MESSN TBPL T)J))) (Gu Q@)

({MeMB CARW (CAR (GET {LCADR TBPL) APVAL)))

{PROGZ2 (CUND (SBS (PROGZ (PROGZ  (MESSN TBPL NILI
fPRINI (QUUTE $%% IS5 ALRcAuY IN $))) {MESSN CARQ TJ)i)) [(GD Q21)}

(T (CSETW XTOP {EFFACE TBPL XTOUPII))
(CSET4 KFLG T)

(COGNE ((EQ G XTOP) (PRGG2 (NCUNC XTUOP (CUNS TBPL NILJ)} (GC Q1)})

(T {PRCG2
{NCCNC CARG  {CUNS TBPL NILJ}

(CSET(CADR TbPL)ICONS CARQICAR(GETICADR TuPLl) APVALIIIIIN}

C2 (CCND (ASETG € (CUR €)) (GC PLI) (T NIL))
el {SETY TBLM (CDR T8LM)) (oG P2>
VEFINE (¢
(EFFACE (LAMBDA (X L} (PROG (Y L)
(COND ((NULL L) (RETURN NIL?})
({Ew X (CAR L#d (RETURN (COR L1
{SETQ HL L)
E (SETQ Y L) {(SETQ L (CDR L)
(CCND ({NULL L) (RETURN HL}J
((Ew x (CAR L)) {(PRUG2 (KPLACD Y {CDR L)i {(RETURN hLJ})
(T (GO E>
JEFINE (( :
{(CCPY {LAMEDA X FAT) (PRGG (Y Z)
(SETQ Y (CONS (CUPT (CAR X)) NIL)M)
(CSETwU ELSL (CCNS (CONS X Y1) ELSL))
(SETQ FAT (CKEATE Y FAT)) (CCNO (ONLF {RETURN Y},
{5ETQ X (CLODR X1}
C (COND ((NULL X) (RETURN Y)})
{NCUNC Y (CONU {(SETQ Z (ASCC (CAR X ELSL)J (CONS Z NILM)
(T (CONS (COPY (CAR X3} FAT) NILI)I)
{SETQ X (CDR X}) {GC C>
DEFINE ((
(ASCC (LAMBLCA (X Y} (PRUG NIL
A {COND ((EG (CAAR YJ X) (RETURN {CDAR Y})}))
((SETW Y (COK YI) {GC ANd) {RETURN NIL>

I

DEFINE (A
(CCPT (LAMEDA (X) (PRLG (Y)
C (LOND HINULL X) (RETURN Y})}
(SETQ Y (NCCNC Y (CUNS (CAR X) NILJY)
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 (SETG X {CDR XJJ (6O C>
UEFINE  ((
(MESS (LAMBEA (X Y Z) (PRUG NIL
(COND ((UR C(AND Z (NOT SBSJ) {(AND KUN (NOT ZJ)) (RETURAN NILJ))
(PRINL X)  (PRINT Y}
(RESET) (6EGIN (QUUTE MAIN) NILD>
DEFINE ({
(ME5SOP (LAMBCA NIL (PRUG NIL
(PRINT (QUUTE $8SMISSING CFERANDS$))
(RESET) (BEGIN (CUUTE MAIN} NIL>
UEELINE ((
(MESC (LAMBDA (x Y) (PRGCG NIL
(COND (SBS (MESS X Y T2))
(FRINL X)  (PKRINL ¥Y) (PRINl {(QUUTE $8% LINE $))
(FRINT (CaAR THISLINE})
(RESET) (BEGIN (QUOTE MAIN) NIL)>
DEFINE (I
(RESET (LANMBDA NIL {(PROG NIL
(CSET@ CFLG NIL) (CSETQ SYNTAX NIL) {CSETQ RUN NEL) (CSETC SBS T)
(CSETW AXP NIL) ({CSETQ PUTF NIL>
DEFINE ((
(SHOMU (LAMEDA (X) (PRUG (Y)
A (COND ((NULL X) {RETURN NILJ))
(PRINT (CAR X))}
(PKINT (SETQ ¥ {CUNU ((ANU (NUMBERP (CAR X}J (NOT (FIXP (CAR X})J}
(GET (MEMHBER (CAR A) NUMS) USES))
(T (GET (CAR X2 USES)II)I
{CLND (Y (PRCG (2)
(SETQG Z V)
P (PRINT (CAx (GET (CADR (CAR Z}) APVALI))
(COND ({MEMB (CAR ZMCDR Z)) (MESS (QUOTE DUPLLCATES)

(CAR 2¥)1})
(COND {(NLLL (SETQ Z (CER Z))) {(RETURN NIL}})
(60 P 4
{SETWG x (LCOR X)) (GC A>
DEFINE (H{

(ISIN (LAMEC# (Ul B) (PRUG (X}
(CUND {(NULL {SETQ X (CAK(GET (CADR Ul ) APVAL)II)) (KETURN NILJ})
I {CEND {(UR ({Ew (CAR X1} B) (ISIN {CAK X) 811 {RETURN Ulli
({SETU X (CLR X)) (GU Lk}
(RETURN NIL>
JEFINE (L
(CELE (LAMBULA (X) (PROG (RAGE)
(CONL ((EJd EMRK NXTw} (McSSCPID
(CSETJ DELT X) . :
(CUNG ((EQ NXTw (WQUCTE CNEF) (PROGZ (FTCH) (SETG RNGE T13)))
$30TQ X {RANGES NIL}
(CLNL (RNGE (PRUOG NIL
(SETW RNGE X1}
L (RPLACC (CAR RKNGE) NIiL}
{COND {(SETW AnNGE (CDR RNGE)) (GO 2)))
(RETURN NIL) )1))
(CUND ({EQ MXTwWw (QUUTE FREMID(PKOGZ (FTOHI{SET G RNGE (KANGES NILI )
(T (SETq KNGE (CUONS XTUGP NIL))})
(COAND ((NGT (CEd NXTw CMRKJ) (MESS IMPRDLIM NXTw NILM))
(COND {SYNTAX (KETURN NILID}
{COIT (QUOTE CELLE X RNGE>
DEFINE ((
(DELL (LAMBDA (x RNG) (PROG (TEML FL TEMR)
D1 (CONC(U(SETQ FLISETS TEMK{CAR(GET {CADR{SETQ TEML (CAR X)))APVAL})))
(CONC ((PROG (FLG XRNG) D52 (SETU XKNG RNG)
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L {COND{({UK(EQICAR TEMR) (CAR _XRNG) J(ISIN (CAR TEMRI(CAR_XRNG:) )
ps (PROGZ 9PR052 (EFFAEE TEML (CAR TEMR?i (SETQ FLG T))
{SETG FL (EFFACE (CAR TEMR) FLI) ) )

((SETQ XRNG (CDR XRNG)) (6C DS1)))
{CCONG ({SETG TEMR (CCR TEMRI} (GG DS2))
(T (CSET {CADR TcwMl } FLIDI
(RETURN FLG) ) NIL)
{T (PRUG2 (CUOND (35BS (PROGZ2 (MESSN (CAR Xx} NIL)
{(PRINT(GUUTE $%3 NOT IN RANGE TO SEVER/DELETESIIHIG
(GG DZ2)1))
(ONGT (EQ RNG XTUP)HIPRUOGZ2 (COND (3BSIPROG2 (MESSN (CAR Xb NIL)
(PRINT (QUUTE $$% HAS NC FATHERSS)I )M (GO C240))
(CCWD {Fu NIL)
(DELT (PRGGZ (LUND ((AND (EQ XTUP RNG) (EQ TEML (CAR XTOP)J)
(CSETW XTUP (SETQY RNG (CCR XTOPAI )
(T {CSETQ XTUP (EFFACE TEML XTOP))))
(DISC TEML) D)
CONULL (MEMB TEM] XTOF) ) {CSETQ XTOP (CONS TEML XTOP)II)
(CSETQ KFLG T)
D2 (CCND {{5cTQ X {CDOR X)) (GU DL))Y (T NIL))

{RETURN T>
DEFINE {H{
(DISC (LAMBLA (X) (PROG (Y LBLS)
(SETQ LBLS (CAR X}i (SETL Y (CUDK X))

C2 (CEFLIST ({LIST {LIST {CAR LBLS) .
(EFFACE X (GET (CAR LBLS) USES#I)I) USES)
(CCND ((SETQ LBLS (COUR LBLSY) (GO D2)))
Cl (COND (UNULL Y) (RETURN NIL})
({GREATERP (WNMEVM (CAR(GET (CACR(CAR Yi)APVALII} 1}
(PRUGZ (DELL Y (CONS X NILI)(RETURN NIL)}))
(EISC (CAR Y))
(SETG Y (COR Y)1I
(GO C1>
DEFINE LI
{NFAKE (LAMBEDA (X} (PROG (CIDS RNGS RKRNGE EIDS IDS ID £ Y
(CONE ({td NXTw EMKK) (MESSUP)Y))
(CSETQ ELSL NIL)
(3ETQ RAGS (RANGES NIL)? (SETQ ICS (CAR ELSLI)
{(CCND ({MEMB NXTw BYAS) (FTCH)) '
((AND (NULL X} (Ed EMRK NXTwW))
(COND (SYNTAX (RETURN NILEF (T (GO UNSIIIT
(T (MESSUP1}1))
(COCNG ((EQ NXTw EMRK D) (MESSUPII)
(CSETY CFLG T} ,
(SETQ [0S {CAR (ITM) }} (CSETY CFLG NIL}
(CCND (SYNTAX (RETURN NILJ))
(CLND (X (GG L8111}
(CUNC({NOT{EQ NXTw EMRK}) (MESS IMPROLIM NXTw NIL)))
UNS (COND (UNULL (SETQ nNGE (CAR ANGSI)) M IPRUGZ {LUND (INJUT RUN)
{PRINT NLRGIII (w0 UN&D) DI
UN3 (SETW Y (COUPT (CAR (SETWQ X (CAR RNGED) )
{SETE 2 105}
LNL (COND UImMEMB {LAK Z) (LAK X)) 15ceTw Y LEFFALE (CAR L4 YD)}
(T (PRUCGZILOND (58S (PROUGZ (PRUGZ
(PRINL (CAR Z)) (PRINL {GUOTE $$3% UUE> NOGT LABEL $)) )
(MESSN X Thr}) (ol UNZY)))
(CONG ({SETQ 2 (CCR Z2)) (LU UNL))
CENULL Y} (PROGZ (CUAND (S35 (PRUGZ
(PRIN] (QUUTE $$3CANNDT REMCVE ALL LABELS FRUM )1
(MESSN X T {GU uUNZ21il)
(RPLACA X Y} (SETW £ §DS)
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T }

UhGé (CEFLIST (LIST (LI (
( (CLOR 2)

(COND ((SeTG 2 (C 3
(CSETQ KrlG Ti
UN2 (COCND ((SETQ RNGE (CDR RNGE) ) (GO UN3FILT NiIL))
UN4 (CUND ((SETw RNGS (COK RNGS) ) (ol UN5S) )
{RETURN NILJ
LE (SETw 10 NIL) (SETQ CILS (COPT 1DSHI
(COND ({EXd NXTW (GUUTE BEFCkedd (PROL2 (FTCH) (SETG [0 NXTwal)i
(CONL ((eEq ID EMRK) (MESS0P))
(T (FTCHI )]
(CONDCO(NJUT(ES NXTw EMRKJJ (MESS IMPRULIM NXTW NILID)
LB6 (CUND ({nULL (SETQ KNGE {CAK RNGS) ) (PRUGZ (COND (UNOT KULMN)
{PRINT NLRGI) )} (GO LB4))))
L5 (SETW ¥ {(CAAK KWGEH) {SETQ L0S {S5ETJ £ LLUPT CLOSid)
LEL (CUNLC ((McMb (CAK Z) Y) (PRGZ (LUND (S5BS (PRUGZ (PROUGZ
{PRIN1 (CAR Z2)} (PRINL (QUGCTE $%3 ALREADY LABELS $}) )
(MESSN (CAK RNGEI T ))a (GU LB2)})
({SETG Z (CCR Z3) (GU LBl)d)
(SETw L2 CICS)Y
(CLND CANULL I (SETW EIUS Y))
(T (SETQ EBIDS 1LS})
LBSs (COUNU (inuLL (CDR EIDSI) NIL)
(T (PROGZ2 (5cTa EILS (CuR EIUSH) (GU LB9)Y) }I
(CCNC C{nNULL IO (PRCGGZ (RPLALD EILS 0S5 ) (GU LBB)II)
(COND ((EQ 1D {CAR Y)) (PRCG2 (PRCGLZ (KPLACD £IDS Y}
(RPLACA (CAR KNGE) IDS J) (GO LBB8))I))
{SETQ X (CDR Y))
LB3 (COND (iNULL X) (PRUG NI
(COND CINOT SBS) (RETURN NIL) )
(PRINL 11U (PRINL {QUCTE %%% LUES NOT LABEL $)}
(MESSN (CAK KNGES NILF (PRINL {QUCTE $33 ~- %))
(MESSN (CONS 103 NIL)Y NILJ
(PRINT (GUDOTE $%% AcvED AT ENDS))
(RPLALD Y IDS )} )}
{(EQ IL {CAR X)I(PRUGZ{RPLACD Y IDS )(KRPLACD EIDS X))}
(T (PRCGZ2 (PROGZ (SETw ¥ XK (SETQ X (CDR Xi}) {GU LB34)))
Led {OEFLISTOLISTILISTICAR ) {CONS{CAR RAGE) (GeT(CAKR Z) USES))I)IUSES)
{CUNC ((SETQG Z (CCR Z2)) (GC LEb) )}
(CSETw KFLG T)
Le2 (COND ((SETJd RNGE (CuR RNGE)) (GU LESIY (T NIL))
LB4 {COND C(SETQ RNGS (CUR KNGSI) (GO LBE)D))
(RETURN NIL>
VEFINE ({
(CCLT (LAMELA NIL (PROs (X3
(SETW X (RaNGE NILM}
(CUNLOINUTIEG NXTWw EMRK)) (MESS IMPRULIM NXTw NILI))
(COND (SYNTAX {RETURN NIL)}))
(PRINT (NMEM X>

CAR L} (EFFACE X (ULET (CAR 2) USES)}IIUSES)
b(GC UNG) D)

JEFINE €
{NMEM (LAMBUA (X) (PRULG (K)
(SETQ K O)
N CCORD CONULL X)) (RETURN K1) )
(SETQ K {ADOL K}} (SeTG X (CCR X)) (GU N>
DEFINE ((

(CRET {LAMECA NIL {PRUG (X}
(CSETQ CFLG T}
(CONL (LEY (CAAR (SETW X (ITMS))) EMRK) (MESSUPL)
CONCT (EQ NXTw EMRK}I(MESS IMPROLIM NXTw NILJ))
(CCND (SYNTAX (KETURN WiL)}
C (COND (X (CREATE (LAR X) NIL}) (T (GO Cl1)))
(CSETC XTGP (CUNS {(CArR X) XTGP)) (SETg X (CDR X})
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G T4 (Gu Cl}
G NIL) (RETURN NIL>

(WFEREPRT (LAMBCA (RNGE) (PROG
{FTCH) §CSETG ISKNF T
(COND (SYNTAX NIL) (UNULL RNGE) (RETURN NIL)) I
(COND l(Ew NXTW (QUOTE COUNT)) (PRUGZ (FTCH)

(SETQ w (QUUTE KEEPCNT ) ))
({EQ NXTW {&UOTE VALUE) )} (PROG2
(SETQ W (QUUTE KEEPVAL})))
{T (SETG W (QUUTE KEEPI D))
{SETQ X (RANGE 04)
(RETURN {w X RNGED
UVEFINE (U
(KEEP (LAMBUA (TSTNODES NGDES
{CONC (SYNTAX (RETURN NILJ)))
{COND ((NULL TSTNCOES) (RETURN {CONG
(SETQ H TSTNODES)
(CCNC (ONJLL NGODES)

(X W)

{FTCHI

LPROL (X HJ

{ ISNF NIL) (T NUDESIIN))
Kl
(RETURN Xi11)

K2 (COND

{{NULL ,H)
{{GK {EQ

{CUND ({1
(CAR H} (

SNF O NIL) (T
CAK NUDES))

(SETW X

{CONS {CAR NUDESH
{1 3IN (CAR H) {CAR NUDES)I)

X)rdiid

{COND CISNF (SETQ X (CONS (CAR NUDES) X)) (T NILY))

IT (PRUGZ (SETQ H (CLUK H)J

(GG Kz}

(SETW

NUOUGES (COR

nNUDESY)

(606 KL1>

DeFINE (A
(KEEPCHT (LAMBDA (TSTANUJUES NUOUGES) (PRUC (X REL NUM CNT H)
(SETQ REL (FTCHIY (SETQ NUM (FTCH))
{CONCOUONCT (NUMBERP NUM) ) (MESS (QUUTE $$SNOT A NUMBERe ..
((NUT (MEMB REL RELS)Y (MESS (QUGTE
$$SNGT A RELATIUNAL UPERATOR..W
{SYNTAX {RETURN NIL) )
CINULL TSTNODES) (RETURN NIL)))
H FSTNUCES)
{{NULL NGDES)H
CNT O}
( (NULL

$) NUM NIL))
$} REL NIL} 1))

(COND
{CUND
(SETQ
(CUND
(SETQ
{CCnD

Kl
(KETURN X))
K2 HY (GC K3))
C{ISIN (CAK H) (Cak NODES))
{SETQ H {CDR HI)) (GU K2)
(LCND (UNRELCFM CNT REL NUM) {SeTQ X
(SETQ NUUES {CUR NCDESH? (GO Ki>
DEFINE ((
(KEEFVAL. {LAMBLA (TSTNUCES NCDES) (PRGG (X Y KEL NUM H}
(CONDE (NOT INUMBERP HUM) I IMESS{QUUTE $%$NOT A NUMBER«..
({NOT (MEMB REL RELS}) (MESS (WQUOTE
$$SNUT A RELATICNAL GPERATGR..« $) KEL NIL) )
(COND (SYNTAX {(RETURN NIL))) ’
(SETW REL {(FTCH)) (SETG NUM (FTCHI )
(COND [ (NULL TSTNUDES) (RETLRIN NIL)J)
(SETQ K TSTNLDESH
{CCND {(NULL ACUES)
{COND (UNULL A} NIL)
((CAND (SETWG Y (FNUM (CAARK MY} (uR {EQ
{ISIN (LAR R} (CAR NUDES) )
{SETw X (CUNS (CAR NLDES) X))
(PRUGZ (SETI H {CLR FI) (GG K22 1)
(CUR NULES)) (GO K1>

(SETG ONT (ADDL CinTridd)

K3 (CONS (CAR NODOES) XJ)i))i

$) NUM NIL))

Kl
[RETURN X))}
K2
(CAR A) (LAR NODESY)

(NRELGPM ¥ REL NUMJ)

(T
(SETQ ~NODRES
DEFINE (U
(NRELUPM
{RETLRN
{CUND {{ed RELP
(lEa4 RELP

(LAMBUA (N KELP M) (PRUG NIL

(wJOTE Ew)id
(QUUTE NEQ))

(EQuaL N M¥})

(NGT (EQUAL W M) )]
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((E9 RELP (WUUTE GR)J (GREATEKP N M))

{{EQ RELP (QUOTE ob)) (UR (GREATERP N M) (EQUAL N M)
({EQ RELP {QUCTE LS)} (LESSP N M)) p
((EQ RELP (WUCTE LE)) (CR (LESSP N M) [EQUAL N M>

DEFINE ((
(MESSN (LAMBLA (X FLG) {PRCG NIL
{CGND ((NUT SBS) (KETUKN NIL}J}
(SETQ X (CAR X)1
A (FRINL (CAR X1}
{COND ((SETQ X (CUR XiJ) (PRCG2 (PRINI BLANK) (GO A))})
(COND (FLG (TERPRI>
VEFINE (1
CINPT (LAMBOA NIL (PRUG (INPL NUTF X XH Y YH)
(CSETQ ELSL (ITM))
(COND (SYNTAX (GO 5109
C(NULL (SETw YH (NCMN ELSL)}) (RETURN NIL)}))
(SETQ INPL (CCNS YH NIL))
S1 (COND ((EQ NXTw (GUOTE IS)) (PRLG2 (FTCH) (CSETQ ISNF
(CUND ((EQ NXTh (GUUTE NOTI) (PRUG2Z (FTCH) NILIICT T13))))
Z3 (COND ((MEMB AXTW NOTH) NIL) (SYNTAX (RETURN NIL)) (T 1Ga 20)))
(CUND ({Ew NXATW (QUUTE NCT)I
(PRUGZ (SETQ INPL (CONS NIL INPLI) (FTCHI})
(T (SETG INPL (LCNS T INPL}J))
(CUND ((EJ NXTw (QUOTE IN)) (FTCH))
(T (MESS IMPKDLLM NXTW NILIJ)
(SETC X {(ITMJ}
(CUNU (SYNTAX (GO Z3)i
CONJLL (SETW YH (NCMN X2 )} (RETURN NIL)I)
(SETW INPL (CCNS YH INPLY)
(GU 23)
20 (SETQ YH (SETQC Y {CAR INPL)I) (SETQ INPL (CDR INPL})
L4 (CCND [{NULL INPL)} (RCTURN YH)))
(CSETW NUTF (CaR INPLIJ  (SETG X (CADK INPL)) (SETQ XH NIL)
{SETQ INPL {LLCR INPL))
Z1 (CCND (({ISIN {CAR X) (CAR Y)) (PRCG2
(CUND (NUTH (SET< XH (CUNS (CAK X) XH)J) (T NIL)}
(60 221131
(CCAD ((SETG Y (CCR Y} (GG 21)))
(COND (NGTF NIL) (T (SETu XH (CLNS (CAR X) xr})))
12 (SETQ Y YA} ,
(CUND ((SETQ X (LDK X)) (GG 2114}
(COND €USETQ Y (SETY YH Xnl) {GU 24)))
(KETURN NIL>
DEFINE (U
(RANGES {LAMBDA (FLGH (PRUG (X)
R O(SETG X (CCAS (RANGL FLG) X1
(CUND ({EQ NXTw (QUUTE ANCIJ (PROGZ (FTLH) (GG RIDD)
(RETURN X>
DEFINE ({ :
(DUIT (LAMBUA (F XH YHJ (PROG (X)
(SETQ X XH}
D3 (CCAD ((NULL (CAR YH) 1 (PRDG2 (PRINT RLKG) {GU D41}))
D1 (CCND ((NULL {CAK X3) (PRUG2 (PRINT NLRG) (GU 02)1))
(F (CAR X} (CAR YH))
U2 (CGND ((SETw A (CDR X}} (GG 1))
(SETQ X XH)
£4 (CCNC ((STw Yh (CLR YHI) (GO ©311)
(RETURN NIL>
DEFINE ((
(FAU¥ (LAMBOA (X) [PRUG NIL
N [COND {[NUMBEKP {UCAR X)) {RETUKN (CAR X))}
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(RETUR&(afig X (Cur X}) (GO NI
VDEFINE (I
(LIS (LAMBDA NIL (PRUG (Y X)
(CCND ((EW NXTw EMRK)
{COND ((SETw X LINESJ (RETURN (PRUG NIL
L (PRINT (CAR X))
(COND ({SETR X (COR X)) {GUL LI
(T (MESS (QUCTE $$SNCTHING TC LISTS) BLANK T)3)))
(CCND (ONOT (AND (NUMEERP (SETQ X (FTCHID) (FLIXP X2 D)
{MESS (QUUTE $$3LINE NUMBER MUST it INTEGERS) BLANK NIL })
(T
CCOND (ENUT (ANC (SETJ Y (LINESRCH X 03) (k2 (CAAR Y) X))}
(MESS (JULTE $$SNOTHING TG LISTS) BLANK Ti
(T [RETUKN (PKINT {CAR Y}}))3)) >
JEFINE (L .
(LINESRCH {(LAMBLA (L FLG) (PRCC (Y 2)
(COND ((OR (NULL L INES) (GREATERP (CAAR LINES) L))
(RETURN (COND ({OR (NULL FLG) (NUMBERP FLG)) NIL)
(T {CSETGQ LINES {CCNS LINE LINESIIII))
({EQ (CAAK LINES) LI
(RETURN {COND ({NULL FLG) (CSETQ LINES (COR LINES)))
((NUMBERP FLG) LINES)
(T (RPLACA LINES LINE))IND))
(SETW Z LINES) {SETQ ¥ {CCR LINES))
M {CCRD ((UK (NJULL Y) (OREATERP (CAAR Y) L1}
(RETURN (COUND (LUOR (NULL FLG) (NUMBERP FLG)) WNIL)I
{T (RPLACD Z (CONS LINE Y)))}})
{(EQ (CAAR Y ) L)
{(RETURN (CUND CINULL FLG) (RPLACO Z {CDR Y)))
({NGMEERP FLG) ¥
(T (RPLACA Y LINEIIIIN)
(SETQ £ Y) (SETQ ¥ (CUR Y}) (G M>
DEFINE ((
(RNN (LAMBDA NIL (PROG (X Y)
(CONL ((Eg NXTW cMRKIJ (SETQ Y LINESIH]
(ENUT (AND (NUMEERP (SETW X (FTCR) ) (FIXP X))}
(MESS LNMI BLANK NILJJ
(UNOT {AND (SETWQ ¥ (LINESRCH X 0)) (EQ (CAAR Y) X)i)
(MESS {QUOTE $$$NU SUCH LINE NUMBEKS) BLANK NIL) )}
(CSETG THISLINE Y) (CSETQ LINE (CDAR THISLINE))

(CSETQ SES NIL) {CSETQ RUN T>
WEFINE ((
{STEP (LAMECA (X) (PRUG NIL
(FRINT SLANK) (PRINL (QUUTE STOP))

(PRINL (COND (X (WUCTE $33% AT LINE $) (T (QUCTE $$% AFTER LINE $)3))
{PRINT (CAAR THISLINE))
(CSETQ THISLINE NIL) (CSETQ 585 T)  (CSETQ RUN NIL)
(BEGIN {(QUOTE MAIN) NLILD>
JEFINE (( ‘
(LETT (LAMBDA NIL (PRGG {w Z X YI
(CONG {INOT [ATOM NXTFW)) (MESS ‘ _
(QUCTE $$$ILLEGAL ALGEBRAIC VARIABLES)
BLANK NIL}))
(CSETQ AXP T) {SETQ X (FTCH)}
(SETQ w (GET X PVAL))
(COND ((NOT (ATCM NXTwl) (PRGG NIL
{CCND ((NUMBERP w) (MESC AVCS X)}))
(SETY X (CCNS X NIL))
(CSETQ ULUTP (COUNS NIL AIL)) {PPOP (FTLHI)
(CSETQ OUTP (CDR UUTP})
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SYNTAX (RETURN %UTP))J
(evii OQuLTP} ) }

K O(NULL W) (NUMHBERP w)) NIL)
(T (MESC AIMS X))
{CCMC ((EQ NXTwWw EQSIGNY (FTCH))
(T (MESS IMPRULIM RxTw NIL}))
{COND ((Ew NXTW EMRK)} (MESSCP)))
(SETQ Y (CUNS NIL NIL))
D (CCND {1{EG NXxIm EMKK) NIL)
(T (PRGGZ (APPENDL Y (FTCH)) (GG D))
(CSETG axP NIL) (CSETW UUTP (CONS NIL NILJ})
{PPUP (CDK Y)) {CSETY CLTP (CLR CUTP))
(CCND (SYNTAX {RETURN UUTREJ}))
{SETQ ¥ (EVLL ouTP))
(COND (CATOM X) (CONO C(CNUNM Y3 (DEFLIST (LIST (LIST X Y)) PVAL))
(7T NILDD)
({SETG w (5ASS £ W)) (RPLACD W Y))
(T (DEFLIST (LIST LLIST (CAK X) (CONS (CONS Z Y}
(GET (CAR X3 PVALI)YI) PVAL)))
{CSETG KFLG T) (RETURN Y>
DEFINE ((
(AEXP (LAMBDA (INP} (PROG (FLG INC X)
(CUND (CEQ (CAR INP) PLUSS) (SETQ INP {(CDR INP)))
{(EQ (CAR INP) DASHI (PRUOG2
(CSETY STAK (CONS (CUNS {QLOTE NEG) 4) STAK))
{SETC INP {COR INPIII))
A (COND ({NULL INP) (CGND (FLG (RETURN CUTR)}
(T (MESS IAE BLANK NILJ)))
{LATCM INP) (SETG IAP (CCNS INP NIL D))
({SETW X (CAR INPI))
(COND ((ATCM X)
(COND ((SETQ INC (SASSGLC X QPSP NIL)Y) (PROG NIL
(COGND (INULL FLG) [MESS TAE BLANK NIL)}))
C (COND ((LESSP (CCAR STAK) (CoR INC))
{CSETQ STAK {CONS INC STak) )}
{T (PROGZ2 (PRUGZ {(CCND {(NULL {CAAR STaK})
(RETURN (SETQ FLG NILI))
(T (APPENDL OUTP (CAAR STAK) I}
(CSETQ STAK (CDR STAKJIII{GU C¥)))1)
{T (PRUOG2 (PRLG2 (CCND (FLG (MESS IAE BLANK NIL)))
{APPENDL CutP X)I
{COND ((AND (CDR INP) (NOT (ATOM (CADR INPI})
(NUT (NUMBERP X)))
{(PKOGZ (PPUP (CAR [SEFJ INP (CDR INP}I})
(APPENDL GUTP SUBI))Y) )D)
(T {(PPLP Xi1)

(SETQ FLG {NOT FLG) {SETQ INP (COR INP)) (GO A>
OEFINE ({
(PPLP (LAMBLA (X) (PROG NIL :
{CSETJ STAK (CONS (CONS LPAR Q) S5TAK)) (AEXP X}

F (CCND ((EQ (CAAR STAKJ LPAR) (RETURN (CSETQ STAK (CUR STAK))) )}
(APPENUL UUTP {CAAR 5TAK}) (CSETQ STAK (COR STAK I (GO P>
VEFINE ((
(CALM (LAMBCA (X
(COND ((NUMBERP X) X)
(T (MESC AIMS SLANK>
DEFINE (I
(CARY (LAMBDA (Xi
(COND ({NUT (ATCM X)) X)) (T (MESC AVCS BLANK>
UEFINE ((
(EviL (LAMBDA {(XJ (PROG (Y VALl
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Te STAK NIL)
D ((SASSUC {(Cak X OFSP WNIL) (PRUG NIL
(SETw ¥ ({AR X))
(SETE VAL
(COND ({EBw ¥ PLUSS) (PLLS {CNhNUM {(CADR STAKI)) (CivuM (CAR STAK))))
{(EG Y DASH) (DIFFERENCE(CNUMICAUR STAK}ILCNUMICAR STAKYI )
{((Ew ¥ STar} (TIMES (CNJUM{CADR STAK)) (CHNUM (CAR STAK) )}
{(Ew Y SLASH) (wIVILE (CNUM{CADK STAR)} (CNUM (Lax STAKI)))
(CEQG Y {(QuiTe %)) {C3Ko {({MINUSP {CWNUM {LaOR STAKI)))
(MESC (QUGTe $$$EASE IN EXPONENTIATICN CANNOT DE NEGATIVES)
BLANK) ) (T (EXPT (LADR STAK) (CNUM (CAR 3TAK)}I M)}
((EQ Y Sube) (COND ((3eTQ VAL (SASS
(CNuM (Cak STAK) ) (CARY (CAUR STAK) )Y} (CDR VALY
(T (MESC {(QuOTc
) S 5ARKAY VARTAELE RAS NJ VALUES) BLANKI))))
(T (MINUS (UNUM (CAn STAKRI )
{COND (TEG Y (QUUTE WeG)) (CSETR STAK (Cur STAK}))
(T (CSETQ STAK (CUUR STAK )}
(CSETW STAK (CUNS VAL STaKk)) )
C{NJUMBERP (CAR X)) {CStTa STAK (CUNS (CAR X) STAKI))
((SETW Y (GET (CAR X) PVAL)) {(CSETW STAK (CONS Y STAK I
(TIMESCIGQUUTE $%3ARITHMETLIC UK ARKAY VARIABLE HAS NU VALUL ... §)
(CAR X3 )))
(COND ((SeTQ A {COKk X)) (GC £}
(RETURN {(CAR STAK>
DEFINE 1 (A
(GOTC (LAMBLDA NIL (PRCGG (Y &)
{CONL ((EW NXTw (QUOTE Tuld) (FTCH))
(T (MESS IMPRULIM NXTw NIL)))
{COGND (INUT (AND INUMBERP {574 X (FTCH))) (FLXP X))}
(MESS LNMI olLANK NIL))
(SYNTAX (KRETURN NIL))
CONCT (ARG (SETW Y (LINESRCE X O)) (BQ (LAAK Y} X))
(MESC (WUUTE $358NL SUCH LINE NUMBER..s %) X) 3}
(CSETw THISLINE Y) {LSETG Llive (COARK THISLINE>
JEFINE
{ SASS (LAMBDA (X Y} (PReG NIL
S {CONL ({(AULL Y] (KETUKN NIL))
((eQUAL tLUAAR Y) X} (HETURN (CAR Y}))1))
(SETW ¥ (CDR Y1) (6O S>

veFIne
(GETVAL {(LAMBDA (Y} (PRSG NIL ‘
(CSETQ UUTP (CUNS NIL NIL)) (PPUP Y)

(CSET@ LUTP (Lur OUTP))
(CCND (SYNTAK (RETURN OUTPII)
(RETURN (EVLL OUTP>
JEFINE (L
(PRYN (LAMBDA NIL (PRGG (X}
{CUND {(tyg NXTw EMRK} (MESSUP)))
P LCSETe AXP TJ)  {SET X (FTCHI) (LSETQ AXP NIL)
(COND ({UT (ATOM NXTwl) (SETW A {CULNS X (CUNS {FTCHI NiL )i ))
{CUNU [SYNTAX NIL) (T UPRINT (LETVAL X)) 1))
(CCRNC t{Ew NXTh EMRK) (RETURN NIL)) (T {(GU P>

MALN NIL
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Place Previous Command
in Command Buffer with
Recorded Sequence Number

APPENDIX II

LOGICAL FLOWCHART OF THE TAXL INTERPRETER

Yes

Fetch From
Terminal

r

Set
Sequence
Flag

!

Record

Sequence
Number

Reset

Sequence

Flag

Fetch

Command-with Sequence
Number given by instruc-
tion counter from command

buffer

Set Instruction Counter

to Sequence Number of
Next Command in Command
' Buffer

Switch on
Key word

@D E DD

SOOO®E®

159483
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Get Data
Items

Sequence
Flag Set

For Each Label
in Data Item:

Create Node with
no Labels, no
Father, no Sons

y

For Each
Data Item:

v

Add Data Item
to List

Add Pointer to Label
onto Label List
at Node

y

Add Pointer to Node
onto List of Uses
on Label's Property
List

Get Data
Item

Get
Word

v

Add Word
to List

o Yes
No

Return List
of Data
Items

Delimiter
(See Table 2)

Return List
of Words
In Data Item

159484
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No

Error

RC

For Each Node
in Range:

For Each Label
in Data Item:

v

Add Pointer to
. Label onto Label
List at Node

v

Add Pointer to Node
onto List of Uses on
Label's Property
List, if not Already
there :

No

Error .—’( : )

Sequence

Flag Set

For Each Node
in Range:

For Each Labhel
in Data Item:

v

Remove Pointer to
Label from Label
List at Node

v

Remove Pointer to
Node from List of
Uses on Label's
Property List,
unless Label occurs
Again at Node
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Get Ra\nge1

Sequence
Flag Set
. Yes

Error

@

For Each Node N
in Rangel:

" For Each Node M

in Ra.ngez:

Add Pointer to M
onto List of Fathers
of N

v

Add Pointer to N
onto List of Sons
of M

Create a copy of the
complete structure frem
every node in range,
downward (along lists

of sons) toward leaves

of tree. Redefine range,
as the root nodes of this
copy. For each node in
(the new) range, make the
list of fathers null

1594B6
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Remove Hierarchical Connections
from Range, to Range2

For Each Node M

in Range2:
For Each Node N lf‘or Each Node N
in Rangelz in Rangelz
For Each Father M For each father
of the Node N: f of the Node N Yes No
Through which N
J is Within M:

Remove the pointer l
to the son N from
the list of sons of M

Remove the Pointer
to the Son N From
the List of Sons of

! v

. Remove the Pointer to
?:&Z;:e O{L"; tN?xfll the Father f from the
List of Fathers of N

Remove Hierarchical #
Connections from
Range1 to Range 2
159487
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Sequence

Flag Set

The Remainder
of this
Algorithm is
Recursive and
will be Stated
in Words.

The accompanying
Diagram wili Help
to Clarify the
Algorithm

Let nodes n
and { be Range;
and Rangeso
respectively

Define Range,, to
be all the Roots
of the Tree

—p 1.

2.

Remove Hierarchical Connections
from Bangel to Range2

If n now has at least one
father remaining, then quit
(A nonclosed subtree has
been encountered)

Otherwise,

Remove all labels from n
(See flowchart for unlabel)

Check each of the sons of n
(i.e., all nodes p)

If p has only one father
(i.e., n), tﬁen, recursively,
go to Step 3 with argument p.
(The algorithm remains in
this recursive loop as long
as a nonclosed subtree is
not encountered.

If p has more than one father
(i.e., there is a node q in
addition to n), then recursively,
go to Step 1 removing con-
nections from p to n.
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Save

Sequence
Get Range Flag Set

No

For Each Node
in Range:

Node and

Subtree to Secondary
Storage

v

Copy Usage Information
for Each Label in the
Subtree into an External
Dictionary, Lself Saved
on Secondary Storage

Node

Restore

Yes Get Range,

End of
Line

"ol

Yes

Get Range2

Sequence
Flag Set

Yes

Sequence
Flag Set

Yes
Error

R

For Each Node
In Range:

EommDnode

(and Subtree) from
Secondary Storage

v

CRut Dode

into Rangez

For Each Node
In Range:

(and Subtree) from

Secondary Storage

Remove Node
{and Subtree})
From Secondary
Storage

¥

Identify Range on
Secondary Storage

in the Same Manner
Ranges are Identified
in Primary Storage

'

Copy Usage Infor-
mation for each
Label in the Sub-
tree on Secondary
Storage from the
External Dictionary
to the Internal
Dictionary (the use-

list)
!

Copy Subtree to
Primary Storage

v

Remove Subtree from
Secondary Storage

159489



CEDERCDNED
Range No

+ Yes

For Each Node Print Number Set Instruction Set Instruction Set Run
in Range: of Nodes Counter to Counter to Sequence Flag
in Range Value of Number number of first ‘
i Command in Command
' Buffer
—
[
~ Print Labels "
i
at the Node
l <4
Recursively, Reset Run
Visit the Sons Flag

139410



