
SLAC-119
UC-32
(MISC.)

TAXL--A SIMPLE HIERARCHICAL DATA STRUCTURE

MANIPULATION SYSTEM

SHELDON I. BECKER

STANFORD LINEAR ACCELERATOR CENTER

STANFORD UNIVERSITY
Stanford, California 94305

PREPARED FOR THE U. S. ATOMIC ENERGY

COMMISSION UNDER CONTRACT NO. AT(O4-3)-515

June 1970

Reproduced in the USA. Available from the Clearinghouse for Federal Scientific
and Technical Information, Springfield, Virginia 22151.
Price: Full size copy $3.00; microfiche copy $.65.

TABLEOFCONTENTS

Chapter

I. INTRODUCTION .

II. THENATUREANDADDRESSINGOFTHEDATASTRUCTURE

A. The Data Structure.

B. The Data Item.

C. The Range

1. Method I

2. Method II

3. Method III.

4. Method IV

D. Total Range Specification . .

E. Subtree Context Specification

1. Condition I

2. Condition II

3. Condition HI.

F. Conclusion

HI. DESCRIPTION OF THE PRIMITIVES.

A .. CREATE

B. LABEL

C. UNLABEL.

D. COUNT

E. WRITE

F. PUT

G. COPY.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . 0

. . .

. . .

. . .

. . 4

. . .

. . #

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Page
1

6

6

6

8

9

11 ,

12

15

17

18

18

21

21

23

24

26

28

29

31

32

35

37

.
- 111 -

Chapter

H. SEVER.

I. DELETE

J. SAVE

X. RESTORE

L. Conclusion

Iv. THE TAXL/BASIC SYSTEM ,

A. Syntax Analysis

B. Command Classification

C. Interface Between TAXL and BASIC

D. Responses Foilowing the Execution of Commands

E. Conclusion

v. AN IMPLEMENTATION AND ITS ANALYSIS

A. Node and Dictionary Formats.

B. The Computation of Ranges.

C. Reducing Range Computation Time

D. Memory Usage

E. Access Time

F. Operation Time

G. System Measures ,

H. Conclusion

VI. jjTJTURE WORK AND SUMMARY

APPENDIX I

APPENDIX II .

Page

41

44

48

48

49

50

52

53

57 ’

63

64

65

68

69

73

76

80

84

84

89

92

97

110

- iv -

1.

2.

3.

4.

5.

LIST OF TABLES

The Primitives.

Reserved Word List

Command Classification.

Storage Requirements for a Hypothetical Data Base :

System Measures. -.

Page
. . 25

. . 27

. . 54

. . 81

. . 85

-v-

LIST OF FIGURES

Page

la. Directed multirooted multibranching tree. 7

lb. Directed acyclic graph . 7

2. A Personnel file . 10

3. Format of a node in the data base 66

4. Format of an atom used as a label in the data base. 67

5. A portion of a data base demonstrating the utility of below

and above. 75

- vi -

CHAPTER I

INTRODUCTION

The work described here attacks two problems: the lack of agreement on the

nature of certain aspects of nonnumeric computer processing, and the educational

bottleneck resulting from the large numbers of people who know little about com-

puters but who wish to see how they might be used in their work.

The first problem is a generic problem in the nature of nonnumeric processing.

The essence of numeric calculations and operations has been known for some time,

and the advent of high speed digital computers has solidified these concepts. Almost

all general purpose digital computers have facilities for doing arithmetic, and

depending on the size and cost of the machine, these facilities can be quite elaborate.

This should not be surprising since the first uses to which digital computers were

put were almost exclusively numerical calculations.

The notion that a general purpose digital computer can be a very general

symbol manipulator began to grow from the early days of computing and is now

an accepted notion throughout most of the computing community. As yet, however,

there has been very little agreement on what constitutes general symbolic manipu-

lation, i.e., nonnumeric calculation. This lack of agreement can be seen at the

hardware level by the fact that there has been no unanimous introduction of pieces

of hardware to do nonnumeric processing, as opposed, for example, to the

existence of adders for numeric processing. On the software level, the great

variety of “list processing” languages such as LISP (McCarthy [1962]), SNOBOL

(Griswold [1968]), and L6 (Knowlton [1966]), and “associative” languages like

LEAP (Feldman [1969]) and ASP (Lang [1968]) indicates that there are certainly

divergent opinions on the nature of nonnumeric processing. One of the purposes

-l-

of this work, then, is to try to shed some light on a representation and subsequent

manipulation of nonnumeric data.

The second problem with which this work deals is related to the fact that

computers can be very useful tools in many areas, including both mathematical

sciences and nonscientific fields such as history, government, sociology,

law, etc.

The phenomenal growth of accessibility to computers and the number of

people anxious to use computers have caused quite a bottleneckin the facilities

for training these people, Introductory programming courses in universities

and colleges are almost always overcrowded as students in the physical sciences

and, more and more often now, the social sciences realize that computers might

be able to help them in their own fields.

These immense numbers of people, who are eager and should learn how to

use and how not to use computers in their own work, require that new methods

of teaching and learning these skills be explored. The traditional university

course, for example, lasting from at least several weeks to a quarter or se-

mester is quickly becoming inadequate to serve the volume of people eager to

acquire the knowledge of some programming language which might be useful to

them. The length of time which is required for the computer novice to learn

many of the computer languages and systems, with their increasing generality

and complexity, is usually more than he and his instructor wish to spend.

Kemeny and Kurtz at Dartmouth have attempted to alleviate this problem by

designing and implementing an interactive computer language and system called

BASIC (Kemeny [1967]). The simplicity of the system and ease with which the

language canbelearnedareevidenced by the fact that a very short formal lecture

session is usually all that is necessary for the novice to begin writing programs

-2-

that are useful to him. The interactive nature of the system allows the novice to

use the system at his leisure and to search for answers to questions which occur

to him about the system by experimentation. The great utility of this approach

to the training and teaching problem is attested to by the great number of BASIC

systems which have been adopted by many computation centers and the wide sup-

port and use these systems are receiving from their users.

There are a number of problems for which the BASIC language and system is

inadequate, but for these problems there are more general and more complex

languages and systems which the novice can learn and use. However, for a

great many common everyday problems, BASIC is entirely adequate, and the

ease with which it can be so used bears strong evidence that BASIC’s approach

to the computer education bottleneck is a good one.

This work, then, is an attempt to combine partial solutions to these two

problems: to shed further light on the nature of one aspect of nonnumeric proces-

sing, and to aid in reducing the educational bottleneck in that area.

The vehicle for this study is the design and test implementation of a non-

numeric data processing capability suitable for inclusion with a BASIC system.

It is felt that such an addition would greatly enhance the already great appeal of

BASIC to those nonscientific users who already view BASIC as a useful tool for

the solutions of their numeric problems.

In trying to follow one of the rules for the development of BASIC, which was

to find those few primitives which were not only basic and useful, but also of high

pedagogic value, it was decided that the majority of current nonnumeric list-

processing languages were too much data-structure oriented rather than problem-

solving oriented. Hence, while these languages contain almost all the basic

primitives for list processing, they are too difficult to use and of too little pedagogic

value for those novice users for whom the nonnumeric capability is intended.

-3-

As different in format and applicability as the existing nonnumeric lan-

guages are, there is a common motive that runs through all of them. In one

form or another, all of these languages emphasize the relationships between

data as opposed to emphasizing the data themselves. In IPL (IPL [1961]) and

LISP (McCarthy [1962]), for example, the sublist concept and associated mecha-

nisms for creating, manipulating, and destroying such sublists deals with the

relationships between not only atoms of data but also between other relationships.

Much the same can be said for the pointer structuring capabilities in ALGOL W

(Bauer [1969]) and in L6 (Knowlton [1966]), the basis for which was Wirth and

Hoare’s records and references (Wirth [1966]) and ROSS’S plex processing

(Ross [1961]). It certainly appears that the ability to specify relationships

which exist among data and to manipulate these relationships are at the heart of

nonnumeric processing.

Having ascertained the centrality of the concept of relationship specification

and manipulation to nonnumeric processing, we turn to finding those few primi-

tives which are basic, useful, and of high pedagogic value. More explicitly, when

considering nonnumeric processing and the relationship concept, the problem is

to focus on some hopefully small subset of all possible relationships in order to

simplify both the language and the concepts involved in teaching. To this end, I

have chosen one type of relationship, the hierarchical relationship. Webster

(Webster 11964’) defines %ierarchy” as “the arrangement of objects, elements,

or values in a graduated series. n Notice that the emphasis is on the arrangement

of the objects rather than the objects themselves. The graduated nature of a

hierarchy as defined, as well as the intuitive feelings of what constitutes a

hierarchy,implies the true generality of this relationship: it exists or can easily

be made to exist among data in a great many different kinds of data bases. In

addition, two relationships can be different in their meaning but still be hierarchical.

-4-

A.

RAB

B

RBC

c

In other words, RAB and RBC can both be hierarchical relationships but

having different semantic content depending on the data A, B, and C. For example,

A could describe a professor, B could describe his secretary, and C could describe

her salary. The exact nature of the relationships is somewhat subjective and

might be interpreted slightly differently by different users once the data A., B,

and C are known; nonetheless, both relationships are hierarchical, and this fact

is all that should be required for the user to specify, query, and manipulate the

relationships and the data. More will be said about this and more examples will

be given in later chapters.

Having limited the type of relationship, it remains to determine how to specify

that this relationship exists or does not exist between data, how to query the data

base in terms of the relationships which do or do not exist, and how to manipulate

these relationships and so indirectly the data. The manner in which these operations

should be specified should be simple and of high pedagogic and mnemonic value in

order that the goals achieved in BASIC can be achieved here as well. Once these

goals are met, the resulting system will be able to serve as both a data manage-

ment system and an information retrieval system which is easy to use and easy

to learn. The following chapters discuss and explain one way that this can be done.

-5-

CHAPTER II

THE NATURE AND ADDRESSING OF THE DATA STRUCTURE

A. The Data Structure

The data structure type first chosen to represent the hierarchical relationships

discussed in the previous section was a multirooted multibranching tree with the

arcs of the tree oriented away from the roots (see Fig. la). The nodes of the tree

contain the data items and a directed path from node X to node Y in the tree indi-

cates that node X is in a hierarchically superior relationship to node Y. Stated

differently, node Y is within the hierarchical context of node X. If no directed

path exists between node X and a node Z, then no hierarchical relationship exists

between node X and node Z. Notice that node X and node Y do not have to be

adjacent to one another, i. e., other nodes may exist along the path from node X

to node Y.

For reasons of generality, the multirooted multibranching tree data structure

was extended slightly to directed acyclic graphs. This data structure can be

conveniently visualized as a multirooted multibranching tree, some of whose

branches might have grown together (see Fig. lb). The nodes of the directed

acyclic graph still contain the data items, and what was said previously about

the existence or nonexistence of a hierarchical relationship between two nodes

still holds.

B. The Data Item

As previously noted, each node of the graph contains a data item. A data

item is any semantically meaningful label or set of labels the user chooses.

Syntactically,

<label > : : = < identifier >I < number >

<data item > : : = <label>l< label> <data item>

-6-

4 Z x
Directed multirooted multibranching tree

(4

Directed acyclic graph
(b)

FIG. 1

-7-

where the syntactic classes <identifier> and <number> are as defined in the

Algol 60 report (Revised Report 1963). Duplicate labels may occur within a data

item.

in some complex retrieval systems, there is a syntactic distinction made

between the semantically different concepts of a category of some kind and a

particular instance of that category when referring to data items at nodes in a

data structure. For example, ‘University” can be thought of as a category of

which fStanfordlt and nTexasn are instances. The system does not distinguish

between labels which can denote categories and labels which can denote instances.

The distinction between the concepts of category and instance is fairly easy to

make for professionals in the computer field. However, for the potential user

of this system, these concepts and their distinction may appear to be somewhat

arbitrary and beside-the-point, complicating rather than simplifying the use of

the system. For this reason, there is no syntactic distinction made between

category and instance within data items in this system, and whatever semantic

distinction exists between the labels which make up a data item can remain com-

pletely within the mind of the user.

Examples

Stanford Lawyer Jones

Stanford University Doctor Lawyer Jones

27 salary

age 27 salary 375.60 dollars per month

C. The Range

One of the basic concepts in this system is the manner whereby a subset of

the set of all nodes in the graph, called a range, is referenced. Most of the

-8-

primitives operate on one or more subsets of nodes, or ranges, and each refer-

ence to a range is accomplished according to a common set of rules. There is

a general principle, the Principle of Greater Specification, which applies when

specifying a range. This principle states that when more information is given

to specify a range, the cardinality of the range, i. e. , the number of nodes ref-

eren.ced,cannot increase because of the added information; more usually, the

cardinality decreases. Simply stated, the more carefully a set of nodes is de-

scribed, the fewer nodes one is describing since only those nodes which satisfy

all the descriptions are included in the range. As the different methods for -

referencing a range are discussed, it will be shown how the Principle of Greater

Specification applies. It will also be seen that each method is a special case of

following methods.

1. Method I

The simplest way of specifying a range is by evoking a label. The set of nodes

which constitutes the range is then all those nodes in the graph which have the

evoked label among the labels which make up the data item for that node.

Examples (see Fig. 2)

Evoked Label Node numbers in range

Student (18, 22, 231

Provost {ll, 16, 17)

Miller (15, 161

University kJ 31

History +

Moses 1171

The nodes in any range always form an unordered set.

-9-

.nford UniversityCzl
/ \

Texas UniversitvC31. &*I

Law Schc101~~~ School of Humanities[61

communicational
Department Department

g Parker Professor
Forsythe

\

/
Ass$iemvost~6~

\

\
\

Mickelson

Sheldon
Becker

Carla West

I

\ Mechanical~21
EllgiI%?ering
Denartment

Note: Salary C~sslfied[2q

Bracketed numbers beside each node
are for identification purposes only
and are not part of the data item at
the node.

Assoc. &ovostpq
Moses

Student kardy@l StudeniLaurelkq

salary $*oPl

1594AZ
FIG. 2--A Personnel file.

.’

2. Method II

Another way of specifying a range is by evoking one or more labels. The set

of nodes which constitutes the range is then the intersection of all those sets of

nodes (ranges) which would arise if each evoked label were evoked alone. The

evoked labels can be in any order. If only one label is evoked, it is seen that

this method of specifying a range is identical with Method I.

Examples (see Fig. 2)

Evoked Labels

Professor Miller

Provost Miller

Assoc. Provost Miller

Engineering Department

Chairman Miller

School of Humanities and
Administration Sciences

Miller Professor

Student Sheldon Becker

Student Sheldon

Student Becker

Sheldon Becker

Student

Sheldon

Becker

Node numbers in range

114

P6\

WI

p, 4

%

Notice that the Principle of Greater Specification holds here. The evoked

label ‘Student” specifies a range consisting of three nodes (see Fig. 2); upon

greater specification, “Student Hardy” for example, the range is reduced to one

node.

- ll-

There is an addition to Method II which can be used when the range which the

user wishes to specify consists of a set of nodes which have precisely the set of

labels the user evokes, and inprecisely the same order. In the usual case, the

range consists of the set of nodes which have at least the set of labels the user

evokes, and in any order. The word “just” occurring before the evoked labels

has pedagogic value in making it clear to the user that only those nodes are sought

which contain precisely the evoked set of labels. “Precisely” or f’exactlyn might

also be used.

Examples (see Fig. 2)

Evocation Node numbers in range

just Student %

just Student Hardy 64

Student Hardy I221

3. Method III

A more complex and more powerful method of specifying a range is by

hierarchical context. As was stated at the beginning of this chapter, since the

data base is a directed acyclic graph, between any two nodes in the graph exactly

one of the following two relationships holds:

(1) there is no directed path between the two nodes

(2) there are one or more directed paths between the two nodes.

Node Y is said to be within the hierarchical context of node X if one or more

directed paths exist from node X to node Y. If no directed path exists between

node X and node Y, then neither node is within the hierarchical context of the

other node. Since the graph is acyclic, node X may never be within its own

hierarchical context.

- 12 -

Let the symbol I’ >‘I indicate that the hierarchical relationship holds, i. e.,

X > Y means that node Y is within the hierarchical context of node X. X $ Y means

that node Y is not within the hierarchical context of node X.

Examples (see Fig. 2)

cs3 ’ [201
WI d PI
[83 > [221

[201 ’ I24
Bol # [23l

631 > [$I

PI 7 Dl
PI 7 IN

The hierarchical relation is nonreflexive, antisymmetric, and transitive.

The third method of range specification is accomplished by specifying two

ranges in order according to Method II. The range thus specified consists of all

those nodes in the first range which are within the hierarchical context of any

node in the second range. More precisely, if RI and R2 are the two ranges

initially specified, then the range R within the hierarchical context of RI with

respect to R2 is defined by:

R = y/y E RIWxeR
i 2

3 x>y
)

In the preceding chapter, it was stressed that simplicity for the user be a

primary goal. Reviewing the second method of specifying ranges, it can be seen

that the data base is being addressed directly in terms of labels which the user

has placed there (the ways in which this placement occurs will be described in the

next chapter). Since these labels are purely the user’s invention, they are semantically

- 13 -

meaningful to him. By allowing him to use these labels to address the data base,

simplicity for him is thereby furthered.

Continuing in this spirit, the following manner of evoking ranges to be

specified by Method HI is suggested:

RI within R2

where R 1 and R 2 are evocations of the two ranges by Method H, in order. The

word “within” is used as a delimiter, suggesting the hierarchical contextual

relationship. Depending on how the user visualizes the data base, delimiters

such as “in” or “underJ’ might be used.

Examples (see Fig. 2)

Evocation

Student within Computer Science

Student within Department

Professor within Stanford

Professor within Humanities School

Professor within Communication

Professor within Administration

Miller within Stanford

Miller within Administration

Professor Miller within Administration

Provost within Administration

Provost within Provost

Node numbers in range

w

i 18, 22, 23;

113, 14, 151

113, 14, 151

PI

fl

(15, 16)

(161

pr

(11, 16, 17)

116, 171

A natural and useful extension of specifying ranges by context is to specify

a set of nodes not within a given context. - More precisely, if Rl and R2 are the

two ranges initially specified, then the range R not within the hierarchical context

- 14 -

of RI with respect to R2 is defined by:

R= ylyeR1~VxeR2, x #y >

The most natural extension for evoking ranges specified in this manner

is to use ‘not within” as the delimiter between the evocation of ranges R I and R 2.

Examples (see Fig. 2)

Evocation Node numbers in range

Student not within Computer Science 122, 231

Student not within Department e,

Professor not within Stanford pr

Miller not within Administration @I

Professor Miller not within

Administration jl5)

Provost not within Administration 6

Provost not within Provost illI

4. Method IV

As Method II is a generalization of Method I, so Method IV is a generalization

of Method III. In the preceding method, a first set of nodes is chosen by specifying

a second set of nodes as context; the second set of nodes modifies the first set.

Method IV allows a third context to be specified for the second set, a fourth context

to be specified for the third set, etc.

In the general case, n ranges RI, R2, . . . , Rn in order are specified by

Method II; n 1 2. The ranges are associated in the following manner:

(R1> (R2> . . . (Rnm29 (Rnul, Rn))---I

Method III is first applied to the ordered pair of ranges R,-1 and Rn. The

result of this application is a range, call it Rn-1 n. Method III is then applied
,

- 15 -

to the ordered pair of ranges Rne2 and Rnsl n, resulting in a range Rnm2 n 1 n. , s-9
Method HI is continually reapplied to successive pairs of ranges until it is finally

applied to the ordered pair of ranges RI and R2, 3,. . . , n-l n. The result of this
,

final application is either null or a subset of the range specified by RI, a range

specified by successive hierarchical contexts. Notice that for n = 2, Method IV

becomes Method HI, and for the degenerate case of n = 1, Method II.

The natural extension for evoking ranges by successive hierarchical context

is to evoke the n ranges by Method II, each evocation delimited by nwithinn or

“not within”:

R1 d1,2 R2 d2 3 R3 ---- dn-l n Rn , ,

where Ri is the evocation of the ith range by Method II and dibl i is either
,

“within” or “not within. ”

Examples (see Fig. 2)

Evocation Node numbers in range

Secretary within Miller within

Administration I4

Secretary within Miller within

Computer Science (1% 23

Secretary within Miller not within

Administration jl% 4

Secretary within Miller not within

Computer Science 124

Student within Mechanical Engineering

not within Humanities within Stanford {22, 231

- 16 -

Notice that the Principle of Greater Specification holds here. Also notice

that the data base is still being addressed in terms of labels which are semantically

meaningful to the user and in a manner which is very suggestive of the relationships

which the user visualizes as holding between his data.

D. Total Range Specification

Since Method IV is a generalization of all the preceding methods, and the

distinction between the methods will often not be needed, the combination of all

the methods, i.e., Method IV, will henceforth be called the specification of a

range by hierarchical context. Observe, however, that the contexts which are

given are always hierarchically superior to the nodes which are being specified.

In terms of visualization of the data base as drawn, for example, in Fig. 2, the

contexts are always “above” the nodes which are being specified. Often, it is

useful to be able to further qualify the nodes to be specified by looking at those

nodes “below” the nodes which are being specified, i. e., those nodes which are

hierarchically inferior to the nodes being specified.

To specify a range then, a set of nodes is first specified by hierarchical

context. If it is not desired to further qualify the nodes so chosen by hierarchical

context, then this set of nodes is the range. If it is desired to further qualify the

nodes thus chosen by hierarchical context by checking for some condition or

conditions which might exist in nodes hierarchically inferior to the nodes chosen

by hierarchical context, this specification, to be described shortly and to be

called specification by subtree context, is then given. It should be noted that

specification by subtree context is specification by predicate, a well known method

of naming sets. Specification by subtree context asks whether or not some condition

holds within the subtrees of those nodes chosen by hierarchical context. Every

node chosen by hierarchical context whose subtree meets the condition (or

- 17 -

conditions) named by the subtree context specification is retained in the range;

all nodes which do not meet the condition (or conditions) named are discarded

from the range.

E. Subtree Context Specification

Three conditions have been chosen to be used in the subtree context speci-

fication. One condition checks for the existence of a node (specified by Method IV)

within the subtree. A second condition, which is a partial generalization of the

first, checks for the existence of a given number of nodes (specified by Method IV)

within the subtree. The third condition checks for the existence of a node, one

of whose labels is numeric and the value of which is compared to a given number,

within the subtree.

Within the subtree context specification, any of the three conditions can be

evoked, or any combination of the three conditions separated by the logical con-

nectives A.ND and @R can be evoked. The unary logical operation N@T is built

into the conditions and need not be explicitly provided.

The evocation of a range, therefore, consists of a specification by hierarchical

context optionally followed by a specification by subtree context. If the latter is

present, the hierarchical and subtree specifications are separated by the delimiter

“wherever. ”

In BNF:

<range> : : = <hierarchical context specification> 1

<hierarchical context specification>

wherever *subtree context specification>

1. Condition I

As stated previously, Condition I allows the user to check for the exis-

tence of a particular node, or hierarchical configuration of nodes, one of

- 18 -

which must be within the subtree of the node chosen by hierarchical context.

Method IV is used to specify a set N of nodes. Every node which is specified by

hierarchical context and which has within its proper subtree (i. e., hierarchically

inferior to it) at least one node in N is retained in the range. Every node which is

specified by hierarchical context but which does not have within its proper subtree

at least one node in N is not considered to be in the range.

What is required for Condition I, then, is a specification of a temporary

range N by Method IV, the nodes of which are then sought within the subtrees of

the nodes specified by hierarchical context. If the latter set of nodes is called

M, then the range is given by:

R= xlxeM/\3ryeN3x>y
{)

In the evocation of a range using any of the three conditions (which all use

Method IV to specify the set N), it is necessary to make clear to the user that a

condition is sought, the result of which is essentially tryesll or %ol’, i. e. , a

predicate. To this end, the word “isn is inserted before the first occurrence of

the word “within” in the Method IV specification used in the subtree context condi-

tion. Observe that since Method II is a degenerate form of Method IV not involving

the use of the word “within, II the above word insertion is not always able to be

done. (See the third and last example below.)

Examples (see Fig. 2)

Evocation Node numbers in range

Department within Humanities

wherever Secretary Mickelson

is within Professor Miller

Provost wherever Carla West

is within Provost

Provost wherever Carla West

- 19 -

ASSOC. Provost wherever Carla West

is within Provost

Department within Stanford wherever

Secretary is within Department

Department within Stanford wherever

Secretary

Ranges including the negation of Condition I can also be specified. In this case,

every node which is specified by hierarchical context and which does not have

within its proper subtree at least one node in N is retained in the range. Every

node which is specified by hierarchical context which has within its proper subtree

at least one node in N is not considered to be in the range. More formally:

R=
-I

xlxeMr\VyeN, x3 y
1

The evocation of a range using this form of Condition I is accomplished by

inserting the words “is not” before the first occurrence of the word nwithinl’ in

the Method IV specification in the subtree context condition. The meaning of the

word %otn following “is” essentially has the meaning “it is not the case that . . . I1

and should not be confused with the use of the word “not” first described in the

discussion of Method III. For example, in the first example below,

N = (23 - subtree context

M = (9, 101 - hierarchical context

Node numbers in range

Examples (see Fig. 2)

Evocation

Department within Humanities

wherever Secretary West is not

within Professor within

Department

Department within Stanford

wherever Secretary is not

within Department (9, 12, 4

- 20 -

2. Condition II

Condition R allows the user to check for the existence of a given number of

nodes of a certain specification (by Method IV again) within the subtrees of those

nodes specified by hierarchical context. What is required then is a temporary

range N specified by Method lV, a relational operator P(e.g., =, # , >), and a

number, q. Every node in M(i. e., those nodes specified by hierarchical context)

which has within its subtree a number of nodes in N which stand in the given

relation P to the given number q is retained in the range. Any node in M which

does not have within its subtree a number of nodes in N which stands in the given

relation to the given number is not considered to be in the range. More formally,

if C is the set cardinality operator, P is the given relational operator, and q is

the given number, then

R= {x[xtM~Vy EN, x>y A C(N) Pq}

The evocation requires some word which denotes that a cardinality is being

considered. The word “count” has been chosen both because of its inherent

semantic content and because of its use in one of the primitives which is explained

in the next chapter.

Examples (see Fig. 2)

Evocation

Department wherever count

student 5 3

Department wherever count student

within Department = 2

Node numbers in range

(9, 10, 12, 201

b4

3. Condition III

Condition RI allows the user to check for the existence of ;. node, at least

one of whose labels is numeric and the value of which stands in a given relation

- 21 -

P to a given number q. This condition can be used, for example, to check the

values of ages or salaries in a personnel file.

As with the first two conditions, a temporary range N is specified by Method

IV. Every node in M (i.e., those nodes specified by hierarchical context) which

has within its subtree a node in N which has at least one label which isnumeric

and whose value stands in the given relation P to the given number q is retained

in the range. If a node has more than one numeric label, only the first will be

considered. Any node in M which does not have within its subtree a node in N

which has at least one label whichis numeric and whose value stands in the given

relation P to the given number q is not considered to be in the range. More

formally, if V is the value operator, i. e. , a function whose argument is a numeric

label and whose value is the value of the label, and if U is a predicate whose

argument is a label and whose value is true if and only if the label is numeric,

then the range R is defined by

R= (x/xeM*gyeNs (x>y A gQey a(U(Q) *V(Q)Pq))}

Examples (see Fig. 2)

Evocation Node numbers in range

Student within Stanford wherever

Salary > 250 122, 231

Student within Stanford wherever

Salary > 350.25

School wherever Salary within

Professor > 1000

124

B

School wherever Salary within

Student > 300

- 22 -

F. Conclusion

It can now be seen that there are many ways to specify a range, and that the

Principle of Greater Specification applies within each of the methods and conditions

as well as over all of them. The user need only specify as little context as is

required to choose those nodes toward which he wishes to draw attention. Greater

specification can only reduce the number of nodes towards which he is drawing

attention. In addition the data base is being addressed by labels which have semantic

content to the user, in conjunction with English language words and forms which

appear to have high semantic content with respect to the data base attention

focusing which occurs.

Thus far, no attempt has been made to explain how ranges are used once

they have been specified. The next chapter explains the use of the primitives

which build and manipulate the data base. These primitives operate on ranges

as specified by the rules explained in this chapter.

- 23 -

CHAPTER ID

DESCRIPTION OF THE PRIMITNES

The preceding chapter described methods whereby a range, i. e., a set of

nodes in the data base, may be specified. Specifying a range simply focuses

attention on a particular set of nodes; no nodes are added or deleted from the

data base nor are any connections between nodes altered. In this chapter, a set

of primitives for adding and deleting nodes and altering connections between

nodes will be explained. Which nodes are affected by the primitives is determined

by specifying as many ranges as each primitive requires.

It was seen in the preceding chapter that attention is focused on a set of nodes

by citing labels which the user has specified and therefore have semantic content

for him along with English words which are highly suggestive of the relationships

which exist among the user’s data. Continuing in this vein of making the language

and system easy for the user to learn and use, it will be seen that each primitive

is easily identifiable by an English keyword which is highly suggestive of the

effect the primitive has on the data base. Table 1 lists the primitives by their

keyword and gives the use of each.

The primitives are, of course, not absolutely primitive. There is a continuum

of primitiveness, and a choice of what part of the continuum from which to choose

any system’s primitives must be made. The choice depends on the use to which

the primitives will be put. If the primitives are too primitive, too many steps

will be necessary to do any useful work. On the other hand, if the primitives

are too general, the control over the structure being manipulated by the primitives

will not be fine enough. These considerations have been taken into account when

choosing the point along the continuum from which the primitives given in Table

1 were taken.

- 24 -

PRIMITIVE

CREATE

LABEL

UNLABEL

WRITE

COUNT

PUT

COPY

SEVER

DELETE

SAVE

RESTORE

TABLE 1

THE PRIMITIVES

USE

Creates new nodes in the data base

Adds labels to nodes in the data base

Removes labels from nodes in the data base

Writes part of the data base

Counts nodes in the data base

Builds relationships in the data base

Copies nodes and relationships and builds
relationships in the data base

Destroys relationships in the data base

Destroys nodes and relationships in the
data base

Saves part of the data base in secondary
storage

Restores part of the data base from
secondary storage

- 25 -

A. CREATE

The CREATE primitive adds a new node to the data base by giving the set of

labels which the data item at the new node will contain. At least one label must

be given, and the labels occur within the new data item in the order in which they -

are given. The syntax for the CREATE primitive is:

<create primitive > : := CREATE <data items>

<data items > : : = <data item> <data items> and <data item>

Notice that more than one data item may be created with one use of the CREATE

primitive by separating the labels of the data items to be created by the word

“and. 11 The user may visualize the new nodes which are created as existing

unattached as new roots of the graph in the data base. No connections are made

or altered nor are any already existing nodes within the data base altered.

By this time the reader should observe that certain words are held in reserve

status and recognized by the system as special delimiters. A. complete list of

these reserved words is given in Table 2. It is often the case that a user may

want one or more of these words to occur as a label within one or more data items.

Surrounding any word or set of words within a < data item> with quote marks

causes the system not to treat any words within the quote marks as reserved words.

In this way, any word may be included as a label within a data item.

Examples

CREATE Stanford University

CREATE MIT and Caltech

CREATE “A node containing all these words including the word create”

- 26 -

ABOVE

AND

AS

BEFORE

BELOW

CQIPY

C@UNT

CREATE

DELETE

FRC!iM

INTO

Is

JUST

TABLE 2

RESERVED WORD LIST

LA.BEL

NOT

ONLY

OR

PUT

RESTORE

SAVE

SEVER

TO

VALUE

WHEREVER

WITHIN

WRITE

UNLABEL

See also Table 3 for the reserved words of BASIC.

All of the above words when not enclosed in quotes

should be considered delimiters, including an “end

of line” character which denotes the end of a command.

- 27 -

B. LABEL

The LABEL primitive allows the user to add new labels to already existing

nodes. What is required is the specification of a set of nodes to which the labels

will be added and the new set of labels. The set of nodes to which the labels will

be added is given by specifying a range as described in the preceding chapter.

The syntax for the LABEL primitive is:

<label primitive > : : = LABEL <range> as <data item>

The <data item> is the set of new labels. These new labels are added after

the last label which existed at the node before the label primitive was evoked.

The new set of labels is appended to every set of labels at all the nodes specified

by the range.

If it is desired to insert a new set of labels at some point in the existing

data item other than after the last label in the data item, the following alternative

syntactic construction may be used:

<label primitive> : := LABEL <range> as <data item>

before <label>

The new set of labels given by the <data item> will be inserted before the

already occurring <label> in all the nodes specified by the <range> . If the

already occurring <label> occurs more than once within some node in the

< range> , the new set of labels given by the <data item> will be inserted before

the first occurrence of the <label> . If the <label> does not already occur

within some node in the <range> , the new set of labels is added at the end of the

existing set of labels at that node, as in the previous construction.

- 28 -

Example (see Fig. 2)

Evocation:

LABEL Miller within Stanford as William before Miller

Effect:

A.sA Provostb6]
1 Miller
I Prhssor Williamc’51

Miller

Willian

Evocation:

LABEL Engineering Department as Electrical

Effect: I

I
ElectricalL O1

Engineering
Department Electrical

\

Michanical Engineeringp2]
DepaT rtrical

C. UNLABEL

The UNLABEL primitive allows the user to remove labels from existing nodes.

As in the LABEL primitive, a set of nodes, specified by a range, along with the

set of labels to be removed must be evoked. The syntax for this primitive is:

<unlabel primitive> : : = UNLABEL <range> as <data item>

All the nodes in the <range> are first identified, then all the labels in the

<data item> are removed from each of these nodes. The labels in the <data item\

are removed one by one and do not have to occur in the same order as they occur

within the nodes in the <range> . Labels in the <data item> which do not already

- 29 -

exist at some node in the <range> cannot, of course, be removed. In addition,

the last label cannot be removed from a node, thereby leaving a null data item.

Observe that to completely relabel a node, the new labels should first be added

using the LABEL primitive, then the old labels removed by using the UNLABEL

primitive. If a label to be removed occurs more than once at some node in the

<range> , only the first occurrence of that label will be removed. However, if

a label to be removed occurs twice for example, within some node in the <range>,

and that label occurs twice in the set of labels to be removed, then both occurrences

will be removed.

Example (See Fig. 2)

Evocation:

UNLABEL Sheldon Becker as Student

Effect:

Sheldod Becker @I

Evocation:

UNLABEL Secretary within Computer Science as Secretary

Effect:

Mickelson

Evocation:

UNLABEL Electrical Engineering Department as Department Engineering

Effect:

Elect/ricalPol

\

- 30 -

Evocation:

UNLABEL Salary Classified as Salary Classified

Effect: Illegal

The preceding three primitives add new unattached nodes to the data base and

add and delete labels from the data items at nodes specified by a range, respectively.

The data base is altered by the use of these primitives at the data item level: no

relationships between data are altered.

The following two primitives are useful for query purposes only. The data

base is not akered in any way by the use of these primitives. Rather, an immediate

response is typed out at the terminal.

D. COUNT

The COUNT primitive informs the user of the number of nodes in a given

range, i.e., the cardinality of the range. The data base is not altered in any

way by the use of this primitive.

The syntax for this primitive is:

<count primitive> : : = COUNT <range>

Example (see Fig. 2)

Evocation:

COUNT Student within Stanford

Response: 3

Evocation:

COUNT Department within Stanford wherever Professor is within Department

Response: 2

Evocation:

COUNT Professor within Engineering School

Response: 0

- 31 -

E. WRITE

The WRITE primitive causes a part of the data base to be printed in an outline

format with proper indentations to denote the various hierarchical levels. For

each node, the labels in the data item at the node are printed in the order in which

they occur within the data item.

The syntax of the first form of the WRITE primitive is:

<write primitive> : := WRITE (range>

Every node in the <range>, with all the subtrees of each node properly

indented, is printed. The subtrees at each level are printed in an arbitrary order.

If there are no nodes in the specified range, then an indication of this fact is

printed.

Example (see Fig. 2)

Evocation:

WRITE Department within Humanities

Communication Department
Professor Parker

Computer Science Department
Student Sheldon Becker
Professor Miller

Secretary Grace Mickelson
Secretary Carla West

Salary Classified
Chairman Professor Forsythe

Evocation:

WRITE Professor within Electrical Engineering

Response:

Null range

If the data base has the form of a tree, then an outline, as demonstrated

above, with no duplications within the outline, would always result from the use

- 32 -

of the WRITE primitive. However, since the data base has the form of a directed

acyclic graph, unnecessary printing of duplicate subtrees could result in

response to one evocation of the WRITE primitive. To alleviate this unnecessary

printing, only the root node of any subtree which would be printed the second or

subsequent time in response to a single evocation of the WRITE primitive, along

with an indication that the entire subtree has already been output, will be printed.

Example (see Fig. 2)

Evocation:

WRITE Miller

Response:

Professor Miller
Secretary Grace Mickelson
Secretary Carla West

Salary Classified
Assoc. Provost Miller

Secretary Carla West <occurs above>

Evocation:

WRITE School of Engineering

Response:

School of Engineering
Electrical Engineering Department

Student Hardy
Salary $300.53
Wife Susan

Mechanical Engineering Department
Student Hardy <occurs above>
Student Laurel

Salary $400

- 33 -

Evocation:

WRITE Provost

Response:

Provost Lyman
Assoc. Provost Moses
Assoc. Provost Miller

Secretary Carla West
Salary Classified

Assoc. Provost Moses <occurs above>
Assoc. Provost Miller <occurs above>

It is sometimes desirable to print only the nodes in the range without their

subtrees. The syntax of this second form of the WRITE primitive is:

<write primitive> : : = WRITE only <range>

Example (see Fig. 2)

Evocation:

WRITE only University

Response:

Texas University
Stanford University

Evocation:

WRITE only Student within Stanford

Response:

Student Laurel
Student Hardy
Student Sheldon Becker

Thus far, the primitives which have been introduced do not alter the relation-

ships between data. The following four primitives build and destroy the hierar-

chical relationships between data.

- 34 -

F. - PUT

The PUT primitive builds hierarchical relationships between existing nodes.

Two ranges are specified, and every node in the first range is made to be one

level hierarchically inferior to every node in the second range, subject to two

restrictions. Thus, if there are n nodes in the first range, and m nodes in the

second range, then n X m hierarchical relationships are formed if none of the

restrictions are violated. The restrictions are:

1) No more than 1 direct (i.e., one level) hierarchical relationship may

exist between any two nodes. That is, the following situation may not

occur: s

However, the following is legal:

2) No node may be hierarchically inferior (or superior) to itself. That is,

the following situations may not occur:

For every possible pair of nodes in the first and second ranges, respectively,

a direct hierarchical relationship is built so long as none of the restrictions are

violated. Under no conditions are any existing relationships altered in any way.

The syntax for the PUT primitive is:

<put primitive> : : = PUT <range> 1 into <range > 2

As suggested by the syntax, except when the restrictions would be violated,

a direct (one level) hierarchical relationship is built from every node in <range > 2

to every node in <range > 1.

- 35 -

Example (see Fig. 2)

Evocation:

PUT Student within Engineering into Law School

Effect:

Law AoolL5]

K
Student La!.melc2q

\I
Student HardyCZq

/\
Evocation:

PUT Secretary into Provost Miller

Effect :

Assoc. Provost k6]

Grace Mickelson

A shorthand combination of the CREATE and PUT primitives is useful

while building data bases. If <range>l is specified by Method II of the preceding

chapter, i.e., without any hierarchical or subtree context, and if that range is

null, then a node having the given set of labels will first be implicitly CREATE’d

and a message output to the user that this cr.eation has occurred. The PUT

operation will then proceed as described.

Example (see Fig. 2)

Evocation:

PUT Student Henry Bauer into Computer Science

Response:

Student Henry Bauer Created

- 36 -

Effect:

/ Computer Science Department IHI

/ I \
Student Henry

Bauer

G. COPY

It is sometimes desirable to be able to copy part of the data base so that

further processing may be done on the copy without disturbing the original. The

COPY primitive gives the user this capability. This primitive has three syntactic

forms, the first of which is:

<copy primitive> : := COPY <range>

A. copy of each node in the <range>, along with its entire subtree complete

with all the relationships which exist there, is made. These copied nodes, with

their subtrees, are left unattached as roots in the data base. The original nodes

and their subtrees are not altered in any way.

Example (see Fig. 2)

Evocation:

COPY Provost Miller

Effect:

Provostl Lymanbll

Assoc. Pkvost &
Miller

‘SecrethryC211
Carla West

I

Salary dlassified[301

Salary’ ClassifiedE4]

- 37 -

Evocation:

COPY Professor within Computer Science within Stanford

Effect:

/ Computer Science ho)
Chairman@l

Professor

Professorp
Miller

I
Department

/ I \

91

Forsythe

$ecretaryC3q
Carla West

I

Salaiyp21
Classified

Sec\retary[2q
Carla West

The second form of the COPY primitive allows the user to make a copy and

PUT the copy somewhere into the hierarchy. More specifically, two <range7’s

are specified. A copy of each node in the first range (along with its subtree and

all connections intact) is made and PUT into the hierarchy for each node in the

second <range7 a That is, as many copies of the first range are made as there

are nodes in the second range into which the copies are PUT. This second form

of the COPY primitive is thus a shorthand combination of (possibly) several appli-

cations of the first form of the COPY primitive and PUT primitive operating on

the copy.

- 38 -

The syntax is:

<copy primitive > : : = COPY <range> to <range>

Example (see Fig. 2)

Evocation:

COPY Student within Computer Science to Department within School

of Engineering

Effect:

&id titcft%y F$.tE$;y

Student SheldonC;!81 Studen@‘]
Becker Sheldon Becker

The third variation of the COPY primitive is, in reality, an addition which

can be made to the first two forms. As suggested by the form of the WBITE

primitive which allows the user to write out only the root nodes of certain subtrees

by including the keyword”only” in the evocation of the primitive, only root nodes

of specified subtrees can be copied, and in addition entered into the hierarchy if

desired. The syntax of this variation of the first two forms of the COPY primitive

is:

<copy primitive> : : = COPY only <range>

<copy primitive> : : = COPY only -<range> to <range>

In the first case, only the nodes specified by the <range>, without their

subtrees, are copied and the copies are left unattached as roots in the data base.

In the second case, as many copies of the nodes specified by the first <range>

(without their subtrees) as there are nodes in the second <range> are made and

- 39 -

the copies are PUT into the nodes in the second <range>. In both cases there

is no alteration of any kind made to the original nodes or their subtrees.

Example (see Fig. 2)

Evocation:

COPY only Provost Miller

Effect:

As&!! Provost @]
Miller

\ I

Assoc. ProvostE81
Miller

\’ I
Secretary Carla WestC2q

Salary ‘Classifiedpq

Evocation:

COPY only Professor within Computer Science Department within

Stanford

Effect:

/
Compute/r Science Department PO1

Chairman [2Sl Professor @I
Professor Miller

Chai,/, E41 \

Forsythe

Professor Forsythe Professor MillerC151

Studentp8]
Sheldon Becker

Secretary ‘Carla WestC24

Salary ‘Classified@4]

- 40 -

Evocation:

COPY only Student within Computer Science to Department within

School of Engineering

Effect: Same as a preceding example with “only” omitted, since all
students within Computer Science have no subtrees.

The preceding two primitives, PUT and COPY, build new relationships

between data and, in the.latter case, implicitly create new data. The following

two primitives, SEVER and DELETE, destroy relationships between data, and,

in the latter case, destroys data as well.

H. SEVER

The SEVER primitive destroys relationships between data but never data

itself. As with the DELETE primitive to follow, the SEVER primitive has two

forms. In both forms, at least one range is specified. In the first form, all

nodes in the specified range are made to have no nodes hierarchically superior

to them; that is, those nodes are SEVERfed from the tree and become roots of the

tree. The subtrees of the nodes which are so cut off from above are left undisturbed

unless some of the nodes within them are also being severed. The syntax of this

form is:

<sever primitive> : := SEVER <range>

After this primitive has been evoked, all nodes in the specified <range> are

roots of the tree, there being no nodes in the data base within which they exist.

Example (see Fig. 2)

Evocation:

SEVER Computer Science within Stanford

- 41 -

Effect:

School of &manitiesC6] Computer SciencehO)
and Sciences Department

/ \
Communication Department

Assoc. Provost[‘q I$$rsor”

Observe that node [IO] is now a root of the tree. Yet, a node in its subtree,

1. e., node [21] remains attached to node [16]. Recall that no relationships within

the subtree of a severed node are altered.

Evocation:

SEVER Student within Engineering Department within Stanford

Effect:

Electdcal’201 Met Anical [12]
Engineering Engineering
Department Department

Student[22] Student(231
Hardy Laurel

‘I
7-

Evocation:

SEVER Carla West

Effect:

Professo\r Miller~51

-ziK
Grace Mickelson

Ask. [‘a
Provost
Miller

SecretaryC211
Carla West

I
Salary ClassifiedE2q

In the first form of the SEVER primitive, all nodes in the range were com-

pletely severed from the tree; that is, all of the relationships which connected

these nodes immediately from above the nodes were severed. The second form

- 42 -

of the SEVER primitive allows the user to selectively sever some of the relation-

ships which connect the nodes immediately from above the nodes. The selection

is accomplished by specifying a second range. Those connections immediately

above a node in the first range are severed which causes that node to be within

any node in the second range. Thus, nodes in the first range are severed from

nodes in the second rarge. The syn’uix for this form is thus:

<sever primitive> : : = SEVER <range> from <range>

Example (see Fig. 2)

Evocation:

SEVER Carla West from Assoc. Provost Miller

Effect:

Miller

Notice that only that relationship which causes node [21] to be within node

(161 is broken.

Evocation:

SEVER Carla West from Stanford

Effect: Same as a previous example whose evocation was:

SEVER Carla West

since all connections immediately above node [21]

cause node [214 to be within node [2).

- 43 -

Evocation:

SEVER Student within Computer Science from Electrical

Engineering Department

Effect: No effect since none of the connections above node [la] (the 1st

range) causes node [18] to be within any node of the second range.

A unifying concept which may lessen any difficulty in understanding the dis-

tincition between the two forms of the SEVER primitive is the following. Think

of the first form of the SEVER primitive as having a second range which specifies

all the roots of the tree. The first form is thus a special shorthand version of

the second form, since any node in the tree is either a root of the tree or is

hierarchically inferior to some root of the tree.

I. DELETE

The DELETE primitive has two forms, precisely analogous to the SEVER

primitive. The syntax of these forms is:

<delete primitive>: := DELETE <range>

<delete primitive>: := DELETE <range>l from <range>2

As with the two forms of the SEVER primitive, the first form of the DELETE

primitive is merely a shorthand version of the second form with an implicit range

which specifies all the roots of the tree. Thus, in the action of this primitive,

some node is being deleted from a set of nodes.

If a node x is in the first range and its position in the data base is such that

x is also within the second range, then node x is a candidate for deletion. In

order to understand the manner in which the DELETE primitive operates, several

simplifying assumptions concerning the configuration of the data base near node

x will first be made. As the operation of the DELETE primitive becomes clearer,

these assumptions will be removed.

-44-

Consider first the simplifying assumption that node x together with its subtree

is a complete unit, sharing its information with the rest of the data base only

through, at most, node x (if x is a root, the information is not shared at all).

More specifically, every node within the subtree of x is not within the subtree

of any other nodes except other nodes within x’s subtree or nodes hierarchically

superior to x. Examples of such nodes x from Fig. 2 include [8], [Z], [l], [22],

and [Zl] , but not [6] or [IO] or [15] or [12] or [20].

Now assume that all connections immediately superior to x cause x to be -

within the second range in an evocation of the DELETE primitive. The action of

the DELETE primitive will then cause the node x and every node within the subtree

of x to be erased from the data base.

Example (see Fig. 2)

Evocation:

DELETE School of Engineering from Stanford

Effect:

Law School[51 Ltrrz2kAdmitistration 7’
and Sciences

-7-i--- l--
Evocation:

DELETE Student within Engineering Department

School of Engineering

Effect:
\

School of Engineerid
\

from

ElectricalC2’]/ \ Mechanical [12]
Engineering Engineering

Department Department

- 45 -

Now remove the most recent simplification and assume that not all connections

immediately superior to x cause x to be within the second range in an evocation of

the DELETE primitive. This means that x and its subtree contain information

relevant to some other nodes in the data base besides the nodes from which x is

to be deleted. It would thus be incorrect to erase x and its subtree from the data

base; rather, only the connections between x and the nodes from which x is to be

deleted should be erased. In this case, the DELETE primitive is seen to operate

precisely as the SEVER primitive.

Example (see Fig. 2)

Evocation:

DELETE Carla West from Professor Miller ,
Effect:

ProfessA Miller [151 Assoc. ProvAt Miller p61

Secretary! Grace @q
Mickelson

I
Secretary Carla West k31

Salary ClaLsifiedL2q

Now remove the original simplification and assume that the subtree of x is

not a complete unit and that information within x’s subtree is shared with the rest

of the data base through nodes other than x. More specifically, there exist nodes

within the subtree of x which are within the subtree of nodes other than those within

x’s subtree or nodes hierarchically superior to x. Examples of such nodes x from

Fig. 2 include [6), [lo], [15], [12], and [20]. As before, it would be incorrect to

erase those nodes (and their subtrees) within x’s subtree which share common

information with other parts of the data base, i. e., those nodes (and their subtrees)

which are within the subtree of nodes other than those within x’s subtree or nodes

- 46 -

hierarchically superior to x. So, as before, only the connections between these

common nodes and the rest of x’s subtree is erased.

Example (see Fig. 2)

Evocation:

DELETE Provost Lyman from Administration within Stanford

Effect:

Admim&rationM

Professh Miller[15]

[Secretary Grace 19

Mickelson

Secretary Carla West N-l

Salary dlassified[Z41

Evocation:

DELETE Student from Mechanical Engineering

Effect:

Engineering
Department

Student Hardyc223

\
Mechanical Engineering Cl21

Department

Theheartof any database system is the ability of theuser to create adatabase, save

it away somewhere (the user should not have to worry about where) and go away

to do something else. At some later time, the user should be able to fetch his

data base, query it or modify it, and save it away again for still further processing.

As background to any implementation, therefore, there should be a file‘system.

The following two primitives allow the user to interface with the file system in as

easy and simple a manner as should be possible for him.

- 47 -

J. SAVE

The SAVE primitive allows the user to save parts of his data base in quantities

of complete units as discussed in the preceding explanation of the DELETE primi-

tive. The syntax for this primitive is:

<save primitive> : := SAVE <range>

The effect of an evocation of this primitive is to cause each node in the range

with its entire subtree (nodes and connections) to be removed from the data base

(just as with the DELETE primitive) but saved in such a way so that the structure

which has been removed from the data base can be returned to the data base at

some future time in precisely the same form in which it was saved.

The only restriction which applies to the use of this primitive is that the

(sub) tree being saved must be a complete unit and cannot share its information

with other parts of the data base except through its root node. Thus, each node

and its subtree which is being saved must satisfy both simplifications mentioned

in the explanation of the DELETE primitive. If part of the data base to be saved

shares its information with other parts of the data base, the part to be saved

must first be COPYted and then saved.

K. RESTORE

The RESTORE primitive restores nodes and their subtrees to the data base

in precisely the form in which they were saved. This primitive has two forms,

the second of which is a shorthand form for restoration and placement within the

hierarchy. The syntax of the first form is:

<restore primitive> : := RESTORE <range>

The <range> in the use of this primitive must be a range specified by Method

II of the preceding chapter. Thus, there may be no hierarchical context of any

hind in the specification of this range. The set of saved nodes is searched and

- 48 -

the saved nodes having at least the set of labels as that specified in the <range>

are removed (with their subtrees) from the saved area and restored to the working

data base as separate trees with the root nodes of the saved subtrees becoming

roots in the data base.

The second form of this primitive is:

<restore primitive> : := RESTORE <range> to <range>

The first <range> must satisfy the same requirements as before and the

same action occurs as before in the saved area. However, once the nodes are

removed from the saved area, the action of this primitive is equivalent to an

evocation of

PUT <range> within <range>

where the first <range> is the set of nodes just removed from the saved area,

and the second <range> is the same as the second <range> in the evocation of the

second form of the RESTORE primitive.

L. Conclusion

This chapter has described a set of primitives for creating, manipulating,

querying, and destroying relationships and data within the data base. It should

be observed that no arithmetic processing nor any programming structure is

possible within the framework of primitives discussed thus far. The next chapter

describes the design of a programming system in which TAXL and a language

such as BASIC are incorporated to yield a system in which both numeric and

nonnumeric data processing capabilities are available both independently and in

a manner in which the numeric and nonnumeric data bases may interact.

- 49 -

CHAPTER IV

THE TAXL/BASIC SYSTEM

The range specification mechanism and its use in the evocation of the data

base primitives presented thus far yields a system in which commands are inter-

preted as they enter the system and are executed immediately. In addition, no

arithmetic capabilities have been introduced thus far. A.s was pointed out in the

introduction, the BASIC programming language and system (Xemeny [1967]),

designed by Kemeny and Kurtz at Dartmouth, provides an excellent easy-to-learn-

and-use interactive computer system for arithmetic processing. Rather than

design an arithmetic capability which would be included in TAKL, a design for

merging a version of BASIC and TAXL will be given. The version of BASIC

most nearly like that which will be discussed here is that version written at

Hewlett-Packard, a system quite similar to the Dartmouth system. The reader

is expected to be familiar with some BASIC system in the discussion which

follows .

The degree of interaction available in this version of BASIC, as in most

versions of BASIC, is different from the immediate interpretation and execution

of the TAKL commands considered thus far. This difference should be well

understood. The key to determining the degree of interaction of an on-line com-

puter system is the specification of the data which is being manipulated.

Presumably, the data which the user would ultimately want to manipulate

is the tree data base itself, along with the values of certain arithmetic variables

and arrays. If the system recognizes commands to manipulate that collection of

data, then that degree of interaction should be considered the strongest. Instead,

if the system recognizes commands to manipulate commands which manipulate the

- 50-

data base in question, then the degree of interaction is less strong. The Hewlett-

Packard BASIC system is of this second kind. The data which is immediately

manipulated by HP BASIC commands as they are entered via a teletype is a

program buffer which contains commands which will manipulate the values of

arithmetic variables and arrays when the program is executed. The commands

found in the program buffer which, when executed, cause the values of variables

and arrays to be manipulated and hereafter called BASIC commands, cannot be

entered and executed directly as are the TAXL commands. It appears, then,

that TAXL commands, as discussed thus far, are only executable directly as

they are entered into the system, and that BASIC commands are only executable

indirectly after they have been entered in a program buffer.

I feel that both degrees of interaction should be available for both TAXL and

BASIC commands. That is, TAXL commands should be able to be put into a

program buffer for later execution and certain BASIC commands should be able

to be directly executable as they are entered into the system. In keeping with the

spirit of this work, the distinction between which degree of interaction the user

desires as he types commands into the system should be clear and straightforward.

It should be remembered that every TAXL command, as well as every BASIC

command, begins with some English keyword which strongly suggests the action

the execution of that command will have. Which degree of interaction the user

desires for each command he enters into the system can be indicated by him by

the presence or absence of an integer number preceding the English keyword which

actually begins the command. Thus the following holds for both TAXL and BASIC

commands. If an integer number is not present preceding the English keyword,

the command will be interpreted and immediately executed. If an integer number

is present preceding the English keyword, the command will not be immediately

- 51 -

executed but will be entered into a program buffer with a sequence number equal

to the value of the integer number which preceded the command.

A. Syntax Analysis

In the latter case, the question of when the syntactic structure of the command

is checked is open to debate. While this is basically a question of implementation,

the answer will affect the learning behavior of the naive user. Since one of the

design goals of the language is ease and speed of learning the language, the question

should be considered here. Kemeny and Kurtz felt that the syntactic structure of

the commands should be checked immediately to see if a syntactic error occurred in the

command. This philosophy has been followed in HP BASIC, as in most BASIC

implementations. The authors of some APL systems (Falkoff [1968]) follow a

different philosophy. Their belief is that the command should be entered into the

program buffer without its syntactic structure being checked, and not until the

execution of the command is about to commence will the user bc notified if a

syntactic error has indeed occurred.

Psychological studies on learning and training behavior (Wolfle [1951]) indicate

that immediate feedback speeds the learning process. Since one of the requirements

of this system is that it be easily learned, immediate feedback of syntactic errors,

wherever possible, seems preferable to delayed feedback. If the user is not

informed of a syntactic error which occurs in a command as it is entered into the

system, he may mistakenly feel that since the system has accepted the command,

the command is correct. It is at precisely this moment, when the user’s attention

is more focused on the one command in question than at any other time in the

program’s formation, that the user should be informed if a syntactic error exists

within the command. This concept is not too unlike programmed readers in which

the reader must successfully answer a question before he can proceed. By the

- 52 -

time the user has given the command to begin execution of the commands in the

program buffer, his attention will usually be more focused on the program as a

whole and on its semantic structure rather than its syntactic correctness. To be

informed of a syntactic error during the execution of the program would be more

of a hindrance to clear thought than a help.

The conclusion of the preceding paragraph seems to be true only when the

goal of the user is to learn the syntax of the language. Once this has been accom-

plished and the goal of the user is to write useful and logically complex programs,

the facility of sketching out logical sections of program without having to be con-

cerned with their syntactic correctness at that time seems to be important. Thus,

the goal of the user should be a consideration in deciding whether the syntactic

structure of a command is to be checked at command entry or at command execution.

Since one of the goals of the current implementation is to facilitate learning of the

language rather than writing large programs, the syntactic structure of a command

is checked at command entry.

From an implementer’s point of view, a translation from the command’s

external form to an internal format which is easier to execute and a syntactic check

of the command can be accomplished at the same time. Rather than do the trans-

lation every time the command is encountered during program execution, it is

more reasonable to do the translation once at command entry into the program

buffer. Because a syntactic check may be performed during command translation

with a minimum of extra effort, a syntactic check at command entry time is quite

desirable.

B. Command Classification

A summary of BASIC and TAXL commands will now be given (see Table

3). Each command is placed in one of three categories whichgives that command’s

- 53 -

TABLE 3

COMMAND CLASSIFICATION

TAXL/BASIC Command Classification Use

CREATE
LABEL

UNLABEL

WRITE

COUNT

PUT

COPY

SEVER

DELETE

SAVE

RESTORE

READ

DATA

PRINT
LET

DEF

DIM

MAT---

G@ 7%
IF
FOR

NEXT

FOREACH

GOSUB ’

RETURN

STOP

LIST

CLEAR
RUN

BOTH

BOTH

BOTH

BOTH

BOTH

BOTH

BOTH

BOTH

BOTH

BOTH

BOTH

BOTH

BOTH

BOTH

BOTH

BOTH

BOTH

BOTH

PROGRAM

PROGRAM

PROGRAM

PROGRAM

PROGRAM

PROGRAM

PROGRAM

PROGRAM
SBS

SBS

SBS

Creates new nodes

Adds labels to nodes

Removes labels from nodes

Writes part of the data base
Counts nodes in the data base

Builds relationships in the data base

Copies nodes and relationships and

builds relationships in the data base

Destroys relationships in the data base

Destroys nodes and relationships in the

data base
Saves part of the data base in secondary

storage

Restores part of the data base from

secondary storage
Reads numeric data from data block

Enters numeric data into a data block

Types values of variables and arrays

Computes and assigns values to variables

Defines an arithmetic function

Declares dimensions of arrays

The X-dimensional array instructions

Transfers control

Conditional transfer
Sets up and operates a loop

Closes a loop

Sets up and operates a loop to seauence

through nodes in a range

Transfers to a subroutine

Returns from a subroutine

Stops a program

Lists commands in the program buffer

Removes commands from the program buffer

Initiates execution of commands in the

program buffer

- 54

permitted degree of interaction. Some commands will be restricted to less than

the highest degree of interaction. Commands classified by the sign PRGGRAM

are only allowed to be entered into the program buffer for later execution,and so

must always be preceded by an integer number when entered into the system.

Commands which control program flow would make no sense if they were executed

immediately upon entry to the system since they require a program to give them

meaning. Other commands, the numeric data and data base manipulation commands,

classified by the sign BOTH, may be executed immediately upon entry to the

system or may be entered into the program buffer for later execution. Hence,

these commands may have BOTH degrees of interaction with respect to the

system.

A further set of commands will now be introduced which manipulate the pro-

gram buffer. These are classified by the sign SBS (statement-by-statement)

indicating that these commands must be entered into the system to be executed

immediately and cannot be entered into the program buffer for later execution.

Systems such as LISP 1.5 and most assembly languages allow such program

manipulation commands to be programmable. However, this somewhat advanced

concept is not essential for TAXL/BASIC.

Entry of a command into the program buffer is implicit and is indicated

by preceding the command by an integer number. The command then has

a sequence number equal to the value of the integer number. If a command

is entered into the program buffer with a sequence number equal to the

sequence number of a command already in the buffer, the new command

replaces the old command.

- 55 -

LIST - Classification: SBS

The LIST command has three syntactic forms.

<list command> : := LIST

<list command> : := LIST <integer number>

<list command> : := LIST <integer number> / <integer number>

The first form causes the listing of all commands in the program buffer,

along with the sequence number of each, arranged in ascending numerical order.

Commands may be entered into the program buffer in any order but will always

be listed in ascending sequence order. The second form causes only the listing

of the command in the program buffer having the given sequence number, if such

a command exists within the buffer. The third form causes the listing, in

ascending numerical sequence order, of all the commands having a sequence

number whose value is equal to or greater than the first integer number given

and is equal to or less than the second integer number given.

CLEAR - Classification: SBS

The CLEAR command removes commands from the program buffer, and has

three syntactic forms, analogous to the LIST command:

<clear command> : := CLEAR

<clear command> : := CLEAR <integer number>

<clear command> : : = CLEAR <integer number > / <integer number>

The first form causes the erasing of all commands in the program buffer.

The second form causes only the erasing of the command in the program buffer

having the given sequence number, if such a command exists. The third form

causes the erasing of all the commands in the program buffer having sequence

numbers whose values lie between (and including) the given integer numbers.

- 56 -

RUN - Classification: SBS

The RUN command causes the program in the program buffer to begin

execution. This command has two forms:

<run command> : := RUN

<run command> : : = RUN <integer number>

The first form causes the execution of the program in the program buffer to

begin with the command having the algebraically smallest sequence number. The

second form causes the execution of the program in the program buffer to begin

with the command having a sequence number equal to the value of the given integer

number. If no such command exists, the user is notified.

Commands in the program buffer are normally executed in ascending numerical

sequence unless this sequence is altered by the execution of a command having the

classification PR&RAM. The program stops executing either when a STOP com-

mand is executed, when control is transferred to a nonexisting command, or when

the next command to be executed should be the command with the next highest se-

quence number and no such command exists. In any case, the user is notified

where (by sequence number) the execution of the program is terminated.

C. Interface Between TA.XL and BASIC

The commands of both TAXL and BASIC have now been presented. The control

commands of BASIC have been adopted to properly organize program flow, and

several commands for manipulating the program buffer have been given. Thus

far, however, theanly interface between TAXL and BASIC is at the program level.

Commands from both languages may be evoked interchangeably for immediate

execution and commands from bothlanguages may occur in the program buffer.

What is needed to make the system more useful is an interface at the data level.

- 57 -

The data for TAXL are the numeric and nonnumeric labels at nodes and

the hierarchical relationships of the directed acyclic graph data base, while

the data for BASIC are the numeric values of variables and array elements.

Some BASIC systems include a limited string processing capability; however,

such a capability varies so widely in the relatively few BASIC systems (e.g.,

Stanford [1968]) which possess one that this work will not concern itself with

such a capability.

Recall now the kind of user for whom this system is intended. The main

emphasis of his use of this system will be in handling nonnumeric data, the

operations for which are available from the TAXL primitives and data base.

The reasons for including BASIC are the presence of the programming control

commands and the arithmetic processing capabilities which BASIC possesses.

At the data level, BASIC operates only on numeric data. Thus, if an interface

between BASIC and TAXL is to be made at the data level, it must be at the nu-

meric data level. Recalling that labels at the nodes in TAXL’s data base can

be numeric, it becomes clearer that the data interface must exist at the numeric

level, the only data type which the two systems have in common. The interface

must thus concern itself with the convenient retrieval of numeric values from

TAXL’s numeric labels which can then be used in computation and assignment

in BASIC commands, and also in the conversion and placing of the values of

BASIC variables into TAXL’s data base in the form of numeric labels. In ad-

dition, since the COUNT primitive in TAXL results in a number being output,

the value thus obtained should also be able to be used in computation and assign-

ment within BASIC.

The discussion of this data interface will now proceed in four steps: the

extension of the use of one form of the subtree context specification for referencing

values, a solution to the problem of whether an identifier which occurs in a

- 58 -

TAXL/BASIC command is a BASIC variable or a TAXL label, the introduction

of a VALUE operator and an extension of the use of the COUNT primitive, and

the introduction of a new sequencing statement pair, analogous to BASIC’s FOR-

NEXT sequencing pair, for sequencing through the nodes in a range.

Recall that in Condition III of the subtree context specification of ranges, the

values of numeric labels were compared with given numbers. The values were

retrieved by evoking a range and considering the values of any numeric labels

which occurred in any of the data items of the nodes in that range. This same

mechanism can now be used outside the subtree context specification of ranges,

particularly in arithmetic expressions in LET statements of BASIC. Use of this

mechanism in a BASIC construct, which retrieves more than one value, is not

allowed and will be considered a semantic error. Admittedly, a construct which

would allow the assignment or computation on a vector of values would be useful;

however, this somewhat advanced concept would not add to the simplicity of the

language. Since extensions and complications in other areas of the language

would have to be made in order for this construct to have consistent application

throughout the language, and since there will be alternate methods of performing

the same computation, this construct is, therefore, not allowed.

Examples (see Fig. 2)

Evocation:

LET S = Salary within Laurel

Effect: The BASIC variable S is assigned the value 400

Evocation:

LET S = Salary within Stanford

Effect: Illegal, since the range yields more than one value.

- 59 -

Since there is no keyword which indicates that a value is being retrieved

from the tree, confusion can arise over whether an identifier is a BASIC variable

or a TAXL label.

For example, in the command

LET S=X

is X a BASIC variable whose value is to be assigned to S, or is X a TAXL label

being used to reference a range consisting of one node with a numeric label, the

value of which is to be assigned to S? This problem is solved by requiring that

at any given moment, the set of BASIC variables and the set of active (not in the

saved area) TAXL labels be disjoint. TAXL labels are created by evocations of

the CREATE primitive (or by implicit creation in evocations of the PUT primitive),

and are destroyed by evocations of the DELETE primitive. Once an identifier which

was used as a TAXI. label no longer occurs in the tree, it may be used as a BASIC

variable. BASIC variables are created implicitly by their first occurrence on

the left-hand side of LET statements; prior to this creation, their value is

undefined and cannot be used. BASIC variables may be destroyed by their use

on the left-hand side of a LET statement having an empty right-hand side. For

example,

LETX=

destroys X as a BASIC variable and allows its subsequent use as a TAXL label.

With the mechanism described thus far, values may be retrieved from the

TAXL data base and used in BASIC contexts. In order to allow the values of

BASIC variables to be placed in the TAXL tree or removed from it, an operator

which, when applied to a BASIC variable, returns its value is needed. This

operation is automatic when a BASIC variable is used in any arithmetic context.

However, in TAXL’s LABEL or UNLABEL commands, for example, evoked

- 60-

labels stand for themselves. In such a context, to force evaluation of the BASIC

variable name to obtain its value which is then to be put into or removed from the

label set of some node in the tree, the VALUE operator must be used.

Example (see Fig. 2)

Evocation:

LET S = Salary within Student Hardy within Engineering

Effect: The BASIC variable S is assigned the value 300.53

Evocation:

UNLABEL salary within Student Hardy as value S

Effect:

I 22 sah*
Y Wife Susanr2d

Notice in the latter example, that a label S does not occur within any node

in the specified range, and thus the VALUE operator must be used in order to

remove the numeric label 300.53, the value of S, from the node.

The COUNT construct, which appears in the subtree context specification of

ranges and is also a TAXL primitive, is extended only in the sense of where the

construct can occur; it may now occur within any BASIC numeric expression

and yields the number of nodes in the specified range.

Example (see Fig. 2)

Evocation:

LET N = COUNT Salary within Stanford

Effect: The BASIC variable N is given the value 3

- 61 -

FOREACH, NEXT - Classification: PROGRAM

The FOREACH and NEXT statements are loop control statements very similar

to the FOR and NEXT statements of BASIC. Recall that the FOR statement causes

a BASIC control variable to take on successive arithmetic values over a set of

statements. Every reference to the control variable within the set of statements

delimited by the FOR and NEXT statement has the value which is the current

value of the control variable. The FOR statement gives the initial value, the

final value, and the increment for the control variable. The execution of the NEXT

statement causes the control variable to take on its next value and execution resumes

following the FOR statement. When the control variable has taken on all of its

prescribed values, execution resumes following the NEXT statement.

The syntax of the FOREACH statement is:

<foreach statement> : : = FOREACH <range>

Recall that every <range> must begin with a data item consisting of one or

more labels. This data item then becomes the control data item which will take

on successive values over the set of statements delimited by the FOREACH state-

ment and its paired NEXT statement. The values which the control data item will

take on are the nodes in the data base specified by the <range>. Every reference

to the control data item within the set of statements within the FOREACH loop has

the value which is the current value of the control data item, i. e. , a node in the

<range>. The execution of the NEXT statement causes the control data item to

take on its next value and execution resumes following the FOREACH statement.

When the control data item has taken on the value of all the nodes in the <range>,

execution resumes following the NEXT statement. Because the nodes in a range

are unordered, the control data item assumes its values in an arbitrary order.

- 62 -

The syntax of this version of the NEXT statement is:

(next statement> : : = NEXT <data item>

The rules for nesting of FOREACH statements follow the rules for nesting

of FOR statements.

Examples (see Fig. 2)

Problem: Increase the salaries of all secretaries in the School of

Humanities and Sciences by 10 percent.

Program:

FOREACH Salary within Secretary within Humanities School

LET S = Salary

UNLABEL Salary as value S

LET S = S + . I*S

LABEL Salary as value S

NEXT Salary

I). Responses Following the Execution of Commands

Everyone who has ever worked at a terminal using a system which has com-

mands which are executed immediately upon entry to the system (having classification

SBS in TAXL/BASIC) occasionally has the feeling that the command last entered

might not have been executed at all or might have been executed incorrectly. This

phenomenon occurs particularly among novice computer users, the intended users

of -TAXL/BASIC. Often, as seen by direct observation, quite a bit of output might

be requested by the novice user to assure himself that the command in question

was indeed executed correctly. It has also been observed that almost any short

response by the system after the execution of any command in SBS mode informing

the user that everything is 71all right” and that the system “understood” and

executed his command properly gives the user added confidence and almost com-

pletely obviates his need for the assurance output mentioned above.

- 63 -

Commands which inherently cause output at the terminal, PRINT, WRITE,

and LIST, obviously need no assurance output. Commands being executed in

PROCRAM mode, other than PRINT and WRITE, should have no assurance output

because of the possible volume of such output and subsequent slowing of execution.

Attention can thus be turned to commands being entered into the system for im-

mediate execution.

If a syntax error occurs in the command, then proper notification of this

fact is sufficient to convince the user that the system is paying attention to him.

If there are no syntax errors, then execution of the command will commence,

and if there are no semantic errors which occur while the command is being

executed, then output as simple as

is enough to assure the user that everything is in fact okay, Semantic errors

such as null ranges in TAXL commands, illegal tree structuring arising from an

improper use of the PUT command, illegal label manipulation in the UNLABEL

command,BASIC variables without values occurring in an arithmetic expression,

illegal sequence numbers occurring in the RUN, LIST, or CLEAR commands,

and others should be reported to the user as clearly as possible and the @K

message should be suppressed.

E. Conclusion

In this chapter, a design for the amalgamation of some variant of a BASIC

system as suggested by Kemeny and Kurtz, and the TAXL language as described

in preceding chapters, has been described and given the name TAXI/BASIC. The

implementation of BASIC systems has been documented elsewhere. A subsequent

chapter will describe a test implementation of TAXL/BASIC, with just enough of

BASIC included to test the feasibility of such a system.

- 64 -

CHAPTER V

AN IMPLEMENTATION AND ITS ANA.LYSIS

This chapter describes a data structure and some algorithms used to imple-

ment a partial TAXL/BASIC system. Since implementations of BASIC systems

have been described elsewhere (Braden [1968]), only the TAXL data structure

and algorithms will be discussed here. The implementation is written in LISP 1.5

and is currently operating under the Stanford Campus Facility ORVYL time-

sharing monitor.

Because of the nature of interpreted LISP 1.5, the fact that TAXL/BASIC

is written as an interpreter itself, and the time required to do the extensive page

swapping which time-shared LISP requires, the current TAXL/BASIC system is

too slow and too expensive for large scale operation. In addition, the central

purpose of this work was to develop a user-system interface rather than a large

operating system. Thus, the internal data structure and subsequent algorithms

were not designed with speed and efficiency in mind. If a large scale implementa-

tion of TAXL/BASIC is attempted, it is suggested that the current implementation

be studied to see what is required, and that at least the algorithms, if not the

data structure itself, should be redesigned. A full implementation of the current

data structure and algorithms, even if written in machine language, would probably

fail to give adequate service in terms of response time and cost once the data

structure exceeds the size which can be contained in primary storage.

In order to follow the listing of the interpreter in Appendix I, the reader must

be familiar with LISP 1.5 (McCarthy [1962]), and with property list manipulation

and list-structure alteration operations in particular. For those readers not so

interested in the fine details, an outline flowchart of the interpreter is given in

Appendix II. Initial entry to the interpreter is at A with the RUN FLAG reset.

- 65 -

The atom
USES

Lisp system atom
, information such as

type, print name, etc.

1st node having this atom
as a label

2nd node having this atom
as a label

r’ < ‘I’;nc h”‘““;m,

The flowchart describes the logical flow of control and does not exactly parallel

the programmed interpreter given in Appendix I. Most of the semantic error

checking is absent from the flowchart, as are some of the various forms of some

of the primitives.

A. Node and Dictionary Formats

The format for a node in the data base is given in Fig. 3. Thus, what is

given at a node is a list of the labels that make up the data item at the node, a

list of pointers to all immediately hierarchically superior nodes, and a list of

pointers to all immediately hierarchically inferior nodes.

The format for the property list of an atom which is used as a label in the

data base is given in Fig. 4. The atom USES indicates a following list of pointers

to all nodes within which the atom in question is used as a label. The essential

structure is that of a dictionary. For every label which occurs in the data base,

there is an entry in the dictionary giving all uses of that label within the data

base.

Most of the computation time required for the execution of a primitive is

consumed in the computation of ranges. Hence, refinements in this computation

or modifications in the data structure allowing such refinements will decrease

the execution time significantly. Since the object of this study is not the design

of such refinements, the algorithm presented for the computation of ranges was

chosen for its programming simplicity. Once lists of the nodes in as many ranges

as are required for the execution of a primitive are obtained, the execution of the

primitive is fairly straightforward, as shown in the flowcharts in Appendix II.

More will be said about computation time later in this chapter.

- 68 -

B. The Computation of Ranges

The computation of a range by Method II of the chapter discussing the evoca-

tion of ranges is essentially a set intersection operation. Suppose the range

Secretary Carla West

is to be computed. The property list of the atom label “Secretaryl’ contains a

list of pointers to all uses of this label, as do the property lists of the atom labels

‘lCarla” and “West. I’ The intersection of these lists is, by definition, a list of

nodes which incorporates the range. A straightforward intersection of unordered

sets as programmed in the current implementation given in Appendix I is the

easiest to program but has a computation time on the order of the product of the

number of elements in the sets. The computation time can be reduced to the

order of the sum of the number of elements in the sets by ordering the sets ac-

cording to any arbitrary but well defined ordering.

The computation of a range specified by hierarchical context is a more com-

plicated operation. Given two lists of pointers to a set of nodes X and a set of

nodes Y, it must be determined for which xeX,

X within Y

is true. Those x’s for which the above is true are retained in the range; those

x’s for which it is not true are not retained in the range.

There are two principal ways of determining which nodes x6X are within some

node yeY. One method is to start at each x, and by following the chain of father

pointers beginning at node x, check each node encountered on the path from node

x to the roots of the tree. If one of the nodes encountered is a y node, then the

search can be terminated since it has been ascertained that x is within Y. If no

y node is encountered on any path, then x is not within Y. Since all nodes on all

paths must be checked, the case in which x is not within Y involves the maximum

number of checks.

- 69 -

Another method for determining which x is within some set of nodes Y is to

start at each node yeY, in turn, and by following the chain of son pointers begin-

ning at node y, check each node encountered on the path from y to the leaves of

the tree. If one of the nodes encountered is an xeX, then this x is an x which is

within Y. However, the search cannot be terminated since there may be an x%X

which is hierarchically inferior to y, and hierarchically inferior to all nodes in

Y only through the node x. Thus, if the search were terminated upon encountering

x, it would never be ascertained that, in fact, x7 is within Y.

Thus, in the general case, it is more advantageous to search from the x’s

upwards along the father chains than from the y’s downward along the son chains.

In addition, there will usually be more sons than fathers if the entire data base is

considered, implying that to search downward would entail searching along many

more paths than searching upwards.

In order to analyze quantitatively the implementation of the range finding

mechanism, the maximum number of nodes accessed in order to determine which

x’s are within Y will be used as a measure of the computation required. As

mentioned previously, the case in which x is not within Y involves the maximum

number of node accesses since every node on every path from each x upward to

the roots of the data base must be accessed.

Assume first that the data base has the form of a true tree rather than an

acyclic directed graph. Effectively, this means that each node has, at most, one

father. Thus, assigning level 0 to each root node and defining the level of a node

to be numerically one greater than the level of its father, each node has precisely

one well defined level. With this formulation, n node accesses are required to

traverse the path from a node x at level n upward to a root.

- 70-

The assumption that the data base has the form of a tree will now be removed.

Thus, there may exist a node z at level m, m<n which has two fathers, where z

is the first encountered node above x for which this is true.

z
m, A------- -_----

Y

m2

X n1 ____ _ __ _ _____ -n2

Indeed, node z may be at level ml with respect to one path from a root and

at level m2 with respect to the other path. Thus, node x may be at two levels at

once, depending on which path through node z is being considered.

Let nl be the level of node x with respect to the path which makes node z at

level ml, and let n2 be the level of node x with respect to the path which makes

node z at level m2. Thus,

“1- ml = “2 - m2

and n - 1 ml is the number of node accesses to traverse from node x upward to

node z. From node z, ml + m2 node accesses are required to traverse both paths

from node z upward to a root.

Total: (n 1 - ml)+ml+m 2 =nl+m 2 = n2+m 1

Now generalize the preceding case and assume that node z has p fathers,

P 21. Thus, node z may be at as many as p levels ml, m2, . . . , m . Therefore,
P

node x may be at as many as p levels n 1, n2, . . -, np, where node x is at level ni

with respect to the path which causes node z to be a level mi, 15 i <_p.

- 71 -

As before,

“1 -m =n -m =...=n -m 1 2 2 P P

and ni - mi is the number of node accesses to traverse from node x upward to

node z. From node z, ml + m2 + . . . + mp node accesses are required to traverse

the p paths from node z upwards to the roots.

Total:

(ni - mi) + m + m + . . . 1 2 +m =n.+ml+m2+... +m.
p .I l-l + mi+l + . . . +m

P

where ni is the number of node accesses required to traverse from node x upward

to node z and thence to a root by the ith father path from node z, and

ml + m 2 + . . . + m. l-l +m. 1+1 +... +m
P

is the number of node accesses required to traverse from node z upward to the

roots by the p-l remaining father paths from node z.

The above total may be rewritten as

(ni - mi) + ml + m2 + . . . + m
P

1LiLp

where ni - mi is the number of node accesses required to traverse from node x

upward to node z, and

ml+m 2 f... +m
P

is the number of node accesses required to traverse from node z upward to the

roots along the p father paths from node z.

None, all, or some of these p paths from node z might themselves split

further at levels closer to the roots. If the jth path, 15 j <p, so splits, then mj

is not the true number of node accesses from node z along this path to a root, but

must be computed by the above treatment, recursively.

jn the worst case, the superstructure from node x upward toward the data

base roots forms a tree. Assuming that the average upward branching factor is

- 72 -

b, b >l, and there are L levels from node x up to the roots (counting the roots

as level zero), then the maximum number of nodes to traverse is the number of

nodes in this tree. Including node x, the number of nodes is given by

The specification of ranges by subtree context proceeds in much the same

manner, with the nodes specified by hierarchical context used where tne roots

of the tree were used in the previous discussion. In one variant, the number of

nodes obtained are counted and compared to the result of some numeric computa-

tion. In another variant, the labels in the nodes so obtained are individually

checked to see if they are numeric, and if so, their value is compared to the

result of some numeric computation. Nodes specified by hierarchical context

having subtrees obeying the required conditions are included in the range, as

described in a preceding chapter.

C. Reducing Range Computation Time

The method which has been considered in analyzing the range finding mecha-

nism consists of a traverse upward to the roots of the data base. In this method,

the search is terminated when a root of the data base is encountered. In addition,

a downward search along the son chain toward the leaves of the data base, as

described previously, might be more efficient in certain particular cases. In

such situations, the user should be able to take advantage of his particular data

structuring to reduce the amount of computation required to determine a range.

The following mechanism allows the user to specify whether anupwardor downward

search is to be made, andat the same time, to specify a terminating conditionfor an

upward search other than the occurrence of a root or a terminating condition for

- 73 -

a downward search other than a leaf. The mechanism can only be used in con-

junction with specifying a range by hierarchical context or subtree context re-

quiring that searching be done.

The first form allows the user to denote that the usual upward search is to

be performed and to specify a terminating condition other than the occurrence of

a root. The terminating search condition is a set of nodes T specified by Method

II. Thus, when searching for a range

x within y below T

the search upward is terminated successfully by an occurrence of a y node and

terminated unsuccessfully by an occurrence of a root or a member of the termina-

ting set T. To imply to the user that the search is carried on only below (and

including) the nodes which are in the set T, the delimiter %elow” is used to

separate the end of the range specification by Method IV and the specification of

the set T.

A portion of a data base shown in Fig. 5 demonstrates how this feature can

be used to advantage. The range evoked by

Professor within Reading Committee within Student Y

is identical to the range evoked by

Professor within Reading Committee within Student Y below Department.

In the former case, however, it is not determined that Professors W and X

are not included in the range until all the paths from Professors W and X upward

to the roots of the data base have been traversed. In the later case, the search

is terminated upon encountering the node Computer Science Department. This

early termination can save quite a bit of computation, particularly if the portion

of the data base shown in Fig. 5 occurs many levels down from the roots.

- 74 -

Computer Science Department

1
Professor W

\ \
Professor X

Rkadin Committee , g , “,“i”CrTe

ProfesLor A Profeksor B tirofessor C

FIG. 5--A portion of a data base demonstrating the utility of below and above

- 75 -

The second form allows the user to denote that a downward search is to be

performed and to specify a terminating condition other than the occurrence of

a leaf. As suggested by the previous construction, a terminating set T of nodes,

specified by Method II is separated from the end of the range specification by

Method IV by the delimiter “above,)’ or equivalently so as not to introduce another

reserved word, the delimiter pair %ot below. I7

Example (see Fig. 5)

Professor within Computer Science not below Student

An analysis of the implementation will now be made. The amount of memory

required for a data base implemented in this way will be considered, as well as

the factors that affect the time required to access the data base.

D. Memory Usage

In order to gain some sort of perspective on the amount of memory required

to contain a complete data base, a formulation of data base requirements will be

made. A fairly representative data base configuration will then be described and

the amount of memory required to represent this hypothetical data base will be

computed. Throughout the formulation and computation, Figs. 3 and 4 should be

consulted.

Assume that throughout the data base there is an average branching factor

s(s > 1). That is, on an average, each node has s sons. Let L be the number of

levels of the tree, numbering the level of the root nodes as zero. Then the number

of nodes in the tree is given by

N=
sL+l - 1

s-l

- 76 -

If we let

mi = the number of labels at node i

fi = the number of fathers at node i

si = the number of sons of node i,

then the amount of storage required to represent node i in this implementation

(see Fig. 3) is given by

Labels : 8+8mi

Fathers: 8 + 8 fi

Sons: 8 si

TOTAL: 8(2 + mi + fi + si)

Note that 8 bytes are required to store a pair of pointers. Thus, for the nodal

structure of the data base, the total amount of storage is given by

N
8 c (2 + mi + fi + si)

i=l

Now consider the possible dictionary structures. Each label which occurs

anywhere within the data base has a dictionary entry. As seen in Fig. 4, there

is a list of pointers associated with this entry to every node in the data base in

which that label occurs. Thus, there are as many pointers out of the dictionary

as there are (not necessarily distinct) labels at nodes in the data base, given in

this formulation by

Since eight bytes are required to store a pair of pointers in the current imple-

mentation, the amount of storage required for the pointers is given by

The only other significant contribution to memory utilization arises from the

storage of the labels themselves. Since each label occurs only once in the dic-

tionary, independently of its usage within the nodal structure, the amount of

storage required for these labels depends upon the number of distinct labels. A.t

a minimum, these can be only one distinct label which occurs as the only label

at every node in the data base. Theoretically, there is no maximum number of

distinct labels since the number of labels occurring at any node is not limited.

However, since we have assumed that there are mi labels at node i, then a maxi-

mum will be achieved by further assuming that all the labels across the data base

are different. Thus, the maximum total number of distinct labels is given by

2 mi
i=l

Assuming an average of q characters per label, the amount of storage required

for the labels themselves is given by

Thus, there are three constitute&s of memory usage:

Nodal structure:
N

8x (2 + mi + fi + si)
i=l

N
Dictionary pointers: 8 c mi

i=l

Label storage:

TOTAL:

sEm. izl ’

8~(2+mi+fi+si)+(q+8)~ m.
1=1 i=l ’

- 78 -

A hypothetical data base will now be described. The parameters of this data

base are not completely random but are based on a small sample of data bases

built by students learning to use TAXL (see the conclusion of this chapter).

Assume that the data base has an average depth of seven levels and that each

node has an average of four sons, i.e.,

L = 6 and s = si = 4

and, therefore, the number of nodes in the data base is

N=4’-1 - = 5461 4-l

Now assume that each node has an average of three labels and two fathers,

i.e.,

mi=3, fi=2, andsi=4

Thus, the storage requirements for an average node are given by

Labels : 8 + 8(3) = 32 bytes

Fathers: 8 + 8(2) = 24 bytes

Sons : 8(4) = 32 bytes

TOTAL: 88 bytes/node

Hence, to represent the nodal structure of the data base requires

88 bytes/node . 5461 nodes = 480,568 bytes

The amount of storage required for the dictionary pointers is
5461

8 lFl 3 = 131,064 bytes

As indicated in the formulation, the maximum total number of distinct labels

could be calculated as
5461
2 3 = 16,383 labels

However, a more realistic estimate can be made by the following assumptions.

- 79 -

It will be assumed that at each level there is a common label which serves

as an attribute, and that at every node at that level, there are two other labels,

the set of which are disjoint across the level and the entire data base. These

two other labels at each node serve as a value for the common attribute. Thus,

since there are four sons for each node, at level i, there are

2X4i.l

distinct labels, counting the root level as level zero. Therefore, over seven

levels, there are
6
c (2 x 4i + 1) = 10,926
i=O

distinct labels and hence

6 x 10,926 = 65,556 bytes

required to store all the labels in the data base. It is assumed that these are

an average of six characters per label.

Table 4 summarizes the storage requirements of this hypothetical data base

and gives the percentage of storage required for each data base component.

E. Access Time

In the discussion of the time required to compute the range x within y, the

particular configuration of the data base and the manner in which both the nodes,

named by x and the nodes named by y, are distributed throughout the configuration

are the most important factors to consider. Because the particular distribution

of x’s and y’s are such an important consideration, to hypothesize a particular

data configuration and then analyze this particular configuration as before would

not accurately enough characterize access time in general. However, there are

several important observations which can be made.

- 80 -

TABLE 4

STORAGE REQUIREMENTS FOR A HYPOTHETICAL DATA BASE

Node Structure

Dictionary Pointers

Labels

Bytes

480,568

131,064

65,556

Percentage
of Total

71.0

19.4

9.6

TOTAL 677,188 100.0

3 labels per node

2 fathers per node

4 sons per node

6 characters per label

7 levels

- 81 -

As described previously, in the computation of the range

X within Y

the maximum time required occurs when there are no nodes x6X within any nodes

yeY. In this case, a search has to be performed beginning at each node x along

the chain of father pointers to the roots of the data base. At each node z encountered

along a path toward the roots, an identity test must be made to see if z is identical

with any of the nodes yeY. If we take the total number of comparisons for identity

as a measure of access time, then it can be seen that the number of nodes yeY

times the total number of nodes along the path(s) from a particular x%X to the

data base roots characterizes the maximum access time required to determine

if x’ belongs in the range. Since this computation must be performed for each

xeX, the maximum number of comparisons required to determine the range

X within Y

is given by

c C(Y) P(x) = C(Y) xTx P(x) xcx
where C is the cardinality operator and P(x) is the total number of nodes encountered

along all paths from a node x along the chain of father pointers to the roots of the

data base (see Section B of this chapter).

There are two other factors, mentioned briefly earlier in this chapter, which

contribute to access time. Both of these factors arise in the computation of the

sets X and Y.

As described in Chapter II, the sets X and Y are specified by Method II. Thus,

in order to specify the set X, n labels x1, x2, . . . , xn are specified and the set X

is comprised of all those nodes in the data base which have at least the n labels

mentioned above. A parallel argument can be made for the set Y. The contribution

- 82 -

to access time thus arises from:

1) finding each of the n labels in the dictionary

2) forming the intersection of the n sets of pointers, the ith set being

associated with the label xi and pointing to all those nodes in the data base

which contain xi as a label.

In the current implementation, the operation of finding each of the n labels

X1’ x.2, * * -, xn is performed automatically by the LISP system. This should be

accomplished by a hash addressing scheme.

The USE-lists associated with each dictionary entry are unordered in the

current implementation, and hence each of the n-l intersections which must be

performed requires a number of operations proportional to the product of the

number of pointers which occur in the sets to be intersected.

If the hashing function used to find the appropriate entries in the dictionary

is a good one, the time required to find the n labels which constitute the set X

is proportional to n. Assuming that m labels constitute the set Y, the time

required to look up the n + m labels is given by k(n+m), where k is some constant

dependent on the hashing function.

As explained previously the time required to perform the n-l intersections

which define the set X and the m-l intersections which define the set Y is given by

(n- l)Kz’+ (m- 1)Kt

where Kx is the average number of pointers associated with each of the n labels

which constitute the set X, and KY is the average number of pointers associated

with each of the m labels which constitute the set Y.

Thus the total access time is given by

k(n+m) + (n- l)K: + (m- l)KE + C(Y) c P(x).
xcx

- 83 -

F. Operation Time

Once all the ranges required for a given command have been computed, the

time required to complete the operation called for by the given command generally

depends only on the cardinality of the range(s) upon which the command will operate.

For all those commands which require only one range, the time required to com-

plete the operation is proportional to the number of nodes in that range. For

those commands which require two ranges, the time required is proportional to

the product of the number of nodes in each range. It should be noted that the

operation time for all those commands which require additional tree searching

for their operation, i. e., WRITE and DELETE, are influenced by the subtree

structure below the nodes in the computed range(s). Also, the operation of the

SAVE and RESTORE commands depends on the structure and extent of the sec-

ondary storage dictionary.

G. System Measures

In Table 5 measures of significant TAXL system functions in the current

implementation are summarized. The formulae given in the table show the nature

of the dependence of the system’s functions upon the parameters involved. Pro-

portionality factors are not given. Except for the memory utilization, all of the

systems functions give a measure of access time in terms of the cardinalities,

denoted by the operator C, of certain sets which are involved in the particular

system function. Such sets include sets of nodes, sets of labels, sets of fathers

at a node, and sets of sons at a node.

The measures for memory utilization and the time to compute X within Y

have been derived previously’ in this chapter. Since the USE-lists are un-

ordered in the current implementation, the time required to perform the

intersection of two such lists is proportional to the product of their cardinalities.

- 84 -

TABLE 5

SYSTEM MEASURES

Memory Utilization 85 (2 + mi + fi + si) + (q+8) c mi
i=l i=l

Time to perform intersection of
USE-lists W and Z C(W) * C(Z)

Time to compute X within Y (the
sets X and Y are already defined) C(Y) P(x)

Time to add a label to a node in the
data base CONSTANT

Time to remove a label 1 from a
node q in the data base mq+l

U

Time to add a node q to the
data base C(new fathers (q))

Time to remove a node q from the
data base C(sons (fathers (q))) + C(fathers (sons (q)))

N: number of nodes in the data base

mi: number of labels at node i

fi: number of fathers of node i

si: number of sons of node i

q: average number of characters per label

c: cardinality operator

P(x) : total number of ancestors of node x

lu: number of uses of the label 1 in the data base

- 85 -

In order to add a label to a node in the data base the following operations

must be performed:

1) Add a node pointer to the USE-list associated with the label.

2) Add a dictionary pointer to the label list at the node.

Since the USE-list is unordered, the node pointer may be added to the front of the

USE-list, an operation not depending on the cardinalities of any sets. Since the

usual option for adding a label to a node requires that the label be added at the

end of the label list, the label list at the node must be searched to find its end.

However, if the label list is stored in reverse order, the new label can be added

to the front of the list, an operation not depend:ng on the cardinality of the label

list. Thus, the time required to add a label to a node is a constant.

In order to remove a label 1 from a node q in the data base, the following

operations must be performed:

1) Remove the node pointer from the USE-list associated with the label.

2) Remove the dictionary pointer from the label list at the node.

Since the USE-list must be searched in order to remove the node pointer, time

proportional to lu, the number of uses of the label 1 in the data base (i. e. , the

cardinality of the USE-list), is required. In addition, since the label list at the

node must be searched for the dictionary pointer, time proportional to m
q’

the

number of labels at node q is also required. Thus, in order to remove a label

from a node in the data base, time proportional to mq + 1
U

is required.

In order to add a node q to the data base, the following operations are required:

1) Add the new father pointers to the father list of q.

2) Add a pointer to q to the son list of each new father of q.

Since the father and son lists at nodes are unordered, the new father pointers

may be added to the front of the father list of q, requiring time proportional to

- 86 -

the number of new fathers of q. Thus, the total time required is proportional

to C(new fathers (q)).

In order to remove a node q from the data base, the following operations

must be performed:

1) Remove the son pointers to q from each of the fathers of q.

2) Remove the father pointers to q from each of the sons of q.

The father and son lists must, therefore, be searched for the pointers to be

removed, and this operation must be performed for each father and son of q.

Thus, the time required to remove the son pointers to q from the fathers of q

is proportional to

C(sons (fathers (9)))

In a similar manner, the time required to remove the father pointers to q from

each of the sons of q is proportional to

C(fathers (sons (q)))

Thus, the total time required to remove a node q from the data base is proportional

to the sum of the two cardinalities given above.

A useful refinement to make in the implementation is to keep the USE-list

ordered. The system function measurement which would be improved by this

refinement would be the time required to perform the intersection of two USE-lists.

Since the lists would be ordered, the time required would be proportional to the

sum of the cardinalities of the lists rather than the product. However, the time

required to add a label to the data base would increase since the node pointer

could no longer be added to the front of the USE-list but would have to be added

at its appropriate place in the ordered list. Thus, the time required to add a

label 1 to the data base would depend on l,, the cardinality of the USE-list of 1.

It is felt that this refinement would be a useful addition to the implementation,

- 87 -

since USE-lists are intersected for almost every range definition. The operation

occurs much more frequently than the addition of a label to the data base.

A better refinement would be to keep the USE-fists not only ordered, but

ordered in the form of a balanced tree (Knuth [1970]). The advantages of

storing a USE-List of cardinality n in this fashion arise from the fact that the

time required to insert a new element, to delete an old element, and to find the

smallest element in such a tree, each requires time proportional to log2n. (The

algorithms for performing these functions will appear in The Art of Computer

Programming, Volume 3, by D. E. Knuth) .

Thus, labels may be added and deleted from the data base with a logarithmic

dependence on lu rather than a linear dependence. The additional storage required

for structuring the USE-lists in this fashion affects only the multiplicative constant

in the formula for the dictionary pointer storage, the formula for which would

now be

24 f mj
i=l

since one father and two sons pointers would be required for each entry.

Additional refinements, and possibly the best refinements in the representa-

tion and algorithms for addressing and manipulating the nodal structure, might

well be in the direction of hash, or scatter storage techniques (Morris [1968]).

In the LEAP system (Feldman [1969]), a hash addressing scheme based on a hash

of two elements of an object-attribute-value triple provides a convenient and useful

method for the retrieval of information concerning the user-defined relationships

among a universe of items.

Hash coding is the simulation of an associative memory, and since TAXL

is an associative semantic processor, it is felt that research into new methods

- 88 -

ofusing hash coding techniques might well uncover more efficient ways of imple-

menting a system such as TAXL.

H. Conclusion

A test implementation and analysis of a limited TAXL/BASIC system has

been described. Several comments can be made concerning the analysis.

The factor of eight which appears in the formula for total memory usage arises

from the fact that in the version of LISP 1.5, in which the TAXL interpreter is

written, eight bytes are required to store one LISP element (a pair of pointers).

This factor can be reduced by writing TAXL in some other list processing language

system (Hansen [1969]) or by using special data structures designed for TAXL in

particular, and embedded in some assembly language system.

Otherwise, it can be seen that the total memory usage depends linearly on

the number of nodes in the data base, as well as on the number of labels at those

nodes and on the interconnections between those nodes. Upon considering the

formula for access time, it can be seen that the access time depends linearly on

each of the cardinalities of the sets X and Y and on the depth and number of paths

to the roots of each xeX.

Operation time for various of the primitives could be decreased by imposing

an order on the lists of fathers and sons at the nodes in the data base. The

ordering of the labels is defined by the user, and hence an internal ordering could

not be imposed on them without complicating the algorithms which manipulate the

labels. An ordering imposed on the fathers and sons would allow a faster retrieval

of specific fathers or sons. However, the time required to insert new fathers

and sons into an ordered list would consume more time than if the list were not

ordered.

- 89 -

On the basis of classroom utilization, the feasibility of such a system, as

described in this work, from the user’s point of view with respect to the goals

discussed in the introduction has been ascertained as affirmative. On two sepa-

rate occasions, lectures were given to the type of potential user of TAXI/BASIC

as described in the introduction to this work. One such group was composed of

students enrolled in a graduate course in communications. Their only previous

computer experience was a limited introduction to terminal processing via a

BASIC system. The other group was composed of summer schoo1 students and

teachers enrolled in an introductory course for computing in the humanities and

social sciences. Their only previous computer experience was a four-week ex-

posure to Algol W with no terminal processing. Even though the two groups were

at different levels in their educational experiences and their limited computer

experiences were of a different nature, their ability to grasp and learn how to use

the TAXL/BASIC system was fairly uniform. After only two hours of classroom

lecture and ten minutes of terminal usage instruction (which included log-on, log-

off, and other non-TAXL/BASIC procedures), almost all the students, working

in groups of two or three, were able to use the system with a fairly high degree

of assurance in at least an experimental mode to answer most of their remaining

questions.

The students were asked to build and manipulate data bases which would be

of interest to them in their work. Political cross affiliations between members

of the United States Senate and House of Representatives, a bartender’s guide of

ingredients for different drinks, and an inventory of an army supply depot were

some of the examples for which the students found TAXL/BASIC useful and

interesting.

-9o-

From this preliminary survey of the utility of TA.XL/BASIC with respect to

its intended goals, it appears that the system meets its intended requirements.

Experimentation with more economical, more complete systems able to handle

larger data bases is required before more complete results can be obtained.

- 91 -

CHAPTER VI

FUTURE tiR.K AND SUMMARY

Throughout the course of this work, several topics have arisen which tend to

complement the present state of the work as described in this paper.

In order to better test how easily the system can be learned and used by com-

puter novices, a well written user’s manual could be compiled with its prospective

audience well in mind. Graduated exercises on which the student could work while

using TAXL/BASIC at a terminal could be provided.

The interface between TAXL and BASIC could be made more complete. By

defining a good string manipulation facility for BASIC, this string manipulation

facility could be interfaced with TAXL’s label structure. As mentioned previously

entire l-dimensional arrays of numeric values could be retrieved from a range,

each of whose nodes contain numeric labels. In addition, the LABEL and UNLABEL

commands could be extended so that with one command evocation, the set of numeric

labels, whose values reside in a l-dimensional BASIC array, could be added to or

removed from a range of nodes in the TAXL data base. Finally, a good external

encoding for the data base could be designed and the READ and DATA statements

of BASIC could be extended to allow the reading of portions of the TAXL data base.

Currently, the TAXL addressing structure is semantic and associative. The

range specification mechanism could be expanded by allowing syntactic addressing.

Thus, constructs such as SON OF . . . and FATHER OF . . . and compounds of

these would be allowed.

A facility for labeling arcs, which might stand for attributes whose values

could be found as the labels at the nodes which terminate the arcs, could be intro-

duced. This might allow a more concise and more easily manipulable data

- 92 -

representation in those cases in which there are many attribute-value pairs

describing a hierarchically superior node. Multiple arcs between two nodes

could also be introduced.

Currently, intersections and unions of ranges may be specified by the suc-

cessive application of several of the primitives operating on the ranges, the

intersections or unions of which are being sought. An explicit facility for speci-

fying intersections and unions of ranges would be useful in those contexts where

they are required frequently.

By allowing a dynamic macro facility, the user could define his own primitives

as successive applications of the TAXL primitives or other user defined primitives.

The macro could have the form of a tree which the user can create in the data

base. The root node of this tree could contain the keyword which would cause

the tree to be scanned and evaluated when a command beginning with the same

keyword is evoked. The macro tree would be required to have a certain form so

that in scanning the tree in some predetermined order, the system could fill in

the templates occuring in the macro tree with the range specifications occurring

in the calling command and initiate execution of the commands found in the tree

in a proper order.

The suggestions made in the concluding sections of the previous chapter con-

cerning memory utilization, access time, and operation time could be carefully

worked out to improve the speed and efficiency of the TAXL system.

In summary, this paper has presented an easy to learn and use data manage-

ment and manipulation system for computer novices.

Chapter I outlined the need for such systems and suggested the uses to which

they could be put.

- 93 -

Chapter II discussed the format of the data base and the mechanism for

addressing such a data base in semantic and associative terms.

Chapter III introduced eleven primitives for constructing, destroying, and

otherwise manipulating and querying the data base. The primitives are designed

to operate on portions of the data base addressed by the range mechanism dis-

cussed in the second chapter. Ln this way, the addressing mechanism and the

operational primitives are clearly separated.

In Chapter IV, the design of a system in which TAXI and a numeric processing

system possessing logical programming capabilities was introduced. Additional

primitives for managing the programming structure were introduced.

Chapter V discussed a current implementation of TAXI and gave measures

of memory utilization and access time in terms of natural parameters of the

system.

The current chapter outlined possible future work and summarized this paper.

- 94 -

REFERENCES

Bauer, H., Becker, S., Graham, S., Satterthwaite, E., ALGOL W Language

Description, Computer Science Department Report CSllO, Stanford University,

September 1969.

Braden, H., WuIf, W., “The Implementation of a BASIC System in a MuItipro-

gramming Environment,” CACM, Voi. II. No. 10, October 1968; p. 688.

FaIkoff, A., Iverson, K. E., The APL/360 Terminal System, ACM Symposium

on Interactive Systems for Experimental Applied Mathematics, (Academic

Press, New York, 1968); p* 22.

Feldman, J., Rovner, PO, “An AIgol-Based Associative Language,” CACM, Vol. 12,

No. 8, August 1969; p. 439.

Griswold, R. & & , The SNOBOL 4 Programming Language, (Prentice Hall,

Inc., Englewood, New Jersey, 1968).

Hansen, W. J., The Impact of Storage Management on Plex Processing Language

Implementation, Computer Science Department Report CS113, Stanford

University, July 1969.

Information Processing Language - V. Manual, ed. by Allen Newell, Rand

Corporation. (Prentice Hall, Inc. , Englewood Cliffs, New Jersey, 1961).

Kemeny, J., Kurtz, T., BASIC Programming, (John Wiley and Sons, New

York, 1967).

Knowlton, K., “A Programmers Description of L6: CACM, Vol. 4, No. 6,

June 1961; p. 616.

Knuth, D. E. , The Art of Computer Programming, Vol. 3, (Addison-Wesley

Publishing Company).

Knuth, D. E. , Optimum Binary Search Trees, Computer Science Department

Report CS149, Stanford University, January 1970.

- 95 -

Lang, C., Gray, J., ‘A Ring Implemented Associative Structure Package: CACM,

Vol. 11, No. 8, August 1968; p. 550.

McCarthy, J. et al., -- LISP 1.5 Programmers Manual, (The MIT Press, Cambridge,

Massachusetts, 1962).

Morris, R., “Scatter Storage Techniques,” CACM, Vol. 11, No. 1, January 1968;

p. 38.

Ross, D. T., “A Generalized Technique for Symbol Manipulation and Numerical

Calculation,” CACM, Vol. 4, No. 3, March 1961; p. 147.

Stanford/Basic User’s Manual, Stanford Computation Center Campus Facility,

Stanford University, Stanford, California, December 1968.

Webster’s Third New International Dictionary, (G and C Merriam Company,

Springfield, Massachusetts, 1964).

Wirth, N., Hoare, C.A.R., “A Contribution to the Development of ALGOL:/

CACM, Vol. 9, No. 6, June 1966; p. 413-431.

- 96 -

APPENDIX I

LISTING OF THE INTERPRETER

VERBUSINILJ
CSET ?DPSP ((+ . 31 I- . 3J (* . 4) (/ . 4) TNtC . 4) I** . 5J

CSEl
CSET
CSET
LSET
C3tT
CSET
CSET
CSET
cjE1
LSET
LSET
CSET
CSET
LSET
CSET
CStT
CSET

CSET
CSET
CScT
CSET
CSET
CSST
CStT
CSET
CSET
LSET
CSET
CSET
CSET
CStT
CLET
CSET
CSET
LSET
cst1
CSET
CSET
LSET
CSET

(CTAK NILJ
(OUTP NILJ
IPXP NIL1

(SUB.61 Jl

ICHK NIL)
(KELS (EU NEU GR GE LS LET J
(RUN NIL1
I SYNTAX INILJ
(S.&S Tl
ISLb SUB)
(LINE NIL)
(LINES NIL J
(ThISLIhE hILJ
IUNl’d NILJ
(ISNF NIL)
(hLRG SS$NULL RANGES)
(QUDT $56”53
TCLIM (LS$CARRIAbi kETU8NS NOT IN WHEREVEK IS INTJ WITHIN

UhZtk Tti FktiM AS LiY bNC BEFO&t EQ NEP GH GE LS LEJJ
(ONLF NILJ
LCELT NILJ
(IMPKCLIM J$$IT’t’dDPtd DtLIMITER... $1
(IAE $SJILLtGAL ARI.THMETIL tXPhESS1ChbJ
TPVCS S$$AKITHMETIC VAhIAtlLt CANNOT HAVt A SUtiSCRIPT... $J
(AIMS JssARkbY IOtNTIFItk MUST hAVE b SUBSCKIPT... $1
(LNMI SSSLINE NUMHFK MIIST dE INTt6EKSJ
(ACTh (NUT INJI
(PLTF NIL)
(ELSL NJLJ
IIJK OKJ
(hXTrc NILJ
LIhTU (INTO hITHIN LINDth TCJJ
(CFLG NIL)
IKFLG NILJ
I ruhLdiVtk IrHLHEViKJ
(CPVPL AYVAL J
(PVAL PVALI
(LSES LStSJ
~xrup riILh
(:‘lMS hILl
(cFYK I$sCARRIAGE RiTUKNbJ
LdYAS (LtY ASJJ

(MAIh (LAMBDA NIL IPKCG (Xl
Ml (CUNO (CHI((PkUGZ (PRUUZ (PKINl SbSJ (PRIhl SYNTAXJJIPRINT KUNJJIJ

(CCND (RUN (LiND l(L3K ThISLINE) (PKOGZ
(LStTs, TFISLIYt ILLR THISLINt) J
(CSETU LIRE (CUAK TnISLINtJJlJ

(T (STPP NILJIJJ
IT (TKLPU OIJJ

M2 (CULNT 5GOOOJ (CSETd NXTL((TREtUi J (CSET~J KFLC NLLJ
(SETC X IFTCHJ J
ICCAU l(h~JrJClkkP X) (PKCG hIL

(C&iD (IdCTlFiXP XJJ’(MESS (OLUTE IbbLINE hUMi3tR MUST bt INTtGERLl
bLAIJK NJLI JJ

1CCND ((t&i hXTk iMKKJ IPRCGL (LINESRCh X NIL)
IbEGIN (c)UOTt MAIN1 NIL))))

(ZSETC SYhTbX TJ ICSETQ >SS NIL)

- 97 -

ICSETC LlFiE (CLJNS x lulLJ1 (bETi X (FTCHJJ)JJ
(CGND

((t; X (QUOTE DtLETtJJ (IIELE TJJ
(ii2 X (cILOTE StVEKJJ (DtLE NILJJ
iIt4 X (QLOTE CuPY)J (PUCP hILJ J
(1Eu X (b;UUTt PuTJJ (PULP T1.J
L(E.j x (LILOT~ dkIltJl (*rilITJJ
((Ek X (QUUTE LA6kLlJ (MAKE TJJ
((Ei: X ((rbdit UiVLAdtLJl IMAKt iviLJJ
l(E* X (b,UaTE CCUkTJJ (CUbT)J
((5~ x (PUUT.5 CdkATtJJ LCRETJJ
((Ed X (CUOTE LETJJ (LETTJ)
((Ah0 (NUT SdSJ (fQ X IQLGTE GLJJJ (PROG,? (GUTUJ

(CLJW (RUN (GO MZ)i (1 NILJJJJ
((AIuU Se5 (tc) X (QLZTE LISTJJJ (LISJ1
((Ahi3 S&S (EQ X (UUOTt CLEARI)J(CSETQ KFLG (CSETU LlhES NILJJJ
((ANO SkS (tQ X (QtJCTE RUNJJJ (PRCG2 (KNNJ (GO MZJJJ
((tu i (QLUTE STOP)) (CChD (RUN (STPP 11111
1(&d X (uUUTE SWljWUJJ (SHUnb (TREAD NILJJJ
((ecd X (WUTt TRACEJJ (JRACt (TREPD NlLJJJ
((E4 x (iiLUTE UNTRALt)J (uNTRACE (TREAD NIL)JJ
((Eu X (tiUUTE PHINTJJ (PKYNb)
((Eti X (CUGTL XTUPJJ (PRIlrrT ICCR (QUOTE XTOPJJJJ
(T (MtSS (UULITE S$blLLEGAL COMMAND... $1 X iuiLJJ J

(CCND (SYNTAX (PhtiGi! (PRUGZ (CSikTbi SYNTAX NIL1 lCSeT4 SBS TJJ
(LIkESACh (CAR LINtJ T4JJJ

(CGNO ((ANU KFLr; 5dSl (PRlkT CKJ JJ
IGC Ml>

IIkFIhE ((
(ITP (LAz’lBDA NIL (PRUG (Y L LT NthFJ

(CSliI; UNIC FrILJ
(CLND ((CEME EiXTW OLIMJ (MESSCPJJ

(1tQ luXTkr (ti&TE LFUIWELYJJ (CSETQ UNIQ (FTCHJJJJ
11 (StTL; L (CCNC ((ArOn (SETu LT IFTCHJJJ (APPEFtD C LiONS LT NILJJJ

(T (APPEND L LTJI~J
(CUNU ((KEMB NXTvI ULIMJ (SETP LT LJJ (T (GO 11111
(CCNL; (SYhTAX (RETUXh hiL) JJ

I (StTij NE& (OR hlEwF YJJ
1StTG Y (NlkuS (CAk LTJJJ

(CChU ((MElrd (CAK LTJ (CCR LTJJ (SETQ L (EFFACE (LAR LTJ LJJJ
I(StTli LT (CI)K LTJ) (L;L IJJJ

(SETC L (CCNS L NIL11
(CCNO ((AND PUTF (i)K h;Ei4F YJ (hi)T CFLGJJ (CRtATt L NILJJ

(T (AETUKN LJJ 1
(CSETU XTOP (CUNS L XTOPJJ

(CCND (Km (RETLKN LIJJ
(MESSN L NIL) l?KIirT IGUGTE S$b CREATtIJSJ J
(tiETLRh L>

UEFLNE ((
(NII\US (LPMdGA (Xl

(CChD ((CH CkLG (GET X USESJJ hILJ
((AND PLTF (NUT (GET x LCtSiJJ TJ
(T IMESS tiiUUTE LdSNUT IN bSE... JJ X T>

(ITMS (LAN&W &IL (PRCi (RESJ
J ISETd #ES (CGhz (ITMJ RESJJ

(C~r.0 ((El; Nklil (QUOTE Ahl;J
(KETUKN litS>

i)kFIhE ((
(FTCH ILAMdZA NIL (PRCG (TrMP

(SETQ TEMP NXThJ

(PHOW (FTChJ (Gi) IJJJJ

- 98 -

(CSETII kXTti (CChL) ((CChO (RUN (NULL LINEJJ IT LEilLJJj EMkKJ(T
(PKOG IA d DJ

ICuirD ((NOT (ATOM (SET& A (TAEED)JJ)
(CChir (AXP (RETURN AJJ (T

(MESS (CLUTE SBSLISJS hClT ALLOWEDSJ t)LANK hiL)j jJ
(IA&V (NUMBEKP A) (NOT IFIXP AJJ)

ICCNC I (SETU L (MEMBER A NUMSJ 1 (RETURN DJ J
(T LPKOb2 (CSETC hUbiS (CONS A NuMS))

iKETURN AJJJ1)
(ihOT (EQ (CAR (SETQ B (EXPLODE A)JJ uUUT)J

(RtTUkN AJ J
((SET:! 8 (CCR 9!! !GO L5!!1

L2 IC(;kD I (CCND (HUN IhULL LINEJJ IT LEOLJjJ
(MESS (QUCTE SSSMISSING PUUJtbJ dLANK hIL)b

((AND (NUNBERY (SETQ A ITKEEUJjJ (NUT IFIXP AJJ)
(PRUGL ICJNIJ IISETQ e (MEMBEK A NuMSJA

(SETC C ICUNS 11 OJJJ
(T (PROG.2 LLSETQ NUMS LCOlvS A NUMSJI

(SETU IJ (CUNS A OJ)JjJ
(GO LLJ))

((AJCM A 1 (SETG @ IEXPLOGt A)IJ
LAXt’ (RETURN AJ J
IT (MtSS IduOTt 6SSLISTS NUT ALLOhEOlJ aLANK hILJJ)

(C~NU ((cc (cuff d) I;~OTJ (KETuRN ojjj
L4 (CJND ((E’d ICAK 8) dLGTJ (KETURNfAPPENDl U IMKATCM)J)IJ

IRLIT (CAR 6))
(CGhD((StTQ d (<CR tlJ I IGU L4JJj
ISETcl C (APPEND1 LI IMKATOMJJJ
(GG L2)

L5 (RLIT (CAR 81)
ICUND I (NULL (StJbl t) LCDR B)JJISETQ D (APPeIUOl D (NKAJCHjJJJ

((EL! (CAK t)J QUbJJ(RETUAN(APPENUL 0 IMKATUM)JJj
1 1 1G1J L51)J

(GL) L2J JJJJ
ICCNU (SYNTAX (CCNLJ ((OR AXP (PTCM TEMPJJ (APPEi\lDl LINE TEMPJJ

IT (LStTu LINt IAI’PEND LIlvE
(APPEND1 (CLNS ;IlJUT TEMPJ QUGT) J)) J) J

LFETUllh TtiPP>
DEFINE Ll

(TKEEC (LAtiduA NIL (PRLII; (XJ
IHtTURh (CtihC (LUh (PKL;GZ (PRCGZ (St70 X LCAK LINEJI

ICSrTc LIivE (CUK LINEJIJ XJJ
(T (IKEAD hIL>

DEFlht (I
(HAAGE LLAHduA IFLGJ IPdUG (R[\bE)

(CCNC ((NULL FLGJ
(Cul‘rC (Itcl lvXlW whtbEVtRJ (SET4 KNGt (wHtKEPKT XJJPlhi

IT (PKG62 (SETu KNLE (IkFTJJ
(CChO ((eu NXTW wHEKtVEc(l

ISETQ KNGE IwhEkEPKT KNGEJJJ
(T NILjlJlJJ

((IUUMBtKP FLGJ (StTu RNGI; (INPT)JJJ
IKETURN fiNtiE>

UEFINE (I
(WRIT (LAMt3ilA NIL (PRuG (X.J

(CSETC’ ChLF NIL)
(CCi\IU (ICI. NXTh (iiirr3JE ChLYJ) (Phtlb2 (CSETti iNLF JJ IFTChJJJI
(CCtiL ((tQ ivXTw EMKK) (SkJii X XTOP)J

IIhili~L (bETid X IHANGE hILJ)J IMES> hLRG dLANK TJJJ
ICCNUI INOT(EI; FoXTW cMRKJ J (KLSS IMPKULIM I\iXTw NILJIj
(CLAD (SYRJAX IkETURh NIL) J J

- 99 -

ICSkTu ELSL NIL)
ICCND [(NULL XJ lRtTUKN (PKIIUT (aLlCITE ~46kOTHiNG TU WHITETJJJJJ

k (CChu (X (LEVtL (CChS ICAR XJ &IL) LJ)
1 T [tit IUkN NIL)) J

ISETO X ICUK X1) IGil W>
UEfIhE ((

$ELEL (LAMaDA (0 SPJ (PhOb (XJ
(CONI) ((NULL UJ ItiETUHN hILJJJ
ITTAB SP) (SETC X (CPAR CJJ

~3 IPKINi (CAR X)J
(CChD (LSETQ X (CL;k XII (PKOGZ (PKINl BLAFtKJ (GO a,JJJ
(Ciih;D ((MEME (CAK Ql ELSLJ (PkOGZ (PRINT (OUOT E

S%B <UCLUHS At.%ClvE>OJ J
(PRO62 IStT*i ti (CUK UJI (GO AJJ IJJ

(TEdPRIJ (CSETr ELSL (CChlS (LAH CJ ELSLJI
(COruL) (UNLF (RETUKe\ NIL)) J
(LEVEL 1CI)DR (CAR 131) (PLUS SP 31)
ISETU II ILGit QJ)
(GU A>

utFII\E I(
(CHEATi (LAM~CA LX FAT1 (PHUG (Y LJ

(SETU 2 (6ENSYMl (QUOTE FGTHI JJ
(CSET L (CciND (FAT (C3Nb FAT NIL)) (T NILIJJ
(KPLALD X (LUhS L NIL))
(SETLI Y (c-id XJJ

Cl (CEFLIST (LIST (LIST [CAR YJ (CCNS X (GET (CAR YJ UStSIJ)J LSESJ
(CUNII ((StTO Y (CDk Y)J (GO Cl)11
(.R ETURN X>

UEFIht (1
(NCMN (LAMBDA (XJ LPKUC (Y RES LSEl dSt2J

(btT* Y ISETC X (CAH XJJ J
(StTU RES (GET (CAR XJ USES) J

FI1 ICON0 (liETbr X lLljK XJ J (SETQ USE2 NICJJ
(U;uiC (GO N3J)
(T liETURN kESJJ

tStTL; Ubtl (GET (CAR X
I\2 ICCNC I IMEMt ICAK USE1

ICCNG ((&Tu LStl (Lljk
lSET;i hES USE21 (GO

h3 (CLNU (HES (StT’d USE2 (
I1 IHtTUkN UStlJ

h4 ICCNC tlMEMt? ICAk UiEc? :J
IT (GL hr5JJJ

LSESJ J
KkSJl>ETc) USE2 (CUNS (CAR UStlJ USEZJIJJ

UStl) 1 (;C N2)J)
IL i J
CAAR HtS J 1)
J

YJ kILJ

(LCND (IjETU USt2 (LCK JSEZJJ (tic N4J)J
IjtTL: USE1 ICGhS (CAR KESJ USCAll.

h5 (SET< RtS (LiR RtSJI IGC tvj>
JEFINE ((

(PUCP (LPHtiUA (FLGJ (PROG (KNbl HNGLI
(CCFiD ((t; hiXTw EMRKt IMtSSCPJJJ
(CSETu PUTF kLbJ (LStTd L~LF NIL)
ICChU (It-” lLXTri IWUUTE UhLYJJ

(CChU (PuTI- (MESS It’PRDLIM ~LxTH NIL))
(1 (PkGti2 (FTCHJ (CStlb; LNLF TJ)JJJJ

ISETU ANGl fHAN6ES NIL))
(CCkG ((CtMt3 hXTk INTili (FTLHJ J

((A&O (IuCT PUTFJ’(ti; NXTh EMRKJJ IPkUGL
(jtli n1ub2 ICUhb XTbP NILI) (GU Pl)Jl

(T (P&i;2 (MtSSljt’) LKETURN rdILIJ)J
(biTi) <NC2 lRAN6tS NIL))

Pl (CLI\;IJ ((l\iUT (Eti luxiri cMKKJJ IMtSS INPKDLIM NXTW NILJJJ
(COW (SYNTAX (PllUG2 (CSEly tibTF hlLJ (HtTURN NILJJ))

- 100 -

(CGIT (CUGTE PUTLJ RN<1 RNbZJ (CSETO PClTF &IL>
UEfIhE II

(MEHE iLAMbDA iX LI (Pkoti NIL
P iCCIuD ((NULL LJ (RETURN 4&2(L))

iitu X (CAR LIJ ikETURN XJII
(SET0 L ICDR LJJ (GO M>

0EFIhE ii
IMECdER (LAMBOA IX LJ IPRGG NIC
M iCCND ((NULL LJ iRtTURh(NILJJ

(iEQUAL X (CAK LJJ (RETURN iCAR LJJJJ
(SETQ L ICUR LJJ iGIl M>

tiEfINE ii
(PUT1 LLAMBCA (TBPL WHRtJ (PRCG iTtiCM 0 CAROJ

lSETci TBCM TBPLJ
P2 iCUhl.l I (NULL TBCMI (KETURN VIHKEI jJ

istila TBPL (CAR T~cMJJ ISETC U whREJ
til iSETu CAR0 ICAK 6)) J

iCCND l(NCJ PUTFJ iPRUG2 1CSET.J tLSL NILJ
(SETC TBPL (COPY Tt)PL NILJJJJ

i(Ec) TBPL CAkdJ iPhDG2 ICOirD isBSiPHCG2 IPRINl iOU0J.E
~S~NODE CANNL;T Bt PLALEU Iri ITSELF... Sl)iMfSSN LAKU TI~~JIGO a2JJJ

(iISI& CAKii TBPLI IPRLGLiLChD lSi3SlPRLG‘ (PROGZ(NESSN CARU NIL)
ipRIN1 iUUOTt bbB IS ALkiAUY IR $11) iMES3N TBPL TJJjJ (GLI PLIJJ

iIMtMB CPAQ (CAR litiT (LADA TBPLJ APVALJJJ
(PHiA iLI;hL) iSBS (PROGZ iPKOti2 (MESSN TBPL FIILJ

IPRIN~ 4uuUTE $sf Is ALREALIY IN 8JJJ i~Ess~ c~a4 TJJJ~ i~o a2JJJ
iT (CSET’w XTOP itFFACt TBPL XTOPJJIJ

1CSETd KFLG TJ
iCLNC IitU Q XTOPJ iPKUG2 (IuCCNC XTDP ILclNS TBPL NILJJ i6C i)lJJJ

iT IPRiG
I NCCNC LAK.i ICLIUS T@PL NILJJ
(CSETICADR TbPLJlCUN> LARU(CARiGtT(CADK TbPLJ APVALJJJJJJJ

C2 iCCND iiSETC Q (itI& Cj I iGC PIi J IT NIL))
i;l (SET4 TBCM (CUH TBLHJ J (GC P2>

UiFlhE (i
(EFFACE iLPMl?DA iX LJ IPRDG iY kLJ

icow iilvu~~ LJ (KETUNN NILjJ
iiiti X iCAK LJJ (RtTUKN iCJR LjJJj

iSElU HL Lj
E iSETU Y LJ (St164 L iCDK LIJ

(CChD iihuLL Lj iRiTUKh hLJJ
lit4 k (CAK LJJ ipKUG2 ikPLPC9 Y (LDR LJJ (RETUKN hLJJJ
IT (bc, t>

3EFlhE ii
(CCFY iLAME0A 1X FAT) (PRljG iY L)

iSETO Y iC01tiS iCUPT (CA& XJI NILJJ
iCSETu ELSL icCI\IS (GUNS X Y J tLSLjJ
(SET4 FAT iLhEATt Y FAT)) (cch3 (ONLF (RETURN YJJJ,
ISETQ X lCUDK XJ) /

c (CLhC ~IAULL Xl (RETUHIU YJJj
ihctiNC Y iCONI, i(SETQ 2 iAsCC (CAR Xb ELSL)J iLUhS 2 NlLJJ

iT (CUNS (COPY (CAR Xl FATJ luILJJjJ
(ZETC x (CDR XJ) IGC L>

OtFINE ii
iASCC ILAHBCA iX Y) iP4uG rSIL

A iLLNU (IEli ICAAR Yl Xl ikETURN iCDAR YjJJ
((SEThi Y iLdk YJJ i6C AJJJ I RE TUKIv Nl L>

dEFIhE ii
iCCP1 iLAMtDA (XJ iPHCG iYJ

C (LOND ((NULL XJ (RETURN Yll I
ISETci Y INCCNC Y (CONS ICAK XI NILJjJ

- lOl-

(SETC; X (CUR X1
UEFINE ii

ICES5 (LAMBCA LX Y
(CUNLI ((UK (AloU
(PRINl XJ IYK
(REStTJ

UEFlNt: ((

) (6ti c>

L1 (PKciG NIL
L (NOT SBSJ) (ANLJ HUh (NOT ZbJJ (KETuKIU ~uILJJJ

INT Y J
(trEZ1IL IOUOTE MAIN) hIL>

(MESSDP (LbMt!L;A NIL (PnCI; I\rIL
(PHI hT (iiutiTE 4b0MISSIh6 CFEFANOJJ J
(KEStTJ (BEGIl\, (CUUTE MAIN) hlL>

UEFlhE ((
(MESC (LAMBDA (X YJ (PRCG FVIL

(CON0 (SBS [MESS X Y TJI J
(kRll\rl XJ (PhINl YJ (PhINl (ilUuTt $85 LlNt $)I
(FRINT (L&AK THISLlh~JJ
(HESET J (BECIIv [OUDTE MAIN1 huIL>

UtFlhE (1
(RkSET (LAb’WA I\lL (PK3G hIL

(CSETd CFLG NIL) (CSETC SYhTAX NIL1 (CSETd KUN NIL) (CSETC SES TJ
(CStTd AXP NIL) (LSfTd PUTF NIL>

UEFINt ((
(ShUhU (LAMWA (XJ (PKllG (Y)

P (CChL; f(hULL XJ (RETlJRh hrlL)JJ
(PdINT (CAK XJ)
(Pkli\tT (SET’.’ Y (CON0 ((AND (k!JMdEKP (CAK XI1 (NUT (FIXP (LAR XJJ1J

(GET (MEMtiEK (CAR hl NUMS) USES))
(T (LET (CAR XJ USLSJJ)JJ

(CLhO (Y (PRCG (ZJ
(Stzld 2 YJ

P (PRIhT (CAri (G&T (CADR (CAk 2)) APVALJJJ
(LUND ((MLMt) (CAK Zi(CDK ZJJ (MtSS (UUOTE DUPLICATES)

(LAH ZJJJJ
(LUl\rll ((NIILL (StTil Z (CCR ZJJJ (KtTUKN NILJJJ
(CD PJJ iJ

(SETd x (LUR xJJ (GL? A>
UEFIIUE (1

(ISlh (LAMECC (Ul L%J (PKU6 (Xl
(CLhD ((kuLL (SETU X (CAK(GE1 (CADK JI) APVALJJ)) IRtTuKh NIL44)

I (CUNO ((UK (Eci (CAK hi BJ (ISilv (CAR XI tiJJ (i(tTURh UlJJ
((StiTcl X (CIit? XJJ (6b 1)))

1 i+ETU&N luiL>
3tFINE (L

ICtLE (LAt’tlZA (XJ (PKLJG (RhGEJ
(CcjNI) ((Ed tMKK NX~WJ (PtSSCPJJJ
(CSETd DtLT XJ
(CihC ((tZ hXTw (WCTt ChEJJ (PROG.2 (FTChJ IStiTU KNtiE TJJJJ
t SiTd X (hANibS NIL))
(CLNL; IHIULE (PRO& NIL

(SET& HhGt Xl
L (KPLACC (CA& KruGtJ hl LJ

(CUNO ((SETd kb4b.t (LOK RNGEJJ (GO ZIJI
(KiTURtr NIL J JJJ

(CLtv3 ((tC hXTk (WtiTt FHCCJJ(PPOG.2 (FTCHJ(SET Y KNGE LhANGES h’lL)iJJ
IT lSETu KN(;t ILLINS XTUP NlL)JJJ

(CihC ((hGT (Cd NXTW EMKK)) (MESS IMPHULIM NXTrl \IILJJ J
(CCND (SYlJTAX IktTUKar NILJJJ
(CLIIT (GUc)TE CtLlJ X R&GE>

DEFIhE ((
LOkLl (LAMBDA tx HNGJ IPROG (TtMl FL TEMRJ

DA (CtiNCiIStTd FL(StTd TtMh(CAk(6tT (CALJR(SETd T&Ml (CAn XJJJAPVALJJJJ
(CUIuC Io’r(Dti (FLG XKNGJ OS2 (SfzTU XKNG RN&l

- 102 -

OS1 icJND(iUk!~QtC~R
(PKOGL (PRUGL

(SET& FL (tFFPCE (CAR TEMRJ FL1 J J J
((SETQ XRNI; ICDK XRIJGI) (GC OLlbJJ

(CGNO ((StTQ TEMK (CCH TEMKJ J (GO OSZJJ
17 (CSET (CAUR Ttrl i FL)))

(HETUKh FL~J J ri1Ll

(tNCT

(LitiD (FL N
(OELT

(T lt’KUG2 ICIJND (StiS (PRUGZ (YtSSN (CAR Xl NIL)
(l’Kl~T(iUuTt B,f &UT Ilu RAlu6t TO SEVtk/DELETE$lJ)Jb

ILLi Di)iJJJ
tii RNti XTUPlJ~PHGS2 IClJhD (SBSlPROG2 (MESSh (CAR Xl NIL)

LPKINT ILUUTE 699 tlAS NC FATH~KSIJ~JJ) (GO C2AJJ)
Ll
(PKCGL (LUhD ((AND (EQ XTUP RNGJ (EQ TEMl (CAK XTOPJ))

(CSETQ XTUP (SETQ KNG (LCK XTDPIJ) 1
(T ICSETL; XTOP (EFFALE TEMA XTDPJJJJ

(DISC TEPAJJJ
(LlrtULL (MEMB TtMl XTOFJ J

(CSETd KFLt TJ
02 (CCNO ((ScTC X (COR XJJ (GC DA

(AETUKN T>
UEFlhE ((

(OISC (LAMUUA (Xl (PkDG (Y LbLSJ
LSETP LULS (CAK X) b (st rI.

C2 (CEFLIST (LIbT (LIST ICAR LBLS

ICSETQ XTUP ILONS TiMl XTOPJJ))

i (T NILJJ

Y ICUDK XJJ
)

(EFFACt X (GET (CAR LBLSJ USESJ)Jb IJbcS)
(CCND ((SETU LBLS ICUK LBLCJ J (GO D2JJJ

Cl (CChU ((NULL YJ IKtTUKN hlLJ J
((GRtATEkP Li+lEY (CARtGET (CACH(CAR YJJApVALJI) iJ

(pKUG2 (UtLl Y (CONS X ~0JlL)J(RtTbRN NILJJ)J
(CISC (CAR YJJ
(5tTd Y (CDR Y)1
(GO Cl>

3EFIht ((
(YAKS (LAMtil)b (Xl (PROG (CIDS khGS KNGE tIOS IUS IO L YJ

(CUNC ((ti I\IXTk EMkKJ (MESSUPJJJ
LCSET.i ELSL hrILJ
(jETii i(hGS (KAhGtS NILIJ (SETQ ICS (LAR ELSLJJ
(CGNU I (r-lE11B NXTk BYASJ (F TCHJ J

((AhC (NULL it) (cd EMRK NXTWJ J
(CGhO (St&TAX IhETUFh NlLJJ (T (Gil UtuSIJl)

(T (NESSUPJJ)
(CCNC (It;; NXTw EMH&J (MESSDPJ~)
(CSETd CFLG TJ
(SETQ IDS (CAk (ITMJJ) (CbETU Cf-LG &IL)
(CCNI) (SYNTAX (RtTUKN hlLJJJ
(CCNU (X lb0 LtlJ))
(CtiNC((fuOT(tP hXTw EMkKJ) (MtSS IMPkDLLM NXTri NIL)))

LN5 (CCND ((huLL (StTQ nNGt (CAK dhGSJ 1 J (PRuGi (Curd (I&UJT RwJ
(Phll’iT I’JLkGJ I I (i,.il Uh4iJJJ

Ui\13 (SETL) Y ILDPT ICAK ISETd X (LA& KNGtJJ JJ)
(SirTQ Z IUSJ

LNI ~CUND ((MEMU (CL\& LJ 1LAk x)) ISeT& Y iEFFAl.6 ICAk LJ Yjlj
IT (PRLbZ(C3h!J (StiS (PHUGL (PRUGL

(PtilNl (CAR Zl J IPfllul ILuOTt S$i UUt> r\iOT LAbEL 51) J
(MESLN X T)jJJ (bi UNlJ)~l

(CCNO ((StTQ L ILCK ZJJ lbu UNlJ J
((NLILL YJ (PKDGZ (CLhU (SJS IPRUti2

(PRINT IUUIIT~ Lb$cAhhuT K~MCVE ALL LABELS STRUM 9JJ
(MESSI\ X Tlilt (GL UrULJJ))

(KPLACA X YJ (SETd Z 11)s)

- 103 -

Lh6 iCEFLI>T ILIST (LIST ICAk Z) itFFACE X
(CCNU i I-Serb Z (CUR ZJI iGC UN6JJJ
(CSETU KFLG TJ

J(T NIL))
JJ

UN2 (CCNU (ISETii HNGt ICUK KNtitJl ii;0 UN3J
UN4 (ii,NO IiSETu HhGS ICllh GNGSJ J (~0 Ulu5J

iKETUK:J NIL1
Lt? IStTr IC 1r1Ll iStTLi LICS iCJPT IDS

(LUND IitJ NXTW ibUtiTE titFChcJJ iPRW,2
iCLl\rC I(td ID tilRI0 IMtSSOPJJ

IT iFTChJJJ

)J
(FTCHJ (Stld 10 NXTklJJJ

IbET (CAR ZJ USES1 J 1)UbESJ

iCLNUi iNJT(Eb NXTk EMKKJJ iMeSS IMPWLIM NXTur’ NILJIJ
Le6 ICclNU i(!\ULL iSETU kNGt (CAk RNGSJJ J LPHrJi;S iCC)NO ((NOT kbh)

IPKINT hLRblJ J IGO LO4JJJJ
L85 iSETa Y iCAAK hllGEl1 IStT;1 1US IhtTv L iCUl’T ClI)SJJJ
Lt!l (CUhC (IMcMb ICAK ZJ YJ lPhUG2 ILLNLI (SbS LPHUGZ iPRClG2

(PHINl (CAR ZJJ iPRII\Il (LIUCTt $35 ACKEAUY LALIELS LJJ J
(MESSN (CAR RNGtr TJ JJ, (Gti LbZ)J)

i (bETL Z (CCK 21) IGU Lull)1
(CtTli Z CICSJ
(LLND I (NULL ICJ (SETU EIUS YJJ

Ii (StTL! tIo> ll)SJJJ
Lt5S (LUND ((NULL (CDR EIDSIJ NIL)

IT (PRUGZ (SET4 tILIS LCJR EIuSJJ IGti ~tj9J)J)
(CCNC (IhULL ICJ iPRL.GZ IRI’LALU EIL;S li;S J (GO LtlbJJJJ
ICCJivO lit&l IU (CAR YJJ IPdCG2 (PKCc.2 ikPLAC0 610s Y J

(KPLACA (LAR kNGfJ IUS JJ ILU LbdJ)l)
(SET3 x (coil YJI

LB3 (CON0 ((NULL XJ iPliUG hIL
iC(;i’.U ((NUT S’dSJ IRETUKN hlLJJJ
iPRIh1 IUI IPRIhl iduCTE $LL CUES NOT LAtiEL $JJ
iMtSSh (CAR KNGtl I\rIL) (I’kINl ib)UCTt JS% -- %JJ
IMtSSI\ ICONS 135 NIL) NILJ
iPHIN1 (CILOTE 55s Ac3i3 AT EhDS) J
IRPLALO Y ILJS 1)I

(iEi iC ICAk XJ)IPkUGZlKPLALO Y IDS JiKPLACD tIUS XJJJ
(1 Ii’kCGL iP~Ob2 iSETu V XJ ibiTb X iC.OR XJJJ iGU LB3JJJJ

Led I3tFLISTiLISTiLISliiAK L) LCCNSICAK iihtitzl ILETICAK ZJ uSESJJJJUSESJ
ICLNC t ISETP Z ICOR LJJ ibC LtoJ 1)
iCStiT< KFLb TJ

Lti2 ICUNO IiSETcl KNGE (CUR KhGtJJ (CU Lt!5JJ (T NILJJ
LC4 ILLha (ibeT KhGS (CUk khGS.1) iGO Lb6JJJ

1 HETLAN INIL>
JEFINE (i

(LCLT (LAMECA INIL (PRO” iX J
ISETu x (ArNii hlLJJ
(CCILLI (NuTiEil NXTti tMC(KJJ tKt>S :MPr+uLIP1 :;XTk NILJJJ
(CChD (SYhTPX (HE-TURN NIL)) J
iPRINT I NMtM X>

3EFIhE (I
lht”tr (LAMt)LiP IX1 IPRDG (KJ

ISCTL! K OJ
h iCChU IIhuLL XJ (KETURIi KIJI

iSETd K (A331 hJJ (btlli A (LCH XbJ IGb h>
OtFINE II

ICKiT lLA’+lte!CA hIL IPKUG (X1
ICStTQ CFLG 11
1CCiNU (IEQ (CAAK tstT ci X IITMSJJJ tMkKJ (MiSStiP))

iiFILT itP NXTw tf’KK))IMtSS IMPRULIM NXTw NILJJJ
ICCNU ISVNTAX ikEfURl\ m11LJJ J

C ICJNU (X iCHLATti (LAK X:1 NILJI IT (GO Cl))J
iCStTr: XTLP (CLhS (CAK XJ XTGPJJ iStTu X iCDR X1)

-lea-

(wbEREPRT ILAMBCA IRNGtJ (PROG (X d)
(FTCnJ (CSETC IihF TJ
(CUNI) (SVNTnx hIL) ((txULL KN(lt) (RETUHh NILJJ J
ICiiNO (iti4 NXTrr IQUOTE COUNTIJ (PKUGZ (FTiH)

(StTQ w (U’JOTt KEEPCNT) J J J
(tEQ NXTk (crUOTi VALUtll (PitUG (FTihJ

ISETU W (ilUcrTE KttPVALJJJJ
(1 (StT$; W IUUlJTi KttPJlJJ

I SETU X (CtANGt 01)
(dETUi(h (W X RhGe>

UEFIhE II
(KEEP (LAMWA I TSTNUUES NWtSJ LPHOG (X hJ

(CCNC (SYNTAX (RETURN NILJJ)
(CCNU (ItvJLL TSTNC3ESJ (~frTURl\r (CONC LiSpUF NILJ (T NUUtSJ)lJ)

Ki (SE1.J H JSTNCiUeSJ
(CCNC ((NILILL hLn;)tSl (RETURN XJJJ

K2 (CONU ((lrULL,Hl (CUNU (ISNF hILJ(T (SETU X (CONS (CAR WOESJ Xl)))1
((iA IEd (CAR HI (C*K NUDES)) IISIN (CAR H) (CAK NUOESII)

(CLI\C (ISNF LSETQ X (CilNS (LPR WOES) XJJ) (T NILJJJ
IT (P~bb2 (SETc) H (LCk HJJ (i;C KZJJJJ

(SC11 NtJuES (CilK NUUiSJ) (ti0 Kl>
0tFIhE ((

(KEEPCNT (LAMdUA (JSTI\IOUtS iWL;tSJ (PKUC (X REL NUM CNT HJ
(SETi: kEL (FTCHJJ (StTd NUM (FTCHJI
(CCNO((hCT(hbPdtHP hUMJl(MESSLOUOTE SNI)T A NUMtitR... St NUM NlLJJ

((NUT (MtMB KCL kELSJJ (NESS (i)IJtiTt
SJSNtiT A RLLATIUNAL UPERATUR... IJ KEL NILJJJ

(CCNO (SYNTAX (dtTUkh hiILl IJ
(CLINtI (INdLL JSTNUOtSJ (RETUhN NILJJJ

KL (>ETC h JSTNCCES)
(CIJNU ((“IULL NGOtS) (KETUkh X)JJ
(5tTd CNJ 0)

K2 (CCt\i) ((WJLL hJ (GC K3J)
IIISIIU (L4K ti) LLik hOOtSJ I (btT& CNT (AL101 ZNTJJJ)

(btTQ H (LOA till IGU K2J
K3 ILCND ((hKtLCFM CNT KtL NUMJ IStTi) X (CONS liAR INOOtSJ X)J)J

I StJir NWES (CIJ< INUOtSJ) 1bC.I Kl>

(KtEFVAL (LAHBLD (TSThCICtS NCutSJ (PRCG (X Y hEL INUH HJ
(CuND((NdTlhiJMbtKP IruM) IlMESS(OUUTE bhOT A NUMtiER... 6) NUM NILJ 1

((NUT (MtMB RtL RtLSJJ (MESS (QULITE
4brbNUT A KELATICNAL SPERATCR... bJ REL NILIJJ

(CON0 (SYNTAX (AtTURN NIL) JJ
(SET, KEL (FTCH)) (StTw I\liJM (FTCtiJ)
(CONU ((NULL TSTIUUUtSl (tiETLkN hlLJJJ

Kl (SETO t. TSTNbOtS)
(CChO ((I\ULL hCiJtSJ (HtJUKN XJJJ

KL (CONU ((NULL tiJ NIL1
((AND (StTu Y (FNUM (LAA~ Hi,) (LiK (E~J (CAK ril (LAR hOUtSJJ

(ISIN (LAK hi (CA,? NUUtS)JJ IILRELLPM Y REL NUMJ J
(SETLI X (CCIYS (CAR NLatSJ XJI I

(T (PRUGZ (SET4 h iCbK i-JJ (GG K2J)Jl
(SETI) ,\OOk; (CUn NULtSJ) IGu Kl>

3tFINE (1
(NUHELUPM (LAMtlilA (N ktLP Ml IPKtil, RtIL

I RETLFN
(LUND ((id kELP (rJUTL EivJ1 lEdUAL h PJJ

(It4 RELP (LiUiITt l\kilJ) (NljJ (~OLAL 14 FIJJJ

- 105 -

llt~ KELP IUUuT~ Gd)) (G%i:ATEFP h M))
cIt!Q tiELP IdOTt bt)) (U& IGREATERP N
((tic RtLP (OUCTt LSJI (LESSP N MJ)
IlEd KELP IvJiTt LEJ) ILK ILkSSP N MJ

DtFINE ((
(t’ESSN (LAMt!CA iX FLG) (PRLG hIL

(CGND ((NUT 5tJL.J (hkTUkN NILJ J)
(SETy X (CAR XJJ

A LFKlNl ILAH XJ)

Ml (EuUAL N t’J1J

/
(EQUAL N H>

(CCND (ISETU X (CDR X)1 IPRC62 (PKINi t?LAFtKJ ItiLl AJJJJ
ICChO (FLb (TtRPKI>

(IYPT (LAMBOA NIL (PnUI; (IWL NIJTF .< XH Y YHJ
(CsET2 ELbL 1 ITMJJ
ICCND

(SET4
Sl ICCNLJ

z3 ICCND
I CUND

I CLNIJ

(SETC
I CLNU

(PRUGi (SETbl I(vPL (CONS NIL INPLJJ (FTLHJ)J
(T (SETC INPL LLC&; T iNPL))JJ
1tE.J NXTvr (QUOTE 1NJ) (FTCHJ)
(T (NE>5 IMPhdLIM kXTw hIL1 I J
X (ITMJ)
(SYtqTAX (GO 231 1
((NdLL (SETy Yti (ILLkiN X)1) (HETUKN NIL)))
INPL ILChS YH INPLJJ

(SYNTAX IGi) 5111
((NULL ISETu Yli (NCMN ELSLJJJ IRETUKN NILJJJ
INPL ILLkS YH hILJJ
l(iU hXTk (b;lrCTt ISJI (PRLI;L (FTCbJ (CSETq LSNF

(CJNU (IEd NxTh IubtiTE NilTJ) (PRdbZ (FTLHJ NlLJJ(T TJJJJIJ
IIMEMB hXTk hOTtuJ NIL) (SYNTAX IK~TuRN NILJJ IT IGO ZOJIJ
((Ed NXTw (ilUuTt hc;TJ J

LO (SEld YH (SETC Y (CAk INPLJJJ (SLTd INPL (CDh INPLJJ
L4 (CC&U IthULL IhPLJ (iicTUKh YHIJJ

(CSET~ NuTf (CAR INPL)J IStTC X ICAUR INPLI J (SETQ XI-I NIL)
ISETU INPL ILCCH ItkPL JJ

Zl ICCND ((ISIh (CAR XJ ICPR V)J (PRCGZ
(LUND INLITI- (StTu XH ICLNS (CAK Xl XHJJJ (1 NILJJ
IGD ZZJJJI

ICCW ((StTL; V (CCH VJ) LCL ZlJJJ
ICCNO 1NI;TF NIL) IT (SkTu XH (CL;NS (LAK X1 XHJ JIJ

Z2 (SETU Y YdJ
ICLFrD ((StiQ X (LSH XJJ IGC ZllJJ
ICCND IlbETd Y (SETU YH XnJJ (6U Z4)))
(RETURN I\IL>

UkFINE II
(RAI\ItiES (LAMdDA (FL~J (PKUti I Xl

H IStTii X ICChS (H~NcIL FLGI k1J
(LUND trta ILxTd IWUUTt ANC)J (PAOCL (FTLHJ (GO H)J)J
(RETUHh X>

JtFINk II
(WIT (LAMUUA (F xn WI) (PnOC; (XJ

(SETU X XHI
~3 (CLhD (IhuLL ICAR YHJJ (PHOCZ (PRINT hLkG1 (GU D4JJJJ
ul ICCNU ((NULL (CAK XIJ (PkUb2 (PRIhT hLHGJ IbJ L)ZJJJJ

(F (CArc XJ (CPR YIIJ)
u2 ICCND ((StTi A (CDR X)J (61; OIJJJ

(SET0 X XHJ
C4 ICChC ((StTti Yh ICCK YH)J (GO i)3J)J

I HETURN NIL>
dEFtNE (I

(FhuI (LAMSOA IX) (PR(Jti NIL
lu ICCN3 LlNuHi5kkP liAd XJJ lHt1UF.N (CAR XJJJ

- 106-

IlstTL x (CUK X)J IGO Nl)J
(RETURN NIL>

IJEFINE II
ILIS (LAMBDA NIL IPRUG IY xj

ICChD ((Eu NXTW EMkKJ
(CUND (ISETu X LIIJESJ IictTUHh (PRUG &IL

L (PRINT ILAR XIJ
(CCNU (ISETP X (CDR XJJ (GO LJJJJ))

IT (MtSS IilUCTE SIB~dCTniN~ TC LISTS) BLANK TJJJ))
(CChO ((NOT IAND (NlJl4eEkP IStTd X IFTCHJJ) IFIXP X)JJ

(MESS ILJUUTt 5b5L INE hUMt3ER MUST tit INTEGERS) BLANK NILJJ
IT

!LUNC (IhiT IANC ISETi! Y ILINESRCH X UJJ ItJ ILAAK YJ X)J)
IMESS IJ~CITE &b$hOTHING TG LISTS1 BLANK TJJ

IT (KcTUkN (PkIhT iCAK YJ)J)J)J >
JtFIhE (I

ILICESRCH ILAMBCA (L FLGJ IPFCG IY Z)
ICON0 l(UR INuLL L INtSJ IGtitATEftP (CAAH LINES) LJJ

(rlETUKN (CON0 (IOR (NULL FLc;J (NUMBtRP FLGJJ NIL1
(T ICLtTG LIhEb (CChrS LIFtt LINESJJ)JJJ

((f&l ICAAk LINtSJ LJ
IKETUKN (Cl;klJ LliqULL FLGJ ICSETQ LIAES (Cl% LINESJJJ

II hUMBtRP FLGJ LINES J
IT (KPLACA LINE) LINtlJJ)JJ

ISETU 2 LIhESJ (StTP Y ICCR LINESJJ
M lCCI4lJ IlUk (hULL Y) IGhtATEHP (CAAK YJ LJJ

(RETUKN (CUND ((UK (I\rULL FLG) INUMBERP FLGIJ NILJ
(T IRPLACU Z ICONS LINE YJJJ)J)

I IEO ICAAK Y J LJ
IdETuKN ICUILD ((NULL FLGl (KPLACO Z ICOH YIJI

(IhUMetRP FLGJ Y)
(T (RPLALA Y LINEJIIJJJ

ISETQ L YJ (StTi) Y ICUK Y)J IGU H>
ljEFIhE II

IRNh ILAMbDA NIL IPROG IX Y)
ICCNL IlEG NXTW tMRKJ (StTQ Y LINES11

(INUT IAhU IhlrMEERP IstT \r X lFTCh)JJ IFIXP XJJJ
IMESS CNMI BLANK NILJJ

(INLIT (AND (SET4 Y (L IktsKCh X OJJ (E61 ICAAK YJ XJJJ
IMESS (QUOTE 555hll SUCI- LINE NUPBEKSI LILANK NILJ 1 J

ICSETli THISLINE V) (cSETI;I LINE ICOAH IHISLINEJJ
(CSET; SES NIL) ICIETc) RUN T>

UtFINE I(
(STFP (LPMECA IXJ (PKUG NIL

IFHIhT 6LANKJ IPRIhl ICUUTE STOP))
IPKIhl ICl,ND IX IUUCTE $5b AT LlNt $JllT IuUGTE 555 AFTER LINE 5lJ)J
(PHI&T IiAAH THlSLINtJ)
ICSETU Ti-lISLIhE hILJ (LStTL: At3 TJ (CSETP RUN NIL)
(BEGIN IdUOTE MAIN) ;tilL>

JfiFIlVE II
ILETT (LAMBDA NIL (PRtiG IW i X YJ

(CCND ((NUT (ATOM NXTWJJ (MESS
IQUCTE 555iLLtGAL ALGEbHAIC VARIABLts)
BLANK NILJJJ

ICSETd AXP Tl (StTQ X (FTCHJ I
(CETQ k l&T X FVALJJ
(COND IiNOT IATCM NXThdJ Il”kGG hlL

(CChD l(hUMBtKP WI lMLjL AVCS XJJ 1
(StT.4 X lCChS X NILJJ
(CSETU uIJTP ICUtvS YIL AlLJ) 4DPoP IFTLHJ t
ICSETP OUTP ICDR UUTPJJ

- 107 -

.

ICOND (SYNTAX (H~TUHN UTPI))
ISETP L (iiVLL UbTPJ I h

(IL;& OuULL hJ ihlJMbtRP kJJ NIL)
(T (MESC ALMS X))J

(CChZ lltbl NXTlJ tL)SIbNJ IFTCHIJ
II (MESS IMPhCLIM hXTlv NIL)))

lC13NU (lEti lvXTw tMRK1 (MESSCP))J
(SET4 Y lCtiN.5 hIL NIL 1 J

D fCChlD IlEG NXTk EMFK) NIL1
(T lPKb62 (APPEND1 t LFILHII (60 01)))

LCStTLj AXP kILJ (CSET3 OUTP (LOhS NIL NILJJ
(PPUY ICDK rIJ (LbtT’.i CLTI’ ICZK LUTPIJ
(iCkd (SYNTAX IRETURIU ULJTPI JJ
(SET? Y (EVLL tiUTPI)
(CLixU ((ATOM XJ (CUNU ((CAUC Y) (UEFCIST (LIST (LIST X YJ)

(T 1N1Ll)l
((StTC; k (SASS L W)J IRPLACC W Y)l
(T (DEFLIST IL1 ST LLI ST (CAR XJ (CtiNS (CUNS

(GET (CAR X) PVAL))lJ PVALIJJ
(CSETC KFLG T) (RETURN Y>

DEFINE ((
(AEXi’ (LAMSUB (INPJ (PROb IFLG tNC XJ

(CLlrrl) ((tQ (LAR INPI PLUSS) LStT6) INP (COR INPJ J
ILEd (CAR IhPJ DASH) (PHdG.2

(CSET4 STAK (CO[LS (C1;iqS (QLUTE rUtbJ ‘+I
ISETC INP ICOR INPit)))

A (CONU ((NULL INPJ (CbNU (FLI; (RbTURh CUTP)J
(T IMtSS IAE SLANK NIL))) I

((ATCC INP) (SET& IhP ICCNS INP NIL))))
I SET4 X (CAR INP) J

L Yl

I

STAKJ 1

PVAL J)

(COluU l(ATCM X1
ICOhU ((SETY IhC (SASSLC X OPSP hlLJ) (PROG NIL

(&ND ((NULL FLbI (MtSS IAE bLAhlK NIL111
C (CON0 I (LESSP (CCAR STAKJ (COR INCIJ

(CStTc; SFAK (CCNS INC. STAKJ))
I T (PRUGZ (PLUG2 (CCND ((NULL (CAAR STAQKJ J

(RF;TUKN (SETP I-CG NIL1 JJ
(T (APPifl\rUA OIJTP (LAAR STAKJ IJJ

fT (PRUGL (
(
I

(T (PPLIP XJIJ

(LSETQ STAK (CDK STAKJ)J(GU CI)JJ))
PRI;GZ (CCND (FLG (MESS IAE BLAFtK I\rILJJJ
APPtNOl CUTP XJJ
CIJND (IAN0 ICDR INPJ (IYOT (ATOM (CADR INPI))

(NUT (NUME)EHP XJ) 1
(PkOG2 (PPUP (CAR (SETU LNP (CDrC INPIJII

taPPEN GUTP SUCIJJJJ JJJ)

f SETcl FLG (NOT FLGI J
dtFIhE ((

(SET’J INP ICUR 1NP)J I60 A>

IPPCP (LAMBUA IX1 (PROG NIL
(CSET;I STAK (COhS (CONS LPAR 01 STAKIJ IAtXP XI

F (CCND ((ELI (CAAH STAKJ LPAKI (KETdRFt (CSETO STAK (CUR STAKIJJ))
(APPENUI uUTP (CAAR STAKJI (CSETU STAK (COR STAKIJ d&O P>

IJEFINE ((
IChCC (LPNBCA (XJ

(CO&D ((IvUMBfrRP X1 X)
(T (NESC AIMS aLANK>

UtFINE II
(CARL (LAMbOA (Xl

(CCND ((NUT (ATLM X)1 Xl (T (MtSC AVCS BLANK>
uEFIhE ((

(EVLL ILAMbDA (X) IPROG (Y VALJ

- 108 -

(CStTu STAK hIL)
E (CGNU ((SASStiC (CAk XJ UVSP &IL) (PHUL hiIL

IStTi; Y IiAic X1)
(SETG VAL

LCONU ((t& Y PLUSSI It’LbS (<hut’ (CAUH STPK)) (CiquM (<AR STAK))J)
ILti; Y DASH) ItiI~FtkEi~iE(iNUMlCA~H SThKJ)IL;vuMIC.AK STAK))))
((Lb Y STAkJ ITIF”ES (L;\IJM(CAUR SJAKI) ICNUM IL&h sTAK))l)
((ku Y SLAStiJ (uIVILE (CRUM(CADk STAK)) (iWM (LA3 STAK))))
(IELi Y iduciTc *+)I (c.3:;~ i;r4:kb5; ;L;*ut.+ (LiiL)R STAKj) 1
(MtSC (PUtiT; $LbEASL Ih tXPChEhTIATIU& CAlvNuT bt: ,\tbATIVE$J

bLANKI (T IEXFT (LADH SIAK) (LWM (CAR JTAK)))Il)
((EL Y SubI (CChL, l(StT3 VAL (SASS

(CIUUM (CAh STAKE i (CAKY (CPuk STAK)) 11 (CDK VAL))
(T (ME% LUuUTc

)B$AbkAY VAKIAeLt b4; NJ VALUES) bLANK)lJJ
(T LKlFtbS (CiWbM (CAn SlAK)JJ)b)
ILUrvD IIEj Y lilUI:Tt liieG>) lL%Trj SJAK ILUK STAK)))

(T IiSETb) STAK ICObR STAK))))
(CStT& STAii ICuluS VAL STAK)I))

(IhJMBtkF (CAR X)1 (CStTd bTA& (CbNS ILAR X) STAKl)l
X1 PVAL)) ICStTc STAK (Ccli1S Y STAKII)

TtiktTlC Uk ARkAY VARlAbLt HAS Nb VALUE... 41
I I
(GC t)ll

((StTI; y (btl IiPR
(T(MtSL(tiWTt LSSARI

(CAR XJ)
ICCND ((ScTbl A liuh X1)
(HETuK~~ I~AK STdK>

UtFlhlil~l
(GCITC (LAMOL)A FtIL IPRtiG IY Al

(CCNC IliL: NXTk Lbl~LlTt TL))) IFTCli)J
IT (MESS lMPA3LIM :JXlh NIL)lJ

(CLND (INLIT (AILi) IhuMt3EKP (btlb x (FTCH))J IFIXP X)J)
IMtSS LNMI bLANK FII L))

(SYNTAX (kE-IuKir ~IILll
I(hLT

(CSETI. ThISL I
JtFIhi II

(SASS (LAMdDA
S .(CCNL ((huLL

(It3110 L
(SETU Y ILDH

L)EFII\E I(

AlrO (StT,: Y (LINCSRCI- X 0)) (tO (LAP& t) Xl))
(MtSC (IUUTE 668i& SUiH LIht NUMBtK... $1 Xl))

hE YJ (LSETh LI~J~ ICtiAk TliISLINt>

x YI tPl;i(; rdIL
Yl (kETUkh &IL))

(LAAh Y) X1 (ktTuRN ICAR Yll))
Y1l (1.9 s>

(GEILAL (LAMtiDA (y) (P%cG hIL
IC~ET.J UJTP ILUNS NIL FwIL)) IPPUP Y)

(CStTd LUTP (L3k i.lUTt’lJ
(CC/u0 (SiNTAn (htTUkIU CIbTrJl)
(d(ETuW (E’JLL UUTP>

dtflht I(
IPRYh (LPMdDA hIL (PHCG IX1

(CbND ((thi r\rXTn tMnK) (ME)iUP)))
P (CSErr; AXt’ Tl (SLT,i X (FTC1il1 (LStTO AXP NIL)

ICONII ((ihuT IPlilM NXThll (SilL X ICLhS X ICUNb IETCh) ~ILJJJI)
(~UNL) (SYNTAX NIL) (r IPhii\T (~~TVAL x))t)
ICChC IIt& FvXTh tClk0 (KtTUhh hlL,, IT (GU P>

MAIN NIL

- 109 -

- 110 -

Create 0 For Each Label
in Data Item:

Create Node with
no Labels, no
Father, no Sons

I

I
+

I
For Each
Data Item:

Add Pointer to Label
onto Label List

at Node

6 A

Add Data Item

Return List
of Data

Items

3

1

1
Yes

Return List
of Words

In Data Item

159484

For Each Node
in Range:

For Each Label
in Data Item:

Add Pointer to
Label onto Label
List at Node

Add Pointer to Node
onto List of Uses on
Label’s Property
List, if not Already

6 A

For Each Node
in Range:

For Each Label
in D&a Item:

Remove Pointer to
Label from Label
List at Node

Node from List of
Uses on Label’s
Property List,
unless Label occurs
Again at Node

I I

6 A
lJP.BS

For Each Node N
in Rangel:

For .Each Node M
in Rangeg:

Add Pointer to M
onto List of Fathers

Add Pointer to N
onto List of sons

Error

6 A

Create Q COPY

Creak a copy of the
complete structure from
every node in range,
downward (along lists
of sons) toward leaves
of tree. Redefine range,
as the root nodes of thihis
copy. For each node in
(the new) range, make the
list of fathers null

159486

E

L
I

I

Q Delete

0

Get Range1

The Remainder
of this
Algorithm is
Recursive and
will be Stated
in Words.

(

The accompanying
Diagram will Help
to Clarify the
AlgCI%hI”

Let nodes n
a”dfbeRa”ge~
and Ftange2
respectively

+I.

2.

3.

4.

Remove Hierarchical Connections
from Range1 to Range2

If n now has at least one
father remaining, then quit
(A nonclosed subtree has
been encountered)

Otherwise,

Remove all labels from n
(See flowchart for “nlabel)

Check each of the scns of n
(i.e., a.11 nodes p)

If p has onl one father
(i.e., n), tz en, recursively,
go to Step 3 with argument p.
(The algorithm remains in
this recursive loop “8 long
a~ a “onclosed subtree is
not encountered.

If P has more than one father
(i.e., there is a node q in
addition to n). then recursively,
go to Step 1 removing ccn-
“eotions from p to n.

/

In

/

f

n

1 No

+
I

nor Each Node
in Range: I

subtree to secon~ry

I I
copy usage Information
for Each I&e1 in the
Suthee into an Extte~%l
Dictionary, ~tself Saved
on Beccndary Biorage

Q

ye.9

a
R

For Each Ncde
I” Range:

I I

1 I
I

6 A

‘Q
Remove Node
(and Stiree)
From Beccndaly
storage

4
Identify Raw-? On
secondary storage
in the Same MCUUIC?P
~ang.~s are Identified
in Primary Storage

1
ccpy usage Mor-
mation for each
Label in the Sut-
tree on secondary
Sl.omge from the
External Dictionary
to the InternsI
Dktionary (the “Se-
Iist1

copy subtree to

159489

-, . .

A A

Write 0
Get Range

9
For Each Node
in Range:

Visit the Sons

count count

T T

Get Range Get Range

Print Number

Reset Run
FLag

‘f A

Set Run
Flag

