SLAC-108
UC-37
December 1969 (EXPI)

PULSE SHAPE IN MULTIWIRE PROPORTIONAL WIRE CHAMBER

SANJIT K. MITRA*
STANFORD LINEAR ACCELERATOR CENTER STANFORD UNIVERSITY
Stanford, California

PREPARED FOR THE U.S. ATOMIC ENERGY COMMISSION UNDER CONTRACT NO. AT(04-3)-515

December 1969

Reproduced in the USA. Available from the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia 22151. Price: Full size copy $\$ 3.00$; microfiche copy $\$$. 65 .

[^0]
TABLE OF CONTENTS

Page
A. Principle of Operation 1
B. Pulse Shape Evaluation - Amplifier with Infinite Bandwidth 4
C. Effect of Finite Bandwidth of Amplifier 14
D. Discussion 21
References 24
Appendix I 25
Appendix II 26

There has been recently an increasing interest in the use of multiwire proportional counters as profile monitors for weak secondary beams. ${ }^{1-3}$ it is thus of interest to determine analytically the pulse shape that would be obtained in such a chamber.

The details of construction of a multiwire chamber are described elsewhere. The cross section of a chamber ${ }^{1}$ drawn perpendicular to the beam is shown in Fig. 1. The outer electrodes consists of two rectangular planes of stainlesssteel meshes at the center of which are stretched very thin stainless-steel wires. In a typical chamber the distance between the outer electrodes is 14 mm , wire separation is 2 mm and the diameter of the wires is 50μ. Each central wire is connected to an individual preamplifier. The circuit block diagram will be found in Ref. 3. When used for monitoring, a suitable gas such as argon- CO_{2} mixture ($90-10$) is circulated between the electrodes.

It has been shown by Charpak et al. ${ }^{1}$ that the equipotentials near the wires are concentric to the wires. Due to the high field intensity confined to the region near the wires, most of the gas multiplication occurs within a few mean free paths of the wires. Thus, we expect the properties of the multiwire chamber to be similar to that of the single wire co-axial cylindrical proportional counter. This has also been verified experimentally by Charpak et al. ${ }^{1}$

A. Principle of Operation

To determine the pulse shape in a cylindrical co-axial counter, we follow the analysis technique outlined by Wilkinson. ${ }^{4,5}$ A simplified schematic diagram of such a chamber along with the amplifier input circuit is shown in Fig. 2, where C is the sum of chamber capacity and the input strays, and R is the input impedance of the preamplifier. Note that with no ionization, $\mathrm{v}_{\mathrm{a}}(\mathrm{t})=0$. When a weak particle passes through the chamber, N_{p} primary ion pairs are formed by initial ionization. The positive ions are attracted by the outer electrodes and the primary electrons are attracted toward the central wire. In the vicinity of the wire these electrons gain sufficient energy to produce secondary ion pairs by collision with neutral gas molecules. If M represents the gas multiplication factor of the chamber, then this corresponds to MN_{p} ion pairs with charge $+\mathrm{MN}_{\mathrm{p}} \mathrm{e}$ and $-\mathrm{MN}_{\mathrm{p}} \mathrm{e}$ where e is the electronic charge. The negative charge will

Fig. 1

Fig. 2
be attracted to the central wire (anode) and the positive charge to the high voltage electrode. Thus there will be a change in the charge stored on the electrodes due to the collection of these ions and consequently $\mathrm{v}_{\mathrm{a}}(\mathrm{t})$ will change from zero to some finite value. The secondary electrons (which have very high mobility) being formed very near the anode (within a distance of the order of the radius of the wire) will be collected almost immediately. As a result, the voltage pulse $\mathrm{v}_{\mathrm{a}}(\mathrm{t})$ appearing at the anode is produced almost exclusively from induction by the positive ions as they move away from the anode. Since the positive ions move through most of the voltage drop in the high field region near the anode, the voltage pulse produced by the positive ion movement will have a very fast rise time.

B. Pulse Shape Evaluation - Amplifier with Infinite Bandwidth

Consider now the case for which $R C$ is much greater than the time t_{+}required to collect all the positive ions. This in effect implies that there is no leakage through R or in other words, the effect of R can be neglected. (Later in this report we consider the effect of R on the pulse shape.) Under this condition, we then have

$$
\begin{equation*}
v_{\mathrm{a}}(\mathrm{t})=\frac{\mathrm{q}(\mathrm{t})}{\mathrm{C}} \tag{1}
\end{equation*}
$$

where $q(t)$ is the net charge produced by the positive ions and electrons. If $-q_{+}(t)$ and $-q$ _(t) are the charges induced on the electrodes by the positive and negative charges, equal charges of opposite sign appear across the capacitor C and we can write

$$
\begin{equation*}
v_{a}(t)=\frac{q_{+}(t)+q_{-}(t)}{C} \tag{2}
\end{equation*}
$$

To evaluate the induced charges we-invoke Green's theorem. ${ }^{6}$ According to this theorem, if a set of conductors 1,2 , and 3 have potentials V_{1}, V_{2}, and V_{3} due to placing of charges q_{1}, q_{2}, and q_{3} on them, then by placing charges q_{1}^{\prime}, q_{2}^{\prime}, and q_{3}^{\prime} on them will result in potentials $V_{1}^{\prime}, V_{2}^{\prime}$, and V_{3}^{\prime} where

$$
\begin{equation*}
q_{1} V_{1}^{\prime}+q_{2} V_{2}^{\prime}+q_{3} V_{3}^{\prime}=q_{1}^{\prime} V_{1}+q_{2}^{\prime} V_{2}+q_{3}^{\prime} V_{3} \tag{3}
\end{equation*}
$$

Consider now the co-axial chamber redrawn in Fig. 3. Let q_{a} be the charge induced on the anode and q_{b} be the charge induced on the outer cylinder due to a

Fig. 3
charge q located at a point x between them. Since the outer electrode completely encloses the anode, all the lines of force from q end on either the anode or the outer electrode, and hence

$$
\begin{equation*}
q+q_{a}+q_{b}=0 \tag{4}
\end{equation*}
$$

In the absence of a charge at x (i.e., $q^{\prime}=0$), let $V_{a}^{\prime}, V_{b}^{\prime}$, and V_{x}^{\prime} be the respective potentials. Just prior to ion pair formation, $V_{a}=V_{b}=0$ which is also the case soon after the charge q is produced. Equation (3) thus reduces to

$$
\begin{equation*}
q_{a} V_{a}^{\prime}+q_{b} V_{b}^{\prime}+q V_{x}^{\prime}=0 \tag{5}
\end{equation*}
$$

Solving Eqs. (4) and (5) one obtains

$$
\begin{equation*}
q_{a}=\frac{V_{b}^{\prime}-V_{x}^{\prime}}{V_{a}^{\prime}-V_{b}^{\prime}} q \tag{6}
\end{equation*}
$$

In a co-axial cylinder, the potential differences are given by ${ }^{7}$:

$$
\begin{align*}
& \mathrm{V}_{\mathrm{a}}^{\prime}-\mathrm{V}_{\mathrm{b}}^{\prime}=-\int_{\mathrm{b}}^{\mathrm{a}} \frac{\mathrm{q}_{\mathrm{a}}^{\prime} \mathrm{dr}}{2 \pi \epsilon \mathrm{r}}=\frac{\mathrm{q}_{\mathrm{a}}^{\prime}}{2 \pi \epsilon} \ln \left(\frac{\mathrm{~b}}{\mathrm{a}}\right) \tag{7}\\
& \mathrm{V}_{\mathrm{x}}^{\prime}-\mathrm{V}_{\mathrm{b}}^{\prime}=-\int_{\mathrm{b}}^{\mathrm{x}} \frac{\mathrm{q}_{\mathrm{a}}^{\prime} \mathrm{dr}}{2 \pi \epsilon \mathrm{r}}=\frac{\mathrm{q}_{\mathrm{a}}^{\prime}}{2 \pi \epsilon} \ln \left(\frac{b}{\mathrm{x}}\right) \tag{8}
\end{align*}
$$

Thus

$$
\begin{equation*}
\frac{V_{x}^{\prime}-V_{b}^{\prime}}{V_{a}^{\prime}-V_{b}^{\prime}}=\frac{\ln (b / x)}{\ln (b / a)} \tag{9}
\end{equation*}
$$

From Eqs. (6) and (9) we thus obtain

$$
\begin{equation*}
\mathrm{q}_{\mathrm{a}}=-\frac{\ln (\mathrm{b} / \mathrm{x})}{\ln (\mathrm{b} / \mathrm{a})} \mathrm{q} \tag{10}
\end{equation*}
$$

If we denote by r_{+}and r_{-}the positions of the positive ion and the free electron respectively, then from Eq. (10) the charge induced on the anode by a positive ion at \mathbf{r}_{+}and a free electron at \mathbf{r}_{\sim} are given as:

$$
\begin{equation*}
q_{+}(t)=-\frac{\ln \left(b / r_{+}\right)}{\ln (b / a)} e \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{-}(t)=\frac{\ln \left(b / r_{-}\right)}{\ln (b / a)} e \tag{12}
\end{equation*}
$$

Use of Eqs. (11) and (12) in Eq. (2) results in

$$
\begin{align*}
v_{a}(t) & =-\frac{M N_{p} e}{C}\left[\frac{\ln \left(b / r_{+}\right)}{\ln (b / a)}-\frac{\ln \left(b / r_{-}\right)}{\ln (b / a)}\right] \\
& =-\frac{M_{p} e}{C}\left[\frac{\ln \left(r_{-} / r_{+}\right)}{\ln (b / a)}\right] . \tag{13}
\end{align*}
$$

Assuming that the ion pairs are formed at the anode and the current is carried entirely by the motion of positive ions so that motion of electrons can be neglected, Eq. (13) becomes

$$
\begin{equation*}
v_{a}(t)=-\frac{M N_{p} e}{C} \cdot \frac{\ln \left(a / r_{+}\right)}{\ln (b / a)} \tag{14}
\end{equation*}
$$

where we have used $r_{-}=a$. Note from (14) that when the positive ions reach the outer electrode $r_{+}=b$, and the pulse height reaches its maximum value $v_{\text {max }}$:

$$
\begin{equation*}
v_{\max }=\frac{\mathrm{MN}_{\mathrm{p}} \mathrm{e}}{\mathrm{C}} \tag{15}
\end{equation*}
$$

Even though in general the motion of positive ions is random, there is a net drift in the direction of the electric field. The average drift velocity $\mathrm{dr}_{+} / \mathrm{dt}$ is given as:

$$
\begin{equation*}
\frac{\mathrm{dr}_{+}}{\mathrm{dt}}=\mu \frac{\mathscr{E}}{\mathrm{p}} \tag{16}
\end{equation*}
$$

where μ is the mobility of the ion, \mathscr{E} is the electric field strength at r_{+}and p is the gas pressure. In a co-axial chamber the electric field strength, \mathscr{E}, at a distance r_{+}from the center can be computed from ${ }^{7}$

$$
\begin{equation*}
\mathscr{E}=\frac{V}{r_{+} \ln (b / a)} \tag{17}
\end{equation*}
$$

where V is the potential difference between the two electrodes. Combining Eqs. (16) and (17) we thus have

$$
\begin{equation*}
\frac{\mathrm{dr}}{+} \mathrm{dt}=\frac{\mu \mathrm{V}}{\mathrm{pr} \mathrm{r}_{+} \ln (\mathrm{b} / \mathrm{a})} \tag{18}
\end{equation*}
$$

Equation (18) can be solved as follows. We rewrite it as:

$$
\mathrm{r}_{+} \mathrm{dr} \mathbf{r}_{+}=\frac{\mu \mathrm{V}}{\mathrm{p} \ln (\mathrm{~b} / \mathrm{a})} \cdot \mathrm{dt}
$$

Therefore

$$
\int \mathrm{r}_{+} \mathrm{dr} \mathrm{r}_{+}=\frac{\mu \mathrm{V}}{\mathrm{p} \ln (\mathrm{~b} / \mathrm{a})} \int \mathrm{dt}+\mathrm{k}
$$

or

$$
\begin{equation*}
\frac{\mathrm{r}_{+}^{2}}{2}=\frac{\mu \mathrm{Vt}}{\mathrm{p} \ln (\mathrm{~b} / \mathrm{a})}+\mathrm{k} \tag{19}
\end{equation*}
$$

Assuming that all positive ions start at $r_{+}=a$ at $t=0$, we get $k=a^{2} / 2$. Therefore

$$
\begin{equation*}
r_{+}=\left[\frac{2 V \mu t}{p \ln (b / a)}+\mathrm{a}^{2}\right]^{1 / 2} \tag{20}
\end{equation*}
$$

Substituting expression (20) in Eq. (14), we get the desired expression for the voltage across the capacitor:

$$
\begin{align*}
\mathrm{v}_{\mathrm{a}}(\mathrm{t}) & =\frac{M N_{\mathrm{p}} \mathrm{e}}{\mathrm{C} \ln (\mathrm{~b} / \mathrm{a})} \ln \left\{\frac{1}{\mathrm{a}}\left[\frac{2 \mathrm{~V} \mu \mathrm{t}}{\mathrm{p} \ln (\mathrm{~b} / \mathrm{a})}+\mathrm{a}^{2}\right]^{1 / 2}\right\} \tag{21}\\
& =\frac{M N_{p} \mathrm{e}}{2 C \ln (\mathrm{~b} / \mathrm{a})} \ln \left\{\frac{2 V \mu t}{a^{2} \mathrm{l} \ln (\mathrm{~b} / a)}+1\right\}
\end{align*}
$$

The total time t_{+}required to complete collection of the positive ions can be found from Eq. (20) by letting $\mathrm{r}_{+}=\mathrm{b}$:

$$
\begin{equation*}
t_{+}=\frac{p \ln (b / a)}{2 \mathrm{~V} \mu}\left(\mathrm{~b}^{2}-\mathrm{a}^{2}\right) \tag{22}
\end{equation*}
$$

For the typical wire chamber shown in Fig. 1, we can consider each wire to form a co-axial proportional chamber with the outer electrode having

$$
\begin{align*}
& \mathrm{b}=7 \mathrm{~mm}=0.7 \mathrm{~cm} \\
& \mathrm{a}=1 \mathrm{mil}=2.54 \times 10^{-3} \mathrm{~cm} \tag{23}
\end{align*}
$$

For a 4000 V voltage across the two electrodes containing argon as the filling gas at 1 atm pressure, we obtain from Eq. (22):

$$
\begin{align*}
t_{+} & =\frac{\left[(0.7)^{2}-\left(2.54 \times 10^{-3}\right)^{2}\right] 760}{2(4000)\left(1.04 \times 10^{3}\right)} \ln \left(\frac{700}{2.54}\right) \\
& \cong 262 \mu \mathrm{sec} \tag{24}
\end{align*}
$$

Note that the value of μ used to derive the above is $1040(\mathrm{~cm} / \mathrm{sec})$ (volt/ $/ \mathrm{cm})^{-1}$ (mm Hg). ${ }^{8}$

The normalized response for this typical chamber is shown in Fig. 4.
For brevity, let us normalize the time and the magnitude and rewrite Eq. (21) as:

$$
\begin{equation*}
\mathrm{v}_{\mathrm{n}}(\tau)=\frac{\ln \left\{\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}} \tau+1\right\}}{2 \ln (\mathrm{~b} / \mathrm{a})} \tag{25}
\end{equation*}
$$

where now

$$
\begin{equation*}
\tau=\frac{2 \mathrm{~V} \mu}{\mathrm{~b}^{2} \mathrm{p} \ln (\mathrm{~b} / \mathrm{a})} \cdot \mathrm{t} \tag{26}
\end{equation*}
$$

Note that the time τ_{+}taken by the positive ions to reach the outer electrode is

$$
\begin{equation*}
\tau_{+}=1-\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}} \tag{27}
\end{equation*}
$$

Let us now consider the effect of R on the pulse shape. We shall show that for RC values comparable to τ_{+}, the effect is to obtain a pulse of shorter duration by differentiating the original pulse $\stackrel{v}{n}^{n}(\tau)$. To determine the pulse shape at the input of the amplifier, the circuit reduces to that shown in Fig. 5, where we have replaced the charged capacitor C having a initial voltage $v_{n}(\tau)$ across it by a series combination of a uncharged capacitor C and a voltage source $v_{n}(\tau)$ where

Fig. 4

Fig. 5
$\mathrm{v}_{\mathrm{n}}(\tau)$ is given by Eq. (25). The voltage at the input of the amplifier is then given by $\mathrm{E}(\tau)$ which in effect will be the shape of the pulse at the output of the amplifier if the amplifier has an infinite bandwidth. Summing the current at node 2 of Fig. 5, we obtain

$$
\begin{equation*}
C \frac{d}{d \tau}\left[v_{n}(\tau)-E(\tau)\right]-\frac{E(\tau)}{R}=0 \tag{28}
\end{equation*}
$$

In a typical case $\mathrm{R}=400 \Omega$ and $\mathrm{C}=20 \mathrm{pf}$. Thus $\mathrm{RC}=8 \times 10^{-9} \ll 1$. Under this condition, Eq. (28) reduces to

$$
\begin{equation*}
\mathrm{E}(\tau) \cong \mathrm{RC} \frac{\mathrm{dv}_{\mathrm{n}}(\tau)}{\mathrm{d} \tau} \tag{29}
\end{equation*}
$$

which indicates the differentiating property of the circuit.
The differential equation given by (28) can be written as

$$
\begin{equation*}
\frac{\mathrm{dE}}{\mathrm{~d} \tau}+\gamma \mathrm{E}(\tau)=\mathrm{Q} \tag{30}
\end{equation*}
$$

where

$$
\begin{align*}
& \gamma=\frac{1}{\mathrm{RC}} \\
& \mathrm{Q}=\frac{\mathrm{d} v_{\mathrm{n}}}{\mathrm{~d} \tau}=\frac{1}{2 \ln (\mathrm{~b} / \mathrm{a}) \cdot\left(\tau+\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}\right)} \tag{31}
\end{align*}
$$

Solution of Eq. (30) is given as

$$
\begin{aligned}
\mathrm{E}(\tau) & =\mathrm{e}^{-\int_{-\infty}^{\tau} \gamma \mathrm{dx}} \cdot \int_{-\infty}^{\tau} \mathrm{Q} \cdot \mathrm{e}^{\int_{-\infty}^{\mathrm{x}} \gamma \mathrm{dy}} \cdot \mathrm{dx}+\mathrm{k} \mathrm{e}^{-\int_{-\infty}^{\tau} \gamma \mathrm{dx}} \\
& =\mathrm{e}^{-\gamma \tau} \int_{-\infty}^{\tau} \frac{\mathrm{e}^{\gamma x}}{2 \ln (\mathrm{~b} / \mathrm{a})\left(\mathrm{x}+\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}\right)} \mathrm{dx}+\mathrm{k} \mathrm{e}^{-\gamma \tau}
\end{aligned}
$$

$$
\begin{align*}
& =\frac{\mathrm{e}^{-\gamma\left(\tau+\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}\right)}}{2 \ln (\mathrm{~b} / \mathrm{a})} \int_{-\infty}^{\tau+\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}} \frac{\mathrm{e}^{\gamma y}}{\mathrm{y}} \mathrm{dy}+\mathrm{ke}^{-\gamma \tau} \\
& =\frac{\mathrm{e}^{-\gamma\left(\tau+\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}\right)}}{2 \ln (\mathrm{~b} / \mathrm{a})} \int_{-\infty}^{\gamma\left(\tau+\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}\right)} \frac{\mathrm{e}^{\mathrm{z}}}{\mathrm{z}} \mathrm{dz}+\mathrm{k} \mathrm{e}^{-\gamma \tau} \\
& =\frac{\mathrm{e}^{-\gamma\left(\tau+\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}\right)}}{2 \ln (\mathrm{~b} / \mathrm{a})} \overline{\mathrm{E} i}\left\{\gamma\left(\tau+\frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}\right)\right\}+\mathrm{ke}^{-\gamma \tau} \tag{32}
\end{align*}
$$

In expression (32), we have used the notation

$$
\begin{equation*}
\bar{E} i(x)=\int_{-\infty}^{x} \frac{e^{y}}{y} d y \tag{33}
\end{equation*}
$$

$\bar{E} i(x)$ is known as the exponential integral and its value for various values of x are tabulated in Ref. 9. The constant k is determined from the condition $E(0)=0$. Thus

$$
\begin{equation*}
\mathrm{k}=-\frac{\mathrm{e}^{-\gamma \mathrm{a}^{2} / \mathrm{b}^{2}}}{2 \ln (\mathrm{~b} / \mathrm{a})} \cdot \overline{\mathrm{E}} \mathrm{i}\left\{\gamma \frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}\right\} \tag{34}
\end{equation*}
$$

Substituting (34) in (32) we obtain the desired expression:

$$
\begin{equation*}
E(\tau)=\frac{e^{-\gamma\left(\tau+\frac{a^{2}}{b^{2}}\right)}}{2 \ln (b / a)}\left[\overline{\operatorname{E} i}\left\{\left(\tau+\frac{a^{2}}{b^{2}}\right) \gamma\right\}-\bar{E} i\left(\frac{a^{2}}{b^{2}} \gamma\right)\right] \tag{35}
\end{equation*}
$$

$=$ voltage out with finite R.

C. Effect of Finite Bandwidth of Amplifier ${ }^{10}$

An amplifier of finite bandwidth can be represented by a transfer function of the form $1 / T_{2}\left[s+\left(1 / T_{2}\right)\right]$ to a first order of approximation. Thus, the equivalent circuit of the proportional chamber including the input differentiating circuit will be of the form shown in Fig. 6, where $\hat{\mathrm{v}}_{\mathrm{a}}(\mathrm{t})$ represents the normalized voltage produced across the capacitor C if R was infinite and if the amplifier bandwidth was infinite. The expression for $\hat{v}_{\mathrm{a}}(\mathrm{t})$ has been calculated earlier and is given as:

$$
\begin{equation*}
\hat{\mathrm{v}}_{\mathrm{a}}(\mathrm{t})=+\frac{1}{2 \ln (\mathrm{~b} / a)} \ln \left\{\frac{2 v \mu \mathrm{t}}{2 \mathrm{l} \ln (\mathrm{~b} / a)}+1\right\} \tag{36}
\end{equation*}
$$

$\hat{\mathrm{v}}_{\mathrm{a}}(\mathrm{t})$ is plotted in Fig. 4 for a typical case. For determining the approximate shape of $v_{b}(t)$ it is convenient to represent $\hat{v}_{a}(t)$ as shown in Fig. 7. Thus we can approximate $\hat{v}_{\mathrm{a}}(\mathrm{t})$ as:

$$
\begin{equation*}
\hat{v}_{a}(t) \cong \frac{1}{T}\{t u(t)-(t-T) u(t-T)\} \tag{37}
\end{equation*}
$$

where $u(t)$ is the unit step function. Analysis of the equivalent circuit yields:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{b}}(\mathrm{~s})=\left(\frac{\mathrm{R}}{R+\frac{1}{\mathrm{sC}}}\right)\left(\frac{1 / \mathrm{T}_{2}}{\mathrm{~s}+\frac{1}{\mathrm{~T}_{2}}}\right) \hat{\mathrm{V}}_{\mathrm{a}}(\mathrm{~s})=\frac{\left(1 / \mathrm{T}_{2}\right) \mathrm{s}}{\left(\mathrm{~s}+\frac{1}{\mathrm{~T}_{1}}\right)\left(\mathrm{s}+\frac{1}{\mathrm{~T}_{2}}\right)} \hat{\mathrm{V}}_{\mathrm{a}}(\mathrm{~s}) \tag{38}
\end{equation*}
$$

where $\mathrm{V}_{\mathrm{a}}(\mathrm{s})=\mathscr{L}\left\{\mathrm{v}_{\mathrm{a}}(\mathrm{t})\right\}$ and $\mathrm{V}_{\mathrm{b}}(\mathrm{s})=\mathscr{L}\left\{\mathrm{v}_{\mathrm{b}}(\mathrm{t})\right\}, \mathrm{T}_{1}=\mathrm{R} \mathrm{C}$.
Now

$$
\begin{equation*}
\hat{\mathrm{V}}_{\mathrm{a}}(\mathrm{~s})=\frac{1}{\mathrm{~T}} \cdot \frac{1-\mathrm{e}^{-\mathrm{sT}}}{\mathrm{~s}^{2}} \tag{39}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\mathrm{V}_{\mathrm{b}}(\mathrm{~s})=\frac{1}{\mathrm{TT}_{2}} \cdot \frac{1-\mathrm{e}^{-\mathrm{sT}}}{\left(\mathrm{~s}+\frac{1}{\mathrm{~T}_{1}}\right)\left(\mathrm{s}+\frac{1}{\mathrm{~T}_{2}}\right) \mathrm{s}} \tag{40}
\end{equation*}
$$

Fig. 6

$\hat{v}_{a}(t)$
 $\overline{1426 A 7}$

Fig. 7

For $0 \leq t \leq T$, we can write

$$
\begin{align*}
\mathrm{V}_{\mathrm{b}}(\mathrm{~s}) & =\frac{1}{\mathrm{TT}_{2}} \cdot \frac{1}{\mathrm{~s}\left(\mathrm{~s}+\frac{1}{\mathrm{~T}_{1}}\right)\left(\mathrm{s}+\frac{1}{\mathrm{~T}_{2}}\right)} \\
& =\frac{1}{\mathrm{TT}_{2}}\left\{\frac{\mathrm{~T}_{1} \mathrm{~T}_{2}}{\mathrm{~s}}+\frac{\frac{\mathrm{T}_{1}^{2} \mathrm{~T}_{2}}{\mathrm{~T}_{2}-\mathrm{T}_{1}}}{\mathrm{~s}+\frac{1}{\mathrm{~T}_{1}}}+\frac{\frac{\mathrm{T}_{1} \mathrm{~T}_{2}^{2}}{\mathrm{~T}_{1}-\mathrm{T}_{2}}}{\mathrm{~s}+\frac{1}{\mathrm{~T}_{2}}}\right\} \tag{41}
\end{align*}
$$

Hence,

$$
\begin{align*}
& \mathrm{v}_{\mathrm{b}}(\mathrm{t})=\frac{1}{\mathrm{TT}_{2}}\left\{\mathrm{~T}_{1} \mathrm{~T}_{2}+\frac{\mathrm{T}_{1}^{2} \mathrm{~T}_{2}}{\mathrm{~T}_{2}-\mathrm{T}_{1}} e^{-\mathrm{t} / \mathrm{T}_{1}}\right. \\
& \\
& \left.\quad+\frac{\mathrm{T}_{1} \mathrm{~T}_{2}^{2}}{\mathrm{~T}_{1}-\mathrm{T}_{2}} e^{-\mathrm{t} / \mathrm{T}_{2}}\right\} \\
& =\frac{\mathrm{T}_{1}}{\mathrm{~T}}+\frac{\mathrm{T}_{1}^{2}}{\mathrm{~T}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)} e^{-\mathrm{t} / \mathrm{T}_{1}}+\frac{\mathrm{T}_{1} \mathrm{~T}_{2}}{\mathrm{~T}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)} e^{-\mathrm{t} / \mathrm{T}_{2}} \tag{42}\\
& \quad 0 \leq \mathrm{t} \leq \mathrm{T}
\end{align*}
$$

For $\mathrm{T} \leq \mathrm{t}<\infty$, we obtain

$$
\begin{align*}
\mathrm{V}_{\mathrm{b}}(\mathrm{~s}) & =\frac{1}{\mathrm{TT}_{2}} \cdot \frac{1-\mathrm{e}^{-\mathrm{sT}}}{\mathrm{~s}\left(\mathrm{~s}+\frac{1}{\mathrm{~T}_{1}}\right)\left(\mathrm{s}+\frac{1}{\mathrm{~T}_{2}}\right)} \\
& =\frac{1}{\mathrm{TT}_{2}}\left\{\frac{\frac{\mathrm{~T}_{1}^{2} \mathrm{~T}_{2}\left(1-\mathrm{e}^{\left.\mathrm{T} / \mathrm{T}_{1}\right)}\right.}{\mathrm{T}_{2}-\mathrm{T}_{1}}}{\mathrm{~s}+\frac{1}{\mathrm{~T}_{1}}}+\frac{\frac{\mathrm{T}_{1} \mathrm{~T}_{2}^{2}\left(1-e^{\mathrm{T} / \mathrm{T}_{2}}\right)}{\mathrm{T}_{1}-\mathrm{T}_{2}}}{\mathrm{~s}+\frac{1}{\mathrm{~T}_{2}}}\right\} \tag{43}
\end{align*}
$$

Hence

$$
\begin{array}{r}
\mathrm{v}_{\mathrm{b}}(\mathrm{t})=\frac{\mathrm{T}_{1}^{2}}{\mathrm{~T}\left(\mathrm{~T}_{1}-\mathrm{T}_{2}\right)}\left(e^{\mathrm{T} / \mathrm{T}_{1}}-1\right) e^{-\mathrm{t} / \mathrm{T}_{1}} \\
-\frac{\mathrm{T}_{1} \mathrm{~T}_{2}}{\mathrm{~T}_{1}-\mathrm{T}_{2}}\left(e^{\left.\mathrm{T} / \mathrm{T}_{2}-1\right)} e^{-\mathrm{t} / \mathrm{T}_{2}}\right. \\
\mathrm{T} \leq \mathrm{t}<\infty \tag{44}
\end{array}
$$

$\mathrm{v}_{\mathrm{b}}(\mathrm{t})$ has been tabulated as a function of time for various values of T_{1} and T_{2} on the IBM 360/91. The FORTRAN program listing is given in Appendix I. Figure 8 shows one plot of $v_{b}(t)$ for some selected values of T_{1} and T_{2}. A more extensive tabulation will be found in Appendix II.

It should be noted that the shape of the output pulse shown in Fig. 8 is similar in form to that obtained experimentally using the multiwire chamber built by the Counting Electronics Group at SLAC. We observe from Fig. 8 that for a specified amplifier bandwidth $\left(1 / T_{2}\right)$, the output pulse rises faster with a decrease in the input differentiating circuit time constant $\mathrm{T}_{1}=\mathrm{RC}$. This is coupled with an increase in the maximum value of the output pulse and a corresponding increase in the pulse width. Increase in the pulse width implies that the resolving time of the counter is also increased. Alternately, we can conclude from this figure that for a given input circuit time constant T_{1}, increase in amplifier bandwidth results in a pulse with a faster rise time, higher amplitude and shorter pulse duration.

Our analysis so far assumed that the voltage $v_{a}(t)$ is always the same for each event, i.e., has the same rise time each time primary ionization takes place. Under this idealized situation, it is evident that it is best to have an amplifier with infinite bandwidth. However, as it will be pointed out later, in practice the rise time of $v_{a}(t)$ will vary to some extent from event to event. It would be thus profitable to examine the effect of a non-ideal amplifier (amplifier with finite bandwidth) along with the input differentiating circuit on input pulses of identical final heights but different rise times. For simplicity, consider only two types

Fig. 8
of input pulses:

$$
\begin{align*}
& \hat{v}_{a}^{\prime}(t)=u(t) \tag{45}\\
& \hat{\mathrm{v}}_{\mathrm{a}}^{\prime \prime \prime}(\mathrm{t})=\frac{1}{\mathrm{~T}}\{\mathrm{tu}(\mathrm{t})-(\mathrm{t}-\mathrm{T}) \mathrm{u}(\mathrm{t}-\mathrm{T})\} \tag{46}
\end{align*}
$$

Assume first that the amplifier is an ideal amplifier, i.e., has an infinite bandwidth. In this case the amplifier output will be the same as that obtained at the input of the amplifier, i.e., the voltage $v_{R}(t)$ across the resistor R in Fig. 6. For $\hat{v}_{a}^{\prime}(t)$ as the input pulse, the voltage $v_{R}^{\prime}(t)$ across R is given as:

$$
\begin{equation*}
v_{R}^{\prime}(t)=e^{-t / T_{1}} \tag{47}
\end{equation*}
$$

Maximum value of $v_{R}^{\prime}(t)$ is at $t=0$ and is equal to 1 . In the second case, with $\hat{\mathrm{v}}_{\mathrm{a}}^{\prime \prime}(\mathrm{t})$ as the input pulse, the voltage $\mathrm{v}_{\mathrm{R}}^{\prime \prime \prime}(\mathrm{t})$ across R is

$$
v_{R}^{\prime \prime}(t)=\left\{\begin{array}{l}
\frac{T_{1}}{T}\left(1-e^{-t / T_{1}}\right) \quad 0 \leq t \leq T \tag{48}\\
\frac{T_{1}}{T}\left(e^{T / T_{1}}-1\right) e^{-t / T_{1}} \quad T \leq t<\infty
\end{array}\right.
$$

Maximum value of $v_{R}^{\prime \prime}(t)$ is at $t=T$ and is given by $T_{1} / T\left[\left(1-e^{-T / T_{1}}\right)\right]$ which is equal to $1-\mathrm{e}^{-1}=0.63$ for $\mathrm{T}=\mathrm{T}_{1}$. Thus the output pulse height varies from 1 to 0.63 in the case of an ideal amplifier.

We now consider the effect of finite amplifier bandwidths and assume the amplifier to be described by a transfer function $1 / \mathrm{T}_{2}\left(\mathrm{~s}+\left(1 / \mathrm{T}_{2}\right)\right)$. The amplifier output $v_{b}^{\prime}(t)$ for an input $\hat{v}_{a}^{\prime}(t)$ is given by

$$
\begin{equation*}
v_{b}^{\prime}(t)=\frac{t}{T_{1}} e^{-t / T_{1}} \tag{50}
\end{equation*}
$$

if $\mathrm{T}_{1}=\mathrm{T}_{2} . \quad \mathrm{v}_{\mathrm{b}}^{\mathrm{t}}(\mathrm{t})$ has a maximum at $\mathrm{t}=\mathrm{T}_{1}$ and the maximum amplitude is $1 / \mathrm{e}$. Whereas, for $\mathrm{v}_{\mathrm{a}}^{1 \mathrm{t}}(\mathrm{t})$ as input, the output $\mathrm{v}_{\mathrm{b}}^{\mathrm{tr}}(\mathrm{t})$ of the amplifier is

$$
\begin{equation*}
v_{b}^{\prime \prime}(t)=\frac{1}{T}[(e-1) t-T] e^{-t / T} \quad t \geq T \tag{51}
\end{equation*}
$$

for $T_{1}=T_{2}=T$. Since for $t \leq T$, the output $v_{R}^{\prime t}(t)$ of the input differentiating circuit is given by Eq. (48). This voltage (which has a positive rate of change) being fed into the amplifier, the amplifier output can rever exceed the input voltage when the latter is increasing. As a result, the rate of change of output voltage is also positive for $\mathrm{t} \leq \mathrm{T}$. Thus, it follows that the maximum value of the amplifier output $v_{b}^{\prime \prime}(t)$ is achieved for $t>T$. It can be shown from Eq. (51), the maximum value of $v_{b}^{\prime \prime}(t)$ occurs at $t=e T /(e-1)$ and is given by

$$
e^{-1}(e-1) \cdot \exp \left[-\frac{1}{e-1}\right]=(0.962) e^{-1}
$$

Consequently, there is very little spread in the height of the output pulses in the case of a non-ideal amplifier.

We can thus conclude that from the point of view of minimizing the spread of the heights of output pulses, it is preferable to use an amplifier with a finite bandwidth. The inverse bandwidth T_{2} of the amplifier should be made equal to the time constant T_{1} of the input differentiating circuit which in turn should be equal to the average rise time of the input pulse. Another advantage of reducing the amplifier bandwidth is the associated reduction in amplifier noise.

D. Discussion

An analytical expression for the input pulse generated at the anode has been derived along with an approximate expression for the amplifier output pulse [Eqs. (21), (42) and (44)] . The derivation was based on the assumption that all the primary electrons are collected instantaneously by the anode and the secondary ionization takes place in the immediate neighborhood of the wire. The output pulse is thus assumed to be determined exclusively by the motion of the positive ions and each pulse will have the same shape regardless of the location of the primary ionization. However, if electronegative impurities like oxygen are present inside the chamber, electrons would be rapidly captured to form heavy negative ions having the same mobility as the positive ions. The drift velocities of these heavy negative ions differ by a factor of 1000 from that of the free electrons. Consequently rise time of the output pulse will be almost 1000 times longer than that would be obtained in the idealized case. Thus short clipping time T_{1} cannot be used with the result that the resolving time of the chamber will be significantly increased. It should be noted that oxygen is likely contaminant in any chamber because of leaks, air absorption in the chamber walls
and insufficient evacuation. If pure argon is used as the chamber gas than it is preferable to keep the voltage across the electrodes as low as possible to facilitate better electron collection by the wires. On the other hand, lower collective voltage results in a lower gas multiplication factor M reducing the height of the output pulse. A better way to improve electron collection and also increase M , is to mix a small percentage of some polyatomic, gases like CO_{2} to the chamber gas. For example addition of $5-10 \%$ of CO_{2} would increase the electron drift velocity almost ten times for a fixed collecting voltage and a fixed gas pressure. There are several other associated advantages when gas mixtures are used instead of pure gases. These polyatomic gases act as a self-quencher in the case of a spark breakdown. In a pure noble gas, the electrons may diffuse to the side of the chamber due to high electron energy and thus not follow the field lines. Addition of CO_{2} greatly reduces the diffusion effects by lowering the electron energy and increasing the drift velocities. Minimization of diffusion effects enhances pulse profile studies. Often the electron collection may be enhanced by purposely stimulating a spark by increasing the collecting voltage for example. The spark will stop as soon as all of the electrons have been collected. Faster electron collection also minimizes the possibility of recombination with the slower moving positive ions.

Determination of positive ion mobility in gas mixtures is fairly complicated. For initial estimates of pulse sizes and rise times, it is usually sufficient to use the ion mobility for the predominant gas as that of the gas mixture. ${ }^{11}$

We mentioned earlier the advantages of adding a polyatomic gas to a noble gas and use the gas mixture as the chamber gas. CO_{2} is a commonly used stabilizing gas. Other gases in this class are N_{2}, methane and carbon tetrachloride. In some respect $\mathrm{Ar}-\mathrm{CO}_{2}$ mixture is not preferable. Pure argon is attractive as a chamber gas. This is because, in pure argon, the amount of energy (W) which a particle loses on the average to form one ion pair stays fairly constant. However, in an Ar- CO_{2} mixture W value is not constant and thus may lead to output pulses of varying heights (N_{p} will not be constant). For similar reasons methane is not preferable. On the other hand, both Ar and N_{2} have constant W values and their mixture may be expected to have a constant W value. Hence $\mathrm{Ar}-\mathrm{N}_{2}$ mixture may be a more appropriate chamber gas. Suitable proportions would be 90% argon and 10% nitrogen. ${ }^{11}$ Another recommended gas mixture is 96% helium and 4% isobutane. ${ }^{5}$ It can be pointed out here
that satisfactory results have also been obtained using 80% argon and 20% isobutane gas mixture. ${ }^{12}$ Note that helium has a positive ionic mobility which is five times greater than that of argon and nitrogen. Equation (21) indicates that a higher mobility would result in output pulses having a faster rise time which would be preferable if shorter resolving time is desired.

Effect of straggling on the pulse shape was neglected by assuming that all electrons are being formed under identical electrical conditions. However, the field near the wire does change very rapidly. Thus strictly speaking, some amount of straggling will be introduced because the electrons cannot remain in equilibrium with the field. Effect of straggling is to vary the rise times of the pulses.

We have also neglected the capacitive coupling between wires. It appears that the pulse induced by positive ion movement near one wire would result in pulses of the same polarity on adjacent wires. Fortunately, as Charpak ${ }^{12}$ has pointed out, charge induced on one wire by the positive ion movement is equal and opposite to the charge induced on all other conductors including the cathode. This opposed coupling would create pulses of opposite signs in adjacent wires and in effect would cancel the pulses created by capacitive coupling.

Several other comments are here in order. Excited ions or molecules or atoms would often create photons, which in turn may cause liberation of photoelectrons from the gas and the cathode. These secondary avalanches are hard to distinguish from the primary avalanches as they follow closely each other, and in effect increase the gas multiplication significantly, often leading to instability. Photoelectrons are also liberated by the positive ions as they hit the outer electrodes. These discharges trail the primary discharge by t_{+}, the collection time of the positive ions. Effect of this second type of discharge is again to increase the gas multiplication factor and may give double or multiple pulses if the time constants in the amplifier are not quite long. These secondary effects can be significantly reduced by additional small amounts of any molecular gas like $\mathrm{CO}_{2}, \mathrm{~N}_{2}$, etc.

REFERENCES

- 1. G. Charpak et al., Nucl. Instr. and Methods 62, 262 (1968).

2. G. Amato and G. Petrucci, "A beam profile analyzer using proportional multiwire chamber, " Report No. CERN 68-33 (August 1968).
3. R. S. Larsen, "Proportional wire chamber profile monitor, " SLAC memorandum, Stanford Linear Accelerator Center, Stanford University, Stanford, California (March 10, 1969).
4. D. H. Wilkinson, Ionization Chambers and Counters, (Cambridge University Press, London, 1950); Ch. 4.
5. W. J. Price, Nuclear Radiation Detection, (McGraw-Hill Co., Inc., New York, 1958); Chs. 4, 5, and 6.
6. W. R. Smythe, Static and Dynamic Electricity, 2nd Edition (McGraw-Hill Co., Inc., New York, 1950); p. 34.
7. S. Ramo and J. R. Whinnery, Fields and Waves in Modern Radio, 2nd Edition (John Wiley and Sons, New York, 1962); p. 75.
8. National Research Counsel, International Critical Tables of Numerical Data, Physics, Chemistry and Technology (McGraw-Hill Co., Inc., New York, 1929); Vol. VI.
9. Emde Jahnke and Friedrich Losch, Tables of Higher Functions, 6th Edition (McGraw-Hill Co., Inc., New York, 1960); p. 23.
10. A. B. Gillespie, Signal, Noise and Resolution in Nuclear Counter Amplifiers, (Pergamon Press, New York, 1953).
11. R. Wilson, "Ionization counters," in Techniques of High Energy Physics, D. M. Ritson, Editor, (Interscience Publishers, New York, 1961); pp. 271-299.
12. G. Charpak, "Development of multiwire proportional chambers," CERN Courier, Vol. 9, No. 6 (June 1969); pp. 174-176.
```
VEL 10 (1 JLLY EE)
    CS136C FCFTRANF
```

```
    GGNFILEF CPTIGNS - NANE= NAIA,OPT=00,LINECMT=5E,SGLRCE,EECGIG,LIST,NCCE
    C
evallaticn cf enflifief cliplt vcltaee fer
C VARIClS values cf inplt circlit time ccastant
C ( Tl ) anc anflifier eanonictt (1/t?)
```

ISA CCC2
ISA CCC 3 ISA CCC4

ISA CCCE
ISA cCCE
ISN CCC7
ISA CCC8
IsA cCis
ISN OC10 ISA CCI:

ISNCClZ
ISACC1
ISA CC14
ISA CC15
isn cCle
ISA OC17
ISN CClg
ISN CCIC
ISA CCZO
Isf CCzI
ISA CCzz
is OCE
ISA OC24
ISA COEE
ISNCC2t
ISN CCz?
ISN CC88
ISN CCZS
ISA OC30
1SN CCE1
ISACCZa
ISA CC33
c

```
            cinensicn vec(lCC), yticc)
            3 REAC (E,5,ENC: 150 ) T1, T2
            S FCRNGT (EFIC.O)
```

c
c
calcllaticn fer tine yt less tran er eglal tc i
C

```
        \(Y=C \cdot C\)
        CC \(101=1, t\)
        \(\Delta=T 1 * T 1 * E X P(-Y / T 1) /(T 1-T 2)\)
        \(E=T 14 T 2 * E \times P(-Y / T 2) /(T 1-T Z)\)
        \(\operatorname{VEC}(I)=T 1-A+E\)
        \(Y T(I)=Y\)
        \(10 Y=Y+C .2\)
```

C
C CALCULDTICN FCR TINE YT GREATER THAN I
$z=1.2$
[C 20 I $=1,4 E$
$A=T 1 * T 1 *(E \times F(1.0 / T 1)-1 . C)$
$A=A * E \times P(-2 / T 1) /(T 1-T 2)$

$E=8 * E X P(-Z / T Z) /(T 1-T Z)$
$K=1+6$
$V E C(K)=\Delta-E$
$Y T(K)=Z$
$2 C 2=Z+C .2$
PKINT 20, T1, T2
$3 C$ FCRVAT (14FI T1 T2 ARE, 2E14.3)
FRINT 21
39. FCFNAT T4CトO TINE ELTFUT
PRIAT F ?
33 FERNAT (1FO)
CC $40 \quad \mathrm{I}=1,51$
4 FFIAT $\ddagger 2$, YT(I), VCO(I)
3? FEFMAT (E2C.2, E2C.4).
GC TC ?
15 C FETLRA
ENC

APPENDIX II

tine
CLIFLT

C． 6		－C．E¢ECE－C7
C． $2 C E$	CO	C．1SECE－Cl
C．$\angle C E$	00	C．4くこCE－C1
C．$\in C E$	co	C． $62415-C 1$
C．ECE	C	C．7477E－C1
C．10E	C1	C．EミCEE－C1
C． 12 E	C1	C．SCCTE－C1
C． 14 E	C 1	C． 4 ¢ $11 \mathrm{E}-\mathrm{C} 1$
C． 16 E	C 1	0.3 cise－Cl
C．lee	C 1	0．21E1E－C2
C．EOE	Cl	0．14t3E－01
C．E2E	C 1	C．¢¢CEE－C？
C．C4E	C：	C．EET3E－C2
c．íde	C1	C．44CEE－C2
C． 28 E	C1	0．2cs3E－C2
C． 30 E	C 1	O．1c\＆CE－C2
C．E2E	C1	C．lこく7E－C2
C．$=4 \mathrm{E}$	0.	c．eccse－cs
C．EEE	C1	C． 5 ct $2 \mathrm{E}-\mathrm{C}$ ？
C． 3 3E	C1	0．3ccie－c 3
C．$\angle O E$	（1）	C． $2 \in 7 ¢ E-C ?$
C．$<2 \mathrm{E}$	C1	C． 17 CEE－C ${ }^{\text {a }}$
C．$\angle 4 E$	Cl	C．licter ${ }^{\text {a }}$
C．$\angle 6 \mathrm{E}$	Cl	C．ECESE－C4
C．435	CI	C．EくCSE－C4
C．s．es	Cl	C． 5 EE6E－0＇
C．tze	（1）	C．2430E－04
C．54E	C：	C．1tこSE－C4
C．EbE	C	C．1CS2E－C4
C．EEE	Cl	C．7ミ2UE－C5
C．tJE	C 1	C．4CCTE－C5
C．t2E	01	C．329SE－C5
C．64E	C	O．ここCEE－C5
C．tSE	C1	0.14 TEECS
C．tsE	C1	$\therefore .5 ¢ c 7 E-C 6$
c．tce	CI	C．$t \in<1 E-C \in$
0．72E	Cl	C．4452E－C．
C． 145	Cl	C． $2 ¢ .84 \mathrm{E}-\mathrm{Ct}$
C．TGE	Cl	C． 2 CCOE－ct
C．TEE	C1	C． $12<1 E-C \leqslant$
C．80E	C1	C． Pc ¢ ¢ EE－C7
C．．82E	C 1	C．tCESE－C7
C．E4E	C1	C．4CE8E－C7
C．$¢ 6 E$	C1	C．27CTE－C）
C．Ebs	Cl	C．1815E－C7
C．SOE	C．	$0.1<16 E-C 7$
C． 52 E	Cl	C．31E3E－Ce
C． 545	C？	$0.54 E 5 E-0.8$
C．cter	C1	C． $3664 E-C E$
C．CbE	C1	0． 245 SE－CE
C． 10 E	C2	0.1 ¢くEE－CE

TINE
ClTMT

C．		C．C
C． 20 E	co	C．1053E－Cl
C． 4 CE	00	O．25－2E－CL
C．ECE	CO	C． 3 C $5 E-C$ ？
C．EOE	CC	－5CCEE－C1
C．10E	C1	C．5¢12E－Cl
C．12E	C1	C． 5 CCOE－C1
C．14E	C1	$0.4 \in E P E-C 1$
C． 10.1	C1	C． 2 EE 2 E －C1
C．185	C！	C． $315 \in E-C 1$
C． 205	C1	C． $25.54 \mathrm{E}-\mathrm{Cl}$
C． 22 E	C1	O．C115E－01
C． 24 E	C1	O．17こ2E－C1
C． 25 E	01	C． $1<1$ EE－C1
C．こ3E	C1	0．11ヒ1E－C1
C． 2 UE	Cl	C．cEC5E－C2
C． 22 E	CI	C．17EこE－02
C． 24 E	C1	O．EミラニE－C2
C． $\mathrm{E}_{\text {ce }}$	C1	C．5く17E－C2
O．$=8 \mathrm{E}$	C1	C．＜¢ ile－C？
C． 405	C 1	C． 34 ¢ $7 \mathrm{E}-\mathrm{C} 2$
C．$\angle 2 E$	C1	C． $2 \leq 63 \mathrm{E}-\mathrm{C} 2$
C． 44 E	Cl	C． $2344 \mathrm{E}-02$
C．$\angle 0 E$	Cl	$0.191 C E-C ?$
C．43E	01	O．15i1E－C2
C．EDE	Ci	C．12¢ 6 E－02
C． 52 L	C1	C．1CEうE－C2
C． $54 E$	C1	$\therefore .362 こ E-03$
C． $5 \in E$	C1	C．7CECE－C3
C．EとE	（1）	C．5TECE－C3
C．ECE	01	C．47EこE－C3
C． $62 E$	C1	C．2E「こE－O？
$0.44 E$	C 1.	1． 1 1TEE－C引
C．tSE	Cl	C． 5 Sc $7 \mathrm{E}-\mathrm{C} 2$
C．ESE	C 1	C． $2126 E-$ C3
C． 7 CE	C1	C．1741E－C3
C． 12 E	C 1	C． $1425 \mathrm{E}-\mathrm{C3}$
C． i4E $^{\text {c }}$	C 1	－．1167E－03．
C． 765	C1	C．CEEEE－C4
C． 73 E	C 1.	O．7E23E－C4
C．EJE	C1	C． $64 C 5 E-C 4$
C． 62 E	C 1	C．Eこく45－04
C．$¢ 4 E$	C 1	C． $2253 \mathrm{C}-\mathrm{C}$
C．\｛ $6 E$	C．	O． 2 E15E－C4
C．ese	C1	C．2と7EE－C4
C．SOE	C1	C．2256E－C4
C．C．2E	Cl	O． 15 CSE－C4
C．S4E	C 1	C．157SE－C4
C．$¢ \in E$	C 1	C．1ごきE－C4
C．SEE	C1	C．1CECE－C4
C． 10 E	02	C．ettee－ 5

CLTPLT

C．C		0.0
C．ECE	CC	C．11く7E－02
C．4CE	OC	0．2ctce－Cz
C．C CE	co	C．4EIEE－C2
C．EOE	CO	C．tTEGE－0？
0.16 E	C 1	C．EGCZE－02
C． 12 E	C1	O．çe5E－C2
C． 14 E	C	C．cis 17E－C2
C． 16 E	Cl	C．CCECE－C2
C．13E	C1．	C．EET3E－C？
C．20E	Cl	C．EESEE－C？
C．e2E	C1	C．EEEEE－02
C．c̈4E	（1）	C．EミETE－C2
C．C6E	C1．	C．E1sIE－C？
C．CSE	C1	C．Ecase－02
C．EOE	C 1	C．TETEE－02
C． 225	C1	C． $1714 \mathrm{E}-\mathrm{C} 2$
C． C $^{\text {E }}$	Cl	C．7561E－0？
C．$=6 \mathrm{E}$	C1	C．7412E－C2
C．JEE	C．	C．7ご5E－C2
C．COE	C 1	C．71く1E－0？
C．Cle	C1	－．tsece－cz
C．$<4 E$	C1	C．tEL2E－02
C． 46 E	Cl	C．t．tcse－02
C．$\angle 3 E$	01	0．6E74E－C？
C．ECE	C1	O．t44
C． 5 ？${ }^{\text {c }}$	C！	J．tElte－o？
C．ESE	C 1	C．t．c．e－C2
C．$¢ \in E$	C1	c．$\in C \in E E-C 2$
C．5es	C1	C．Scée－cz
C．tCE	01	C．EEJCE－C2
C．t．EE	01	C．ETLEE－C2
C．tite	C1	C．E¢CこE－O？
C．tbe	C 1	C．5451［－C2
C．tEE	01	C．5この的－0？
C．TCE	C1	C．52ise－cz
C． 72 E	Cl	C．Elile－c．2
C． 745	C：	C． $5 C \in S E-0 ?$
C．76E	C 1	C．4 ¢ EEE－02
C．78E	C．	C．4ETCE－C2
C．EOE	C1	C．4iT3E－C2
C．\＆	C1	3．4ETSE－C2
C． $64 E$	C！	］． 4 EEEE－C2
C．EAE	C1	C．44SEE－C2
C． 8 ¢ 5	Cl	C． $44 C 6 E-02$
C．cos	Cl	C． $4 \equiv 15 E-02$
C．c．2e	Cl	
c．c．ce	C1	C． $415 C E-02$
C．CSE	Cl	－．4CEEE－C2
C．ces		C． 3 CETE－02
C． 10 E	02	

$C . C$		O．C
C． 20 E	CC	コ． 7 7 $7 \mathrm{~F}-01$
C．$\angle C E$	CO	C．こうl5E OO
C．$E O E$	C	C．Eうく1E
C．EOE	00	C．273 ¢E OC
C．ICE	C 1	C．43E4E CC
C．125	Cl	O．3453E CC
0.14 E	C1	C． 24 CEE CC
C．16E	C1	C． $1 \in \stackrel{\text { CE C }}{ }$
C．19E	01	C．DCSIE CO
C．COE	Cl	C． $7=13 \mathrm{E}-\mathrm{Cl}$
C． 22 E	C1	C．4CC2E－Cl
C． 245	C1	C． 2 く巨tE－C1
C． 266	C）	C． 2 C 3 － 01
C． 235	C1	0．1 4 门 $7-C 1$
C．20E	C 1	C．ces9E－02
C．$: 2 \mathrm{E}$	CL	0． $6 \in 5 E E-C Z$
C． 24 E	C1	C．4447E－02
C． 3 ¢E	C1	C． 2 ¢¢1E－02
C． ESE	C1	C．1cse
C．40E	Cl	0．1240E－02
C．くご	C1	C．E¢TSE－J3．
C．$\angle 4 E$	C．	$0.6 C 1 C E-C ?$
C． $45 E$	C 1	C．4CE5E－C3
C．$\angle 8 E$	C：	C．2765E－C3
C．EOE	C1	C．1E1こE－03
C． 52 E	C1	$0.12155-53$
C． 645	CL	C．E14 EE－C4
C．Et，	C1	O． $54 \in C E-04$
C．ERE	Cl	C． 3 EヒCE－C4
C． 50 E	C1	0．2454E－04
C． 62 E	01	C．1t4EE－C4
C．t4E	C1	C．11C2E－C4
C．tet	01	C．TECOE－CS
C． 68 E	C1	C．4CE4E－C5
C． 705	01	C． 3 ここCE－C5
C．i2E	C1	i）． $22265-05$
C． 14 E	C1	C．14525－05
C．TGE	C	$\because 1 C C C E-05$
C． 78 E	C1	C．ETC4E－0t
C．$ع C E$	C1	C． 44 S．4E－0t
C．ε ¢ E	C 1	C．？C12E－0t
C． 545	C 1	C．？C1SE－Ct
C． 86	Cl	3．1354E－C6
C．ESE	C1	
（．c）${ }_{\text {c }}$	01	C．tCE2E－C7
C．$¢ 2=$	C1	C．4077E－C7
C．C．4E	Cl	0.273 BE － 0.7
C．S．SE	02	O．1．822E－C7
C．S8E	C1	こ．1229E－C7
C． 10 E	02	

C．C		0.0
C．EOE	CO	C．84SEE－C2
C．$\angle C E$	CO	C．2CC7E－C1
O．CCE	co	C．$-6 \pm 2 E-C 1$
C．EOE	co	O．Eもう7E－C1
0.10 E	C 1	$0.1132 E C O$
C．12E	Cl	C． $1 \angle C 8 E C O$
C． 14 E	C1	C．15COE 00
C． 16 E	C1	C．15C9E OC
C． 18 L	C1	C．14 CTE OC $^{\text {O }}$
C． $20 E$	Cl	C．1ミ5EE OO
C．22E	© 1	C． CCSE CO
C． 24 E	C1	O．1－15E 00
C． 26 E	C1	C．112CE CC
C．こ力E	Cl	C．1C27E CC
C．EOE	C1	C．$¢ 3 \varepsilon=E-C 1$
C． 32 E	C1	C．EEEE－C1
C． $24 E$	C！	C．T才E2E－C1
C． 265	C1	C．7CE9E－C！
C．28E	C ${ }^{\text {d }}$	$C . E<15 E-C 1$
C．$\angle 0 E$	01	C．5317E－01
C．$\angle 2 E$	Cl	
C． 44 E	C 1	O．4うite－Cl
C． 465	C 1.	O．4ここEE－C1
C． 48 BE	C 1	C． $351 \in \mathrm{E}-\mathrm{Cl}$
C．SOE	C1	C． $2545 E-01$
C． 52 E	Ci	C．こ こCSE－C1
C． $54=$	C 1	C． 2 SC4E－C1
C．EUE	C1	C． $2620 \mathrm{E}-\mathrm{O}$
C．EsE	C1．	C．2こ755－C1
C．SOE	C1．	
C．t？	CL	C． $1: 405-01$
C．6CE	C．	$0.17 \pm 3 \mathrm{E}-01$
C．t¢E	Cl	C．15cEE－C1
C．EOE	C1	C．1442E－C1
C．705	0.1	C．1ミCCE－O1
C．72E	01	0．1192E－Cl
C． 74 E	C？	$0.1 C \leq C E-C 1$
C． $75 E$	C 1	C．CCEE－C2
C．TEE	Cl	C．9754E－C2
C．EUE	C1	C．7C $21 E-C 2$
C． 22 E	C1	C．7167E－C2
C． 64 E	Cl	C．t4\＆5E－02
C．ESE	Cl	C． $58 \leq 85-02$
C．ESE	C1	C．5E1CE－02
C．SOE	C 1.	C． 4 E（ $4 \mathrm{E}-02$
C．C2E	01	C．4347t－C2
C．S4E	C 1	C．3524E－02
C．CEE	C：	O．3555E－C2
C．S9E	C1	C．こここ1E－02
0.105	02	C． $244 \mathrm{E}-\mathrm{C2}$

C．C	0.0
C．COE CC	0．174EE－C2
C．$\angle C E$ CO	0．614EE－02
C．GOE CO	C．122 $5 E-01$
C．ECE CO	C． 1 ¢4EE－C1
C．IOE 01	C． $2733 \mathrm{E}-\mathrm{Cl}$
C．J2E Ol	C． 3 E84E－Cl
C．14E C1	C． 37 CCE－C1
C．lte C？	C． $4 C \geq 2 \mathrm{E}-\mathrm{Cl}$
C．18E Cl	C．41t4E－C1
C．$̇$ OE Cl	$0.4224 \mathrm{E}-01$
C．E2E CL	C．$<236 E-C .1$
C．E4E Cl	
C．LSE O！	O．415EECl
C．CSE CI	C．421E－C1
C． 30 E Cl	C．4CSSE－C1
C． $\operatorname{S2E~Cl}$	0． 35 S $2 \mathrm{E}-\mathrm{Cl}$
c． 34 ECl	
C． 3 EE CI	C． 3 ¢ 4 ¢E－ 01
C．EBE OI	C．EiT7E－C1
C．COE C1	0．27C5E－C）
C．$\angle 2 E C 1$	C． $3 \in 32 \mathrm{E}-0$ ）
C．44ECl	C．3562E－01
c．$\angle 6 E C 1$	$0.2453 \mathrm{E}-\mathrm{Cl}$
C．cet Cl	C． $2424 \mathrm{E}-01$
C．EOE Cl	C．3こETE－C．
C．E2E Cl	C．EこSCE－01
C． 54 ECl	O．ことこ5E－C1
C．5be Cl	C． $21 \leq 2 \mathrm{E}-\mathrm{Cl}$
C．EEE Cl	C．${ }^{\text {c CSGE－C．}}$ ．
C．tCE Cl	C．3CミEE－CI
C．tEE 01	C．2978E－01
C．t4E CI	O．CS15E－Cl
C．t6E Cl	O．2stie－ci
C． 68 C Cl	C．ERC4E－Cl
C．TOE 01	C． 274 SE－C1
C．i2E Cl	C．2ts4E－0）
C．T4E Cl	C． $2 t<1 E-C 1$
C．TSE Cl	C． $2555 E-C 1$
C．TBE Cl	O．25こ7E－C1
C．EJE Ci	C．24E7E－C1
C．82E Cl	0．2438E－01
C．84E Cl	C．23sce－Cl
C．$\} \in E$ Cl	0．2こ42E－C1
C．£ge Cl	c． $225,6 \mathrm{E}-\mathrm{Cl}$
C．c．ce Cl	O． 2 ECE－C1
C．C2E Ol	C． 3 Cće－O1
C．CAE Cl	0． $216 \angle E-C$
C．cge Cl	0． $211 \mathrm{SE}-\mathrm{Cl}$
C．CBE CI	$0.2 C 77 E-C 1$
$0.10 \mathrm{EC2}$	C． $2 C: E E-C$

C． C		0．3ETEE－6t
C．$\angle O E$	co	C．1CE3E CC
C． 200	Co	C．2E72E CC
C．tCE	co	$0.3 ¢ 6550$
C．ECE	CC	C．5COSE CC
C． 10 E	01	C．SCl3E CO
C．12E	C1	C．5SCCE CO
C．14E	C1	C．4EE8E CC
C． 16 E	Cl	C．2日E？E CO
C．19E	01	
C． 20 E	C1	$0.2584 E C O$
C．ここE	C1	C．élle Co
C．CAE	C1	0.1722 OC
C． $26 E$	C1	$0.1 \angle 18 E C 0$
C． 28 E	Cl	C．llele CC
0.30 E	C1	C．SECEE－Cl
C．E2E	C1	C．77E2E－C1
C． 34 E	C 1	O．tミ「こE－C？
C． 36 E	C1	C．5¢17E－0l
C．$\equiv 8 \mathrm{E}$	C．	O．〔く71E－C］．
C．COE	C 1.	C． 34 ¢ $7 \mathrm{E}-\mathrm{C}$ ．
C． 42 E	C！	C．28E3E－Cl
C． 44 E	C1	П．2244E－C？
C．$\angle S E$	C1	O．1C1SE－Cl
C． 48 E	01	C．1ETIE－C1
C．sCE	C 1	C． 2 2sEE－C1
C．E2t	C1	0．1CシミE－C1
C．S4E	C 1	C．¢623E－C？
C．SSE	C1	C．7CECE－S2
C．ese	C1	C．ETECE－C？
C．\subseteq OE	C1	C．47ミ2E－C2
C．t2e	C1	C．3ETSE－C2
C．tくE	C1	$0 . ミ 172 \mathrm{E}-\mathrm{C} 2$
C．$\subset \in E$	01	0．25c7e－02
C． 635	C 1	C．ClztE－02
C．TOE	（1）	C． $1741 \mathrm{E}-02$
C． 72 E	01	$0.1425 E-C ?$
C． $74 E$	C	C．1167E－C？
C．ise	Cl	C．cs5se－03
C． 73 E	Cl	C．7EここE－03
C．EJE	C1	C． 640 EE－C3
C．E2E	01	C． $5244 \mathrm{E}-03$
C． 84 E	Cl	C． 2 SSこE－03
C．EbE	C1	0．3E15E－C3
C． EBE	01	C．2E78E－C3
C．SCE	C．	C．2356E－C3
C． C 2 E	C1	C．152SE－C3
C． 54 E	C1．	C．l5ise－03
C．cet	C1	C．1293E－03
C． 98 E	C1	C．1Cs5E－C3
C．loE	C2	C．EfEEE－C4

C．C		C． 0
C．éce	CC	0．32E¢E－C1
C．4CE	CO	O．lCe7E CO
C．tCs	co	－． $2 C 36 E C O$
C．ECE	00	C．3CE2E CC
C．lue	C1	C．3cçe 00
C． 12 E	C1	C．4ESEE CC
C．14E	（1）	$0.4589 E$ CO
C． 16 E	C 1	C．43こ4E 00
C．lsE	（1）	0．3c35E CC
C．coe	C	C．34E1E CC
C．c2E	C1	C．3C2ミE CC
C． 24 E	C1	O．ĖE2E OC
C．\quad GE	CI	C．ŻCOE CO
C． $29 E$	C1	J．1E54E C0
C． 3 OE	C1	C．1Es3E CO
C． 325	C1	C．12c5e 00
C． 34 E	Cl	C．lCTSF CO
C． 36 E	C1	C．es13E－C1
0.305	Cl．	C．$i=6 \in E-C 1$
C．CCE	C1	C．ECSCE－CI
C．$<2 \mathrm{E}$	01	0．5C10E－01
C． 44 E	C1	$0.4123 E-01$
C． 46 E	Cl	0．33COE－01
C．$\angle 8 \mathrm{EE}$	01	〕．ごEEE－C1
C．505	C1	0．3こ87E－C1
C．e2t	C1	c．1ETsE－Cl
C． 54 E	（1）	C．153SE－C．
C．EEE	C 1	C．1262E－01
C．E®E	C］	C． $16255-\mathrm{Cl}$
C．tOE	C1	C．E4TSE－C2
c．t2E	C）	C．tccee－C？
c．tSE	CI	C．5tc 2E－02
C．tSE	02	C． $4 \leq E 3 E-02$
c．taE	Cl	0．3EスCE－C2
C．iCE	Cl	O．こうくEE－C2
C． T 2E	Ci	C． 2 cter－cz
C． 74 E	O1	C．SCCPE－C2
C．T大E	C1	C．1718E－02
C．79E	C1	
C．SOE	C．	C．11E2E－C？
C．E2E	（1）	$0 . \mathrm{C} 424 \mathrm{E}-\mathrm{C} 3$
C．E4E	Cl	C．7725E－C3
C．EOE	C：	C． $6:$ くこE－C3
C．egt	C1	0．5175E－C3
C．soe	CI	C． $4.24 C E-C 3$
C．c．et	C1	C． 3 4 $=$ EE－C3
C．C4E	C1	C．2842E－03
C．CSE	C1	O．2227E－C3
C．C8E	01	C．：SC5E－03
C．lCE	C2	C．15ECE－03

C．C		O．C
C．$=$ DE	0	C．cceee－02
C．4CE	00	0.5 Este－01
C．ECE	00	C．t717E－01
C．EOE	co	$0.1 C 87 E 00$
C．10E	C1	C．LE48E 00
C． 12 E	C1	$0.1545 E$ OC
C．14E	C 1	C．EZCEE OO
C．LbE	CI	0.2361500
C．1se	（2）	$0.2435 E$ CC
C．coe	c］	C．2448E CC
C． 22 E	01	0.2415 E CC
C． $34 E$	Cl	0.2345 ECC
$0 . z 6 E$	C1	$0.2 \overline{2}$ ¢ CE CC
C．08t	C1	$0.2155 E C C$
0.30 E	C1	$0.204 C E C C$
C． $\mathrm{C}^{\text {2 }}$	Cl	C．IS1CE CO
C． 34 E	C1	$0.1767 E 00$
C．EEE	C．	C．1ET5E CC
C． 28 E	C：	C．15E6E CC
C．$\angle O E$	01	C．1441E 90
C．$\angle 2 E$	C1	0.13 Sl 00
C．44E	C1	0.1 くく7E 00
C． 40 E	C1	C．1128E CO
C． 43 E	C1	0.1036 E 00
C．EOE	C1	C．c．4c2E－Cl
C．EこE	C1	C．$\varepsilon \in \mathcal{E}$ E－Cl
C．E4E	C1	C． 7 C $13 \mathrm{E}-61$
C．EtE	C 1	C．iくE4E－01
C．Es［	C．	
C．EUE	C1	C． $6 C 34 E-01$
C．t．2E	C1	$0.54 c \in E-C 1$
C．t大\％	C1	C．50C3E－01
C．tbe	Cl	C．45 2 2E－01
c．tas	C1	O．C12SE－01
C．TOE	C1	2． $37 \in 1 \mathrm{E}-01$
C． 72 E	01	C． $3417 \mathrm{E}-01$
C． 7 ITE	（1）	C． $3103 \mathrm{E}-\mathrm{Cl}$
c． 768	（1）	$0.2316 E-C 1$
C．T8E	C1	O．25sct－01
C．\cdot de	C1	O．2ミ15E－C．
C．EzE	C1	C．2103E－C1
C． 54 E	C1	C．1cc7e－ci
C． $.6 \in E$	01	0．172SE－C1
C．ege	C1	C．1567E－Cl
C．SOE	01	C．1420e－cl
C． 5 S 2 E	01	O．1くを7E－Cl
C．． 4.4	C1	C． 1 léc－01
C．c．e	01	O．105EE－C1
C．． 3 E	C！	1］．¢5E6E－02
C． 10 E	C2	C．$\varepsilon \in \in 4 \mathrm{E}-\mathrm{C} 2$

C．C		0.0
C．ĖE	CC	$0.18 \in 1 E-C 2$
C． 40 E	00	C．$t \leq 3 \in E-02$
C．C OE	CO	C．74E7E－（0）
C．EOE	CO	C．çく4E－Cl
C． 10 E	C1	C．3EECE－C1
C． 32 E	C1	C．4E14E－C1
C． 14 E	C：	C．54E1E－Cl
C． 16 E	CI	C．t．1C3E－Cl
C． 18.	Cl	C．tec $5 E-0$.
C． 205	01	C． 6 ¢ $¢ \in 4 E-C)$
C．cze	C1	$0.7262 E-01$
C． 24 E	C！	C．74ECF－Cl
C．CEE	C1	C．75S2E－01
C． $23 E$	C1	C．7ETlE－Cl
C．ECE	C 1	C．7TCEE－Cl
C． 32 E	C1	C．7767E－Cl
0.34 E	C1	C． $7580 \mathrm{E}-\mathrm{Cl}$
C． 365	C1	C．7ES $1 E-C 1$
C． 3 E	C1	C．7564E－C1
C． 20 C	01	0.74 E E－01
C．$<2 E$	Cl	0．73S2E－C：
C． 44 E	C1	－C．72¢2E－Cl
C． 46 E	C1．	C．7185E－C1
C． 43 E	C）	0．7Ci4E－Cl
$0.50 E$	C1	C．tSsce－ci
C．52E	C1	C．ϵ ¢くこE－C1
C． 54 E	01	C． $6124 \mathrm{~F}-01$
C．50E	C1	C．t¢C4E－0l
C．Sise	C1	C．C4E5［－Cl
C．GOE	Ci	$0.62 \leq \in E-01$
C． 62 E	C？	c．6243E－C1
C． 64 E	01	$0.613 C E-C 1$
C．tSE	C2	C．$E C 14 \mathrm{E}-\mathrm{Cl}$
C． 6 BE	01	C．EES¢E－Cl
C．TOE	C1	C． $518 \in E-C 1$
C． 72 E	C1	0．56：4E－01
C． 745	C1	－． 5 ¢ $64 E-C 1$
C． 76 E	C1	C．5455E－01
C． 78 E	C1	0． $534 \mathrm{SE}-01$
C．EJE	C1	C．Eく44E－C1
C． 82 E	C1	C． $51<2 \mathrm{E}-01$
C．este	C1	O．EC4IE－C1
C． 86 E	C1	C．4chit－Cl
C．E8E	C 1.	0．4E44E－01
O．CUE	C1	C．4i4SE－C1
0.52 E	C1	C．4EEEE－01
C．c．4E	C1	C．45E3E－Cl
C．c．es	01	c． $44.73 E-01$
	C1	C．4ミを5E－Cl
O．JCE	C2	C． 42 SEE－Cl

C．
C．$\angle C E C O$
C．$\angle C E O O$
C．EOE CO
C． $80 E$ CO
C．IUE 01
C． 12 E 01
C． 14 E C1
C． 16 C：
C． 18 E OI
C．© © C1
C． 22 E C1
C．$\subset 4$ E C1
C．こもE 01
C． 25 E CI
C．ミOE Cl
C． 22 C C
C．$=4 \mathrm{E}$ CI
C．ごE Cl
C．シ3E CI
C．$\angle 0$ E Cl
C．$\angle 2 \mathrm{E}$ C1
C． $44 E C 1$
C．$\angle 6 E C 1$
C．$\angle 3 E$ CL
C．EOE C？
C．E2S C？
C．：4E（1
C．EもECL
C．EEE Cl
C．EOE O：．
$0.62 E \subset 1$
C． 64 C 1
C．EGE CI
C．EEE C1
C．TOE C1
C． C 2E Cl
C．T T E C ！
C．TEE Cl
C．795 01
0. EOE C1

C．$\varepsilon 2 E \quad C 1$
C． 84 E （2
C．E日E CI
C．E日E Cl
C．CCE OD
C．C2E Cl．
C．T4E Ol
C．SOE CI
C．e8t Cl
C．JOE C？
$0 . ミ$ こTヒEーC
$0.1 C 53 F C O$
C．27E3E CO
C．44C5E 00
$0.5 E$ C8F CC
C．72：1E CC
C． $7=53 \mathrm{E}$ C
$0.67 \in 3 E \quad 0 C$
$C . \leq 124 E \quad C O$
C．5552E CO
C． 5 C24E CC
C．454EE CC
$\therefore .4114 E 00$
C．ミブス2E 0
0.3268 CC

C． 2 C 47 F 0
©．2757E CO
C．24C5E CC
C．22 5 EE C
$0.2 C 43 E C C$
C．IE48F CC
0．1572E CC
C．I5．J3E CO
C．13EOE CO
C．12zGE CC
$C .1121 E$ OC
$0.1014 E \quad 00$
C．$=178 E-C 1$
C．ε EC5E－C1
C．7515E－O1
C．$\subset \in C O E-O 1$ ．
C． $6153 E-C 1$
C． $5 \mathrm{E} \in \mathrm{CE} \mathrm{E}-\mathrm{Cl}$
C．5CE7E－Cl
$0.4558 E-C 1$
$0.4124 E-01$ ．
C． $37=2 \mathrm{E}-\mathrm{Cl}$
C．3277E－01
0． $3055 E-C 1$
0． $27 \in 5 E-\subset 1$
$0.25 \mathrm{ClE}-01$
C． 22 （ $2 \mathrm{E}-\mathrm{C})$
C． $2 \mathrm{C} 48 \mathrm{E}-\mathrm{Cl}$
C．．E E 3E－C1
$C .1 \in T 7 E-C 1$
$0.1517 \mathrm{E}-01$
$0.1 ミ 72 F-C 1$
$0.1242 E-C 1$
$0.1124 E-01$
C． 1 C17E－C1
C．C $<(2 E-C ?$

C．C		$0.596 C E-C t$
C．$\angle 0 E$	0 C	
C．$\angle C E$	CO	O．1163E OO
C．$E C E$	co	C．22E3E OC
C．EOE	00	$0.3471 E \mathrm{CO}$
C．JUE	01	0.472 EE OC
C． 12 E	C1	C．5620E CO
C． 14 E	C1	C．ECCCE CO
C． 16 E	C 1	C．EC37E CC
C． 18 E	C 1	C．5ETOE CO
C．EJE	C1	0．55\＆4E CO
C． $22 E$	01	0．52こ5E CO
C． 245	C．	C．4EESE 00
C．CSE	C1	0.44 EOE 20
C． 29 E	C1	C．41（9E OC
C． 20 E	C1	C．37545 00
C． 22 E	C1	ט． $2 \leq 22 \mathrm{ECO}$
C． $34 E$	C1	C．E113E CO
C． $2 \in E$	01	C．2829E OC
C． C $_{\text {c }}$	C？	$0.2566 E$ CO
C．4CE	Cl	C．2ことすE OO
C． 42 E	Cl	C．2］CSE CC
C． 445	01	C．1S1CE CO
C．46E	C！	C．1720E 00
C．48E	C？	O．1566E CO
C．EのE	C 1	0.1418600
C．52E	C 1	）．12E4E CC
C． 545	C1	C． 1162 E OC
C． $5 \in E$	C1	C．105．1E CO
O．58E	C 1	C．SE15E－01
C．EOE	C1	C．ECICE－O1
C． $62 E$	Ci	O．7751E－01
C．t4E	Cl	C．70ECE－0．1
C．t6E	C1	C．taとCE－C1
C．tse	C． 1	C．5才i3E－C1
C．705	C1	C． 5 く $4 \mathrm{E}-\mathrm{Cl}$
C．7过	01	C．4727E－01
C． $74 E$	Cl	C．4大77E－C？
C．ToE	CI	C． 3 ETCE－C1
C． 78 E	C1	C．35－2E－01
C．EOE	C1	C． 3 ］ $6 \mathrm{E}-01$
C． $\mathcal{C} 2 \mathrm{E}$	C1	C．2Eと7E－C1
C．ε ¢ ${ }^{\text {E }}$	C1	C．25c4E－C1
C．\＆$\in E$	C：	0．2247E－C1
C．\＆8E	C 2	0．2124E－01
C．SCE	C1	C．1522E－01
C．S¢E	C1	C． $1735 \mathrm{E}-\mathrm{Cl}$
C． $94 E$	C：	C． $1573 \mathrm{E}-\mathrm{Cl}$
C．SbE	01	C．1424E－01
C．C． 3 E	C1	C．12E8F－C1
C． 10 E	02	C． $1166 \mathrm{E}-01$

C．C
C．ZOE CC
U．C

C．$\angle O E C O$
C．1911E－C1

C．©CE OC
C．ECE CO
C．IOE Cd
$C .12 E \quad 01$
C．14E Cl
C． $16 E 01$
C．13E C！
C． 20 CL
C．くこも 01
C． 24 E C1
C． $2 \in \mathrm{E}$ C1
C． 28 EECD
C．EOE C1
C．
C． 24 E C1
C．ECE Cl
C． 28 Cl Cl
C．$\angle O E$ O
C．$\angle 2 E$ C1
C． 44 E C1
C．$\angle 5 E$ C 1
C． 48 E C 1
C．5OE C：
C． 52 C1
O．54EC2
C．E6E C1
C．EBE C1
C．GOE C1
C． 62 E 01
C．E4E 01
C．\quad CEE $C 2$
C．E8E 0！
C．TCE CI
C．T2E C1
C1
C．EET2E－C1
C． 1343 E CO
J． 21 i4E CC
C． 3 CSEE CO
O． 3 ESCE CO
C．4411E 00
$C .4 i=1 E \quad C O$
2． $4 E \in S E$ CO
0．4E5クE CC
C． $4 E=O E C C$
0.4 GCE CC

0．451CE DC
C．$\angle 2 C E E O O$
C．4 7 CF CC
$0.3 \varepsilon 38 E$ OC
C． 35.4 E OC
C． 2 E5OE CC
C．2．12E OO
$0.2 £ \varepsilon 2 E$ CC
U． $2 \in \leq 2 E \quad 00$
$0.24 E 2 E$ OO
0．2256F 00
C．2CTIE CO
C．LEG8E CO
C．172eE OO
C．ISESE CO
C．i45iE CC
$0.1 こ こ ん E O O$
O．ICCTE CO
O．ICSSE OC
C．ICOLE OO
C．S102E－01
$0 . E=77 E-C 1$
C．75え3E－01
$0 . \in \varepsilon \exists 4 E-C 1$
C．Eこ（5E－C1
U． $5 \in \Xi 3 E-C 1$
C．5112E－C1
$0.4 \mathrm{C} 7 \mathrm{~F}-\mathrm{Cl}$
C． 4 くC $6 \mathrm{E}-\mathrm{C} 1$
C． 3 \＆ $145-C 1$
C．ЗムEEE－C1
C． $2134 \mathrm{E}-\mathrm{Cl}$
$0.284 C E-01$
C． $25 \mathrm{C} 4 \mathrm{C}-\mathrm{Cl}$
C．C2E CI
C． $2=2 \mathrm{EF}-\mathrm{Cl}$
C． $2112 E-01$
$0.1 C I 3 E-C 1$
C．1732E－C1

C．C	O．C
C．EOE CO	C．1922E－C2
C． $40 E$ CO	1． 73 C3E－C2
C．EOE 00	0.1 CCCE－C1
C．ECE CD	0．27こ7E－C1
C．IOE Cl	C．4117E－Cl
C．12E 01	C．5E15E－01
C．14E Cl	$0.6751 \mathrm{E}-\mathrm{Cl}$
C． 16 ECl	C．7Eこ1E－C1
C．JBE CI	C．ETi4E－CD
C．20E C1	C．css4E－01
C．C2ECl	C．lCzoE Co
C．こ4E C？	0．1csie Co
C．\quad EE Cl	0.1143 E OC
C． $28 E 01$	0．11s7E OC
C．3OE CI	0.1224500
C．$=2 \mathrm{ECl}$	0.1254 CC
C． 34 ECl	$0.1275 E C C$
C．EtE C1	C．lこsee OC
C． 38 ECL	C．1212E CC
C．$\angle 0 \mathrm{E}_{\text {Cl }}$	J．1323E CO
$0 . \angle 2 E C l$	O．1ミ2CE CC
C． 44 E CI	$0.1 \equiv$ ¢ 4 CC
C．ÁSE Cl	C．1ミミ5E CC
C．LeE 01	0.1333 CC
C．SOE Cl	0．1EことE 00
C．ESE CI	0.1522 FCC
C．E4E CI	C．1E14E CO
C．EOE C1	C．1こCEE CC
C．S8E C1	O．12s4E CC
C．GOE C1	$0.1281 E$ OC
C．GEE 01	C．1268E OC
C．CAE Cl	C．1254E CC
C．EGE 01	$0.1235 E C C$
cotet C1	C．12こ4E OC
C．TCE C！	C．12CEE OC
C．72E O1	$0.1151 E 00$
C． 14 ECl	0．1174E CC
C．TGE CI	C．llETE CC
C．T8E 01	C．114CE CC
C．EOE C1	$0.1122 E 00$
C．EZE Cl	C．11C4E CC
O．EAE Cl	O．lCBEE 00
C．EもE C1	0.16 ese 00
O．cRE Cl	C．lCELE 00
C．SOE CJ	$0.10 \equiv 3 E \mathrm{CC}$
C．S2E CI	0.1015 ECC
C．S4E Cl	C．çige－Cl
C．CGE 01	C．SECCE－C1
C．CBE C1	C． $5 \in \Sigma \in E-01$
C．lUE 02	C．¢4E4E－01

C．C
C．¿CE CO
C． $4 C E C C$
C．$\in C E C O$
C． 80 e 00
C．IOE 01
C． 12 E 01
C． 14 E 01
C．ISE Cl
C．IDE 01
C． 20 EL
C． $22 E$ Cl
C． 24 ECl
C．$厶$ CBE C1
C． $28 \mathrm{E} \quad \mathrm{Cl}$
c．ZJE 01
C． 2 2E 0
C． 24 E C1
C． $2 \in E 01$
C． 3 PE 01
C． 4 PE CI
$0.4 \angle E C 1$
C． 44 E （1
C．$\angle 6 E \mathrm{Cl}$
C． 48 E 01
C．5OE Cl
C．EzE C1
C．E4E C1
C． 5 CE CI
C．EBE Cl
C．EUE CI
C．$\in 2 E C 1$
O．GAE CJ．
C． 66 C C
C．GRE 01
C． 70 E CI
C． 72 E Cl
C． 74 E 01
C．T6E CI
C．73E C1
C．gOE C1
C． 82 E CI
C．$\varepsilon 4 \mathrm{E}$ C
C． 8 GE Cl
C．cee Cl
C．SOE OI
C．C2E Cl
C．C4E 01
C． 56 C
C．$\subseteq 8 E \mathrm{EL}$
C．LUE 0？
－C．25ECE－C6
$0.1127 E$ CC
C． 2 SESE CC
C．4EIEE CC
$0.675 \in E C O$
C．gtC2E CO
$0 . c 2$ C5E CC
C．SEITE 00
C．SCECE CO
C．eETBE CO
C．EtSEE SO
C．BEZSE OC
C．EミE7E CC
C．ELSIE OC
C．ECzSE CO
C．7ETOE CO
C．7714E CO
C．7EEIE 50
C． 7412 E － 0
c．7265E CC
C．71E1E CO
D．$E \subset E C E$ こC

C．67CEE 00
C． 6574 E CO
C． 6443 E CO
C．tミ1 5 E C
0．t！cie CO
C． 6 cege 00
C．Ec48E OC
C．E\＆ミCE CO
C．5713E CO
C．SEO2E CO
C． 54515 CC
C． 5 ミ82E CC
C．EこTSE CC
C．EITLE 00
C．5C6ce 00
C．49tSE 00
C．4EICE CC
C．4TiZE CO
C．4ETSE CC
C． 4 ESEE CO
C．445EE CC
C．440JE CO
C． 4 E1CE CO
$0.42 こ 4 \mathrm{EC}$
C．415CE CC
C．4CEAE CO
$0.35 \varepsilon 7 E C C$
C．3COBE 00
C.C
$C .556 C E-C 7$
$C .3492 E-C 1$
$0.1229 E C O$
$0.24 E 2 E C O$
C. 40 E CO
C. ECE CO
C.ECE OJ
C. IOE 01
C. lदe CI
C. 14E Cl
C. 16 E CI
C. IBE CI
C.coe ol
C. 52 C C
C. 24 ECl
C. ZOE Cl
C. CBE CI
C. 3 OE C1
C. E 2 ECD
C. 34 C 1
C. $\operatorname{Cos} 01$
C. 33E 01
C. 40 E CL
C.42e C!
C.44E Cl

C
C. 4 EE C
C. SOE CI
C.E2F Cl
C. 64 E C
C. © E Cl
C.E日E Cl
C.ECE Cl
C. $C 2 E C 1$
c.t4E 0?
C.tós Cl
C. CBE CI
C. TiJE Cl
C.I2E C.
.14 E C?
. TEE Ol
0.78 Cl
C. EOE C
C. $\varepsilon 2 E \mathrm{CI}$
$0 . \varepsilon 4 E C L$
C. $\varepsilon \in E \quad C D$
C.E\&E CD
C. ©CE Cl
C. C2E Cl
C.C4E C.
C. COE Cl
C. CgE Cl
0.10 C C2

C．C
C．$\overline{\text { CLE CO}}$
C． 4 CE CO
C．ECE CO
c．gue co
C．IUE Cl
0.12 E 01

C． 14 E Cl
C．lóe C．
C．IJE CI
C．ZOE Cl
C． 22 E Cl
C．EAE Cl
C． $\bar{c} \in E$ CI
C．\subset PE Ol
C．EOE O！
C． $22 E 01$
C． 34 E C1
C．$\Xi \in E=1$
C． 28 E Cl
C． 40 E Cl
C．42E 01
C． 44 E C：
C．46E C1
C． 48 C Cl
C．50E CI
C． 52 E Cl
C． 54 E（1
C．56E C1
3．58E C1
C．$C O E$ C1．
C．EDE Cl
C． $64 E \mathrm{Cl}$
c．tte 01
C．tEE 01
（．7）E O1
C．TCE Cl
C． 74 E 01
C．TGE Cl
C．TBE 01
C．EDE Cl．
C． 82 ECl
C．$\varepsilon 4 E 01$
C．EかE C1
C．$\varepsilon \varepsilon$ E 01
O．cos Cl．
C．c．2e Cl
C．© 4 E C1
C．C CEE Cl
C．c．ce 01
C．DJE 02
0.0
$0.19 \in C E-C 1$
C． 6 C $26 E-C 1$
C． 145 FE DO
$0.2424 E 00$
0.2550 CO

C．4E14E 00
C．E4E1E 00
C． 6 ？O3E CC
c．tECSE CO
$0 . t \in 94 E 00$
C．72t3E 00
C．74EOE OO
C． 7552 E CC
c． 7 ETIE CO
C．iTCEE CO
c．7707E ac
C．TEECE CO
C． 7 ESEE CO
C．7Eヒ45 CO
C．7483E 00
C．7252E CO
0.7252 E 0

C．71ESE CC
$0.7674 \mathrm{E} \quad 0$
C．ESESE CD
C．tE42E CO
C．tT24E CO
C． $6 \in C 4 E 00$
C．E4ESE 00
D． 6 EGGE CO
0.6248 EO

C．EIZCE OO
0．tCl4E CC
C．5ESSE 00
C． $6736 E 00$
C．EGT4E 00
O．EEt4E CO
C．．5455E 00．
$0.5349 E 00$
C．Eく厶4E OC
0.5142 CC

C．SC4le CO
C．4541E 00
$0.4 E 44 E$ OC
C． 4745 E CO
$0.4 E=5 E C C$
C．4EE3E CC
0.4473 E CC
0.43 55E CC

0．42S3E OC

C．C
C.ZOE CO
0.0

C．$\angle J E O O$
c．EOE OO
O．ECE CU
C．IOE 01
c． 12 E 01
C．14E Cl
C．lSE Cl
C． 19 ECl
C． 20 Cl．
C． 22 E Cl
C．E4E CI
0． 26501
C． $23 E C 1$
C． 30 CL
C． 32 Cl
C． 24 ECD
C． $2 \in E$ CI
C． $23 E 01$
C． 40 E 01
C．CLE Cl
0．$\angle 4 E$ Cl
C． 4 E C ？
C． 48 E C1
C．EOE C1
C．E2E C1
C． 54 ECl
C．E日E C1
C． $53 E C 1$
C． $\operatorname{EOE} \mathrm{C}$ 1
C．ETE Cl
C．© 4 E 01
C．$\in \in E$ ？
C．GAE Cl．
6.7 OE C1

C．T2E C1
C．T4E C 1
C．TEE CI
C．TEE Cl
C． 80 E 01
C．$\varepsilon 2 E$ CI
C． 84 ECl
C．EかE CI
C．EBE C1
C．COE CL
C．CZE Cl
$0.94 E \mathrm{Cl}$
C．gSE C1
C．CeE OI
c．jUE 02

C．CECSE－02
C． $3 \in \mathrm{c} \in \mathrm{E}-01$
C．7Scse－01
C．lこも万E CO
C．2cece co
C．275SE CC
C．3ミTEE OC
0.3 Cl 15 E CC

C．4ミ97E CO
C．4TSTE CC
$0 . E 152 \mathrm{E} C \mathrm{C}$
C．5457E CC
C． $5717 E 00$
C．5s27E CC
$0.512 C E 00$
O．tET2E 00
C．EES4E 00
C． 64 SIE CC
C．EEGFE CO
C．$t \in 17 E=0$
O．EEEZE OO
0．EETCE CO
C．E ETBE CC
$0 . t \in t 4 E 00$
C．tEE2E CO
C．$t \in \operatorname{llt}$ OC
－．tETlF Co
C．Es23E CO
C． $6468 E$ CC
C．S4C7E 00
C．EEく1E CO
0．ta7le Co
C．EISTE 00
C．EIISE OC
C．EC2SE 00
C．5c5es 00
C．5ET1E CO
C． 57 E5E 00
C． 5 ECEE CC
C．EEICE CC
O．5Eス1E 00
0.54 S2E CO

C．Eミ42E 00
0．5くこ4E OC
C．ElEEE CC
C．ECTOE OO
C． 4 CEsE CO
C．4SCOE CC
C．4813E OC
$0.4727 E 00$

O．C	C． 0
C．SOE CO	C． $8<5$ cF－C2
C．$\angle C E$ CO	0．2SCTE－Cl
C．ECE CO	C．5E32E－Cl
C．EOE CO	O．\＆ $677 \mathrm{E}-\mathrm{Cl}$
C．10E 01	$0.11 E 2 E 0$
C．12E Cl	$0.14 C 3 E$ CC
C．14E C1	C．15CCF OC
C．16E C1	C．15CFE CO
C．lBE CI	0.14 － 7 CO
C． $2 \cup \leq C 1$.	C．LESEE CO
C．22EC1	C． 13 CSE CO
C． $24 E$ C1	C．1215E OO
C COGE Cl	2．112CE OO
C． $28 E C l$	O．1CE7E 00
C． 20 Cl C1	C．$¢$ EEOE－01
O．こ2E CI	C．E5555－Cl
C．z＇te Cl	C． 77 C2E－Cl
C．3SE CI	C． $7 \mathrm{CEEE}-01$
C．$=5 \mathrm{C}$ C1．	O．ECIEE－O1
C．4．E CI	－5E17E－01
C．425 0：	0． $5: 1 \geq E-C 1$
C．44E Cl	$0.477 \in E-01$
C．CJE OL	C． $4 \therefore 25 E-C!$
C．48E 01	C．3c1st－0i
C．EOE CI	9．3545E－Cl
C．E2E CI	C． $32 \mathrm{CSE}-\mathrm{Cl}$
C．E4E C1	C． $25(4[-0)$
C．Ete CI	$0.2628 \mathrm{E}-01$
C．ESE O1	C． 2 こ $19 \mathrm{E}-\mathrm{Cl}$
$0 . \operatorname{COE~CL}$	
C． 2 2E O2	C． 1 c4eE－Cl
C．t4E CI	C． $17 \in 3 E-C 1$
C．tES CI	O．15c5E－C1
C．tBE C？	$0.1443 E-C 1$
$C \cdot T O E C!$	C． $12 \mathrm{CbE}-\mathrm{Cl}$
C．7二E O！	$0.11 E 2 E-C 1$
$C .74 E \quad C 3$.	O．1CESE－C1
C．T6E C1	C．S Gise $-C 2$
C．78E Cl	C． $8754 \mathrm{E}-\mathrm{C2}$
C．EOE CI	C．7521F－02
C．E2E CL	C．7167E－02
C．E4E CI	C．E4EEE－C2
－．EGE C？	O．5EERE－02
C．EOE Cl	C． $5 \pm 1 C E-02$
－coe ci	C． 48 C $4 E-C 2$
－． 2 E C1	$0.4347 \mathrm{E}-02$
C． 64 E C1	0．35－ $4 \mathrm{E}-\mathrm{C} 2$
．COE O1	－．355cE－C2
．¢8E Ol	O．
．10E C2	C． $2514 \mathrm{E}-\mathrm{C} 2$

O．C	O．C
C．COE CO	C． $5548 \mathrm{E}-\mathrm{C} 2$
C．4CE CC	$0.3 \leq 47 E-01$
C．GCE CO	こ．7EこCE－C1
C．EOE CC	C．1ミミ2E 60
C．ICE 01	C．1ssce CC
C．12E Cl	$0.26 \angle \in E C 0$
C．14E Cl	C． $220 \in \mathrm{E}$ O
C．16E Cl	C． $3681 E$ OC
C．13E C1	0.4081 CC
C． $20 E C 1$	C．4413E OC
C．C2E Cl	$0.4685 E C C$
C．çE Cl	C．4SC4E CC
C．く大E Cl	C．ECTGE CC
C．こ日E Cl	C．EECTE OC
C．SOE C2	0.53015 CO
C． 32 Cl	C．ESESE CO
C． 34 EC	O．53cte Co
C．EEE C1	c．esube co
C．2eE Cl	0．53c4E CC
C．LOE C！	C．EEG4E OC
c．cze Cl	C．5こ17E CC
C．L4E 01	C．52E7E DC
C．46E C1	C．51E5E CC
C．CEE CI	C．S1C3E OO
C．5OE O1	C．5012E 00
C．EZE Cl	$0.4915 E C$
C．E4E CI	C．4812E 00
C．EbE Cl	C．47C5E CC
C．EEE C1	C．4E54E 60
C．tCE Cl	C．4481E 00
C．E2E CI	$0.4265 E C C$
C．tat 01	C．424 ${ }^{\text {E CO }}$
C．tSE Ol	C．41E1E 00
C．tob Cl	$0.4014 E \mathrm{O}$
C．TOE C1	O．38cte CC
C．T2E Ol	0.3781 E C0
C．i4E Cl	C．3tEEE CO
C．TEE C1	$0 \cdot 3552 \mathrm{Cc}$
C．78E Cl	C．3435E CC
C．EOE C1	
C．E2E C1	C．こここ1E CO
C．EAE C2	$6 . \equiv 114 E$ CO
C．fGE Cl	C．201CE CC
C．E3E CL	C．2SCSE 00
C．COE Cl	C． 2 EICE OC
O．SEL 01	C． 2713 E OC
C．CAE CI	$0 . z 61 C E C O$
C．cbe 01	C．25く7E Co
C．ces Cl	C．2438E U0
C．10E 02	0.2351 E 0

TINE CLIPLT

C．C
C． 20 E CO
C．$\angle O E$ CD
C． tJE CO
C．ECE SO
C．IOE 01
C．12E Cl
C．14E CI
C．IGE Cl
C． 19 E 01
C．ECE Cl
C．$B 2 \mathrm{E} 01$
$0.24 E \mathrm{Cl}$
C．OSE Cl
C． 28 Cl Cl
C． 30 ECl
C．$=2 \mathrm{E} \mathrm{Cl}$
C．シ4E CI
C． B 6 E 01
C． 3 万号 Cl
C． 4 JE Cl
C． 42 E C
C． 44 EC C
C． 4 EE CI
C．$\angle B E 01$
$0.50 E \mathrm{Cl}$
C．E2E C！
C． 54 E（1）
C．EGE CI
C．EgE Cl
C．COE C1
C．©RE OI
C．t4E CI
C．tót（
C． 68 C 1
C．TOE CI
C．TZE CI
C．TAE Cl
C．TGE C．
C．TBE C
C． 80 E C
C．$\varepsilon 2 \mathrm{E}$ Cl
C． 84 E CI
C． $\operatorname{EfE} \mathrm{CI}$
C． 88 E C1
C．COE CI
C．C？E Cl
C．© $4 E$ CI
C．CGE CI
C．SBE 0 ）
C．10E C2

TIME
CLTPLT

C．C
C．ZOE CO
C． 40 E 00
C． $\mathcal{C C E}$ CC
C．ELE CO
C． 1 OE CI
C．12E C！
C． 14 E C1
C．ISECI
C．13E C1
C． 2 CE C1
C． $22 E$ OL
C． 64 E C1
C．$\angle 6 E C L$
C． $29 E 01$
C．2OE 01
C．$\equiv 2 \mathrm{E} \quad \mathrm{Cl}$
C．$=4 \mathrm{E} \quad$ C！
C．$こ 6$（1）
C． 29 ［ 01
C．4UE C1
C．$\angle 2 E \quad C 1$
C． 44 E C1
C． 46 E C1
C． 43 E Cl
C．SOE C1
C． 52 E C
C．54E CI
O．EGE 01
C． $5 \in E$ Cl
C． COE CI
C． CLE OL
0.64 ECl

C．EUE 01
C． 63 E 01
C．TOE C1
C．TCE CI
C． 74 E 01
C． 76 E Cl
C． 78 E CI
C．80E 01
C． 22 E 01
C．E4E CI
C．EGE CI
O．E8E CI
C．SCE Cl
C．S．2E Cl
C．CLE C1
C．SOE Cl
C．SYE C？
C．loE 02

C． $5 \subseteq \in C E-C 6$
C． $3=c 9 E-C 1$
$0.1163 \mathrm{E} C 0$
0.2253 FCC

C．3471E CC
$0.4729 E \quad 00$
C． $5 \in \operatorname{ZCE} 00$
C．$E C C C E$ OC
C． $6 C 37 E \quad C O$
$0.5 E 7 C E C O$
C． 5 584E 00
C． 52 こ $5 \mathrm{~F} \quad 00$
U．486OE CO
C． 443 CE CO
C． 4108 E OC
C． 3754 EC
C． 3422 E CO
C． C 113 EC
C． 2828 E OC
0．2EGもE OC
C．こここフE CC
C．21CSE OC
$0.1 \subset 10 E O 0$
C．1730E CO
C． $1566 E 00$
$0.1419 E \mathrm{CC}$
$0.12 E 4 E$ CC
－ $11 \leq 2 E \quad 00$
$0.1 C 51 E 00$
C． $9515 \mathrm{E}-\mathrm{Cl}$
C．ε E1CE－C1
0．1751E－C1
C．TC5CE－01
C． $6=90 E-C 1$.
人．ETT3E－01
$0.5224 E-C 1$
C． $4727 \mathrm{E}-01$
$0.4277 E-01$
0．3E7CE－01
C．2502E－02
C．21とをE－01
J． $2 \varepsilon \in 7 E-C 1$
0．25c4E－Cl
C．2ミ47E－C1
0．2124E－01
C． $1522 E-C 1$
C． 173 SE－01．
C．1ET2E－0！
C． $1424 \mathrm{E}-0$ ？
O．1＜\＆EE－01
$0.1160 ́ E-C 1$

[^0]: *Visiting Scientist from University of California, Davis, California.

