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FADDEEV’S EQUATIONS FOR LOCAL POTENTIALS 

Thomas Arthur Osborn, Ph. D. 
Stanford University, 1967 

This dissertation studies the non-relativistic quantum mechanical three- -- - e 

-body problem. The three particle system is that described by three spinless 

particles interacting via a sum of two-body potentials. The dynamics of the 

system is determined by Schroedinger’s equation. Recently L. D. Faddeev has 

shown how to re-express this equation in a form which is well defined and avoids 

the singularities which customarily accompany the three particle Schroedinger 

equation. Faddeev’s work shows that solutions to the problem exist but does not 

obtain any of these solutions. Subsequent research has obtained specific numer- 

ical solutions under the assumption that the two-body potential is separable in 

momentum space 0 Mathematically this assumption means that the potential can 

be written <clV(q> = f (fib(c). Unfortunately, this assumption has little obvi- 

ous justification for three-body systems of physical interest. The first aim of 

this work is to obtain solutions for an arbitrary potential. Secondly, we use 

these general solutions to test the validity of the assumption that two-body poten- 

tials may be represented as separable potentials. 

Our method for dealing with the Faddeev equations that govern the three-body 

problem consists of two parts. These equations are first simplified. We are 

able to reduce the number of independent variables from six to two by expanding 

the system in terms of a complete set of angular momentum wave functions. This 

leaves us with a two-variable integral equation to solve. Next, special numerical 

4echniques are developed so that we can efficiently represent this integral equa- 

tion as a finite matrix problem. Solutions are obtained by solving this matrix 

problem with a computer. 
. . . 
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This method is employed to obtain binding energies and wave functions for 

a system of three identical particles. Two often studied non-separable potentials 

(exponential and Yukawa) are used. The system manifests a number of three- 

body bound states depending on the strength of the two-body attraction. The 

bound state wave functions are described,, Turning to the ev-guation of the sep- <- - _ 

-arable-approximation in our example, we find this approximation to be useful 

only in the limit where the two-body forces are weak. 
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CHAPTER I 

FORMAL DEVELOPMENT OF FADDEEV’S EQUATIONS 

This introduction outlines some of the background and motivation for this 

particular study of the quantum mechanical three-body problem. Here the three- 

body problem means the determination of both the bound state spectra and wave 

functions as well as elastic and inelastic scattering. Ideally we would like to have 

a single formalism which yields a simple, usable method for obtaining exact 

solutions for this problem. We work only with the non-relativistic treatment of 

the three-body problem, since it is clear that we must learn to solve this simpler 

problem before attacking the complications introduced by relativistic effects. 

Early approaches to the three-body problem have been characterized by 

piecemeal attacks on various separate aspects of three-body systems. The 

variational method has been used to find approximate bound state energies and 

wave functions. Although this method gives a rigorous upper bound on the ground 

state energy it is difficult to prove convergence. Furthermore, the variational 

method does not yet lend itself to calculating solutions where inelastic processes 

occur. ’ The ground state for local potentials was solved by Baker, Gammel, Hill 

and Wills2 by exploiting the different time dependences of the various eigen&.tes. If the 

time variable t is replaced by ir, where r is real and positive, then the 

different eigenstate wave functions die out at rates that depend on their energies. 

This difference in decay rate may be used to isolate the ground state component 

present in an arbitrary trial wave function. While successful, this method cannot 

readily treat excited or scattering states. By using separable potentials Mitra’ 

was able to solve the three particle Schroedinger equation for binding energies and 

scattering lengths. While the use of the separable potential greatly simplifies the 

problem, the underlying physics of this approach is not clear. Later Amado, 4 by 
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introducing quasiparticle states, was also able to arrive at a formulation for the 

three-body problem that has the same appearance as that of the separable method. 

Here again the physical content of this approach is unclear. 

Faddeev’s treatment 5-8 of the three-body problem avoids most of the difficulties 

described above. First of all his work treats the entire problem on the same footing. ,- - -. 

Bound states, elastic and inelastic scattering are all treated with one formalism. The 

method is able to avoid any ill-defined singular operators and is completely rigorous. 

Basically, Faddeev has shown ushow to treat the three particle Schroedinger equation 

correctly. However, the form in which Faddeev leaves the three-body problem is 

not readily solvable. One can again employ separable potentials to simplify the 

situation but this just reduces the calculation to the model used by Mitra. 

Omnes’ has introduces a symmetric angular decomposition of the three-body 

system. This simplifies the problem but still leaves it in the form of an intractable 

integral equation in three variables. The present work 10 carries the decomposition 

of Omnes one step further. Here, without loss of generality, we are able to reduce 

the integral equations to equations in only two variables. A parallel result had been 

arrived at by Ahmadzadeh and Tjon 11 who treated the angular momentum decomposition 

by using a vector addition approach to construct the eigenstates of the total angular 

momentum operator. They too obtained a set of coupled integral equations in two 

variables. 

We have studied various numerical methods for solving these equations. When 

our problem is restricted to the simple three identical particle system we can readily 

obtain accurate solutions for any potential. A similar effort by Wong and Zambotti 12 

yielded results which differed from ours and are now known to be inaccurate. 

YRecently Wong 13 has developed a new method using an expansion of the Schroedinger 
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equation in Strtimian functions 14 and was able to reproduce our results for the 

Yukawa interaction. 

We have used our numerical techniques to obtain the exact eigenvalue spectrum 

and the bound state wave functions. These new results are described. Finally, we 

are able to evaluate the validity of the separable potential approach by comparing 
,- - e 

various_ separable calculations with our exact solutions. 

A. Mathematical Background 

As an introduction to the three body problem, we present here a brief review of 

the derivation of Faddeev’s equations. The present account is a synthesis of the 

work of L. D. Faddeev and C. Lovelace. Although Faddeev gave the first and only 5-8 

completely rigorous derivation of the equations that bear his name we will adapt much 

from the mathematical notation and arguments used by Lovelace. 15,16 The primary 

reason for this is that the approach of Lovelace does not assume the extensive 

mathematical background needed for much of Faddeev’s work. Most of Lovelace’s 

proofs are simple and easily intelligible to physicists. Throughout this work it is 

assumed that there are no three-body forces. 

In this chapter and the ones that follow we will study the two- and three-body 

problem only in its momentum space form. In the coordinate space versions of 

the two- and three-body problem the singular aspects of the problem reside in the 

asymptotic behavior of the functions. For example, wave functions of three particles 

may have a very complex asymptotic structure, oscillating in some directions of 

configuration space while falling off in others. However, after the Fourier 

transformation to momentum space has been made, the asymptotic singularities 

become poles or cuts in the complex energy plane. These types of singularities 

Ee much easier to treat than asymptotic ones. The price paid for this simplification 
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is that we must deal with singular kernels. With appropriate care, this can be 

done. The foregoing reason, we believe, explains why so little successful work 

has come from coordinate space approaches to the three-body problem while on 

the other hand the momentum space approach used by Faiideev provides an exact, 

albeit formal, solution to the problem. <- - -. 

Before proceeding to the various operator equations that describe the physics 

of two- and three-body scattering, we need to develop the mathematical machinery 

capable of dealing with these equations. The central aim of our discussion will be 

to arrive at a theorem which will tell us when the inverses of these operators 

exist. We first introduce the concept of a Schmidt norm. Let us consider the 

complete linear vector space formed of all square-integrable functions. This 

space is usually denoted as the Banach space of L2 functions. Now suppose A is 

a linear operator that maps this space onto itself, and that may be represented as 

an integral transform. That is, given f 1, f2 e L3and AfI=f2 then 

f,(x) = s a(x, x1) fl(x’) dx’ . 

The Schmidt norm for the integral operator A is defined to be 

II A 

(r. 1) 

0.2) 

An operator for which this norm is bounded is called a Schmidt operator. This 

norm should be contrasted with the usual operator norm which is defined as 

II II A2 = sup (Af, Af)/(f, 9. (I.31 
-fEB2 
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It is not difficult to show 17 that the Schmidt norm is weaker than the operator 

norm, so 

/I II As2 A . II II (I* 4) 

The inequality is clearly satisfied by a(x,x’) = 6 (x-xi). BT definition this is 

the identity operator and 1IAll = 1, but jIAl/s = 00 , since the integrand is 

the square of a delta function. Some of the obvious properties of the Schmidt 

operators are that: 

(a) the product of two Schmidt operators is also a Schmidt operator, 

(b) the finite sum of Schmidt operators is a Schmidt operator. 

Less obviously but equally important is the property that a product of a bounded 

operator, namely an operator with ) ).\I < 00 , with a Schmidt operator is a 

Schmidt operator. Riesz and Sz . Nagy give a simple proof of this. l8 An 

additional useful property of these integral type operators is that the kernels may 

be approximated to an arbitrary accuracy by kernels of finite rank (e. g. by finite 

sums of separable terms). This approximation property is sufficient to show that 

operators are compact. 19 Here a compact operator is an operator which maps a 

bounded sequence into a sequence containing a limit point. This property of 

compactness means that most of the results of integral equation theory will be 

valid for our operator equations. 

The next concept about operators needed is that of operator analyticity. Let 

p be a complex number in some domain D. An operator valued function T(p) 

is one for which the results of analytic function theory remain valid provided 

we use the norm II4 in place of the absolute value of a complex function. 
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The sufficient conditions for a Schmidt operator, represented by a kernel 

K(x, y;~(), to be operator analytic are 

(i) For each x,y, K(x, y;c() must be analytic for /f E D. 

(ii) There exists a uniform bound B < co such that 

II @II K)/B all /f E D- . - e 

We are now in a position to state a theorem which gives us sufficient conditions 

for insuring the existence of the inverse of the operators we will be using. 

Theorem I. Let T(p) be a compact operator in some Banach space (here 

the Banach space of bounded linear operators mapping L2 onto itself). Suppose 

T(C0 is operator analytic for all p in the connected domain D; then the following 

alternative holds: 

(a) 1 - T(p) has no bounded inverse for any point in D, or 

(b) the inverse of 1 - T(C0 exists except for a finite number of isolated 

points. 

In the neighborhood of a singular point, /.f,, the Laurent expansion is valid. The 

inverse can be written as a pole term with a residue of finite rank and a bounded 

term. For fi zpO the kernel of the resolvent (inverse) operator .R(x, y; cc) has 

the representation 

N 

WX,Y;~) = c 

$g (x) p (y) 
PO 

cc- PO 
+ Btx,y;/d 

i=l 
(I. 5) 

where B(x, y;c() is bounded, e. g. IlB(fl)lI < C < cc , and q$$ and fit)o are 

homogeneous solutions to 1 - T(pO) and its adjoint. It is this theorem that is 
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the key to our method. Although Lovelace15 states a slightly altered version of 

this theorem he offers no proof. A proof has been given by J. Nuttal 20 who relates 

the theorem to more general results described by Dunford and Schwartz. 21 Yet 

another proof has been given by George Tiktopoulos. 22 

The simplest way to rule out alternative a is to find a point A in D such that 

[IT(A)1 1-c 1.. For such a h the formal series expansion of ‘- - b--‘T(h),) -’ is - 

absolutely convergent and thus (1 - T(h)) -’ exists and is bounded by (1 -llT(A~ll) -? 

It is instructive to compare this theorem with the well known expansion of 

(E - H)-I, where H is the usual self-adjoint Hamiltonian in quantum mechanics. 

The result is 

(E - H)-1 = E-l (1 _ E-l H)-l 

(I. 6) 

where P b7is a ket describing the bound state of energy Eb, while 1 $J~ > 

is a non-renormalizable state of the continuum. We see that Eq. (I. 6) is a 

particular form of the resolvent representation (I. 5). However, (I. 6) is not 

general enough for our purposes since the operator analyticity in E obtains 

trivially for the operator E -1 H since the dependence on E is just a scalar multiple 

of H. 

B. Two Body Formulation 

We now turn our attention to the formulation of two-body scattering. In the 

center-of-mass system there is one free momentum vector 3, which is the 

momentum of either of the two particles. The Hilbert space is that of Lz(i;), 

the space of square integrable functions of $. In order to distinguish between 
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similar operators in the two- and three-particle Hilbert space we will adopt the 

following notation. Capital letters will refer to operators in the three-particle 

space while small letters will be reserved for operators in the two-particle Hilbert 

space. 

The unperturbed two-particle Hamiltonian, ho, ,-- is represented in momentum -. 

space by 

<; ho j+> = I I (I* 7) 

where /l is the reduced mass mlm2/(ml + m2). The resolvent operator for this 

Hamiltonian is defined to be 

g,(z) = 01, - a-l 

and whose momentum space kernel is 

d/P,@)) 3” = 1 

g > 

S&Y-$) (I. 9) 
-Z 

Scattering is caused by a potential vcL . Locality requires that it depend only 

on i;’ - 3’. Specifically 

Our theory will assume that the potential satisfies the following conditions. First 

we assume vol $) is square integrable. Secondly vcl c) is analytic in k for a 

domain containing the real axis. This analyticity is assured if va! can be written 

as a superposition of Yukawa potentials in the following form. 
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03 

where $  ~(j.i) d& is required to be of bounded variation. Finally, time  
PO 

reversal invariance requires that vo have the real-valued property c  

The full two-particle Hamiltonian is given by 

hcY = ho+va . (I. 13) 

Its companion resolvent g,(z) is 

g,(z) = t&y - G-l . cr. 14) 

In the above equation existence of the operator g, results from the self- 

adjoint properties of ha which lead to the expansion given by (I. 6). W e  note 

that g,& ) of course will not exist for all values of z. For z  equal to the 

energy of a  bound state or for z  lying on the real positive continuum, then g, 

ceases to exist. 

The behavior of the resolvents g, and go are governed by two identities lmown 

as the first and second resolvent equations. The first resolvent equation for ga 

may be obtained directly from (I. 14) 

g,(y) - g&2) * g ,tz,) (hcl- ZJ [g,(z,) - g ,(z,)] t&-z21 g&,1 

= g&1) [ 1 . o-g- z2) - (hoi- Zl) l l] 9,(z2) 

= tz l - z2) g&J g,tz,) 

-9- 
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Similarly the first resolvent equation for go is 

go ‘“1’ - gotz2) = tzl - z2) g()(zl) g(p2) (I-16) 

The second resolvent equation relates g,(z) to g,(z). This result follows by 
-. 

using both (I. 14) and (I. 8). 

g&3 = g,(z) 01,-z) g& 

ZZ g,(z) t-ho + vol - 4 g,(z) - g,(z) v,g,ta 

= g,(z) - g,(z) V&a e, 

(I* 17) 

Since g,(z) (ho - z) = 1 and g,(z) commute, the second resolvent equation has 

another form given by 

g,(z) = g,(z) - g&4 va g,(z) 

The formal solution for g, may be obtained from (I. 17). If [ 1 + go(z)vcl ] 
-1 

exists then we may write g, as 

g,&) = 11 + g,(z) va] -l g,(z) 
= g,(z) [l + v,g,(z)] -l 

We can use Theorem I to show that these inverses exist. The conditions of 

(I. 19) 

(I. 20) 

Theorem I are statisfied if g,(z) vol is both a Schmidt operator and analytic. 

The kernel representation of g,(z) V~ is 

& - $1) 
4 jg,tz)v~p> = p2 

27 - z 

(I. 21) 
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and its Schmidt norm is 

Thus for Im fi f 0, g,(z)v, is a Schmidt operator. The analyticity of the 

kernel is evident from (I. 21), and if we choose the domain of z to be 

DC = [z: IIrnJCI>J;-,E > 01, then the kernel is uniformly bounded by 

c-l Iv&9) 1 . Thus all the conditions for Theorem I are satisfied. Furthermore, 

alternative a is ruled out by the following argument. By (I. 22) we can find 

z E DEsuch that (1 g,(z)v,ll< 1, th us we have proved both [ 1 + v,g,(z)] -I 

and [ 1 + g,(z) va] -’ are operator meromorphic in D, . 

We now want to demonstrate the simple connection between our resolvents 

g,(z) and the eigenfunctions of hoi. Let s be a singular point of g c1 (z); then 

lim (s - z) ga(z) = Ps 
WS 

(I. 23) 

is a projection operator for an eigenstate of h, of eigenvalue s. We prove this 

by the following simple manipulations. Suppose 4 is any function in L2(s). We 

have 

ha lim (s - z) g, (z) q5 = lim (s - z) (ha - z -t- z) g, (z) 4 
z-s z-s 

cr. 24) 
= lim (s - z) C$ + lim z(s - z) g, (z) 4 

z-s z-w 

= s lim (s - z) g, (z) 4 
z-s 

- 11 - 



Thus we have shown 

hcps4 = sPs@ s s (I/(s) . cr. 25) 

Combining this last result with our forms for the second resolvent equations 

(I. 11) and (I. 18) we get the Lippman-Schwinger equation for wavefunctions. To do ,- - - 

-this, define 4 (s) to be an eigenfunction of h 0’ 

h04@) = s+(s), 

which represents an incoming wave. Obviously 

(I. 26) lim 
z-s 

ts - z) g,(z) #J (s) = w - 

Applying (I. 17) to 4 (s), multiplyingby (s - z) and taking the limit gives us via 

(I. 26) and (I. 25): 

W4 = 4(s) - lim g,(z) v,+(s) 
z-s 

If we use (I. 18) in place of (I. 17) then the result is 

44s) = @(s) - lim +.&4 va C& 69 
z+s 

6 27) 

(I. 28) 

In order to complete our discussion of the two-body problem it is convenient 

to introduce the t-matrix or transition amplitude operator. It is well known 23 

that the transition amplitude probability between an incoming state d,(s) and 

a~ outgoing state 4a(s) produced by scattering from a potential vdl is 

- 12 - 



( 4a’ “a ti b)’ The transition operator is defined to be the operator t 

such that 

for all $a and 4 . 
b From (I. 28) we see that ,- - 

4a9 b(‘) a) = (e, [ va - va ga (s + ic) va]$bb) (I- 30) 

Because $a and tib are arbitrary it follows that 

t, (s + i6) = vcI -v~ gol(s + ie) voI (r. 31) 

The most general version of t oL is obtained by replacing s + i6 with z, 

where z is any point in the complex plane. 

From the operator definition of t&z), Eq. (I. 31), we can obtain two very 

useful identities by multiplying this equation from the left and from the right by 

g,(z). We have 

t,(z) g,(z) = [ va - v, g,(z) VJ g,(z) 

= va [g,(z) - g,(z) vol fqz) J 

= va g,(z). 

(I. 32) 

The last equality follows from the second resolvent Eq. (I. 18). Alternately, 

g,(z) t,(z) = g,(z) [ va - voI g&4 v(J 

= p,(z) - g,(z) va g,(z)] v(y 

= Q&z> v(y 

where (I. 17) has been used. 
- 13 - 
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Identities (I. 32) and (I. 33) may now be used to re-cast our t-matrix equation 

into forms where the exact resolvent (known only if the h; problem has been 

solved) is removed. Using (I. 32) we get 

t,(z) = va - t,(z) g,(z) va * 

With (I, 33) -the result is 

t,(z) = vol - va g,(z) ta (z) * 

(I. 34) 

(I. 35) 

Both (I. 34) and (I. 35) are operator versions of the Lippman-Schwinger equation 

for the t-matrix. The operator equations may be transformed into integral 

equations just by using the completeness relation for the Hamiltonian, h 0’ 

and taking expectation values between eigenstates I ;> and 3 > . Thus (I. 35) I 
becomes 

<<lt,cz)(? > = <; 1 v$> - J d$’ 
<q vcl I? > <T?’ 1 t,(z) I-? > 

q”2 -Z 
. (I. 36) 

2P 

We note that for << 1 t,(z)1 3 > , F is the variable of the integral equations and 

(z, 3) are parametric labels. 

Furthermore since we proved earlier that g,(z)v, is operator analytic and 

compact the solution of (I. 34) may be written 

ta (z) = c 1 + va g,(z) ] -l va 
(I. 37) 

ZZ “a[1 + g,(z) VJ -l 

CJKe immediate consequence of (I. 37) is that the solution of the integral equation 

(I. 36) is unique except at poles [ 1 + g,(z) va 1-l. 
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To summarize our two-body results, all the important equations governing 

two-body scattering have been expressed in operator form-. Furthermore, we 

have shown that inverses of these operators exist. The key equations in obtaining 

our results were the first and second resolvent equations. Simple algebraic 

manipulations then lead to the Lippman-Schwinger equations for the t matrix. 

Aside from its simplicity the merit of the above ap&oach to-two-body scattering - 

is that the same techniques lead to the solution of the three-body scattering problem. 

Our program for analyzing the three-body problem will consist of a study of the 

resolvent operators on the three-body Hilbert space. By using the first and second 

resolvent identities together with our two-body results we will obtain Faddeev’s 

equations. 

C. Derivation of Faddeev’s Equations 

Turning to three-body scattering we must first describe the coordinate 

system of momentum variables we are using. Let ci denote the momenta of the 

ith particle, i = 1, 2, 3. We shall always assume that the total center-of-mass 

momentum ‘5-‘cl + pZ + F3 is zero. This condition means that only two of the 

three momentum vectors are independent. The centepof-mass transformation 

is effected by first transforming one pair to its relative center-of-mass system 

and then applying the center-of-mass transformation to that pair and the 

remaining particle. Defining -c gij to be the reduced center-of-mass momentum 

of particles i and j, then 

“lij = (m F - 
j  i mi?jj)/(mi+mj) , (I. 33) 

The momentum configuration of a system can be described by the pair of vectors 

(~j ) i;,), where i, j and k are cyclic. However, other choices for the two 
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independent vectors are possible, such as (gi, zj) or even ($. , 9 $k), Occasionally 

we will drop the subscripts on z, 5) when the choice is obvious or irrelevant. 

Expressed in these momentum vectors the unperturbed three-particle Hamiltonian 

is -2 -2 -2 
5 

Ho = 2m 
+p2 + PQ 

1 2m2 2m3 r - 

(I. 39) 

where 

m. m. 
jLj= l’ ; \= 

mk( mi + m.) 

m. +m. m. + m. + m 7 cr. 41) 
1 J 1 J k 

The appropriate three-particle Hilbert space for these variables is that of 

square integrable functions of six real variables--or L2G, x). Our first task 

is to define the form of a two-body interaction in the three-particle Hilbert space. 

Suppose v.. 
9 

is the potential between particles i and j. Such a two-body interaction 

will not involve particle k and thus the three-body potential V.. may be written. 1J 

Adding any one of these interactions V.. Xl 
to Ho gives us a new three-particle 

Hamiltonian and a corresponding resolvent. Specifically we have 

H 
i = Ho -t V. 

Jk 
cr. 43) 
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with 

G&z) = (Hi - z)-1 (r. 44) 

Go(z) * (Ho - z)-1 (I. 45) 

As a first exercise in dealing with the Hilbert scace L2(i;‘T) let us 
_ 

calculate the scattering equations when just one interaction, V jk’ is present. 

That is, we want to solve the scattering problem for Hi. As before we start 

with the second resolvent equation relating Go(z) and Gi(z). Algebraic 

manipulations identical to those that gave us (I. 17) and (I. 18) show that 

Gi(z) = Go(Z) - Go(Z) Vjk Gi (z) 

Gi(Z) = Go(Z) - Gi(Z) ‘jk Go (Z) 

We define the three-particle transition amplitude operator to be 

(I. 46) 

6 47) 

Ti(Z) = Vi - Vi Gi(z) V. 
1 Cr. 48) 

where we have used the notation Vi - V. . Combining (I. 48) with (I. 46) and 
Jk 

(I. 47) gives us 

T&z) = Vi - Vi Go(z) Ti(z) (I* 49) 

= vi - Ti Go(z) Vi cr. 50) 

Since one of the particles, i, is a spectator and never participates in the 

scattering we can construct the solutions of (I. 49) from those of ti(z)--the two 
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particle transition amplitude for v, = v. E vi. Taking the expectation Jk 
values of (I. 48) tells us that T.(z) must have the form 

1 

,- - 

If we write out (I. 50) in detail using (I. 51) we find 

(I. 51) 

- b (5 -j?) 
s 

d3k 
<3k IVikI+ f(<, z,3k,<fk) 

pp q$ 0.52) 
-+--z 

2ni 2!fjk 

Dividing out the delta function in (I. 52) we see that f is the solution of the two- 

body Lippma2n-Schwinger equation if we make the identification that in (I. 36) 

Pi z-z - - 2ni ’ Thus 

f@;, ‘, qjk, 3k’ = < 

Note that this identification implicitly uses the fact that the two-body Lippman- 

Schwinger equation has a unique solution. We now have the sought-after 

relationship between two- and three-body transition amplitudes, 

(I. 54) 
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It is instructive to attempt to solve the Lippman-Schwinger equation when all 

three two-body potentials are present. Let us define the total potential U to be 

u=v12+v +v 13 23 
(I. 55) 

The Hamiltonian and exact Green’s function are then r - - 

and 

H = Ho+U (I. 56) 

G(z) = (H - z)-1 (I. 57) 

The second resolvent equation relating G(z) and Go(z) is 

G(z) = Go(z) - Go(z) U G(z) 

G(z) = Go(z) - G (z) U Go(z) 

Let $ be a three-body plane wave state satisfying 

HO @n = En n @  

Then as in (I. 24) we have 

lim 
iE-0 - ie G (En + ic) 9, = Q, 

(r. 58) 

(I. 59) 

(I. 60) 

(I. 61) 

where 

Hti n = E $J,. 

Applying (I. 58) to Gn results in the wave function version of the Lippman-Schwinger 

wation 

@n = Gn - Go (En + ic.) U @  n (I. 62) 
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where we have used 

lim 
1E - 0 

- ic GO(En +ir) Gn = #n (I. 63) 

Now suppose Gin is an eigenfunction of H 
i 

_ 
Hi d n = En @; 

We know such a state exists because to a bound state between particles j and k 

of energy Yi < En we may add the kinetic energy of the free particle so that 

Pf 
En = Y.+ - 

1 2ni 

It is not difficult to show that5 

lim 
iC-0 

- iC Go (En + ie) ain = 0 

Thus applying (I. 58) to @ in gives us 

Go (En + i E) U I,$ n 

(I. 64) 

(I. 65) 

(r.66) 

where 

lim -iEG(En+ie) @ in = Gin (I. 67) 
iC-+0 

Equation (I. 66) shows that we have constructed a homogeneous solution for the 

Lippman-Schwinger equation given in (I. 62). The presence of such homogeneous 

solutions means we cannot use (I. 62) to determine tin uniquely. Such homogeneous 

so&tions must be ruled out by asymptotic boundary conditions. Such subsidiary 

conditions destroy the usefulness of (I, 62) as an integral equation. 
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In analogy with the definition of the two-body transition amplitude (I. 31) we 

define the three-body transition amplitude by 

T(z) = U - U G (z) U 

This equation together with resolvent identities gives us ,- - 

T(z) = U - U Go(z) T(z) 

= U - T(z) Go(z) U 

(r.69) 

Although these equations are valid they are not useful for obtaining T(z). The 

difficulty, which is related to the non-uniqueness discussed above, is that T(z) is not 

compact, because it contains delta functions. The delta function contained in the 

operator V12GO(z) persists in terms arising from higher iterates--e. g. , 

V12GO(z) V12GO(z) has the same delta function. 

We shall now derive Faddeev’s equations and show that the operator equations 

we obtain are compact. We begin by considering a decomposition of T(z) that is 

suggested by (I. 68). Define ??ij(z) as 

Fj(Z) = d.. v. 
xl 1 

- Vi G(z) V. . 
J 

(I. 71) 

Clearly from (I. 68) we have 

T(z) = c +,(z) . (I. 72) 

ij 

In order to transform (I. 69) into an integral equation we need to express G(z)V. 
J 

QT ViG(z) in terms of the ?. . . Let us start with G(z)V.. 
1J J 

Using the second 
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resolvent identity relating G&z) and G(z) equation (I. 58) gives 

us 

G(z)V. 
J 

G(z)V. 
J 

= 

C GO(Z) - Go(z) U G(z) 1 V. J 
3 

3 i=l r- - 
Go(z) U dij v. 

1 
- Vi G(z) V. 

J i=l 1 
3 Go(z) c Fj(Z) . 

i=l 

For ViG(z) we use (I. 59) to find 

Vi G(z) = V. 
1 G&z) - G(z) U Go(z) 1 

3 
= 

U dij v. 
1 

- Vi G(z) V. 
J 1 GO(Z) 

j=l 
3 Vi G(z) = c ‘ij tZ) Go . 

j=l 

Combining (I. 73) and (I. 71) we get an integral equation for ? ij : 

3 
Cij(Z) = dij v. - 

1 Vi Go C ~~ (Z) . 
k=l 

Or alternately using p. 72) leads to 

3 
qjw = bij v. - 

1 c 
$k(') Go(z) v. 

J 
k=l 

(I. 73) 

(I: 74) 

(I- 75) 

(I. 76) 

- 22 - 



If we iterate these equations once more we will find non-compact operators 

of the type ViGO(z)ViGO(z), etc. We will now use the trick of Faddeev to 

eliminate such terms. The term $ij (z) appears on both sides of (I. 75). 

Collecting both the ?ij(z) on the left we have 

3 

- [ 1 + -Vi -Go (z) ] ?ja, = dij Vi - Vi GO(z) c ‘??k;(z) - 
k#i 

cr. 77) 

Multiplying by ,l + ViGo(Z)) -’ 
t gives us 

?j(z) = 6.. 
-1 

13 [ 
1 + vi Go(z) 1 ‘i 

3 

- [I + Vi GO(s) -’ Vi G&Z) c +kj(z) . 1 
ktLi 

(I. 78) 

1 - Vi Go(z)) -’ Vi is just the three-body amplitude for the one two-body 

interaction described in Eq. (I.49) through (I. 54). Thus (I, 75) simplifies to 

?jtz, = dij T(Z) - 

3 

Tit’) GO(Z) C ~kj(‘) 

k#i 

(I. 79) 

Had we used (I. 76) instead of (I. 75) we would have been led to 

3 

Fij(z) = bij T(Z) - c ~ik(Z) GO(Z) Tj 
k#j 

Now define T1 and T1 by 
3 

T’(z) 3 c j=l 
‘ij (‘) 

3 
mi A (z)s c 

j=l 
Cji(Z) 

(I. 80) 

Cr. 81) 

(I. 82) 
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By virtue of (I. 72) we have 

3 3 

T(z) = * 
c 

T’(z) = 
c 

? (z) 

i=l i-l 
Cr. 83) 

Summing (I. 79) over j gives us 
,- - -. 

- Ti(z) = Ti(z) - Ti(z) Go(z) [Tj(z) + Tk(z)] (I. 84) 

Summing (I. 80) over i and replacing the remaining j with i gives us 

fi! i(z) = Ti(z) - Tk(z) 1 Go(Z) Ti(Z) ’ Cr. 85) 

Equation (I. 84) and Eq. (I. 85) are Faddeev’s equations. Either of the two forms 

above are complete and differ only in the manner which the total transition 

amplitude is decomposed into three parts. The physical interpretation of these 

equations is simple. In (I. 84) the appearance of Ti(z), the two-body scattering 

operator between particles j and k, as a common factor to the left of all other 

operators means that T’(z) is the portion of T(z) in which the pair (jk) scatter 

first and then all possible scatterings happen. Analogously F(z) is that portion 

of the three-body scattering in which the pair (jk) scatter last after all other 

possible scatterings have occurred. 

In order for our Faddeev equations to be integral equations they must have 

the property of closure. Consequently we must consider the unknown function to 

be the vector 
I 

T’(z), T2(z), T3(z) i 
I -1 , or I T (z), ?’ 2(z), T3(z) I . Thus 

Faddeev’s equations are basically matrix operator equations. It is interesting 

tbwrite out these equations in their matrix form. 
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(I. 86) 

Now we want to establish that the square of Faddeev’s m&rix operator is a 

Schmidt operator. The square of the matrix in (I, 86) will be composed of finite 

sums of terms of the kind 

- 

Ti(z) Go(Z) Tj (z’ G~‘Z’ . 

where i # j. This term may be rewritten as 

Ti (Z)Go (Z) Tj (Z)Go (Z) = l+ Go(z) Vi 1 -’ ViGoW Vj G(z) 

1 + Go(z) V. 1 -’ = 
1 

vi Go(z) Vj Go(z) 1 + VjGotz) 1 -1 
. (I. 87) 

For the domain Im fi 2 E > 0, the factors, [ 1 + Go(z) Vi] -’ and 

[ 1 + vjGo(Z) 1 -‘I are bounded and analytic except for the two-body bound state 

poles. Thus it is sufficient to show that ViGo(z)VjGo(z) is square.integrable. 

By taking the expectation value between momentum states, using equations like 

(I. 42) and the expectation value of the resolvent Go(z), 

I Go(Z) I 5 q -!k> = acpi - T;) a&ii, - GYk’ 
2 L 

pi ~- 
+Jk - z 

2Ti 2/l. 
Jk 

(I. 88) 
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we may work out explicitly that 11 ViGo(z)VjGo(z) 1 1 2 is finite for z not on the 

real axis, Thus the inverse of the identity plus Faddeevrs- matrix operator exists 

according to Theorem I. In fact, much stronger results hold than these. Rubin, 

Sugar and Tiktopoulos 24 have shown using Fredholm theory that the square of 

Faddeev’s matrix kernel is Fredholm even on the real axis. This strong result 
,- - e 

should be contrasted with that of Faddeev who was only able to show that the 

fifth power of the kernel was compact. The reason Faddeev could not obtain the 

stronger result was that he assumed only that the potentials involved satisfied 

smoothness conditions whereas here and in the work of Lovelace it is assumed that 

the potential is analytic in its momentum variables. 

D. Green’s Functions and Wave Functions 

We now want to turn to formulating Faddeev’s equations for the exact resolvent 

or Green’s function. From the Green’s function formulation it is just a few steps to 

obtain the integral equations for three body wave functions. We start with the 

identity, 

T(z) GO(z) = U G(z) (I. 89) 

which is proved just like (I. 32). Thus the second resolvent equation for Go(z) 

and G(z) may be recast as follows 

G(z) = Go(z) - Go(z) U G(z) 

* Go(Z) - Go(z) T(z) Go(z) 

= Go(z) - 2 
i=l 

Go(z) Tit4 Go(z) 

(r. 90) 
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If we define an operator G’(z) to be 

Gi (z) = Go(z) Ti(z) Go(z) (I. 91) 

then we have the following decomposition of G(z) 

3 F - -. 

G(z) = Go(z) - c Gi (z) (r* 92) 
i=l 

We obtain Faddeev’s equations for the Green’s function if we pre and post multiply 

Eq. (I. 84) by Go(z) and use Eq. (I. 91). Doing this we have 

Gi(z) = Go(z) Ti(z) Go(s) - Go(z) Ti(z) Go(z) [d(z) + Tk(s)] Go(z) 
(I. 93) 

= Go(z) T(Z) Go(Z) - Go(z) Tit@ [G’(z) + Gk(z’] 

This may be further simplified by using the identity 

Gi (Z) = Go (z) - Go(Z) Vi G(Z) 

= Go(z) - Go(z) T(z) Go(Z) 

Faddeev’s-Green’s function equations thus may be written 

Gi(z) = . Go(Z) - Go - Go(z) Ti(Z) GJ(z) + Gk(z) 1 (I* 95) 
We note that if we put Eq. (I. 95) into matrix form that we have the same matrix 

operator written out explicitly in Eq. (I. 86), with the one exception that Go(z) 

and Ti(z) have been permuted. 
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Let us now transform our Green’s function equation into one describing wave 

functions. Suppose our incoming state @z - is the nth bound state between particles 

(12) and a plane wave state for the remaining particle. Thus we have 

H3 @; = (Ho + Vi) @; = En @; _ - - 

lim 
itE--0 

- iC Gi (En + ic) @z = ‘i3 @ i 

(I. 96) 

(I* 97) 

Applying (I. 95) to @f , and taking the limiting process C -+O gives us the 

desired wave function. Recalling (I. 65) the driving term becomes 

Go(En+iC) -Gi(En+ie) 1 9 3n = (r.98) 

By definition of the exact Green’s function G(E, + i E ), the outgoing three-body 

scattering state, ~7 3n, is given by 

- iC G(E, + ic) @z = *3n 

Now the decomposition of the Green’s function given in Eq. (I. 90) leads to 

3 

a = 3n c 
i 

*3n ’ Sl,n = + iE Gi(En + iC) @3n 

i=l 

Putting all this together gives Faddeev’s equation for @ in in the form 

(I. 99) 

(I. 100) 

+ Q1 
3n 

= - #3 (j 
n 3i - Go(Z) T&z) [ +& + d&] (I. 101) 
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We will complete our discussion of Faddeev’s method by giving an example 

of a transition amplitude for a specific physical process. Suppose we want to 

calculate the amplitude for the rearrangement process 

(1, 2) + 3-l f (2,3) 

F  - -. 

The incoming state is assured to be a bound state between particles 1 and 2, and 
-0 the third particle has momentum p 3. The final state is one in which particles 

2 and 3 are bound and particle 1 has momentum <i, The three-body energy 

before and after scattering is defined as E. If - Yi/2p12 is the bound state 

energy of the incoming (1,2) system and -Yf/Zp 23 is the bound state energy of 

the outgoing (2,3) system then conservation of energy tells us 

-02 2 
p3 Y3 

+f2 2 
pl yl 

E= 2n--=--- 3 2&2 2nl 2p23 

The incoming system asymptotically satisfies the Hamiltonian H3. Let 

I 1//,(E, j$ ) > be the ket describing the incoming state; then 

(I. 102) 

(I. 103) 

Representing Ip3(E, pi) > in the three-body plane wave space, the wave- 

function is written 

where 4 3 is the two-body bound state wave function describing the y3 

bound state. Likewise for the outgoing state we have 

Hl !&, (E,+ -= E a, (E,?+ I 

(I. 104) 

(I. 105) 
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with 

<s3, Fl lwl (E,Tpfi)> = d (Fl --f - P1 ) $(<3) (I. 106) 

The transition amplitude may now be written 

-c Q3(E, Z-i) 1 T(E + ic) $l (E,pf,) > = 

Thus in order to obtain this rearrangement scattering amplitude we need the two- 

body bound-state wave functions $3 and 4 as well as the three-body plane wave 

transition amplitude <g c 1 T(E + it?) 1 z’, 5’ > . 

The integral equation for <c, 6 1 T(E + ie) 1 T1, T > is simply derived from 

our operator Eq. (I. 84) by taking the plane wave expectation values and using the 

completeness relation for the plane wave states, Thus we have 

< G, ti- 1 Ti(z) ( F’, -$ > = < j$ ;i 1 Ti(z) ( $I, ;‘( > 

<S’, -?’ 1 [ +h + Tk(z,] / -;;I, 3’ > (I. 108) 

2n w 

We can make this plane wave version more explicit by using the relationship, 

(I. 54), between two and three-body amplitudes. Our plane wave equation 
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becomes 

1 Ti(z) 1 $, 3k > = b (< -5;’ <$ 6’ > 
Jk 

-jd;,, d--l, 
i jk 

_ 

(I. 109) 

This last form makes explicit the fact that the principal ingredient contained in 

the kernel for Faddeev’s integral equation is the off-shell two-body transition 

ti (z - pri2”$ 1 <‘j’k > ’ Once we have obtained this kernel and 

have solved (I. 109) then we have solved all three-body physics for the three 

particles interacting through potentials vi. It should be emphasized that as 

Eq. (I. 109) stands it is rather difficult to obtain even numerical solutions. The 

equation is an integral equation in six real variables (Fi, -q. Jk 
) and has seven 

variables (z, <i, %k) which enter parametrically. 
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CHAPTER II 

ANGULAR MOMENTUM REDUCTION OF OMNES 

In this section we turn our attention to the angular momentum reduction of 

Faddeev’s equations. The benefits which accrue from this type of analysis for 

the three-body problem are-similar to those which resul$ from the partial wave ,- 

reduction of the two-body problem. The plane wave representation of the two- 

body Lippman-Schwinger equations is given in (I. 36). The scattering amplitude 

<s)w)I3 > is a function of seven continuous variables, four of which are 

parameters and three of which are variables of integration. When the angular 

momentum reduction is completed the four variables describing the directions of < 

and: have been replaced by four discrete indices Q, I', m, m’. Furthermore 

because the angular momentum operator x commutes with h, the Hamiltonian of 

the two-body system, the amplitude is diagonal with respect to the indices 1 and I’, 

and m and m’. Hence we are left with an integral equation in one radial variable, 

and a parametric dependence on Q , z and q’. In the two-body problem we are even 

able to sum out the m dependence. Thus our motive in doing the angular momentum 

reduction of the three-body problem is to eliminate and diagonalize as much of the 

thirteen variables in <F, <IT(t)1 3, 3 > as is possible. Our final result given in 

Chapter IV will be to reduce Faddeev’s equations to a sum integral equations in just 

two variables. The first stage in our reduction follows closely the angular momentum 

analysis given by Omnes. 9 We will pursue this analysis in some detail, because of 

its importance to our later results and because it is more subtle than angular momentum 

reductions in the two-body problem. 

Looking at our three-body transition amplitude, CT, < 1 T(z) ( 3, 6’ > , the 

angular decomposition immediately suggested is to expand IIj’,x’ > in terms of 

the two radial variables p, q and four angular variables described by e,, tip, e,, 4q. 
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The angular space would then be spanned by sums of Y Qm (‘p’ ‘p) ‘Q’rn’ (‘q’ $9)’ 
This approach has been carried out. 11 One should note that this procedure is not 

symmetric in the following sense. There are three equivalent choices of ($, 3). 

Each choice leads to a different, but complete, set of four angular variables. 

A. Eigenstate Basis and Completeness 
c - - 

_ In contradistinction to the above approach let us write the transition amplitude 

in the symmetric form <?I, z2, T3 1 T(z) 1 gI, 31,. g3 > , where we recall that 

only two of the three particle momenta are independent because of total mo- 

mentum conservation. 

(II. 1) 

Geometrically speaking the state 2 I, 22, ;b > may be thought of as a triangle, 

with a$i for each side. Thus <sl, -2 “3 p , p 1 T(z) / ?I, g2, $3 > may be interpreted 

as giving the probability that one triangle 
( 
$I, j?2, s3 

) 
will scatter into another 

( & 22, ;;;). N ow let us describe these triangles by their shape and by their 

spatial orientation. The shape is completely specified by lengths of the three 

sides pl, p2, p3. Once the shape of the triangle is fixed it is a rigid body whose 

spatial orientation can be described by three Euler angles. Here and in what 

follows we will use the definitions given by Edmonds” for the Euler angles. 

Let ( @, 8, $) be the three Euler angles describing some body-fixed axis in the 

triangle. Defining the independent particle energy, oi , to be 

P” 
0. = - = 

1 2mi i 1, 2, 3 

we can choose our six independent variables to be 
( 
wl, 02, 03, @, 0, @). It is 

this symmetric coordinate system in which we shall perform the angular - 
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momentum reduction. With this change of variables our plane wave state may 

be written as 

,- - T 

An alternate complete set of six commuting operators is the three particle 

energiesw , 0~0~ 1 the square of the total angular momentum J2 = J(J + l), 

the projection Jz of 5-c on the spatially fixed z axis and the projection Jh of 

r on to the body-fixed axis. In terms of the quantum numbers of these operators 

our wave function may be written 

W1’W2’W3’ J, M, A > 

In order to evaluate operator products we need to know how to transform in the 

three-body Hilbert space from the basis /Gl, p2, p3> to the basis Iwl, w2,w3, J,M,A > 

Since the rotation matrix element g&A (@, f3,4) is just the eigenfunction of J2, 

Ji and JA on the angular space (I,& 0 ,@ ) we have 

$9 F2, F3~w1,w2,w3. J, WA>= A i d(& - @@$M ‘“3 8 ,$b) (II.3 

i= 1 

where A is some scalar to be determined. Once we fix our normalizations for 

the states 1 Fl, r;,, b;> and 1 wl, w2, w3, J, M,A> we can determine A. We choose 

(l-I* 4) 

- 
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where pi and 5. are an arbitrary choice of the two independent momentum vectors. 
J 

Normalization for bl, w2,03, J, M, A> is taken to be 

<y’~2’~3’ J, M,X G)i,w~,w~, J’, M’, h’ ’ = 

3 ,- - m 

l-l d(Oi-o~) ~JJ? bMM7 d 

AA’ 
err. 5) 

i =l 

With these conventions we now determine A. We will expand QI. 5) by using the 

completeness of the momentum states. Thus (II. 5) may be written 

This integral can easily be done if the variables of integration are changed to 

pF/2ml, Q2m2, pE/2m3, @, 8,+ . For Fl and F2 restricted to ,lie in the plane 

defined by @, 8 ,$ we can write 

dF1 CT2 = ml m2 m3 d(&) d(&) d (&) dR (II.7) 

where dR is the measure of the rotation group 

- dR = sinedo d@ d4 (II. 8) 
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and 

J 
dl3 = 87r2 = [sinedejl$F$ - 

0 

Thus (II. 6) may be simplified to 

-(A12mlm2m3 i 

,- - 

(rr. 9) 

(II. 10) 

Using the orthogonality relation for the $!@ functions gives us 

3 

I Al2 II 

2 
ml m2 m3 '(oi -wi) dJJ7 'MM, 'AA' (2tTl) 

(11.11) 

i=l 

Comparing (II. 11) with (II. 5) gives us 1 A 1 2 

lAl2 = 2J + 1 
2 (rr. 12) 

S7r mlm2m3 

We must now specify the completeness relation for the basis wl, 02, 03, J, M, A > . 

The completeness relation has the form 

I = 
1 

dul du2 dw3 c Iw~,w~,w~,J,M,~‘<~~~~,~, J, M,hl 
JMh 

(II. 13) 
x X(W1’W2’to3)’ 

The undetermined factor X(ul, w2, w,) is the density of states factor. By 

using the normalization condition (II, 5) we may calculate X. Multiplying 

- 
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(II. 13) bw++$ J, WA1 gives us 

- - s 
<o $0 ,o , J, 12 3 Mph 1 X(W~,W~,~~) 

Thus, 

<ui,ui,W$, J’, M’, A’ (= <LJ;,,~,L.J~, J’, M’s hi [ X(wi,w~~O~ ) 

(II. 15) 

and consequently X = 1 . 

Now let us express Faddeev’s equations in our new basis (w~,w~~ 03, J, M,A> . 

If no confusion results we shall abbreviate the notation for Iw,, 02’ 03’ J, M,h > to 

I~‘J,M,A > . Taking the expectation value of Faddeev’s operator Eq. (I. 84) 

between states <zl J, M, A II and 10’; J, M,A> gives 

<G’J, M, A’ 1 Ti(z)(w, J, M,A> = &. J, M,h’ /Ti(z)I GJ, M,h> 

- a? J, M, A’ 

We have used the same 
9 

@. 16) 

Tk(z) ;lJ, M,A> . 

J and M indices, in the initial and final state because 

J’ and Jz both commute with the total Hamiltonian, H, and from the definition 

of the three-body transition operator, (I. 68), it follows immediately that T(z) 

is diagonal in J and M. The above equation is turned into an integral equation by 

inserting a complete set of states between Ti(z) and Go(z), and between Go(z) 
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and [ TJ (z) -t Tk(z)]. The expectation value of Go(z) is very simple in the basis 

lz, J, M&because all the operators J2, Jz, Jh commute with each other and 

Ho so that 

'JJT dMMl 'AAT 
s 

Et;‘, J’,- M.‘,A’ 1 Go(z)(3, J, M,h> = 
01 +w t&J -z 2 3 

CI. 17) 

Our integral equation will now be 

<ii?, J, M, A’ ( Ti (Z)‘lw’, J, M,h > = < a, J, M, A’ 1 Ti(z)(G, J, M,h > 

d 1;” 
<;I, J, M, A 1 T&Z) 1 ‘;5”, J, M, A”> 

wy+02 1' + a" - z 
3 

(II. 18) 

<i& J, M, A” ( Tj(z) + Tk(z) ( ;;;, J, M,h > 

This will be a perfectly good integral equation once we have determined the 

driving term and the kernel in terms of known two-body functions. 

B; Three Body Coordinate Systems and Geometry. 

We now want to re-express<;‘, J, M, A’ 1 Ti(z) 1 G, J, M,h> by transforming to 

the plane wave momentum base, where Ti(z) is the solution to the two-particle 

Lippman-Schwinger equation and therefore a known function. In order to carry out 

all the integrals we shall encounter, we need to specify in detail the geometry of our 

three-body coordinate systems. As above the kinetic energy of the ith particle is oi, 
- 

its momentum pi. Thus 

$2 = 2m 0 i i i w. 19) 
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The relative momentum of particle i with respect to particle j is defined as 

<j, where 

qj = 
m. Fi - mp. 

m. + m. 
(II. 20) 

1 3 

Defining 0.. 
13 

as the angle between gi and 5, this angle is dete_rmined solely as a 

function- of ol, u2, w3 . Explicity we have 

-2 
Pk = (11.21) 

c~s 8.. = 
2mk ak - 2miwi - 2m. 0. 

13 2 2m.w. J2miwi 
3 3 

“kwk i i 3, j -mw - m.w. 
= (II. 22) 

2Jmimj Oi wj 

In addition we shall need the angle, Yi, between 5 and c Jk 
in terms of 

cos y. = 
Pi’ 9.k 

1 pi ‘ljk 

trn. + mk) trn w k k- 
(m. + mk) 3 

miw. 1 (II. 23) 

For brevity we have omitted the algebra leading to Eq. (II. 23). The only trick 

needed to derive this formula is just to replace all dot products of the type 

<f 5 by using (II. 21). The square of the length of ct.. is also determined by 
13 
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the coordinates. Once more we have, omitting simple algebra 

9”ij = 
2m.m. 
y&L+ (w, -!- w2 + w3) - 

2mim. (ml + m2 + m3) wk 

(mi + mj) 
2 (II. 24) 

i j 

We complete the list of the required kinematic formulae-by writing out the 

expressions for sin2 e ij and sin2 Y.. 
1 

For convenience define A(w,, 02, w,) 

to be 

h(wl, 02, w,) = 
22 22 22 

ml w1 + m2 w2 + m3 w3 - 2mI m2 WI w2 - 2ml m3 w1 w3 

Then 

- 2m2 m3 w2 w3 

sin28 
h(w,, W2’ w,) 

= - ij 4mi m. w. 0. 
J 1 J 

(II. 25) 

(II. 26) 

and 

sin2 Yi = 
- A(w,, W2’ w3) 

4 mI m2 m3wi m. 
(II. 27) 

(mj+mk) wj- (mji+mk) 

The forms of sin2 8 and sin2 yi show that they have coincident zeros. This is 
ij 

just an expression of the fact that when pi and ‘“J are parallel (sin eij = 0) 

then qj will be in the same direction as Gk so that sin Yi is zero. 

C. Evaluation of Transition Amplitudes in New Basis 

We now resume our evaluation of<;‘, J, M, X I Ti(z) 1 G, J, M h >. For 

explicitness let i = 1. Introducing a complete set of plane wave momentum 
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states leads to 

<-& J, M, A’ 1 T1(z)Iz,J, M,A>= <T$= 

Changing the variables of integration according to Eq. (II. 7), using (II. 3), and 

relating Tl to tl via (I. 54) allows us to rewrite (II.28) as 

< T1 > = (mlm2m3)2 1~1~ &m d(&) d(g) d($-)jdRf d(g) 

The only complicated factor in this integral is 6 (FI - 2I), since the ingredient 

Fl and p’ 2 depend on the Euler angles in R and R’. If we choose the body- 

fixed z axis the lie along the direction of the momentum of particle 1 then 9 is 

polar angle with respect to the space-fixed z axis and 0 is the azimuthal angle. 

- 
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Thus we may use the representation 26 of the delta function in spherical coordinates 

to get 

b (P; 
1 -p;) = 2 b (~1 - Pi) d (cos 8 - cos et) d (1/1-$+) 
Pl 

,- - e 
1 = - 

mlpl 
d (wl - Wi) d (cos e - c0s ef) d (I) -@I) (II. 30) 

Choosing our body-fixed axis along the direction of the first particle specifies 

exactly the operator JA . We denote this choice of JA by JA . Clearly 
1 

Jr, ghJ M(R) = “& NI (R) (II. 31) 
1 1 1 

For this specific coordinate system we may use (II. 30) to evaluate (II. 29). We 

have 

<Z’, J, M, hi I Tl(Z) ( G, J, M-9 A, ’ = 

(mlm2m3)2 I Ai2 d twl-“i) 
m#qq J d4dcosed$ 

/ 
d@dcos8’d@’ b($-$J’) 

(II. 32) 

x b(cos e- ~0s e’)$@lM (& es+> &:*M (ti’, e’d’) 
1 1 

Integrating out the delta functions and using our formula (II. 12) for /Al2 gives us 

- <T1> = d$’ d cos 0 d@ 

(II. 33) 

(h e & )gi*M (q, e,$) 
1 
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The 4 dependence ofgiM is a simple exponential. In fact 

gi& <(b’, 8, I/J) = eBiA4’ d;IN1(e) eqiM@ 

ZZ e iA@-@) .-ih+ dJ hM (e) esiMQ (II. 34) 

Because we choose our body-fixed axis to lie along the Gl direction, this 

direction is uniquely determined by 0, $J. Furthermore the only dependence on 

the Euler angles < c23 tl ’ ( 
“1 z--o1 
nl )I <i3> will have is on the difference $-$I. 

The reason for this is as we scatter?$3+J23, the plane of momentum triangle de- 

scribed by G2s3) is just rotated by @-+I about the fixed31 into the plane of ($$h). 

Thus we can do all the integrations with the exception of one over $-$‘. Defining 

u = $-+I we have, using (II. 34) 

<Tl’ = 
mlm2m3 
rnlJq1 d(wl-w;) I 

(II. 35) 
2n 

X 
s 

du e 
ih,u 

-1 
‘23 > 

0 

By the definition for orthogonality for thegfunctions the term in the square brackets 

is ‘4 Ai l 

For this choice of the body-fixed axis we have the result that 

J, M, Ai 1 ‘I’~(z)IG, J, M, Al> = J”?“’ 
27r 

<a, d@l-wi> dA;A, 
/ 

du e 
iAlu 

2m101 

- 
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Although we have found an explicit expression forcG ‘, J, My Ai I TV 1 G , J, M,Xl> 

in terms of two-body amplitudes we have not completely solved the problem. Once 

we have made the choice of a particular coordinate system we must use it 

consistently through the problem. The method described above would not work 

for<;, J, M, Xi 1 T2(z)) G, J, M, X1’. However, we may perform a rotation on 
,^ - -. 

lw’, J, M, X1> in order to make the result valid for a more general reference frame 

than having the fixed-body axis lying along the FI direction. 

The properties of the states I;, J, M,X > under a rotation of coordinate system 

follow from the properties of thegfunctions and the definition of lz, J, M,X> via 

(II. 3). We will now show how to do such a rotation. The rotation we have in mind is 

the rotation of one body-fixed axis into another different body-fixed axis. The 

spatially fixed coordinate system remains constant and thus the operators J2 and 

Jz are the same and so are their eigenvalues J and M. The operator that is changed 

is JA --the projection of the angular momentum on the body-fixed axis. Let the 

first coordinate system have Euler angles (+,, 8I, +l). If this coordinate system 

is transformed by a finite rotation (cy, B, y ) into the coordinate system (G2, 8 2, c#~) 

the group property of thegfunctions states 27 

Multiplying this by A fi 4 
i=l 

and using Eq. (II. 3) we have at once 

(II. 33) 
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e-)-b 

Since the state <plp2p3 1 is an arbitrary state in the three-body momentum space, 

it follows that 

lz J, M,X2> = &*J 
A: =_,x2x' 

WLY) I 75, J, I&X;‘> (II. 39) 

_ - -. 
Let us specialize this somewhat by choosing (fil, 8,, 4,) be the coordinate system - 

with the body-fixed z axis along pl and with x axis lying in the plane of CI, c2,z3. 28 

Suppose W2, e,, d,, is similarly defined except that F2 is the body-fixed axis. 

For 0,, the angle between rl and s,, the rotation needed to transform (ql, 8 1, +1) 

into (1//,, e,,@,) is just a rotation about the y axis by the amount e12. Thus in this 

case 

qAll 0 1 (W%Y 1 = CB*J ,, w12, 0) = dJ 
A2 Xl 

,, te,,) 
A2Xl 

Our transformation (II. 39) then becomes 

n - 

(II. 49) 

z, J, M,X2> = L dJ 
x,x;l 

(es,) 1 w’, J, WA;‘> (II. 41) 

iI;1 

Here it should be noted that 8 12 depends only on G The companion rela- 

tionship of Eq. (II. 41) for the ket state is just given by taking the adjoint. 

Because dJ 
x2 x;l 

is a real function we have 

<G, J, M, X2 1 = SW-, J, M, A;’ 1 dJ,, 
W2 (012) 

x;I 

(II. 42) 

- 
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I 

Now we can write out <z’, J, M, Ai 1 Tj( z 11 z,, J, M,A.I> for any j =1,2,3. 

<;I, J, M’ Ai ITj(z) I G’ J, 111, Xl> = 

= c cc?, J, M, A; 1 z’, J, M, A’jl><z’, J, M, A;’ ITj(z)) -i5, J, M, A’;‘> 
Ill X’j’ Aj 

s 

(II. 43) 

<g, J, M,Xl”lC, J, M, >I> 

Using (II. 41) and (II. 42) this simplifies to 

ZZ c dJ (eij) dt III 
q’ A’;’ 

Xi A!j’ j A, (e3 <;;l, J, M, ‘;j’ 1 Tj(Z)l~, J, M, ‘~I’> 

err. 44) 

Further simplification results from the fact that Tj is diagonal in X . . J Using 

8. =- 
31 

elj we find, 

<;5(, J, M, Xi 1 Tj(z)lG, J, M’ XI> = c dJxi x’j’ CSij) dJtt 
x’j’ 

xj X1(-e lj) 
(II. 45) 

x <;;‘, J, M, A’; ITj(z) J, M, A;‘> . 

This last equation allows us to find Tj(z) for all j in terms known two-body 

functions via (II. 36). 

D. Introduction of Two Body Partial Wave Expansion. 

Our formula, (II. 36), for<$,J, M, Xi 1 Ti(z) I z J, M, A’> still has one 

rmaining integral over du. We will now do this integral explicitly by expanding 

the two-body amplitude in its partial wave form. The amplitude <<23(tl (z - TQlj 1 Gb3> 
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depends on only I;;,,[, lS5h3l and <23S<i3 . For the body-fixed z axis along the 

Fl direction the polar angle for %3 is just the angle between Fl . T23 or Yl, 

according to (II. 23). Likewise Yi is the polar angle for <i3. The angle between 

the planes of (&, <23) and Grn ?&,) is just u. With these identifications we can 

write down the following well known expansion. 
,- - - 

G23 * $3 = cos Y1 cos yll + sin Yl sin Y’ cos u 1 (II. 46) 

Using the partial wave projection defined in Appendix A, Eq. (A. 2) we may expand 

the two-body amplitude as 

-1 ‘23 
1=12 >= c 

4n2p23 Q 
(2Q + 1) t; ml q23’ q23: z - y- us 

1 

(II. 47) 
PQ (COS y1 COS Y; + sin Y1 sin Yi COS U) 

The Legendre polynomial may be now expressed in terms of Ypm’s. 

pQ (COS Y1 COS yi + sin Y1 sin Yi COS U) = 2f4y, 
c Trn (Yl$d,) yjm(Yi*4i) 

m 

(II. 48) 
47r = 

21 +1 c YQm (yl, 0) YQm(ri, 0) ewimu 
m 

- 
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Combining (II. 48) together with (II. 47) we see that the integral in (II. 36) depends 

on u only through exponential factors. Specifically 

27r iX u 
du e ’ <z23 ml z - - -t 

nl Ol I ‘23’ 

= Y ~~ (yl,O) YQm (yi,O) (II. 49) 
iX u 

du e 1 e-imu 

The integral term in square brackets is zero unless m = Xl. Thus the expectation 

value of Tl(z) can be written as 

< a, J, M, Ai I Tl(z)[G J, M, ‘1’ = 
2 (m2+m3)h 2 

J2mlwl 
’ (wlbw;) dAsA; 

X c Y 
ml 

d 
Qx 

1 
(Yl,O) yQ xf (Yi,O) ti (q239 $39 

1 
z--w+ 

nl 

We can write the most general form of this matrix element by using Eq. (II. 45) 

<z, J, M, Xi ITj(z)( w’, J, M, $’ = 
2 (mi+mk) h2 

Jzijq 
d twj -wi ) 

i 
(II. 51) c J 

3 
9 

f~ 
j 

(eij) di x 
ii 1 

t-e,j) C YQxj (Yjyo) yQx j tYj>‘) 
1 1 
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E. Complete Angular Momentum Reduction 

Placing Eq. (II. 51) into Eq. (II. 18) gives us the complete angular momentum 

reduction of the problem. The term in the square brackets contains all the three- 

body kinematic behavior of the problem. The dynamics enters through the two- 

body t matrix. Let us denote the kinematic factor tie ,- + ,,i-,‘,~) by, 

J 
KJQ 

a’+1 J 
(Y.3 Blj9 Y) eij) = c 

Y Qx tYj,O) 4 2 (-elj) YQa tYJ,O) dll x teij) 
Xi--J j j 1 j J 1 j 

(II. 52) 

It should be recalled that this form of the kinematic term is dependent on our choice 

of the body-fixed axis along the Fl direction. The only effect of some other choice 

would be to replace the d functions with the more generalgb. One should note 

that if I x j I exceeds I in sum in Eq. (II. 52) the term is zero since Y QAj vanishes 

for lxjJ >e. Using our notation for the kinematic factor the matrix element for 

Ti(z) may be written 

a, J, X1 ) Tit@1 ;, J, X1> = 2(mj+mk) 2i2 b(wl -w ) 
J%qq i i 

P Vl 
qjk; Z - $ 

i 
Wi KJQ (yf, eii ; Yi, eli) tj 

m. 
I (II. 53) 

We have omitted the M dependence of Ti, since as can be seen from the 

right hand side of (II. 53) there is no M dependence. This means also that the 

three-bodytransition amplitude like that of the two-body transition amplitude will 

not have any M dependence. This independence on M, which expresses a spherical - 

symmetry inherent in the problem, results directly from the commutation of 7 with 
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with the exact Hamiltonian H. Thus the raising and lower operators, Jx I iJ 
Y 

, 

commute with H and from this it is easily seen that no observable for this system 

may have an Mdependence. 

The complete integral equation, in its angular momentum decomposed form is 

obtained from (II. 53) and (I?. 18) ,- - -. 

<;;‘, J, X’, ITi ;J, J,Xi> = 
2 (m.+m,) A2 

Jz-m,w, 

6(w; -w) c KJp ty’ 0 ii; ‘i, 81i) ti ( 
m. 

I 
“iAl i’ q;k, qjk; Z - ~ 

i 
((,i 

(11.54) 
J 2Y 

P 

-rf 
do;’ dw’j’ dw;i 

Q Xix’; fyi, 8ii; ‘y’, 8 ;‘i) 

o! + J’ + 
x d (cq -“{) 

G=-J 1 
j 4-z 

i / m. 
t, (qik, qyk; z - .$- a; <P, J, X;’ 1 Tj(z) + Tk(z)lz, J, X,> 

/ 

At this point let us assess what we have accomplished. The three-body partial 

wave form, Eq. (II. 54), of Faddeev’s reduction is an integral equation in three 

real variables (Wi,O;I,LL)~) and six parameters (z, J,G $1 . This is a 

considerable simplification with respect to the momentum version of Faddeev’s 

equations which were 3 coupled equation in six real variables and seven 

continuous parameters. For each value of J we have a different integral equation 

and a different driving term. 

An interesting physical consequence concerning the angular dependence of 

T(z) results from the invariant M dependence. Consider the expectation value 
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of T(z) in the momentum representation. 

= c &, $, e,$ 1 Z, J, h&X><6 J, MA ~,~W~kkJ,, M, X1> (II. 55) 
JM Ah’ - 

From (II. 3) we have that 

c 2J + 1 ZZ 

JXX’ 8?r 
2 c 

> 

(II. 56) 
M 

<zJX IT(z)Iz, J A’> 

Let R(cY,/~, y) be the rotation obtained by applying R(-@‘,- 8’, -@) and then 

Rt$‘, 8 ,+). The group property for rotations tells us 

(II. 57) 

x <%JX (T(z)/;;;’ JX’> 

Thus we have proved there are only three independent angles needed to describe 

the scattering not six as the left hand side of (II. 57) suggests. This is analogous to 

the well-known result for the two-body amplitude, t($, ‘i;l, z), which states that t 

depends only on 1 p ),I p’ 1 and $ l $I . 

- While we are on the subject of general properties of the transition amplitude it 

is convenient to study parity conservation. The argument given here is a specialized 
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I 

version of a more general one given by S. M. Berman and M. Jacob. 2g The wave 

function can be represented in the form 

I 3, J, M, A> = @,P ,y) l&O, Y> da SinPd Pdy 

(II. 58) 

- =,/~)$&(a,ii.y) R(a, P,r) ‘1$,-O, O,O> dasin/3dpdy - 

where R(cr, P,y) is the rotation operator 
3. 

e 
-oJs -iPJy -iP Jz 

e e . We can easily 

see that (II. 58) is equivalent to our former definition of p, J, M, A> by multiplying 

from the left by ~2, $, 8, $1 to get 

dosin/ dp dy 

where we have used 

<Z$A,+h >P, y’ = 6(z)-cr) G(COS e-cosp) A(#- y) 

Thus (II. 59) is identical with (II. 3) 

Now the parity operator P commutes with the rotation operator R so we 

may write 

PI z, J, M,D=,,/~~;; (o,P,y) R&&y) P 12, 0, O,o>da! 

(11-W 

sin P d P d y 
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If we denote by Y the reflection through the x - y plane then the parity operator 

may be written as 

inJ, 
P=e Y (II. 61) 

Supposing that qly ~7~’ q3 are intrinsic parities of partieles &; 2 and 3, we have 

the effect of Y on I;, 0, 0, 0 > . 

y IJ, 0, 0, O> = ~TJ~I@ 0, 0, O> (II.62) 

Combining (II. 62), and (II. 61) Eq. (II. 60) may be written 

p I ;, J, M,A> = q1’12n3,/~ji$& (a, P 9 y) R(w i&y- ~1 

z, 0, 0, O> dosinpdpdy (II. 63) 

Now noting that 

we have 

P 1’3 J, M,A> =171112113(-I? IG J, M, A> (II. 64) 

So we have that matrix elements of three-body operators with commute with a 

parity conserving three-body Hamiltonian H vanish unless the initial Ai and 

the final A f differ by an even integer. Thus roughly half (depending on whether 

J is even or odd) of the matrix elements < z, J,h IT(z)/;‘, J, A’> will 

vanish in the h index. 

- 
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CHAPTER III 

SEPARABILITY IN TWO BODY AMPLITUDES 

The purpose of this section is to study representations and approximations of 

the two-body transition amplitudes that will be useful in the three-body problem. 

The principal ingredient in the kernel of Faddeev’s integral eflations for the three- - 

body problem is the two-body transition amplitude. The two-body transition amplitude 

is a function of three independent variables: the incident momenta, the final momenta 

and the energy of the scattering process. The transition amplitude is called on-shell if 

both incident and final momenta are equal to the momenta implied by the energy. If 

one of the two momenta are independent of energy then the amplitude is considered 

half-off-shell. If both are independent of energy then the amplitude is said to be 

full-off-shell. The form of the two-body amplitude needed in Faddeev’s equation is 

the full-off-shell amplitude. The approximation which is nearly universally used in 

treating the three-body problem is to assume that the two-body transition amplitude 

may be factored into a product of two terms each a function of only one of the two 

momenta in the scattering process. This assumption of separability allows one 

eventually to reduce Faddeev’s equations to integral equations in one variable. For 

most authors this separability has been a conditio sine qua non for proceeding. 

Generally, separability of the transition amplitude arises from assuming that two-body 

potential is separable. Contact with physics is made by fitting the parameters of the 

chosen separable potential so that the two-body scattering length and boundstate energy 

are correctly reproduced. Here we want to study all forms of separability for the 

two-body amplitudes, in particular separable approximations for the amplitude which 

do not necessarily follow from the restrictive assumption of a separable potential. 

To this end we shall develop an exact representation of the general off-shell 
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amplitude, that is a sum of a separable term plus a non-separable remainder which 

vanishes for all half-off-shell momenta. Furthermore this representation will give 

us a way to calculate the off-shell transition amplitude from a set of Fredholm integral 

equations. This last result is a significant improvement since the integral equations 

satisfied by the transition amplitude is the singular Lippman-Schwinger equations. 

Most of the ideas for the foilowing development w&-first g-&n by K. L. Kowalski c 

and D.- Feldman31’ 32 and by H. P. Noyes. 33 

A. Half-Off-Shell Function fI (p, s) 

We begin our investigation by writing down the Lippman-Schwinger equation which 

uniquely determines the off-shell transition amplitude. In its partial wave form we 

have 

tp (p, g; S + ie) = v f 
O” p’2dp’ 

Q (P, q) - : 
o pV2-s-ie 

VQ (P,P’) tI (p’, q; s + ie) 

where p, q, p’ are momenta, s/(2~ ) is the kinetic energy in the center-of-mass 

coordinate system, and p the reduced mass. The transition amplitude is 

tp @,q,; s +ie) and v I is the partial wave projection of the potential defined in 

Appendix A to this chapter. The Lippman-Schwinger equation is a singular integral 

equation in the one variable q. Both p and s are parameters. 

We now want to introduce the half-off-shell extension function, fp (p, s), which 

is defined by 

fQ (P, s) = 
tQ (p,k; s + ie) 
t,(k,k;s+ie) ’ pzop k10, SE[-m, +m]. (In. 2) 

Here the momentum k is the on-shell momentum associated with the energy s/2/-4, 

for ~20, k =+&-. W e want to use this definition for fI for negative s as well 
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as positive. In order to do this we must define the relationship between k and s 

when s is negative. This definition is somewhat arbitrary since there are no 

physical momenta associated with negative energies. S-matrix theory chooses 

k =+A forallreals, and has as a consequence that t B (k, k; s + i e) possesses 

all the simple analyticity properties customarily associated with the on-shell 

amplitude in cut complex s plane. However, at this stage we wish to keep free - 

the choice of the relationship between k and s for s < 0. Thus we only assume 

that (k2/ = IsI for all s. Note that the meaning of the phase of the on-shell amplitude 

is dependent on the functional relation between k and s. 

Our next step is to relate the half-off-shell extension function f1 to the on-shell 

amplitude and to find the integral equation that fn satisfies. In order to do this we 

substitute equation (III. 2) into the half-off-shell version of the Lippman-Schwinger 

equation, and find 

f~ (P, s) tJ (k, k; s + i E) = V~ (p, k) 

- tQ (k, k; s + i e) i 
*2 

/ 
p 

o q -s-ie 
VQ (P, cl) fQ (cl, s) 

(III. 3) 
Since by definition fa (k, s) = 1, it follows immediately that 

tQ (k, k; s f i E) = 
vQ kk) 

“Q (k, 9) fQ (% s) 
(III. 4) 

This equation shows us how to recover the on-shell amplitude ta when the half-off- 

shell extension function f I is known. We will now get a simple integral equation for 
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fQ if we eliminate tQ (k, k; s + i E) from Eq. (III. 3) by using Eq. (III. 4) 

i 

vQ tk 4) fa 
fQ (P, s) = vQ (p,W 

vQ kk) 

vQ (P&t) $ iit 6 - 

Rearranging the terms gives us the desired integral equation. 

vQ (p,W c72 

fQ (P,‘) = 
Vj kk) + 

s 

~~ bq: s) fQW) dq 

0 

where the kernel AQ is 

(m. 5) 

AQ@,%S) =; q 
2 vQ(P,k) “Q t-b@ 

q2-s-i l “Q fkk) 
- vQ b,q) , P,qc [hm] 1 

Eq. (III. 5) is Fredholm and has none of the singularity difficulties associated with 

the partial wave Lippman-Schwinger equation for s > 0. For positive s the 

denominator has a zero when q2 = s, but when k2 = s the portion of the 

numerator in square brackets also vanishes. Consequently AQ is a continuous 

function in the neighborhood of q2 z s and the ie may be dropped. Since the i E 

was the only complex factor in A Q, this shows that AQ and fQ are real. Once we have 

solved Eq. (III. 5) for fQ we can use Eq. (III. 4) to find the on-shell amplitudes and 

phase shifts. The immediate utility of fQ and the integral equation it satisfies is 

that it provides convenient direct way to obtain the half-off-shell and on-shell 

solutions to the Lippman-Schwinger equation for the scattering amplitudes. 
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B. Derivation of Kowalski-Noyes Representation 

We now want to carry the analysis further by finding a-representation of the 

full-off-shell amplitude tQ (p, q; s + ie ) in terms of fQ . The resolvent kernel 

for AQ is defined to be the solution RQ (p, q; s) of the integral equation 

cx2 ,- - e 
PQ (P, q: d + AQ (P,q; s) = s RQ (P,x:s) AQ (x,q:s) dx 

0 
PD. 7) 

03 
= 

f AQ (l',X:S) RQ (X,W) do 
0 

The most useful property of the resolvent is that it allows one to write the solution 

k(p, s) of a Fredholm integral equation as the integrated product of an inhomogeneous 

term g(p, s) times the resolvent function; that is, given 

co 
hb s) = dP,S) + 

s A (P, q; s) h (q, s) dq 
0 

then 
co 

h (P, s) = HP,S) - f 
R (p, q;s) g (g, s) dq 

0 

If we restrict the Lippman-Schwinger equation to its half-off-shell form, multiply 

by “Q bk) “Q &, N-l and use the definition for fQ given by Eq. (III. 2), the 

following relation is obtained 

0 = vQ bk) 
vQ (k k) fQ (q,S) tQ @,k; s + ie) * 

vQ (k, q) “Q (p, W 

, vQ t-h W 

2 +- 71 J 
X2dX “Q b,k) vQ &,x) 
2 -“a (k,W tQ (x,q; s + ie) 

0 x -s-ie 
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Adding Eq. (III.* 9) to the full-off-shell Lippman-Schwinger equation (Eq. (III. 13 

gives 

tQ (p, q; s + i e) = 
vQ bk) 

“a &,k) fQ hs) tQ f&k s + id ’ vQ bq) - 
vQ @,q) v- (P,k) 

vQ kk) 1 
_- - 

cc x2dx / 2 x -s-i E 
0 

“n k q) ‘Q (P, x) 

“a &,W - VQ (P,X) 1 tQ (5 q; s + i E) 
Substituting our definition of AQ into the above equation reduces the result to 

i 

VQ (p,W 2 
tQ (p,q; s + ie) = 

vQ (k, W fQ (%s) tQ Cx,k S + ic) - 2 * T n,hq; s) 
q 

(III. 11) 

+ 

/ 

dx AQ @,x; s) tQ (x,q; s + ie) 
0 

We now use the resolvent property given in Eq. (III. 8) to rewrite the solution 

tQ (p, q; s + i E) of the integral equation (III. 11). Here the driving term is the 

entire expression within the curly brackets. The result reads 

tQ (p,q; s + ie) = fQ (q,s) tQ (k,k; s + ie) [ :(E,z) -!P’ RQ$.pl:d)~(~~~ 

(III. 12) 

Now using the resolvent property once more this simplifies to 
- 

2 
tQ (p,q; s + ie) = fQ (q,s) tQ (k, k; s + ie) fQ (p,s) + i 9 RQ (I’> q:s)- 

cl (III. 13) 
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This is the general off-shell representation of Kowalski and Noyes that we have 

set out to derive. The equality is valid for all p, q and s; and the first term is 

separable in p and q. The non-separable term is completely determined by the 

resolvent of the kernel AQ (p, q; s). From the definition of AQ (p, q; s) it follows 

that for the half-off-shell case, e.g., either p2 2 =sorq = s then AQ (p, q; s) is 
c- - m 

zero and so consequently is RQ (p, q; s). This result is even more immediately 

obtained from the definition of fQ (p, s) in Eq. (III. 2). Since the non-separable 

term vanishes for on-shell and half-on-shell values of the momenta p and q it is 

not unreasonable to hope the separable first term will be a good approximation to 

tQ b q; ’ + i’)- In any case the representation gives us a convenient method for 

finding the full-off-shell t matrix in terms of functions fQ (q, s) and RQ (p, q; s) 

both of which satisfy a Fredholm integral equation. 

Let us now study the approximation to tQ (p, q; s + i e) obtained when the non- 

separable term, +2 S RQ (p, q; s) of Eq. (III. 12) is neglected. First, we 

will describe the basic qualitative properties of the exact amplitude and see which 

of these properties are preserved in the approximations we make. These basic 

properties are: 

(a) Symmetry in the variables p, q, e.g, , tQ (p, q; z) = tQ (q, p; z). This 

follows from time reversal invariance, which implies that v(F, c) is symmetric. 

(b) tQ (p, q; z) has simple analyticity in the variable z, In the left half com- 

plex energy (z) plane tQ is meromorphic with all of its poles lying on the negative 

real z axis. The position of each pole is a bound state (or states) energy and 

the residue of the tQ matrix factors into a separable product of terms, each of 

which is related to the bound state wave function. Note that left hand cut asso- 

Listed with the transition amplitude comes about by setting p = VZ, q = fi for 

negative z 0 In Faddeev’s treatment of the three-body problem only real positive 
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momenta occur so that successful approximate forms of the two-body transition 

amplitude need not reproduce the exact amplitude for imaginary values of the 

momenta. 

(c) tQ (p, q;z) has the unitarity property. For all positive values of z, 

tQ has a discontinuity across real axis given by ,_ - 

This equation given in Appendix A, implies that the on-shell normalization in 

terms of the phase shift CjQ (k) is 

tQ (k,k; k2 + ie) = i e 
i6Q b) 

sin 6Q (k) (III. 15) 

(d) Asymptotic behavior. In the limit as Izl-m the Born term dominates. 

lim tQ(P,g;z) = vQ bq) (III. 16) 
lzl-- 

In searching for approximate off-shell transition forms it seems reasonable to 

expect that all or most of these basic properties be satisfied. 

c. Low Equation 

At this point it is instructive to present the Low equation in terms of the f, 

functions. The Low equation gives us another representation for T matrix and 

if we re-write it in terms of the fQ functions we may compare the two representations 

in detail. The general operator form of the Low equation is 

T(z) = V+ v --& v (III. 17) 
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where H = Ho + V. Let the complete set of states associated with H be written as 

(III. 18) 

If we now pre and post multiply Eq. (III. 17) by the plane wave states < F ( and 14 > 

respectively and use Eq. (111.18) to expand <FI V&-Vl?!l* ,we get 

(III. 19) 

Identifying < F(Vl$&> as the half-off-shell transition amplitude <FIT (k2)lc> 

we get the customary form of the Low equation. 

<F/T(z)l+ = <$Jlp> + 

/ 

&< ClT (k2)1i;> <c(T (k2)i& + 
c 

<qvpa> < $a pp 

k2-h2 
z--T$-- o! cx2112 z+ - 

a-4 

(III. 20) 

By doing the standard partial wave reduction we obtain 
cc 

tQ (P, q; ‘) = ‘Q tp, s) + 5 J tQ (P, k k2, tQt(r, k; k2) i@ - k2 k2dk 

0 II2 
(III. 21) 

+2 
g (P) +; (s) 

lr c &?i + k2 
@Q A2 aQ 

where Gz (P) = I V (P, P’) $k (P’) pf2 dp’ , 
0 Q 

and ilik is the radial part of the 

bound state wave function. The analyticity of tQ (p, q; z) in z for fixed p, q can 

- 
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be obtained directly from Eq. (III. 21). To do this we just take derivative d/dz 

of both sides of Eq. (III. 21) and note that derivative operation and the integration 

may be interchanged, provided there is no singularity in the denominator of the 

integrand. Thus tQ (p, q;z) is analytic except for the explicitly displayed bound 

state poles and the right hand unitarity cut. Furthermore it is obvious from 

Eq. (III. 21) that tQ (p, q; z) - vQ (p, q) as Iz] -“. An additiori’al fact emerging 

from Low equation is that if we know tQ (p, k;k2) and vQ (p, q) we can construct 

the full-off-shell amplitude t Q (p, q, z). Thus all possible physical information 

is contained in the half-off-shell amplitudes. We now want to see what form 

Eq. (III. 21) takes when expressed in terms of f Q (p, k) and the phase shifts. 

Using Eq. (III. 2) and (III. 15) we have 

tQ @,q; s, = “Q kbq) + g 
cc sin2 6Q (k) fQ (p, k2) fQ (q, k2) dk 

/ 

0 s+ic -k2 

c 

a! 

@ i(P) 9” (cl) 
2” s + @Q 

(III. 22) 

2PZ where s = - 
iI2 * 

Letting s = q2 gives 

ei4 (‘) sin dQ (9) 
fQ (P,q2) = “n b7 9) + : 

O3 sin2 6Q (k) fQ (p, k2) f (cl, k2) dk 

q 
/ 

0 q2 -k2+ie 

(III. 23) 

As noted above this equation can be used to find vQ (p, q). If the phase shifts are 

Resumed known from experiment then fQ (p, k) represents our ignorance of the 
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off-shell behavior of t 
Q ’ 

or equivalently our ignorance of vQ (p, q). Taking the 

imaginary part of Eq. (III. 22) will just yield the unitarity relation. The final term, 

the term containing the bound state poles, of Eq. (III. 23) may be re-expressed by 

using the partial wave momentum space version of the Schroedinger equation for the 

bound state wave function. In our notation this equation reads 
,r- - e 

co 

J 
q2 dq “QtP9q) d' aQ (9) = - i Ga! (P) (m. 24) 

n Q 

for a bound state of energy - 
Mb; 

21.1 * Consequently 

2 c 
(P2 + a;, (s2 ++ &Q b) +iQ (q) 

2 . 

aQ 
s +o! Q 

(III. 25) 

D. Optimal Separable Potentials 

Now let us return to the problem of finding the best separable approximation 

suggested by the representation of t Q (p, q; s + i e) given in Eq. (III. 13). The 

representation as derived above did not specify the functional relationship between 

the energy s and the on-shell momenta k. The on-shell amplitude used in S-matrix 

theory is tQ ( KG, fi; s + ie). Here relationship between k and s is k 2 Vs. 

As a consequence of this choice t Q( 6, A; s + i e ) is analytic functions of s for 

Im s # 0 and as a consequence of this analyticity we may use the Cauchy formulae 

to derive the N/ii formulation. Thus k = & seems the most natural choice for 

the definition of the on-shell momenta. However, we shall see that this functional 

relation will not lead to a useful separable approximation. Setting k = fi the 

separable approximation obtained from Eq. (III. 13) is 

- 

tQ @,q; s + ie) T fQ t% s) tQ t h9 d?; s + ie) fQ (p, s) (III. 26) 
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The domain over which ta is integrated in Faddeev’s equation is all positive 

wwnd se k-4, where z is the energy of the three-body system. Thus 

Eq. (III. 26) must be examined for negative s. Substituting the definition of fn 

gives at once 

t,-<P, Js; s-tic) t&s, Js; s+iE_) _ _ 
_ tJ@,q; s+iC)r (III.27) - - te(Js, Js; s4ie) 

Since tB(&, fi; s+ie) has an interaction cut for s sufficiently negative, the 

right hand number of Eq. (III. 27) will have this cut. However, for p 1 0, 

q 10 t,(p, q; s+iC) has only the bound state poles and is real for s < 0. Thus 

from the beginning of the interaction cut to - m Eq. (III. 27) will not be a good 

approximation, and furthermore the approximation does not share the analyti- 

city properties of t&p, q; s+it ) in the s variable. 

Since the prescription k = Js has failed to yield a useful approximation, 

we will try k = m . Now Eq. (III. 27) will take the form 

Since the momentum arguments of t&a m, s+ic) are positive, this 

function will not have the interaction cut. The objections which applied to 

Eq. (III. 27) do not apply to (III. 27’). There has been some objection 34 to 

k=m on the grounds that this is not an analytic relation and as a result 

the right hand term of Eq. (III. 27’) will not be analytic at the point s = 0. 

(III. 27’) 

It is however continuous at this point, and separately analytic for s > 0 and 

-SC 0. 
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In order to further evaluate this approximation we need to know more about 

the behavior of tQ@, q; s+ie) and fQ(p, s) in the bound state region. We first 

evaluate fQ(p, s) ‘as s--t -of , where (2~) -loi is any bound state energy in 

the Qth partial wave channel. For s N -ozp” the pole term coming from the 

Low equation is for the half-off-shell amplitude ,_ - - 

tQ@, k; s) =  

where, as above k=fi . Alternately from the definition of fQ we have 

5 
@2+@;)(k2+$jtif$@) tiQQ(k) 

s -I- a2 
+ non-pole terms (RI. 28) 

Q 

t,@, k s) = ‘Q(P, s) tp(k, k s) 

=fQ@,s) f 1 s+o! 2 
Q 

f non-pole terms 

(III. 29) 

Equating the coefficients of the pole’terms in Eq. (III. 28) and (III. 29) gives us 

the relation 

P. 36) 

This relation becomes exact as s -+ -up”. Thus each time the energy (2/4-‘s 

‘becomes equal a bound state energy the fQ is for that energy proportional to 

the bound state wave function. Returning to the separable approximation we see 

that in the neighborhood of a bound state we can write 

fQ@, s) tQ(k k;s) fQ(% s, = 2” 
s+a! 2 

- Q 

(III. 31) 
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This tells us that the separable term in the representation given by Eq. (III. 13) 

contains all of the bound state pole terms in the amplitude t,(p, q; s+it-). 

Now let us summarize the important features which we have derived for 

the Kowalski-Noyes representation given in Eq. (III. 13). First, the decom- 

position into a separable and a non-separable piece is-exact for all s, p, q. If 

- either p2 = s or q2 = s then the non-separable term identically vanishes. 

Since RQ(p, q;s) is real all the imaginary part of the amplitude is contained in 

the separable term. The on-shell amplitude and equivalently the phase shift 

is given exactly by the separable term. Also it follows immediately from defi- 

nition (Eq. (III. 2)) of the half-off-shell extension function f Q that the separable 

term will satisfy half-off-shell unitarity. However, the approximation will not 

satisfy full-off-shell unitarity. The non-separable term in the Kowalski-Noyes 

representation is purely real. Neglecting it will destroy the relation between 

real and imaginary parts of the amplitude that unitarity requires. The separable 

term contains all the bound state singularities and has the correct residue. If 

we choose k = 41 s 1 then there will not be any non-physical cuts in the separable 

term for negative s. However, this choice of k = J- Is 1 means that the separable 

term will not be analytic at s = 0 where as the full amplitude is analytic. An 

additional difficulty with the separable term is that it may have poles which do not 

occur in the full amplitude. Suppose there is a zero in phase shift at k = k. , 

e.g., that d(ko) = 0. The on-shell t matrix will behave as 

tQ(k,k;+k2)+k-k&‘&k,), k”kO (III. 32) 

where p > 0 and t;(k,) is finite. - By using the definition of f,@, k2) we have 

fQ@, k) z 4 - ko)+ fb@) 
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where fb (p) is finite. The full separable term will have a dependence of the 

form 

@-kg) --’ flo (P) 4 - ko) ’ t; F,) o( - ko) -’ fb (s) 

which diverges as (k - k0) -p . Generally the t&pq;g) wiLbe finite. Thus 

- for each--zero in the phase shift the separable term will have a pole which is not 

present in the exact amplitude. Clearly for the representation to remain valid 

there must also be a pole in the non-separable term which cancels that of the 

separable term. It is this feature of non-physical poles in the separable term 

which is the severest limitation of the approximation. One would not expect 

the separable approximation to work for three-body energies that are greater 

than the energy for which the first zero in the phase shift occurs. For a system 

like the N-P system you could not use the approximation in a three-body calcu- 

lation for scattering amplitudes close to or above 250 MeV. However, for lower 

energies the approximation should still be valid. 

E. Alternate Approaches to Separability 

Having evaluated the merits of the separable approximation arising from 

the Kowalski-Noyes representation, it is now useful to examine different ap- 

. proaches to separability that also exist in the literature. The method most 

commonly used to acquire a separable t-matrix is to assume a potential form 

that is separable. 35 This is the approach used by all authors working with 

Faddeev’s equations who carry out numerical calculations of three-body 

amplitudes. The relationship between the separable potential approach and 

the method described above is established by noting that the kernel A1 given 

>n Eq. (III. 6) vanishes identically if the potential v,@, k) is separable. Thus 

RQ is always zero and the first term in the Kowalski-Noyes representation is 
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exact even off-shell. For separable potentials the integral equation for fl , 

Eq. (ICI. 5), reduces to 

fQ@, ‘) = v @  k) 
Q ’ 

P. 33) 

The advantages of the separable potential are as follows: The separability 

- allotis one to solve the Lippman-Schwinger equation analytically. The resulting 

two-body t matrix is completely separable and obeys full-off-shell unitarity. 

The disadvantages are that a single separable potential can support only one 

bound state regardless of the size of the coupling constant. When the separable 

potential is transformed to coordinate space by the appropriate Fourier transform 

the resulting potential is non-local. This non-locality is probably the most 

serious physical draw-back to the separable potential. 

An attempt to extend the flexibility of the separable potential has been made 

by T. Mongan. 36 He observes that we can simply generalize the Lippman- 

Schwinger equation by replacing the energy independent potential, v,@, q) with 

an energy dependent potential vI(p, q;s) . The additional freedom that the energy 

dependence allows would then permit more accurate fits of scattering data. How- 

ever, this prescription runs into the following difficulty. The full Hamiltonian 

. is the sum of the unperturbed Hamiltonian, Ho , and the potential. Thus if the 

potential has an energy dependence then the full Hamiltonian has an energy de- 

pendence. An immediate consequence of this is that eigenstates of different 

energies are not orthogonal. Thus the completeness and orthogonality properties 

of the set of all wave functions are destroyed. One should not take the above 

argument as a restriction against velocity dependent or CE dependent potentials. 

-Although these potentials are sometimes referred to as energy dependent this is 

somewhat of a misnomer since these operators really act on the momentum 
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variables of the wave function. An apparent energy dependence is only ac- 

quired when one goes on-shell with the momentum variables. 

Another approach to separable approximations has been given by Lovelace. 16 

It is instructive to compare his results with those resulting from the Kowalski- 

Noyes representation. Instead of looking at the t matrix bvelace considers 

- the K matrix. The K matrix satisfies the principal value form of the Lippman- 

Schwinger equation (III. 1) obtained whenthe ie is dropped and the integral be- 

comes a principal value integral. Let A&p, q;k2) be the amplitude which is 

the solution of the K-matrix equation. The relation between Ag and t Q 
derived by Lovelace is 

t&p, q;k2 +ie) = A&p, q;k2) - 
27r2 ikA&p, k;k2)A&k, q;k2) 

1 + 27r2 ikAa(k, k;k2) 
(III. 34) 

The tl which Lovelace uses is 47r2 times the one we have used. However, 

this different normalization will not affect the equations which follow. The 

completely on-shell form of Eq. (III. 34) simplifies to 

t,(k, k;k2+ie) = 
A& k ; k2) 

1+2?r2iAB(k, k;k2) ’ 
(III. 35) 

If we set q = k in Eq. (III. 34) and use Eq. (III. 35) we obtain after a few 

algebraic manipulations 

AQtp, k; k2) tQ @, k: k2) 
= 

$0~ k k2) t&k, k k2) 
= f,@,k) @I. 36) 

Aquation (III. 36) shows that the f1 we defined earlier is also the ratio of the 

half-off-shell K-matrix amplitude to the on-shell K-matrix amplitude. 
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The on-shell K-matrix is related to the phase shift by 

A&k; k2) = - 1 
27r2 

k cot 6, (III. 37) 

Thus Ap will have a pole for each resonant energy ($ Cx,) = 7r/2) . This is 

in contrast to the resonant behavior of ti, wherethepole-corresponding to a 
- 

resonance lies in some neighboring non-physical sheet. A1 will, of course, 

have all the bound state poles of ta since for negative energies Al and ta 

are identical. The operator represented by the kernel of the K matrix equation 

is compact and operator analytic in the energy variable. Consequently the 

residue of each pole is of finite rank, or equivalently a finite sum of separable 

products. If there is only one bound state or resonance at the pole position, k,, then 

A&P, q; k2) ” 
g&P) @o 

k,” - k2 
, kzkr (III. 38) 

Combining Eq. (III. 38) and Eq. (III, 36) allows us to relate our f1 to Lovelace’s 

form factor ga . We have 

9 kzkr P. 39) 

where the relation is exact for k = kr . It is interesting to see what our 

separable approximation becomes when expressed in terms of ga via 

Eq. (III. 39). By using Eq. (III. 35) and Eq. (III. 38) we can approximate the 

on-shell t matrix by 

tQ(k, k;k2 + ic) z 
et - k2) + 2aikg(k)2 

(III. 40) 
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Now with the aid of Eq. (III. 39) we can write our separable approximation as 

f,@, k) t&k kk2 -t ic) f&s, k) z 
g&PI gQ(4) 

(kf-k2) + 2aikg(k)2 
(III. 41) 

where we have equality for k = k, . The right hand @de of Eq. (III. 41) is just _ 

- the separable approximation that Lovelace derives by combining Eq. (III. 38) 

and Eq. (III. 34). Consequently, we may obtain Lovelace’s separable approxi- 

mation from the Kowalski-Noyes representation just by setting k = kr in the 

half-off-shell functions f1 . In addition these results show that the separable 

term of the Kowalski-Noyes representation contains all of the resonance pole 

contributions to the amplitude. 

The underlying idea of the approximations advocated by Lovelace is one 

of pole dominance. Basically we are hoping that if we have an expression 

which is accurate in the region where the amplitude has a pole then the three- 

body results obtained when this approximate expression is used in lieu of the 

exact amplitude will differ by a small amount. There are good reasons to be 

skeptical of this pole dominant idea even before carrying out detailed numerical 

comparisons. The range of two-body energies for which the amplitude t1 is 

needed in solving Faddeev’s equation varies from the energy of the three- body 

system to - 00 . For problems where the three-body scattering energy is con- 

siderably below that of the nearest two-body resonance the ingredient two-body 

amplitude is required only in the region where it is small and distant from any 

pole. Therefore constructing an approximation which is optimized at the pole 

will not necessarily yield an accurate approximation in the region of energies 

-used in a three-body calculation. 
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CHAPTER IV 

REDUCTION OF FADDEEV-OMNES 
INTEGRAL EQUATION TO TWO VARIABLES 

In this chapter, we continue our analysis of Faddeev*s equations in their 

angular momentum form. The final result is to reduce FaddeevOs equations to 
,- - s 

an infinite set of coupled integral equations in two continuous variables. The 

final equations will become a finite set if there are only a finite number of par- 

tial waves contributing to the ingredient two-body amplitudes. First of all, we 

change our notation so that it is more in accord with our previously published 

work?7 Let us re-express the two-body amplitude Ti in the three-body Hilbert 

space 0 From Eq. (IL 51) we have 

<Tj’JA’ Ti zJh>= 
I I 

~ ~ (COS Yi> ~(COS Y;) dJh’m(+ ol;) dJ,h (-ai) 

tf) (E’ -r w’ i i, E-rimi ; z-riui) o 

Here we have used 

w* 1) 

4 

to replace the YfA(y, 0) with I$ (cos Y)~ Furthermore, we do not assume that 

the body-fixed axis lies along the direction of particle 1, but only that it lies in 

the plane of the three particles. The angle oi is the angle between z,, measured 

counter-clockwise, and the body fixed axis z o For example, in Eq. (II. 51) 

cdi is ~2. = 0 1 li = -eia 0 In writing Eq. (IV. l), we have written the transition 
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amplitude as t (i) (q$/2yjk, qFk pjk;z- riwi) instead of t(i)(qik, qjk, z-ri wi). 

Then the arguments of t (l) have been written in terms of the z via Eq. (II. 24). 

For simplicity, we have defined E = ml + w2 + w3 , which is the total interme- 

diate energy. Lastly, ri is a dimensionless ratio of masses given by 

r - mi- = ml ‘“2 +m3 _ - - 
i n. m. + m . 

1 J k 

(IV.3) - 

A. Expansion of Ti(z) in Terms of Two Variable Functions 

Our two-body partial wave transition amplitude is that defined in Chapter III 
id 

with on-shell normalization e Q sin 6, I k. The critical observation which al- 

0) lows this derivation to proceed is that tf depends only on G’ through the combina- 

tion E’ - riwj S It is this fact, not the presence of the delta function in Eq. (IV. l), 

which allows us to get a set of integral equations in two variables. What the delta 

function does, however, is that it allows us to write the resulting kernel in alge- 

braic form. 

Now let us substitute Eq. (IV. 1) into Faddeev’s equation and factor out all 

the common terms we can. This gives us 

oo J 
<w”Jh’lTi(z)I &J,h> = mGxc (Z+l) m P;(cosy;).d;m(+cu;) 

i Q=() m=-J 

dtu! - Wi)Pp (COS 3) dJmh(-‘yi) tQ 6) (qjk, qik, z - ri wi) 

-cs dG” PF (cos y;) dJ,hll(-crl’)t;i)(q!’ q! 
&’ Jk 

, z - rim;) 
A” = -J 

- 

x d @I’- cd;, 
‘%” J A” 1 Tj(z) + Tk(z) 1 z J A> 

E” - z 
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, 

In Eq. (IV. 4), the behavior in 13’ of the bracketed expression comes only from 

the term tl. As noted before, this term depends just on E’ and the independent 

particle energy wie Thus we have justified the following expansion for T’(z). 

co J 
<w”JA’ ) Ti(z) 1 GJh> =z c (%! + I)@$$ dJhtm(+ a;) Pm” (cos Y;) 

l=&m=-J 
F - m  

- 

Fz) (E’, ei) 

where e! = o! . 
1 1 

We note that using this expansion forces us to use a different 

coordinate system for each different value of i. We can get an integral equation 

for the Flrn just by substituting Eq. (IV. 5) into Eq. (IV. 4). Equating terms with 

J coefficients (X + l)w Pa” (cos yi) dhlm, (ai) gives us 

tmi’mk) 
FFmi)(E’,e;)= 2rp1 

i 
d(wi- wi) Pm” (cos yi)dJmh( -oi) t B (9 (El- riwi, E - riwi; z - rioi) 

E” - z 

(Iv. 6) 

d(Wi ++‘) (2p’+$!!sm p; 
mrr 

(P + rn”)l (cos yy, P Q ” (cos y’,’ ) 

dJ ,*1(-q) dJh’rmrr (+a; ) <?d,, W’, “I;‘) 

This is our basic result and from now on we will just simplify it as much as we 

can. The A” sum can be done by using the addition formulas for d functions, 

- 
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which read 

J 

c 
dJ mh”t-+’ 1 dJ,,,,,,(+a;) = dJ-,, (o; - cl!;, 

A"=-J 

= dJmrr(- ‘pi) = dJmm,, (ey) 
F - e 

w- 7) 

The la&pair of equalities follows from simple angular geometry, and has the 

interesting consequence that the body-fixed axis coordinates o+ drop out of the 

kernel. They still, of course, remain in the inhomogeneous term. 

B. Simplification of the Kernel 

From the integral term in Eq, (IV. 6), we see that we must change the var- 

iables in integration so that they are compatible with E”,eZ; 0 We note that the 

third independent variable orthogonal to E, ej is cos 3 , where cos 3 is the angle 

between 5. 
Jk 

and 4 , given in Eq.’ (II. 23). Explicitly, the transformation from 

coordinates 3to E, ej, cos yj is given by 
‘1 

“k 
wi = mi+m k 

i 

(mk~~~~i$ (E -rjej+ cos3 

i 
w. = e. 

.l J W-8) 

m. 
“k = mi:mk mkmj 

mitmi+%) 
-r.]e.+E-2[my$2if(E-rjej! cos yj] 

J J 

Cyclic permutation will give us any of the other transformations that we need. 

The range of ej is still from 0 to co if r. e. 
3 J 

5 E 2 co, while cos yj can vary 

from -1 to +l independent of the energies. The Jacobian for this variable 

- 
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transformation is 

af”iS wk) 
a(E,cosyj) = (IV. 9) 

Introducing the new coordinate systems into Eq. (IV. 6) and using Eq. (IV. 7) al- 

lows us to write 
- - 

,- - 

tm-+mk)h2 
Fapn(;l) (E’S ei) = 2T>s ~5(w~-e;)Py(cosy~)dJh~(-a+) 

i i 

tf)(E-r.e 1 i’ El-r e’ i i’ z-riei) ;q k Fe! /” dE” 
, 0 rsei 

(Iv. 10) 

tf) (El -r-e’ 
1 i’ 

El!-r e’ - i i, z-rie;) 
E” -z c 

K~i~llmll (E’,ei ; E”,el;‘) 
Q”m” 

where 

. K!iAyi,,m,, (E’,e! ; El’, ei) = 9 1 (Iv. 11) 

+l 

x~cosy~6(ej-$‘(E”, ey[, cosy$'))(2Q"+l)~ 

-1 

cos yi(E1’, ei , COS Y;)) pQ?‘(cos 7; ) d~mll t 0;;) 
- 

Here s’ = k if s = j, or s’ = j if s = k. 
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We may think of K~is~l,mll as just the kinematic part of the kernel. Doing the , 
integration over the delta function gives 

K~~~llmll (E’, e;; E”, ei) = (Za”+l) m Pp (cosq(E”,ei, cosrl)) 

where cos f’ is the value 

(IV. 11) and is given by 

m” 
p,,, (cos I+;) 

of cos yz determined by the delta function in Eq. 

cos f s (ei, El’, ei)= 

ms,+ m. 
1 

mi ms ei 

f mS’ 
e; -W-r&!) -m 

s’ s i 
tm ,+m) 

l/2 
2 (E” - rs err) m 

(Iv* 13) 

where the + applies for s = j and the - for s = k. 

The argument of the d function y; must be determined in terms of Err, ei e 

This can be done by taking the ratio of sin2 Oi s and sin2 ysO From Eq. (II.26) 

and Eq. (II. 27), we have 

sin2 e is 
2 

= “z?t Us(Ui+Us+Us’- (1+ m2mk) Usj 

sin y 
S 

4mimSWims 
- (Iv. 14) 

m 
S’ (E - rs us) = 

mi + m 
S’ @ i 
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Thus the argument to be used in dJmm,,( 0 ys) is determined by 

sin2 8 ys = 
ml S 

(El1 - rse; ) 

mi+m , sin2 c (ei, El’, e; ) 
S 0 i(E”, e;, rs) 

(Iv. 15) 

Eqs. (IV. lo), (IV. 12), (IV. 13) and (IV. 15) represent our reduction to a coupled 

set of integral equations in two continuous variabIes.- If a-finite number of 
- 

partial waves dominate the two-body transition amplitude (and this is frequently 

the case) then the infinite sum over Q and Qrr will become finite. Thus our 

formalism is particularly suited to bound state and low energy scattering where 

the s-wave is dominant or in energy regions where there are resonances in 

some partial wave channel. In fact,as we will later note, for three-body bound 

states involving n-p like forces the correction to assuming that the s-wave 

dominates is about one percent. 

C. Three Identical Boson Problems 

The reduction to a set of integral equations in two variables marks the end 

of our study of the general three-body formalism. From now on we shall restrict 

ourselves to the study of one special three-body problem, that of three identical 

bosons. We shall make one assumption, namely that the two-body amplitude is 

dominated by the Q=O partial wave. The reasons for making these assumptions 

is to simplify the problem enough so that we can obtain numerical solutions. It 

is our goal to obtain solutions with no further approximations. In particular, we 

do not want to assume, as is conventional, that the two-body amplitude is 

separable. Part of our motive in doing this work is to obtain an evaluation 

of the separable approximation in three-body problems, and in order to do 

_ this we need more general solutions. 

First of all, we specialize our results to three identical particles acting 

only through two-body s-wave interactions. We will consider only the J=O 
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state. One might think that the J=O state is implied by the assumption of 

s-waves in all the two-body interactions. This is not the case, since one 

cannot add the angular momenta of the different two-body systems because 

the coordinate systems are different. As Eq. (IV. 6) shows, it is possible to 

have an amplitude with J- > 0 when only to @) (E,- rie;-, E,, -=ri ey , z - rie;) 

0, s) are present. We note that kinematic part of the kernel KQn.Q,,m,, becomes 3 
just the difference of two theta functions when Q= m=Q,,= m,, = 0 . 

Now that we have restricted the scope of our problem such that we can 

hope to obtain solutions,we want to write our equations in a form that will be 

easily adaptable to numerical computation. Furthermore, since we are in- 

terested in the separable approximation we want our general equation to be as 

close as possible to the equations valid when separability is imposed. We will 

now reformulate Eq. (IV. 10) so that these conditions are met. First we trans- 

form the theta functions in the kinematic kernel (IV. 12) into lower and upper 

bounds on the E,, integration. Using the fact, that for identical particles the 

masses will all be the same, the condition for the upper bound on the E,, integra- 

tion is from (IV. 12) 

El? < - et? -; s -(Jq+/q 

(IV. 16) 
E,, I 2(e; + e;+ &I+?) 

Similarly the condition for the lower bound on E,, is 

E,, > 2(e; + e; - ,/w ) (IV. 17) ; 
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For the case of J=O, 1=0, the expansion (IV. 5) is trivial since 

0 0 do0 (cY;) = 1 = PO (cos y;) . 

Thus the full three-body transition amplitude is 

3 
<C?f 00 /-T(z)1 0’ OO> = c 

i=l 
Fo:l' fE',e~ (Iv. 18) - 

Since the three particles are assumed identical, the full transition amplitude 

will be symmetric under the interchange of any two particles. Therefore, the 

three FoO functions will be the same. Dropping the two zero subscripts to 

simplify the notations, we have 

F’(l) (x, y) = Fp(2) (x, y) = Fp(3) (x, y) (IV. 19) 

For this special case Faddeev’s equation, (IV. lo), reduces to 

F(E’, e; ) = 

i 

d(ei - ei) t (E - g ei, E’- i ef ; z - i ei) 

-c 
s=j, k 

F(E”, 

co 

/ 
de’; 

0 

e;) 

i 

t(E’ - i ej, Et’- 3ef. z 3 
2 i’ -2”; 

E”- z 

(IV. 20) 

Since the F has no s dependence except through the argument e; , and the 

kernel has no s dependence we may drop the variable subscripts in (IV. 20). 
- 

Already we have dropped the superscript on t, which are all identical. Our 

-81 - 



I 

equation becomes then 

3 - 5 ei, E* - i ei ; z - i e; 

co 2(eff+ et-I- eteff) 
t 3 3 E’-2 e’, E”L~ e’; z-~ e 3, I) F (El’, e”) 

E” - z 

The above equation is still not suited for a numerical calculation, even when 

z<o. If we iterate (IV. 21) once we will have an integrand of the type 

This, of course, an integrable singularity, but not an easy thing to do numerically. 

The problem vanishes if we change to momentum coordinates. Therefore, let us 

introduce the following change of variables. 

2 
el =gl 

2m ’ de’ = q& dq’ , ,/G = q’ 

With this coordinate transformation Faddeev’s equation now reads 

F(E’, q’) = --$ 

i 

+‘- $ 3 q’2 
,E-;I~‘Q m 

(Iv. 22) 

F (El’, q”) 
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The units will be simpler and the notation more symmetric if we now transform 
k” 2 

E”-+ - m ’ Dropping the ubiquitous factor of m in the first two arguments of 

t, we have 

F(kt2, q’) = -$- 23 2 2 3 2 3qt2 t(k’ -;i.q’ ,k -aq’ ;z-~= -25 ) 
- - 

+4 7T 

t(kt2-; qt2, k’t2-; qt2; z-$ 
r) F(k’12, q”) (IV. 24) 

mz - k”” 

This equation has been checked against a similar one given by Wong and 

Zambotti. After making some slight changes in notation we found that the two 

equations are exactly the same. This verifies that our angular momentum re- 

duction and simplification to two variables is correct for the J=O, Q=O case we 

are now considering. 

D. Inclusion of Kowalski-Noyes Representation 

We will not modify Eq. (IV. 24) so that the effect of a separable two-body 

transition amplitude is apparent. We assume, as is described in Chapter III, 

that the two-body transition amplitude separates, or approximately does, in 

the following form: 

t2 
t kt2-; qr2, k’t2-; q’2; zs; “irr 

3 q12 
; z-z m ) 

(IV. 25) 
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where t z ( - i g) is the on-shell t matrix. 

Let us define a new amplitude H(kt2, q’) given by 

12 
F(k12,q’) = f(kt2 -;q’2, z -; +--) H w2, 9’) (IV. 26) 

,- - - 

_ The virtue of this substitution, as we will later shall see, is that when t is 

separable then H(kt2, q’) is constant in the variable kt2. The equation for 

H is 

3 I2 3 qt2 -- 4L - ‘-Ii m H (kt2, q’) = I 

+ i/q”2dq” [ ai&. ~‘2+q’q” &I,~ ,,’ k,12 

q’2+ql’2~q’qll 

(Iv. 27) 

3 
-- 

4 
q t2 

2 3 ,2 I? 

tk” -p ;z- 

3q12 

_ 

4m 
k”2-; q’12, z & H (k”2, q”) 1 . 

Here I represents the inhomogeneous term. The square roots of the momentum 

arguments of f are dropped for simplicity. It should be clear that Eq. (IV. 27) 

is still general and remains valid whether or not t is separable. 

Now let us assume that Eq. (IV. 25) is valid, or at least that replacing the 

kernel by the separable term of the t matrix is a good approximation. Sub- 

stituting Eq. (IV. 25) into (IV. 27) we note the entire dependence involving 

kt2 3 t2 -- 
49 is carried by an f. Thus the f’s cancel on both the right and left. 

- 
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We are left with 

12 ‘2 t2 
H(k’2,q’) =%6(&- -e) f(k2-iqt2, z-i -&-)t(z-$5) 

+ 4 t(ze; ~.)~qt’2dq” [ -.& ;““‘q’ 7r - - q'2+q"2~q'qll 

2 3 2 3q12 "2 

-- 
&'I2 

-Ti: q’ ;z 4m k”2-; q’f2, z?&.-.-) 
2 H(k’12, q”) 

mz - kff 1 
(IV. 28) 

In examing Eq. (IV. 28) we see that neither the driving term nor the kernel has 

a kt dependence. Thus we have proved that when t is separable, H is con- 

stant in its k’ dependence. The one variable integral equation satisfied by 

H(kt2, qt) = H(q’) is 

t2 
H(q’) = --?$ 6(% - 

t2 
e k2-;q’2,z-;+ x2 

-4-G 
(IV. 29) 

‘x 

+4t z 3 qt2 

7r -4 m qft2dq” M (q’, q”, z) H (9”) 

where the kernel M is just 

1 

MU, s", z) =  2q,q,, 
s 

*I'2 

k"2~~q"2,z 3q"2 

4 4m 
qt2+q ” 2-q'ql' mz - kff 2 

(IV. 30) - 

-85 - 



The simplicity of Eq. (IV. 29) relative to the two variable comparison equation 

(IV. 27) shows how effective the separable assumption is in simplifying the 

problem. The one variable equation for H(q’) can be solved in a few seconds 

on computer, whereas the two-variable equation requires two orders of 

magnitude more time. Furthermore, the variable limit of integration in the ,- - s 
_ .interior--integral makes the two variable integral equation numerically difficult 

to handle. For these reasons no one has been able, until now, to obtain direct 

solutions for (IV. 27). 

In the appendix to this section, Appendix B, we present the formula for 

M(qt, qff , z) which results when simple separable potentials are used. 
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CHAPTER V 

NUMERICAL METHODS 

We will now describe the numerical techniques used to solve our one- and 

two -variable integral equations. The difficult equation is, of course, the two- 
s 

variable form, Eq. (IV. 2’7), of Faddeev’s equations-forthree identical particles. 
- - 

The kernel of this equation is itself a function which must be obtained by solving 

an integral equation. So let us turn first to the study of the easier one-variable 

integral equations. 

A. Quadrature Rules 

Our basic objective is to describe the techniques which allow us to approxi- 

mate an integral equation by a finite linear system which may be easily solved 

with a computer. Suppose the unknown function, f(x), satisfies the equation 
b 

f(x) = g(x) + .I- K(x,Y) f(y) dy, al x_< b w- 1) 
a 

Here it is assumed that both g(x) and K(x, y) are known functions. This discus- 

sion will also assume that a unique solution, f(x), does exist. This question of the 

existence of a solution can usually be examined a priori either with Fredholm -- 

theory or by showing that the kernel K represents a compact operator. The first 

step in transforming Eq. (V. 1) into a finite matrix problem is to replace the 

integral with a sum. 

Rules which approximate integrals by finite sums are called quadrature rules. 

The general form of these rules follows. Let the set, 

g(N) = [ yi : yi E (a,b), i 5 N/ 

5 a discrete set of N points on the interval (a,b) of integration. It is useful to 

write the integrand as a product of two factors w(x), h(x). All the singularities 
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and rapidly varying portions of the integrand are placed in w(x). On the other 

hand it is intended that h(x) be a smooth, singularity-free function with a rapidly 

converging Taylor series. With this notation we may now write down the general 

form of a quadrature rule. 
b N 

J h(y) WY) dy =- c h(yi) wi + gN(h)- - s w. 2) 
- a-- i=l 

The factor w(y) is usually called the weighting function, wi are the weights, and 

E N(h) is the error associated with this quadrature rule. The weights 1 
I 

wij are 

a set of N numbers, determined by requiring that cN(h) be small. Specifically, 

the weights may be calculated by requiring that EN@) = 0 for k = 0, 1, . . . ,N-1. 

That is, we calculate b 
Ik = f yk W(Y) dy 

a 

either analytically or by some numerical scheme for each integer value of k and 

then solve the linear N x N matrix problem given by 

'k 
k = y1 w1 + y;w2 +... +y; wN, k=O,...,N-1 (V. 3) 

for the w. . 
1 

Such a quadrature rule has a simple relation to the Taylor series expansion 

bf h(y). Let the series be written 

h(y) = 2 an Y” Y E (aA) 
n=O 

N-l 
= 

c anYn + RN(Y) (V- 4) 
n=O 

- 
where RN(y) is the remainder term. By definition of the wi the error term is 
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just 

fNth) = fb RN(Y) W(Y) dy w* 5) 
a 

Consequently the first N terms in the power series for h(y) are integrated 

exactly by our quadrature rule, Eq. (V. 2). 

A quadrature rule is considered acceptable if [‘zN(%) 1 <-a’, where 6 is some 
- - 

small positive number. For a given 6 we just increase N until the above in- 

equality is satisfied. For successful integration rules this value of N should 

be less than 10 or 20. 

Now let us convert Eq. (V. 1) into a matrix equation by using a quadrature 

rule to replace the integral term. Thus, we have 

N f(x) = g(x) + c K(X,Yi) f(Yi) Wi + gN(K(X, *)f(.)) 
‘ir-1 

(V. 6) 

This equation is valid for all x E (a, b). If we consider only the x given by the 

N point subset g(N) of (a,b) then Eq. (V. 6) becomes N equations for N unknowns 

f (yi). Assuming that the quadrature rule is accurate means tN(K@, 4% ,) < 6 

where 6 is small enough so that fN (K(x, . ) f(. )) may be dropped from the 

right hand side of Eq. (V. 6). The resulting N x N matrix equation is then 

N 
F(Xi) = g(xi) + 

c 
j=l 

K(Xi’ Yj) I wj 

We write a tilde over f to indicate that this equation is different from Eq. (V. 6) 

because of the neglect of tN(K(x, . ) f(. )) . The linear system represented by 

Eq. (V. 7) can easily be solved on a computer if N is not too large. Since the 

Emputational time required to solve this system is proportional to N3 it is im- 

portant to find the smallest N consistentwith not introducing intolerable errors. 
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B. Error Analysis 

The function eN(K(xi, . ) f(. )) is unattainable unless f(x) is exactly known; 

however, it is hopefully small when our integration rules are adequate. We now 

want to explore the consequence of neglecting EN( K(xi, . ) f(. )) . As above let 
^. 
f<x;) be the solution of the resulting matrix equation, and let us ask how close 

I ,- -  

_ f(xi) is to f(x), the exact solution. The equation satisfied by f(xi) is 

N 
f(xi) = gtxi) + C KtXi' Yj' f(Yj) Wj + 'N(K(Xi' .) f(. 1) . 

j=l 

Subtracting Eqs. (V. 6) and (V. 7) and defining the error in ? to be 

E(xi) = f(xi) - ?(x,) , 

then E(xi) satisfies the integral equation 

E(xi) = ~N(K(xi, . ) f(. )) f ~ K(xi, Yj) E(Yj) wj 
l 

j=l 

Thus the error is determined by 

N 
E(xi) = 

c 
[l - Kw];j’ cN(K(xj, . ) f(.)) 

j=l 

tv. 8) 

tv. 9) 

(V. 10) 

where [l - Kw&’ is the inverse of the matrix determined by 6 ij - K(Xi,Yi)Wj* 

Hence, if 1 EN(K(Xi 0 ) f(- ))I<<(g(Xi)l we can expect a small percentage error in 

replacing f(xi) by T(xi) . 

Once we have obtained f(xi) it is easy to find f for all x by using Eq. (V. 6) 

and neglecting the error term. This method of interpolating f is generally much 

xore accurate than linear or Iangrangian schemes. One note of caution should be 

made about neglecting EN(K(x, . ) f(, )). It often is the case that FN(K(x, . )f(. )) 
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is a cyclic function of x with minima at xi . So when the integral equation is 

used to interpolate f(x) the error may be considerably larger for a general point 

x than that for the points in $# (N). Jn spite of this, the integral equation is its 

own best interpolater. 

C. Treatment of Lippman-Schwinger Equation ,_ _ _ 

- If our- integral equation is the two-body Lippman -Schwinger equation of the 

separable one-variable three-body equation then the domain is the entire positive 

real axis. Consequently we need quadrature rules like Eq. (V. 2) but valid for the 

infinite interval [ 0, co). We obtain such rules by conformally mapping [ 0, oo ) into 

a finite interval, say [0, l), and then using Gaussian formulas for the finite inter- 

val. Specifically, suppose we want to integrate h on [O,co), according to the 

quadrature rule 
N 

wi h(xi) . (V. 11) 
i=l 

The problem is to determine wi and xi so that the approximation is the best we 

can obtain for N points. 

First we consider the map x -+y E [ 0, l] given by 

y =x =Y 
1+x’ x l-y’ 

The Jacobian is 
dx 1 
dy= 

(1 - Y12 
= (1 + x)2 2 0. 

Thus in the y coordinates our integral becomes 

- 

63 1 

J h(x) dx = h(x(y)) (1 - Y)-~ dy 
0 

(V. 12) 

(V. 13) 

(V. 14) 

Now Gauss’ method gives us an easy-way to do the integral on the right. This 
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method is constructed so that 
1 

J 
% 

F(Y) dy = z FtYi) ‘i 
0 i=l 

(V. 15) 

is exact for F in the class of polynomials of order 2N - 1 or less. Thus the 2N 

J free constants, (yI, y2, . . . . , yN, %I, . . . , % l , are choseg so that for 

-F= I ,l,y,y2, 
NJ 

. . . . y 2N-1) f , then Eq. (V. 14) is exact. These values of abscissa 

yi and weights wi are tabulated24 for many values of N 5 100. By using the 

Gaussian abscissa and weights appropriate to Eq. (V. 11) we obtain an integration 

rule for h(x), 00 N 

f h(x)dx =x h(xi)(l + xi)2 i$ (V. 16) 
0 i=l 

where the xi are determined by Eq. (V. 12) from yi. The weights for the quad- 

rature rule, Eq. (V. ll), are obviously, 

W. 
1 

= (1 + Xi)2 wi (V. 17) 

By using these techniques it is easy to turn the one-variable Lippman- 

Schwinger equation into a finite matrix equation. A typical example is the Lippman- 

Schwinger equation resulting from a Yukawa potential. In the boundstate region we 

can obtain t(p, q, z) with a percentage error characteristically smaller than . lo/c 

-if N is chosen to be 10. This is illustrative of the rapid convergence of the 

Gaussian quadrature rules. When the potential and therefore the kernel oscillate 

in sign, as in the case of a superposition of Yukawa potentials, then two to three 

times this number of points may be needed. 

D. Convergence of Separable Three-Body Problem 

- Now let us examine the convergence of our quadrature rules for the one- 

variable separable three-body problem described by Eq. (IV. 29). We 
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present the results in tabular form. The label Yamaguchi means that kernel M 

is derived from the Yamaguchi potential fitted to low energy N-P triplet scatter- 

ing data. The label Yukawa means that M is derived from the separable f’s 

coming from a Yukawa potential. The quadrature order is N 
TABLE 1 

s 
YAMAGUCHI +UtiWA - - 

5 - 4.54 - 4.93 
6 - 0.74 - 3.19 
7 - 0.11 - 0.63 
8 - 0.005 - 0.14 

10 - 0.002 --- 

The percentage errors quoted represent the error in determining the three-body 

boundstate energy. This table shows us we can do fairly well with just 7 points. 

This observation becomes crucial when we attempt to do the two-variable integral 

equation. 

At this juncture we should mention an alternate method of obtaining finite 

matrix equations which represent integral equations. If we know of a complete 

orthogonal basis we may expand the inhomogeneous term, the solution, and the 

kernel in terms of this basis. The integral equation is thereby transformed into a 

linear matrix equation for the coefficients of the expansion. Usually infinite matrix 

equations result and these are made finite by truncating the expansion for f(x) at 

some finite number of terms. Whether or not expanding in a set of basis functions 

is competitive in terms of computational ease and efficiency depends many factors: 

whether or not such a basis exists, how easily the basis functions are to obtain, 

if the expansion is rapidly convergent, whether or not the integrals determining 

tRe entries of the matrix kernel are easily done. As far as this author is aware 

there are no basis expansions for the-two-body Lippman-Schwinger equation that 

compete with the IO-point Gaussian quadrature method. Wong and Zambotti did 
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expand the numerator function, N(p, q, t) terms of powers of 

(-&$) and (-f&T) l. 
They claimed five terms in the series are sufficient for making accurate three- 

body calculations. This seems too optimistic a statement. We have done the same 
- - 6 

problem as they report in their paper but find the three-body boundstate 20% more - 

tightly bound than they report. Thus the question of the relative merits of discre- 

tizing the functions or expanding them in a series of function remains open. Our 

method of discretizing the variable dependence is successful for solving the three 

identical particle problem but is not powerful enough yet to solve a more realistic 

physical problem such as N-D scattering. 

In closing these comments on numerical methods for one-variable integral 

equations we should point out the following. Gauss’ method as used in Eqs. (V. 12) 

through (V. 17) are equivalent to expanding h (x(y)) (1 - Y)-~ in polynomials in 

y on [O,l] . Thus for an N th order quadrature rule we have the expansion 

2N-1 

h(x(Y)) (1 -YJq2 = C aiYi 7 Y E [OJI 
i=l 

Re-expressing this in terms of x gives 

h(x) = 

(V. 18) 

(V. 19) 

If x is thought of as p2 then this expansion is kindred to that of Wong and 

Zambotti’s. We see that choosing N =lO is equivalent to keeping 20 terms in the 

expansion, Eq. (V. 17). 

-94 - 



E. Discretization of the Two-Variable Integral Equation 

We now turn our attention to transforming our two-variable integral equation 

into a matrix equation. The basic form of our equation is 

x’2+xl’2+x’x” H(x,Y) = g(x,y) + ,/" s dx' 
2 2 

dy' W,Y;$~_'; z@(~',Y') , 
x’ +x” -x ‘x” - - 

(V. 20) 

We can discretize the x variable by the methods described above. However, the 

y variable presents quite a problem. The domain of the y’ integration is depend- 

ent on both x and x ’ . 

Let US proceed by first discretizing the x dependence by a quadrature rule 

of the type Eq. (V. 11). We have 

X 

H (Xi,Y) = g(Xi’Y) + 5 J 
x2+x2+x x i j ij 

W. 

J $+x2-x x 
dy’ K(xi,y,xj ,y’; z) H(xj,y) (V. 21) 

j=l i j ij 

J Suppose we have some discretization of y, say gy(Ny) = I yi: i = 1, . . . , NY 1. 

For NY a reasonably small number (20 or less) the average number of points 

inside the integration interval (xi! + xy - X.X., 
13 

x: + xixj) will be a fraction of 

NY and may frequently be zero. How can we have an accurate integration rule if 

we have no points at all in the interval over which the integration is performed ? 

The answer is that if the function to be integrated may be expanded in polynomials 

on some larger domain than the domain of integration we can construct Gaussian- 

like quadrature rules which use points outside the domain of integration. Interest- 

ingly enough, Maxwell 38 found when studying quadrature rules for triple integrals 

over a cubic domain that he was forced to choose values of the integration variables 
- 

outside the limit of integration. 
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Our procedure for obtaining integration rules for the y variable is as follows. 

We first assume some discretization of the y variable gy(Ny) . For ea 

pair we construct a separate quadrature rule. We seek weights such that 

x2 +x2+x x N 
1 

I- 
i j ij 

2x.x. 
1 J -x2,x2-x x 

dy’ Sij(y’,z) WY’) = 2 W j ,,-z jQ _F(YQ)- 
Q=l - i j ij 

ch i j 

(V. 22) 

where Sij(y’, z) will contain all the singular structure in the kernel. 

Although Sij(y’ , z) is singular, the singularities always lie outside the 

region of integration. Thus in extending the domain of integration outside the upper 

and lower limits we must be sure never to extend it so far as to include the singu- 

larities present in S. Basically, expanding the domain of integration assumes 

that Taylor series expansions of the integrand converge everywhere in the en- 

larged domain. Clearly when singularities of the integrand are encountered then 

the Taylor series will fail to converge. In practice it is found that using points 

very distant from the region of the upper and lower limits does not significantly 

improve the accuracy of the quadrature rule. 

Define the points in the enlarged integration domain to be the set 

I 
iQij’ ‘ij+l ’ * * ’ ’ ‘ij+nij;* 

The n.. 
13 

non-zero weights in our quadrature rule are determined by 

dy’ Sij(y’,z) yfr = 
I+. . 

1J 

(V. 23) 

The n.. 
1J 

integrals on the left are found by numerical integration. The resulting 

linear system is solved for the nij _ unknown weights 

I 

w(ij9 “)Q ) w(ijpz!, ,***, w(ij ) 
ij ij +l 

“)Q 

ij+n.. 
13 I 
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By definition if F(y’) is a polynomial of order n.. 
13 

- 1 or less then the quadrature 

rule is exact. Typically n.. 
iJ 

varies between 3 and 6, so we are not taking into 

account very many terms in the Taylor series for f(y’). It is the core size of the 

computer that forces us to work with such a small number of points for the y’ 

integration. The computer used, the Burroughs B5500, has available about 
F - v 

10, OOQ words of fast memory in which we can store the matrix which results for 

our discretization. From Table 1 we see that we can choose Nx = ‘7 for the outer 

x’ integration and expect about l/2% error to arise from this quadrature. Since 

the dimension of the final matrix is Nx X N we can have N = 15. With this 
Y Y 

arrangement there are generally one or two points in each y’ integration interval. 

Using enlarged domains the average number of points for a y’ quadrature rule is 

brought up to 4 or 5. 

In principal we could use all NY points for each ij integration that do not 

lie beyond the nearest singularities in the integrand. This is not practicable for 

the following reason. If we use many points outside the region of integration in 

our integration rule, then the resulting weights become very large and oscillatory, 

so that even the integral for F(y’) = 1 is a sum of terms whose first 8 or 9 digits 

all cancel out when summed. The finite word length of the computer, here roughly 

11 decimal digits, soon destroys the accuracy of the method. The 3 to 6 points 

used represents, then, a compromise which avoids large oscillatory weights yet 

provides enough points for an accurate quadrature rule. 

F. Accuracy of Three-Body Method 

A convenient check on the accuracy of this method is to use our quadrature 

rules to find the separable kernel M(qi, qj , z) by doing the intergral in 

-Eq. (IV. 30). If the ingredient f functions are derived from a Yukawa interaction 

then we find that all 49 matrix elements have errors less than 2% and all but three 

have errors smaller than lo/C. The maximum absolute error is less than 10 -3 . 
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For f functions that arise from Yamaguchi’s or Bander’s potential the accuracy 

is somewhat better. These results suggest the accuracy of-the y’ integration is 

sufficient. We expect, but can not prove, that the accuracy of the zero of the 

Fredholm determinant will be better than 2% because errors of different sign tend 

to cancel and 700/c of the matrix elements M(qi, qj; z) are determined to better 
,- - e 

than . lo/c. These error estimates will generalize to our two-variable integral - 

Eq. (IV. 27) provided that H(kf12, 9”) has only a mild dependence on kff2. We 

defined H with this goal in mind, and it turns out that when the eigenfunctions of 

Eq. (IV. 27) are calculated that the klf2 dependence of H is very nearly constant. 

An additional numerical check on the yf integration scheme was to add one addi- 

tional integration point to N . 
Y 

The additional point was placed in the intervals 

with the largest errors. If one of the matrix elements has a large error then the 

resulting energy eigenvalue should change when the extra point is added. No sig- 

nificant change(greater than . lo/C) was observed. Ideally, one would like to double 

the number of points as a check. The fixed core size of the computer however 

makes this impossible. This could be done by rewriting all the programs in order 

to use the larger core sizes of more modern computers now available. 

The most striking and convincing check on our accuracy comes from our 

attempt to repeat the results of Wong and Zambotti. Using a method completely 

different from ours, they give the boundstate energy for three identical particles 

interacting via a Yukawa potential, h (eBr/r) . For h = - 1.8 we can read off 

from their curve of boundstate energies versus the Yukawa coupling constant, h, 

the corresponding energy eigenvalue, s = Zm F - .25 F -2 . Our calculation for the 

same potential gives - .293. This 16% discrepancy is considerably more than 

al&wed by estimated error (- 1%) in our method and the 2% accuracy Wong and 

Zambotti quote. Recently Wong 39 has redone the calculation by a method different 
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from his previous calculations. 12 He expands the Lippman-Schwinger kernel, 

t@, q; z) in terms of the separable Sturmian functions. His new result for the 

above problem, with no quoted error estimates, is now - .295. This agrees very 

well with our result and the discrepancy of .70/c is in accord with what our error 

analysis leads to expect. He also finds for this case that including the higher ,- - 6 

angular momentum states increases the binding energy by less than l%, which 

justifies our only formal approximation of including only relative s-waves between 

the interacting pairs. 

Thus we conclude that our numerical method is adequate to solve three-body 

problems resulting from smooth non-oscillating potentials like the one term 

Yukawa interaction. We expect our results to have about lo/c error. 

- 
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CHAPTER VI 

RESULTS AND CONCLUSIONS 

In this section we report on the results of our numerical calculation of three- 

body boundstate solutions o As described in Chapter V we are able to reduce the 

three-body problem to a finite, solvable matrix problem if WE are dealing with 

the interaction of three identical spinless particles. Since our formulation is 

valid for any potential form our solutions are not limited to those arising from 

separable potentials 0 In the following we describe the boundstate spectra for two 

local potentials which have been extensively studied. 

A. Three-Body Boundstate Spectra 

We first present our results for a Yukawa potential. In accordance with the 

two-body angular momentum decomposition given in Appendix A, we can write 

the s-wave projection of the Yukawa potential in momentum space as 

v() (P, q) = 2pq -A Q. f’;i+q2) (VI. 1) 

Using this potential in Eq, (IV. 28) we have calculated the boundstate spectra as 

a function of A for a fixed value of p. The value of p is chosen from a fit of ~1 and 

A to low energy N-P triplet scattering data given by Preston. 40 This value of p 
-1 is 0 633 F . When the coupling constant, A, equals 1.58 we have a good fit of 

the Yukawa potential to N-P triplet force. Figure # 1 presents the boundstate 

spectrum associated with the two-body system. Here the scattering length is 

plotted against the coupling constant A. Each time the scattering length becomes 

infinite we have the introduction of one more two-body boundstate in the spectrum-- 

thus at A = -1 the first boundstate emerges while at h = -3.8 the second bound- 

state emerges. The value of the coupling constant appropriate for deuteron is 

noted by a dashed curve. 
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Figure # 2 shows the corresponding three and two-body boundstate energies 

as function of the coupling constant A. The ground state energy of the two-body 

system when plotted against h appears indistinguishable from a straight line. The 

linear behavior stems from the l/r portion of the Yukawa potential. If we assume 

Coulomb wave functions as a first approximation and use perturbation theory to 
,- - m 

calculate the shift in energy corresponding to a small change in A for the Yukawa 

potential, then the linear behavior noted above appears. The position of the two- 

body boundstate energy marks the beginning of the continuum in three particle 

system. Above this energy there can not be any three-body boundstates. Figure 

# 2 shows us that the three-body system is bound for a smaller value of the coup- 

ling constant that is the two-body system. These curves also show us that when 

the two-body boundstate emerges it is accompanied by a three-body state at a 

slightly lower energy s The behavior of all of these states is relatively linear 

until we get near the value of h at which a new three-body boundstate is found. 

Here, interestingly, the trajectory of the first excited state rapidly changes and 

continues along a linear extension of the first boundstate trajectory. From this 

point on the ground state of the three-body system binds roughly seven times 

more rapidly than before the appearance of the second excited state. Further- 

more, the second excited states seem to continue along an extension of the first 

excited state. All of this structure occurs for values of h that are less than twice 

the physical N-P. value. 

B. Boundstate Wave Functions 

In order to shed more light on this behavior we have calculated the bound- 

state eigenfunctions for various values of A. The physical function the eigenfunc- 

tl3ns represent is H(k2, q) described in Chapter IV. The reader will recall that 

H is defined such that if a separable term of the two-body t-matrix dominates the 

- 102 - 



-4.0 

-5.0 

GROUND STATE OF 
THREE BODY SYSTEM 

I I I I I I I I I I I I I I 

-0.6 -0.8 -1.0 -1.2 -1.4 -1.6 -1.8 -2.0 -2 2 -2.4 -2.6 -2.8 -3.0 -3.2 -3.4 -3.6 -3.8 -4.0 -4.2 -4.4 

COUPLING CONSTANT FOR THE YUKAWA POTENTIAL kiam 

FIG. 2--Binding energies of the J = 0 states of two and three spinless particles interacting 
via the S-wave part of a local Yukawa potential as a function of the coupling constant. 
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interaction then H will be nearly constant in the first variable k20 The eigenfunc- 
2 

tion is transformed into a wavefunction just by multiplying f(k 2 32 -4q , z -9 k) as 

in Eq. (IV. 26). We have calculated the wavefunctions for four values of A: - 1.4, 

- 2.4, - 2.6 and - 2.8. 

For all values of A the ground state has no nodes. The first excited state 
,- - m 

-has one and the second excited state has two. The eigenfunction for the weakest 

value of the coupling constant, - 1.4, is notably constant in the total energy vari- 

able k20 For portions of the wave function associated with small values of q, the 

independent particle energy, the variation of H(k2, q) over the whole range of 

k2 is never more than 30% For large values of q, where the wave is less than 

one one-hundredth of its maximum, the variation of H(k2, q) is still less than a 

factor of 3. This relatively constant behavior in the k2 variable is evidence that 

separability is working rather well for A = - 1.4. 

Now let us see what the wave functions tell us about the behavior of the bound- 

state spectra. Let us first examine the boundstate. Here, as is generally the 

case, all the significant variation of the wave function occurs in the individual 

particle momenta q. Thus we will describe the wave functions as if they were a 

function only of q. These wave functions are presented in Figs. 3, 4, 5. Ex- 

amining Fig. 3, which represents the ground state wave function, we see that as 

h increases the high momentum portion of the wave function, H(p, k), grows at 

the expense of the low portion: between - 2.6 and - 2.8 the growth is very fast, 

and for - 2.8 the wave function is almost constant except for the last two high 

momentum points. Clearly the Fourier transform in coordinate space will look 

like a delta function. This suggests the interpretation that for A < - 2.6 the 

ground state wave function has collapsed,, As a consequence the wave function 

sees only the l/r singularity in the Yukawa potential and its dynamical behavior 
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FIG. 3--Ground state wave functions of the three-boson system in 
momentum space for the Yukawa interaction. 
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FIG. 4--First excited state wave functions of the three-boson system in momentum 
space for the Yukawa interaction. 
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FIG. 5--Second excited state wave functions of the three-boson system 
in momentum space for the Yukawa interaction. 
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as a function of A is governed only by this singularity. Presumably before the 

discontinuity at A = - 2.6 the spatially more extended wave functions are governed 

by exponential structure of the potential. This explains then the different rates 

of boundstate binding before and after A = - 2.6. 

Now we want to examine why the first excited state for A < - 2.6 binds along 
,- - s 

-a linear extension of the ground state trajectory. If we look at Fig. 4, which 

shows the first excited state for the same four values of A as before, we see that 

the zero in the wave function for h = - 2.8 has moved out to N 10 F -1 o The in- 

terior portion of the wave function has almost exactly the shape of the ground 

state wave function for h = - 2 0 4. Thus the straight line along which the ground 

state and then later the first excited state lie is related to a simple wave function 

shape. This shape is just that of a momentum space wave function which is large 

only for small momenta -- any oscillation occurs only at large ( 2 10 F-) values 

of momenta where the wave function is small. 

This same story repeats itself for the nearly linear trajectory along which 

the first and second excited states lie. By comparing the second excited state at 

A = - 2.8 shown on Fig. 5 with the first excited state at A = - 2.4 we notice that 

except for the tail of the wave function they have the same shape. 

Finally Figs. 6 and 7 show the boundstate spectra for the two- and three- 

body systems which arise when the two-body interaction is the s-wave portion of 

an exponential potential. Figure 7 shows the three boundstates observed above in 

the exponential system. Here, however, the behavior of the boundstate trajec- 

tories do not show any rapid variations. Presumably this is because of the 

absence of the singular l/r portion of the Yukawa potential, and gives a quanti- 

Aative example of the general argument originally given by Thomas 41 for the 

finite range of nuclear forces. 
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C. Validity of Separable Approaches 

We now turn to our results which concern the validity-of separable approxi- 

mations 0 These results are summarized in Figs. 8 and 9. We test the separable 

approximation by asking it to reproduce the results of the Yukawa potential. This 

is accomplished by calculating the two-body boundstate energy and the scattering 
,- - - 

-length forthe Yukawa potential. We then fit the two parameters of the Yamaguchi 

potential so that the same two-body boundstate and scattering length is reproduced. 

The resulting separable potential is then used in a calculation of the three-body 

ground state energy. If the separable potential is a good approximation to the 

Yukawa potential then the three-body boundstate energies will be similar. Figure 

8 shows the corresponding boundstate trajectories for the Yamaguchi potential 

and the Yukawa potential. The conclusion is for potential strengths less than the 

triplet N-P force the Yamaguchi potential gives the boundstate energy correct to 

about 10 % or better 0 For potential strength greater than - 1.6 the Yamaguchi 

interaction rapidly diverges from that of the exact Yukawa solution. At A z - 2.3 

the Yamaguchi binding energy becomes infinite -- this value of the coupling con- 

stant is only 40% greater than the value for the N-P interaction. This tells us 

that we can expect the separable potential to give accurate results when the two- 

body force is roughly equal to or weaker than the N-P triplet interaction. 

Further, as Fig. 8 shows, we have repeated this comparison for Bander’s 

separable potential. Basically this potential is just the square root of the 

Y amaguchi potential 0 This means that potential will fall off more slowly in mo- 

mentum space than the Yamaguchi. However, this makes only a slight difference 

to the three-body binding energy. Thus all the conclusions given above about the 

Yamaguchi separable potential remain the same for Bander’s potential. 
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FIG. 8--Comparison of the binding energy of the ground state of three bosons as computed 
from the Yukawa interaction with various ‘separable approximations fitted to the 
same two-body binding energy and scattering length. 
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As discussed in Chapter III we have another separable approximation given 

by the Kowalski-Noyes representation. The resultant binding energies are also 

presented on Fig. 8. This approximation does not diverge for finite coupling con- 

stants but is unable to reproduce the rapid change in the binding rate that occurs 

ath z - 2.6. Here too the approximation is very good for weak forces and 
,- - m 

-gradually..deteriorates as the coupling constant increases. 

An additional measurement of the validity of the separable potential is rep- 

resented in Fig. 9. Here the exact solution, which we try to have the separable 

potentials reproduce, is that arising from the exponential interaction. We see 

that even for this non-singular potential the conclusions are identical to those 

already presented for the Yukawa potential. 

- 

- 113 - 



COUPLING CONSTANT FOR EXPONENTIAL POTENTIAL 

-2 -4 -6 -8 -10 -12 
I 

GROUNDSTATE- OF TWO 
BODY SYSTEM 

GROUNDSTATE OF THREE 
BODY SYSTEM 

YAMAGUCHI 
POTENTIAL 

BANDER 

-4.c 
856A2 

FIG. 9--Comparison of the binding energy of the ground state of three bosons as 
computed from the exponential interaction with various separable approxi- 
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APPENDIX A 

In this appendix we write out explicitly the partial wave projections we have 

used to reduce our momentum space equations of motion to that of a single variable 

radial form. The projections define the normalization constants of the resulting 

equations as well as defining the units. In the last portion of theippendix we give 

explicit formulas for transition amplitudes 

rable potentials. 

resulting from several standard sepa- 

Let 0 be an operator in the two-body Hilbert space, then our definition of 

the partial wave projection is 

where A denotes the direction of the momentum vector and 1-1 is the reduced mass. 

If [0,x] = 0 then 

0 QJlmm’ (p,q) = Opo?‘9) $1’ 6,,1 

and the above equation simplifies to 
m=!J 

c 
A A 

OQ (Ppq) yam @) YQml (y) 
m=-Q 

2 
K 

=- 
c 4T2P Q 

(2Q+ l)OQ@,q)pP($ - t, . (AZ) 

Throughout we will use the definition of Yam given by Edmonds. 

By using the partial wave projection given in (A2) we obtain the various par- 

tial wave equations given in the text. Here we will only go through the derivation 

for xe Schoedinger equation. Suppose GE: is the eigenstate of the Hamiltonian H 
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with an eigenvalue E. If K is the kinetic energy operator then we have 

H “l’E = (K+W+!J~ = EbE . 643) 

Taking expectation values between plane wave momentum states for the kinetic 

term gives us 

where <$I<> has been delta function normalized. The momentum space repre- 

sentation of Eq. (A 3) is 

Since we assume that [H,T] = 0, we can write for the wave function 

“I’E > = c 
Qm 

'~~6) $E,Q @) * (A 6) 

Using this and our partial wave projection Eq. (A2) we can write the potential termas 

c 
A 

vQ@,q) 

A 
‘Qm (P) y;mbi) 

m 
YQ’m’ &~~E,Q!(q) 

0 00 = $- c 'Qmk)j- q2 dq2 vQ@,q)+E,Q(q) * 

Q 0 
(A7) 

Here we have used the orthonormality of the YQmfs when integrated over dfi$ . 

By equating the coefficients of Y,,(p^) we obtain the partial wave form of the 

Schruedinger equation that we seek 

644) 

Kl 
2 

P 1c/,,~(P) + 
2 
F 1 q2 ds vQ@,q) $;,Q (9) = 9 +E,Q(‘) l 

(A8) 

0 Yl 
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Here p has dimension of inverse length and vQ has dimensions of inverse length 

squared. Dimensional consistency is maintained by treating -- 2 
J q dq as dimension- 

less. Analogous reductions are valid for the Lippman-Schwinger equation and the Low 

equation. These are given in Chapter III as Eqs.( III. 1) and (III. 21) , respectively. 

The particular partial wave projection given by Eq. (A 1) was chosen to give a I 

simple- form to the on-shell unitarity relation. We can quickly obtain this relation 

by taking the imaginary part of the on-shell version of the Low equation. From 

Eq. (III. 21) we have 

&)rn tQ(k,k;k2 +ie) = : 
tQ(k,k’; k12) tQ(k,k’; kt2) 

k2 k2dk . 

0 -kt2 + ie 

The integral in Eq. (A 9) may be done if we use the identity 

y& dx = -in S(x)dx +P$ dx. 

The principle value part is real and drops out leaving 

00 

/ 

6(k - k’) 1 tQ(k,k’; kf2 +ie) I 
2 

zdrn -in kf2dk1 . 

0 - (k + k’) 

649) 

(A 10) 

(A 11) 

Thus the on-shell unitarity relation reads 

drn t,(k,k; k2 + ie) I 
12 = +k tQ(k,k’; k + ie) I 

2 . t-4 12) 

By substitution it is trivially verified that the phaseshift representation of the 

on-shell amplitude, 

tQ(k,k; k2 + ie) = 
$Qtk) 

sin 6Q(k) , (-4 13) 
k 

satisfies Eq. (A 12) . 
- 
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We now want to derive the formulae for transition amplitudes resulting from 

a Yamaguchi potential. The Yamaguchi potential is defined as 

v (5,;) = 
(P2 + p2;(/32 + q”) 

(A 14) 

It should be noted that this separable form for the potential has n5 dependence on 
- 

$0 s^ . Thus the potential has only an s-wave part. 

Using Eq. (III. 33) we can write the half-off-shell extension function as 

fO(P,S) = 
v(p,k) -r + p2; 
v (k,k) - 2 

P +P2 
. 

The on-shell amplitude is given by Eq. (111.4). To get an analytic expression for 

Eq. (111.4) we need to do the integral 

- v(U) fo(q,k) = (A 16) 
We will need the on-shell amplitude only for s < 0. The integral is easily done 

by partial fractions and the result is 

For, k2 = 1 -sI and s E [-co ,Oj the on-shell t matrix is 

tOtkyk;s) =q) 

(A 17) 

(A 18) 

The off-shell t matrix is obtained by multiplying Eq. (A 18) by f,(p,k’) f,(q,k’) . 

ThUs- 
tO(P,q; s) = 

(p” + P2) (9” + 31;(l+ 2p( A+ $) 
(A 19) 
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If a! denotes the position of a boundstate pole then the boundstate condition is 

A = - 2p (a + p)2 < 0 . (A20) 

For reference we present the formulas for scattering length and effective range 

which may be obtained from Eq. (A 9) 

- $=$ (l+$), 
and 

r. =:(I-$-). 

(A=) 

(A=) 

The other separable potential we will need is the one used by Bander. Here 

the separable potential is defined as 

v(q,p) = 
4dF-7 

(A23) 

In this case 

6424) 

The integral in the denominator of Eq. (111.4) is 

00 

q2 dq 

0 p-A&q)= scoB 

The on-shell scattering amplitude for Bander’s potential is therefore 

tO(k, k; s) = 

The off-shell form is 
- A 

tO(P,q;O) = 
a-7 Jpz(p2(1+ p +- S 

9 s< 0 

6425) 

(A 26) 

6427) 
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From Eq. (A26) we see that the boundstate condition is 

A= -(P’ J-s,< 0 

Formulas for the scattering length and effective range are: 

a= p+ 
( ) 

$f -l 
,- - 

r. = - t 

- 

(A28) 

@29) _ 

(A 30) 
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APPENDIX B 

In this appendix we present algebraic formulae for the kernel M(q’,q”, z) 

occurring in the one variable separable version of the three-body problem. 

1. Kernel for the Separable Yamaguchi Potential 

The function for the Yamaguchi-potential is given by Eq. -(A 15) in Appendix A. 

using Eq. (A 15) and Eq. (IV. 30), M(q’ ,q”, z) is defined to be 

- 

q’2+q’T2+qfq” 
nyal”J) = & dk”2 (I z -;9’2j + p2)([z -;q”2( tp”) 

q’2+q”2q’q” ,“2-?!q’2 +~2),(k”2-$q”2 +p2)(z -k’12) 

For (Bl) 

k”2 E (q12 + q”2 + q’q”, qf2 + q’f2 

thus 

k,f2 and k,‘2 3 ‘I2 -- 4q 

For boundstate energies, z < 0, we have that M(q’,q”, z) is negative definite. 

Furthermore, it is obviously symmetric in q’ and q” which is a general property 

of M. Defining the following intermediate quantities, the function M may be written 

where 

~tq’A”,z) = D(cyT z) S(C1, C2) - S(CI, z) 1 (B2) 

= (x ‘_ y) Qn 

(B -x)(A -y) 
(A -x)tB -Y) ’ XSY 

S(X,Y) . tB3) 

D 
= (A-x)(B-y) ’ 

X =Y 

A = q’2 + q”2 - q’q” , B = q’2 + q”2 + q’q” , D = B-A 

, c2 = 

(,z _ fqt2-, +fi’;;:;qtt2, ;/j2) (W 

1 Ql 

and 

- 



II. Kernel for the Separable Bander Potential 

The f function for Bander’s potential is given by Eq. (A24). For this case 

M (q’ , q” , z) becomes 

q12+q"2+qIq" 

Wq',q",z) = & 
P q +q”2+q’q” J 

- 
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