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ABSTRACT 

Results of studies of selected radiative decays of the $’ to charmonium and 

non-charmonium states which decay into photons are presented. These studies 

were performed using a sample of 1.8 x lo6 produced $J”S collected by the Crystal 

Ball detector at the SPEAR electron-positron storage ring. 

In the first study, the branching ratios of the ~0, ~2, and $ to two photons 

have been measured to be (4.5 f 2.2 & 2.0) x 10e4, (9.5 31 2.9 f 4.5) x lOA (first 

errors statistical, second systematic), and < 1 x 10e2 (90% C.L.), respectively. (The 

statistical significance of the xc signal is slightly less than three standard deviations.) 

The signal from the decay chain $J’ + 7x0 , ~0 + ~-OX’ has been observed with 

essentially no background. Using the observed line shape of the radiative photon in 

this reaction, the full width of the ~0 has been found to be 8.8 f 1.3 f 1.5 MeV/c2. 

In addition, the branching ratios of the ~0 and x2 to 7r”ro have been measured to 

be (3.5 5 0.3 & 1.2) x 10m3 and (1.2 f 0.2 f. 0.4) x 10m3, respectively; the branching 

ratios of the ~0 and x2 to qq have been measured to be (2.8 i 0.9 f 1.3) x 10F3 and 

(8.4 f 4.2 i 4.0) x 10-4. 

In the second study, the decays of the $.J’ to four non-charmonium states have 

been investigated. The branching ratios and upper limits of these decays have been 

normalized to the branching ratios of the corresponding decays from the J/$ which 

have been measured using a sample of 2.2 x lo6 produced J/$‘s collected by the 

Crystal Ball detector. The ratios of the $+ branching ratios to the J/T+!J branching 

ratios for the final states yq, yq’, 70, and yf have been measured to be <1.8%, 

<2.6%, <lo-15%, and 9 + 3%, respectively. (Upper limits are 90% confidence level. 

The upper limit for the radiative decay to the d is poorly determined due to the 

uncertainty in the f’ contribution in the J/y5 data.) 

These results are compared with the theoretical expectations of lowest-order 

quantum chromodynamics potential models. Substantial disagreement is found 
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between theory and experiment for the ~0 two photon branching r io and full 

width, and the ratio of branching ratios upper limits for the 77 and 7~’ I 1 states. 
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Chapter 1 

Introduction 

Since its discovery, the group of particles known as the charmonium family has 

been the object of intense experimental and theoretical investigation. Simply the 

existence of the lowest-lying member of this family produced in et-e- collisions, the 

J/7j(3095)p21 was taken as striking evidence of the charm hypothesis of Glashow, 

Iliopoulos, and Maiani. 13*41 The decays of the J/$J have since received considerable 

attention. In particular, studies of the radiative decays of the J/$ have led to 

several important discoveries.[596,7l 

The more massive charmonium states which have been observed below open 

charm threshold have not been studied as extensively, partly because some of them 

(the x states and the singlet vc and Q: states) do not have the same quantum 

numbers as the photon and so cannot be directly produced in high-energy e+e- col- 

lisions. The only charmonium state other than the J/T/J below open charm threshold 

produced in e+e- collisions, the $(3685) (or $‘), has been studied primarily due to 

its decays to other states. The $’ has several charmonium decay modes which are 

not available to the J/g, but the mechanism responsible for its non-charmonium 

decays is expected to be the same as that of the J/G. 

However, it is by virtue of the fact that there exists a family of closely-related 

particles that many of the uncertainties in predicted widths and decay rates can 

be removed. We wish to compare experimental measurements with the predictions 

1 
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of the candidate theory of strong interactions, quantum chromodynamics, or &CD. 

Typically, QCD predictions rely on some parameters which must be supplied from 

experiment, since the hadronization process of gluons to observable particles is 

not understood. In the charmonium family, phenomenological parameters obtained 

from the study of one state can be used to make theoretical predictions of decay 

rates for other states in which no adjustable parameters remain. In particular, 

potential model calculations, using as input the known energies of the J/T) and 

$9, can be used to calculate the full widths and two-photon partial widths of the 

intermediate x states. Also, the branching ratio of the J/T+!J to a given final state 

can be used to predict the branching ratio of the TJ to the same final state. 

In this report we describe an investigation of the radiative decays of the $,’ to 

both charmonium and non-charmonium states using a sample of 1.8 x 10' produced 

$“s collected by the Crystal Ball detector. Inasmuch as the Crystal Ball has ex- 

cellent energy and position resolution for photons, we have chosen to study those 

decays which contain only photons in the final state. Due to the odd C-parity of 

the $+, all-photon final states typically contain an odd number of photons* and are 

of the form 

7 + 77-m’ + nq WI 

Thus, by selecting a sample of all-photon decays we are assured of having a large 

fraction of radiative $.J’ decays.? In the category of charmonium decays, all-photon 

radiative decays include $’ --+ 7x0,2, x0,2 t 7r”~‘,yr, and ~7. The signal of the 

decay 4~’ -I 7x0 , xo + 7r”no is sufficiently free from background that we have used 

it to make a measurement of the full width of the ~0. We have also set upper limits 

for the decay qi + 77. 

* Exceptions are decays in which one of the intermediate decay products decays weakly, i.e., 

G’ --+ 40, d - K;K;. 

t Note that some decays of the form of reaction [I.I] may not be radiative decays of the $9 

(such as $’ -+ WT~T~,W -+ 7~‘). 
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In the category of non-charmonium decays, we have measured the branching 

ratios / upper limits of the decays $+ --+ 7 f, T/J’ -+ yB, $’ -+ yq, and +’ --+ Yrl’. 

Since the quantities of most interest are the ratios of these branching ratios to the 

branching ratios of the same final states from the J/$, we have performed a parallel 

study of J/t/b d eta y s using a sample of 2.2 x 1O’j produced J/$‘s taken by the Crystal 

Ball in virtually the same configuration as that used to take the v,!J’ sample. This 

allows us not only to check the results of our analysis against J/T+!J branching ratios 

measured in previous experiments, but also reduces the systematic errors in the 

ratios of branching ratios. 

Since the decays under study have been selected to exploit the unique capabil- 

ities of the Crystal Ball detector, we begin in Chapter 2 with a description of this 

device. In Chapter 3 we describe the analysis techniques which have been devel- 

oped to study all-photon decays. In Chapters 4-6 we describe applications of these 

techniques to studies of all-photon decays and review the theoretical expectations 

for the decay channels we have studied. Chapter 4 details the study of decays to 

charmonium states. Chapter 5 describes the study of non-charmonium decays ac- 

cessible to a standard exclusive analysis, namely, J/T/I, +-+rf and y8 . Chapter 6 

describes non-charmonium decays studies via the “global shower technique” which 

was developed to examine the decays J/G, $J’ -+ 7~ and 7~‘. Chapter 7 summarizes 

our results. 
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Chapter 2 

The Crystal Ball Detector 

2.1 SPEAR 

All the data used in these investigations were collected by the Crystal Ball while 

installed in the east pit of the SPEAR electron- positron storage ring. (See Fig. 

2.1.) This facility was operational in April 1972 and was the first e+e- storage ring 

with sufficient energy and luminosity to search for narrow resonances between 3 and 

5.6 GeV. The ring was renovated during the summer of 1.974 to accommodate two 

additional rf cavities (bringing the total to four) so that center-of-mass energies up 

to 7.4 GeV could be attained.[ll The ring consists of ten standard cells (for bending 

and focussing the beam) and two insertion cells in which the beam parameters can 

be optimized to obtain large luminosity at the intersection points. The electrons 

and positrons orbit in opposite directions in the same evacuated beam pipe. Each 

beam is concentrated into a single bunch with transverse dimension 1 mm and a 

Gaussian longitudinal density distribution with a o of z 3 cm. 

The circumference of the ring is 234.4 meters. I21 Since the beams travel at 

virtually the speed of light, the orbital frequency is 1.28 MHz so that the beams 

collide at a given intersection point every 780 ns. As the bunches circulate, they 

give off synchrotron radiation at a rate ofi 

u- 4~ re Eb4 __-__ 
3 (mc2)3 P 

WI 

5 
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Fig. 2.1 Schematic representation of the SPEAR storage ring. 
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where U is the energy loss per turn, T, and m are the classical radius and mass 

of the electron, .& is the beam energy, and p is the bending radius of the storage 

ring. At SPEAR, this works out to be 1.2 MeV per turn at Eb = 1.8 GeV. This has 

several consequences. First, the quantum fluctuations in this radiation introduce 

a spread in the energy of the beam M 1 MeV. Thus, the spread in the energies of 

the beams is far larger than the exceptionally narrow widths of the J/G and $J’. 

However, this spread is a small fraction of the mass of the J/t) or G’ , so it can be 

assumed that these particles are produced at rest. 

Second, this synchrotron radiation induces a transverse polarization in the 

beam. In the absence of depolarizing effects, this polarization builds up expo- 

nentially with a time constant given byi 

T 0 =98secx ff-g 
E; P 

P.21 

where p and Eb are as defined previously (here measured in meters and GeV, respec- 

tively), and R is the circumference of the ring divided by 2n (measured in meters). 

Using the SPEAR parameters, this yields a time constant of approximately 8 hours 

at the $’ energy, which is long compared to the average time between fills of two 

hours. Thus, we may treat the beams as unpolarized for the purposes of calculating 

angular distributions. 

Finally, the flux of synchrotron photons is important to the experimental ap- 

paratus, since NaI(T1) ( f h’ h 1 o w rc a arge part of the experiment is constructed) can 

be damaged by radiation. The integrated dose on the main detector was measured 

to be M 300 rad during the entire time the Crystal Ball was at SPEAR.i51 (This 

includes periods in which SPEAR was run solely to produce synchrotron radiation 

as well as high energy physics running.) The energy response and uniformity of 

that section of the detector closest to the beam line was measured several times 

during this period; no radiation damage was noted. 
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The Crystal Ball detector in its SPEAR configuration consisted of three main 

components: 

1. Inner chambers for charged particle tagging and tracking, 

2. Two hemispheres of NaI(T1) crystals, 

3. Supplemental detector components including a luminosity monitor and endcap 

NaI(T1) arrays. 

Figure 2.2 shows the arrangement of these various components. We describe 

each below. More detail can be found in the references.1’171 

2.2.1 Inner Detector 

The function of the inner detector was to identify charged particles (tagging) 

and measure their directions (tracking). (N o measurement of the sign of the charge 

of a particle was possible since there was no magnetic field.) In order to make 

maximum use of the limited space available inside the NaI(T1) hemispheres, three 

sets of cylindrical chambers were installed with varying lengths dictated by the 

geometrical constraints. The inner and outer sets consisted of spark chambers, 

while the middle set consisted of multiwire proportional chambers. (See Fig. 2.3.) 
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The following table summarizes the configuration of the inner detector: 

Beam Pipe 

(Aluminum) 

Chamber 1 

Chamber 2 

Chamber 3 

Inner Ball 
Shell 

Type 

- 

Spark 

MWPC 

Spark 

Distance 

from Beam 

59 mm 

79 

100 

137 

254 

Solid Angle % Rad. 

Coverage Lengths* 

100 % 1.9 

94 2.0 

83 0.35 

71 2.0 

94 4.3 

*Normal Incidence 

Table 2.1 Parameters of inner detector. 

Each set of spark chambers contained two double gap chambers, giving 8 spark 

chambers total. Each layer of the spark chambers consisted of 0.3 mm diameter 

wires separated by 1 mm which were read out by one magnetostrictive wire perpen- 

dicular to the wires. Thus, each layer could give one angular coordinate of a track, 

but there was no way to establish a correspondence between coordinates measured 

by one layer with the coordinates measured by another. In order to reduce these 

combinatorial ambiguities, the chambers were wound with varying pitch angles. 

The two multiwire proportional chambers181complemented the spark chambers 

in that they were less noisy and did not need to be pulsed; for these reasons they 

were included in the trigger logic. However, their spatial resolution was inferior to 

that of the spark chambers, and as such they were not used in the determination 

of the directions of charged tracks. Each chamber consisted of a stripped cathode 
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OUTER CHAMBER WIRES 

LPLAIN CATHODES FOR 
BOTH CHAMBERS 

INNER CHAMBER WIRES 

/- ETCHED INNER CATHODE 

(b) 

Fig. rZ.3 Central tracking chambers. (a) Multiwire propor- 

tional chambers. (b) Spark chambers. 
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plane and 144 signal wires. Again, in order to reduce possible ambiguities, the 

strips of the cathode plane were constructed at different angles (62’ and 90’) to 

the beam axis. In addition to the spark and multiwire proportional chambers, a 

layer of proportional wire tube chambers was installed inside the innermost spark 

chamber for the second half of the $’ data taking (i.e., those data taken during 

1981). These chambers were for test purposes only and were not used for either 

tagging or tracking. However, they did add 1.3% radiation lengths of material 

through which photons had to pass and so increased the conversion probability. 

In the present analysis we study final states containing no charged particles. 

Thus, we do not use the tracking capabilities of the chambers but rather use them 

only to reject events which contained one or more tracks tagged as charged. The 

specifics of the chamber design affect the cuts used in the analysis only in the solid 

angle limit which is determined in part by the angular coverage of the chambers. 

We reject any event which has a track beyond 1 cos 8/> 0.90 (where 6 is the angle 

between the track and the beam direction). The efficiency of the chambers in 

determining the charge of a track enters the Monte Carlo efficiency calculations 

and is discussed in Appendix B. 

2.2.2 Main Detector 

The main detector consisted of 672 thallium-doped sodium iodide (NaI(T1)) 

crystals, each of which was triangular in cross section and 16 radiation lengths 

long. (See Fig. 2.4.) NaI(T1) was chosen as a photon detector due to its superior 

energy resolution and high detection efficiency over a wide range of energies. As 

discussed in Appendices A and B, the energy resolution for photons as measured at 

SPEAR is well-described by the relation 

UE -= 
E E( G:V)‘14 P-31 

where 00 = 2.4-2.801 Also, the angular resolution for photons is expected from 

Monte Carlo studies to be between one and two degrees, depending on energy. 
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This is consistent with the angular errors determined from kinematic fits to well- 

constrained final states. (See Appendix B.) 

During the assembly of the Ball, each crystal was alternately sanded or polished 

as necessary to achieve a uniform response to a Cs13’ source placed along its axis.* 

Next, the crystals were wrapped in 0.005 inch thick paper and 0.0005 to 0.0015 inch 

thick aluminum foil to achieve optical isolation. The crystals were then stacked in 

two hemispheres in a, projective geometry so that a line drawn from the center 

of the hemisphere to the face of a crystal would lie parallel to the axis of that 

crystal. NaI(T1) is extremely hydroscopic and becomes discolored when exposed 

to even small levels of humidity. For this reason, each hemisphere was sealed in a 

metallic “can” which again had the shape of a hemispherical shell. For additional 

protection, the entire assembly was placed in a dryhouse in which the temperature 

and humidity was carefully controlled. Each crystal was viewed by an individual 

phototube through a 0.5 inch thick window and a two inch air gap. 

The two hemispheres were installed above and below the SPEAR beampipe. 

The hemispheres were controlled by a hydraulic system so that they could be closed 

during normal running or moved away when the detector was not taking data (for 

instance, during synchrotron radiation running) in order to reduce the radiation 

dose on the NaI(T1) crystals. The two hemispheres were not flush when in the 

closed position but rather were separated by a gap of 3.5 to 8.0 mm, depending 

on the radial distance from the center. This gap can be seen, for instance, in the 

angular distribution of e+e- + 77 events (Fig. B.16). Crystals on either side of this 

gap are called “equator modules”. In addition, there were gaps in each hemisphere 

to allow openings for the beam pipe and connections to the inner detector to enter 

and exit. (The missing volume is equivalent to 24 crystals for each opening, or 48 

crystals total.) These gaps are called “tunnels”, and the crystals surrounding the 

* This process is referred to as ‘compensation”. The response curve of a crystal to a Cs137 

source placed at various points along its axis is called a “compensation curve”. 

WI 
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Fig. aZ.4 Typical Crystal Ball crystal. 

gaps “tunnel modules”. 

Figure 2.5 shows two schematic representations of the main detector. Figure 

2.5(a) shows the main Ball in its actual shape with each crystal represented by 

a triangle. Figure 2.5(b) h s ows the inner surface of the Ball in a Mercator-like 

projection onto a plane. This representation is more convenient for event displays 

in which a number can be displayed in each crystal denoting the energy (in MeV) 

deposited in it. In both representations we have shown the directions of the same 

Cartesian coordinate system with the z axis parallel to the positron direction, the y 

axis pointing to the center of SPEAR, and the x-axis completing a right-handed sys- 
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tern. The center of this coordinate system coincides with the interaction point. Any 

reference to Cartesian coordinates refers to this coordinate system unless otherwise 

indicated. 

Some aspects of the crystal stacking have implications for data analysis. Specif- 

ically, some fraction of the energy of a shower which begins in a tunnel module 

may propagate into the tunnel and so be lost. Also, some of the tunnel modules 

have a somewhat smaller volume than the rest of the Ball modules due to geometric 

constraints in the tunnel region. Thus, energies in these crystals will not in general 

be as well measured as those in other crystals. The same comments apply to the 

equator modules, although the effects are not as large. 

The geometry of the individual crystals also determines to some extent how the 

data are analyzed. When calculating the energy in a shower, we can take as a first 

approximation the sum of the energy of the crystal with the largest energy and the 

energies of the crystals in some “neighborhood” of this crystal. Figure 2.6 shows 

schematically a small section of the Ball as viewed from the interaction point. As all 

crystals have a triangular cross-section, a given crystal (marked “*“) shares an edge 

with three crystals (dark shading). In addition, it shares a vertex with 9 crystals 

(light shading). The shaded crystals make up the set of 12 “neighbors” of *, while 

the three darkly shaded crystals are the three “nearest neighbors” of *. Given the 

Moliere radius of NaI(T1) (Z 4 cm), a useful neighborhood for the calculation of 

energies is given by the twelve neighbor crystals. The energy so obtained is called 

the sum of 13 energy and is discussed further in the next chapter. 

2.2.3 Supplemental Detector Components 

In order to extend the solid angle coverage of the detector beyond 94010, four 

endcap arrays of NaI(T1) crystals were added which brought the total solid angle 

coverage to 98% .[“lEach endcap array consisted of 15 crystals which were hexagonal 

in cross-section with a maximum diameter of six inches. The majority were 20 

radiation lengths long and were used in a previous SPEAR experiment.[l’lThree 
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Fig. 2.5 

(b) 
Schematic representations of the main detector. (a)Actual 

shape. (b) M ercator-like projection. 
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12-84 

5005Al 

Fig. 2.6 Small section of inner surface of Ball. 

crystals in each array were shorter (10 radiation lengths long). Each endcap array 

was preceded by two double-gap spark chambers for charged particle tagging and 

tracking. The endcap arrays were not used in any of the analyses described here 

except to veto those events which had a track in the endcaps, indicating that one 

or more particles had escaped the main Ball. 

The luminosity monitor consisted of four arms, each with an aperture- 

defining scintillation counter and a shower counter, placed symmetrically about 

the interaction point. llll In such an arrangement the luminosity as measured by the 

sum of the rates in the four counters is insensitive to displacements in the interac- 
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tion point to first order. The luminosity is determined by dividing the measured 

rate by the calculated Bhabha cross-section (integrated over the area of the scin- 

tillation counters). The accuracy of the luminosity measurement is estimated to 

be f4%. A comparison of the luminosity measured by the luminosity monitor and 

the luminosity measured by the e+e- + e+e- and e+e- + 77 rates in the main 

detector found agreement to within f3%.11’l L uminosity measurements affect the 

final results obtained in this work only through the determination of the number 

of hadronic continuum events which were subtracted from the observed number of 

continuum events to yield the number of resonance decays.171 

2.3 Electronics and Data Acquisition 

The signals from each of the phototubes in both the main Ball and the endcap 

arrays were sent individually to the control room, along with signals from the mag- 

netostrictive wires in the spark chambers, the cathode strips and sense wires in the 

MWPC’s, and the signals from the luminosity monitor. The phototube pulse was 

divided so that it could be simultaneously presented to both the trigger logic and 

the integration circuits (to be described below). The analog sums of the pulses from 

groups of nine crystals were formed for use by the trigger logic. Various triggers 

could be formed with these sums, but the only one needed for this study was the 

total energy trigger. This trigger fired when the sum of the signals from all groups 

of nine crystals passed a certain discriminator threshold. This discriminator was set 

to generate a trigger when a signal corresponding to roughly 1260 MeV of deposited 

energy was received. This is far below the software threshold of M 3100 MeV and 

2500 MeV for the $’ and J/T/Y data, respectively. 

The other part of the phototube signal was presented to the input of two RC 

circuits. In order to increase the dynamic range of the system, one RC circuit was 

preceded by a resistive divider which reduced the pulse by a factor of 21. Thus, to 

each crystal there corresponded two electronics channels, designated low and high, 

which integrated the pulse with and without reduction, respectively. If no hold was 
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received from the trigger logic, the charge on the capacitors was allowed to leak 

away so that virtually none remained at the time of the next beam crossing. If 

the trigger logic detected a valid trigger, a hold pulse was generated at M 380 ns, 

corresponding to the peak of the integrated signal. t Upon receipt of the hold pulse, 

an FET switch was opened, isolating the capacitor from the rest of the system. 

Under computer control, the voltage on these capacitors was presented one at a 

time to the input of a single ADC which digitized the signals and stored them for 

a later DMA transfer to the online computer. 

Data taking and monitoring of the experiment were supervised by a PDP- 

11/55T.1131The highest-priority task was servicing interrupts from the experiment 

and writing the received information onto magnetic tape. After September 1979, 

the data were “compressed” by writing only those crystal energies above a thresh- 

old of w 100 keV to tape. One in every 128 events was written uncompressed. In 

addition, selected events were processed through a “pipeline” which allowed various 

quantities (total energy, position of hits in the spark chambers, angular distribu- 

tion of Bhabha events, etc.) to be monitored in real time. Other functions could 

be selected at the experimenter’s discretion. 

2.4 Data Rates 

SPEAR typically delivered luminosities of 0.5 x 103’ cm-2sec-1 and 1.5 x 103’ 

cm-2sec-1 at the J/T) and $+ energies, respectively. The trigger rate was typically 

2-3 Hz, of which 1 Hz and 0.5 Hz, respectively, were due to resonance decays on 

the J/t) and $‘. (The remainder of the triggers were due to non-resonance physics 

and cosmic ray and beam gas background.) The deadtime at this rate was lo-15%, 

attributable mainly to the dead time of the spark chambers. 

i The maximum of the signal was sufficiently flat that a variation of 45 ns in the time of the 

arrival of the hold pulse corresponded to a 1% variation in the level of the integrated signal. 
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2.5 Particle Signatures 
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Particle identification is performed primarily using the NaI(T1). Low-mass par- 

ticles which have electromagnetic but no nuclear interactions (y’s, e+‘s, and em’s) 

initiate electromagnetic showers upon entry into the crystals and deposit virtually 

their total energy into crystal lattice excitations which are eventually converted 

into light by the thallium trapping centers. Muons, on the other hand, are too 

massive to initiate a shower, and instead interact with the crystal via ionization 

only. They deposit roughly 200 MeV in one or two crystals. Interacting hadrons 

b *‘s ,K*‘s) are intermediate between the two cases. They may pass through the 

entire crystal without interaction and deposit minimum ionizing energy much like 

a muon. Alternatively, they may undergo a nuclear interaction in the crystal and 

leave an irregular energy deposition whose distribution depends on the trajectories 

of the nuclear fragments. (Some remnants may even backscatter and leave showers 

in the opposite hemisphere.) 

In this study we have chosen to concentrate on those decays in which all of 

the final state particles are 7’s. In this case all of the energy of the final state 

particles is deposited in the NaI(T1) so that we can demand conservation of energy 

and momentum. These constraints not only allow us to better determine the final 

state four-vector’s, but also provide a powerful discriminator against background. 

As we shall see, we can exploit the ability to observe all of the energy in the final 

state to identify even those decays in which overlap of the 7’s makes identification 

of the individual four-vectors impossible. 
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Chapter 3 

Data Samples and Data Production 

3.1 Data Samples 

All data used in this study were taken with the Crystal Ball detector during its 

residency at SPEAR (1978-1981). The detector remained in the same configuration 

during this time except for the minor changes to the inner detector noted in Chapter 

2. The beam conditions were also substantially unchanged during this time except 

for the 1981 $I’ run during which a wiggler magnet was used to store more current. 

All three datasets were produced with the same offline code (described below), 

although the cuts used in the production program varied. (These variations had no 

effect on the efficiency for detection of the events considered in this study.) Table 

3.1 compares the three datasets. 

3.2 Offline Production 

The standard offline production consists of five steps, described briefly below. 

More information can be found in the references.il.‘] 

The first step calculates the energy deposited in each crystal from the ADC 



3.2 Ofline Production Page 23 

Number of Events 

Accumulated 

During 

Luminosity (nb-l ) 

Produced 

I-- 
Resonances 

$,’ 

Fall ‘78 

Spring ‘79 

Fall '81 

3351 

1.8 x 10" 

JM 
Fall ‘78 

Spring ‘79 

Fall ‘80 

771 

2.2 x 10” 

9’ 
Winter ‘79 

1776 

Table 3.1 Datasets used in this analysis. 

counts according to the simple formula 

E xtal = ( Chigh channel - Phigh channel ) * Ratio * Slope if 

c high channel > 350 or 

c low channel > 7000 

= (C low channel - plow channel) * Slope otherwise 

WI 

where Chigh channel and claw channel denote the number of counts in the digitized sig- 

nal of the high and low channels corresponding to the crystal in question. The other 

parameters are calibration constants as defined in Appendix E. The low channel - 

high channel breakpoint corresponds roughly to an energy of 140 MeV. 

In order to facilitate identification of energy depositions, the second step groups 

crystals into “connected regions”. A connected region is defined as a contiguous set 

of crystals each containing more than 10 MeV. Two crystals are contiguous if one 

is contained in the set of twelve neighbors of the other. Figures 3.1 and 3.2 show 

a typical J/G event with three connected regions in the Mercator-like projection of 

the main detector described in Chapter 2. The sum of the energies of the crystals 

in each connected region is shown in the column headed “ECR”. (Connected region 
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2 is listed twice.) 

Page 4 

Two or more showers may of course overlap and form one connected region. 

The third step assigns the crystals in a connected region to one or more shower 

maxima (called “bumps”) according to the following algorithm: 

1. Initially mark all crystals as unflagged. 

2. Find the unflagged crystal with the largest energy deposition in the connected 

region and label it the “bump module”. 

3. Get the three nearest neighbors and flag them as associated with this bump. 

4. Sum the energies in the central crystal and its three neighbor crystals to form 

a preliminary bump energy. 

5. Flag other crystals which are associated with this bump by the bump discrim- 

inator function: If 

E xtal < Bump - 
0 72e-9.4(1-COS 8) and 15” < 0 < 45’ 

or P.21 
e < 150 

(where 8 is the angle between the bump module and the crystal being tested), 

then the crystal is assigned to this bump. 

6. If any unflagged crystals are left in the connected region, go to 2. 

The bumps algorithm was derived empirically by examining the distribution of 

bumps in a sample of $,’ events. It is used in the production of all Crystal Ball 

data, most of which contain interacting hadrons (unlike the clean events considered 

here). In the event shown in Figures 3.1 and 3.2, the bumps algorithm found four 

bumps. In this work, we use “track” interchangeably with “bump”. 

The fourth step processes data from the chambers. The first phase of the 

algorithm attempts to construct tracks from the chambers alone. Starting from 

the collision point, the spark chambers are searched for lines of sparks emanating 
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Fig. 3.1 Event display from J/$ dataset. 
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Fig. 3.2 Event displayed in Fig. 3.1 showing connected regions 

and bump modules. 
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from roughly z=O. The minimal criterion for defining a trajectory is a hit in each 

chamber in one of the planes parallel to the beam and a hit in each chamber in 

one of the planes at an angle to the beam. Tracks defined in this way are termed 

“IR” tracks and are assigned directions derived from the tracking chambers. If the 

track points to a bump in the Ball, the track is assigned the energy of the bump. 

If, as occasionally happens, the track points to a region of the Ball which contains 

no energy, it is termed a “zero-energy IR” track. 

In the second phase, the algorithm uses any remaining unassigned hits in the 

chambers to tag remaining bumps. A line is drawn from any bump which has not 

been flagged as charged to the event vertex. Both the spark chambers and the 

MWPC’s are searched for hits which lie in a small angular interval about this line. 

If two or more hits are found within this cone, the bump is tagged as charged. The 

direction of the resulting charged track is determined by the bump direction cosines. 

The final step calculates an energy and a direction for each bump. Two estimates 

are made of a bump’s energy. The first, the “sum of 13 energy”, or E13, is the 

unweighted sum of the energies of the bump module and its twelve neighbors. Two 

corrections are made to this sum. First, a shower may not be contained in the 

volume of 13 crystals. The fraction of energy of a shower which leaks outside the 

13 crystals has been estimated from Bhabha studies to be 2.25%. Second, it is to 

be expected that the measured energy of a shower depends on where the incident 

particle enters a crystal. Specifically, some of the energy of a shower which is 

initiated close to the edge of a crystal will more likely be lost in the interstitial 

spaces and wrappings between the crystals than a shower initiated at the center. 

A crude measure of how close to the center of the central module the incident 

particle entered is given by the ratio of the energy in the central module divided 

by the sum of 13 energy, or Emaz/Cizl Ei . F’g 1 ure 3.3 shows the variation of the 

(uncorrected) energy of a track (normalized to the beam energy) as a function of 

Em,,/ Eiz, Ei for a sample of e+e- + e+e- (QED and resonance decays) and 

e+e- --+ (y)rr events from the $’ dataset. Overlaid on this graph is a plot of the 
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Fig. 3.3 Em,,/ x& Ei VS. Ciz, E;/Ebeam for e+e- + e’e- 

(QED and resonance decays) and e+e- + yr events 

in +’ dataset. 

position correction function (PCORR) w K is used to correct for this effect. (The h’ h 

position correction is actually the inverse of this function and so is always greater 

than or equal to unity.) The corrected sum of 13 energy is then 

E13 f * 1.0225 * PCORR(E,,,, 5 Ei) 
i=l 

l3.31 

It should be borne in mind that the sum of 13 algorithm does not attempt to 

separate overlapping showers. If the neighbors of two bump modules overlap, the 

energy in the common crystals will be double counted with the consequence that 

the energy of each of the two bumps will be overestimated. 
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The estimates of the direction cosines and the second estima.te of the shower 

energy (the “ESORT” energy) use the expected shape of a shower derived from 

Monte Carlo studies. The bump module is conceptually divided into 16 submodules. 

(See Fig. 3.4.) Under th e assumption that the particle entered a given submodule, 

one can predict the expected fraction of the total energy of the shower which.would 

be observed in each module in the connected region. The direction of the shower 

is taken to be the center of the submodule which minimizes the squared differences 

between the observed and predicted energies in the modules in the three nearest 

neighbors of the bump module (if there is more than one bump in the connected 

region) or in the entire connected region (if there is only one bump in the connected 

region). Directions obtained in this way will of course be quantized. If there is 

only one bump in a connected region, the ESORT energy for that bump is taken 

to be the sum of the energies of all the crystals in the connected region. If there is 

more than one bump, each bump in the connected region is assigned its preliminary 

energy as calculated in the bumps step. The energy in the remaining crystals is 

divided between the bumps in accordance with the energy predicted to be in each 

crystal by the Monte Carlo shower functions. Corrections similar to those used 

in the sum of 13 estimates are applied to obtain the final energies. The column 

labeled “ETRK” in Figure 3.1 shows the ESORT (upper entry) and El3 (lower 

entry) energies calculated for the four tracks in the event. 

3.3 All-y Production 

All events which pass the production cuts are processed by the preliminary 

neutral analysis program. The first section of this program performs cuts; the 

second performs several CPU-intensive calculations of shower parameters and stores 

them for later use. 

3.3.1 Preliminary Cuts 

Events from all data samples are subjected to the following cuts: 
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12-84 5005A2 

Fig. 3.4 Crystal Ball module divided into submodules. 

1. The center-of-mass energy (EcM) of the event is calculated from the beam 

energy recorded on tape. If twice the beam energy is not within 5 MeV of 

the mass of the J/+, $‘, or +!J”, it is assumed that the beam conditions were 

unstable or that the data in the event are unreliable, and the event is rejected. 

2. It is required that IEcM-E~~~/ < 600 MeV, where Evis is the sum of all energy 

in the Ball and endcaps. Figure 3.5 shows the visible energy distribution for 

a portion of the J/~/I data sample. Monte Carlo studies indicate that any 

all-y event which fails this cut contains one or more y’s which lie outside the 

fiducial volume of the detector. 

3. The number of tracks (defined as the number of bumps) is required to be 

between 3 and 15. 

4. The number of tracks tagged as charged emanating from the primary vertex 

is required to be zero. (At this point we retain events with secondary vertices, 

and these vertices may have charged tracks. Such events are eliminated by a 

later cut .) 

5. Finally, approximate momentum balance is required. Using x=y=z=O as the 
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CUT 

Total Energy (MeV/c') 

Fig. 3.5 Visible energy in J/T) data. 

origin, a momentum vector is calculated for each crystal where the direction 

is specified by the direction cosines of the center of the module and the magni- 

tude is specified by the deposited energy. The sum of these vectors is required 

to satisfy lPx/ < 400 MeV/c, lPy/ < 400 MeV/c, and ]Pzl < 800 MeV/c. This 

cut is designed to eliminate events at this stage before the CPU-intensive pro- 

cessing of the succeeding routines. Monte Carlo studies indicate that virtually 

no good events are thrown out by this cut; studies of the data indicate that 

events eliminated at this point have a confidence level in a kinematic fit to 

energy and momentum constraints of less than 0.001 and so would be elimi- 

nated by later cuts. Figure 3.6 shows a plot of Pz z/s. Px for a small part of 

the J/~/I dataset. The box indicates the region of the cut. Figure 3.7 shows 

the same plot for a Monte Carlo sample of J/T) + y f, f + 7r07ro events. 

Table 3.2 shows the effect of these cuts on the three datasets. 
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Number of Events 

Input 

After ECM check 

After E,,is cut 

With 23 tracks 

With 515 tracks 

W’ith no charged tracks 38,912 39,620 13,990 

After momentum balance cut 30,722 24,756 9,988 

Table .!I.,? Preliminary cuts. 

3.3.2 Secondary Cuts 

Data samples for the exclusive analyses are at this point subjected to further 

cuts. (The secondary cuts for the global shower analyses are somewhat different 

and are described in the section on +’ --) 777 and $J’ --+ 7~ decays.) The cuts just 

described select a sample of events which contain only y’s in the final state with 

little background. We next apply cuts to discard events in which the measurement 

of the parameters of one or more tracks is questionable. Specifically, 

1. Events with more than ten tracks are rejected as we deal in this investigation 

with topologies which have no more than five y’s. (We allow for more than 

five tracks as some may be subsequently identified as spurious.) 

2. Data from November 1978 are rejected, These were some of the first data 

taken with the detector while it was still in the process of being tested. 

3. Events with endcap tracks are rejected, since the energies and directions of 

u- 
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these tracks are not as well measured as those in the main Ball. 

4. Events with more than one vertex are rejected. Although we have removed 

events in the previous cut which deposited sufficient energy in the endcaps to 

generate a track, there remain events in which a part of a shower leaking from 

the tunnel modules enter the endcap spark chambers, giving rise to spurious 

hits and one or more phantom vertices. 

These cuts combined with those described in the preceding section select a 

sample of events which contain only 7’s in the final state with little contam- 

ination. However, there are typically correlations which favor small opening 

angles between two or more y’s. (For instance, they may come from the de- 

cay of a high energy TO.) Routines have been developed which can separate 

showers due to single 7’s from those due to the overlap of two y’s so that 

the number of photons in the final state can be correctly determined. (See 

Appendix C.) The more accurate of these routines, PIFIT, fits the observed 

energy distribution to two overlapping shower distributions and identifies TO’S 

by the large invariant mass of the sum of the calculated four-vectors. Another 

routine, SMOMT, does not extract the four-vectors of the y’s but rather de- 

termines the invariant mass of their sum from the second moment of their 

(overlapping) showers in the Ball. Thus, it can be used to calculate the in- 

variant mass of two or more photons whose showers overlap, although it is 

less accurate in separating y’s from no’s than PIFIT. In the exclusive anal- 

yses described in the following two chapters, we attempt to identify energy 

depositions corresponding to at most two overlapping y showers. In order to 

eliminate events which do not meet this criterion, we make the following cuts: 

5. Events containing a connected region with more than two bumps are rejected. 

6. Any event containing a connected region with an SMOMT mass greater than 

200 MeV/c 2 is rejected. As shown in Appendix C, the SMOMT mass of a 

connected region is seldom above 200 MeV/c2 even for high energy K”S. Any 

connected region with an SMOMT mass above this value most likely contains 
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more than two 7’s and is unsuitable for this analysis. 

Table 3.3 shows the effect of these additional cuts on the three data sets. 

Number of Events I Jh I v / 

Input 30,722 24,756 9,988 
- 

With < 10 Tracks 29,294 23,204 9,969 

After Nov. ‘78 cut 28,953 23,204 9,969 

After Endcap Track Cut 12,265 11,823 3,982 1 
/ 1 1 1 

After Vertex cut I 9,122 11,070 2,869 I 

After 3 Bump Cut 9,006 10,785 2,868 

After 200 MeV/c2 SMOMT cut I 8,218 I 9,719 2,837 I 

Table 9.9 Secondary cuts. 

3.3.3 7r”- y Separation 

As mentioned previously, the showers from the two 7’s of an energetic 7r” often 

overlap, causing the two photons to be flagged as one track by the offline software. 

All events passing the secondary cuts are next processed through shower-fitting 

routines to flag those showers which appear to be due to merged 7r”s. All tracks 

are classified as either 

1. A goody, 

2. A good merged 7r”, or 

3. A bad track. 
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Good 7’s and good merged X”S are together referred to as good neutrals. Bad 

tracks are typically a x0 which has been flagged as merged. The classification 

proceeds by the following steps. 

1. All tracks are initially flagged as good 7’s. 

2. The routine PIFIT is called for each connected region. If the PIFIT mass is 

less than 90 MeV/c2, track assignments are not altered. If the PIFIT mass is 

greater than 90 MeV/c2, the highest energy track in the connected region is 

flagged as a 7r”. (This 7-7r" separation criterion is consistent with both Monte 

Carlo and data studies. See Appendix C.) If there are any other tracks in the 

connected region, they are flagged as bad tracks and ignored by subsequent 

routines. 

3. Next, an attempt is made to identify showers coming from 2 7's which come 

from a no which overlap but which are not in the same connected region (and 

so not flagged by the previous step). If the 13 crystals associated with a good 

gamma overlap with the 13 crystals associated with another good gamma, 

PIFIT is called with starting values at the centers of the two central crystals. 

If the PIFIT mass if greater than 90 MeV/c2 and less than 200 MeV/c2, the 

higher energy track is flagged as a noand the lower energy track is marked 

as a bad track. Otherwise, the track assignments are unmodified. Figure 3.8 

shows the distribution of PIFIT masses for these overlapping 7’s for the J/G 

dataset. 

4. Finally, a search is made for shower fluctuations which are identified as sep- 

arate tracks by the offline software. These satellite showers, or split-offs, are 

expected to be of low energy and close in angle to a high energy shower. To 

determine criteria for identifying split-offs, we first examine a set of single- 

photon Monte Carlos (See Appendix B.) For those events in which the offline 

software detected more than one track, we plot in Figure 3.9 the energy of the 

second (and possibly third) highest energy track YS. the cosine of the angle 

between this track and the highest energy track. (We consider only those 
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n 
50 100 

PIFIT Mass (MeV/c’) 

Fig. 3.8 Distribution of PIFIT masses for overlapping showers 

- J/I) Data. 

events in which the highest energy track is greater than 500 MeV and has 

not been flagged as a TO.) We see the expected concentration of tracks in the 

upper left corner of the plot and display the boundary of a cut designed to 

identify these events. Figure 3.10 shows the effect of this cut on the J/t) data. 

Any track which satisfies the criteria for a split-off is flagged as a bad track. 

The energy of the split-off is not added to the energy of the parent. 

In the event shown in Figures 3.1 and 3.2, track 1 is flagged as a merged 7r” by 

step 2. In step 3, tracks 2 and 3 are identified as having come from the same no, 

so track 2 is flagged as a merged x0 and track 3 is flagged a bad track. Track 4 is 

flagged a good 7. 
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We make a final set of cuts to clean up the data samples and enhance the 

definition of the neutral tracks. 

1. Events from individual bad runs are rejected. These runs have been flagged 

as bad by studies of parameters such as crystal occupancy. 

2. Any event containing a track beyond 1 cos 8(> 0.90 is rejected, where 8 is the 

angle the track makes with the beam axis. The cut eliminates events with 

tracks beyond the fiducial volume of the inner chambers. 

3. Any event containing two tracks with an opening angle cr such that cos QI > 

0.90 is rejected. This cut eliminates events in which the energy measurement 

of a shower is questionable due to the close proximity of another shower. 

Table 3.4 shows the effects of these cuts on the three datasets. 

Number of Events $’ Jh P 

Input 8218 9719 2837 

After Bad Run Cut 7925 9538 2837 

Solid Angle Cut 6516 8188 2378 

Overlap Cut 6004 6868 2304 

Table 3.4 Final cuts. 

The directions of the neutral showers used in the last two cuts are obtained 

from ESORT. Subsequent stages of the analysis use directions determined by the 

more accurate shower fitting routines PIFIT (if the track has been flagged as a 7r”) 

or GAMFIT (if the track has been flagged as a 7). (See Appendix C.) 
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Chapter 4 

Charmonium Decays 

4.1 Introduction 

We discuss in this chapter the decays of charmonium states which are accessible 

to an all-photon analysis. We shall thus be primarily concerned with decays of the 

form $+ -+ -yX,X 4 7r”no , qv , and yy. Note that by searching for only these decays 

we restrict the allowed quantum numbers of the states X that we can observe. For 

instance, a state of odd parity is forbidden to decay to 7r”xo or 77 via a parity 

conserving (i.e., strong or electromagnetic) interaction. Also, a state with odd spin 

is forbidden to decay to 7r07ro or r/q regardless of its parity, although in general 

it is allowed to decay to 7r+x- (as demonstrated by the decay of the p’).This is 

due to the fact that the wavefunction of two identical spinless mesons transforms 

like (-1)’ ( w h ere 1 is the total angular momentum) under interchange of the two 

particles, whereas such a state must be even under interchange if the particles obey 

Bose statistics. Similarly, an argument involving conservation of parity and angular 

momentum can be made which shows that a spin-one particle cannot decay into 

two photons (Yang’s theorem). I11 Thus, observation of the decay of a particle via 

one of these modes restricts its quantum numbers (typically Oe+ or 2++) whereas 

non-observation of these decays favors other assignments. Although an all-photon 

analysis restricts the decay channels we can observe, we shall see that in some cases 
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the channels which are accessible are exceptionally clean. In particular, the decay 

$’ -+ 7x0 3 x0 t 7r”no is sufficiently free of background that we are able to use it 

to make a width measurement of the ~0. 

4.2 Theoretical Background 

4.2.1 Charmonium 

The discoveries of the J/$l334l and $+[“I were followed immediately by the inter- 

pretationlGl of these resonances as bound states of the charmed quark and charmed 

antiquark predicted several years earlier. I71 Collectively, such bound states were 

referred to as charmonium states (in analogy with positronium) with the J/$ and 

$’ corresponding to the 1s and 2s states. In addition to these states, it was pre- 

dicted that there should be an entire family of particles corresponding not only to 

higher excited singlet S states but triplet S states and P and D states as well.181 The 

lowest lying triplet P states, dubbed the ~0, x1, and ~2, were found shortly after- 

wards in radiative decays of the $+,191 and subsequent experiments have discovered 

other predicted states. I”1 Figure 4.1 shows the current status of charmonium and 

indicates the reactions which are discussed in this chapter. 

In addition to predicting the gross features of the particle spectrum, the char- 

monium model can be used to calculate the dynamics of the system by assuming 

that the binding of the quarks can be modeled by a nonrelativistic potential. De- 

cay rates can then be calculated in a given theory by computing the annihilation 

amplitudes for a quark and antiquark bound by this potential. We study here the 

rates predicted by the candidate theory of strong interactions, &CD. 

4.2.2 Potential Models 

The analogy between positronium and charmonium extends beyond the similar- 

ity of their mass spectra. Just as the simplest atomic systems provide some of the 

most precise tests of QED, charmonium can be used to devise tests of QCD which 
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Fig. 4.1 Charmonium levels below open charm threshold. Solid 

lines show confirmed states; dotted line shows state in 

need of confirmation; bracketed line shows predicted 

but unobserved ‘PI state. Solid and dotted arrows 

show branching ratios and upper limits, respectively, 

reported in this chapter. 
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are relatively free of complications. In the context of the charmonium model, we 

can calculate the decay rate of a state of charmonium to a final state of gluons. In 

the nonrelativistic reduction of the Bethe-Salpeter equation, the binding potential 

contributes a multiplicative factor which can be interpreted as the probability that 

the quark and antiquark meet to annihilate. As an example, we consider the decay 

of the J/$. We assume that gluons are spin-l particles that transform as an SU(3) 

color octet and that any observable state must be a color singlet. An odd C-parity 

spin-l particle such as the J/~+!J is then forbidden to decay to two gluons.121 Thus, 

the lowest order decay of the J/$J is into three gluons which can be calculated from 

the diagram in Fig. 4.2 to bell’] 

where all is the strong coupling constant of &CD. The annihilation probability (here 

the wave function at the origin squared) must be supplied by phenomenology and 

is typically obtained from the annihilation rate of the J/$ to leptons, 

I’(J/$ t l+l-) = W4 

where CY is the coupling constant of QED. Alternately, these expressions can be 

combined with measurements of the full and leptonic widths of the J/G and solved 

for as: 

CQ M o.191111 P-31 

The calculation of the decay rates of the x states is similar. However, the wave 

function vanishes at the origin for a P state, so the first nonzero contribution involves 

the derivative of the wave function at the origin. Unlike the J/~/J, the two gluon 

decays of the x0 and x2 are not forbidden. The lowest order diagram is shown in 
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12-84 5005A4 

Fig. 4.2 Feynman diagram of the annihilation of the J/$ or T/J’ 

into three gluons. 

Fig. 4.3, and the two gluon widths are/l21 

These rates again involve a wavefunction factor which must be supplied from phe- 

nomenology. We can take the ratio of these two rates so that the dependence on 

the wave function cancels:[12] 

qxo + 99) 15 
qx2 --+ w) = 4 [4*51 

Up to this point we have considered only first-order annihilation diagrams. 

Higher order contributions should also be included, and these have been calculated 

to the next order in CQ. Unlike the lowest order calculations, these rates depend 

on the particular renormalization scheme in which the calculation is performed. 

However, to order (Y, these renormalization dependent terms cancel when taking 

the ratio of the 20 and x2 widths113,141 

rho --) gg) _ 15 
ux2 + 99) 

- 4 (1+ 12Qr) WI 

a.. 
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12-84 5005A5 

Fig. 4.3 Feynman diagram of the annihilation of the ~0 or x2 

into two gluons. 

independent of both renormalization scheme and potential. Using a value of CX, 

= 0.19, the second term gives a correction of 73010, which, as noted by the au- 

thors of reference 13, is sufficiently large to cast some doubt on the validity of the 

perturbation expansion. 

We can carry the analogy to positronium a step further and calculate the decay 

rate of charmonium to two photons. The first-order diagrams are identical to the 

two gluon decay diagrams above with the gluons replaced by photons (Fig. 4.4). 

The evaluation of these diagrams also proceeds in a parallel fashion except for the 

replacement of factors of CX, with cr and the absence of color factors. We obtain 

r(xo -+ rr) = ;Q4a2 
96 

jp W’(o) I2 

qx2 -+ 77) = ;Q4a2 ggm” 

14.71 

where Q is the charge of the quark (Z/3 for the charmed quark). Since the po- 

tential enters the expressions for both the two gluon and two photon widths as 

a multiplicative factor, we may take the ratio and obtain a potential-independent 

prediction of the ratio 

J3xo,2 + 77) 
2 

NW/%?),,., = 
qxo,z ---f 99) 

14.81 
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12-84 5005A6 

Fig. 4.4 Feynman diagram of the annihilation of the ~0 or x2 

into two photons. 

for both the xo and ~2. Note that R(2y/2g) is not the same as the two photon 

branching ratio. In order to obtain the predicted branching ratios for the two photon 

decays of the x0,2, we must add to the two gluon widths the widths for other decays 

such as x2 + rJ/$. As in the two gluon case, the two photon decay widths have 

been calculated to the next order in CK~,* and we can obtain a renormalization 

independent prediction by taking the ratio of the ratios:l12*131 

R P-d2&2 

R PY/ w x0 

= 1 + 1.65% 
n- WI 

The two photon widths of the qC and q: are derived in a similar fashion, but 

Equation [4.7] is replaced by an expression involving the wave function at the origin: 

r(h 7; 
j yy) = 12Q4a2 bh,2(0) I2 

w,2 

[4.10] 

where the subscripts 1 and 2 refer to the IS and 2s wavefunctions and masses, 

respectively. The ratios of the two photon widths to the two gluon widths are 

* Even though we are calculating the rate for a QED process, there are QCD corrections to 

the initial state. 
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identical to that of the P states: 

BR(rlc, d --+ 77) = 
wk,d --+ 77) 
r(h 7:: -+ gg) 

[4.11] 

4.2.3 &CD Sum Rules 

Alternatively, one can estimate these decay rates using QCD sum rules.I15] Es- 

sentially, this technique uses asymptotic freedom to equate an integral over s (where 

s - ECM~ ) of the imaginary part of a vacuum polarization graph to the same 

integral of R, where R s a(e+e- + hadrons)/a(e+e- + CL+/..-) . The former 

integral is calculable, and it is found that in many cases the contribution of a single 

resonance is a sufficient approximation to the latter. As a specific example, the two 

photon width of the x2 can be calculated by evaluating the integral of the graph 

shown in Fig. 4.5 where the current J is assumed to have a tensor character. 

12-84 5005A9 

Fig. 4.5 Feynman diagrams of the annihilation of the x2 into 

two photons using QCD sum rules. 

Numerical predictions of these theories will be given in the summary of this 

chapter where they are compared with the data. We turn now to brief descriptions 

of the data analyses used to search for all-photon charmonium decays. 
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4.3 x0,2 + 7rOlrO 

We begin with the decay $I + 77r07ro and look for high invariant mass com- 

binations of the 7r07ro system. We do not need to use a kinematic fit to constrain 

the four-vectors to energy and momentum conservation, since in these decays the 

observed mass of the rono system is determined almost completely by the energy 

of the low energy 7. Also, we do not want to use any cut which would bias the 

energy distribution of the low energy photon since the detector line shape has been 

determined from an independent channel (see Appendix A), and we will use this 

function to separate the natural width of a photon transition from the detector 

resolution. Monte Carlo studiestshow that the x0,2 --+ r”7ro decays almost always 

yield three or four observed tracks, so we study only these cases. Table 4.1 shows 

the cuts used in this analysis and their effect on the ?+!I’ and $J” datasets and the 

v --+ 7x0 3 X0 --+ r”7ro and $’ + 7x0 , ~0 --f 77 Monte Carlos. The two major 

entries show the number of events which pass the cuts described in Chapter 3 with 

three and four tracks, respectively. The entries for the data show the number of 

events surviving each cut; the entries for the Monte Carlo show the fraction of the 

simulated events which survive. 

4.3.1 Three observed tracks 

We start with a preliminary look at the spectrum of the lowest energy track 

in all three-track events before any cuts (other than those outlined in Chapter 3) 

have been applied. Figures 4.6, 4.7, and 4.8 show this plot for the $J’ data, the T,!J” 

data, and a Monte Carlo of the process e+e- -+ (7)yy IIGl with ECM = M,J,I and 

a luminosity roughly twice that taken at the $J’. (Note that the natural log of the 

energy is plotted. Given the E3/4 dependence of the energy resolution, such a scale 

keeps the plotted width of a monochromatic photon roughly constant independent 

of its energy.) The arrows in the first plot show the expected positions of the 

radiative photons in the transitions $’ t 7x0,1,2 as calculated from the masses of 

the participant particles quoted by the Particle Data Group.[l’] The existence of 
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cut P 

3 Tracks 3159 1392 

4’ --+ YXO , 

0 0 xo-+nr 

M.C. 

47% 

47 

$’ --+ YXO 3 

x0 -+ YY 

M.C. 

56% 

3rd Track PIFIT Cut 3136 1392 56 

3rd Track not Eq. or Tun. 2344 998 

1 cos &I < 0.85 2306 980 

36 45 

36 44 

ECM Cut 2044 859 34 42 

Track 1 & 2 PIFIT Cut 222 4 29 

Overlap Cut 213 3 

4 Tracks 244 48 

28 

5.0% 

One Merged no 107 9 3.5 

> 1 Open TT’ 85 3 

7 not Eq. or Tun. 69 

1 cos &I < 0.85 Cut 68 

2 

2 

3.4 

2.8 

2.7 

0.2 

0.2 

1.2% 

0.1 

0.1 

0.1 

0.1 

Table 4.1 Cuts for $J’ -+ y7r07rO analysis. 

transitions to the ~0 and x2 states is obvious, although we have not yet clarified the 

nature of the decay products of the x states. We can also inquire as to the source of 

the background. Note that it is flat when plotted on a log scale, indicating that it 

has the shape of dN/dlc m l/lc . This is characteristic of a bremsstrahlung spectrum, 
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and we are led to suspect that the background is due to the process e+e- t (y)yy. 

This suspicion is given some measure of confirmation by Fig. 4.8 which indicates 

that the spectrum from e+e- + (y)yy agrees in shape with the background seen 

on the $’ with the exception of the excess of events in the $J’ and $J” plots below 

XI MeV. These events are due to the process e+e- t (y)yy + split-off in which 

the split-off was not flagged as a bad track by the algorithm described in Chapter 

3.t Th’ 1s is demonstrated by Fig. 4.9 which shows the spectrum of the lowest energy 

track from three-track events from a Monte Carlo of the process e+e- -+ yy with 

an equivalent luminosity G 17% that of the $’ dataset. It is clear that we will not 

be able to extract any signal on top of such a large background. For convenience, 

the energy spectra which follow begin at 50 MeV. 

In order to analyze these events further, we select events in which the lowest 

energy track is a well-defined photon. First, we reject those events in which the 

lowest energy track has a PIFIT mass which is inconsistent with a photon. We 

also reject those events in which the lowest energy track is expected to have a 

poor energy resolution, i.e., events in which the bump module corresponding to the 

lowest energy track is an equator or tunnel module. Since we use no kinematic fit 

in this analysis, we require ]E,,is - E CMI < 300 MeV in order to reject backgrounds. 

The effect of these cuts on the $‘and G” data and the $’ t 7x0 , ~0 --+ 7r07ro and 

~0 -t yy Monte Carlos is shown in Table 4.1. 

We next investigate the two high energy tracks. Any all-photon three-track 

event which is the result of a strong or electromagnetic decay of the $’ must consist 

of yyy or yn”7ro in order to conserve C-parity. Figure 4.10 shows a plot of the PIFIT 

mass of the highest energy track vs. the PIFIT mass of the second highest energy 

track for the $’ data; Fig. 4.11 shows the same plot for the $” data. We observe 

a cluster of events at low PIFIT masses in both plots and an additional cluster 

1 The border between the events we classify as efe- -+ 77 and e+e- -+ (7)77 is arbitrary. 

We assign any event in which the radiative photon has less than 10 MeV to ef,- + 77 . 
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Fig. 4.6 Energy of lowest energy track: neutral three track events 

in $’ data. 
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Fig. 4.7 Energy of lowest energy track: neutral three track events 

in I/J” data. 
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Fig. 4.8 Energy of lowest energy track: neutral three track events 

from e+e- ----) (y)yy Monte Carlo. 
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Fig. 4.9 Energy of lowest energy track: neutral three track events 

from e+e- -+ yy Monte Carlo. 
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Fig. 4.10 PIFIT mass of highest energy track vs. PIFIT mass of 

second highest energy track - $J’ data. 



4.3 x0,2 --+ 7i- 
0 0 

?r Page 55 

250 

0 

I I I I I I I I I I I I I I I I I I I I 

* .:’ ** . 
. . . - ‘-:. .. . 

.:.. *-. . . I I I I I I I I I 

0 50 IQ0 150 200 250 

PHFHT Mass (MeV/c') 

Fig. 4.11 PIFIT mass of highest energy track vs. PIFIT mass of 

second highest energy track: 4” data. 
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Log of Lowest Track Energy (MeV) 

Fig. 4.12 Energy of 7 in $’ -+ 7 z”;ryo: three track events. 

at high PIFIT masses in the $J’ plot; we take these two clusters to correspond to 

the two final states 777 and 7n”no where the former is due primarily to the QED 

process e+e- --+ (7)77 . We place a cut on the PIFIT masses to select the 77r”zo 

candidates as shown by the box in the upper right in Fig. 4.10. We finally place an 

overlap cut requiring the cosine of the opening angle between any two tracks be no 

greater than 0.85. Figure 4.12 shows the final spectrum of the radiative photon in 

77r07ro after these cuts. The photon lines corresponding to the decays $J,’ -+ 7X0,2 , 

x0,2 + 7rO71-O are now seen on top of essentially no background. 

4.3.2 Four Observed Tracks 

In this topology we search for those events which contain a radiative photon, 

a merged 7r”, and a separated K ‘. From the set of all four-track events, we select 

those which contain one and only one merged 7r” candidate (as determined by its 

PIFIT mass). We next calculate the invariant masses of the three pairs which can 
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be formed from the remaining tracks and accept only those events with at least one 

invariant mass combination in the x0 mass window shown in Fig. 4.13. (If more 

than one pair of tracks forms an invariant mass between these limits we use that pair 

with an invariant mass closest to the 7r” mass. This occurs in 20% of the events.) 

We require that the remaining track point to a crystal which is not an equator or 

tunnel module and that it lie within 1 cos 81 < 0.85, where 19 is the angle the track 

makes with the beam direction. The energy spectrum of this track is shown in Fig. 

4.14. This spectrum is added to Fig. 4.12 to obtain the final $’ -+ 77r07ro spectrum, 

yielding Fig. 4.15. In the next section we will describe fits to the two peaks at low 

photon energies corresponding to decays of the xo and ~2. The cluster of events at 

high photon energies corresponds to radiative decays to states at z 1200 MeV/c2 

and will be discussed in the following chapter. 

“0 50 100 150 200 250 300 

Invariant Mass (MeV/c2) 

Fig. 4.13 Invariant masses of 7 pairs: four track events (4 data). 
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Log of Lowest Track Energy (MeV) 

Fig. 4.14 Energy of radiative 7 in T/J + 7 n-On-‘: four track events. 
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Fig. 4.1s Energy of radiative 7 in +!I’ -+ 77r07ro: three and four 

track events. 
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4.3.3 xu Width and x0,2 + n-‘?~’ Branching Ratios 

The ~0 peak in Fig. 4.15 has a width that is significantly larger than that 

expected from detector resolution which is presumably due to the natural line 

width of the ~0 state. We can attempt to measure this width by unfolding the 

detector response function from the observed signal. This requires an accurate 

knowledge of the detector response function. The widths of all the particles in 

$’ --) rl J/A rl --+ YY, JIG + Z+Z-$ are sufficiently small that the observed width of 

the energy distribution of the 77 is due solely to detector resolution. Additionally, 

the 7’s in this reaction are uniformly distributed in energy between 193 and 390 

MeV. The center of this Doppler box is (coincidentally) close to the energy of the 

transition photon in $J’ + 7x0 (z 260 MeV). Th us, we can use this reaction to 

measure accurately the detector response function for photons in this energy range 

(as described in Appendix A). We find that the data are well fit by a Gaussian with 

a low energy tail where the width of the Gaussian has a slow energy dependence 

(E 314 ). We fit the observed ~0 spectrum to a convolution of this function with a 

nonrelativistic Breit-Wigner function of variable mean, width, and amplitude. As- 

suming that the reaction I++’ + 7x0 is predominantly an El transition, we include 

a multiplicative factor of E: to account for the variation of the dipole transition 

rate. Figure 4.16 shows the best fit to this function. We obtain 

rxo = 8.8 f 1.3 f 1.5 MeV/c2 

where the first error is statistical and the second systematic. The systematic error 

is due primarily to the variation in the width observed when the response function 

parameters are varied. 

Additionally, the masses of all the particles in the reaction $’ + 7 J/g,, q -+ 

YY, Jl$ -+ i+l- are known with sufficient accuracy that the energy of the 7 in 

$ I= e or /I. 
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this reaction can be calculated to 50.15 MeV. As discussed in Appendix A, we can 

compare the observed energy of the q to the calculated value to determine the value 

of the offset of the energy scale which is found to be -3.3 10.6 MeV. Adding this 

offset to the observed mean of the Breit-Wigner, we measure the mass of the ~0 to 

be 

M,, = 3415.5 do 1.3 f 0.6 MeV/c2 

The amplitude of the Breit-Wigner is found to be 148 ~t13 events. 

We can attempt to fit the x2 line with the same response function parameters, 

although this requires the extrapolation of these parameters from the region of their 

measurement (193 to 390 MeV) to the energy of the x2 line (M 127 MeV). Also, the 

full width (I’) of the x2 line has been measured in other experiments to be in the 

range 2-4 MeV/c2.1’8JQ>201 G’ lven the lower statistics of this peak, this width cannot 

be unfolded from the width of the response function at this energy (a M 5 MeV). 

Studies of fits with the Breit-Wigner width set to a range of values show that the 

results are independent of this parameter within the range O-4 MeV/c”. Figure 4.17 

shows the result of a fit with I? = 3 MeV/c 2. From this fit we find the number of 

events in the peak to be 54 f8. 

In order to extract branching ratios we need to divide by an efficiency which 

in turn depends on an angular distribution. We need three angles to completely 

specify the angular distribution of the 77r07ro system. We take them to be 

81 : The angle between the photon and the e+ 

beam direction in the frame of the Ball 

e2,42 : The polar and azimuthal angles of the 

7r07ro axis in the rest frame of the r”7ro 

system (in the present case, the rest frame 

of the x). The z axis coincides with the 

x direction, and the x axis is defined such 

that the eS. axis has 4 = 0. 
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Fig. 4.16 Fit to y spectrum in $’ t 7x0 , ~0 t T’;TT’. Dashed 

line: I’ = 0 MeV/c2. Dotted line: I’ = 17 MeV/c2. 

Solid line: Best fit. Best fitted values: Eo = 257.3 Ifr 

1.3 MeV/c2, r = 8.8 zt 1.3 MeV/c2, Amp = 148 f13 

Events. 
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Fig. 4.17 Fit to y spectrum in q!f --f 7x2 , x2 t TOT’. ?C’ fixed 

at 3 MeV/c2. Solid line: Best fit. Best fitted value: 

Amp = 54 f8 events. 
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The spin of the ~0 is favored to be zerolzl] and in this case the angular distribution 

is given simply by 

d3N 
d cos O1 d cos 02dd2 

= 1 + cos2 61 [4.12] 

Studies of the process $J’ + 7x2, x2 + ~J/~!J[‘~] have measured the spin of the x2 to 

be two, and the angular distribution of its decay products is given by the somewhat 

more complicated formula122] 

d3N 

d cos fZ$d cos t12dqb2 
= 3~~ sin2 e1 sin2 e2 

+ (1 + cos2 0,) 
[ 
(3 3 2 ~0s~ e2 - 1)2 + --y sin4 e2 1 

+ &ix sin 2iJ1 sin 282 [ 1 
3 cos2 e2 - 1 - --&y sin2 192 1 cos $2 

+ &Ty sin2 e1 sin2 e2 (3 ~0s~ e2 - 1) cos 2fj2. 
[4.13] 

Due to the higher spin of the ~2, this distribution depends on two unknown helicity 

amplitudes denoted by x and y. Previous studies[lg] indicate that the transition 

$J’ --+ 7x2 is purely dipole, and we set x and y to values corresponding to a pure 

dipole transition (a and 6, respectively). 

Using these angular distributions, we generate Monte Carlos to determine the 

detection efficiency. We obtain efficiencies of 30% and 37% for the decays 

$’ --f 7x0,2 , x0,2 + mono, respectively? and so obtain 

BR(ti’ + yxo,xo -+ x0x0) = (2.9 rt 0.3 f 0.5) x 1O-4 

BR(+’ + +/x2,x2 + nor’) = (8.8 31 1.3 f 1.6) x 1O-5 
[4.14] 

where the first errors are statistical and the second are systematic. We can use 

the Particle Data Group averages [l’l from inclusive measurements of the branching 

ratios of the decays $’ -+ 7x0 and q!~’ t 7x2 (= 8.2 &1.4% and 7.4 +1.3%, 

respectively) to deduce 

BR(xo --+ TOT”) = (3.5 f 0.3 ZII 1.2) x 1O-3 

BR(x2 + YT”K’) = (1.2 rt 0.2 IIZ 0.4) x 1O-3 
[4.15] 
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where we have included the uncertainties in the $J’ radiative branching ratios in the 

systematic errors. These measurements will be compared to other experiments and 

theory in the summary at the end of this chapter. 

We can in addition search for photon lines corresponding to the decays II/’ -+ 

7X,X --) 7r07ro , where X= &, x1, or qc. We set 90% upper confidence limits of 

3.1, 4.8, and 2.4 events, respectively, for these decays. We cannot use the accepted 

quantum number assignments for the intermediate states to calculate angular dis- 

tributions since they are forbidden to decay to two 71”s. We instead estimate the 

efficiency using a Monte Carlo with flat distributions in cos er,&, and cos 02. We 

obtain E($’ -+ 7(?:, xr,qc), (~~,~r,~~) -+ K’T’) = 27% , 33% , and 36%, respec- 

tively, and deduce 

BR($’ + 7rl;JI; -+ T"T') < 8 x 1O-6 

BR(1CI' --+ 7x1, Xl --+ 7r07r0) < 1 x 1o-5 [4.16] 

BR($’ --+ 7qc,qc --+ 7&O) < 5 x 1o-6 

Again, using inclusive measurements of BR($’ -+ 77:), BR($+ --+ 7x1), and BR($’ -+ 

7~~) , = 0.5 - 1.2 % , 8 f1.3 % , and 0.28 1kO.06 % , respectively, we conclude 

BR(r); + 7r”rrro) < 2 x 1O-3 

BR(xr t 7r07ro) < 2 x 1O-4 [4.17] 

BR(qc + ROT’) < 2 x 1O-3 

at 90% confidence level. 
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We can use essentially the same analysis to search for the decays $’ t 7x0,2, 

~0,~ --+ 77 with th e cuts modified to select events with two high energy 7’s instead 

of two high energy 7r”s. Table 4.2 enumerates the cuts and shows their effect for 

the $J’ and $J” datasets and the T+!J’ --f 7x0 , xo --+ mono and +’ -+ 7x0 , ~0 --+ 77 

Monte Carlos. 

I I 

cut f/J’ 

I 3 Tracks 1 3159 
I 

I 3rd Track PIFIT Cut 1 3136 

3rd Track not Eq. or Tun. 2344 

1 COSel,21 < 0.65 1137 

1 cod31 < 0.85 1119 

Ec&ut 

Track 1 & 2 PIFIT Cut 

1012 

522 
I 1 

Overlap Cut 462 

IL+’ 1cI'+ 7x0 3 $J'+ 7x0 , 1 
x0 + 7r07ro x0 -77 

M.C. M.C. 

1392 47% 56% 

1392 47 56 

998 
I 

36 I 45 

452 26 31 

446 26 31 

576 25 30 

247 0.03 19 

I 
222 0 18 1 

Table 4.2 Cuts for $+ + 777 analysis. 

As noted previously, there is substantial background in this channel from e+e- -+ 

(7)77 . However, the background differs from the signal in that the angular distri- 

bution of the two high energy 7's in et-e- -+ (7)77 is peaked towards the beam 

direction, whereas the 7's in the decays $’ -+ 7x0,~ , x0,2 --+ 77 are relatively 

isotropically distributed. For definiteness, we call the lowest energy track number 
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three. Of the two high energy tracks, track two lies closest to track three, and track 

number one is the remaining track. Figure 4.18 shows the distribution of 1 cos 011, 

where 81 is the angle track 1 makes with the beam direction, for a Monte Carlo 

of ti’ -+ 7x0 , x0 + 77. Figure 4.19 shows the same plot for an e+e- + (7)yy 

Monte Carlo. We see the tendency for the QED events to peak at large 1 cos 01 / as 

mentioned above. We wish to place a cut on this variable which maximizes the sta- 

tistical significance of any $J’ -+ 7x0 , ~0 --+ 77 signal which may be present in the 

data. The statistical significance of a signal goes as S/a, where S is the number of 

events in the signal peak and B is the number of background events underneath it. 

Thus, we want to place our cut on 1 cos 81 I in such a way that the fraction of signal 

events over the square root of the fraction of background events which survive is 

maximized. Figure 4.20 shows the survival rates for the Monte Carlos; Fig. 4.21 

shows the ratio. We see that the statistical significance of the signal is enhanced 

(albeit slightly) by a cut at I cos 811 = 0.65 as shown by the arrow in Fig. 4.21. 

We must also place a cut on the PIFIT masses which selects events consistent 

with +’ -+ 777. We have seen in the previous section that there is a potentially 

large background from the n”7ro decay of the ~0 and x2 if both of the no’s are 

misidentified as 7’s, and we must estimate this feeddown. We could in principle 

estimate the leakage from the Monte Carlo. However, since this number is crucial 

to separating the large $+ -+ 77r07ro background from the +’ -+ 777 signal, it is 

preferable to determine it from the data. Consider the decay +’ -+ 7x0 , ~0 --+ 7r07ro. 

If we select events from the three neutral track sample in which the energy of the 

lowest energy 7 is consistent with the radiative photon in this decay, we will obtain a 

sample of events in which the two high energy tracks are likely to be TO’S with some 

contamination from e+e- -+ (7)77 events. We now require that one of the high 

energy tracks have a PIFIT mass greater than 90 MeV/c2 and plot the PIFIT mass 

of the other high energy track (Fig. 4.22). (F igure 4.23 shows the same plot for a 

$J’ -+ 7x0 , x0 + 7r07ro Monte Carlo for comparison.) The tail of the distribution 

is due to x0’s which have low PIFIT masses and a small residual contamination of 
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Fig. 4.18 Distribution of 1 cos 011 for T,L’ + 7x0, ~0 -+ 77 Monte 

Carlo. 

‘: 
0 100 F r-h - 

Fig. 4.19 Distribution of 1 cos 81 I for e+e- --f (7)yy Monte Carlo. 
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Fig. 4.20 Efficiencies of 1 cos 1311 cut for $2 -+ 7x0, ~0 --+ 77 and 

e+e- + (7)77 Monte Carlos. 
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Fig. 4.21 Ratio of efficiencies of 1 cos 811 cut for T/J’ -+ 7x0, ~0 + 

77 and e+e- + (7)77 Monte Carlos. 
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e+e- + (7)77 events in which one of the high energy 7’s has a PIFIT mass greater 

than 90 MeV/c2 so that the other high energy 7 is included in this distribution. 

Thus, the fraction of tracks below a certain PIFIT mass gives an upper limit for the 

probability that a 7r” with an energy z 1700 MeV will be misidentified as a 7. For a 

cut at 70 MeV/c2, we calculate from Fig. 4.22 (the $J’ data) that this probability is 

8 12 %. (From Fig. 4.23 (the $J’ + 7x0 , ~0 + 7r07ro Monte Carlo), the probability 

is 5~tO.5010.) Similarly, we calculate from the data that the probability that a 1.7 

GeV x0 is flagged a x0 by a PIFIT cut at 90 MeV/c2 is 88 *a%. We use a PIFIT 

cut of 70 MeV/c2 on each high energy track (corresponding to the lower left box in 

Fig. 4.10) so that the probability that a $’ -+ 7x0 , ~0 + r”7ro event is misidentified 

as a $’ -+ 777 event is less than (0.08)2, or 0.6 rtO.2%. 

We wish to estimate the leakage from the channels $I’ t 7(x0, x2), (x0, x2) -+ 

7r07ro into the channels $J’ + 7(x0, x2), (~0, ~2) + 77 with these cuts. (In what 

follows, where two quantities are indicated in parentheses, the first refers to the 

~0 channel and the second to the x2 channel.) Of the (137,48) events which were 

identified as $J’ -+ 7(x0, x2>, (x0, x2> + 7r07ro in the last section in the three-track 

topology, (113,41) p ass the more restrictive angular cut described above. Using 

the 88% no detection efficiency noted above, we estimate that the total number 

of events before the PIFIT cuts is (127,46). W e expect 0.6% of these events to be 

misidentified by the PIFIT cut, so we predict a contamination of (0.8,0.3) events for 

the $’ + (xo, x2), (xo, x2) -+ 77 dews. As noted above, this calculation gives an 

upper limit for the contamination. (A similar calculation from Monte Carlo yields 

(0.3,O.l) events.) We choose to subtract (0.8 10.8, 0.3 rrt0.3) events and include the 

errors in the overall systematic error. 

Figures 4.24 and 4.25 show the distribution of the energy of the lowest energy 

photon after the ( cos 811 and PIFIT cuts for the e+e- -+ (7)yy Monte Carlo and 

the $” data, respectively. Figure 4.26 shows the same distribution for the $J’ data. 

The arrows indicate the energies of photons corresponding to transitions to states 

which are expected to decay to two photons. We first examine the background by 

W” 
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Fig. 4.22 PIFIT invariant mass distribution for high energy no’s: 

T+!+ + 7x0 , ~0 -+ 7r”no data. 
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Fig. 4.29 PIFIT invariant mass distribution for high energy TO’S: 

$J’ + 7x0 3 x0 -+ nor0 Monte Carlo. 
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Fig. 4.24 Distribution of energy of lowest energy 7: e+e- t 

(7)77 Monte Carlo. 
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Fig. 4.25 Distribution of energy of lowest energy 7: ?,!I” + 37. 
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Log of Lowest Track Energy (MeV) 

Fig. 4.26 Distribution of energy of lowest energy 7: $’ --+ 37. 

fitting the energy distribution from the e+e- t (7)yy Monte Carlo (Fig. 4.27). 

We see that a second order Legendre polynomial fits the data well. Figures 4.28 

and 4.29 show the $” and $’ data fit to the same functional form. Both fits are 

acceptable, although the background shape on the $’ is inconsistent with that in 

the $” and Monte Carlo fits. In order to improve the fit to the $J’ spectrum , we 

add two signal amplitudes corresponding to the decays v,L+ t 7x0,2 , x0,2 -+ 77 with 

the means and widths of the radiative photons fixed to those found in the 77r07ro 

study above (Fig. 4.30). W e see that the fit improves and observe 22 17 and 12 

16 events corresponding to the decays I./J’ t 7x0,~ , x0,2 + 77, respectively. For 

comparison, Figs. 4.31 and 4.32 show the same spectrum fit to consta.nt and linear 

backgrounds, respectively. Also, given the factor of 1.8 in luminosity between the T+!+ 

and $” datasets (see Chapter 3), we see that the background in the +’ plot agrees 

both in shape and normalization with that in the Q!J”. 

There is clear evidence for the transition $’ --+ 7x2 , x2 --+ 77, but the structure 

corresponding to the decay $’ + 7x0 , ~0 -+ 77 appears to be of questionable 

significance. We can estimate the probability that a fluctuation of the background 
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would make a peak with this mean and width by using the fitted background to 

predict a number of counts for each bin, using Poisson statistics to generate several 

hundred Monte Carlo spectra, and fitting the resulting spectra using the identical 

procedure as was used to fit the +’ spectrum. Such a study indicates that the 

probability that a peak of the observed amplitude or larger could be generated by 

a statistical fluctuation is 1 out of 300. Inasmuch as this confidence level is below 

the generally accepted 3a criterion for a statistically significant structure at a fixed 

mass (1 out of 740), we quote below both a branching ratio and an upper limit 

for this decay. On the other hand, we see no structures which would correspond 

to transitions to the qc and vi. We can set upper limits by fitting two additional 

line shape amplitudes with means and widths fixed to the values determined from 

a previous analysis of the inclusive photon spectrum of the T/Y. (The width of the 

Q: was indistinguishable from zero in this analysis, and an upper limit of 7 MeV/c2 

was reported at 90% confidence level. We set the width of the 7:: to zero for these 

fits.) For the processes $’ -+ 7~:, 11:: + 77 and $ -+ 7qc, qc -+ 77 we obtain upper 

limits of 8.1 and 6.7 events, respectively, at 90% confidence level. 

We again use Monte Carlo simulations to determine the detection efficiencies. 

The angular distribution of the decay 4’ + 7X,X -+ 77 where X has no spin is 

given by 

d3N 
d cos &d cos 62dq52 

= 1 + cos2 81 [4.18] 

where 131,&t, and $2 are as defined in the analagous decay to 77r07ro. We obtain 

efficiencies of 15010, IS%, and 20010, respectively, for X = q:, X0, and qc. The 

angular distribution for the same decay in which X is assumed to have spin 2 is 

given by 



s 15 - 

iii 

R 
m 10 

5 

i 
OL ’ ’ “’ I I I 

60 00 100 200 400 600 

4. Charmonium Decays Page 74 
1 I I I 

20 - 

Log of Lowest Track Energy (MeV) 

Fig. 4.27 Distribution of energy of lowest energy y : e+e- + 

(r)yy Monte Carlo (fit to second order polynomial). 

Best fitted values: CO = 217 I!I 10, Cl = 0.21 f 0.08, 

La = 0.2 f0.1, C.L. = 0.48. 

t I SIllI I , I 1 t 1 
60 80 100 200 400 600 

Log of Lowest Track Energy (MeV) 

Fig. 4.28 Distribution of energy of lowest energy y : $+’ t 3y 

(fit to second order polynomial). Best fitted values: 

Lo = 58 i 5, Lcl = 0.11 zt 0.17, & = 0.13 i 0.20, C.L. 

= 0.40 
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Fig. 4.2’9 Distribution of energy of lowest energy 7 : +’ + 37 

(Fit to second order polynomial) Best fitted values: 

,&, = 120 z!c 8, C1 = 0.26 f 0.11, c2 = -0.82 zk 0.14, 

C.L. = 0.41. 
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Fig. 4.30 Distribution of energy of lowest energy 7 : $’ -+ 3y (fit 

to second order polynomial plus ~0 and ~2 line shapes). 

Best fittedvalues: &, = 102f8, Ll = 0.35rtO.13, La = 

0.24 zk 0.18, Amp,, = 21.8 + 6.7, Ampxo = 12.4 f 6.0, 

C.L. = 0.993. 
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Fig. 4.31 Distribution of energy of lowest energy 7: $J’ t 3y 

(fit to linear background plus ~0 and x2 line shapes). 

Best fitted values: L: o = 104 zt 8, C1 = 0.32 f 0.11, 

AmPX2 = 19.5f5.9, Ampxo = 10.4+5.7, C.L. = 0.988. 
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Fig. 4.52 Distribution of energy of lowest energy y: $J’ + 3-y (fit 

to constant background plus ~0 and x2 line shapes). 

Best fitted values: CO = 105 i 8, Ampx, = 17.8 + 6.3, 

AmPXl = 11.9 i 5.7, C.L. = 0.914. 
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d3N 
- 3x2 sin2 e1 sin2 e2 

d cos &d cos t’2d#2 - 

+ (1+ cos281) (3 ~08~ e2 - 1)2 + iy2 sin462 1 
+ &ix sin 201 sin 202 3 cos2 82 - 1 - i&y sin2 e2 1 cos 5h2 

+ diiy sin2 81 sin2 02 (3 cos2 02 - 1) cos 242 

+ 2 cos2 2& 
{ 

2x2 sin2 el(i - ~0s~ 4,) 

+ (1 + cos2 0,) 
[ 
f sin4 O2 + iy'(l + 6 COST t12 + COST 13,) 1 

+ &ix sin 281 sin 202 [ sin2 02 + 
1 

-y(3 + cos2e2) co&. 
2& I 

+ xhy sin2 8r(l + cos4 82) cos 242 . 

[4.19] 

x and y are ratios of helicity amplitudes defined previously. Unlike the 7r07ro case, 

the decay products of the X here have non-zero spin, and there are two additional 

helicity amplitudes corresponding to the same and opposite photon helicities. We 

have factored the “same” helicity amplitude out of the above expression into the 

overall normalization, and denoted the ratio of helicity amplitudes by z. This ratio 

has not been calculated in any model. Thus, in order to determine the detection 

efficiency for the decay $J’ -+ 7x2 , x2 -+ 77, we have run two separate Monte 

Carlos corresponding to the cases in which the helicities of the photons from the 

decay of the x2 are the same and opposite. The difference in efficiencies so obtained 

is slight (16.7% VS. lS.l%), and we include this difference in the systematic error. 

Using the Monte Carlo efficiencies quoted above, we derive 

BR(+’ --+ 7x2, x2 ---f 77) = (7.0 * 2.lf 2.0) x 1o-5 

BR(ti' --+ -yxo,xo -+ 77) = (3.7 f 1.8 f 1.0) x 1O-5 [4.20] 

BR(+' -+ 7X0,X0 -+ 77) i 7.0 x UT5 
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where the first errors are statistical and the second systematic. (We quote both a 

branching ratio and an upper limit for the ~0 transition as noted above.) As in the 

77r”ro decays, we use the Particle Data Group averages[171 for the branching ratios 

of the $I’ to the x states to derive 

BR(x2 --+ 77) = (9.5 f 2.9 ILL 3.5) x lr4 

i 

BR(xo -+ 77) = (4.5 f 2.2 f 2.0) x lo-* 

BR(xo + 77) 5 1.0 x 1O-3 i 

[4.21] 

The systematic errors for these two decays are shown in the following list. We add 

systematic errors linearly but add the statistical and systematic errors in quadrature 

when we quote a combined error. (This convention is followed throughout this 

study.) 

Source x0-+77 x2 --+ 77 

No. of @ decays 

Error in $J’ -+ 7x0~ 

branching ratios 

5% 5% 

17 18 

Monte Carlo 5 7 

Different helicity hypotheses 0 4 

Fitting error 

(Different Backgrounds) 

10 10 

7 conversion 1.5 1.5 

x --+ 7r07ro contamination 6.5 1.4 

I 45% I 47% 

Table 4.3 Systematic errors for x0,2 + 77. 

From the absence of any signals near the 7 energies corresponding to the masses 

of the r]c and q:, we can also set upper limits on the branching ratios of these states 

-.. 
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to two photons. We set upper limits of 6.7 and 11.1 on the number of observed 

events at 90% confidence level corresponding to 

BRWJ -+ 7qc, qc -+ 77) < 2.1 x 1o-5 

BR(S’ -+ 7& 7; --+ 77) < 4.7 x ur5 
[4.22] 

Using the measured values of the branching ratios BR (q!+ -+ 7qC, q~L),l”l we deduce 

BR(qc -+ 77) < 1 x IO-~ 

BR(r]; + 77) < 1 x IO-~ 
[4.23] 

As our upper limit for the qC branching ratio is substantially above both an earlier 

upper limit (BR(qC --) 77) < 1.3 x 10-31231 ) and a recently reported measurement 

(BR(~~ -+ 77) = 2.4 f 2.0 x lo-4l18l ) , we do not discuss it in the remainder of this 

chapter. 

4.5 x0,2--+ rlrl 

To search for these decays we use an analysis identical to that used to search 

for the decay q!+ ---) 70, 0 -+ VQ which will be d escribed in more detail in the next 

chapter. Briefly, we restrict our analysis to events with five tracks and fit the events 

to energy and momentum conservation, constraining two pairs of 7’s to have the 

mass of the q. If more than one combination of 7’s fits these constraints, we use 

the one with the highest confidence 1evel.s Figure 4.33 shows the fitted energy of 

the one 7 which does not contribute to an 7 in each event on a log scale. The plot 

is sufficiently free of background that we simply count the events in the xc and x2 

peaks. We obtain 5 and 13 events consistent with $J’ --+ 7x0,2 9 x0,2 --+ rlv 9 rl -+ 77, 

5 This analysis differs from that described in Chapter 5 only in that there is no cut on the mass 

opposite any two photons in the event. This cut is not necessary here because the photon 

lines are sufficiently narrow that there is no need to attempt to eliminate backgrounds. 
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respectively. Using Monte Carlo efficiencies of 22% and 29% and dividing by the 

square of the Q branching ratio to two 7's, we obtain 

BR(+’ + 7x0,x0 --+ 7~) = (2.3 f 0.7 * 0.7) x 1O-4 

BR($’ -+ 7x2,x2 -+ 7~) = (6.2 i 3.1 f 1.9) x 1O-5 
[4.24] 

where the first error is statistical and the second systematic. As with the 7r”ro 

decays, we use the Particle Data Group averages [I71 for the branching ratios of 

+’ -+ 7x0,~ to obtain 

BR(xo --t rpj) = (2.8 f 0.9 + 1.3) x IO-~ 

BR(x2 -+ qv) = (8.4 f 4.2 f 4.0) x 1O-4 
[4.25] 

where we have added the error in the branching ratios of $’ --+ 7x0,~ in the sys- 

tematic errors quoted above. 

4.6 Comparisons With Previous Experiments 

The decays +’ + 7X0,2 , X0,2 --+ ’ n- n- ’ have not been accessible to previous 

experiments. However, the analagous decays to charged r’s have been measured. 

Assuming isospin invariance, these can be compared with the results of the current 

analysis (Table 4.4). It is seen that the product branching ratios measured in this 

study agree well with those measured in previous studies. Table 4.5 shows a com- 

parison of other measured parameters of the ~0. The most accurate measurement 

of the ~0 mass comes from Mark II exclusive studies of the charged decays of the 

x states.12G] The only previous ~0 width measurement comes from a Crystal Ball 

study of the inclusive photon spectrum at the T,L’. The discrepancy between the 

current study and the previous result may be due to the more complicated back- 

ground subtraction necessary in an inclusive analysis. Also, recent work[271 indicates 

that the photon energy resolution of the Crystal Ball may be larger in an inclusive 

study than in an exclusive analysis due to contamination of the photon shower with 

hadronic debris from the remainder of the event. 

e. ,. (Y 
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Fig. 4.33 Energy of direct photon in T+!+ + 7~77. 
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Decay Branching Ratio x 10e4 

This Exp. Other Exp. 

$J’ + 7x0 , x0 -+ 7r7r 8.7 f0.9 51.5 9.0 1t6.01~~1 

11.3 1!13.2[~~1 

7.8 f2.21261 

$’ -+ 7x2 3 x2 --+ n--n- 2.6 f0.4 f0.5 2.3 1t1.21~~1 

4.5 f1.5[261 

Table 4.4 Branching ratios for x0,2 -+ 7~7r 

Parameter 

UXO) (MeV/c2) 

This Exp. 

8.8 51.3 Ltl.5 

Other Exp. 

17.0 zk3.5[2O1 

Mass (x0) (MeV/c2) 3415.6 f1.3 f0.6 3414.8 11.1[26] 

Table 4.5 ~0 parameters. 

The only previous measurements of the two photon decays of the ~0 and x2 are 

unpublished upper limits from DASP (Table 4.6). Th ere are no previous measure- 

ments of the two photon decay of the q: or the 7~ decays of the x0 and ~2. 

4.7 Comparison With Theory 

The comparison of the ~0 width to theory is complicated by the dependence 

of the prediction on the derivative of the wavefunction (see Equation [4.4]). The 

first line in Table 4.7 shows the range of predictions for several different potential 

models. As noted in the introduction, the ratio I? (~0 --$ gg)/l?(x2 ---t gg) is inde- 
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Decay Branching Ratio (x 10e5) 

This Exp. Other Exp. 

ti'-, 7x0 , x0 --+ 77 3.7 11.8 rkl.0 or 5 141281 

< 7.0 

+'-'7X2 ,X2 --+ 77 7.0 52.1 &2.0 < 41281 

Table 4.6 Branching ratios and upper limit for x0,2 -+ 77. 

pendent of potential model and hence more easily compared with theory. In order 

to compute the experimental value of this ratio, we use a preliminary measurement 

of the width of the x2 (2.92+:::; MeV/c2) as recently measured in direct forma- 

tion of charmonium states in proton antiproton annihilationl181 and correct by the 

measured branching ratio of ~2 -+ 7J/$. 11’1 We present the results of calculations 

to zeroth and first order in os (Equations [4.5] and [4.6], respectively). As noted 

above, QCD sum rules predict partial widths of the x states to 77. The authors 

of reference 15 have used these widths and the lowest-order prediction of the ratio 

two photon to two gluon widths from potential models (equation 14.81) to predict 

the widths of the xo and xz to two gluons. This factor of course cancels in the ratio 

of two-gluon widths. 

We note that although the potential model predictions for the ~0 width are 

inconsistent with the data, the lowest-order predictions for the ratio of the widths 

is in better agreement with experiment. Ironically, the first-order correction is 

outside of the experimental error bars. The QCD sum rule prediction for the ~0 

width is also inconsistent with the data, but as noted above this prediction requires 

as input the value of the ratio of two photon to two gluon widths of the x states 

from potential model calculations. The sum rule prediction for the ratio of the 

widths depends on the weaker assumption that the ratio of the two photon to two 
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Parameter Measurement Predicted 

by 

Prediction 

r&o) WWc2) 8.8 Yk2.0 L. 0. QCD 1 _ 3iW’W] 

QCD Sum Rule 4 - 51151 

bs (x0) lWx2) 2.9 xk1.6 L. 0. QCD 3.751121 

F. 0. QCD 6.47[131 

QCD Sum Rule 1.8 - 3.1[151 

Table 4.7 Comparison of ~0 width to theoretical predictions. 

(L. 0. QCD = L owest Order QCD Potential Models. 

F. 0. QCD = First Order QCD Potential Models) 

gluon widths of the xo and x2 are the same and is in good agreement with the 

data. It should perhaps be noted that a calculation of the ratio of the widths from 

a theory other than QCD (e.g., assuming scalar gluons) predicts a ratio (125/2) 

which is grossly inconsistent with the data.12’l 

The comparison of the 77 partial widths is similar. Here we use the branching 

ratios and the x0 full width measured in this study, the x2 full width measured 

in the proton antiproton formation experiment referenced earlier,i”l and the upper 

limit on the & full width measured in a Crystal Ball inclusive analysis.12’1 Again, 

the lowest order predictions depend on the assumed potential and hence lead to a 

range of predictions as shown in the first line of the following table. However, a 

more recent result using these same potentials but including first-order relativistic 

corrections leads to the somewhat surprising result that the predictions converge 

to essentially the same value. Alternately, we can eliminate the dependence on 
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the potential entirely by taking the ratio of the two photon width to the two gluon 

width to obtain predictions for the branching ratios to zeroth and first order in CY~. ll 

Finally, QCD sum rules can be used to predict these widths. Table 4.8 shows the 

comparison between experiment and theory for the x states, and Table 4.9 gives 

a similar comparison for the $. (For clarity, we show only the branching ratio 

measurement for the ~0 + 77 decay and not the upper limit.) 

The lowest-order QCD potential model prediction for the two photon widths 

are in rough agreement with the data, but the branching ratio prediction for the ~0 

is in substantial disagreement. (If we more conservatively use the 90% confidence 

level upper limit, there is still a discrepancy between theory and experiment.) This 

is consistent with our previous observation that the measured width of the ~0 is -4 

times larger than the lowest order QCD prediction. The QCD sum rule predictions 

are in good agreement with the data. 

The calculation of the branching ratio for the decay of a charmonium state to 

a given hadronic final state is not possible in potential models since no predictions 

are made beyond the formation of the gluonic state. QCD sum rules, on the other 

hand, can make certain predictions about the branching ratios to simple final states. 

In Table 4.10 we compare two of these predictions with our measurements. The 

agreement with experiment (at least in the case of the ~2) is probably fortuitous 

given the large theoretical uncertainties. 

Finally, the branching ratios of the x states to qq cannot be calculated from first 

principles. However, we can calculate the expected branching ratios if we assume 

that SU(3) is a good symmetry. In this case, the branching ratios to qq should 

be the same as the branching ratios to ‘IT’YT’ times a phase space and barrier factor 

which goes as p (2zt1) where p is the momentum of the no or q in the x rest frame and 

I is the spin of the x. Table 4.11 compares the measured ratios with this prediction. 

7 The prediction involving the branching ratio of the x2 to 77 have been corrected to take into 

account the 15.8% branching ratio of x2 -+ 7J/$. 

- 

__,‘. 
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Parameter Measurement 

Grkd (keV2) 4.0 f2.8 

I 

br(X2) (kev/c2) 2.8 1t2.0 1 

BR(Xo -+Yr> 1 4.5 ;;;:2.0 

BR(x2 --+ rr> 9.5 f2.9 f4.5 
I 

I x 1o-4 

'3R(x2) / BR(xo) 2.1 f1.8 

Predicted 

bY 

L. 0. QCD 

Relativ. Corr. 

QCD Sum Rule 

L. 0. QCD 

Relativ. Corr. 

QCD Sum Rule 

L. 0. QCD 

L. 0. QCD 

L. 0. QCD 

F. 0. QCD 

Prediction 

2.96- 6.521321 

1.34 - 1.48[321 

4.6 - 5.4[331 

0.88- 1.7[321 

0.40 - o.53f321 

1.2 - 1.41331 

13.1 

x1o-4 

r 0.85 

0.93 

Table 4.8 Comparison of x0,2 -+ yy partial widths to theoretical 

predictions. 

(L. 0. QCD = L owest Order QCD Potential Models. 

F. 0. QCD = First Order QCD Potential Models) 
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Parameter Measurement 

h-r (rl3 (kWc2) < 70 

BR(rlL -+ T-Y) < 1 x 1o-2 

Predicted 

bY 

Lowest Order QCD 

QCD Sum Rule 

Lowest Order QCD 

Prediction 

4.5[111 

<< rp51 

1.3 x~O-~I~~~ 

Table a.9 Comparison of qi --+ yy upper limit to theoretical pre- 

dictions. 

Parameter Measurement Predicted Prediction 

(x 10-y by 

BR(xo --+ nn) 
r 

(10.5 50.9 *1.q QCD Sum Rules M 17 x10-WI 
i 

BR(x2 -+ xx) (3.6 f0.6 h1.2) 

~_ 
QCD Sum Rules M 3.6 x~O-~I~~I 

Table 4.10 Comparison of branching ratios of x0,2 -+ 7roro to the- 

oretical predictions. 
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X0 

x2 

Wx -+ rlrl) BR(x -+ T’K~) 

(x10-3) (x 10-S) 

2.8f1.6 3.5 f-1.2 

0.8450.58 1.2 *0.5 

Ratio Prediction 

0.8 Ito. 0.95 

0.7 50.6 0.79 

Table 4.11 Comparison of branching ratios of xo,z*r)q to SU(3) 

predictions. 
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Chapter 5 

Non-Charmonium Decays (Heavy Mesons) 

5.1 Introduction 

Recent work by the Mark II collaboration I11 has directed attention to the non- 

charmonium decays of the $J’. The Mark II measured the branching ratios of the 

J/~/J and T,V to several hadronic final states. The q!~’ branching ratio to a given final 

state X was normalized to the J/4 b ranching ratio to the same final state X so 

that the final results were presented in the form of ratios of branching ratios. The 

Mark II results are summarized in Table 1. 

It will be noted that the first six ratios fall between 8% and 23% with an average 

of 10.7 rt2.3%. Th ere are two exceptional final states, ,u7r and K**KF, which are 

unobservable at a levels five and sixteen below this rate at 90% confidence level. 

The theoretical prediction for these ratios is simply derived if we assume the 

validity of perturbative &CD. To first order, the dominant decay of the J/G is via 

three gluons, and the branching ratio for this process is proportional to (see Section 

5.1) 

PI 

where as is the strong coupling constant, T)(O) is the non-relativistic wavefunction 

at the origin, and MJ/+ is the mass of the J/$. W e can eliminate the dependence 
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Table 5.1 Ratios of $’ to J/V/J b ranching ratios for hadronic decays (Mark 11).il1 

on the wavefunction by using the predicted partial width to leptons from Equation 

(4.2): 

as I’(J/$ -+ Z+Z-)M;,ll 
WJ/G -+ ws) - g- 

Jlrl, ‘bzz (J/+) 
- atBR(J/$ -+ e+e-) 

[=I 

The derivation is identical for the $‘. If we assume that oS does not vary significantly 

from the J/$ mass to the $J’ mass, we see that 

BR($’ --f wg) BR(@ --+ Z+Z-) 

WJM --+ SW) = BR(J/$ + 1+Z-) 
= 12.0 It 2.2% 

where we have used the experimental leptonic branching ratios from the Particle 

Data Group[21 . There currently does not exist a complete description of the process 

by which the gluons are converted into observable hadrons. However, if we assume 

that this unknown process does not change substantially between the masses of the 

J/$J and $‘, the ratio of branching ratios to any hadronic final state X should be 
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the same as the ratio of branching ratios to three gluons: 

Page 95 

BR($’ 3 X) 

BR(J/+ --+ X) 
x 12% WI 

in good agreement with the values found for the first six decay modes given before 

but in striking disagreement with the results for the p7r and K**KF final states. 

Although we have derived this simple result in the context of two quarks annihi- 

lating to form three gluons, it is generally valid for any process involving the initial 

annihilation of the quarks. In particular, it has been noted by several authors[31 

that the partial width of a quarkonium state to a photon plus two gluons (Fig. 5.1) 

is given by an expression similar to equation (4.1) with one factor of os replaced by 

(Y and a modification of the SU(3) color factor. Thus, equation [5.4] should hold 

for radiative decays as well as hadronic decays. 

12-84 5005A7 

Fig. 5.1 Feynman diagram of the annihilation of the J/+ or $’ 

into two gluons and a photon. 

As part of the current study, we have searched for radiative decays of the $’ 

to attempt to find other channels which violate the “12% rule”. We discuss in this 

chapter radiative decays of the $’ which can be studied with an exclusive analysis, 

namely, $+ --+ 7 f and y!+ -+ 70. (The decays $’ + 777 and +!+ --+ yyrl’ require a more 

specialized analysis and are discussed separately in Chapter 6.) These decays have 
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been thoroughly studied on the J/G, and we present a parallel study of the decays 

J/~/J -+ 7f and J/+ --+ 70 which can be used to check the validity of the analysis 

techniques. 

5.2 J/q!qL+ -+ 77r07ro 

The signatures of the decays J/$,$+ --+ 77r07ro are in principle simple. If we 

were to demand that all final-state particles be observed in the detector, we would 

look for events with five 7’s. Since the 7’s deposit their total energy in the Ball, we 

would be able to impose energy and momentum constraints on the observed events. 

The addition of the two x0 invariant mass constraints would allow us to make 5C 

fits. (One constraint is lost due to the unknown z-vertex.) 

However, the decays J/$, t,!+ --+ 7n07ro rarely leave five separated tracks. The 

two 7’s from the decay of an energetic 7r” will have a small opening angle in the 

frame of the Ball. The inner radius of the Ball and the Moliere radius of NaI are 

such that the showers from these two 7’s begin to overlap around E,o = 600 MeV 

and cannot be separated by the offline software starting around E,o = 800 MeV. 

To identify and measure the four-vectors of these no’s requires the use of the more 

sophisticated shower identification routine PIFIT (d escribed in Appendix C). Figure 

5.2 shows the efficiency for detecting a single r” uniformly distributed in solid angle 

as a function of 7r” energy and the fraction flagged as separated and merged. Merged 

X”S can be identified in a single connected region or two connected regions. (See 

Section 3.3.3.) Note that the efficiency shown in the plot is not applicable to a 7r” 

embedded in a real event due to overlaps with other particles. We see that although 

the efficiency for detecting a 7r” is roughly constant, the fractions of K”S in the three 

categories vary dramatically. 

Thus, the decays J/+,$+ -+ 7n”no may be observed to have three, four, or five 

tracks depending on whether the 7’s from the TO’S are separated or merged with 

correspondingly different numbers of constraints in the kinematic fit. (As noted in 

Chapter 3, we treat no’s which decay into 7’s which are merged as one track.) We 
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Merged 
(1 Con. Reg.) 

000 

Energy of 7~’ (MeV/c’) 

Fig. 5.2 Efficiency for detection of single Monte Carlo ~“s. 

describe briefly below the cuts used to select events contributing to J/T),, $’ --+ yn”ro 

in each of these topologies. 

5.2.1 3 Observed Tracks 

In order to search for this topology, we sort the three tracks by their PIFIT 

masses. Figures 5.3 and 5.4 show the largest PIFIT mass in the event plotted 

against the second largest PIFIT mass for the J/~,!J and $’ datasets, respectively. 

As discussed in Chapter 4, the two clusters correspond to the topologies 777 and 

77r07r0. Requiring that the two highest PIFIT masses each be above 90 MeV/c2 

corresponds to the cut whose boundaries are shown in the plots. Additionally, we 

require that the PIFIT mass of the remaining track be below 90 MeV/c2. We fit to 

energy and momentum constraints and place a confidence level cut at lo%.* The 

* As noted in Appendix B, the fit errors for each track depend on whether it has been classified 
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small plots in Figs. 5.3 and 5.4 show the confidence level plots for these fits. 

5.2.2 4 Observed Tracks 

Here we search for events with one track having a large PIFIT mass and an 

open no in the remaining three tracks. Figures 5.5 and 5.6 shows the PIFIT mass of 

all tracks which have been PIFITed vs. the three invariant mass combinations of the 

remaining tracks. t We see in both the J/I/J and $’ data a concentration of events 

with a high PIFIT mass and an invariant mass combination near the 7r” mass. We 

fit the events to energy and momentum conservation and constrain two of the 7’s 

to form a 7r” mass. The small plots in Figs. 5.5 and 5.6 show the confidence level 

distributions for all fits. Note that one event may have more than one combination 

of tracks which falls inside the box in Figs. 5.5 and 5.6. In such a case we use the 

fit to remove the ambiguity by accepting that assignment of tracks which has the 

highest confidence level. We require that an event have at least one good fit, where 

a good fit is defined to have a confidence level greater than 10%. The percentage of 

events in which the fit must be employed to resolve ambiguities is small as illustrated 

by the plots in the lower right corners of Figs. 5.5 and 5.6 which show the number 

of good fits per event. 

5.2.3 5 Observed Tracks 

Finally, we look for events with five tracks, none of which has a PIFIT mass 

consistent with a 7r” mass. In this topology, there is a background in the $’ data, 

namely $’ + rrJ/+, J/G --) 37, which can be confused with the processes in which 

as a 7 or a 7r’. 

t Simple counting would yield 4 x 3 = 12 entries in this plot per event. However, we plot the 

PIFIT mass only for those tracks we have been PIFITed, i.e., those tracks which have more 

than 500 MeV or are in a connected region with more than one track. Also, we form invariant 

mass combinations between pairs of tracks which have not been flagged as 7r”s. Thus, there 

is actually a maximum of 12 entries per event in this plot. 
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data. 

(Inset shows confidence levels of kinematic fits. Cuts 

shown by box and arrow.) 
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Fig. 5.5 PIFIT mass US. 27 invariant mass for four track events: 

J/4 data. 

(Insets show confidence levels of kinematic fits and num- 

ber of good fits. Cuts shown by box and arrow.) 
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Missing Masses Opposite 2 y’s (MeV/c2) 

Fig. 5.7 Missing mass opposite 2 y’s: $+ data. 

we are interested. The first part of this decay chain includes cascade transitions 

through the x states and $J’ -+ qJ/qb, while the second part includes J/$ -+ 77, 

77 + 77 and J/+ -+ 7~‘, 7’ -+ 77. In order to exclude these events, we examine the 

missing mass opposite all pairs of 7’s in the 5-track +’ dataset as shown in Fig. 5.7. 

We see a clear peak at the mass of the J/q, and we remove those events which have 

a missing mass which falls between the arrows. 

Figure 5.8 shows the 27 US. 27 mass for all pairs of 7% in the 5-track J/$ 

dataset. Figure 5.9 shows the same plot for the T/J’ events which pass the above cut. 

We see events consistent with 7r07ro in both plots, and select those events which 

fall inside the boxes. These events are fitted to energy and momentum conservation 

plus the additional constraints that two pairs of 7’s form X”S. Once again, if an 

event has more than one assignment of tracks which falls inside the box, we accept 

the one with the highest confidence level. In any case, we require that an event 
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have at least one combination of tracks which gives a confidence level greater than 

or equal to 10% . The small plots in Figs. 5.8 and 5.9 show the distribution of 

confidence levels and the number of good fits per event. 

5.2.4 Combined Topologies 

We display the events which pass the confidence level cut in the form of pseudo- 

Dalitz plots in which the invariant mass squared of the two 7r*‘s is plotted against 

the 7~’ invariant mass squared (Figs. 5.10 and 5.11). Note that each event is 

plotted twice (once for each 77r” combination) with the same abscissa. The bands 

at large r”7ro invariant mass in the $’ plot correspond to the decays $+ + 7x0,2, 

xo,2 t T’?T* as discussed in Chapter 4. Figures 5.12 - 5.15 show the distributions of 

the 77r” and n”7ro invariant masses corresponding to these Dalitz plots. (We show 

the 7r01ro invariant mass plot only up to 3200 MeV/c2 in the $’ case since we have 

previously studied the x0,2 -+ Z’X’ decays. Also, there are twice as many counts in 

the 77r” plots as in the 7r”ro plots.) 

We are primarily interested in 7r07ro resonances. However, the 7~~ plot is of 

interest insofar as we are able to remove any background of the form J/~),+-+xn-~, 

X 37”‘. The Mark III collaboration has announced preliminary results of studies 

of hadronic decays of the J/+.141 They report BR(J/$--+w7r”) = (6.7 f0.6 Al.1) 

x10M4 where the first error is statistical and the second systematic. This decay is of 

interest here inasmuch as the w decays to 77r” with a branching ratio of 8.7%.121 We 

note that in the 77r* plot that there is some structure near the w mass, although the 

signal appears on the peak of a rather uneven background. In order to determine 

the boundaries of an appropriate cut, we examine the decay J/~!-+w~~~~, w+77r”. 

Events consistent with this decay will be observed in the Ball with 4, 5, or 6 tracks 

depending on how many no’s are merged. Figure 5.16 shows the 771-O invariant 

mass plot of events from these three topologies which pass a kinematic fit with a 

confidence level of 10% or greater. (Each event appears in this plot three times.) 

The w peak can be fit with a Gaussian of mean = 785 f4 MeV/c2 and o = 27.6 
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Fig. 5.8 2y invariant mass 11s. 27 invariant mass for five track 

events: J/T,!I data. 

(Insets show confidence levels of kinematic fits and num- 

ber of good fits. Cuts shown by box and arrow.) 
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Fig. 5.9 27 invariant mass VS. 27 invariant mass for five track 

events: T+!J’ data. 

(Insets show confidence levels of kinematic fits and num- 

ber of good fits. Cuts shown by box and arrow.) 



5.2 J/$,4’ -+ yrO~O Page 107 

’ f3.7 MeV/c2. Returning to J/$--+r7r 7r ‘, Fig. 5.17 shows the same plot as Fig. 

5.14 with arrows indicating the boundaries of a window 55 MeV/c2 (i.e., 20 ) wide 

centered at 785 MeV/c2. We eliminate any event which has a 7~’ combination 

inside of this window. The same decay is much more difficult to detect on the 

$J due to the r”7ro decays of the x states which must peak at low rnO mass due 

to the low energy of the direct 7 in these decays. However, in order to maintain 

consistency between the J/$ and $J’ analyses, we make the same 77r” cut for the $I’ 

data. Figures 5.18 and 5.19 show the final 7r”ro distributi0ns.j 

$ It should again be noted that the distribution shown in Fig. 5.19 is dominated by the 

transitions $J’ --t 7x0 , ~0 -+ QT’,’ and I)’ + 7x2 , x2 - 7rO7l.O which have been previously 

discussed in chapter 4. The plot in Fig. 5.19 extends only up to 3 GeV as we now wish to 

focus attention on the non-charmonium decays. 
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Fig. 5.10 TOT’ mass vs. 771-O mass for all events: J/$ data. 
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Fig. 5.11 TOTO mass vs. 77~’ mass for all events: yb’ data. 
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Fig. 5.15 TOTTO invariant mass distribution in $’ -+ 77r07ro: 

q!+ data. 
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Fig. 5.15 77r” invariant mass distribution in ~,!~‘-‘771-~7r~: 

$+ data. 
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Fig. 5.17 77r” invariant mass distribution in J/T,&-+ 77r07ro. 
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Fig. 5.18 n-“~o invariant mass distribution in J/1c,+y~-~n-~ after 

w cut: J/G data. 
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5.2.5 Analysis of the n-‘r” Spectrum 

We investigate first the energy dependence of our analysis procedure. We gener- 

ate several Monte Carlo datasets of the decays J/T&, $’ -+ 7X,X + mono (with the 

width of X set to zero and all angular distributions flat) for different values of the 

mass of X and subject them to the same analysis as the data. Figures 5.20 and 5.21 

show the fractions of the Monte Carlo events which survive plotted against the mass 

of X. The efficiency drops rapidly below Mx = 500 MeV/c’ due to the merging of 

the showers from the two 7r”s. Kowever, in the range 900 MeV/c’ 2 Mx 5 M,,$ 

or M,,,,, the efficiency is flat within errors. We shall be concerned with a signal at 

the mass of the f(1270) w rc is comfortably above the efficiency threshold. h’ h 

We next attempt to fit the J/4 spectrum. The Mark III collaboration has 

studied this decay via the charged mode: J/q!--q~ $- -.I51 Since the C and G parities r 

of the 7rr system in J/$ -+ ~7rn are even, the total isotopic spin of the two n’s must 

be either zero or two. Thus, structures seen in J/G -+ y7r+7re should also been 

present in J/G + yn”ro. If the isotopic spin of such a structure is zero, it should 

be produced in J/T) -+ yr”nO with a product branching ratio half that observed 

in J/I) t yn+r-; if the isotopic spin is two, the ratio is reversed. The Mark III 

collaboration reports evidence for structures in the z-$‘r- spectrum near 1.7 and 

2.1 GeV in addition to the f at 1.27 GeV (Fig. 5.22). They identify the 1.7 GeV 

structure with the 8, and terms the 2.1 GeV structure “X”. In order to parametrize 

the background in our 7r07ro invariant mass plot, we fit the distribution to two non- 

interfering relativistic Breit-Wigner line shapes with means and widths fixed to the 

values found for the high mass structures in the Mark III study plus a relativistic 

Breit-Wigner of variable mean and width corresponding to the f.9 Figure 5.23 shows 

§ As in the Mark III study, we do not include an energy-dependent width. The variations in the 

fitted parameters when this effect and the small contribution from the fitted mass resolution 

(cl F3 20 MeV/c2 at the mass of the f) are taken into account are included in the systematic 

errors. 
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a fit to the 7r”ro invariant mass distribution on the J/$ with these structures plus a 

third-order Legendre polynomial. Figure 5.24 shows the same plot with a fit to the 

same structures but with the width of the f fixed to the Particle Data Group value 

of 178 MeV/c 2.121 In both fits the mass of the f (1278 &7 rt5 MeV/c2 and 1288 f.7 

f5 MeV/c2) agrees within errors with the Particle Data Group value of 1274 f5 

MeV/c2.121 The best fitted width of the f (137 f15 rt20 MeV/c2) is just within the 

error bars of the Particle Data Group value of 178 h20 MeV/c2121 and is consistent 

with the best value found in the Mark III study (139+$ MeV/c2).15] As is noted in 

reference 5, the confidence level that all reported measurements of the width of the 

f come from a common source is only 0.1%. The discrepancy might be related to 

the possible structure on the high mass side of the f in both the current analysis and 

the Mark III study. (It is intriguing to note that a hint of a ~7r near 1400 MeV/c2 

resonance has been seen in studies of hadronic collisions.171 ) We also note that the 

confidence level of the fit is reduced if the structures corresponding to the Mark III 

0 and X signals are removed (Fig. 5.25). As a consistency check of our analysis 

with that of the Mark III, we measure 

BR(J/$ + $)BR(B --+ r"ro) = (7.8 f 2.2 f 2.7) x 1O-5 

BR(J/$ + yX)BR(X --f TOT') = (9.4 I!X 2.4 f 3.2) x 1O-5 
[5.51 

to be compared the Mark III measurements of 

BR( J/$ + +)BR(B --+ m+-/r-) = (1.6 * 0.4 f 0.3) x 1O-4 

BR(J/+ --+ -yX)BR(X -+ r+n-) = (3.0 drO.5 ztO.6) x 1O-4 
P-61 

where an enhancement of a factor of two over the 7r07ro decays is expected if the 

isospins of the resonances are zero. Thus, the measured branching ratios for these 

structures are consistent within errors. However, it should be emphasized that the 

values in this study are obtained from a highly constrained fit since we have fixed 

the means and widths of the two resonances. One would not ordinarily include two 

resonant structures in a fit of the high-mass region of Fig. 5.18, and we have done 

so only due to the results of the Mark III study. 
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In order to perform a Monte Carlo simulation of J/T) -+ rf, we need to specify 

the spins and helicity amplitudes of the particles involved. For this purpose we use 

a previous Crystal Ball study (using this same dataset) in which the helicity ampli- 

tudes z and y (defined in Chapter 4) were found to be 0.88 f0.13 and 0.04 rt 0.19, 

respectively. A Monte Carlo simulation of J/+ -+ rf with these helicity amplitudes 

indicates that the detection efficiency of this decay is 6.9 %. f Using this detection 

efficiency with the observed amplitude of 263 f20 events yields a branching ratio 

of 

BR(J/$ -+ rf) = (1.7 f 0.1 f 0.5) x 1O-3 P-71 

where we have included in the systematic error the variation of the fitted amplitude 

under different background assumptions. This is consistent with the average of all 

measurements used by the Particle Data Group 1’1 (excepting the previous Crystal 

Ball result) of BR( J/v) -+ 7 f) = (1.6 * 0.4) x 10m3, and the previous Crystal Ball 

result of BR( J/lc, + rf) = (1.48 i 0.25 & 0.30) x 10-3iGl 

Having checked our technique on the J/$ data, we examine the $I’ data. In this 

case the background is adequately fit by a constant. In addition, we fit a Breit- 

Wigner line shape of mean and width fixed to the values found in the J/+ fit to 

account for the structure seen near the mass of the f (Fig. 5.26). Using the fitted 

amplitude of 18 It 5 events and a Monte Carlo efficiency of 6.6%, we derive 

BR(@ -+ rf) = (1.5 f 0.4 i 0.5) x 1O-4 WI 

where the first error is statistical and the second is systematic. We can take the 

ratio of this measurement to our previous measurement of BR(J/$ -+ rf). A part 

of the systematic errors in these two measurements is identical and so cancels out. 

7 This efficiency includes the branching ratio of f -+ .rr”ro of 28%, i.e., the detection efficiency 

for the decay J/lc, -+ yf, f + 7r07ro is 25%. 
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from Mark III. I51 

We obtain 

BR(llr’ --+ r f) 
BR(J/1C, --+ ?f) 

=9&t%. P-91 

Several checks can be performed to determine if this signal is due to a back- 

ground. There is the (somewhat unlikely) possibility that the Amoco events are not 

associated with the q!~’ resonance but rather result from an underlying continuum 

process. Figure 5.2’7 shows the 7r07ro spectrum which results when the same anal- 

ysis applied to the J/+ and $J’ data is applied to the q!Y’ dataset. There are only 

three events, all of which have 7r07ro masses above 3 GeV which are probably due 

to the background e+e- + (y)yyy in which the two high energy 7’s are misidenti- 

fied as merged 7r”‘s. Next, it is conceivable that the events are due to the process 

$‘+XJ/kJ/$-tyf h w ere the decay products of the X system are not detected 
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Fig. 5.24 Fit of 7r07ro invariant mass distribution in J/G + y7r07ro 

fitted to three Breit-Wigner line shapes and phase space 

background. (Width of the f fixed at 178 MeV/c”.) 
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Fig. 5.26 Fit of T’T’ invariant mass distribution in G’ --+ ~~~~~ 
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(perhaps going down the beampipe). We have investigated this background for the 

case with the largest branching ratio, namely, X = TK (both charged and neutral 

modes). In a Monte Carlo of this process with twice as many events as would be 

expected from known branching ratios, no events pass the analysis cuts. (Events 

which can pass the initial topology cuts due to the loss of some final state parti- 

cles cannot pass the kinematic fit to energy and momentum conservation.) Finally, 

there is a possibility that the decay $,’ + 7x0 , x0 -+ 7r”no could be a background 

for this decay if one of the TO’S were separated. In this case there would be one 

merged 7r” and three identified y’s, and it is possible that one of the 7’s from the 

decay of the 7r” could be incorrectly identified as the direct 7. Figure 5.28 shows 

the 7r07ro invariant mass spectrum from a Monte Carlo of this process with a factor 

of eight more events than would be expected from measured branching ratios. (See 

Chapter 4.) We estimate a contamination of one-half of an event from this channel 

which we have included in the systematic error quoted above. 

We can further check if the events have a topology consistent with the decay 

$’ --+ 7f, f -+ 7r07ro. Figure 5.29 shows the distribution of 1 cos 19~1 ( where 0, is the 

angle the r”ro axis makes with the 7 direction in the rest frame of the ~ITo~ITo system) 

for events with 7r07ro masses between 1000 and 1550 MeV/c2. The solid histogram 

shows the distribution from the J/$J data; the dashed and dotted histograms show 

the distributions from Monte Carlos of J/T/J -+ 7 f, f -+ r’r’where the f is assigned 

spin 0 and spin 2, respectively (normalized to the data).** We see that the data 

are peaked towards high 1 cos OR 1 . That this effect is not an artifact of the cuts 

is demonstrated by the distribution from the spin-0 f Monte Carlo, which is flat. 

Figure 5.30 shows the same plot for the $J’ dataset and two Monte Carlos of $J’ -+ 7 f, 

f -+ 7r07ro where the spin of the f is assigned spin 0 and spin 2. Again, there is a 

tendency for the points to cluster at large 1 cos 6,1 consistent with the J/G data, 

** We have once again used the helicity parameters from reference 6. The data and the spin- 

2 histograms do not overlap exactly since we use a different set of cuts than that used in 

reference 6. 

W‘ 
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but the statistics are too low to make a spin assignment. 

In contrast to the 77r07ro channel, the signature of the 7~77 channel is relatively 

simple in that the 7’s from the decay of a single 7 at SPEAR energies do not overlap. 

Thus, we use the same analysis that was used to search for 77r07ro, but we use only 

the five-track topology and fit to the r] mass instead of the 7r” mass. Figures 5.31 

and 5.32 show the same invariant mass plots as Figs. 5.8 and 5.9 but on expanded 

scales in order to show the clusters at the qq mass. We select events shown in the 

boxes to be subjected to kinematic fits to energy and momentum conservation and 

the additional constraints that two pairs of 7’s form 7’s. The small plots in Figs. 

5.31 and 5.32 show the distributions of confidence levels and the number of good 

fits per event. Figures 5.33 and 5.34 show the qq invariant mass distributions which 

result. 

We again check the efficiency of our technique by generating series of Monte 

Carlos of the decays J/G, @--+7X, X-+qq for different masses Mx . Figures 5.35 

and 5.36 show the variation of detection efficiencies at the J/T/I and $+ energies, 

respectively. We see that the efficiency for the J/$ decays is reasonably flat, whereas 

the efficiency for the $’ decays drops off at low values of Mx . This is due to the 

one cut that is different in the J/T+!J and $’ analyses, namely, the rejection of events 

in the $’ data which have a missing mass opposite two 7’s which is consistent with 

a J/G mass (see Section 5.2). 

We fit the J/$ invariant mass spectrum to a single Breit-Wigner plus a flat 

background and allow all parameters to vary (Fig. 5.39). We obtain a good fit to 

a resonance with a mass of 1655 133 *I5 MeV/c2 and F = 219-t;: & 20 MeV/c2, 

consistent with the original Crystal Ball observation of the 8(1640) (using the same 

dataset) of M = 1640 550 MeV/c2 and I’ = 220’::’ MeV/c2.181 In order to obtain 

an efficiency for this decay, we use the values of the helicity parameters x = 0.87 

and y = -0.64 obtained in the original Crystal Ball analysis and obtain a Monte 
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Carlo efficiency of 2.5% (including the branching ratios of the v to 77) and so derive 

BR(J/$ -+ yt9(1640)) x BR(B(1640) --+ 17~) = (5.8 f 1.4 zt 1.5) x 10m4, consistent 

with the original Crystal Ball measurement of (4.9 61.4 zJ~l.0) ~10~~. 

Shortly after the Crystal Ball observation of the 8(1640), the Mark II collabo- 

ration reported evidence of structure in the K+K- invariant mass spectrum in the 

decay J/q!+yK+K- near the same mass. I11 However, they were able to resolve 

two peaks which they associated with the f’ and B (at 1700 f30 MeV/c’). In 

order to avoid ambiguities, we refer to the single resonance reported in the orig- 

inal Crystal Ball analysis as 8(1640) and call the higher mass K+K- resonance 

0(172O).*f The Mark III collaboration has recently repeated the Mark II study of 

J/$--qK+KK- and have reported masses, widths, and helicity amplitudes for the 

two states f’ and 8(1720)(see Fig. 5.38). Motivated by these analyses, we at- 

tempt a fit of the 7~ invariant mass spectrum in J/$~-+-yqq to two non-interfering 

Breit-Wigner line shapes with masses and widths fixed to Mark III values obtained 

from a similar fit to the K+K- invariant mass spectrum (A+ = 1525 f 10 i- 10 

MeV/c2, IfI = 85 -f 35 MeV/c2, Mo(rY2e) = 1720 f 10 & 10 MeV/c2, and I?~(l;r20) = 

130 f 20 MeV/c2). Using the helicity amplitudes for the f’(z = 0.63 and y = 0.17) 

and 8(1720) (5 = -1.07 and y = -1.09) f ound in the Mark III study, we obtain 

Monte Carlo efficiencies of 2.8% and 3.2%, respectively, for J/ll, -+ rf’, f’ --+ 77 and 

J/$ --+ ~8(1720),8(1720) --+ ~777 . Combining these efficiencies with the observed 

numbers of events in the peaks (12A5 and 20 16), we obtain 

BR( J/r,5 --+ yf’) BR(f’ -+ 177) = (1.9 f 0.8 Irt 0.5) x 1O-4 

BR(J/$ + y3(1720))BR(8(1720) --+ VT) = (2.6 f 0.8 rt 0.7) x 1O-4 
15.101 

In the corresponding 4’ spectrum there are events at high mass (from the decays 

x0,2 -+ qq discussed in chapter 4) but no events below 2 GeV. Using upper limits 

*t We use the more accurate Mark III measurement of the mass to label this state. 
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Fig. 5.38 K+K- Invariant mass distribution in J/+-+yK+K- 

from Mark III. 1’1 

of 2.3 events, we can set branching ratio upper limits for $'-&(1640), f', or 8(1720) 

of 1 x 10e4 at 90% upper confidence level. Using the measurements of these decays 

on the J/T), we can translate these into limits on the ratios of branching ratios: 

BR($' + 8(1640)) 
BR(J/$ -+ 8(1640)) 

or 
BR(qY + f’) 

BR(J/$ -+ f’) 
BR($’ --+ d(1720)) 

BR(J/$ + 8(1720)) 

< 10% 

< 22% 
[5.11] 

< 15% 

The upper limits are larger than would be obtained by simply dividing 2.3 events 

by the number of events observed on the J/T) due to the decreased efficiency in the 

$+ analysis as noted above. 



We cannot compare the $’ results to previous experiments as these are the first 

measurements of these branching ratios. We postpone a comparison with theory 

until after the discussion of the radiative decays to low mass mesons in the next 

chapter. 
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Chapter 6 

Non-Charmonium Decays (Light Mesons) 

6.1 Introduction 

In this chapter we continue the investigation of the radiative decays of the V/J’. 

Here we consider decays to mesons which are sufficiently light that the observed 

tracks of their decay products typically overlap, rendering an exclusive analysis 

worthless. We are interested in particular in the decays $’ -+ 77 and $’ + 77’. The 

27 decay mode of these mesons is an exception to the comment just made, and we 

first investigate these reactions in the 27 channel using an exclusive analysis. This 

approach is ultimately limited by the background from the QED process e+e- + 

(7)77 . We next use the “global shower technique” to measure the branching ratios 

for the decays $’ -+ rq, q + ~~~~~~ and $J’ + -y$, q’ + vn’~‘. The analyses 

have been optimized to extract signals from the T,!J’ data. As such, they do not yield 

the most accurate possible values when applied to the J/g data. Nevertheless, we 

demonstrate each of our analyses on the J/G w h ere the signal to background ratio 

is substantialIy larger than on the $‘. 

139 



6. Non-Charmonium Decays (Light Mesons) Page 140 

6.2 4’ + 7wb’ --+ 771’, rl, rl’+ 77 

From the datasets which have been processed through the algorithms described 

in Chapter 3 we select all events containing three tracks. We reject those events in 

which the PIFIT mass of any of the three tracks is greater than 90 MeV/c2 and so 

inconsistent with a 7. We fit the events to energy and momentum constraints and 

require the confidence level of the fit be greater than 10%. Finally, we require that 

the angles of the two highest energy tracks with respect to the beam direction be 

such that cos 0 < 0.70 so as to reduce background from the QED process e+e- --+ 

(7)77 - Figures 6.1 and 6.2 show the Dalitz plots for the J/$ and +’ datasets, 

where the highest invariant mass combination has been plotted against the lowest 

invariant mass combination. Both plots show an accumulation at high invariant 

mass corresponding to e+e- + (7)77 . In addition, Fig. 6.1 shows clear bands 

corresponding to the reaction J/ll, + 77, q -+ 77 and J/$J -+ yq’, q’ --+ 77 whereas 

Fig. 6.2 shows no such structure. We show Figs. 6.3 and 6.4 the lowest invariant 

mass combinations plotted on a linear scale.* We again see structures corresponding 

to the q and q’ in the J/$ data, but no such structures in the $J’ data. In order 

to suppress the QED background, we require that the lowest energy 7 in the event 

have at least 400 MeV. This corresponds to eliminating those events lying to the 

right of the arrows in Figs. 6.1 and 6.2. Figures 6.5 and 6.6 show the distributions of 

the lowest invariant mass combinations after this cut. Figures 6.7 and 6.9 show fits 

to the 7 and 7’ peaks in the J/$ plots to Gaussians plus a flat background. Using 

Monte Carlo efficiencies of 18.5% and 17% for the reactions J/T+!J -+ 7q, 7 + 77 and 

$’ t y$, 17’ -+ 77, respectively, we calculate the branching ratios BR(J/$ --t 7~) 

= (9.9 f 1.0 + 2.0) ~10~~ and BR($’ -+ 7~‘) = (6.9 + 1.2 f 2.0) x10m3, where 

* As can be seen from the Dalitz plots, there are decays of the form J/$ - TV, v + 77 in 

which the two 7’s from the decay of the 7 do not form the lowest invariant mass combination 

in the event and hence fall outside the peak in Fig. 6.3. However, such events are eliminated 

by the QED cut which follows, so there is no gain in efficiency in considering other invariant 

mass combinations. 
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the first errors are statistical and the second systematic. In order to derive upper 

limits for the same reactions from the $J’, we attempt to fit the same regions in 

the 4’ plots to Gaussians with means and widths fixed to be those found in the 

fits to the J/G plots - only the amplitudes and background parameters are allowed 

to vary. Using linear backgrounds, we derive 90% confidence level upper limits of 

BR($+ --+ 7q)<5.1 ~10~~ and BR($’ -t 7$)<1.7 ~10~~. (These upper limits are 

determined as described in the next section.) Figures 6.8 and 6.10 show signal 

amplitudes corresponding to the 90% confidence level limits superimposed on the 

data. 

6.3 $J’ t 7q, 9’ -+ 7~’ Using Global Showers 

We next employ the global shower technique (described in Appendix D) to 

search for the decays $J’ --+ 7~, 7 + 7r07r07ro and $J’ --+ 7$, q’ -+ qr”7ro. These 

decays have the advantage over the 77 decays of the 7 and q’ that they are not 

contaminated by the QED process e+e- t (7)77 . Also, the rates for these decays 

are substantial fractions of the total decay rates of the 77 and q’, and the errors in 

these rates are small. (BR(q --+ rococo) = 31.8 f0.8 % ; BR($ + v7r”ro) = 21.8 

10.5 % .‘ll ) 

As mentioned in Chapter 3, the secondary cuts for this analysis are slightly 

different than those used in the exclusive analyses. We do not remove events with 

more than two bumps in a connected region or with large SMOMT masses since 

these features are characteristic of the decays we are studying. We discard an event 

if it has an endcap track or if any connected region has more than 10% of its energy 

in endcap crystals. We also demand that the sum of the energies in the crystals 

be within 300 MeV of the center of mass energy. This cut is designed to eliminate 

those events in which one or more 7’s are missing. Finally, we do not cut on the 

confidence level from the kinematic fit; however, we do discard those events in which 

the fit does not converge. Table 6.1 shows the effects of these cuts and the cuts 

described in Appendix D on the J/~/J and $’ datasets. 
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Fig. 6.1 37 Dalitz plot: lowest 27 invariant mass combination 

VS. highest 27 invariant mass combination. Top plot 

shows J/G data; insets show J/G -+ 7~ and J/$ t 77’ 

Monte Carlos. 
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Fig. 6.4 Lowest 27 invariant mass combination: $’ data. 
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Fig. 6.5 Lowest 27 invariant mass combination after 400 MeV 
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Fig. 6.6 Lowest 27 invariant mass combination after 400 MeV 

cut on lowest 7 energy: $’ data. 
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Fig. 6.7 Fit to q peak: J/G data. Fit parameters: mean = 
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Fig. 6.8 Fit to q region: T/I’ data. 
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Number of Events 

Input 

After Nov. ‘78 cut 

After endcap track cut 

After 1 vertex cut 

After (E,i, - ECM/ < 300 MeV cut 

After < 10 % Connected Region 

Energy in Endcaps Cut 

With Direct Identified 7 

With Convergent Fit 

30,722 24,756 

30,328 24,756 

12,997 12,626 

9,794 11,826 

8,213 9,833 

8,196 9,805 

7,749 8,897 

7,728 8,854 

With Global Shower Mass > 0. 7,152 8,610 

With Direct 7 PIFIT Mass < 90. 5,607 6,652 

Table 6.1 Preliminary cuts for global shower analysis. 

Figure 6.11 shows the invariant mass spectrum opposite the direct photon for 

the J/$ dataset. For completeness we have displayed the invariant mass spectrum 

from zero to the mass of the J/T). H owever, the detection efficiency of the global 

shower algorithm drops rapidly beyond 1500 MeV/c2 (see Appendix D), accounting 

for the decrease in the population of the plot at high invariant mass. On the low 

end of the spectrum, the fact that we assign any connected region with an SMOMT 

mass less than 90 MeV/ c2 an invariant mass of zero (Appendix D) is responsible 

for the sharp turn-on. There are distinct peaks at the v and v’ masses and hints 

of structure near the mass of the f. We apply the cuts described in Appendix D 

to select for the 7 decays. The result is shown in Fig. 6.12 for the J/$J data 

and the J/ti -+ 77 Monte Carlo (inset). Figures 6.13 and 6.14 show these plots 

fitted to Gaussians of variable mean, width, and amplitude plus flat backgrounds 
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(dashed lines). We see that neither the data nor the Monte Carlo is particularly 

well fit by this simple function. The solid lines show fits to Gaussians with low- 

energy tails plus flat backgrounds. ( For convenience, we use the same function 

described in Appendix A to fit the gamma energy line shape.) We see that the 

fits are substantially improved for both the data and the Monte Carlo. Using the 

320 f24 events in the peak and a Monte Carlo efficiency of 14%,t we obtain BR 

(J/G + 74 = (1.01 f 0.06 It 0.16) x 1O-4 (fi rs error statistical, second systematic) t 

consistent with the Particle Data Group value of (8.6 * 0.9) x 10e4 . 

Figure 6.15 shows the plot which results from the application of the q’ cuts 

described in Appendix D to the J/T/J data and a Monte Carlo of J/+ --+ 77' (inset). 

Again, we show these spectra fitted to line shape functions and Gaussians. (We 

use a linear background for the J/+ data.) W e a g ain see that a low-energy tail is 

necessary to fit the signal shape. Using the 705 f66 events in the data peak with a 

Monte Carlo efficiency of 7.7 % , we derive BR (J/$ + 7~') = (4.11kO.4f0.7) x 10V3 

to be compared with the Particle Data Group value of (3.6 + 0.5) x 10e3. These 

results are summarized in Table 6.2. 

Figure 6.18 shows the plot analogous to Fig. 6.11 for the $’ data. The struc- 

tures corresponding to the resonances in the J/T+!J data are now absent. Instead, 

the observed spectrum has a shape characteristic of the QED background. (See 

Appendix D.) Figure 6.19 shows the spectrum which results after application of 

the q cuts. Where previously we obtained a peak of over 300 events, there are now 

essentially no events near the 7 mass. In order to fit this plot, we fix the parameters 

of the line shape from the J/I/I fit . An upper limit analysis yields a 90% confidence 

upper limit of 4.2 events as shown by the curve in Fig. 6.20. Combining this with 

a Monte Carlo efficiency of 13% and folding in the estimated systematic errors, we 

t This number refers to the efficiency for detecting the decay J/$ -+ 7~ ; the efficiency for 

detecting J/$ -+ rq, 7 -+ rococo is 0.15/0.32 = 47 % . (Th e efficiency quoted in the text is 

slightly higher than 15% due to leakage from the 77 mode.) Similar comments apply to the 

other efficiencies quoted in this section. 
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Fig. 6.11 Global shower invariant mass spectrum on J/t). 
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Fig. 6.13 Global shower invariant mass spectrum on J/$ after q 

cuts fitted to line shape function (solid line) and Gaus- 

sian (dashed line) plus constant background. Best fit- 

ted values: 

Parameter Lineshape Fit 

MO 541.2 f1.9 MeV/c2 

CT 18.5 11.5 MeV/c2 

r 11512 

P 0.7 10.2 

Conf. Lev. 0.160 

Gaussian Fit 

536.6 rrtl.6 MeV/c2 

22.5f1.5 MeV/c2 

0.0003 
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Fig. 6.14 Global shower invariant mass spectrum on J/~/I -+ 7~ 

Monte Carlo after 77 cuts fitted to line shape function 

(solid line) and Gaussian (dashed line) plus constant 

background. Best fitted values: 

Parameter Lineshape Fit 

MO 542.7 f2.0 MeV/c2 

0 21 f2 MeV/c2 

r 3.551.6 

P 0.7 10.2 

Conf. Lev. 0. 4 

Gaussian Fit 

536.9 f1.3 MeV/c2 

24.511.1 MeV/c2 

8 x 1O-3 
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Fig. 6.15 Global shower invariant mass spectrum on J/lc, after 7’ 

cuts. (I nse s t h ows plot for 7946 generated J/I/J --+ yq’ 

Monte Carlo events.) 
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Fig. 6.16 Global shower invariant mass spectrum on J/G after 

q’ cuts. fitted to line shape function (solid line) and 

Gaussian (dashed line) plus linear background. Best 

fitted values: 

Parameter Lineshape Fit Gaussian Fit 

MO 946.2 f2.0 MeV/c2 941.9 zt1.5 MeV/c2 

0 23.0 52.0 MeV/c2 26.51ix1.8 MeV/c2 

r 2.2f1.7 

P 0.9 Eto.2 

Conf. Lev. 0.05 1.2 x 1o-g 
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Fig. 6.17 Global shower mass spectrum on J/T) + 7~ Monte 

Carlo after q’ cuts fitted to line shape function (solid 

line) and Gaussian (dashed line) plus linear background. 

Best fitted values: 

Parameter 

MO 

0 

r 

P 

Conf. Lev. 

Lineshape Fit Gaussian Fit 

950.8 f1.9 MeV/c2 946.2 311.8 MeV/c2 

26 f2 MeV/c2 25.9f1.7 MeV/c2 

1.510.5 

0.8 f0.2 

0.40 1 x 10-12 
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obtain an upper limit of BR($+ + yq)<2.0~10-~. 

Similarly, Fig. 6.21 shows the invariant mass spectrum after the 7’ cuts have 

been applied. Again, the large peak of the J/G plots is absent. Combining the 90% 

confidence level upper limits of 13 events (Fig. 6.22 ) with a Monte Carlo efficiency 

of 7.3%, we obtain BR(Q+ -+ rv’)< 1.4 x10e4 . The $’ results are summarized in 

Table 6.3. 

The upper limits from the 27 and global shower analyses are derived as follows. 

The amplitude of the signal is fixed at zero. An integration is then performed over 

all parameters which are allowed to vary (here, the background parameters) to ob- 

tain the volume of the likelihood function corresponding to zero amplitude. The 

amplitude is then increased by a small amount (0.25) and another volume integra- 

tion is performed. The process is repeated until the likelihood is virtually zero. The 

function so obtained gives the integrated likelihood as a function of the amplitude 

and so includes correlations between the signal amplitude and other parameters. 

The amplitude corresponding to 90% of the integral of this function is taken to be 

the 90% confidence level upper limit. It should be noted that the plots showing 

the upper limits are somewhat misleading. The amplitude corresponding to the 

90% confidence level upper limit is plotted on top of t(he background corresponding 

to the maximum value of the likelihood, whereas in fact the upper limit does not 

correspond to any one set of background parameters. 
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Fig. 6.18 Global shower invariant mass spectrum on T/J’. 
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yb’ + y q M.C.: yb’ + y q M.C.: 
4000 Events 4000 Events 

0 
0 500 1000 

Global Shower Invariant Mass (MeV/c2) 
1500 

Fig. 6.19 Global shower invariant mass spectrum on $J’ after q 

cuts. (I nse s t h ows plot for 4000 generated $+ t yq 

Monte Carlo events.) 
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Fig. 6.20 Global shower mass spectrum on I/I’ after q cuts fitted 

to line shape plus constant background. Signal shape 

fixed to that in J/I,!I plot. Solid line shows signal am- 

plitude corresponding to 90% confidence level upper 

limit. 
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Fig. 6.21 Global shower invariant mass spectrum on $’ after q’ 

cuts. (I nse s t h ows plot for 4000 generated $’ -+ -yq’ 

Monte Carlo events.) 
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Fig. 6.22 Global shower mass spectrum on T,!J’ after q’ cuts fitted 

to line shape plus linear background. Signal shape fixed 

to that in J/$ plot. Solid line shows signal amplitude 

corresponding to 90% confidence level upper limit. 
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Decay 

v-+77 

q -+ 7r07r07rO 

Average 

rl' + 77 

rl'-)YP 

q' + ?pr"7ro 

Average 

This 

Analysis 

99 ItlO f-20 

101 rt6 xi116 

100 f14 

690 f120 f200 

410 +40 f70 

440 345 

Previous 

Crystal Balli 

88 f19 

88 f19 

440 f140 

410 flO0 

420 f120 

390 zt40 

Other 

Experiments 

82 f10[31 

86 xk9 

290 f110'31 

470 f20 f70'61 

355 zt46 

Table 6.i? J/?+!J --+ 717,7q' branching ratios (X 105). 

(“Average” for “Other Experiments” refers to Particle Data Group value.) 

6.4 Summary 

Tables 6.2 and 6.3 summarize the results of the analyses of this chapter and 

compare them with other experiments. The branching ratios obtained from the J/$I 

data agree well with previous measurements. (The branching ratio of J/$ + 7~’ 

is somewhat confused. The reported values have ranged from (2 - 6) ~10~~. The 

Particle Data Group quotes a number in the low end of this range,lll while the 

most recent measurement favors a higher value.[Gl ) The upper limits obtained 

from the $’ analysis are below previously quoted upper limits but disagree with a 

measurement of +’ -t 7~’ from the Mark II. In this regard it should be noted that 

the global shower technique is relatively free from background whereas an analysis 

of $+ -+ “lrl’, rl’ -+ yp can be contaminated by the continuum process e+e-+ 7~. 
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Decay 

rl -+ 77 

7j + 7r07r07ro 

7’ + 77 

7’ + 7P 

q’ --+ r)7r07ro 

This 

Analysis 

< 5.1 

< 2.0 

< 170 

< 14. 

Other 

Experiments 

< 2o[*l 

< 63Ol”l 

< llO['l 

20 f10181 

Table 6.9 $’ -+ 7yrl, 77’ branching ratios and 90% confidence level 

upper limits (x 105). 

The number of such events contained in the Crystal Ball $+ sample corresponding 

to an integrated luminosity of 3300 nb-’ is estimated to be 550 events. If even a 

small fraction of these events is accompanied by a spurious low energy photon, the 

topology will mimic that of $’ t 7q’, 7’ + 7p . 

6.5 Comparison with Theory 

Table 6.4 shows the ratios of branching ratios for the decays measured in this 

and the preceding chapter. The $J’ branching ratios have been normalized in each 

case to the J/q5 branching ratios measured in this study so that common systematic 

errors cancel. It is seen that in one case the data agree with the naive prediction of 

12.0 & 2.2%, in one case the data are ambiguous, and in two cases there is substan- 

tial disagreement between the limits in the observed ratios and the theoretically 

expected value. 

- “. 
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Final State 7Y 

7f 

7~(1640), 

78(1720), 

e + q~ 

7rl 

BR($’ -+ rY> 

(x10-4) 

1.5 f0.4 f0.5 

<l 

<l 

< 0.2 

BR(J/+ + 7Y ) 

(x 10-4) 

17 +1&5 

5.8 f1.4 f1.5 

2.6 +0.8 f0.7 

10.1 ho.6 f1.6 

Ratio (%) 

(W 

9 13 

< 10 

< 15 

< 1.8 

rrl’ < 1.4 41 f5 17 < 2.6 

Table 6.4 Ratios of T,!+ to J/$J b ranching ratios for radiative de- 

cays (Crystal Ball). 

Combining the Crystal Ball (Table 6.4) and Mark II (Table 5.1) results, we 

see that four decays (pr, K*K, 7r7, and 717’) are suppressed on the $J’ compared 

to the lowest-order QCD prediction and the branching ratios of the J/$J to these 

final states. Some models have been put forth to explain the anomalous decays. G. 

Karl and W. Roberts[g] have suggested that there is an oscillation in the amplitude 

for three gluons to hadronize to the p7~ and K’K final states which has a node at 

the mass of the $‘. Brodsky and Lepage [loI have suggested that $J’ decays should 

be suppressed beyond the ratio of 12% by a factor of (MJ,q/M+,)n due to quark 

helicities where the power TX depends on the decay mode in question. For the decay 

V/J,’ + 77, n = 4[‘l] yielding a suppression factor of roughly l/2 which is insufficient to 

account for the suppression observed in the data. Also, for certain other decays the 

suppression is predicted to be even larger (n=8 for pp yielding a suppression factor 

of l/4 ) even though the experimental value for the $‘/ J/$ ratio for these decays is 

in good agreement with 12.0% . (See Table 5.1.) Of course, rather than speaking of 

a suppression of +!J’ decays, one can equally well describe the disagreement between 
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theory and experiment as an enhancement of J/t) decays. Hou and Soni[121 have 

postulated that there is a vector glueball near 2.2 GeV with which the J/$ mixes 

in order to enhance the decay rates of the J/T++ to p7r and K*K. 

Finally, it is possible that the mechanism which we have assumed is responsible 

for radiative decays is not the dominant process in +,’ --+ 77 and $+ -+ 77’ decays. 

Fritzsch and Jacksonl131 have proposed a model of J/V/J decays in which the CE system 

radiates a photon to a virtual qc. Assuming that SU(4) is broken, the vc and 7 (or 

q’) can mix so that the virtual vc can become a real q(or q’). (See Fig. 6.23.) In 

a model such as this the fundamental assumption of the derivation in Chapter 4 

that the two quarks annihilate is no longer valid. Rather than depending on the 

wavefunction at the origin, the decay rates depend on an overlap integral between 

initial and final states. Presumably the $’ would decay in a similar fashion by 

a radiative transition to a virtual vi (and perhaps qc). At the present time, no 

calculation has been made for the decay rates of +’ --+ 777 and $+ -+ 7~’ in the 

context of this model. 

12-84 5005A8 

Fig. 6.23 Feynman diagram of the radiative decay of the J/$ or 

$’ to a virtual vc or r]L . 

In summary, no theoretical model has been presented which convincingly ex- 

plains the suppression of certain $J’ decays. The only pattern one sees in the sup- 

pressed channels (pn, K*K, 7~ and 77’) is that they all consist of a vector and a 
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pseudoscalar. This pattern may perhaps be useful in elucidating the suppression 

mechanism. 
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Chapter 7 

Summary and Conclusions 

In the preceding chapters we have described a study of radiative q!Y decays 

using the Crystal Ball detector. Since this detector has excellent energy and position 

resolution for photons, we have concentrated on those final states which contain only 

7’s. We have measured the following branching ratios from radiative decays of the 

q!+ to charmonium states (first errors statistical, second systematic): 

Decay Branching Ratio 

x0 -+ 7r07ro (3.5 zto.3 f1.2 )x10-3 

0 0 
x2+7rr (1.2 f0.2 50.4 )x10-3 

x0 + 77 ( 4.5 zt2.2 f2.0 )X10P4 or 

2 1.0 x 10-a (90% C.L.) 

x2 -77 I ( 9.5 zt2.9 zt4.5 )x10-4 

x0 -+ rlrl I ( 2.8 ztO.9 il.3 )x~O-~ 

x2 + rlll I ( 8.4 f4.2 f4.0 )x~O-~ 

I r):: --+77 I < 1 x 1o-2 (90% CL.) 

Table 7.1 Measured branching ratios of charmonium states. 

We estimate the probability that the peak corresponding to the ~0 + 77 decay 

169 
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is due to a background fluctuation to be 1 in 300, and we quote both a branching 

ratio and an upper limit for this decay. Using the exceptionally clean signal of 

the decay chain $’ -+ 7x0 , x0 -+ 7r”ro, we have also measured the mass and 

width of the x0 to be 3415.5 f1.3 ho.6 MeV/c2 and 8.8 f 1.3 & 1.5 MeV/c2, 

respectively, where we have unfolded the natural line width from the observed line 

width using the known detector response function as determined by a study of 

$’ t rl J/G, J/+ --f e+e-, rl + 77. 

In addition, we have measured the branching ratios of non-charmonium decays 

of the $‘. We have performed a parallel analysis on the J/q, and we express our 

results in terms of the ratios of branching ratios of the G’ and J/T,!, to the same final 

state: 

Final State rY 

7f 

76( 1640) or 

~w720), 

0 --+ rlrl 

77? 

rrl’ 

BR(@ + rY> 

(x10-4) 

1.5 f0.4 f0.5 

<l 

<l 

< 0.2 

< 1.4 

BR(J/+ --+ 7Y > 

(x10-4) 

17 *1 f5 

5.8 kl.4 51.5 

2.6 f0.8 rrt0.7 

10.1 f0.6 f1.6 

41&5 f-7 

Ratio 

(W 

9 *3 

< 10 

< 15 

< 1.8 

< 2.6 

Table 7.2 Ratios of $’ to J/$ b ranching ratios for radiative de- 

cays. 

Upper limits are 90% confidence level. We quote two results for the 0 depending 

on whether we fit one (0( 1640)) or two (f’ and 0( 1720)) Breit-Wigner line shapes to 

the r/q invariant mass plots for events consistent with J/t) --+ 7~~7. (In the latter 

case, we obtain BR(J/$ -+ yf’)BR(f’ -+ ~7) = (1.9ztO.8f0.5) x10p4.) Similarly, 



most of the systematic error in the value of BR(J/+ -+ rf) is due to the uncer- 

tainty of how many structures to fit in the 7r”ro invariant mass plot for events 

consistent with J/$J + 77r07ro. The Mark III collaboration I11 has reported evidence 

for structures at 1.7 and 2.1 GeV/c2 (referred to as 8 and X) in the 7r+rT- invariant 

mass plot in J/$ + 77r+7rr-. If in addition to the signal seen in the 7r”ro plot 

at the mass of the f, we include two additional non-interfering Breit-Wigner line 

shapes with means and widths fixed to the best fitted Mark III values of the 13 

and X, we obtain BR(J/$ --) $)BR(6’ -+ mono) = (7.8 f. 2.2 f 2.7) x10e5 and 

BR(J/$ --+ yX)BR(X --+ mono) = (9.4 f 2.4 + 3.2) ~10~~. These branching ratios 

are consistent with the Mark III results if it is the 15’ and X have isospin zero. 

The theoretical predictions for the processes we have studied should be fairly 

reliable since unknown parameters can be determined from other measurements 

within the charmonium family. However, as detailed in Chapters 4-6, there are some 

notable discrepancies. The measured width of the ~0 is a factor of 3 to 8 larger 

than that expected from lowest-order QCD potential models. Although the two 

photon partial widths of the X0 and x2 (calculated from the measured two photon 

branching ratios and full widths) agree with the theoretical predictions from both 

QCD potential models and sum rules, the branching ratio of the ~0 to two photons 

is a factor of three smaller than that predicted by QCD potential models. (The 

disagreement exists even if we instead compare the theoretical expectation with 

the 90% confidence level upper limit.) This disagreement is disturbing inasmuch 

as the theoretical prediction does not depend on the assumed interquark potential 

and so is simply a ratio of coupling constants. Whether this disagreement can be 

attributed to higher order corrections is unclear. 

The simplest model of non-charmonium decays of the J/+ and $J’ predicts that 

the ratio of branching ratios of these two resonances to any non-charmonium final 

state should be roughly 12%. One of the channels we have studied, J/T,!,,@ -+ 

yf, is consistent with this prediction, and the upper limit on another, J/4, q!~’ -+ 

78(1640), is inconclusive. Two other channels (J/$, $’ + 77, J/$, T+/I’ t 7~‘) are 
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unobserved on the $’ at levels of 1.4% and 2.6%, respectively, of their branching 

ratios on the J/$ at 90% confidence level. This result is puzzling since it is a basic 

assumption of the charmonium model that the $’ is an excited state of the J/t,b 

and so presumably should behave similarly (when proper account is taken of the 

different wavefunctions). It is more so when combined with results from a Mark II 

study on hadronic decays of the $+ which also observed that some decay modes were 

suppressed (one, pn, by more than an order of magnitude), while others obeyed the 

simple QCD prediction. 

The data are as yet insufficient to determine if these discrepancies require the 

modification of some of our fundamental ideas about the nature of the charmo- 

nium family or whether they indicate that more precise theoretical calculations are 

required. What is certain is that we have no convincing explanations for these ef- 

fects. The charmonium family has not yet been fully explored (experimentally or 

theoretically) and may still contain surprises. 
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Appendix A 

Energy Response Function 

A.1 Introduction 

The results of this study depend on a detailed knowledge of the response of the 

Crystal Ball detector to a photon. Many of the gross features of the interaction 

of an electromagnetic particle showering in a scintillator can be modeled with the 

Electron Gamma Shower Monte Carlo (EGS). St u d ies of this type are described in 

Appendix B. However, one aspect of the detector response, the energy resolution 

for photons, is particularly crucial for the investigations presented here, and it has 

been shown that Monte Carlo simulations are unable to describe adequately this 

function. (See Appendix B.) 

In this Appendix we extract the energy response function for photons (or “line 

shape”) from the data themselves. We use the reactions listed in Table A.2, each of 

which contains a photon (and/or a particle which decays into two photons) of well- 

defined energy. These reactions are relatively free from background and combined 

yield information on the line shape parameters over most of the range of photon 

energies of interest. We summarize the results of these studies at the end of this 

appendix. 
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Particle 
I 

(MeV) 04 
3069.9 f0.1 63 zt9 

1 3686.0 ItO. ! 2153140 

1 548.8 f0.6 1 0.83dzO.12 

I rl’ I 957.57f0.25 I 28OztlO 

Table A.1 Masses and widths of particles used in resolution stud- 

ies.1’1 

Reaction 

JM --+ 777 

J/G --+ 7rl' 

+’ -+ rlJ/ti 

Energy of 

Decay Product 1 

WV) 

1499.8 ho.1 

1400.4 f0.1 

582.88 10.15 

Energy of 

Decay Product 2 

WV) 

1597.08 kO.15 

Table A.2 Energies of particles used in resolution studies. 

A.2 Monoenergetic Photons 

We begin with radiative decays to states of well-known masses. Two candidate 

reactions are J/$ -+ 7~ and J/q --f yq’. We note from Table A.1 that the widths 

of the participant particles in these reactions are extremely small and that their 

masses have been measured with very high accuracy. Thus, we can calculate the 

energy of the monochromatic photon in these reactions with small errors as shown 

in Table A.2. (Th e widths of the lines are negligible in comparison with the detector 

resolution.) We discuss the two reactions separately. 
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We identify the v via its two-photon decay so that the final state consists of 

three photons. Thus, we must contend with backgrounds from the reactions e+e- -+ 

(7)77 and Jllcl + 7$, 7’ -+ 77. Also, we wish to make our selection in such a 

way that we do not introduce a bias in the sample of high energy photons (such 

as would result from a kinematic fit). Finally, we require that the events in our 

sample are such that there is no possibility of ambiguity between the direct photon 

and one of the photons from the decay of the 7. 

We start with the all-neutral J/G sample which has been processed through 

the neutral analysis program as described in Chapter 3 and select those events 

which have three and only three tracks. Figure A.1 shows a plot of the energy 

of the lowest energy track US. the opening angle of the two lowest energy tracks. 

Several distinct structures are visible. At small photon energies and very small and 

large opening angles are clusters due to e+e- + (7)77 . A band from the decay 

J/$ -+ 7q, q -+ 77 is visible along with a fainter band from J/lc, + 777’, 7’ t 77. 

The observed energy of the r) should be reasonably close to its actual value of 1597 

MeV from Table A.2. By requiring the low energy photon to have 400 MeV or 

more, we eliminate the possibility of confusion between the direct photon and the 

high energy photon from the r,, decay since they will be separated by 300 MeV. In 

addition, the QED background is suppressed by this cut. We also require that the 

opening angle between the two low energy photons be such that cos 823 > 0.5 so 

as to reduce background from other channels. These cuts define the box shown in 

Fig. A.l. Note that the energy of the high energy photon is unconstrained by these 

cuts. 
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I- 
; .-... - >* * “. . ; -* . : _ . -* - . .: .a . 
*.’ .; . . . : f . ‘1. 

-: * * 
.’ ,’ . . ::: . . : * 

Fig. A.1 Three track events at J/T): energy of lowest energy 

track VS. cosine of opening angle of two lowest energy 

tracks. (Box shows cut.) 
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0 
1400 1500 

Energy of y (MeV) 
1600 

Fig. A.2 JIG + 77: Energy of direct gamma fitted to line 

shape function (solid line) and Gaussian (dotted line). 

Fitted parameters: 

Parameter Lineshape Fit Gaussian Fit 

CY 8.7 f4.6 MeV 0.1 zk3.2 MeV 

00 2.2 rto.3010 2.5 10.3 % 

r 8 112 

P 0.65 f0.23 

Conf. Lev. 0.777 0.004 



3 

A.2 Monoenergetic Photons Page 179 

The dotted line in Figure A.2 shows the spectrum of the high energy photon 

from events selected as described above fit to a Gaussian line shape.* As can be 

seen, this simple function does not adequately fit the spectrum. We can improve 

the fit if we supplement the Gaussian with a low energy tail. We define the “line 

shape function” to be 

g = g (E, Eo; cvu0/3r) = exp ((E - (Y - Eo)’ /202) E > Ee - pa 

A ErEo+pa ZI 
El - E 

E < E. - pa 
WI 

where 
E = observed energy 

EO = actual energy 

cy: = energy offset. In general, cr = CX( Eo) 

u = ooE,“‘“( GeV) 

,O, r = parameters describing the power-law tail: 

,O defines the joining point; r is the power. 

A, El = parameters determined from the require- 

ment that the two pieces of the function 

join continuously and have a continuous 

first derivative. 

This functional form has been found to work well in fits to inclusive photon 

spectra in the Crystal Ball. The functional form for u is expected both from Monte 

Carlo studies and from test beam results with a Crystal Ball prototype. The solid 

* The fit minimizes -2lnf! where L? is the product of likelihoods for all bins in the histogram; 

Poisson errors are assumed for each bin. A x2 is calculated at the end of the minimization 

in order to calculate the confidence level of the fit, but this quantity is not maximized. The 

errors shown on the parameters are the parabolic errors calculated from the curvature of the 

function -2ln.C at its minimum. 
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line in Fig. A.2 shows a fit with this function which yields a significantly higher con- 

fidence level than the Gaussian fit. (As illustrated by this fit, the power parameter 

r typically has the largest relative error of the fit parameters.) 

A.2.2 .T/$ -+ & 

We identify the 11’ in this reaction by its decay to 7~. Thus, we look for J/II, 

events which have two charged and two neutral tracks in the final state, where 

at least one of the neutral tracks must have more than 1000 MeV and neither 

neutral track is allowed to have a PIFIT mass greater than 80 MeV/c2. We discard 

any event that has a track beyond 1 cos 61 > 0.90 (where 0 is the angle between 

the track and the beam direction) or two tracks with an opening angle oopening 

such that cos eopening> 0.90 . To reduce background from competing channels we 

eliminate any event in which the two gamma mass, Mrr, falls in the windows 

100 MeV/c2 < M,, < 170 MeV/c’ or 510 MeV/c2 < M,, < 570 MeVjc’. Finally, 

we require that the missing mass opposite the two neutral tracks be less than 1000 

MeV/c”. 1000 events pass these cuts. The solid line in Fig. A.3 shows the spectrum 

of neutral tracks in these events fitted to a line shape function; the dotted line shows 

a fit to a simple Gaussian. In this case, both fits are acceptable, although both assign 

a large fraction of the events to background. 

A.3 Monoenergetic Particles Decaying to Two Photons 

The studies described above are sufficient to measure the energy response func- 

tion for high-energy 9’s. However, there are no corresponding decays of the J/t) 

or $I’ involving low energy monochromatic photons. (The radiative photons in the 

decays G’ -+ 7x1 and 4’ + 7x2 are potential candidates, but the masses and 

widths of these states are not known to sufficient accuracy.) Alternatively, we can 

measure the energy of a particle of small width and known energy which decays into 

two y’s such as the q in $’ -+ q J/$ . Although simple in concept, this procedure is 

complicated by the fact that we must unfold the sum of two line shape functions, 
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80 

0 
1300 1400 

Energy of y (MeV) 
1500 

Fig. A.9 Jl@ -+ 77’: Energy of direct gamma fitted to line 

shape function (solid line) and Gaussian (dotted line). 

Best fitted values: 

Parameter Lineshape Fit Gaussian Fit 

o! 4.8 f2.0 MeV 1.6 411.5 MeV 

CO 2.5 xto.2010 2.6 ho.1 % 

r 20 115 

P 1.03 f0.12 

Conf. Lev. 0.203 0.110 
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and we discuss the treatment of this problem first. We consider the decay X -+ 77 

where we assume the energy of the X is known precisely so that any spread in the 

observed distribution of the energy of X can be attributed to the detector response 

function. It is important in the following to distinguish between actual and observed 

values of energies. We let ICI, ka, and kx denote the actual values of the energies of 

the two r’s and the X, and Kr, Ka, and Kx the corresponding observed energies. 

kl and k2 are constrained to sum to kx by conservation of energy; Kr and K2 sum 

to Kx by definition. 

The probability distribution of K1 and K2 is related to that of ICI and k2 by 

P(KI, Kz) = g (KI, k,; cm,@-) g (Kz, kz; ~QO@-) ~(k1k2) dkl dk2 [A.21 

where we have assumed that the response function is separable (see below). p(kl k2) 

is the joint probability distribution of the two random variables kl and kg. By 

assumption, the sum of these two variables is constrained: 

p(h k2) = 6 (kx - kl - k2) f(h) P-31 

where f(kl) is the distribution of the single random variable kl. [A.21 becomes 

P(Kl,K2) = s g (Kl,kl; cm&) g (Kz.,kx - kl; ~gopr) f(kl) dkl. [A-41 

We will measure the sum Kx G K1 + K2. The probability distribution of this 

variable is 

Px(KL < Kx < KH) = 
ss 

J’(Kl, K2)dKl dK2 IA-51 
V 

where V is the volume in which KL < Kx < KH. Substituting the expression for 

P from Equation [A.4], we obtain 

P(KL < Kx < KH) = g (KI, k,; ,,oPr) g (K2, kx - h; Q-O@) f(h) 

V IA.61 
dkl dK1 dK2. 
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The parameters of the model are varied to obtain the best maximum likelihood 

fit to the data under study. If we assume a set of values for CY,Q,/? and r and a 

functional form for f(kl), we can perform the integral in [A.61 and calculate the 

expected distribution of Kx . (We set KL and KH equal to the low and high edges 

of each bin in the data histogram so that the integral in [A.61 is evaluated once for 

every bin.) Given an experimental distribution for Kx, we can vary the parameters 

of the line shape function to find the best likelihood fit and hence the maximum 

likelihood estimates of the parameters. 

A.3.1 Example: e+e-te+e- 

We illustrate the procedure with the simplest case, e+e--+ e+e-.t Here, each 

particle is constrained to have the beam energy, so f(kl) = 6(kl--Ebean). Figure A.4 

shows the distribution of Kl and K2 assuming Abeam = 1843 MeV, o = 0, CO= 

2.6%, ,L? = 0.8, and r = 7.0. The distribution of Kx can be illustrated by taking the 

projection of this plot along the K1 + K2 E Kx axis, as shown in the lower right 

inset in Fig. A.4. 

Figure A.5 shows the distribution of track energies for a sample of events selected 

to be consistent with the reaction e+e- -+ e+e- from the $’ sample. Figure A.6 

shows the distribution of the sum of the track energies from this same sample. The 

line in Fig. A.5 shows a fit to the line shape function of equation [A.l]. The line 

in Fig. A.6 shows the same function as illustrated in Fig. A.4 but with parameters 

determined from the likelihood fit described in the previous section. We emphasize 

that the fit function is the convolution of two line shapes. Although the fit function 

itself resembles a line shape, this is due to the fact that the convolution of two 

functions which are approximately Gaussian is again approximately Gaussian. The 

t This analysis cannot be used to obtain estimates of the line shape parameters since this set 

of events contains both e+e- -+ eSe- and e+e- -+ ye+,- . However, the separability 

argument which follows doesn’t depend on the values of the line shape parameters but only 

on the demonstration that they can be obtained consistently from two different techniques. 
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Fig. A.4 Expected energy distribution for Bhabha event at Abeam 

= 1843 MeV. (CX = O,CTO = 2.6%,r = 7,p = 0.8.) 



A.3 Monoen erqetic Particles Decayinq to Two Photons Paae 185 

20 

0 
1600 1700 1600 1900 2000 

Bhabha Energy (MeV) 

Fig. A.5 e+e- --+ e+e- at $’ energy - energy of single track fit 

to line shape. 
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Fig. A.6 e+eC + e+e- at Q+ energy - sum of energies of two 

tracks. 
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two fits yield the following values for the line shape parameters: 

Page 186 

Parameter Single Track Energy 

a -2.3 f1.4 MeV 

Sum of Track Energies 

-2.4 zt1.5 MeV 

00 2.5 10.1 % 2.5 ho.1 % 

0 1.1 xko.1 1.2 rto.1 

I~-- r I 20 *14 I 6 f2 I 

Table A.3 Values of line shape parameters for e+e- + e+e- as 

determined from fit to single track spectrum and un- 

folding of sum of track spectra. 

We take the agreement of these two methods for fitting the spectrum as an 

indication that our assumption of separability made in order to obtain Equation 

[A.21 was in fact justified and that the measurements of two 7 energies are indeed 

independent. 

A.3.2 $+--q J/$ 
We note from Table A.2 that the energy of the 7 in the reaction +!J’ -+ qJ/$ is 

very well determined. Thus, the sum of the energies of the r’s from the 2~ decay 

of the q in this decay is known with high accuracy so that Equation [A.31 holds. 

In this decay the individual photons have energies in the range 193 MeV to 390 

MeV, and the variation of 0 (7.6 to 12.8 MeV if CO= 2.6%) cannot be neglected. 

Thus, the probability distribution f(k ) 1 cannot simply be taken to be a 6 function. 

However, since the 71 has no spin, the angular distribution of the r’s is isotropic in 

the q rest frame. Since the 7 in this reaction has a fixed energy, the distribution of 

energies of the 7’s is flat in the lab frame between the limits (&/a) (1 i p) and zero 

outside. Thus, f(kl) can be taken to be unity if the limits of the kl integral in [A.61 

are taken to be the boundaries of the Doppler box. Figure A.7 shows the calculated 

distribution of K1 and K2 for this case for a given set of line shape parameters. 
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Fig. A.7 Expected energy distribution for $’ + qJ/$. 

(a = 0,~~ = 2.6%,r = 7,p = 0.8.) 
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We identify $+ --+ qJ/$ decays by selecting events with two neutral tracks 

and two electrons or two muons corresponding to the leptonic decays of the J/$. 

Electrons are easy to identify in the Ball since they are tagged as charged by the 

chambers and deposit their total energy in the NaI(T1) unlike any other charged 

particle. Muons are straightforward to detect since they are minimum ionizing and 

deposit roughly 210 MeV in the NaI(T1). We d o not use any cuts which would 

bias the gamma energies (such as a confidence level cut from a kinematic fit) in the 

event selection. The full set of cuts used to select these events are detailed in a 

footn0te.S 

Since we accept any event of the topology $J’ --+ 77, J/t) + 1-‘-Z-,$ our sample 

will also include photon cascades through the x states and events from $’ -+ n’J/$ 

in addition to the $’ --+ qJ/$ decays in which we are interested. The simplest way 

to eliminate this background is to require the two photons to have an invariant mass 

consistent with an 7 mass. However, as Fig. A.8 shows, this approach is inadequate 

$ Only data after November 1978 are considered. The cuts are slightly different for the 77e+e- 

and 77~~~~ topologies. Where a choice is indicated in parentheses, the first applies to the 

77efe- case, and the second to the 77~~~~. An event is kept if it has 

1. Four tracks total (two charged and two neutral), 

2. (E,,i,> 3000 MeV , 800 MeV < Euis< 1400 MeV), 

3. No endcap or zero-energy I.R. tracks, 

4. No secondary vertices, 

5. b%arged > 2500 MeV, 350 MeV < Echarged < 1000 MeV), where Recharged is the sum of the 

measured energies of the charged tracks, 

6. 1 cos 0 1 < 0.90, for all tracks, where 0 is the angle a given track makes with the beam direction, 

7. coscx < 0.90 for all pairs of tracks, where CY is the opening angle between any two tracks. 

Additionally, the 77~+~- events are required to have two muon candidates, where a muon 

candidate is defined to be a track with 140 MeV < El3 < 350 MeV and Ed/E13 > 0.96, 

where E* is the sum of the energies in the central module of the track and its three nearest 

neighbors. 

5 1 = e or 1-1. 
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inasmuch as there is no clean separation between the ql+Z- events and other 2$-Z- 

events. However, the photons in the events in which we are interested have not 

only a unique invariant mass but also a unique energy. The existence of these 

two constraints on the three variables describing the two photons (Er low, E, high, 

and ~0s eopening) implies that there are functional relations between any two of these 

three variables. Figure A.9 shows the expected correlations between the two photons 

in the known decays $J’ -+ ~‘J/$J, $’ -+ q J/4, and T,!J’ + 7x0,1,2, x0,1,2 --+ qJ/$ 

on a plot of the lower photon energy vs. the cosine of the opening angle between 

the two photons; Fig. A.10 shows this same plot for the data. The q band is 

now clearly separated from the bands corresponding to the x1 and x2 cascades and 

low-energy background. The region of the +’ -+ T’J/+!J band is also well-separated 

from the $’ --+ ~J/$J decays. The only possible source of contamination is the 

T,!/ -+ 7x0, ~0 -+ 7J/11, decay, but as can be seen from Fig. A.10, this contamination 

must be small. The box shows the limits of the region inside of which we accept 

events as $J’ -+ qJ/$. 

Figure A.11 shows the sum of the energies of the photons in these events. Again 

it should be emphasized that the intrinsic width of this distribution is of the order 

of keV. The observed width is due solely to the energy resolution of the detector, 

The solid line shows the result of the likelihood fit described previously. 

It is important for certain analyses to obtain the line shape function for those 

crystals in the Ball which are the “best” in terms of resolution (see Chapter 4). 

Figure A.12 shows the same distribution as Fig. A.11 but using only that subset of 

events in which the bump modules of the photon tracks are not equator or tunnel 

modules. The solid line shows the best fit to a line shape function. 

A.3.3 J/G + 7r) 

We have considered high and low energy showering particles, but we have as yet 

no information regarding photons of intermediate energies. However, the q in the 

decay J/g -+ 7~ is sufficiently energetic that the two photons from its decay have 
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Fig. A.8 Invariant mass distribution of two 7’s in $’ -+ 77J/$. 

individual energies in the range from 49 to 1548 MeV. We use the same events that 

were selected for the study described in Section A.2.1. Because we require the low 

energy photon to have an energy of 400 MeV or more, the energies of the photons 

in our sample range from 400 to 1200 MeV. The solid and dotted lines in Figure 

A.13 show the energy distribution of the q in this reaction fit to a line shape and a 

Gaussian function, respectively. 

A.4 Summary 

Tables A.4 and A.5 below summarize the line shape parameters we have ob- 

tained in this study. We see that in all the reactions we have examined, good fits 

to the gamma line shape have been obtained using the function given by Equation 

[A.l]. However, this functional form suffers from the drawback that its parameters 

are correlated, as illustrated by Fig. A.14 which shows a contour plot of the like- 
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Fig. A.9 Expected correlations in $’ -+ 77J/$. 
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Fig. A.30 Observed correlations in $9 -+ 77J/$. (Box shows 

cut .) 
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Fig. A.11 T,Y -+ qJ/t,b, q -+ 77: energy of q fitted to line shape 

function (solid line) and Gaussian (dotted line). Fitted 

parameters: 

Parameter Lineshape Fit Gaussian Fit 

Q -2.8 i-O.6 MeV -5.34 *to.1 MeV 

00 2.7 -fO.l% 3.25 f0.02 % 

r 3.7 f0.7 

P 1.07 10.04 

Conf. Lev. 0.390 0.000 



A.4 Summary Page 193 

80 

60 

450 500 550 600 650 
Energy of q (MeV) 

Fig. A.12 $J’ -+ r] J/T), 7 --+ 77 (no equator or tunnel modules): 

energy of q fitted to line shape function (solid line). 

Best fitted values: 

Parameter Lineshape Fit 

CY -3.3 10.6 MeV 

00 2.59 f0.05% 

r 5.4 11.0 

P 1.2 zto.2 

Conf. Lev. 0.771 
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1500 1600 
Energy of r) (MeV) 

Fig. A.13 J/$J -+ 77, r] -+ 77: Energy of 11 fitted to line shape 

function (solid line) and Gaussian (dotted line). Best 

fitted values: 

Parameter Lineshape Fit Gaussian Fit 

a -3.3 f0.9 MeV -7.6 1t1.7 MeV 

00 2.9 *0.2% 3.0 zko.3 % 

r 1.0 4~0.8 

P 1.5 f0.3 

Conf. Lev. 0.232 0.004 
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Fig. A.14 Likelihood function of fit to 7 in J/G -+ 77 as a func- 

tion of 00 and ,B. (C on t ours are spaced la apart; first 

contour corresponds to la.) 
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lihood of the fit to the gamma spectrum in J/$ -+ 7~ as a function of 00 and p. 

Thus, one must take care when using the results of these fits to use a consistent set 

of values of all of the line shape parameters - two different values of 00 may equally 

well describe the line shape function if accompanied by different values of T and p. 

In particular, it is not appropriate to draw any conclusions on the energy depen- 

dence of CY or 00 . Although the fits to Gaussian line shapes have consistently lower 

confidence levels, the parameters of the Gaussian are free from such correlations, 

and one may compare values of cy and 00 from different fits. Also, the Gaussian 

fits are important for the determination of the errors for kinematic fits in which all 

distributions are approximated by Gaussians. We show in Figs. A.15, A.16, and 

A.17 the variation of these parameters. We plot the parameters as functions of z, 

the energy of the 7 being measured divided by the beam energy. For reference, we 

plot both the energy offset and the energy offset normalized by x. These variations 

are included in the systematic errors quoted for fitted quantities. 

* Energy measurement made of particle in parentheses. 

Table A.4 Parameters for lineshape fits. 
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React ion 

c+?) J/$ 
++I) J/lcl 

Jh-vb?) 

r P 

3.7f0.7 1.07f0.04 

5.411.0 1.2f0.2 

1.01tO.8 1.5zko.3 

1 J/+(y)$ 1 20f15 1 1.03f0.12 1 

Table A.4 (cont.) Parameters for line shape fits. 

Reaction 

$‘-+I) J/G 
X 

0.161fO.05 

a 00 

-5.310.1 MeV 3.25&0.02% 

1 J/$-y(q) 1 0.52 f0.26 1 -7.6f1.7 1 ~-3.01-0.31 

J/++ (+I 0.90 f0 1.6f1.5 2.6fO.l 

J/ti+h 0.97 Ito 0.1f3.2 2.5 ho.3 

Table A.5 Parameters for Gaussian fits. 

-.: I’ 
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Fig. A.15 Variation of energy offset as a function of energy (nor- 

malized to beam energy). 
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Fig. A.16 Fractional variation of energy offset as a function of 

energy (normalized to beam energy). 
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Fig. A.17 Variation of fractional resolution as a function of energy 

(normalized to beam energy). 
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Appendix B 

Monte Carlo 

B.l Introduction 

This Appendix describes the aspects of the Crystal Ball Monte Carlo relevant 

to this study. In the reactions under investigation in this thesis, the first step of 

generating the four-vectors of the final state is straightforward since the initial, 

intermediate, and final particles are specified, and the final-state four-vectors are 

in large part determined by energy and momentum conservation if the number 

of particles in the final state is small enough. When the spin of the intermediate 

state is nonzero and kinematics are insufficient to completely determine all the four- 

vectors, the spin assumptions used to derive the angular distribution are noted at the 

appropriate point in the discussion. In some of the reactions studied here (J/V/J, $’ + 

77,~ + z-“~o~o and J/$, qY -+ yr]‘,q’ + r/7r07ro), the number of particles in the 

final state is sufficiently large that their angular distribution cannot be determined 

by kinematics alone despite the zero spin of the intermediate state. However, no 

evidence has been found for deviations from phase space in the angular distributions 

in the reactions 7 -+ ~“~o~o[ll or 7’ t q~“~0121 t and we accordingly generate the 

four-vectors of the decay products of the v and Q’ in the J/g and q!+ decays above 

according to phase space distributions. All events are generated with x = y = 0 

and a distribution in z corresponding to a Gaussian-distributed bunch length of 3.1 

cm. 

201 
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Once the decays of all the intermediates have been calculated, the final state 

consists entirely of 7’s. We wish to study the interaction of these 7’s with the 

NaI (Tl) scintillator. The interaction of photons with matter is well-described by 

the Electron Gamma Shower code (EGS), although specifying the Crystal Ball 

geometry is somewhat complicated. The Crystal Ball implementation of EGS takes 

into account the varying shapes of the individual crystals. It also defines regions to 

account for the material surrounding each crystal as well as the material enclosing 

the hemispheres and the gap between them. It does not at the present time treat the 

endcap crystals, nor the beampipe and central detector. (The conversion probability 

for gammas in the beampipe and central detector is calculated separately and is 

discussed in the last section of this Appendix.) 

B. 2 Energy Resolution 

In order to examine the response of the Monte Carlo to well-defined inputs, we 

generate sets of events containing one particle (either a 7 or a no). These particles 

are distributed uniformly in solid angle with fixed momenta of 1700, 1300, 1000, 

700, 500, 250, and 100 MeV/c. 

Figure B.l shows the observed Monte Carlo energy distribution for a 7 with 

a dialed energy of 1700 MeV, using the sum of 13 crystals as a measure of the 

y energy; Fig. B.2 shows the same distribution for a y of 700 MeV. Both plots 

have been fitted with an NaI line shape function of the form described in Appendix 

A. Figure B.3 shows a plot of the dialed energy vs. 0 for similar fits for Monte 

Carlo photons of the energies listed above. It will be noted that the Monte Carlo 

resolution is an almost linear function of energy; we parameterize the dependence 

by 0 = CJOE~/~ (E in GeV). Figure B.4 shows a plot of dialed energy vs. ae. The 

function is well fit by a constant value of a0 = 1.5%. However, although studies of 

the data indicate the same functional form for o, the value of oo is substantially 

higher (although studies with a Crystal Ball prototype favor a value close to that 

derived from the Monte Carlo.) This discrepancy is discussed in Appendix E; we in 

m,.. - 



B.2 Energy Resolution Page ,209 

any event simply add a Gaussian-distributed fluctuation to the Monte Carlo crystal 

energies sufficient to bring 00 to 2.6%. Figure B.5 shows the distribution for 1700 

MeV 7’s after this correction. 

In addition to this correction to the width, we also note that the central values of 

the fitted distributions are below the dialed values. This is to be expected inasmuch 

as part of the shower leaks out of the back of the crystal. This energy shift is not 

observed in the actual data since the central value of the Bhabha peak is fixed to be 

the beam energy (see Appendix E). We can make a similar correction to the Monte 

Carlo by “calibrating” the 7’s at 1843 MeV to have the correct energy. This defines 

a single correction factor by which all crystal energies should be multiplied. The 

crosses in Fig. B.6 show the observed uncorrected energies; the diamonds show the 

observed energies after correction. 

It will be recalled from Chapter 3 that the sum of 13 energy involves a position 

correction, PCORR, which is determined from Bhabha events. (All energies dis- 

cussed above have had this correction incorporated.) If the Monte Carlo does not 

simulate the interstitial material between crystals, it is conceivable that the PCORR 

correction should not be applied to Monte Carlo showers. Figure B.7 shows a plot 

of Em,,/ xi:, Ei US. ziz, Ei/Edialed, (analagous to Fig. 3.2) for Monte Carlo 

gammas of Edialed = 1843 MeV, where z& Ei has been adjusted by the width 

and mean corrections described above. The line is a fit to the PCORR correction 

obtained from the data as shown in Fig. 3.2. It is seen that the PCORR correction 

obtained from Monte Carlo y’s follows the data PCORR closely with the possible 

exception of the endpoints. However, only a small fraction of photons have these 

extreme values of E,,,/ Et!!, Ei as shown by the lower plot in Fig. B.7. Thus, we 

apply the PCORR correction to both data and Monte Carlo. For comparison, Figs. 

B.8 and B.9 show similar plots for 7’s of other energies. It is seen that the PCORR 

correction function fits these distributions reasonably well, although there may be 

an upward shift for the lowest energy 7’s. 
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IT= 21.9 rt 0.8 MeV 
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Fig. B.1 Energy distribution for 1700 MeV Monte Carlo 7: no 

corrections. 
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Fig. B.2 Energy distribution for 700 MeV Monte Carlo 7: no 

corrections. 
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Fig. B.3 Monte Carlo energy resolution: no corrections. 
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Fig. B.4 Coefficient of energy resolution: no corrections. 
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1646.7 rt 1.9 Me 
(T= 39.3 f 1.8 MeV 
p= 1.1 * 2.3 
r= 30 f 300 
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Fig. B.5 Energy distribution for 1700 MeV Monte Carlo 7: res- 

olution correction. 
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Fig. B.6 Peak energies before and after leakage correction. 
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Fig. B.7 (a) Emax / E~Z1-G vs. ~~~, Ei/Edialed for 1843 MeV 

Monte Carlo y’s. (b) Distribution of E,,,/Ci$ Ei 
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Fig. B.8 Em,,/ x& Ei vs. c;‘z, Ei/E:di,l,d for 1700, 1300, and 

1000 MeV Monte Carlo y’s. (b) Distribution of Emaz/~~?.l Ei. 
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Fig. B.9 Em,,/ c;:, Ei vs. ~~~, Ei/Edialed for 700, 500, and 

250 MeV Monte Carlo y’s. (b) Distribution of EmaZ/C& Ei. 
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B .3 Angular Resolution 

Using the same Monte Carlo datasets described in the previous section, we 

examine the difference between the dialed and observed directions of the y’s and 

~“s. There is only one input particle in an event. However, the offline software 

may detect more than one track, due in the 7 case to a split-off or in the 7r” case 

to a large opening angle between the two photons. Thus, we compare the dialed 

6 and 4 to the B and 4 of the highest energy track in the event (where 8 and 4 

denote the polar and azimuthal angles with the positron beam direction as polar 

axis). When using the r” Monte Carlos, we also require that the PIFIT mass of 

the highest energy track be greater than 90 MeV/c2 inasmuch as we are interested 

only in merged ~“s. For each Monte Carlo dataset we plot the dialed 6 minus the 

measured 8 and fit the resulting distribution to a Gaussian. (Figures B.10 and B.ll 

show examples of such plots for the 1700 MeV 7 and r” Monte Carlo datasets.) 

Similar plots are made for 4. Figure B.12 shows the dependance of the 8 resolution 

for r’s as a function of energy. Figure B.13 shows an analagous plot for 4.* We note 

that the angular resolution improves with energy. Also, the GAMFIT directions 

are closer to the dialed directions than those determined by ESORT. The curve 

shows the best fit to a third-order polynomial which is used to calculate the angular 

errors for r’s in the kinematic fits. Figures B.14 and B.15 show the analagous plots 

for merged 7r”s. Here the difference in angular resolution between the ESORT and 

PIFIT directions is more striking since ESORT chooses a direction pointing to the 

crystal with the highest energy, which may be far from the direction of the r”. 

Again, the curve shows the function which is used to calculate the angular errors 

for x0’s in kinematic fits. 

* When calculating the resolution in 4, the solid angle dependance must be removed. The 

quantity which is plotted is A (4 sin 0). 
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Fig. B.10 Samples of angular resolution fits (1000 MeV Monte 

Carlo y’s). 
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Fig. B.11 Samples of angular resolution fits (1000 MeV Monte 

Carlo 7rO’s). 
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B.3.1 Comparison With Data 

We first examine how well the Monte Carlo reproduces the angular acceptance 

of the detector. We require a sample of showering particles, and we use the reaction 

e+e- --+ yy . From a subset of the G,’ sample we select events which have two neutral 

tracks, a visible energy within 300 MeV of the center of mass energy, and no endcap 

tracks. Figures B.16 and B.17 show plots of cos 6 US. $ for the track in these events 

measured with both ESORT and GAMFIT. (#I is chosen to lie between -7r/2 and 

37r/2 for these plots so as to make the structures at 4 = 0 and 4 = 7r more evident.) 

The equator gap and the extent of the main Ball in cos 0 are visible in both plots. 

In addition, the quantization of the ESORT algorithm is visible in the first p1ot.t 

Figures B.18 and B.19 show analagous plots for a sample of 2000 MeV Monte Carlo 

photons distributed uniformly in 4 and cos 19 out to 1 cos 81 5 0.75; Figures B.20 and 

B.21 shows the cos9 projections for Monte Carlo photons generated over the entire 

solid angle but with lower statistics. Again, the equator gap and the extent of the 

Ball in 1 cos 01 can be seen and agree with the plots obtained from the data. 

Next, we examine how well the Monte Carlo reproduces the 7 energy line shape. 

We generate 4000 Monte Carlo events of the decay J/$ -+ 77 and subject them to 

the same cuts used to select this decay in the J/$ data in Appendix A. Figure B.22 

shows the energy spectrum of the direct photon for data and Monte Carlo fitted to a 

line shape function. (The data plot is identical to Fig. A.2.) The two distributions 

are in fair agreement, but the energy offset observed in the data (Appendix A) is 

not seen in the Monte Carlo. As a fraction of y energy, this effect is slight, and we 

include it in our quoted systematic errors. 

t The scatterplot in Fig. B.16 shows an increase in the density of points at large Icos6/ as 

expected from a QED process. That this increase is not as noticeable in the scatterplot of 

Fig. B.17 is an artifact of the representation of the data. Since the ESORT directions are 

quantized, several photons entering the same submodule are plotted as a single point in the 

ESORT plot whereas they are shown as a cluster in the GAMFIT plot. 
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Fig. B.22 J/t) --+ 7~: Energy of direct gamma fitted to line shape 

function. Data: solid line. Monte Carlo: dotted line. 

Best fitted values: 

Parameter Data Monte Carlo 

a 8.7 f4.6 MeV 1.0 f2.5 MeV 

00 2.2 f0.3% 2.6 f0.2 % 

r 8 f12 4 f5 

P 0.65 f0.23 1.1 f0.2 

Conf. Lev. 0.777 0.971 
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We next generate a Monte Carlo of 2000 events of the topology $’ -+ ~~-‘K’J/$J, 

JM -+ e’e- and compare it with the T+!+ data. We apply a set of cuts to both the 

Monte Carlo and the data to select events of the above topology. We select events 

with six tracks, no endcap tracks and no zero energy I.R. tracks, and a visible 

energy within 600 MeV of the center of mass energy; we place no restrictions on 

the number of charged tracks. We further require that the combined energies of 

the two highest energy tracks be between 2950 and 3190 MeV and that there be at 

least one pairing of the four lowest energy tracks consistent with two ~“s. We also 

place an overlap cut of cos Q < 0.85 and a solid angle cut of / cos 81 < 0.90. Events 

passing these cuts are subjected to a kinematic fit requiring energy and momentum 

conservation but no constraints on the invariant mass of any pair of tracks. Figures 

B.23 - B.25 show plots for the pulls and confidence levels for the fits to data and 

Monte Carlo. The angular errors are consistent, although we see again that the 

Monte Carlo does not correctly reproduce the slight energy offset seen in the data. 

B.4 Chamber Efficiencies and 7 Conversion 

The central detector simulation is performed separately from that of the main 

Ball. Chamber hits along the trajectory of a charged particle are generated ac- 

cording to the chamber efficiencies measured from Bhabha events. In this study 

the tagging probability for charged particles per se is not of primary concern since 

none of the final states contain charged particles. However, it is important that 

we correctly calculate the probability for overtagging and gamma conversion since 

this probability will enter our efficiency calculations as a multiplicative factor raised 

to a power equal to the number of 7’s in the final state. A precise Monte Carlo 

treatment would incorporate all of the intervening material between the interaction 

point and the NaI in an EGS simulation and replace the 7 by an e+e- pair if it 

converted. The algorithm actually used calculates the probability that a 7 converts 

given its energy and the amount of material along its trajectory. If it does convert, 

it is replaced by a single charged particle at the point of conversion for the purposes 
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Fig. B.23 Pulls for kinematic fits to $’ + T~T”J/$J, 7~’ + ~7, J/$ + 
e+e- for data and Monte Carlo: tracks less than 1000 

MeV. 
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e+e- for data and Monte Carlo: tracks greater than 
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of the chamber simulation but is treated as a y in the NaI EGS simulation. Thus, 

the algorithm attempts to calculate the probability that a photon converts and is 

tagged as charged but does not account for the degradation in resolution due to 

converted photons which are not tagged charged. This is not a serious drawback 

since the Monte Carlo resolution is made to agree with that obtained from the data. 

In investigating the overtagging and conversion of y’s, we wish to know 

1. Is there an angular dependence in the conversion probability? 

2. Is there a difference between the 1978/79 data and the 1981 data? One expects 

that the gamma conversion probability is higher for the 1981 data due to the 

introduction of the tube chamber. 

3. How well does the Monte Carlo simulate these effects and the overall conver- 

sion probability? 

In order to obtain the actual gamma conversion probability, we require a large, 

clean sample of gammas. We exploit the large branching ratio and distinct signa- 

ture of the decay $’ -+ T~T~J/$, J/G t e+e- . This reaction has the additional 

advantage that the charged and neutral tracks can identified simply by their ener- 

gies, since the e+ and e- will have energies of approximately 1500 MeV while the 

gammas will have 100-400 MeV apiece. We use the same cuts to select our sample 

as described in the previous section with the exception of the solid angle cut. Figure 

B.26 shows the distribution of missing mass opposite the four lowest energy tracks 

after these cuts. By accepting only those events that fall within the arrow shown on 

the plot, we obtain a sample of 2749 events with essentially no background. This 

yields a sample of over 10,000 y’s and 5000 charged particles. 

In studying the neutral tagging efficiency, we accept only those events in which 

the two highest energy tracks have been correctly tagged as charged. Figures B.27 

and B.28 show the ratio of low energy tracks tagged as neutral divided by the 

total number of low energy tracks as a function of cos8 for the 1978/79 and 1981 

datasets, respectively. We note that there is no discernible angular dependence in 
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Fig. B.26 Missing mass opposite four lowest energy tracks after 

cuts in qY+six tracks. 

the efficiency for either dataset. However, the neutral tagging efficiency is slightly 

worse for the 1981 data than for the older data as anticipated due to the additional 

tube chamber. Figure B.29 shows the same plot for the $’ --+ T~T~J/$, J/G -+ e+e- 

Monte Carlo. Again, there is no angular dependence, but the efficiency is somewhat 

higher for the Monte Carlo that the data. We assume that this discrepancy can be 

parameterized by a single correction factor (independent of angle). We divide the 

efficiencies for the Monte Carlo and data bin by bin and so make 20 measurements 

of this ratio. We average them to obtain (E E efficiency): 

cold data 23 
= 0.993 i 0.004 

x2 
___ = - 

EMonte Carlo D.o.F. 19 

Enew data 0.983 f 0.004 x2 17 
= ____ = - 

CMonte Carlo D.o.F. 19 

The x2 for each case indicate that our assumption is justified. We thus apply a 
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correction factor of (0.9Sn + 0.9EIn)/2 ( h w ere n is the number of 7’s in the final 

state) to the Monte Carlo efficiencies for $’ decays and 0.993n for J/lc, decays (since 

the tube chamber was absent for the entirety of the J/G running). We include a 

systematic error of xtO.S% per photon. 
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Appendix C 

Shower Fitting Routines 

We describe in this Appendix the shower fitting routines GAMFIT, PIFIT, and 

SMOMT that are used to fit 7 and r” showers. Further details are given elsewhere 

by the authors of these algorithms.11~21 

C.1 Descriptions of the Routines 

GAMFITl’] is used to determine the direction of a photon shower better than 

the standard offline software. Nearly 50,000 EGS photon showers are generated in 

order to derive the functional dependence of the energy in the incident crystal and 

its surrounding twelve neighbors on the direction and energy of the input photon. 

Although this is in principle a complicated function, a simplifying assumption is 

made that the probability distributions for energies in individual crystals are inde- 

pendent, and that the distribution for the neighbor crystals can all be fit by one 

functional form (an incomplete gamma function) as distinct from the central crystal 

(which is fit by a Gaussian). By examining Monte Carlos for several incident photon 

energies and directions, the dependence of the parameters of these functions on the 

energy and direction of the incident 7 can be fit to simple functional forms. Given 

an observed shower, one can find the incident photon direction which maximizes the 

likelihood of the observed energy distribution. This defines the GAMFIT direction 

cosines; the energy of the shower is not determined by GAMFIT. 

PIFITlll uses the same shower information as GAMFIT, but fits the convolution 
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of two 7 showers instead of one. The sum of the energies of the two gammas is 

constrained to be the sum of the E 1s energies of these two crystals, so that five 

parameters must be determined - the ratio of energies and two sets of direction 

cosines. With these quantities one can calculate the invariant mass of the two 

candidate y’s, allowing one to discriminate between a shower due to a single photon 

and two overlapping showers from the decay of a K ‘. In the latter case the fitted 

energies and directions also provide an improved measurement of the four-vector 

of the no. PIFIT also performs a likelihood fit to a single photon distribution a la 

GAMFIT and returns a “pseudo chi-square” (the ratio of the likelihoods of the two 

hypotheses) which indicates how strongly the 2-y hypothesis is favored over the 

l-y hypothesis. However, this quantity is highly correlated with the invariant mass 

value. 

SMOMTi21 uses an algorithm distinct from that used in GAMFIT and PIFIT. 

Rather than determine the four-vector of the 7’s making up a shower, GAMFIT 

calculates the second moment of the energy distribution, defined by 

N 

S = i C Ei(li;- < p >)2 
i=l 

where the sum is over the crystals in a connected region, E = Cy!, Ei , < p > is 

the first moment, 

and l;i is a unit vector pointing to the center of crystal i from the center of the Ball. 

It is reasonable to expect that the energy distribution of two overlapping showers 

will be less circular than that of a single shower and so will have a larger second 

moment (just as an ellipsoid has a larger moment of inertia than a sphere of equal 

mass). Thus, we expect that the second moment of a shower will be proportional 

to the invariant mass of the sum of the 7’s that produced it. A detailed calculation 
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shows that the constant of proportionality is E 2. Thus, an estimate of the invariant 

mass of the y’s in a connected region is given by 

M; = (S - S,)E2 WI 

where S, subtracts the contribution to the shower mass due to a single y. Figure 

C.l shows the energy dependence of S, for a series of Monte Carlo single photon 

showers. We see that S, is roughly constant and take 

S, = 0.007 radians2 WI 

(Figure C.1 and the value of S, quoted above are calculated for “extended” con- 

nected regions as defined in Appendix D. For connected regions as defined by the 

standard offline software, S, = 0.004 radians2.) 

SMOMT has an advantage over PIFIT in that it can calculate the invariant 

mass of a connected region with any number of r’s, whereas PIFIT is limited to 

connected regions with one or two. Also, SMOMT cannot be biased by the starting 

values for the likelihood fit, since no fit is performed. However, SMOMT does not 

separate 7’s and no’s as efficiently as PIFIT at high energies as shown below. 

C.2 Monte Carlo Examples 

We examine first the performance of these routines with Monte Carlo showers. 

Approximately 2000 single-particle events are generated for momenta of 1700, 1300, 

1000, and 700 MeV for both 7’s and TO’S (16000 events in all). The single particles 

in these events are distributed uniformly in cos 19 and 4. Cuts are made that require 

all generated tracks to have / cos 81 < 0.8 (measured from the generated z vertex), 

and no charged tracks (either from conversion or Dalitz decays of the no’s). Ad- 

ditionally, we require there be only one connected region in the event inasmuch as 

we are not interested in this study in separated 7r”s. Figure C.2 shows plots of the 
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Fig. C.1 Energy dependence of S, from Monte Carlo. 

invariant mass returned by PIFIT for r’s and 7r”‘s. (The no peak becomes smaller 

in successive plots due to the fact that a larger fraction of TO’S are separated at low 

energies. See Fig. 3.1.) We see that even at 1700 MeV/c the r/r0 separation is 

excellent. If we identify a shower with an invariant mass below 90 MeV/c2 as a y 

and above 90 MeV/c2 as a 7~’ (as shown by the arrows in Fig. C.Z), the fraction 

of y’s called TO’S is 6% and the fraction of x0’s called r’s is 12%. In contrast, the 

SMOMT invariant mass peaks are not as separated (as shown in Fig. C.3). As a 

general rule, the SMOMT x0 peak has roughly the same position and width as the 

corresponding PIFIT peak, but the -y peak occurs at higher invariant mass. 

It will be noted that the PIFIT x0 peak has a tail towards lower invariant 

masses even when the no energy is relatively low. This is due in part to the fact 

that the starting direction of the low energy y is slightly biased towards the starting 

direction of the high energy 7. Occasionally the low energy 7 from the decay of a x0 

-, 
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Fig. C.2 PIFIT masses : Monte Carlo y’s and TO’S with mo- 

menta between 700 and 1700 MeV/c. 
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Fig. C.3 SMOMT masses : Monte Carlo 7's and TO’S with mo- 

menta between 700 and 1700 MeV/c. 
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will be so far from the high energy 7 that it will not be detected by this algorithm. 

On the other hand, this 7 may have a low enough energy that it is not flagged 

by the bumps discriminator. Thus, the high energy 7 is flagged as a 7 while the 

low energy 7 remains unaccounted. Figure C.4 shows a Monte Carlo no of this 

type. The stars show the dialed 7 directions while the boxes show the initial PIFIT 

directions. Effects of this type are particularly pernicious in an analysis of the type 

described here since we require that the number of observed 7’s be consistent with 

the constraints implied by C-parity conservation. In order to remedy this failing we 

adopt the following procedure. All connected regions which have not been flagged 

as TO’S by the 90 MeV/c’ cut described above are searched for local maxima. (A 

local maximum is defined as a crystal which contains more energy than any of its 

three nearest neighbors.) If more than one such local maximum is found, PIFIT 

is called again with the starting 7 directions defined by the local maxima. If the 

probability that this connected region contains two gammas is greater than that 

obtained from the previous call to PIFIT ( as determined from the likelihood ratio) 

and the calculated invariant mass is greater than 90 MeV/c’, we assume that this 

connected region actually contains a 7r” and replace the old PIFIT parameters. If 

there are more than two local maxima in a connected region, we use the PIFIT 

parameters from the one which yields the largest likelihood ratio. 

Figure C.5 shows the distribution of PIFIT masses for the Monte Carlo 7’s 

reevaluated with this procedure. Figure C.6 shows the corresponding plot for Monte 

Carlo ~“s. We see that this procedure occasionally misidentifies a y as a merged 

7r”, but identifies a far larger number of merged TO’S correctly. Figure C.7 shows 

the same plot after this procedure has been applied to the J/$ dataset. A clear no 

peak is evident. Figure C.8 shows the invariant mass plots corresponding to Fig. 

C.2 after the above procedure has been applied. We see that the low invariant mass 

tail has been reduced for the high energy TO’S but not eliminated. Examination of 

the remaining events shows that they are due to asymmetric decays of the 7r” in 

which the low energy 7 escapes detection either because it goes into a gap in the 
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Fig. ~7.4 Monte Carlo x0 shower with second gamma unflagged. 

(Boxes show dialed directions of photons; stars show 

directions of photons found by PIFIT.) 

detector or it is so low energy that it does not deposit more than 10 MeV in any 

crystal and so does not pass the threshold to create a connected region. After this 

process, the fraction of 7’s which are misidentified as x0’s increases to 7010, but the 

number of TO’S misidentified as 7’s decreases to 8%. 

C.3 Data Examples 

We use two different reactions to illustrate the r/no separation in the data. 

First, the reaction J/T) + p”no,po + 7r+7r- has a branching ratio of 0.4% , yielding 

a large sample of x0’s with energies in the range 1400 to 1500 MeV. (The R-O’S are 

not monoenergetic due to the large width of the p’.) From the entire produced J/G 



Appendix C. Shower Fitting Routines Page 240 

d 

\ 

0 
50 100 150 200 250 

PIFIT Mass (MeV/c2) 

PIFIT masses of connected regions with two or more 

local maxima - 7 Monte Carlos. 

16 

10 

5 

n !1:I 
50 100 150 

PIFIT Mass (MeV/c2) 

200 250 

Fig. C.6 PIFIT masses of connected regions with two or more 

local maxima - x0 Monte Carlos. 
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PIFIT masses of connected regions with two or more 

local maxima - J/G data. 

sample, events are selected which have 

1. three tracks of which two are tagged charged, 

2. no zero energy I.R. tracks or endcap tracks, 

3. all tracks in a plane, i.e., I(61 x 22) . 631 < 0.3, where 2i is a unit vector 

pointing in the direction of track i, 

4. Between 1400 and 1500 MeV in the neutral track. 

Figure C.9 shows the PIFIT masses of the neutral track in the events so selected; 

Fig. C.10 shows the same distribution using the SMOMT masses. In addition to 

the no peak, there is a small peak at low invariant masses due to contamination 

from other J/$ decays (for instance, J/$ -+ yq’, 7’ --+ 7p”, p” --+ r+n- where one 

of the 7's is lost) and from nonresonant processes (such as e+e- + yp). 
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Fig. C.8 PIFIT masses after local maxima additions: Monte 

Carlo 7’s and TO’S with momenta between 700 and 

1700 MeV/c. 



C.3 Data Examples I’age ,243 

In order to study 7’s of higher energy, we use the decay $’ -+ 7x0 , ~0 + 7r07ro. 

The energies of the TO’S in this reaction are approximately one-half of the mass of 

the ~0, or 1700 MeV. The largest background for this process is the QED reaction 

e+e- -+ (+YY . We use as the parent sample the +’ events which have been passed 

through all the neutral analysis described in Chapter 3 except the 3-y connected 

region cut and the 200 MeV/c’ SMOMT cut. We select events with three tracks and 

require the energy of the lowest track to be within 36 MeV of the expected energy of 

the transition photon to the ~0. Figure C.ll shows the PIFIT distribution for the 

two high energy tracks. Two peaks corresponding to e+e- --+ (y)rr and $’ + 7x0, 

~0 --+ mono are visible. Figure C.12 shows the same distribution for SMOMT masses. 

We see in both these examples that PIFIT is able to separate 7’s and TO’S 

up to 1.7 GeV. SMOMT is not as useful as a 7r”/y separator.* However, as noted 

previously, SMOMT is able to calculate the invariant masses of connected regions 

with more than one 7. In this regard, note that in neither Fig. C.10 nor Fig. C.12 

does the SMOMT mass distribution extend much beyond 200 MeV/c2. Since even 

the most energetic x0’s in the data samples under consideration here do not have 

SMOMT masses beyond 200 MeV/c2, we conclude that any connected region which 

has an SMOMT mass beyond this threshold most probably contains more than two 

7’s. As described in Chapter 3, we eliminate events with such connected regions 

since we are unable to separate photon showers which are so closely overlapped. 

* The plots shown here illustrate the SMOMT masses from a version of the SMOMT routine 

modified for use with the global shower algorithm. (See Appendix D.) The y/.rr’ separation 

of the standard version is somewhat better. 
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Fig. C.9 PIFIT mass of neutral track in J/T) + p”7ro,po + 
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Fig. C.10 SMOMT mass of neutral track in J/$ --+ p”;rro,po --+ 

7r+7r-. 
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Fig. C.11 PIFIT masses of high energy tracks in $’ + 7x0, x0 -+ 

two neutral tracks. 
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Fig. C.12 SMOMT masses of high energy tracks in 4’ --+ 7x0, ~0 --+ 

two neutral tracks. 
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Appendix D 

Global Shower Technique 

D.l Introduction 

We describe in this appendix the concept and implementation of the global 

shower technique. This technique was developed to identify events in which the 

showers from 7’s from several no’s and/or q’s overlap in the Ball. We do not 

reconstruct the four-vector of individual particles; rather, we attempt to calculate 

the invariant mass of their sum, as this is the quantity of interest in most studies. 

(The technique is similar to that used in jet studies at high energies with large 

calorimeters. It is impossible to disentangle the individual particles in a jet, but it 

is possible to calculate the invariant mass of the jet taken as a whole.) Consider as 

an example the decay J/$J + 777, 7 + 7r07r07ro. Figure D.1 is a representation of 

a Monte Carlo event of this type. Each of the seven y’s is represented by a track 

number displayed in the crystal it enters, along with its energy. The direct 7, (Le., 

the 7 in the decay J/T/J + 7~) is well-separated from the rest of the event. In 

contrast, five of the six y’s from the decay of the v are clustered together (as one 

expects from the small mass of the 11 relative to its energy in this decay). Figure D.2 

shows the same event after it has been propagated through the detector simulation 

program. In the cluster containing five of the six 7’s from the decay of the Q, only 

three bumps are identified. 
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Mass of X (MeV/c2) 

Fig. D.3 Resolution of mass opposite 7 in J/T/I t 7X. 

These figures illustrate the problems inherent in identifying these events with a 

purely exclusive analysis. One could consider modifying the bump-finding algorithm 

to identify more efficiently these overlapping 7 showers. However, the problem lies 

not in the extraction of the information, but the loss of the information itself. As 

Figs. D.l and D.2 show, it is impossible to assign the energy in a given crystal 

to a given shower because the 7 tracks lie so closely together. (A crystal may 

contain energy from as many as four different showers.) One can also consider a 

maximum likelihood fit of the observed energy distribution to several overlapping 

shower distributions along the lines of PIFIT. However, the number of parameters 

that need to be estimated is prohibitive. 

Alternatively, one could consider identifying events of this type from the recoil 

mass opposite the direct photon. Figure D.3 shows a plot of the expected resolution 

of the mass opposite the direct photon in the decay J/$ + 7X as a function of the 

-r- , 
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mass of X assuming the energy resolution of the photon to be given by o = 0.026E3/* 

(E in GeV). As can be seen from the figure, the resolution is 10 70 of the mass value 

for Mx = 1 GeV and rapidly deteriorates as Mx approaches zero. 

D.2 Algorithm 

We adopt a different approach. We attempt to reconstruct the four-vector of the 

parent particle (the q in our example) from the crystal energies themselves without 

determining from which 7 shower the deposited energy came (or even how many 

7 showers there were). Thus, we want to calculate the invariant mass of the 6-7 

cluster in our example, or, otherwise stated, the invariant mass of all the deposited 

energy in the Ball except that associated with the direct photon. The algorithm 

consists of four steps: 

1. redo production, 

2. identify the direct photon candidate, 

3. calculate the invariant mass of all other energy depositions in the event, 

4. place cuts on the event sample to select certain topologies. 

We describe each of these steps in detail below. 

D.2.1 Reproduction 

We begin with a dataset that has been selected by the standard production and 

neutral analysis software as described in Chapter 3 and Section 6.3. However, it 

is found that connected regions and bumps as defined in the standard production 

were not appropriate for the current analysis. In the first instance, a connected 

region as normally defined does not include crystals containing less than 10 MeV so 

that its energy is underestimated. In the second, the standard bumps discriminator 

is found to be too coarse. Thus, certain stages of the production are redone as 

described below. 



Appendix D. Global Shower Technique Page .252 

First, the connected regions are extended by searching the Ball for any crystal 

which has not previously been assigned to a connected region. If such an unflagged 

crystal has in its three nearest neighbors a crystal that belongs to a connected region, 

the unflagged crystal is added to that connected region. If the unflagged crystal has 

in its three nearest neighbors more than one crystal which belongs to a connected 

region, the energy of the crystal is divided between the two largest energy connected 

regions in proportion to their energies. If no such crystal is found in the nearest 

three neighbors, the same procedure is applied to the next nine nearest neighbors. If 

none of the twelve neighbors of the crystal belongs to a connected region, the energy 

of the crystal is added to a residual energy sum which is distributed amongst all 

the connected regions at the end of the procedure in proportion to their energies. 

Finally, the “split-off” criterion described in Chapter 3 is used to find spurious 

connected regions. In contrast to the standard neutral analysis, the energy of the 

split-off is added to that of the connected region identified as its parent. 

Second, the bumps step is redone in order to find “minibumps”. A minibump is 

defined to be a crystal which has more energy than any of its three nearest neighbors. 

(In other words, a minibump is a local shower maximum.) A preliminary estimate of 

the energy of the minibump is made by summing the energies of the central crystal 

and its three neighbors. A minibump is not allowed to have less than 20 MeV 

with the exception that every connected region must have at least one minibump. 

ESORT is rerun to determine final energies. 

D.2.2 Identification of Direct Photon 

In order to tag the direct photon candidate, we note that the events we are 

trying to identify have the approximate topology shown in Fig. D.4. Because of 

the assumed low mass of the meson opposite the direct photon, the event will be 

“jet-like” with the shower from the direct photon on one side of the Ball and a 

cluster of photons in a small cone on the other. Thus, we take as the direct photon 

candidate that high energy connected region which is well separated from the rest 
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Direct y 

d 

y ‘s from Decay of 77 

Fig. D.4 Approximate topology of events detected with global 

showers. 

of the connected regions in the event. Specifically, the algorithm used is 

1. An energy tensor is formed from the observed energies in the crystals. This 

tensor is diagonalized, and the eigenvector corresponding to the smallest eigen- 

value is defined to be the “jet-axis”. 

2. Taking the jet axis to define a polar axis, we count the number of minibumps 

in the two hemispheres so defined. We call the hemisphere with the smaller 

number of minibumps the photon hemisphere and take as the direct photon 

candidate that connected region in the photon hemisphere with the largest en- 

ergy. In the event that both hemispheres have the same number of minibumps, 

the direct photon candidate is taken to be that connected region which lies 

closest to the jet axis. It is essential that this algorithm correctly identify the 

direct photon. Events in which the direct photon identification is ambiguous 

are rejected. 

3. In either case, we require that the direct photon candidate have an energy 

greater than 500 MeV and that it have more than twice the energy of the 
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second highest connected region in the photon hemisphere (in order to ensure 

there are no ambiguities in the identification of the direct photon). If the 

direct photon candidate does not fulfill these criteria, the event is rejected. 

4. Figure D.5a shows the distribution of PIFIT masses of the direct photon 

candidate for the J/t/ dataset. For comparison, Fig. D.5b shows the same 

distribution for the J/l/l --+ rq, 11 -+ ~‘7r’r’ Monte Carlo. We note a signifi- 

cant peak near the 7r” mass in the J/t,b data. This peak is due to those events 

in which the direct photon has been misidentified and events in which there 

is no direct photon (see below). In order to select events which are consistent 

with radiative decays, we require that the direct photon candidate have a PI- 

FIT mass less than 90 MeV/c2 (shown by the arrows in the plots). If it does 

not, the event is rejected. 

Table D.l shows the efficiency of this algorithm to identify the direct photon 

in the decays J/$ -+ yq, J,/lc, --+ r$, and J/$ + rf as determined from Monte 

Carlo. 

% Correctly 

Identified 

98 

95 

61 

% Incorrectly 

Identified 

0 

2 

8 

% Rejected 

2 

3 

31 

Table D.1 Monte Carlo Efficiency for tagging direct photon. 

Note that there are decays of the J/$ which are of the form J/$ -+ y+nr”+m~ 

but which do not contain a monochromatic photon. (J/$ + wf, w t 3/r’, f + 7r07ro 

is an example of such a decay.) There is no way to separate these events from the 

radiative decays in which we are interested; if they contain a high energy photon, 

they will contaminate the invariant mass plot. 
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Fig. 0.5 PIFIT masses for direct 7 candidate. (a) J/$ data. 

(b) J/t,b -+ yq Monte Carlo. 
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D-2.3 Invariant Mass Calculation 

Page ,256 

Next, the invariant mass of all connected regions (except the direct photon 

connected region) is calculated. Each connected region is assigned an energy equal 

to the sum of the energies of the crystals comprising it, a direction corresponding 

to the weighted sum of these energies, and an invariant mass as determined from 

SMOMT (see Appendix C). Any connected region with an SMOMT mass below 90 

MeV/c2 is treated as a gamma and assigned an invariant mass of zero. The direct 

photon candidate is assigned a zero invariant mass regardless of its SMOMT mass. 

These “gamma” connected regions are assumed to contain only one photon and so 

are assigned direction cosines from GAMFIT. An energy correction is made for each 

connected region based on the residual energy sum and a rough PCORR correction. 

The event is fitted to energy-momentum constraints with increased energy errors 

for connected regions with nonzero invariant masses. The invariant mass opposite 

the direct photon (i.e., the global shower invariant mass) is calculated from these 

fitted quantities.* 

D.2.4 Additional Cuts 

At this point in the algorithm the global shower calculation is complete. How- 

ever, we may choose to suppress background and/or enhance certain topologies 

through the use of cuts on quantities describing the entire event. 

1. As emphasized previously, we do not attempt in this analysis to determine the 

four-vectors of the individual photons in an event. However, we can classify 

the event according to the structure in the showers it contains. For this 

purpose we utilize the minibumps defined earlier. An event from the decay 

* Due to inaccuracies in the determinations of the invariant masses of the connected regions 

and round-off errors, the global shower invariant mass is sometimes negative or just slightly 

positive (2 10 MeV/c2). S UC h events are not included in plots of the global shower invariant 

mass. 
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J/@ --+ yyrl, rj --+ 7r07r07ro is expected to have more minibumps than an event 

from e+e- -+ (7)77 due to the larger number of 7’s in the final state. On 

the other hand, an event from J/$ --+ 77, 7 --+ 7r07r07ro is expected to have 

fewer minibumps than an event from J/$ + 7q’, $ -+ q7r07ro both due 

to the (possibly) larger number of 7’s in the final state (depending on the 

decay mode of the q) and due to the larger mass of the $ which allows the 

gammas to be further separated than in the q decay. Note that due to shower 

fluctuations and overlaps, the number of minibumps does not correspond to 

the number of 7’s in the final state. (The number of minibumps is typically 

higher.) However, this quantity can be used as a rough discriminator between 

different topologies. Figure D.6 shows the distributions of minibumps for 

e+e- --+ (7)77 , J/+ -+ 7~, J/$ --+ 7~~9, and J/g -+ 7f Monte Carlos. Note 

that due to the preliminary cut (noted in Chapter 3) which requires events 

to have three or more standard bumps, selected events almost always have at 

least three minibumps. 

2. Analagous to the cut that requires the direct photon candidate to have a 

PIFIT mass less than 90 MeV/c2, we can examine the largest PIFIT mass in 

the remainder of the event. An event from the decay J/+ --+ 7q, v -+ rococo 

in which several gammas overlap is expected to have at least one connected 

region in which two 7’s from a x0 overlap. In e+e- + (7)77 , on the other 

hand, there should be no connected region with a large PIFIT mass (although 

the SMOMT mass may occasionally be large due to the tail of the SMOMT 

7 distribution - see Appendix C). Figure D.7 shows the distribution for the 

largest PIFIT mass for the J/$ data . Figure D.8 shows the same plot for the 

J/$ ---+ 7q, rj --+ ~~~~~~ and J/y5 t 7q’ Monte Carlos. As expected, there 

is a tendency for the J/$ t 7~ events to have a connected region of high 

PIFIT mass, and a cut requiring the highest PIFIT mass in the event to be 

above 90 MeV/c2 preferentially selects these decays. However, Fig. D.8 also 

shows that this is not a good discriminator for J/q + 7~’ decays. 
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Fig. D.6 Distribution of minibumps from Monte Carlo. 
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Highest PIFIT Mass (MeV/c’) 

Fig. 0.7 Distribution of largest PIFIT masses in event: J/$J 

data. 

3. Finally, we can examine the invariant masses formed by pairs of minibumps. 

Again, it should be emphasized that the minibumps provide only an approx- 

imate measure of the energies, directions, and number of 7’s in the event. It 

is nevertheless useful to use these approximate measures to search for cor- 

relations. Figure D.9a shows the invariant mass distribution of all pairs of 

minibumps (except those associated with the direct photon connected region) 

for the J/G d a a. A peak at the n-O mass is seen along with a small enhance- t 

ment near the q mass. For purposes of illustration, we eliminate those 7’s 

which contribute to pairs inside a x0 window (90 < mrr < 150) and calculate 

the invariant masses of all pairs of the remaining y’s, yielding Fig. D.9b. A 

clear v peak is now seen. We say that an event has an open q if it contains a 

pair of 7’s with an invariant mass which falls into the q window shown by the 

arrows (450 < mrr < 600). (All 7 pairs are considered when making this cut; 



Appendix D. Global Shower Technique Page 260 

30 
h 

cu 

P 

g 20 

m 

\ 

WI 10 

3 

k 

0 
0 100 200 300 400 500 

Highest PIFIT Mass (MeV/c’) 

( > a 

h 
N 
P 20 

g 15 

m 

\ 10 

rn 

2 5 

&I 

0 
0 100 200 300 400 500 

Highest PIFIT Mass (MeV/c”) 

(b) 

Fig. 0.8 Distribution of largest PIFIT masses in event: Monte 

Carlo. (a) J/lc, + 7q, 7 t n-“~o~o . (b) J/T+!J -+ 7~’ . 



D.2’ Algorithm Page 261 

h N 
P si 

8000 

6000 

4000 

2000 

n 
"0 200 400 600 600 1000 

Invariant Mass (MeV/c’) 

( > a 

6OOi-' ' " 1 " " 1 ' ' " 1 " " 1' ' "1 

"0 200 400 600 600 1000 

Invariant Mass (MeV/c’) 

04 
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the 7’s forming TO’S were removed only to illustrate the boundaries of the 7 

window.) This cut is useful when using the global shower technique to search 

for the decay J/t) -+ Yrl’, rl’ --+ v”~o, 7 + 77. 

We can use combinations of these cuts to select certain topologies. Table D.2 

shows the cuts that have been determined to enhance the decays listed. Although 

the notation refers to J/lc, decays, these cuts are also used for T/Y decays. 

Decay Number of 

Minibumps 

Largest PIFIT 

Mass > 90. 

Open 77 

J/+ + 77, 77 --+ 37r” 6<NBMP<lO I X 

J/$ -+ 7q’, q’ --+ qm”ro 6<NBMP<13 

q---+3 7r’or 77 

X 

J/G --+ yf, f t ~~7r-O I 5<NBMP<6 I X 

Table D.2 Additional cuts for specific decays. 
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D .3 Examples 

D.3.1 Monte Carlo 

In order to study the largest neutral background at the $‘, we generate a Monte 

Carlo dataset of the Q.E.D. process e+e- -+ (7)77 with the number of events 

selected to be equivalent to the luminosity accumulated in the $+ sample. Figure 

D.10 shows the global shower mass for these events before any supplemental cuts; 

Figs. D.ll and D.12 show the same spectrum after the application of the cuts listed 

in Table D.2. It is evident that the Q.E.D. background is greatly suppressed by 

these cuts. Also note that although the combination of the cuts and the falling 

background does produce some structure in these spectra, the enhancements are 

small and are not near the regions of interest of the individual plots. 

In order to model a typical signal, we generate a Monte Carlo dataset of decays 

of the form 6’ -+ 7 X, X -+ x”ro~o where Mx = 500, 900, 1300, 1700, 2100, 

2500, 2900, and 3300 MeV/c2. (100 events are generated for each value of Mx .) 

The first plot in Figure D.13 shows the invariant mass spectrum after application 

of the 7 cuts from Table D.2. Note that the efficiency of detection drops rapidly 

above Mx M 2000 MeV/c 2. This is due to the fact that at higher values of Mx the 

event becomes more isotropic, making the identification of the direct photon more 

difficult. Also note that there is a slight degradation of resolution for large values 

of Mx . The lower plot in Fig. D.13 shows the resolution of the global shower 

invariant mass as a function of Mx (compare Fig. 0.3). 

D.3.2 Data 

Figure D.14 shows the global shower invariant mass distribution on the J/T) 

after application of the q’ cuts. i We see there is a broad accumulation of events 

above 1000 MeV/c2. This is due to events in which there is no direct photon 

t This plot is the same as Fig. 6.15 and is discussed in more detail in Chapter 6. 
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Fig. D.10 Global shower invariant mass distribution for e+e- + 

(y)‘yy Monte Carlo. 
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Fig. D.11 Global shower invariant mass distributions for e+e- t 

(y)yy Monte Carlo. (a) 77 Cuts. (b) q’ Cuts. 
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Fig. D.l.2 Global shower invariant mass distributions for e+e- --+ 

(‘y)yy Monte Carlo. (a) q’ Cuts, open q. (b) f Cuts. 
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from the J/t) ( as in the decay J/T+!J --+ ~w7r07ro,w ---f 771-O) or where the direct 

photon has been misidentified. Even though the cuts have been designed to select 

JM + 77’7 7’ --+ r/r ’ 7r ’ decays, we also see that there is substantial leakage from 

J/g + -yq, q -+ 7r07r07ro. (Events from the decay J/T/J --+ yq, q --+ yy have been 

eliminated by the 7’ minibump cut. See Table D.2.) This illustrates one of the 

limitations of the global shower technique. Even though the efficiency of the global 

shower technique to detect certain topologies is high, one cannot reliably distinguish 

between final states containing different particles. This can be remedied to some 

extent in the present case by the imposition of the “open 7” cut which requires 

that two minibumps have an invariant mass consistent with an 11. (Fig. D.15.) We 

see that the v peak is substantially reduced. However, the detection efficiency for 

the $ drops by roughly 50%, and we have opted not to use this cut in the analysis 

presented in Chapter 6. 

Although the efficiency for detecting the decay J/G + 7 f with the global shower 

technique is not particularly large (see Table D.1)) this decay is useful for illustrating 

this method since it has been studied with an exclusive analysis elsewhere in this 

work (see Chapter 5). Figure D.16 shows the invariant mass spectrum for the J/$ 

dataset after application of the cuts to select J/T/I + 7 f, f --) R-‘T’. We note that 

these cuts also pass a small fraction of the J/T) --+ 7~ and (perhaps) J/T/I -+ yq’ 

decays. We fit the structure around 1300 MeV/c2 to a Breit-Wigner line shape 

plus a constant background in the range from 700 to 1900 MeV. We note several 

features of the fit. First, the fitted energy of the peak (1250 &lo MeV/c2) is low 

compared with the Particle Data Group value of 1274 15 MeV/c2. This is typical 

of all measurements made with this technique, since the energies of overlapping 

showers cannot be as precisely determined as those of photons which are well- 

separated from the remainder of the event. (In particular, the position correction 

discussed in Chapter 3 cannot be precisely determined for overlapping showers.) 

Second, it is difficult to make an accurate determination of the width of the peak 

since the detection efficiency is not constant over such a large resonance. Finally, 
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a Monte Carlo of this decay yields an efficiency of 5.3% (including the branching 

ratio of the f to 7r”no). Combining this with the 205 f 18 events in the peak yields a 

branching ratio of 1.8 f 0.1 x 10m3 (statistical errors only) consistent with the value 

obtained from an exclusive analysis in Chapter 5 (1.7 III 0.1 f 0.5 x 10U3). This is 

of course not an independent measurement, but a consistency check of the global 

shower technique. 
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Appendix E 

NaI(T1) Calibration 

E.l Introduction 

In order to take full advantage of the resolution of NaI(Tl), it was necessary to 

calibrate the crystals frequently. Studies with a Crystal Ball prototype in a variety 

of test beams indicated that the response of the crystal-phototube combination was 

linear (see Fig. E.l). I11 If we take the response of both the low and high channels to 

be linear, we must determine a total of four constants. We choose these parameters 

to be 

1. Plow channel: low channel pedestal, 

2. Phigh channel: high channel pedestal, 

3. Slope: low channel slope, 

4. Ratio: ratio of high channel to low channel (pedestal subtracted). 

Calibration was a three-step process using both low energy calibration sources 

and Bhabha events from the raw data tapes. We describe the steps below. 
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Fig. E.l Test beam results from a Crystal Ball prototype. 

E.2 Online Calibration 

E.2.1 Cs137 calibration 

Online calibration was performed approximately once every two weeks. First, 

pedestals for the low and high energy channels were determined by taking triggers 

generated by a pulser. Next, a 0.1 millicurie Cs137 source was placed at the center 

of each hemisphere. The transition 

137Cs --+ P-+137Ba* 

I f 137Ba + r(0.66MeV) 
WI 

yields a photon line of well-known energy. Calibration amplifiers were inserted into 

the integrate and hold circuits so that the experiment could trigger on these small 
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pulses; the pulse presented to the integration circuit was unaffected. As noted in 

Chapter 2, the smallest section of the Ball which could be used to generate a trigger 

was a set of nine contiguous crystals. Thus, a trigger was generated whenever the 

sum of the energies in a group of nine crystals passed a discriminator threshold 

(= (W)E,). APP roximately 10,000 counts were taken for each group of nine. 

A histogram of the Cs137 spectrum was made for each crystal and fitted to a 

Gaussian plus a polynomial background. A sample spectrum is shown in Fig. E.2. 

Often, a photon Compton scattered off an electron in one crystal and deposited the 

remainder of its energy in a neighboring crystal. If the two crystals were in the same 

group of nine, a trigger was generated even though each crystal contained only a 

fraction of the photon’s energy. Such events account for most of the background 

seen in Fig. E-2. 

These pedestals and slopes made up the set of online constants. They were 

stored in a disk file on the online computer and were used to calculate energies for 

online displays and to determine the online data compression cut in terms of raw 

ADC counts. Also, the Cs137 spectra were permanently stored on disk in order to 

provide a performance monitor of the crystals. 

E.2.2 Van de Graaf Calibration 

The next step in the calibration was similar to the Cs137 calibration except that 

a higher energy photon than could be obtained with sources was used. A small Van 

de Graaff generatorI was used to bombard a fluorine target with approximately 

450 keV protons. This produced a monochromatic photon via the reaction 

1% + p ---s2’Ne* +lGO* + QI 

I 
WI 

> ‘%I + y(6.131MeV) 

A photon of this energy typically produced a larger shower than could be contained 

in a single crystal. This complicated the analysis of the Van de Graaff data in that 

the determination of the calibration constant for a given crystal depended on the 
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calibration constants of its neighbors. Thus, the following iterative procedure was 

used: 

1. Each crystal was initially assigned the slope obtained from the Cs137 cali- 

bration. 

2. For a given crystal i, the energies in i and the three crystals in the twelve 

neighbors of i with the largest energies were summed to obtain the measured 

energy. The slope assigned to crystal i was adjusted to make the peak of the 

energy distribution for crystal i agree with the known energy of the photon 

in reaction [E.2]. This process was repeated for every crystal in the Ball, i.e., 

i was varied from 1 to 720. 

3. Step 2 was repeated three times at which point the procedure had converged 

for virtually all crystals. 

The slopes so obtained were called the Van de Graaff slopes. 

E.3 Offline Calibration 

The final calibration constants used in the production of the data were obtained 

offline from the raw data tapes. Pl,, channel and Ph+ channel were obtained by 

averaging the pedestal peaks for each crystal in uncompressed events. (As noted 

in Chapter 2, the ADC counts for all crystals were written out one in every 128 

events.) The Ratio constants were determined by performing a straight line fit to a 

plot of (low channel ADC counts minus low pedestal) 2rs. (high channel ADC counts 

minus high pedestal) for those events in which the energy in a given crystal fell into 

the range measured by both the low and high channels. The y-intercept of this line 

was constrained to be zero, and its slope was taken to be the ratio between the high 

and low channels. 

The Slope constants were obtained from Bhabha events.* Using pedestals and 

* The seiection procedure does not use information from the inner detector, so the “Bhabha” 
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ratios obtained as described above and Van de Graaff slopes, a preliminary analysis 

was made of the raw data tapes to select events which contained two back-to-back 

connected regions each of which contained roughly the beam energy. In addition, 

in each of the connected regions it was required that 70% of the energy be in the 

central crystal. These events comprised the Bhabha sample which was analyzed by 

an iterative procedure similar to the one used to analyze the Van de Graaff data. 

Here, the initial slopes were taken to be the Van de Graaff slopes, and the measured 

energies were calculated from the sum of 13 algorithm described in Chapter 2. The 

measured energies on each side of the Bhabha events were constrained to be the 

beam energy, and five passes through the data were made.? 

E.4 Resolution and Offset 

Figure E.3 shows the measured energy distribution for a sample of Bhabha 

events using Van de Graaff and Bhabha slopes. The decrease in width of the 

distribution is clearly seen, and the final FWHM using the Bhabha constants is 

4.7%. This is substantially larger than the M 2.7% FWHM resolution obtained 

with a Crystal Ball prototype in high-energy test beams. The resolutions obtained 

from the studies described in Appendix A are also larger than those obtained with 

intermediate energy test beams (see Fig. E.4). Part of this discrepancy can be 

attributed to the fact that the test beam was directed at the centers of the crystal 

in the prototype tests, whereas the cuts used to obtain the Bhabha events could 

only approximately impose this condition. Also, the crystals in the prototype array 

were calibrated daily with the test beam as compared to the Bhabha samples which 

sample actually includes both e+e--+e+e- and e+e--+77 events. Note that because QED 

distributions peak in the beam direction, the tunnel crystals are calibrated with far more 

events than the crystals in the “polar” regions of the Ball. 

t The total energy of the event was not constrained to be the center-of-mass energy, so there 

was no correlation of the calibration constants for crystals in one part of the Ball with those 

on the opposite side. 
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were accumulated over periods of roughly two weeks. 

Page 278 

Another discrepancy is the energy offset described in Appendix A. As outlined 

above, the final calibration constants were obtained from Bhabha events, so elec- 

trons and positrons at the beam energy were constrained to have the correct energy. 

However, the measured energies of low-energy photons in several well-constrained 

channels are slightly lower than the calculated energies. One possible explanation 

is that the measured energy of a shower is dependent on the position of the shower 

within the crystals since high energy showers penetrate deeper into the NaI(T1). 

Figure E.5 shows the compensation curve of a typical crystal as measured by a 

Cs137 source placed at various positions along the crystal axis; Fig. E.6 shows 

the same curve averaged over all main Ball crystals excluding equator and tunnel 

curves. The arrows indicate the approximate positions of maxima of showers of 260 

and 1842 MeV, respectively, corresponding to the energy of the photon in T/J’ -+ 7x0 

and the energy of a Bhabha electron at the +,’ energy. It is seen that the average 

response of a crystal at a depth corresponding to the low energy shower is indeed 

slightly lower than the response at the depth of a Bhabha shower. 

However, in order to correctly account for the effect of compensation on the 

energy response, we should examine the distribution of the shower in the crystal 

rather than simply the shower maximum. Figure E.7 shows the longitudinal energy 

distributions of a 7 shower of 260 MeV and an electron shower of 1842 MeV, respec- 

tively, in a slab of NaI(T1) 16 radiation lengths thick and infinite in the transverse 

dimensions as calculated by the Electron Gamma Shower code (EGS). We see that 

the two showers sample roughly the same regions of the NaI(TI) slab, although 

the “Bhabha” shower is centered somewhat deeper. To study what effect this has 

on the measured energy, we run two sets of 500 EGS showers simulating particles 

incident on a slab of NaI(T1) as described above for an incident 7 of energy 260 

MeV. In the first we simply use the deposited energy as returned by EGS. In the 

second we modify the energy deposited at a given depth by a factor proportional 

to the compensation at that depth. Two similar sets of showers are run for an 
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of 260 MeV 7 and 1842 MeV e-.) 
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incident electron of energy 1842 MeV. In this simple simulation, several effects (lat- 

eral shower leakage, inert material in front of and between crystals, gaps between 

sections of the Ball) which are taken into account by the Crystal Ball Monte Carlo 

described in Appendix B are ignored. These effects all decrease the energy of the 

shower deposited in the NaI(Tl), so the means of the distributions in this study 

will be higher than those in Appendix B. Similarly, the resolutions in this study are 

smaller than those in the full Crystal Ball Monte Carlo. (For low energy photons, 

the observed width of the distribution is almost zero, since the full energy of these 

photons is deposited in a 16 radiation length slab.) 

The results of these simulations are shown in Figs. E.8 and E.9 in which the 

spectra are fit to the line shape function described in Appendix A. It can be seen 

that the peak energies in the distributions based on the compensation-corrected 

EGS simulation (Fig. E.9) are lower than in the unmodified simulation (Fig. E.8). 

However, in order to properly simulate the effect of calibration, we must in each 

case multiply the observed energies by a correction factor which makes the central 

values of the Bhabha distributions coincide with the dialed Bhabha energy (as in 

Appendix B). The “calibrated” mean of the compensation corrected 261 MeV 7 

spectrum is slightly lower than the uncompensated spectrum (0.9 MeV), but not 

sufficiently lower to explain the M 3 MeV shift seen in the data (see Appendix A). 

In summary, the compensation correction is unable to account for the observed 

(negative) offset seen in the data, although it may be one component of the observed 

resolution. When a high-precision measurement of a photon energy is made (such 

as the energy of the transition photon in q!~’ + 7x0 ), we simply apply an empirical 

energy correction derived from an independent channel (i,e., q!L-+qJ/q!~). 
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