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1.2 The Effect of Gravitational Waves on Test Bodies 

The statement that the gravitational wave amplitude is the metric perturbation tensor h 
is probably hard to visualize without considering some examples. Imagine a plane in 
space in which a square grid has been marked out by a set of infinitesimal test masses 
(so that their mutual gravitational interaction can be considered negligible compared 
to their response to the gravitational wave). This is a prescription for embodying a 
section of the transverse traceless coordinate system mentioned earlier, marking out 
coordinates by masses that are freely-falling (i.e., that feel no non-gravitational forces). 

Now imagine that a gravitational wave is incident on the set of masses, along a 
direction normal to the plane. Take this direction to be the z axis, and the masses to be 
arranged along the z and y axes. Then, if the wave has the polarization called h+, it 
will cause equal and opposite shifts in the formerly equal 5 and y separations between 
neighboring masses in the grid. That is, for one polarity of the wave, the separations 
of the masses along the z direction will decrease, while simultaneously the separations 
along the y direction will increase. When the wave oscillates to opposite polarity, the 
opposite effect occurs. 

If, instead, a wave of polarization h, is incident on the set of test masses, then there 
will be (to first order in the wave amplitude) no changes in the distances between any 
mass and its nearest neighbors along the z and y directions. However, h, is responsible 
for a similar pattern of distance changes between a mass and its next-nearest neighbors 
along the diagonals of the grid. 

There are several other aspects of the gravitational wave’s deformation of the test 
system that are worth pondering. Firstly, the effect on any pair of neighbors in a given 
direction is identical to that on any other pair. The same fractional change occurs 
between other pairs oriented along the same direction, no matter how large their sepa- 
ration. This means that a larger absolute change in separation occurs, the larger is the 
original separation between two test masses. This property, which we can call “tidal” 
because of its similarity to the effect of ordinary gravitational tides, is exploited in the 
design of interferometric detectors of gravitational waves. 

Another aspect of this pattern that is worthy of note is that the distortion is uni- 
form throughout the coordinate grid. This means that any one of the test masses can 
be considered to be at rest, with the others moving in relation to it. In other words, 
a gravitational wave does not cause any absolute acceleration, only relative accelera- 
tions between masses. This, too, is fully consistent with other aspects of gravitation 

Fig. 1. An array of free test masses. The open squares show the positions of the masses 
before the arrival of the gravitational wave. The filled squares show the positions of the 
masses during the passage of a gravitational wave of the plus polarization. 
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First, consider light in the arm along the 2 axis. The interval between two neigh- 
boring space-time events linked by the light beam is given by 

ds2 = 0 = g,,vdxpdxy 

= (9y + h,,) dx”dx” (1) 
= -c2dt2 + (1-t hll(27rjt - kz)) dx*. 

This says that the effect of the gravitational wave is to modulate the square of the 
distance between two neighboring points of fixed coordinate separation dx (as marked, 
in this gauge, by freely-falling test particles) by a fractional amount hi,. 

We can evaluate the light travel time from the beam splitter to the end of the x arm 
by integrating the square root of Eq. (1) 

where, because we will only encounter situations in which h < 1, we’ve used the 
binomial expansion of the square root, and dropped the utterly negligible terms with 
more than one power of h. We can write a similar equation for the return trip 

I i7t ,& = -- ; lo (I+ $(2ajt - kz)) dx. (3) 
Toout 

The total round trip time is thus 

2L 
r,t = - + - 

c 
;, AL htl(arjt - kz)dx - ; Lo hll(2Rjt - h)dx. (4) 

The integrals are to be evaluated by expressing the arguments as a function just of the 
position of a particular wavefront (the one that left the beam-splitter at t = 0) as it 
propagates through the apparatus. That is, we should make the substitution t = x/c for 
the outbound leg, and t = (2L - X)/C for the return leg. Corrections to these relations 
due to the effect of the gravitational wave itself are negligible. 

A similar expression can be written for the light that travels through the y arm. The 
only differences are that it will depend on hsa instead of hit and will involve a different 
substitution fort. 

If 277 jgurrrt < 1, then we can treat the metric perturbation as approximately con- 
stant during the time any given flash is present in the apparatus. There will be equal 
and opposite perturbations to the light travel time in the two arms. The total travel time 
difference will therefore be 

2L 
b-(t) = h(t); = h(t)rrto, 

where we have defined rrta G  2Lf c. 

If we imagine replacing the flashing lamp with a laser that emits a coherent beam of 
light, we can express the travel time difference as a phase shift by comparing the travel 
time difference to the (reduced) period of oscillation of the light, or 

Another way to say this is that the phase shift between the light that traveled in the two 
arms is equal to a fraction h of the total phase a light beam accumulates as it traverses 
the apparatus. This immediately says that the longer the optical path in the apparatus, 
the larger will be the phase shift due to the gravitational wave. 

Thus, this gedanken experiment has demonstrated that gravitational waves do in- 
deed have physical reality, since they can (at least in principle) be measured. Further- 
more, it suggests a straightforward interpretation of the dimensionless metric perturba- 
tion h. The gravitational wave amplitude gives the fractional change in the difference 
in light travel times along two perpendicular paths whose endpoints are marked by 
freely-falling test masses. 

1.4 Another Way to Picture the Effect of a Gravitational Wave on 

Test Bodies 

In standard laboratory practice, it is not customary to define coordinates by the world- 
lines of freely-falling test masses. Instead, rigid rulers usually are used to do the job. 
The forces that make a rigid ruler rigid are something of a foreign concept in relativity, 
appearing ugly and awkward after the gravitational force has been made to disappear 
by expressing it as the curvature of space-time. On the other hand, non-gravitational 
forces are not only a fact of nature, but part of the familiar world of the laboratory. For 
many purposes, it is convenient to retreat from a purely relativistic picture and instead 
use a Newtonian picture in which gravity is treated as force on the same level as other 
forces. 

What we are seeking is not a different theory of gravitational waves, but a trans- 
lation of the theory discussed in the previous section into more familiar language. So 
let us reconsider the same gedanken experiment as before, but imagine that we have 
augmented the equipment with a rigid ruler along each axis. We saw that when a gravi- 
tational wave passed through our set of test masses, the amount of time it took for light 
to travel from the vertex mass to the end mass and back was made to vary. How can we 
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Before we rush to plug in a distance R of a few meters, as Hertz was able to do for 
his experiment, we need to remember that wave phenomena are only distinguishable 
from near-field effects in the “wave zone,” that is, at distances from the source compa- 
rable to or larger than one wavelength. With w,.,~ = 27r x 1 kHz, we have A = 300 
km! The receiver for our Hertzian experiment must be at least that far away from the 
transmitter. Hertz’s electromagnetic experiments involved waves of six meters down to 
60 cm in length, so the distance across the lab was fine for him. 

At a distance of one wavelength, our laboratory generator gives gravitational waves 
of amplitude 

blab = 9 x 10-39. (10) 

This is pretty small 
Even creating such a strong source as this may not be practicable. Consider the 

stress in the connecting rod of the dumbbell. It must supply the centripetal force nec- 
essary for the masses to move in a circle. If the rod were made of good steel, it would 
need a cross-sectional area substantially greater than that of a one ton sphere in order 
not to fail under the stresses in a device with the parameters we have assumed. So we’d 
have to reduce the rotation frequency to keep the generator from flying apart, with a 
consequent reduction in the transmitted wave amplitude. 

2.2 Astrophysical Sources of Gravitational Waves 

Even if a gravitational version of the Hertz experiment is not feasible, all is not lost 
for the detection of gravitational waves. The best reason for optimism that detectable 
levels of gravitational radiation exist comes from the presence in the universe of objects 
with truly remarkable values of i’. These systems are so extreme that even though their 
distances from our detectors are quite large, they still generate gravitational waves with 
amplitudes that exceed by almost 20 orders of magnitude the signal strengths from 
laboratory generators of the type described above. 

It would be beyond the scope of this review to describe in detail all of the many 
astronomical objects that might be important sources of gravitational waves. Readers 
are urged to consult the article by Finn in these proceedings for further information on 
the variety of possible sources. But for the sake of a self-contained treatment, we show 
here how to estimate the magnitude of the strongest gravitational waves arriving at the 
Earth. 

For the case of a binary star, there is an elegant way (due to Kafka3) of writing 

the amplitude of the quasi-sinusoidal gravitational wave strain. We can massage the 
quadrupole formula into a manifestly dimensionless form by recognizing that the mass 
dependence can be rewritten as a proportionality to the product of the Schwarzschild 
radii R, = 2GM/c2 of the stars. The frequency dependence and all of the stray factors 
remaining collect nicely as the separation r of the two stars. The gravitational wave 
amplitude is 

h,, = RslRs2/~R. (11) 

If the binary consists of two neutron stars, then the Schwarzschild radii are both 
about 4 km. Astronomers estimate that within a sphere of radius 200 Mpc, roughly 
one of these sytems will coalesce each year. When the stars have a separation of ten 
diameters (or around 200 km), then the signal we would receive from that distance will 
have an amplitude of almost 10-23. The stars can probably approach closer still before 
the system is destroyed. 

A glance at this expression shows why a neutron star binary is a good choice as a 
strong source of gravitational waves. The substantial masses of the two stars make the 
numerator large. The fact that they are compact objects means that their separation r 
can be quite small. We could always wish that the distance R to the nearest example of 
such a system were smaller, but even so our estimated signal strength, while small in 
absolute terms, is certain dramatically larger than we were able to produce in our model 
laboratory generator. 

Perhaps the only sort of astronomical system we can imagine that might generate 
stronger gravitational waves would be a binary system consisting of two black holes. 
Although it may be hazardous to treat such dramatically relativistic objects with the 
quasi-Newtonian physics used to derive Eq. (1 l), it will probably still give a good 
order of magnitude estimate. The possible advantages of black holes as sources of 
gravitational waves are twofold. Firstly, it is possible that the masses of black holes 
may be substantially in excess of the 1.4 M0 typical of neutron stars. Secondly, black 
holes can approach to a separation T as close as their Schwarzchild radius R, without 
disruption; instead the two will coalesce into a single larger black hole. Thus we guess 
that the gravitational signal from a black hole coalescence could be as large as 

hbh - RJR. (12) 

For a pair of 10 M. black holes at 200 Mpc, this expression would indicate a signal of 
h-5x 10-21. 
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then becomes that of a simple harmonic oscillator, with the driving term given by the 
effective force from the gravitational wave [our Eq. (7)]. 

Weber next shows how an extended elastic body behaves in such a way that each 
of its normal modes of vibration can be studied independently. (The gravest mode 
of a cylinder has a large quadrupole moment, and is the one that is usually used for 
detection.) He focuses attention on the use of a piezoelectric crystal as the detecting 
body, partly because he hopes that the electric field will make it a detector with effective 
size larger than half an acoustic wavelength, but also in large measure because the 
electric fields generated by the gravitational-wave-induced stress will give an integrated 
voltage between its ends that may be “large enough to be observed with a low-noise 
radio receiver.” Weber calculates the amount of mechanical power that a sinusoidal 
gravitational wave can dissipate in the resonant detector as a function of frequency, 
then invokes the standard electrical network theorems to show what fraction of this 
power can be transferred to the input impedance of an amplifier. 

A simple discussion of sensitivity follows. Weber first remarks that “in microwave 
spectroscopy it has been found that all spurious effects other than random fluctuations 
can be recognized.” Then Weber states that the excitation of the detector must exceed 
the noise power associated with its thermal excitation. 

Finally, Weber discusses possible practical experimental arrangements. In most of 
the discussion the devices are supposed to be made of large blocks of piezoelectric ma- 
terial. But in a footnote Weber states that the experimental work he is carrying out with 
David Zipoy and Robert L. Forward will probably make use of a large block of metal 
instead. (This is justified on the grounds that a half-wavelength at the 1 kHz frequency 
being contemplated is already large; thus the piezoelectric length-enhancement effect 
may not be necessary, and in any case such a large block of piezoelectric material “may 
not be obtainable as a single crystal”.) 

Two experimental strategies are foreseen: use of a single detector with examination 
of its output for a diurnal cycle associated with the scanning of its sensitivity pattern 
across the sky, and the cross-correlation of a pair of detectors so that external influences 
(presumably gravitational waves) can be distinguished from “internal fluctuations.” He 
notes the necessity of preventing the excitation of the detector by “earth vibrations,” 
and discusses an “ingenious” idea of Zipoy’s for what is now called active vibration 
isolation. 

Weber’s very concise discussion is remarkable for the prescience with which it for- 
shadowed not only his own work, but that of so many others. It also marks a watershed 

in the history of general relativity. In a single blow, Weber wrested consideration of 
gravitational waves from theorists concerned about issues such as exact solutions, and 
appropriated the subject instead for experimentalists trained in issues of radio engineer- 
ing. The boldness and brilliance of this move are remarkable. 

3.2 The Logic of Weber’s Idea 

Weber sweeps quickly over a variety of issues that are worthy of more leisurely consid- 
eration. We’ll give an overview of the important issues in this section, then devote the 
rest of this review to discussing their implications. 

The detector Weber outlined can be divided into several subsystems: a set of test 
masses that respond to the gravitational wave, a transduction system that converts this 
mechanical response to a convenient electrical signal, a low-noise preamplifier, and 
a post-amplification averaging and recording mechanism. Notwithstanding the clever- 
ness of Weber’s original version, many variations on his basic scheme are possible, and 
indeed are responsible for much of the progress since he first announced the results of 
gravitational wave observations in 1969.’ 

Let’s see how to analyze the original Weber design into these canonical subsystems. 
Weber explicitly pointed out how one could construct an analog of a pair of lumped test 
masses by monitoring an internal mode of vibration of an extended block of elastic 
material. In the version where this block is made of piezoelectric material, the same 
material serves both as test masses and as transducer from mechanical to electrical 
signal form. In the version in Weber’s footnote (the one he actually built) a large alu- 
minum cylinder serves as the set of test masses; piezoelectric strain gauges glued about 
the girth of the cylinder perform the transduction. The pre-amplifier is Weber’s low- 
noise radio receiver. No averaging filter is shown in Weber’s diagrams, but is implicit 
in his discussion. 

Perhaps the most interesting choice that Weber made was to connect his test masses 
in a resonant system. It appears that Weber, at least in 1961, thought this was a ne- 
cessity. In a footnote, he cites previous work by Piranig in which the latter considered 
“measurement of the Riemann tensor by comparing accelerations of free test particles,” 
but Weber continues, “The results of this chapter indicate that interacting particles must 
be used, in practice.” In fact, it is not required either in principle or in practice, but it is 
interesting to consider why Weber may have thought so then, and what advantages still 
accrue to the use of resonant masses. 

-121- 



-ZZl- 

‘play aql30 uo%efaql u[ 'PL lap1030 saw!1 .x03 Jayqdwv aql30 IndIn aql 8@EJaAk? 
01 lunourelwl s! ‘a3wuosaJ aql30 a8ElwApe aql %u~uyl~ 01 pzguassa s! qa!qM‘aAoqE 
paqysapJal[g paqalaur aql%u!luaura[duq .a[q@![%au IOU s! ivy1 aapd~ ql!M sauroay 
‘[[gs .pasodoJd $sJy SEM g Jal3E SleaK 0~ JaAoJolaa]ap 30 a[Kls JaqaMaql30 K~!JQ!A pan 
-u~~uoaaq~~o3a[q~suodsaJs~l~:~~lwlsqnss~sJolaalaps~ur-lwuosaJ3oa%E~ueApes~~ 

.sasseuI aaJ3qiFM aseaaq~aqp[noMu~qlas!ouJay![dure ~1pYZeK[aA!~3a~~aaJow 
aladUIOa 01 @I+ yEaM B SMO[@ UralsKs SSEUI lsal aql30 asuodsaJ)wuosaJ aql ‘snqJ 
'as~ouJay![dme aql30 uog.xodoJd~a[@ws qanurc sassedos pu~‘($)y @u%!s @u!%uo aql 
pEquEql KcwanbaJ3 u~rl]p~MJaMo~uqan~~~qJal[~paqa~~uIsl~‘@U~~Sags~u~a~ap 
uo!lEJnp 81101 E sv .as!ou Jaygdure aql ql!M saladwo:, leql PL uo!lk?Jnp %uo[ 30 @u8!s 

@agaa[a ue s! 1! OS .Jay![dure-aJd aql30 s@upx~~al lndu! aqlol pa$uasaJd s! IEql ‘Jaanp 
-sue11 aql Kq u1.103 @+wa[a 01 pa$IaAuoa ‘wawds 1ueuosaJ s!ql30 uo!lom aql s! $1 

.Jolaalap aql30 KauanbaJ3 )wuosaJ aql s! Ol aJaqM 

OE= '*L << - = PJ, 
6 

‘a3UEUOSaJ aql30 aLug Ou!durep a4130 lap10 30 aurge 103,,S%U~,,1013alap wxIosa~ aql 
ina .p2uB!s aAEM ~XIO!~EI!AEJ~~~I 30 S~uo~l~Jnpaql~03 ls!s~ad KIUO sassezu isaiaaJ330 
suo!lom aqL 'sasswu aaJ3 30 apeur aJaM Jolaalap aq$3! ~11013 maJa3gp aly-tb s! Jolaalap 
un?uosaJ aql30 Jo!AEqaqluanbasqns aqllna 'aaJ3 aJaM sassem Isa1 aql3! uroyluaJa~~!p 
qanux $0~ ‘7~ N 7~ apmgdure UE le apouI s,Jolaalap aql30 uo!lom aql alfaxa [[!M 
p uaql ‘KauanbaJ3 $wuosaJ s,Jolaalap a4130 K~!II!ZI!A aql II! JaMOd @ywlsqns su~]uoa 
($)y @i!s ~AEM~~uo~~E~!AEJ~~~~JI 'p&!spu~q-pEoJqe 103 Ougoo[ s! auouaqMuaAa 
aauaJag!p E ayew ue3 saAEM ~u0!l~l!~E12 30 Jolaalap wEuosaJ e aJaqM s! aJaH 

.apnl![dure azuI?s 
aql30 @U4!S uoyemp-5uo[e saop u??qlas~ouJaygduIE-aJdpwq-pEOJq~su~?8E[[aM ssa[ 
qanw aladuroas@u%!s3a!Jq‘snq~ 'qlp!Mpueq ap!Mt? 30 as!ou sassedJal[y paqalEleur SI! 
Uaql‘@U%!S3a!JqE '03 %IqOO[aJE aM 31 'PUEq 1E uogsanb aqlJO3 sagdux! S!qllEqM aas 

:up~~op KauanbaJ3 aql u!qlp!M sl! pw2 up~~op auJ!l aql u! @t@S 
e 30 uoqelnp aql uaaMlaqdgSUO!]e[aJ asJaAu! UE s! aJaq] lEq1 SalEis 11 ,;uo!lE[aJ Kluy 

-Jaaun,, @a!sse[a ~30 ULIOJ aql sav1 s!sK@ue Ja!JnoJ 30 tuaJoaq1 @Jaua8 KJaA Jaqlouv 

30 JaMOd as!ou sassed 
l! Uaql ‘(!)A Kq UaA!8 s! ($)a WJO3aAEM @U%!S aql30 u~103su~rl lapnod aql31 iqaruu 
MOH 'Jaqy paqaleur aql q8noq saswd aslou awes ‘[[!~s t?u~qwas s! au0 q3!qM 103 

,@u%!s aql,,ay![ yoo[,, IOU op leql as!ou aql30 sluauodruoa [px slaa[aJ Jal[g paqalew aql 
leql s! urnuydo UE qans pwqaq Eap! a!ls!Jnaq aqJ .aa!Aap %O~XIE w Kq aurg @aJ u! 
pawaura[dur! SFI! uaqM .wpJpaymm aqlpa[@a s! s!qI .@u%!s aql s1? two3 azues aql30 
aw[duxale ql~MpaA[oAuoa s! s@u@ a[q!ssod Kw sn[d as!ou aql%uruguoa sa!Jas auI!l 
aqluaqM paur\?llE aq uE3 ayou al!qM PUE @I@S uaA!8 E UaaMlaq ls~~uo:,u~nu~~ldo aq] 

1eqlSalElS UOg3alap@U8!S3OUIaJoaql @lUaUIEpUn3V .'L ql&Ia[Sl![@a :aUJ!lU! UOyEJnp 
palvq 30 px@s E 01 Ja3aJ 01 ,$mq,, uual aql asn aM .pzu%!s aql30 uoymnp aql uo 
KEM pguassa UE II! spuadap @u?&s E ql!M snadwo3 as!ou s!ql qayM ollualxa aqL 

.sayIanbaJ3 MO[ 
1~ SnEuyJop leql mauoduroa j/l @uoyppe UE s! aJay K[@nsn .sa!auanbaJ330 a%?ueJ 
ap!M E Jaao (,,al!qM,, JO) luElSUO3 K[q%oJ K[@3!dKl s! qa!qM (J)"s Klfsuap @J]aads 
JaMod sl! Kq paz~a~aEJEqalsaq‘JalaEJeqapueq-pEoJqe 30 K[@Jauaz s! sJay![dme qans 
u! as!ou aql .luauoduro:, s!ql u! a[qFssod s[aAa[ as!ou lsaMo[ aql 103 %w[@:, 30 lured 
I? apem JaqaM KqM s! s!qL 'ai?EelS Jaygdwe-aJd aql u! aslou aqllwp&? Kl![!q!S!A JO3 
aiadruoa isnur @u%!s qeaM v 'yooq 1961 s!q u! JaqaM Kq passnwp IOU auo qaq@ 
‘a8EWEApE[tl$JaMod E aA!%[[!lS U?X UO!lEJn@IOa SSEUJ-]UEUOSaJ aql‘S@@S ayq-lsmnq 
UO K[lSOUr snao3 01 azuo3 SEq SaAEM p2110~lEi!~t~J% ‘03 qmas aql q8noql uaaa lna 

.KauanbaJ3lmuosaJ 
@ayeqaam aql pue KauanbaJ3 @u%!s aq$ uaarniaq qalew ~00% e s! aJaql uaqM Jnmo 
KIUO mm s!ql tSa[36330JaqUmu @!luElsqns B 103 aseqdJadOJd aqlq]!M wa]sKs 1ueuosaJ 
aql saA!.xp amo3 lndu! aql uaqM lnoqe saruoa KIUO uo!lEay[dun? lueuosaa 'lsJnq3a!Jq 
e aJaM v3! p[noM I! SE ‘lualuoa KauanbaJ3 pwq-pEoJq e say ~XI%!S aql3! JO ‘Jopalap 
aqt30 KauanbaJ3 IwuosaJ aql qaieur K[aso[a IOU saop KauanbaJ3 asoqM p~%!s @p!os 
-nuts E seq auo3! uo!lwyqdum iueuosaJ ou K[@guassa s! aJaq1 ‘pueq Jaqlo aq$ uo 

~Jaquuw~J&?d[@qpeqe~ou[[~s‘,~~ N ~pawur!$sa UE salonb 
Jaqa~:@~lUEISqnS aqm3pUE‘~J013e3 K~ymbs,JolEuosaJaq~ KqUaA!% s! uogEay![dm 
sgl30 iunounz aql .KauanbaJ3 IueuosaJ aqll~ @u%!s e 01 asuodsaJ aql30 uo!pxy![dm 
l~UOSaJEaA~8~u~JdsEKqpalaaUUOaSaS~uIUaql‘~O3S~q~aA~qp~paAEM@UO~]~~~A~J~ 
e31 '0961 punoJE OS aJoux uana pue Ou!Jaau@a30 qanur u! aapaEJd uounuo3 E [[gs 
‘s@u%!s p2p!osnu!s KpEals30 suLIa1 u! uo!ssnwp sy 30 pap poo% E saq3noaJaqaM 



such a system has a low post-detection bandwidth (usually shortened simply to “band- 
width.“) The averaging washes out any details of the waveform h(t) on time scales 
short compared to 74. What one gains in signal-to-noise ratio, one gives up in temporal 
resolution. Whether this is a price one ought to be willing to pay or not depends on the 
stakes: if it is absolutely necessary even to detect the signal, averaging with a matched 
filter is certainly worthwhile. If the signal could be detected anyway, averaging sim- 
ply throws away information, and should be avoided. In the high signal-to-noise case, 
the resonance does not help, but neither does it hurt much-a simple filtering opera- 
tion could remove the resonant signature and allow reconstruction of the original signal 
waveform. 

(N.B.: As we will show below, the actual choice of matched filter for a resonant 
detector is more subtle than that just described. Instead of rd, a shorter averaging time is 
almost always the optimum choice. Nevertheless, the qualitative thrust of the argument 
given in the previous paragraph still applies.) 

3.4 Free-Mass Detectors as an Alternative 

Given the trade-off between sensitivity and bandwidth that resonant systems tempt one 
to make, it is worth exploring whether there are other entirely non-resonant detection 
schemes that can achieve high sensitivity to gravitational waves without sacrificing sig- 
nal bandwidth. In fact, such free-mass detectors have been developed by a variety of 
workers, including the same Robert Forward who worked with Weber on the original 
resonant detector.‘0x” The essential advantage of free-mass detectors comes from the 
fact that the farther apart their test masses are placed, the larger is the relative displace- 
ment between them caused by a given gravitational wave amplitude h(t). (This scaling 
relation holds true up to the point that the light travel time between the masses becomes 
comparable to the period of the wave; that is when separation of the masses becomes 
comparable to the wavelength of the wave.) But the resonance in a resonant detector 
comes roughly when the sound travel time across the bar matches the period of the 
wave. That is to say, resonant detectors reach their optimum sensitivity when the sepa- 
ration of the test masses is of order of the acoustic wavelength at the gravitational wave 
frequency. Since the speed of sound in materials is of order 10d5 of the speed of light, 
a free-mass detector at its optimum length can have an advantage in signal size of lo5 
over a resonant-mass detector at its optimum length. 

Another advantage is that no resonance is used to boost the signal. Thus, in principle 

a free-mass detector can have a completely white frequency response. This ideal can 
not be completely achieved in practice, since some of the noise sources discussed below 
have strong frequency dependences of their own. Still, it is possible to achieve useful 
bandwidths measured in decades rather than in fractions of an octave. 

This signal size advantage would be a hollow one if there were no sensitive way to 
measure the relative displacement of test masses separated by many kilometers. For- 
tunately, there are such ways. As we saw above, the travel time of electromagnetic 
signals between the test masses can be measured with great precision. Interferometry 
using visible or near-infrared light to measure the separation of free masses has be- 
come a well-developed technology that now is completely competitive with the best 
resonant-mass detectors, and which is about to undergo a great leap in sensitivity as 
new instruments of multi-kilometer scale come on line in the next couple of years. 
Radio ranging between interplanetary space probes separated by many millions of kilo- 
meters has been used for some time; optical interferometers in solar orbit, with million 
kilometer baselines, are now being planned. 

The conceptually simpler free-mass detectors are in practice substantially more 
complicated devices; the freedom of the test masses must be tamed by servo systems 
to keep them operating properly. This is in part what is responsible for the time lag in 
their development, even though they were conceived not much later than resonant-mass 
detectors. In the remainder of the review, we will discuss both styles of gravitational 
wave detector. 

4 Noise Sources 

In this section, we will focus our attention on understanding the most fundamental 
noise sources with which the practice of gravitational wave detection has to contend. 
Perhaps not surprisingly, the list will seem to have little to do with general relativity 
or with gravitational waves, as such. The chief concerns of gravitational wave detector 
designers are those that would confront anyone attempting to measure the effect of a 
very weak force on a mechanical system: Brownian motion (also known as thermal 
noise), and noise from the readout system (both in its direct influence on the output of 
the system and through its “back-reaction” on the mechanical front end). A ubiquitous 
but non-fundamental noise source, seismically-induced vibration, is treated as well. 

It is pedagogically simpler to introduce the topics first in the context of interfer- 
ometers. Then, we will describe how similar considerations apply to resonant-mass 
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related concept called the admittance Y is defined by 

Y(w) E  z-‘(w) = $)3i”. 

With these preliminaries, Callen’s Fluctuation-Dissipation Theorem can be suc- 
cinctly stated. The thermodynamic fluctuations analogous to Brownian motion have 
a magnitude given by the application at the point of interest of a random force with a 
power spectrum 

SF(w) = 4kBTRe(Z). (14) 

The strength of the applied force power spectrum is proportional to the dissipative (real) 
part of the impedance; hence the name “fluctation-dissipation” theorem. Note that this 
expression has the same form as the more familiar power spectrum for the Johnson 
noise voltage, S”(w) = 4kBTR, where the resistance R is the real part of the electri- 
cal impedance. The similarity is not accidental, but is only one example of the many 
phenomena unified by the theorem. 

An alternative form of the theorem, more useful in some situations, directly gives 
the displacement fluctuation power spectrum instead of the equivalent applied noise 
force. It states 

&(w) = Y&(Y). (15) 

Again, the power spectrum scales with the amount of dissipation in the system. 
Clearly, this description of fluctuation phenomena is richer than the Equipartition 

Theorem, since here we have expressions for the entire power spectrum of the fluctua- 
tions, not just their rms amplitude. But are the two descriptions even consistent? The 
rms fluctuation, for example, the expression in Eq. (13) has no dependence on the 
magnitude of the dissipation. But Eq. (15) shows that the fluctuation power spectrum 
is proportional at each frequency to the amount of dissipation at that frequency. How 
can both be true? An oscillator with low dissipation shows a very pronounced peak 
in its response at the resonance frequency, while one with larger dissipation exhibits a 
less dramatic peak. So, although the driving noise force is smaller when the dissipation 
is smaller, the response on resonance is greater. The two effects precisely cancel, as 
can be verified by direct integration, thus guaranteeing that the integral of the power 
spectrum Eq. (15) is equal to what one would predict from the Equipartition Theorem. 

These two faces of thermal noise, rms magnitude, and power spectrum, are each im- 
portant in the appropriate context. In a broad-band gravitational wave detector, such as 
one using an interferometer, the power spectrum carries the most valuable information. 

This insight is embodied in the universal choice to suspend the test masses as pen- 
dulums. Pendulums are chosen because they are the best way known to create a low 
frequency oscillator with very low dissipation. Heuristically, most of the restoring force 
in a pendulum comes from the tension in its wires (due in turn to the gravitational force 
on the mass); this process has no dissipation associated with it. The only unavoidable 
dissipation is that associated with the flexure of the wires, but in a properly designed 
pendulum the fraction of restoring force associated with flexure is small. Hence, the 
internal friction in the wires is “diluted” by a large factor (perhaps of order 103). 

Similarly, one wants to minimize the thermal noise associated with internal vibra- 
tions of the test masses. This can be achieved only by making the masses out of a 
material with very low dissipation. Fortuitously, fused silica has very low mechanical 
dissipation at acoustic frequencies at room temperature. 

A standard design rule in those devices is to attempt to place all resonances (such 
as those associated with the pendulum suspension of the test masses or those involv- 
ing internal vibrations of the test masses themselves) outside of the frequency band in 
which signals will lie. When this is done, only the off-resonance amplitude of the power 
spectrum is important. The off-resonance transfer function of an oscillator to a given 
force is controlled by the compliance of the resonator in the low frequency limit, and 
by the inertia of the oscillator above resonance. If the dissipation that sets the driving 
force can be made low, so can the power spectrum of thermal noise at the frequencies 
of interest. 

4.2 Readout Noise and the Quantum Limit 

All experiments need readout and recording systems to register the effects for which 
we are searching. If the effect is large enough, then these functions can be carried out 
essentially perfectly. But in the case of the tiny mechanical effects we expect from 
gravitational waves, even to make the mechanical system’s response large enough to 
record requires very carefully designed readout systems. It is not possible in all cases 
to ensure that the noise in the readout system is small compared to the mechanical noise 
in the test masses. 

Readout noise has two faces, either one of which may dominate depending on the 
circumstances. The most familiar is additive noise that competes with a fair copy of the 
mechanical signal in the output of the measuring system. But measurement systems 
also unavoidably add mechanical noise to the front end; this “back reaction” noise 
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which half of the maximum possible power exits the output port. At this point, the 
change in output power is maximized for a given change in path length difference. If 
we want to observe a very small change in arm length difference, then we must be able 
to recognize a very small change in the output power of the interferometer. In other 
words, the readout precision of an interferometer is limited by the precision with which 
we can measure optical power. 

The fundamental limit to this power measurement is the so-called “shot noise” in 
the light. We can model the light flux at the photodetector as a set of discrete photons 
whose arrival times at the photodetector are statistically independent, although with 
a deterministic mean rate fi. Whenever we count a number of discrete independent 
events characterized by a mean number N per counting interval, the set of outcomes is 
characterized by a probability distribution p(N) called the Poisson distribution, 

p(N) zz 7. (17) 

(This is also colloquially referred to as “counting statistics.“) When i%’ > 1, the Poisson 
distribution can be approximated by a Gaussian distribution with a standard deviation 
u equal to fi. 

We are trying to determine the rate of arrival of photons 6 (with units of set-I), by 
making a set of measurements each lasting r seconds. The mean number of photons 
in each measurement interval is &’ = fir. The Poisson fluctations of the measurement 
process mean that the fractional precision of a single measurement of the photon arrival 
rate (or, equivalently, of the power) is given by 

“I”-m 
N no =&. (18) 

This says that if we were to try to estimate ii from measurements for which fir N  1, 
then the fluctuations from instance to instance will be of order unity. If fir is very large, 
then the fractional fluctuations are small. 

Let’s carry through the calculation for the power fluctuations, and thence to the 
noise in measurements of h. Each photon carries an energy of Aw = 2rfic/X. If there 
is a power Pout at the output of the interferometer, then the mean photon flux at the 
output will be 

n = LP&. 
27riic 

At the half-power operating point, 

(19) 

(20) 

We can also consider this to be the sensitivity to the test mass position diference bL, 

since the interferometer is equally sensitive (with opposite signs) to shifts in the length 
of either arm. 

Now consider the fluctuations in the mean output power Pat = Pin/S, averaged 
over an interval 7. The mean number of photons per interval is E = (X/4~hc)P,,7. 

Thus we expect a fractional photon number fluctuation of us/N = dw. 
Since we are using the output power as a monitor of test mass position difference, we 
would interpret such statistical power fluctuations as equivalent to position difference 
fluctuations of a magnitude given by the fractional photon number fluctuation divided 
by the fractional output power change per unit position difference, or 

Recall that we can describe the effect of a gravitational wave of amplitude h as 
equivalent to a fractional length change in one ~~III of AL/L = h/2, along with an 
equal and opposite change in the orthogonal arm. The net change in test mass posi- 
tion difference is 6L = Lh, so if we interpret brightness fluctuations in terms of the 
equivalent gravitational wave noise ah, we have gh = O&L/L, or 

(22) 

There is no preferred frequency scale to this noise; the arrival of each photon is 
independent of the arrival of each of the others. Note also that the error in h scales 

inversely with the square root of the integration time. These facts can be summarized 
by rewriting Eq. (22) as the statement that the photon shot noise in h is described by a 
white amplitude spectral density of magnitude 

(23) 

4.2.3 Radiation Pressure Noise in an Interferometer 

A hint at where quantum mechanics might have some deep relevance comes when we 
consider how shot noise scales with the optical power used in the interferometer. As 
shown in Eq. 23 above, the shot noise readout precision improves as the square root 
of the optical power. Taken at face value, this would suggest that we could achieve 
arbitrarily good measurement precision, so long as we were able to use an arbitrarily 
powerful laser to illuminate the interferometer. 
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There was a moment when some physicists believed, on seemingly sound physical 
grounds, that this picture of how photons interact with a beam splitter was so flawed 
that interferometers could perhaps evade the Uncertainty Principle.” The argument can 
be made based on quotation from quantum mechanical Scripture, Dirac’s The Princi- 
ples of Quantum Mechanics. ig There one can read that photons in an interferometer 
travel down both arms simultaneously; furthermore, it is written that interference can 
only take place between a photon and itself, so the very existence of interference in 
a quantum mechanical world is proof of this picture. If this were taken as absolute 
and literal truth, then it would appear to rule out any differential radiation pressure at 
all, since the number of photons, and hence the recoil forces, would be identical in the 
two arms. Without the resulting differential recoil of the test masses, there is no quan- 
tum limit. Gravitational waves could in principle be measured with arbitrary precision. 
Some physicists defended this as gospel, despite the fact that the argument appeared to 
use quantum mechanical reasoning to disprove quantum mechanics. 

The stubbornly naive were untroubled by this argument, and expected the Uncer- 
tainty Principle to hold. Some physicists read a few pages further in Dirac’s book, to 
the passage explaining that allowing the possibility of energy measurements, say by 
observation of recoil of the mirrors, causes collapse of the wave function in such a way 
that photons end up either in one arm or the other. (Dirac’s first discussion refers to an 
interferometer with rigidly fixed mirrors.) The learned were saved from error by the 
work of Caves,” who invoked the concept of vacuum fluctuations to explain the quan- 
tum mechanical behavior of photons at a beam splitter. A vacuum electromagnetic field 
with zero-point fluctuations enters the interferometer through the output port; its super- 
position with the field from the laser causes the light to behave in the way expected 
from semi-classical reasoning. 

4.3 Seismic Noise 

We have neglected to consider above another source of noise in gravitational wave de- 
tectors that is so common and important as to be essentially ubiquitous. This is what is 
commonly called seismic noise, the continual shaking of the terrestrial environment due 
to a variety of contingent causes, ranging from small earthquakes to ocean waves driven 
by large weather systems to automobiles striking potholes in poorly paved streets. Such 
a complex phenomenon can have no simple explanation from basic physics, yet dealing 
with it forms a substantial part of the challenge to designers of gravitational wave de- 

tectors. (Only moving the whole detector into space suffices to remove it entirely from 
consideration.) 

At a reasonably quiet location, the spectrum of seismic noise from 1 Hz to several 
hundred Hz can be approximated as 

x(f) = 
10-7cm/JHz, from 1 to 10 Hz 
10-7cm/&(10Hz/f)“, for f > 10 Hz. 

(31) 

The magnitude of this mechanical noise background is distressingly large. The rms 
amplitude of the noise over this interval is of order 1 pm. The good news is that 
the spectrum falls with increasing frequency f. But even so, throughout the range of 
frequencies of interest to gravitational wave detectors, it involves motions many orders 
of magnitude larger than would be driven by any conceivable incident gravitational 
wave. There is no possibility of success unless the effects of seismic noise can be 
strongly attenuated. 

It is straightforward to see the way in which seismic noise mimics a gravitational 
wave signal in an interferometer. As long as the separation between the mirrors is 
not very small, then the seismic inputs to each mirror are effectively independent; the 
difference in arm lengths is driven by the quadrature sum of the noise at all mirrors. 
The situation is a bit more subtle for a resonant mass detector. If it is suspended at its 
midpoint, it would appear that its internal modes should not be excited by any motion 
of the suspension point. However, this argument assumes perfect symmetry of the 
resonator about the suspension. The approximate symmetry of real systems may give 
several orders of magnitude of effective isolation, but the seismic spectrum is so large 
that additional isolation is always required. 

Fortunately, the design of seismic isolators is a well-developed art. One can con- 
struct mechanical multi-pole low-pass filters that provide outstanding attenuation at 
frequencies well above those of the filter poles. The art of doing so was introduced to 
the field of gravitational wave detection by the founder, Weber.*’ 

4.3.1 A Simple Two-Pole Isolator 

The essence of vibration isolation can be understood using only ideas from freshman 
physics. Imagine that the object to be isolated has mass m. Assume that it is a rigid 
body, and that we are only interested in its motion 2, in a single direction. Then we 
can treat the object as a point mass. If it rests on the ground, it shares the ground’s 
motion xg, so x, = x9. To isolate the mass, replace the rigid connection to the ground 
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4.4 Noise in Resonant-Mass Detectors 

Key features The essential complication in understanding resonant-mass detectors 
(as compared to interferometric detectors) is that the degree of freedom of interest is 
that of a simple harmonic oscillator (or a collection of them, as we’ll see in the next 
section). So in addition to any intrinsic frequency dependence in the noise, there is 
a deliberately constructed resonant transfer function in the detector itself. As we saw 
earlier in this review, the resonance was introduced as part of a strategy for overcoming 
wide-band noise in the amplifier. 

The use of this strategy involves different heuristic concepts than are appropriate 
for interferometers. In particular, optimizing the sensitivity of a resonant detector to 
short bursts almost always involves choosing to average the output over times that are 
long compared with the length of the burst itself. Then, the measurable quantity is no 
longer h(t), but is instead net change in the vector amplitude (magnitude and phase) 
of the resonator’s oscillation. This in turn can be expressed in terms of the energy that 
the wave would have deposited in a resonator at rest. 23 If the gravitational waveform 
h(t) has a Fourier transform H(f), then that excitation energy E is (for an optimal 
orientation between bar and wave)24 

E = $ IH (fo)l’ , 
where M is the total mass of the bar, v, is the speed of sound in the material, L is the 
overall length of the bar, and fo is the resonant frequency. 

The distinctive features are twofold: characterization of,all candidate events by a 
single number (usually its “energy” or else T E E/kc), and a signal-to-noise optimiza- 
tion that involves choosing the right averaging time (or bandwidth). 

Resonant transducers The second generation of resonant-mass detectors replaced 
Weber’s piezoelectric transducer with a kind of a bridge circuit, in which the mechan- 
ical motion unbalanced the bridge by modulating the inductance or capacitance of one 
leg of the bridge. As with piezoelectric transducers, achieving a high level of coupling 
has proven difficult to achieve. A standard measure of the coupling is the Gibbons- 
Hawking parameter p, defined as “the proportion of elastic energy of the detector that 
can be extracted electrically from the transducer in one cycle.“25 In principle, the exci- 
tation of the bridge could be increased without limit, but in practice large fields usually 
lead to excess dissipation in the transducer even before electrical breakdown occurs. 
Transducers have been limited to working values of/l of around lo-‘. 

A heuristic way of understanding the design problem is to think of the issue as 
an attempt to design a transducer that makes a reasonable electrical impedance at its 
output appear to the mechanical system as a mechanical resistance sufficient to supply 
appreciable damping to the bar. With bar masses in excess of one ton, this may seem 
inordinately difficult. The good values mentioned in the previous paragraph avoided 
this problem by making use of so-called resonant transducers, which have been adopted 
almost universally since the idea was proposed by Paik in 1 976.26 

Paik’s design called for a smaller mechanical resonator to be attached to the main 
resonant mass M. The resonant frequency of the smaller resonator itself (i.e., with the 
larger resonator “clamped”) is chosen to match that of the main resonator. The actual 
coupled system then has two normal modes. If the mass ratio m/M = (Y < 1, then it 
is easy to show that the ratio of the amplitude of motion of the small mass, compared 
with that of the main resonator, is 

I I $ =;. - 
When a gravitational wave burst interacts with such a resonant system, it will at 

first mainly excite the vibration of the large bar. (The Paik resonator is a small device 
at one end of the bar, so the gravitational wave strain has only a small baseline for 
creating a stretch in its spring.) The free motion of this two-mode system then exhibits 
“beats,” during which the mechanical energy of the main resonator’s original motion is 
transferred into excitation of the small resonator. During this phase of the beat cycle, the 
effect of the gravitational wave has been transformed into a motion 2/& times larger 
than in a detector without the resonant transducer. The electro-mechanical transducer 
is mounted so as to measure the motion of the small mass with respect to the end of the 
main resonator, thus presenting this larger motion to the rest of the signal processing 
system. 

The advantage this offers in detecting weak signals is probably obvious. The larger 
motion generates a comparably larger electrical output from the transducer, reducing 
the importance of a given level of electrical amplifier noise. Another way of seeing the 
advantage is to recognize the much smaller mechanical impedance required to damp 
the motion of the smaller mass, which means that /3 is increased by a factor of order 
(Y-‘. In present day designs, the mass ratio a is typically of order a few times 10m3. 
The value is set in an optimization that involves not only thermal noise and additive 
amplifier noise but the back-action noise as well. 
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possible. To describe the noise, and to understand how it affects the detection process, it 
is valuable to consider a general black box representation of a noisy amplifier as a kind 
of a two-port network, just as we did for the transducer. Other than the trivial difference 
that this two-port is an all-electric device, there are two key differences between this 
kind of two-port and the model transducers discussed above. One is the fact that the 
amplifier has gain, i.e., it can supply more energy at its output than is supplied by its 
input. The other is the existence of two sources that represent the generation of noise. 
They are usually represented as a voltage source and a current source at the input of 
the two-port network; this is especially convenient, and has wide generality, but is only 
one of several equivalent ways of representing the noise. More on the general theory of 
noisy two-port networks can be found in the pioneering paper by Rothe and Dahlke.31 

It is interesting to pause to inquire why two noise sources are necessary. Recall 
the Hehnholtz theorem, often known in specialized forms as Thtvenin’s theorem or 
Norton’s theorem.32 The essence of the theorem is that an arbitrary network of sources 
and passive components can be represented, as far as its behavior at a given port is 
concerned, by a single source and a single impedance. But we are dealing here with a 
network in which two ports are relevant. At each port, one needs an impedance and a 
source, or their equivalents elsewhere in the circuit. It is traditional to replace the source 
at the output with an equivalent noise source at the input, whose strength is smaller than 
the output noise by a factor of the amplifier gain. 

These two noise sources play different roles in the measurement process. There 
is one noise source that is physically present at the input, causing an influence on the 
system (here the electromechanical transducer) that is attached to the amplifier input. 
In the jargon of gravitational wave detection, this noise is responsible for “back action,” 
since noise at the input of the pre-amp is thereby applied to the output end of the trans- 
ducer,where it can cause a mechanical noise force at the transducer input; this is in turn 
attached to the resonant-mass detector proper. More on this below. 

The second noise source (the one replacing the output noise source) is usually re- 
ferred to as “additive noise”: it is added to the amplified signal by the time it appears at 
the output, without causing any physical effect on the system hooked up to the input. 

Amplifier noise in resonant-mass gravitational wave detectors, and the “amplifier 
limit” In contrast to our discussion of detection strategies in the case where thermal 
noise dominates, here we discuss the case when additive amplifier noise is the only 
important noise source. Then, we can best search for a brief burst of gravitational 

radiation by performing a cross-correlation between the system output and a template 
consisting of a sinusoid at the mechanical resonant frequency that is damped with the 
same time constant as the resonance itself. In other words, we look for responses that 
look like the test mass system suddenly set into resonance. The signal can arrive with 
any phase of course, so we need to keep track of both sine and cosine components with 
the bar’s damping time. A two-phase lock-in amplifier can be set up to perform exactly 
this form of averaging. 

In this case the energy sensitivity of the detector is given byz7 

where T, is the noise temperature of the amplifier, X is the ratio of the transducer 
output impedance to the amplifer noise impedance, p is the Gibbons-Hawking coupling 
parameter, and ~~ is the averaging time. 

Consider the post-detection bandwidth implied by this prescription. The output of 
the cross-correlation described above is hardly affected if we displace the template with 
respect to the signal time series by one or even several cycles of oscillation. For there 
to be a substantial change in the value of the cross-correlation, the template must be 
displaced by a duration of order the damping time of the mechanical resonance. This 
means that, if the signal-to-noise ratio is not large, the arrival time of the impulsive 
gravitational wave signal will be uncertain by of order the damping time. In other 
words, the post-detection bandwidth Af of such a signal extraction system is narrow, 
of order 

Af z=z l/rd. 
For a quality factor of 106, this bandwidth is very narrow indeed. Increased bandwidth 
could be achieved, of course, at the expense of the signal-to-noise ratio, by averaging 
the output time series for a shorter time than the bar’s damping time 7d. 

Combined optimum in the presence of thermal noise and additive amplifier noise 
When both kinds of noise are present at substantial levels, the best strategy is neither 
the rapid readout appropriate to thermal noise nor the long averaging time that would 
be best for amplifier noise. A broad-band output filter will admit too much amplifier 
noise. Using the narrow-band prescription appropriate to the amplifier-dominated case 
filters out much thermal noise, but also most of the signal power. Obviously, the opti- 
mum in the combined noise case lies somewhere between the extremes, where the net 
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From this, Giffard shows that the Uncertainty Principle requires that unless a grav- 
itational wave signal has a minimum size, no linear gravitational wave detector will be 
able to register its arrival. He expressed the minimum size in terms of the energy U, that 
the wave would deposit in a resonant detector initially at rest. The quantum mechanical 
limiting sensitivity is 

u, > 47&f. 

As worded above, this argument can seem rather abstract. A heuristic description 
makes it as vivid as any of Bohr’s gedanken experiments. In a mechanical amplifier, 
a crucial quantum mechanical role is played by the back action from the noise source 
that the Helmholtz Theorem places at the amplifier input. The force noise generator 
at the mechanical amplifier input (caused by electrical noise acting backwards through 
the transducer) perturbs the delicate mechanical system, here the resonant-mass system 
itself. Just as in the Heisenberg microscope, any design trade-off made in an attempt 
to reduce the position noise ends up increasing the momentum impulse applied to the 
system being measured. 

5 History of Resonant-Mass Detectors 

We now turn from a discussion of physics per se to a review of the way in which 
one assembles working gravitational wave detectors in light of the physical principles 
governing them. We will take a quasi-historical framework for this discussion, as a 
pedagogically sensible way of grappling with the issues involved. In this section, we 
will take the chronologically-motivated choice of treating resonant-mass detectors first; 
then we will start from scratch the overlapping history of interferometric detectors. 

By 1966, Joseph Weber had constructed a complete working detector, and by 1968 
was reporting coincident observations between detectors separated by 1000 km. The 
detector contained versions of every essential feature in resonant-mass gravitational 
wave detectors today, except for the facts that it operated at room temperature and that 
it used non-resonant strain transducers for its readout. The story of the development of 
the field since then can be seen as embodying a few key accomplishments: replication 
of Weber’s detectors accompanied by a failure to confirm his claimed detection, clarifi- 
cation of the optimum way to detect gravitational wave signals in a noisy detector and 
of the sorts of technological developments that could lead to improved detector sensi- 
tivity, and the staged implementation of new generations of detectors embodying the 

improved technology. 

5.1 Weber’s Detectors as Gravitational-Wave Detection Systems 

All of the important elements that make up a working gravitational wave detector are 
described in Weber’s 1966 Physical Review Letters. 21 Looking at the signal chain from 
the front end, we see first the large 15 ton aluminum cylinder whose fundamental lon- 
gitudinal mode at 1657 Hz interacts with any incoming gravitational wave. Around 
its midsection are glued the quartz transducers that give, through the piezoelectric ef- 
fect, electrical signals proportional to the strain in the aluminum cylinder. Signal leads 
from those transducers pass through acoustic filters and through the wall of the vacuum 
chamber, then are connected via another acoustic filter to a superconducting inductance 
that serves as a “tank circuit” at the input of the low-noise preamplifier (whose noise 
temperature is 50 K.) The output of the pre-amp is connected to further amplification. 
There follows a rectifier for generating a positive-definite signal proportional to the 
power out of the amplifier. The end of the signal chain is a recording device, which in 
1966 consisted of a pen-and-ink chart recorder. 

Another aspect of the detector is the means used to prevent its being excited by 
influences other than gravitational waves. Isolation against mechanical influences in 
the form of acoustic or seismic noise is shown clearly in the diagram. Direct acoustic 
excitation is prevented by the placement of the key parts of the experiment inside a 
vacuum chamber. Transmission of vibration through the signal leads is attenuated by 
the acoustic filters mentioned above. The path for vibrations from the floor must pass 
through a pair of isolation stacks each consisting of three stages of rubber pad/steel 
block isolators; the aluminum bar is further isolated by a pendulum suspension consist- 
ing of a single wire sling that supports the bar about its middle. The top ends of the 
wire are attached to a beam that spans the space between the isolation stacks. 

Further progress in reducing the sensitivity of his bar to spurious external influences 
enabled Weber to make his 1969 claim of “Evidence for discovery of gravitational 
radiation”.’ One aspect of this progress consisted of augmenting the electromagnetic 
shielding of his devices, after tests revealed some sensitivity. A seismometer array was 
also used to check for correlations between strong vibration of the ground and large 
detector outputs. But by far the most important system element in this regard was the 
construction of multiple copies of the complete detector system, and their deployment 
at spatially separated locations. The network in 1969 consisted of one bar of 66 cm 
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epoch in the search for gravitational waves. Gibbons and Hawking, both renowned 
for work rather far removed from experimental physics, wrote in late 1970 the very 
practical “Theory of the Detection of Short Bursts of Gravitational Radiation.“” The 
introduction presents Weber’s results as established facts. Section II of the paper dis- 
cusses possible sources, discussing with equanimity but at some length the extreme 
gravitational luminosities required. The rest of the paper is devoted to the theory of 
detecting weak gravitational wave bursts in the presence of noise, and to a clear and 
original set of proposals for maximizing the signal-to-noise ratio of detectors. Some of 
one’s surprise at the authorship of this paper may be alleviated upon reading the thanks 
for insights and ideas given (at two places in the text and in the Acknowledgment) to P. 
Aplin of Bristol University, a very original experimentalist who published little on this 
subject under his own name.40 

Gibbons and Hawking pointed out that Weber’s own treatment of the theory of 
gravitational wave detectors, written before he started his observations, had been aimed 
at their response to steady sinusoidal signals. As such, it gives a misleading idea of the 
value of the high-Q resonance that characterizes Weber-style detectors. This lack was 
remedied by Gibbons and Hawking, who (with thanks to Aplin) point out that the low 
dissipation of a high-Q system means that the level of thermal noise power is low. They 
go on to show that the high-Q resonance is also of crucial importance in minimizing the 
effect of Johnson noise in the transducer, here playing the role we would generally call 
amplifier noise. (A weakness of this light treatment of amplifier noise is that it leaves 
out the back action effects that enforce the Uncertainty Principle.) 

As we saw previously, Gibbons and Hawking noted that there is in fact a compe- 
tition between these two benefits of low dissipation. To minimize thermal noise, one 
wants to integrate the output for as short a time as possible, to give the random walk 
of the resonator’s complex amplitude the least opportunity to mask a signal. On the 
other hand, the importance of transducer/amplifier noise is minimized by integrating 
for as long as practicable, so that the gravitational wave signal competes with as small 
a bandwidth of the broadband noise as possible. Gibbons and Hawking showed how 
to derive the optimum averaging time that minimizes the total noise from these two 
sources. In so doing, they noted that the averaging time depends on the dimensionless 
coupling parameter they called /I, the definition of which we gave above in Section 4. 
For Weber’s detector they give an estimate of /3 %  5 x 10e6. 

Gibbons and Hawking go on to note that a large value for p would have two bene- 
fits: improving the signal-to-noise ratio by making the gravitational wave signal appear 

as a larger electrical signal, while simultaneously changing the balance between ther- 
mal noise and electrical noise in the direction that causes the optimum sensitivity to be 
obtained with shorter integration times. In other words, a larger /3 would yield better 
sensitivity and high bandwidth. To obtain these benefits, they discuss a novel config- 
uration, proposed by Aplin, that has come to be known as a “split bar.” It consists of 
two large masses (two “ends” of a bar split in half) joined to each other by connection 
to either face of a layer of piezoelectric material. The benefit comes from the fact that, 
in this configuration, the piezo is actually functioning as the dominant spring in the 
system; by storing the bulk of the elastic energy, it is able to produce a larger amount of 
electrical energy. (In many ways this harks back to Weber’s original proposal to make 
the bar entirely of piezoelectric material.) 

Gibbons and Hawking sketch the details of a detector of this sort, in which lead 
zirconate titanate (PZT) is substituted for crystalline quartz (used by Weber) because 
of its larger piezoelectric coupling constant. Then, in spite of the fact that the thermal 
noise power is increased because the piezo is a rather lossy spring, the sensitivity should 
be increased by more than a factor of ten in energy compared with Weber’s detector. At 
the same time, the optimum sampling time is shortened to 1 msec, so that more detailed 
information can be extracted from the signal. 

In passing, Gibbons and Hawking also note that Weber uses a less than optimal way 
of searching for gravitational wave events. His definition of an event is a noticeable 
increase in the energy in the bar’s fundamental mode. But a gravitational wave impulse 
will only increase the energy if it arrives with a particular phase relationship to the bar’s 
previous excitation. If the wave arrives with a different phase, the bar’s energy may be 
decreased, or the effect may instead primarily change the phase of the bar’s vibration. 
They estimate that this means Weber saw only about l/4 of the events exciting a given 
bar. And, since the two bars being used for a coincidence have independent phases, only 
(l/4)’ = l/16 of the detectable coincidences would have been registered by Weber’s 
technique. This makes the question of the source of the gravitational luminosity that 
much more difficult to resolve. But it also means that, if Weber’s results were real, even 
more events should be detectable. 

Whatever mysteries there may have been regarding Weber’s claims that he was de- 
tecting pulses of gravitational waves, if they were true they represented one of the most 
important astronomical and physical discoveries of the 20th century. So it is no surprise 
that a number of other workers decided to construct gravitational wave detectors. And 
quite naturally given Weber’s apparent success, most of these detectors were built quite 
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Gaussian distribution of excitation expected on the basis of thermal and amplifier noise 
alone. The near-perfect Gaussian fit to their data then constitutes an apparent contra- 
diction of Weber’s results. 

An important argument used to buttress the claim that the IBM detector was well un- 
derstood was the application of electrostatic calibration forces to one end of the bar, and 
the successful detection of those events (within the statistical limits set by the signal- 
to-noise ratio) by the data processing system. Tyson’s 1972 presentation to the Texas 
meeting had previously emphasized the importance of this fundamental practice of ex- 
perimental physics, as did the remarks of both Kafka and Drever. Levine and Garwin 
take Weber to task for having failed to use any calibration method, either as a check of 
his instruments’ front ends or of his data analysis procedure. 

A more subtle implicit argument against Weber’s work is suggested to the reader 
of these papers by their admirable clarity, as contrasted with the rather Delphic pro- 
nouncements that fill Weber’s own contributions to Physical Review Letters. Levine 
and Garwin make this explicit at one point when they compare their results with their 
best guess at how Weber’s would be expressed in similar (sensible) units, complaining 
“We are thus forced to estimate these quantities, while noting that such information is 
easily obtained by the experimenter and is normally provided in the publication of a 
detection experiment.“46 

Garwin led a crusade against Weber’s claims at the Fifth Cambridge Conference on 
Relativity (CCR-5), held at MIT on 10 June 1974.47 Among the topics discussed was 
1) an error in the computer program used by Weber to identify coincidences, shown to 
generate nearly all of the coincidences in the one data tape shared by Weber with other 
researchers, and 2) the puzzling feature of Weber’s histogram of coincidences versus 
time delay showing a peak at zero delay in only the central 0.1 second wide bin, in 
spite of the fact that a 1.6 Hz wide bandpass filter was said to be part of the signal 
processing chain. But the most spectacular event of the discussion was what even those 
sympathetic to Garwin’s cause might have felt was a trick that bordered on unsports- 
manlike conduct. Weber had been given data from the detector of Douglass’s group 
at the University of Rochester, to search for excitations in coincidence with Weber’s 
own detectors; Weber reported at previous meetings that he had detected an excess of 
coincident events at a level of 2.6 standard deviations above the expected chance rate. 
According to Garwin’s account in a letter to the editor of Physics Today,47 “At CCR-5 
Douglass revealed, and Weber agreed, that the Maryland Group had mistakenly as- 
sumed that the two antennas used the same time reference, whereas one was on Eastern 

Daylight Time and the other on Greenwich Mean Time.” No stronger way can be imag- 
ined of impressing the community with the possibility that Weber was able, by some 
means, to find coincidences among any two data streams, whether the coincidences 
actually existed or not. 

A panel discussion with almost precisely the same cast of characters as that of the 
1972 Texas Symposium was staged at the 7th International Conference on General Rel- 
ativity and Gravitation in Tel Aviv, June 23-28, 1974.48 The plot, Weber’s lonely claims 
of detections contradicted by the null results of the others, was also unchanged-the 
only substantial difference is that Weber’s critics had had time to carry out more ex- 
tensive searches and more careful data analysis. By this time, the Bell Labs group 
had carried out a coincidence run with an identical bar at the University of Rochester, 
operated by Douglass. The Munich group (which had by then incorporated the pre- 
viously independent Frascati group) reported on the results of 150 days of coincident 
observations. Drever gave a report of a more extensive data run, seven months that 
had concluded in April 1973, yielding only one candidate coincidence; although this 
event could not be ruled out as a possible gravitational wave detection, neither could 
it be positively established as such in spite of the low probability that was estimated 
for it to have occurred by chance. (The detectors were only 50 m  apart, and so may 
have both been driven by some other kind of influence.) In any event, Drever was able 
to show that the Glasgow experiment did not show the sort of event rate predicted by 
Weber’s experiment, except under rather implausible assumptions about the nature of 
the individual gravitational wave pulses. Tyson also briefly reported on the negative 
results from Garwin and from Braginsky. 

How did the physics community deal with these contradictory results? This is an 
almost classic example of attempted replication of an important claim, but with both 
opposing camps standing firm in their beliefs that their own results were correct. Valu- 
able insight into the difficulties this situation posed to scientists can be found in the 
work of sociologist of science Harry Collins, who interviewed many of the principal 
actors during this period. His results are well worth consulting, even though the quotes 
from the interviews are reported without identifying the individual speakers.4g 

The other key resource in the written record is the transcripts of the open discussions 
at the 1972 and 1974 panels. Both Kafka and Tyson point out strongly that Weber 
(usually) uses a far-from-optimal statistical method to look for signals. Tyson also 
comes close to accusing Weber of fraud; the method by which Weber has deluded 
himself and others is said to be continual “tuning” of the statistics used to search for 
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“Although the non-existence [of Weber’s pulses] became obvious a long time ago, it 
still seems appropriate to publish our final negative result, because our experiment was 
as similar to Weber’s as possible, whereas all other coincidence experiments deviated 
in one way or the other.... Moreover, we think we have set the lowest upper limits 
obtained by Weber-type experiments over a reasonable long period of observation,” 
spanning 580 useful days of common observations of the two detectors. The main 
result of this paper is the null result that the statistics of the coincident excitation of the 
two detectors was just what would be expected from the laws of chance, given the noise 
levels in the detectors. Without mentioning Weber specifically, Kafka and Schnupp do 
remark that 

Scanning our whole data, we could, of course, find periods of a few days, 
for which at some pair of thresholds the number of coincidences was up to 
more than 3 standard deviations higher than the average over the various 
time delays. However, the same was true for arbitrary delays, and zero delay 
did not seem to be distinguished in any obvious way. However, one should 
not forget: If one searches long enough in our finite sample of data, one must 
find some complicated property which distinguishes zero delay signficantly 
from the others. (Again this is true for an arbitrary delay, but with a different 

propeW) 

The paper goes on to pay special attention to two periods, totaling 67 days in length, 
when the operation of the Munich-Frascati experiment overlapped with times for which 
the Weber group claimed to have detected substantial rates of coincidences with its 
own detectors. The authors write: “These results do not give the slightest hint of a 
simultaneous influence on both detectors. If the significant observations reported by 
Weber’s group for these two periods had been due to gravitational radiation of any kind, 
they should have shown even more significantly in our experiment.” The mention of 
“any kind” of signals refers to the fact that the present authors used not only the vector- 
difference algorithm that is optimal for short pulses, but also used for these 67 days 
the algorithm preferred by Weber, which would be more sensitive for very long wave 
trains that gradually excited the antenna. Kalka and Schnupp conclude this section by 
remarking that “we do not have an explanation for Weber’s observations,” although 
they suggest the possibility that there might have been some undiagnosed electrical 
feedback from signals on the telephone line from Argonne into the Maryland bar itself. 

The final section of the paper compares the likely strengths and rates of gravita- 

tional wave signals from core collapse in supernovae with the then current and possible 
future sensitivities of gravitational wave detectors. In a dramatic figure, they superpose 
a model of the rate of supernovae at various distances from the Earth on the natural 
phase space for gravitational wave searches, event rate versus event strength. The au- 
thors point out that, even if one were able to improve the performance of gravitational 
wave detectors of the Weber type to the limit set by the Uncertainty Priniciple (by cool- 
ing, improving Q, or whatever other trick), one would still not have the sensitivity to 
detect events at the rate of several per year or greater. They conclude, “Because of the 
difficulties arising from this problem and because one would certainly like to measure 
more details than just the spectral density of pulses, the Munich group decided not to 
continue with (low temperature/high quality) Weber-type experiments, but rather with 
a Weiss-Forward type experiment, i.e., a laser-lighted Michelson interferometer.” 

In spite of the considerations that moved the Munich group to abandon resonant- 
mass detectors, the groups that had decided in the early 1970s to build cryogenic ver- 
sions of the Weber bar pushed ahead. A number of strong reasons can be given to 
justify this strategy, including the dubious value of relying (as the Munich group did) 
on signal-strength predictions which necessarily must be ignorant of truly novel astro- 
nomical phenomena, as well as the belief that evolutionary development is often a more 
rapid and reliable strategy for progress than a revolutionary approach. And, although 
progress was slower than the hopes expressed for it in Tyson’s 1974 remarks in Tel 
Aviv, this route did in fact lead to substantial increases in sensitivity well before the 
interferometric detectors began to catch up. 

The first complete operating cryogenic resonant-mass detector was the one built at 
Stanford University by the group led by William Fairbank. In addition to the obvious 
reduction of thermal noise by cooling with liquid helium to a temperature of 4.3 K, 
and the use of the Josephson junction SQUID as a low noise preamp, there was another 
technical innovation that helped the Stanford bar reach a new level of sensitivity. This 
was the introduction by Paikz6 of a resonant transducer, tuned to the same frequency 
as the bar’s resonance, mounted on the end of the bar. Both Tyson and Garwin had 
used end-mounted transducers, but neither realized the advantages that would accrue 
to the tuned configuration-the ability to better “impedance-match” the mechanical 
excitation of the bar to the electrical system, thus increasing the coupling parameter 
/3. (See the discussion above.) The Paik transducer represented a new generation in 
another sense-it made no use of the piezoelectric effect, but instead used the motion 
of the resonant proof mass in the transducer to modulate the value of an inductance in 
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whose detector wasn’t working as well as in 1981) or somewhat too early (from the 
point of view of LSU or Rome, who had not yet shaken all of the bugs out of their 
systems), there was another accidental side effect of its timing. That was the complete 
coordination of the time when all three systems went off the air to fix the problems that 
running together had made obvious. This is the reason that none of the state-of-the- 
art detectors was on the air on February 23, 1987, when Supernova 1987A appeared. 
The closest observed supernova in centuries was a chance no one would have chosen 
to miss, although in fairness at a distance of order 50 kpc it is unlikely, according to 
standard estimates of the gravitational luminosity, that it would have been seen. 

There were, however, non-state-of-the-art gravitational wave detectors observing 
at the time. Weber has kept a room temperature bar in operation nearly continuously 
since the ’70s as has the Rome group. An unusual chain of reasoning was constructed, 
involving a suspect time for the supernova collapse, an unorthodox signature for the 
gravitational wave event, ad hoc assumptions about neutrino physics, and tremendous 
gravitational luminosity, but leading to a claim of significant detections of a large flux 
of gravitational wave pulses. 55 This claim has attracted much less attention than did 
the original claims of Weber in the early 1970s. A serious effort has been made to 
demonstrate that the statistical significance of the analysis has been overstated, due to 
construction of the signature to match the data stream.56 

6 History of Interferometers 

6.1 The Work of Gertsenshtein and Pustovoit 

Almost as soon as Weber had begun work on the first gravitational wave detector of 
the resonant-mass style, the idea arose to use interferometry to sense the motions in- 
duced by a gravitational wave. Weber and a student, Robert Forward, considered the 
idea in 1964.” We will discuss below how Forward later went about implementing 
the idea. But the first discussion of the idea is actually due to two Soviet physicists, 
M. E. Gertsenshtein and V. I. Pustovoit. They wrote in 196257 a criticism of Weber’s 
1960 Physical Review article, claiming (incorrectly) that resonant gravitational wave 
detectors would be very insensitive. Then, they make a remarkable statement justified 
only by intuition, that “Since the reception of gravitational waves is a relativistic effect, 
one should expect that the use of an ultrarelativistic body-light-can lead to a more 
effective indication of the field of the gravitational wave.” 

Gertsenshtein and Pustovoit followed up this imaginative leap by noting that a 
Michelson interferometer has the appropriate symmetry to be sensitive to the strain 
pattern produced by gravitational waves. They give a simple and clear derivation of 
the arm length difference caused by a wave of amplitude h. Next, they note that L. L. 
Bernstein had with ordinary light measured a path length differences of 10-l’ cm in 
a 1 set integration time. The newly invented laser, they claim, would “make it pos- 
sible to decrease this factor by at least three orders of magnitude.” (The concept of 
shot noise never appears explicitly here, so it is not clear what power levels are be- 
ing anticipated.) They assume that one might make an interferometer with arm length 
of 10 m, thus leading to a sensitivity estimate of 10-14/& for “ordinary” light, or 
as good as 10-17/& for a laser-illuminated interferometer. This, Gertsenshtein and 
Pustovoit claim, is lo7 to 10” times better (it isn’t clear whether they mean in ampli- 
tude or in power) than what would be possible with a Weber-style detector. Putting 
aside their unjustified pessimism about resonant-mass detectors, their arguments about 
interferometric sensing are right on the mark, even conservative. 

For improvements beyond the quoted level, they make suggestions that are some- 
what misguided. They say that observation time could be lengthened beyond 1 set, 
which would be obvious for some sources (such as “monochromatic sinusoidal sig- 
nals” or signals of long period) and hopeless for short bursts. Their other suggestion is 
to use “known methods for the separation of a weak signal from the noise background”; 
this suggestion is curious because known methods appear to be already built into their 
estimates that are referenced to a specific observing time. The other lack that is obvious 
in hindsight is any mention of mechanical noise sources. Still, the gist of the idea of 
interferometric detection of gravitational waves is clearly present, as is a demonstration 
that the idea can have interesting sensitivity. 

6.2 The Origins of Today’s Interferometric Detectors 

For a variety of reasons, not least of which must have been the fact that it was written 
too early (before Weber’s work had progressed beyond design studies), the proposal 
of Gertsenshtein and Pustovoit had little influence. The activity that began the by-now 
flourishing field of interferometric gravitational wave detection started independently 
in the West. In fact, it began semi-independently at several places in the United States 
at around the same time. The roots of this work can be seen in a pair of papers, written 
in 1971-2, by two teams linked in an unusual collaboration that is acknowledged in 
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of the organization at MIT that administered the umbrella research grant supporting 
his work.” Weber’s claimed detection of gravitational waves was very much on Weiss’ 
mind in 1972, reported as possibly correct but with the recognition that the energy flux 
the waves appeared to carry would dominate the luminosity of the Galaxy. Weiss states 
that he had been inspired by a 1956 paper by F. A. E. Pirani (that discussed the identi- 
fication of measurable quantities in general relativity)g to consider the possibility that 
measurements of the light travel time between freely-falling test masses would make 
the best probes of spacetime structure. He further states that he had realized several 
years prior to writing (while teaching an undergraduate seminar) that the newly de- 
veloped lasers could turn Pirani’s gedunken experiment into a practical measurement 
strategy. Weiss also notes that the idea “has been independently discovered by Dr. 
Philip Chapman of the National Aeronautics and Space Administration, Houston.” 

Many of the ideas that appear in the breathless final paragraph of Moss et al. are 
elaborated at substantially greater length in Weiss’ report, which should be considered 
the first serious design study of the concept of interferometric gravitational wave de- 
tection. After the review of Weber’s claims, Weiss continues with a clear summary of 
the physical meaning of gravitational waves in general relativity, and an examination 
of the possible strength of gravitational waves from the then newly discovered pulsars. 
He then gives a summary of the key ideas of the proposed system: 

l a Michelson interferometer used as a sensor of “differential strain induced in the 
?lllllS,” 

l operated “on a fixed fringe by a servo system” in a modulated system very much 
in the tradition of Dicke’s improved Eotvos experiment,58 

l “mirrors and beam splitter mounted on horizontal seismometer suspensions” that 
“must have resonant frequencies far below the frequencies in the gravitational 
wave” and “a high Q,” 

l arms that “can be made as large as is consistent with the condition that the travel 
time of light in the arm is less than one-half the period of the gravitational wave,” 
in part by being arranged as “optical delay 1ines”of the style described by Herriott. 

Weiss is quite clear about the advantage that accrues from the last point. He says 

This points out the principal feature of electromagnetically coupled antennas 
relative to acoustically coupled ones such as bars; that an electromagnetic 
antenna can be longer than its acoustic counterpart in the ratio of the speed 

of light to the speed of sound in materials, a factor of 105. Since it is not 
the strain but rather the differential displacement that is measured in these 
gravitational antennas, the proposed antenna can offer a distinct advantage in 
sensitivity relative to detecting both broadband and single-frequency gravi- 
tational radiation. A significant improvement in thermal noise can also be 
realized. 

This last sentence points out one of the key insights of this report, expanded upon 
at much greater length in the remainder of the text. As a sensitive mechanical measure- 
ment, the interferometric detection of gravitational waves is prey to a host of mechani- 
cal noise sources whose strengths need to be minimized if success is to be achieved. By 
far the largest section of the paper is devoted to estimates of the magnitudes of a long 
list of noise sources of various kinds. They include: amplitude noise in the laser (the 
only place where the work of the Hughes group is cited, as an example of a shot noise 
limited measurement), phase noise in the laser, mechanical thermal noise, radiation 
pressure noise, seismic noise, thermal gradient (“radiometer effect”) noise, cosmic ray 
impacts, “gravitational-gradient” noise, and fluctuating forces from electric and mag- 
netic fields. This looks almost (with a few omissions) like the list of noise sources 
that contemporary workers are grappling with as they strive to make the new kilome- 
ter scale interferometers work; by contrast, the other earlier treatments of the subject 
look myopic and unbalanced. And this insight is what led to the recognition that inter- 
ferometers of the greatest practical length, with the resulting dilution of displacement 
noise terms as compared with a strain signal, would be the way to achieve the promise 
of good gravitational wave sensitivity, and would be worth the substantial investments 
needed to build them. 

6.3 Interferometer as an Active Null Instrument 

The agreement between Weiss and the Hughes group on the basic features of an in- 
terferometric detector must have something to do with the fact that they and Chapman 
were engaged in a remote three-way collaboration. But the fact that the key features 
of the design remain current to this day (with a few important additions) is evidence 
that they responded thoughtfully to an inherent logic of experimental design. Interfero- 
metric gravitational wave detection represents an extreme example of the application of 
design principles of wide validity in experimental physics. It is worthwhile to examine 
those principles here. 
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to waste it dealing with noise outside the band in which one expects to find signals. 
Measures to deal with l/f noise often dominate the design of a high-sensitivity 

experiment. No one explored these measures more systematically than did Robert H. 
Dicke, who was for a few years in the early 1960s Weiss’s mentor. Dicke was moved 
to think deeply about these problems while working on the development of microwave 
radar at the Radiation Laboratory at MIT during World War II. Devices called radiome- 
ters, receivers that measure the total power emitted by a broadband (often thermal) 
source of microwaves, would have had a variety of uses, if they hadn’t been rendered 
so insensitive by the large amount of l/f noise in the RF preamps. Dicke invented what 
came to be called the “Dicke radiometer” specifically to solve this problem.60 The heart 
of the scheme was a device to periodically (at 30 Hz in the original case) interrupt the 
flow of RF power from the antenna to the preamp, replacing it instead with a thermal 
source of radiation. At the “back end” of the instrument, the electronics were arranged 
to give a measure of the difference between the detected power from the antenna and 
from the reference load. The reason this defeats the l/f noise in the amplifier is that the 
comparison between measure and reference is made rapidly enough that the preamp’s 
output can’t wander much in the interval. Or, described in the frequency domain, the 
signal has been translated from DC up to a high enough frequency that the preamp’s 
noise is not dominated by excess noise with a l/f character. 

Dicke’s invention had the immediate effect that microwave radiometry became 
practical even for sources with rather low antenna temperatures; this made a substantial 
contribution to the Rad Lab’s missio# as well as to the practice of radio astronomy.62 
But the greatest impact came from Dicke’s realization that this modulation technique 
would have broad applicability, wherever l/f noise was a problem. This insight led 
him to invent the lock-in amplifier, a universal back end that can control the chopping 
of an experiment, calculate the difference in output between the “on” and “off’ states, 
and average the result to further reduce the noise. By now, “lock-in amplification” (also 
referred to as “phase sensitive detection”) has become a nearly universal practice in the 
fight against l/f noise. 

A second classic measurement carried out by Dicke illustrates further insights in 
the battle against l/f noise. The test of the equivalence of inertial and gravitational 
mass carried out by Roll, Krotkov, and Dicke58 is considered one of the great examples 
of a null experiment. As championed by Dicke, 63 this term refers to a measurement 
where an answer of zero carries tremendous meaning. Precise equivalence of inertial 
and gravitational mass (or in other words a zero value for their difference) means that 

gravity can be described by a metric theory. 
Null experiments play a special role for experimentalists as well as theorists, be- 

cause an instrument that reads zero is immune to many of the sorts of problems that 
plague non-null measurements. Among these are calibration drifts and limited dynamic 
range of an instrument (whether from noise or from non-linear response.) Of course, 
turning a theoretical zero into an idea for an instrument that yields a zero output takes 
deep insight. One could argue that the torsion balance used in the improved Eiitvos 
experiment, whose motion would track the Sun’s if the aluminum and gold masses on 
opposite sides had differing ratios of inertial to gravitational mass, is among the most 
elegant instruments ever invented. 

Maintaining the integrity of a null measurement takes insight that goes beyond the 
design of the front end of the experiment. For example, it would be a good idea for the 
null position of the test masses to be arranged to correspond to a null response from 
the sensor. Then, one can ignore (to first order) fluctuations in the drive level of the 
sensor (such as the light power in the optical lever), since zero is still zero even if it 
is multiplied by, say, 1 .Ol instead of 1 .OO. There are a variety of ways to create a null 
output from an optical lever at one particular operating point. One way would be to 
use a matched pair of photodetectors, placed so that the light beam falls equally on 
each detector when the balance is at the null position; as the beam moves to follow the 
balance’s motion, one photodetector receives more light while the other receives less, 
and a differential amplifier will reveal the motion. This method is essentially a DC 
technique. 

Dicke’s team implemented a clever variation that let them make use of the advan- 
tages of a lock-in amplifier. A narrow light beam fell on a single photodetector, after 
passing by a wire of comparable width that cast a shadow on the photodetector. The 
wire was caused to vibrate from side to side by driving a current through it at the fre- 
quency of one of its “violin” resonances; as it did so, its shadow also moved from side 
to side across the light beam. If the beam were centered on the wire’s position, then the 
light received by the photodetector would increase equally due to the wire’s vibration to 
the left or the right. But if the beam were off center, then one direction of wire vibration 
lets more light pass than the other. So in the centered case the photocurrent varies only 
at twice the frequency of the wire’s vibration, while in the off-center case the current 
contains a component at the wire’s vibration frequency, whose amplitude and phase 
carries the information of the position of the light beam with respect to the wire. A 
lock-in amplifier converts the modulated signal into one at DC. The wire vibration can 
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front-end amplifier, and a painstaking derivation of the shot noise. Mechanical aspects 
of the interferometer, which mainly determine performance at lower frequencies, get 
shorter shrift: test mass suspensions are described in a single paragraph, as neoprene 
and brass stacks of “the desired height” with “typical frequency of 10 Hz,” without any 
discussion of the mechanical transfer function or of the thermal noise of the suspen- 
sion. The three paragraph section devoted to the “isolation system” gives information 
on both seismic isolation tables and the vacuum system enclosing the interferometer, 
and includes the following remark, almost in passing: “The vacuum system and iso- 
lation tables were designed so that after an initial checkout and operation with 2-m 
sections of aluminum irrigation pipe (8.5 m  total interferometer pathlength), those sec- 
tions could be replaced with longer sections (up to 1 km) with a substantial increase 
in interferometer-gravitational radiation-strain sensitivity for the same photon-noise- 
limited displacement sensitivity.” 

A careful discussion of the calibration of the instrument and of its linearity is pro- 
vided, although without including any but the most cursory details about the servo 
system (whose actuator was a PZT stack on which one of the mirrors was mounted) 
used to keep the interferometer in lock. One presumes that ignoring the behavior of 
the servo was justifiable on the assumption that its bandwidth was smaller than 1 kHz. 
Indeed, given the strategic decision only to consider the output of the interferometer at 
frequencies above 1 kHz, most of the omissions that strike a modem eye as surprising 
can be seen to make sense. 

The discussion of the operation of the interferometer as a gravitational wave detec- 
tor begins with a paragraph that will evoke much sympathy from present-day readers. It 
repeats the “ultimate plan” of operation at a remote site with long arms, but concludes 
with the remark, “The funding for this next move proved to be unavailable so we con- 
cluded the program by operating the system as it was, despite the high level of acoustic, 
electromagnetic, and vibrational noise from the other activities in the building.” Op- 
eration was evidently difficult, since as the Abstract notes, “The laser interferometer 
was operated as a detector for gravitational radiation for 150 h during the nights and 
weekends from the period 4 October through 3 December 1972,” a duty cycle of a bit 
over 10%. Environmental noise was a serious problem, and was taken seriously: a 
set of monitors of seismic, acoustic, optical, and electrical noises was installed, and a 
measure of their outputs was recorded along with the interferometer output. 

Part of what made taking data so difficult was the decision to take advantage of the 
high bandwidth available; although the band below 1 kHz was abandoned as useless 

because of high noise levels, the upper frequency cut-off was taken to be 20 kHz. This 
choice was never discussed in the paper+ne might have expected some sort of argu- 
ment on astrophysical grounds that such high frequencies might contain signals, but it 
is just as likely that the cut-off was chosen to match the bandwidth of the “high quality 
stereo tape recorder” that was used as the primary data storage medium. Dealing with 
this much data was a tremendous burden, given the state of computer technology in 
the early ’70s. In fact, the data processing was performed almost entirely by listening 
to the audio tape--one section of the paper is called “Calibration of Ear.” (One 10 
msec digitized chunk of data is shown in the paper, both in the time and the frequency 
domain.) 

This method of data analysis was a clever solution to a vexing problem, and indeed 
continues to be a model for qualitative analysis and debugging of interferometers today. 
But it showed its weaknesses in what might otherwise have been the most interesting 
section of the paper, “Comparison of Data with Other Observers.” Here, Forward looks 
for coincidences between the unexplained events in his data set (not coincident with 
environmental signals in the monitor channel) and events in the resonant mass detectors 
that were in operation at the same time, at Frascati, Glasgow, and the Maryland group’s 
detectors at College Park and Argonne. In every case, Forward found no event in his 
detector at the time of a candidate event from another detector. He notes ruefully that 
“The one ‘distinctive signal’ reported by the Glasgow group occurred at 13 h 07 min 29 
set GMT 5 September 1972, which was prior to the start of the Malibu data collection 
period.” 

The data were of course most interesting for their comparison to the results re- 
ported by Forward’s former mentor Weber, since the latter was continuing to report co- 
incident events between his various detectors. Forward notes that there were seven time 
blocks during which unexplained events in the interferometer occurred in close proxim- 
ity to Weber coincidences. However, he further states, “Both raw power and derivative 
power-squared digitized data plots digitized to O.l-set accuracy were obtained from 
the Maryland group and compared with the 0.2-set accuracy Malibu data. None of the 
audible Malibu signals fell within 0.6 set of a Maryland-Argonne coincidence.” 

Fair enough, but what can be concluded from this lack of coincidences? Not much, 
according to Forward, since “It is difficult to compare the relative detection capabili- 
ties of the various antennas since their amplitude sensitivities, bandwidths, and signal 
processing techniques differ widely.” He goes on to state that “at the time one of the 
bar-antenna systems produced an event or coincidence corresponding to a gravitational- 
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subtlety. Fabry-Perot cavities also appear to be less subject to excess noise from 
light scattered into unanticipated paths from mirror imperfections, a problem not 
suspected by either Weiss or Forward. 

. Achieving the high sensitivities to which we now aspire requires vacuum of a 
quality much better than the Hughes interferometer. Pressures of lOme’ torr or 
better are required. The vacuum pipes are themselves much larger in diameter, 
due partly to the great care needed to keep scattered light effects at low levels. 
Scattered light also demands that baffles be properly placed in the interior of the 
pipes. 

So it was probably going to take more than adding a few kilometers of irrigation 
pipe to the Hughes interferometer to detect gravitational waves with an interferometer. 
The realization that all of these features would be necessary was daunting, and caused 
the character of work on interferometers to change. Instead of quick demonstrations, 
it was considered necessary to try to engineer the variety of subsystems that high sen- 
sitivity would require. Instead of a device that Forward could honestly describe as a 
“gravitational-radiation experiment,” workers conceived of their apparatus as “proto- 
type gravitational-wave detectors.” 

6.5.2 Ron Drever’s Bag of ‘hicks 

Ronald W. P. Drever was one of the leaders of the generation of experimenters who 
followed Weber, only to find no signals that matched his claims. Rather than build a 
faithful copy of Weber’s original bar, he chose to follow the path invented by Aplin (and 
publicized by Gibbons and Hawking) of the split bar, which maximized the bandwidth 
of the detector. When it became clear that much greater sensitivity would likely be 
required, he (like the German group) chose to switch to work on interferometers. His 
work in this period is again marked by an enthusiastic exploration of clever ideas. It is 
not marked, however, with many conventional papers in refereed journals. Instead, his 
most stimulating work is to be found in conference proceedings and lectures at physics 
summer schools. 

Several of Drever’s most important contributions are described in the text of the 
lectures he gave at the NATO Advanced Study Institute on Gravitational Waves held 
at the Les Houches Center of Physics in 1982.65 Cast as an overview of the interfero- 
metric method of gravitational wave detection, it is dominated by an account of three 
crucial improvements on the basic scheme of Weiss, Forward et al. Each of these vari- 

ations has come to play an important role in the design of the large detectors now under 
construction. 

The Introduction gives an astoundingly brief account of the history of the field: 

An obvious way one might consider detecting gravity waves is through the 
changes in separation of free test particles, and the idea of using optical 
interferometers for observing this has certainly occurred to many physicists: 
indeed one might wonder why so few searches for gravity waves have been 
made this way. 

The work of the Hughes group is mentioned in passing as demonstrating that a 
simple gravitational wave interferometer could achieve the shot noise limit. Weiss’s 
work is referred to later as having contributed the idea of the delay line as an “important 
practical method for improving photon-noise limited sensitivity.” 

Drever goes on to describe the optimization of the parameters of a delay line, from 
the point of view of shot noise reduction. He then remarks on a “practical difficulty” 
that “became apparent in early experiments at Munich and at Glasgow-the poten- 
tially serious effect of incoherent scattering of light at the multireflection mirrors or 
elsewhere in the system.” The interference between scattered light and light following 
the intended paths (which is non-stationary because the path followed by the scattered 
light can vary in length both on long and short time scales) proved to be a very trou- 
bling noise source in delay lines. The German group, Drever notes, proposed a way of 
modulating the laser light that would minimize the problem. Drever then suggests that 
“another approach would be to make the path traveled by scattered light equal to that 
of the main beam, and this may in fact be achieved if another type of optical system, 
a Fabry-Perot cavity, is used instead of a Michelson interferometer with many discrete 
reflections in each arm.” 

The basic idea was that light traveling between parallel mirrors can be, in effect, 
trapped for many round trips, until it is either absorbed, scattered, or leaked out by 
transmission through one of the mirrors. Thus, such a cavity can play the same role as 
a delay line with its many spatially separate reflections. The classic Fabry-Perot cavity 
used flat mirrors, usually equivalent to one another, usually closely spaced compared 
with their diameters or with the diameter of the beam of light, and usually operated in 
transmission (that is, with the interesting light emerging from the mirror opposite to the 
one into which the light was injected). What Drever proposed was rather different: a 
pair of small mirrors (no larger than necessary to keep diffraction losses small), spaced 
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from the bright port may be nearly as bright as the light entering the interferometer 
from the laser. (This insight represents a profoundly different “take” on the issue than 
can be found in Weiss’ work; he instead worried about optimizing the shot noise versus 
number of bounces on the assumption, good for short arms and poor mirrors, that sub- 
stantial losses would eventually occur.) The light exiting the bright port is every bit as 
good as “fresh” light from the laser, so it seems a shame to waste it. Drever’s proposal 
is to arrange by an appropriate set of mirrors to redirect the used light into the interfer- 
ometer, in coherent superposition with light arriving directly from the laser. (This has 
to be done using a beam splitter or other partially reflecting mirror of a carefully chosen 
reflectivity.) This arrangement has in effect made the whole interferometer into a single 
Fabry-Perot resonant cavity, whose back mirror is the Michelson interferometer, and 
whose input/output coupler is the partially-reflecting recycling mirror. 

In principle, the advantages that could be achieved with this technique are quite 
large. Drever quotes rms shot noise in a search for 1 msec pulses of IO-“, far superior 
to what could be achieved without recycling. He also gives a diagram showing how the 
technique could be applied to an interferometer whose arms were made of Fabry-Perot 
cavities. The components necessary to sense and control the various internal degrees 
of freedom are drawn in with dashed lines, as an indication of the provisional nature 
of the design. In fact, more subtle schemes have had to be developed to implement 
such as system. But, given the quality of the mirrors available today (and the lack 
of commensurate progress in the power levels available from stabilized lasers), power 
recycling has been adopted as an essential feature of every large interferometer under 
construction today. 

The other “possibility” described here is one “for enhancing sensitivity for periodic 
signals.” This one is again introduced in the pedagogically simpler delay line interfer- 
ometer. And again, the aim is to find a way to make use of the fact that, with good 
mirrors, the light would not be significantly attenuated after it has spent one half of 
a gravitational wave period in an interferometer arm. A periodic gravitational wave 
persists (by definition) for much longer than one half period; why not find a way to 
accumulate a phase shift on the interferometer’s light for a much longer interval? The 
scheme proposed here does just that, by arranging for light that exits one arm after one 
half cycle of the gravitational wave to enter the other arm, where it stays for another 
half cycle. The light changes arms at the same time that the gravitational wave changes 
sign, at least for the signal frequency that matches the length of the interferometer. A 
partially reflecting mirror governs how long the light repeats this cycle before finally 

exiting the interferometer. As with power recycling, Drever goes on to show how a 
similar effect can be achieved in an interferometer that uses Fabry-Perot cavities. 

It has been shown recently that the scheme can actually be implemented in a much 
more elegant way, using a single partially reflecting mirror at the nominally dark port. 
In analogy with power recycling, this scheme (called signal recycling) can be thought 
of as forming a single large Fabry-Perot resonant cavity out of the interferometer, this 
one resonant at the frequency of the signal sidebands on the laser light that have been 
created by the action of the gravitational wave. 68 This version of the idea will almost 
certainly also find application in the next generation of large interferometers. 

6.6 The Garching 30-Meter Prototype Gravitational-Wave Detec- 

tor 

The 1988 paper to which we referred above was the account by the group at the Max- 
Planck-Institut fur Quantenoptik, the successor to the bar group of the early ’70s. Shoe- 
maker et aZ.‘j’ provided a beautifully detailed account of the best-characterized inter- 
ferometer prototype yet built. It can be thought of as the work that brought to fruition, 
on the meter scale at least, the ideas embodied in Weiss’s 1972 design study. Through 
the ’70s and ’80s a number of groups (including Weiss’s at MIT, Drever’s at Glas- 
gow and at Caltech, and Brillet’s at Orsay) worked in parallel with the MPQ group to 
develop prototypes of kilometer-scale working interferometric detectors.70 The MPQ 
paper makes a nice example, though, since it is an especially complete account of a 
well-functioning instrument. So for pedagogical purposes we let it here stand for the 
large body of work done worldwide through the 1980s. 

The interferometer described here had test masses 30 meters from the beam splitter; 
light made 45 round trips, for a total light travel time in an arm of 9 ps. The folding of 
the optical path was achieved with a Herriott delay line. The interferometer was illu- 
minated with an Argon-ion laser at X = 514.5 nm, capable of supplying up to 0.23 W  
to the photodetector (at a bright fringe) after all optical losses in the interferometer are 
included. The test masses consisted of simple glass mirrors with a radius of curvature 
31.6 m; they were suspended from single-wire slings of free length 0.72 m, giving a 
resonant frequency of about 0.6 Hz. Each of these was in turn suspended from a metal 
plate hung from coil springs. This upper level of the suspension not only added isola- 
tion along the optic axis, but gave isolation in the other degrees of freedom that might 
cross-couple into the sensitive direction. 
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tenna System,” submitted to the U.S. National Science Foundation in October 1983.75 
(It has since its presentation been called the “Blue Book” because of the color of the 
cheap paper cover in which it was bound.) It was prepared primarily by Weiss and two 
colleagues at MIT (Paul S. Linsay and the present author), as the product of a plan- 
ning exercise funded by the NSF starting in 198 1. The report also contained a section 
by Stan Whitcomb of Caltech on Fabry-Perot systems (as a partial counter to Weiss’ 
emphasis on Herriott delay lines), as well as extensive sections written by industrial 
consultants from Stone & Webster Engineering Corporation and from Arthur D. Lit- 
tle, Inc. These latter contributors were essential, because this document contains, for 
the first time anywhere, an extensive discussion of the engineering details specific to 
the problems of the construction and siting of a large interferometer. The report was 
presented, by both Weiss’s MIT group and that of Drever at Caltech, at a meeting of 
the NSF’s Advisory Council for Physics late in 1983. While not a formal proposal, it 
served as a sort of “white paper,” suggesting the directions that subsequent proposals 
might (and in large measure did) take. 

The first half of the report is devoted to the physics of gravitational wave interferom- 
eters. This section reads much like Weiss’ 1972 design study, except that many issues 
only touched on briefly in the first paper are here discussed at substantially greater 
length. In the 11 years that elapsed between the two documents, there had been real 
progress on several fronts. There are chapters on sources of gravitational waves, the 
basic physics of the response of a free-mass interferometer to a gravitational wave, a 
discussion of beam-folding schemes and a summary of the current prototype interfer- 
ometers, and another extensive discussion of noise sources. The report is bracketed by 
an introductory section outlining a history of the field to 1983 and by a pair of appen- 
dices, one of which compares the quantum limits of bars and interferometers and the 
other showing why the interferometer beams must travel through an evacuated space 
instead of through optical fibers. 

The main emphasis of the Blue Book was less a discussion of physics per se than 
it was a consideration of the practical aspects of the experiment as an engineering and 
construction project. The completely new material appears in the second half of the 
Blue Book, in the chapters summarizing the work of the industrial consultants. Weiss 
believed that the only significant impediment to achieving astrophysically interesting 
sensitivity was the expense of building an interferometer with long arms (the issue that 
had brought the Hughes group’s progress to a halt). The industrial study was undertaken 
with the aim of identifying what design trade-offs would allow for a large system to be 

built at minimum cost, and to establish a rough estimate of that cost (along with cost 
scaling laws) so that the NSF could consider whether it might be feasible to proceed 
with a full-scale project. 

Before such an engineering exercise could be meaningful, though, it was necessary 
to define what was meant by “full-scale.” The Blue Book approaches this question 
by first modeling the total noise budget as a function of frequency, then evaluating 
the model as a function of arm lengths ranging from 50 meters (not much longer than 
the Caltech prototype) to 50 km. The design space embodied in this model was then 
explored in a process guided by three principles: 

l “The antenna should not be so small that the fundamental limits of performance 
cannot be attained with realistic estimates of technical capability.” This was taken 
to mean that the length ought to be long enough that one could achieve shot noise 
limited performance for laser power of 100 W, without being limited instead by 
displacement noise sources, over a band of interesting frequencies. The length 
resulting from this criterion strongly depended on whether one took that band to 
begin around 1 kHz (in which case L = 500 m was adequate), 100 Hz (where 
L = 5 km was only approaching the required length), or lower still (in which 
case even L = 50 km would not suffice). Evidently, this strictly physics-based 
criterion was too elastic to be definitive. 

l “The scale of the system should be large enough so that further improvement of 
the performance by a significant factor requires cost increments by a substantial 
factor.” In other words, the system should be long enough so that the cost is not 
dominated by the length-independent costs of the remote installation. 

. “Within reason no choice in external parameters of the present antenna design 
should preclude future internal design changes which, with advances in technol- 
ogy, will substantially improve performance.” This was a justification for invest- 
ing in a large-diameter beam tube, and for making sure that the vacuum system 
could achieve pressures as low as lo-’ ton: 

In an iterative process, rough application of these principles was used to set the 
scope of options explored by the industrial consultants. Then at the end of the process, 
the principles were used again to select a preferred design. Arm lengths as long as 
10 km were explored, and tube diameters as large as 48 inches. An extensive site 
survey was also carried out by the consultants. It was aimed at establishing that sites 
existed that were suitable for a trenched installation (which put stringent requirements 
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quencies acoustic noise drove the interferometer via a variety of coupling paths through 
the injection optics as well as the test mass suspensions. 

The proposal records substantial progress toward design of a full-scale interferom- 
eter. It states that the collaboration had adopted the Fabry-Perot beam-folding system. 
A preliminary design is presented in an appendix of the proposal. It envisioned use 
of 5 to 6 W  of light at 514 nm from an Argon laser employed in a power recycled 
configuration. An elaborate schematic diagram gave a hint of the complexity of the 
servos necessary to control the large number degrees of freedom that need to be kept 
locked for such an instrument to function. These include lengths of the arm cavities, 
the separation of their input mirrors from the beam splitter, the location of the power 
recycling mirror, and the lengths of various “mode cleaning” resonant cavities used for 
spatial filtering of the laser beam. In addition to these lengths, control of a number of 
angular degrees of freedom also needs to be included. Four separate RF modulation 
frequencies are specified to drive these servos. Special features are designed into the 
main cavity locking servo so that the phase modulation can be injected with a small 
Pockels cell without the inevitable losses dominating the performance of the recycling 
system. 

Another appendix describes an alternate optical configuration based on Herriott de- 
lay lines. It employed 86 cm diameter silicon test masses of 450 kg. The simplicity 
of the servos was listed as one of its major advantages. A “closed-path” variation of 
this design was also presented, in which light leaving one arm is injected into the other. 
This is like a single-interchange version of Drever’s system for improving sensitivity to 
periodic waves. Here it was employed mainly to relax the tolerances on matching the 
curvature of the large mirrors. (The virtues of this design have recently been explored 
again by the Stanford group.77) 

On the engineering and site issues, there had also been some progress since the Blue 
Book study, mostly made by engineers at Caltech’s Jet Propulsion Laboratory, but this 
was not considered complete enough to highlight in the proposal. Instead, one of the 
first proposed tasks was to complete a preliminary engineering design. Nevertheless, a 
mature understanding had been achieved of what LIGO ought to be. This insight was 
expressed in a list of “Essential Features of the LIGO”: 

1. “Two widely separated sites under common management.” Two sites had been a 
feature of Weiss’ earliest thinking, to allow coincidence observations to search for 
transient signals. The new feature was the commitment to truly have them man- 

aged as a single entity, “to guarantee that two receivers of nearly equal sensitivity 
are on line simultaneously at two sites, with a high live time.” 

2. “Arm lengths of order 4 kilometers at each site,” a slight scaling back of the 5 
km considered previously, but still long enough to strongly dilute the effects of 
displacement noise. 

3. “The ability to operate simultaneously several receiver systems at each site.” In 
a way, this was the most ambitious feature of the LIGO concept. In part it grew 
out of a kind of conservatism that was not clearly spelled out, but that was nev- 
ertheless real. The early LIGO interferometers, if they were not to be extremely 
risky extrapolations from known technology, were unlikely to have sufficient sen- 
sitivity to be assured of detecting astrophysical signals. Even if that weren’t so, 
the project would have had to wrestle with the competition between time devoted 
to observation and time devoted to improving the performance of the instrument. 
This competition had bedeviled workers on resonant-mass detectors. The key new 
idea for LIGO was that the precious commodity, an evacuated beam pipe, might 
be available with abundant cross-sectional area since the Fabry-Perot geometry 
had been adopted. All that was required was an arrangement of tanks at the ends 
of the pipe to install the test masses of various interferometers, both operational 
and experimental. This actually called for substantial cleverness in developing an 
airlock system, so that installation and operation could take place with “a mini- 
mum of mutual interference.” 

4. “The capability for receivers of two different arm lengths.” Drever urged the adop- 
tion of this feature, to allow a clean test of the gravitational origin of candidate 
signals, which should show up as the tidal signature that a longer interferometer 
sees twice the signal. 

5. “A vacuum tube diameter of order 48 inches.” This had the conservative justifica- 
tion that it would be necessary if one had to switch from Fabry-Perot cavities to 
delay lines, and the great benefit of allowing multiple FabryPerot interferometers, 
as mentioned above. 

6. “The capability of a vacuum level of 10-a torr.” This would be needed, not for the 
first LIGO instrument, but to avoid having fluctuations in the index of refraction 
of the residual gas dominate shot noise in a more sensitive “advanced” receiver. 

7. “A minimum lifetime of the facilities of 20 years.” This was to be not just a 
one-shot discovery experiment, but a laboratory to exploit the gravitational wave 

-157- 



q%oua MOI sIana 01 as!ou aql qsnd 01 hressaaau aqp[noM smatuaAo~duu30 ~10s leq~ 
30 uorssmsrp L.wu~ga.td e su~?~uoa 0s~ @sodoJd 6861 aqL .paluasald aq pIno IaL? 
-pnq as!ou ay!aads e ~cql OS ‘aaueuuo3Jad uogE~os!uogE~q!A pue ‘s~alaureledsseur isal 
‘assauy ‘JaMod JaseI30 suogeay!aads ql!~ mo paqsag uaaq seq 11 .x!puaddE s,@sod 
-o.td ,961 aql3o.Ialaruola3.Ialu! lolad-hqEdaq$uo paseq s!u+ap aqJ 'lalauroIa3.Ialu! 
lsly aql30 u8!sap aql30 sIplap aql lnoqc qagdxa alow qanur s! Ivsodold 6861 aqL 

'yJoMlau adoIns-.g.nIolaalap-aarqle ql!M apEru 
arzsuogEhlasq0 uaqMuaAa‘01 =~NSaq1uaqMa~ouIlounuae uaise a%lelsE arepur! 
‘O~EI asrou 01 @?!s aqlol @uo!podold QaslaAu! aE slotia uog!sodn@!ue'a~duwxa 
.tog .sogwas!ou 01 @t!s aIqEAagaEisaqi3!qa~lo3 I@aprnom Lwouo.uw aAt2M p2uo!l 
-E]!AEJ~ lno %u!ha aau!s ‘palaadxa wql IDalap 01 la!Sea pahold s@uZ!s amos3! uaAa 
Iyasn aq 0s~ plnorn sayA!lav asaql ‘asmoa30 wIaurn.usu~ pazgldo @!aads PUE 
luaurdolaaap Ja~awo~a~a]u! %u!o%o 103 wld 01 paau aql aauag 'SaAEM @UO!lEl!AEel% 
30 uogaa)ap anwE 01 dyAg!suas lua!ayJns aAEq p[noM JEql JalauroJapavx! ue pI!nq 01 
IpKig!p pay001 9 lEq$-$aE3 aldtu!s e 30 aauanbasuoa hSSaaaU \? SEM .bpk?3 alEJo 
-qtqaue"03 @uwqdaA!ssa&?iE s!ql'aalSap a8ll?~~oi‘ll?q~paz!Seqdwaaqp~noqs 11 

.paJ!nbaJ A[@n$uaAa aqp[noM leql sywl uInnat?A aql30 I@ alEpounuoaaE 01 
q8noua a%[ SkhpI!nq3oU%!Sap aqlsern 3pu~ 8 sasEqdo~apE.I8dnol~~~~~qEdEa aqlu! 
~uaur~saAu~~ue~odur~a~%u~saq~~~aawq~a~a~duroao~spuyaq~~o3l(~uopa~se~sodo~d 
6861 aql'syaoppe ql!M s~aquIl?qawnnavA a~E.roqE~au!paA~oAu~~soaaq~3oasnEaa~ 

,;rll![!qedEaufi!sap-[[ypaA!aauoadpuasaId 
sly 01 uogrqoaa 0917 aql sala[duroa 11 .a%21 IV &ununuo:, ayguaras aql 103 
ssaaaE @tugdo pm?‘suogE@saAu! @IDads ‘)uarudo~aAap ‘uo!leA.Iasqo iuaJ.nvuo:, 
SMO~~,,‘SUI~~S~ .xolaalap IIn aa.yl.ro3 uxool ,:asqd K.wsuasqo au ‘3 a-w,. 0 

,;qaleas 
paz!@!aads ~o~uamdo~aAapputluo!wluasqo ~uarJnauoa,,8u!~o~@‘suxa~sds JoPa$ 
-ap lalawolaJJalu!-aa~qI] 0~1 ql!M ‘aseqd uo!iehIasqg/haAoas!a aqL ‘a asEqd,, l “ 

.r(Isno 
-auel[ntu!s qloq IOU mnq ‘$uaurdo[aAap 10 uog&uasqo 103 a[qel!ns ‘tuarsk 1olaai 
-ap laiawo~aJralu!-aa~1 au0 ql!M ‘aSEqd hraAoas!a/uo!iwo[dxg aqJ, ‘V aSEqd,, . “ 

.sawqd30 sapas ~u!paqsgduxoaaE aqol WM 
Hawas s!ql3ouogtwauIaldtu! IIn3 uosEa~s~q~~03ospue‘s~o~asaq~30 ~@qs!Idwoaat 
o~(s~s~~ua~as3od~~auapue'sr?ap~'AauouI3o)~ua~~saAu~~~~ue~sqnsE av1pInoM11 

,;aauaIa3.talu! @ninwmoqi!M palanpuoa aq ol,,an2 suo!ssp asaqL 

,;suaurouaqd leInagrEd,,~o3 pazFgdo sJo!aalap Oursn,,suo!le9!lsaAu! @!aads,, . 

pw ,:sldaauoa~olaalappaseq 
-la]auro~a~aiu! paauenpe pue Mau 30 ihpsal @uo!laun3 [In3,, JO ,:$uauxdo[aAap,, . 

,:qalEM aAk?M-@UO!lEl!AW%,,SnOnU!lUOaE lO,~UO!lC?AJaSqO,, . 

:,,saAgaafqo hurud 
aanll,,8unls!IduIoaa~1~pauI!e s!wq~tnqde 30 mdaEaAoqepaqpasapsaImea3 aqI 

.ai!s qaea 1~ JalawolaJlalu! a@u!s B d~uo ql!M paiEJalol aqplnoa 
IvqM Ian0 apn@eur30 sIapr0 0~1 inoqE30 $uawaAo.rduq UE ‘sleaL ual u! aauo ueqi 
Lpuanbal3 alow @.unaao saauap!au!oa Le.+aa.up @luap!aaE moql!M palEJaIol aquea 
Ia~auIo~a~alu!/XIoy/001 punole 30 alw luaha @luap!aX UE $Eql SMoqs alaq paluasald 
uogE[na@a v 'SlaiaurolaJlalu! aanp [@ u! madde p[noqs @us!s @aI E laql luawaJ!nbaI 
@!Xl.I:, lnq .taIduqs aql pUE ‘aAEM IEUO!lEJ!ARl8 E30 aInlEU%!S @p!J aqJ pEq @U8!S alEp 
-!puea e ieqi yaaqa E :saIol palE1a-r 0~1 par(E[d lalauro.ra3Jalu! lauoqs s!qL .sal!s aql 
30 au0 1~ .IalauIoJaJla]u! m z E syd ‘Sap al0wa.I pawledas dIap!M 0~130 qaea JE Java 
-uro~a~am~ unl pE-s~a~auro~a3.xalur aanp aI!nbaJ pInoM Urals,& Jolaalap a$?u!s v 

Lwse9Jaqw30 or-o~ pm 

ua8o~kq3orrol 6-o~,,seuaA!8 s! aadsurnnaEA aqlpue ,:la]aw I r([alEur!xo.rddE3olala 
-uxwp @agdoxaIa,,e sepay!aads MOU s!~alauu?!p aqniwnnacAaqiir?qi a.iE saauaIag!p 
r([uo aql) .@sodoxd ,IJ~I aql u! paq!Dsap 1s~~ of)17 30 sanI1Ea.J @guass~ lq%?ra aql 
LpoqurapInoM~t2qiuIa~sds~30 @sap aqiino saqsag 11 sL'6861 laquxaaaa u! gSNayl 
Olpall~qnS SEMlEql(h.lOlEA.laSq0 aA~~-@UO~lEl!A~~f)lala~O~aJral~laSE~U~ uaqddq 
e ql!M MOU) 0917 30 U~!I~NISU~~ pue @sap %u!laau!%ua ~03 @sodold aql u! [Flap 
lalea~~qanuIu!lnopalladS an? @sodoldL861 aqlu!l~palKUqdpIO sanI]ea3 aql30 h'qq 

.reaKluanbasqnsr?u! @sodoId 
alaldwoa a.Iow \? l!uxqns 01 pue ‘~10~ Iraqi anu!luoa 01 pa%emoaua aJaM sdno.Gi 0~1 

aql ‘.IaAaMOH 'papun IOU SEM @sodoJd s!ql ‘SrSpa laspnq @Iapa+J E 30 asnEaa$J 
.m!odlEqlpuoLaq%ulyu!ql u! ssaL?oId aqlaq 

plnoqs 0010s mnq‘q1 aaoqe aql u!iuap!Aa aqplnoqsyooa atqgaql30 akh+aq aql 

,,'uo!~~~uaurn.usu~ rroddns alenbapv,, '8 

kIOUOIlSEU!MOpU!M 



to guarantee detection of signals. This includes laser power of 60 W  recycled by a 
factor of 100, a much more aggressive vibration isolation system, and final pendulum 
suspensions with a quality factor of 10’ carrying one-ton fused silica mirrors. 

6.7.4 The Situation Today 

Construction of LIGO was approved in 1991. By mid-1998 (the time of the writing of 
this review), construction of the two facilities in Hanford, WA and Livingston, LA was 
over three-quarters complete. The schedule calls for construction to be completed soon. 
Roughly speaking, 1999 is to be devoted to installation of the scientific equipment in the 
completed facilities, 2000 to shakedown of the interferometers, and 2001 to engineering 
activities to bring the performance up to the design specifications. Then, data will be 
collected during 2002-3. Beginning in 2004, upgrades to improve the performance will 
be carried out, interspersed with additional periods of observation. 

The first instrument to be installed is expected to have a noise spectrum like that 
shown in Figure 4. The high frequency noise spectrum should be dominated by shot 
noise, as determined from an input power of 6 W, multiplied by a power recycling gain 
of 30. Thermal noise from the 1 Hz pendulum mode will dominate the intermediate 
frequency band; the oscillations of the 10 kg test masses should achieve a quality factor 
of 1.6 x 105. (Internal thermal noise will dominate the spectrum only in a narrow band, 
due to test mass modal quality factors of about 106.) Low frequency noise will be 
governed of course by seismic noise that passes through the multi-layer stack. 

Performance of the VIRGO 3 km interferometer will be similar at medium and high 
frequencies. At low frequencies, seismic noise should be much lower in VIRGO than 
in LIGO, since a much more aggressive filter has been designed. This should allow the 
noise to be dominated by pendulum thermal noise down to 10 Hz or a bit lower. 

The GE0 600 meter interferometer is not expected to reach quite such low levels, 
but it will be surprisingly close. To make up for the shorter length, advanced technolo- 
gies (including signal recycling) will be pursued aggressively from an early date. Thus 
this instrument will play a dual role as part of the global network of interferometers and 
as a prototype for features that will later be incorporated into other interferometers. 

Frequency (Hz) 

Fig. 4. An estimate of the noise spectrum of the LIGO I interferometers. The four 
most important noise sources are shown: seismic noise, pendulum mode thermal noise, 
thermal noise of internal vibrations of the mirror, and shot noise. 
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