


1 Key Concepts and Principles 

Gravitation is the most fundamental interaction, affecting all forms of mass energy. 
This allows its geometrical description, at least within the classical (nonquantum) 
regime that we shall consider. The scope of this regime is indicated in Fig. 1. This 
series of three lectures is intended to provide a foundation for the others in this 
school, most of which deal with various astrophysical, cosmological, and quantum 
mechanical manifestations of gravity. Useful results rather than detailed deriva- 

tions will be emphasized. The approach that we will take, and some applications 
that we will briefly consider are outlined in Fig. 2. 
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Fig. 1. The domains of our knowledge of the physical world, with the mass and 
size of representative objects indicated. A theory of quantum gravity is needed at 
distances less than the Planck length Lp 3 @. 
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Fig. 2. The structure of these lectures. 

The textbooks that are closest to our viewpoint are by Schutz’ at the intro- 
ductory level and by Misner, Thorne, and Wheeler’ at the comprehensive level. 
Except for only setting the speed of light c = 1, but not the gravitational constant 
G, we adopt their notation and conventions. 

We shall first consider the broad class of mettic theories of gravitation. This 

class is defined by the specification of how gravity affects matter. The manner in 
which matter generates gravity is separately specified by each theory within this 
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Fig. 3. Coordinate basis vectors in the tangent space at PO, tangent to the coor- 
dinate curves there. 

2.4 Tensor 

A tensor can be thought of in at least two ways: 
. As a direct product: T = TLI@.ea ~3 ep 63 . . 
. As a linear operator on vectors, giving a scalar (number): 

T(u,v,. .) = T(e,,eo,. .)uaui3 ... = T,p...uavo .... 

The second equality defines the components of a tensor. 

2.5 Metric Tensor 

This generalization of the Minkowski metric of special relativity, with components 

B By = diag.(-l,l, 1, l), produces the scalar product of vectors: u. v 3 g(u,v). 
Its components then also represent scalar products: 

g(ea, ep) = e, . q3 = gap = dep, 4 = m. 

Other aspects are: 
l The interval ds2 = g(dP, dP) = g,pdx”dx@ (dP = dx”e,). 
l Its inverse, given by gpgoV = S“,. 
l Raising and lowering indices: 

UP E v. e, = g(v”e,, ep) = gvbv”, 

VP = g~~govv” = grnvc. 

This generalizes to give 

Tap,;:: = ga,,g-ruT“P”“’ = gpOT,,,... 

and the generalized scalar product T”,,V,Npr, for instance. 
It is important to remember that all measured quantities are scalars. For 

instance, the energy of a photon of four-momentum p measured by a detector of 
four-velocity U (as shown in Fig. 4) is E = -U p = -VP,. This reduces to 
E = p” in an instantaneously comoving (U” = 0) local Lorentz frame. 
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Fig. 4. The interaction of a photon of four-momentum p with a detector of four- 
velocity U. 

. Contraction produces a new tensor of rank two lower; for instance 

Qpv = Mup,, = g~TMwv, 

independent of choice of basis. 

2.6 Change of Basis 

This is represented by e,,! = L”,,e,, generated by the tranformation matrix 
L”,,(Po). With the inverse transformation matrix constructed from LfiO, Lb; = P,, 
one obtains the transformed components 

T$,.;;’ = LQ;Lro, . . T;.:: 

of a tensor, using the above equations. Under a tranformation of coordinate bases 
[generated by the four functions 9’ (z&)1, the tranformation matrices assume the 
form 

La; = dx”‘/axP, LB,, = ax”/ax”‘. 

2.7 Four-Volume Element 

The unique scalar, which generalizes all the usual properties of a volume element, 
is 

dVcdj = J-gdx”dx’dx2dx3 E J-gd4x , 
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We also find the vector components 

(5) 

where the Christoffel symbol (connection coefficient in a coordinate basis, not the 
components of a tensor) is 

For rest masses m > 0, Eqs. (4) and (5) also govern the particle’s four-velocity 
Un = p”lm = dx”/dr, where the proper time interval is dr = mdX. 

It can be shown that in the neighborhood of a freely falling observer, coordi- 
nates can be chosen so that gPy = n,,” and gpv+ = 0 along his/her worldline. It 
then follows from Eq. (5) that all test particles in that neighborhood are indeed 
unaccelerated (dx”/dr = constant + dx’/dx’ = constant), verifying that it is an 
inertial frame. 

3.4 Gradient and Covariant Derivative of a Tensor 

Since Q” = Dpa/DX are the components of a vector [given by Eq. (5)], it follows 
that for any vector field with components Va(x@), 

DV” dV” 
- = z+ DX 

(7) 

are also the components of a vector. It thus also follows that V”;, must be the 
components of a (rank two) tensor: the generalization of the gradient to operate on 
vectors. The generalization of the directional derivative is the covariant derivative, 
with the above components DV”/DX. 

Denoting the directional derivative operator D/DX along a basis vector e, by 
V,, its effect on a vector V can also be described as 

V,(V”e,) = (VuVo)eo + V”(Vveo) = Va+ 

Comparing with Eq. (7), we see that the connection coefficients describe how the 
basis vectors vary with position: 

V,e, = o 
i I 

e,. 
w  

The application to tensors of any rank follows straightforwardly to give 

Tq;::.;, = T;::.,a + T=j:-, + . . - 

It then follows that the gradient of the metric tensor vanishes: gapiP = 0. 
As an interesting example, consider the Maxwell field-strength tensor, whose 

components FPy are generated from the components 

A,;, = A fw - 

of the gradient of the potential via FIIy = A,;, - A,;, = 2A[4 = 2Alv,,4. The 
last equality follows from the symmetry of the Christoffel symbols [Eq. (S)], and 
reflects the curious fact that only partial derivatives seem to appear in the matter 
Lagrangian [Eq. (l)]. 

3.5 Geodesic Deviation M  Riemann Tensor 

Consider two freely falling test particles with infinitesimal separation Axae,, as 
indicated in Fig. 5. Their separation vector can be constrained to obey Ax.p = 0. 
It is then purely spatial (Ax0 = 0) in an instantaneously comoving frame (U” = 0) 
for a nonzero mass test particle. 

Fig. 5. The paths of two nearby test particles. 

Subtracting their (geodesic) equations of motion (5) gives 

dx” dx” 
dXdXAxu + 2 -----x0. 

Now since DAxa/DX (but not dAxO/dX) are the components of a vector, so is 
the result of applying the operator D/DX [defined by Eq. (7)] again. Employing 
the above equation, this operation produces the equation of geodesic deviation 

D2Ax” 
DX2 + Ra,,, dA dX d”llgAxa = 0, 

-6- 



6 II 



Extremizing the action Zo with respect to variations in jpV and up then gives 
the field equations 

The scalar field-matter coupling function is 

(y((p)~dlnA/d~=al+az(cp-(ho)+..., (13) 

where the expansion is about the present cosmological value 90 of the scalar field. 
Expanding the self interaction A(p) in the same way shows that the effective range 
of the scalar field is of order (#A/dp*),“‘. 

The stress-energy tensor ? is defined, as in Eq. (2), with respect to variations 
of g. It obeys the modified conservation laws [compare with Eq. (3)] 

indicating the separate effects of the spin 2 and spin 0 fields. 
If the coupling function A(p) has a minimum, Damour and Nordtvedt’ and 

Santiago, Kalligas, and Wagoner’ have shown that in most cases the theory is 
attracted toward that minimum during the expansion of the universe, thus ap- 
proaching general relativity: ‘p = constant, A(v) = constant, and cr(cp) = 0. This 
is in accord with the small experimental limit8 a: < 10m3. [The Brans-Dicke 
theory8 is the special case ~(9) = constant, A(v) = 0.1 

Although there is local interest in this broad class of theories, for the most 
part we shall concentrate on general relativity for the remainder of these lectures. 
The two exceptions will be gravitational waves and cosmology, where a scalar field 
introduces qualitatively new effects. 

In addition, we will employ the fact that most matter in the universe is well 
approximated as a perfect fluid, described by the stress-energy tensor (obtained 
from the EEP) 

T,w = (P + PFJJJ~ + w,u, (15) 

where p is the mass-energy density, p is the pressure, and U is the four-velocity 
of the fluid. Such a fluid flows adiabatically (conserving specific entropy). 

4.2 Weak-Field Equations 

Throughout almost the entirety of all regions, much smaller than that of the 
observable universe, gravitational fields can be considered weak. This means that 
(except near black holes and neutron stars) one can choose coordinates such that 
the metric assumes the nearly Minkowski form 

For instance, within the solar system, Jh,,,J ,5 GMo/R0c2 = 2.12 x 10-6. We 
shall consider isolated sources T,,,, and can neglect the cosmological constant 
h(cpa) within such regions. 

We work to first order in hllY, and utilize our freedom of general infinitesimal 
coordinate transformations, r”(P) = r*(P) + ta(P), which produces the change 

in the metric perturbation. This is directly analogous to the gauge transformation, 
A,f = A,, + x,,, in electrodynamics and leaves the Riemann tensor components 
R aollv, like the Maxwell field-strength tensor components Fap, invariant to this 
order. We can then use our freedom in choosing the four functions ca(P) to 
impose the coordinate condition 

analogous to the Lorentz gauge condition A”,v = 0 in electrodynamics. 
The Einstein field Eq. (11) (with cp = ~0 = constant) then produces the weak 

field equations 
rfbii,,,,i3 = Oh,, = -16sGT,, , (17) 

identical in structure to those in electrodynamics. (With the Lorentz gauge con- 
dition, Eq. (17) is consistent with the conservation laws T@y+, = 0; analogous to 
Jy, = 0 in electrodynamics.) Thus, the solution is of the same form: 

A Newtonian system is one in which all (macroscopic and microscopic) ve- 
locities are nonrelativistic (and thus the retardation in Eq. (18) is negligible), 
in addition to having a weak field. In such systems the dominant component of 
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if the generator also satisfies the wave equation ‘Cl& = 0. One can then use the 
four additional degrees of freedom to set hsr = 0 and & = 0 (so now hP,, = hBY). 
In summary, we have constructed the transverse-traceless (TT) gauge, in which 
the eight independent conditions 

h,. = hjk,k = hkk = 0 

leave two independent polarization states, again in direct analogy with electrody- 
namics. 

We can also include the possibility of a weak scalar wave, cpi z ‘p - ups, since 
the tensor field from Eq. (11) is unaffected through first order in (pi (except that 
h,, -+ h,, %  h,,-2alcp~g,, in the above equations). The scalar field equation (12) 
(with A constant) becomes •~~ = 0, giving the same plane-wave representation. 

To understand the response of a gravitational-wave detector, consider slowly 
moving free test particles with a separation which is much less than the grav- 
itational wavelengths involved. Now employ a local Lorentz frame (a different 
choice of gauge), in which physical (e.g., radar) and coordinate distances are 
equal through first order in the particle separation Ax. The Eq. (8) of geodesic 
deviation becomes dlAx”/dr* E -RiojoAxj as before, involving only the matter 
coupling metric g = AZ(p)& In terms of our spin representation, 

In the previous TT gauge, one obtains fig0 = -$~~oo. However, the gauge 
(coordinate) invariance of the weak-field Riemann tensor allows us to use this 
expression in the above equation of geodesic deviation, giving 

d*Ax’/dr* = [$zo + al(Ji~~,oo - ~,i,)]Ax’. (22) 

In Fig. 8 we show the resulting positions of an initially circular ring of test 
particles (at phases 7r/2 and 3rr/2) for each polarization state: (a) ig = -hg, 
(b) iL;; = iLg, and (c) (pi. They remain in the plane transverse to the propagation 
vector i shown. 

For separations Ax in the same direction as i, Eq. (22) also shows that there 
is no response to any of the three wave components. 
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Fig. 8. Wave-induced distortions of a ring of test particles. 

6 Strong-Field Applications 

6.1 Compact Objects 

Throughout any spherically symmetric spacetime, we can choose Schwarzschild 
coordinates, in which the interval assumes the form 

&-’ = -e2’(r*t)&2 + ezx(r,t)&2 + T’[d@* + sin2 &@*I, (23) 

so that the proper area (measured by a set of observers at fixed r and t) of any 
spherical surface is 47~~~. We consider here isolated bodies, so the metric potentials 
@,X + 0 as T + 03. In addition, we shall consider static (Ui = 0, d/at = 0) 
bodies. 

Then the only non-trivial momentum conservation equation, T,‘?, = 0, gives 
hydrostatic equilibrium: 

dp - = -(p + p$: dr (24) 

also indicating that Q(T) is the generalized Newtonian potential. The only struc- 
tural difference from the Newtonian equation is the addition of the pressure to 
the “inertial mass-energy density.” 

The {tt} component of the Einstein field equation gives, after an integration, 

e2x= [l-F ]-‘, m(T)=4’+(T&:dTe. 
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Fig. 9. The effective potential p is plotted for various choices of L. Also shown 
are the three classes of orbits (constant fi’, i). 

We first define a preferred set of observers: those who view the cosmic mi- 
crowave background (CMB) radiation as isotropic on the corresponding angular 
scales (2 2 degrees). The CMB is isotropic to an accuracy of lo@ (after remov- 
ing the effect of our motion), the size of the observed intensity variations im- 
printed by the primordial density fluctuations which formed galaxies, etc. Galax- 
ies (such as ours) have random velocities with respect to this frame such that 
(v’J2)‘~” N 10-s. 

We shall then attach our spatial coordinates to such observers, so they become 
comoving with respect to the average motion of the matter. We also take the time 
coordinate to be their proper time, so the averaged (over volumes AV N D3) four- 
velocity of the matter has components U” = 6,“. 

The CP asserts that our position in the universe is not special, but typical. The 
basis for this assumption is the similarity of our galaxy and local group of galaxies 
to other such systems observed throughout the universe. One then obtains the 
following consequence:” 

CP + Observed isotropy + Universal isotropy + Homogeneity. 

“Universal” means with respect to all comoving observers. The property of 
large-scale homogeneity has been dubbed the Cosmological Principle. It means 
that all large-scale properties of the universe depend only on the proper time t of 
the comoving observers. However, we see from the above that it is not an inde- 
pendent principle; it follows from the CP (so the same acronym is appropriate). 

Another consequence of assuming the CP is the form of the metric, which 
corresponds to the fact that the curvature of the three-spaces t = constant must 
also be uniform. We adopt the representation in which the interval is 

dsS = -dt* + a’(t)[dx* + C’(x)(dO* + sin* Od4*)], (28) 

where x is a dimensionless comoving radial coordinate, the curvature K = k/a*(t), 
and 

C= 

i 

sinx, k = +l, 

Xl 0, 
sinh x , -1 

Of course, a flat space (k = 0) is also the limit of the other two choices as the 
radius of curvature a(t) + 00. 
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