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ABSTRACT

The prediction for the strong coupling constant in grand uni�ed the-

ories is reviewed, �rst in the Standard Model, then in the supersym-

metric version. Various corrections are considered. The predictions in

both supergravity-induced and gauge-mediated supersymmetry break-

ing models are discussed. In the region of parameter space without

large �ne tuning, the strong coupling is predicted to be �s(MZ)>� 0:13.

Imposing �s(MZ) = 0:118, we require a uni�cation scale threshold

correction of typically �2%, which is accommodated by some GUT

models but in conict with others.

�Work supported by Department of Energy Contract DE{AC03{76SF00515.



1 bf Introduction

In the Standard Model, given values of the three gauge couplings, the Yukawa

couplings, the Higgs boson self-coupling, and a dimensionful observable (e.g., the

muon lifetime, a gauge boson mass, or a quark mass), any other observable can

then be computed. In a grand-uni�ed theory (GUT), one need only input two

of the gauge couplings, then the third one can be predicted, as well as other

observables.

Thus, GUT theories are more predictive. Because the SU(2) and U(1) cou-

plings are measured quite precisely, we will examine the prediction of the strong

coupling constant in grand-uni�ed theories, both in the Standard Model and in

supersymmetric models. We start with the one-loop results and then proceed to

discuss the next higher-order corrections. The inclusion of these corrections leads

to a precise prediction of the strong coupling constant.

2 bf Renormalization Group Equations

We are interested in measuring gauge couplings at the weak-scale or below, and

running the gauge couplings up to higher scales. The solution of the renormaliza-

tion group equations (RGE's) accurately describes the evolution of the couplings,

even as they are evolved over many decades. At one-loop, the renormalization

group equations for the gauge couplings are

dgi

dt
=

bi

16�2
g3i ; t = ln

Q

Q0

; (1)

where the bi are the one-loop beta-constants. These constants receive contribu-

tions from every particle which circulates in the one-loop gauge-boson self-energy

diagram. For example, for a fermion doublet (�; e), �b2 = 1=3.

The one-loop renormalization group equation is easily solved. The inverse of

the gauge coupling evolves linearly with the log of the scale,

��1
i (Q) = ��1

i (Q0)�
bi

2�
ln

Q

Q0

: (2)

If we assume that the couplings do unify at some scale, we have that

b1 � b2

�3(Q)
+
b2 � b3

�1(Q)
+
b3 � b1

�2(Q)
= 0 : (3)

This equation is valid for any scale Q between the weak scale and the uni�cation

scale. Next, we deduce the MS values of the U(1) and SU(2) gauge couplings from



the quantities �̂�1 = 127:90� 0:09 and ŝ2 = 0:2315 � 0:0004 (Ref.1) (�̂ and ŝ2

are the MS values of the electromagnetic coupling and sine-squared weak mixing

angle evaluated at MZ)

��1
1 (MZ) = 58:97� 0:05 ; ��1

2 (MZ) = 29:61� 0:05 : (4)

Given the Standard Model values of the one-loop beta-constants

b1 =
41

10
; b2 = �19

6
; b3 = �7 ; (5)

we determine the prediction of the strong coupling constant in the Standard Model

�s(MZ) = 0:07 (Standard Model, one-loop) (6)

with negligible error. Comparing with the measured value as quoted by the Par-

ticle Data Group,1 �s(MZ) = 0:118� 0:003, we see that the Standard Model pre-

diction of the strong coupling constant is about 16 standard deviations too small.

Including higher order corrections cannot help repair this situation by more than

a few standard deviations. In order to remedy this huge discrepancy, we need to

go beyond the Standard Model, adding matter to change the beta-constants bi.

We also need to specify the mass scale of the new matter.

Rather than determining what additional matter content will lead to successful

gauge coupling uni�cation in an ad hoc fashion, we will examine the implications

of a motivated model. It is widely accepted that the Standard Model is an e�ective

theory. Some new physics must become manifest at scales below the multi-TeV

scale. A promising model of new physics is supersymmetry,2 which, among other

virtues, explains how a theory with a weak-scale elementary Higgs boson is stable

with respect to the Planck scale. Supersymmetry also naturally explains the

breaking of electroweak symmetry,3 and it typically contains a natural dark matter

candidate.4

In order to make the Standard Model supersymmetric, we are required to

add a speci�c set of new particles, the superpartners. For every Standard Model

gauge boson, we must add a spin-1/2 majorana particle, a gaugino. And for every

Standard Model fermion we must add a spin-0 partner, a squark or a slepton. In

order to give both up- and down-type fermions a mass, and to ensure anomaly

cancellation, we must also add an additional Higgs doublet. We refer to the two

Higgs doublets as \up-type" and \down-type." This additional particle content

de�nes the minimal supersymmetric standard model (MSSM). In the simplest and

most often considered versions of the MSSM with high-energy inputs, the entire

supersymmetric spectrum scales with one or two parameters which must be near

the weak scale by naturalness considerations.



Given this new matter content and the superpartner mass scale, which we

take to be MZ for the moment, we can take a �rst-order look at the prediction

of the strong coupling constant in the MSSM. As before, we use Eq. (3) to solve

for �s(MZ) as a function of �1(MZ) and �2(MZ). Now the beta-constants are

di�erent. Because of the new matter content, we have the following changes from

the Standard Model values

b1 = 4:1 ! 6:6 ; b2 = �3:2 ! 1 ; b3 = �7 ! �3 : (7)

We use the central values and errors in Eq. (4) to �nd

�s(MZ) = 0:116� 0:001 (MSSM, one-loop). (8)

The new matter content mandated by supersymmetry brings the prediction for

the strong coupling constant to the measured value (0:118 � 0:003) within one

standard deviation! This could be a coincidence, or it could be a hint that we are

on the right track by considering minimal low-energy supersymmetry. Next we

will consider corrections to the prediction of �s in the MSSM.

3 bf Corrections to the prediction of �s

In this section, we consider two sources of corrections to the prediction of the

strong coupling constant in the MSSM. The �rst involves improving the evolution

of the couplings from their initial values at the grand uni�cation scale to the weak

scale (or, the supersymmetry breaking scale). We simply extend the renormal-

ization group equations to one higher loop order. This means that in addition to

resumming logarithms of the form [�=4� ln(MGUT =MZ)]n from the one-loop RGE,

we now resum logarithms of the form [(�=4�)2 ln(MGUT=MZ)]n from the two-loop

terms. At two loops, it is necessary to run both the gauge and Yukawa couplings

together, as they form a coupled set of di�erential equations. The general form

for either a gauge or Yukawa coupling RGE at two-loops is5

dgi

dt
= gi

�
bij

16�2
g2j +

bijk

(16�2)2
g2j g

2
k

�
: (9)

Since we can safely ignore the small Yukawa couplings of the �rst two generations,

the set gi includes fg1; g2; g3; �t; �b; ��g. The equations are readily solved

numerically. The correction due to the two-loop RGE's is large and positive. The

prediction of �s(MZ) increases by about 0:01.

The second source of corrections we will consider in this section are the super-

symmetric threshold corrections. These are divided into two types, the logarithmic



corrections and the �nite (i.e., nonlogarithmic) corrections. We will discuss these

in turn.

When we arrived at prediction (8), we assumed that the masses of the super-

partners were equal to MZ . However, we know from collider searches that many

of the superpartner masses must be heavier than MZ, and in general, they could

be an order of magnitude heavier without straining naturalness considerations too

much. As we evolve the gauge couplings down from high scales, we must decouple

each superpartner contribution in turn as we cross the mass threshold. Hence,

we arrive at logarithmic corrections of the form �bi ln(Msusy=MZ). From these

corrections, we determine the shift in the prediction of the strong coupling and

�nd, in general, for a particle of mass M > MZ with �bi contributions to the

beta-constants

���1
s (MZ) = � 1

2�(b1 � b2)

�
(b2�b3)�b1+(b3�b1)�b2+(b1�b2)�b3

�
ln

M

MZ

: (10)

Note that the beta-constants bi in this equation include the entire superpartner

spectrum. Plugging in all the superpartners, we arrive at the following supersym-

metric threshold correction

���1
s (MZ) =

1

28�

�
3 ln

M3
LM

7
Q

M3
DM

2
EM

5
U

+ 32 ln
M2

MZ

� 28 ln
M3

MZ

(11)

+ 3 ln
MH

MZ

+ 12 ln
j�j
MZ

�
:

In the �rst term, MQ and ML (MU , MD, and ME) denote the left-handed (right-

handed) squark and slepton masses. This term is easily modi�ed to account for

generation-dependent masses.

There are a few aspects of this equation worth pointing out. First, notice that

the �rst term does not contain MZ . This is because the squarks and sleptons are

in complete SU(5) multiplets, and degenerate complete multiplets do not a�ect

�s at one loop. It happens that this particular combination of soft squark and

slepton masses is near unity in the entire parameter space of both of the models

that we consider in the following section. Hence, the squarks and sleptons do not

signi�cantly a�ect the prediction of �s(MZ).

Another point is that the SU(2) and SU(3) gauginos contribute corrections

which largely combine into the term (1=�) lnM2=M3. In GUT models, the gaug-

ino masses are degenerate above the uni�cation scale. At one-loop, they are

renormalized proportional to the corresponding gauge couplings, so the ratio

M2=M3 = �2=�3. At the weak scale, this ratio is about 8=30 ' 0:27. Hence,

this term contributes about +0:006 to �s(MZ), independent of parameter space.

The remaining terms include the residual term from the SU(2) gaugino mass,

and the contributions of the heavy Higgs bosons and Higgsinos. If we take these



three masses to be characterized by a single scale Msusy, then these terms combine

to give

���1
s (MZ) =

19

28�
ln
Msusy

MZ

: (12)

Hence, as we increase the supersymmetric mass scale, the prediction of the strong

coupling constant decreases. This makes sense, since in the limit that the entire

supersymmetric spectrum is raised above MGUT , we should recover the prediction

of the Standard Model. ]In fact (0:116)�1 + (19=28�) lnMGUT=MZ = (0:064)�1.]

If Msusy = 1 TeV, this correction yields ��s(MZ) = �0:007. Note that the

largest contribution to Eq. (12) is due to the ln(j�j=MZ) term. Because we impose

electroweak symmetry breaking, j�j=MZ is a measure of the �ne tuning necessary

to obtain the Z-mass from the input mass parameters. The predicted strong

coupling is larger in the region of no �ne tuning (j�j=MZ <� 2) than in the region

of appreciable �ne tuning (j�j=MZ >� 10).

There is one last point about Eq. (11). Because of the particle content of

the supersymmetric standard model, the particles which are charged under SU(2)

always come into the expression for ���1
s with a positive coe�cient in front

of the logarithm of the mass. The SU(2) singlets always come with a negative

coe�cient. Hence, heavy SU(2) doublets, for example, ~W , H, or ~H, will decrease

�s, and heavy SU(2) singlets, e.g., the gluino, will increase the prediction of the

strong coupling.

Besides the logarithmic corrections of Eq. (11), there are also �nite corrections.

These arise when the full one-loop correction to ŝ2 is taken into account. Taking

the electromagnetic constant, the Z-boson mass, and the muon lifetime as inputs,

we determine the DR (Ref.6) renormalized weak mixing angle,7

ŝ2ĉ2 =
��̂p

2G�M
2
Z(1��r̂)

; �r̂ =
�̂WW (0)

M2
W

� �̂ZZ(M2
Z)

M2
Z

+ �vb : (13)

The correction �r̂ is comprised of the real and transverse DR gauge-boson self-

energy contribution (the oblique correction), and the vertex and box diagram

contributions, �vb (the non-universal part).8 The oblique correction contains both

logarithmic and �nite contributions, while �vb is purely �nite. The �nite contri-

butions decouple as M2
Z=M

2
susy for large supersymmetric masses.

In the regions of parameter space where some SU(2) nonsinglet particles are

of order MZ , the �nite corrections to the weak mixing angle can substantially

increase the prediction of the strong coupling constant.9,10 We illustrate this in

Fig. 1. We show the prediction of the strong coupling with and without taking

the �nite corrections into account in the supergravity model described below. If

all the supersymmetric particles are above a few hundred GeV, the �nite cor-



Fig. 1. The prediction of �s(MZ) with (solid) and without (dot-dashed) including

the �nite corrections. From Ref..10

rections are negligible. In that case, the low-energy threshold corrections are

well-approximated by the logarithms in Eq. (11).

4 bf �s(MZ) at Two Loops in Two Supersymmetric Mod-

els

Utilizing the two-loop renormalization group equations and the weak-scale thresh-

old corrections, we are now in a position to present the improved prediction of

the strong coupling constant in the supersymmetric case. We still need to specify

the supersymmetric particle spectrum. In what follows, we consider two models

in turn, �rst a minimal supergravity model, then a simple model with gauge-

mediated supersymmetry breaking.

4.1 Minimal Supergravity Model

In the minimal supergravity model, there are universal soft-supersymmetry break-

ing parameters induced at the grand uni�cation scale. These include a gaugino

mass M1=2, a scalar mass M0, and a trilinear scalar coupling A0. Also, we re-

quire that electroweak symmetry is broken radiatively.3 This happens naturally,

as the large top-quark Yukawa coupling drives the up-type Higgs mass-squared

negative near the weak scale. Given the Z-boson mass and tan� [the ratio of



Fig. 2. The prediction of �s(MZ) in theM0,M1=2 plane, with tan� = 2 and A0 = 0.

From Ref..10

up-type Higgs boson vacuum expectation value (vev) to down-type], we impose

electroweak symmetry breaking, and this allows us to solve for the masses of the

heavy Higgs bosons and their superpartners, MH and j�j.
In Fig. 2, we show the prediction of the strong coupling in the M0, M1=2 plane.

After including the corrections, the supersymmetric prediction is not as consistent

with the measured value 0:118�0:003. We �nd that for squark masses below about

1 TeV (where the model is more natural), �s is predicted to be greater than 0.127.

For the smallest supersymmetric masses, we �nd numbers larger than 0.140. The

predicted value is three to seven standard deviations larger than the measured

value.

The prediction of �s depends slightly on mt. It changes by about 0.001 if mt

changes by 10 GeV. Of the three input parameters MZ ; G�; and �̂, only �̂ has an

appreciable error. Changing �̂ by 1-� changes �s by about 0.001. The prediction

weakly depends on tan� because at small (� 1) or large (>�30) tan�, the top,

bottom, and/or tau-Yukawa couplings become large, and they enter into the two-

loop renormalization group equations of the gauge couplings. The prediction for

�s(MZ) can be lowered by about 0.002 at the extreme values of tan�.y The strong

coupling is also insensitive to the sign of the Higgsino mass term �. In Fig. 2 and

the following �gures, we set � > 0.

Hence, we �nd that we cannot avoid the large values of �s shown in Fig. 2.

yThe change �0:002 is due solely to the Yukawa couplings entering into the two-loop RGE's.

There may be an additional dependence because the particle spectrum depends on tan�.



We will give an interpretation of these large numbers after discussing the gauge-

mediated case.

4.2 Minimal Gauge-Mediated Model

Models with gauge-mediated supersymmetry breaking are an attractive alterna-

tive to the supergravity models. In the supergravity model we considered, we chose

universal boundary conditions, which suppress dangerous squark- and slepton-

mediated avor changing neutral currents. However, there is no symmetry which

protects this choice of boundary conditions, and hence it is an arti�cial imposition.

The advantage of the gauge-mediated models is that avor changing neutral cur-

rents are automatically suppressed, since the soft supersymmetry breaking masses

which are induced by the gauge interactions are avor diagonal and generation

independent.

In the simplest models with gauge-mediated supersymmetry breaking,11 there

is a messenger sector with the superpotential interaction

W = �SMM ; (14)

where S is a Standard Model singlet super�eld, M and M are a pair of messenger

�elds which are vector-like under the Standard Model gauge group, and � is the

messenger Yukawa coupling. In a grand uni�ed theory, M and M come in full

SU(5) representations. We will consider n5 5+5 pairs and n10 10+10 representa-

tions. Perturbative uni�cation of the gauge couplings is ensured if we allow at

most (n5; n10) = (1,1) or (4,0).

In these models, the singlet super�eld S couples to a sector in which supersym-

metry is dynamically broken, and as a result, it acquires both a vev (S) and an

F-term (F ). This in turn generates supersymmetry-conserving diagonal entries

and supersymmetry-violating o� diagonal entries in the M; M scalar mass ma-

trix. The M and M �elds enter into loop diagrams with Standard Model �elds on

the external legs, thereby generating soft supersymmetry breaking masses for the

superpartners and the Higgs bosons. The gaugino and scalar masses are generated

at one- and two-loops, respectively, and in the limit F � �S2 are given by11

Mi(M) = (n5 + 3n10)
�i(M)

4�
� ; (15)

~m2(M) = 2(n5 + 3n10)
3X
i=1

Ci

 
�i(M)

4�

!2

�2 ; (16)

where M = �S is the messenger mass scale, � = F=S, and Ci = 3Y 2=5; 3=4; 4=3

for fundamental representations and zero for singlet representations.



The mass parameters (15,16) serve as boundary conditions for the renormal-

ization group equations at the messenger scale. In order to determine the su-

perparticle spectrum, we run these parameters from the messenger scale to the

weak scale using the two-loop renormalization group equations. As before, we

impose radiative electroweak symmetry breaking and determine the Higgs boson

and Higgsino masses MH and j�j for a given tan�. Hence, the parameter space

of the model under consideration is

tan�; M; �; n5; n10; �; sgn(�);

where � is the value of the messenger Yukawa coupling at the grand uni�cation

scale (we assume a single Yukawa coupling). Note that a physical messenger

spectrum requires M > �.

After we determine the superpartner spectrum at the weak scale, we apply

the same weak-scale gauge coupling threshold corrections as in the supergravity

model. However, the messenger sector gives rise to additional corrections. Not

only are the one- and two-loop renormalization group equations altered above the

messenger scale,12 but there are also new threshold corrections at the scale M .

A degenerate SU(5) multiplet does not a�ect the prediction of �s at one loop.

However, the evolution of the messenger Yukawa couplings from the grand uni-

�cation scale down to the messenger scale splits the messenger multiplets. If we

decompose a 5+5 pair of messenger �elds into their doublet and triplet compo-

nents, respectively denoted L and D, then the messenger sector superpotential

below the grand uni�cation scale becomes

W = �LSMLML + �DSMDMD : (17)

Thus, the messenger doublet (triplet) ends up with mass �LS (�DS). According

to Eq. (10), this mass splitting leads to the threshold correction (the 10+10 �elds

decompose into (SU(2),SU(3)) representations Q (2,3), U (1,3), and E (1,1)) z

���1
s (M) =

9n5

14�
ln
�L

�D
+

n10

14�

�
15 ln

�Q

�U
+ 6 ln

�Q

�E

�
: (18)

The Yukawa couplings are evaluated at the messenger scale, either �LS ' �DS or

�QS ' �US ' �ES. Note that at one loop order ���1
s (MZ) = ���1

s (M).

To determine the messenger Yukawa couplings at the messenger scale, we solve

the renormalization group equations which are of the form12

d�i

dt
=

�i

16�2

0
@X

j

cj�
2
j �

X
k

akg
2
k

1
A+ � � � ; (19)

zThere is an additional negligible correction due to the splitting within each U(1), SU(2), or

SU(3) multiplet. Each logarithm in Eq. (18) is replaced according to ln(�1=�2)! ln(�1=�2) +

(1=12) ln[1� (F=�1S
2)2]=[1� (F=�2S

2)2].



Fig. 3. The ratios of the messenger masses at the messenger scale vs. the value

of the Yukawa coupling at the uni�cation scale. Both the n10 = 1 (dashed) and

n5 = 1; 2; 3 (solid) cases and are shown.

where the dots indicate that there may be extra contributions due to interac-

tions of the singlet with the supersymmetry breaking sector �elds. These extra

contributions are the same for all the messenger �elds so they do not a�ect the

ratios of Yukawa couplings. Note that for a large initial value of the messenger

Yukawa coupling, the renormalization group evolution is initially dominated by

the Yukawa term which leads to the same evolution for the various messenger

�elds. Hence, there will be less splitting if the initial value is large. We illustrate

this in Fig. 3 where we show the ratio of messenger Yukawa couplings at the mes-

senger scale vs. the starting value at the grand uni�cation scale. In the 10+10

case, we see that �Q=�U (�Q=�E) varies from 1.2 to 1.3 (2.3 to 2.6). Hence, the

splitting is small and con�ned to a narrow range of values. Plugging this splitting

into Eq. (18), we �nd that the messenger threshold correction results in at most

��s(MZ) = �0:003 for n10 = 1, +0:001 for n5 = 1, and +0:005 for n5 = 3.

Combining all the e�ects together, we show the full result for the prediction

of �s(MZ) in the gauge-mediated model in the M=�, � plane in Fig. 4, with

tan� = 4, n5 = 1, and � = 3. We see slightly smaller numbers than in the

supergravity case (Fig. 2). Relative to other choices of n5; n10; and �, this case

results in the smallest values of �s(MZ). As before, the result is not very sensitive

to the value of tan�. Changing the value of the messenger Yukawa coupling does

not change the value of the strong coupling signi�cantly.

The dashed lines in Fig. 4 indicate that the region of parameter space with the



Fig. 4. Contours of �s(MZ) in the gauge mediated model with n5 = 1, tan� = 4,

and � = 3. The dashed lines show contours of j�j=MZ = 2; 5, and 10.

j�j < 10MZ j�j < 2MZ

� = 0:01 � = 3 � = 0:01 � = 3

n5 = 1 > 0:125 > 0:124 > 0:137 > 0:136

n5 = 3 > 0:126 > 0:125 > 0:139 > 0:136

n10 = 1 > 0:127 > 0:128 > 0:137 > 0:140

Table 1. Summary of predictions for �s(MZ) in the

least �ne tuning (j�j=MZ ' 2) corresponds to the largest value of �s(MZ) ' 0:137.

The strong coupling can be reduced signi�cantly at the cost of �ne tuning. In the

�ne tuned region j�j=MZ ' 10, �s(MZ) ' 0:125.

We summarize the predicted values of �s in the gauge-mediated models in

Table 1. Here we set mt = 175 GeV, tan� = 4, and � > 0. We �nd that

if j�j < 10MZ, �s(MZ) is greater than 0.124. This is two standard deviations

larger than the measured value. Hence, we are faced with the fact that, like the

Standard Model, supersymmetric models do not predict that the gauge couplings

meet. However, the discrepancy in the Standard Model case is enormous. The

small discrepancy in the MSSM can be accounted for, and is required by, threshold

corrections at the grand uni�cation scale.



Fig. 5. The discrepancy "g with �s(MZ) = 0:118 vs. j�j in (a) the supergravity

model, and the messenger model with (b) n5 = 1 and (c) n5 = n10 = 1.

5 GUT Threshold Corrections

At the GUT scale, there are incomplete SU(5) multiplets (most notably the color

triplet Higgs bosons) and there can be split multiplets as well. These �elds give

rise to threshold corrections which are expected to be of order a couple of percent

(or larger if �GUT is larger).

If we take all three gauge couplings as input at the weak scale and run them

up to the grand uni�cation scale MGUT (which is de�ned to be the scale where

g1 and g2 meet), we �nd a discrepancy between the value of g3 and g1 = g2. We

de�ne the discrepancy "g as

g3(MGUT ) = g2(MGUT )(1 + "g) : (20)

If we �x �s(MZ) = 0:118, the discrepancy is negative. We show a scatter plot

of the discrepancy in Fig. 5 for three di�erent models: the supergravity model,

the messenger model with n5 = 1, and the messenger model with n5 = n10 = 1

(Ref.13). For the supergravity model and the messenger model with n5 = 1,

"g varies from about �3 to �1% as j�j varies from 100 to 1000 GeV. For the

messenger model with n5 = n10 = 1, "g is larger because �GUT is larger.

In a grand uni�ed theory, there will be a discrepancy due to the grand uni-

�cation threshold corrections.x. In any particular model of grand uni�cation, we

can calculate "g as a function of the GUT model parameter space. By varying the

parameters over their allowed range, we can see whether the model is consistent

xThere are possibly additional corrections due to higher dimension operators suppressed by

MGUT =MPlanck See Ref.18 for a discussion.



with the "measured" values of "g shown in Fig. 5. Here we give two examples, the

minimal SU(5) model14 and the missing doublet SU(5) model.15

In the minimal SU(5) model, we �nd the correction10,16

"g =
3�GUT

10�
ln

MH3

MGUT

; (21)

where MH3
is the triplet Higgs boson mass. It is constrained to be larger than

about 1016 GeV by the lower limits on the nucleon lifetimes.17 Both MGUT and the

bound on MH3
are functions of the supersymmetric parameter space. The bound

on MH3
is typically such that MH3

> MGUT , so that in most of the minimal SU(5)

model parameter space, "g is positive. From Fig. 5, we know that in order to

be compatible with gauge coupling uni�cation, "g must be negative. Hence, the

minimal SU(5) model is not compatible with coupling constant uni�cation.

The minimal SU(5) model contains a 5+5 of Higgs �elds. The doublet parts

are the MSSM Higgs �elds with order MZ masses. The triplet parts mediate

nucleon decay via dimension �ve operators. In order to be compatible with the

lower bound on the nucleon lifetimes, the triplet Higgs particles must have GUT

scale masses. In general, it is problematic to �nd a GUT model which naturally

yields light Higgs doublets and heavy triplets. In the minimal SU(5) model, this

doublet-triplet splitting is imposed by �ne tuning superpotential parameters. The

missing doublet model elegantly solves the doublet-triplet splitting problem by a

judicious choice of Higgs representations. The 75, 50, and 50 representations are

employed, and when the 75 gets a vev, the superpotential term 75 50 5 generates

a mass for the triplet, but not for the doublet.

In the missing doublet model, we �nd10,19

"g =
3�GUT

10�

�
ln

M eff
H3

MGUT

� 9:72

�
: (22)

We have de�ned an e�ective triplet Higgs mass M
eff
H3

which enters into the nu-

cleon decay amplitude in the same way as in the minimal SU(5) model, so the

same bounds apply. However, the splitting in the 75-dimensional representation

gives rise to a negative correction, such that in the missing doublet model, the

discrepancy "g is negative, just as it must be in order to be consistent with the

measured values of g1(MZ); g2(MZ), and g3(MZ). In fact, in each of the three

models shown in Fig. 5, the allowed range of "g in the missing doublet model just

about overlaps the required values. Hence, the missing doublet model is consistent

with gauge coupling uni�cation.



6 Conclusion

In the end, what we really do when we investigate gauge coupling uni�cation is

constrain the physics at the grand-uni�cation scale. The weak-scale measurements

of the gauge couplings imply that "g is negative. We can calculate "g in various

grand uni�ed models to see whether the grand uni�ed model parameter space

can accommodate the required value. Here we showed that this is not possible

in the minimal SU(5) model, but that it is possible in the missing doublet SU(5)

model. In other words, the missing doublet model requires that "g is negative,

which corresponds with the measured values of the gauge couplings. Similarly,

there are SO(10) models which can accommodate the "measured" "g, and others

which cannot. Gauge coupling uni�cation remains an e�ective constraint on model

building.
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